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Supervisor’s Foreword

In recent decades great progress has been achieved in the understanding of the
so-called Strong Interaction and the elementary particles being subject to this
interaction, the hadrons. By now it is generally agreed that Quantum Chromo-
dynamics (QCD) is the correct theory of hadronic physics. According to it one
describes hadrons as bound states of quarks and gluons. To match the observation
the color non-singlet quarks and gluons always have to form color singlet com-
binations within a hadron. And, unlike atoms, where the electrons can be sepa-
rated, there is no color-charge version of ionization for hadrons. Every attempt to
kick a quark free from a hadron, via high-energy collisions, only results in the
production of more color-singlet hadrons: a non-singlet particle is never produced.
Particle and nuclear physicists have become accustomed to this fact and named it
‘‘confinement’’, but even after decades of intense effort this very basic feature of
hadron physics still has no generally agreed upon explanation.

Therefore it is fair to state that the confinement problem is one of the truly
fundamental problems in physics. Quark confinement is the essential link between
the microscopic quark-gluon degrees of freedom of QCD and the actual strong-
interaction spectrum of color-neutral mesons, baryons, and nuclei. Until this
phenomenon is well understood, something essential is still lacking in our grasp of
the deeper mechanisms of non-Abelian gauge theory and the foundations of
nuclear physics.

To elucidate the confinement problem it is necessary to gain insight into the
infrared behavior of non-Abelian gauge theories. As the coupling describing the
strength of the quark-gluon interaction becomes very large for small momentum
scales one needs non-perturbative techniques for such studies. In addition, one
anticipates infrared singularities in the Green functions of the theory, and therefore
a continuum method, at least in addition to lattice gauge field theory, is desirable.
In the here presented thesis functional equations as the Dyson-Schwinger and
Exact Renormalization Group equations have been employed to analytically
extract the qualitative behavior at low momenta via the so-called infrared expo-
nents of gluonic Green functions. Before this thesis such investigations have been
successful only in the case of Landau gauge. Within this thesis a very useful tool
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has been developed, namely a MATHEMATICA program to derive functional
equations. Due to this technical progress two highly interesting extensions of
earlier investigations could be studied. One is a non-Abelian gauge theory but with
a boundary condition in configuration space, the so-called Gribov-Zwanziger
horizon condition. The results indicate that this condition is automatically included
in the solutions of the unrestricted functional equations. More important, an
extraction of the infrared exponents of the maximally Abelian gauge has been
performed which allowed a verification of the Abelian dominance hypothesis. This
hypothesis states that the gluons living in the Cartan sub-algebra of the color
algebra are in the infrared the dominant degrees of freedom in this gauge.

Graz, November 2011 Prof. Dr. Reinhard Alkofer
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Chapter 1
Introduction

Symmetries play an important role in physics especially in the theories of the elemen-
tary forces observed in nature: gravitation, the electromagnetic force, the weak force
and the strong force. They are described by gauge theories, which are invariant under
certain local symmetry transformations. In this thesis the strong force, described by
quantum chromodynamics (QCD) [1–7], is investigated. The elementary particles
of QCD are gluons and quarks, which build up hadrons like protons and neutrons.
To be precise this thesis is about the gluonic part of QCD, which is called Yang-
Mills theory [8]. It should be noted that theories of that type are also the basis for
the electro-weak sector of the standard model.

The overall structure of the Lagrangian of QCD is similar to that of quantum
electrodynamics (QED) which describes electrons and photons: both electrons and
quarks have mass and interact via massless particles, the photons and gluons, respec-
tively. Electrons are electrically charged and so are quarks, but they possess fractional
charges of the electron charge e: ±1/3 e or ±2/3 e. The most intriguing difference,
however, is that contrary to electrons and photons no free quarks or gluons are
observed. While already the human eye attests the existence of the former, not even
the most sophisticated experiments have been able to detect single quarks or gluons,
see, for example, [9–12] for the search for free quarks and [13] for a discussion on
experimental bounds on free gluons. The phenomenon that free quarks and gluons
are not observed is known as confinement [14, 15] and will be a central topic in
this thesis.

Research on confinement is quite diverse and reaches from phenomenological
models to mathematical investigations. It is often said that one of the Millennium
prizes of the Clay Mathematics institute is for the proof of confinement in Yang-
Mills theories [16]. However, fact is that the prize money of one million US dollars
is for the mathematical proof of the existence of Yang-Mills theory and that it has
a mass gap. In the official problem description by Jaffee and Witten [16] the proof
of confinement is listed as a possible extension of the problem. So although Yang-
Mills theories have already been used successfully in elementary particle physics

M. Q. Huber, On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills 1
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2 1 Introduction

for decades, there are still a few things not understood and their investigations are
central topics in modern research.

In the literature exists a wide variety of suggestions what mechanism is responsible
for confinement. Thereby it turned out that many of these confinement scenarios
are not independent of each other but rather illuminate the problem from different
perspectives. Thus the question is not what is the correct confinement scenario but
what is their interplay. For example, if magnetic monopoles play an important role,
how can this be seen in correlation functions? What type of field configurations
are dominant in the low momentum regime? How can a successful confinement
scenario that works in one gauge be interpreted in another gauge? Ideally we can
relate different mechanisms and thereby get a better understanding of the complete
picture.

Questions like these motivated the research presented in this thesis. In particular it
is investigated what role so-called Abelian degrees of freedom play for confinement.
Since it is known how confinement works in compact U (1) gauge theory, where
magnetic monopoles condense [17, 18], the Abelian remnants of the fields may also
be at work in non-Abelian theories and confine the elementary particles. The results
presented indicate that such a picture is indeed promising. Another question pursued
is about the role of the so-called Gribov horizon, which is also supposed to play a
special role for confinement.

For the investigation of QCD many different tools are available, each with their
own disadvantages and advantages. The approach chosen for the present work are
functional equations. They form an infinite tower of coupled equations, which nat-
urally has to be truncated for calculations. However, in some asymptotic cases it
is possible to obtain general analytic results for the whole system. This is a rather
advantageous situation, since, for example, the reliability of a truncation can be
assessed rather quickly. Also numerical calculations profit, because knowing part of
the solution analytically provides a good starting point. This thesis focuses mainly
on systems where such solutions can be obtained.

Functional methods, mainly Dyson-Schwinger equations [19–21] and functional
renormalization group equations [22], have by now a long tradition in the investi-
gation of Yang-Mills theory and also QCD. As it is the most convenient choice in
this context, the Landau gauge was usually employed, see, e.g., Refs. [23–27], with
a few exceptions. During the last decade the methods have improved considerably
and while at the beginning several assumptions had been required, many of them
could be put aside and the results got more and more rigorous. Unfortunately the
situation is not as clear as one would wish, because two different types of solutions
are known, which only differ in the deep infrared [28]. The connection between
these two solutions has been elucidated only partially and it is not settled if both
or only one solutions are correct. It has even been conjectured that in the former
case they correspond to two different non-perturbative Landau gauges that coincide
perturbatively [29].

In Chap. 2 I shortly review these two types of solutions for the Landau gauge.
In the remainder of the thesis I focus then on one of them, the so-called scaling solu-
tion, which allows qualitative analytic predictions for the whole tower of functional

http://dx.doi.org/10.1007/978-3-642-27691-0_2


1 Introduction 3

equations. Chapter 2 contains also an overview over some confinement scenarios
relevant for this thesis and aspects of the infrared regime of Yang-Mills theory as
well as of the gauge fixing procedure.

Although functional methods have been so successful in the Landau gauge their
use for other gauges is not straightforward. One issue is that in terms of functional
equations all other gauges are more complicated since the number of interactions
and sometimes even fields increases. In particular for the cases investigated in this
thesis, the maximally Abelian gauge and the Gribov-Zwanziger action, which can
be seen as an extension of the Landau gauge, the equations becomes so large that a
manual treatment is quite inefficient. To overcome this obstacle I developed a com-
puter program dedicated to this task. The underlying algorithm, which is suited for
manual derivations as well, is explained in Chap. 3, where also an introduction to
Dyson-Schwinger and functional renormalization group equations can be found. The
program is named “Derivation of Dyson-Schwinger equations” (DoDSE) and freely
available in the Computer Physics Communications Program Library.1 Given the
fields and interactions of a theory it derives the Dyson-Schwinger equations in sym-
bolic notation and even the algebraic expressions when Feynman rules are provided.
Motivated by the usefulness of this program an extended version called “Derivation
of functional equations” (DoFun) was created that also includes functional renor-
malization group equations [30].

Having this new tool allowed to proceed to confinement scenarios beyond those
accessible via the Landau gauge. One such interesting confinement picture is pro-
vided by the so-called dual superconductor picture [31, 32]. In short it works similar
to a conventional superconductor but the roles of electric and magnetic degrees of
freedom are reversed. Thus the chromomagnetic monopoles of QCD are supposed
to condense like Cooper pairs. As a consequence the chromoelectric flux between
quarks is, like in an Abrikosov lattice, squeezed into string like objects. Unfortu-
nately such monopoles are not directly accessible for functional methods, but what
can be tested is the hypothesis of Abelian infrared dominance [33] which is moti-
vated by the dual superconductor. The interesting objects are in this case the Abelian
components of the gauge field which are related to monopoles. With functional meth-
ods the correlations of the Abelian fields can be calculated and their behavior at low
momenta can be determined. For such a calculation the maximally Abelian gauge [18]
is suited best: it is a covariant and renormalizable gauge and stresses the role of the
Abelian field components. Here the power of gauge fixing becomes obvious, because
the meaning of the dual superconductor picture in Landau gauge is somewhat unclear,
as there are no chromomagnetic monopoles. However, since physics does not depend
on the choice of a gauge we can try if another gauge is better suited and find a good
candidate in the maximally Abelian gauge. The findings of this thesis about the max-
imally Abelian gauge, presented in Chap. 5, also further elucidate the connection
between Abelian infrared dominance and some Landau gauge confinement scenarios.

1 http://cpc.cs.qub.ac.uk/summaries/AECT_v1_0.html
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4 1 Introduction

The second main issue investigated is the influence of the Gribov horizon on the
Landau gauge scaling solution. It arises when attempting a complete gauge fixing,
which is required for non-perturbative calculations, as the standard Landau gauge
definition seems insufficient. As a consequence the integration in the path integral
should be restricted to the interior of the Gribov horizon [34]. This is implemented in
the Gribov-Zwanziger action by additional terms [34, 35]. Interestingly the gluons
are then confined already at tree-level as their propagator vanishes at zero momen-
tum. The qualitative picture of an infrared vanishing gluon propagator and an infrared
enhanced ghost propagator is also found by Dyson-Schwinger and functional renor-
malization group equations [23–27]. However, functional equations did up to now
not explicitly take into account the restriction to the interior of the Gribov horizon as
it was argued that one can formally cut off the integration at the Gribov horizon with-
out changing the equations [36]. This conjecture is explicitly tested in Chap. 6 and
confirmed by analyzing the Dyson-Schwinger equations of the Gribov-Zwanziger
action.

As both the maximally Abelian gauge and the Gribov-Zwanziger action are con-
siderably more complicated than the standard Landau gauge, the available methods
had to be improved and extended for their investigations. Chapter 4 describes an
important part of these methods as general as possible so that it can be employed for
a broad range of different actions and is not restricted to the cases investigated in this
thesis. To demonstrate its usefulness I give the examples of the Landau gauge, linear
covariant gauges and ghost anti-ghost symmetric gauges. Under certain assumptions
this method provides the means to derive all possible scaling solutions for a theory
from the structure of its interactions.

Finally, I present in several appendices details of some calculations. The deriva-
tions of formulae used in Chap. 4 can be found in Appendix A together with the
generalization to d dimensions. The employed conventions for Grassmann fields are
described in Appendix B. Appendix C contains the Feynman rules of the maximally
Abelian gauge and Appendix D a formula for the calculation of the sunset diagram.
An overview over the use of DoDSE is given in Appendix E including the deriva-
tion of the two-point function Dyson-Schwinger equations of the maximally Abelian
gauge and the Gribov-Zwanziger action.

For further background reading on non-perturbative studies with DSEs I recom-
mend the reviews [25, 37, 38]. The derivation of DSEs is also explained in Ref. [39].
There are many reviews available for functional renormalization group equations.
A good starting point is, for example, Ref. [40], whereas Refs. [41, 42] provide
further information, just to name a few. For a better understanding of the types of
solutions in the Landau gauge Ref. [28] is useful. The Gribov problem is illustrated in
[43]. More detailed information on the results presented here are provided in [44–47].
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Chapter 2
Yang-Mills Theory and its Infrared Behavior

Yang-Mills theory [1] describes the gluonic part of the strong interaction. It is a gauge
theory and consequently the choice of a gauge is required in functional approaches.
This amounts to choosing one representative among all the physically equivalent
gauge field configurations. In Sect. 2.1 I will describe the standard procedure for
gauge fixing, as employed in perturbation theory, as well as the problems arising
when going to the non-perturbative regime. An improved gauge fixing taking these
into account will be presented in Chap. 6.

As in this thesis the aspects of the infrared (IR) behavior of correlation functions
is investigated, I will describe in Sect. 2.2 two well known ways of connecting the
IR behavior of propagators to confinement: first I explain the basic idea behind the
Kugo-Ojima scenario [2, 3] and then I introduce the Gribov-Zwanziger scenario
[4–7]. The idea behind the latter will be important for Chap. 6.

In the final section of this chapter I will shortly review the development of our
understanding of the IR regime in the Landau gauge. This gauge is widely pre-
ferred in functional approaches because of its simplicity. Indeed calculations in all
other gauges lead to one or more additional obstacles that have to be overcome. But
although the Landau has been intensively investigated for many years by now, there
is no consensus yet about the solution for the Green functions in the IR. Two possible
candidates have emerged, and even the variant that they correspond only to different
non-perturbative extensions of the Landau gauge is discussed. I will describe the
features of both solutions in this section. Furthermore, I will also explain the notion
of positivity violation, which is a mathematical criterion for confinement.

2.1 The Action of Yang-Mills Theory

In this section the Lagrangian of Yang-Mills theory is introduced as the gluonic part
of QCD. How to fix the gauge, the BRST symmetry [8–10] and properties of the
Gribov region are described.
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8 2 Yang-Mills Theory and its Infrared Behavior

2.1.1 The Gauge Invariant Action

The Lagrangian density of QCD is [1, 11]

LQC D = q̄(−/D + m)q + LY M , (2.1)

LY M = 1

2
tr{Fμν Fμν}. (2.2)

The first term in LQC D describes the propagation of the massive quarks and their
interaction with gluons via the covariant derivative Dμ:

Dμ = ∂μ + i g Aμ. (2.3)

The second term, LY M , constitutes the purely gluonic part of QCD and thus contains
the propagation of gluons and their self-interactions. While it is not possible to find a
gauge invariant Lagrangian for quarks without gluons, this is not true in the opposite
direction, i.e., LY M is gauge invariant and can be considered on its own without
quarks. It is this term that is investigated in this thesis.

The quantity Fμν is called the field strength tensor and is given by

Fμν = ∂μ Aν − ∂ν Aμ + i g [Aμ, Aν]. (2.4)

The gauge field Aμ lives in an algebra defined by the hermitian generators T r of a
generic gauge group. They obey the relations

[T r , T s] = i f rst T t , (2.5)

tr{T r T s} = T f δ
rs, (2.6)

with T f = 1
2 for SU (N ). The decomposition of the gauge field is

Aμ = Ar
μT r (2.7)

and similarly for the field strength tensor:

Fμν = Fr
μνT r , (2.8)

Fr
μν = ∂μ Ar

ν − ∂ν Ar
μ − g f rst As

μ At
ν . (2.9)

In components the YM Lagrangian reads

LY M = 1

4
Fr

μν Fr
μν . (2.10)

The transformation of the gluon field under which the QCD Lagrangian is invariant
is given by
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AU
μ (x) = U (x) Aμ(x) U (x)−1 + i

g
(∂μU (x)) U (x)−1, (2.11)

where U (x) is

U (x) = ei g ω(x) (2.12)

with ω(x) the Lie algebra valued gauge parameter:

ω(x) = ωr (x)T r . (2.13)

Equation (2.11) is called a gauge transformation. In infinitesimal form it reads

Ar
μ → Ar

μ + δAr
μ = Ar

μ − ∂μωr − g f rstωs At
μ = Ar

μ − Drs
μ ωs, (2.14)

where the covariant derivative in the adjoint representation Drs
μ is defined as

Drs
μ = δrs∂μ + g f rst At

μ. (2.15)

As mentioned above the gauge group for the strong interaction is the compact
simple Lie group SU (3). In this thesis, however, I will for a large part adopt the
gauge group SU (N ). The reason is that not only SU (3) per se is of interest, but also
general SU (N ) and especially SU (2). In the latter case calculations can become
easier and especially in the maximally Abelian gauge SU (2) is often employed as the
Lagrangian simplifies considerably, see Chap. 5. General SU (N ) or also other groups
like G2, see, for example, Refs. [12, 13], are investigated to determine the dependence
of certain aspects of Yang-Mills theories on the gauge group. Also investigations in
the so-called large N limit are performed [14].

2.1.2 Fixing the Gauge

To work with functional methods we cannot use the action Eq. (2.10) as prob-
lems appear at several points. For example, in the canonical quantization, see, e.g.,
Ref. [15], the commutator relations cannot be fulfilled, as the conjugate momentum
of Aμ, given by

�μ(x) = ∂L
∂(∂0 Aμ(x))

= F0μ, (2.16)

has no zero component �0. But this contradicts the equal-time commutation relation

[Aμ(x),�ν(y)] = i gμνδ(x − y). (2.17)

http://dx.doi.org/10.1007/978-3-642-27691-0_5


10 2 Yang-Mills Theory and its Infrared Behavior

If, however, a certain gauge is chosen, �0 does no longer vanish and one can proceed
as usual.

In the path integral the source of the problems is that one integrates over all gauge
equivalent gauge field configurations, although the idea is only to take into account
gauge non-equivalent, i.e., physically different configurations. In other words the
defining symmetry of the theory makes the integration in the path integral overcom-
plete. Furthermore, one cannot calculate the propagator of the theory, as the gluon
two-point function has zero eigenvalues. Consequently it is singular and cannot be
inverted to get the propagator.

It is useful to introduce here the notion of a gauge orbit, which is the set of field
configurations connected by a gauge transformation:

O[A] := {A′
μ|A′

μ = AU
μ }. (2.18)

AU is given in Eq. (2.11). Ideally one takes only one representative per gauge orbit.
The idea by Faddeev and Popov to achieve this was to restrict the integration in the
path integral to a hyperplane [16]. This can be done by inserting unity, given by

1 = �[A]
∫

DUδ( f [AU ]), (2.19)

into the path integral. The delta functional defines the hyperplane f [A] = 0 and
DU is an integration over group space. The factor �[A] is the Jacobian arising
from the transition from field variables A to gauge transformation variables U . The
integration over U can be absorbed into the normalization of the path integral and
the factor �[A] can be calculated as

�rs[A] = det

(
δ f r [A(x)]

δωs(y)

)
=: det Mrs(x, y), (2.20)

where the color indices have been made explicit. M(x, y) is known as the Faddeev-
Popov operator. Its determinant can be localized by the introduction of a pair of Lie
algebra valued Grassmann fields, the so-called Faddeev-Popov ghosts c̄ and c:

det Mrs(x, y) =
∫

D[c̄c]e
∫

dx dy c̄r (x) Mrs (x,y) cs (y). (2.21)

Although they have zero spin, they obey Fermi statistics, which underlines their
status as auxiliary and not physical fields.

As an alternative to the restriction to a hyperplane one can relax this condition to a
Gaussian distribution over the gauge orbit with the mean value defined as the original
gauge fixing condition. One example are linear covariant gauges with a gauge fixing
parameter ξ that gives the width of the distribution around the Landau gauge fixing
condition ∂μ Aμ = 0. In the limit of ξ → 0 the Landau gauge is recovered. One
should note that such a Gaussian distribution includes all gauge copies. Since it is
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normalized it does not lead to the same problems as the unnormalized integration
before.

The gauge fixing part which is added to the Lagrangian density is then given by

Lg f = 1

2ξ
(∂μ Ar

μ(x))2 −
∫

dy c̄r (x) Mrs(x, y) cs(y). (2.22)

Also in the Landau gauge the full expression has to be added,

LY M → LY M + Lg f , (2.23)

and only after inverting the gluon two-point function one can set ξ = 0. In the path
integral the factor exp(− 1

2ξ (∂μ Ar
μ)2) reduces to a delta functional in the limit ξ → 0.

2.1.3 The Faddeev-Popov Operator and the Gribov Region

In the remainder of this section we will confine ourselves mostly to the Landau gauge
in order to discuss some specific properties of the Faddeev-Popov operator and the
Gribov region. In Landau gauge it is given by

Mrs(x, y) = Mrs(x)δ(x − y) = −∂μDrs
μ δ(x − y). (2.24)

It is easy to demonstrate that the Landau gauge fixing is not complete as there are still
gauge copies left. However, the fact that the gauge is not fixed completely by a local
gauge fixing condition is not a specific property of the Landau gauge, but valid for
all local gauge fixing conditions [17]. Starting with a gauge configuration fulfilling
the Landau gauge condition, ∂μ Aμ = 0, we can perform a gauge transformation
according to Eq. (2.11) demanding that the result again fulfills the Landau gauge
condition:

∂μ Aμ = 0 → ∂μ Aμ − ∂μDμω
!= 0 ⇒ Mω

!= 0. (2.25)

Hence if the Faddeev-Popov operator has zero modes, there are still gauge equivalent
configurations left.

The first to treat this issue was Gribov [4]. He proposed to restrict the configuration
in the path integral to the region �, where the Faddeev-Popov operator M(A) is
strictly positive:

� := {A|∂μ Aμ = 0, M(A) > 0}. (2.26)

Positivity entails that the operator is invertible, which is important as its inverse
corresponds to the propagator of the Faddeev-Popov ghosts. Today the region � is
known as the Gribov region, which has the following properties in Landau gauge:
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• The vacuum configuration, Aμ = 0, lies in the Gribov region [18]. This can
easily be verified by observing that it fulfills ∂μ Aμ = 0 and the Faddeev-Popov
operator reduces to the Laplacian, M(0) = −�, which is a positive operator.
Since perturbation theory is an expansion around A = 0, one can understand that
it yields good results, as long as the quantum fluctuations do not become large
enough to feel the presence of the Gribov horizon.

• The Gribov region is bounded in all directions [18]. In this it differs decisively
from the Gribov region of the maximally Abelian gauge [19, 20], which will be
discussed in Sect. 5.3.3.

• It is convex, i.e., two arbitrary configurations A1 and A2 within the Gribov region
can be combined to a new configuration A3 that lies again within the Gribov region
as follows [18]:

A3 = αA1 + (1 − α)A2, 0 ≤ α ≤ 1. (2.27)

• Every gauge orbit passes at least once through the Gribov region [21]. This property
is important so that one can restrict the integration to the Gribov region without
missing any gauge orbits.

• Unfortunately there are still gauge copies within the Gribov region so that the gauge
fixing is not complete [22, 23]. However, expectation values are not influenced by
these additional copies [18].

The statement that every gauge orbit passes through the Gribov region is related to
the fact that the Landau gauge condition can be derived by minimizing the functional

R[A] := 1

2

∫
dx Aμ(x)Aμ(x) (2.28)

with respect to infinitesimal gauge transformations, Eq. (2.14):

δR[A] =
∫

dx Ar
μ(x)δAr

μ(x) =
∫

dx Ar
μ(x)(−Drs

μ (x)ωs(x)) =

=
∫

dx Ar
μ(x)(−∂μωr (x) − g f rst At

μ(x)ωs(x)) =

=
∫

dx(ωr (x)∂μ Ar
μ(x)). (2.29)

In order to have an extremum ∂μ Ar
μ must vanish. The type of the extremum can be

determined by the second derivative:

δ2 R[A] =
∫

dx(ωr (x)(−∂μ Drs
μ (x)ωs

μ(x)) =
∫

dx ωr (x)Mrs(x)ωs(x). (2.30)

http://dx.doi.org/10.1007/978-3-642-27691-0_5
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Here we recognize the Faddeev-Popov operator Mrs , i.e., if it is positive, we have
a minimum of the functional R[A]. Thus the restriction to the Gribov region corre-
sponds, as asserted above, to the minimization of the functional R[A].

As the Gribov region is still plagued by gauge copies [22, 23], one can think about
better ways of fixing the gauge. A natural choice for a unique gauge fixing is the
set of gauge field configurations that corresponds to the absolute minimum of R[A].
This region is known as the fundamental modular region. It possesses a topologically
non-trivial boundary where degenerate global minima exist that have to be identified.
Taking the global minimum is also known as absolute Landau gauge and taking one
arbitrary minimum as minimal Landau gauge. In lattice calculations one can employ
algorithms that correspond to the latter or approximate the former and indeed finds
an influence on the correlation functions [24, 25]. More on different Landau gauges
on the lattice can be found in Sect. 6.1.3.

2.1.4 Replacing Gauge Symmetry by the BRST Symmetry

In the action fixed to a hyperplane in field configuration space gauge invariance
is explicitly broken. However, there is another symmetry that takes its place. It is
named BRST symmetry after Becchi et al. [9, 10] and Tyutin [8]. It is very useful in
proving renormalizability and unitarity of a theory, see, for example, Refs. [3, 26].
The corresponding transformations can be derived from the standard gauge transfor-
mation by replacing the gauge parameter ω by a ghost field c. Due to this choice the
pure Yang-Mills part is trivially invariant. The invariance of the gauge fixing part is
explained below.

It is convenient to introduce the gauge fixing condition via an auxiliary Lie-algebra
valued field b that takes the role of a Lagrangian multiplier:

∫
Dbr e− ∫

dx(ibr f r [A]) = Nδ( f r [A]). (2.31)

It is not dynamical and called Nakanishi-Lautrup field [27, 28]. Relaxing the gauge
fixing condition f [A] = 0 into f [A] = i ξ b/2 leads to

∫
Dbr e

− ∫
dx

(
ibr f r [A]+ ξ

2 br br
)

= Ne− 1
2ξ ( f [A])2

(2.32)

and corresponds to the Gaussian averaging over the gauge orbit in linear covariant
gauges as described above. N is some normalization factor and ξ is called a gauge
fixing parameter. It determines the width of the Gaussian distribution. Specifically
ξ = 0 is the original gauge fixing condition. However, one should keep in mind that
this is only well defined if the solution to f [A] = 0 is unique, what is not the case
non-perturbatively.

http://dx.doi.org/10.1007/978-3-642-27691-0_6


14 2 Yang-Mills Theory and its Infrared Behavior

In Landau gauge the off-shell BRST transformation reads:

s Ar
μ = −Drs

μ cs, (2.33)

s cr = −1

2
g f rst csct , (2.34)

s c̄r = i br , (2.35)

s br = 0. (2.36)

Integrating out the Nakanishi-Lautrup field yields the on-shell form, where we just
have to replace br by −i (∂μ Ar

μ)/ξ. A substantial property of the BRST symmetry is
its nilpotency, s2 = 0, in the off-shell case. Thus BRST can also be defined as follows:
the gauge parameter of the gauge transformation is taken as the anti-commuting
field c. Requiring nilpotency of this transformation, i.e., s2 Aμ = 0, determines s c.
Finally the fields c̄ and b are introduced as a BRST doublet, i.e., they have the trivial
BRST transformations s c̄ = i b and s b = 0.

The nilpotency property allows an easy way to fix the gauge without the need for
a path integral [29]. This is based on the observation that one can add any quantity
that is the result of a BRST transformation, a so-called BRST exact quantity, to the
Lagrangian without spoiling its BRST invariance. As the gauge fixing condition f [A]
has ghost number zero and the BRST transformation itself raises the ghost number
by one, we introduce the factor c̄ to get ghost number zero and add s(c̄ f [A]). In the
case of the Landau gauge, where f [A] = ∂μ Aμ, this prescription to fix the gauge
directly leads to the known gauge fixing terms:

Lg f = s(c̄r f [A]r ) = s(c̄r∂μ Ar
μ) =

= i br (∂μ Ar
μ) − c̄r ∂μ(−Drs

μ cs) = i br (∂μ Ar
μ) − c̄r Mrs cs . (2.37)

One minus sign stems from the anti-commutativity property of s and c̄. This method
can be used also for other gauges and allows the use of gauge fixing conditions
depending on ghost fields [29]. It will be employed for the maximally Abelian
gauge in Chap. 5, where it significantly simplifies the gauge fixing procedure. As
the expectation value of any gauge invariant quantity remains unaffected by adding
such a BRST exact form, one can very nicely see in this way of quantization that all
physical observables are independent of the chosen gauge.

2.2 Aspects of the Asymptotic Infrared Regime

Solving a Dyson-Schwinger equation (DSE) numerically for the complete momen-
tum region is a challenging task and it proves useful to know the asymptotic behavior
of the correlation functions [30, 31]. For the ultraviolet (UV) perturbation theory
naturally provides a good guideline. For the IR regime it is more complicated to

http://dx.doi.org/10.1007/978-3-642-27691-0_5
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determine the qualitative behavior and thus it is worthwhile to develop analytic
methods for its investigation. But the low momentum region is not only of interest
for providing input for numerical calculations. One can also learn about the real-
ization of different scenarios of confinement [32]. In this section I will give a short
overview over confinement scenarios directly related to correlation functions. The
description of an additional scenario, the dual superconductor picture, is deferred to
Sect. 5.1 as it does not translate directly into conditions for the correlation functions.
A purely mathematical criterion for confinement, violation of positivity, is described
later in Sect. 2.3.

2.2.1 The Gribov-Zwanziger Confinement Scenario

As mentioned in Sect. 2.1.2, the usual gauge fixing is not sufficient for the non-per-
turbative regime. An improvement can be achieved by restricting the integration in
field configuration space to the first Gribov region. This is explicitly realized by the
so-called Gribov-Zwanziger action [4, 33]. Its derivation and IR analysis are
described in Chap. 6. Here I only mention the qualitative consequences of this
improved gauge fixing for the theory.

The main statements of the Gribov-Zwanziger confinement scenario in the Lan-
dau gauge are that the gluon propagator vanishes at zero momentum [7] and that the
ghost propagator is IR enhanced, i.e., it diverges stronger than a simple pole [5, 6].
The interesting point is that these statements are realized in the Gribov-Zwanziger
action already at the perturbative level. The reason is that the existence of the
Gribov horizon, which is a non-perturbative object, is taken into account. The tree-
level gluon propagator is

Drs
A,μν(p2) = δrs

(
gμν − pμ pν

p2

)
p2

p4 + 2 N g2γ4 , (2.38)

where N is the number of colors and γ a mass parameter. γ is not free but determined
by the horizon condition, see Sect. 6.1.2. This condition has to be enforced in order
to make the theory well-defined in the first place [4].

Naively the bare ghost propagator goes like 1/p2, but it turns out that the horizon
condition leads to a cancelation of this term at one-loop level and the IR leading part of
the ghost propagator goes like 1/p4. One can show this cancelation diagrammatically
for the exact ghost propagator [34] and perturbatively it was checked up to two loops
in Ref. [35].

http://dx.doi.org/10.1007/978-3-642-27691-0_5
http://dx.doi.org/10.1007/978-3-642-27691-0_6
http://dx.doi.org/10.1007/978-3-642-27691-0_6
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2.2.2 The Kugo-Ojima Confinement Scenario

Although being based on completely different considerations as the Gribov-Zwanziger
scenario, the mechanism proposed by Kugo and Ojima leads qualitatively to the same
predictions for the IR behavior of the gluon and ghost propagators [2, 3]. The basis of
the Kugo-Ojima construction is the existence of a global, non-perturbatively defined
BRST symmetry. It was long not clear if the standard BRST, as given in Eq. (2.33),
could be extended in this sense to the non-perturbative regime. Recent progress in
this respect, however, leads exactly to this conclusion [36–39].

The importance of the BRST symmetry rests on the fact that the corresponding
charge defines the physical state space of the underlying quantum field theory by its
cohomology. In contrast to the total state space, which possesses an indefinite metric,
the physical state space must have a positive metric in order to allow a probabilistic
interpretation of expectation values. According to Kugo and Ojima physical states
φ ∈ Vphys obey the condition

Q B |φ〉 = 0, (2.39)

where Q B is the Noether charge corresponding to the BRST symmetry [3, 40].
Furthermore, one can distinguish between states with positive and zero norm, � and
χ ∈ V0, respectively:

〈�|�〉 > 0, 〈χ|χ〉 = 0. (2.40)

The zero norm states χ are also called daughter states, as they are the BRST variation
of unphysical states, the parent states |α〉:

|χ〉 = Q B |α〉, |α〉 /∈ Vphys . (2.41)

Consequently the subspace V0 ∈ Vphys is orthogonal to Vphys and does not influence
any amplitude in Vphys . The physical Hilbert space equipped with a positive metric
is then given by the completed quotient space

Hphys = Vphys/V0. (2.42)

In summary states fall in one of the following three classes:

• BRST non-invariant states |α〉: These are unphysical states, as the BRST charge
does not annihilate them, Q B |α〉 	= 0.

• BRST exact states |χ〉: They are the BRST variation of the states |α〉.
• BRST invariant but not BRST exact states |�〉: They define real physical states,

i.e., they are BRST invariant, Q B |�〉 = 0, and have a positive norm, 〈�|�〉 > 0.

Kugo and Ojima could show that the states |α〉 and |χ〉 always appear in so-called
quartets, which is given by a “Faddeev-Popov conjugated” pair of BRST doublets [3].
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Using the notation |k, N 〉, where k represents all quantum numbers except for the
ghost number N , the four particles of a quartet can be denoted as follows:

|φ1〉 = |k, N 〉, |φ2〉 = Q B |φ1〉 = |k, N − 1〉,
|φ3〉 = |k, −N 〉, |φ4〉 = Q B |φ3〉 = |k, −(N + 1)〉. (2.43)

|φ1〉 and |φ2〉 are one BRST doublet, |φ3〉 and |φ4〉 the other. Furthermore, the states
|φ1〉 and |φ3〉 belong to the class of BRST non-invariant states, and |φ2〉 and |φ4〉 to
the BRST exact states. The contributions of these four states always cancel and they
will never appear as asymptotic observable states.

The only other possibility of states are states � that are BRST invariant but not
BRST exact, i.e., they obey Q B |�〉 = 0 and cannot be written as a BRST variation of
another state. These states are called singlet states and should represent the physical
states of the theory. For QCD this means that the fundamental, confined fields of
quarks, gluons and ghosts should belong to some quartet, whereas physical states
such as mesons, baryons and glueballs should be BRST singlets.

Based on the global color charge Kugo and Ojima derived a simple criterion for
color confinement in Yang-Mills theory. Using the equation of motion of the gluon
field the conserved global color current can be written as

J a
μ := ∂ν Fa

μν + {Q B, Dab
μ c̄b}, ∂ν J a

ν = 0. (2.44)

The related charge is the global color charge

Qa := Ga + N a :=
∫

d3x
(
∂i Fa

0i + {Q B, Dab
0 c̄b}), (2.45)

where Ga and N a correspond to the first and second terms in the integral. The first
criterion of Kugo and Ojima is that ∂i Fa

0i contains no discrete massless pole. The
charge Ga then vanishes, as the integral is over a total derivative. If there were
massless contributions, Ga would be ill-defined. The second criterion requires that
N a is zero and consequently the total color charge Qa is also zero.

In the charge N a the anti-ghost field appears. It belongs to the so-called elementary
quartet and has a massless contribution from the asymptotic field γ̄a . The asymp-
totic contributions due to the composite operator g f abc Ac

μc̄b are given by uab∂μγ̄b

characterized by the dynamical parameter uab, which can be determined from the
correlation function

∫
dx ei p(x−y)〈(Dae

μ ce)(x)g f bcd Ad
ν(y)c̄c(y)〉 =

(
gμν − pμ pν

p2

)
uab(p2).

(2.46)
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The condition for the charge N a to be well-defined can be inferred from the asymp-
totic behavior of (Dab

μ c̄b)(x), given by

(Dab
μ c̄b)(x)

x0→±∞= (δab + uab)∂μγ̄b(x), (2.47)

as

uab ≡ uab(0) = −δab. (2.48)

In summary the two confinement criteria due to Kugo and Ojima are:

1. There is no discrete massless pole in ∂i Fa
0i .

2. The parameter uab has to be −δab.

The last point was taken up again by Kugo sixteen years after his article with
Ojima, Ref. [3]. In Ref. [2] he derived how the Landau gauge ghost propagator,
parametrized by

Dab
c (p2) = −δab cc(p2)

p2 (2.49)

is related to the parameter u:

cc(0) = 1

1 + u
. (2.50)

Hence the ghost propagator is more IR singular than a simple pole, if the criterion
u = −1 by Kugo and Ojima is met.

2.3 Solutions of Landau Gauge Yang-Mills Theory
in the Infrared

The non-perturbative calculation of propagators and vertices is involved and in the
course of history the emerging picture underwent some changes and improvements.
The best investigated gauge in this context is Landau gauge for which I will give a
short review in this section.
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2.3.1 From Infrared Slavery to Ghost Dominance
in the Landau Gauge

The Landau gauge is a preferred gauge in functional approaches for several reasons.
First of all, it is the gauge with the simplest form of the action. There are only two
fields which interact via three vertices. This simplicity is supported by additional
information such as, for example, the fact that the system of the transverse compo-
nents of Green functions is closed, see, e.g., Ref. [41], and the longitudinal terms can
be discarded. Furthermore, there have been arguments that the ghost-gluon vertex
stays bare in the IR [42, 43]. This was used as input at the beginning, but having
understood the gauge better and better it could be proven directly from functional
equations [44–46].

A well-known example of early non-perturbative calculations of the gluon prop-
agator in the Landau gauge is due to Mandelstam [47]. Motivated by perturbation
theory he neglected the ghost loop, which only contributes a small amount at high
momenta, and the four-gluon vertex, which only occurs at two-loop level. With an
approximated three-gluon vertex he obtained an IR divergent gluon propagator and
also an IR singular running coupling. As such a gluon propagator apparently is
perfectly suited to yield a linear rising potential by single gluon exchange, this pic-
ture was widely accepted and became known under the name IR slavery. The results
of the Mandelstam approximation were subsequently confirmed in Refs. [48–50].
However, this is a perfect example of how assumptions based on perturbation theory
can lead in the wrong direction in the non-perturbative regime. In the late 1990s
it was shown in Refs. [31, 51] that the ghost propagator yields the most important
contribution to the IR sector of Landau gauge Yang-Mills theory. In fact, it was found
that the ghost contributions were dominating all DSEs [45, 52, 53] supporting the
scenarios of ghost dominance as proposed by Gribov and Zwanziger [4, 6] and Kugo
and Ojima [2, 3].

This solution is characterized by power laws for the dressing functions cA(p2)

and cc(p2) of the gluon and ghost propagators, respectively:

DA(p2) = dA · (p2)δA , Dc(p2) = dc · (p2)δc . (2.51)

dA and dc are momentum independent coefficients and the qualitative behavior is
determined only by the exponents, called infrared exponents (IREs). An important
feature of these power laws is that the exponents depend only on one parameter,
usually denoted by κ, as they are related by a so-called scaling relation:

κ := −δc = δA/2. (2.52)

The value of κ can be calculated analytically. The most reliable value is 0.5953 . . .

[44, 54]. It is obtained for a bare ghost-gluon vertex and changes only slightly when
an IR constant, but momentum dependent dressing is employed [44].
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The fact that the ghost-gluon vertex is not IR enhanced was originally used as
an input to solve the DSEs. It relied on an argument by Taylor [42, 43] and was
confirmed by lattice [55–58] and DSEs studies [59, 60]. The self-consistency of this
assumption was confirmed later on [52] and finally it was shown that this is indeed
the only possible IR solution [45, 46]. This proof was possible by combining the
two distinct systems of functional renormalization group equations and DSEs as
suggested in [61]. A different approach with the same result was taken in Ref. [53],
where as an assumption the existence of a stable skeleton expansion in the IR was
used. It turned out that such an assumption necessarily holds as can be derived from
functional renormalization group equations [46]. Details on the proof can be found
in Sect. 4.2.3, where this emerges merely as a side result from the general analysis
of the systems of functional equations.

2.3.2 The Decoupling Solutions and the Scaling Solution

Although the uniqueness of this solution in terms of scaling laws was established,
the results did not agree with calculations on the lattice, see, for example, Refs. [56,
62–72]. For exceptions see Refs. [70, 73], the two-dimensional case [57, 68] and the
strong coupling limit [74–76]. Indeed another solution was found with continuum
methods that possesses quite different characteristics: the ghost propagator is not IR
enhanced but stays bare in the IR, and the gluon propagator becomes finite instead
of going to zero [41, 77–80]. This behavior is responsible for the name decoupling
solution, as the gluons decouple below the scale given by their mass. One should
note that a massive behavior for the gluon propagator is also possible in the for-
merly found solution, now called scaling solution, since the value of the parameter
κ could be 1/2. But then the ghost propagator would still be IR enhanced via the
scaling relation Eq. (2.52). In the decoupling solution, however, the propagators do
not obey an IR scaling relation and the ghost stays bare in the IR. Nevertheless there
is some realization of ghost dominance in the decoupling solution, as the gluon is
IR suppressed. Another qualitative difference between the two solutions is that the
scaling solution is unique, while there exists a family of decoupling solutions [41].
In Fig. 2.1 both solutions are plotted.

The connection between the two solutions is the renormalization of the ghost prop-
agator DSE [41]. Solving the DSEs one requires renormalization conditions and for
the ghost propagator it is convenient to specify the renormalization condition at zero
momentum. Choosing a finite value for the ghost dressing function yields a decou-
pling solution, where the value of the ghost dressing function at zero momentum is
connected to the mass of the gluon [41]. For an infinite ghost dressing function at zero
momentum the scaling solution is recovered [31, 41, 51]. One should note that it is
not necessary to fix the value at zero momentum but the normalization prescription
can be defined at any arbitrary momentum, since the values for different momenta
are uniquely connected. Mathematically the necessary choice of the renormalization

http://dx.doi.org/10.1007/978-3-642-27691-0_4
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Fig. 2.1 Numerical solutions of the gluon and ghost two-point DSEs. Plotted are the gluon (left) and
ghost (right) dressing functions for the decoupling and scaling solutions. Printed with permission
from Elsevier from Ref. [41]

condition for the ghost dressing function corresponds to a boundary condition for
the DSEs.

This is also related to an argument by Zwanziger that one can in principle cut the
integration in field configuration space at the first Gribov horizon without modifying
the form of the equations [54]. What is changed, however, are the boundary condi-
tions. In case one cuts at the first Gribov horizon one uses as boundary condition
that the ghost propagator is more enhanced than a simple pole, as derived from the
horizon condition [5, 6, 34]. One can also argue for the same boundary condition
with the Kugo-Ojima confinement scenario [2, 3] without referring to the Gribov
region. Unfortunately it is not understood how these two arguments are related, since
the implementation of the Kugo-Ojima condition u = −1 into the action leads to
the Gribov-Zwanziger action [81]. However, the Gribov-Zwanziger action breaks
the BRST symmetry, while the Kugo-Ojima formalism relies on an unbroken BRST
charge.

What speaks in favor that both solutions are valid is the fact that physical
quantities do not seem to depend on the deep IR, the only region where the two
solutions differ from each other. In Ref. [82] the transition temperatures of the con-
finement/deconfinement and the chiral transitions at vanishing chemical potential
were calculated with identical results for both solutions.

In the present work I concentrate only on the scaling solution, which is more
accessible to analytic approaches and offers explanations for many aspects of Yang-
Mills theory. The most important one is certainly the confinement of gluons which
can directly be inferred from the IR vanishing gluon propagator, as one can show
analytically that the Schwinger function �(t) is not positive [7]. This, however, is
necessary to interpret a particle as physical [83, 84]. It boils down to show that

�(t) :=
∫

d3x
∫

d4 p

(2π)4 ei x pσ(p2) ≥ 0, (2.53)
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where σ(p2) is a scalar function characterizing the propagator. The Fourier trans-
formation of the gluon propagator at zero momentum is related to the Schwinger
function by

D(p2 = 0) =
∫

d4x D(x − y) =
∫

dt�(t). (2.54)

Thus if D(p2 = 0) = 0, �(t) is either zero or it has equally distributed positive and
negative contributions. In this case one speaks of maximal positivity violation. But
also for the decoupling solution a violation of positivity is observed both by lattice
simulations [66, 85, 86] and functional equations [41].

A delicate point is the global BRST symmetry of the solutions. If a global
symmetry exists that has the same form as the perturbative definition, Eq. (2.33),
we know from the seminal paper of Kugo and Ojima how the propagators of the
ghost and the gluon should behave in the deep IR [2, 3]: the ghost propagator should
be IR enhanced and the gluon propagator should vanish at zero momentum. Only the
scaling solution fulfills these criteria. However, one cannot exclude a different real-
ization of a global BRST that leads to a different qualitative behavior in agreement
with the decoupling solution.

Finally I would like to note that both the decoupling and the scaling solutions
fulfill the criterion for a confining Polyakov loop potential [87] and thus quarks are
confined. This is a sufficient criterion depending only on the asymptotic IR part, but
in actual calculations it is found that the region responsible for confinement is the
mid-momentum regime, where both solutions agree [87].
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Chapter 3
Functional Equations

This chapter serves as a short introduction to Dyson-Schwinger (DSEs) and func-
tional renormalization group equations (FRGEs). Both systems of equations form
complete sets describing the theory exactly. As such they are suited for the investi-
gation of non-perturbative phenomena.

The derivation of DSEs is described in Sect. 3.1. First some general relations
among the generating functionals are provided in order to allow a self-contained
description. Then the process of deriving the equations is explained and the compu-
tational tool DoDSE based on the presented algorithm is introduced.

FRGEs are treated in Sect. 3.2. They require the introduction of the so-called
effective average action which depends on an artificial momentum scale and can be
interpreted as an action interpolating between the classical and the quantum action.
After introducing the effective average action, the derivation of FRGEs is sketched.

3.1 Dyson-Schwinger Equations

Dyson-Schwinger equations (DSEs) are named after Dyson [1] and Schwinger
[2, 3]. Put into one sentence, DSEs are the equations of motion of Green func-
tions and describe the propagation and interaction of the fields of the theory. The full
system of DSEs provides a complete description of the theory. Therefore DSEs can
be used to generate a perturbative expansion in the weak coupling regime, but they
show their true strength when applied for strong coupling. This makes them a perfect
tool for the investigation of Yang-Mills theory and also QCD, where non-perturbative
methods are needed to explain such phenomena as confinement and dynamical chiral
symmetry breaking. Both are important properties of these theories and cannot be
accounted for by standard perturbation theory.

M. Q. Huber, On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills 25
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© Springer-Verlag Berlin Heidelberg 2012
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3.1.1 The Generating Functionals

The easiest way to derive DSEs is via the path integral. A derivation with the canonical
formalism is possible, but less instructive and definitely more tedious. The interested
reader is referred to Ref. [4]. The path integral also allows for an easier algorithmic
implementation.

In the following we will consider a theory with fieldsφi . The multi-index i contains
the field type, all indices of the fields, as can be, for example, Lorentz or color indices,
and also the space-time or momentum dependence. Equal indices in a product are
summed and integrated over. This avoids cumbersome notation. The action is then1

S[φ] = 1

2! Srsφrφs − 1

3! Srstφrφsφt − 1

4! Srstuφrφsφtφu . (3.1)

The statistical factors are chosen such that the coefficients Srs , Srst and Srstu denote
the bare two-, three and four-point functions, and the choice of signs is a consequence
of the definition of the vertices, see Eq. (3.6). From this action the path integral is
constructed as

Z [J ] =
∫

D[φ]e−S+φi Ji = eW [J ], (3.2)

where Ji is the source of the field φi . The path integral Z [J ] is also called the generat-
ing functional for full Green functions and W [J ] that for connected Green functions.
A Legendre transform of W [J ] with respect to the sources yields the so-called effec-
tive action that generates the one-particle irreducible (1PI) Green functions, which
are those Green functions that are still connected after one internal line is cut:

�[�] = −W [J ] + �i Ji . (3.3)

It depends on the averaged fields � in the presence of external currents J ,

�i := 〈φi 〉J = δW [J ]
δJi

= Z [J ]−1
∫

D[φ]φi e
−S+φ j J j . (3.4)

The current, on the other hand, can be expressed as the derivative of the effective
action:

Ji = δ�[�]
δ�i

. (3.5)

1 Here we restrict ourselves to three- and four-point functions, but the generalization is straight-
forward.
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Derivatives of the effective action with respect to fields are abbreviated as � J
i1···in

:

� J
i1···in

:= − δ�[�]
δ�i1 · · · δ�in

. (3.6)

The minus sign is chosen for later convenience such that no additional minus signs
in the DSEs of vertices appear. The � J

i1···in
are not yet the physical n-point functions

of the theory as the external sources J are still non-vanishing. Setting them to zero
physical propagators Di j and vertices �i1···in are obtained:

Di j := D J=0
i j , (3.7)

�i1···in := � J=0
i1···in

. (3.8)

The function D J
i j is given by

D J
i j := δ2W [J ]

δJiδJ j
=

(
δ2�[�]
δ�iδ� j

)−1

. (3.9)

It is important in the derivation of DSEs that the sources J are set to zero only at the
end. Otherwise one would miss contributions.

The propagators Di j are the inverse of the two-point functions �i j . It should be
stressed that this is a matrix relation, i.e., if the two-point matrix is not diagonal
there is a non-trivial relationship between propagators and two-point functions. This
complicates analyses of actions with mixed propagators like the Gribov-Zwanziger
action. For a diagonal matrix in case of bosons or an off-diagonal matrix for fermions
the situation is simpler, since the propagator can be directly calculated as the inverse
of the corresponding two-point function.

3.1.2 Derivation of Dyson-Schwinger Equations

Using our multi-index field the formal derivation can be done in a few lines. The real
work is then to expand in the physical fields of the theory. DSEs for full, connected and
1PI Green functions can be worked out, but since the full theory can be reconstructed
from 1PI correlators we focus on those.

To start we note that the integral of a total derivative vanishes so that

∫
D[φ]

(
− δS

δφi
+ Ji

)
e−S+φ j J j =

(
− δS

δφ′
i

∣∣∣∣
φ′

i =δ/δJi

+ Ji

)
Z [J ] = 0. (3.10)

Employing further derivatives with respect to sources yields the DSEs of the full
Green functions. Substituting Z [J ] by eW [J ] and using
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e−W [J ]
(

δ

δJi

)
eW [J ] = δW [J ]

δJi
+ δ

δJi
(3.11)

after multiplication of Eq. (3.10) from the left with e−W [J ] we find

− δS

δφi

∣∣∣∣
φi = δW [J ]

δJi
+ δ

δJi

+ Ji = 0. (3.12)

This is the generating DSE for connected correlation functions. The DSEs of con-
nected Green functions are obtained by acting with further source derivatives on
Eq. (3.12). To get the corresponding version for 1PI functions we perform the
Legendre transformation of W [J ] with respect to all sources. Thereby δW [J ]/δJi

changes to �i and δ/δJi becomes

δ

δJi
= δ� j

δJi

δ

δ� j
= δ

δJi

δW [J ]
δJ j

δ

δ� j
= δ2W [J ]

δJiδJ j

δ

δ� j
= D J

i j
δ

δ� j
. (3.13)

This yields

− δS

δφi

∣∣∣∣
φi =�i +D J

i j δ/δ� j

+ δ�[�]
δ�i

= 0, (3.14)

which is the basic equation. All DSEs for 1PI Green functions can be derived from
it by further differentiations with respect to the fields.

Let us write down this expression in the case of an action with three- and four-point
interactions as given in Eq. (3.1). The derivative is simply

δS

δφi
= Sisφs − 1

2! Sistφsφt − 1

3! Sirstφsφtφu . (3.15)

Before replacing the field φi by �i +D J
i j

δ
δ� j

we need to know how the differentiation

operator δ
δ� j

acts on fields and propagators. For completeness we also include the
derivative of an n-point function:

δ

δ�i
� j = δi j , (3.16a)

δ

δ�i
D J

jk = δ

δ�i

(
δ2�[�]
δ� jδ�k

)−1

= −
(

δ2�[�]
δ� jδ�m

)−1 (
δ3�[�]

δ�mδ�iδ�n

)(
δ2�[�]
δ�nδ�k

)−1

= D J
jm� J

min D J
nk,

(3.16b)
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δ Γ =
δ φi

-1/2 -1/2 -1/3! -1/2 -1/3!

Fig. 3.1 The generating DSE for 1PI functions. Crosses in circles denote external fields. All internal
propagators are dressed and the big blob denotes a dressed 1PI vertex. The double line represents
the generic field �

δ
δ φi

=

i

δ
δ φi

=

i

δ
δ φi

=

i

Fig. 3.2 Diagrammatic rules for differentiating an external field, a propagator or a vertex. The
circle with the cross denotes an external field, small blobs denote dressed propagators, and big
blobs 1PI vertices. The double line represents the super-field �

δ

δ�i
� J

j1··· jn = − δ�[�]
δ�iδ� j1 · · · δ� jn

= � J
i j1··· jn . (3.16c)

Equation (3.16b) can be derived from the equation ∂(M M−1) = 0, where Mi j = D J
i j

and M−1
i j = � J

i j . Using these relations in Eq. (3.15) yields

δ�[�]
δ�i

= Sis�s − 1

2
Sist (�s�t + D J

st )+

− 1

3! Sistu(�s�t�u + 3�s D J
tu + D J

sv D J
tw D J

ux�
J
vwx ). (3.17)

In Fig. 3.1 a graphical representation of this equation is shown. Also the differen-
tiation rules from Eq. (3.16) can be depicted graphically as given in Fig. 3.2. Since
all required ingredients are now available in graphical form, it is very convenient to
proceed like this.

The DSE for a generic two-point function is derived by performing another differ-
entiation of the generating DSE Eq. (3.17) using the diagrammatic replacement rules
of Fig. 3.2 in the corresponding diagrammatic representation Fig. 3.1. The result is
shown in Fig. 3.3. Proceeding to higher vertex functions the number of diagrams
increases rapidly: for three-point vertices there are 15 generic diagrams and for four-
point functions 60. For real applications it is therefore recommendable to exploit
possible simplifications.

First, the final number and form of graphs depend on the first differentiation in
Eq. (3.17) as the corresponding field determines which bare vertices appear in the
diagrams. For example, the DSE of the ghost-gluon vertex in Landau gauge QCD
has only four terms, when the first derivative is performed with respect to a ghost
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-1

=

-1

-1/2 -1/2 -1/2 -1/3! -1/2 - -1/2

Fig. 3.3 The DSE for a generic two-point function

field. In this case one can drop all diagrams with bare gluonic vertices. On the other
hand, if one starts with the gluon field, all vertices have to be kept and one ends
up with twelve graphs. A detailed derivation of these two examples is provided in
Ref. [5]. Secondly, one can skip some diagrams taking into account where one is
going. Simple examples are that for a three-point function we do not have to drag
along the bare four-point vertex or diagrams with an external field can be dropped if
no further derivatives with respect to this particular field follow.

An important point is keeping the internal indices general and do not set them
to specific values too early in the derivation process in order to try to simplify the
calculation. This may discard some diagrams.

The algorithm described so far did not take into Grassmann fields. As they
represent only a technical complication and the basic structure remains the same,
their inclusion is described in Appendix B.

3.1.3 DoDSE: Derivation of Dyson-Schwinger Equations

Deriving DSEs can easily become very tedious: first of all, in the case of actions
with a small number of interactions the number of terms blows up so fast that only
the lowest n-point functions can be done by hand. Secondly, the interest in using
DSEs of actions with many interaction terms is increasing as we get DSEs better
under control. Lagrangians with up to eleven vertices are used and necessitate a
quick and easy method to derive DSEs. The algorithm presented above allows the
implementation into a symbolic programming language and thereby the automated
derivation of DSEs.

For such a purpose several programming languages are available, e.g., FORM [6]
or Mathematica [7]. The latter was chosen due to its greater accessibility, its more
user-friendly interface and the possibility to draw the results directly as Feynman
diagrams. The result is a package called DoDSE, which is short for “Derivation of
Dyson-Schwinger Equations”. For the beginner it is a useful tool to derive DSEs and
represent them graphically and for the advanced user it provides further possibilities
like step-by-step calculations, keeping external fields or using it for actions with
mixed two-point functions. For simple applications, like, for example, summing up
the IR exponents of a given graph, the primary output of DoDSE can be used for
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further calculations in Mathematica. However, if one would like to obtain the integral
in full glory with color and Lorentz indices and so on, some more effort is required.

For this purpose DoDSE can use Feynman rules provided by the user to write
down the complete expressions for a DSE. They can then be further processed
with other functions as required by the user. Automating this process proved very
useful for the calculation of the numeric values of IR exponents. While in normal
Landau gauge this is a manageable task by hand, it can become arbitrarily compli-
cated for other examples like the maximally Abelian gauge or the Gribov-Zwanziger
action where there are more diagrams with more dressing functions to calculate, see
Chaps. 5 and 6, respectively, for more details. A short guide to DoDSE and the
derivation of the DSEs for the maximally Abelian gauge and the Gribov-Zwanziger
action can be found in Appendix E.

3.2 Functional Renormalization Group Equations

FRGEs are used in a variety of fields in physics, for example, in the investigation
of ultracold fermion gases, e.g., [8, 9], for supersymmetric models, e.g., [10–12],
in gravitation, e.g., [13–17] or for the phase diagram of QCD, e.g., [18–22]. This
list is by far not exhausted. It should only give a glimpse at the vast applicability of
FRGEs, for reviews see Refs. [18, 23–25].

This section is devoted to the description of some properties of FRGEs and of
their derivation. Details on how to use FRGEs in the case of interest for this thesis,
the IR analysis of Yang-Mills theory, are provided in Sect. 4.1.3.

3.2.1 The Effective Average Action

The functional renormalization group is formulated with the help of the effective
average action �[�]k , which is closely related to the effective action or generating
functional of 1PI Green functions we encountered in Sect. 3.1.1. The defining prop-
erty of the effective average action �[�]k is the dependence on an artificial momen-
tum scale k, denoted by the superscript. The flow equations, derived in Sect. 3.2.2,
describe the dependence on this scale by an integro-differential equation. The quan-
tum fluctuations above the scale k are all integrated out. Thus two special limits of
the effective average action are k → 0 and k → ∞, where it has to correspond
to the standard effective action �[�] and the classical action S, respectively: in the
former case all quantum fluctuations are included and in the latter none. In statistical
physics a natural UV cutoff � can be present. In this case �[�]k is equivalent to S
for k → �. In the following, however, we will focus on the use of the functional
renormalization group in quantum field theory.

The dependence on k is introduced as an IR cutoff in the definition of the path
integral:

http://dx.doi.org/10.1007/978-3-642-27691-0_5
http://dx.doi.org/10.1007/978-3-642-27691-0_6
http://dx.doi.org/10.1007/978-3-642-27691-0_4
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W k[J ] = ln Zk[J ] = ln
∫

Dφ e−S[φ]+Ji φi − 1
2 φi Rk

i j φ j . (3.18)

We used again the notation from the last section, i.e., writing out the integration in
the last term of the exponent gives

1

2
φi Rk

i jφ j = 1

2

∫
ddq

(2π)d
Rk

ab(q)φa(−q)φb(q), (3.19)

where Rk
ab is an IR cutoff function with the following properties:

• It has to vanish for k → 0 to obtain the standard effective action.
• It has to diverge for k → ∞ so that the classical action is recovered in this limit.
• For small momenta q2 < k2 it is proportional to k2, which can be interpreted as an

effective mass that constitutes an IR cutoff for fluctuations with small momenta.
• Finally, it has to vanish for large momenta q2 > k2 so that it does not interfere

with the high momentum behavior of Green functions.

The effective average action is then defined via a modified Legendre transformation:

�k[�] = −W k[J ] + Ji�i − 1

2
�i Rk

i j� j (3.20)

with

�i = δW k[J ]
δJi

= 〈φi 〉. (3.21)

3.2.2 Flow Equations

The dependence on the scale k is used to derive the so-called flow equations or
functional renormalization group equations. They describe how one gets from the
classical action S to the effective action �[�] by lowering k, which is equivalent to
integrating out more and more fluctuations. The trajectory from S to �[�] is called a
flow. It can be interpreted as moving through theory space, starting at the microscopic
theory and heading towards a macroscopic description. The trajectory depends on
the chosen IR cutoff function Rk , but the endpoint is always the same, because it is
determined by physics. Thus approximations and truncations can only be checked
by comparing the endpoints, not the flows.

Differentiating �[�]k with respect to k yields

∂k�
k[�] = −∂k W k[J ] − δW k[J ]

δJi
∂k Ji + ∂ Ji

∂k
�i − 1

2
�i∂k Rk

i j� j =

=
〈

1

2
φi∂k Rk

i jφ j

〉
− 1

2
�i∂k Rk

i j� j =
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= 1

2
∂k Rk

i j

(〈
φiφ j

〉 − �i� j
) =

= 1

2
∂k Rk

i j G
J
i j . (3.22)

where ∂k := ∂/∂k and Eq. (3.21) was used to cancel the second and third terms in the
first line. Furthermore, 〈φiφ j 〉 was decomposed as G J

i j + 〈φi 〉〈φ j 〉 = G J
i j + �i� j ,

where

G J
i j := δ2W k[J ]

δJiδJ j
(3.23)

is the connected propagator in presence of the sources J . Its inverse is the two-point
function but with an additional contribution from Rk :

δi j = δ�i

δ� j
= δJl

δ� j

δ

δJl

δW k[J ]
δJi

= δ
(
�k[�] + 1

2�m Rk
mn�n

)
δ� jδ�l

δ2W k[J ]
δJlδJi

=
(
�

k,J
jl [�] + Rk

jl

)
G J

li

(3.24)

with

�
k,J
i j := δ2�k[�]

δ�iδ� j
(3.25)

and

Jl = δ(�k[�] + 1
2�m Rk

mn�n)

δ�l
. (3.26)

Thus Eq. (3.22) can also be written as

∂k�
k[φ] =1

2

(
�

k,J
i j [�] + Rk

i j

)−1
∂k Rk

i j . (3.27)

From this equation functional identities for all Green function can be obtained by
further differentiation. I will illustrate the procedure for the two-point function of a
theory with three- and four-point functions:

∂k�
k,J
i j = δ2

δ�iδ� j
∂k�[�]k

= δ2

δ�iδ� j

1

2

(
�k,J

mn + Rk
mn

)−1
∂k Rk

mn = 1

2

δ

δ�i
G J

mr�
k,J
r js G J

sn∂k Rk
mn =
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Fig. 3.4 The FRGE obtained from Eq. (3.28) for a theory with one field. A grey blob denotes
the regulator insertion ∂k Rk , a black blob a dressed n-point function. Internal propagators are all
dressed

= 1

2
G J

mt�
k,J
tiu G J

ur�
k,J
r js G J

sn∂k Rk
mn + 1

2
G J

mr�
k,J
r js G J

st�
k,J
tiu G J

un∂k Rk
mn

+ 1

2
G J

mr�
k,J
ir js G J

sn∂k Rk
mn . (3.28)

The following derivatives have been used:

δG J
i j

δ�l
=

δ
(
�

k,J
i j + Rk

i j

)−1

δ�l
= G J

im�
k,J
mlnG J

nj , (3.29a)

δ

δ�i
�

k,J
j1··· jn

= − δ�k[�]
δ�iδ� j1 · · · δ� jn

= �
k,J
i j1··· jn

. (3.29b)

Again one has to keep in mind that propagators and vertices only correspond to
physical quantities once the external sources are set to zero at the end of the derivation.
Doing so in Eq. (3.28), the FRGE depicted in Fig. 3.4 is obtained for a theory with
one field. The inclusion of Grassmann fields goes along the same lines as for DSEs,
see Appendix B.

Performing more differentiations with respect to fields one can derive flow equa-
tions for all higher n-point functions, which can also be presented graphically like
DSEs. The appearing integrals are all one-loop and only dressed quantities appear.
This is a decisive difference to DSEs, which contain also bare n-point functions.
Furthermore, every integral has an insertion of the regulator Rk . Suitable choices of
it for the IR analysis are discussed in Sect. 4.1.3.
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Chapter 4
Scaling Solutions

In this chapter a method to assess the possible existence and form of a scaling
solution for a given theory is derived. The original goal of the underlying work was
to investigate the IR behavior of Yang-Mills theory in the maximally Abelian gauge
(MAG). However, it soon became clear that the system of interactions given by its
Lagrangian requires a more refined treatment than provided by any previous work, the
reason being the large number of terms in the DSEs. Subsequently a generic method
was developed that can handle a large set of interactions. It allows to determine
for an arbitrary system of interactions if a scaling solution is possible and what its
qualitative features are. The main proof, albeit relying only on simple mathematics
like combinatorics and inequalities, is rather technical. However, it provides a simple
recipe for finding possible scaling solutions.

The underlying idea is to combine information from DSEs and FRGEs as sug-
gested in Ref. [1]. Both systems of equations describe the complete content of a theory
and their combination allows to extract enough additional information to derive all
possible scaling relations. With the method of a combined analysis it was even pos-
sible to prove that there is only one scaling solution in the Landau gauge [2]. This
is often called uniqueness of the scaling solution and should not be confused with
uniqueness of the solution, see the discussion on scaling and decoupling solutions in
Sect. 2.3.2. The generic method for obtaining the scaling relations of more general
cases, originally developed for the study of the MAG, has been presented in Ref. [3].

The first section of this chapter provides an introduction to the method of IR power
counting, which is employed in Sect. 4.2 to derive several general statements about
the IR behavior of dressing functions. Section 4.3 explains the method to extract
possible scaling solutions from a given Lagrangian, which is exemplified in Sect. 4.4
by employing it for linear covariant and ghost anti-ghost symmetric gauges. Up to
this point all considerations are for the special case of a Lagrangian diagonal in the
fields at the two-point level. Section 4.5 provides the generalization to the case of
mixed two-point functions.
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38 4 Scaling Solutions

4.1 Infrared Power Counting

In order to determine the qualitative IR behavior of correlation functions I rely in this
thesis on a technique called IR power counting. It is based on the assumption of a
power law behavior of all dressing functions in the IR. The qualitative information is
then contained in the corresponding exponents and the analysis can be shifted from
the integral equations to the exponents. In the following I will explain how they are
extracted from DSEs and FRGEs. The role of possible or required cancelations in
the functional equations is discussed at the end of this section.

4.1.1 Integrals of DSEs at Low External Momenta

The goal of this subsection is to explain how the IR behavior of an integral can be
assessed. The starting point are the fully dressed propagators of the theory, parame-
terized by

D(i)
ab (p) = P(i)

ab
c(i)(p2)

p2 , (4.1)

where P(i)
ab is the part containing color and Lorentz structure and c(i) is some dressing

function. The propagators are labeled by the superscript (i). A basic assumption
supported by renormalization group arguments is that the dressing function c(i) obeys
a simple power law in the IR:

c(i),I R(p2) = d(i) · (p2)δ
(i)

. (4.2)

Here d(i) is a constant coefficient and the exponent δ(i) is called infrared exponent
(IRE). It describes the qualitative IR behavior of the propagator. The assumption
of power law behavior does not take into account the possibility of a logarithmic
momentum dependence if δ(i) is zero. One speaks of IR enhancement/suppression if
δ(i) < 0 or δ(i) > 0, respectively, and clearly the propagator vanishes if δ(i) > 1/2.
The generalization to several dressing functions corresponding to different tensors
is straightforward.

In the following we investigate DSEs at low external momenta. Such momenta
occur within the integrals in factors like 1/(p − k)2, where one momentum is a loop
momentum and the other an external one. Hence the integrand itself is dominated
by low internal momenta and all dressing functions take their IR form in the limit of
vanishing external momenta. Here we also assume a power like behavior for vertices
in the IR with their own IREs. We will only treat the case that all momenta of a vertex
vanish simultaneously. This is called uniform [4] or global scaling [2].

If all dressing functions are given by power laws the integral can
in principle be solved by methods like Negative Dimensional Integration (NDIM),
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see, for instance, [5–14], or employing the Mellin-Barnes representation, see,
e.g., [15]. It is vital that these methods can handle non-integer exponents which is not
the case for most standard methods like, for example, integration by parts [16, 17].

The simplest case is the one-loop two-point function, where the result can be
written down as a simple closed expression:

∫
ddk(
2π

)d

(
k2)ν1

((
k − p

)2)ν2

= (4π)−
d
2

�
( d

2 + ν1
)
�

( d
2 + ν2

)
�

(− d
2 − ν1 − ν2

)
� (−ν1) � (−ν2) � (d + ν1 + ν2)

(
p2) d

2 +ν1+ν2 . (4.3)

The convergence of the integral gives constraints on the exponents ν1 and ν2: UV
convergence dictates d/2 + ν1 + ν2 ≤ 0 and IR convergence d/2 + ν1 ≥ 0 and
d/2 + ν2 ≥ 0. Also for the one-loop three-point integral a solution in closed form
is known [9, 15]. The qualitative behavior if all external momenta scale equally can
easily be assessed. A detailed numerical analysis, however, is complicated by the
appearing Appell’s function F4 that have several singularities in the space of the
two variables given by ratios of the external momenta. Series representations that
converge for Euclidean momenta can be found in Refs. [18–20].

Detailed solutions for higher n-point functions can be derived and allow the assess-
ment of uniform scaling. Numerically the closed forms are, however, of no use due to
their complex form. Fortunately we only need the IREs of given diagrams. To obtain
these it suffices in the case of uniform scaling to count the powers of all momenta in
the integrals as upon integration the internal momenta turn into external momenta.

In the case of higher n-point functions with n ≥ 3 one could wonder what
happens if only a subset of external momenta vanishes. Is it possible that addi-
tional IREs occur that have to be taken into account? In principle the answer is yes.
In Ref. [4] it was shown that taking into account these additional kinematic IREs
a self-consistent solution can be derived that is an extension of the uniform case.
Numerical evidence for the existence of additional IREs of three-point functions
can be found in Refs. [19, 21], where also the in general non-trivial dependence on
the kinematics is confirmed. Interestingly additional divergences only appear in the
longitudinal part of the three-point functions [2, 19], which is irrelevant for Landau
gauge as the set of transverse dressing functions is closed [22]. Also higher n-point
functions do not show kinematic IR divergences in their transverse parts [2]. Hence
kinematic divergences do not influence the IR fixed point of Landau gauge quali-
tatively, but the non-trivial kinematic dependence on external momenta can have a
quantitative impact on quantities like κ [19].
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Fig. 4.1 The gluon two-point function DSE in the Landau gauge: on its left-hand side the dressed
gluon two-point function and on its right-hand side the bare gluon two-point function and the
tadpole, the gluon-loop, the ghost-loop, the sunset and the squint diagrams. Small blobs represent
bare vertices and large blobs dressed 1PI vertices. All internal propagators are dressed

4.1.2 Dyson-Schwinger Equations in the Infrared

Knowing how to obtain the IRE of a given diagram we can continue to the analysis
of the DSEs themselves. The key observation is rather simple: every diagram on
the right-hand side of a DSE can only be as divergent as the one on the left-hand
side and it cannot be more divergent as this would render the equation inconsistent.
On the other hand one diagram has to scale exactly as the one on the left-hand side.
This allows us to write down simple inequalities for the IREs.

Let me illustrate this with a simple example. The DSE of the gluon propagator in
Landau gauge is depicted in Fig. 4.1. With the IREs δA, δc, κAAA, κAcc and κAAAA of
the gluon and ghost propagators, the three-gluon, the ghost-gluon and the four-gluon
vertices, respectively, the integrals can be evaluated for low external momentum p
in four dimensions as

d−1
A (p2)1−δA = p2 − (p2)1+κAAA+2δA Lg−loop + (p2)1+κAcc+2δc Lgh−loop

− (p2)1+κAAAA+3δA Lsunset − (p2)1+2κAAA+4δA Lsquint . (4.4)

The tadpole was not taken into account as it does not depend on the external momen-
tum and can thus be absorbed in the renormalization when employing dimensional
regularization. dA denotes the coefficient in the power law of the gluon propagator
dressing function and the Ls constant terms for the gluon-loop, the ghost-loop, the
sunset and the squint diagrams. They depend on the IREs and the Ls contain also
the constant coefficients from the power laws.

Every diagram on the right-hand side could be leading. Thus we can extract the
following inequalities:

− δA ≤ κAAA + 2δA (4.5)

−δA ≤ κAcc + 2δc (4.6)

−δA ≤ κAAAA + 3δA (4.7)

−δA ≤ 2κAAA + 4δA. (4.8)
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It is worth pointing out that at this point we can get a boundary for the gluon
propagator IRE by combining Eq. (4.5) with the inequality κAAA ≤ 0, which just
reflects that the three-gluon vertex has a contribution from the bare vertex in its DSE.
We rewrite Eq. (4.5) and plug in the boundary on κAAA:

0 ≤ κAAA + 3δA ≤ 3δA ⇒ δA ≥ 0. (4.9)

Thus the gluon propagator cannot be IR enhanced and confinement scenarios based
on a 1/p4 behavior of the gluon propagator can be ruled out in the Landau gauge.
A stricter argument for the non-negativity of the gluon propagator IRE can be found
in Ref. [4], where a similar argument based on the three-gluon vertex DSE has been
derived and possible cancelations have been investigated.

One could now proceed by writing down all inequalities obtained from DSEs up to
a certain order. For DSEs with many terms this will get quite tedious and it is not sure
how much useful information can be derived from this program. In Sect. 4.2.1 I will
describe a better way of proceeding by determining the most restrictive inequalities.
It will be found that all inequalities required for the analysis can be written down in
closed form.

4.1.3 Functional Renormalization Groups Equations
in the Infrared

As the IR analysis relies also on FRGEs, I explain here shortly how their IR behavior
may be assessed. Although at the end it turns out that the IREs can be counted
similarly as in DSEs, some special care is required as the regulator function Rk

appears.
The choice of the regulator Rk is free, as long as the constraints listed in Sect. 3.2.1

are obeyed. For an IR analysis there are some especially attractive choices which
have been discussed in Ref. [1]. One possibility is of the form

Rk
i j (p2) = �0

i j (p2)δε(p2 − k2), (4.10)

where δε is a smeared δ-functional around k2. Such a regulator projects out modes
with p2 ≈ k2 and the momentum dependence of physical, i.e., in the limit k → 0,
n-point functions in the IR is not altered.

A second possibility is

Rk
i j (p2) = �0

i j (p2)r(p2/k2). (4.11)

The physical two-point functions then become

G−1
i j (p2) = �0

i j (p2)(1 + r(p2/k2)) (4.12)

http://dx.doi.org/10.1007/978-3-642-27691-0_3
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Fig. 4.2 A typical two-point FRGE. The grey blob denotes the regulator insertion ∂k Rk , the black
blob dressed n-point functions. Internal propagators are all dressed

and again the asymptotic behavior for small p is not altered qualitatively.
The IRE of a diagram in an FRGE is determined in the usual way by counting

the IREs of all quantities. Let us consider as an example a diagram from a two-point
FRGE as depicted in Fig. 4.2:

∂k�i j (p2) = Gmt�
k
tiuGur�

k
r js Gsn∂k Rk

mn + 1

2
Gmr�

k
ir js Gsn∂k Rk

mn . (4.13)

As the regulator takes the momentum dependence of a two-point function, its IRE
cancels in the power counting with that of a propagator. Hence we can just ignore
regulators in the power counting and count one propagator instead of two propagators
and a regulator.

An alternative way of determining the IR behavior of an n-point function is given
in Ref. [2] using integrated flow equations. The flow equations take then a similar
form as DSEs but with only dressed vertices in the diagrams. As in these equations the
integral over the scale k is performed, also the classical term of an n-point function,
defined by the limit k → ∞, appears similar to DSEs. For details I refer to Ref. [2].

4.1.4 The Role of Cancelations

Shifting the analysis from the integrals to the level of the IREs may be a delicate step.
The reason are possible cancelations in the IR leading terms. A detailed analysis is
necessary to assess if the IR leading terms cancel and the next leading terms take
over. If cancelations occur they are likely linked to some symmetry and do not appear
at random. An example is the longitudinal part of the gluon propagator in the linear
covariant gauge. A naive power counting analysis yields for its IRE the same result
as for the transverse part, but it is known that it does not acquire a dressing at any
momentum. Details can be found in Sect. 4.4.1.

The occurrence of cancelations can often not be completely disproved, but one
might exclude some types of them. They can happen between different diagrams or
between different contributions of one and the same diagram. These two types of
cancelations can be ruled out for the two-point DSEs in Landau gauge, since there
is only one IR leading diagram in each equation and the ghost-gluon vertex, the
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only appearing vertex in these equations, has only one relevant dressing function.
For vertices there are always several IR leading diagrams and cancelations could
happen between these. Also other vertices except the ghost-gluon vertex with several
relevant dressing functions appear. Another possibility is a cancelation between parts
stemming from different momentum regions of an integral. This could happen, for
instance, via a change of the sign of a dressing function. However, this again can
be excluded in the Landau gauge: the dressing functions of both propagators are
necessarily positive and also the ghost-gluon vertex dressing function does not change
sign as can be inferred from lattice data [23–26] and other calculations [19, 27].

On the other hand there are cases when cancelations are required. The most
prominent example is probably the ghost propagator of Landau gauge. In its DSE
the bare two-point function appears that leads to the inequality δc ≥ 0 and thus an IR
suppressed propagator. As long as the bare ghost two-point function is in the DSE,
one cannot get an IR enhanced propagator. However, it is possible to cancel the bare
term in the renormalization by adopting the renormalization condition

[
Dc(p2)p2]−1 p2→0−−−→ 0 (4.14)

for the ghost propagator Dc(p2). This condition is not chosen without reason but
due to the Kugo-Ojima and Gribov-Zwanziger confinement scenarios as discussed
in Sect. 2.2. Nevertheless it has to be mentioned that also a different renormaliza-
tion prescription may be adopted which leads then to the decoupling solution, see
Sect. 2.3.

The cancelation of the bare two-point function in the DSE of an IR suppressed
two-point function is indeed crucial, as otherwise the bare term is leading. We will
neglect in the following the bare two-point functions in the DSEs and determine
a posteriori if a cancelation is required. In both systems investigated we will find
that such cancelations are possible: in case of the Gribov-Zwanziger action the same
reasoning as in the standard Landau gauge can be applied and in the MAG the
renormalization of the diagonal gluon propagator apparently plays the same role as
that of the ghost in the Landau gauge connecting the obtained scaling solution with
the massive solution found on the lattice [28] and in the refined Gribov-Zwanziger
scenario [29, 30].

Having clarified the role of possible cancelations it remains to be stressed that the
analysis is exact from the point on where we go to the level of the IREs. This is quite
remarkable as we will be able to make statements about the complete, infinitely large
tower of integral equations without any truncations or approximations.

[]

4.2 Basic Relations Derived From Functional Equations

There is quite much information about the relations between the IREs of Green
functions that can be extracted from functional equations. This section is devoted to
the study of these relations. First I will show how to derive two classes of constraints

http://dx.doi.org/10.1007/978-3-642-27691-0_2
http://dx.doi.org/10.1007/978-3-642-27691-0_2
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for the IREs. Then a formula for the IRE of an arbitrary diagram will be derived.
Finally I point out the connection between the inequalities provided by FRGEs and
the skeleton expansion, which was employed in earlier investigations of DSEs.

In order to keep this part as general as possible I will not refer to any special
Lagrangian except in some examples for illustration. Therefore, generic, not neces-
sarily different fields denoted by A, B, C , … are used. The only restriction on them
is that they are of mass dimension (d −2)/2. Otherwise the canonical dimensions of
correlation functions will change. Note that in general no real simplifications occur
if the equations are written down for a definite Lagrangian. Even worse, in many
cases writing out all the equations would lead to extremely large expressions the
treatment of which is not feasible. The MAG, which is the topic of Chap. 5, is a
perfect example for such a case. In this and the following sections all expressions are
only valid for four dimensions except when denoted otherwise. The corresponding
expressions valid in d dimensions are given in Appendix A, to which all detailed
calculations of this section are deferred.

4.2.1 Inequalities From FRGEs and DSEs

At first sight it seems that DSEs and FRGEs allow to derive a plethora of inequalities
as described in Sect. 4.1.2. However, on closer inspection one can see that a part of
them is contained within others. Therefore we should look for the minimal set of
inequalities required. It turns out that there are two groups which play a distinguished
role. The first connects the IRE of a vertex and the IREs corresponding to its legs,
and the second relates the IREs of propagators among themselves. The first group
consists of infinitely many inequalities and the second of only a few. In fact we
will see that there are at most only as many members of this group as there are
primitively divergent vertices, i.e., vertices appearing in the Lagrangian. This is the
decisive aspect that makes the IR analysis a manageable task.

Before we start a few explanations on the notation are required. Throughout this
thesis I use the letter κ for IREs of n-point functions and the letter δ for IREs
of propagators. The reason for this is the discrimination of two-point functions and
propagators as it will be required in Chap. 6. The subscripts of the Greek letters denote
the fields of the external legs. In the case of propagators and two-point functions the
abbreviations δi := δi i and κi := κi i are used, respectively. Furthermore, vertices
are abbreviated by monomials of their fields, e.g., ABCC corresponds to a four-point
function with one A, one B and two C legs. Such a monomial can also denote a DSE.
Then the order of fields refers to the order in which the derivatives are applied as
this can lead to different realizations of the equation. The field φi corresponds to that
field indicated by its index (see also Sect. 3.1.1).

We start with three-point functions. In their FRGE there appears a triangle diagram
as given in Fig. 4.3. The corresponding inequality is

http://dx.doi.org/10.1007/978-3-642-27691-0_5
http://dx.doi.org/10.1007/978-3-642-27691-0_6
http://dx.doi.org/10.1007/978-3-642-27691-0_3
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Fig. 4.3 One specific diagram in the FRGE of a generic three-point function. Internal lines represent
dressed propagators, black blobs dressed vertices. The grey blob is a regulator insertion

κABC ≤ 3κABC + δA + δB + δC ⇒ κABC + 1

2
(δA + δB + δC ) ≥ 0.

(4.15)

This equation already gives a hint at the general form of these inequalities: given the
IRE of a vertex, we can add half the sum of the propagator IREs corresponding to
the legs and we get a non-negative quantity:

κi1...ir + 1

2

∑
i

ki1...ir
i δi ≥ 0. (4.16)

The symbol ki ... j
i denotes the number of times the field φi appears in the vertex

φi · · ·φ j . It remains to be shown that this inequality is true for all n-point functions.
For the general four-point inequality corresponding to Eq. (4.15) we have to make

a detour via a special case. The FRGEs from which we infer these inequalities are
given in Fig. 4.4. They read

−δA − δB ≤ κAAB B, (4.17)

κAAB B ≤ 2κABC D + δC + δD. (4.18)

Combining them yields

κABC D + 1

2
(δA + δB + δC + δD) ≥ 0, (4.19)

what is the expected inequality for a four-point function. It should be noted that the
inequalities of this group can only be derived from FRGEs, since the appearance of
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(a) (b)

Fig. 4.4 Parts of the FRGEs of generic four-point functions

(a) (b)

Fig. 4.5 Parts of the FRGEs of generic n-point functions

the bare vertex in DSEs leads to a different, less restrictive numerical factor in front
of the propagator IREs in Eq. (4.16).

In a similar way one can prove by induction the validity of Eq. (4.16) for higher
n-point functions. I give here only the general structure of the proof and refer for
details to Appendix A. For the proof one needs two relations which can be inferred
from Fig. 4.5. The figure on the right-hand side relates two n-point functions with an
m-point function where every field appears twice and m = 2n−4. The connection of
this m-point function to an (m−2)-point function is given in the left figure. Plugging
the one inequality into the other establishes an inequality between an n-point and a
(2n−6)-point function. For the latter one can repeatedly use relations obtained from
the type of FRGE depicted on the left-hand side of Fig. 4.5 until one gets to the
equation as given in Fig. 4.4 on the left. Thus one can establish Eq. (4.16) for all
n-point functions.

Equation (4.16) allows an interesting observation concerning the so-called skele-
ton expansion. The corresponding discussion is deferred to Sect. 4.2.3.

Now we turn to the second group of inequalities. They can be derived directly
from Eq. (4.16) by noting that for all interactions appearing in the Lagrangian, the
primitively divergent vertices, the corresponding bare vertices appear in their DSEs.
Thus their IRE is non-positive,

κ
prim. div.
ABC ··· ≤ 0, (4.20)

and we infer from Eq. (4.16) that

1

2

∑
i

ki1...ir
i δi ≥ 0 ∀ primitively divergent vertices. (4.21)
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This group of inequalities can be derived purely from DSEs, but not from the FRGEs
without help from the DSEs.

In the preceding analysis one should always keep in mind that for a realistic
Lagrangian it is not sufficient to replace the generic fields A, B, etc. by the fields of
the Lagrangian, but one has to check if the corresponding diagrams really exist. The
reason for the disappearance of a diagram can be as simple as a trivial color factor
or as complex as a non-manifest symmetry. The former case will be encountered in
the analysis of the MAG but only for diagrams not relevant in the IR. Thus they do
not invalidate the result.

4.2.2 Infrared Exponent of an Arbitrary Diagram

We established in Sect. 4.1 how the IRE of any given diagram can be evaluated by
power counting. This is now formulated in very general terms by considering an
l-loop diagram v with ni internal propagators of the field φi , mi external legs of the
field φi , nb

i ...k bare vertices of the type φi · · · φk and nd
i ...k dressed vertices of the type

φi · · ·φk :

κv = l
d

2
+

∑
i

ni (δi − 1) +
∑

vertices,r≥3

nd
i1...ir (κi1...ir + ci1...ir )+

+
∑

vertices,r≥3

nb
i1...ir ci1...ir − cv. (4.22)

Here ci ... j/κi ... j denote the canonical dimension/IRE of the vertex φi · · ·φ j .
Equation (4.22) is valid for d dimensions, but in the following I only give the results
for d = 4, since this makes the expressions more transparent. The arguments, how-
ever, are the same and the details for d dimensions can be found in Appendix A.2.
The double subscripts of the nd and nb indicate all possible combinations of r fields.
E.g., for the Landau gauge the term corresponding to r = 3 is

nd
AAA

(
κAAA + 1

2

)
+ nd

Ac̄c

(
κAc̄c + 1

2

)
+ 1

2
nb

AAA + 1

2
nb

Ac̄c. (4.23)

Using topological relations that connect the numbers of propagators, vertices,
loops and legs Eq. (4.22) can be rewritten:

κv = − 1

2

∑
i

miδi +
∑

vertices,r≥3

nd
i1...ir

(
κi1...ir + 1

2

∑
i

ki1...ir
i δi

)
+

+
∑

vertices,r≥3

nb
i1...ir

(
1

2

∑
i

ki1...ir
i δi

)
. (4.24)
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Details on the derivation of this formula are given in Appendix A.2. The reason
for rewriting it in this way is that now it depends only on the external legs and the
numbers of vertices and we got rid of the dependence on internal propagators.

Equation (4.24) is not only useful in general, but it allows also to determine a lower
bound for the IRE of a diagram. To this end we resort to the results of Sect. 4.2.1 which
are given by Eqs. (4.16) and (4.21). Comparing them to Eq. (4.24) we see that they
correspond exactly to the terms in parentheses. Even the fact that Eq. (4.21) is only
valid for primitively divergent diagrams is mirrored as the corresponding coefficient
in Eq. (4.24), nb

i1...ir
, can only be non-zero for primitively divergent vertices. Hence

the first term in Eq. (4.24) is a lower bound for the IRE of the diagram v due to the
non-negativity of the other two expressions. Even more, since the first term only
depends on the external legs it is the same for all diagrams appearing in a DSE. This
establishes a lower bound for the IRE of an arbitrary vertex function. It is called the
maximally IR divergent solution:

κv,max = −1

2

∑
i

miδi . (4.25)

4.2.3 Skeleton Expansion of Higher Vertices

Before continuing with the IR analysis I want to make a short detour to a tool that
was used repeatedly in IR analyses of Green functions: the skeleton expansion. It can
be seen as a loop expansion of a vertex using only dressed propagators and vertices;
for more details on the original idea see, e.g., Ref. [31]. In functional equations
one usually restricts the set of vertices in the expansion to those appearing in the
Lagrangian. One can then derive the IREs of all vertices in Landau gauge [32, 33].
The assumption that the skeleton expansion does not explicitly diverge, meaning
that higher orders do not feature more IR divergent diagrams, provides sufficient
additional information to prove the uniqueness of the IR scaling solution of Landau
gauge [4]. The key observation thereby is that higher orders of the skeleton expansion
are constructed by adding further loops using certain combinations of correlation
functions. These insertions into diagrams must not make the diagrams more IR
divergent and hence they must have non-negative IREs.

Originally the validity of the skeleton expansion was an assumption, but the func-
tional renormalization group clarifies how and why the skeleton expansion indeed
works for power counting. The explanation is given by Eq. (4.16), which was derived
from FRGEs. The inequalities provided by it correspond exactly to the inequalities
derived from the insertions used in the skeleton expansion, see Ref. [4] for details.
Thus the use of the skeleton expansion is well justified. However, Eq. (4.16) is even
more powerful, because it covers all possible vertices in contrast to the skeleton
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expansion, which could—at least in the form as it was used—provide inequalities
only for the vertices appearing in the Lagrangian.

4.3 Solution for the System of IREs

The information collected up to now will be used to determine the scaling solution(s)
of a given Lagrangian. For this purpose we analyze the DSEs of the two-point func-
tions. However, instead of considering single cases we again keep things general.
The analysis proceeds by assuming that one diagram in a two-point function DSE
is leading without specifying which one. This will lead to a new inequality that has
only to be fulfilled in this one case. Taking into account the inequalities obtained
earlier, we can discard some solutions and come up with a set of possible IR scaling
solutions for the given system. This set can be empty, consist of a unique solution or
of several different ones.

4.3.1 Analysis of Two-Point Equations

We consider a generic two-point function DSE. Figure 4.6 illustrates possible
diagrams if only three- and four-point interactions appear in the Lagrangian. In
the following we do not refer to specific diagrams and the analysis covers all pos-
sible diagrams. For the leading diagram the following equation can be derived from
Eq. (4.24)

κi = −1

2

∑
i

miδi +
∑

vertices

ni1...ir

(
1

2

∑
i

ki1...ir
i δi

)
+

∑
dressed
vertices

nd
i1...ir κi1...ir ,

(4.26)

where κi is the IRE of the two-point function under investigation. The only values
depending on the specific leading diagram are ni1...ir and nd

i1...ir
, but we can leave

them arbitrary for now. Using again some topological relations and the lower bound
for the IRE of a vertex, Eq. (4.25), we arrive at the inequality

−nb
i1...ir

(
1

2

∑
i

ki1...ir
i δi

)
≥ 0. (4.27)

The details of the calculation can be found in Appendix A.3. The only information
from the leading diagram that enters here is the type of its bare vertex as given in
nb

i1...ir
, i.e., we get as many different possible inequalities as there are bare vertices.
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(a) (b) (d)(c)

Fig. 4.6 Topologies of diagrams appearing in the DSE of a two-point function for three- and
four-point interactions only. Conventional names for the diagrams are (a) tadpole, (b) sunset and
(c) squint

Interestingly Eq. (4.27) looks exactly the same as the inequalities given in
Eq. (4.21), but with the opposite sign. Hence, both inequalities can only be fulfilled
if they are saturated, i.e.,

1

2
n̂b

i1...ir

∑
j

δ j k
i1...ir
j = 0. (4.28)

The hat was added in order to indicate that this equality was only derived for one
specific interaction, namely the one appearing with a bare vertex in the IR leading
diagram. From Eqs. (4.16), (4.20) and (4.28) it follows directly that the IRE of the
corresponding vertex is zero:

κ̂i1...ir = 0. (4.29)

Thus for a scaling solution at least one vertex does not get IR enhanced. This vertex
is called the IR leading vertex for reasons that will become clear soon.

In order to obtain valid scaling relations one has to determine all possible realiza-
tions of Eq. (4.29) and determine if they are compatible with the residual system of
inequalities. In some cases the scaling relation does not relate all propagator IREs to
each other and a second scaling relation has to be obtained from the remaining DSEs.
Very often this leads to the trivial solution where all IREs are zero. Known examples
where one sector of the theory possesses a scaling relation independent of a second
sector are massless QCD [34] and a fundamentally charged scalar coupled to Yang-
Mills theory [35, 36]: the Yang-Mills sector is not influenced by the quark/scalar so
that the usual scaling relation is valid. As the quark/scalar does not couple directly
to the ghost, which is the IR dominant field, the quark/scalar propagator is not IR
suppressed and its IRE is zero.

It has to be stressed that the notion of a not IR enhanced vertex is not tantamount
to a bare vertex in the IR. In general a vertex has several tensors with corresponding
dressing functions and the IR analysis just takes into account the most IR divergent
one(s). There can always be other dressing functions with a smaller IRE. For the
numerical determination of an IRE it suffices to use only the IR leading tensors, but
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for a complete numerical solution of the equation also the subdominant tensors have
to be taken into account. If a vertex has a bare counterpart and is not IR enhanced,
then the bare vertex will be part of the IR leading terms unless it gets canceled.

For Landau gauge the issue of choosing the IR leading tensor is easy, as its IR
leading vertex, the ghost-gluon vertex, only possesses two tensors of which only
one is transverse. The longitudinal tensor does not contribute in Landau gauge and
hence is irrelevant [22]. The impact of different dressing functions on the value of the
parameter κ was investigated in detail in Ref. [37]. Thereby several constraints, like
the unchanged uniform scaling, were taken into account with the result that κ only
changes slightly. Additionally the IR dressing function was calculated in Ref. [19]
as a function of the external momenta, where the solutions for the propagators and
a bare ghost-gluon vertex were used as input. Even in this simple case the dressing
function depends on the kinematics. Thus a more detailed calculation of κ should
take into account the momentum dependence of the ghost-gluon vertex. However,
the qualitative behavior of the propagators would not be affected by this.

Having determined the set of possible scaling solutions we have to identify the
leading diagrams in the two-point DSEs. To each solution corresponds via Eq. (4.28)
a bare vertex. Since all dressed vertices and propagators dropped out in its derivation,
all diagrams with the same bare vertex lead to the same scaling relation. However,
a word of caution is in order here: this does not necessarily mean that all diagrams
with the same bare vertex scale equally. In the case of the MAG such an instance is
encountered and will be discussed in detail in Sect. 5.3.2.

We can summarize the procedure to obtain the possible scaling solutions of a
theory as follows:

1. Determine the inequalities that are derived from the interactions appearing in
the Lagrangian from Eq. (4.21).

2. Reduce the number of inequalities, if some of them are contained within others.
3. Try to saturate one inequality after the other according to Eq. (4.28) and see, if

you can find any contradictions with the remaining inequalities.

Let me illustrate the simpleness of the method just described by showing how it
works for Landau gauge:

1. There are three interactions in the Lagrangian: the ghost-gluon, the three-gluon
and the four-gluon vertices. According to Eq. (4.21) they lead to the three inequal-
ities

1

2
δA + δc ≥ 0,

3

2
δA ≥ 0, 2δA ≥ 0, (4.30)

where δA and δc are the IREs of the gluon and ghost propagators, respectively.
They are all valid at all times.

2. We reduce this to the two inequalities

1

2
δA + δc ≥ 0, δA ≥ 0. (4.31)

http://dx.doi.org/10.1007/978-3-642-27691-0_5
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Fig. 4.7 The ghost two-point function DSE in the Landau gauge

3. (a) Saturating the second inequality yields δA = 0, which in turn gives a non-
negative IRE of the ghost propagator: δc ≥ 0. The equation δA = 0 is
obtained from diagrams with bare three-gluon or four-gluon vertices. As
such diagrams do not appear in the ghost two-point function DSE, we still
have to determine its IR leading diagram. Based on the general argument
given above we use that the only option for a scaling relation involving the
ghost propagator IRE is δA + 2δc = 0. Consequently we find δc = 0, i.e.,
this case corresponds to the trivial solution.
Since the ghost two-point function DSE in the Landau gauge as depicted
in Fig. 4.7 has only two diagrams, one could also investigate it directly: for
the bare two-point function we find δc = 0 without any effort. For the loop
diagram we get with the analysis described above δA + 2δc = 0, which also
leads to δc = 0 for δA = 0.

(b) The first inequality corresponds to the case when the ghost-gluon vertex
is the IR leading vertex. Hence the scaling relation is δA + 2δc = 0 and
the ghost-loop and the mixed loop in the gluon and ghost two-point DSEs,
respectively, are IR leading. Conventionally the parameter κ := −δc is used.

The generalization to d dimensions is straightforward. The only difference is that
the canonical dimensions do not factor out so that additional terms proportional to
d/2 − 2 appear. Appendix A contains all required formulae in d dimensions. For the
scaling relation we use Eq. (A.25):

δA + 2δc + d

2
− 2 = 0. (4.32)

Following a simple list of instructions we could derive the known scaling relation
of Landau gauge [38, 39]. What remains to be determined is the IR behavior of the
vertices.

4.3.2 Infrared Exponents of Vertices

From the IR leading diagrams in the two-point DSEs one can construct the IR leading
diagrams of higher vertices by adding more legs via insertions of the IR leading
vertex. For the higher vertices the corresponding IRE is given by the maximally IR
divergent solution, Eq. (4.25), since we only add vertices for which the other two
terms, as appearing in Eq. (4.24), are zero due to Eqs. (4.28) and (4.29).
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As an explicit example we consider again the Landau gauge. From the arguments
above the solution for a vertex with m gluon and 2n ghost legs follows as

κm,2n = −m

2
δA − n δc = (n − m)κ, (4.33)

which was found by a different route in Ref. [32].
For the generalization to d dimensions one plugs the scaling relation given in

Eq. (4.32) into the maximally IR divergent solution in d dimensions as provided by
Eq. (A.19):

κm,2n = −m

2
δA − n δc +

(
d

2
− 2

)(
1 − m

2
− n

)

= (n − m)κ + (1 − n)

(
d

2
− 2

)
. (4.34)

This is in agreement with an earlier investigation [33, 40].
The Landau gauge represents the ideal case, where all vertices can be constructed

from an IR leading diagram of a two-point DSE. However, it can also happen that
this is not possible, e.g., if the IR leading vertex has four legs. How would one
construct then a three-point function from a two-point function by inserting four-point
functions? The answer is one cannot do so, as can be inferred by simple combinatorial
considerations: out of vertices with an even number of legs one cannot construct one
with an odd number of legs.

4.4 Examples of Infrared Scaling Relations

The method described in the previous section can directly be used for the investigation
of different gauges. Two gauges investigated in the past besides the Landau gauge
are linear covariant gauges and ghost anti-ghost symmetric gauges [41]. In their
analysis a truncation scheme with bare vertices was used [41]. For linear covariant
gauges a non-trivial scaling solution was only found, when the longitudinal part of
the gluon propagator scales equally as the transverse part and for ghost anti-ghost
symmetric gauges only the trivial solution was found. I generalize these results here
by including dressed vertices, but the main outcome of Ref. [41] is corroborated.

4.4.1 Infrared Analysis of the Linear Covariant Gauge

As described in Sect. 2.1.2 linear covariant gauges can be considered as a general-
ization of the Landau gauge by relaxing the restriction to the hyperplane ∂μ Aμ into a
Gaussian distribution on the gauge orbit. The corresponding gauge fixing part of the

http://dx.doi.org/10.1007/978-3-642-27691-0_2
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Lagrangian is given in Eq. (2.22). An immediate consequence of this gauge choice
is that the gluon propagator is no longer purely transverse.

A peculiar feature of the linear covariant gauge is that the longitudinal part of
the gluon propagator does not acquire a dressing but stays proportional to the gauge
fixing parameter ξ:

Dab
A,μν(p2) = δab

(
gμν − pμ pν

p2

)
cA(p2)

p2 + ξδab pμ pν

p4 . (4.35)

This can be inferred either from a Slavnov-Taylor identity [42, 43] or from the fact
that the longitudinal part of the gluon propagator, 〈(∂μ Aμ)(∂ν Aν)〉, corresponds to
the second moment of the Gaussian distribution

e− 1
2ξ (∂μ Aμ)2

(4.36)

and is hence proportional to ξ [44].
To include the longitudinal part of the gluon into the formalism developed so far

we interpret it as an additional field. Its propagator has the IRE δA, long . This allows
to distinguish also for the vertices between transverse and longitudinal parts. Naively
the same inequalities are obtained for the longitudinal gluon field as for the trans-
verse one. This could change if some vertices vanished when they are contracted
with a longitudinal gluon propagator. However, as the Landau gauge result showed
the ghost-gluon vertex to be the IR leading vertex, we obtain for the longitudinal
gluon propagator IRE the same result as for the transverse one, as the longitudi-
nal part of the ghost-gluon vertex does not vanish. The result δA = δA, long =
−2δc leads together with the triviality of the longitudinal part, δA, long = 0, to
δA = −2δc = 0. This allows two possible conclusions: either there is no non-trivial
scaling relation for linear covariant gauges, or the naive application of the IR analysis
is insufficient here. Most probably there are some cancelations related to the triviality
of the longitudinal part of the gluon propagator. How these can be made manifest
within DSEs is currently unknown.

4.4.2 Infrared Analysis of the Ghost Anti-Ghost
Symmetric Gauge

The most general Lagrangian of dimension four constructed from gluons and
Faddeev-Popov ghosts which is Lorentz invariant, globally gauge invariant,
Hermitian,1 BRST invariant and anti-BRST invariant without topological terms is

1 For the hermiticity of the Lagrangian the following transformation properties of the ghosts are
chosen [45]:

c† = c, c̄† = −c̄. (4.37)

http://dx.doi.org/10.1007/978-3-642-27691-0_2
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[41, 46, 47]

Lga = 1

4
F2

μν + 1

2ξ
(∂μ Aμ)2 + ρ

2

(
1 − ρ

2

) ξ

2
f abc f adec̄bccc̄dce+

− ρ

2
(Dμc̄)∂μc −

(
1 − ρ

2

)
(∂μc̄)Dμc. (4.38)

The gauge fixing parameter ρ allows to interpolate between the Landau gauge
(ρ = 0, 2) and the ghost anti-ghost symmetric case (ρ = 1).

The IR analysis of this Lagrangian can be done along the same lines as for the
Landau gauge. The vital difference between the two gauges is clearly the occurrence
of a quartic ghost interaction, which leads to a new inequality due to Eq. (4.21):

δc ≥ 0. (4.39)

It is now straightforward to conclude that only the trivial solution can be obtained.
The inequalities from the vertices in the Lagrangian are

δA ≥ 0, δc ≥ 0, δA + 2δc ≥ 0. (4.40)

If the first inequality is saturated, i.e., δA = 0, the IR leading vertex is purely gluonic
and we still need to determine the IR leading vertex of the ghost two-point function
DSE. In both possible cases, quartic ghost vertex and ghost-gluon vertex, we obtain
δc = 0 and thus the trivial solution. If we start with the inequality δc = 0, the
arguments are the same. Finally, for δA + 2δc = 0 we immediately get δA = δc = 0,
as both δA and δc are non-positive. Hence all possibilities lead to the trivial solution.

This confirms the result from Ref. [41], where bare vertices were employed, also
in the case of dressed vertices. Again we can only conclude that the existence of a
scaling solution is not possible or that more effort is required to expose some not
manifest symmetries which lead to cancelations.

The purpose of this section was to demonstrate how the method for obtaining
scaling relations facilitates the analysis compared to earlier investigations. Before
we turn to systems which have not been investigated yet in Chaps. 5 and 6, I will
generalize the method to the case of Lagrangians where the fields mix at the two-point
level.

4.5 Extension to Actions with Mixed Two-Point Functions

The method developed in the preceding sections works very nicely for many actions.
There are, however, also Lagrangians where the fields mix on the level of two-
point functions. In this case additional complications arise, because a propagator is
no longer the inverse of the corresponding two-point function. In fact the connec-
tion between propagators and two-point functions becomes a matrix relation. This

http://dx.doi.org/10.1007/978-3-642-27691-0_5
http://dx.doi.org/10.1007/978-3-642-27691-0_6
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requires a more detailed analysis to determine the relation between their IREs. The
identity δi = −κi , valid before, does only hold as a special case and in general
the IREs of a propagator and the corresponding two-point are related by an equa-
tion involving also the IREs of other propagators/two-point functions. Thus some
formulae of Sects. 4.2 and 4.3 have to be generalized.

The first important observation is that the inequalities (4.16) and (4.21) obtained
from FRGEs and DSEs do not change, the reason being simply that in the case of
mixing two-point functions the number of diagrams in the equations grows, but all
diagrams from before will still be there in general. Furthermore, the new diagrams
do not lead to new relevant inequalities.

The formula for the IRE of an arbitrary diagram, however, is altered by the appear-
ance of the new propagators. A detailed derivation is given in Appendix A.3. For the
sake of simplicity I only give the result if there are two mixing fields, denoted by
A and V . The final expression is

κv = − 1

2

∑
i=A,V

miδi + 1

2
n AV (2δAV − δA − δV )+

+
∑

vertices,r≥3

nd
i1...ir

⎛
⎝κi1...ir + 1

2

∑
i=A,V

ki1...ir
i δi

⎞
⎠

+
∑

vertices,r≥3

nb
i1...ir

⎛
⎝1

2

∑
i=A,V

ki1...ir
i δi

⎞
⎠ . (4.41)

The new term contains n AV , which is the number of mixed propagators, and the
combination �AV := 2δAV − δA − δV of the IREs of the propagators. The value
of the latter has to be considered for each case. It should be non-negative or the
IRE is unbounded from below, as one can find diagrams with an arbitrary number
of mixed propagators. They are explicitly constructed by appropriately replacing
dressed quantities by their respective DSEs.

Finally, we have to redo the analysis of the leading diagram in two-point function
DSEs. The resulting inequality corresponding to Eq. (4.27) also contains a new term
proportional to �AV :

κi + 1

2

∑
j

δ j m j − nb
i1...ir

⎛
⎝1

2

∑
j

ki1...ir
j δi

⎞
⎠ −

− 1

2
(2δAV − δA − δV )

⎛
⎜⎝n AV +

∑
dressed
vertices

nd
i1...ir k̄i1...ir

AV

⎞
⎟⎠ ≥ 0. (4.42)
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The symbol k̄i1...ir
AV denotes the number of times a mixed propagator is contained in

the IR leading diagram of the vertex φi1 · · · φir .
In the remaining analysis �AV plays a special role. If it can be shown to be

zero, all new terms vanish and one can proceed as before. If it is not zero, more
care is required. Since an analysis only makes sense for positive values, it is clear
from Eq. (4.41) that the leading diagrams are those with the lowest possible number
of mixed propagators, because for every one of them the IRE is raised. Hence one
determines first the IREs of all diagonal two-point functions and subsequently those
of the mixed ones. An application of this procedure can be found in Sect. 6.2.2.
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Chapter 5
The Infrared Regime of the
Maximally Abelian Gauge

For quantizing Yang-Mills theory naturally a variety of gauges is available, each with
its own advantages and disadvantages. Depending on the aspect one is interested in
one chooses one gauge or another: not only that the complexity of the calculations
is influenced by such a choice, but also some properties are more accessible in
certain gauges. In this chapter I discuss the maximally Abelian gauge, which is
especially amenable for investigating the role of Abelian field configurations. These
are of relevance for the dual superconductor picture of confinement, see, for example,
[1–6]. I will first give a short overview of this confinement scenario and the related
hypothesis of Abelian IR dominance [7]. Then I will introduce the maximally Abelian
gauge [8, 9] and use the method devised in Chap. 4 to obtain its scaling solution,
which supports the hypothesis of Abelian IR dominance. These results have been
published in Refs. [10, 11]. I also present additional explicit numerical calculations
yielding values for the IREs.

5.1 The Dual Superconductor Confinement Scenario

The absence of free chromoelectric charges led to the idea that the QCD vacuum
may be a sort of superconductor [1, 2]. In a conventional superconductor of type I
the magnetic field is expelled due to the Meißner-Ochsenfeld effect except for a
thin layer below the surface. If, however, the magnitude of the external magnetic
field is raised, superconductivity breaks down and there is a sharp transition to the
non-superconducting phase. For a type-II superconductor there is an additional phase
in between, where there is still zero resistance, but the magnetic flux can penetrate
the material by means of flux tubes, also called Abrikosov vortices. This mixed phase
is characterized by two critical field strengths: the first one gives the field strength
where the magnetic flux starts to penetrate the material and the second gives the
value when superconductivity breaks down.
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One might think of the QCD vacuum in a similar fashion, namely being a dual
superconductor where not the magnetic but the chromoelectric field lines are confined
into vortices. This picture provides a natural explanation for the formation of flux
tubes between quarks. A possible reason for the formation of such vortices is the
condensation of chromomagnetic monopoles, which can be identified after reducing
the gauge symmetry from SU (N) to U (1)N−1 by choice of an Abelian gauge [8]. The
most prominent one is the MAG as introduced in Ref. [8] which makes the gauge field
as diagonal as possible, because the diagonal part is identified as the Abelian part,
see Sect. 5.2.1. Hence one speaks of the diagonal and the off-diagonal parts of the
algebra. Indeed in early lattice calculations the condensation of magnetic monopoles
was observed in this gauge [12, 13]. Alternative possibilities for the realization of a
dual superconductor exist if no magnetic monopoles occur, e.g., in the Landau gauge,
where also a dual Meißner effect was observed [14].

Directly connected to the dual superconductor scenario is the hypothesis of
Abelian IR dominance [7]. Based on the assumption that chromomagnetic monopoles
cause confinement Ezawa and Iwazaki argued that the Abelian parts of the gauge
fields should be dominant at large distances, since classic magnetic monopoles live
in the Cartan subalgebra [7]. This is the algebra constructed from the maximal set of
commuting generators and is thereby directly related to the Abelian part of a gauge
field. The IR dominance of Abelian configurations in turn means that off-diagonal
fields do not propagate over large distances. In subsequent years this was usually
attributed to the occurrence of a mass for off-diagonal fields due to which these
fields decouple according to the Appelquist-Carazzone theorem [15]. In the present
work another another possibility is realized, namely an IR suppression of the off-
diagonal propagators without a mass. The IR dominance of the Abelian degrees of
freedom is realized by an IR divergent diagonal gluon propagator.

Although never explicitly proven indications of Abelian dominance were found
in many instances. One is the fact that the string tension between a static pair of
quarks has almost the same value if calculated from the diagonal part of gauge fields
alone as from the complete fields, see, for example Ref. [16]. Related to this is the
notion of monopole dominance, which means that the string tension calculated from
the monopole part of the diagonal fields is again close to the true value [17, 18].

There are also lattice simulations that calculated the propagators in the MAG. This
allows direct comparisons to the results of functional methods. Early calculations can
be found in Refs. [19, 20]. The most recent data with the lowest momenta available
so far is in Refs. [21, 22]. The difference to Landau gauge results is immediately
obvious as all three propagators (diagonal gluon, off-diagonal gluon, ghost) become
finite at vanishing momentum. Furthermore, there are less statistical errors. The
results support the hypothesis of Abelian IR dominance as the propagators of the
off-diagonal gluon and the ghost fields are suppressed at low momenta compared to
that of the diagonal gluon field.
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5.2 The Maximally Abelian Gauge

This section describes how the Abelian part of the gluon field is identified and how
the gauge is fixed in the MAG. The gauge fixing procedure is done in such a way to
allow a continuous interpolation to the Landau gauge. From the action of the MAG
the DSEs of the two-point functions are derived.

5.2.1 Identifying the Abelian Part of the Gauge Field

One way to determine the importance of the Abelian part of Yang-Mills theory is
to use the freedom to choose a gauge. By minimizing the norm of the off-diagonal
gauge fields one can emphasize the role of the diagonal part. For this it is necessary
to identify the diagonal part of the gauge field what is done via the generators of the
corresponding algebra. The generators of an algebra Tr are defined by

[Tr, Ts] = i f rstT t, (5.1)

where f rst are the structure constants. In the following we employ a widely used
convention where the indices of Abelian generators (and corresponding fields later
on) are given by i, j, . . . and those of the other generators by a, b, . . .. Furthermore
r, s, . . . represent both indices. The Abelian part of an algebra, the so-called Cartan
subalgebra, is defined by the maximal set of generators that commute among each
other:

[Ti, Tj] = 0. (5.2)

The matrices for the Abelian generators can be chosen diagonal so that one speaks
of the diagonal part. The diagonal generators are given in SU (N) by

Tj =
(

2

j(j + 1)

)1/2

× diag(1, . . . , 1︸ ︷︷ ︸
j times

,−j, 0, . . . , 0), j = 1, . . . , N − 1. (5.3)

The other generators are off-diagonal matrices and so one denotes the corresponding
fields as off-diagonal. This nomenclature avoids confusion about an Abelian field in
a non-Abelian field theory, albeit sometimes in the literature the term non-Abelian
field is used for the off-diagonal field alone.

For later it is convenient to determine the non-zero structure constants. Clearly
those with at least two diagonal indices vanish due to Eq. (5.2). If only one index is
diagonal it is non-zero, but if all three indices are off-diagonal, one has to consider the
specific algebra. Only if it possesses three off-diagonal generators it can be non-zero
due to the antisymmetry of the structure functions. For SU (N) this is always the case
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Table 5.1 Overview over
structure constants with
diagonal (i, j, …) and
off-diagonal indices (a, b, …)

SU (2) SU (N > 2)

f ijk 0 0
f ija 0 0
f abi � �
f abc 0 �

except for N = 2, as the number of off-diagonal generators is N2−N = 2. For SU (2)

the only possible combination is then two off-diagonal and one diagonal indices. This
leads to a simplification of a Lagrangian based on SU (2) compared to higher SU (N),
when diagonal and off-diagonal parts of the fields are treated separately. Table 5.1
gives the vanishing structure constants.

The gauge field Aμ is given by its components in the Lie algebra Ar
μ, so its natural

to separate the diagonal and off-diagonal parts as

Aμ = TiAi
μ + TaBa

μ. (5.4)

In addition to the index convention the off-diagonal gluon field B was given a new
symbol in order to alleviate the distinction between the two gluon fields in the
following. These two fields may behave quite differently, what can already be inferred
from the Yang-Mills Lagrangian, which is split in the same fashion:

SYM =
∫

dx
1

4
Fr

μνFr
μν =

∫
dx

(
1

4
Fi

μνFi
μν + 1

4
Fa

μνFa
μν

)
(5.5)

with

Fa
μν = ∂μBa

ν − ∂νBa
μ − g f abcBb

μBc
ν − g f abiBb

μAi
ν − g f aibAi

μBb
ν =

= Dab
μ Bb

ν − Dab
ν Bb

μ − g f abcBa
μBb

ν, (5.6)

Fi
μν = ∂μAi

ν − ∂νAi
μ − g f iabBa

μBb
ν, (5.7)

Dab
μ : = δab∂μ + g f abiAi

μ. (5.8)

Explicitly the diagonal and off-diagonal terms in the Yang-Mills Lagrangian read as
follows:

Fa
μνFa

μν = 2(∂μBa
ν)(∂μBa

ν) − 2(∂μBa
ν)(∂νBa

μ)−
− 2g f abcBb

μBc
ν((∂μBa

ν) − (∂νBa
μ)) − 4g f abiBb

μAi
ν((∂μBa

ν)−(∂νBa
μ))+

+ 2g2 f abif adjBb
μAi

ν(B
d
μAj

ν − Aj
μBd

ν )+
+ 2g2 f abcf adiBb

μBc
ν(B

d
μAi

ν − Ai
μBd

ν )+
+ g2 f abcf adeBb

μBc
νBd

μBe
ν, (5.9)
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Fi
μνFi

μν = 2(∂μAi
ν)(∂μAi

ν) − 2(∂μAi
ν)(∂νAi

μ)−
− 2g f iabBa

μBb
ν((∂μAi

ν) − (∂νAi
μ))+

+ g2 f iabf icdBa
μBb

νBc
μBd

ν . (5.10)

In summary there are BBBB-, ABBB-, AABB-, ABB- and BBB-interactions.
It should be stressed that for later convenience the covariant derivative was defined

in Eq. (5.8) only with the diagonal gluon field and not as its projection from Drs
μ =

δrs∂μ + g f rstAt
μ, where also an off-diagonal field would appear. At this point it

does not make a difference, yet, as it acts on an off-diagonal gluon field and the
additional term would be zero: f abcBc

μBb
μ = −f abcBb

μBc
μ = 0. However, if it acts on

a ghost field, this term has to be taken into account. Accordingly we define the “full”
covariant derivative as

D̃ab
μ := δab∂μ + g f abcBc

μ + g f abiAi
μ. (5.11)

5.2.2 Gauge Fixing and Renormalizability

Next we will determine the gauge fixing part of the action. For this we need to derive
the BRST transformation, where we discriminate again between the diagonal and
off-diagonal parts. Furthermore the Jacobi identity splits into several identities. The
modified expressions can be directly derived from the usual ones by ascribing the
free indices to either the diagonal or off-diagonal sector. As an example we have a
look at the BRST transformation of the gluon field, given by

s Ar
μ = −Drs

μ cs. (5.12)

Choosing r to be either a diagonal or off-diagonal index, i and a, respectively, we
get the BRST transformation for the two gluon fields:

s Ba
μ = −D̃ab

μ cb − D̃ai
μ ci = −(Dab

μ cb − g f abcBb
μcc − g f abiBb

μci), (5.13)

s Ai
μ = −D̃ij

μcj − D̃ia
μ ca = −(∂μci − g f iabBa

μcb). (5.14)

Similarly the transformations for the ghost fields and the Nakanishi-Lautrup fields
are derived:

s ca = −1

2
g f abccbcc − g f abicbci, s ci = −1

2
g f iabcacb, (5.15)

s c̄a = i ba, s c̄i = i bi, (5.16)

s ba = 0, s bi = 0. (5.17)
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The standard Jacobi identity,

f rst f ruv + f rsuf rvt + f rsvf rtu = 0, (5.18)

splits up into

f abif acj + f abjf aic = 0, (5.19)

f abcf adi + f abdf aic + f abif acd = 0, (5.20)

f rabf rcd + f racf rdb + f radf rbc = 0. (5.21)

Now we can proceed to fix the gauge. The basic idea is to minimize the norm of
the off-diagonal part given by

RMAG = 1

2

∫
dx Ba

μ(x)Ba
μ(x). (5.22)

It is found that a (local) minimum corresponds to

Dab
μ Bb

μ = 0. (5.23)

This is the gauge fixing condition that defines the MAG. In contrast to the Landau
gauge condition it is non-linear as the diagonal gluon field appears in the covariant
derivative. This will have far-reaching consequences for the Faddeev-Popov operator
and the structure of the interactions in the gauge-fixed Lagrangian.

Having the gauge fixing condition, we can proceed in the usual way of BRST
quantization, i.e., we calculate the gauge fixing part of the Lagrangian via a BRST
variation:

SMAG = s
∫

dx c̄a
(

D̂ab
μ Bb

μ − i
α

2
ba

)
=

=
∫

dx
(α

2
baba + ibaD̂ab

μ Bb
μ + c̄aD̂ab

μ Dbc
μ cc − g f abic̄a(D̂bc

μ Bc
μ)ci−

− g f bcd c̄aD̂ab
μ Bc

μcd − g2 ζ f abif cdiBb
μBc

μc̄acd

− (1 − ζ )g f abic̄aBb
μ∂μci

)
, (5.24)

where the covariant derivative with the hat, D̂ab
μ , is defined as

D̂ab
μ := δab∂μ + g ζ f abiAi

μ. (5.25)

It allows to interpolate between the MAG and the Landau gauge via the parameter
ζ : For the MAG it is set to one and for the Landau gauge to zero. The parameter α

is the conventional gauge fixing parameter for the MAG. Alternative formulations
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for gauges interpolating between the MAG and the Landau gauge can be found in
Refs. [23, 24].

We do not integrate out the Nakanishi-Lautrup field yet, as we have to face the
following problem of the MAG first: the Lagrangian as we have it now is not renor-
malizable, as there appear divergences due to a quartic ghost interaction [9, 25].
In order to absorb these divergences into a counterterm, this interaction is introduced
into the Lagrangian via a BRST-exact term so that the BRST symmetry is not spoiled:

SR = s
∫

dx(−1

2
λ g f abic̄ac̄bci − 1

4
λ′ g f abcc̄ac̄bcc) =

=
∫

dx(−i g λ f abibac̄bci − i
1

2
g λ′ f abcbac̄bcc + 1

4
g2λf abif cdic̄ac̄bcccd+

+ λ′ 1

4
g2f abcf adic̄bc̄ccdci + λ′ 1

8
g2f abcf adec̄bc̄ccdce) (5.26)

The new terms have two parameters λ and λ′ that can be set to zero to recover the
original MAG Lagrangian. Note that the second term in the first line is zero in SU (2).
Now the Nakanishi-Lautrup field is integrated out1:

S′
MAG,R =

∫
dx

(
c̄aD̂ab

μ Dbc
μ cc − g f abic̄a(D̂bc

μ Bc
μ)ci − g f bcd c̄aD̂ab

μ Bc
μcd−

− g2 ζ f abif cdiBb
μBc

μc̄acd − (1 − ζ )g f abic̄aBb
μ∂μci + 1

2α
(D̂ab

μ Bb
μ)2+

+ λ′2

8α
g2f abcf adec̄bccc̄dce − λ

α
g f abi(D̂ac

μ Bc
μ)c̄bci−

− λ′

2α
g f abc(D̂ad

μ Bd
μ)c̄bcc + λλ′

2α
g2f abif acd c̄bcic̄ccd+

+ 1

4
g2λf abif cdic̄ac̄bcccd + λ′ 1

4
g2f abcf adic̄bc̄ccdci

+ λ′ 1
8

g2f abcf adec̄bc̄ccdce
)
. (5.27)

The MAG corresponds to the formal limit α, λ, λ′ → 0 and ζ = 1. A final
simplification can be obtained by identifying α, λ and λ′. This is not only possible
because all three parameters are zero for the MAG, but it is also supported by a Ward
identity, the so-called diagonal ghost equation [25]. It only has the meaning of a
Ward identity if α = λ = λ′. Identifying these three parameters the terms containing
diagonal ghosts drop out completely in S′

MAG,R. Hence the off-diagonal gauge fixing
sector does only depend on off-diagonal ghosts. The interactions that appear are
AAcc, BBcc, ABcc, cccc, Acc and Bcc.

1 Note that in principle one could also keep the Nakanishi-Lautrup field, but for the coming analysis
it is preferable to set this field on-shell as otherwise there are mixing terms at the two-point level.
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The definition of the MAG does only fix the gauge for the off-diagonal gluon fields
and the diagonal Yang-Mills part still has a U (1)N−1-symmetry. This remnant of the
full gauge symmetry has to be fixed as well for functional equations. From several
possible gauge fixing prescriptions we choose the Landau gauge, i.e., ∂μAi

μ = 0.
The corresponding gauge fixing parameter is ξ and the required Nakanishi-Lautrup
field is again b with a diagonal index:

Sdiag = s
∫

dx c̄i(∂μAi
μ − i

ξ

2
bi) =

=
∫

dx

(
ibi(∂μAi

μ − i
ξ

2
bi) + c̄i∂μ(∂μci − g f abiBa

μcb)

)
. (5.28)

Integrating out the auxiliary fields also here yields

S′
diag =

∫
dx

(
1

2ξ
(∂μAi

μ)2 + c̄i∂μ(∂μci − g f abiBa
μcb)

)
. (5.29)

In this Lagrangian the diagonal ghosts appear again. However, they can be integrated
out after shifting the diagonal ghost field as [26, 27]

ci → ci + �−1∂μg f abiBa
μcb. (5.30)

The Jacobian of this transformation is trivial [27] and so we can get rid of the diagonal
ghosts entirely. Their disappearance is not surprising as ghosts also disappear in the
pure Abelian gauge theory in the Landau gauge.

Now we can combine the individual parts to the final action:

S = SYM + S′′
MAG,R + S′′

diag, (5.31)

with

S′′
MAG,R = S′

MAG,R

∣∣∣
λ′=λ=α

=
∫

dx
(

c̄aD̂ab
μ Dbc

μ cc − g f bcd c̄aD̂ab
μ Bc

μcd−

− g2 ζ f abif cdiBb
μBc

μc̄acd + 1

2α
(D̂ab

μ Bb
μ)2 + α

8
g2f abcf adec̄bccc̄dce−

− 1

2
g f abc(D̂ad

μ Bd
μ)c̄bcc + 1

4
g2αf abif cdic̄ac̄bcccd

+ α
1

8
g2f abcf adec̄bc̄ccdce

)
, (5.32)

S′′
diag =

∫
dx

1

2ξ
(∂μAi

μ)2. (5.33)

One should note that this Lagrangian simplifies considerably for the gauge group
SU (2) as the structure constants with three off-diagonal indices are zero:
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Fig. 5.1 DSE of the diagonal gluon two-point function. DoDSE cannot draw the usual wiggly lines
for gluons, so the convention is that continuous lines are diagonal gluons, dashed ones off-diagonal
gluons and dotted ones ghosts

S′′
MAG,R

∣∣∣
SU (2)

=
∫

dx
(

c̄aD̂ab
μ Dbc

μ cc − g2 ζ f abif cdiBb
μBc

μc̄acd−

+ 1

2α
(D̂ab

μ Bb
μ)2 + 1

4
g2αf abif cdic̄ac̄bcccd

)
, (5.34)

Fa
μνFa

μν

∣∣∣
SU (2)

= 2(∂μBa
ν)(∂μBa

ν) − 2(∂μBa
ν)(∂νBa

μ)

− 4g f abiBb
μAi

ν((∂μBa
ν) − (∂νBa

μ))+
+ 2g2 f abif adjBb

μAi
ν(B

d
μAj

ν − Aj
μBd

ν ). (5.35)

5.2.3 The Dyson-Schwinger Equations of the Maximally
Abelian Gauge

The Lagrangian of the MAG, Eq. (5.31), contains many interactions of the three
fields. Therefore the derivation of the DSEs becomes quite lengthy when done by
hand. Especially the numerous possibilities for different intermediate propagators
lead to many terms. For this reason the program DoDSE is very useful here. The
derivation of the two-point function DSEs is explained in Appendix E.2. The resulting
equations are depicted in Figs. 5.1, 5.2 and 5.3. The total number of terms at the two-
point level, 16+23+18 = 57, should be compared with that of the Landau gauge,
6+2 = 8. This illustrates nicely the increased complexity of the system of equations
that has to be treated here.

One issue is that diagrams can vanish due to the color algebra. This has to be
checked explicitly for every diagram. At the two-point level this is possible without
assumptions for all diagrams except the sunsets, where a dressed four-point function
appears. For the three-point function there is, under the assumption that no symmetric
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Fig. 5.2 DSE of the off-diagonal gluon two-point function

Fig. 5.3 DSE of the off-diagonal ghost two-point function

tensor drst appears, only one basis tensor in color space, which is the antisymmetric
structure function of SU (N), f rst . The dressed three-point functions are then pro-
portional to this color tensor. The two-point functions are all taken as diagonal, i.e.,
either proportional to δab or δij. Contracting the color tensors in all diagrams except
for the sunsets reveals that indeed two diagrams vanish: the squint diagrams with a
bare BBcc vertex and an internal diagonal gluon line. They are depicted in Fig. 5.4.
Note that other diagrams with a bare BBcc vertex remain.

At this point is has to be stressed that the gauge fixing parameter of the MAG α is
still arbitrary as it appears in the denominator of the bare vertices. Therefore the off-
diagonal gluon propagator has a longitudinal part. In order to take into account that the
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(a) (b)

Fig. 5.4 Diagrams that vanish due to the color algebra

longitudinal part could scale differently as the transverse part one could introduce an
extra IRE δB,long and split the off-diagonal field in transverse and longitudinal parts.
However, inserting the bare vertices explicitly and projecting the DSE of the off-
diagonal propagator transversely and longitudinally one finds that the equations for
both parts are the same. Thus the IR analysis yields δB = δB,long. This result can only
be invalidated by cancelations between different diagrams or due to contributions
from the unknown dressed vertices. Based on this relation we adopt in the following
only one common dressing function for both tensors.

For the moment this is as far as we go in excluding cancelations. It cannot be
ruled out, though, that nevertheless some diagrams vanish or cancel each other.
A clarification of this point would require a more detailed analysis taking into account
the detailed Lorentz structure. However, at the moment it seems not manageable to
do so even at the IR leading order, as it will be found that the IR dominant diagrams
involve dressed four-point functions which possess a plethora of possible Lorentz
tensors.

5.3 Infrared Scaling Solution for the Maximally
Abelian Gauge

Having derived the DSEs of the MAG we can now to proceed to its IR analysis.
It will be found that there is a unique scaling relation, but the IREs of vertices with
an odd number of legs are ambiguous. In the discussion of this solution in Sect. 5.3.3
differences and connections to the Landau gauge are highlighted. Finally a numerical
calculation of the IREs is presented.

5.3.1 Obtaining the Scaling Relation

As the MAG features three fields and eleven bare interaction vertices, its IR analysis
seems much more complicated than that of the Landau gauge. However, with the
improved method developed in Chap. 4 only slightly more effort is needed.

The dressed propagators in the MAG are

http://dx.doi.org/10.1007/978-3-642-27691-0_4
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Dij
A(p2) = δij cA(p2)

p2

(
gμν − pμpν

p2

)
+ ξ δij pμpν

p2 , (5.36)

Dab
B (p2) = δab cB(p2)

p2

(
gμν − (1 − α)

pμpν

p2

)
, (5.37)

Dab
c (p2) = −δab cc(p2)

p2 . (5.38)

The reason for choosing only one dressing function for the off-diagonal propagator
is given in Sect. 5.2.3. The dressing functions obey power laws in the IR:

cA(p2)
p2→0= dA · (p2)δA , (5.39)

cB(p2)
p2→0= dB · (p2)δB , (5.40)

cc(p
2)

p2→0= dc · (p2)δc . (5.41)

Now we follow the procedure outlined in Sect. 4.3.1. The first step is:

1. Determine the inequalities that are derived from the interactions appearing in
the Lagrangian from Eq. (4.21).

In the MAG this leads to the following inequalities in SU (2):

δA + δB ≥ 0, δA + δc ≥ 0, δB + δc ≥ 0, 2δB ≥ 0,

2δc ≥ 0, δA + 1

2
δB ≥ 0, δA + 1

2
δc ≥ 0. (5.42)

The additional inequalities in SU (N > 2) are

1

2
δA + 1

2
δB + δc ≥ 0,

1

2
δA + 3

2
δB ≥ 0,

3

2
δB ≥ 0,

1

2
δB + δc ≥ 0.

(5.43)

The second step is:

2. Reduce the number of inequalities, if some of them are contained within others.

This yields the following four inequalities for general SU (N):

δA + δB ≥ 0, δA + δc ≥ 0, δB ≥ 0, δc ≥ 0. (5.44)

The inequalities for SU (N > 2), Eq. (5.43), do not provide additional constraints for
the system. Hence we will find that SU (2) and SU (N) have the same IR behavior,
although their actions are different.

The last step is:

http://dx.doi.org/10.1007/978-3-642-27691-0_4
http://dx.doi.org/10.1007/978-3-642-27691-0_4
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3. Try to saturate one inequality after the other according to Eq. (4.28) and see,
if you can find any contradictions with the remaining inequalities.

We first investigate the last two inequalities in Eq. (5.44). They yield δA = δB =
δc = 0. To illustrate this I explain the line of argument for the case δB = 0 in more
detail.

The equation δB = 0 is obtained from diagrams with a bare B self coupling. As
such bare vertices do not appear in the DSEs for the diagonal gluon or the ghost
two-point functions, we still have to determine their IR leading diagrams. In the
DSE of the diagonal gluon there are two possibilities for IR leading diagrams, those
with bare AABB or AAcc vertices. If the latter are leading we obtain δA + δc = 0.
However, since both δA and δc are non-negative if δB = 0, the only possible solution
is δA = δc = 0. Similarly we get δA = 0, if vertices with a bare AABB vertex are
leading. For δc the ghost two-point function is analyzed, where we come back to
the argument with the AAcc vertex. Hence the emerging solution is that all three
propagators scale trivially in the IR, i.e., equally as in the UV. This option is of
no interest to us, as we do not expect that perturbative propagators describe the IR
regime of Yang-Mills theory. The argument if starting with the equation δc = 0 is
completely the same.

The two remaining possibilities are δA + δB = 0 and δA + δc = 0, which can be
fulfilled independently. Thus the scaling relation of the MAG is

κMAG := −δA = δB = δc ≥ 0. (5.45)

Before discussing its meaning we determine the IR behavior of vertices.

5.3.2 The Infrared Exponents of Vertices

From the scaling relation found above the IR behavior of vertices can be obtained.
A first observation is that the IREs of AABB and AAcc vertices vanish:

κAABB = κAAcc = 0. (5.46)

This can be shown by plugging the scaling relation Eq. (5.45) into Eq. (4.16) and
using that primitively divergent vertices have a non-positive IRE, see Eq. (4.20).

Next we want to determine the IR leading diagrams so that we can derive
the IREs of other vertices from them. However, for the MAG there is an ambi-
guity due to the fact that there are two classes of possibly leading diagrams. The
origin of the scaling relation are diagrams with bare AABB or AAcc vertices, i.e.,
(neglecting the tadpole) sunset and squint diagrams can be used to derive the scaling
relation. The corresponding diagrams are depicted in Figs. 5.5 and 5.6. As we did
not yet specify in our analysis which diagram led to the scaling relation, we look for
the consequences if only one class is IR leading.

http://dx.doi.org/10.1007/978-3-642-27691-0_4
http://dx.doi.org/10.1007/978-3-642-27691-0_4
http://dx.doi.org/10.1007/978-3-642-27691-0_4
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Fig. 5.5 Possibly IR leading diagrams in the DSE of the diagonal gluon two-point function. The
sunset diagrams (first row) are definitely at leading order, while it is possible that the squint diagrams
(second row) are IR subdominant

Fig. 5.6 Possibly IR leading diagrams in the DSEs of the off-diagonal gluon two-point function
(upper row) and of the ghost two-point function (lower row). The sunset diagrams (left) are definitely
at leading order, while it is possible that the squint diagrams (right) are IR subdominant

Let us assume first it is the squint diagram from which we derived the scaling
relation and Eq. (5.46). This provides enough information to count the IREs of the
sunset diagrams which turn out to be at leading order, i.e., if the squints are IR
leading also the sunsets are. If, however, we assume that the scaling relation is
obtained from the sunset diagrams, we cannot determine the IREs of the three-point
vertices necessary to count the IREs of the squint diagrams. So the sunset diagrams
are always at leading order, while we cannot say if the squint diagrams scale equally.

The reason why we cannot determine the IREs of three-point functions is purely
combinatorial. We found that the IR leading vertices have four legs. Consequently
it will be easy to construct the IR leading diagrams of an n-point function if n is
even: As depicted in Fig. 5.7 we plug AABB or AAcc vertices into appropriate IR
leading diagrams of two-point functions. The IREs of the resulting diagrams can be
inferred from Eq. (4.24), but as we only add quantities for which the last two terms
are zero, we directly get to Eq. (4.25), the maximally IR divergent solution. The IRE
of a vertex with nA diagonal gluon legs, nB off-diagonal gluon legs and nc ghost legs
is then

κ(nA, nB, nc) = 1

2
(nA − nB − nc)κMAG (nA + nB + nc even). (5.47)

http://dx.doi.org/10.1007/978-3-642-27691-0_4
http://dx.doi.org/10.1007/978-3-642-27691-0_4
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Fig. 5.7 Consecutively
inserting pairs of A, B and
c fields via AABB and AAcc
vertices shows that for graphs
with an even number of legs
the maximally IR divergent
solution is realized

However, it is not possible to construct an IR leading diagram purely from four-
point functions for a vertex with an odd number of legs. The open question is the
IR behavior of the three-point function for which we can only find upper and lower
bounds from the bare vertices and the maximally IR divergent solution, respectively:

−1

2
κMAG ≤ κAB2 ≤ 0, − 1

2
κMAG ≤ κAc2 ≤ 0,

−3

2
κMAG ≤ κBBB ≤ 0, − 3

2
κMAG ≤ κBcc ≤ 0. (5.48)

If the IRE of the three-point functions was known, the IREs of the complete tower
of vertices with an odd number of legs could be derived. Without this knowledge,
which cannot be obtained from a power counting analysis, we have to introduce a
parameter η to take the different possibilities into account. The IRE of an n-point
function with n odd reads then

κ(nA, nB, nc) = 1

2
(nA − nB − nc + η)κMAG (nA + nB + nc odd). (5.49)

For SU (2) η can be either 0 or 1, while for SU (N > 2) it can also be 2 and 3.

5.3.3 Aspects of the Infrared Solution and Comparison
to Landau Gauge

The IR solution for the MAG can be summarized as follows. The scaling relation
reads

κMAG := −δA = δB = δc ≥ 0 (5.50)

and the IREs of vertices are given by
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κ(nA, nB, nc) = 1

2
(nA − nB − nc)κMAG (nA + nB + nc even) (5.51)

and

κ(nA, nB, nc) = 1

2
(nA − nB − nc + η)κMAG (nA + nB + nc odd). (5.52)

One can see directly from the scaling relation that this solution is qualitatively
quite different from the one in Landau gauge, where the ghosts are IR enhanced,
as here it is the diagonal gluon propagator that is the dominant degree of freedom
in the IR. This can be interpreted as a variant of Abelian IR dominance. Also in
agreement with this hypothesis is the IR suppression of off-diagonal propagators.
One should note, however, that it is different from the indication of Abelian IR
dominance seen in lattice calculations of the MAG propagators where all propagators
show a massive behavior. At momenta below the momentum scale induced by this
mass the propagators decouple. Since the propagator of the diagonal gluon is least IR
suppressed the diagonal degrees of freedom are dominant in the IR. Here, however, we
find an IR enhanced diagonal gluon propagator and it is clear that in the DSEs/FRGEs
the diagrams with the most diagonal propagators dominate.

There is even a direct connection between ghost dominance in the Landau gauge
and Abelian dominance in the MAG. One can show that upon transforming gauge
field configurations from the MAG to the Landau gauge that the diagonal (MAG-
dominant) configurations are transformed to configurations lying on the Landau
gauge Gribov horizon [28], which give rise to the IR enhancement of the ghost
propagator. This establishes not only a link between the dominant configurations
of the Landau gauge and the MAG, but also between two confinement scenarios of
different origin [28].

Besides the obvious difference that the dominant fields are different, there is also
another aspect that distinguishes the MAG and the Landau gauge. The scaling relation
in the latter is 0 ≤ 2κLG := δA = −2δc. A lower bound for the IREs of propagators is
the value when the Fourier transforms of the propagators are no longer well-defined
[29, 30], i.e., here δc ≥ −1 and δA ≥ −1 which corresponds to propagators with
a 1/p4 behavior. Hence we get

0 ≤ κLG ≤ 1. (5.53)

Note, however, that more divergent propagators, specifically going like 1/p6, have
been found also and interpreted via an analytic continuation of the exponent beyond
−2 [31]. These bounds on κLG allow that the gluon propagator vanishes at zero
momentum, for which we need δA > 1, i.e., κLG > 1/2. In the MAG the upper
bound is κMAG ≤ 1. The condition for an IR vanishing propagator, on the other hand,
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leads to κMAG > 1. Thus the IR suppressed propagators in the MAG cannot vanish.
On the contrary, they are still IR divergent, but less than the tree-level propagator.
It should be stressed that also such propagators can violate positivity and belong to
confined fields.

The reason for different IR dominant field configurations in the MAG and the
Landau gauge is likely related to the different shapes of their Gribov regions. While
both are convex and contain the origin, only the latter is bounded in all directions.
The former, however, is unbounded in the direction of diagonal fields [26, 32]. In
this case the entropy argument that in a high-dimensional space most volume is
contained at the boundary and thus configurations with a small value of the lowest
eigenvalue of the Faddeev-Popov determinant are dominant does not apply [33]. The
unboundedness of the Abelian direction in field configuration space may be directly
responsible for the enhancement of the diagonal propagator and the dominance of
Abelian configurations.

The discrepancy presently observed between the results from this thesis and from
lattice calculations [21, 22] may have its explanation in the existence of an additional
solution for the MAG of the decoupling type which is also found in the refined Gribov-
Zwanziger scenario [26, 34]. Indeed one can see from the DSEs that a decoupling
solution in the MAG features three massive propagators. The reason is that there
are four-point interactions between all three fields (AABB, AAcc, BBcc) which lead
to tadpole diagrams in the DSEs. If the internal propagator of a tadpole diagram is
massive, it does not vanish in dimensional regularization and can render the solution
of the DSE massive. In Landau gauge there exists only a gluon four-point interaction
and thus a massive gluon propagator does not influence the ghost propagator via a
tadpole diagram. In the MAG, however, a massive propagator automatically leads
to the massiveness of the other two propagators by the tadpoles stemming from the
vertices AABB, AAcc and BBcc.

The recent suggestion that the decoupling and the scaling solutions in the Landau
gauge correspond to different Landau gauges that only deviate from each other in the
IR regime [35] can also be considered in the MAG. Indeed its DSEs offer a similar
setting. In the Landau gauge the realization of one of the two solutions is directly
related to the ghost propagator at zero momentum. Only if the boundary condition is
chosen such in the renormalization process that the ghost dressing function diverges
in the IR, the scaling solution is obtained. In the MAG the same condition is required
for the diagonal gluon propagator. Thus the zero momentum value of its dressing
function may serve as a parameter in analogy to the B-parameter of the Landau-B
gauges [35].

5.3.4 Calculation of the Parameter κMAG

The first step in establishing the existence of a scaling solution in the MAG was to
find the scaling relation Eq. (5.45). The next step would be a numerical solution of
the DSEs over the complete momentum range. However, this is complicated mainly
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by the fact that the IR leading terms are two-loop diagrams. For a numerical solution
the DSEs have to be truncated properly. This can be done in a consistent way if the IR
leading diagrams only have one loop, as a one-loop truncation then contains the IR
and UV leading parts. For two loops, however, a direct UV/IR consistent truncation
does not exist: as some two-loop terms are required for the IR, one has to include
all diagrams up to two loops in order to be consistent in the UV. Such a calculation
would not only be of a tremendous complexity due to the high number of terms in
the MAG, but is also aggravated by the fact that a new method for renormalizing and
calculating the two-loop diagrams and ansätze for all involved vertices are required.

What can be done is the calculation of the IRE κMAG if we only take into account
the sunset diagrams. It is not possible to include the squint diagrams as in this case
we do not have enough equations for the determination of the free parameters. The
free parameters are the coefficients in the power laws of the dressing functions in
the IR, dA, dB, dc, and the IRE κMAG. So in total we have four unknowns and three
equations. However, in the DSEs truncated to the sunsets the coefficients appear only
in the combinations d2

Ad2
B and d2

Ad2
c and we can solve this system. If we included the

squints not only would we need to know the IR behavior of the three-point functions,
but also other combinations of the coefficients would appear rendering the system
of equations unsolvable. Thus we assume here that only the sunset diagrams are IR
leading.

For the calculation it suffices to determine the integrands in the IR and the system
of DSEs reduces to the following simpler form after suitable projections in Lorentz
space:

d−1
A = −XA

AABB(p2, κMAG)dAd2
B − XA

AAcc(p
2, κMAG)dAd2

c , (5.54)

d−1
B = −XB

AABB(p2, κMAG)d2
AdB, (5.55)

d−1
c = −Xc

AAcc(p
2, κMAG)d2

Adc. (5.56)

The X(p2, κMAG) denote the sunset integrals without the coefficients from the prop-
agator power laws. The superscript gives the corresponding DSE and the subscript
the bare vertex contained in the diagram. Using the invariant combinations

I1 :=d2
Ad2

B, (5.57)

I2 :=d2
Ad2

c (5.58)

the three equations can be combined to

1 = XA
AABB(p2, κMAG)

XB
AABB(p2, κMAG)

+ XA
AAcc(p

2, κMAG)

Xc
AAcc(p

2, κMAG)
. (5.59)

If the X(p2, κMAG) are known, this equation yields the solution(s) for κMAG.
For the calculation of the X(p2, κMAG) we need to decide what we use for the

dressed four-point functions. As we cannot solve their DSEs and get exact expressions
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we can only make ansätze. The simplest choice is using bare vertices, but we could use
any expression that stays constant when all external momenta go to zero. However, the
number of possibilities for modifying the dressed four-point functions is tremendous.
First of all four-point functions have a large number of possible tensors: for two
Lorentz indices (AAcc vertex) there are ten possible tensors and for four Lorentz
indices there are 138 (AABB vertex). Of these 5 and 76, respectively, are transverse
with respect to the diagonal gluon legs. In color space the situation is a little bit better,
as the fact that two indices are diagonal allows only a subset of all possible color
tensors (see Sect. 6.2.1 for details). One could choose, for example, the following
basis for SU (N):

tabij
1 = δabδij, tabij

2 = f aicf bjc, tabij
3 = dabij

A , (5.60)

where dabij
A is the totally antisymmetric tensor

dabij
A = 1

6
Tr

(
TaT (bT iT j)

)
. (5.61)

The Jacobi identity tells us that another possible tensor, f ajcf bic, is related to tabij
2 and

hence does not appear in this basis. For the calculation of κMAG we restrict ourselves
to bare vertices.

Another thing we need is an analytic solution for the scalar integral

ISS(a, b, c, e, f ; p2)

:=
∫

ddq

(2π)d

ddr

(2π)d
(q2)a[(r)2]b[(p − q − r)2]c(2 p q)e(2 p r)f (5.62)

for {e, f } ∈ N. As I am not aware of any existing solution in the literature except for
e = 0 I provide it in Appendix D.

The integrals X(p2, κMAG) can be calculated with Mathematica. First the DSEs are
derived with the package DoDSE as outlined in Appendix E.2. Using the Feynman
rules given in Appendix C the detailed expressions of the integrals are derived. They
are then processed by contracting Lorentz and color indices and calculated using
Eq. (D.4). The contraction of color indices was done in Mathematica by simple
replacement rules, as no available program could deal directly with the splitting of
the color algebra. The whole process is necessarily automated, because the resulting
expressions cover several pages even in the simple case adopted here. This also
allows to test the effect of different tensors or employing different dressings.

Having all analytic expressions for the sunset integrals X(p2, κMAG), we can plot
the right-hand side of Eq. (5.59) as a function of κMAG. There is still one unfixed
value which is the gauge fixing parameter α. The obvious choice is α = 0, which
corresponds to the pure MAG, but it is also interesting to check the dependence on
α. In Fig. 5.8 on the left the two sides of Eq. (5.59) are plotted for several values
of α. Solutions for κMAG can be read off where the straight line (left-hand side

http://dx.doi.org/10.1007/978-3-642-27691-0_6
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Fig. 5.8 Left: Both sides of Eq. (5.59) for several values of α. Right: Dependence of κMAG on α.
The dots and triangles represent the first and second solution branches, respectively

of Eq. (5.59)) crosses the curves (right-hand side of Eq. (5.59)). The singularity at
κMAG = 0.739908 seems to be universal for all values of α; this was checked up
to α = 100. Consequently there is always one solution κMAG ≈ 0.74. However, as
is depicted in Eq. (5.59) on the right, there exists a second branch of solutions. For
α between approximately 0.5 and 0.9 both coincide and when at α ≈ 2.2 the first
branch starts to go away from κMAG ≈ 0.74, the first branch takes over. The first
branch crosses κMAG = 1 at α = 3.359 and becomes thus unphysical.

As there is a solution for the parameter κMAG we have one more indication that
the obtained IR solution really exists. The final proof would be a complete numerical
calculation for all momenta.
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Chapter 6
Dyson-Schwinger Equations
in the Gribov Region

In Chap. 2 I explained how to fix the gauge according to the conventional Faddeev-
Popov procedure and that for non-perturbative calculations this is not sufficient due
to the appearance of further gauge copies. Now I will go into the details of the
improved gauge fixing suggested by Gribov and how this leads to a local Lagrangian
amenable to the usual tools of quantum field theory. The resulting action is called
Gribov-Zwanziger action [1, 2] and constitutes the best option available so far to
achieve a complete gauge fixing within the path integral. For lattice simulations
the situation is slightly different and I will comment on this in more detail in
Sect. 6.1.3. Of course the ultimate goal would be a complete gauge fixing as, for
example, provided by restriction to the fundamental modular region. This, however,
does not seem realizable directly within the path integral due to the non-trivial topol-
ogy of this region.

One should note that the underlying idea of Gribov [1] works for all gauges which
are defined by a minimization problem like Landau gauge, Coulomb gauge or the
maximally Abelian gauge. The first two were already considered in Gribov’s original
paper [1], while the last one was mainly investigated by Sorella and collaborators,
see, e.g., Refs. [3–6]. In this chapter, however, I only consider the Landau gauge.

The Gribov-Zwanziger action is described in Sect. 6.1 and will be investigated in
Sect. 6.2 with the tools developed in Chap. 4. In this action fields mix at the level
of two-point functions what leads to several complications that require a refinement
of the method as described in Sect. 4.5. When the smoke clears two possible IR
solutions remain, which, however, are very similar up to details. In particular, both
feature the same qualitative behavior as the result obtained from the Faddeev-Popov
theory. Interestingly one solution reduces in the IR exactly to the Faddeev-Popov
theory. The results of this chapter have been published in Ref. [7].

M. Q. Huber, On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills 81
Green Functions, Springer Theses, DOI: 10.1007/978-3-642-27691-0_6,
© Springer-Verlag Berlin Heidelberg 2012
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6.1 The Gribov-Zwanziger Action

This section contains a short overview of the derivation of the local formulation of
the Gribov-Zwanziger action. It is named after Gribov, who was the first to suggest a
solution to overcome the incomplete gauge fixing, and Zwanziger, who subsequently
brought this idea into its final form in terms of a local action and derived several
properties of the first Gribov region.

6.1.1 Restriction to the First Gribov Region

As mentioned in Chap. 2 the first Gribov region � is defined as the set of gauge field
configurations for which the Faddeev-Popov operator is positive and which fulfill
the gauge fixing condition, i.e., for Landau gauge

� := {A | ∂μ Aμ = 0, M > 0} (6.1)

with M = −∂μ Dμ the Faddeev-Popov operator. The boundary of this region is
called the (first) Gribov horizon. It is defined by those gauge field configurations
for which the lowest non-trivial eigenvalue of the Faddeev-Popov operator vanishes.
Consequently the second Gribov horizon is where the second eigenvalue vanishes
and so on. The conventional gauge fixing already restricts the field configurations to
fields obeying the Landau gauge condition ∂μ Aμ = 0 and only the second condition,
the positivity of the Faddeev-Popov operator, has to be implemented additionally.

The Faddeev-Popov operator is related to the ghost propagator Dab
c̄c (k) by

Dab
c̄c (k) = −δab

k2 cc̄c(k) = −(M−1)ab. (6.2)

Hence in order to be within the first Gribov region the ghost propagator dressing
function cc̄c(k) must be positive. Gribov parametrized the ghost propagator by [1]

Dab
c̄c (k) = −δab

k2

1

1 − σ(k, A)
. (6.3)

As σ(k, A) increases with k decreasing, it is sufficient to demand that σ(0, A) < 1.
This is known as the no-pole condition [1]: when the ghost form factor σ(0, A)

becomes one, the Faddeev-Popov operator has a zero eigenvalue and one is directly
on a horizon. σ(0, A) is calculated as a series in A, which can be regarded as an
external gluon field here. The no-pole condition is enforced in the path integral via
a Heaviside functional:

http://dx.doi.org/10.1007/978-3-642-27691-0_2
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θ(1 − σ(0, A)) =
∫ ∞

−∞
dβ

2π i

ei β(1−σ(0,A))

β − i ε
. (6.4)

The integral over β can be evaluated with the saddle-point method. It yields a value
for β → γ4 which takes the role of a new mass parameter. γ is called the Gribov
parameter.

The positivity of the Faddeev-Popov operator means that all its eigenvalues λn

are positive. Relaxing this condition to tr(λn) > 0 allowed Zwanziger to derive a
closed expression, the so-called horizon function, that restricts the integration to the
Gribov region [2]:

h(x) = lim
γ(x)→γ

∫
dy

(
Dac

μ (x)γ2(x)
)(

M−1)ab
(x, y)

(
Dbc

μ (y)γ2(y)
)
. (6.5)

The limit γ(x) → γ can only be taken after localizing the action. Details on this
can be found in Ref. [8]. The horizon function corresponds to a generalization of the
ghost form factor σ(0, A) to all orders. This has explicitly been worked out up to
third order [9].

The condition for being within the first Gribov region is phrased as the horizon
condition:

∫
dx h(x) < d γ4(N 2 − 1)V, (6.6)

where d, N and V are the number of dimensions, the number of colors and the space-
time volume, respectively. Again this condition can be enforced via a Heaviside
functional. Details on how to get from the step function to an additional term in the
action can be found in Ref. [10]. An interesting observation is that the resulting path
integral has similarities with the partition function of a canonical ensemble which
is equivalent to the microcanonical ensemble in the thermodynamic limit. Thus the
Heaviside functional can be replaced by a Dirac delta functional here, i.e., the horizon
condition becomes

∫
dx h(x) = d γ4(N 2 − 1)V . (6.7)

This amounts to restricting the integration to configurations lying directly at the
Gribov horizon.

The resulting action that enforces the restriction to the first Gribov region is known
as Gribov-Zwanziger action given by

Snon−local = SF P + Sh, (6.8)
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where

SF P = SY M + Sg f , (6.9)

Sh =
∫

dx (h(x) − γ4d(N 2 − 1)), (6.10)

SY M = 1

4

∫
dx Fr

μν Fr
μν, (6.11)

Sg f =
∫

dx
(

i br (∂μ Ar
μ) + c̄r Mrs cs

)
. (6.12)

The trivial term γ4d(N 2 − 1) is introduced for later convenience. Since Sh is non-
local the standard tools of quantum field theory can not be employed. However, it is
possible to localize it as discussed in the next section.

6.1.2 The Local Action

In order to localize the horizon function we need two pairs of additional fields: ϕab
μ

and ϕ̄ab
μ , which are complex conjugate to each other, and ωab

μ and ω̄ab
μ , which are also

complex conjugate to each other but Grassmann fields. These new fields are BRST
doublets:

s ϕab
μ = ωab

μ , s ωab
μ = 0, (6.13)

s ω̄ab
μ = ϕ̄ab

μ , s ϕ̄ab
μ = 0. (6.14)

The three indices are one Lorentz and two color indices in the adjoint representation,
i.e., μ = 1, . . . , d and a, b = 1, . . . , N 2−1. The bosonic fields are used for localizing
the non-local term Sh and the fermionic fields for canceling the determinant arising
from that procedure. Using the Gaussian integration formulas

∫
D[ϕ̄ϕ]e− ∫

dx
(
ϕ̄ac

μ Mabϕbc
μ +γ2 g f abc Aa

μ(ϕbc
μ −ϕ̄bc

μ )
)

= (det M)−d(N 2−1)e

(
−γ4 g2 f ace Aa

μ(M−1)cd f bde Ab
μ

)
, (6.15)∫

D[ω̄ω]e
∫

dx ω̄ac
μ Mωbc

μ = (det M)d(N 2−1) (6.16)
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one can show

e−Sh =
∫

D[ϕ̄ϕω̄ω]e− ∫
dx

(
ϕ̄ac

μ Mabϕbc
μ +γ2 g f abc Aa

μ(ϕbc
μ −ϕ̄bc

μ )−ω̄ac
μ Mωbc

μ −d γ4 (N 2−1)
)
.

(6.17)

The local Gribov-Zwanziger action is then given by

Slocal = SF P + SG Z , (6.18)

SG Z =
∫

dx (ϕ̄ac
μ Mabϕbc

μ + γ2 g f abc Aa
μ(ϕbc

μ − ϕ̄bc
μ )

− ω̄ac
μ Mωbc

μ − d γ4 (N 2 − 1)). (6.19)

Note that a slightly different version is sometimes used that contains an additional
term [11]

S�B RST =
∫

dx g f abeω̄ac
μ ∂ν

[
(Ded

ν cd)ϕbc
μ

]
. (6.20)

It can be obtained by a shift of the ω field,

ωab
μ (x) → ωab

μ (x) − g

∫
dy (M−1)ac(x, y) f cde∂ν

[
(Dd f

ν c f (y))ϕeb
μ (y)

]
, (6.21)

and has the advantage that the remaining BRST symmetry is more manifest, since
almost all terms in Eq. (6.19) are BRST exact:

s(ω̄ac
μ Mabϕbc

μ ) = ϕ̄ac
μ Mabϕbc

μ − ω̄ac
μ Mabωbc

μ + g f abeω̄ac
μ ∂ν

[
(Ded

ν cd)ϕbc
μ

]
.

(6.22)

This property is useful in the process of renormalization [11]. The additional vertex
derived from S�B RST does not influence any calculations as it features the fields c
and ω, but there is no corresponding term with c̄ and ω̄. Thus this vertex does not
appear in any diagrams.

The only term in the action Slocal + S�B RST which is not BRST invariant is the
one proportional to γ2:

s
(
γ2 g f abc Aa

μ(ϕbc
μ − ϕ̄bc

μ )
)

= γ2 g f abc
(
(−Dad

μ cd)(ϕbc
μ − ϕ̄bc

μ ) + Aa
μωbc

μ

)
.

(6.23)

This is a soft breaking, i.e., only of mass dimension two.1 Hence one can show
the renormalizability of the Gribov-Zwanziger action by embedding it into a larger

1 The ghost fields c and c̄ have mass dimensions zero and two, respectively [11].
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BRST invariant action, for which the usual tools of algebraic renormalization apply
[12]. The complete proof of renormalizability can be found in Ref. [8]. The original
literature is Refs. [11, 13, 14].

Another consequence of the BRST breaking is that physical operators can no
longer be determined by their cohomology, because BRST exact quantities, with
which a physical operator mixes in the renormalization process, can now influence
expectation values. The complete form of the operator F2

μν under this mixing was
determined in Ref. [15] for the Gribov-Zwanziger Lagrangian. Another approach was
taken in Ref. [16], where operators with a physical cut structure were constructed
by adding BRST exact terms. The precise meaning of the BRST breaking, however,
remains to be clarified further.

In terms of the new fields the horizon condition becomes

〈g f abc Aa
μ(ϕbc

μ − ϕ̄bc
μ )〉 = 2 d γ2 (N 2 − 1) (6.24)

as can be inferred by differentiation of Eq. (6.17) with respect to γ2. Often this is
phrased in terms of the gap equation

∂�[0]
∂γ2 = 0, (6.25)

where �[0] is the vacuum energy defined by

e−�[0] =
∫

D[Ac̄cϕ̄ϕω̄ω]e−Slocal
. (6.26)

Writing the horizon condition in this form a spurious solution for the value of the
Gribov parameter arises, namely γ = 0. As this corresponds to the starting action, it
has to be discarded [17].

One point which has been stressed repeatedly in the literature is that the Gribov-
Zwanziger action is tightly connected to the gap equation as was already pointed out
by Gribov [1]. Only if γ takes the value as determined by the horizon condition the
Gribov-Zwanziger Lagrangian corresponds to a gauge theory. It was pointed out in
Ref. [18] that the gap equation breaks several symmetries of the original effective
action �. It is argued that this symmetry breaking is spontaneous and the related
Goldstone particles are the fields c̄, c, ω̄, ω and parts of ϕ̄ and ϕ. Their propagators
are all found to be IR enhanced like 1/k4.

It is advantageous for the present task to rewrite the local Gribov-Zwanziger action
given in Eq. (6.18) by splitting the bosonic auxiliary fields into real and imaginary
parts U and V , respectively, as done in Ref. [10]:
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Slocal = SF P + S′
G Z , (6.27)

S′
G Z = SU + SV + SU V − ω̄Mω, (6.28)

SU = 1

2

∫
dx U ac

μ Mab U bc
μ , (6.29)

SV = 1

2

∫
dx V ac

μ Mab V bc
μ + i g γ2

√
2 f abc

∫
dx Aa

μV bc
μ , (6.30)

SU V = 1

2
i g f abc

∫
dx U ad

μ V bd
μ ∂ν Ac

ν, (6.31)

where U and V are defined by

ϕ = 1√
2

(U + i V ) , ϕ̄ = 1√
2

(U − i V ) . (6.32)

When the Landau gauge condition ∂μ Aμ = 0 is enforced, LU V vanishes and the
only mixing on the level of two-point functions is between the gluon field A and the
imaginary part of the bosonic auxiliary field V , whereas the U field does not mix.
This splitting simplifies calculations, because we only have to deal with a two-by-two
matrix instead a three-by-three matrix for the mixing. Perturbative calculations for
the propagators derived from this Lagrangian can be found in Ref. [19], where the
U and V fields are denoted by ρ and ξ, respectively.

A further simplification is achieved by combining the Faddeev-Popov ghosts c
and c̄, the fermionic auxiliary fields ω and ω̄ and the real part of the bosonic auxiliary
field U into one single field. This is possible, since all of them only interact with the
gluon field via the Faddeev-Popov operator and are quadratic in the action. Hence
they can be integrated out in the path integral:

∫
D[c̄c]ec̄ M c = det M, (6.33)

∫
D[ω̄ω]eω̄ M ω = (det M)d(N 2−1), (6.34)

∫
D[U ]e− 1

2 U M U = (det M)−
d
2 (N 2−1). (6.35)

The different exponents of the determinant of the Faddeev-Popov operator are due
to the different numbers of degrees of freedom. For γ = 0 also the V field can be
integrated out and all determinants from auxiliary fields cancel so that the original
Faddeev-Popov Lagrangian is recovered as required. For the present purpose we can
treat all these non-mixing fields as new fermionic fields η and η̄ with the appropriate
number of degrees of freedom by localizing the resulting determinant again. The field
V cannot be included due to its mixing with the gluon field and therefore the two
fields V and η can have a different infrared behavior. An overview of the different
fields is given in Table 6.1. The final action reads
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Table 6.1 The numbers of degrees of freedom and the statistics of the Faddeev-Popov ghosts c and
c̄, the original auxiliary fields ω, ω̄, φ and φ̄, the bosonic auxiliary fields U and V and the fermionic
fields η and η̄

Field Number of degrees of freedom Statistics

c, c̄ 1 Fermionic
ω, ω̄ d(N 2 − 1) Fermionic
φ, φ̄ d(N 2 − 1) Bosonic
U d/2(N 2 − 1) Bosonic
V d/2(N 2 − 1) Bosonic
η, η̄ d/2(N 2 − 1) + 1 Fermionic

A factor N 2 − 1 from the adjoint index common to all fields is not taken into account here.

S =
∫

dx

(
1

4
Fa

μν Fa
μν + 1

2ξ
(∂μ Aμ)2 − η̄a

c Mab ηb
c +

+ 1

2
V ac

μ Mab V bc
μ + i g γ2

√
2 f abc Aa

μV bc
μ + 1

2
i g f abcU ad

μ V bd
μ ∂ν Ac

ν

)
,

(6.36)

where the subscript index of the new ghost fields η and η̄ runs from 1 to d
2 (N 2 −

1) + 1 and the superscript index is the usual color index, running from 1 to N 2 − 1.
Note that for odd dimensions and even N this number is half-integer and therefore
this transformation is not directly possible. However, we can consider only integer
values and perform an analytic continuation to half-integer values, if necessary.
Alternatively one keeps the original fields separated and will get the appropriate
numerical factors in front of diagrams.

A further diagonalization of the Lagrangian would require a further splitting of
the fields in color space due to the different number of color indices of the A and
V fields. The new fields would mean a significant complication of the Lagrangian
at the level of vertices although at the two-point level it becomes simpler. Such a
diagonalization was performed in Ref. [16] and in a slightly simpler form in Ref.
[20] and leads to fields with complex masses. Due to the resulting structure of the
vertices of the diagonalized Lagrangian we continue with the expression given in
Eq. (6.36).

6.1.3 The First Gribov Region on the Lattice

The restriction to the first Gribov region works differently on the lattice. In fact, the
usual gauge fixing algorithms automatically lead to the first Gribov region as they are
based on the minimization of a functional corresponding to Eq. (2.28). Consequently
it is not possible to fix with such a method to another Gribov region as the first one.
Configurations just beyond the Gribov horizon can be obtained due to limitations in

http://dx.doi.org/10.1007/978-3-642-27691-0_2
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the numerical accuracy as was demonstrated in Ref. [21], where in addition also an
alternative approach for gauge fixing, stochastic quantization, was employed.

Since there are several minima along a gauge orbit, it depends on the algorithm
and its parameters which minima are chosen. This leads to the definition of several
Landau gauges. The minimal Landau gauge takes the first minimum found by the min-
imization algorithm, see, e.g., Refs. [22, 23]. The absolute Landau gauge is defined
by taking those gauge field configurations that correspond to the global minimum
of Eq. (2.28) and thus to the fundamental modular region. This is a hard computa-
tional problem similar to spin-glass problems and can only be realized approximately.
Calculations where this was attempted can be found, for example, in Refs. [24–27].

Of course this is not the only possible prescription to choose a unique represen-
tative of each gauge orbit as in principle every choice is allowed. A class of recently
suggested gauges are the Landau-B gauges [28]. Instead of using the value of the
minimizing functional, which is equivalent to the trace of the gluon propagator, as a
criterion to decide which gauge copy is used, one takes the value of the ghost prop-
agator at the lowest available lattice momentum. This value is denoted by B. Using
B instead of the trace of the gluon propagator is in the spirit of functional equations,
where the value of the ghost dressing function at vanishing momentum serves as a
boundary condition for the system of equations. Two examples of Landau-B gauges
are the min-B and the max-B gauges, where the lowest and highest values of B are
chosen, respectively. It is possible that the max-B gauge corresponds to the scaling
solution [28], but currently only data for small lattices in three dimensions [28] and
in the strong coupling limit [29] are available.

6.1.4 The Dyson-Schwinger Equations of the Gribov-Zwanziger
Action

A manual derivation of the Dyson-Schwinger equations becomes quite tedious
because the mixed propagator leads to many additional terms. For example, already
at the perturbative level an AAV vertex appears at one loop. For the η field things stay
simple as their number is conserved. This is due to invariance under the same scale
transformation that guarantees ghost number conservation in the Faddeev-Popov
theory [30]:

η →ηeθ, (6.37)

η̄ →η̄e−θ. (6.38)

Thus in a sense the η fields behave similar as the Faddeev-Popov ghosts. However,
one should not forget that they couple with the V field, e.g., via the (dressed) V η̄η
vertex.

The non-trivial relation between propagators and two-point functions in the
Gribov-Zwanziger theory is not an obstacle for the derivation of the DSEs, as dressed

http://dx.doi.org/10.1007/978-3-642-27691-0_2
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Fig. 6.1 The DSE of the gluon two-point function. A propagator with the exponent −1 denotes the
two-point function. This convention, strictly speaking being mathematically incorrect, is chosen for
the purpose of diagrammatic representation only. The propagators and vertices are labeled by the
respective fields. The indices i and j denote the first and second fields of the depicted two-point
function DSE. Internal propagators are all dressed. Bare and dressed n-point functions are denoted
by thin and thick blobs, respectively

two-point functions only appear on the left-hand sides of their own DSEs and the
bare counterparts on the right-hand sides. It is again advantageous to employ the
Mathematica package DoDSE which can also handle mixed propagators. The result-
ing DSEs are given diagrammatically in Figs. 6.1, 6.2, 6.3 and 6.4. Their derivation
is described in Appendix E.3.

6.2 Infrared Analysis of the Gribov-Zwanziger Action

As already mentioned the matrix relation between propagators and two-point func-
tions complicates the analysis as it yields non-trivial relations between the two sets
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Fig. 6.2 The DSE of the V field two-point function

Fig. 6.3 The DSEs of the A-V -mixed two-point function. The first is the AV DSE and the second
one the V A DSE

of quantities. In this section the details of this relation are worked out. It is found
that four possible scenarios for the IR behavior emerge which are discussed in Sect.
6.2.2. Two of these scenarios can be discarded as they turn out to be inconsistent and
the remaining two lead to the same qualitative IR behavior of the propagators as in
the Faddeev-Popov theory.



92 6 Dyson-Schwinger Equations in the Gribov Region

Fig. 6.4 The DSE of the η field two-point function

6.2.1 Two-Point Functions and Propagators

In addition to the complication due to the mixing at the two-point level the IR analysis
is complicated by the tensor structure of the propagators/two-point functions that
has to be considered explicitly as different dressing functions can have a different
momentum dependence. The combination of mixing and several dressing functions
leads to an even richer structure, as the matrix inversion counterintuitively can lead
to terms where the determinant does not appear.

I start by discussing the color structure. The gluon correlation function has only
two color indices. Thus the only color tensor is δab. I exclude here explicitly the
occurrence of an antisymmetric tensor εab as there is no indication of such a tensor
neither in lattice simulations nor in other calculations. The A-V mixed correlation
function has three color indices. Excluding here the totally symmetric tensor dabc,
which cannot appear directly from any diagram, only the totally antisymmetric tensor
f abc remains. The V V correlation function poses the greatest challenge as it has four
color indices. This allows in the most general case six different color tensors [31,
32]:

δabδcd , δacδbd , δadδbc, f abe f cde, f ace f bde, dabcd
A . (6.39)

The last tensor is the totally antisymmetric tensor of rank four given by

dabcd
A = 1

6
Tr

(
T aT (bT cT d)

)
, (6.40)

where T a is the generator of the group SU (N ). Other tensors can be constructed,
but they are not linearly independent; e.g., f ade f bce is related to f abe f cde and
f ace f bde via the Jacobi identity. Similar identities exist that allow to express tensors
constructed from the totally symmetric tensor dabc with the six basis tensors given
above.

The structure in Lorentz space is simpler: as both the A and the V field have one
Lorentz index, all three correlation functions can have a transverse and a longitudinal
tensor.

Finally there are the η and η̄ fields. They have one adjoint index and one index
that runs from 1 to d

2 (N 2 − 1) + 1. The behavior of the latter index is best explained
in terms of the original fields c̄a , ca , ω̄ab

μ , ωab
μ and U ab

μ . The second color index and
the Lorentz index of the last three fields were only introduced to obtain the correct
number of degrees of freedom. They are in some sense static: In diagrams with
external ω/ω̄/U fields and no ω/ω̄/U loops they do not contribute and in ω/ω̄/U



6.2 Infrared Analysis of the Gribov-Zwanziger Action 93

loops they only lead to additional numerical coefficients. Thus they can be combined
to the second index of the η and η̄ fields together with a trivial 1 from the c and c̄
fields. In the calculations this was most easily implemented by using the Faddeev-
Popov ghost instead of the η field and supplementing the results afterwards with the
correct coefficients.

In the present work not the full color tensor basis was used. Instead only the
tensors appearing in the action were taken into account for the two-point functions.
Nevertheless this truncation results in a non-trivial propagator for the V field. The
matrix of dressed two-point functions is defined by

�φφ =
(

�AA �AV

�V A �V V

)
, (6.41)

where the individual two-point functions are given by

�AA,ac
μν = δac p2c⊥

A (p2)Pμν + δac 1

ξ
c‖

A(p2)pμ pν, (6.42)

�V V,abcd
μν = δacδbd p2cV (p2)gμν, (6.43)

�AV,cab
μν = f cabi p2cAV (p2)gμν . (6.44)

The functions ci j (p2) are the dressing functions and Pμν is the transverse projector,
Pμν = gμν − pμ pν/p2. The tree-level expressions are obtained by setting cA(p2) =
1, cV (p2) = 1 and cAV (p2) = g γ2/p2.

The longitudinal part has to be added to the gluon two-point function in order to be
able to invert the matrix. Although it may seem that this might provide a direct gen-
eralization of the Gribov-Zwanziger Lagrangian from the Landau gauge to general
linear covariant gauge, this is not so. The reason is that the Faddeev-Popov operator
is no longer hermitian and can have complex eigenvalues [33]. Consequently the
usual definition of the Gribov region as the set of field configurations with a posi-
tive Faddeev-Popov operator does no longer make sense. Defining linear covariant
gauges in the usual way via a Gaussian distribution over the gauge orbit would be
the first idea. However, while in Landau gauge we are only dealing with a discrete
set of Gribov copies inside the Gribov region, we have no idea what is changed by
smearing out these Landau gauge Gribov copies over the gauge orbit. For example,
if two Landau gauge Gribov copies are very close on the gauge orbit, the region
between the two is in a sense preferred, as it gets contributions from both Gaussians.
It can even be that there are not two maxima but only one, if the two Gribov copies
are close enough. Such a preference does not agree with the original idea of a single
Gaussian distribution and its significance is currently unknown. A study of Gribov
copies for small values of the gauge fixing parameter ξ was done in Ref. [33].

Normally one would expect that the inverse matrix is of the structure
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(�φφ)−1 = Dφφ =
(

D AA D AV

DV A DV V

)
= 1

�AA�V V − (�AV )2

(
�V V −�AV

−�V A �AA

)
,

(6.45)

but because of the additional tensor structure in Lorentz and color space it is not that
simple. Performing the inversion manually one finds in the employed truncation the
following propagators:

D AA,ab
μν = δab 1

p2 Pμν
cV (p2)

c⊥
A (p2)cV (p2) + 2N c2

AV (p2)
, (6.46)

DV V,abcd
μν = 1

p2

1

cV (p2)
δacδbdgμν − f abe f cde 1

p2 Pμν

× 2c2
AV (p2)

c⊥
A (p2)c2

V (p2) + 2N c2
AV (p2)cV (p2)

, (6.47)

D AV,abc = −i f abc 1

p2 Pμν

√
2cAV (p2)

c⊥
A (p2)cV (p2) + 2N c2

AV (p2)
. (6.48)

While, except for some coefficients, the AA and AV propagators indeed resemble the
conjectured form, the V V propagator comes with two tensors. Thus the employed
truncation leads to a non-trivial structure of the propagators what will be important
for the IR analysis.

For the fermionic ghost the standard relation is valid:

Dηη̄,ab
cd = (�

ηη̄,ab
cd )−1 = −δabδcd

cη(p2)

p2 . (6.49)

The minus was factored out in order to have a positive dressing function, which is
required for being inside the first Gribov region.

6.2.2 Infrared Behavior of the Propagators

In order to assess the behavior at low momenta we make as usual the ansatz that all
dressing functions have a power law form in the infrared:

ci j (p2)
I R= di j (p2)κi j . (6.50)

The asymptotic form of the propagators depends on the behavior of the determinant
c⊥

A (p2)cV (p2) + 2N c2
AV (p2) in the IR. We can think of four possible cases:

I: c2
AV > cAcV ↔ κA + κV > 2κAV

II: cAcV > c2
AV ↔ 2κAV > κA + κV
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III: c2
AV ∼ cAcV ↔ κA + κV = 2κAV , no cancelations

IV: c2
AV ∼ cAcV ↔ κA + κV = 2κAV , cancelations

In case I the dressing function of the mixed two-point function dominates the deter-
minant, in case II the combination of gluon and V field dressing functions and in
cases III and IV all terms contribute equally. The difference between cases III and
IV is that it is possible that the leading contributions cancel exactly and the deter-
minant is less IR divergent. This possibility is considered as case IV. Details on this
cancelation are given below in Sect. 6.2.2.

In the following I will derive the IR behavior of the propagators in all four cases.
This yields relations between the IREs of the two-point functions and the propagators.
With this information the IR analysis will be performed based on the results of
Chap. 4.

Case I: κA + κV > 2κAV

By assumption the dressing function cAV dominates in the numerator. Therefore the
propagators take the following form:

D AA,ab
μν = δab 1

p2 Pμν
cV (p2)

2N c2
AV (p2)

, (6.51)

DV V,abcd
μν = 1

p2

1

cV (p2)

(
δacδbdgμν − f abe f cde Pμν

1

N

)
, (6.52)

D AV,abc = −i f abc 1

p2 Pμν
1√

2N cAV (p2)
. (6.53)

Note that both tensors contribute to the V V propagator, since they have the same
IRE. The relations between the IREs of propagators and two-point functions are

δA = κV − 2κAV , (6.54)

δV = −κV , (6.55)

δAV = −κAV . (6.56)

These relations allow to calculate the additional term that appeared in the equations
used in the IR analysis, �AV :

�AV = 2δAV − δA − δV = −2κAV − κV + 2κAV + κV = 0. (6.57)

Consequently all equations become the same as for the non-mixing case and the
analysis is straightforward.

I will demonstrate now that case I does not allow a consistent solution. For this
we need the lower bound for IREs given by (A.19),

http://dx.doi.org/10.1007/978-3-642-27691-0_4
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V V

V V
A A

A A

V V

V V

Fig. 6.5 Diagrams of the AA and V V DSEs used explicitly in the text

κv,max =
(

d

2
− 2

) (
1 − 1

2

∑
i

mi

)
− 1

2

∑
i

miδi , (6.58)

and the inequality derived from the IR leading diagram, Eq. (A.23),

κi + 1

2

∑
j

δ j m j − nb
i1...ir

⎛
⎝

(
d

4
− 1

)
(r − 2) + 1

2

∑
j

ki1...ir
j δi

⎞
⎠ ≥ 0. (6.59)

The latter formula is used for the V V DSE. Note that in this DSE only the bare AV V
vertex appears, and consequently Eq. (6.59) has only one possible realization:

κV + 1

2
2δV − 1

2
(δA + 2δV ) − 1

2

(
d

2
− 2

)
≥ 0 ⇒ 2κV − δA − d

2
+ 2 ≥ 0.

(6.60)

Using the expression for δA, Eq. (6.54), we get

2κV − κV + 2κAV − d

2
+ 2 ≥ 0 ⇒ 2κAV ≥ −κV + d

2
− 2. (6.61)

This is the first condition we need for the inconsistency proof.
Next we consider the AA DSE, to be more precise the V V loop it contains as

depicted in Fig. 6.5 on the left. In the usual way we obtain the inequality

κA ≤ 2δV + d

2
− 2 + κAV V ⇒ κA + κV ≤ −κV + d

2
− 2 (6.62)

by comparing the left- and right-hand side. We also used κAV V ≤ 0 from the AV V
DSE. This inequality constitutes the second condition.

Now we insert both conditions into the defining inequality of case I:

−κV + d

2
− 2 ≥ κA + κV > 2κAV ≥ −κV + d

2
− 2,

0 > 0. (6.63)

As this inequality cannot be fulfilled, we conclude that case I is not consistent.
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Note that in this proof we did not need the DSE of the AV two-point function
explicitly, i.e., we did not have to assume that any specific part in its DSE is IR
leading. This point is important, because the analysis includes also the case that its
tree-level part is IR leading. Thus there is no need to think about the cancelation of
the tree-level part.

Case II: κA + κV < 2κAV (The simple scaling solution)

According to the definition the combination cA(p2)cV (p2) dominates over the mixed
dressing function in this case. The propagators take then the following form:

D AA,ab
μν = δab 1

p2 Pμν
1

c⊥
A (p2)

, (6.64)

DV V,abcd
μν = 1

p2

1

cV (p2)

(
δacδbdgμν − f abe f cde Pμν

2c2
AV (p2)

c⊥
A (p2)cV (p2)

)

→ 1

p2

1

cV (p2)
δacδbdgμν, (6.65)

D AV,abc = −i f abc 1

p2 Pμν

√
2cAV (p2)

c⊥
A (p2)cV (p2)

. (6.66)

At leading order only the first part of the V V propagator contributes, as the second
one is suppressed compared to the first due to the definition of case II. The relations
between the IREs are

δA = −κA, (6.67)

δV = −κV , (6.68)

δAV = κAV − κA − κV . (6.69)

Inserting these expressions into the additional term for mixed two-point functions,
�AV , we get

�AV = 2δAV − δA − δV = 2κAV − 2κA − 2κV + κA + κV

= 2κAV − κA − κV > 0. (6.70)

The last step follows from the definition of case II. As a consequence all diagrams
that feature a mixed propagator are additionally suppressed, as the coefficient of �AV

is the number of mixed propagators, see Eq. (4.41). This also entails that vertices are
additionally suppressed that require a mixed propagator, as, for example, the AAV
vertex. In the following these vertices are called V -odd vertices, as the number of
their V legs is odd. For the functional equations this means that we can neglect all
diagrams containing AV propagators and V -odd vertices in the IR. Additionally,

http://dx.doi.org/10.1007/978-3-642-27691-0_4
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as the V propagator reduces to the same form as the U and ω propagators, we can
subsume all graphs containing η and V fields. The DSEs reduce then to the familiar
DSEs of the Faddeev-Popov theory plus the DSEs of the AV two-point function and
V -odd vertices. A crucial point is that the Faddeev-Popov DSEs do not depend on
the contributions from mixed propagators and can thus be solved self-consistently.
The mixed correlation function, on the other hand, depends on the gluon and V field
propagators. Hence, having their solutions, one can also calculate them.

First I will give the results for the diagonal correlation functions and then for
the mixed one. As we have recovered the standard Faddeev-Popov theory, we can
directly use the known results [34–39]. The propagators of the Faddeev-Popov ghosts
and all auxiliary fields are described by the same IRE κ := κc = κω = κU = κV .
In the following I denote all these fields as ghost field. The unique scaling relation
is given by [35, 36]

κA + 2κ = d

2
− 2 (6.71)

and the result for an n-point function with 2n ghost- and m gluon-legs by [37, 38]

κ2n,m = (n − m)κ + (1 − n)

(
d

2
− 2

)
. (6.72)

This equation is obtained as described in Sect. 4.2.3: one starts with an appropriate
two-point function, takes the IR leading diagram and plugs in as many ghost-gluon
vertices as required. The value of κ can be calculated from the leading diagrams in
the gluon and ghost DSEs using bare vertices as 0.595 353 [35, 36]. This value was
reproduced from the equations of the Gribov-Zwanziger theory in order check the
code employed in other calculations of this thesis. Everything boils down to solve
the equation

− (1 + κ)(2 + κ)

12(3 + 4(−2 + κ)κ)
= 1, (6.73)

which results in κ = 1
98

(
93 − √

1201
)

= 0.595 353 as the only solution with κ < 1.

Next the value of the IRE of the mixed two-point function is evaluated. The
diagrams that require at least one AV propagator are depicted in Fig. 6.6. There
is one other diagram which has two AV propagators and is thus IR suppressed,
see Fig. 6.3. The diagrams of Fig. 6.6 have the following IREs:

δA + δAV + κAAA, δA + δV + κAAV , δV + δAV + κAV V . (6.74)

κAV V is zero due to the scaling relation and the IREs of κAAA and κAAV can be
determined from their DSEs as

http://dx.doi.org/10.1007/978-3-642-27691-0_4
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Fig. 6.6 Diagrams of the V A DSE used explicitly in the text

κAAA = 3δV , (6.75)

κAAV = δAV + 2δV . (6.76)

Plugging these into Eq. (6.74) and using Eqs. (6.67)–(6.69) as well as the scaling
relation Eq. (6.71), we self-consistently get κAV for all three diagrams. In the numer-
ical calculation of κAV we have several unknowns: The coefficients of the dressing
functions (dAV , dV , dA) and the IREs κV and κAV . However, dAV always drops out
of the equations and dV and dA appear in the combination g2/dAd2

V , which can be
calculated from the Faddeev-Popov part as 0.0267784. That leaves only κAV .

For a practical calculation a further truncation is required and we only take into
account the AV -V V loop. This is in a sense a one-loop truncation and also employed
for the Faddeev-Popov theory. There the ghost-gluon vertex is taken as bare, but in
principle also other diagrams in its DSE contribute at leading IR order. However, if
one inserted all those IR leading diagrams into the two-point function DSE, one would
obtain two-loop diagrams. Due to the same argument we only consider diagrams in
the truncation with an AV V vertex, since vertices like AAV effectively lead to two-
loop diagrams. In other words we take only into account the order dAd2

V and neglect
everything of order (dAd2

V )2 and higher. However, one should keep in mind that
such truncations are only needed to calculate a numeric value for the IREs and that
the qualitative features and the scaling relations themselves are derived for the full
system without truncations.

The equation to determine κAV is obtained by projecting the AV -V V loop trans-
versely in Lorentz space and by f abc in color space:

(d − 1)(p2)κAV +1dAV

= −g2 N
∫

ddq

(2π)d

dAV ((p + q)2)−1+δV (q2)−1+δAV
(

p2q2 − (p q)2
)

√
2p2dAd2

V

.

(6.77)

The coefficient dAV drops out of the equation. The final equation that has to be solved
numerically is
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1 =0.0513093�(1 − κAV )�(0.595353 + κAV )

�(1.40465 − κAV )�(1 + κAV )

− 0.0370825�(−κAV )�(0.595353 + κAV )

�(1.40465 − κAV )�(2 + κAV )
−

− 0.0513093�(−κAV )�(1.59535 + κAV )

�(0.404647 − κAV )�(2 + κAV )

− 0.0210772�(−1 − κAV )�(0.595353 + κAV )

�(1.40465 − κAV )�(3 + κAV )
−

− 0.0247217�(−1 − κAV )�(1.59535 + κAV )

�(0.404647 − κAV )�(3 + κAV )

− 0.0513093�(−1 − κAV )�(2.59535 + κAV )

�(−0.595353 − κAV )�(3 + κAV )
−

− 0.0237307�(−2 − κAV )�(0.595353 + κAV )

�(1.40465 − κAV )�(4 + κAV )

− 0.0210772�(−2 − κAV )�(1.59535 + κAV )

�(0.404647 − κAV )�(4 + κAV )
−

− 0.0370825�(−2 − κAV )�(2.59535 + κAV )

�(−0.595353 − κAV )�(4 + κAV )

+ 0.0513093�(−2 − κAV )�(3.59535 + κAV )

�(−1.59535 − κAV )�(4 + κAV )
. (6.78)

The left- and the right-hand sides of this equation are plotted in Fig. 6.7. As one
can see, there are several solutions. A constraint for κAV is given by the definition
of case II: 2κAV > κV + κA = −κV + d/2 − 2. The smallest solutions fulfilling
this constraint are 0.0668776 and 0.981386. Further solutions always just a little bit
below integer numbers follow. At this point we cannot say which one is correct. In
our truncation all of them are admissible.

An interesting observation is the fact that the AV -V V loop (see Fig. 6.6) is
automatically at leading order:

δV + δAV + κAV V = −κV + κAV − κA − κV = κAV . (6.79)

If the tree-level part is kept in the AV DSE and it should be subdominant, κAV has
to be lesser than −1. However, the constraint on κAV is 2κAV > −κV + d/2 − 2
and thus κV > d

2 . Since this is not true for the value determined for κV , there has to
be some mechanism that cancels the tree-level term in order to allow this solution.
Although the details of such a cancelation are not known, it can be expected that it
is connected to the horizon condition, which is responsible for the cancelation in the
Faddeev-Popov ghost DSE, see e.g., [10]. For the ω, U and V two-point functions the
same argument as for the Faddeev-Popov ghost can be employed without problems.
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Fig. 6.7 The plot to determine solutions for κAV . On the y-axis the left- and right-hand sides
of Eq. (6.78) are plotted

Case III: κA + κV = 2κAV , no cancelations (The strict scaling solution)

Here both terms contribute equally in the determinant. Abbreviating it as det C =
cAcV + 2Nc2

AV = (p2)2κAV det D = (p2)κA+κV det D, we get

D AA,ab
μν = δab 1

p2 Pμν
dV

(p2)κA

1

det D
, (6.80)

DV V,abcd
μν = 1

p2

1

cV (p2)

(
δacδbdgμν − f abe f cde Pμν

2d2
AV

det D

)
, (6.81)

D AV,abc = −i f abc 1

p2 Pμν
dAV

(p2)κAV

√
2

det D
. (6.82)

By definition no cancelations in the determinant occur and det D is just a momentum
independent constant.

The IREs of the propagators are

δA = −κA, (6.83)

δV = −κV , (6.84)

δAV = −κAV . (6.85)

The additional term in the formulas for the IREs, Eqs. (A.17) and (A.23), becomes

�AV = 2δAV − δA − δV = −2κAV + κA + κV = 0. (6.86)

Thus again the additional terms vanish, i.e., we can directly get the scaling relation
from the vertices in the Lagrangian, if we assume that the tree-level two-point function
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in the V V DSE gets canceled in a similar way as that for the other IR enhanced fields.
Employing the usual technique, we consider possible scaling solutions as obtained
from the interactions in the Lagrangian. The only non-trivial solution arises from the
Aη̄η and AV V vertices:

κ := κV = κη, κA + 2κ = d

2
− 2, κAV V = κAηη = 0. (6.87)

The IRE of the mixed two-point function can be calculated from the defining assump-
tion of case III as

κAV = −κ

2
+ d

4
− 1. (6.88)

In all DSEs the diagrams with a bare Aη̄η or AV V vertex are IR leading and the
formula for the IRE of a vertex is

κ2n,m = (n − m)κ + (1 − n)

(
d

2
− 2

)
, (6.89)

where m is the number of gluon legs and n the number of legs of ghosts or auxiliary
fields.

Thus the qualitative behavior is the same as in case II, i.e., the propagators of
the Faddeev-Popov ghost and the auxiliary fields are IR enhanced and the gluon
propagator is IR suppressed, as is the mixed propagator. The difference between
case II and III is that the mixed propagator is more IR suppressed with respect to κ in
case II, since there it holds that δAV > κ/2, whereas in case III we have δAV = κ/2.

Having found a scaling relation does, however, not yet mean that we can be sure
there really exists a corresponding scaling solution. A first indication of its existence
is a solution for the IRE κ. This is an intricate task as the system of equalities that has
to be solved involves the coefficients of the power laws, the di j , in a non-linear way.
In case II only the IRE κ appears non-linearly and the remaining equation could be
rewritten into a simple form, see Eq. (6.73). For the present system, however, this is
not possible.2

For case III it is necessary that the tree-level term in the AV DSE gets canceled
by some mechanism that may be related to the horizon condition. If this is not the
case the AV -V V loop can only be leading for κ ≥ 2 or - if the tree-level term leads
- we get κ = 2.

Case IV: κA + κV = 2κAV , cancelations

The final case that remains to be investigated has the same condition on the IREs of
the two-point functions as case III, i.e., both terms in the determinant scale equally.

2 In Ref. [40] it is shown numerically that case III does not yield a solution and can be ruled out.
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However, even the coefficients of the power laws are the same so that the leading
terms of each expression cancel each other:

dAdV = −2 N d2
AV . (6.90)

The IRE of the term that takes over is undetermined, so we introduce an additional
IRE κD which gives the correction of the IRE of the determinant:

det C =cAcV + 2Nc2
AV =

=(p2)κA+κV (dAdV + 2Nd2
AV + dD(p2)κD + . . .) =

=(p2)κA+κV (dD(p2)κD + . . .). (6.91)

Consequently κD is non-negative, κD > 0.
The propagators are then almost the same as in case III, except for the V V prop-

agator, where now the first term is suppressed because there is no determinant:

D AA,ab
μν = δab 1

p2 Pμν
dV

(p2)κA

1

det D
, (6.92)

DV V,abcd
μν = 1

p2

1

cV (p2)

(
δacδbdgμν − f abe f cde Pμν

2d2
AV

det D

)

→ 1

p2

1

cV (p2)

(
− f abe f cde Pμν

2d2
AV

det D

)
, (6.93)

D AV,abc = −i f abc 1

p2 Pμν
dAV

(p2)κAV

√
2

det D
. (6.94)

The IREs of the propagators are in this case

δA = −κA − κD, (6.95)

δV = −κV − κD, (6.96)

δAV = −κAV − κD. (6.97)

Hence we have again �AV = 2δAV − δA − δV = 0.
The appearance of the new IRE κD does not influence the general analysis as

described in Sect. 4.5, because it only appears in the relation between the IREs of
propagators and two-point functions, Eqs. (6.95)–(6.97). So we can employ in the
usual way Eq. (A.23) for the V V two-point function, where only a bare AV V vertex
can appear:

κV + δV − 1

2
(δA + 2δV ) ≥0,

κA + 2κV + κD ≥0. (6.98)

http://dx.doi.org/10.1007/978-3-642-27691-0_4
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On the other hand, from counting the V V -AA loop in the V V DSE, see Fig. 6.5 on
the right, we get another bound:

κV ≤δV + δA + κAV V ,

κA + 2κV + 2κD ≤0, (6.99)

where we used κAV V ≤ 0 from the DSE of the AV V vertex. Note that these two
inequalities look alike except that the coefficients of κD are different. Combining
them yields therefore additional information on κD:

−κD ≤ κA + 2κV ≤ −2κD,

κD ≥ 2κD. (6.100)

Since κD is non-negative this inequality yields κD = 0. This corresponds to case III
and thus case IV does not yield a solution.

6.2.3 The Infrared Behavior of the Propagators in the
Gribov-Zwanziger Theory

Although the analysis of the Gribov-Zwanziger action was complicated by the mixing
of the gluon field A and the auxiliary field V , it was possible to obtain a scaling
relation. The most important observation is certainly that the qualitative picture for
the behavior of the gluon and ghost propagators is not changed, as the scaling relation
δA = −2δc is still valid, i.e., the gluon propagator is IR suppressed and the Faddeev-
Popov ghost propagator IR enhanced. Furthermore, the IREs of the propagators of the
auxiliary fields ω, U and V are the same as for the Faddeev-Popov ghost propagator.
The two solutions obtained differ mainly in the behavior of the mixed propagator:
Though IR suppressed in both solutions, this suppression is more pronounced in case
II, where δAV > κ/2. In case III the IRE δAV is determined by the scaling relation
as δAV = κ/2.

One of the solutions found was not accessible to a numerical solution for κ, so it
remains unclear, if it really exists. For the other solution, case II, the calculation of
κ was unexpectedly easy as the system of DSEs reduces in the IR to the system of
the Faddeev-Popov theory. Due to this one can directly employ all the results known
from there. The mixed propagator does not influence the Faddeev-Popov system
and its IRE can be calculated with input from there. Several allowed solutions were
found.

The obtained results confirm the conjecture by Zwanziger that the cutoff of the
integration at the Gribov horizon does not influence the results from DSEs, but it
has to be taken into account via choosing appropriate boundary conditions [36]. The
boundary condition adopted here is derived from the horizon condition and allowed
the IR enhancement of the propagators of the ghosts and the auxiliary fields. It is
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expected that the use of an alternative boundary condition will lead to a decoupling
type of solution as in the Faddeev-Popov theory [41]. It is possible to arrive at such an
alternative condition by adding dimension two condensates to the Gribov-Zwanziger
action [17, 42, 43]. Their effect is that no longer the Gribov copies directly at the
horizon dominate in the path integral but gauge field configurations lying within the
Gribov region. This should be in direct relation to the boundary condition imposed
on the DSEs of the two-point functions of the ghost and the auxiliary fields.
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Chapter 7
Conclusions

The central topic of this thesis has been the IR behavior of correlation functions in
different gauges. The IR regime is directly linked to the property of confinement of
the elementary fields. Prominent confinement scenarios are the Kugo-Ojima or the
Gribov-Zwanziger scenarios, which are based on completely different arguments but
lead to the same conclusions in the Landau gauge. Also the hypothesis of Abelian IR
dominance, motivated by the dual superconductor picture of confinement, is related
to IR properties. Consequently it is of interest to determine the behavior of propaga-
tors and vertices at low momenta and test the different scenarios where applicable.
Furthermore, knowing the relations between different gauges further elucidates the
overall picture of the non-perturbative regime of Yang-Mills theory.

A significant obstacle in the investigation of other gauges than the Landau gauge
is the complication of the structure of the interactions between the fields. This makes
their IR analysis a very tedious task with the conventional techniques. In Chap. 4
I described an extension of these methods that allows to assess the existence of
different IR solutions. Although the proof is rather technical, the main statement is
rather simple: one can infer possible IR solutions directly from the interactions of
the Lagrangian. This is a remarkable result insofar as one can derive the IR behavior
of the whole infinite tower of functional equations. The derivation of the known
Landau gauge results reduces with this method to a few lines. Further gauges shortly
investigated in Chap. 4 are linear covariant and ghost anti-ghost symmetric gauges.

Another complication of non-Landau gauges is that the mere derivation of the
DSEs becomes very time consuming. The natural consequence was to do this task
with the help of a computer algebra system and led to the development of the Math-
ematica package DoDSE. Its use is not restricted to the purposes of this thesis, but
it can derive the DSEs for arbitrary actions. The underlying algorithm is also suited
for manual calculations and described in Chap. 3. Having the DSEs directly avail-
able on the computer alleviates many task as, for example, the calculation of IREs.
The length of the resulting expressions makes clear that manual calculations are
extremely difficult when going beyond the Landau gauge.
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The maximally Abelian gauge was investigated in Chap. 5. Due to the complexity
of this gauge the improved method for the assessment of the IR behavior of correla-
tion functions was of great help here. The main results were an IR enhanced diagonal
gluon propagator and IR suppressed off-diagonal propagators. This very nicely sup-
ports the hypothesis of Abelian IR dominance according to which the off-diagonal
degrees of freedom should be suppressed compared to the diagonal ones in the IR.
It has to be mentioned, however, that this result is not in direct agreement with current
lattice simulations. The reason for this disagreement is most probably the same as in
the Landau gauge, i.e., two solutions exist which depend on the boundary conditions
imposed on the system of functional equations. For the maximally Abelian gauge
this would be implemented by the renormalization condition for the diagonal gluon
propagator. The scaling relation of the maximally Abelian gauge constitutes the first
consistent solution of the system of infrared exponents that was found beyond the
Landau gauge. Furthermore, the connection between ghost dominance in the Landau
gauge and Abelian dominance in the maximally Abelian gauge is further elucidated
by these results. Also on the influence of the shape of the Gribov region, which is
different for the Landau and the maximally Abelian gauges, on the IR behavior of
Green functions was speculated. Finally, it should be mentioned that this work was
the first one to investigate the maximally Abelian gauge for the physical gauge group
SU (3). As the action is different in SU (2) and SU (N > 2), it is rather non-trivial
that the obtained IR behavior of propagators and vertices is the same in both cases.

Chapter 6 concerned the non-perturbative gauge fixing in Landau gauge. A com-
mon way to overcome difficulties due to Gribov copies to a certain extent is to use the
Gribov-Zwanziger action. Its IR behavior was determined with the methods devel-
oped in Chap. 4. The semi-perturbative results of an IR suppressed gluon and an
IR enhanced ghost propagator were confirmed with this non-perturbative analysis.
At the same time the qualitative behavior is the same as obtained from functional
equations when the standard Landau gauge fixing is employed. This corroborates
the conjecture by Zwanziger that only the proper choice of the boundary condition
is relevant for the functional equations, as one can formally cut the integration at the
Gribov horizon.

The methods developed in this thesis allow first steps in the investigation of
Yang-Mills theory beyond the Landau gauge. Due to the inherent complications
the following two tools are of great help: an automated derivation of the functional
equations and a method for a qualitative determination of the IR behavior capable
of dealing with many interaction terms. Their formulations are not specific to the
problems investigated in this thesis but have an even greater area of applicability.
Thus they form a sound basis for further investigations to improve our understanding
of the strong interaction.
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Appendix A
Details on the Formulae
for the Scaling Analysis

I present in this appendix the derivations of several equations of Chap. 4. All
calculations are done in d dimensions. Another generalization is that mixed
propagators are taken into account wherever necessary, but the case of a diagonal
two-point matrix can be directly inferred from the results.

A.1 Inequalities from DSEs and FRGEs in d Dimensions

For completeness I shortly summarize the derivation of inequality (4.16) in d space-
time dimensions which was already given in four dimensions in Sect. 4.2.1.

We start with three-point functions. From the FRGE of a generic three-point
function, as depicted in Fig. A.1, one can extract the inequality

•ABC � 3•ABC þ –A þ –B þ –C þ
d

2
� 2

) •ABC þ
1
2
ð–A þ –B þ –CÞ þ

d

4
� 1� 0: ðA:1Þ

For four-point functions we get from Fig. A.2 the following two inequalities:

�–A � –B �
d

2
� 2

� �
�•AABB; ðA:2Þ

•AABB� 2•ABCD þ –C þ –D þ
d

2
� 2: ðA:3Þ

Combining them yields

•ABCD þ
1
2
–A þ –B þ –C þ –Dð Þ þ 2

d

4
� 1

� �
� 0: ðA:4Þ
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The inequalities for the three- and four-point functions fulfill

d

4
� 1

� �
ðr � 2Þ þ •i1...ir þ

1
2

X
j

ki1...ir
j –i� 0; ðA:5Þ

where r ¼ 3; 4 denotes the number of legs the n-point function has. Higher
n-point function also obey this inequality as can be shown by induction.

For the proof we need the following two inequalities which can be inferred
from Fig. A.3:

•ABCD��� �•ABCDEE��� þ –E þ
d

2
� 2; ðA:6Þ

•AABBCC��� � 2•ABCDE��� þ –D þ –E þ
d

2
� 2: ðA:7Þ

The dots represent further legs as indicated in Fig. A.3. Note that these inequalities
are generalizations of Eqs. (A.2) and (A.3). The first inequality can be used to
write down an equation for the vertex AABBCC as appearing in the second
inequality:

•AABB��� � –C �
d

2
� 2

� �
�•AABBCC��� � 2•ABCDE��� þ –D þ –E þ

d

2
� 2; ðA:8Þ

1
2
•AABB��� � –C � –D � –Eð Þ � d

2
� 2

� �
�•ABCDE��� : ðA:9Þ

This inequality connects an n-point function with a (2n–6)-point function. The
goal is to rewrite the equation such that only propagator IREs and the IRE of the
n-point function remain. For this one can successively use Eq. (A.6) to replace
the IRE of the remaining other vertex and arrives at

� 1
2
–A þ –B þ –C þ –D þ –E þ � � �ð Þ � d

4
� 1

� �
ðr � 2Þ�•ABCDE���; ðA:10Þ

where r gives the number of legs of the n-point function. The coefficient of
d=4� 1 is obtained as follows: One gets 2ðd=4� 1Þ in Eq. (A.9) and d=4� 1
from every further application of Eq. (A.6). The latter has to be done until

Fig. A.1 One specific
diagram in the FRGE of a
generic three-point function.
Internal lines represent dres-
sed propagators, black blobs
dressed vertices. The grey
blob is a regulator insertion
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2n� 6� 2x ¼ 2, where x is the number of iterations. Hence the total coefficient of
d=4� 1 is 2þ x ¼ n� 2: This establishes Eq. (A.5) for all n-point functions.

For the second group of inequalities the non-positivity of the IREs of
interactions appearing in the Lagrangian, Eq. (4.20), is used in Eq. (A.5):

d

4
�1

� �
ðr�2Þþ1

2

X
j

ki1...ir
j –i�0 8 primitively divergent vertices: ðA:11Þ

A.2 Infrared Exponent for an Arbitrary Diagram

It is possible to express the IRE •v of an arbitrary diagram v by counting the IREs
of all its propagators and dressed vertices. For d dimensions also the canonical
dimensions have to be taken into account:

•v ¼ l
d

2
þ
X

i

nið–i � 1Þ þ
X

vertices; r� 3

nd
i1...ir
ð•i1...ir þ ci1...irÞþ

þ
X

vertices; r� 3

nb
i1...ir

ci1...ir � cv: ðA:12Þ

ni are the number of internal propagators with IR exponents –i, whereas the
numbers of vertices `i1 � � �`ir are ni1...ir . Superscripts d and b stand for dressed and
bare, respectively. In case none is given, I refer to both. The sums

P
vertices; r� 3

extend over all vertices with r legs. mi is the number of external legs of field type
`i and l is the number of loops. The canonical dimensions of the vertex `i1 � � �`ir

are given by ci1...ir :
Without mixed propagators it is possible to use topological relations to get

completely rid of the internal propagators. In the more general case, however,

(a) (b)

Fig. A.3 Parts of the FRGEs of generic n-point functions

(a) (b)

Fig. A.2 Parts of the FRGEs of generic four-point functions
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when mixed propagators appear, the dependence on them will remain. To avoid
too cumbersome notation we restrict ourselves to the case of two fields only. We
denote them explicitly by A and V, as these are the fields for which the mixing
occurs in the Gribov-Zwanziger Lagrangian; see Sect. 6.1.2 for details. The case of
no mixing fields can be obtained by setting the number of mixing propagators nAV

to zero and extending the sums over all fields in the formulae to come. Moreover,
we have –i ¼ �•i in this case.

The first topological relation we need gives the number of loops in terms of the
numbers of propagators and vertices:

l ¼
X

i¼A;V

ni þ nAV þ 1�
X

vertices; r� 3

ni1...ir : ðA:13Þ

Furthermore, we express the number of internal A- and V-propagators by

ni ¼
1
2

X
vertices; r� 3

ki1...ir
i ni1...ir � mi � nAV

 !
; i ¼ A;V ; ðA:14Þ

where ki1...ir
i denotes the number of times the field `i appears in the vertex

`i1 � � �`ir . Plugging these expressions into Eq. (A.12), we get

•v¼
X

i¼A;V

1
2

X
vertices; r�3

ki1...ir
i ni1...ir �mi�nAV

 !
þ1þnAV �

X
vertices; r�3

ni1...ir

 !
d

2
þ

þnAVð–AV �1Þþ
X

i¼A;V

1
2

X
vertices; r�3

ki1...ir
i ni1...ir �mi�nAV

 !
ð–i�1Þþ

þ
X

vertices; r�3

nd
i1...ir

–i1...ir þ2� r

2

� �
þ

X
vertices; r�3

nb
i1...ir

2� r

2

� �
�2þ1

2

X
i¼A;V

mi¼

¼ d

2
�2

� �
1�1

2

X
i¼A;V

mi

 !
�1

2

X
i¼A;V

mi–iþ
X

vertices; r�3

nb
i1...ir

�d

2
þ2� r

2

� �
þ

þ
X

vertices; r�3

nd
i1...ir

�d

2
þ –i1...ir þ2� r

2

� �
þnAV ð–AV �1Þ�1

2

X
i¼A;V

ð–i�1Þ
 !

þ

þ
X

i¼A;V

1
2

X
vertices; r�3

ki1...ir
i ni1...ir

�
d

2
þ –i�1

� !
; ðA:15Þ

where it was used that the canonical dimension of a vertex is given by ð4� rÞ=2
with r being the number of external legs. Reordering terms yields
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•v ¼
d

2
� 2

� �
1� 1

2

X
i¼A;V

mi

 !
� 1

2

X
i¼A;V

mi–i þ
1
2

nAVð2–AV � –A � –VÞþ

þ
X

vertices; r� 3

nd
i1...ir

d

4
� 1

� �
ðr � 2Þ þ •i1...ir þ

1
2

X
i¼A;V

ki1...ir
i –i

 !
þ

þ
X

vertices; r� 3

nb
i1...ir

d

4
� 1

� �
ðr � 2Þ þ 1

2

X
i¼A;V

ki1...ir
i –i

 !
: ðA:16Þ

This is the formula for the IRE of the diagram v with mi external legs of the field `i

and the number and type of vertices given by the nb and nd. The dependence on the
internal propagators is given via the term nAVð2–AV � –A � –VÞ=2. The maximally
IR divergent solution in the d-dimensional case is

•v;max ¼
d

2
� 2

� �
1� 1

2

X
i¼A;V

mi

 !
� 1

2

X
i¼A;V

mi–i þ
1
2

nAVð2–AV � –A � –VÞ:

ðA:17Þ

It is derived from Eq. (A.16) and the non-negativity of the last two terms, see
Eqs. (A.5) and (A.11).

The corresponding formulae in the case of no mixing fields are obtained by
setting nAV ¼ 0 :

•v ¼
d

2
� 2

� �
1� 1

2

X
i

mi

 !
� 1

2

X
i

mi–iþ

þ
X

vertices; r� 3

nd
i1...ir

d

4
� 1

� �
ðr � 2Þ þ •i1...ir þ

1
2

X
i

ki1...ir
i –i

 !
þ

þ
X

vertices; r� 3

nb
i1...ir

d

4
� 1

� �
ðr � 2Þ þ 1

2

X
i

ki1...ir
i –i

 !
ðA:18Þ

and

•v;max ¼
d

2
� 2

� �
1� 1

2

X
i

mi

 !
� 1

2

X
i

mi–i ðA:19Þ

for the maximally IR divergent solution.
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A.3 Inequality from the Leading Diagram

Under the assumption that a certain diagram is leading in a two-point DSE one can
derive an additional inequality constraining the system. For this one starts with the
general expression of a two-point function IRE, obtained from Eq. (A.16):

•i ¼
d

2
� 2

� �
1� 1

2

X
j

mj

 !
� 1

2

X
j

mj–j þ
1
2

nAVð2–AV � –A � –VÞþ

þ
X

dressed
vertices

nd
i1...ir

•i1...ir þ
X
all

vertices

ni1...ir
d

4
� 1

� �
ðr � 2Þ þ 1

2

X
j

ki1...ir
j –i

 !
:

ðA:20Þ

Here •i can be any two-point IRE and –j is restricted to IREs of non-mixing
propagators. Using

P
j mj ¼ 2 in the case of propagators, this can be written as

•i þ
1
2

X
j

mj–i �
1
2

nAVð2–AV � –A � –VÞ�

�
X
all

vertices

ni1...ir
d

4
� 1

� �
ðr � 2Þ þ 1

2

X
j

ki1...ir
j –i

 !
¼

X
dressed
vertices

nd
i1...ir

•i1...ir :

ðA:21Þ

We can use the lower bound for the IREs of the vertices on the right-hand side
given by the maximally IR divergent solution, Eq. (A.17), to get a new inequality:

•i þ
1
2

X
j

–jmj �
1
2

nAVð2–AV � –A � –VÞ�

�
X
all

vertices

ni1...ir
d

4
� 1

� �
ðr � 2Þ þ 1

2

X
j

ki1...ir
j –i

 !
�

�
X

dressed
vertices

nd
i1...ir

 
d

2
� 2

� �
1� 1

2

X
j

ki1...ir
j

 !
�

� 1
2

X
j

–jk
i1...ir
j þ 1

2
�ki1...ir

AV ð2–AV � –A � –VÞ
!
: ðA:22Þ
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Here �ki1...ir
AV indicates the number of times a mixed propagator is contained in the

diagram that determines the IRE of the vertex `i1 � � �`ir : Note that �ki1...ir
AV only is

different from zero for vertices that necessarily contain an AV-propagator like the
AAV-vertex. The right-hand side depends on dressed vertices only, indicated by the
superscript d of n. On the other hand, the left-hand side sums over dressed and bare
vertices, so that in total only the bare vertex remains in the sums over vertices:

•i þ
1
2

X
j

–jmj � nb
i1...ir

d

4
� 1

� �
ðr � 2Þ þ 1

2

X
j

ki1...ir
j –i

 !
�

� 1
2
ð2–AV � –A � –VÞ

 
nAV þ

X
dressed
vertices

nd
i1...ir

�ki1...ir
AV

!
� 0: ðA:23Þ

Here
P

i ki1...ir
i ¼ r was used.

Again the case of a Lagrangian with only diagonal two-point functions is
obtained by setting nAV and consequently also �ki1...ir

AV to zero. Additionally we have
•i ¼ �–i so that the first two terms cancel:

�nb
i1...ir

d

4
� 1

� �
ðr � 2Þ þ 1

2

X
j

ki1...ir
j –i

 !
� 0: ðA:24Þ

Combining it with Eq. (A.11) we obtain the equation

n̂b
i1...ir

d

4
� 1

� �
ðr � 2Þ þ 1

2

X
j

ki1...ir
j –i

 !
¼ 0; ðA:25Þ

where the hat indicates that it is only valid for a specific n-point function.
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Appendix B
Grassmann Fields

In many quantum field theories not only commuting, but also anti-commuting
fields appear, be they fundamental particles like electrons or quarks or
mathematical constructs like ghosts. These Grassmann fields entail additional
complications as one has to carefully take into account their anti-commutativity.
For their treatment one has to choose one of several conventions concerning the
direction of derivatives and the ordering of the fields. It is also possible to
introduce a metric, see, for example, Ref. [1]. This appendix summarizes the
convention employed in this thesis, which has also been adopted for the program
DoDSE. In the following Grassmann fields are denoted by ˆ and their anti-fields,
here called anti-Grassmann fields, by �̂. The corresponding sources are �· and ·,
respectively.

Derivatives with respect to anti-commuting fields or sources are defined as
acting from the right and left for Grassmann and anti-Grassmann quantities,
respectively:

–

–ˆ
:¼ –

 

–ˆ
;

–

– �̂ :¼ –
!

–�̂ :
ðB:1Þ

Hence by definition all derivatives are written at the left side of an expression but
act from the correct side. Consequently quantities should always be ordered such
that Grassmann fields are right of anti-Grassmann fields. This is valid for the
products of fields and sources appearing in the path integral as well as for
derivatives. So the path integral for a theory with the two Grassmann fields ˆ and
�̂ reads

Z½·; �·� ¼
Z
D½ �̂ˆ�e�S½�̂;ˆ�þ�·ˆþ �̂· ðB:2Þ

and a quartic Grassmann interaction has the form
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Cijkl ¼ �
oC

o�̂
io

�̂
joˆkoˆl

���
�̂¼ˆ¼0

: ðB:3Þ

For easier readability (and also in correspondence with DoDSE) the indices of Cijkl

do not reflect the order of how the derivatives are performed, but rather have the
order in which the derivatives appear, i.e., the differentiation with respect to �̂

j has

to be performed before that with respect to �̂
i, but ˆk comes before ˆl.

The replacements of the fields to obtain the generating DSE for 1PI functions,
see Eq. (3.14), are given by

�̂
r ! �̂

r þ D J;ˆU
rt

–

–Ut
; ðB:4Þ

ˆr ! ˆr þ D J; �̂U
rt

–

–Ut
ðB:5Þ

for anti-commuting fields. Furthermore, Eqs. (3.16) have to be amended by

–

– �̂
i

D J
jk ¼ D J

jmC J;�̂UU
imn D J

nk; ðB:6aÞ

–

–ˆi
D J

jk ¼ D J
jmC J;UUˆ

mni D J
nk; ðB:6bÞ

–

– �̂
i

C J
j1���jn ¼ C J

ij1���jn ; ðB:6cÞ

–

–ˆi
C J

j1���jn ¼ C J
j1���jni; ðB:6dÞ

where the fields were added as superscripts for easier identification. Care has to be
taken for the internal super fields U, which can be commuting or anti-commuting.
As long as it is not determined if they are Grassmann or anti-Grassmann, i.e., if the
derivatives are right- or left-derivatives, respectively, they should be considered as
floating. Only at the end, when the sources are set to zero and the super fields
become physical fields, one places them at the left or the right side, but one still
has to obey the order in which the derivatives have been applied. This is an
important point as the required ordering yields the signs expected normally for
Feynman diagrams with fermion loops.

An example of how to order the fields should help to illustrate this point. We
consider the quark respectively ghost loop in the gluon DSE of Landau gauge
where ˆ ¼ fq; cg. After performing the first derivative with respect to the gluon
field Ai, we have to replace the fields as indicated in Eq. (3.14). For the anti-

Grassmann field this is �̂
r ! �̂

r þ D J;ˆ �̂
rt

–
–ˆt

:

�SA �̂ˆ
irs

�̂
rˆs ! �SA �̂ˆ

irs
�̂

rˆs þ D J;ˆ �̂
rs

� �
: ðB:7Þ
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Differentiating once more with respect to Aj yields

CAA
ij ¼ �SA �̂ˆ

irs Dˆ �̂

rr0 D
ˆ�̂

s0s

–C

–Aj–ˆr0–�̂
s0

�����
J¼0

þ gluonic terms; ðB:8Þ

where the external sources have already been set to zero. Ordering the derivatives
to get the canonical order changes the sign of the expression and leads to the
expected relative minus sign of closed fermion loops:

CAA
ij ¼ SA �̂ˆ

irs D
�̂ˆ
r0r D

�̂ˆ
ss0 C

A �̂ˆ
js0r0 þ gluonic terms: ðB:9Þ

Finally, we consider the expansion of the action when Grassmann fields are
involved. First, by definition all anti-Grassmann fields have to be left of the
Grassmann fields. Second, the expansion coefficients are antisymmetric in the
indices belonging to anti-commuting fields. This entails that we can differentiate
with respect to these fields as usual, e.g.,

–

– �̂
i

S
�̂ �̂ˆˆ
rstu

�̂
r
�̂

sˆtˆu ¼ S
�̂ �̂ˆˆ
istu

�̂
sˆtˆu � S

�̂ �̂ˆˆ
ritu

�̂
rˆtˆu ¼

¼ S
�̂ �̂ˆˆ
istu

�̂
sˆtˆu þ S

�̂ �̂ˆˆ
irtu

�̂
rˆtˆu ¼ 2S

�̂ �̂ˆˆ
istu

�̂
sˆtˆu: ðB:10Þ

The additional rules for Grassmann fields described in this section allow their
inclusion in the derivation of DSEs, but also for FRGEs this convention is
adequate.
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Appendix C
Feynman Rules of the Maximally
Abelian Gauge

I collect here the Feynman rules of the MAG. The action is given in Eq. (5.31)
with the interpolating gauge fixing parameter chosen as ‡ ¼ 1 and the gauge fixing
parameters fi and » unfixed. The indices i, j, k are diagonal and a, b, c, d, e,
off-diagonal; r stands for both. The momenta are always chosen as ingoing, except
for anti-ghosts. The momentum convention for the Fourier transformation to
momentum space is defined with a positive sign for ingoing momenta, e.g.,

Ciab;ð0Þ
A�cc;„ ðp3; p1; p2Þ ¼

Z
dx dy Cðz; x; yÞeiðz p3þy p2�x p1Þ ðC:1Þ

for a ghost-gluon vertex, where p2 and p3 are incoming and p1 is outgoing. The
order of indices corresponds to the order of fields given as subscripts indicating the
vertex.

The bare propagators are

Dij;ð0Þ
A ðp2Þ ¼ –ij 1

p2
g„” � ð1� »Þ

p„p”
p2

� �
; ðC:2Þ

Dab;ð0Þ
B ðp2Þ ¼ –ab 1

p2
g„” � ð1� fiÞ

p„p”
p2

� �
; ðC:3Þ

Dab;ð0Þ
c ðp2Þ ¼ �–ab 1

p2
: ðC:4Þ

The bare three-point vertices are

Ciab;ð0Þ
ABB;„”‰ðp3;p1;p2Þ¼ g i f abið2…Þ4–ðp1þp2þp3Þ�

� g„”ðp2�p1Þ‰þg„‰ðp1�p3Þ”þg”‰ðp3�p2Þ„þ
1
fi
ðg”‰p1„�g„‰p2” Þ

� �
;

ðC:5Þ
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Cabc;ð0Þ
BBB;„”‰ðp1; p2; p3Þ ¼ g i f abcð2…Þ4–ðp1 þ p2 þ p3Þ�

� g„”ðp2 � p1Þ‰ þ g„‰ðp1 � p3Þ” þ g”‰ðp3 � p2Þ„
� �

;
ðC:6Þ

Ciab;ð0Þ
A�cc;„ ðp3; p1; p2Þ ¼ g i f abið2…Þ4–ð�p1 þ p2 þ p3Þðp2 þ p1Þ„; ðC:7Þ

Ccab;ð0Þ
B�cc;„ ðp3; p1; p2Þ ¼ g i f abcð2…Þ4–ð�p1 þ p2 þ p3Þ

1
2

p3 þ p2

� �
„

: ðC:8Þ

Finally, the bare four-point vertices are

Cijab;ð0Þ
AABB;„”‰�ðp3; p4; p1; p2Þ ¼ g2ð2…Þ4–ðp1 þ p2 þ p3 þ p4Þf aief bje�

� 2g„”g‰� � 1� 1
fi

� �
g„�g”‰ � 1� 1

fi

� �
g„‰g”�

� �
;

ðC:9Þ

Ciabc;ð0Þ
ABBB;„”‰�ðp4; p1; p2; p3Þ ¼ g2ð2…Þ4–ðp1 þ p2 þ p3 þ p4Þ�
� f abef cie g„‰g”� � g„�g”‰

� �
þ f bcef aie g„”g‰� � g„‰g”�

� �
þ f caef bie g„�g”‰ � g„”g‰�

� �� �
;

ðC:10Þ

Cabcd;ð0Þ
BBBB;„”‰�ðp1; p2; p3; p4Þ ¼ g2ð2…Þ4–ðp1 þ p2 þ p3 þ p4Þ�
� f abrf cdr g„‰g”� � g„�g”‰

� �
þ f bcrf adr g„”g‰� � g„‰g”�

� �
þ f carf bdr g„�g”‰ � g„”g‰�

� �� �
;

ðC:11Þ

Cicab;ð0Þ
AB�cc;„”ðp4; p3; p1; p2Þ ¼ g2ð2…Þ4–ð�p1 þ p2 þ p3 þ p4Þg„”

1
2

2f cbef aie � f abef cie
� �

;

ðC:12Þ

Cijab;ð0Þ
AA�cc;„”ðp3; p4; p1; p2Þ ¼ g2ð2…Þ4–ð�p1 þ p2 þ p3 þ p4Þ2g„” f aief bje; ðC:13Þ

Ccdab;ð0Þ
BB�cc;„”ðp3; p4; p1; p2Þ ¼ �g2ð2…Þ4–ð�p1 þ p2 þ p3 þ p4Þg„” f adkf cbk þ f ackf dbk

� �
;

ðC:14Þ

Ccdab;ð0Þ
�c�ccc;„” ðp1; p2; p3; p4Þ ¼ �g2ð2…Þ4–ð�p1 � p2 þ p3 þ p4Þ�

� fi
4

4f abkf cdk þ 2f abef cde þ f adef bce � f acef bde
� �

: ðC:15Þ
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Appendix D
Calculation of the Sunset Diagram

The solution of the sunset diagram is

ISSða; b; c; p2Þ :¼
Z

ddq

ð2…Þd
ddr

ð2…Þd
ðq2Þa½ðrÞ2�b½ðp� q� rÞ2�c ¼

¼ ð4…Þ�dðp2Þdþaþbþc Cðaþ d=2ÞCðbþ d=2ÞCðcþ d=2ÞCð�a� b� c� dÞ
Cð�aÞCð�bÞCð�cÞCðaþ bþ cþ 3d=2Þ :

ðD:1Þ

It can be derived, for example, with NDIM or by using the solution for the one-
loop two-point function, Eq. (4.3). Raising the number of loops by adding further
propagators between the two vertices one gets the so-called water melon diagram
for which the solution is also known, see e.g., Ref. [2] for the massive case.
Introductions to NDIM can be found, for example, in Refs. [3–5].

The main complication is that we need not only this integral but also the case
where factors of p q, p r and q r appear. In contrast to the one-loop case it is here
not possible to express the scalar products by the invariants appearing in the
integral. Following an idea by Suzuki and Schmidt [6], who calculated the integral
when arbitrary powers of (2p q) appear, one can use NDIM for the calculation of

ISSða; b; c; e; f ; p2Þ :¼
Z

ddq

ð2…Þd
ddr

ð2…Þd
ðq2Þaðr2Þb½ðp� q� rÞ2�cð2 p qÞeð2 p rÞ f :

ðD:2Þ

This indeed suffices as the scalar product between the two loop momenta can be
expressed via the other scalar products:

q r ¼ 1
2
ðp� q� rÞ2 � p2 � q2 � r2 þ 2p qþ 2p r
� �

: ðD:3Þ
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Following the NDIM procedure one obtains 276 solutions in terms of five-
dimensional hypergeometric series, which should all be equivalent. We exploit this
huge number by choosing one solution where the hypergeometric series terminates:

ISSða;b;c;e; f ;p2Þ¼

¼…dðp2Þaþbþcþdþeþf 2eþf ð�a;2aþ eþd=2Þð�b;2bþ f þd=2Þð�c;2cþd=2Þ
�a�b� c�d;2aþ2bþ2cþ eþ f þ5=2Þ �

�
Xmax½e;f �

n3;n4;n6;n7;n8¼0

ð�1Þ�n4�n8 2n6ðcþd=2;n3þn7Þ
n3!n4!n6!n7!n8!ð1�a�d=2� e;n3þn4�n8Þ

�

� Pðe;n3þn4;n6ÞPð f ;n7þn8;n6Þ
ð1�b�d=2� f ;n7þn8�n4Þð1þaþbþ cþd;n3þn4þn6þn7þn8Þ

:

ðD:4Þ

The symbol P is defined as

Pða; b; cÞ :¼ ð�a=2; bþ c=2Þð1=2� a=2; bþ c=2Þ ðD:5Þ

and

ða; bÞ :¼ Cðaþ bÞ
CðaÞ ðD:6Þ

is the Pochhammer symbol. Although a five-fold series is normally quite a nasty
object to deal with, this is not a real problem here. The reason is that the series is
truncated as we can see from the definition of the symbol P. Depending on if the
first argument is even or odd, P vanishes from certain values of the summation
variables on, for example,

Pðe; n3 þ n4; n6Þ ¼ 0 for e\2n3 þ 2n4 þ n6 if e=2 2 I ^ n6=2 2 I: ðD:7Þ

This can most easily be taken into account by restricting the sum to max½e; f �. As
e and f are typically quite small this is sufficiently fast in a numerical
implementation.
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Appendix E
Deriving Dyson-Schwinger Equations
with DoDSE

In the course of this thesis a Mathematica package [7] was programmed to
automate the derivation of DSEs. As we turn to more and more complicated
gauges such a tool is indispensable, because the numbers of diagrams become very
large. DoDSE,1 what is short for ‘‘Derivation of Dyson-Schwinger Equations’’, can
handle complicated Lagrangians easily by resorting to a symbolic notation. This
alleviates the process of the derivation considerably. After the DSEs have been
derived in this symbolic notation the individual terms can be transformed into the
proper algebraic expressions.

Available documentation for DoDSE include Ref. [9] and a Mathematica
notebook distributed together with the package, which, among other places, can be
obtained from http://cpc.cs.qub.ac.uk/summaries/AECT_v1_0.html. Furthermore,
the syntax and examples for all commands are listed via the Mathematica com-
mand?, e.g., ?doDSE. The present Appendix describes some general aspects of
the program and provides examples used in the calculations of Chaps. 5 and 6. The
final section contains a list with all functions of DoDSE.

E.1 Overview Over DoDSE

The main challenge in doing functional calculations with a symbolic programming
language is to implement the properties of fields, propagators and vertices
properly. A very convenient way for this is provided by the index notation
introduced in Chap. 3. Thereby all indices, e.g., color, Lorentz, Dirac, and the

1 Note that DoDSE has by now become part of the Mathematica application DoFun [8].
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space or momentum dependence are described by only one index. This suffices as
long as all quantities like color or momentum ‘‘flow’’ through the diagram toge-
ther. The evident advantage is the reduction of redundancy in the notation.

Instead of using the standard multiplication operator DoDSE employs its own
function called op. The main reason is that the order of quantities is not changed
unpredictably by Mathematica within a calculation and also the anticommutativity
property of Grassmann fields can be taken into account. The arguments of an op
function can be fields, propagators or vertices. Fields are defined as a list with two
entries: The first determines the name of the field and the second gives its index, e.g.,
{A,i}. If a field appears as an argument of an op function it is an external field.
n-point functions exist in bare and dressed form, S and V, respectively. Dressed
propagators are denoted byP. Note that in the derivation of DSEs there is no need for
a bare propagator but only for a bare two-point function, which is denoted by S. The
arguments of V, P and S are fields. A simple example containing an external field,
dressed propagators and bare and dressed vertices is the expression

op[{A,i},
P[{A,j1},{A,j2}], P[{A,k1},{A,k2}],
S[{A,i},{A,j1},{A,k1},{A,a}],
V[{A,j2},{A,k2},{A,b}]]

It is depicted in Fig. E.1. All internal indices are summed and the free indices a
and b correspond to the external legs of the graph.

For using DoDSE the package fileDoDSE.m has to be loaded. The standard way is

� DoDSE

if the package resides in the subdirectory DoDSE of $ UserAddOnsDirectory.
The next step is the definition of an action. For the simplest cases DoDSE only

needs its basic structure given by lists of fields. The action of Yang-Mills theory,
for example, is defined as

actionYM = {{A, A}, {c, cb}, {A, A, A}, {A, cb, c}, {A, A, A, A}};

From this definition DoDSE will automatically infer that the ghost and anti-ghost
fields c and cb, respectively, are Grassmann fields as they appear in a pair. If this
assumption is unwanted, because the fields are not anti-commuting, one can
provide the option specificFieldDefinitions to declare fermions and
bosons specifically. An example to this is given in Sect. E.3.1. A DSE is then

Fig. E.1 The graphical
representation of the example
provided in the text. The
circle denotes the external
field
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derived from the action with the function doDSE. Its two required arguments are
the action and the list of fields with respect to which the derivatives are performed.
For example, the two-point DSEs in Landau gauge are obtained by

AADSE = doDSE[actionYM, {A, A}];
ccDSE = doDSE[actionYM, {cb, c}];

The result of doDSE is a (sum of) op function(s) each representing a single
diagram. There are basically two ways of getting this into a useful representation.
One can us the function shortExpression (or sE) to get the result in a
shorthand notation where D represents a propagator, C a dressed vertex and S a
bare vertex. For the gluon two-point DSE this looks like

sE[AADSE]

SAA
i1i2 �

1
2

SA A A A
i1 i2 r1 s1D

A A
r1 s1

� �
� 1

2
SA A A

i1 r1 s1C
A A A
i2 t1 u1D

A A
r1 t1D

A A
s1 u1

� �
�

� 1
6

SA A A A
i1 r1 r2 s1C

A A A A
i2 s2 t2 u2D

A A
r1 s2D

A A
r2 t2D

A A
s1 u2

� �
þ SA cb c

i1 r1 s1C
A cb c
i2 t1 u1D

c cb
s1 t1D

c cb
u1 r1�

� 1
2

SA A A A
i1 r1 r2 s1C

A A A
i2 s2 t1C

A A A
u1 v2 w1D

A A
r1 s2D

A A
r2 v2D

A A
s1 w1D

A A
u1 t1

� �

The superscripts denote the fields and the subscripts the corresponding indices.
It is also possible to use DoDSE for drawing Feynman graphs. This is done with

the function DSEPlot:

DSEPlot[AADSE, actionYM, {{A, Red}, {c, Green}}]

As second argument one has to give the action. The third argument is optional to
give some graphics primitives for the different fields.

I would like to make a short comment on the graphical representation of DSEs
using DoDSE. DSEPlot employs the Mathematica function GraphPlot that
originally is intended for drawing graphs in graph theory. However, it is possible
to abuse it also for drawing Feynman diagrams, but with a few limitations: It is not
possible to use wiggly lines and the alignment of some graphs may be arbitrary.
And when it comes to non-planar diagrams the usefulness of GraphPlot comes
to an end, as the result cannot be distinguished from a planar diagram. Thus the
ability to represent DSEs graphically is limited, but with a little bit of effort it can
produce presentable figures.

In order to get the algebraic expressions with all the indices and the integrals
one uses the function getAlg. Before it can be used one has to specify the
Feynman rules. These are defined globally by overloading the propagator and
vertex functions. For example, the gluon propagator, the ghost propagator and the
ghost-gluon vertex in the Landau gauge are defined as

S[c[c1_, p1_], cb[c2_, p2_], explicit -[True] :=
-1/SPD[p1] SD[c1, c2];
P[c[c1_, p1_], cb[c2_, p2_], explicit -[True] :=
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-SPD[p1]^(\[Delta]c - 1) SD[c1, c2];
S[A[c1_, \[Mu]_, p1_], A[c2_, \[Nu]_, p2_], explicit -[

True] :=
SD[c1, c2] (MTD[\[Mu], \[Nu]] -
FVD[p1, \[Mu]] FVD[p1, \[Nu]]/SPD[p1])/SPD[p1];

P[A[c1_, \[Mu]_, p1_], A[c2_, \[Nu]_, p2_], explicit -[
True] :=

SD[c1, c2] (MTD[\[Mu], \[Nu]] -
FVD[p1, \[Mu]] FVD[p1, \[Nu]]/SPD[p1]) SPD[p1]^(\[Delta]
A - 1);

S[A[c1_,\[Mu]_, p1_], cb[c2_, p2_], c[c3_, p3_], explicit -[
True] :=
I g SUNF[c1, c2, c3] FVD[p2, \[Mu]];

V[A[c1_,\[Mu]_, p1_], cb[c2_, p2_], c[c3_, p3_], explicit -[
True] :=
S[A[c1,\[Mu],p1], cb[c2, p2], c[c3,p3]];

Here SPD, SD[a,b] and FVD represent scalar products, the color tensor –ab and
momenta. The choice of convention is up to the user and depends on the further
processing of the expressions. The propagators were dressed with a power law and
the dressed ghost-gluon vertex was taken bare. These functions have to be defined
as above so DoDSE can use them. Their arguments are fields and the arguments of
those are their indices and their momentum argument. The task of getAlg is to
replace all the propagators and vertices in the result of a doDSE calculation by
expressions with the correct indices and the correct flow of the momenta through
the integral. After this it sets the option explicit to True and the algebraic
expressions are plugged in.

Let me illustrate this with the diagrams of the two-point functions in the Landau
gauge containing ghosts. For the ghost two-point function this is

IGhDSELoop = getAlg[ccDSE[[2] ],
{{A, adj, lor}, {c, adj}},
{A, {c, cb}},
{p1, -p1},
{LorentzContract, SUNContract}];

and for the gluon two-point function

IGluonDSELoop = getAlg[AADSE[[4] ],
{{A, adj, lor}, {c, adj}},
{A, {c, cb}},
{p1, -p1},
{LorentzContract, SUNContract}];

The first argument of getAlg is the expression for the integrals we got from
doDSE. The second tells which indices the fields have and the third is a list of the
fields. The fourth list contains the external momenta of the integral. The final
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argument is a list of functions applied to the output. LorentzContract and
SUNContract are user-defined functions for the contraction of the indices.

With the resulting expressions one can calculate the IRE • of Landau gauge
[10, 11]: The gluon DSE is projected transversely and the integrals are performed
with the help of Eq. (4.3). The two equations are then combined to solve for the
IRE •.

E.2 DSEs of the Maximally Abelian Gauge

The derivation of the two-point DSEs in the MAG is presented in this section and
the way of discarding unphysical vertices is explained.

E.2.1 Derivation of the DSEs in the Maximally Abelian Gauge

First we define the action of the MAG based on Eq. (5.31):

IAMAG={{A, A}, {B, B}, {cb, c}, {db, d},
{A, B, B}, {A, cb, c}, {A, A, B, B}, {A, A, cb, c},
{B, B, B, B}, {B, B, cb, c}, {cb, cb, c, c},{B, B, B},
{B, cb, c}, {A, B, cb, c}, {A, B, B, B}};

The fields A, B, c and d are the diagonal gluon, the off-diagonal gluon, the
off-diagonal ghost and the diagonal ghost, respectively. cb and db are the
corresponding anti-fields. DoDSE does not know anything about diagonal or
off-diagonal indices and allows all combinations of fields. However, some
structure functions vanish and only certain vertices exist, see Sect. 5.2.1. Hence we
have to devise some test function that discards non-existent vertices. The function
vertexTest only allows three-point functions with no or one diagonal field and
four-point functions with at most two:

Clear@vertexTest;
vertexTest[a_V]:=
Not@(Length@a==3&&MatchQ[Length@Cases[a,A,[Infinity]],
2 | 3]) &&

Not@(Length@a==4&&MatchQ[Length@Cases[a,A,[Infinity]],
3 | 4])

The derivation of the two-point DSEs can now be done. It is important to provide
the function vertexTest as argument to discard unphysical vertices. Note that
the indices are only given together with the fields to respect the convention of the
MAG described in Sect. 5.2.1. Otherwise DoDSE would automatically take i1 and
i2 as indices:
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AA = doDSE[IAMAG, {{A, i}, {A, j}}, vertexTest];
BB = Delete[doDSE[IAMAG, {{B, a}, {B, b}}, vertexTest], 23];
cc = Delete[doDSE[IAMAG, {{c, a}, {cb, b}}, vertexTest], 15];
dd = doDSE[IAMAG, {{d, i}, {db, j}}, vertexTest];

With hindsight those diagrams are discarded manually in the off-diagonal
equations which vanish due to their color structure, see Sect. 5.2.3.

For plotting the DSEs we can define some graphics primitives. The black and
white definition as used in this thesis and a color definition which is better suited
for presentations are

fieldPlotRulesBW = {{A, Thickness[0.01]}, {B, Thickness
[0.01],

Dashing[0.05]}, {c, Dotted}, {d, Dotted, Thickness
[0.03]}};

fieldPlotRulesColor = A, Red, Thickness[0.01], B, Purple,
Thickness[0.01]}, {c, Darker@Darker@Green, Thickness
[0.01]},
{d, LightGreen, Thickness[0.01]}};

When plotting the DSEs we use the argument factorStyle to adjust the size
and style of the numeric coefficients and set the number of diagrams per row to
four:

DSEPlot[#, IAMAGSU2, fieldPlotRulesBW, 4,
factorStyle :[ {FontSize :[ 20, FontWeight :[ Bold}]& / @

{AA, BB, cc, dd}

This yields the two-point DSEs of the MAG as shown in Figs. 5.1, 5.2 and 5.3.

E.2.2 Obtaining and Calculating the Integrals

The integrals of the two-point DSEs are obtained with the function getAlg. The
Feynman rules of bare vertices are defined according to Appendix C. Full
propagators are dressed with a power law. Required arguments are a list with the
fields and their indices, the list of fields and a list with the external momenta of the
expression. For example, the sunset of the diagonal gluon two-point DSE with a
bare AABB vertex is obtained by

getAlg[AA[[6]],
{{A, adj, lor}, {B, adj, lor}, {c, adj}},
{A, B, {c, cb}},
{p, -p},
{LorentzContract, SUNMagContract}];
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The integral can be calculated with the solution for the sunset diagram given in
Appendix D, Eq. (D.4), after a projection in Lorentz space to get a scalar
expression.

E.3 DSEs of the Gribov-Zwanziger Action

The derivation of the two-point DSEs of the Gribov-Zwanziger action is presented
in this section. As in this action fields mix at the two-point level one needs the
option specificFieldDefinitions. Furthermore, this mixing requires an
additional step to identify equal diagrams at the end.

E.3.1 Deriving the DSEs of the Gribov-Zwanziger Action

The Gribov-Zwanziger action, see (Eq. 6.36), is defined for DoDSE as follows:

IAFP = {{A, A}, {A, A, A}, {A, A, A, A}};
IAGZ = {{n, nb}, {A, nb, n}, {A, W, W}, {A, W}, {W, W}};
IA = Join[IAGZ, IAFP];

The action contains the gluon field A, the pair of Grassmann fields n and nb and
the auxiliary field W. They correspond to the fields A, ·; �· and V of Chap. 6,
respectively.2 From the action we derive the individual propagator equations:

AADSE = doDSE[IA, {A, A}, {{A, A}, {n, nb}, {W, W}, {A, W}},
specificFieldDefinitions -[A, W, n, nb];
nnbDSE = doDSE[IA, {n, nb}, {{A, A}, {n, nb}, {W, W}, {A, W}},
specificFieldDefinitions -[{A, W, {n, nb}}];
WWDSE = doDSE[IA, {W, W}, {{A, A}, {n, nb}, {W, W}, {A, W}},
specificFieldDefinitions -[{A, W, {n, nb}}];
AWDSE = doDSE[IA, {A, W}, {{A, A}, {n, nb}, {W, W}, {A, W}},
specificFieldDefinitions -[{A, W, {n, nb}}];
WADSE = doDSE[IA, {W, A}, {{A, A}, {n, nb}, {W, W}, {A, W}},
specificFieldDefinitions -[{A, W, {n, nb}}];

Note that the option specificFieldDefinitions is required to define W as a
bosonic field. Otherwise DoDSE would assume automatically from the definition
of the action that it is a fermion field.
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The number of terms in the DSEs can be determined with countTerms:

countTerms /@ {AADSE, nnbDSE, WWDSE, AWDSE, WADSE}
{51, 3, 5, 50, 5}

However, this is not the final number. Because of the mixed propagators not all
diagrams were yet identified properly and this has to be done in a separate step:

{AADSEId, nnbDSEId, WWDSEId, AWDSEId, WADSEId} =
identifyGraphs[#, compareFunction :[compareGraphs2] & /@
{AADSE, nnbDSE, WWDSE, AWDSE, WADSE};

Now the number of terms decreases considerably for DSEs, where the first
derivative was done with respect to the gluon field:

countTerms /@ {AADSEId, nnbDSEId, WWDSEId, AWDSEId,
WADSEId}
{37, 3, 5, 36, 5}

Finally, we can plot the diagrams

pAADSE = DSEPlot[AADSEId, IA, 4, factorStyle -[{FontSize -[
20}]

pnnbDSE=DSEPlot[nnbDSEId,IA,4,factorStyle-[{FontSize-[
20}]

pWWDSE = DSEPlot[WWDSEId, IA, 4, factorStyle -[{FontSize -[
20}]

pAWDSE = DSEPlot[AWDSEId, IA, 4, factorStyle -[{FontSize -[
20}]

pWADSE = DSEPlot[WADSEId, IA, 4, factorStyle -[{FontSize -[
20}]

to obtain Figs. 6.1, 6.2, 6.3 and 6.4. As we do not give any graphics primitives for
drawing the propagators, DoDSE tags them by their field content.

Finally, the full expressions are obtained with the function getAlg. After
suitable projections in color and Lorentz space, the integrals can be performed
using Eq. (4.3).
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E.4 Tables of DoDSE Functions

In the following I provide lists with all public functions of DoDSE.
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Main functions

Command Description

doDSE[ilist, clist] Derives the DSE for the correlation function clist
for a theory with interactions ilist

doDSE[ilist, clist
[, props, vertexTest,
opts] ]

vertexTest is a function for determining if a vertex
respects the symmetries of the Lagrangian. props
is a list of allowed propagators given in the form
{{field1a, field1b}, {field2a, field2b}, ...}.
doDSE accepts the options specificFieldDefinitions
and sourcesZero (prevents the replacement of
super-field propagators
and vertices when set to False)

shortExpression[expr,
opts] sE[expr,

opts]

Rewrites a it DoDSE expression into a shorter form
using $bareVertexSymbol, $vertexSymbol
and $propagatorSymbol for representation. Options
of the internal Mathematica function
Style can be given

DSEPlot[expr, ilist
[,fRules,len,opts] ]

Plots the full DSE in graphical form. expr is an expression
containing op functions, ilist the list
of interactions and fRules a list of options for
plotting individual fields. len determines how many
graphs are shown in one line. If fRules is not
given, the lines are named according to the fields.
Possible options are: output-[List, to get the
result in list form, and indexStyle and factorStyle
to change the style of the indices
and the prefactors (e.g. font size or color)

getAlg[exp, ilist,
flist,
mlist, funclist

Derives the algebraic expression from exp. ilist
contains the lists of fields and all their indices,
flist the list of fields, mlist the list of external
momenta and funclist a list of further functions
to be applied on the result.
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Functions for the individual computation steps

Command Description

generateAction[ilist
[,flist] ]

Generates the action in internal representation from
the interactions of the theory given in ilist. For
mixed propagators flist specifies explicitly the
type of fields in the form
{boson1, boson2, ..., {fermion1,
antifermion1}, {fermion2,
antifermion2}, ...}

deriv[expr,dlists] Differentiate expr with respect to the fields in
dlists

replaceFields[expr] Replaces the fields in expr by the corresponding
expressions after the first differentiation is done to
change from full to 1PI Green functions

identifyGraphs[expr[,
compareGraphs-[cfunc] ]

Adds up equivalent graphs in expr. cfunc can be
compareGraphs (standard) or
compareGraphs2, the latter being necessary for
mixed propagators but taking longer

setSourcesZero[expr, flist
[, props, vertexTest] ]

Sets the external fields in flist to zero, i.e. only
physical propagators and vertices are left.
vertexTest is a function for determining if a
vertex respects the symmetries of the Lagrangian.
props is a list of allowed propagators given in the
form {{field1a, field1b}, {field2a,
field2b}, ...}

orderFermions[expr] Orders derivatives with respect to Grassmann fields
such that the anti-fields are left of the fields thereby
possibly giving a minus sign. expr is an
op-function or a sum of those. Bare vertices are
not affected by the ordering
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Functions for checks and tools

Command Description

countTerms[expr] Counts the number of terms appearing in the expression
fieldQ[f] Determines if expression f is defined as a field
bosonQ[f] Determines if expression f is defined as a bosonic field
fermionQ[f] Determines if expression f is defined as a fermionic field
antiFermionQ[f] Determines if expression f is defined as an anti-field to a

fermionic field
checkFields[expr] Checks if all fields in the expression are defined
checkIndices[expr]Checks if an index appears more often than twice
checkSyntax[expr] Checks if expr has the correct syntax, i.e. op functions only

contain propagators, vertices and fields
checkAction[expr] Checks if all indices appear exactly twice, the syntax is ok and

all fields are defined
checkAll[expr] Performs a series of checks on expr (checkIndices,

checkSyntax, checkFields)
defineFields[flist] Defines the fields of the action that are given in flist as single

entries for bosons and grouped by braces for fermions
$vertexSymbol Symbol representing a vertex in shortExpression. Standard

value: C
$bareVertexSymbol Symbol representing a bare vertex in shortExpression.

Standard value: S
$PropagatorSymbol Symbol representing a propagator in shortExpression.

Standard value: D
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