Biological and Medical Physics, Biomedical Engineering

Thomas Lindblad
Jason M. Kinser

Image Processing
Using Pulse-Coupled
Neural Networks

Applications in Python
Third Edition

@ Springer

Biological and Medical Physics,
Biomedical Engineering

For further volumes:
http://www.springer.com/series/3740

http://www.springer.com/series/3740

The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary
and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and med-
icine. The Biological and Medical Physics, Biomedical Engineering Series is intended to be compre-
hensive, covering a broad range of topics important to the study of the physical, chemical and biological
sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference
works to address the growing need for information.

Books in the series emphasize established and emergent areas of science including molecular,
membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information
processing; physical principles of genetics; sensory communications; automata networks, neural net-
works, and cellular automata. Equally important will be coverage of applied aspects of biological and
medical physics and biomedical engineering such as molecular electronic components and devices,
biosensors, medicine, imaging, physical principles of renewable energy production, advanced pros-
theses, and environmental control and engineering.

Editor-in-Chief:

Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Editorial Board
Masuo Aizawa, Department of Bioengineering, Tokyo
Institute of Technology, Yokohama, Japan

Olaf S. Andersen, Department of Physiology,
Biophysics and Molecular Medicine Cornell University
New York, NY, USA

Robert H. Austin, Department of Physics, Princeton
University, Princeton, NJ, USA

James Barber, Department of Biochemistry, Imperial
College of Science, Technology and Medicine
London, UK

Howard C. Berg, Department of Molecular and Cellular
Biology, Harvard University

Cambridge, MA, USA

Victor Bloomfield, Department of Biochemistry
University of Minnesota, St. Paul, MN, USA

Robert Callender, Department of Biochemistry
Albert Einstein College of Medicine
Bronx, NY, USA

Britton Chance

Steven Chu, Lawrence Berkeley National Laboratory
Berkeley, CA, USA

Louis J. DeFelice, Department of Pharmacology
Vanderbilt University, Nashville, TN, USA

Johann Deisenhofer, Howard Hughes Medical Institute
The University of Texas
Dallas, TX, USA

George Feher, Department of Physics, University of
California, San Diego, La Jolla, CA, USA

Hans Frauenfelder, Los Alamos National Laboratory
Los Alamos, NM, USA

Ivar Giaever, Rensselaer Polytechnic Institute

Troy, NY, USA

Sol M. Gruner, Cornell University
Ithaca, NY, USA

Judith Herzfeld, Department of Chemistry
Brandeis University, Waltham, MA, USA

Mark S. Humayun, Doheny Eye Institute
Los Angeles, CA, USA

Pierre Joliot, Institute de Biologie Physico-Chimique
Fondation Edmond de Rothschild, Paris, France

Lajos Keszthelyi, Institute of Biophysics, Hungarian
Academy of Sciences, Szeged, Hungary

Robert S. Knox, Department of Physics
and Astronomy, University of Rochester
Rochester, NY, USA

Aaron Lewis, Department of Applied Physics

Hebrew University, Jerusalem, Israel

Stuart M. Lindsay, Department of Physics and
Astronomy, Arizona State University, Tempe, AZ, USA
David Mauzerall, Rockefeller University

New York, NY, USA

Eugenie V. Mielczarek, Department of Physics
and Astronomy, George Mason University
Fairfax, VA, USA

Markolf Niemz, Medical Faculty Mannheim, University
of Heidelberg, Mannheim, Germany

V. Adrian Parsegian, Physical Science Laboratory
National Institutes of Health, Bethesda, MD, USA
Linda S. Powers, University of Arizona

Tucson, AZ, USA

Earl W. Prohofsky, Department of Physics

Purdue University, West Lafayette, IN, USA
Andrew Rubin, Department of Biophysics
Moscow State University, Moscow, Russia
Michael Seibert, National Renewable Energy
Laboratory, Golden, CO, USA

David Thomas, Department of Biochemistry, University
of Minnesota Medical School, Minneapolis, MN, USA

Thomas Lindblad - Jason M. Kinser

Image Processing Using
Pulse-Coupled Neural
Networks

Applications in Python

Third Edition

@ Springer

Thomas Lindblad

Department of Physics

Royal Institute of Technology (KTH)
Stockholm

Sweden

Jason M. Kinser

School of Physics and Computational
Sciences

George Mason University

Fairfax, VI

USA

ISSN 1618-7210

ISBN 978-3-642-36876-9

DOI 10.1007/978-3-642-36877-6
Springer Heidelberg New York Dordrecht London

ISBN 978-3-642-36877-6 (eBook)

Library of Congress Control Number: 2013935478

© Springer-Verlag Berlin Heidelberg 1998, 2005, 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated to
John L. Johnson

and
H. John Caulfield (1936-2012)

Preface to the Third Edition

This third edition has included two major components over the second edition. The
first is that a selection of new applications has been addressed. There has been a
recent surge in publications using the PCNN or ICM and a few of these have been
included.

The second major change has been the inclusion of Python scripts. Over the
past decade Python has emerged as a very powerful tool and its use is seen in many
applications in the sciences. With the inclusion of a numeric library, Python has
the ability to easily handle linear algebra operations with relatively few lines of
code. With such efficiency it becomes possible to embed Python scripts in the text
along with the theory and applications.

Every attempt has been made to ensure that the Python scripts are complete for
applications that are demonstrated here. The scripts were written with Python 2.7
since it is still the standard in LINUX distributions. Users of Python 3.x will find
minor differences which are customary when translating from 2.7.

Some readers who are experienced Python programmers will notice that the
codes included here could be compressed to even fewer lines. However, the intent
of including code is more educational in nature and so the scripts are designed to
be readable before being highly compressed.

A website hosted at http://www.binf.gmu.edu/kinser/ will maintains a ZIP file
with all of the Python scripts written by the authors. The Python system, the
numeric Python (NumPy), scientific Python packages (SciPy), and the Python
Image Library (PIL) can be obtained from their home sites as explained in Chap. 3.
All of the scripts provided by the author are copyrighted and can be used only for
academic purposes. Commercial applications without expressed written permis-
sion of the script’s author is prohibited.

Stockholm and Manassas, 2012 Thomas Lindblad
Jason M. Kinser

vii

http://www.binf.gmu.edu/kinser/
http://dx.doi.org/10.1007/978-3-642-36877-6_3

Preface to the Second Edition

It was stated in the preface of the first edition of this book that image processing by
electronic means has been a very active field for decades. This is certainly still true
and the goal has been, and still is, to have a machine perform the same functions
which humans do quite easily. In reaching this goal we have learned much about
human mechanisms and how to apply this knowledge to image processing prob-
lems. Although there is still a long way to go, we have learned a lot during the last
five or six years. This information and some ideas based upon it has been added to
the second edition of this book.

The present edition includes the theory and application of two cortical models:
the PCNN (the pulse coupled neural network) and the ICM (intersecting cortical
model). These models are based upon biological models of the visual cortex and it
is prudent to review the algorithms that strongly influenced the development of the
PCNN and the ICM. The outline of the book is otherwise very much the same as in
the first edition, although several new applications have been added.

In Chap. 7 a few of these applications will be reviewed including original ideas by
co-workers and colleagues. Special thanks are due to Soonil D. D. V. Rughooputh,
the dean of the Faculty of Science at the University of Mauritius and Harry
C. S. Rughooputh, the dean of the Faculty of Engineering at the University of
Mauritius.

We should also like to acknowledge that Guisong Wang, a doctoral candidate in
the School of Computational Sciences at GMU, made a significant contribution to
Chap. 5.

We would also like to acknowledge the work of several diploma and Ph.D.
students at KTH, in particular Jenny Atmer, Nils Zetterlund, and Ulf Ekblad.

Stockholm and Manassas, April 2005 Thomas Lindblad
Jason M. Kinser

ix

http://dx.doi.org/10.1007/978-3-642-36877-6_7
http://dx.doi.org/10.1007/978-3-642-36877-6_5

Preface to the First Edition

Image processing by electronic means has been a very active field for decades. The
goal has been, and still is, to have a machine perform the same image functions
which humans do quite easily. This goal is still far from being reached. So we must
learn more about the human mechanisms and how to apply this knowledge to
image processing problems. Traditionally, the activities in the brain are assumed to
take place through the aggregate action of billions of simple processing elements
referred to as neurons and connected by complex systems of synapses. Within the
concepts of artificial neural networks, the neurons are generally simple devices
performing summing, thresholding, etc. However, we show now that the biological
neurons are fairly complex and perform much more sophisticated calculations than
their artificial counterparts. The neurons are also very specialized and it is thought
that there are several hundred types in the brain and messages travel from one
neuron to another as pulses.

Recently, scientists have begun to understand the visual cortex of small
mammals. This understanding has led to the creation of new algorithms that are
achieving new levels of sophistication in electronic image processing. With the
advent of such biologically inspired approaches, in particular with respect to
neural networks, we have taken another step towards the aforementioned goal.

In our presentation of the visual cortical models we will use the term Pulse-
Coupled Neural Network (PCNN). The PCNN is a neural network algorithm that
produces a series of binary pulse images when stimulated with a gray scale or
color image. This network is different from what we generally mean by artificial
neural networks in the sense that it does not train. The goal for image processing is
to eventually reach a decision on the content of that image. These decisions are
generally far easier to accomplish by examining the pulse outputs of the PCNN
rather than the original image. Thus, the PCNN becomes a very useful pre-
processing tool. There exists, however, an argument that the PCNN is more than a
pre-processor. It is possible that the PCNN also has self-organizing abilities which
make it possible to use the PCNN as an associative memory. This is unusual for an
algorithm that does not train.

Finally, it should be noted that the PCNN is quite feasible to implement in spe-
cialized hardware. Traditional neural networks have had a large fan-in and fan-out.
In other words, each neuron was connected to several other neurons. In electronics a

xi

Xii Preface to the First Edition

different “wire” is needed to make each connection and large networks are quite
difficult to build. The PCNN, on the other hand, has only local connections and in
most cases these are always positive. This is quite plausible for electronic
implementation.

The PCNN is quite powerful and we are just beginning to explore the possi-
bilities. This text will review the theory and then explore its known image pro-
cessing applications: segmentation, edge extraction, texture extraction, object
identification, object isolation, motion processing, foveation, noise suppression,
and image fusion. This text will also introduce arguments as to its ability to
process logical arguments and its use as a synergetic computer. Hardware reali-
zation of the PCNN will also be presented.

This text is intended for the individual who is familiar with image processing
terms and has a basic understanding of previous image processing techniques. It
does not require the reader to have an extensive background in these areas. Fur-
thermore, the PCNN is not extremely complicated mathematically so it does not
require extensive mathematical skills. However, this text will use Fourier image
processing techniques and a working understanding of this field will be helpful in
some areas.

The PCNN is fundamentally unique from many of the standard techniques
being used today. Many of these fields have the same basic mathematical foun-
dation and the PCNN deviates from this path. It is an exciting field that shows
tremendous promise.

Stockholm and Manassas, 1997 Thomas Lindblad
Jason M. Kinser

Acknowledgments

The work reported in this book includes research carried out by the authors
together with co-workers at various universities and research establishments.
Several research councils, foundations, and agencies have supported the work and
made the collaboration possible. Their support is gratefully acknowledged.
In particular, we would like to acknowledge the fruitful collaboration and
discussions with the following scientists: Kenneth Agehed, Randy Broussard,
Age J. Eide, John Caulfield, Bruce Denby, W. Friday, John L. Johnson, Clark
S. Lindsey, Steven Rogers, Thaddeus Roppel, Manuel Samuelides, Ake Steen,
Géza Székely, Mary Lou Padgett, and Ilya Rybak. The authors would also like to
extend their gratitude to Stefan Rydstrom for his invaluable editing.

Xiii

Contents

1 Biological Models.
1.1 Introduction.
1.2 Biological Foundation.
1.3 Hodgkin-Huxley.
1.4 Fitzhugh-Nagumo.
1.5 Eckhorn Model
1.6 Rybak Model.........
1.7 Parodi Model
1.8 Summary.

2 Programming in Python
2.1 Environment

2.1.1 Command Interface.
2.1.2 IDLE
2.1.3 Establishing a Working Environment
2.2 Data Types and Simple Math.
2.3 Tuples, Lists, and Dictionaries
231 Tuples.
232 LSt . vt
233 Dictionariest
24 Slicing
2.5 Strings.
25.1 String Functions.
252 Type Castingouvimiiiunennnen..
26 Control
27 Inputand Output,
271 BasicFiles........
272 Pickle
2.8 Functions.
29 Modules
2.10 Object Oriented Programming
2.10.1 ContentofaClass
2.10.2 Operator Definitions

13
13
14
14
14
15
16
16
17
18
19
20
21
23
23
25
25
26
27
28
30
30
30

XV

http://dx.doi.org/10.1007/978-3-642-36877-6_1
http://dx.doi.org/10.1007/978-3-642-36877-6_1
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_1#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_2
http://dx.doi.org/10.1007/978-3-642-36877-6_2
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec14
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec14
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec15
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec15
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec16
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec16
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec17
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec17
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec18
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec18
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec19
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec19
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec20
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec20
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec21
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec21
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec22
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec22

XVi Contents
2.10.3 Inheritance. 31

2.11 Error Checking. 32
212 Summary. e 33
3 NumPy, SciPy and Python Image Library.................. 35
3.1 NumPy ..o 35
3.1.1 Creating Arrays vt 35

3.1.2 Converting Arrays v, 38

3.1.3 Matrix: Vector Multiplications. 38

3.1.4 Justification for Arrays 39

315 DataTypes . . oov v v it e e e 41

31,6 Sorting 43

3.1.7 Conversions to Strings and Lists 45

3.1.8 Changing the Matrix. 47

319 Advanced Slicing, 47

32 SciPy ... 49
3.3 Designing in Numpy. i 52
34 Python Image Library 54
34.1 ReadinganImage.......................... 54

342 WritinganImage 55

34.3 Transforming an Image. 56

3.5 SumMmMAry. . ..o 56
4 ThePCNNandICM 57
4.1 The PCNN. 57
4.1.1 Original Model. 57

4.1.2 Implementing in Python 59

4.1.3 Spiking Behaviour 61

4.1.4 Collective Behaviour. 64

4.1.5 Time Signaturesttt 66

4.1.6 Neural Connections.uo..... 67

4177 FastLinking 70

4.1.8 Models in Analogue Time.................... 73

42 The ICM. 74
4.2.1 Minimum Requirements 75

422 ICM Theory.c.uiinnnen.. 76

423 Connectionsinthe ICM 77

4.2.4 Python Implementation 83

43 Summary. e 84
5 Image Analysis. 87
5.1 Pertinent Image Information 87
5.2 Image Segmentationooviuenenenen.. 92

http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec23
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec23
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec24
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec24
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec25
http://dx.doi.org/10.1007/978-3-642-36877-6_2#Sec25
http://dx.doi.org/10.1007/978-3-642-36877-6_3
http://dx.doi.org/10.1007/978-3-642-36877-6_3
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec14
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec14
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec15
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec15
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec16
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec16
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec17
http://dx.doi.org/10.1007/978-3-642-36877-6_3#Sec17
http://dx.doi.org/10.1007/978-3-642-36877-6_4
http://dx.doi.org/10.1007/978-3-642-36877-6_4
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec17
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec17
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec18
http://dx.doi.org/10.1007/978-3-642-36877-6_4#Sec18
http://dx.doi.org/10.1007/978-3-642-36877-6_5
http://dx.doi.org/10.1007/978-3-642-36877-6_5
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec2

Contents xvii
52,1 BloodCells 92
522 Mammography. 92
5.3 Adaptive Segmentation 95
54 Focus and Foveation. 96
5.4.1 The Foveation Algorithm. 97

5.4.2 Target Recognition by a PCNN-Based
Foveation Model 99
5.5 Image Factorisation. 104
5.6 Summary. 105
6 Feedback and Isolation. 107
6.1 AFeedback PCNN...... 107
6.2 ObjectIsolation, 109
6.2.1 Input Normalisation 111
6.2.2 Creatingthe Filter 111
6.2.3 Edge Enhancement of Pulse Images 113
6.2.4 Correlation and Modifications 114
6.2.5 Peak Detection. 116
6.2.6 Modifications to the Input and PCNN. 116
6.2.7 DIIVEISot 118
6.3 Dynamic Object Isolation 119
6.4 Shadowed Objects 119
6.5 Consideration of Noisy Images. 122
6.6 Summary. 125
7 Recognition and Classification. 127
7.1 Aireraft. 127
7.2 AuroraBorealis 128
7.3 Target Identification: Binary Correlations 129
74 Galaxies 133
7.5 Hand Gesturesttt 137
7.6 Road Surface Inspection 139
7.7 Numerals. 143
771 DataSet 143
7.7.2 Isolating a Class for Training. 144
7.8 Generating Pulse Images, 145
7.8.1 Analysis of the Signatures. 146
7.9 Face Location and Identification. 148
70 Summary.o e 153
8 Texture Recognition. 155
8.1 Pulse Spectra. 155
8.2 Statistical Separation of the Spectra 159

http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_5#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_6
http://dx.doi.org/10.1007/978-3-642-36877-6_6
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec14
http://dx.doi.org/10.1007/978-3-642-36877-6_6#Sec14
http://dx.doi.org/10.1007/978-3-642-36877-6_7
http://dx.doi.org/10.1007/978-3-642-36877-6_7
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec10
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec11
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec12
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_7#Sec13
http://dx.doi.org/10.1007/978-3-642-36877-6_8
http://dx.doi.org/10.1007/978-3-642-36877-6_8
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec2

Xviii Contents

8.3 Recognition Using Statistical Methods 160

8.4 Recognition of the Pulse Spectra via an Associative
MEMOTY . . .ottt e 161
8.5 Biological Application 162
8.6 Texture Study 167
87 Summary. 170
9 Colour and Multiple Channels 171
9.1 TheModel., 171
9.1.1 Colour Example........................... 172
9.1.2 Python Implementation 176
9.2 Multi-Spectral Example., 180
9.3 Application of Colour Models 183
9.4 Summary. 185
10 TImage Signatures 187
10.1 TImage Signature Theory 187
10.1.1 The PCNN and Image Signatures. 188
10.1.2 Colour Versus Shape. 189
10.2 The Signature of Objects. 189
10.3 The Signatures of Real Images. 191
10.4 TImage Signature Database 192
10.5 Computing the Optimal Viewing Angle 193
10.6 Motion Estimation 196
107 Summary. 198
11 LogiC o 201
11.1 Maze Runningand TSP 201
11.2 Barcodes and Navigation. 203
11.3 Summary. 208
Appendix A: Image Converters 209
Appendix B: The Geometry Module. 215
Appendix C: The Fractional Power Filter 217
Appendix D: Correlation. 219
Appendix E: The FAAM 223

Appendix F: Principal Component Analysis. 227

http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_8#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_9
http://dx.doi.org/10.1007/978-3-642-36877-6_9
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_9#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_10
http://dx.doi.org/10.1007/978-3-642-36877-6_10
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec4
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec5
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec6
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec7
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec8
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_10#Sec9
http://dx.doi.org/10.1007/978-3-642-36877-6_11
http://dx.doi.org/10.1007/978-3-642-36877-6_11
http://dx.doi.org/10.1007/978-3-642-36877-6_11#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_11#Sec1
http://dx.doi.org/10.1007/978-3-642-36877-6_11#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_11#Sec2
http://dx.doi.org/10.1007/978-3-642-36877-6_11#Sec3
http://dx.doi.org/10.1007/978-3-642-36877-6_11#Sec3

Contents Xix

Python Codes

2.1
22

23

24

2.5

2.6

2.7

2.8

29

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
222
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
231

Python performing simple calculations.
Setting up the Python environment for IDLE users.

Directory names will be unique for each user.
Division in Python.
Conversion of integers to floats.
A simple tuple demonstration

A simple list

demonstration

The use of remove and popot
A simple dictionary example,
The key commands
Simple indices
Simple slicing.
SHCING 1N SLEPS -« v v o e ot e e e e e e
Creating simple strings.
Accessing characters ina string
Finding characters ina string
Converting characters to upper case and replacing characters

Splitting and

joining Strings

Converting strings to other data types

A simple if
A simple if
A compound

statement.
statement with multiple commands.
ifstatement.

Awhilestatement.

A for loop
A traditional

forloop.

Writing and reading a text file

Pickling . . .

A simple function
A function returning data
Default arguments.
Creatingamodule.

From: import

14

15
16
16
17
17
18
19
19
19
20
20
21
21
22
22
22
23
24
24
24
25
25
25
26
26
27
27
28
29
29

XXi

Xxii

2.32
2.33
2.34
2.35
2.36
3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
4.1
4.2
4.3
4.4
4.5
4.6

Using execfile.
A simple object.
Operator definition
Inheritance
Trapping an error
Creation of vectors
Math operations for vectors . . .
Math operations for two vectors
Creating matrices
Creating tensors
Accessing data in a matrix

Python Codes

Converting between vectors and matrices.
Vector-matrix and matrix-vector multiplications

Multiplying columns of a matrix

with elements in a vector

Comparing the computational costs of interpreted commands.
Retrieving the type of data within an array.

Using the max function

Using the similar functions. . . .
Using the similar functions. . . .
Using the nonzero function. .

Mathematical functions for an array

Sorting arrays.
Conversions to and from a string
Swapping bytes in an array . . .
Examples of the transpose fu

netion

Examples of the resize function

Advanced slicing for arrays . . .
Advanced slicing for arrays with

multiple dimensions

Matrix inverse using the SciPy function.

Isolating two contiguous regions
Execution time for a double loop

Execution time for a single command

Inserting a safety print statement
Loading an image
Writing an image
Converting an image
Other transformations
Part 1 of pcnnpy.
Part 2 of pcnnpy.
Creating an image of a “T". . ..
Driver for the PCNN

Collecting the internal neural activities

Fast linking iteration for pcnn.py

29
31
31
32
33
36
36
36
37
37
37
38
39
39
40
41
42
42
43
43
44
44
45
46
47
48
49
49
50
50
51
52
53
54
54
55
56
56
59
60
60
61
65
72

Python Codes Xxiii

4.7
4.8
4.9
4.10
4.11
4.12
5.1
52
53
54
55
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8
7.9
8.1
8.2
83
8.4
9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
11.1
11.2

Executing a fast linking 73
Constructor for ICM 83
Iteration for ICM. i 84
Iteration for ICM creating centripetal autowaves. 84
Drivingthe ICM 84
The LevelSet function. 85
Iterations for the ICM 94
The Corners function 99
The peak detecting function 100
The Mark and Mix functions. 100
Loading the image and finding the peaks. 101
The LoadImage function. 111
The LoadTarget function 112
The EdgeEncourage function. 113
The NormFilter function. 113
The EdgeEnhance function 114
The PCECorrelate function. 115
The Peaks function. 116
The Enhance function. 117
The Singlelteration function 118
The Driver function 119
The UnpackImages function 144
The UnpackLabels function. 144
The IsolateClass function 145
The PulseOnNumeral function. 145
The RunAll function. 146
Isolating candidate skin pixels 151
Running the modified PCNN 152
The FastLYIterate function. 152
Horizontal sums across a candidate shape 152
The FileNames and LoadImage functions. 168
The Cutup function. 168
The ManySignatures function 168
The Driver function 169
The constructor for ucm3D. 176
The Image2Stim function 176
The Iterate function 177
The Y2Image function., 178
Example implementation 179
Converting an image to the YUV format 184
Running 3ICMSs e 184
Saving the pulse images as colour images 184
The Mazelterate function 202
The RunMaze function 203

XXiV

Al
A2
A3
A4
A5
A.6
AT
B.1
B.2
C.1
C2
D.1
D.2
D3
E.1

F.1

Python Codes

Functions for converting between images and arrays. 209
The a2i function. 210
The i2a function. 210
The RGB2cube function 211
The Cube2Image function. 211
Functions for color conversions 212
Functions from the convert.py module. 212
The Circle function. 215
The Plop function. 216
The FPF function 218
Computing the FPF for multiple matrices. 218
The Swap function 220
The Correlate function 221
The PCE function. 221
Running the FAAM. 224
The PCA function. 228

Chapter 1
Biological Models

Humans have an outstanding ability to recognise, classify and discriminate objects
with extreme ease. For example, if a person was in a large classroom and was asked
to find the light switch it would not take more than a second or two. Even if the light
switch was located in a different place than the person expected or it was shaped
differently than expected it would not be difficult to find the switch. Humans also do
not need to see hundreds of exemplars in order to identify similar objects. A person
needs to see only a few dogs and then he is able to recognise dogs even from species
that he has not seen before. This recognition ability also holds true for animals, to
a greater or lesser extent. A spider has no problem recognising a fly as even a baby
spider can do that. At this level we are talking about a few hundred to a thousand
processing elements or neurons. Nevertheless the biological systems seem to do their
job very well.

Computers, on the other hand, have a very difficult time with these tasks. Von
Neumann machines need a large amount of memory and significant speed to even
come close to the processing time of a human. Furthermore, the software for such
simple general tasks does not exist. There are special problems where the machine
can perform specific functions well, but the machines do not perform general image
processing and recognition tasks to the extent that animals and humans do.

Implementations of neural systems in silicon hardware have been tried by
companies Intel and IBM. The Electrically Trainable Neural Network (ETANN)
chip [43] from Intel had 128 neurons' and the first Zero Instruction Set Computer
(ZISC36) chip[1] from IBM had 36 neurons. However, these are all “mathematical
neurons” based on the back-propagation algorithm [14] and the radial basis func-
tion algorithms [73] and really not any implementation of biological systems. The
ZISC36 chip could easily be put in parallel [66] to make use of several hundreds
of neurons. It has also been further developed and is today available as CIMK with
a thousand neurons [21]. This chip is between a fly and a worm with respect to
the number of interconnections, although a bit “faster” than both. However, there is
still a long way to go before reaching small mammals and humans as illustrated in

I There are several examples of how 128 neurons can be used with one example show in [65].

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 1
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_1, © Springer-Verlag Berlin Heidelberg 2013

2 1 Biological Models

1018
'® Man

10"
)
8 1012 _|
:; i Bee
o M Cockroach
S 100 | ETANN [] A Fly
=14)
£ | zisc []
% |
S 106 | Leach
1= |
A | | Worm

10°

1 I I T) T T T
10° 108 107 1012 101

Storage capability

Fig. 1.1 Comparing “brains” of some animals in some neural networks systems as discussed in
the text

Fig. 1.1. Recent work at Manchester University is to develop SpiNNaker (Spiking
Neural Network Architecture) which is a parallel computer specifically designed to
model large scale spiking neural networks. The design will allow each computer to
contain more than one million cores. Completion of the first machine is expected by
the end of 2013. The ETANN, ZISC and a few other neural network chips are shown
in Fig. 1.2.

It is often claimed that neuromorphic machines outperform von Neumann
machines at certain environmental complexity (e.g., input combinatorics). There
is a “break even point” and after this point the machine complexity (e.g., size, power,
memory, gates, synapses) increases steeply for von Neumann computers but not so
much for the neural architectures. However, there are still many orders of magni-
tude of complexity before one reaches the “human” level of performance. Besides
the above problem of the number of neurons, there are at least two other funda-
mental items to consider: the neurons designed for specific tasks and the intelligent
mammal sensors. This is particularly true for the visual system. The neurons get aux-
iliary information from adjacent neurons, the information is sent in separate paths in
the mid-brain, backward signals are used to prioritise important information. Using
computer language one would say that the feature extraction system, its redundancy
and the parallel triggering system in the mid-brain ensure that important information
reaches the visual cortex. At the same time, there is a tremendous reduction in data
volume from perhaps initially 108 neurons and a bit-rate of 50 Mbits/s to approximate
video speed when we become aware of what we are seeing.

1.1 Introduction 3

HOaonnnnnme
HOVRBUOBUY
"

- -

tsesssccccssez
I AN ENN]
EEREEEEN

CELEEE

CECELEEEEEEEE

O) A e

(]
L L]

0000
oco

o0
o0
oo
1]
oo
o0
o0
o0
-1
o0

Fig. 1.2 A few neural network chips. The ETANN (top right) and ZISC036 (middle and lower
middle) are mentioned in the text and plotted in Fig. 1.1

1.1 Introduction

One of the processes occurs in the visual cortex, which is the part of the brain that
receives information from the eye. At this point in the system the eye has already
processed and significantly changed the image. The visual cortex converts the resul-
tant eye image into a stream of pulses. Synthetic models of this portion of the brain
for small mammals have been developed and successfully applied to many image
processing applications.

The mammalian visual system is considerably more elaborate than simply
processing an input image with a set of inner products. Many operations are per-
formed before decisions are reached as to the content of the image. Neuro-science
does not yet understand all of processes. However, sometimes the visual system is
fooled, in particular where we expect colour and shades to follow some rules and
patterns. There are very many examples of this, (e.g. the shadow of a cylinder on
a board of chess shown in Fig. 1.3). Most people would say that the grey scale of
square “A” is darker than that of square “B”, but even the simplest Paint program of
a von Neumann computer would say that they are exactly the same.

4 1 Biological Models

Edward H. Adelson

Fig. 1.3 The shadow of a cylinder on a checkerboard. Is square a really darker than square b?

Another example is the case of hiding a person from a searching adversary. Hiding
in an open field may offer advantages over hiding in a ditch in that such a place is
unexpected and away from visual edges which are natural attractors in human vision
(see Sect.5.4). “What you see is not always the truth.” An excellent example is the
awareness test [4] in which the viewer is asked to count the number of passes of
a ball between a set of players wearing a particular jersey. In this video a dancer
dressed as a bear moves across the frame of view and most viewers completely miss
his presence. 80 % or more of our (university) students did not see the bear. Human
processing of information is clearly not based solely on the visual input but also
highly affected by other processes in the brain.

This chapter will mention a few of the important operations to provide a glimpse of
the complexity of the processes. It soon becomes clear that the mammalian system is
far more complicated than the usual computer algorithms used in image recognition.
It is almost silly to assume that such simple operations can match the performance
of the biological system. Of course, image input is performed through the eyes.
Receptors within the retina at the back of the eye are not evenly distributed nor are
they all sensitive to the same optical information. Some receptors are more sensitive
to motion, colour, or intensity. Furthermore, the receptors are interconnected. When
one receptor receives optical information it alters the behaviour of other surrounding
receptors. A mathematical operation is thus performed on the image before it even
leaves the eye. The eye also receives feedback information. We humans do not stare
at images, we foveate. Our centre of attention moves about portions of the image as
we gather clues as to the content. Furthermore, feedback information also alters the
output of the receptors.

After the image information leaves the eye it is received by the visual cortex. Here
the information is further analysed by the brain. The investigation of the visual cortex
of the cat [26] and the guinea pig [93] have been the foundation of the digital models

http://dx.doi.org/10.1007/978-3-642-36877-6_5

1.1 Introduction 5

used in this text. Although these models are a big step in emulating the mammalian
visual system, they are still very simplified models of a very complicated system.
Intensive research continues to understand fully the processing. However, much can
still be implemented or applied already today.

1.2 Biological Foundation

While there are discussions as to the actual cortex mechanisms, the products of
these discussions are quite useful and applicable to many fields. In other words, the
algorithms being presented as cortical models are quite useful regardless of their
accuracy in modelling the cortex. Following this brief introduction to the primate
cortical system, the rest of this book will be concerned with applying cortical models
and not with the actual mechanisms of the visual cortex.

In spite of its enormous complexity, two basic hierarchical pathways can model
the visual cortex system: the pavocellular one and the mangnocellular one, process-
ing (mainly) colour information and form/motion, respectively. Figure 1.4 shows a
model of these two pathways. The retina has luminance and colour detectors which
interpret images and pre-process them before conveying the information to the visual
cortex. The lateral geniculate nucleus, LGN, separates the image into components
that include luminance, contrast, frequency, etc. before information is sent to the
visual cortex (labelled V in Fig. 1.4).

The cortical visual areas are labelled V1-V5 in Fig. 1.4. V1 represents the striate
visual cortex and is believed to contain the most detailed and least processed image.

Vi

Layer2 &3
EBlob

Lo /U
N ™

Layer2 83
\ Interblob

INA

V1
LGN pdait

e '@
ui)

\9_?,7@

Fig.1.4 A model of the visual system. The abbreviations are explained in the text. Only feedforward
signals are shown

6 1 Biological Models

V1 V2
Layer2 83 Thinstrips
Blob
LGN p— [—
G\ (=)
Luminance Contras!
i Vi V2
Interstrips
LGN
Magno
Fina Gradsed Datd
Tarporsl Fragancy

Fig. 1.5 Continuation of the model with the reverse connections displayed

Area V2 contains a visual map that is less detailed and pre-processed than area V1.
Areas V3-V5 can be viewed as speciality areas and process only selective information
such as, colour/form, static form and motion, respectively. Information between the
areas flows in both directions, although only the feedforward signals are shown in
Fig. 1.4. The processing area spanned by each neuron increases as you move to the
right in Fig. 1.4, (i.e., a single neuron in V3 processes a larger part of the input image
than a single neuron in V1). The re-entrant connections from the visual areas are
not restricted to the areas that supply its input. It is suggested that this may resolve
conflict between areas that have the same input but different capabilities.

The backward connections shown in Fig. 1.5 are not restricted to the areas from
which the feedforward signals came. Indeed, the most probable reason for this is that
the signals are used to resolve conflicts between areas and to set priorities on the
most important paths and processings [120, 121].

Much is to be learned from how the visual cortex processes information, adapts
to both the actual and feedback information for intelligent processing. However, a
smart sensor will probably never look like the visual cortex system, but only use a
few of its basic features.

1.3 Hodgkin-Huxley

Research into mammalian cortical models received its first major thrust about half
a century ago with the work of Hodgkin and Huxley [39]. Their model is a mathe-
matical (set of nonlinear ordinary differential equations) that describes how action

1.3 Hodgkin-Huxley 7

potentials in neurons are initiated and propagated. The basic components of the
model are current sources, conductances and batteries. These are used in the model
to represent the biophysical characteristic of cell membranes. Their system describes
the membrane potentials (E£) using the equation:

[= m*hGny (E — Eng) +n* + Gg (E — Ex) + G (E —E), (L)

where [is the ionic current across the membrane, m is the probability that an open
channel has been produced, G is conductance (for sodium, potassium, and leakage), £
is the total potential and a subscripted E is the potential for the different constituents.
The probability term was described by,

dm
i a, (1 —m) — b,m, (1.2)

where a,, is the rate for a particle not opening a gate and b,, is the rate for activating
a gate. Both a,, and b, are dependent upon E and have different forms for sodium
and potassium.

The importance to cortical modelling is that the neurons are now described
as a differential equation. The current is dependent upon the rate changes of
the different chemical elements. Neuron activity is represented as oscillatory and
dynamic processes. Although the original Hodgkin-Huxley model is regarded as
one of the great achievements in biophysics, modern Hodgkin-Huxley-type models
have been extended to include additional ion channel populations as well as highly
complex dendrite and axon structures.

1.4 Fitzhugh-Nagumo

A mathematical advance published a few years later has become known as the
Fitzhugh-Nagumo model [29, 75] in which the neuron behaviour is described as
a van der Pol oscillator. This model is described in many forms but each form is
essentially the same as it describes a coupled oscillator for each neuron. One exam-
ple [61] describes the interaction of an excitation x and y using the expressions,

e—=—-y—gkx —1, (1.3)

and
— =x — by, (1.4)

where g(x) = x(x —a)(x — 1),0 < a < 1,1 is the input current, and ¢ < 1.
This coupled oscillator model will be the foundation of the many models that would
follow.

8 1 Biological Models

f\ f\ /\ A A
INRWEN HH
JALALATALA
TAVAVAYAY AV

L a 7 3].619 53331 3?4343 49525

i

4.5

Fig. 1.6 An oscillatory system described through the Fitzhugh-Nagumo equations with the x-axis
representing time and the y-axis representing excitations of x and y

15

1.4 A ===

1:2 I\
!"\ A

Y I RN ——
ol
ML

L

1 7 10 13 15 19 22 25 23 31 20 37 4] 43 &5 43 52 55

Fig. 1.7 A steady state system described through the Fitzhugh-Nagumo equations with the x-axis
representing time and the y-axis representing excitations of x and y

These equations describe a simple coupled system and very simple simulations
can present different characteristics of the system. By using (¢ = 0.3, a = 0.3,

= 0.3, and / = 1) it is possible to get an oscillatory behaviour as shown in
Fig. 1.6. By changing a parameter such as b it is possible to generate different types
of behaviour. For example, setting b = 0.6 will create a steady state which is shown
in Fig. 1.7 where both x and y reach a constant value.

The importance of the Fitzhugh-Nagumo system is that it describes the neurons
in a manner that will be repeated in many different biological models. Each neuron
is two coupled oscillators that are connected to other neurons.

1.5 Eckhorn Model 9

1.5 Eckhorn Model

In 1989, Eckhorn et al. [26] introduced a neural model to emulate the cat visual cortex.
Shortly, thereafter, Johnson [46] extrapolated the model to a digital form creating the
Pulse-Coupled Neural Network (PCNN). This was the seminal work in transferring
the cortical model into the field of digital image processing and recognition. Since
then the PCNN has been expanded into a variety of applications in image processing,
image segmentation, feature generation, face extraction, motion detection, region
growing, noise reduction and image signatures just to name a few. Several of these
applications will be discussed in the subsequent chapters.

One of the innovations that the Eckhorn model brought to image processing was
a system that relied solely on local connections. Figure 1.8 depicts a neuron which
contains two types of input (linking and feeding) which are combined to create the
neuron’s potential or membrane voltage U,,. This potential is then compared to a
dynamic threshold ® to produce the neuron’s output.

The Eckhorn model is expressed by the following equations,

Uni(t) = Fr(0) [1 + Ly (1], (1.5)
N
Fi () = z I:‘/VZ,‘YI'(I) + Sk (@) +Nk(t)] IV, 7% 1), (1.6)
i=1
N
Ln=> [w,lin(t) +Nk(t)] IV, 7., 1), (1.7)
i=1
1 Unik(®) > Ok()
Yi(®) = [O Otherwise ’ (18
where, in general
X)) =ZO) I, 7,1), (1.9)
is
X[n] = X[n — 1]e”"™ + vZ[n]. (1.10)
Fig. 1.8 The Eckhorn-type Linking Neuron
neuron -

Potential
oenza0U§UT> .

INPUT

Feeding Neuron

10 1 Biological Models

Here N is the number of neurons, w is the synaptic weights, Y is the binary outputs,
and S is the external stimulus. Typical value ranges are 7, = [10, 15], 7; = [0.1, 1.0],
s = [5,7], V, = 0.5, V; = [5,30], Vi = [50,70], and ®, = [0.5, 1.8]. This
model represents neural activity as coupled oscillators with two diffusion terms.
Furthermore, there is now a second order (1.5) and a non-linear term (1.8) involved.

1.6 Rybak Model

Independently, Rybak [93] studied the visual cortex of the guinea pig and found simi-
lar neural interactions. While Rybak’s equations differ from Eckhorn’s the behaviour
of the neurons is quite similar. Rybak’s neuron has two compartments X and Z. These
interact with the stimulus, S, as,
X5 =F @ |ISill, (1.11)
Xj; =F' ®|Z;1|, (1.12)

and,

1
z,jzf[ZXg—(TpH)X{j—h], (1.13)

where FS are local On-Centre/Off-Surround connections, F! are local directional
connections, 7 is the time constant and / is a global inhibitor. In the cortex there are
several such networks which work on the input at differing resolutions and differing
F!. The non-linear threshold function is denoted by f{}.

The neural connections are quite different from the Eckhorn model in which the
strength of the neural connections was inversely proportional to the physical distance
between the neurons. In image processing terms this is a smoothing operation which
would tend to blur the image. Rybak’s model uses on-centre/off-centre connections in
which there are positive connections neighbouring neurons and negative connections
between neurons that are physically farther apart. In image processing terms this type
of connections would enhance edges. This is very different from the Eckhorn model
in which the smoothing operation would destroy edge information.

1.7 Parodi Model

There is still great disagreement as to the exact model of the visual cortex. Parodi
[80] presented alternatives to the Eckhorn model. The arguments against the Eckhorn
model included the lack of synchronisation of neural firings, the undesired similar

1.7 Parodi Model 11

outputs for both moving and stationary targets and that neural modulations in the
linking fields were measured considerably higher than the Eckhorn model allowed.

Parodi presented an alternative model, which included delays along the synaptic
connections and would require that the neurons be occasionally reset en masse.
Parodi’s system followed these equations,

oV, y. 0 Vx,y. 1
T

5 =DV*V(x,y,1) + h(x, v, 1), (1.14)

where V; is the potential for the ith neuron, D is the diffusion (D = a*>/CR,), R. is
the neural coupling resistance, t = CR;, R; is the leakage resistance, and Rc_l < Rl_1 s
and

hi(t) = D wyd(t —1* — 7). (1.15)

J

1.8 Summary

This book will focus on two digital models the PCNN and the ICM and their appli-
cations in the rest of the chapters. The PCNN is based on the Eckhorn model with
the only modification being to unify the communication times between neurons to a
discrete unit of time. The Eckhorn model is a set of coupled differential equations
describing a multi-faceted neuron. This model has its foundation in earlier models of
Hodgkin-Huxley and Fitzhugh-Nagumo. The Eckhorn model is not the only visual
cortex model that exists and two others (Rybak and Parodi) have also been reviewed
but this is not an exhaustive list of the proposed models.

The models of Eckhorn, Rybak and Parodi do have common mathematical foun-
dations which are in congruence with the works from the previous decades. The ICM
was developed in an attempt to capture common elements of these biological models
and to reduce the components that are unique to each. Unlike the PCNN the ICM is
a purely mathematical conjecture and not an attempt to replicate the visual cortex.
Instead its purpose is to create a useful image processing engine. Both the PCNN
and ICM will be reviewed in detail in Chap.4. The ensuing chapters apply these two
models to a variety of applications.

In several applications Python scripts are provided so that the reader can replicate
the results and then pursue other avenues of related research. Before the PCNN
and ICM are reviewed two chapters are presented to familiarize the reader with the
Python language in support of the scripts that are provided throughout the rest of the
chapters.

http://dx.doi.org/10.1007/978-3-642-36877-6_4

Chapter 2
Programming in Python

Implementation of digital neural models is straightforward and can be easily realised
in modern scripting languages. For this text, examples will be presented with
accompanying Python scripts so that readers can replicate the presented results.
Furthermore, readers will also gain a small set of Python tools for the PCNN and
ICM. There are several scripting languages from which to choose, but Python was
selected since it exhibits several concurrent advantages:

Free,

Language-like scripting,

Matrix/vectors operators (using NumPy),

Easy access to images (using PIL),

Platform independent, and

Popularity gaining ground in many science fields.

This chapter introduces readers to simple Python scripting that will be used in
other chapters. This is not a comprehensive Python instruction manual and readers
that are familiar with Python scripting may wish to bypass this chapter. The provided
scripts may not be the most efficient scripting in that some processes which could
be performed in a single line are presented in a few lines. The reason for this is that
the scripts are intended to be viewed by readers with a variety of skill levels and the
scripts need to be easily understood rather than achieving the utmost compactness.

2.1 Environment

In its native form Python is run in a command line window or shell. However,
there are several other user interfaces that provide more convenience and are easier
to use. Python installations for PC users come with the IDLE environment which
provides a useful editor and many shortcut keys. Even though this is one of the
simpler environments it is an excellent environment to use for the projects in this

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 13
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_2, © Springer-Verlag Berlin Heidelberg 2013

14 2 Programming in Python

book. There are many other development environments that are available to use [2]
that are not used here.

This text will use examples in Python 2.7 (completely compatible with 2.6) and
will not present code for Python 3.x. At the time of writing the necessary tools
used here are not completely available for 3.x. Furthermore, current installations of
LINUX still use 2.7.

2.1.1 Command Interface

When Python is started, a command line interface is created with a prompt preceded
by >>>. Code 2.1 shows simple commands to perform basic mathematical
operations.

Code 2.1 Python performing simple calculations.

>>> 5 + 6
11
>>> 4 - 1
3
>>> 8 * 4
24
>>> 8/4
2

2.1.2 IDLE

The IDLE interface provides a colour coded environment that also comes with an
editor and a debugger. The IDLE interface also has hotkeys that make editing quick.
For example the Ctl-p and Ctl-n keys retype previous and subsequent commands at
the command line. When the user types a letter (or letters) and then uses Ctl-p the
previous commands starting with those letters are placed at the command line. The
IDLE environment also works like an editor so it is possible to copy, cut, paste, and
save the text that is in the command window. Thus, during code development it is
easy to copy commands to and from the editor.

2.1.3 Establishing a Working Environment
The IDLE environment has a major inconvenience in that it starts up in the

C:\python27 directory (for MS-Windows). This means that if the user saves a
file then it will be stored in this directory. The problem is that vital Python files are

2.1 Environment 15

also stored there. At best the user mixes their files with the Python files and at worst
the user can erase vital files. IDLE users should immediately change to a working
directory so that their files will not be confused with Python files. Users should
also create a directory that will contain their Python code files that is separate from
directories that contain data files.

Code 2.2 shows an example of the first steps that should be used in order to
establish a proper working environment. In this case, prior to starting Python, the
user created a directory named C : \ \MyWork and a subdirectory that will contain the
Python codes named C : \ \MyWork\\pysrc. The first command loads two modules
that are used to establish the environment (more on modules in Sect. 2.9). The second
command moves the current working directory to the new directory, and the third
command sets up the path so that Python will look in the user’s directory when
searching for Python files.

Code 2.2 Setting up the Python environment for IDLE users. Directory names will
be unique for each user.

>>> import os, sys
>>> os.chdir("C:/MyDir")
>>> gys.path.append("pysrc")

The second command uses a forward slash to separate the C drive from the
directory. Either a single forward slash (/) or two backslashes (\\) can be used
to separate directory names. The use of a single backslash will cause problems as
there are ASCII codes such as \n which are used to represent a new line character.
So, if the user uses a single backslash for a directory that starts with the letter n then
it will be interpreted as a new line character and not the name of the directory.

2.2 Data Types and Simple Math

As seen in Code 2.1 Python can be used as a simple calculator. The commands are
similar to those of other languages. Python has data types similar to other languages
such as integer, float, and double. It also has a complex data type with the imaginary
part being represented by j as in 5 + 73j. There are other data types available
but for computations the integer, float, and complex numbers will be the only ones
used here.

The modulus operator is denoted by the percent sign and the divmod function
performs by the integer division and modulus function as seen in Code 2.3. When
an integer is divided by another integer the result will be an integer even if there is
a remainder.

16 2 Programming in Python

Code 2.3 Division in Python.

>>> 9/2 # integer division

4

>>> 9.0/2 # floating point division
4.5

>>> 9 \% 2 # modulus

1

>>> divmod(9,2)

(4, 1)

The conversion of an integer to a floating point number can be accomplished by
a type conversion or mathematics involving a floating point number. A couple of
conversions are shown in Lines 1 and 2 of Code 2.4. The results of computations
return the result as whichever data type was superior in the computation. In other
words, if a float and a complex number are added then the result will be a complex
number. To convert data to an inferior type a typecasting command is used as shown
in Line 3. Of course, using Python solely as a calculator misses almost all of its
potential.

Code 2.4 Conversion of integers to floats.

>>> a = float(5)
>>> b =5+ 0.0
>>> ¢ = int(5.6)

2.3 Tuples, Lists, and Dictionaries

There are data collections which are unique to Python that are extremely useful.
These are tuples, lists, sets, and dictionaries. These are tools that can collect data of
a variety of data types to keep it organized. The closest equivalent in the C language
isa struct.

2.3.1 Tuples

A tuple is a collection of data of any type and is denoted by parenthesis. In Line 8 of
Code 2.3 the divmod function returned two integers inside of a tuple. The data inside
of a tuple does not have to be of the same type. Code 2.5 shows the creation of a tuple

2.3 Tuples, Lists, and Dictionaries 17

with four elements each of a different data type. The next two commands demonstrate
the retrieval of elements from the tuple. There are more advanced methods of data
retrieval in Sect.2.4.

Code 2.5 A simple tuple demonstration.

>>> mytuple = (4, 5.6, ’'a string’, 7+93j)
>>> mytuple[0]

4

>>> mytuple[1]

5.6

A tuple can contain any type of data including other tuples, sets, lists, dictionaries,
objects, images, etc. For image processing, tuples are quite useful for containing
coordinates or keeping the data organized. As an example, if a program used several
images and also needed to maintain their file names then it would be prudent to create
a tuple for each image that contained the file name and the image data.

2.3.2 Lists

A list is similar to a tuple in that it can contain multiple types of data, but a list can be
altered. Code 2.6 shows the creation of a list which is delineated with square brackets
instead of parenthesis. The append function adds an element onto the end of the
list. The insert function places an element in the specified location. In Line 7,
mytuple was inserted into the list. Thus the my1ist [1] returned the entire tuple.
The command mylist [1] [2] returned the string that was inside of the tuple.

Code 2.6 A simple list demonstration.

>>> mylist = [4, ’'another string’]
>>> mylist[1]

‘another string’

>>> mylist.append(-12)

>>> mylist

[4, 'another string’, -12]

>>> mylist.insert(l, mytuple)

>>> mylist

[4, (4, 5.6, ’'a string’, (7+93j)), ’'another string’, -12]
>>> mylist[1]
(4, 5.6, 'a string’, (7+493))

>>> mylist[1][2]
‘a string’

18 2 Programming in Python

Information can also be removed from a list. The function remove (Line 3 in
Code 2.7) deletes the first occurrence of a data entry from the list. The function pop
(Line 6 in Code 2.7) deletes data according to the index number. The remove (4)
deletes the first occurrence of the integer 4. The pop (2) will remove the item that
isatmylist[2] and put it into the variable rcv.

Code 2.7 The use of remove and pop.

>>> mylist

[4, (4, 5.6, ’'a string’, (7+9j)), ’'another string’, -12]
>>> mylist.remove(4)
>>> mylist

[(4, 5.6, 'a string’, (
>>> rcv = mylist.pop(2
>>> mylist

[(4, 5.6, 'a string’, (7+93)), ’‘another string’]

7+93)), ’another string’, -12]
)

Other commands that can be used with alistis to sort thedata (mylist.sort ()),
count the number of times that a particular data d occurs (mylist.count (d)),
and reverse the order of the elements in the list (mylist.reverse ()).

2.3.3 Dictionaries

A list can contain any type of items and in any arrangement. However, for large
projects searching a list can be slow. A much faster tool to employ is a dictionary. A
dictionary is comparable to a hash used in other languages.

Each entry in a dictionary is comprised of two components: the key and the data.
The key can be of any data type and is the item that is searched while the data, which
can also be of any data type, is the item that is retrieved. A dictionary is delineated
by curly braces as in Line 1 of Code 2.8. Lines 2—4 create entries into the dictionary
and demonstrate that both the key and data can be composed of differing data types.

There are many different functions that accompany a dictionary but a few are
commonly used here. In Code 2.9 the function keys returns a list of all of the keys
that are in the dictionary. The function has_key returns a boolean value indicating
if the dictionary contains a particular key.

The dictionary may rearrange the order in which data is stored and thus it is
not feasible to retrieve the first item from the dictionary as in the pop function for
a list.

2.3 Tuples, Lists, and Dictionaries 19

Code 2.8 A simple dictionary example.

>>> dct = { } # empty dictionary
>>> dct[0] = 'more string’

>>> dct[’a’] = [5, ’'string again’]
>>> dct[5.6] = 7.5

>>>

>>> dct[0]
‘more string’
>>> dct[5.6]
7.5

Code 2.9 The key commands.

>>> dct.keys ()

[0, "a’, 5.6]

>>> dct.has_key(1)
False

2.4 Slicing

The examples used in tuples and lists access data according to an index. Python is
similar to C or Java in that the indexing starts with 0. Code 2.10 constructs a simple
list and accesses the first and second items. A negative index accesses items from
the end of the list and thus a—1 retrieves that last item.

Code 2.10 Simple indices.

>>> abet = ['a’,'b’,’'c’,’d’",’e’,"£",’g",’h","1","3"]
>>> abet[0]

rar

>>> abet[1]

Ibl

>>> abet[-1]

>>> abet[-2]
Ii!

Multiple items can be retrieved by indicating the first and last index to be accessed.
In Python the first index is included and the second index is excluded. This is shown
in Code 2.11 where Line 1 retrieves items 1, 2, 3, 4, and 5 but not 6—it is excluded.
Lines 3 and 5 show that the if the first or last index are omitted then it automatically
assumes the beginning or the end of the list is used. Line 7 uses a negative index to
retrieve the last four items of the list.

20 2 Programming in Python

Code 2.11 Simple slicing.

>>> abet[1:6]

['b", 'c’, 'd", 'e", "f’]

>>> abet[:6]

["a’, 'b", 'c’, 'd", 'e’, "f’]
>>> abet[6:]

['g’, 'h", 71", "3"]
>>> abet[-4:]
[Igl, Ihl, Iil, Ijl]

The examples in Code 2.12 use a third integer to indicate that indexes can be
skipped. In Line 1 every other element beginning with 0 and ending with 10 is
accessed. Line 3 is the same except the first and last index are not needed. Line 5
uses the entire list but retrieves the items with a step of —1. In other words, the items
are retrieved in reverse order.

Code 2.12 Slicing in steps.

>>> abet[0:10:2]

[Ia!, Icll Iell IgI, !il]

>>> abet[::2]

[Ia!, Icrl Iell Igl, !il]

>>> abet[::-1]

[Ij!, Ii!l Ihl, Igl, !fl, !ell Id!, IC!, Ib!l IaIJ

These slicing techniques are used for strings, lists, tuples, sets, and arrays. How-
ever, in the case of arrays, slicing can even be more advanced as shown in Sect. 3.1.9.

2.5 Strings

Strings are quite easy to manipulate in Python. Unlike other languages Python does
not differentiate between a character and a string. Strings are created by surrounding
text with either a set of single quotes or a set of double quotes. There is no difference
between the two but they can not be mixed. Code 2.13 shows the creation of a few
strings and the concatenation of two strings using the plus sign (Line 3).

Characters can be retrieved from a string through slicing, but the characters in a
string can not be altered. Code 2.14 shows that it is possible to extract characters
using slices but not possible to alter a character in that manner.

http://dx.doi.org/10.1007/978-3-642-36877-6_3

2.5 Strings 21

Code 2.13 Creating simple strings.

>>> mystr = ‘this is a string’
>>> bstr = " and another"

>>> mystr+bstr

‘this is a string and another’

Code 2.14 Accessing characters in a string.

>>> mystr[:4]
‘this’
>>> mystr[4] = 'A’

Traceback (most recent call last):
File "<pyshell#67>", line 1, in <module>
mystr[4] = 'A’
TypeError: ’'str’ object does not support item assignment

2.5.1 String Functions

A string has several functions of which only a few are reviewed here. Code 2.15 shows
examples of locating specific substrings within a string. In Line 1 the first occurrence
of s inmystr is located. The function find returns the number 3 which indicates
that the first occurrence is at mystr [3]. In Line 3 a second argument is added
which indicates that the search begins at position 4. In Line 5 a third argument is
added to indicate that the search begins at position 4 and ends before position 6.
In mystr there is s between these two positions and therefore the function returns
a—1.

The rf£ind function is a reverse find that begins the search from the end of the
string. With only a single argument this function finds the last occurrence of the
substring. The count function returns the number of occurrences of the substring.
The index function works similar to the £ind function except that if the substring
is not found, Python returns an error message instead of a—1.

Two more functions are shown in Code 2.16. The upper function converts all
characters to upper case. Not shown is the function 1 owexr which converts the string
to lower case. The replace function replaces all occurrences of the first substring
with the second substring.

In Code 2.17 a string is split into components and then combined to make a long
string. In line 1 the split function breaks the string up into several substrings
wherever there is a white space character (space, tab, newline, etc.). The function
returns a list of strings and the white space characters are absent. In line 3 the function
receives an argument to indicate that the string is now to be separated wherever there
is an s. Again the result is a list of substrings which now have the white spaces but
not the splitting substring. A list of strings can be combined back into a single string

22 2 Programming in Python

Code 2.15 Finding characters in a string.

>>> mystr.find(‘s’)
3
>>> mystr.find(‘s’,4)

>>> mystr.find(‘s’,4, 6)
-1

>>> mystr.rfind(’'s’)

10

>>> mystr.count(’'s’)

>>> mystr.index(’'s’)

>>> mystr.index(’'s’,4,6)

Traceback (most recent call last):

File "<pyshell#76>", line 1, in <module>

mystr.index('s’,4,6)
ValueError: substring not found

Code 2.16 Converting characters to upper case and replacing characters.

>>> mystr.upper ()

"THIS IS A STRING’

>>> mystr.replace(’s’, 'S’)
‘this$ 1i$ a $String’

using the join function. The leading string is placed in between each string in the
list as shown in lines 6 and 7. It is possible to join all strings in the list without any
new characters as shown in lines 8 and 9.

Code 2.17 Splitting and joining strings.

>>> mystr.split()

["this’, 'is’, 'a’, ’'string’]
>>> mystr.split(’s’)
["thi’ i, ' a ', 'tring’]

>>> z = mystr.split()
>>> 'R’.join(z)
‘thisRisRaRstring’
>>> '’ _join(z)
‘thisisastring’

2.5 Strings 23

2.5.2 Type Casting

Strings can be converted to other data types. In Code 2.18 the string is converted to a
list, a tuple, and a set. In the latter case the set does not keep duplicates of elements.
The conversion of a string to an integer is performed in Line 9. Similarly, a string
can be converted to a float, double, long, etc. To convert a number into a string the
str function is employed as shown in Line 11.

2.6 Control

Like other languages Python controls the flow of a program using loops. Before
these are explained it is first necessary to discuss tabbing in Python. In languages
like C and Java an if statement contains commands placed between curly braces,
and languages like Fortran, Pascal, and Matlab use BEGIN and END statements.
Python uses neither but instead uses indents. Code 2.19 shows a simple if-else
statement. Line 2 ends with a colon and the next line is indented which indicates that
this line will be executed if the if statement is True. In Code 2.20 Lines 2, 3, and
4 will be executed if the condition is True.

Editors that are dedicated to Python will generally manage the indentations. In the
IDLE editor if a line ends with a colon then the next line is automatically indented.
Care should be taken, though, if a program is written using different editors. Some
editors will indent with space characters and others will indent with tab characters.
While these appear the same in the editor the Python interpretor will know the
difference and the program will not work.

Code 2.18 Converting strings to other data types.

>>> list(mystr)
[ltl, lhl, ,i’, ’S,, ’ ,/ Ii’, IS’, 7 I’ lal, ’ ,/ ’S’, Itl,
/rl /il In/ Ig/]
' , ,
>>> tuple(mystr)
(/tl’ /hl, Ii/l IS/, ’ I, Iil, /Sl, ’ r’ /all ’ /' IS/, Itl,
lrl lil lnl Igl)
, , ,
>>> get(mystr)
Set(['a', ’ ,/ Igl, Ij_’, Ih’, 'I'l', ,SI, ,r,, Itl])
>>> int(55’)
55
>>> str(67)
l6’7l

Code 2.21 shows a compound 1 f statement. Key words such as and, or and
not are used to create the logic. Parentheses are not required, but they can be used
to further manage the logic. Also in Code 2.21 Line 3 shows the elif command
which is else-if.

24 2 Programming in Python

Code 2.19 A simple if statement.

>>> a =5
>>> if a > 3:
print ‘Yes’
else:
print ‘No’

Yes

Code 2.20 A simple i f statement with multiple commands.

>>> 1if a > 3:
print ‘Yes’
b=a+5
print b

else:
print ’‘No’

Yes
10

Code 2.21 A compound if statement.

>>> if a < 3 and al!=5:
print ’‘Yes’
elif a==5:
print ‘It is 5’

It is 5

The while loop is managed similarly to the if loop as shown in 2.22. The 1 £
and while loops behave similarly to other languages such as C and Java. The for
loop behaves differently from the other languages. In the for command the index
becomes elements that are contained in a list. Recall mylist from Code 2.7. In
Code 2.23 the index i sequentially becomes each element in the list and the single
command inside of the loop prints the value of i upon each iteration of the loop. In
this case, the index can be a different data type in each iteration.

In Code 2.24 the range function is used to create a list of integers [0, 1,2, 3,
4,5] and the index becomes each of these in each iteration. The comma in the
print statement prevents a newline character from being printed. The range
function can receive two arguments which indicate where the list should start and
stop, or it can receive three arguments which indicate the start, stop, and step integers.

2.6 Control 25

Code 2.22 A while statement.

>>> a = 9
>>> while a>3:
print a
a -=1 # decrement a
9
8
7
6
5
4

Code 2.23 A for loop.

>>> for i1 in mylist:
print i

(4, 5.6, 'a string’, (7+493))
another string

Code 2.24 A traditional for loop.

>>> for 1 in range(6):
print i,

012345

Like other languages the break command can be used inside of a loop to
terminate the loop prematurely, and the continue statement can be used to forgo
subsequent statements in the loop and continue on to the next iteration.

2.7 Input and Output
Writing and reading text and data files in Python is quite easy and straightforward.

Like all languages there are three steps to reading (or writing) a file. The file is
opened, the data is read (or written), and the file is closed.

2.7.1 Basic Files

Lines 2—4 in Code 2.25 show the three steps in writing to a text file, and likewise
Lines 6-8 read in the file. In Line 6 the file is opened without the *w’ option and

26 2 Programming in Python

thus it is opened for reading. Line 10 performs the same steps as lines 68 but in a
single command.

Code 2.25 Writing and reading a text file.

writing a file

>>> fp = file("mytext.txt", 'w’)

>>> fp.write('This is the stuff that is put into the file.’)
>>> fp.close()

reading a file

>>> fp = file("mytext.txt")

>>> myst = fp.read()

>>> fp.close()

reading in a single line

>>> myst = file('mytext.txt’).read()

Binary data files can be written and read in Python by using 'wb’ or ' rb’ asthe
second argument in the £ile command. Without the b the files will be considered
as text files and the binary codes for newline characters will be interpreted as such
instead of as a binary number.

2.7.2 Pickle

In cases where complicated data types (tuples, lists, etc.) are to be written or read
from the file it is convenient to use the pickle module. (Modules are discussed in
Sect.2.9.) The pickler can write/read any type of data in a single line. In Code 2.26
Lines 2—4 open a file and store all contents of mylist. This data is stored as a
text file and the contents can easily be seen in any text editor. Pickling can also
be performed on binary files, however, binary files are not compatible for different
operating systems. In other words, a binary file pickled on a Mac is not readable on
a PC.

Code 2.26 Pickling.

>>> import pickle

>>> fp = open('myfile.pickle’, 'w’)
>>> pickle.dump(mylist, fp)

>>> fp.close()

reading

>>> fp = open('‘myfile.pickle’)

>>> alist = pickle.load(fp)

>>> fp.close()

2.8 Functions 27

2.8 Functions

A function in Python is similar to functions, subroutines, or procedures in other
languages. It is a set of instructions that can be executed by a single command.
Code 2.27 defines a function named MyFun. The keyword de f begins the definition
and the arguments received by the function are enclosed in parenthesis. In this case
a single argument is received and printed out in Line 3. Lines 5 and 8 show two
different calls to this function and their results.

Code 2.27 A simple function.

>>> def MyFun(a):
print ’‘Inside the function’
print a

>>> MyFun(12)

Inside the function

12

>>> MyFun(’‘textual information’)
Inside the function

textual information

The function MyFun2 in Code 2.28 receives two arguments and returns two
arguments. In actuality the function returns a single item which is a tuple and within
the tuple there are, in this case, two integers. In Line 9 the tuple is received by a tuple
with the variables m and n. These become the individual elements of the tuple and
so this step is equivalent to the function returning two integers.

Code 2.28 A function returning data.

>>> def MyFun2(a, b):
print ‘Inside the function’
return a+1,b-1

>>> a = MyFun2(5, 7)
Inside the function

>>> a

(6, 6)

>>> m, n = MyFun2(10, -1)
Inside the function

>>> m

11

>>> n

-2

28 2 Programming in Python

Functions can also have default arguments. These are arguments the have prede-
fined values that can be altered if the user desires. Default arguments have already
been used in functions such as string. find and range. In Code 2.29 a function
is created that receives four arguments but two of them are predefined. In Line 4
the function is called with only 2 arguments and thus ¢ and d assume their default
values. In Line 6 a third argument is used which redefines c. In Line 8 all arguments
are defined. In Line 10 the c keeps the default value where d is redefined. Default
arguments are extermely convienient but do have one caveat that they must be the
last items in the function’s argument list.

Code 2.29 Default arguments.

>>> def MyFun3(a, b, c=12, d=0):
print a,b,c,d

>>> MyFun3(1,2)
1212 0

>>> MyFun3(1,2,3)
1230

>>> MyFun3(1,2,3,4)
1234

>>> MyFun3(1,2,d=5)
1212 5

2.9 Modules

A module is merely a text file that contains Python instructions. These can be
commands, functions, or objects (see Sect.2.10). Lines 2 and 3 in Code 2.30 define
a function and this text is stored in a file named “mymodule.py”. Line 6 is run in the
command window and this loads the module into Python using the import com-
mand. This assumes that sys . path is set correctly (see Sect.2.1.3). The function is
called in Line 7 by module.functionName. It is possible to import a module, modify
it and then reload it. In this case the >>> reload mymodule command is called
to refresh contents.

It can be tedious to write the module name each time a function or variable from
a module is used. A second method of importing a module is shown in Code 2.31.
Using from—import it is no longer necessary to use the module name to call the
function. There are, however, two caveats to this method. The first is that a module
can not be reloaded. The second is that it is possible to erase a previously defined
function or variable. If the function MyFun4 had been previously defined then Line
1 would have eliminated the previous definition.

2.9 Modules 29

Code 2.30 Creating a module.

contents of a file named: mymodule.py
def MyFun4d(a):
print a + 6

commands

>>> import mymodule

>>> mymodule.MyFund (5)
11

Code 2.31 From: import.

>>> from mymodule import MyFund
>>> MyFund (5)
11

A third method of accessing functions and definitionsin afileistouse execfile,
which is a useful command that meets an unfortunate demise in Python 3.x. Techni-
cally, this is not loading a module and does not use sy's . path. Rather, this command
is similar to just typing in all of the lines in a file. Code 2.32 shows the loading of a
python file requiring the path and full file name. Modifications to mymodule.py can
be reloaded by running line 1 again. This command is useful when developing codes
because it is easy to reload.

Code 2.32 Using execfile.

>>> execfile(’'pysrc/mymodule.py’)
>>> MyFund (5)
11

There will be two types of code presentations in the subsequent chapters. Like
Code 2.32 commands that are to be entered directly into the command shell are
preceded by >>>. The second type is to show what is contained within a module.
An example of this is shown in Code 4.1 in which the name of the module is located
in Line 1. These commands are not preceded by >>> and are to be imported or
accessed through execfile. There are some like Code 6.10 which show both the
content within a module and a few commands for the shell. These are paired such
that the latter commands demonstrate how to use the function and achieve the shown
results.

30 2 Programming in Python
2.10 Object Oriented Programming

Python is technically an object-oriented language although such programming can
appear transparent to the user. An object (or a class) can contain variables and func-
tions. A good example of this is the string class (see Sect. 2.5). In this case the variable
was the character data and the functions extracted information or modified the data.
Objects are easy to write but are absolutely not required when creating Python scripts.

2.10.1 Content of a Class

Code 2.33 creates the class named MyObject which contains a variable g and a
function MyFun. Line 8 creates an instance of this object and as seen in Line 9 and
10 it contains the variable g. The function is called in Line 11 and Lines 13 and 14
shows the new value of the variable.

Readers that are familiar with C++ and Java will recognise the keyword self as
equivalent to *this or this. Every function inside of the object will have self
as the first argument and it is transparent to the user when the function is called. The
self connects the object to the instance which is myinst in this case. Thus, inside
of the function self . g is equivalent to myinst . g outside of the object.

An object can have global and local variables. A global variable is Lines 2 and 4
whereas a local variable is Line 5. The local variable exists only inside of the function
and once the function terminates this variable is destroyed. In this example it was a
poor programming skill to have a global and local variable of the same name but it
does illustrate that they are separate variables. The result in Line 14 shows that the
global variable is available but the local one is not.

2.10.2 Operator Definitions

An object can have any number of functions and variables. Python does not offer
overloading as does C++ but it does allow for the definition of operators. Code 2.34
defines a new object that redefines two functions. In each case the function names
are preceded and followed by two underscores. The __init__ (two underscores
each for and aft) function is the constructor. This function is called when the object
is instantiated (Lines 11 and 14). As seen in Lines 12 and 13 the function is called
and the value of g is set to —1. The second function is __add__ which defines the
action taken by the plus sign (Line 16). Inside of MyObject.__add__theself.g
becomes the al.g in Line 16 and b becomes a2 in line 16. Almost every function
can be defined in an object. This includes math operators, slicing operators, and many
more. Interested readers should refer to Python manuals to learn more.

2.10 Object Oriented Programming 31

Code 2.33 A simple object.

>>> class MyObject:

g=>5

def MyFun(self, a):
self.g = 7
g =20
print ‘argument = ‘,a

>>> myinst = MyObject ()
>>> myinst.g

5

>>> myinst.MyFun(12)
argument = 12

>>> myinst.g

7

Code 2.34 Operator definition.

>>> class MyObject:

g =>5

def __init__ (self):
self.g = -1

def _ _add__ (self, b):
answer = self.g + b.g
return answer

def MyFun(self, a):
self.g = 7

>>> al = MyObject()
>>> al.g

-1

>>> a2 = MyObject()
>>> al.MyFun()

>>> ¢ = al + a2

>>> C

2.10.3 Inheritance

One of the advantages of using objects is that it can provide building blocks for
complicated codes. Objects can be built using other objects through inheritance.
Code 2.35 shows a simple example which defines the class Sentence. This class
has a single class variable and function. The command stn = Sentence()
creates an instance of this sentence. The second class is BigSentence which inherits

32 2 Programming in Python

Sentence. An instance of BigSentence inherits all of the properties of Sentence and
adds the new function Double. The command db = BigSentence() creates
an instance of BigSentence and the next line shows that db.e is already defined. The
db has two functions Erase and Double that it can use.

Code 2.35 Inheritance.

>>> class Sentence:
e = ’'default sentence’
def Erase(self):
self.e = 77

>>> class BigSentence(Sentence):
def Double(self):
self.e = self.e + self.e

>>> stn = Sentence()

>>> stn.e

'default sentence’

>>> db = BigSentence ()

>>> db.e

‘default sentence’

>>> db.Double ()

>>> db.e

'default sentencedefault sentence’

2.11 Error Checking

Some of the previous programs have intentional errors and Python reports these errors
with a few lines indicating the problem. If the error occurs in a module then Python
reports the filename and the line number where the error is detected. This does not nec-
essarily mean that this line is the culprit though. The function MyObject.__add__
requires data of the same type and if al.g were an integer and a2 . g were a string
then an error would occur inside of this function. However, the real problem was that
the wrong types of data were fed into the program.

It is possible to catch errors inside of a function. Line 1 in Code 2.36 performs
an illegal function and Python returns TypeError error. Lines 7-10 use the try and
except commands to manage the error from the same command. This is useful for
cases when it is not desirable for a program to quit when an error is encountered.
There are several types of errors and Python allows the user to define their own errors.
Interested readers should consult the Python manuals for more information.

2.11 Error Checking 33

Code 2.36 Trapping an error.

>>> 5 + 't’

Traceback (most recent call last):
File "<pyshell#168>", line 1, in <module>
5+ 't’
TypeError: unsupported operand type(s) for +: ’‘int’ and ’'str’
>>> try:
5+ 't’
except TypeError:
print ‘Oooocops’

Ooooops

2.12 Summary

Python is a powerful scripting language and this chapter just presents the essentials
that are necessary to perform the tasks in the subsequent chapters. Python can be
used to perform numerical calculations, manage strings, manage data, and as seen in
later chapters operate on images and data arrays. Python has advantages over other
languages since it is free, easy to install, and easy to use. Properly coded Python
scripts can actually run at fairly good speeds as well.

Chapter 3
NumPy, SciPy and Python Image Library

Two related third-party packages named NumPy and SciPy [3] provide tools for
creating arrays (vectors, matrices, and tensors) and a plethora of tools for manipu-
lating these arrays. These tools provide very efficient codes that make programming
easier and computations quick. Since neural models consider arrays of neurons these
tools are essential. A third package named Python Image Library (PIL) provides
tools or reading and writing image data.

3.1 NumPy

The NumPy package provides functions to create and manipulate arrays. An array
is a collection of uniform data types such as vector, matrix, or tensor.

In order to use the NumPy package it must first be imported. Since there will be
many calls to the routines in this package it is prudent to use from—import.

3.1.1 Creating Arrays

There are several ways to create a vector or matrix of which a few are shown in Code
3.1. Line 2 creates a vector with ten elements all are set to 0. Line 5 creates a ten
element vector in which all of the elements are integers. Lines 8—10 demonstrate that
vectors can also contain complex numbers.

One of the advantages of using arrays is that global operations can be performed
in a single command. Code 3.2 demonstrates that a scalar can be added to a vector in
a single command (Line 2). The division of an integer array with another integer will
result in an integer array as seen in Line 4. Again, this may not be an exact answer
as shown in Line 6.

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 35
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_3, © Springer-Verlag Berlin Heidelberg 2013

36 3 NumPy, SciPy and Python Image Library

Code 3.1 Creation of vectors.

>>> from numpy import zeros, ones, random

>>> vec = zeros(10)

>>> vec

array((0., ©0., 0., 0., 0., 0., 0., 0., 0., 0.1)
>>> vec = ones(10, int)

>>> vec

array([(1, 1, 1, 1, 1, 1, 1, 1, 1, 11)

>>> vec = zeros(4, complex)

>>> vec

array([0.+0.3, 0.+0.3, 0.+0.3, 0.+0.31)

Code 3.2 Math operations for vectors.

>>> vec = ones(4, int)
>>> vec + 2

array ([3, 3, 3, 31])

>>> (vec + 12)/4
array ([3, 3, 3, 3
>>> (vec + 12.)/4
array ([3.25, 3.25, 3.25, 3.25])

1)

Code 3.3 Math operations for two vectors.

>>> from numpy import set_printoptions
>>> get_printoptions(precision=3)

>>> vecl = random.rand(4)

>>> vec2 = random.rand(4)

>>> vecl

array ([0.938, 0.579, 0.867, 0.066])
>>> vec?2

array ([0.574, 0.327, 0.293, 0.649])
>>> vecl + vec2

array ([1.512, 0.906, 1.159, 0.716])

Code 3.3 shows three conveniences. The first is to control the precision of the print
to the console. The set_printoptions command is used to limit the number
of digits that are printed to the screen. This function comes from NumPy and does
not apply to lists or tuples. The second item in this code is the creation of two
vectors of random numbers. The random. rand function creates a vector with
random numbers ranging from O to 1 with equal distribution. The random module
provides other types of distributions as well, and these are described in the manual
that accompanies NumPy. The third part of this code is to demonstrate addition of
two vectors (Line 9). As long as the vectors have the same number of elements it is
possible to perform many different mathematical operations.

3.1 NumPy 37

A couple of methods of creating matrices are shown in Code 3.4. In Line 1 the
zeros function receives a single argument-this is a tuple that contains two elements.
For a matrix the vertical dimension is given first and the horizontal dimension is
second. In Line 5 the random. ranf function is used to create a matrix with random
elements.

Code 3.4 Creating matrices.

>>> mat = zeros((2,3))

>>> mat

array ([[0., 0., 0.1,
[0., 0., 0.11)

>>> mat = random.ranf((2,3))

>>> mat

array([[0.181, 0.283, 0.185],
[0.978, 0.468, 0.612]1)

Tensors are created in the same manner as matrices except that there are at least
three elements in the tuple. However, in allocation of tuples the user should be aware
that memory can be consumed rather quickly. A 256 x 256 matrix with floating point
elements consumes 0.5 MB. However, a tensor that is 256 x 256 x 256 with floating
point elements consumes 128 MB. Furthermore, if two tensors ¢ = a + b are added
then there needs to be space for four tensors (a, b, ¢, and a + b). Before tensors are
allocated the user needs to make sure that there is sufficient memory in the computer.
Code 3.5 demonstrates the allocation of a much smaller tensor.

Code 3.5 Creating tensors.

>>> tensor = zeros((12,15,16), float)

Accessing data in arrays is performed through slicing. Line 1 in Code 3.6 demon-
strates how to retrieve a single cell, which in this example, is from the first row and
second column. Indexing in matrices uses the vertical dimension first and the hori-
zontal dimension second following standard math convention. Advanced slicing is
discussed in Sect.3.1.9.

Code 3.6 Accessing data in a matrix.

>>> mat[0,1]
0.283461998819
>>> mat([1,1] = 4

38 3 NumPy, SciPy and Python Image Library

3.1.2 Converting Arrays

Converting between a matrix and a vector is easily performed with the resize and
ravel commands. Line 1 in Code 3.7 converts the 2 x 3 matrix into a 6 element
vector. Line 4 converts data into a 3 x 2 matrix. In Line 1 the answer is returned
to a new variable, but in Line 4 the variable is changed. It is possible to convert a
matrix of one size (M x N) to a matrix of another size (P x Q) using resize as
longas M x N = P x Q. The shape command returns the dimensions of the array
as seen in Line 9.

Code 3.7 Converting between vectors and matrices.

>>> data = mat.ravel ()
>>> data
array ([0.181, 0.283, 0.185, 0.978, 4. , 0.6121)
>>> data.resize((3,2))
>>> data
array ([[0.181, 0.2837,
[0.185, 0.9781,
[4. , 0.61211)
>>> data.shape
(3, 2)

3.1.3 Matrix: Vector Multiplications

The matrix-vector or vector-matrix multiplications are performed using the dot
function. In Code 3.8 the vM multiplication is performed in Line 12 and the Mv
multiplication is performed in Line 14.

NumPy also allows an elemental multiplication in which the columns of the matrix
are multiplied by the respective elements in the vector, as in

Pij =M, jvj. 3.1

In this case, the length of the vector must be the same as the second dimension
of the matrix. Line 1 in Code 3.9 performs this computation of Eq.3.1. Unfortu-
nately, NumPy will allow the same computation in the form shown in Line 5 which,
in appearance, should be a different computation. Line 9 confirms the action by
replicating the multiplication of the first column of the matrix with the first ele-
ment of the vector. The result can be compared to the first column of the previous
computations.

3.1 NumPy 39

Code 3.8 Vector-matrix and matrix-vector multiplications.

>>> M = random.ranf ((3,2))
>>> vl = random.rand(3)
>>> v2 = random.rand(2)
>>> M
array ([[0.566, 0.3781],
[0.782, 0.428]
[0.727, 0.96611])
>>> vl
array ([0.148, 0.2 , 0.578])
>>> v2
array ([0.103, 0.913])
>>> dot(vl, M)
array ([0.661, 0.7 1)
>>> dot(M, v2)
array ([0.403, 0.472, 0.9581])

Code 3.9 Multiplying columns of a matrix with elements in a vector.

>>> M*v2

array ([[0.059, 0.3457,
[0.081, 0.3911,
[0.075, 0.882]1])

>>> v2*M

array ([[0.059, 0.3457],
[0.081, 0.3917,
[0.075, 0.882]1])

]

>>> M[:,0] * v2[0
array ([0.059, 0.081, 0.0751)

3.1.4 Justification for Arrays

Readers familiar with sequential programming languages such as C, Fortran, and
Java are used to thinking in terms of for loops to perform the tasks such as mul-
tiplying matrices and vectors. Certainly, Python can also use for loops to perform
the computations of Code 3.9.

The reason to use the NumPy commands is that there is a tremendous speed
advantage. A script file named timestudy.py is used to demonstrate the advantage of
using NumPy commands in Code 3.10. In Line 2 the t ime module is imported. It
also contains a function also named time () which returns a float that is computer’s
clock in terms of seconds. In Line 9 the variable t1 is set to the current time and
the next few lines perform the process of Code 3.9. At the end of these loops the
computer time is sampled a second time and the difference is printed to the console.
This is the amount of time necessary to perform the double-loop computation. In
Line 18 the same process is performed again using the NumPy command, and the
time for this process is printed to the console as well.

40 3 NumPy, SciPy and Python Image Library

In the second part of Code 3.10 the commands are executed and the computation
times are printed. The for loops needed 2.5s to complete whereas the NumPy
command needed less than 0.02s. The NumPy script is 159 times faster.

Code 3.10 Comparing the computational costs of interpreted commands.

timestudy.py
import time
from numpy import zeros, random

M = random.ranf((1000,1000))
v = random.rand(1000)
N = zeros((1000,1000))

tl = time.time()
for i in range(1000):
for j in range(1000):
N[i,j] = M[i,3] * vI[]]
t2 = time.time()

print ’'First time:’, t2-tl
t3 = time.time()

N=M£@*vwv

td = time.time()

print ’Second time:’, t4-t3

>>> execfile(’'timestudy.py’)
First time: 2.54699993134
Second time: 0.0159997940063
>>> 2.54/.016

158.75

The reason for the massive difference in computational time is that Python is an
interpreted language. The computer receives one command at a time, converts it to
an executable command, and then performs the computation. Thus, a line inside of a
for loop must be interpreted many times. Whereas, in the case of the single NumPy
step the Python calls a step that is already compiled.

Basically, the rule of thumb is that NumPy commands will be significantly faster
than a set of Python commands that perform the same computations using loops. The
savings is large enough that it is worth the reader’s time to read NumPy documentation
and learn the available commands. A properly written Python/NumPy script can rival
computational speeds of compiled languages. Certainly, once the reader becomes
familiar with NumPy it becomes much faster and easier to write programs.

3.1 NumPy 41

Table 3.1 Data types offered

by NumPy S anlle Character Nlumbcr of bytes
00
int 1 4
float d 8
complex D 16
int8 1 1
intl6 s 2
int32 i 4
int64 8
float32 f 4
float64 f 8
float96 8
uint8 ul 1
uint16 u2 2
uint 4
int8 1 1
intl6 S 2
int32 i 4
int64 8
int128 16
complex64 8
complex128 16
complex192 24

3.1.5 Data Types

In an array all of the elements must be the same data type. Thus, an array can have
all integers or all floats. An array by default will contain floats but NumPy does offer
several alternate data types as shown in Table 3.1.

There are several parameters or functions that return information from an array.
The dtype parameter indicates the type of data that is in the array. This is not
a function but rather a parameter defined in the class. Therefore, it does not have
parenthesis. An example is shown in Code 3.11.

Code 3.11 Retrieving the type of data within an array.

>>> mat = random.ranf((3,4))

>>> mat

array ([[0.592, 0.514, 0.885, 0.9957],
[0.587, 0.764, 0.528, 0.988],
[0.799, 0.011, 0.616, 0.68711)

>>> mat.dtype

dtype (' float64d’)

42 3 NumPy, SciPy and Python Image Library

The max function returns the maximum value of the array and it has some very
useful options. In Line 1 of Code 3.12 the function is used to retrieve the maximum
value over the entire array. The function has the option of specifying which axis (or
dimension) is used. Recall that in a matrix the first axis is the vertical dimension and
the second axis is the horizontal dimension. In Line 3 the axis is specified and the
maximum is computed over the vertical dimension. In other words, this computes
the maximum for each column of the matrix. By specifying the second axis (Line 5)
the maximum is found for each row.

Code 3.12 Using the max function.

>>> mat.max ()

0.995156726117

>>> mat.max (0)

array ([0.799, 0.764, 0.885, 0.995])
>>> mat.max (1)

array ([0.995, 0.988, 0.7991)

There are many other functions that operate in this manner. These include the
retrieving the minimum (min), computing the sum (sum), computing the average
(mean), and the standard deviation (std). A few examples of these are shown in
Code 3.13.

Code 3.13 Using the similar functions.

>>> mat.sum(0)

array ([1.978, 1.289, 2.029, 2.671])
>>> mat.mean (1)

array ([0.746, 0.717, 0.528])

>>> mat.std()

0.253734951758

The max function returns the maximum value but doesn’t indicate where the
maximum value is in the array. This is accomplished through the argmax function.
For a vector this returns the location of maximum as shown in Line 4 of Code 3.14.

The argmax function for a matrix requires a little bit more work. It returns a
single number which indicates the location of the max value. In the example in Code
3.15 the function returns a value of 5 but the matrix is only 3 x 4. The function treats
the matrix as though it were a raster and thus the location of the max in terms of row
and column is computed by dividing the argmax value by the number of rows. The
result in line 10 shows that the max value is located at row 1 and column 1 (recalling
that the first row is row 0).

The nonzero function returns a list of indices were the array has values that
are not 0. Code 3.16 shows how this is used to find the locations within a vector

3.1 NumPy 43

Code 3.14 Using the similar functions.

>>> vec = random.rand(5)

>>> vec

array ([0.21 , 0.268, 0.023, 0.998, 0.3861])
>>> vec.argmax ()

3

>>> vec[3]

0.9979

Code 3.15 Using the similar functions.

>>> mat = random.ranf((3,4))

>>> mat.argmax()

5

>>> mat.shape

(3, 4)

>>> mat

array ([[0.17 , 0.824, 0.414, 0.2657,

[0.018, 0.865, 0.112, 0.398],
[0.721, 0.77 , 0.083, 0.065]11)
>>> divmod(mat.argmax (), 4)
(1, 1)
>>> mat[1,1]
0.8649

and a matrix that are greater than a threshold. The nonzero function returned an
array inside of a tuple which at first may seem odd. Consider the case of the matrix
that starts in Line 12. In Line 17 the nonzero function is applied to the matrix and
Line 18 indicates that there are two items in the tuple nz. There is an entry for each
dimension in the array and these are shown in Lines 20-23. These are the locations in
which gmat is not zero with nz [0] displaying the vertical coordinates and nz [1]
displaying the horizontal components. Thus, the four locations in which gmat is not
zero are (0,1), (1,1), (2,0), and (2,1).

NumPy offers several mathematical functions that are applied to all elements of
the array. Code 3.17 shows the square root function applied to all elements of an
array. Several other popular functions are shown in Table 3.2. These functions can
be applied to the entire array or any axis similar to sum function uses in Sect.3.1.5.

3.1.6 Sorting

The elements in an array can be sorted in two ways. The first is the sort function
which rearranges the elements in the array. The second is argsort which returns

44 3 NumPy, SciPy and Python Image Library

Code 3.16 Using the nonzero function.

>>> vec
array ([0.21 , 0.268, 0.023, 0.998, 0.3861])
>>> gvec = vec > 0.3

>>> gvec

array ([False, False, False, True, True], dtype=bool)
>>> nz = gvec.nonzero()

>>> nz

(array ([3, 41),)

>>> nz[0]

array ([3, 4])

>>> mat
array ([[0.17 , 0.824, 0.414, 0.2657,
0.018, 0.865, 0.112, 0.398],
0

.721, 0.77 , 0.083, 0.065]1)

mat > 0.5
>>> nz gmat .nonzero ()
>>> len(nz)

2

>>> nz[0]

array ([0, 1, 2, 21)
>>> nz([1]

array([1, 1, 0, 11])

Code 3.17 Mathematical functions for an array.

>>> mat
array ([[0.17 , 0.824, 0.414, 0.2657,
0.018, .865, 112, 0.3987,
0.721, 0.77 , 0.083, 0.065]11)

[
[
[
>>> gqgrt(mat)
[
[
[

o
o

array([[0.412, 0.908, 0.643, 0.514],
0.134, .93, .335, 0.6317,
0.849, 0.878, 0.287, 0.256]11)

o
o

Table 3.2 Math functions

sin arcsin sinh arcsinh
cos arccos cosh arccosh
tan arctan tanh arctanh
exp log log2 log10
sqrt conjugate floor ceil

an array indicating the sort order. Line 3 in Code 3.18 uses the argsort function
to determine the order in which the data should be rearranged from the lowest to the
highest values. In this case the lowest value is determined to be vec [2] and the
largest value is at vec [3]. In Lines 6 and 7 the argsort and slicing techniques

3.1 NumPy 45

are used to extract the data in the sorted order. In this case the vec is not altered. In
Line 10 the sort function is used to irreversibly change the data in vec. The data
is sorted but vec has been changed. Starting with Line 17 the argsort command
is applied to a matrix. The function has the optional argument of specifying which
axis is used during the sorting process.

Code 3.18 Sorting arrays.

>>> vec

array([0.21 , O.
>>> vec.argsort ()
array([2, 0, 1, 4, 31)

268, 0.023, 0.998, 0.3861])

>>> ag = vec.argsort ()
>>> vec|[ag]
array ([0.023, 0.21 , 0.268, 0.386, 0.9981)

>>> vec.sort ()
>>> vec
array ([0.023, 0.21 , 0.268, 0.386, 0.998])

>>> mat
array ([[0.17 , 0.824, 0.414, 0.265],
[0.018, 0.865, 0.112, 0.398],
[0.721, 0.77 , 0.083, 0.06511)
>>> mat.argsort (0)
array ([[1, 2, 2, 21,
[o, o, 1, 01,
[2, 1, 0, 111)
>>> mat.argsort(l) # same as mat.argsort()
array ([[0, 3, 2, 11,
[0, 2, 3, 11,
[3, 2, 0, 111)

3.1.7 Conversions to Strings and Lists

Data in an array can be converted to and from a string using the commands
tostring and fromstring. The conversion is dependent upon the type of data.
In Code 3.19 a vec is created with random float data. Each float requires 8 bytes of
storage. In line 4 the array is converted to a string which is 40 characters long. Recall
that not all ASCII values have an associated character. Thus, the first entry in ts is
the hexadecimal number CO as shown in Lines 8 and 9.

A string can be converted back to an array as shown in Line 10. The fromstring
function as a default converts the string to an array of ints. In this case the data
type was changed to £1oat. Line 13 converts the same string to ints and Line 17

46 3 NumPy, SciPy and Python Image Library

converts then to unsigned integers which is equivalent to converting the individual
characters to their 8-bit values.

Code 3.19 Conversions to and from a string.

>>> vec = random.rand(5)

>>> vec

array ([0.12 , 0.643, 0.507, 0.144, 0.4071)
>>> ts = vec.tostring()

>>> ts

"\xc0\xb9\xc2\xbb\xa3\xcb\xbe?\x82\xad\xbc\xcc\xa8\x94\xed?\x00B
\xc5>G; \xe0?\x80"'_\x8a\xf3_\xc2?\xae\xe9\xd7\x93n\x0f\xda?’
>>> ts[0]

"\xc0’

>>> vec2 = fromstring(ts, float)

>>> vec2

array ([0.12 , 0.643, 0.507, 0.144, 0.4071)

>>> fromstring(ts, int)

array ([-1144866368, 1069468579, -860052350, 1071944872,

1053114880, 1071659847, -1973460864, 1069703155,
-1814566482, 107125540617])
>>> fromstring(ts, uint8)
array ([192, 185, 194, 187, 163, 203, 190, 63, 130, 164, 188,
204, 168, 148, 228, 63, 0, 66, 197, 62, 71, 59,
224, 63, 128, 96, 95, 138, 243, 95, 194, 63, 174,
233, 215, 147, 110, 15, 218, 63], dtype=uint8)

These two functions are most useful when reading or writing a file with binary
data. However, reading and writing binary data is no longer a platform independent
operation. A binary file written on a Macintosh will be different than a binary file of
the same data written on a PC. The reason is that the operating systems store data
in different arrangements. Traditionally, Macintosh and UNIX machines store data
as Big Endian and Windows based machines store data as Little Endian. The latter
reverses the byte order of the data. For example, a little endian machine will store a
two-byte number with the least significant byte first. The result is that data stored on
a big endian machine and read on a little endian machine will need to have the bytes
swapped. In the bioinformatics field this is required since many early experimental
devices were hosted by Macintosh computers.

Code 3.20 shows the function byt eswap which exchanges the byte order of data
in an array. Line 1 creates a random vector and is converted to a int16 data type so
that the single element in the array is stored in two bytes. These two bytes are printed
out as characters in Line 5 and as byte values in Line 7. The byteswap function
is used in Line 8 and the reversed data is shown in Line 9. In Line 11 a new array
is created in which there are two elements and these are 32 bit elements (four bytes
each). The byteswap function is again used demonstrating that the swap occurs
for individual elements. In this case, a group of 4 bytes are reversed.

3.1 NumPy 47

Code 3.20 Swapping bytes in an array.

>>> a = (16384 * random.rand(1)).astype(intl6)
>>> a

array ([15165], dtype=intlé6)

>>> a.tostring()

i
=7

>>> map(ord, a.tostring())

[61, 59]

>>> map(ord, a.byteswap().tostring())

[59, 61]

>>> a = (16000 * random.rand(2)).astype(int)
>>> a

array([10320, 11416])

>>> map(ord, a.tostring())

[80, 40, 0, 0, 152, 44, 0, 0]

>>> map(ord, a.byteswap().tostring())
[0, 0, 40, 80, 0, 0O, 44, 152]

3.1.8 Changing the Matrix

The transpose of a matrix M is,
Ti,j = Mj,i Vi, j. (3.2)

The transpose function converts the matrix to its transpose as shown in Line 5
of Code 3.21. For arrays that have more than two axes the transpose function
allows the user to select the axes that are transformed. In Line 9 a three-dimensional
array is created. The transpose computed in Line 19 indicates the order in which the
axes should be extracted. The first axis is 2 and thus the length of the first dimension
of the result is 4 which was the length of axis-2 in M.

The resize function rearranges the elements of a matrix to fit a new shape.
The function requires that the number of elements in the new size is the same as
the number of elements in the original matrix, although the number of axes does not
have to be the same. Examples of the resize function are shown in Code 3.22.

3.1.9 Advanced Slicing

Arrays can be sliced in manners similar to strings, tuples, etc. However, arrays offer
advanced slicing techniques that are also quite useful in making efficient code. In
Code 3.23 a vector of ten elements is created. In Line 5 the first three elements are
retrieved and in Line 7 every other element is retrieved. These methods behave the
same as in the case of strings, tuples, lists, etc. In Line 9 a list of integers is created
and in Line 10 this list is used as an index to the vector. The result is that the elements

48 3 NumPy, SciPy and Python Image Library

Code 3.21 Examples of the transpose function.

>>> M = random.ranf((2,3))
>>> M
array([[0.984, 0.816, 0.158],
[0.081, 0.86 , 0.836]1)
>>> M. transpose ()
array([[0.984, 0.081],
[0.816, 0.86 1,
[0.158, 0.836]1])
>>> M = random.ranf((3,2,4))
>>> M
array ([[[0.067, 0.894, 0.789, 0.9057,
[0.314, 0.757, 0.288, 0.649]1],
[[0.846, 0.951, 0.338, 0.746]
[0.717, 0.004, 0.113, 0.22 11,
[[0.36 , 0.168, 0.569, 0.302],
[0.542, 0.969, 0.943, 0.335]11)
>>> B = M.transpose((2,0,1))
>>> B.shape
(4, 3, 2)
>>> B
array ([[[0.067, 0.3147,
[0.846, 0.7171,
[0.36 , 0.542]7],
[[0.894, 0.757],
[0.951, 0.0041,
[0.168, 0.969]7],
[[0.789, 0.288]
[0.338, 0.1131],
[0.569, 0.943]17],
[[0.905, 0.649],
[0.746, 0.22 1,
[0.302, 0.335]11)

are extracted from the vector in the order prescribed by the list n. This allows the
user to extract data in a specified order. Likewise, it is possible to set values in the
array in a specified order as shown in Line 12.

This same advanced technique applies to arrays with multiple dimensions. In
Code 3.24 elements in a matrix are accessed using two index lists v and h. The
first index represents element locations along the first axis (hence v represents the
vertical dimension). The first element extracted is M[1, 1], the second element is
M[2,1],and the third elementisM[0, 2]. Using this technique the user can access
elements in an array in any order without employing a Python for loop. This will
dramatically increase execution time especially for large arrays.

3.2 SciPy 49

Code 3.22 Examples of the resize function.

>>> M = random.ranf((3,4))
>>> M
array ([[0.957, 0.561, 0.262, 0.556],

[0.21 , 0.704, 0.537, 0.048],
[0.829, 0.404, 0.278, 0.335]11)
>>> M.resize((2,6))
>>> M
array([[0.957, 0.561, 0.262, 0.556, 0.21 , 0.704],
[0.537, 0.048, 0.829, 0.404, 0.278, 0.33511)
>>> M.resize((3,2,2))
>>> M
array ([[[0.957, 0.5611],
[0.262, 0.55611,

[[0.21 , 0.7041,
[0.537, 0.048]1,

[[0.829, 0.4047,
[0.278, 0.335]11)

Code 3.23 Advanced slicing for arrays.

>>> V = random.rand(10)

>>> V

array ([0.06 , 0.796, 0.775, 0.592, 0.174, 0.764, 0.952,
0.871, 0.569, 0.5451])

>>> V[:3]

array ([0.06 , 0.796, 0.7751])

>>> V[::2]

array ([0.06 , 0.775, 0.174, 0.952, 0.5691])

>>n = [4,1,3,0]

>>> V[n]

array ([0.174, 0.796, 0.592, 0.06 1)

>>> V[n] = -1, -2, -3, -4

>>> V

array ([-4. , —2. , 0.775, -3. , -1. , 0.764, 0.952,
0.871, 0.569, 0.545])

3.2 SciPy

The NumPy package provides a large foundation of array processing routines. The
SciPy [3] package provides a plethora of advanced arrays processing routines. Inter-
ested readers are highly encouraged to view SciPy websites (http://www.scipy.org/
SciPy_packages) to learn about the wide variety of available routines. For example,
SciPy offers linear algebra routines in the 1 inalg module. Functions in this module
include matrix inversion and eigenvalue computations. A comprehensive list can be

http://www.scipy.org/SciPy_packages
http://www.scipy.org/SciPy_packages

50 3 NumPy, SciPy and Python Image Library

Code 3.24 Advanced slicing for arrays with multiple dimensions.

>>> M = random.ranf((3,4))
>>> M
array ([[0.181, 0.663, 0.933, 0.79117,

[0.561, 0.145, 0.687, 0.877],
[0.876, 0.881, 0.774, 0.347]1])

>>> v = [1,2,0]

>>> h = [1,1,2]

>>> M[v,h]

array ([0.145, 0.881, 0.9331])

viewed from SciPy web pages such as (http://www.scipy.org/doc/api_docs/SciPy.
linalg.html) and its sub-pages.

SciPy offers packages for Fourier transforms, clustering, integration, interpola-
tion, linear algebra, signal processing, statistics, and optimization. A major advantage
for using these routines is that they are optimized to run quickly. As there are a large
number of functions they are not reviewed here. As functions are needed in later
chapters they will be explained. Code 3.25 demonstrates a call to the inv function
which performs a matrix inversion. The inverse is computed in Line 8 and the results
are confirmed in Line 13 which shows that the multiplication of the inverse with the
original matrix produces the identity matrix.

Code 3.25 Matrix inverse using the SciPy function.

>>> from numpy import dot
>>> from scipy.linalg import inv

>>> M = random.ranf((3,3))
>>> M
array ([[0.772, 0.588, 0.282],

[
[0.85, 0.817, 0.388],
[0.052, 0.292, 0.61811])

>>> Mi inv(M)

>>> M1

array ([[6.145, -4.406, -0.04 1,
[-7.918, 7.254, -0.939],
[3.221, -3.054, 2.065]1)

>>> dot(M, Mi) # confirmation

array([[1.000e+00, -8.882e-16, 0.000e+007],
[-2.220e-16, 1.000e+00, 0.000e+007],
[0.000e+00, 0.000e+00, 1.000e+0011)

array ([0.145, 0.881, 0.9331])

SciPy is not required to perform operations necessary for the PCNN, ICM or
other neural models. However, many of the applications involve images and SciPy

http://www.scipy.org/doc/api_docs/SciPy.linalg.html
http://www.scipy.org/doc/api_docs/SciPy.linalg.html

3.2 SciPy 51

has libraries such as ndimage and signal which have several useful functions for
image processing and analysis.

One simple example pertinent to neural models is to isolate regions outlined by
the expanding wave (which is discussed in Sect.4.2.3.3. Consider a case in which
the PCNN creates an output such as Fig.4.4 atn = 1. There are two regions outlined
in the image as it is desired that the pixels in these interior regions be isolated. The
process can easily be accomplished as shown in Code 3.26. The first three lines load
in the appropriate models. Line 4 loads the image of the two T’s and Line 5 converts
this image to a matrix. At this point the matrix data looks like Fig.4.4 with all
pixels shown in white in the figure set to 1 and all pixels shown as black set to 0.

Line 6 creates a new matrix seeds which is the same size as data and all of
the values are initially 0. Line 7 sets two points to 1. These two points are located
in the interior of the two T shapes, but any two points located in the interior would
work as well. Line 8 calls the binary_propagation function from the scipy.ndimage
module. This function receives a seed (or multiple seeds) and a binary value image.
It will expand from the seeds until the borders of the shape are reached and the result
is shown in Fig. 3.1a. This is one of the few cases in this text which is shown without
inversion. In this case the white pixels are shown as white. As seen the interior regions
are now filled.

Code 3.26 Isolating two contiguous regions.

>>> from scipy.ndimage import binary propagation, label
>>> from numpy import zeros

>>> import Image, mgconvert

>>> mg = Image.open(’'tex/pil/tt2.png’)

>>> data = mgconvert.i2a(mg.convert('L’))/255.0
>>> gseeds = zeros(data.shape)

>>> gseeds[14,20] = seeds[47,51] =1

>>> b = binary_propagation(seeds, mask=data)
>>> 1bls, cnt = label(b)

>>> cnt

2

>>> mgconvert.a2i(1lbls == 1).show()

Fig. 3.1 a Is the output from
the binary_propagation
function and b is the output

from the labels function

T

TR T

(b)

http://dx.doi.org/10.1007/978-3-642-36877-6_4
http://dx.doi.org/10.1007/978-3-642-36877-6_4
http://dx.doi.org/10.1007/978-3-642-36877-6_4

52 3 NumPy, SciPy and Python Image Library

The two regions do appear to be isolated but technically they are not detected.
There is not a single variable that shows one T but not the other. This can be accom-
plished using the label function also from the scipy.ndimage model. This function
receives an image with objects that are isolated by a background pixels with a O value.
It then assigns an identifying integer value to all of the pixels in each region. In this
case there are two regions and thus all of the pixels in one region will be assigned
a value of 1 and all of the pixels in the other region will be assigned the value of 2.
The result is shown in Fig.3.1b.

Line 11 shows that the value of cnt is 2. This is the number of separate regions
that are found. The matrix 1bls contains the answer shown in Fig.3.1b. Line 12
shows a method of isolating the first region as it sets to True all pixels that are 1 and
to False all other pixels. The other shape can be found by using 1bls == 2

3.3 Designing in Numpy

Readers with experience with languages such as C++-, Fortran, Java etc. will find
it beneficial to adjust their approach to implementing an algorithm for a large array.
Consider the simple equation,

ci,j =a;j+bj. (3.3)

A traditional method of realizing this equation is shown in Code 3.27 which creates
three large arrays in Lines 3 and 4. The matrices a and b are filled with random
numbers. The function Fun contains the loops necessary to implement the addition.
The function time.time prints out the current computer time with seconds. This little
test program indicates that the process takes 1.641s.

Code 3.27 Execution time for a double loop.

>>> from numpy import random, zeros
>>> import time
>>> a = random.ranf ((1024,1024))
>>> b = random.ranf ((1024,1024))
>>> c = zeros((1024,1024))
>>> def Fun(a,b):
for i in range(1024):
for j in range(1024):
cli,j] = ali,j] + bli,]]
return c
>>> time.time(); ¢ = Fun(a,b); time.time()
1319970615.734
1319970617.375

3.3 Designing in Numpy 53

The NumPy package provides compiled and optimized functions. This means
that matrix operations can be performed with a greater efficiency. The same code
can be written in less lines and executed with a far greater speed. The same process
is performed in Code 3.28 and excepting the time stamps the equation is realized in
a single command.

Code 3.28 Execution time for a single command.

>>> time.time(); ¢ = a + b; time.time()
1319970623.062
1319970623.093

More important is that the execution time is only 0.031s. The execution time is
reduced by more than 50x. While 1.641s is not a tremendous amount of time for
a single job, it can be considerable for larger jobs. Consider a case in which the
operation needs to be applied to a database of 1000 images. It would take nearly
30min to perform 1000 iterations of Code 3.27 and just over 5 min for Code 3.28.

A rule of thumb is that nested loops are to be avoided. Python is a scripting
language which means that every line of code is interpreted before it is executed.
Whereas Code 3.27 is perfectly acceptable in compiled languages like C++4- and
Fortran, it is much less acceptable in scripting languages like Python. It does provide
the correct answer but takes a lot of time to do so. An approach that a programmer may
wish to use is to think in a more parallel fashion. If a 1024 x 1024 node computer were
available Eq. 3.3 could be executed in a parallel fashion with each computer node
being assigned a single pixel. In these situations, NumPy commands are available to
perform the task efficiently.

Code similar in nature to 3.27 still can be useful in prototyping. In more compli-
cated scenarios programmers may want to write nested loop coding to get all of the
steps of their program working. Once working they can then search the NumPy/SciPy
libraries for more efficient functions that will achieve the same answer.

Some implementations of Python using interfaces such as IDLE can become
bogged down in loops. If instead of simple addition the function had several compli-
cated steps inside of the loops then the prototype code may take a prohibitively large
amount of time. In some implementations of Python it is not possible to break out
of loops while they are running with Control-C. This is a feature of the interface and
not of the programming language. So, a simple trick is to place a print statement in
the loops. When the print statement is executed there is also a poll of the inputs and a
Control-C can be executed at the time of the print statement. Such a print statement
is inserted in Line 3 of Code 3.29. The comma at the end of the statement will make
consecutive prints on the same line rather than new lines. The print statement in Line
3 at the onset of each iteration is executed and if there is a pending Control-C from
the user then the program will terminate.

54 3 NumPy, SciPy and Python Image Library

Code 3.29 Inserting a safety print statement.

>>> def Fun(a,b):
for i in range(1024):
print i,
for j in range(1024):
lots of nasty code goes here
return c

For programs that are causing serious debugging issues the programmer may
consider running them in a command line shell. For example, MS-Windows users
can use Python (Command Line) instead of IDLE from the start up menus. This
interface is not user friendly but it does have the ability to immediately stop a loop
when the user employs Control-C.

3.4 Python Image Library

The PIL is a third-party module that provides the ability to read, write, and manipu-
late images. It can be obtained from http://www.pythonware.com/products/pil/. This
section just shows a few of the many functions that this module offers.

3.4.1 Reading an Image

Code 3.30 shows the simplicity of reading an image. This is one of the few cases
in which the module name requires a capital letter as in Line 1. The Image.open
command from Line 2 reads the specified image into the variable mg. Lines 3—
8 demonstrate methods of obtaining information about the image. The size of an
image provides the number of pixels in the horizontal and vertical directions, unlike
the dimensions of a matrix which are given vertical first and horizontal second.

Code 3.30 Loading an image.

>>> import Image
>>> mg = Image.open('figs/bird.jpg’)
>>> mg.size

(653, 519)
>>> mg.mode
"RGB’

>>> mg.getpixel((10,20))
(123, 54, 147)

http://www.pythonware.com/products/pil/

3.4 Python Image Library 55

The mode of an image indicates if it is colour or grey scale. This image is an
RGB which means that it is colour and the colour is represented in red, green, and
blue components. Two other modes are “L” which indicates that the image is grey
scale and “P” which indicates that the image uses a palette. A palette is a look-up
table that contains the colours within the image.

There are many different types of images and PIL can read and write almost all
popular formats. However, not all formats store the same information. For example,
the JPEG format does store colour images but not perfectly as it has problems restor-
ing very sharp edges. The GIF format uses a palette which can store up to 256 colours.
Because of this limit it does not store colour photographs very well, but it does store
grey scale images without flaw. The PNG and TIFF formats store the images well but
do not provide the same compression as the other formats. A good rule of thumb is
to use JPEG for photographs, GIF for cartoons and grey scale photographs, PNG for
most images if speed and file size are not at issue, and bitmaps (BMP, TGA, PPM)
if it is critical that the image not be compressed.

3.4.2 Writing an Image

Writing an image to a file also takes a single command. Code 3.31 shows this com-
mand but has a little fun first. The mg.split function will convert an RGB image into
three grey scale images one for each of the colour components. So, in this case the
r is a grey scale image (mode=L) but it contains the red information in mg. Thus,
r will be bright where mg had a lot of red. The show command will pop up a new
window and display the image. This will use the computer’s default image viewer.
The merge command creates a new image from others. In this case the new image
will be an RGB image and the second argument should be a tuple (r,g,b). However,
in this case the order is changed placing the green information in the red position,
etc. The effect is that the image is reproduced with the wrong colours. The last two
commands show the image and save the image as a PNG file. Some versions of
MS-Windows may not show the image from Line 6. A simple fix is to replace the
show command with the save to save the image to the hard drive.

Code 3.31 Writing an image.

>>> r,g,b = mg.split()

>>> r.mode

i,

>>> r.show/()

>>> mg2 = Image.merge('RGB’, (g,b,r))
>>> mg2.show ()

>>> mg2.save("mypix.png")

56 3 NumPy, SciPy and Python Image Library

3.4.3 Transforming an Image

Transforming an image from one mode to another is accomplished with the convert
command as seen in Code 3.32. In this case the mg which was originally an RGB
image is converted to a grey scale. The PIL contains image altering routines as well.
Three examples are shown in Code 3.33 which show an image after a 20

Code 3.32 Converting an image.

>>> mg3 = mg.convert('L’)
>>> mg3.mode
i,

Code 3.33 Other transformations.

>>> mg.rotate(20) .show ()
>>> mg.resize((100,100)) .show()
>>> mg.crop((10,20,100,200)) .show()

3.5 Summary

The NumPy package provides a very powerful set of tools to allow Python to manip-
ulate vectors, matrices and tensors. These tool set is compiled in a very efficient
manner and so the speed of using NumPy is on par with C or Matlab. The speed of
using NumPy packages as opposed to using straight Python scripts can be more than
a hundred fold improvement and require less script writing. Learning NumPy tools
is well worth the time and effort. The SciPy package offers a large array of scientific
functions of which only a few are used in the following applications. The Python
Image Library provides the ability to read and write image files as well as several
image manipulation tools.

Chapter 4
The PCNN and ICM

In this section two digital models evolved from biological cortical models will be
presented. The first is the Pulse-Coupled Neural Network (PCNN) which for many
years was the standard model for many image processing applications. The PCNN
is based solely on the Eckhorn model but there are many other cortical models that
exist. These models all have a common mathematical foundation, but beyond the
common foundation each also had unique terms. Since the goal here is to build
image processing routines and not to exactly simulate the biological system a new
model was constructed. This model contained the common foundation without the
extra terms and is therefore viewed as the intersection of several cortical models and
it is named the Intersecting Cortical Model (ICM).

4.1 The PCNN

The Pulse-Coupled Neural Network is to a very large extent based on the Eckhorn
model except for a few minor modifications required by digitisation. The early exper-
iments demonstrated that the PCNN could process images such that the output was
invariant to images that were shifted, rotated, scaled, and skewed. Subsequent inves-
tigations determined the basis of the working mechanisms of the PCNN and led to
its eventual usefulness as an image-processing engine.

4.1.1 Original Model

A PCNN neuron shown in Fig.4.1 contains two main compartments: Feeding and
Linking. Each of these communicates with neighbouring neurons through the synap-
tic weights M and W respectively. Each retains its previous state altered by a decay
factor. Only the Feeding compartment receives the input stimulus, S. The values of

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 57
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_4, © Springer-Verlag Berlin Heidelberg 2013

58 4 The PCNN and ICM

Q.
Yik
Threshold
Inputs from v
other neurons ¥
]
i
Feedi -

Yp’“ ceding Y;l%v
Inputs from N
other neurons Fi U + O:Lput tor

Step Function ~ Other acurons
Fig. 4.1 Schematic representation of a PCNN processing element
these two compartments are determined by,
Fijln] = """ Fijln — 11+ Sij + Ve D MijuYuln — 11, (4.1)
kl
Lijin] = e“*™ Lijin — 11+ VL >~ WijuYuln — 1], 4.2)

ki

where Fj; is the Feeding compartment of the (i, j) neuron embedded in a two-
dimensional array of neurons, and L;; is the corresponding Linking compartment.
The Yy;’s are the outputs of neurons from a previous iteration [n — 1]. Both compart-
ments have a memory of the previous state which decays in time by the exponent
term. The constants Vr and V are normalising constants. If the receptive fields of
M and W change then these constants are used to scale the resultant correlation to
prevent saturation.

The state of these two compartments are combined in a second order fashion to
create the internal state of the neuron, U. The combination is controlled by the linking
strength, 3. The internal activity is calculated by,

Uijln] = Fj[n] (1 4 BLjj[n]). 4.3)

The internal state of the neuron is compared to a dynamic threshold, ®, to produce
the output, Y, by
1 if Ujj[n] > ©;j[n —1]

i “4.4)
0 Otherwise

Yij[n] =[

The threshold is dynamic in that when the neuron fires (Y;; > ©;;) the threshold
then significantly increases its value. This value decays until the neuron fires again.

4.1 The PCNN 59

The progression of the neuron thresholds is controlled by
©;j[n] = e*©™ 0;j[n — 11+ Ve Yijlnl, (4.5)

where Vg is alarge constant that is generally more than an order of magnitude greater
than the average value of U;;.

The PCNN consists of an array (usually rectangular) of these neurons. Com-
munications, M and W are traditionally local and Gaussian, but this is not a strict
requirement. Initially, the elements of the arrays, F, L, U, and Y are all set to zero.
The values of the &;; elements are initially 0 or some larger value depending upon
the user’s needs. Each neuron that has any stimulus will fire in the initial iteration,
which, in turn, will create a large threshold value. It will then take several iterations
before the threshold values decay enough to allow the neuron to fire again. The
algorithm consists of iteratively computing Eqs. (4.1)—(4.5) until the user decides to
stop. In a case where the input image has no pixels that are O then Y;; = 1,Vi, j
and Y;;[k] = 0,Yk = 1,...,~ 6. All neurons fire in the first pulse image and it
takes a few iterations before the thresholds are low enough for the neurons to fire
again. Circumvention is accomplished by setting initial threshold value high (e.g.,
©;;[0] = 1, Vi, j). These initial pulse images contain very little information.

4.1.2 Implementing in Python

Implementing the PCNN in a scripting language like Python is quite easy and straight-
forward. Only one line of script is required to implement each equation (4.1)—(4.5).
Since it is possible that a problem may employ more than one PCNN an object-
oriented approach is adopted. Code 4.1 shows the first part of the file pcnn.py which
defines the PCNN class and the constructor __init_ .

Code 4.1 Part 1 of pcnn.py.

pcnn.py

from numpy import zeros

from scipy.signal import cspline2d

class PCNN:
£,1,tl1,t2, beta = 0.9, 0.8, 0.8, 50.0, 0.2
constructor
def _ init (self,dim) :

self.F = zeros(dim, float)
self.L = zeros(dim, float)
self.Y = zeros(dim, float)
self.T = zeros(dim, float) + 0.0001

60 4 The PCNN and ICM

Line 5 establishes the constants in the PCNN where f in the code represents ¢+ %
in Eq. (4.1). Likewise,] < ea“s", 11 < e®0% and 2 « Ve . The constants Vg and
V. are built into the correlation kernels, and beta < (. The constructor receives
the variable dim which is the dimensions of the input array and is not restricted to
R? space. The dimis a fuple and in the case of image data the dimensions are given
as (V, H) where V is the vertical dimension and H is the horizontal dimension.
Lines 8-11 allocate space for the matrices required in the calculations.

A PCNN iteration is scripted in the function Iterate shown in Code 4.2. It receives
an input stim which is S in Eq.(4.1). If there have been previous pulses then the
program uses Line4 which emulates the connection matrices M and W with the
function cspline2d from scipy.signal. The cspline2d function acts as a smoothing
operator which is essentially similar to the behaviour of M and W being Gaussian
connections.

Code 4.2 Part 2 of pcnn.py.

pcnn.py
def Iterate (self,stim):
if self.Y.sum() > O:
work = cspline2d(self.Y.astype(float),b90)
else:
work = zeros(self.Y.shape, float)
self.F = self.f * self.F + stim + 8*work
self.L = self.l * self.L + 8*work
U = self.F * (1 + self.beta * self.L)
self.Y = U > gself.T
self.T = self.tl * self.T + self.t2 * self.Y + 0.1

Lines 7-11 are the five PCNN equations. The function has no outputbut self.y
has become the pulses for all neurons and it is accessed by scripts that drive this
program. However, before this program can be driven it is necessary to create a
simple input.

In this simple case, the input constructed in Code4.3 creates a 360 x 360 frame
and centred in this frame is a solid “T".

Code 4.3 Creating an image of a “T".

>>> data = zeros((360,360))
>>> data[120:160, 120:240] =

1
>>> data[160:240, 160:200] = 1

Code 4.4 shows the script to drive the PCNN. The pulse images are collected in
the list Y. Line6 may seem a bit odd with the net.Y + 0, but this is simply a

4.1 The PCNN 61
manner that creates a duplicate array in the computer memory instead of just making
a copy of the pointer to the data. Since the threshold at n = 0 is very low the ON
pixels from the input are also the neurons that pulse and so Fig.4.2a also represents
the output of the network at n = 0. The results are shown in Fig. 4.2 with the original
being shown in Fig. 4.2a. In this case the images are inverse of the actual input where
in the printed page the black pixels are ON and the white pixels are OFF.

Code 4.4 Driver for the PCNN.

>>>
>>>
>>>
>>>

>>>

import pcnn,

mgconvert

net =
Y [1
for 1 in range(

net.Iterate(

pcnn . PCNN (

20
data

Y.append(net.Y
mgconvert.a2i(Y[

data.shape)

) :

show ()

)
+ 0)
01).
>>> 01).

mgconvert.a2i(Y[save ('y0.png’)

The neurons that pulse at n = 0 obtain a very high threshold from Eq. (4.5) and
therefore they are not able to pulse again for many iterations. However, the pixels
neighbouring those pixels are encouraged to pulse through the connections M and
W. Therefore, the neurons along the perimeter pulse. This perimeter continues to
expand as demonstrated at n = 3 and n = 6. At n = 7 the threshold of the on-target
pixels have decayed according to the first term in Eq.(4.5) and now the internal
energy again surpasses the threshold and the neurons pulse again (second cycle). As
shown in the rest of the sampled images the waves are generated and continue to
expand from the original target perimeter.

Line 8 in Code4.4 saves the first pulse image as a PNG file. It should be noted
that some image compression formats are inappropriate for storing a pulse image.
Namely, the JPEG format does not store very sharp edges well and therefore will
induce noise into the stored image. Users should use PNG, GIF or TIF to store pulse
images.

4.1.3 Spiking Behaviour

Consider the activity of a single neuron. It is receiving some input stimulus, S,
and stimulus from neighbours in both the Feeding and Linking compartments. The
internal activity rises until it becomes larger than the threshold value. Then the neuron
fires and the threshold sharply increases then begins its decay until once again the
internal activity becomes larger than the threshold. This process gives rise to the
pulsing nature of the PCNN. Figure4.3 displays the states within a single neuron
embedded in a 2D array as it progresses in time.

62 4 The PCNN and ICM

T 7 9

(a) Original and (b)n=1. (¢c) n =3. (d) n =6.
n=0.
e n=1.) n =38 (g) n =10. (h) n =11.

(i) n =12 () n =13. (K) n = 19.

Fig. 4.2 Figure a shows the input image which is also the same as the output at n = 0. Figures
b—k shows the pulse images at selected informative values of n

Figure4.2 shows an expanding wave for each pulse cycle. These waves do not
reflect or refract. Furthermore, colliding wavefronts are annihilated. Such waves have
been observed in nature [10, 74] and are called autowaves.

Consider the image in Fig.4.4. The original input consists of two ‘T’s. The inten-
sity of each ‘T’ is constant, but the intensities of each ‘T’ differ slightly. Atn = 4
the neurons that receive stimulus from either of the “T’s will pulse in step n = 16
(denoted as black). As the iterations progress, the autowaves emanate from the orig-
inal pulse regions. At n = 10 it is seen that the two waves did not pass through each
other. At n = 12 the more intense “T’ again pulses.

The network also exhibits some synchronising behaviour. In the early iterations
segments tend to pulse together. However, as the iterations progress, the segments
tend to de-synchronise. Synchronicity occurs by a pulse capture, which occurs when
one neuron is close to pulsing (U;; < ®;;) and its neighbour fires. The additional
input from the neighbour will provide an additional input to U;; thus allowing the
neuron to fire prematurely. The two neurons, in a sense, synchronise due to their
linking communications.

4.1 The PCNN 63

I\ |
P
a.%wwm

1 3579 111315171921 2323527 2931333537 19414345

Fig. 4.3 Anexample of the progression of the states of a single neuron. See the text for explanation
of L, U, Tand F

T
I
]
-
g

n=10 n=12 n=13 n=19

Fig. 4.4 A typical PCNN example

The de-synchronisation occurs in more complex images due to residual signals.
As the network progresses the neurons begin to receive information indirectly from
other non-neighbouring neurons. This alters their behaviour and the synchronicity
begins to fail. The beginning of this failure can be seen by comparingn = 1ton = 19
in Fig.4.4. Note that the corners of the ‘T’ autowave are missing in n = 19. This
phenomenon is more noticeable in more complicated images. Gernster [33] argues
that the lack of noise in such a system is responsible for the de-synchronisation.
However, applications demonstrated in subsequent chapters specifically show the
PCNN architecture does not exhibit this link. Synchronisation has been explored
more thoroughly for similar integrate and fire models [72].

The PCNN has many parameters that can be altered to adjust its behaviour. The
(global) linking strength, (3, in particular, has many interesting properties (in partic-
ular effects on segmentation). While this parameter, together with the two weight
matrices, scales the feeding and linking inputs, the three potentials, V, scale the inter-
nal signals. Finally, the time constants and the offset parameter of the firing threshold

64 4 The PCNN and ICM

are used to adjust the conversions between pulses and magnitudes. The extent of the
range of M and W directly affects the speed that the autowave travels by allowing the
neurons to communicate with neurons farther away and thus allowing the autowaves
to advance farther in each iteration.

The pulse behaviour of a single neuron is greatly affected by ag and V. The ap
affects the decay of the threshold value and the Vg affects the height of the threshold
increase after the neuron pulses. It is quite possible to force the neuron to enter
into a multiple pulse regime in which the neuron pulses in consecutive iterations by
lowering V. The autowave created by the PCNN is greatly affected by V. Setting
VF to 0 prevents the autowave from entering any region in which the stimulus is also
0. There is also a range of VF values that allows the autowave to travel but only for
a limited distance.

There are architectural changes that can alter the PCNN behaviour. One such
alteration is quantised linking where the linking values are either 1 or O depending
on a local condition. In this system the Linking field is computed by,

1 if Zkl wijki Y >y

] (4.6)
0 Otherwise

Lij[n] = [

Quantized linking tends to keep the autowaves clean. In the previous system
autowaves travelling along a wide channel have been observed to decay about the
edges. In other words a wave front tends to lose its shape near its outer bound-
aries. Quantized linking has been observed to maintain the wave fronts shape. As
stated earlier, setting ®;;[0] = 1, Vi, j bypasses early uninformative pulse images.
De-synchronisation may be controlled by resetting @ after a few iterations [80].

The influence of a dynamic Vg was considered by Yamaguchi et al. [117] in which
a static V was replaced by,

Vo = 1 + ag sin(wot), 4.7

where ap and wg were the variables that they altered. In a simulation of a one-
dimensional network they demonstrated that certain combinations of ag and wy pro-
duced a stable case in which two neurons receiving the same input pulse in synchrony,
but other combinations produced a chaotic behaviour.

4.1.4 Collective Behaviour

Code4.5 runs the PCNN again and collects neural activity for each compartment.
This allows for visual inspection of the collective behaviour of the neurons. Figure 4.5
shows the activity of the F compartments of each neuron. At n = 0 only the neurons
that are receiving a stimulus have a significant value since the only active part of
Eq.(4.1) is the stimulus S.

4.1 The PCNN 65

Code 4.5 Collecting the internal neural activities.

>>> net = pcnn.PCNN(data.shape)

>>F, L, U, Y, T =1[1,[1,[1,11,11

>>> for i in range(50):
net.Iterate(data
F.append(net.F+0

)
)
L.append(net.L + 0)
U.append(net.F * (1 + net.beta * net.L))
Y.append(net.Y + 0)
T.append(net.T + 0)

T T ® @ @

(@) n =0. (b) n =1. (¢) n =11. (d) n =12. (e) n =49.

Fig. 4.5 Collective behaviour of F

TGO @

(@) n=1. (b) n =11. (¢) n=12. (d) n =49.

Fig. 4.6 Collective behaviour of L

At n = 1 the first and third terms in Eq. (4.1) begin to contribute to the activity
in F. Basically, the autowave appears and continues to expand up to n = 11. In this
example, at n = 12 the second cycle begins and the values in F are increased for the
neurons that fire. The image shown is scaled and therefore intensities shown on the
page between n = 11 and n = 12 do not have the same magnitude. The last example
shown is at n = 49 which shows three cycles of waves expanding. Figure 4.6 shows
the intensities of the L. compartments with n = 0 not shown since there is no activity
in the first iteration. While the expanding autowave is present it is also noticed that
the L compartment is more sensitive to edges.

The threshold ® responses are shown in Fig.4.7. These have larger values when
a neuron fires. Clearly, at n = 12 the expanding wave is shown to have decreasing
values closer to the target since those neurons fired further back in time. The output
arrays are shown in Fig.4.2.

66 4 The PCNN and ICM

)

(@) n =0. (b) n =1. (¢) n=11. (d) n =12. (e) n =49.

Fig. 4.7 Collective behaviour of @

4.1.5 Time Signatures

The early work of Johnson [46] was concerned with converting the pulse images to
a single vector of information. This vector, G, has been called the ‘time signal’ and
is computed by,

Glnl =Y ¥lnl. (4.8)
i

This time signal was shown to have an invariant nature with regard to alterations of
the input image. For example, consider the two images in Fig. 4.8. These images are
of a T and a 4. Each image was presented to the PCNN and each produced a time
signal, Gr and G, respectively. These are shown in Fig.4.9.

T +

() Original and n = 0. (b)n =1.

Fig. 4.8 Johnson’s inputs of a “T” and ‘4’
500 4

400

300

m Seriel
o Serie2

200

100

04
12 3 45 6 7 89 10111213 14

Fig. 4.9 A plot of Gr (series 1) and G (series 2) in arbitrary units (vertical axis). The horizontal
axis shows the frame number and the vertical axis the values of G

4.1 The PCNN 67

20 20 20 20p

30 30 30 304

40 40 40 404

50 S0 50 S04

&80 &80 &0 80t

10 20 30 40 50 60 10 20 20 40 S0 60 10 20 30 40 50 60 T 10 20 %0 40 50 60
1500 B0 1 [
600}] | i s00] | I soo!
1000 | \ s fly "l n I fla A I: f A
(| 400f| |‘| |~. 40011 v v | 400 [" l i"l |
1 1 1 1 1 1
wl__ \ I\ 1 200} \ :l-l 200}| | I.I | I.I |1 200} | L T |
\ ANTEEA | T RY AT YR AT NI v A\

FAN AN _ A oL} [\ |
140 160 180 200 220 240 140 160 180 200 220 240 140 160 1B0 200 220 240 140 160 1B0 200 220 240

ITERATION NUMBER

Fig. 4.10 Plot of G for a slightly more complicated cross than in Fig.4.9. The cross is then scaled
and rotated and filled with shades of grey to show what happens to the time series

Johnson showed that the time signal produces a cycle of activity in which each
neuron pulses once during the cycle. The two plots in Fig. 4.9 depict single cycles of
the ‘T’ and the ‘4. As time progressed the pattern within the cycle stabilised for these
simple images. The content of the image could be identified simply by examining a
very short segment of the time signal—a single stationary cycle. Furthermore, this
signal was invariant to large changes in rotation, scale, shift, or skew of the input
object. Figure4.10 shows several cycles of a slightly more complicated input and
how the peaks vary with scaling and rotation as well as intensities in the input image.
However, note that the distances between the peaks remain constant, providing a
fingerprint of the actual figure. Furthermore, the peak intensities could possibly be
used to obtain information on scale and angle.

4.1.6 Neural Connections

The PCNN contains two convolution kernels M and W. The original Eckhorn model
used a Gaussian type of interconnections, but when the PCNN is applied to image
processing problems these interconnections are available to the user for altering the
behaviour of the network. The few examples shown here all use local interconnec-
tions. It is possible to use long range interconnections but two impositions arise. The
first is that the computational load is directly dependent upon the number of intercon-
nections. The second is that PCNN tests to date have not provided any meaningful
results using long range interconnections, although long range inhibitory connections
of similar models have been proposed in similar cortical models [76].

Subsequent experiments replaced the interconnect pattern with a target pattern
in the hope that on-target neurons would pulse more frequently. The matrices M
and W were similar to the intensity pattern of a target object. In actuality there was
very little difference in the output from this system than from the original PCNN.

68 4 The PCNN and ICM

T
T

Fig. 4.11 An example input

Further investigations revealed the reason for this. Positive interconnections tend to
smooth the image and longer-range connections provide even more smoothing. The
internal activity of the neuron may be quite altered by a change in interconnections.
However, much of this change is nullified since the internal activity is compared to a
dynamic threshold. The amount by which the internal activity surpasses the dynamic
threshold is not important and thus the effects of longer-range interconnections are
reduced.

Manipulations of a small number of interconnections do, however, provide drastic
changes in the PCNN. A few examples of these are shown. For these examples we
use the input shown in Fig.4.11. This input is a set of two ‘T’s.

The first example computes the convolution kernel by,

ij={0 ifi=mandj m’ 4.9)

1/r Otherwise

where 7 is the distance from the centre element to element ij, and m is half of the
linear dimension of K. In this test K was 5 x 5. Computationally, the feeding and
linking equations are,

Fijln] = e®* " Fjln — 11+ Sij + K@ Y);; . (4.10)

and)
Lij[n] = e** " Lijln — 11+ K®Y);; 4.11)

where ® represents the convolution operator.

The resultant outputs of the PCNN are shown in Fig.4.12. The output first pulses
all neurons receiving an input stimulus. Then autowaves are established that expand
from the original pulsing neurons. These autowaves are two pixels wide since the ker-
nel extends two elements in any direction from the centre. These autowaves expand at
the same speed in both vertical and horizontal dimensions again due to the symmetry
of the kernel.

Setting the elements of the previous kernel to zero for i = 0 and i = 4 defines a
kernel that is asymmetric. This kernel will cause the autowaves to behave in a slightly

4.1 The PCNN 69

Rl
T Y Y
LITl—| [I_J] 1
| o e

(e) n =5.) n=6. (g n=17. (h) n =8.

Fig. 4.12 Output pulse images

T (% % %R
T™ Y R R

(@ n=0. (b) n =1 (©)n=2 d) n=3. (e) n =4.
|G| [
—| M| | T

) n=5. (g) n=6. (h) n =8.

Fig. 4.13 Outputs of a PCNN with an asymmetric kernel, as discussed in the text. These outputs
should be compared to those shown in Fig.4.14

different fashion. The results from these tests are shown in Fig.4.13. The autowave
in the vertical direction now travels at half the speed of the one in the horizontal
direction. Also the second pulse of the neurons receiving stimulus is delayed a frame.
This delay is due to the fact that these neurons were receiving less stimulus from
their neighbours. Increasing the values in K could eliminate the delay.

The final test involves altering the original kernel by simply requiring that,

(4.12)

K;j ifi= dj=
Klj:[ij 1T1 m ana j m.

—Kij Otherwise

70 4 The PCNN and ICM

(@ n=0. (b) n =1. (¢) n =2. (d) n =3. (e) n =4.

f) n =5. (g) n=6. (h) n =7. (i) n =8. G) n=09

T
T

(k) n =10. M n=11

Fig. 4.14 Outputs of a PCNN with an on-centre/off-surround kernel

The kernel now has a positive value at the centre and negative values surrounding
it. This configuration is termed On-Centre/Off-Surround. Such configurations of
interconnections have been observed in the eye. Furthermore, convolutions with
a zero-mean version of this function are quite often used as an “edge enhancer”.
Employing this type of function in the PCNN has a very dramatic effect on the
outputs as is shown in Fig.4.14. The autowaves created by this system are now
dotted lines. This is due to competition amongst the neurons since each neuron is
now receiving both positive and negative inputs.

4.1.7 Fast Linking

The PCNN is a digital version of an analogue process and this quantisation of time
does have a detrimental effect. Fast linking was originally installed to overcome
some of the effects of time quantisation and has been discussed by McEniry and
Johnson [71] and by Johnson and Padgett [47]. This process allows the linking wave
to progress a lot faster than the feeding wave. Basically, the linking is allowed to prop-
agate through the entire image for each iteration. This system allows the autowaves
to fully propagate during each iteration. In the previous system the progression of
the autowaves was restricted by the radius of the convolution kernel.

4.1 The PCNN 71

Fig. 4.15 An input and fast linking outputs. The pulses are shown as white pixels

Fast linking iterates the L, U, and Y equations until Y becomes static. The equa-
tions for this system are similar to Egs. (4.1)—(4.5). A single iteration of the process is:

1. Compute a single iteration of Egs. (4.1)-(4.5).
2. Repeat

a. Compute
Lijin] = ¢™ " Lijn — 11+ VL > WijuYuln — 1]
kl

b. Compute Egs. (4.3) and (4.4).

3. Until Y does not change.
4. Compute (4.5).

72 4 The PCNN and ICM

Codes4.1 and 4.2 show the functions for generating the PCNN class. The fast
linking is accomplished by appending a new function, FastLIterate, to the PCNN
class. This function is shown in Code4.6. There are a few changes from the Iterate
function shown in Code 4.2. The first is that there is an internal loop starting at Line 10
the recursively computes Eqgs. (4.2)—(4.4). The loop terminates when the variable ok
becomes False which occurs when the changes between consecutive Y arrays are very
similar (less than 100 pixels different). Once this is complete Eq. (4.5) is computed
and the single PCNN iteration is complete.

The image in Fig.4.15a is an original image with four young lads playing a
game. The image is interesting in that the men are shown in darker pixels than the
background. Traditional PCNN networks have no problems in generating pulses
for the bright objects, but due to interference (Sect.4.2.3.1) the darker objects are
generally not collectively pulsed. The first few pulse images are shown in Fig.4.15
and as seen there are no frames in which all of the pixels of a person pulse. Figure 4.15f
shows a weighted collective behaviour of the pulses. The image was generated by,

Code 4.6 Fast linking iteration for pcnn.py.

pcnn.py
def FastLIterate(self, stim):
ok =1

self.Y = old + 0
if self.Y.sum() > 0:
work = cspline2d(self.Y.astype(float),b90)
else:
work = zeros(self.Y.shape, float)
self.F = self.f * self.F + stim + 8*work
while ok:
print .’,
if self.Y.sum() > O:
work = cspline2d(self.Y.astype(float),90)
else:
work = zeros(self.Y.shape, float)
self.L = self.1l * self.L + work
U = self.F * (1 + self.beta * self.L)
old = self.Y + 0
self.Y = np.logical_or(U > self.T, self.Y)
if abs(self.Y - old).sum() <100: ok = 0
self.T = self.tl * self.T + self.t2 * self.Y + 0.1

N
A= ZO.QS”Y[n], (4.13)
=1

where N is the number of pulse images. Bright regions are associated with regions
that pulsed early.

4.1 The PCNN 73

Code 4.7 shows the steps for generating the PCNN iterations and the output shown
in Fig.4.15f. The image was loaded in Line 1 and converted to grey scale in Line 2.
Line 3 performs a small smoothing on the image to reduce noise. Line4 creates an
empty list which is populated in the iterations from Lines 5 to 7. The rest of the code
is dedicated to creating the composite pulse image. The function FastLIterate does
have a print statement (Line 11 in Code 4.6) which is used for stopping the iterations.
In some operating systems the IDLE environment will not break out of a loop with
Ctl-C unless a print statement is called. Thus, if the user decides to stop the iteration
it will stop when it reaches Line 11.

4.1.8 Models in Analogue Time

As stated earlier the PCNN is a simulation in discrete time of a biological system that
operates in analogue time. This is due solely to the ease of computation in discrete
time. It is possible to more closely emulate an analogue time system. Computation-
ally, this is performed by keeping a table of events. These events include the time in
which each neuron is scheduled to pulse and when each inter-neural communication
reaches its destination. This table is sorted according to the scheduled time of each
event.

The system operates by considering the next event in the table. This event is
computed and it either fires a neuron or modifies the state of a neuron because a
communication from another neuron has reached this destination. All other events
that are affected by this event are updated. For example, if a communication reaches
its destination then it will alter the time that the neuron is predicted to pulse next.
Also new events are added to the table.

Code 4.7 Executing a fast linking.

>>> mg = Image.open(’'pingpong.png’)
>>> data = mgconvert.i2a(mg.convert(’'L’))/255.0
>>> data = cspline2d(data, 2)
>>> Y = []
>>> for i in range(30):
net.FastLIterate(data)
Y.append(net.Y + 0)
>>> A = np.zeros(data.shape)
>>> k = 1.0
>>> for i1 in range(30):
A += k*Y[1]
k *= 0.95

For example, if a neuron pulses then it will generate new communications that
will eventually reach their destinations.

74 4 The PCNN and ICM

More formally, the system is defined by a new set of equations. The stimulus is
U and it is updated via,

Ut +di) = e~/ U@) + UG @ K, (4.14)

where K defines the inter-neural communications, ® is the convolution operator and
[is an input scaling factor. The neurons fire when a nonlinear condition is met,

1 if (FU®K);; > 6;;
Y;i(t+dt) = J ’, 4.15
i) [O Otherwise ()
and the threshold is updated by,
O +dt) = e "0 () + vY(1). (4.16)

The effect is actually an improvement over the digital system, but the computa-
tional costs are significant. Figure4.16 displays an input and the neural pulses. In
order to display the pulses it is necessary to collect the pulses over a finite period
of time, so even though they are displayed together the pulses in each frame could
occur at slightly different times.

4.2 The ICM

As stated earlier there are several biological models that have been proposed. These
models are mathematically similar to the Fitzhugh-Nagumo system in that each
neuron consists of coupled oscillators. When the goal is to create image processing

(d)

Fig. 4.16 An original image and collections of neural pulses over finite time windows

4.2 The ICM 75

applications it is no longer necessary to exactly replicate a biological system. The
important contribution of the cortical model is to extract information from the image
and there is little concern as to the deviation from any single biological model.

The ICM is a model that attempts to minimize the cost of calculation but maintain
the effectiveness of the cortical model when applied to images. Its foundation is
based on the common elements of several biological models.

4.2.1 Minimum Requirements

Each neuron must contain at least two coupled oscillators, connections to other
neurons, and a non-linear operation that determines decisively when a neuron pulses.
In order to build a system that minimizes the computation it must first be determined
which operation creates the highest cost. In the case of the PCNN almost all of
the cost of computation stems from the interconnection of the neurons. In many
implementations users set M = W which would cut the computational needs in
half. One method of reducing the costs of computation is to replace the traditional
Gaussian type connections.

Another method is to reduce the number of connections. What is the minimum
number of neurons required to make an operable system? This question is answered
by building a minimal system and then determining if it created autowave commu-
nications between the neurons [54]. Consider the input image in Fig.4.17 which
contains two basic shapes.

The system that is developed must create autowaves that emanate from these two
shapes. So, a model was created that connected each neuron to P other neurons.
Each neuron was permanently connected to P random nearest neighbours and the
simulation was allowed to run several iterations. The results in Fig.4.18 display the
results of three simulations. In the first P = 1 and the figure displays which neurons
pulsed during the first 10 iterations. After 10 iterations this system stabilised. In other
words the autowave stalled and did not expand. In the second test P = 2 and again
the autowave did not expand. In both of these cases it is believed that the system had
insufficient energy to propagate the communications between the neurons. The third
test used P = 3 and the autowave propagated through the system, although due to
the minimal number of connections this propagation was not uniform. In the image
it is seen that the autowaves from the two objects did collide only when P = 3.

Fig. 4.17 An input image

76 4 The PCNN and ICM

(a) (b))

Fig. 4.18 Neuron that fired in the first 10 iterations for systems with P =1, P =2,and P =3

The conclusion is that at least three connections between neurons are needed in
order to generate an autowave. However, for image processing applications the imper-
fect propagation should be avoided as it will artificially discriminate the importance
of parts of the image over others.

Another desire is that the autowaves emanate as a circular wave front rather than
a square front. If the system only contained 4 connections per neuron then the wave
would propagate in the vertical and horizontal directions but not along the diagonals.
The propagation from any solid shape would eventually become a square and this is
not desired. Since the input image will be defined as a rectangular array of pixels the
creation of a circular autowave will require more neural connections. This circular
emanation can be created when each neuron is connected to two layers of nearest
neighbours. Thus, P = 24 seems to be the minimal system.

4.2.2 ICM Theory

The minimal system now consists of two coupled oscillators, a small number of
connections, and a non-linear function. This system is described by the following
three equations [55],

Fijln + 1] = fF;j[n] + §;; + W{Y[nl};;, 4.17)

1 if Fiji[n+ 1] > ©;;[n]
Yiiln+ 1] = J J , 4.18
il] [0 Otherwise ()

and
Oijln + 11 = gO;j[n] + hYjj[n + 1]. (4.19)

Here the input array is S, the state of the neurons are contained in F, the outputs
are Y, and the dynamic threshold states are ®. The scalars f and g are both less than
1.0and g < f is required to ensure that the threshold eventually falls below the state
and the neuron pulses. The scalar £ is a large value that dramatically increases the
threshold when the neuron fires. The connections between the neurons are described

4.2 The ICM 7

Fig. 4.19 ais an input image and b—d are a few of the pulse outputs from the ICM

by the function W and for now these are still the 1/r type of connections. A typical
example is show in Fig.4.19.

Distinctly the segments inherent in the input image are displayed as pulses. This
system behaves quite similar to the PCNN and is done so with simpler equations.
Comparisons of the PCNN and the ICM operating on the same input are shown in
Figs.4.20 and 4.21.

Certainly, the results do have some differences, but it must be remembered that
the goal is to develop an image processing system. Thus, the results that are desired
from these systems is the extraction of important image information. It is desired to
have the pulse images display the segments, edges and textures that are inherent in
the input image.

4.2.3 Connections in the ICM

The function W{-} manages the connections between neurons as did the M and W
matrices in the PCNN. However, the PCNN connections were static whereas the
ICM connections are dependent upon the pulse activity of the previous iteration.
Both the PCNN and ICM do rely on only local connections. Before the function
W{-} is explained the foundation for this dynamic nature through the phenomenon
of interference are considered.

4.2.3.1 Interference

In the PCNN model the connections are proportional to 1/r and static. This lead to
the expanding waves seen in Fig.4.2. The expanding nature of the waves caused an
interference problem when the PCNN was applied to images with multiple objects.
The waves expanding in Fig.4.4 are autowaves and so when they collide the wave

78 4 The PCNN and ICM

-
(a) Original

(e)n =7 f)n =8

Fig. 4.21 Results from the ICM

4.2 The ICM 79

Fig. 4.22 A target (flower) pasted on a background
6000

o 2=
4000 4
3000 I A i
2000 [
1000 [

09 5 10 15 20 25 30 35 40 45 50

Fig. 4.23 The signature of the flower without a background (G.plt) and the signature of the flower
with a background (Gb.plt). The x-axis represents the iteration index and the y-axis is the number
of on-target neurons that are pulsing

fronts are annihilated. This means that the presence of the second object interferes
with the expanding wave of the first object and this is the root cause of interference.
The autowaves expanding from non-target objects will alter the autowaves emanating
from target objects. If the non-target object is brighter it will pulse earlier than the
target object autowaves, and its autowave can pass through the target region before
the target has a change to pulse. The values of the target neurons are drastically altered
by the activity generated from non-target neurons. Thus, the pulsing behaviour of
on-target pixels can be seriously altered by the presence of other objects. This was
shown in Fig. 4.15 where the bright objects pulse in unison but the darker objects did
not.

Consider the input image in Fig.4.22 in which the target (a flower) is pasted onto
a background. The target was intentionally made to be darker than the background to
amplify the interference effect. Two inputs F| and F»> were created where F| was the
image shown in Fig.4.22 and F, was only the flower without a background. The pulse
images from a modified ICM were computed for each input. The modification was
to use the connections M that were also used in the PCNN. In this case the signatures
were computed by using only the pixels on-target. Figure4.23 shows the signature

80 4 The PCNN and ICM

R

Fig. 4.24 The propagation of curvature flow boundaries

for the flower without the background and for the target pixels for the image with the
background. As seen the two signatures are very different and thus the pulse activity
for the neurons on-target is different solely due to the presence of the background. It
would be quite difficult to recognise an object from the neural pulses if those pulses
are so susceptible to the content of the background.

4.2.3.2 Curvature Flow

The solution to the interference effect is based on curvature flow theory [69]. In
this scenario the waves do not propagate outwards but instead propagate towards the
centripetal vectors that are perpendicular to the wave front. Basically, they propagate
towards local centre of curvatures. For solid 2D objects the curvature flows will
become a circle and then collapse to a point [34]. (There is an ongoing debate as to
the validity of this statement in dimensions higher than two.)

Such propagation from Malladi and Sethian [69] is shown in Fig.4.24. The initial
frame presents a intricate 2D shape. This figure will eventually evolve into a circle and
then collapse to a point. There is a strong similarity between this type of propagation
and the propagation of autowaves. In both cases the wave front will evolve to a circle.
The difference is that the autowaves will also expand the circumference with each
iteration whereas the curvature flow will be about the same size as the original shape.

The interference in the ICM that lead to the deleterious behaviour in Fig. 4.23 was
caused when the neural communications of one object interfered with the behaviour
of another. In other words, the autowaves from the background infringed upon the
territory owned by the flower. This stems from the ever expanding nature of the
autowaves.

Curvature flow models evolve to the same shape as autowaves but do not have
the ever-expanding quality. Thus, the next logical step is to modify the connection
function W{-} to behave more like curvature flow wave fronts.

4.2.3.3 Centripetal Autowaves

A centripetal autowave follows the mechanics of curvature flow. When a segment
pulses its autowave will propagate towards a circle and then collapse. It does not

4.2 The ICM 81

Fig. 4.25 The progression of
an autowave from the larger
initial shape tending towards
a circle and then collapsing to
a point

propagate outwards as does the traditional autowave. The advantageous result is that
autowaves developed from two neighbouring objects will have far less interference.

The propagation of a curvature flow boundary is towards the local centre of cur-
vature. The boundary, C, is a curve with a curvature vector k. The evolution of the

curve follows,
oc il (4.20)
— =K-N, .
ot

where 7 is normal. In two-dimensional space all shapes become a circle and then
collapse to a point. Such a progression is shown in Fig.4.25 where a curve evolves
to a circle and then collapses.

The ever-expanding nature of the autowaves leads to the interference and this
quality is absent in a curvature flow model. Thus, the logical step is to modify the
neural connections to behave as in the curvature flow model. This requires that the
connections between the neurons be dependent upon the activation state of the sur-
rounding neurons. However, in creating such connections the problem of interference
is virtually eliminated. In this new scenario neural activity for on-target neurons is
the same independent of the presence of other objects. This is a major requirement
for the employment of these models as image recognition engines.

The new model will propagate the autowaves towards the local centre of cur-
vature and thus obtain the name centripetal autowaves. The computation of these
connections requires the re-definition of the function W{-}.

Computations for curvature can be cumbersome for large images, so, an image-
friendly approach is adopted. The curves in figure start with the larger, intricate curve
and progress towards the circle and then collapse to a point. The neural communica-
tions will follow this type of curvature flow progression. Of course, in the ICM there
are other influences such as the internal mechanics of the neurons which influence
the evolution of the neural communications.

The function W{A} is computed by,

W{A} = [[Fo,a {M(A)} + F1 4 (A)] < 0.5], 4.21)

where,
A=A+ [Fia{M(A)} > 05]. (4.22)

The function M (A) is a smoothing function. The function Fj 4 {X} is a masking
function that allows only the pixels originally OFF in A to pass as in,

82

[FlA] _ Xij ifAijZO
i 0 Otherwise

and likewise F> 4 {X7} is the opposing function,

[F2A] _ X,‘j ifAl‘jZI
i 0 Otherwise

The inequalities are passing thresholds as in,

1 ifx;;>d
[X >d];; = a=e
0 Otherwise
and
1 ifx;; <d
[X<d]lj: * x”_l .
0 Otherwise

4 The PCNN and ICM

(4.23)

(4.24)

(4.25)

(4.26)

This system works by basically noting that a smoothed version of the original
segment produces larger values in the off-pulse region and lower values in the on-
pulse region in the same areas that the front is to propagate. The non-linear function
isolates these desirable pixels and adjusts the communication wave front accordingly.

The centripetal autowave signatures of the same two images used to generate the
results in Fig.4.23 are shown in Fig.4.26. It is easy to see that the background no
longer interferes with the object signature. The behaviour of the on-target neurons are
now almost independent of the other objects in the scene. This quality is necessary

for image applications.

6000

I G2.plt > |
5000 [T Gapit
4000 [|
3000 [\

A

0
0 5 10 15 20

2000 [| / A 4
food ||) /’,\"\‘4] ~
- Nty o gt SV A 4 \g""’ NM".‘

25 30 35 40 45 5

0

Fig. 426 The signatures of the flower and the flower with a background using the centripetal
autowave model. The x-axis represents the iteration index and the y-axis is the number of on-target

neurons that are pulsing

4.2 The ICM 83

4.2.4 Python Implementation

Python implementation of the ICM is very similar to the PCNN. Since a problem
may require multiple instantiations of the ICM the script is contained within an
object. The first part of the object is shown in Code 4.8 which begins with the initial
definition on Line 5. Line 7 defines the three variables and the constructor begins on
Line9. Similar to the PCNN the constructor allocates space for the necessary arrays.
One difference is that the initial values of the threshold are set to 1. If they are set to 0
then the first pulse image is all pixels that have a value greater than 0 which is usually
the entire image. Then about six iterations are needed before the threshold is reduced
so that neurons can again pulse. Thus, the first seven iterations are meaningless. By
starting the threshold values at 1 the first pulse images are meaningful.

Code 4.8 Constructor for ICM.

icm.py
from numpy import ones, zeros
from levelset import LevelSet

class ICM:
"""Intersecting Cortical Model"""
£f,t1,t2 = 0.9,0.8,20.0

def _ _init__ (self,dim):
self.F = zeros(dim, float)
self.Y = zeros(dim, float)
self.T = ones(dim, float)

The function Iterate is shown in Code4.9. This uses the Gaussian connections
which create the expanding autowaves, and Code4.10 shows the IterateLS function
which creates the centripetal autowaves. which are more desirous for image appli-
cations. It calls the LevelSet function (Code4.12) which computes the connections
for each iteration twice. The second call to the function increases the speed at which
the autowaves travel and through experience two iterations provide the better results.
However, the user may wish to alter the speed of the autowaves for their application.
Lines 8-10 perform the three ICM equations.

A typical instantiation of the ICM is shown in Code4.11 in which the first three
lines import the necessary tools. The image is loaded in Line4 and converted to a
matrix in Line5 with all pixel values between 0 and 1. Line 6 calls the cspline2d
function which acts as a smoothing operator. This is common for both PCNN and
ICM applications as it removes single pixel noise and provides a significantly better
segmentation. The results of Code4.11 are shown in Fig.4.21.

84 4 The PCNN and ICM

Code 4.9 Iteration for ICM.

icm.py
def Iterate (self,stim):

if self.Y.sum() > O0:
work = Smooth(self.Y.astype(float),3)

else:
work = zeros(self.Y.shape, float)

self.F = self.f * self.F + stim + 8*work

self.Y = self.F > self.T

self.T = self.tl * self.T + self.t2 * self.Y + 0.1

Code 4.10 Iteration for ICM creating centripetal autowaves.

icm.py
def IterateLS(self, stim):

if sum(sum(self.Y))>10:
work = LevelSet(self.Y)
work = LevelSet(work)

else:
work = zeros(self.Y.shape, float)

self.F = self.f * self.F + stim + work

self.Y = self.F > self.T

self.T = self.tl * self.T + self.t2 * self.Y + 0.1

Code 4.11 Driving the ICM.

>>> import icm
>>> import Image
>>> from scipy.signal import cspline2d
>>> mg = Image.open(‘icecream0.png’)
>>> data = mgconvert.i2a(mg.convert(’'L’))/255.0
>>> data = cspline2d(data, 2)
>>> net = icm.ICM(data.shape)
>>> Y = []
>>> for i1 in range(20):
net.IteratelLS(data)
Y.append(net.Y + 0)

4.3 Summary

Cortical models have been expressed in mathematical form for five decades now.
The same basic premise of coupled oscillators or reaction-diffusion systems still
apply to current models. Furthermore, in an image processing application the differ-
ences between the different models may not be that important. Therefore, speed and

4.3 Summary 85

simplicity of implementation are more important here than replication of a biological
system.

Code 4.12 The LevelSet function.

levelset.py
from scipy.signal import cspline2d

def LevelSet (A):
A is the input array
returns an array
The addition portion
Aofftarg = A <=0
Aontarg = A > 0
M = cspline2d(Aontarg.astype(’'d’),70)
Mofftarg = M * Aofftarg.astype(’'d’)
Aadd = (Mofftarg.astype(’d’) > 0.5)
A = A + Aadd
The subtraction portion
Aontarg = A > 0
Aofftarg = 1 - Aontarg
M = cspline2d(Aontarg.astype(’d’),70)
Montarg = M * Aontarg.astype(’d’) + Aofftarg.astype(’d’)
Akill = (Montarg<0.5).astype(’d’)
A = A - Akill
return A

.astype(’d’)

For image processing applications the model selected here is the ICM which
consists of just three simple equations. Each neuron has two oscillators (the neuron
potential and the neuron threshold) and each neuron has a non-linear operation.
Thus, when stimulated, each neuron is capable of producing a spike sequence, and
groups of locally connected neurons have the ability to synchronize pulsing activity.
When stimulated by an image these collectives can represent inherent segments of
the stimulating image. Thus, a cortical model can become a powerful first step in
many image processing applications.

The traditional neural connection schemes, however, allow neural communica-
tions to continually progress away from the originating region. While this may have
some biological foundation, this property has been found to be deleterious to object
recognition. Activity from one region can so drastically alter the activity in another
region that object recognition becomes very difficult. The solution to this problem
is to alter the connections to the neurons so that they become sensitive to previous
pulsing steps. In the model presented, these connections are described as centripetal
autowaves such that the wave front progresses towards the local centre of curvature of
the pulsing regions. This eliminates the ever-expanding nature of the waves without
altering their shape-describing form.

86 4 The PCNN and ICM

The simplest applications of this ICM is to extract segments from images. A few
examples were given though out the chapter to demonstrate the ability of the cortical
models in image processing applications. This is only the beginning of the power that
these algorithms can provide and the subsequent chapters will present more involved
applications and results.

Chapter 5
Image Analysis

The development of the PCNN and ICM in the previous chapter was solely for the
purpose of application to a variety of image processing and recognition tasks. In this
chapter the PCNN and ICM will be used to directly extract pertinent information
from a variety of images for the purpose of recognition.

Image recognition engines usually have multiple stages and often the first stage
is to extract the information that is important to the recognition process. It could be
argued that this is the most important stage, because the proper information is not
extracted then the subsequent decision stage, no matter how powerful, will be unable
to recognise the target. Furthermore, if the first stage can extract enough information
then the decision stage could be a very simple algorithm. The extraction of enough
information is basically the determining factor in the success of the recognition
algorithm. In the following examples the PCNN and ICM are used to extract the
important information for the individual application.

5.1 Pertinent Image Information

Images have components that are important for the image-processing task. For exam-
ple, in image recognition it is generally the edges, texture or segments of an image
that are the most important features. Of course, this is strongly application dependent.
One traditional method of recognising objects within an image is through a Fourier
filter. The logic of this type of filter is shown in Fig. 5.1. Basically, a filter containing
the target centred in the frame is created and it is correlated with the input image.
If the target exists in the input then a large correlation signal appears in the output
correlation surface at the location of the target in the input image.

The Fourier filter system does have some serious drawbacks. First, if the target
within the input scene does not exactly match the target image in the filter then the
correlation signal is weaker. Thus, if the target were an aeroplane, which could be
viewed at any angle with differing scale, and illumination, (perhaps obscured by a
cloud), it is very difficult to design a filter that can recognise the target. The point of

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 87
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_5, © Springer-Verlag Berlin Heidelberg 2013

88 5 Image Analysis

[mpw —f FFT \
ﬁgr};lt FFTT Cormrdation
tiply Surface
[Fitter o FFT /

Fig. 5.1 Logical diagram of a Fourier filter

this text though is not to discuss the pros and cons of the Fourier filter. It is, however,
to indicate that this most popular system still relies heavily on the three main image
components: edges, textures and segments. In the Fourier space the lower frequencies
of the image are located at the centre of the image and the higher frequencies are
contained at the edges. Lower frequencies are present when the image has large
areas of fairly uniform intensities. An aeroplane has lower frequencies from the hull
and interior of the wings. Higher frequencies exist if the image has edges. For the
aeroplane the edges of the craft and wings give rise to the higher frequencies.

There are two types of differentiation in image recognition. One is generalisation
in which the filter is designed to recognise a class of objects even though it may not
be trained on the particular target in the input image. For example, a filter may be
designed to recognise aeroplanes as opposed to helicopters. This filter would need
the general shape of an aeroplane, which is contained in the lower frequencies. These
lower frequencies are from the larger, more uniform areas of the image—in other
words the segments. Conversely, if the filter were designed to differentiate a particular
type of aeroplane, from other flying vehicles then the general shape of an aeroplane
is no longer useful. The second differentiation is discrimination which distinguishes
between two objects of the same class. Usually, this type of information is contained
in the higher frequencies (edges).

The Fourier filter works by matching the frequencies of the target with the fre-
quencies in the input image. If the target exists in the input image then a strong
match occurs and a large correlation signal is produced. Another manner in which
to envision a Fourier filter is to take the target image and collocate it sequentially at
every position in the input image. Eventually, the target in the filter and the target
in the input are aligned and a match is easily seen. A Fourier filter is no more than
performing a texture, segment, and edge match.

The whole point of this discussion is to indicate that the most common method
of image recognition relies on the fundamentals of textures, edges and segments.
Other types of image processing such as neural networks, morphology, and statistical
processing also rely on these fundamentals.

While these methods are well understood theoretically, they have performed very
poorly in the real world. Problems immediately arise when the training target(s) do
not exactly match the input which is quite often the case. The signal of the correlation
drops and the noise from the background rises until the two become indistinguishable.
The problems are far too complicated for these types of processors.

The PCNN/ICM models provide tremendous advantages here. First, the
PCNN/ICM have an inherent ability to extract the fundamentals of the image. Second,

5.1 Pertinent Image Information 89

the PCNN/ICM can simplify the image to allow recognition engines to perform a
far easier task than is within their realm. The advantages of the PCNN/ICM in this
form should not be a surprise since it is based on how mammals perform recognition.
The PCNN/ICM can extract the image fundamentals inherently. The PCNN/ICM do
not need training or adjustments to extract these fundamentals from a wide range of
images. Edges and segments are extracted at different iterations and segments can
easily be seen over the course of a few iterations. Segment extraction occurs since
groups of neurons in a similar state tend to pulse in unison. Edges are extracted as
the autowave expands from these segments. In the original form, the PCNN/ICM
neurons will lose the unison pulsing according to the texture of the input. So, in time,
the segments will tend to separate according to the texture.

The most important aspect of the PCNN/ICM performing these extractions is that
it is an inherent quality of the PCNN/ICM. Traditional image processing has had
engines that perform similar extractions but these are usually trained or designed
to perform the task for particular applications. Furthermore, the PCNN/ICM will
provide a higher quality of performance. For example, a popular method of extracting
edges from an image is a Sobel filter, which consists of a small kernel in which the
central elements are positive, and the surrounding elements are negative. Convoluting
this kernel over the input image results in an image with only the edge pixels ‘on’.
The problem is that this filter will produce a double line output for the edges that it
sees. In other words, the edges are extracted but not cleanly. The PCNN/ICM extracts
sharp, clean edges.

Also recall that the PCNN/ICM produce binary images. Segments that are
extracted are shown as a solid uniform segment in the PCNN/ICM output. Edges
are also of the same intensity in the output even though the input edges may have
a gradient of intensities. These binary segments and edges are well organised in
the Fourier plane. Performing recognition on these binary images is far easier to
accomplish than performing recognition on the original input. This argument will be
discussed in subsequent chapters. Thus, the PCNN/ICM are powerful pre-processors.
They extract the fundamentals of an image (edges, textures, and segments) and can
present far simpler binary images to recognition engines for analysis.

One of the major tools in image processing is the ability to extract segments
from the image. This can lead directly to object identification algorithms as well
as many other types of analysis. For this example, consider the ICM which has the
ability to isolate the input image into its segments. One method that demonstrates
the segmentation ability of the ICM is to accumulate the pulses weighted by their
iteration. The output image is computed by,

P; =ZanYi,j[n], (5.1
N

where ¢, is a scaling factor that is inversely, monotonically proportional to n. An
accumulation example is shown in Fig.5.2. In this image there are only a few grey
levels in this image (one for each iteration over only the first cycle of pulses). Thus,
segmentation of the image can be viewed in a collective context. If the ICM were a

90 5 Image Analysis

(a) Original. (b) Accumulation.

Fig. 5.2 The original image (a) and the weighted accumulation of pulses (b)

poor segmentation engine then the details of the original image would be lost in the
cumulative pulse image. Small details such as those in the upper left corner, wrinkles
in the fabric, the spoon, etc. are still quite distinct in the cumulative image, thus the
segmentation is faithful to the segments inherent in the original image.

The PCNN and ICM also extract important edge information, although they are
certainly not the first algorithms to do so. The purpose of edge extraction algorithms
is to enhance the edges contained within an image and this enhancement is generally
proportional to the sharpness of the edges. There are two properties of the ICM
pulses that make it ideal for edge extraction. The first is the obvious property that the
pulses are binary and thus the edges are sharp. The second property is that the pulse
segments are usually solid, and these assist in separating edges of objects from the
edges due to texture.

The picture in Fig. 5.3a displays a skater with some notable properties. There are
some very distinct edges, but there are also subtle edges due to texture such as the
inside of his coat. There are also edges due between objects with similar grey scale
values (i.e., the gloves and the coat sleeves).

One simple method of extracting edges from an image is to accumulate the dif-
ferences between neighbouring pixels in both the vertical and horizontal direction,

aj,j = Aizi,j + Ai:i,j , (5.2)
where A,; ; describes the change in values in the horizontal direction, as in,
Aoy = Mis = Miio) er (Mi.j — Mij1)
_2Mi; —Mi 1 — Mi,j+1’ (5.3)

2

5.1 Pertinent Image Information 91

T —— \ p
/ ¢
/
74 N

'\.?
SN/
/
(a) Original. (b) Edge enhanced.

Fig. 5.3 Figurea displays the original image and b an edge enhanced version

and

2Mij — Mi—1,j — Mit1j

> 54

Ayij =
The enhanced version of the image in Fig.5.3a is shown in Fig. 5.3b. To display
this image in a print format it has been inverted such that the darkness of the lines
indicates the sharpness of the edges. Subtle edges due to coat texture are detected
but are too faint to see in the image.
Edge extraction with the ICM entails the demarcation of the edges from the pulse
images. The level of edge detection (the intensity of the resultant edge) is inversely
proportional to the ICM iteration number 7,

M
bij= Y an¥ijlnl. (5.5)
n=0

The scalar « is the proportionality term and M is the number of iterations that
are considered. The image in Fig.5.4a displays the edged detection process with
M = 2. These edges are similar to the strong edges in Fig.5.3b. Allowing M to
increase produces more interesting results. As the ICM iterates segments will pulse
again with de-synchronisation. Segments that pulsed together in early iterations will
tend to break apart in subsequent iterations. The image in Fig.5.4b displays the
process with M = 6.

The de-synchronisation is strong enough through the higher texture regions (coat)
that there are now many edges to display. Obviously, adjusting the value of M deter-
mines the types of edges that the ICM can extract.

92 5 Image Analysis

A A

(a) M=2.

Fig. 5.4 Edge detectionfora M =2andb M =6

5.2 Image Segmentation

The cohesive nature of the neural firings allows the ICM to act as an image segmen-
tation engine. Neurons synchronise through autowave communications and create
solid segmentations of pulses based upon the input.

5.2.1 Blood Cells

An example begins with an image of a red blood cell surrounded by white blood cells
shown in Fig. 5.5a. Selected output pulse images are also shown in Fig.5.5. As seen
the background, white blood cells, and red blood cells pulse at different iterations
thus providing a segmentation.

However, as noted before, the ICM performance is much improved if the input is
smoothed first. This was introduced in Code 4.11 and the results are shown in Fig. 5.6.
This step provides cleaner edges. The process is quite simple and the implementation
is shown in Fig. 5.6. Line 4 employs the espline2d function as the smoothing operator
and the results of Fig.5.5 are obtained by removing this line.

5.2.2 Mammography

Breast cancer is one of the leading causes of death for women the world over
and its early detection is thus very important. In clinical examinations, physi-

5.2 Image Segmentation 93

[/

e)n 13.

Fig. 5.5 Examples of the ICM segmentation with the pulses being shown as white pixels in print

(a) n=9. (b) n=10.

Fig. 5.6 Examples of the ICM segmentation with a smoothed input

cians check for breast cancer by looking for abnormal skin thickenings, malig-
nant tissues and microcalcifications. The latter are hard to detect because of sim-
ilarity to normal glandular tissues. Wavelet transforms [8] have been used for
automated processes has PCNN [56]. Examples of wavelet and PCNN process-
ing of mammograms are shown in Figs.5.7 and 5.8, respectively. The segmen-
tation ability of the PCNN is clearly demonstrated in its ability to isolate these
regions.

94 5 Image Analysis

Code 5.1 Iterations for the ICM.

>>> from scipy.signal import cspline2d
>>> data = mgconvert.i2a(mg.convert('L’))
>>> data /= data.max()
>>> data = cspline2d(data, 1)
>>> Y = []
>>> for i1 in range(20):
net.IterateLS(data)
Y.append(net.Y + 0)
>>> mgconvert.a2i(Y[9]).show()

Fig. 5.7 A 2D Haar wavelet transform applied to an input image showing clusters of branching,
pleomorphic calcification associated with poorly defined mass diagnosed as duct carcinoma

(a)Input (b) (©)

Fig. 5.8 The input to the PCNN is a mammogram showing clusters of branching, pleomorphic
calcification associated with poorly defined mass diagnosed as duct carcinoma. The pulsing pixels
are shown in black

5.3 Adaptive Segmentation 95
5.3 Adaptive Segmentation

Raya et al. [86] explore the optimization of the 8 parameter in a fast-linking PCNN
for applications in image segmentation. In the traditional PCNN the f is a positive
constant, but in this modified model it is defined as,

B =02 (L - 1) , (5.6)
® — kroyp

where kj is a constant between 0.5 and 1.0, P is the primary firing threshold, and
oy is the standard deviation over the object pixels. The primary firing threshold is
defined as,

Mo + k100, (5.7

where (¢ is the average over the object pixels and k; is between 1 and 2.

They also proposed an adaptive system in which the image was divided into K x K
blocks and the threshold was adapted to each block. Results indicated superior and
two examples are reprinted in Figs. 5.9 and 5.10. The input is shown with its histogram
to indicate that the distribution of pixels from each region are overlapping. The final
image in each figure shows clean segmentation.

(b) (c)

Fig. 5.9 A bimodal image with Gaussian random noise was created and shown in (a) with the
histogram shown in (b). Figure ¢ shows the segmentation using the PCNN [86]

B]
0 25

(a) | (b) (©)

]

Fig. 5.10 A second PCNN example with the original shown in (a), its histogram shown in (b), and
the results shown in (¢) [86]

96 5 Image Analysis

Another method of adaptive segmentation was proposed by Lu et al. [24, 68]
which modifies the fast linking PCNN to have and adaptive threshold. The process
also simplifies the input to,

F,'j[t] e S,'j. (5.8)

The linking operation changes the Gaussian connections to unit connections for a
region N;; defined for each 7, j location,

Lijlt] = > Y.lt] —d. (5.9)

ZEN;

The internal and external excitations is still computed in the same manner,

Uijlt] = Fijle] (14 BiLijlt]) , (5.10)
and,
| U Af Uiile] > ©45)t]
Yijlt] = [0 Otherwise) G.1D
The threshold is determined by,
3 | we if Pij[t—1]=0
@ijlrl = [2 Otherwise ’ (5.12)
where
N) if Yl =1
Fijlrl = { P;j[t — 1] Otherwise ° (5.13)

The wy; is set to be slightly less than the maximum intensity in the target region.
Results of segmentation are shown in Fig.5.11.

5.4 Focus and Foveation

The human eye does not stare at an image, but rather it moves to different locations
within the image to gather clues as to the content of the image. This moving of the
focus of attention is called foveation. A typical foveation pattern [119] is shown in
Fig.5.12. Many of the foveation points are on the corners and edges of the image.
More foveation points indicate an area of greater interest.

A foveated image can be qualitatively described as an image with very rich and
precise information at and around those areas of the image under intense observation,
and with poorer information elsewhere. The concept of foveation, as applied here,
exploits the limitations of the biological eye to discriminate and detect objects in
the image that are not in direct focus. In mammalian psychophysics, most tasks

5.4 Focus and Foveation 97

= P{-‘ g 7 o 5 ‘
i, L | -
5D _a . 0 _oa.
(a) Input (b) Segmentation.

Fig. 5.11 Segmentation offered by Lu et al. [68] using a modified PCNN

Fig. 5.12 A typical foveation pattern [92, 93, 119]

are performed better with foveal vision, with performance decreasing toward the
peripheral visual field. The visual acuity can change by as much as a factor of 50
between the fovea and peripheral retina.

5.4.1 The Foveation Algorithm

Foveation points are generally located at the corners and strong edges within an
image. The ICM has the ability to extract segments that contain strong edges. There-
fore, a simple foveation algorithm can be constructed by detecting the corners from

98 5 Image Analysis

(a) Input. (b) Pulse Image.

Fig. 5.13 The original image and third pulse image from the ICM

ICM segments. Employed here is a simple corner detector based upon a SUSAN
detector [100]. Given an image I, the modified SUSAN detector is the peaks in,

P=exp{S—-1}, (5.14)

where S is a slightly smoothed version of L.

Consider the image in Fig. 5.13a as an example. This image contains sharp edges
and corners from the buildings and softer edges and corners from nature. Figure 5.13b
displays the pulse image from the third iteration of the ICM (where dark ink indicates
a pulsed neuron). The goal of the foveation algorithm is to find the corners and edges
in this frame.

The next step is to enhance the corners and edges of the image which follows from
Eq.5.14. Code5.2 displays the Corners function. This function receives the pulse
image and returns an edge and corner enhanced image as shown in Fig.5.14a. To be
more presentable in print form the image that is shown is -abs (corners-1).

Since the pulse image has binary values the peaks in P are at the corners of the
image and can be extracted through a simple peak detector. Such a detector is shown
in Code 5.3 with the function PeakDetect. Line 3 computes the maximum value of
the input and if that is over a strong threshold (Line 7) then the process continues.
The largest peak is found in Line 9 and if it is too small then the loop is terminated
(Line 11). Otherwise, the location of the peak is appended to the list peaks (Line
13). Lines 14 and 15 erase pixels with a radius of 10 so that foveation points are not
located too close to each other. The function returns a list peaks that contains the
pixel locations of the peaks.

The list of peaks is converted to an image through the Mark function shown in
Code5.4. This function creates a 5 x 5 marker at each peak location. This image is
combined with the original image in the Mix also shown in Code 5.4. This function

5.4 Focus and Foveation 99

Code 5.2 The Corners function.

def Corners(data):
if data.sum() > 10:
a = cspline2d(data, 5)
corners = np.exp(-(a-data))
else:
corners = np.zeros(data.shape)
return corners

scales the input image so that the maximum value is 250 and that the maximum value
of the peak marker pixels is 255. Thus, the markers will always be slightly brighter
than any pixel in the input.

Code5.5 shows a typical run in which the original colour image is loaded in Line
4 and converted to a grey scale matrix in Line 5. Lines 8—11 create the ICM and the
first three pulse images. The third is then sent to the Corners function in Line 12.
The peaks are detected and marked. The output answ is shown in Fig. 5.14b.

For a full run Lines 12—15 are applied to each pulse image thus gathering foveation
points across several pulse images. The result is shown in Fig.5.15.

5.4.2 Target Recognition by a PCNN-Based Foveation Model

A test consisting of handwritten characters demonstrates the ability of a PCNN-based
foveation system. The PCNN generates foveating points which are now centres of
attention or possible centres of features. The features of these centres can be identi-

(a) Corners and edges. (b) Foveation points.

Fig. 5.14 The edges and corners inherent in Fig.5.13b and the foveation markers

100 5 Image Analysis

Code 5.3 The peak detecting function.

foveation.py
def PeakDetect(matx):

mx = matx.max() # max value
V, H = matx.shape
peaks = []
ok =0
if mx > 0.9: ok =1
while ok:
v,h = divmod(matx.argmax(), H)
if matx[v,h] < 0.5*mx:
ok =0
else:

peaks.append((v,h))
circ = geometry.Circle(matx.shape, (v,h), 10)
matx *= l-circ # zap

return peaks

Code 5.4 The Mark and Mix functions.

foveation.py
def Mark(marks, peaks):
for v,h in peaks:
marks[v-2:v+3,h] = 1
marks([v,h-2:h+3]

|
[

def Mix(marks, indata):
answ = indata / indata.max ()
answ *= 250
mask = marks>0
answ = (l-marks)*answ + marks*255
return answ

fied, and using a fuzzy scoring algorithm [103] it is possible to identify handwritten
characters from an extremely small training set [102].

Typical handwritten characters are shown in Fig.5.16.

Once the foveation points are produced, new images are created by a barrel trans-
formation centred on each foveation point. Examples of the letter ‘A’ and barrel
transformations centred on the foveation points are shown in Fig. 5.19. This distortion
places more emphasis on the information closer to the foveation point. Recognition
of these images constitutes the recognition of a set of features within the image and
combining the recognition of these features with the fuzzy scoring method.

Recognition of the feature images is performed through a Fractional Power Filter
(FPF) (see Appendix C) [13]. This filter is a composite filter that has the ability to
manipulate the trade-off between generalization and discrimination that is inherent
in first order filters. In order to demonstrate the recognition of a feature by this

5.4 Focus and Foveation 101

Code 5.5 Loading the image and finding the peaks.

>>> import Image

>>> import numpy as np

>>> from scipy.signal import cspline2d
>>> mg = Image.open(’'tavern2s.png’)
>>> data = np.array(mg.convert (’'L’))/255.0
>>> V,H = data.shape

>>> marks = np.zeros((V,H))

>>> net = icm.ICM((V,H))

>>> net.IterateLS(data)

>>> net.IterateLS(data)

>>> net.IterateLS(data)

>>> corners = Corners(net.Y)

>>> peaks = PeakDetect(corners)

>>> marks = np.zeros((V,H))

>>> Mark(marks, peaks)

>>> answ = Mix(marks, data)

Fig. 5.15 Foveation points from multiple ICM pulse images

method an FPF was trained on 13 images of which 5 were target features and 8
were non-target features. For this example one target feature is the top of the ‘A’ (see
Fig.5.19b) and the non-targets are all other features.

The results of the test are presented as three categories. The first measures how
well the filter recognised the targets, the second is how well the system rejected non-
targets, and the third considers the case of a non-target that is similar to the target

102

5 Image Analysis

Fig. 5.16 Handwritten characters and their foveation points as determined by the PCNN-based

model

AMuﬂgg

(@) (b) (0 (d)

f
e
® (h))

Fig. 5.17 Typical handwritten letters

1)

(k) U]

Fig. 5.18 The logical flow of [Input —{ PCNN |

the recognition system

Linking Field

Shift &
Barrel

Fractional
Power Filter

Dist.

(such as the ‘M’ having two features similar to the top of the ‘A’). The maximum
correlation signature about the area of the foveation point was recorded. The FPF
was trained to return a correlation peak of 1 for targets and a peak of O for non-
targets. The results for (non-training) targets and dissimilar non-targets are shown in
Table 5.1. Similar non-targets produced significant correlation signatures as expected.
Certainly, a single feature cannot uniquely characterize an object. The similar features

5.4 Focus and Foveation 103

gfb

(a) (©)

‘

(@) (e) ®

Fig. 5.19 An original ‘A’ and the 5 barrel distorted images based upon natural foveation points

Table 5.1 Foveation

. Category Average Low High Std. Dev.
recognition
Target 0.995 0.338 1.700 0.242
Non-target 0.137 0.016 0.360 0.129

of the ‘M’ also produced significant correlation signals. This indicates the obvious:
that single features are insufficient to recognise the object.

The results demonstrate an exceedingly good separation between targets and non-
targets. There were a few targets that were not recognised well. Such targets come
from Fig.5.16i—k. Figure 5.16i is understandable since the object is poorly repre-
sented. Figure 5.16j performed poorly since the top of the ‘A’ is extremely narrow,
and Fig.5.16k has an extremely rounded feature on top. These last two features were
not represented in the training features. All of the types of ‘A’s produced a correlation
signature above 0.8 which is clearly distinctive from the non-targets.

A few false negatives are not destructive to the recognition of the object. Following
the example of [103], a collection of recognised features can be grouped to recognise
the object. Noting the locations of the correlation peaks in relation to each other
performs this. A fuzzy score is attached to these relationships. A large fuzzy score
indicates that features have been identified and are located in positions that are
indicative of the target.

104 5 Image Analysis

I nput YAn)

N ormali 2

Fig. 5.20 Hierarchical image factor generation. An input image is decomposed into a set of factor
images, ordered from coarse to fine in image detail. The product of the set is equal to the original
image

Ithas been shown that the PCNN can extract foveation points, that attentive (barrel-
distorted) images can be created and centred about foveation points. Furthermore, it
has been shown that these images which now represent a feature of the image, can
be recognised easily, and it has been shown elsewhere that a combination of these
recognised features and their locations can be combined in a fuzzy scoring method
to reach a decision about the content of the input.

5.5 Image Factorisation

The major problem in automatic target recognition is that images of the target change
with scale, lighting, orientation, etc. One way to get around this problem has been
suggested by Johnson [48, 79]. It involves a hierarchical image decomposition, which
resolves an image into a set of image product factors. The set is ordered in scale from
coarse to fine with respect to image detail. When the factored set is multiplied together
it reproduces the original image. By selecting factors, coarse scene elements such as
shadows, and fine scene factors such as noise, can be isolated. The scale of detail is
controlled by the linking strength of a pulse coupled neural network, on which the
system is based.

The factorisation system consists of three layers as shown in Fig.5.20. The first
layer is a PCNN and its purpose is to define the limit of detail to which the input will
be resolved, both spatially and in intensity. The second layer serves to re-normalize
the input to the third layer. The second layer is also a PCNN and together with the
third layer it operates in a cyclic manner to provide the ordered output set of factors.
The re-normalization is via a shunting action approximated by dividing the previous
input to the third layer by the current output of the third layer. The output set consists
of the outputs of the third layer in the order they were generated. Both PCNNs use
a single-pass, linear decay model with nearest-neighbour sigmoidal linking.

The algorithm is discussed in some detail in [48], but is simply expressed as,

5.5 Image Factorisation 105

Gln—1]
Glnl= ————. 5.15
= Y (5.15)
and
Bln] = 1Bln — 1], (5.16)

where G represents a signature (Eq.(4.8)), and G[0] = Y;. Here Y; represents the
output of the first PCNN, G[n] is the input to the second PCNN at the beginning of
the nth iteration, Y»[n] is the output of the second PCNN at the end of the n — 1
iteration, and £ < 1 is the linking strength reduction factor per iteration. In the
above equation SB[0] is the initial value assigned by the operator. Together with the
parameter k, it determines the initial coarseness resolution and the number of cycle’s
n. In the above, the spatial dependence of G and the PCNN output images Y7 and
Y, is suppressed, as the re-normalisation is applied on a pixel-by-pixel basis. The
change of S is global, the same value being used by every pixel.

On the first iteration the second layer passes its input directly to the third layer.
Its coarsely grey-scale quantifies it, giving an output that is coarse in both spatial
and in intensity detail. When it is used by the second layer to normalise the original
input, the new input, and all successive ones, will be between zero and one. As the
second input is processed by the output PCNN, which now uses a reduced value of
its linking strength, only the regions of intensity less than unity give values different
than those of the first output.

5.6 Summary

The pulse images generated by the PCNN and ICM tend to isolate homogeneous
segments inherent in the input image. This immediately leads to a segmentation
tool which is demonstrated in a couple of examples. One of the many published
alterations is reviewed here in which the PCNN is changed slightly to form an adaptive
system. This adaptive system has shown the ability to segment images even in a noisy
environment in which the pixel intensity distributions overlap.

Once the segments are available PCNN based systems evolved into foveation
systems which direct the focus to regions of sharp corners and edges much like
humans do. This is a necessary tool in some image recognition algorithms that attempt
to divine the content of real but cluttered images.

http://dx.doi.org/10.1007/978-3-642-36877-6_4

Chapter 6
Feedback and Isolation

6.1 A Feedback PCNN

The PCNN can be a very powerful front-end processor for an image recognition
system. This is not surprising since the PCNN is based on the biological version
of a pre-processor. The PCNN has the ability to extract edge information, texture
information, and to segment the image. This type of information is extremely useful
for image recognition engines. The PCNN also has the advantage of being very
generic. Very few changes (if any) to the PCNN are required to operate on different
types of data. This is an advantage over previous image segmentation algorithms,
which generally require information about the target before they are effective.

There are three major mechanisms inherent in the PCNN. The first mechanism
is a dynamic neural threshold. The threshold, here denoted by @, of each neuron
significantly increases when the neuron fires, then the threshold level decays. When
the threshold falls below the respective neuron’s potential, the neuron again fires,
which raises the threshold, ®. This behaviour continues which creates a pulse stream
for each neuron.

The second mechanism is caused by the local interconnections between the
neurons. Neurons encourage their neighbours to fire only when they fire. Thus, if a
group of neurons is close to firing, one neuron can trigger the entire group. Thus,
similar segments of the image fire in unison. This creates the segmenting ability of
the PCNN. The edges have different neighbouring activity than the interior of the
object. Thus, the edges will still fire in unison, but will do so at different times than
the interior segments. Thus, this algorithm isolates the edges.

The third mechanism occurs after several iterations. The groupings tend to break
in time. This “break-up” or de-synchronisation is dependent on the texture within a
segment. This is caused by minor differences that eventually propagate (in time) to
alter the neural potentials. Thus, texture information becomes available.

The Feedback PCNN (FPCNN) sends the output information in an inhibitory
fashion back to the input in a similar manner to the rat’s olfactory system. The outputs
are collected as a weighted time average, A, in a fashion similar to the computation

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 107
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_6, © Springer-Verlag Berlin Heidelberg 2013

108 6 Feedback and Isolation

of ® except for the constant V,
Ailn] = e ™% A;i[n — 1]+ VaYij(nl, (6.1)

where V4 is much lower than V and in this case V4 = 1. The input is then modified
by,
Sijln —1]
Siiln] = ——. 6.2
l][n] Aij[l’l—l] (6.2)

The FPCNN iterates the PCNN equations with Egs. (6.1) and (6.2) inserted at the
end of each iteration. Two simple problems are shown to demonstrate the performance
of the FPCNN. The first problem used a simple square as the input image. Figure 6.1
displays both the input stimulus S and the output Y for a few iterations until the input
stabilised.

At n = 5 an output pulse has been generated by the FPCNN which is a square
that is one pixel smaller than the original square on all four sides. At this point in
the process the output of the FPCNN matches that of the PCNN. The PCNN would
begin to separate the edges from the interior. In the case of the FPCNN, however, the
input will now experience feedback shunting that is not uniform for the entire input.
This is where the PCNN and the FPCNN differ.

As the iterations continue the activations go from a continuous square to just the
edges of a square, and finally to just the four corners. The four corners will remain on
indefinitely. It is interesting to note that for the case of a solid triangle with unequal
angles, the same type of behaviour occurs except that the corner with the smallest

[[l o] [o

(a) (b) (¢) (d) (e) ® (2
N I i a []

(h) () (§)) (k) @ (m) (n)

O || @ || O i ©

(0) (p) (q) (s) ® ()

Fig. 6.1 Input and output pairs for FPCNN calculations for a solid square input

6.1 A Feedback PCNN 109

O | o o ||go] O &0

1 0

(i
220
||‘§i-:oi?ll
g

(h) (i)) (k))
"Ry PP .
i B | [| i
el ':?.:- fia
(0) () (@) (r) ()

Fig. 6.2 Input and output pairs for FPCNN calculations for a square annulus input

angle will dominate. The input goes from a solid triangle to an edge mostly triangle
to the three corners to the dominant corner.

The second test to be shown is that of a square annulus. The results of this test
are shown in Fig. 6.2. This process took more iterations than the solid square so only
a few are shown. For the initial iterations the behaviour of the network mimics the
solid square case. The edges become dominant. However, the steady state image is
a bit more complicated than the four corners.

In order for the input to stabilise, a few conditions must be met. First, the input
values must be contained above a threshold. If the input values fall too low, then the
decay (o terms) will dominate and the input will eventually disappear. The second
condition is that the output must completely enter into the multiple pulse realms. In
this scenario all of the output elements are always on. This condition can be seen in the
examples. When this occurs, the feedback and the interconnections become constant
in time. In actuality, the outputs are independent variables and it is the outputs that
force all other fluctuations within the network. When the outputs stabilise, there exists
no other force within the network that can alter the input or any other network value.

6.2 Object Isolation

Figure 6.3 shows a scheme that employs the PCNN and the FPF (fractional power
filter [13]) in an iterative loop to isolate a target. This is useful for cases in which the
target is dark and non-homogeneous.

There are two tools aside from the PCNN that are used in this system. The first
is the FPF which is a composite filter that has the ability to manipulate the trade-off
between generalisation and discrimination. It is detailed in Appendix C along with
an explanation of the Python scripts. The pulse image and FPF filter are correlated in

110 6 Feedback and Isolation

Static
Filter

Pulse l Cottelation
Output Susface
Original |—w Dynamic —» PCNN
Input Input
* T
Recutsion Peak /PCE [«
Image Detection
Generation

Fig. 6.3 The schematic of the feedback PCNN system

an attempt to find the target at any location in the image. The second tool that is used
here is the correlation function which is also reviewed with scripts in Appendix D.

The PCNN creates a pulse image which may contain the outline of the target.
A good example of this is shown in Fig.4.15. Consider a case in which the man
in the lower left is the target. He is shown with dark pixels that do not collectively
pulse. However, in some iterations the background surrounding him does pulse and
his outline is evident. The FPF is a filter constructed from the target that searches for
an edge encouraged version of the target. If such a target is found through a peak
detection then the system will enhance the input in that region with the shape of the
target. There may be multiple regions in the image where a correlation peak may
be found due to false positives. However, as the system iterates the true target will
collect multiple enhancements and will eventually become the brightest object in
the image.

The steps in the procedure are:

1. Normalise the input.
2. Create a normalised edge encouraged filter.
3. For each iteration.

Compute one PCNN iteration.

Edge enhance the pulse image.

Compute the PCE of the correlation with the edge image and the filter.
Detect peaks.

RIG: Generate a feedback image.

f. Modify the input and the PCNN.

o R0 o

4. The end result is the modified data image.

These steps are detailed with accompanying Python scripts in the following sub-
sections. The final subsection creates a driver function for the entire process.

http://dx.doi.org/10.1007/978-3-642-36877-6_4

6.2 Object Isolation 111

6.2.1 Input Normalisation

Given an input (I[7, j1;i € [1, V],i € [1, H]) where V and H are the vertical and
horizontal frame size of the image, the normalisation process creates a new image that
is a smoothed version with a specified range of pixel values. The modified input is,

Jli, j1= M {0.6] + 0.4}, (6.3)

where M{-} is a smoothing operator which reduces random noise. The values of
J[i, j] are between 0.4 and 1.0 with the low value being raised up from 0 so that dark
regions in the input still pulse synchronously. Given the file name of the input image
the modified image is computed by the LoadImage shown in Code 6.1. Line 7 reads
the image and Line converts the grey scale image into a matrix normalised with values
between 0 and 1. In this case the matrix is rescaled so that the values are between 0.4
and 1 in Line 9. Line 10 uses the cspline2d function from the scipy.signal module
to smooth the input image. The function receives the image file name and returns a
matrix that is J.

6.2.2 Creating the Filter

The target construction starts with (T'[i, j]:i € [1, V],i € [1, H]) which is a solid
shape of the target centered in the frame. Rarely will the edges in the edge enhanced
version of a pulse image coincide exactly with the target edges. Thus, the filter that is
used to search for the target in the edge image is actually an edge enhanced version
of the target. This is generated by manipulating the fractional power term in the FPF.
(see Appendix C for details.) If the FPF were trained on a solid shape then the filter
created with « = 0 would be a duplicate of the shape. At the other end of the scale,
when o = 2.0 (the maximum value) the filter creates an edge only version of the
input. Values between 0 and 2 encourage the edges on a non-linear scale.

Code 6.1 The LoadImage function.

oi.py

from scipy.signal import cspline2d
import Image

import mgconvert

def LoadImage(fname):
mg = Image.open(fname)
data = mgconvert.i2a(mg.convert(’'L’))/255.0
data *= 0.6; data += 0.4
data = cspline2d(data, 2)
return data

112 6 Feedback and Isolation

There are three functions that produce the desired target. The first is LoadTarget
(Code 6.2) which loads in the image of the target cut out from the original image.
The cutout process here placed a white background for the pixels excluded in the
cut out process. Line 7 performs a threshold operation so that the target has bright
pixels and the background is black. The Plop function (see Appendix B.2) creates a
frame that is the same size as the original image and places the centre of mass of the
target at the centre of the frame. The inputs to the function are the name of the image
file that contains the target cut out and the size of the original image. The output
is a matrix that has binary values with the ON pixels being in the shape of the
target.

Code 6.2 The LoadTarget function.

oi.py
import geometry

def LoadTarget(fname, dataShape):
mg = Image.open(fname)
targ = mgconvert.i2a(mg.convert (’'L’))/255.0
targ = targ < 0.9
targ = geometry.Plop(targ, dataShape)
return targ

The second function is shown in Code 6.3. The EdgeEncourage function uses
the fractional power filter (FPF) (Appendix C) to create an edge encouraged version
of the target. Traditional edge enhancement processes extract the edges from input
images and in the case of a binary valued input the edge enhancement would be the
outline of the shape. Recognizing that the target may not exactly match the input it is
necessary to relax the strictness of edge enhancement. Edge encouragement shows
strong edges and an interior that decays towards the centre of the shape.

The result from the FPF is shown in Fig. 6.4a which shows the edge encouraged
version of the target. The final process is to normalise the complex values of the target
to create a zero sum filter. The output is shown in Fig. 6.4b and Code 6.4 shows the
script.

The function NormPFilter receives the output from EdgeEncourage and produces
the output shown in Fig. 6.4b. Line 4 creates a circular region of interest (ROI) which
has a radius large enough to encompass the entire target. Lines 5 and 6 normalise
the region inside of this ROI such that it is zero sum. This helps reduce false posi-
tives generated during the filtering process. The circular region about the target has
negative values.

6.2 Object Isolation 113

Code 6.3 The EdgeEncourage function.

oi.py
import numpy as np
import fpf

def EdgeEncourage(targ):
V,H = targ.shape
X = np.zeros((1,V*H), complex)
X[0] = (np.fft.fft2(targ)) .ravel()
cst = np.ones(1)

filt = fpf.FPF(X, cst, 0.3)
filt = filt.reshape((V,H))
filt = np.fft.ifft2(£ilt) * V*H

return filt

(@) (b)

Fig. 6.4 The output of the FPF and the normalised version of the same. The normalised version is
shown in reversed intensity with the darkest pixels displaying the highest energy

Code 6.4 The NormPFilter function.

oi.py
def NormFilter(filt, rad =128):
V,H = filt.shape
mask = geometry.Circle((V,H), (V/2,H/2), rad)
avg = (abs(filt) *mask) .sum()/mask.sum/()
nfilt = mask*(abs(filt) - avg)
return nfilt

6.2.3 Edge Enhancement of Pulse Images

Shapes are generally defined by the pixels along their perimeter and less so by the
interior pixels. Thus, in matching the results from the pulse image to a target it will
be the edge information that is useful. Another advantage of using edges is shown
in the example in Fig.4.15 in which the background is pulsing and creating the edge

http://dx.doi.org/10.1007/978-3-642-36877-6_4

114 6 Feedback and Isolation

around the target. Through edge enhancement of the pulse image it doesn’t matter if
the target is pulsing or if its background is pulsing.

A simple method of enhancing edges is to correlate the image with Sobel kernels.
For a 2D image the kernels are,

—1-2-1 ~101
Ge={0 0 0;Gy=|-202
121 ~101

The correlation of the G, with an image will enhance the horizontal edges and the
correlation with G, will enhance the vertical edges. A single edge enhanced image
is obtained by,

G=,/I®G)’+18G,?, 6.4)

where ® represents the correlation and I is the input image.

The SciPy package does contain a Sobel correlator and so this task is relatively
easy to employ. Code 6.5 shows the computation of Eq. 6.4. Line 6 creates g1 which
is the correlation of G, with the pulse image Y [2] shown in Fig.4.15¢c. Likewise,
Line 7 computes the correlation with G, and Line 8 computes Eq.6.4. The pulse
image and edge enhanced versions are shown in Fig.6.5 with the edges shown as
dark pixels to facilitate viewing. As seen, even though the target did not pulse, there
is a significant amount of target edge that is shown.

Code 6.5 The EdgeEnhance function.

oi.py
from scipy.ndimage import sobel

def EdgeEnhance(m):
temp = m.astype(float)

gl = sobel(temp, 0)
g2 = sobel(temp, 1)
gg = np.sqgrt(gl*gl + g2*g2)

return gg

Figure 6.5 shows a typical output from the PCNN and the edge enhanced version
as generated by EdgeEnhance. The latter is shown in reversed intensity such that
the high energy pixels are shown in black.

6.2.4 Correlation and Modifications

The correlation function is detailed in Appendix D which shows the function Corre-
late from the provided code. Correlations are merely dot products for every possible

http://dx.doi.org/10.1007/978-3-642-36877-6_4

6.2 Object Isolation 115

Fig. 6.5 Figure a is the output Y[2] from the network, and b is the edge enhancement of this
pulse image

relative shift between the input and the kernel. In this case the input will be edge
enhanced versions of the pulse images and the kernel will be the edge encouraged
version of the target.

Usually, at the location of the target the correlation surface will contain a bright
peak. However, there can be multiple other locations in which the correlation sur-
face has bright values. Thus, an additional step of isolating peaks instead of bright
correlation pixels is adopted.

The begins with the computation of the peak-to-correlation energy (PCE) [41].
This divides the peak by the localized energy of the correlation as in,

T i j+o 2
Zk:i—s k:j—B'Ck[|

P;; (6.5)

where C;; is the individual values of the correlation surface and § is a small radius.

The PCECorrelate function shown in Code 6.6 computes the correlation and
the PCE. These are accomplished by functions in the correlate.py module which are
detailed in Appendix D. The output is a single matrix in which the high energy spikes
are potential locations of the target.

Code 6.6 The PCECorrelate function.

oi.py
import correlate

def PCECorrelate(edj, filt):
corr = correlate.Correlate(edj, filt)
if corr.max() > 0.001:
pce = correlate.PCE(corr, 2400)
return pce
else:
return corr

116 6 Feedback and Isolation

6.2.5 Peak Detection

There should be a small number of spikes in the PCE if there are potential targets.
These spikes may be wider than a single pixel and some may be false positives. The
peak detection algorithm recursively detects a the largest significant peak and then
removes the surrounding area from further consideration.

The process is handled by the Peaks shown in Code 6.7. The inputs are the PCE
surface and the binary valued target (from LoadTarget). Line 9 creates a mask that
is 8 pixels larger than the target in all directions. This is used in Line 17 to remove
from consideration any region that has detected a peak. The peak is detected in Line
12 and if the peak is too small the process is terminated. If the peak is significant
then Line 16 archives the peak location and the Lines 17 and 18 prevent another peak
being found in the general vicinity. The output is a list of (x, y) points were the PCE
had spikes.

Code 6.7 The Peaks function.

ol.py
from scipy.ndimage import shift, binary_dilation

def Peaks(corr, targ, gamma = 0.75):
temp = corr + 0

pks = []
ok =1
V,H = temp.shape
etarg = binary_dilation(targ, iterations=8).astype(int)
while ok:
v, h = divmod(temp.argmax(), H)
if temp[v,h] < gamma:
ok =0
break
else:

pks.append((v, h))
mask = shift(etarg, (v-V/2,h-H/2))
temp *= (l-mask)

return pks

6.2.6 Modifications to the Input and PCNN

Once the spikes have been detected it will be necessary to modify the input and
PCNN through the RIG. Basically, the input is enhanced by the target shape at the
location of the spikes and the threshold of the PCNN is lowered in the same regions.
Formally,

Jln;i, j1=09 J[n—1;i, j1+0.15 K[i, j], (6.6)

6.2 Object Isolation 117

where n represents the iteration index and K[ij] is the mask that contains the solid
shapes of the target centered at each spike. Likewise,

090[n—1;i,jl1 Kli,jl=1

Oln —1;i, j] Otherwise

6.7)

Function Enhance shown in Code 6.8 performs the first operation. The loop
starting in Line 6 replicates the shape of the mask at each spike location. Line 11
modifies the input accordingly. The modification of the PCNN is performed in the
next section.

Code 6.8 The Enhance function.

oi.py
def Enhance(data, pks, targ):
N = len(pks)
temp = np.zeros(data.shape)
V,H = data.shape
for 1 in range(N):
vs, hs = pks[i][0]-V/2, pks[i][1]-H/2
temp += shift(targ, (vs,hs))
temp = (temp > 0.001) .astype(int)
if temp.sum() > 1:
data = 0.9*data + 0.l15*temp
return data, temp

The result after the first spike detections is shown in Fig.6.6. There are two
locations in which the input has been enhanced and one is on the target. There is
also a false positive on the lower left mainly due to the distance between the left
edge of the frame and the edge of the concrete. This width matches the width of the
shoulders of the target and both widths are delineated by vertical edges. However,
subsequent iterations of the process will continually enhance the real target and the
false targets will fade.

Fig. 6.6 The first enhance-
ment of the target. Potential
targets are enhanced, and in
this case the enhancements

include the actual target and
one false positive

118 6 Feedback and Isolation

Fig. 6.7 The final result with
the intensity reversed for
viewing. Some false positives
do exist but the true positive is
very distinct from them

6.2.7 Drivers

There are two functions provided to drive the entire process. The first is the
steps required for a single iteration and the second runs multiple iterations. The
Singlelteration function shown in Code 6.9 performs the steps of a single iteration.
It runs a single PCNN iteration in Line 3, enhances the pulse image in Line 4, and
computes the correlation in Line 5. The PCE is computed in Line 6 and used to
detect peaks in Line 7. This modifies the input in Line 8 and the threshold array in
the PCNN in Line 9. The function returns the modified input.

Code 6.9 The Singlelteration function.

oli.py

def SingleIteration(net, data, filt, targ):
net.Iterate(data)
edj = EdgeEnhance(net.Y)
corr = abs(correlate.Correlate(edj, filt))
pce = correlate.PCE(corr)
pks = Peaks(pce, targ, 0.75)
data, mask= Enhance(data, pks, targ)
net.T = mask*net.T*0.9 + (l-mask)*net.T
return data

The final function is the Driver shown in Code 6.10. This loads in the original
image and target and calls the functions necessary to normalise them. Then it runs
15 iterations of the process continually modifying the input. The call to the function
in shown in Line 13 and the result generated by Line 14 is shown in Fig.6.7. This
image is reversed so that the highest energies are shown in dark pixels.

The target is continually enhanced by the process and the few false positives that
appear are soon atrophied. This process isolated a dark target with inhomogeneous
texture using the pulse images and the FPF.

6.3 Dynamic Object Isolation 119

6.3 Dynamic Object Isolation

Dynamic Object Isolation (DOI) is the ability to perform object isolation on a moving
target. A system to do this has two alterations to the static object isolation system
discussed above. The first is that it trains the filter on many differing views of the
target and the second is that it must be optimised to recognise the target in frames that
were not used in training. This second goal forces the system to exhibit generalisation
abilities since the target may be presented differently in the non-training views. Using
the example of the boy kicking the ball, the non-training views would show the boy
in a different configuration (arms and legs and new angles), different orientations
and scale (as he moves towards the camera).

Code 6.10 The Driver function.

ol.py
def Driver():
data = LoadImage(’'pingpong.png’)
targ LoadTarget (’'ping.jpg’, data.shape)
filt = EdgeEncourage(targ)
filt = NormFilter(filt)
net = CreatePCNN(targ.shape)
for i in range(15):
print ‘iteration ’, i
data = SingleIteration(net, data, filt, targ)
return data

>>> data = Driver()
>>> mgconvert.a2i(data).show()

The difference in the configuration of the system is that the filter is trained on
several views of the target. A sequence of images are shown in Fig. 6.8 in which the
target (small boy) is moving. This target is also dark and inhomogeneous. The FPF
is a composite filter which can train on multiple images. Figure 6.9 shows the FPF
trained on images from Fig. 6.8a,b,d,e but not c. The iterative process of Fig.6.3 is
then applied to the ¢ image and the enhancing process is shown in Fig. 6.10.

6.4 Shadowed Objects

The PCNN relies heavily upon the intensity of the input pixels. Thus, shadowed
objects tend to produce a radically different response in the PCNN. A shadowed
object is one that has a diminished intensity over part of itself. Consider an object
that has two segments A and B, which originally have very similar intensities and
therefore would pulse in the same iteration. A shadow falls upon segment B and its

120 6 Feedback and Isolation

Fig. 6.8 A sequence of five input images

T

{r

Fig. 6.9 The composite filter

(a)n =3. (b)n =11. (c)n =18. (d)n =27.

Fig. 6.10 The progression of the dynamic input

intensity is reduced. Now, due to its lower intensity, the segment pulses in frames
subsequent to that of A. The object now has separate pulsing activity.

For many PCNN-based architectures this can be a devastating effect and can
destroy effective processing. In the object isolation architecture, however, the FPF
has the ability to overcome the detrimental effects of shadows. Since the FPF has the
fractional power set to include discriminatory frequencies and the pulse segments
have sharp edges, a sufficient correlation occurs between the filter and the pulsing

6.4 Shadowed Objects 121

(b)

Fig. 6.11 a The shadow mask. All pixels in the lower half of the image were used to decay the
values of the original image. b The shadowed input

of only a part of the target. In other words, the filter can still provide a good enough
correlation with segment A or B to progress the object isolation.

Consider the images in Fig.6.11. In Fig. 6.11b is a shadowed image. This image
was created from an original image in which the target (the boy) was cut-out and
binarised (Fig.6.11a). This binary image became the shadow mask and Fig.6.11b
was created by reducing all pixels in the lower half of the image that were ON in
Fig.6.11a. The effect is that the boy’s shorts and legs were shadowed. The FPF filter
and feedback mask were created with pulse images from the non-shadowed image.

The shadowed area intensity was sufficient to get the boy’s shorts and legs to
pulse in frames later than the torso and arms. However, the FPF filter was still able
to find the partial target pulsing. The progression of the shadowed input is shown in
Fig.6.12.

Fig. 6.12 As the system iterates the target, even though originally in shadows, it is progressively
enhanced

122

Fig. 6.13 An input stimulus

6.5 Consideration of Noisy Images

6 Feedback and Isolation

Random noise is an enemy of the PCNN. Pulse segments are easily destroyed by
random noise. Noise can enter the system in three basic ways. The first is input noise
in which S has noise added, the second is system noise in which noise is added to
U, and the third is a random start in which @ is initially randomised. Any of these
cases can destroy the PCNNs ability to segment. Consider the stimulus image shown
in Fig. 6.13, which shows a boy (kicking a football), his father and some trees.
Using the input stimulus shown in Fig. 6.13, the original PCNN produces the tem-
poral outputs of binary images shown in Fig. 6.14. Segmentation and edge enhance-

=3

= 1 P

s
f
o

%%

] AN
3 oYY
",

"
< oA N

Fig. 6.14 Outputs of a PCNN with Fig.6.13 as a stimulus

6.5 Consideration of Noisy Images 123

Fig. 6.15 Outputs of the PCNN with random initial threshold values

ment are evident in the outputs shown. Compare these outputs to a system that
initialised the threshold to random values between 0.0 and 1.0. It should be noted
that the initial values are less than 5 % of threshold values after a neuron pulses. The
results of this experiment are shown in Fig.6.15.

Certainly, the segments in the output are noisier than in the original case. This is
expected. It should also be noted that the PCNN did not clean up the segments very
well. There are methods by which this problem can be ameliorated.

The first method to be discussed for the reduction of noise uses a signal generator
as a post-processor to the PCNN. This generator will produce small oscillations to
the threshold values, which are in synchronisation with the natural pulsing frequency
of stimulated neurons. The segments then tend to synchronise and noise is therefore
significantly reduced.

A typical signal generator is the addition of a cosine term (where f is the design
frequency) to the threshold during the creation of the output,

(6.8)

Yiiln] = 1 1if Ujj[n] > Qijln + 11+ (cos(fn/2p) + 1.0)
YUE 710 otherwise .

124 6 Feedback and Isolation

s o . < ;i gﬁa
.'1:,&- -
=

i s o

&
!

N

a
APRALES
- 2w
s
S a-__-"(ol
‘,\'.
-
gt

Fig. 6.17 Outputs of a PCNN with a signal generator and a noisy stimulus

The outputs are shown in Fig.6.16.

The noise of the system is now almost eliminated. The threshold levels have been
synchronised by the continual addition and then subtraction of small values to the
comparison function. The function periodically delays the pulsing of some neurons
as the generator produces a larger output. When the generator produces a smaller
output the pent-up potential of the neurons begins pulsing.

Noise can occur in other parts of the system. For example the input stimulus can
be noisy. In Fig.6.17 the output of a PCNN with a signal generator is shown for

6.5 Consideration of Noisy Images 125

< e ¢ TR
.."é » :

Fig. 6.18 Outputs of the PCNN after noise added to U for each iteration

the case where the stimulus has random values between —0.1 and 0.1 added to the
elements.

This system virtually eliminates the noise for the early iterations. However, the
noise returns in subsequent iterations. The reason is quite simple. Each iteration has
the stimulus added to F. Thus, constant noise continually accumulates. Noise begins
appearing in the output when the generator can no longer overcome the accumulation
of the noise.

The last example adds dynamic noise to the system. In other words, our noise
generator adds random zero mean noise is added to U each iteration. The values of
the additional noise are [—0.1, 0.1]. The results of this test are shown in Fig. 6.18. As
can be seen, the noise is considerably reduced. In this case the noise was different
for each iteration. These cancelling effects allowed the system to operate in a similar
way to that of Fig.6.17.

Another method of reducing the noise is to employ the fast linking algorithm.
This was demonstrated earlier in Sect.4.1.7 using the same example.

6.6 Summary

Recursive or feedback systems allow the pulsing process of the PCNN to key on
particular targets. This feedback alters the PCNN and/or the input image. This allows
the PCNN to extract information that is rather difficult to obtain in the standard model.
Recursive systems provide the advantage in that a system can accumulate knowledge
rather than attempt a decision in a single process. For cluttered images this has the
advantage of deciding the difference between false positives and the real target as
demonstrated in an example.

http://dx.doi.org/10.1007/978-3-642-36877-6_4

Chapter 7
Recognition and Classification

7.1 Aircraft

Consider the image in the upper left corner of Fig. 7.1. This image gives a grey scale
input to a PCNN and the subsequent frames show the temporal series of outputs
from a PCNN. Close to perfect edge detection is obtained and there are no problems
identifying the aircraft (e.g. from image number 3). Here the damaged wing tip is
also easily seen.

However, this is not the case with a more complicated background such as moun-
tains. Figure 7.2 shows a case where it is much harder to identify the aeroplane. A
subsequent correlator is needed, and the selection is the fractional power filter (FPF)
[13] discussed in Appendix C.

The PCNN has been used as the first stage in a hybrid neural network [112] for
Automatic Target Recognition (ATR). The time series provided a series of unique
patterns of each of four aeroplanes (F5XJ, MIG-29, YF24 and the Learjet) used
in this work. The input image to the ATR system was a 256 x 256 pixel image
using 8 bit grey scale. The input data used for training the networks was obtained
from simulated move-sequences of each aeroplane. The sequence includes large
variations in scale and 3D orientation of the aeroplanes. However, not all angles
(and scale sizes) were included in the training data. This was done particularly in
order to evaluate the generalisation capability of the system. Only the non-zero
components of the first period of the PCNN 1D time series were used as input to the
subsequent neural networks. The results [112] for several such ‘conventional” neural
network classifiers are shown in Table 7.1. The number of inputs was in all cases 43.
Different neural networks were tested as final ‘classificator’ of PCNN output, The
Logicon Projection Network™, LPN [113], the back propagation network, BP, The
Radial Basis Function network, RBF, using two different algorithms, the Moody-
Darken algorithm [73]. The numbers in Table 7.1 represent the mean value of correct
classification of Yes/No, in percentage, for each of the four classes, together with the
standard deviation, o, of each class. The LPN and the BP get total average results
that are nearly equal. However the LPN is always better classifying the signal (Yes),

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 127
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_7, © Springer-Verlag Berlin Heidelberg 2013

128 7 Recognition and Classification

Fig. 7.1 The SAAB JAS 39 Gripen aircraft as an input to the PCNN. The initial sequence of
temporal binary outputs are shown

Fig. 7.2 The upper left image shows an aircraft as an input to the PCNN. However, this time an
aeroplane is flying upside down in front of some Swiss Alps. It is hard to ‘see’ the aeroplane in the
original input as well as in the temporal binary outputs

Table 7.1 Results of correct classification (in %)

Net F5XJ Mig29 YF24 LearJet

Yes No Yes No Yes No Yes No
LPN 95 86 90 85 86 87 92 87
BP 85 93 81 89 82 92 88 93
MD 82 78 83 90 72 90 90 88

and BP is always better classifying the background (No). Moody-Darken network
showed large standard deviations in several tests, especially for classifying the signal
(Yes) for the F5XJ and YF24 aeroplanes.

7.2 Aurora Borealis

Auroras are spectacular and beautiful phenomena that occur in the auroral oval
regions around the polar caps. Here geomagnetic field lines guide charged particles
(mainly electrons and protons of magnetospheric or magnetosheath origin) down to

7.2 Aurora Borealis 129

ionospheric altitudes. When precipitating, the particles lose their energy via collisions
with the neutral atmosphere, (i.e. mainly oxygen and nitrogen atoms). At an altitude
range of about 75-300km, some of the atmospheric constituents can be excited to
higher energy levels and this can lead to the formation of auroral light. The auroras
during magnetospheric substorms and, especially, the great auroras during magne-
tospheric storms can create extremely impressive and beautiful spectacles. However,
they are different (Fig.7.3).

7.3 Target Identification: Binary Correlations
One application of the FPF is to find targets in an image. In this case a single image

is used for the recognition of the target and the fractional power term is adjusted to
increase the importance of edge information. Consider the first image in Fig.7.4a

Nad & T

1008 1“n

- — = :

200 b b e

N [=l S
WTETR R R Y B s F R R OF R TREAREANIRICCET IS

1000 1400
1200
100
1000
00 -
a00 00 \
o~ | N oaiaY il \
J\ J" \ 20¢
[° \ T
* £ 0 A E ¥ & BRadEELT R K S s T
1000 1400
1200
00
1000
oo ¢
400 00 'y
L Jorm——", e
200 l \
I RN o
: o 1 S
bl T S - : T = e

Fig. 7.3 Examples of Aurora Borealis and their resulting time signals when presented to a PCNN.
A single arc (left) and a double arc (right) both retain their respective time signals when the images
are rotated (top)

130 7 Recognition and Classification

0

(b)

Fig. 7.4 ais the original input and b is the isolated fist to be used as the target

and the task of identifying his hand. The procedure would first mask the target region
and place it in the centre of a frame as shown in Fig. 7.4b.

This image can be correlated with the original image and the FPF will force
a positive response at the location of the target. At the centre of the target in the
original image the correlation value will be close to 1 since that was the value set
in the constraint vector ¢. However, none of the other correlation surface values are
similarly constrained except that as the value of the fractional power term is increased
the overall energy of the correlation surface is reduced. This is a trade-off and as
the fractional power term is increased the filter has an increasingly difficult time
identifying anything that is not exactly like the training image. This discrimination
also includes any windowing operation. Even though the hand in the filter is exactly
like the hand in the original image the fact that the filter has a window about the target
would detrimentally affect the filter response if the fractional power term became
too high.

Thus, the trade-off between generalisation and discrimination can prevent a good
solution from being achieved. Figure 7.5a displays the correlation between the image
in Fig. 7.4a and the filter made from Fig.7.4b with o« = 0.3. There is a small white
dot at the centre of the target which indicates a strong correlation between the image
and the filter. However, the filter also provides significant responses to other areas of
the target. The conclusion is that the filter is generalising too much. If the fractional
power term is increased to lower the generalisation then it also loses the ability to
find the target.

By employing the ICM this problem is solved. The ICM will create several pulse
images and in one the target will pulse. Complicated targets may their pulses spread
over a few iterations, but in this case the hand is a simple target. The reason that this
is important is that the pulse image presents the target as a solid object with sharp
lines. This is much easier for a correlation filter to detect. The image in Fig.7.5b

7.3 Target Identification: Binary Correlations 131

(a) (b)

Fig. 7.5 a is the correlation with an FPF and « = 0.3, and b is the correlation of a pulse image
(n=1)witha =0.3

= Corfl —— Cor2]

oy

/
“/\,Jk"\i’{v*\w//w

@ =T © N 0w O W
— N =T N M~ ©O

2
168§

112
126
140

[==] =T ™ W O
(=71 un o o
= - - N

Fig. 7.6 Slices through the two correlation surfaces. Clearly in the second case the FPF can find
the target from the ICM pulse image

displays the correlation of a pulse image and an FPF built from a binary version of
the target.

The bright spot clearly indicates the detection of the target without interference
from other objects in the image. To further demonstrate the detection ability using
the ICM the image in Fig.7.6 displays a slice through each correlation surface
(Fig.7.5a, b) through the target pixel. These are the values of the pixels along the
horizontal row in Fig.7.5b that passes through the target. Clearly, the method using
the ICM provides a much more detectable response.

The employment of the ICM in this case is not a subtle affect. One of the unfortu-
nate features of a correlation filter is that it prefers to find targets with higher energy.
Darker targets are harder to find. In the ICM the darker objects will eventually create
a pulse segment and in that iteration the target will be the bright object making it

132 7 Recognition and Classification

Fig. 7.7 An original image and some of the pulse images. In one of the pulse images the target is
the bright object and in another the outline of the target is the bright object

easier for the filter to identify it. Consider the images in Fig.7.7 in which there is
an image with a young boy. In this case the boy is that target and the dark object. It
would be different to build a filter to find the boy since he is so dark. Also in this
figure are some of the pulse images. In the third pulse image the boy’s pixels pulse.
In this iteration he is now the high energy object and it much easier to find with a
filter. For display purposes the neurons that pulse are shown in black.

Again, building an FPF from the pulse image the identification of the dark target is
easily performed. The correlation is shown in Fig. 7.8 and the slice of the correlation
surface through the target pixel is shown in Fig. 7.9. In this case the tree trunks pulsed
in the same iteration and so they also correlate with the filter. Unfortunately, in this
case the tree trunks are about the same width as the boy and so they provide strong
correlations. However, the FPF has the ability to increase the discrimination and thus

Fig. 7.8 The correlation response of the pulse image and an FPF. The darkest spot depicts the
highest peak

7.3 Target Identification: Binary Correlations 133

300
250 -
200 -
150 1
100 1

AN S N

1T 11 21 31 # 5 61 M 1 91 101 1M1 121 131 141

Fig. 7.9 A slice through the centre of the target of the correlation surface. The x-axis spans
the horizontal dimension of the correlation surface and the y-axis represents the strength of the
correlation

the correlation signal of the trees is not as sharp as that of the boy. The remainder
of the process merely finds large, sharp peaks to indicate the presence of a target.
The peak belonging to the boy in this case is definitely the sharpest peak and now a
decision is possible.

It was the duty of the ICM to extract the target and present it as a high energy
collective pulse segment. A Fourier filter such as the FPF could easily detect the target
and produce a sharp correlation signal. Whereas, a filter operating on the original
image would have a very difficult time in finding the target.

7.4 Galaxies

Contributed by Soonil Rughooputh, University of Mauritius

Astronomers predict that the universe may potentially contain over 100 billion
galaxies. Classification of galaxies is an important issue in the large-scale study
of the Universe. Understanding the Hubble sequence can be very useful in under-
standing the evolution of galaxies, cosmogony of the density-morphology relation,
role of mergers, understanding how normal and barred spirals have been formed,
parameters that do and do not vary along it, whether the initial star-formation rate is
the principal driver, etc.. Our understanding of them depends on how good the sen-
sitivity and resolving power of existing telescopes (X-ray, Optical, Infra-red, Radio,
etc.). Database construction of these galaxies has only just begun. Recognition or
classification of such large number of galaxies is not a simple manual task. Efficient
and robust computer automated classifiers need to be developed in order to help
astronomers derive the maximum benefit from survey studies. There are different
ways of classifying galaxies, for example, one can look only at the morphology.
Even in this classification scheme there exists different techniques. One can com-
bine morphology with intrinsic properties of the galaxy such as the ratio of random
to rotational velocities, amount of dust and gas, metallicity, evidence of young stars,
spectral lines present and their widths, etc.

134 7 Recognition and Classification

Nobody believes that galaxies look today as they did just after they were formed.
Newly born galaxies probably did not fit the present-day classification continuum.
The big puzzle is to find out how the galaxies evolved onto the present forms. Did the
primeval galaxies “evolve” along basically the present Hubble sequence, or did they
fall into the sequence, each from a more primitive state, ‘landing’ at their present place
in the classification according to some parameter such as the amount of hydrogen
left over after the initial collapse? [95]. The collapse occurred either with some
regularity, [27], or chaotically [96] within a collapsing envelope of regularity, or, at the
other extreme, in complete chaos. Present-day galaxies show variations of particular
parameters that are systematic along the modern classification sequence. The obvious
way to begin to search for the ‘master parameter’ that governs the formation process
is to enumerate the variation of trail parameters along the sequence. Reviews by
[87] and by [15] indicate somewhat different results that nevertheless are central to
the problem. Within each morphological type, there is a distribution of the values of
each parameter, and these distributions have large overlap from class to class. Hence,
the dispersion of each distribution defines the vertical spread along the ridgeline of
the classification continuum (i.e. the center line of Hubble’s tuning fork diagram).
Hence, besides a ‘master parameter’ that determines the gross Hubble Type (T), there
are other parameters that spread the galaxies of a given type into the continuum of
L values [11]. The fact that so many physical parameters vary systematically along
the Hubble sequence is strong evidence that the classification sequence does have a
fundamental significance.

The easiest property of a galaxy to discuss is its visual appearance. When Hubble
introduced his classification, he thought it might represent an evolutionary sequence
with galaxies possibly evolving from elliptical to spiral form but, this is not believed
to be true today. Hubbles classification scheme, with some modifications, is still in
use today. Galaxies are classified as spiral galaxies (ordinary spirals, barred spirals),
lenticulars, elliptical galaxies and irregular galaxies; including other more special-
ized classifications such as as cD galaxies. The spirals are classified from Sa to
Sc (ordinary spirals) and from SBa to SBc (barred spirals); a to ¢ represent spiral
arms that are increasingly more loosely wound. The elliptical galaxies are classified
according to their ratio of their apparent major and minor axes; the classification is
based on the perspective from Earth and not on the actual shape. The lenticulars are
intermediate between spirals and ellipticals. There are other classification schemes
like de Vaucouleurs, Yerkes, and DDO methods, which look into higher details.

The morphological classification of optical galaxies is done more or less visually.
Better classification schemes would certainly help us to know more about the forma-
tion and evolution of galaxies. A technique that involves the use of robust software
to do the classification is crucial, especially if we want to classify huge number of
galaxies at one shot. Since there are billions of galaxies, a robust automated method
would be desirable. Several authors have reported work along this line (see references
28-37 in [91]). The techniques studied include the use of statistical model fitting,
fuzzy algebra, decision tree, PCA, and wavelet-based image analysis. Some work
has been reported on the use of artificial neural networks for automatic morpholog-
ical classification of galaxies; using feed-forward neural network, self-organizing

7.4 Galaxies 135

maps, computer vision technique—see references 32—34 in [91]. These techniques,
however, require extensive training, hence are computationally demanding and may
not be appropriate for the classification of a large number of galaxies. A galaxy
classifier/identifier using PCNN has also been reported; [91, 101] initial results of
which are promising. These authors have been able to classify galaxies according
to an index parameter obtained from the time signature of the galaxies. The results
reveal that this technique is fast and can be used for real-time classifications. The
researchers have chosen a catalogue of digital images of 113 nearby galaxies [31]
since these galaxies are all nearby, bright, large, well-resolved, and span the Hubble
classification classes. Besides, Frei et al. photometrically calibrated all data with
foreground stars removed and the catalogue is one of the first data set made pub-
licly available on the web. Important data on these galaxies published in the “Third
Reference Catalogue of Bright Galaxies™ [111] are recorded in the FITS file headers.
All files are available through anonymous FTP from “astro.princeton.edu’; they are
also available on CD-ROM from Princeton University Press.

Binary barcodes corresponding to galaxies can be generated to constitute a data-
bank that can be consulted for the identification of any particular galaxy (e.g. using
the N-tuple neural network). The digital image of a galaxy is first presented as input
to a PCNN to produce segmented version output of binary images. Figure 7.4 shows
a set of original images of representative galaxies spanning over the Hubble classifi-
cation classes; corresponding NGC values are given in Table 7.2. Figure7.11 shows
the original images of representative galaxies spanning over the Hubble classifica-
tion classes (from top to bottom—NGC 4406, NGC 4526, NGC 4710, NGC 4548,
NGC 3184, and NGC 4449) and the corresponding segmented images for the first
five iterations (column-wise). Figure 7.12 shows the set of the third iteration images
for a number of galaxies listed in Table 7.2 for producing the time signatures using a
second PCNN. The segmented image version was used instead of the original image
to minimize adverse effects of galactic halos.

A method was devised to mathematically compute an morphology index para-
meter (mip) from the first few iterations (mip = G (3)%/(G(2)G(4)) since these are
related to the image textures and hence retain useful information on the morphol-
ogy of the galaxies [101]. We found that galaxies (except for NGC4472) with mip
values less than 10 are spirals or irregulars otherwise ellipticals or lenticular (refer
to Table 7.2). This exception may be due to the presence of halos. Figure 7.13 shows
the corresponding barcoded images of the galaxies listed in Table 7.3 (obtained using
the corresponding. 8-bit grey level version of the time signatures). We note that the
1:1 correspondence between the barcodes and the input NGC images.

Table 7.2 NGC values for

A 3184 3726 4254 4374 4477 4636 5813
galaxies in Fig.7.10

3344 3810 4303 4406 4526 4710 6384
3351 3938 4321 4429 4535 4754 4449
3486 4125 4340 4442 4564 4866 4548
3631 4136 4365 4472 4621 5322 5377

7 Recognition and Classification

' ‘* L T
2 S Y e \

-

136

Fig. 7.10 Representative galaxies

-
.
3,

Fig. 7.11 Representative galaxies and their PCNN segmented images

7.5 Hand Gestures

®
v 4
\

L

137

Fig. 7.12 Third iterated PCNN binary images of galaxies (see Table 6.3 for corresponding NGC
values)

Table 7.3 Galaxies of different Hubble types (T) with the mip computed

NGC T Mip NGC T Mip NGC T Mip
3184 6 53 4303 4 9.2 4526 -2 11.1
3344 4 3.8 4321 4 72 4535 5 7.6
3351 3 49 4340 -1 16.3 4564 -5 18.1
3486 5 8.1 4365 -5 10.5 4621 -5 16.3
3631 5 46 4374 -5 13.9 4636 -5 10.9
3726 5 5.1 4406 -5 12.0 4710 -1 10.7
3810 5 6.0 4429 —1 10.7 4754 -3 15.9
3938 5 45 4442 -2 15.6 4866 -1 15.4
4125 -5 16.9 4449 10 5.1 5322 -5 17.3
4136 5 9.3 4472 -5 8.1 5813 -5 147
4254 5 45 4477 -3 14.9 6384 4 52

7.5 Hand Gestures

Contributed by Soonil Rughooputh, University of Mauritius

Hand gesture recognition provides a natural and efficient communication link
between humans and computers for human computer interaction and robotics
[28, 42]. For example, new generations of intelligent robots can be taught how to han-
dle objects in their environments by watching human subjects (if not other robots)
manipulating them. Unlike most modes of communication, hand gestures usually

http://dx.doi.org/10.1007/978-3-642-36877-6_6

138 7 Recognition and Classification

Fig. 7.13 Galaxies identified from their corresponding barcodes

possess multiple concurrent characteristics. Hand gestures can be either static, like
a pose, or dynamic (over space and time) and include the hand gestures/hand signs
commonly used in natural sign languages like the American Sign Language (ASL) or
Australian Sign Language (AUSLAN). Although, there are many methods currently
being exploited for recognition purposes, using both the static and dynamic charac-
teristics of hand gestures, they are computationally time demanding, and therefore,
not suitable for real-time applications. Recognition methods can be classified into
two main groups, those requiring special gloves with sensors and those using com-
puter vision techniques [23, 64, 114]. Recognition methods that fall under the first
category can give very reliable information. Unfortunately, the connection cables in
the gloves highly limit human movements in addition to being unsuitable for most
real-world applications. Consequently, interests in computer vision techniques for
hand gesture recognition have grown rapidly during the last few years.

Several researchers have devised hand gesture recognition systems in which marks
are attached on fingertips, joints, and wrist [23]. Despite being suitable for real-time
processing, it is however inconvenient for users. Another approach uses electromag-
netic sensors and stereo-vision to locate the signer in video images [114]. To recog-
nise ASL signs, Darrell [22] adopts a maximum a posteriori probability approach
and uses 2D models to detect and tract human movements. Motion trajectories have

7.5 Hand Gestures 139

also been utilised for signer localisation [30]. However, these approaches require a
stationary background with a certain predetermined colour or restrict the signer to
wear specialised gloves and markers, which makes them unsuitable for most real-
world applications. Researchers have also investigated the use of neural network
based systems for the recognition of hand gestures. These systems should enable
major advances in the fields of robotics and human computers interaction (HCI).
Using artificial neural systems, Littmann [67] demonstrate the visual recognition of
human hand pointing gestures from stereo pairs of video camera images and provide
a very intuitive kind of man-machine interface to guide robot movements. Based on
Johanssons suggestion that human gesture recognition rests solely on motion infor-
mation, several researchers have carried out investigations on motion profiles and
trajectories to recognise human motion [45]. Siskind [99] demonstrated gesture clas-
sification based on motion profiles using a mixture of colour based and motion based
techniques for tracking. Isard [44] have come forward with the CONDENSATION
algorithm as a probabilistic method to track curves in visual scenes. Furthermore,
Yang [118] have used time-delay neural network (TDNN), specifically trained with
standard error back propagation learning algorithm, to recognise hand gestures from
motion patterns.

The one-to-one correspondence between each image and its corresponding binary
barcode is shown in Fig. 7.14 [88]. Recognition of hand gestures is performed using
an N-tuple weightless neural network.

7.6 Road Surface Inspection

Contributed by Soonil Rughooputh, University of Mauritius

Inspections of road surfaces for the assessment of road condition and for locating
defects including cracks in road surfaces are the traditionally carried out manually. As
such they are time-consuming, subjective, expensive, and can prove to be hazardous
and disruptive to both the road inspectors and the circulating traffic users. What is
ideally required would be a fully equipped automated inspecting vehicle capable
of high precision location (to the nearest cm) and characterization of road surface
defects (say cracks of widths 1 mm or greater) over the width of the road at speeds
(up to 80kmh-1) over a single pass. The automated system could also be enhanced
to store the type of cracks present.

Several studies on automated systems for the detection and characterization of
road cracks have been reported recently [36, 85, 107]. In this spirit, Transport
Research Laboratory Ltd. (UK) as recently proposed an automatic crack monitoring
system, HARRIS [85]. In this system video images of the road surface are collected
by three line scan cameras mounted on a survey vehicle with the resolution of the
digital images being 2 mm of road surface per pixel in the transverse direction and
a survey width of 2.9m. The scanned image (256 KB) is preprocessed to 64 KB
(through reduction of grey levels). Reduced images are then stored in hard disk
together with the location information. The location referencing subsystem reported

140 7 Recognition and Classification

,
o
’
J

| 4
»
\ /

9
-
~
)
/ |

Ll o
) BE\«
i s€¢-ee

o

(a) Gestures.

'
L "

| |
AL LU LA
I[\Illll‘ﬂl\lHIHHHI"]\‘l\

iy Il‘u ,'Iy‘l'l“l]l‘llllllulw\\lﬁ

[N
L LI
n I‘I\‘)M) I]‘IIII‘"I[]|

ll | H\I‘\ H‘I \HIIIII\‘\

LIy (| I
I‘I \H‘II‘HHHHHII\I [‘\‘\ [‘H \‘\[I‘I[
i \‘I LTMRR TN

i

=

m I‘Il‘\)HJ\I‘\I Mﬁ

\‘H 1 \‘H‘\I‘H‘IIIII‘II‘\‘
AT

[
1L T

I
(MCHY 0N et

[LLLLnn

2383 =)
AAEAa b gey

(b) Barcodes.

Fig. 7.14 2D hand gestures used in experiments and their corresponding barcodes

in HARRIS (41 m accuracy) requires extra cameras and other hardware. The image
processing of HARRIS is carried out in two stages: the first one consists of cleaning
and reducing the images (on-line operation aboard the vehicle) and the second stage
consists of an off-line operation on the reduced images to characterize the nature of
the cracks. A typical one day survey of 300km of traffic lane would tantamount to
80 GB of data collected. Full details of HARRIS can be found elsewhere [85].
Several refinements to the HARRIS system for a more robust automatic inspection
system are obvious. First, Global Positioning Systems (GPS) can be used (instead

7.6 Road Surface Inspection 141

of video-based subsystem) to provide a much better accuracy for position location
(down to 1 mm with differential GPS). Second, there is no need to store large volumes
of scanned images of ‘acceptable’ road surface conditions. In this respect, the PCNN
technique can be used for preprocessing each scanned image to detect defects and
a second PCNN to segment this image if any defect(s) is (are) identified [89]. The
latter image is then stored as binary image along with the GPS data. A real-time-crack
map can be displayed by combining the results of the individual cameras. Detailed
characterization of the defects can be performed offline from the recorded binary
images. This mode of data collection leads to a more accurate, less costly and faster
automated system.

Since the reflective responses of the material road surface can differ from place to
place, there is a need to calibrate the software with a sample of a good road surface
condition. This can be done in real-time in two modes either once if the inspector
is assured that for the whole length of the road has the same reflective responses in
which case one sample image will suffice or periodically taking sample images at
appropriate intervals. The overall philosophy behind the success of our method relies
on the comparison of the input images from the camera to a reference (calibrated
sample) image representing the good surface condition from defects. Our method
does not compare the image directly since this will be very time-consuming; instead
it involves the conversion of the input image into a binary barcode. The barcode
generated from an image containing a defect will be different from that of a good
road surface condition.

The basis of the crack identification process is the fact the barcode of an image
containing a crack (whatever the nature) is different from the barcode representing a
good surface condition. Figure 7.15a shows examples of different road conditions—
the input images being stored in the PGM format (256 levels). The binary images
with defects collected at the end of the surveyed road can then be analysed both in real
time and off-line. Figure7.15b shows the binary images of the segmented images
using PCNN. It is clear that the nature of the defects depicted from these images
can be easily classified (crack widths, hole sizes, etc.) according to an established
priority for remedial actions. Since cracks can be observed as dark areas on the
digital images, a second order crack identification algorithm can be used to crudely
classify the priority basis. In this case, a proper threshold level needs to be found after
carefully omitting redundant parts of the images (for e.g. corner shadowing effects).

When compared with the performance of HARRIS, the technique reported offers
amuch higher success rate (100 %) for the crack identification process [89]. The high
false-positive rates (i.e. low success rate of HARRIS) can be attributed to the poor
image qualities arising from the fact that the number of grey levels in the cleaned
images have been reduced in the primary processing stage (to 64 KB for storage
purposes). Unlike HARRIS, there is no necessity to add specific criteria in our crack
identification process, the need to add predetermined criteria to join crack fragments,
and the need to store large volumes of scanned images of ‘acceptable’ road surface
conditions. HARRIS also had to inbuilt a special algorithm based on predetermined
criteria to join crack fragments. In short, we save a lot in terms of computing time. We
note that road markings (such as yellow or white indicators) and artificially created

142 7 Recognition and Classification

(b)

Fig. 7.15 a Typical road conditions. b Segmented images of typical road conditions shown in (a)

structures (such as manholes and construction plates, etc), would be initially treated
as defects. In any case, most of such markings occur on either side of the lane so
that the camera can be adjusted to reveal say around 80-90 % of the road width.
In this configuration, most of the road markings will be ignored. Other markings or

7.6 Road Surface Inspection 143

structures can be easily rejected when the binary images are analysed manually. Using
the GPS location data, the collected binary segmented images from each camera are
laid side by side in multi-lane surveys to create a crack map which indicates not only
the location, length and direction of each crack identified, but also identifies cracks
or defects extending beyond the boundaries of the individual survey cameras. We
note that it is possible to obtain crack maps in real-time in single passes using our
technique.

7.7 Numerals

A system of handwritten numeral recognition using the PCNN and the FPF was
proposed by Xue em et al. [115] in which the output of the PCNN was fed into the
FPF for recognition. One of the features of the FPF is that it can train on only P
vectors where P < D and D is the dimensions of the vectors. While the proposed
approach works well on images it will not do so well on PCNN signatures since
the FPF will be severely limited in the number of training vectors. Thus, a modified
version is presented here that shows that handwritten numeral recognition is possible
use the PCNN signatures and a neural network for classification.

Each image will be processed by the PCNN and pulse images are generated and
converted to an image signature using Eq. (4.8). In this case it is necessary that all
numerals be of a similar size and that the all image frames be the same size. Such a
database of handwritten numerals is readily available at http://yann.lecun.com/exdb/
mnist. The neural network is then trained on these signatures and analysed for ability
to learn the problem. This last statement is explained in the following Sect. 7.8.1.

7.7.1 Data Set

The data set is obtained from http://yann.lecun.com/exdb/mnist in which the images
and labels of the images are contained in two large binary files. For example, one
file contains 60,000 images. Thus, it is first necessary to unpack the data.

The image file train-images.idx3-ubyte starts with a very small header of 16 bytes.
There are four elements in this header each consuming 4 bytes. These are a identi-
fication number, the number of images, the number of rows in a single image, and
the number of columns in a single image. Starting with bytes 17 the data is stored
sequentially as unsigned 8 bit pixels. The second file train-labels.idx1-ubyte con-
tains the classification of each image. The header contains just the identification and
number of labels. The data follows is simple a single byte value between 0 and 9
which corresponds to the image in the other file.

The UnpackImages function shown in Code 7.1 unpacks the data file and returns
a list of images. Line 9 gathers the number of images and Lines 11 and 13 gather the
horizontal and vertical size of the images. In this file there are 60,000 images and
each is 28 x 28. The function returns a list 1et ts which contains 60,000 matrices.

http://dx.doi.org/10.1007/978-3-642-36877-6_4
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

144 7 Recognition and Classification

Reading the classifications is performed by the UnpackLabels function shown
in Code7.2. This function is similar to its predecessor and returns a list of integer
classifications.

7.7.2 Isolating a Class for Training
The data set is in no particular order and so it is necessary to extract images according

to their classification. Code 7.3 shows the IsolateClass function which extracts only
those images that are associated with a particular class which is denoted by targ.

Code 7.1 The UnpackImages function.

handwrite.py
import numpy as np

def UnpackImages(fname):
fp = file(fname, 'rb’)
a fp.read(4) # magic number
b = fp.read(4)
a,b=np.fromstring(b[2],np.uint8) ,np.fromstring(b[3],np.uint8
N = int(al[0]) *256 + int(b[0])
b = fp.read(4)
rows = int (np.fromstring(b[3], np.uint8) [0])
b = fp.read(4)
cols = int(np.fromstring(b[3], np.uint8) [0])
letts = []
for i in range(N):
if i $ 1000==0: print 1,
a = fp.read(rows*cols)
a = np.fromstring(a, np.uint8)
letts.append(a.reshape((rows,cols)))
return letts

Code 7.2 The UnpackLabels function.

handwrite.py
def UnpackLabels(fname):
fp = file(fname, ’'rb’)
a = fp.read(4) # magic number
number of images
b = fp.read(4)
a,b=np.fromstring(b[2],np.uint8) ,np.fromstring(b[3],np.uint8
N = int(a[0]) *256 + int(b[0])
work = fp.read(N)
work = np.fromstring(work, np.uint8)
names = map(int, work)
return names

7.7 Numerals 145

Lines 7 and 8 shows the calls to load the data and Line 9 collects all of the images
that are associated with the class ‘0’. These are the images of the handwritten ‘0’. In
this data set there are 5,923 such images.

7.8 Generating Pulse Images

The next step is to generate the PCNN signatures for a set of data. Function PulseOn-
Numeral shown in Code 7.4 receives a list of images and computes the PCNN sig-
nature for each image. The PCNN loop starting on Line 6 considers each individual
image. For this image a new PCNN is created (Line 7) with a default threshold of
1 (Line 8). The stimulus is normalized so that the maximum value is 1.0 in Line 9
and the PCNN iterations are computed in Line 12. The function returns a matrix in
which the i-th row is the signature for the i-th training image.

Code 7.3 The IsolateClass function.

handwrite.py

def IsolateClass(letts, names, targ):
hits = (np.array(names)==targ) .nonzero () [0]
data = map(lambda x: letts([x], hits)
return data

>>> letts = UnpackImages(’'train-images.idx3-ubyte’)
>>> names = UnpackLabels(’/train-labels.idxl-ubyte’)
>>> mgs0 = IsolateClass(letts, names, 0)

>>> len(mgs0)

5923

Code 7.4 The PulseOnNumeral function.

handwrite.py
def PulseOnNumeral (datas, NITERS=12):
N = len(datas)
V,H = datas[0].shape
gs = np.zeros((N,NITERS))
for i in range(N):
net = pcnn.PCNN((V,H))
net.T += 1
stim = datas[i] .astype(float)/datas[i] .max ()
g = np.zeros(NITERS)
for j in range(NITERS):
net.Iterate(stim, 2)
glj] = net.Y.sum()
gs[i] = g + 0
return gs

146 7 Recognition and Classification

Code 7.5 The RunAll function.

handwrite.py
def RunAll(letts, names, L=50):

G =[]

for i in range(10):
print ’‘Generating Pulse Images’, i
datas = IsolateClass(letts, names, i)

G.append(PulseOnNumeral (datas[:L]))
return G

>>> G = RunAll(letts, names, 100)

This process is repeated for all 9 classes in RunAll shown in Code7.5. Since
there are so many images it is prudent to provide a limit of the number of images
that are used which is L in Line 2 and to provide a print statement to monitor the
computations. The call to the function shown in Line 10 computes the signatures for
the first 100 images of each class. The output G is a list and each item is a matrix
that is 100 x 12 for the 100 signatures each of length 12.

7.8.1 Analysis of the Signatures

The signatures are now generated and it is important to determine if there is any
chance of classification. The first analysis is shown in Fig.7.16 in which there are 12
groups of box plots. These correspond to the 12 units in the PCNN signature. Each
group contains 10 boxes which correspond to the 10 different numeral classifications.

.W" 4 M 'H” “

Fig. 7.16 The average and deviation of the different classes for each element in the signatures.
Each colour represents a set of numeral images. Each box represents the average of the signature
with a deviation of one standard deviation. The extent of the whiskers represent the max and min
values for the signatures

7.8 Generating Pulse Images 147

The extent of the box shows the deviation from the average value and the extent of
the lines shows the min and max values.

In order for first-classification to be plausible it is necessary that there be a differ-
ence between the classes. Thus, as a minimum, it is necessary that for any two classes
that there be one element in the signatures that is vastly different. Thus, separation
is possible when there are significant height differences between the boxes in a least
one signature element.

The plots are shown in order and so for a single group the boxes shown are the clas-
sifications of 0-9 in that order. It is seen in several groups that the first two boxes have
significant height differences. These correspond to the numerals ‘0’ and ‘1’ which
are visually distinct. A much more difficult group would be to separate numerals (‘0’,
2°, 3%, ‘6°, ‘8”, and ‘9’). Even in these case there are differences at some elements.
This indicates that first order separation is plausible but not guaranteed.

Thus, in this demonstration the classification of the signatures is provided by
a higher-order network named FAAM (fast analog associative memory) which is
detailed in Appendix E. The FAAM is a two-layered neural architecture that expands
its internal nodes as the complexity of the training data is addressed. Neural networks
acting as associative memories train on data that have associated classes. It is possible
that the network trains on the data but can not correctly classify non-training data.
This is merely a memorisation network. There are a few causes for this as perhaps
the training data was insufficient or that the network was not capable of handling the
complexity inherent in the data set.

Another possibility is that the network learns the problem in which case the
network would be able to correctly classify non-training data. The FAAM provides
information about this ability during the training session. Namely, when the network
considers a particular vector for training it first determines if it is correctly recalled by
the current system. If this is so then the network does not adjust its nodes. Thus, if the
network begins to learn the problem the it does not adjust the nodes in the network.
The FAAM tracks this by counting the number of hidden neurons it requires in order
to learn the current training set. Thus, as more data is added a FAAM that learns
the problem (instead of memorising the data) produces training curves as shown in
Fig. 7.17. The x-axis is proportional to the number of training vectors and the y-axis
is the number of hidden nodes that are required. The plot shows that the system is
reaching an asymptote which indicates that as more data is considered training is not
required to provide proper recalls.

Figure 7.17a shows the case in which a FAAM was trained to recognise the numeral
‘1’ and reject all other numerals. In each training iteration one signature from each
numeral was added to the training set and thus there are 100 training cycles. As seen
aplateau is obtained near x = 40 which indicates that the FAAM is capable of recog-
nising non-training data. Figure 7.17b shows the more difficult case of recognising
the numeral ‘0’ which visually has many similarities to ‘2’, ‘3°, ‘6, ‘8’, and ‘9’. The
plateau is reached at x = 65 but it is still reached. This indicates the handwritten
numeral recognition using the PCNN signatures an the FAAM is plausible.

148 7 Recognition and Classification

Mo 257
16 : -

14 | 20 -
12t 1

10/ 15
8+ 1 L
sl / 10 |
4 1 51
2t |

o i I i " " 0 i i " i " " I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
(a) Class ’1°. (b) Class ’0’.

Fig. 7.17 FAAM training for two cases. The x-axis represents the number of signatures that have
been used in training the FAAM and the y-axis represents the number of decision surfaces the
FAAM requires. The asymptotic behaviour indicates that the FAAM is learning the general nature
of the problem rather than memorising specific data sets

7.9 Face Location and Identification

An application in face finding was proposed by Yamada et al. [116] in which the fast
linking PCNN is slightly modified to assist in separating faces from other components
of the image. The proposed method follows the fast linking protocol as outlined in
Sect. 4.1.7 except that the computation of L is replaced by,

1
Lijln) = e Lijln = 114+ Ve 3 WijuYuln = 11— I+ > Yyjln =11, (7.1)
k.l ij

where [is an inhibition factor. The modification adds the third term which suppresses
previously pulsed regions. The result is a much faster algorithm.
The protocol presented by Yamada et al. contains three major steps:

1. Extract skin-tone pixels,
2. Apply the PCNN, and
3. Detect oval shapes.

The test image used in this case is shown in Fig. 7.18 obtained from [5]. The first
step in the protocol is to isolate the pixels that have a skin tone. The skin pixels may
have a wide variety of intensity values even though the hue is relatively constant.

Therefore, selection of candidate skin pixels is performed by band thresholds in
the YIQ colour space. The conversion from RGB colour space to YIQ is a linear
transformation defined as,

Y 0.299 0.587 0.114 R
I | = 0.595716 —0.274453 —0.321263 G |. (7.2)
0 0.211456 —0.522591 0.311135 B

http://dx.doi.org/10.1007/978-3-642-36877-6_4

7.9 Face Location and Identification 149

Fig. 7.18 Image from the database in [5]

The transformation of the test image is shown in Fig. 7.19. The Y channel displays
intensity information and the I and Q channels display chromatic information. Of
particular interest is the I channel which shows rather uniform intensities for the skin
of all people in the image. However, items such as hair and a flag also have similar
intensities. So, through this channel it is possible to isolate skin pixels but there will
be clutter as well.

There are a couple of Python tools that can be used to perform the conversion
to YIQ and the isolation of candidate skin pixels. The process is shown in Code 7.6
where Line 3 uses the Image module from PIL to load the colour image. Line 4 uses
the array function from NumPy to convert the image into a data cube. In this case
the cube has dimensions 300 x 450 x 3 in which the three channels are the RGB (red,
green, blue) information.. These three channels are separated into individual matrices
in Lines 5-7. The colorsys module comes with tuhe standard Python installation and
it contains routines to transform RGB data into other colour maps such as YIQ. Line
8 calls the rgb_to_yiq function to perform this conversion. The last line performs
the threshold operation. Manually inspecting the I channel with an image viewer
indicates that skin pixels were in the range of 10-40. These are isolate in Line 9 and
the result is shown in Fig.7.20. Here the white pixels indicate the pixels that have
the correct I values and are candidate skin pixels. At this point it is necessary that all
skin pixels are included.

The second step in Yamada’s method is to use the modified PCNN on the input
which is itself modified by the mask shown in Fig.7.20. This process is replicated
in Code 7.7 where Line 3 masks the grey scale version of the image with the mask
and normalizes the result so that the maximum value is 1. Line 4 is the optional
smoothing which reduces effects from random noise. Line 9 calls the FastLYIterate
function which is shown in Code 7.8. This function is added to the pcnn.py module
as part of the PCNN class.

Figure7.21 shows the significant pulse outputs. As seen the faces are outline in
pulses n = 12 and n = 13 which are in the second cycle.

150 7 Recognition and Classification

()L

©)Q.

Fig. 7.19 YIQ transformation of the original image

Fig. 7.20 The white pixels show the candidate skin pixels

Step three of Yamada’s method is to find oval shapes in the output pulses. This, of
course, only works if the faces are ovals. As seen in this case, the boy with the hat does
not produce and oval shape. There are other methods of finding faces once they have
been isolated. A simple method would be to isolate the individual segments from
the pulse images and to perform a sum in the horizontal direction. Faces will have a

7.9 Face Location and Identification 151

(@n=1. (b)n=12.

(c)n=13.

Fig. 7.21 The significant pulse images

Code 7.6 Isolating candidate skin pixels.

>>> import colorsys, Image
>>> import numpy as np
>>> mg = Image.open(‘benefit.jpg’)

>>> a = np.array(mg)

>>> r = al[:,:,0].astype(float)

>>> g = a[:,:,l].astype float)

>>> b = al: ,2].astype(float)

>>> yiqg = colorsys rgb_to_vyiq(r,g,b)
>>> mask = (yig[l1l]>10) * (yigl[l] 40)

tri-modal function since the eyes and mouth regions tend to depress the values in the
summation. This process is shown in Code 7.9 which uses the scipy.ndimage.label
function to isolate the binary shapes. This function creates two outputs of which the
second is a count of the number of individual shapes. The first output is 1b1ls which
is a matrix in which unique integers are assigned to the shapes. The output is shown
in Fig.7.22a. This image is show in the inverted manner. Each segment is identified

152 7 Recognition and Classification

Code 7.7 Running the modified PCNN.

>>> from scipy.signal import cspline2d

>>> import pcnn

>>> gstim = (mask * yiqg[0]) .astype(float) / 255.0

>>> gstim = cspline2d(stim, 1)

>>> Y = []

>>> net = pcnn.PCNN(stim.shape)

>>> net.T += 1

>>> for i in range(15):
net.FastLYIterate(stim, 0.5)
Y.append(net.Y + 0)

Code 7.8 The FastLYIterate function.

pcnn.py
def FastLYIterate(self, stim, inhibit):
"""Fast Linking Yamada'’s Method"""
0ld = np.zeros(self.Y.shape)
ok =1
V,H = stim.shape
NN = float (V*H)
self.Y = old + O
if self.Y.sum() > O0:
work = cspline2d(self.Y.astype(float),b90)
else:
work = np.zeros(self.Y.shape, float)
self.F = self.f * self.F + stim + 8*work
while ok:
print ’.’,
if self.Y.sum() > O:
work = cspline2d(self.Y.astype(float),b90)
else:
work = np.zeros(self.Y.shape, float)
self.L = self.l*self.L+work-inhibit/NN*self.Y.sum()
U = self.F * (1 + self.beta * self.L)
old = self.Y + 0
self.Y = np.logical_or(U > self.T, self.Y)
if abs(self.Y - old).sum() <100: ok = 0
self.T = self.tl * self.T + self.t2 * self.Y + 0.1

Code 7.9 Horizontal sums across a candidate shape.

>>> from scipy.ndimage import label
>>> 1bls, cnt = label(Y[12])
>>> hsum = (lbls==6).sum(1)

7.9 Face Location and Identification 153

~ s X

(a) (b)

Fig. 7.22 Results from the label function

45 ;
40+ M 1
35k , ;.-i "]
30 M | |]
25+ A J
20} ([) 1
15} . J
10 - | E

il L L L
0 50 100 150 200 250 300

Fig. 7.23 Horizontal summation for a candidate shape

by pixels of a single value. In this case the actual face belongs to the region defined
by 1bls==6 and is shown in an inverted manner in Fig. 7.22b.

Line 3 sums horizontally across this region and the result is shown in Fig.7.23.
There are two major dips in the plot which correspond to the eyes and the mouth
regions. Non face regions will have a very different result from this summation. This
region can therefore be considered as a face.

7.10 Summary

The PCNN and ICM models provide two avenues for target recognition. The first to
directly employ the pulse images and the second is to use the image signatures. This
chapter shows methods by which the pulse images can be used for target recognition.
The systems were created by several groups and show a variety of applications.

Chapter 8
Texture Recognition

In many applications the information that is important is the textures within an
image. There are many such applications and in this chapter the use of texture analy-
sis using medical images will be considered. Regions in an image pulse in unison
when their stimuli are the same. If the stimuli are varied (there exists a texture) then
the synchronised behaviour of the pulse segments will disintegrate, and this desyn-
chronisation increases and the system iterates. This desynchronisation is dependent
upon the texture of the input and thus texture can be measured and used for segment
classification.

The authors would like to acknowledge the significant contribution of Guisong
Wang for the material in this chapter.

8.1 Pulse Spectra

Consider again the images shown in Fig.5.5. The nucleus of the red blood cell
contains a texture. In iteration n = 1 the nucleus pulses as a segment completing
the first cycle. The second cycle occurs in iterations n = 16—19. The neurons of the
nucleus have desynchronised and the pulses are separated according to the texture
of the original segment. Thus, measurement of texture is performed over several
iterations rather than in a single iteration.

Texture is an interesting metric in that it describes a property that spans several
pixels but in that region those pixels differ. It is a segment described by dissimilarity.
The size of this region, however, is defined by the user and cannot be set to a uniform
distance. There have been several methods by which texture has been measured.
Many of these rely on statistical measures but the ICM is different. The higher order
system can also extract relational information. Figure 8.1 displays images with two
distinct but typical textures [98]. Even though the pixel values vary on a local scale
the texture is constant on a global scale.

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 155
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_8, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-36877-6_5

156 8 Texture Recognition

Fig. 8.1 Example textures

One of the simplest methods of measuring texture is to simply measure the sta-
tistics such as the mean, the variance (and the coefficient of variance), skewness and
kurtosis. The mean for a vector of data is defined as,

1 N
u=N;xi, (8.1)
1=

where V and H are the vertical and horizontal dimensions of the image. The variance
and the coefficient of variance are defined as,

N
I
i=1

o = IV(N—_I), (82)

and,
cv=o0/u. (8.3)

The skewness and kurtosis are higher order measures and are defined as,

N

_ N xi—w)’
r‘(N—l)(N—ZZ(o) ®4

i=1

and,

N L 4 _ 2
N(N +1) (x, . u) 3(N-1) ®5)
=1

T (N- DN -2)(N-3) S (N-D)(N-3)

1

8.1 Pulse Spectra 157

Table 8.1 Statistics of

Texture 1 Texture 2
textures
Mean 0.492 0.596
Variance 0.299 0.385
Coefficient of var. 0.607 0.647
Skewness 0.032 —0.058
Kurtosis 0.783 0.142

For simple images like Fig. 8.1 itis possible to measure and distinguish the textures
according to these measures. The values for the two sample images are shown in
Table 8.1.

However, real problems generally do not fill the image frame with a single texture.
Quite often it is desired to segment the image according to the texture implying that
the texture boundaries are not known but rather need to be determined. The image in
Fig.8.2 displays a secretion cell with a variety of textures. One typical application
would be to segment this image according to the inherent textures.

To employ the ICM to extract textures pulse activity of each pixel over several
iterations is considered. Since texture is defined by a region of pixels rather than
by a single pixel the pulse images are smoothed before the texture information is
extracted. The information taken from a location (i, j) defines the pulse spectrum
for that location and is defined by,

pi,j = M{Y}; j[n], (8.6)
were the function M{-} is a smoothing operator over each pulse image. The goal

is that all pulse spectra within a certain texture range will be similar. Figure 8.3a
displays the original image and the rest of Fig. 8.3 displays selected pulse images.

Secretion Gland

Goblet Cell

Fig. 8.2 Annotated image of a secretion cell

158 8 Texture Recognition

@ns (€)n="9

Fig. 8.3 The original input image and selected pulse images

Common textures pulse in similar iterations. This displays only four of many pulse
images. In this case the number of iterations was selected to be twenty.

For the case of standard textures (similar to Fig.8.1) the method of using pulse
spectra was compared to other methods. These methods are listed with their citations
but their methods will not be reviewed here:

Autocorrelation (ACF) [83, 109]
Co-occurrence matrices (CM) [35]
Edge frequency (EF) [83, 109]
Laws masks (LM) [63]

Run Length (RL) [83, 109]

Binary stack method (BSM) [17, 18]
Texture Operators (TO) [110]
Texture Spectrum (TS) [37]

In [97] the performance of all of the methods in the above list were compared on
a standardized database of textures. The tests consisted of a training on all but one of
the images and then that image was used as a test. This test was repeated several times
using each of the images as the one not used in training. Recall used the K-nearest
neighbours algorithm and the results are shown in Table 8.2 for different values of
K. At the top of this chart the texture recognition method using the ICM was added
and it can be seen that it rivals the best performing algorithms.

8.2 Statistical Separation of the Spectra 159

Table 8.2 Texture analysis methods

Method K =1(%) K =3 (%) K =5(%) K =17(%) K =9 (%)
ICM 94.8 94.2 93.9 92.1 91
ACF 79.3 78.2 77.4 775 78.8
CcM 83.5 84.1 83.8 82.9 81.3
EF 69 69 69.3 69.7 71.3
LM 63.3 67.8 69.9 70.9 69.8
RL 45.3 46.1 46.5 51.1 51.9
BSM 92.9 93.1 93 91.9 91.2
TO 94.6 93.6 94.1 93.6 94
TS 68.3 67.3 67.9 68.5 68.1

8.2 Statistical Separation of the Spectra

The real task at hand is to measure the textures of a complicated image as in Fig. 8.2.
A requirement for the accomplishment of this task is that the spectra discriminate
between the different textures. This means that the spectra in one texture region must
be similar and compared to another region they must be dissimilar. To demonstrate
this three regions in Fig. 8.2 were selected for testing. This image is 700 x 700 pixels
and each region selected was only 10 x 10 at the locations marked in the figure. The
average and standard deviation of the spectra for each region are shown in Fig. 8.4.

The desire is to have each average signature differ significantly from the others and
to also have small standard deviations. Basically, the error bars should not overlap.
Clearly, this is the case and therefore discrimination of texture using the ICM is
possible.

T T
Peacleus b—p—y
Goblet™ < o
Secretionp A~

Fig. 8.4 Plots of the average and standard deviation of the three selected regions of Fig. 8.2

160 8 Texture Recognition

8.3 Recognition Using Statistical Methods

A simple method of classifying regions in an image by the texture is to simply
compare a pulse spectrum to all of the average spectra in a library. The library
consists of average spectra from specified training regions (as in Fig.8.4). This is
similar to the procedures practised in multi-spectral image recognition.

For each pixel in an image there is a pulse spectrum and this can be compared
to those in a library. The pixel is then classified according to which member of the
library is most similar to the pixel’s spectrum. A pixel’s spectrum can be classified as
unknown if it is not similar to any of the members of the library. For this example, the
elements of the spectrum needed to be within one standard deviation of the library
spectrum in ordered to be considered close. This measure exclude spectrum members
that were close to 0. More formally, the spectrum of the pixel in the image is defined
as d; where i = 1,2,...,20 (the number of iterations in the ICM). The library
consists of a set average spectra, mf, where k is the index over the number of vectors
in the library. For each member of the library there is also the standard deviation of
the elements, al.k. The pulse spectrum is considered close if for all d; > €,

d; —m¥| < sk, (8.7)
where € is a very small positive constant.

Using this measure the pixels in the image of Fig.8.2 that were classified as
belonging to the nucleus class are shown (black) in Fig. 8.5a. In Fig. 8.5b the pixels
classified as secretion are shown and in Fig. 8.5c the pixels classified as goblet are
shown.

In this example many of the pixels were classified correctly. However, there
were a lot of false positives. Part of the problem is that the texture of some of
these misclassified regions is very similar to that of the target. For example there
are many nuclei outside of the large cell that have similar texture to the nuclei
inside of the cell. Likewise, the goblet cells have similar texture to many regions
outside of the cell. These strong similarities make it a difficult problem to solve.

(a) Nucleus. (b) Secretion. (c¢) Goblet.

Fig. 8.5 The classification by texture of the pixels as nucleus, secretion, and goblet

8.3 Recognition Using Statistical Methods 161

Another cause of these false positives is that the texture of regions of similar class
are somewhat different. The texture of the individual nuclei inside of the large cell are
different.

Unfortunately, it is quite common to have a problem in which the texture of tar-
get regions different more than the texture between non-target and target regions.
If this wasn’t the case then this would be an easy problem to solve. In this sit-
uation the classification system is insufficient. In other words, the use of statisti-
cal comparison between the spectra is incapable of discriminating between target
spectra and non-target spectra. A much more powerful discrimination algorithm is
required.

8.4 Recognition of the Pulse Spectra via an Associative
Memory

The inability of the previous system to completely recognise a texture may be caused
by either of two problems. The first may be that the texture extraction engine is inade-
quate. The second is that the process that converts extracted texture to a decision may
be inadequate. In the previous case the decision was reached by simply comparing
statistics of the texture. However, in a case in which one class may contain more than
one texture this decision process will be inadequate. Thus, we attack the problem
with a stronger decision making engine.

There are several types of associative memories that are available to be used and
certainly a system that contends optimality would consider several of these memories.
In the case here, the goal is to demonstrate that the ICM can extract sufficient infor-
mation from an image, thus only an adequate associative memory need be considered.
If the combination of the ICM and the chosen associative memory sufficiently clas-
sify the image then the contention is that the ICM sufficiently extracted the texture
information from the image. The associative memory used here is the FAAM which
is detailed in Appendix E.

The pixels used in training in the statistical example were also used here.
Figure 8.6a displays that classification of pixels in the secretion class. All of the
white pixels are declared to be in the class, all of the grey pixels are declared to be
out of the class, and all of the black pixels are undefined. In this case the input vector
to the associative memory produced a set of decisions that were not similar enough
to any of the training vectors. Figure 8.6b contains the classification of the pixels for
the goblet class. In this case many of the pixels are classified as not known, however,
the goblet pixels are correctly classified.

162 8 Texture Recognition

(a) Secretion.

Fig. 8.6 Pixels shown in white are classified as the target, pixels shown in grey are classified as
non-target, and pixels shown in black are not classified. a Secretion. b Goblet

8.5 Biological Application

Idiopathic pulmonary fibrosis (IPF) is a lethal disease of which their is no cure or
even a consensus on treatments. Visual features of the disease include regions called
ground glass and honeycomb which are regions in the lung that are no longer func-
tioning. Often these regions begin at the bottom of the lung and along the perimeter
and expand upwards. The honeycomb region is most significant in the upper right
portion of the lung.

One goal of processing the images is to extract a measure of the volume of lung
that is classified as fibrotic. For a single patient several images are taken of the lung
at regular intervals and so the measure of volume is reduced to the summation of the
measure of area for each image. The fibrotic region does not have a specific location,
shape, or regular texture and so automated classification requires a robust system.

In Acharya et al. [6] the ICM was used to create a unique pixel signature in the
honeycomb region. Figure 8.8 shows the first cycle of pulse images from the ICM.
In this cycle the health and fibrotic regions of the lung do not separate very well.

The second cycle of pulses is shown in Fig. 8.9 which shows, for the most part,
the same pixels pulsing but now the desynchronisation is conducive to the inherent
texture. This desynchronisation is the key to the ability to classify the fibrotic regions
differently from the healthy regions.

The pulse images create a data cube specified by Y;;[n] as from Eq. (4.18). This
cube is smoothed slightly to reduce noise and make the pulse regions more cohesive.
Thus, the pulse images now assume floating point values. This smoothing is small
in extent so as to not significantly change the response of the ICM. The separation

http://dx.doi.org/10.1007/978-3-642-36877-6_4

8.5 Biological Application 163

Fig. 8.7 A lung scan of a patient with IPF with the honeycomb region visible in the upper right
portion of this image

(a) n=1

Fig. 8.8 The first cycle of ICM pulse images

of the pulse activity of the two different classifications is verified in Fig.8.11. The
x-axis represents the pulse iteration and the y-axis represents the distribution of pulse
behaviour in the fibrotic (red) and healthy (green) regions. Each error bar represents
a distribution of pulse values over a classified region. As seen the red bars have a
shorter frequency that do the green bars. This indicates that as a whole the fibrotic
regions start their second cycle earlier than do the healthy regions. This frequency
trend continues into the third cycle as well. This indicates that the pulses are quite
capable of separating healthy and fibrotic regions.

164 8 Texture Recognition

() n =10 (b)n=12

Fig. 8.9 The second cycle of ICM pulse images

(a) n =21 (b) n=22

Fig. 8.10 The third cycle of ICM pulse images

The next step was to train an associative memory such as the FAAM (see Appendix
E) which is a supervised classification system that grows in complexity as training
data is presented to the system. In this case the training data was selected pixels from
small regions that are classified by a physician. These training vectors are Y; ;[n], Vn
and selected i and j. This is shown in Fig. 8.12.

A small set of vectors (30 in total) were used to train the FAAM and all pixels
inside of the lung were considered as queries. The FAAM produces three outputs
which are 1 for the recognition of a class, O for the rejection of the class, and —1 for
undecided. Thus, output images from the FAAM have three intensities with white
being classified as the target, grey being a rejection of the target, and black being
undecided. Figure 8.13 show an input from which training vectors were extracted
and the classification of the entire image from two FAAMs. The first was trained to
recognise fibrotic regions and the second was trained to recognise healthy regions.

8.5 Biological Application 165

0.25 T T T
"honey.txt' —+—
02 « ‘normal.txt’ o
0.15 - B . E
. I I
01k } I I i . I - 1 3 i o
8 TR L t g
0.05 < i gl § Datp 1
0r E = B I x4
0,05 ' ' ' '
0 5 10 15 20 25

Fig. 8.11 Distributions of pulsing activity for two previously classified regions. The x-axis rep-
resents ICM iterations and the y-axis represents strength of pulse activity. The red bands coincide
with the target regions and the green bands coincide with the non-target regions

Fig. 8.12 Extraction of a training vector at a specified i, j location

166 8 Texture Recognition

(a) Input. (b) Fibrotic recall. (¢) Healthy recall.

Fig. 8.13 The query image and the output of a FAAM trained to recognise fibrotic regions and a
FAAM trained to recognise healthy regions

50000 T T T T
45000
40000
35000
30000
25000
20000 -
15000 -
10000 -
5000
0

T

T

T

T

0 5 10 15 20 25

Fig. 8.14 Area measures for each scan for healthy and fibrotic regions. The text explains the axes

Now, that the regions are classified the final step is to measure the area classified
by each FAAM. The patient’s file contained several scans and each of these were
used as queries to the FAAMs but not used in training. The volume of healthy and
fibrotic regions were calculated for each scan and the results are shown in Fig. 8.14.
The x-axis represents each scan with the top of the lung corresponding to low values
of x. The y-axis is the area of each classification.

The top plot represents the total area of the lung from an independent measure.
The lowest plot (green) represents the area classified as fibrotic in each scan, and the
next lowest plot (blue) represents the area classified as healthy. The remaining plot
(purple) represents the sum of the fibrotic and healthy regions. It difference between
the top two plots is due to the pixels that were not classified (black in Fig. 8.13).

Clearly, the volume of fibrotic matter becomes dominant in the lower portion of
the lung which corresponds to the fact that the disease tends to start at the bottom
of the lung. This process now allows physicians to have an automated system of
measuring fibrotic regions in patients who unfortunately have contracted IPF.

8.6 Texture Study 167

8.6 Texture Study

A recent study by Zhan et al. [122] consider the performance of the PCNN, the ICM,
and their proposed SCM in a texture recognition test. The SCM is another simplified
version of the PCNN which removes the Feeding equation and reduces the Linking
equation to,
Lijin] = VL > WijuYuln — 11. (8.8)
ki

The internal energy is,
Uijln] = Sij (1 + BLjj[n]). (8.9)

The test consisted of several experiments based upon the time signatures produced
by the networks. Recognition was performed using the original signals, entropy of
the signals, standard deviation of the signatures, and frequency representation of the
signatures (such as DCT or FFT). Performance of the three systems were compared
and the ICM and SCM had similar recall rates for rotation and scale variations with
both being superior to the original PCNN. Recall rates were also compared to systems
using Gabor filters with markedly better results.

This study used the Brodatz image set which is a standard texture image set and
readily available from many web sources. The Brodatz set has over 100 images
which are each quite large. Thus, many studies chop up each image into sub-images
and use some of these for training and others for testing. It is a very easy process to
compute the signatures via the ICM for sub-images and the to use a method like PCA
(principal component analysis) to determine if the signatures can uniquely describe
a texture.

To replicate this study a few functions to convert each image into a set of ICM
signatures are required. The first is FileNames which is shown in Code 8.1. This
function receives a directory name that contains the Brodatz images. It loads all of
the file names from that directory and then keeps only those which end in * .gif’
or ' .GIF'. Some operating systems will place other files in a directory if the user
views the images in a file manager, thus it is necessary to prune out non-image files
even if no other file was added to the directory by the user.

The second function in Code 8.1 is LoadImage which receives an image file name
and returns a matrix which represents the grey scale values of the image. These values
are scaled between 0 and 1. Code 8.2 shows the Cutup function which creates several
small 128 x 128 non-overlapping matrices from the output of LoadImage. Line 8
is necessary when the images size is not exactly multiples of 128. If a submatrix
is small then it may cause an error in the ICM during the smoothing process. The
output is a list of matrices that are all 128 x 128 and from a single input image.

The ManySignatures function (Code 8.3) computes the ICM signature for each
of the matrices in cuts. This function is hard coded for 15 iterations which gets into
the third cycle of pulse images and the desynchronisation is significant. The function
returns a list of signatures and each is a 15 element vector.

168 8 Texture Recognition

Code 8.1 The FileNames and LoadImage functions.

texture.py
import os

import numpy as np
import Image

def FileNames(indir):
temp = os.listdir(indir)
names = []
for i in temp:
if '.gif’ in i or ’.GIF’ in i:
names.append(indir + /' + 1)
return names

def LoadImage(mgname) :
mg = Image.open(mgname)
data = np.array(mg.convert('L’))/255.0
return data

Code 8.2 The Cutup function.

texture.py
def Cutup(data, Sz=128):
V,H = data.shape
cuts = []
for i in range(0, V, SZ):
for j in range(0, H, SZ):
vv,hh = datal[i:1+SZ,j:j+SZ] .shape
if vv == 128 and hh == 128:
cuts.append(datal[i:1+SZ,j:j+SZ] + 0)
return cuts

Code 8.3 The ManySignatures function.

texture.py
import icm
def ManySignatures(cuts):
N = len(cuts)
sigs = []
for i in range(N):
net = icm.ICM(cuts[i].shape)
G = np.zeros(15)
print ‘ICM: ‘', 1
for j in range(15):
net.IterateLS(cuts([i])
G[j] = net.Y.sum()
sigs.append(G + 0)
return sigs

8.6 Texture Study 169

The final function is Driver (Code 8.4) which runs all of the processes. Lines 4
through 10 gather the names of the files, loads the images, cuts each up into sub-
matrices, and computes the signatures of all of the sub-matrices. This portion of the
script can take more than an hour to process depending on the machine speed and
memory. By Line 11 the bigsigs is a list and each item in this list is itself a list.
Each inner list contains the vector signatures for a single image. Lines 13 through
18 convert the list of lists of vectors into a single large matrix that is P x 15 where
P is the total number of signatures.

Code 8.4 The Driver function.

texture.py
import pca
def Driver(indir):
names = FileNames(indir)
bigsigs = []
for i in range(len(names)):
print "Considering", names[i]
data = LoadImage(names[i])
cuts Cutup (data)
bigsigs.append(ManySignatures(cuts))
lgs = np.array(map(len, bigsigs))
L = lgs.sum()
data = np.zeros((L,15))
k=0
for i in range(len(bigsigs)):
for j in range(len(bigsigs[i]
datalk] = bigsigs[i][j] + O
k += 1
cffs, evecs = pca.PCA(data, 8)
return cffs, evecs, bigsigs

))

The final step of the process is to determine if these signatures are capable of
distinguishing the different textures with the caveat that similar vectors should indi-
cate similar textures. One approach is to use PCA which is detailed in Appendix F.
PCA has the ability to create a new data space which is a rotation of the old space
by minimizing the covariance between data elements. Data which has first order
distinctions can often be shown to separate in PCA space. However, data that has
purely higher-order relationships are not separated by PCA.

In this case, the data matrix is sent to the PCA function from the pca.py module
(Appendix F). This function also receives an integer which is the number of dimen-
sions to return from the PCA computation. The vectors in the original data have
15 dimensions and the call to the PCA function requests that only 8 dimensions be
returned. This is more than will be used but since the PCA computation is sequential
the computations of the first dimensions are not affected by the computations of the
latter dimensions. The Driver returns the variable cf fs which is a matrix whose

2000

8 Texture Recognition

(a)

-2000

4000

-2000 - . k- w ® o Nt e e
LT g ! 6000 -
-4000 . :‘-

-6000 =800

-B00OD -10000
. -5

15000 20000 10000 15000 20000

Fig. 8.15 Figures a and b show clear distinctions from two randomly selected sets of 10 sub-images
extracted from the PCA space contrived from all 111 images.

rows represent the data in the new space. The variable evecs are the eigenvectors
that convert data from the old space to the new space. These are not used in this
example but are required if other data not used in creating the PCA space are to be
mapped into the new space. The function also returns bigsigs which are the ICM
signatures.

While there is a tremendous amount of analysis that is possible on the data in
the PCA space this section will end with merely displaying the space in a colour
coded fashion in which each colour marker represents data from a specific image.
Furthermore, displaying the data for all 111 images is cumbersome and so the pre-
sentation of the results shows only part of the data. The PCA was computed for all
25 sub-images from all 111 images. The displays in Fig.8.15 show two sets of 10
randomly selected images as they lie on the space computed for all 111 images. As
seen the data does indicate a separation of the images which indicates that the ICM
signatures are capable of describing texture.

8.7 Summary

The PCNN and ICM models create pulsing activity that begins as synchronised
pulses but as the iterations increase the pulsing activity desynchronises in a manner
that is quite sensitive to the texture in the image. Due to the autowave communi-
cations this de-synchronisation is both sensitive to variations within the immediate
neighbourhood of a pixel as well as pixel activity beyond the distance of direct
neural connections. This dependency on texture thus allows for the pulse images to
be used in texture discrimination. Several approaches have been proposed and a few
are outlined in this chapter.

Chapter 9
Colour and Multiple Channels

Previous chapters considered the PCNN and ICM operating on grey scale images.
This chapter considers data that has multiple channels such as colour images and
multi-spectral images. In these cases the neural model is expanded in order to handle
the new dimension in the input space. The multi-spectral PCNN (¢ePCNN) is a set
of parallel PCNNs each operating on a separate channel of the input with both inter-
and intra-channel linking. This has a very interesting visual effect as autowaves in
one channel cause the creation of autowaves in the other channels. The first autowave
leads a progression of autowaves, but they all maintain the shape of the object.

9.1 The Model

Figure 9.1 depicts the new design which uses several PCNN’s in parallel and allowing
communications between them [53, 58].
The feeding component is now described by,

F(x,n) = e " Fx,n— 1)+ SX) + ViM @ Y(x,n — 1), 9.1)

where X represents the locations in the new space which could be three dimensions
or higher. The tensor M represents the local connections and while it is commonly
symmetric for intra-channel communications the symmetry does not necessarily
extend into the new dimensions.

Likewise the rest of the system is described by,

L(x,n) = eo‘L‘S"L(x, n—1D4+VIWRYX,n—1), 9.2)
Ux,n) = F(x,n)(1+BL(X,n)), 9.3)
T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 171

Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_9, © Springer-Verlag Berlin Heidelberg 2013

172 9 Colour and Multiple Channels
/J Detector 1 —{ PCNN 1
” - Detector 2}— PCNN 2 |/]

\ Detector N PCNN N

Input Object

Intra-channel Linking -

Fig. 9.1 Logic schematic of the multi-channel PCNN

1 if © —1
Yo — [i U(x,ln) >0 -1 ©4)
0 Otherwise
and,
O, n) = e x,n—1)+ VoY (x,n). 9.5)

9.1.1 Colour Example

This is shown by the example of the original image in Fig. 9.2a and the pulse images
shown in Figs. 9.2b—p. The original image is a 256 x 256 x 3, three channel (colour)
image of a boy eating ice cream. The other images are the colour-coded pulse outputs
of the three channels. Segmentation and edge extraction is quite visible.

An example of the cross channel linking is evident in the boy’s hair. The hair is
brown and changes in intensity. At n = 1 through n = 3 and n = 8 through n = 14
the autowaves are seen travelling down the boy’s hair. The red autowave leads the
others since the hair has more red than green or blue. The other autowaves follow,
but all waves follow the texture and shape of the boy’s hair.

The intra-channel autowaves present an interesting approach to image fusion. The
image processing steps and the fusion process are highly intertwined. Many tradi-
tional image fusion systems fuse the information before or after the image processing
steps, whereas this system fuses during the image processing step. Furthermore, this
fusion is not statistical. It is syntactical in that the autowaves, which contain descrip-
tions of the image objects, are the portions of the image that cross channels. This
method is significantly different from tradition in that it provides higher-order syn-
tactical fusion.

There are several reasons to fuse the inputs of images of the same scene. One
example is to fuse an infra red image with a visible image to see relations between
items only seen in one of the inputs. The same detector image may also be filtered
differently in order to enhance features of different, but related origin. Generally one
fuses the signals from several sensors to get a better result.

Figure 9.1 also shows the pulse images being fed into an FPF (fractional power
filter). The FPF needs to be modified slightly to handle multiple channels. This can

9.1 The Model 173

Fig. 9.2 An original image and the generated pulse outputs

be accomplished by phase encoding the constraint vector and treating each channel
as a separate 2D input.

Thus, the final output of the multi-channel PCNN is a complex image that contains
data from all channels,

Y'1~ _ z YeeLZJTE/N7 (9.6)
€

where € represents each channel. The FPF is trained on a multi-channel target selected
in the original images. For training views of the target are cut-outs from a few of the
original images. Each training image is

x{ = e?TeINGE (9.7)

174 9 Colour and Multiple Channels

and trained with the corresponding constraint,
Ci — ethe/N’ (9.8)

and the filter is trained according to Egs. (C.1)—(C.3).
The final result is the correlation, Z,

Z=hoY!. 9.9)

The presence of a target will produce a large correlation signal at the location
of the target. An exact match will produce a signal of height N. Stimuli that do not
exactly match the training targets will have a lower correlation value depending upon
the fractional power.

The data set and the defined task assist in determining the value of «. If the data set
varies greatly then o can be lowered. If the targets consist mainly of low frequency
data, the mid-point of the trade-off will move to a higher value of «. If the task
requires a higher precision of discrimination the user should give a larger value of «.
Generally, the best way to determine the proper value of « is to try several values.
The entire fusion algorithm follows the following prescription:

1. Given a defined target training set, X, the FPF filter is generated.
2. Given a stimulus, S, with € channels each channel is separately represented by
S€. All arrays of the PCNNSs are initialised to 0.

. One ePCNN iteration is performed following Egs. (9.1)—(9.4).

. The outputs Y€ are phase-encoded to form Y7 as by Eq.(9.5).

5. The correlation Z is calculated to identify the presence of a target by Eq. (9.9). A
large correlation spike is indicative of the presence of a target.

6. Steps 3-5 are repeated until a target is clearly evident or several iterations have
produced no possible target identifications. The actual number of iterations is
problem dependent and currently determined by trial and error. Generally, 10-20
iterations are sufficient.

B~ W

The example below uses the colour-input image in Fig.9.2a. This image is a
three-channel image. The ePCNN responses are also shown. The target was selected
to be the boy’s ice cream. Cutting out and centring the ice cream created the FPF
training image. In traditional filtering, creating a training image from a cut-out may
be dangerous. This is because the cutting process induces artificial edges. These can
constitute Fourier components. These generally differ significantly from the original
image and may consequently change the correlation result. In other words, the filter
may have large Fourier components that will not exist in the input. The PCNN,
however, produces pulse images, which also contain very sharp edges, so in this case
cutting out a target is not detrimental. Both components of the correlation contain
sharp edges so the cutting-out process will not adversely affect the signal to noise of
the correlation.

The FPF with ¢ = 0.8 is shown in Fig.9.3. Each of the ePCNN pulses was
correlated with the filter. The correlation surfaces for the first four non-trivial multi-

9.1 The Model 175

Fig. 9.3 The complex Fractional Power Filter (FPF) of the target

: \’ _ .-_-.‘. X ?ﬁ

-

My T - - i

@ ® © @

Fig. 9.4 Correlation surfaces of the first four non-trivial PCNN responses. Images shown are for
n=1,2,7and 8

channel pulses are shown in Fig. 9.4 (where a trivial output is one in which very few
neurons pulse).

The trivial and some of the non-trivial output pulse images do not contain the
target. In these cases no significant correlation spike is generated. The presence or
absence of a target is information collected from the correlation of several pulse
images with the filter. The target will produce a spike in several of these correlation
surfaces. The advantage is that the system tolerates a few false positives and false
negatives. An occasional correlation spike can be disregarded if only one output
frame in many produced this spike, and a low target correlation spike from one pulse
image can be overlooked when many other pulse images produced significant spikes
at the target location. This method of the accumulation of evidence has already been
shown in [52].

The correlation surface for all shown iterations display a large signal that indicates
the presence of the target. It should be noted that the target appears only partially in
any channel. From the multi-channel input a single decision to indicate the presence
of the target is reached. Thus, image fusion has been achieved.

As for computational speed, the PCNN is actually very fast. It contains only local
connections. For this application M = W so the costly computations were performed
once. For some applications it has been noted that using M = 0 decreases object
crosstalk and also provides the same computational efficiency. Also quick analysis
of the content of Y can add to the efficiency for the cases of a sparse Y. In software
simulations, the cost of using the FPF is significantly greater than using the e PCNN.

176 9 Colour and Multiple Channels

9.1.2 Python Implementation

Implementation of a 3D PCNN requires a few alterations from the original algorithm.
Like the original the presented scripts encapsulate the algorithm in as an object for
instances when an application requires multiple instances of the PCNN.

The initialisation is shown in Code 9.1. The constructor is very similar in nature
to the original in Code 4.1.

Code 9.1 The constructor for ucm3D.

ucm3D.py

from numpy import array, ones, zeros
from scipy.signal import cspline2d
import mgconvert, levelset

class UCM3D:
"Datacube Unified Cortical Model"
f,t1,t2 = 0.9,0.8,20.0

constructor

def __init__ (self,dim):
dim = (N, vert, horz)
self.F = zeros(dim)

self.Y = zeros(dim)
self.T = ones(dim)

A new function that is needed is Image2Stim function shown in Code 9.2 in
which an image is converted to a data cube. Line 4 calls the RGB2cube function
which is described in Appendix A. This function reads in the image and returns a
list of matrices for the RGB channels. These are converted to a single array in Line
5 and then slightly smoothed in Lines 6 and 7 to eliminate random noise.

Code 9.2 The Image2Stim function.

ucm3D.py
def Image2Stim(self, mg, smooth=2):
if mg.mode != 'RGB’: mg = mg.convert ('RGB’)

stim = mgconvert.RGB2cube(mg)
self.stim = array(stim)/255.0
for i in range(len(self.stim)):
self.stim[i] = cspline2d(self.stim[i], smooth)

A single iteration is shown in Code 9.3. Again it is similar to the original except
that the neural communications also come from other channels.

9.1 The Model

177

Code 9.3 The Iterate function.

ucm3D.py
def Iterate (self):

Y =Y / sc
if Y.sum()
work[i]
else:
work[i]
self.F = self.f
self.Y = self.F

>0:

>

N = self.F.shape[0] # Z dimension
work = zeros(self.Y.shape)
for 1 in range(N):

sc = 1.

Y = self.Y[1]1+0

if i>1:
Y=Y + 0.7* self.Y[i-1]
sc = sc + 0.7

if i>2:
Y=Y + 0.3* self.Y[i-2]
sc = sc + 0.3

if i<N-1:
Y=Y + 0.7*% self.Y[i+1]
sc = sc + 0.7

if i<N-2:

Y=Y + 0.3* self.Y[i+2]
sc = sc + 0.3

cspline2d(Y, 25)

zeros (Y.shape)
self.F + self.stim + work
self.T

self.T = self.tl * self.T + self.t2 * self.Y + 0.1

The final function is Y2Image shown in Code 9.4 which converts a single pulse
frame into a colour image. For cases in which the input has three channels (colour
images) the conversion of Y to an RGB image is simple. For cases in which the
input is more than three channels the conversion is a little more involved. Computer
displays still have only three channels and therefore a mapping is required to convert
more than 3 channels into the RGB display.

178 9 Colour and Multiple Channels

Code 9.4 The Y2Image function.

ucm3D.py
def Y2Image(self):
converts the several Y’s into an image
N = self.F.shapel[0]
if N==3:
mg=mgconvert.Cube2Image (self.Y[0],self.Y[1],self.Y[2])
else:
V,H = self.Y[0].shape
r,g,b = zeros((V,H)),zeros((V,H))
for i in range(self.Y.shape[0])
ii = float(i)/(self.Y.shape[0]-1)
a= (-2. * 11 + 1)*self.Y[1]

,zeros ((V,H))

r =r + clip(a,0.,a.max())
g =g +(-4*1i*ii + 4*ii) * self.Y[i]
a = (2 * i1 -1.)*self.Y[1i]
b =Db + clip(a,0.,a.max ())
scale
mn = r.min()

a = g.min()

if a <mn: mn = a

a = b.min()

if a <mn: mn = a
r,g,b = r-a,g-a,b-a
mx = r.max()

a = g.max()

if a > mx: mx = a

a = b.max()

if a > mx: mx = a

if mx == 0: mx = 1 # prevents DIVO errors

r,g,b = r/mx,g/mx,b/mx

r,g,b = r*255,g*255,b*255

mgconvert.Cube2Image(r,g,b)
return mg

Calls to the functions are shown in Code 9.5 and the results are shown in Fig.9.5.
In this example the image is from Fig.4.15a and the pulse images are shown here
with two cycles starting at n = 1 and n = 9. Segmentation is obvious and the
desynchronisation according to texture can also be seen.

http://dx.doi.org/10.1007/978-3-642-36877-6_4

9.1 The Model

179

Code 9.5 Example implementation.

>>>
>>>
>>>
>>>
>>>

mg = Image.open(fname)
net = ucm3d.UCM3D((3,500,514)
net.Image2Stim(mg)
Y = []
for 1 in range(15):
net.IterateLS()
Y.append(net.Y2Image())

)

(g) n=11.

Fig. 9.5 Pulse images for a colour input

180 9 Colour and Multiple Channels

(@) (b)

Fig. 9.6 4102dt0 (long wavelength) and 4130dt0 (short wavelength)

Fig. 9.7 The output forn =7
and channels 18 and 24

9.2 Multi-Spectral Example

This demonstration uses images collected by an experimental AOTF (acousto-optical
tunable sensor) [19, 20]. An AOTF acts as an electronically tunable spectral bandpass
filter. It consists of a crystal in which radio frequencies (RF) are used to impose
travelling acoustic waves in the crystal with resultant index of refraction variations.
Diffraction resulting from these variations cause a single narrowband component to
be selected from the incoming broadband scene. The wavelength selected is a function
of the frequency of the RF signal applied to the crystal. Multiple narrowband scenes
are be generated by incrementally changing the RF signal applied to the transducer.
The selected wavelength is independent of device geometry. Relative bandwidth for
each component wavelength is set by the construction of the AOTF and the crystal
properties. The sensor is designed to provide 30 narrow band spectral images within
the overall bandpass of 0.48-0.76 wm.

Figure 9.6 contains examples of individual channel input images. The image des-
ignated as 47/02dt0 is near the long wavelength end of the spectrum. The second
example, 4130dt0 is the shortest wavelength image. Figure 9.7 contains examples

9.2 Multi-Spectral Example 181

Fig. 9.9 a The amplitude of a spiral filter. b The correlation of the filter with a portion of the
iteration 7. Dark pixels indicate a higher response

of individual channel binary outputs of the PCNN. These specific examples were
chosen because they display features associated with the mines. Figure 9.8 displays
a grey scale representation of all channels in particular iterations. The grey encoding
coarsely displays phase. As can be seen the targets become quite visible in detail for
some iterations (e.g. n = 7).

Figure9.9a displays the amplitude of the spiral filter built to detect one of the
targets by the FPF method. Figure 9.9b displays a 3-D plot of the correlation surface
between the filter and iteration 7.

182 9 Colour and Multiple Channels

1.8000

—"orig.gnu" TN
1.6000 ——"surf07h, gnu" / "‘-.
1.4000
1,2000 aN
1,0000 | ' ;

M

08000 | \ ’ /‘

o.c00f \ :

0,400 /‘»\/ \/\"'"\, /\,
0,2000 \V

0,0000
0

50 100 150 200 250 300

Fig. 9.10 Cross-sections of a correlation surface for the target and the original image (orig.gnu)
and the spiral filter with pulse image n = 7

Figure 9.10 displays a cross-sectional slice of the correlation surface that passes
through the peak of the correlation (labelled surf07b). As can be seen, the correlation
produces a signal that is significantly greater than the noise. Similar performance
was obtained from the filter built for the other target. The other plot in the figure is
the correlation between the spoked land mine (immediately attenuated by a Kaiser
window) and the original image of channel 20. As can be seen that this correlation
function does little to indicate the presence of a target. The large signal is from
the Halon plate. A drastic improvement is seen between this correlation and that
produced through the spiral filter.

Not all iterations will contain the target as a segment. This is the inherent nature
of the pulse images. The particular iteration in which the target appears is dependent
upon scene intensity. It may coincidental that immediately neighbouring objects may
pulse in the same iteration as the target making it difficult to distinguish the border
between the two objects in the output. FPF correlations may still produce a significant
correlation if a majority of targets edge is present and other iterations will separate
these neighbouring objects. Figure9.11 displays a 1D correlation slices (through the
target region) for the first seven iterations. Iterations n = 2 and n = 5 produced the
largest correlation signals, but the width of the signals (caused by the neighbouring
location of the two land mines and their similarity in overall shape and size) prevents
these iterations from being indicative of the target land mine. The Halon plate also
causes significant signals due to its very high intensity which can be highly reduced by
normalizing the correlation surface with a smoothed input intensity image. Iteration
n =7 (which is also displayed in Fig.9.10) indicates that a target exists.

9.3 Application of Colour Models 183

1.2000
1,0000
0.,8000
0,6000

0,4000 | I

0,2000 1

0,0000 -
0 50 100 150 200 250 300

—— "surf0lb.plot" —— "surf02b,plot" -&— "surf03b,plot"”

-+#— "surf04b,plot" -=— "surf05b,plot" -— "surf0Bb,plot"
—— "surf07b,plot"

Fig. 9.11 Cross-sections of the spiral filter with coded pulse images from several iterations

9.3 Application of Colour Models

For the purposes of image processing the RGB colour model is usually a poor choice
for representing information. There are several other models that separate intensity
information from hue information which commonly provides better performance.
All of the Python modules necessary to consider data in an alternate colour models
have been presented in other sections.

The example shown here converts an image from the RGB colour format to the
YUYV image format where the Y channel represents intensity information and the U
and V channels represent differences in the chroma information. The conversion is
a linear system described as,

Y 0.299 0.587 0.11 R
U|=|-0147 —0289 0436 || G |. (9.10)
1% 0.615 —0.515 0.100 | | B

Code 9.6 shows the Python commands that read in the image (Line 3) and con-
verts it to a data cube (Line 4) using the RGB2cube function which is detailed in
Appendix A. The RGB channels are normalized so that the values are floats between
0 and 1 and then smoothed slightly in Line 8. Line converts the RGB channels to
YUV channels using the RGB2YUYV function also described in Appendix A.

184 9 Colour and Multiple Channels

Code 9.6 Converting an image to the YUV format.

>>> import Image, mgconvert
>>> from scipy.signal import cspline2d
>>> mg = Image.open(fname)
>>> rgb = mgconvert.RGB2cube(mg.convert (’RGB’))
>>> rgb = rgb.astype(float)
>>> rgb /= 255.0
>>> for i in range(3):
rgb[i] = cspline2d(rgbli], 2)
>>> yuv = mgconvert.RGB2YUV(rgb[0], rgb[l], rgbl2])

Three ICM networks are constructed in Code 9.7 with the initialisation in Lines
1-4. A call to the iterator for each is in Lines 7 through 9. The results of each iteration
is converted back to an RGB image in Line 10.

Code 9.7 Running 3 ICMs.

>>> VH = rgbl[0].shape
>>> nl = icm.ICM(VH)
>>> n2 = icm.ICM(VH)
>>> n3 = icm.ICM(VH)

>>> Y = []

>>> for i in range(15):

>>> nl.IteratelLS(yuv([0])

>>> n2.IteratelLS(yuv[1l] + 0.5)

>>> n3.IteratelLS(yuv([2] + 0.5)

>>> a = color.YUV2RGB(nl.Y, n2.Y-0.25, n3.Y-0.25)
>>> Y.append(a)

Finally, Code 9.8 converts the pulse data to image formats and stores them to disk.
The pulse images that have significant pulse activity are shown in Fig.9.12.

Code 9.8 Saving the pulse images as colour images.

>>> for i1 in range(15):
>>> mg = mgconvert.Cube2Image(Y[i][0], Y[i1[1], Y[i][2])
>>> mg.save ('yy’ + str(i) + ’.png’)

9.4 Summary 185

Fig. 9.12 Pulse images for an ICM using YUV format as inputs

9.4 Summary

This chapter considered colour and multi-spectral image formats with a variety of
architectures. Each case showed crisp segmentation of the objects within the frame.
Some architectures considered networks with inter-channel communications while
the last architectures considered independent networks based but on data that sepa-
rated intensity and hue information.

This chapter did not cover the wide variety of possible architectures or applica-
tions. Instead it demonstrated a few architectures and their performance to indicate
the viability of PCNN and ICM as a processor of data cubes.

Chapter 10
Image Signatures

With the advent of the cheap digital camera we have the ability to overwhelm
ourselves with digital images. Thus, there is a need to be able to describe the con-
tents of images in a condensed manner. This description must contain information
about the content of the images rather than just a statistical description of the pixels.
Measurements of the activity in the brain of small mammals indicate that image
information is converted to small one-dimensional signals. These signals are depen-
dent upon the shapes contained in the input stimulus. This is a drastic reduction in
the amount of information used to represent the input and therefore is much easier
to process.

The goal is then to create a digital system that condenses image information into
a signature. This signature must be dependent upon the contents of the image. Thus,
two similar signatures would indicate that the two images had similar content. Once
this is accomplished it would be fairly easy to construct an engine that could quickly
find image signatures similar to a probe signature and thus find images that had
content similar to the probe image.

The reduction of images to signatures using the PCNN and ICM have been pro-
posed for some time. This chapter will explore the current state of this research.

10.1 Image Signature Theory

The idea of image signatures stems from biological research performed by McClurken
et al. [70]. They measure the neural response of a macaque to checker board style
patterns. The brain produced neural patterns that were small and indicative of the
input stimulus. They also used colour as the input stimulus and measured the colour
response. Finally, a colour pattern stimulus led to a signature that was the multipli-
cation of the pattern signature and the colour signature.

Converting images to small signatures would be of great benefit to digital image
searches for two reasons. The first reason is that images do consume memory

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 187
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_10, © Springer-Verlag Berlin Heidelberg 2013

188 10 Image Signatures

resources. JPEG compression provides a reduction of about a factor of 10. While this
is impressive it may be insufficient for large databases. For example, a database of
10,000 colour images that are 512 x 512 will still consume several gigabytes. This
is manageable for today’s hard drives, but it will still take time to read, decompress,
and process this amount of information. Thus, image signatures would provide an
efficient representation of the image data. The second reason is that image signatures
would be extremely fast to process.

10.1.1 The PCNN and Image Signatures

The creation of signatures with the PCNN was first proposed by Johnson [46]. In this
work two objects with equal perimeter lengths and equal areas were used. Several
images were created by rotating, shifting, scaling and skewing the objects. Johnson
showed that after several PCNN iterations the number of neurons firing per iteration
became a repetitive pattern. Furthermore, the pattern for each shape was little changed
by the input alterations. Thus, it was possible to determine which shape was in the
input space by examining the repetitive integrated pulse activity.

This experiment worked well for single objects without a background, but prob-
lems awaited this approach. First, it required hundreds of PCNN iterations which
were time consuming. Second, the signature changed dramatically when a back-
ground was used. It was no longer possible to determine the input object by examin-
ing the signature. The reason for this became clear when the problem of interference
was recognised (see Sect.4.2.3.1). Interference occurred when the neurons from one
object dramatically changed the activity of neurons dedicated to another object. Thus,
the presence of a background, especially a bright one, would significantly alter when
the on-target neurons would pulse, and in turn, change the signature as demonstrated
in Sect.4.2.3.1. The pulsing activity of the neurons on the flower were significantly
changed by the presence of a background.

The solution to the interference problem was to alter the inter-neuron connectiv-
ity scheme. The ICM therefore employs a more complicated scheme in which the
connections between the neurons are altered with each iteration. Now, the signatures
of on-target neurons are not altered and it is much easier to determine the presence
of a target from the signature.

Johnson’s signature was just the integration of the neurons that pulse during each
iteration,

Glnl = Yijlnl. (10.1)
i

There are still several concerns with this method. The first is that if the target
only filled 20 % of the input space then only 20 % of the signature would be derived
from the signature. Thus, the target signature could be lost amongst the larger back-
ground signature. The second concern is that it is still possible for objects of different

http://dx.doi.org/10.1007/978-3-642-36877-6_4
http://dx.doi.org/10.1007/978-3-642-36877-6_4

10.1 Image Signature Theory 189

shape to produce the same signature. The second concern was addressed by adding
a second part to the signature. The signature in Eq. (10.1) represented the area of the
pulsing neurons. Area does not indicate shape and since shape is important for target
recognition a second part of the signature was added that was highly dependent on
the shape [57]. This additional component was,

Gln+N1= > Z{YInl};, (10.2)
ij

where N is the total number of iterations and Z{-} is an edge enhancing function.
Basically, this second component would count again the neurons that were on the
edge of a collective pulsing segment.

Thus, the signature for a grey scale image was twice as long as the number of ICM
iterations. Usually, N ranged from 15 to 25 so at most the length of the signature
was 50 integers. This was a drastic reduction in the amount of information required
to represent an image. The following sections will show results from using this type
of signature.

10.1.2 Colour Versus Shape

Another immediate concern is that of colour. Most photo-images contain 3 colour
bands (RGB), and it is possible to build a 3-channel ICM. However, it became
apparent through trials that it was not necessarily better to process the colours in this
manner. The question to be asked is what is the most important part of an image?
Of course, this is based on specific applications, but in the case of building an image
database from generic photos the most important information is the shapes contained
within the image. In this case, shape is far more important than colour. Thus, one
option is to convert the colour images to grey scale images before using the ICM.
The logic is that the signature would be indicative of the shapes in the image and not
the colour of the shapes. However, the debate as to use colour information or not is
still ongoing.

10.2 The Signature of Objects

The ideal signature would be unique to object shape but invariant to its location
in the image and to alterations such as in-plane rotation. This is a difficult task
to accomplish since such a drastic reduction in data volume makes it more likely
to have two dissimilar objects reduce to similar signatures. There are two distinct
objects shown in Fig. 10.1a, b. The signatures for these two objects were computed
independently using Eqs. (10.1) and (10.2) but they are plotted together in Fig. 10.2.

190 10 Image Signatures

(@ (b)
Fig. 10.1 a An input image and b a second image

6000 -

5000 h

4000 -

3000 A h A

1 PN\ Y

1000 1

°0 10 20 30 40 50

Iteration

Fig. 10.2 The signatures of the two objects. The x-axis corresponds to the iteration index and the
signature with the boxes corresponds to the image in Fig. 10.1b

The plot with the square boxes belongs to Fig. 10.1b. Since Eqgs.(10.1) and (10.2)
are independent of location or rotation then neither shifting the image nor rotating
the image will alter the signature by an appreciable amount.

Combining the two objects into the same image will create a signature that is the
summation of the signatures of the two objects. The plots in Fig. 10.3 display the
summation of the two signatures in Fig. 10.1 and the signature from an image that
contains the two objects. As can be seen, the signature of the two objects in the same
image is the same as the summation of the two signatures. This may seem trivial but
it is an important quality. For if this condition did not hold then attempts at target
recognition would be futile. This was the case in the original PCNN signatures.

10.3 The Signatures of Real Images 191

10000
9000
8000
7000

l
6000 \
\ A\
|
{
|

=

5000
4000
3000

A
2000 A ’
1000 XX.J v \f

0 10 20 30 40 50 60

0

Fig. 10.3 The summation of the plots in Fig. 10.2 and the signature of a single image containing
both objects of Fig. 10.1a, b

10.3 The Signatures of Real Images

The presence of a background was debilitating for the original signature method.
So far the new signature method has eliminated the presence of interference, but it
still remains to be seen if it will be possible to recognise a target in a real image.
The image in Fig. 10.4a is the ‘background’ and the image in Fig. 10.4b displays the
vendor pasted on top of the background.

To determine the capability of identifying a target the signature of these two
images is considered. The philosophy is that the signatures of different targets are

Fig. 10.4 a Background and b the vendor on the background

192 10 Image Signatures

6000

Vendor
,\ — ——-Combo-Cart

5000

4000

3000

2000 -

1000

-1000

Fig. 10.5 The signature of the vendor (Fig. 10.1a) and the difference of the signatures of the images
in Fig. 10.4a, b. The similarity of these two plots indicate that it is possible to identify the target.
The solid line represents the signature from the vendor

additive. Thus, G[photo] = G[background] + G[vendor] G[occluded background]. It
is expected that the signature of the vendor added to the signature of the background
should almost be the same as the signature of the image in Fig. 10.4b. The difference
will be the portion of the background that is occluded by the target.

The chart in Fig. 10.5 displays the signature of the vendor and the difference of
the signatures of the two images in Fig. 10.4a, b. The target can be recognised if these
two plots are similar. In cases where the background is predictable it is possible to
estimate G[occluded background].

10.4 Image Signature Database

Another application of image signatures is to quickly search through a database of
images. The signatures are far easier to compare to each other than the original images
since the volume of data is dramatically reduced. Furthermore, the signatures can
be compared by simple algorithms (such as subtraction) and the comparison is still
independent of shift, in-plane rotation, and limited scaling. A comparison algorithm
with the same qualities operating on the original images would be more complicated.

A small database of 1000 images from random sites was created. This provided a
database with several different types of images of differing qualities. However, since
some web pages had several images dedicated to a single topic the database did
contain sets of similar images. There were even a few exact duplicates and several
duplicates differing only in scale. The only qualifications were that the images had to
be of sufficient size (more than 100 pixels in both dimensions) and sufficient variance

10.4 Image Signature Database 193

Table 10.1 Signature scores

Class Scores

Different scales 11 examples above 0.9447, 1 each at 0.9408 and 0.9126
Different aspect 0.902

Similar objects 0.938, 0.918, 0.916, 0.912, 0.910, 0.909, 0.908
Somewhat similar objects 0.922, 0.912, 0.912, 0.910, 0.908, 0.908, 0.906, 0.906
High scoring mismatched 0.943, 0.920, 0.912, 0.909

in intensity (to prevent banners from being used). The database itself consisted of the
signatures, the original URL and the data retrieved as it was not necessary to keep
the original images. Each image thus required less than two hundred bytes except
for cases of very lengthy URLs.

Comparison of the signatures was accomplished through a normalized subtraction.
Thus, the scalar representing the similarity of two signatures G, and G, was com-
puted by

a=10- HI(IIGp[n]II — 1G4lnll)I. (10.3)

The signatures were normalized to eliminate the effects of scale.

Comparisons of all possible pairings were computed. Since there were 1000
images in the database there were 499,000 different possible pairings (excluding
self-pairings). The top scores were found and the images were manually compared.

In the database there are eight duplicate images (each pairing scored a perfect 1.0
by Eq. (10.3)). Most of the pairings scored below 0.9 and belonged to images that
were dissimilar. Table 10.1 displays the results of the matches that scored above 0.9.
There were 13 pairings in which but images were the same except for a scale factor.
There was one pairing of the same image but the scale in the horizontal and vertical
were different (1.29 and 1.43). There were several pairings of similar objects. Of
these 499,000 different pairings, four scored high and contained images that did not
appear to have similarity.

It was possible to mostly separate the perfect matches, the scaled pairings, and
the similar images from the rest. This, of course, was not an exhaustive study since
it was time consuming.

10.5 Computing the Optimal Viewing Angle

Contributed by Nils Zetterlund, Royal Inst. of Tech. (KTH), Stockholm

Another application is to select an optimal viewing angle for a 3D target. For example,
if we wish to place a camera alongside of a road to take images of autos then we
need to ask: what is the best placement for the camera? Should it look at the cars
from a certain height and from a certain angle to the travelling direction?

194 10 Image Signatures

(@ (b)

Fig. 10.6 Digital models of two vehicles

In order to answer this question we may wish to consider all possible angles of
a few vehicles. We will then have to decide on a metric to define the ‘best viewing
angle’. The first problem encountered is that there can be a massive volume of data.
Consider a case where the camera can take images that are 480 x 640 in three colours.
There are 921,600 pixels per image. If we rotate this object about a single axis and
take a picture every 5 degrees, then there will be 72 pictures each of 900K pixels.
If this object is rotated about three axes and take a picture for every 5 degrees of
rotation then there will be about 3.4 x 10'! pixels of information. Obviously, we
can not simply compare images from the different viewing angles. Image signatures
have the ability to dramatically reduce the volume of information that needs to be
processed and they can be used to determine the optimal viewing angle.

For this test two artificial objects will be considered. These two vehicles are
shown in Fig. 10.6. Each object was rotated about a vertical axis and images for each
5 degrees of rotation were computed. For each image the signature was computed.
In order for the signatures to be useful they must smoothly change from one angle
of rotation to the next. That is, each element in the signature must not change in a
chaotic fashion as the angle is increased. Thus, we should be able then to predict
values of the elements of the signature given a sparse sampling.

A sampling set consisted of the signatures for every 30 degrees. This set then was
Gp.0.n where b is the class (bus or beetle), 6 is the angle of viewing, and n is the
element index. Given the G’s for 8 = 0, 30, 60, is it possible to predict the values of
G for 6 #£°0, 30, 60,? Using a Gaussian interpolation function the prediction of the
intermediate G values becomes feasible. The charts in Fig. 10.7 display the measured
and estimated values of G for two fixed values of n. The estimation does indicate
that the intermediate elements are somewhat predictable. This in turn validates the
use of signatures for the representation of viewing angle information.

The next step in the process is to compare the signatures of two objects to find
the view that is most distinguishing. In other words, we seek the viewing angle that
best discriminates between the two objects. This angle will be the angle in which
the signatures between the two objects differ the most. Figure 10.8 displays the first
order difference between the respective signatures of the two objects. This is shown

10.5 Computing the Optimal Viewing Angle 195

Fig. 10.7 a The actual and 3 Element 3
estimated values of element () : — approumated
3 of the signature. b The 09k
actual and estimated values of
element 11 of the signature. % 08
¢ The actual and estimated =
values of element 13 of the [
signature § 06
=
N i
E (1Y R £
€ 04
031 of:
. : : ; :
0 50 100 150 200 250 300 350 400
x (degrees)
Element 11
(b)o7s

06 i i i i i i i
0 50 100 150 200 250 300 350 400
x (degrees)
Element 13
(©) o7 —_—

T T T T

normalized element value

i i i
0 50 100 150 200 250 300 350 400
 (degrees)

196 10 Image Signatures

AH Difference between beetle and bus

|

ot
N

sl
[

difference

—— approximated
; true
measured

L
(=]

o
=

32

i i i i i i
0 50 100 150 200 250 300 350 400
angle

Fig. 10.8 The first order difference between the two targets

for both the 5 and 30 degree cases. It is seen that there are in fact four angles that
greatly distinguish these two objects. The first is at 90 degrees which is a side view
(Fig. 10.6). The second is at 270 degrees which is the other side view. The third and
fourth correspond to views at the front corners of the vehicles. Likewise, views that
are directly at the front or the back of the vehicles are shown to be poor discriminators.

10.6 Motion Estimation

Image signatures have also been employed to estimate the velocity of an object. A
moving input will alter the signature of a static object. The overall characteristic
of the signature is maintained but small alterations are indicative of motion. The
current method of computing the signature is insensitive to opposing movement. For
example, an object moving in the —x direction is difficult to distinguish from the
same object moving in the 4+x direction. Thus, the signature calculation is altered to
be sensitive to directionality,

glnl =D =Y lnl, (10.4)

i,J

gln+NI= D" (Vi¥);), (10.5)
i,J

10.6 Motion Estimation 197

4500 “mOK0.plt* —

0 5 10 1% 20 25 30 35 40 45 &0

Fig. 10.9 The signature of a static object (roughest curve), the same object moving at velocity of
(0,50) (lightest curve), and the same object moving at a velocity of (50,50)

1
08 "metric.plt" —
0.6
0.4
0.2

0
02
0.4

0

1 2 3 4 5 6 7 8 9

Fig. 10.10 The comparison of signatures at different velocities to the signature of the static case.
The x-axis is increasing velocity and x = 9 is a velocity of (0,45)

and

gln+2N1=2" (VyY), (10.6)
ij

where N is the number of iterations (in this study N = 25) and V, is the spatial
derivative in the x direction. Thus, the signature has three times as many elements as
the number of iterations. A comparison score of two signatures (g,, g,) is computed
by Eq. (10.3).

Figure 10.9 displays signatures from a static and moving object. The alterations
to the image signature are dependent upon the speed, the direction of the motion,
and the object shape. Signatures of a moving target can be computed by Eq.(10.3).
Consider an object capable of moving in 2D space with a constant velocity. We can
construct a velocity space R? and compare the signature of all possible velocities to
the signature of the static target. This comparison is shown in Fig. 10.10 where the
curves depict similar values of the velocity difference Av.

These curves are named iso-Av since they depict constant values of the veloc-
ity difference. Of course, the anchor velocity does not have to be v = 0. We can
compare all velocities in the space to any single velocity. If the iso-Av values were
solely dependent upon the difference in velocity then these curves would be circles.
However, there is also a dependency upon the object shape. Thus, we expect the
different iso-Av to be similar in shape for a single target. As the Av increases the
iso-Av curves lose their integrity, so there is an effective radius—or limit on how
large Av can be in order for Eq. (10.3) to be valid.

198 10 Image Signatures

Fig. 10.11 A velocity grid
with 13 anchor points. The
middle point is v = (0, 0).
The three circles are the iso-

i3
£
3

Av for an unknown. The three
circles intersect at a single
location. This location is the ©
estimate of v ’
o @
& & &

Now, consider the case of a target with an unknown velocity v. It is our task
to estimate this velocity using image signatures. If we compare v7 to a vy that is
sufficiently close to v9 then a value from Eq. (10.3) can be computed. However, this
computation does not uniquely identify vy. Rather, the computed value defines an
iso-Av curve surrounding v,1. If we compare the signature from v9 to two other
knowns v, and v,3 then the three iso-Av curves will intersect at a single location.
This triangulation method is shown in Fig. 10.11. The estimate of v9 is the point in
RY space where the three iso-Av curves intersect.

The only caveat is that vy, vy2 and v,3 must be sufficiently close to v9. Since vy
is unknown it is not possible to define vy, vy2 and v,3. To circumvent this problem
many anchor velocities are considered. In the trial case 13 anchor points distributed
evenly in RY were used. The signature from v, was compared to the signatures from
these anchor points. The three points with the highest comparison value (Eq.(10.3))
were then used for the triangulation method.

For the example case R was defined by 100 x 100 points with the static vy defined
at (50,50). The maximum velocity was one pixel of target movement per iteration
of the ICM. All 10,000 points in R" were considered as v9. In all cases this method
correctly estimated vy with an accuracy of (£1, £1). For the cases in which there
was a single element error the signature of v9 and the correct answer were identical.
Thus, the velocity was accurately predicated for all cases.

10.7 Summary
The image signatures are an efficient method for reducing the volume required to

represent pertinent image information. The signatures are unique to the shapes inher-
ent in the image and are loosely based on biological mechanics. The reduction in

10.7 Summary 199

information volume allows for the construction of an image database that can be
searched very quickly for matching images. Other uses include the determination of
the optimal viewing angle and the estimation of motion.

Chapter 11
Logic

11.1 Maze Running and TSP

Running a maze such as the one shown in Fig.11.1 can be accomplished via the
autowave propagation of the PCNN. The goal of this section is to start at the leftmost
location and work towards the rightmost location finding the shortest path along the
way.

This application requires a couple of small changes to the PCNN. First, the
autowave should not bridge gaps. In other words, if a wave is progressing along
one path it should not activate the neurons in a nearby path just because the
two paths are within a small vicinity. Therefore, the first modification is to limit
neural communications to only their nearest neighbours. The second modification
is that a neuron should only pulse once. To accomplish this the first term in Eq.4.5

becomes
200 — 1,

These alterations warrant a modified iteration function in the pcnn.py module.
Code 11.1 shows the new function Mazelterate which is part of the PCNN class.
Line 3 creates a small kernel, kern, which is a 3 x 3 matrix will elements equal
to 1. The correlation of this kernel with the previous pulse activity is now the
neural connections. This is the neurons communicating with only the nearest neigh-
bours.

The function also receives the maze which is a binary value matrix in which path
elements are set to 1 and off path elements are set to 0. Line 6 multiplies the pulse
field by the maze to prevent pulse activity outside of the maze.

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 201
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6_11, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-36877-6_4

202 11 Logic

_L L]

Fig. 11.1 The original maze which has a starting point on the left and a single ending point on the
right. The goal is to find the shortest path from the start to the end

Code 11.1 The Mazelterate function.

pcnn.py
from scipy.signal import cspline2d, correlate2d
def Mazelterate (self, stim, maze):

kern = np.ones((3,3))
work = correlate2d(self.Y, kern, mode='same’)
work *= maze
self. self.f * self.F + stim + 8*work
self.L = self.1l * self.L + 8*work
U = self.F * (1 + self.beta * self.L)
self.Y = U > self.T
self.T = self.tl * self.T + self.t2 * self.Y

|
11

The RunMaze function shown in Code 11.2 is the driver for the process. The input
is the matrix representing the maze with binary elements. Line 4 sets the coefficients
for Eq.4.5. Instead of just collecting pulse images this process will also accumulate
the pulse images in a manner such that latter pulses are presented as larger values.
This assists the viewer in seeing the path that was taken by the process. Line 7 creates
a stimulus which is a matrix with all elements set to 0 except the starting point. Line
17 stops the process in this maze when the final pixel in the maze is pulsed. If a
different maze is used then these lines will need to be altered.

http://dx.doi.org/10.1007/978-3-642-36877-6_4

11.1 Maze Running and TSP 203

Intermediate images of the progress are shown in Fig.11.2a—g. As seen the
autowave extends into all possible paths. However, at a junction, only the propa-
gation that reached the junction first progresses forward. The final solution is shown
in Fig. 11.2h. This is obtained by starting with the ending point in the maze and
working backwards. Only the path that is monotonically decreasing is shown which
is the shortest path between the starting point and ending point.

Maze running by the PCNN is not restricted to thin line mazes. Figure 11.3 shows
a case in which the maze has thick paths and the autowave is allowed to expand in a
more traditional manner.

Code 11.2 The RunMaze function.

maze.py

def RunMaze(maze):
net = pcnn.PCNN(maze.shape)
net.tl = 1; net.t2 = 1e9

v = mazel[:,0] .nonzero() [0]
stim = np.zeros(maze.shape)
stim[v,0] = 1

Y = []

accum = np.zeros(maze.shape)
for i in range(1000):
net.Mazelterate(stim, maze)
Y.append(net.Y)
accum *= 0.99
accum += net.Y
stim = accum > 0
print ’.’,
if net.Y[90,-1] > O:
break
return accum, Y

>>> acc,Y = RunMaze(maze)

11.2 Barcodes and Navigation

Contributed by Soonil Rughooputh, University of Mauritius. Considerable research
has been conducted to improve safety and efficiency on navigational systems. For
efficient control and increased safety, automatic recognition of navigational signs
has become a major international issue. With the increasing use of semi-autonomous
and autonomous systems (vehicles and robots), the design and integration of real-
time operated navigational sign recognition systems have also gained in popularity.
Systems that assist navigators or provide systems with computer vision-based naviga-
tional sign detection and recognition mechanisms have been devised. Manufacturers

204 11 Logic

- =L [|)

(a) b) | (c) li (d) Original. 7

(e)) (g) (h)

Fig. 11.2 Periodic progressions of the autowave and the final solution

Fig. 11.3 a shows a thick maze and, b and ¢ show autowaves traveling through a thick maze

in Europe, USA, and Japan and several universities even combined their efforts in
this direction. The standards used in the design of navigational signs are typically
according to size, shapes, and colour compositions. These signs form a very unique
and easily visible set of objects within a scene. They always appear in a visible
and fairly predictable region of an image. The only significant variables are the
sizes of the signs in images (due to distance) and illumination of the scene (such as
bright sunlight, overcast, fog, night). Two main characteristics of navigational signs
are normally used for their detection in camera-acquired images, namely colour
[9, 16, 25, 32, 38, 59, 77, 78, 81, 84 and 106] and shape [7, 12, 40, 49, 50, 82, 94,
104, 105]. Sign recognition is performed using sign contents such as pictograms
and strings of characters. Normally, colour is employed in combination with shape
for detection purposes first and then for sign recognition. Different types of image
processing can be performed using colours. The three most widely used approaches

11.2 Barcodes and Navigation 205

are neural network-based classifiers, colour indexing, and image segmentation based
on colour.

Neural network-based classifiers involve the use of neural networks specifically
trained to recognise patterns of colours. The use of multi-layer neural networks as
experts for sign detection and recognition has been reported and applied a neural
net as classifier to recognise signs within a region of interest [59]. Swain [106]
has developed the ‘colour indexing’ technique that recognises signs by scanning
portions of an image and then comparing the corresponding colour histograms
with colour histograms of signs stored in a database. The technique has been
improved by other researchers [32, 38]. Image segmentation based on colour uses
algorithms to process an image and extract coloured objects from the background
for further analysis. It remains the most widely used colour-based approach. Sev-
eral authors have reported techniques for colour segmentation: including cluster-
ing in colour space, [108] region splitting, [25, 77, 78] colour edge detection,
[16, 81] new parallel segmentation method based on ‘region growing’ or ‘region
collection’ [84].

Shape-based sign detection relies largely on the significant achievements realised
in the field of object recognition through research, such as techniques for scene
analysis by robots, solid (3D) object recognition and part localisation in CAD data-
bases. Almost all sign recognition systems process the colour information first to
reduce the search for shape-based detection. Kehtarnavaz [93] extracted shapes
from the image by performing edge detection and then applying the Hough trans-
form to characterise the sides of the sign. Akatsuka [7] performed shape detec-
tion by template matching. de Saint-Blancard [94] used neural networks or expert
systems as sign classifiers for a set of features consisting of perimeter (number
of pixels), outside surrounding box, surfaces (inside/outside contour within sur-
rounding box), centre of gravity, compactness (‘aspect ratio’ of box), polygonal
approximation, Freeman code, histogram of Freeman code, and average grey level
inside of box. Kellmeyer [50] trained a multi-layer neural net (with Back Prop-
agation) to recognise diamond-shape warning signs in colour-segmented images.
Piccioli [82] concentrated exclusively on geometrical reasoning for sign detec-
tion, detecting triangular shapes with Cannys algorithm and circles in a Hough-like
manner. On the other hand, Priese [84] worked on a model-based approach where
basic shapes of traffic sign components (circles, triangles, etc.) are predefined with
24-edge polygons describing their convex hulls. Segmented images are first scanned
for ‘objects’, which are then encoded and assigned a probability (based on an edge-to-
edge comparison between the object and the model) for shape classification. Besserer
[12] used knowledge sources (a corner detector, a circle detector and a histogram-
based analyser) to classify chain coded objects into shape classes. Other techniques,
referred to as ‘rigid model fitting’ in [105], have also been used for shape-based
sign detection. Stein [104], Lamdan [62] and Hong [40] use specific model represen-
tations and a common matching mechanism, geometric hashing, to index a model
database.

The PCNN technique developed here does not necessitate any colour or shape
processing. The automatic identification of signs is achieved simply through matching

206 11 Logic

AL

.]H RN ..,,,..__‘.L. Processor I

Search m 2 m
Database for s
_________ »| Dasbae YR - - B
Barcode mer - mem

, ¥
! o T -

Image of :
Trafic/Road
Sign

1l

—

Fig. 11.4 Barcode generation from still road signs

of the barcodes of the images with the barcodes stored in the library (Fig. 11.4) [90].
An unknown sign can therefore be rapidly recognised using its unique barcode; a
set of standard navigational signs is shown in Fig. 11.5 along with their respective
barcodes.

11.2 Barcodes and Navigation 207

s 1
M NEXT EXIT N it
1S MILES -

~
EXIT
-
a
.
/]
B

Fig. 11.5 Typical road signs
and their corresponding bar-
codes

THRU
TRAFFIC

-

-
o

SICNALS
SET FOR

| I W
I/

@ =
:

S Lo .

Loy m ||lI e
Py | ULERL
&g,

ONE BB Tl

DEAD |
TERT L
END K1

s s

{1 & 5N

> HEIEY?

POPOP
i

=5
=r

208 11 Logic

11.3 Summary

The autowave propagation of the PCNN has some unique properties that can be
used to perform logical operations. For example, the progression of a wave alters
the activity of the locations it passes through. Therefore, it is easily known where a
wave has transgressed. This, in a sense, is the nature of autowaves in that they do not
pass through each other. Instead, colliding wave fronts annihilate the waves.

In applications such as running a maze this is a very useful feature. Waves can
propagate through the system without replicating themselves. The first wave front
to reach the destination has taken the shortest path, but the fact that the autowaves
did not propagate more than once in any area allows the system to backtrack and
determine which path was taken. Furthermore, this is not restricted to simple mazes
but can be applied to wide path mazes as demonstrated.

Multiple versions of the maze running system can be used to solve the travelling
salesman problem and the time of solution is dependent upon the size of the environ-
ment and linearly to the number of cities rather than to the total number of possible
paths.

Appendix A
Image Converters

The mgconvert.py module contains functions to translate between matrices and

images.
The functions are:

a2i: converts a matrix to a grey scale image.
i2a: converts a grey scale image to a matrix.

Cube2Image: converts 3 matrices to an RGB image.

YUV2RGB: converts YUV images into RGB images.

A.1 Transformation of Grey Scale Images and Matrices

RGB2cube: converts an RGB image to three integer matrices.

Cube2ImageF: converts 3 matrices scaled between 0 and 255 to an RGB image.
RGB2YUYV: converts RGB images to the YUV colour model.

The NumPy and Image modules offer functions to convert between matrices and
images. Line 3 in Code A.1 loads an image and Line 4 converts this data to an array.
The size of the array willbe V x H x N where V and H are the vertical and horizontal
dimensions of the image and N is the number of channels. If the image is a grey
scale image then N = 1 and if the image is colour then N = 3 or N = 4 depending

on the presence of an alpha channel.

Code A.1 Functions for converting between images and arrays.

>>> import numpy as np

>>> import Image

>>> mg = Image.open(filename)
>>> mats = np.array(mg)

>>> mg2 = Image.fromarray(mats)

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural

Networks, Biological and Medical Physics, Biomedical Engineering,

DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

209

210 Appendix A: Image Converters

However, there are a few concerning the use of these functions that are addressed.
The first is the conversion to and from a matrix to an image does not automatically
scale. Thus, if the value of the matrix are between 0 and 1 then the image will have
pixel values of 0 and 1. This will be an image in which all pixels are extremely dark.

The solution used here is to provide the function a2i which scales the matrix so
that the lowest value becomes a black pixel and the highest matrix value becomes
the white pixel. Code A.2 shows this function which receives a matrix and creates an
automatically scaled grey scale image.

Code A.2 The a2i function.

mgconvert.py
import Image

def a2i(indata):
mg Image.new(‘L’, indata.transpose() .shape)
mn = indata.min()
a = indata - mn
mx = a.max|()
a = a*256./mx
mg.putdata(a.ravel())
return mg

Conversion from an image to an array is possible in Line 4 in Code A.1 but this
can create an image with a mode that is not conducive for saving in some formats.
The i2a function shown in Code A.3 converts a grey scale image into an array of
mode ‘L.

Code A.3 The i2a function.

mgconvert.py
from numpy import array, fromstring, uint8
def i2a(mg):
H,V = mg.size
d = fromstring(mg.tostring(), uint8)
d = d.reshape((V,H))
return d

Line 4 of Code A.1 can also convert a colour image into a three-dimensional data
cube. The size of the cube is V x H x N which is an arrangement that is not quite
compatible with the scripts provided for the multi-channel PCNN and ICM. These
routines expect the data to be in the form of N x V x H which can be arranged
bymatx = matx.transpose((2,0,1)).However, tobe congruent with the

Appendix A: Image Converters 211

previous functions the alternate function RGB2cube (Code A.4) can be used. This
simply splits the image into the three channels and calls i2a for each.

Code A.4 The RGB2cube function.

mgconvert.py
def RGB2cube(rgbmg):
r,g,b = rgbmg.split()

r = i2a(r)
b = i2a(b)
g = i2a(g)

return array([r,g,bl)

The transformation from a set of three matrices with autoscaling is performed with
Cube2Image as shown in Code A.5. For cases in which the user is responsible for
the scaling of the three matrices the function Image.fromarray should be employed.

Code A.5 The Cube2Image function.

mgconvert.py
def Cube2Image(r,g,b):
ri = a2i(r)
gl = a2i(g)
bi = a2i(b))
mg = Image.merge('RGB’, (ri,gi,bi))
return mg

A.2 Colour Conversion

The last two functions are used for conversions between RGB images and a colour
format named YUV. There are several colour models that exist and most separate
the intensity information from the colour information. The YUV model has three
channels in which the Y channel displays the grey scale information and the U and
V channels represent chroma differences.

The linear transformations between the two colour models is shown in Code A.6.
The RGB2YUY function receives three matrices representing the RGB information
and converts them to three matrices representing the YUV format by,

Y 0.299 0.587 0.11 | [R
U|=|-0147 —0.2890.436 | | G |. (A1)
1% 0.615 —0.5150.100 | | B

212 Appendix A: Image Converters

The inverse transformation simply uses the inverse of the transformation matrix
to reverse the process as in function YUV2RGB.

Code A.6 Functions for colour conversions.

mgconvert.py

def RGB2YUV(rr,gg,bb):
y = 0.299* rr + 0.587*gg + 0.114*bb
u = -0.147*rr - 0.289*gg + 0.436*bb
v = 0.615*rr - 0.515*gg - 0.100*bb
return y,u,v

def YUV2RGB(y, u, v):
r =y -3.94e-5*u +1.14 *v
g =y -0.394*u -0.581*v
b =y +2.032*%u -4.8le-4*v
return r,qg,b

Usages are shown in Code A.7. Line 2 loads an image and Line 3 converts this
image to grey scale and then converts it to a matrix. The matrix has integer values
and usually it is wise to convert these to floats. Line 4 converts this matrix back to
an image and shows it to the monitor. Line 5 converts an RGB image to three integer
matrices corresponding to the three colour channels.

Code A.7 Functions from the convert.py module.

>>> import Image, mgconvert

>>> mg = Image.open(’'bird.png’)

>>> r,g,b = mgconvert.RGB2cube(mg.convert ('RGB’))
>>> y,u,v = mgconvert.RGB2YUV (r,g,b)

>>> mgconvert.a2i(y).save (’ychannel.png’)

>>> mgconvert.a2i(u).save (’uchannel.png’)

>>> mgconvert.a2i(v).save (’vchannel.png’)

Appendix A: Image Converters 213

(© U @ V.

Fig. A.1 Anoriginal colour image and the representations in YUV space. The Y channel represents
the grey scale information and the U and V channels represent differences between two chroma
channels

Appendix B
The Geometry Module

The geometry module provides a few generic routines useful in image processing.

B.1 Circle

The Circle function creates a matrix in which all values are initially O. It sets element
values to 1 if they are within a specified radius centred at a specified location. Code B. 1
shows the function. It receives a tuple size which is the vertical and horizontal
dimensions of the frame. The variable 1oc is the vertical and horizontal location of
the center of the circle and the rad is the radius of the circle.

Code B.1 The Circle function.

geometry.py
import numpy as np

def Circle(size, loc,rad):
bl, b2 np.indices(size)
bl, b2 bl-loc[0], b2-loc[1]
mask = bl*bl + b2*b2
mask = mask <= rad*rad
return mask.astype (int)

B.2 Plop

The Plop function shown in Code B.2 places data from one matrix into a larger one
centered in the frame. The inputs are data which is the original data, and vimax and
hmax which are the size of the new frame. The function finds the centre of mass of

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 215
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

216 Appendix B: The Geometry Module

the input and centres it into the output frame. Most of the function is dedicated to
dealing with cases in which the boundaries of the frames or location of the centre of
mass are not well behaved. The output is a matrix in which the input object is centred
into the frame defined by vmax,hmax.

Code B.2 The Plop function.

geometry.py
def Plop(data, wvmax, hmax) :
vmax, hmax are size of frame
ans = zeros((vmax,hmax), float)
V,H = data.shape
vctr, hctr = V/2, H/2 # center of frame
vactr, hactr = vmax/2, hmax/2 # center of blob
compute the limits for the answ
valo = vactr - vctr
if valo<0: valo = 0
vahi = vactr + vctr
if vahi>=vmax: vahi = vmax
halo = hactr - hctr
if halo<0: halo = 0
hahi = hactr + hctr
if hahi>=hmax: hahi = hmax
compute limits of incoming
vblo = vctr - vactr
if vblo<=0: vblo = 0
vbhi = vctr + vactr
if vbhi>=V: vbhi= V
hblo = hctr - hactr
if hblo<=0: hblo = 0
hbhi = hctr + hactr
if hbhi>=H: hbhi = H
if vahi-valo != vbhi-vblo:
vbhi = vblo+vahi-valo
if hahi-halo != hbhi-hblo:
hbhi = hblo+hahi-halo
ans[valo:vahi, halo:hahi] = datal[vblo:vbhi, hblo:hbhi] + 0
return ans

Appendix C
The Fractional Power Filter

The fractional power filter (FPF) [13] is a composite filter that can trade-off gener-
alisation and discrimination. The composite nature of the filter allows for invariance
to be built into the filter. This is useful when the exact presentation of the target can
not be predicted or the filter needs to be invariant to alterations such as rotation,
scale, skew, illumination, etc. The FPF also allows the same filter to be used to detect
several different targets.

While the composite nature of the filter is very desirable for this application,
it means some trade-offs are unavoidable. The binary objects on which the filter
operates, can, for example, be confused with other objects. An increase in the dis-
crimination ability of the filter cures this problem.

The FPF is a correlation filter built by creating a matrix X whose columns are the
vectorized Fourier transform of the training images. The filter h is built by,

N AT A A1
h=D"2¢ [YTY] , (C.1)
where . .
Y =D /%X, (C.2)
Dy = @Z@m‘% a=10,2] (C3)
J N -

and vector c¢ is the constraint vector.

A generalising FPF has ae = 0, which is the synthetic discriminant filter. The fully
discriminatory filter has @ = 2, which is the minimum average correlation energy
filter. A good review of this family of filters is found in [60]. Values of o between 0
and 2 trade-off generalisation and discrimination.

CodeC.1 shows the FPF function from fpf.py. This function receives a matrix,
data, in which the samples are stored as rows (contrary to the theory which expresses
data in columns), a constraint vector, c, and the scalar fractional power term, £p. It
returns a single vector H which is the filter.

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 217
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

218

Appendix C: The Fractional Power Filter

Code C.1 The FPF function.

def

fpf.py
import numpy as np

FPF(data, c, fp):
(N,Dim)= data.shape
D = (np.pow(abs(data),
D=D/N
ndx = (abs (D)
D[ndx]
Y = (data / np.sqgrt(D
Yc = Y.conjugate() .transpose ()
np.dot(Yc, Y)

== 1:
1./0Q

fp

< 0.001) .nonzero()

np.linalg.inv(Q)
np.dot(Q,c)

H = np.dot(Y, Rc)
return H

/ np.sqgrt (D)

)) .sum(0)

= 0.001 * np.sign(D[ndx]+1e9)
)) .transpose ()

0]

When the fractional term is non-zero it is required that the data be in frequency
space. Furthermore, the script only allows data as vectors whereas most of the appli-
cations in the chapters are with image data. Code C.2 shows a sample case in which
several matrices are stored as in a list M. Line 5 allocates a matrix X which will store
each input image as a long row vector. Line 7 computes the Fourier transform of each
image and uses the ravel command to convert the 2D matrix to a long 1D vector.
Line 9 calls the fpf.FPF function with a fractional power term of 0.8, and it returns
a long vector which is still in Fourier space. The last two lines convert the filter back
to 2D space and then converts the filter back to image space.

Code C.2 Computing the FPF for multiple matrices

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from scipy.fftpack import fft2,
import fpf
N = len(M)
V,H = M.shape
X = np.zeros((N,V*H), complex)
for i in range(N):
X[i] = (£ft2(M[1i])) .ravel ()
cst = np.ones(N)
H = fpf.FPF(X, cst, 0.8)
H = H.reshape((V,H))
H = 1ifft2(H)

ifft2

Appendix D
Correlation

A correlation of two signals f(x) and g(x) is the dot product of all relative shifts

between the two signals. Formally, the correlation is,

c(w) = / ” f)g'(x —w)dx,

(D.1)

where ¢' represents the complex conjugate. The integral performs the inner product

and the argument of g is performing the relative shifts.

The computations for the correlation could be performed by using (D.1) but a
much faster implementation is to perform the computations in Fourier space. The

Fourier transform of a signal is defined as,

Flc(w)} = /00 c(w)exp[—iwa]da.

—00

Consider the Fourier transform of Eq. (D.1),
o o0
Fle(w)} = / / f(x)gT(x —w)exp[—iwal dx da.
—00 J —00
Set z = x — « and thus also dx = —da and @ = x — z to yield,
o o0 .
Few) = [[rwg @expl-ive - adx dz.
—00 J —00

This can be rewritten as,

]

Fle(w)} = _/00 f(x)exp[—iwx]dx / gT(x) exp [—iwz] dz.

—00
Each of the integrals are in fact Fourier transforms,
T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural

Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

(D.2)

(D.3)

(D.4)

D.5)

219

220 Appendix D: Correlation
Flew)) = F(w)G' (). (D.6)

The Fourier transform of the correlation is actually the multiplication of the
Fourier transforms of the two signals. For a signal of length N the digital version of
Eq.(D.1) would require two nested loops and so the number of operations (multiple-
additions) is N2. Recall that the FFT requires N log, N operations and thus the
number of operations required to compute the correlation using Fourier space is
N + 3N log, N which is a tremendous savings for large N. The savings is amplified
for signals in two-dimensions.

The digital version of a correlation can be computed in the same manner by
multiplying the Fourier transforms of the data. However, the digital Fourier transform
places the high frequencies in the middle of the matrix which is often the opposite
of the desired usage. Thus, the data requires a swapping function which divides that
matrix into four equally size quadrants and swaps the position of the first quadrant
with the fourth quadrant and swaps the second quadrant with the third quadrant.

A Python implementation of the quadrant swap is shown in CodeD.1 with the
Swap function. This function receives a matrix, performs the swap, and returns a
new matrix with the swapped elements. The only caveat is that the dimensions of the
matrix must be even numbers.

Code D.1 The Swap function.

correlate.py
import numpy as np

def Swap(A):
(v,h) = A.shape
ans = np.zeros (A. shape A.dtype)
ans[0:v/2,0:h/2] = A[v/2:v,h/2:h
ans[0:v/2,h/2:h] = v/2:v,0:h/2
[

1

Al]
ans[v/2:v,h/2:h] = A[0:v/2,0:h/2]
ans([v/2:v,0:h/2] = A[0:v/2,h/2:h]

return ans

The correlation is performed by the Correlate function shown in Code D.2. The
function has an option which is controlled by the switch sw. In some cases the data
may already be in Fourier space and so the correlation is not required to perform the
conversions. For these cases the user should set sw = 1. The default setting is sw
= 0 and in this case Lines 4 and 5 convert the data to Fourier space, Line 6 performs
the multiplications and Line 7 converts the data back to the original space. Line 8
performs the necessary swap.

In cases in which shapes are to be matched using a correlation a positive result
should produce a spike in the correlation output. However, in dealing with pulse
images it is possible and sometimes common that the correlation surface have values
that equal or exceed the height of a spike at different locations. Thus, detection of a

Appendix D: Correlation 221

Code D.2 The Correlate function.

correlate.py
def Correlate(A, B, sw=0):

if sw==0:
a = np.fft.fft2(A)
b = np.fft.f£ft2(B)
c = a * b.conjugate()
C = np.fft.ifft2(¢)
C = Swap (C)

if sw==1:

c = A * B.conjugate()

C = np.fft.ifft2(¢)
C = Swap (C)
return C

spike is more difficult than just performing a simple threshold. Horner [41] proposed
a peak to correlation energy measure which divides the value of each pixel by the
energy of the surrounding pixels. A region that has a large area of high correlation
values will be suppressed by this method, whereas a pixel that represents a peak will
be enhanced. Thus, the PCE (peak to correlation energy) is a simple tool to enhance
peaks. The Python implementation of the PCE is shown in Code D.3. In this case the
local energy is replaced by local averaging using the csplined2d function.

Code D.3 The PCE function.

correlate.py
from scipy.signal import cspline2d

def PCE(corr, rad=12):
acorr = abs(corr)**2
temp = cspline2d(acorr, rad)
mask temp > 0
nrg = np.sqrt(mask*temp)
pce = acorr/ (nrg+0.01)
return pce

Appendix E
The FAAM

The FAAM (fast analog associative memory) [51] is a simple greedy system that
grows in complexity in order to meet the demands of the training data. The logic of the
system is shown in a series of images in Fig. E.1. The FAAM sequentially considers
data from two different classifications (shown as circles and pluses). FigureE.la
after receiving two training vectors of opposing class. There must be a boundary
that separates the two vectors but without any other knowledge the shape and exact
location is not known. Therefore, a boundary that bisects the segment connecting the
two data points is created.

In Fig. E.1b a third data point is considered and in this case it is on the correct side
of the boundary. Thus, training is not required. This is one of the parts of the algorithm
where the FAAM differs from a traditional neural network. A neural network would
train to optimize the location of the boundary whereas the FAAM’s logic requires
no further calculations.

A fourth data point is considered in Fig.E.lc which is a plus class and it is
not on the correct side of the boundary. So, a second boundary is created. Another
deviation between the FAAM and a traditional neural network is that the FAAM
creates boundaries as needed whereas in a neural network the user must define
the number of hidden neurons before training commences often without sufficient
knowledge as to how many hidden neurons are optimal.

In this case the first boundary is no longer necessary and so it is eliminated as
shown in Fig. E.1d. A neural network optimizes the decisions by moving a specified
number of boundaries. The FAAM optimizes by creating boundaries as needed and
eliminating those that become redundant. The FAAM continues this process until all
of the data is considered.

Another feature of the FAAM is that it provides information as to how well the
network is learning a problem instead of memorising the data. As new data points are
considered the network adds boundaries if needed. However, if the new data points
are classified correctly by the current architecture then no training is performed. The
metric for indication of the network’s learning is the number of boundaries. As shown
in Fig. 7.17a, b when the number of boundaries becomes asymptotic then the system
is learning the problem. Thus, it is not necessarily required to separate the data into

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 223
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-36877-6_7

224 Appendix E: The FAAM

ap O ap
@) @)
(a) (b)
® 2P ® 2P
O O
ol ol
(c) (d)

Fig. E.1 Growing boundaries to separate the data

training and testing sets since performance information is readily available during
training.

The FAAM is the only program that is not included in the written text due to
its size. However, it is available through the accompanying website (see the Preface
to the Third Edition). Driving the FAAM is relatively easy. First the user needs to
initialise the network. The second step is to add training data pairs and the third is to
train. It is possible to add just a few trainers and train in a loop such that the progress
of the system can be monitored. CodeE.1 shows the commands. Line 2 initialises
the network with three arguments. These are the maximum number of trainers to be
used, the maximum number of decision surfaces, and the length of an input vector.
Given a set of training data with vectors in a list x and classifications in a list y, Line
3 shows how one of the trainers is added to the network. This line would be repeated
for all trainers with the proper index. Line 5 trains the network and Line 6 shows
a typical recall operation with a query vector. There are two caveats to this system.
The first is that there must be at least one vector from each class before training and
the second is that there can not be two trainers with exactly the same input and two
different output classes.

Code E.1 Running the FAAM.

>>> import faam
>>> net = faam.FAAM(mxtrainers, maxr, dim)
>>> net.SetTrainer(x[0], y[0])

>>> net.Train()
>>> y out = net.Recall(queryx)

Appendix E: The FAAM 225

The recall can provide one of three answers. The first two are the possible choices
for the classification (0 and 1) and the third is an undecided answer (—1). The third
occurs when there are regions that are isolate from all other regions but do not have
a training vector embedded therein.

Appendix F
Principal Component Analysis

Consider the data in Fig. F.1a which shows four data points in R space. Each point
is described by (x, y) coordinates. However, there is a structure to the data and if the
coordinate system is rotated and shifted as shown in Fig. F.1b the data need only be
described by a single coordinate x. Principal component analysis (PCA) is a process
that finds the optimal coordinate transformation that reduces the covariance amongst
the data points. In Fig.F.1a the x and y coordinates are highly correlated. Simply,
given any value of x itis possible to predict the value of y and vice versa. In Fig. F.1b,
however, the covariance is eliminated. While it is possible to predict future values of
y (all points are y = 0) it is not possible to relate this prediction to a given value of
x. In other words, given a value of y it is not possible to predict a value of x.
Thus, the PCA begins with the computation of the covariance matrix,

2, jl=x; - xj. (F.1)

The diagonal elements are related to the variances of the individual elements in the
data and the off-diagonal elements are the covariances. Minimization of the covari-
ances is performed through the use of eigenvectors and eigenvalues. The eigenvectors
are a set of orthonormal vectors that describe the new coordinate system and the eigen-
values indicate the importance of each coordinate. The PCA achieves a reduction

(a) (b)
Fig. F.1 Rotating the coordinate system
T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 227

Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

228 Appendix F: Principal Component Analysis

in dimensionality by using only those eigenvectors that are associated with large
eigenvalues.

CodeF.1 displays PCA function which receives the data matrix as mat and the
number of desired dimensions in the returned data. The function also maps the data
into the new space and returns the new data points as c£fs and the eigenvectors
vecs. Line 5 removes the bias from the data and Line 6 computes the covariance
using the numpy.cov function. Line 7 calls the numpy.linalg.eig function to compute
the eigenvalues and eigenvectors. The rest of the function is dedicated to mapping
the data into the new space.

Code F.1 The PCA function.

pca.py
from numpy import array, cov, linalg, logical_and, zeros

def PCA(mat, D=2):
a = mat - mat.mean(0)
cv = cov(a.transpose())

evl, evc = linalg.eig(cv)
V,H = mat.shape

cffs = zeros((V,D))

ag = abs(evl).argsort()

ag = agl::-1]

me = agl[:D]
for i in range(V):

k=0
for j in me:
cffs[i,k] = (mat[i] * evc[:,3]).sum()
k += 1
vecs = evc|[:,me].transpose()

return cffs, vecs

References

1. IBM: IBM microelectronics ZISC zero instruction set computer: Preliminary information.
In: Supplement to Proceedings of World Congress on Neural Networks, International Neural
Network Society. INNS Press, San Diego (1994).

2. http://c2.com/cgi/wiki?pythonide (2008)

3. http://www.scipy.org (2008)

4. http://www.youtube.com/watch?v=0SQJP40PcGI. Accessed August 2012

5. http://cse.msu.edu/pub/pnp/vincenUDB_FDC-MSU/DB-FDC-MSU_327_news ahoo.% zip
Accessed 23 July 2008

6. Acharya, M., Kinser, J., Nathan, S., Albano, M.C., Schlegel, L.: An image analysis method
for quantification of idiopathic pulmonary fibrosis. In: Proceedings of the AIPR (2012). In
press.

7. Akatsuka, H., Imai, S.: Road signposts recognition system. In: Proceedings of the SAE vehicle
highway infrastructure: safety compatibility, pp. 189-196 (1987).

8. Akay, M.: Wavelet applications in medicine. IEEE Spectr. 34, 50-56 (1997)

9. Arens, J., Saremi, A., Simmons, C.: Color recognition of retroreflective traffic signs under
various lighting conditions. Public Roads 55, 1-7 (1991)

10. Balkarey, Y.I., Evtikhov, M.G., Elinson, M.1.: Autowave media and neural networks. Proc.
SPIE 1621, 238-249 (1991)

11. van de Bergh, S.: Luminosity classification of galaxies in the revised shapley-ames catalog.
Publ. Astron. Soc. 94, 745 (1982)

12. Besserer, B., Estable, S., Ulmer, B.: Multiple knowledge sources and evidential reasoning for
shape recognition. In: Proceedings of IEEE 4th Conference on Computer Vision, pp. 624-631
(1993).

13. Brasher, J.D., Kinser, J.M.: Fractional-power synthetic discriminant functions. Pattern Recog-
nit. 27(4), 577-585 (1994)

14. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Blaisdell, New York (1969)

15. Buta, R., Mitra, S., de Vaucouleurs, G., Corwin, H.G.: Mean morphological types of bright
galaxies. Astron. J. 107, 118 (1994)

16. Carron, T., Lambert, P.: Color edge detector using jointly hue saturation and intensity. IEEE
Int. Conf. Image Process. 3, 977-981 (1994)

17. Chen, Y.Q.: Novel techniques for image texture classification. Ph.D. thesis, Department of
Electronics and Computer Science, University of Southampton (1996).

18. Chen, Y.Q., Nixon, M.S., Thomas, D.W.: Statistical geometrical features for texture classifi-
cation. Pattern Recognit. 28(4), 537-552 (1995)

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 229

Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

http://c2.com/cgi/wiki?pythonide
http://www.scipy.org
http://www.youtube.com/watch?v=oSQJP40PcGI.
http://cse.msu.edu/pub/pnp/vincenUDB_FDC-MSU/DB-FDC-MSU_327_news

230

20.

21.

22.

23.
24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.
44.

References

. Cheng, L.J., Chao, T.H., Dowdy, M., LaBaw, C., Mahoney, C., Reyes, G., Bergman, K.:
Multispectral imaging systems using acousto-optic tunable filter. In: Infrared and Millimeter
Wave Engineering. Proc. SPIE 1874, 224 (1993)

Cheng, L.J., Chao, T.H., Reyes, G.: Acousto-optic tunable filter multispectral imaging system.
In: AIAA Space Programs and Technologies Conference, pp. 92-1439 (1992).

CIMK Data Sheet. CogniMem Technologies Inc., Folsom, CA 95630 USA. <!- Miss-
ing/Wrong Year —>

Darrell, T., Essa, 1., Pentland, A.: Task-specific gesture analysis in real-time using interpolated
views. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1236-1242 (1996)

Davis, J., Shah, M.: Recognizing hand gestures. In: ECCV94, pp. 331-340 (1994).

Duan, L., Miao, J., Liu, C., Lu, Y., Qiao, Y., Zou, B.: A PCNN based approach to image seg-
mentation using size-adaptive texture features. In: Wang, R., Shen, E., Gu, F. (eds.) Advances
in Cognitive Neurodynamics ICCN 2007, pp. 933-937. Springer, Netherlands (2008). https://
dx.doi.org/10.1007/978-1-4020-8387-7_162,10.1007/978-1-4020-8387-7_162

Dubuisson, M.P,, Jain, A.: Object contour extraction using color and motion. In: IEEE Inter-
national Conference on Image Processing, pp. 471-476 (1994).

Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P.: Feature linking via synchronization among
distributed assemblies: simulations of results from cat visual cortex. Neural Comput. 2, 293—
307 (1990)

Eggen, O.J., Lynden-Bell, D., Sandage, A.R.: Evidence from the motion of old stars that the
galaxy collapsed. Astrophys. J. 136, 748 (1962)

Fels, S.S., Hinton, G.E.: Glove-talk: a neural network interface between a data-glove and a
speech synthesizer. IEEE Trans. Neural Netw. 4, 2-8 (1993)

Fitzhugh, R.: Impulses and physiological states in theoretic models of nerve membrane.
Biophys. J. 1, 445-466 (1961)

Freeman, W.T., Weissman, C.D.: Television control by hand gestures. In: International Work-
shop on Automatic Face and Gesture Recognition, pp. 179-183 (1995).

Frei, Z., Guhathakurta, P., Gunn, J.E., Tyson, J.A.: A catalog of digital images of 113 nearby
galaxies. Astron. J. 111, 174-181 (1996)

Funt, B.V,, Finlayson, G.D.: Color constant color indexing. IEEE Trans. Pattern Anal. Mach.
Intell. 17(5), 522-529 (1955)

Gernster, W.: Time structure of the activity in neural network models. Phys. Rev. E 51(1),
738-758 (1995)

Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ.
Geom. 26, 285-314 (1987)

Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE
Trans. Syst. Man Cybern. 3, 610-621 (1973)

Hawker, L.: The introduction of economic assessment to pavement maintenance management
decisions on the United Kingdom using private finance. In: 13th IRF World Meeting, Toronto
(1997).

He, D.C., Wang, L.: Texture features based on texture spectrum. Pattern Recognit. 25(3),
391-399 (1991)

Healey, G., Slater, D.: Global color constancy: recognition of objects by use of illumination-
invariant properties of color distributions. J. Opt. Soc. Am. A 11(11), 3003-3010 (1994)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve. J. Physiol. 117, 500-544 (1952)

Hong, J., Wolfson, H.: An improved model-based matching method using footprints. In:
Proceedings of 9th International Conference on Pattern Recognition, pp. 72—78, IEEE (1988).
Horner, J.L.: Metrics for assessing pattern recognition. Appl. Opt. 31(2), 165-166 (1992)
Huang, T.S., Pavlovic, V.I.: Hand modelling, analysis, and synthesis. International Workshop
on Automatic Face and Gesture Recognition, Zurich, In (1995)

Intel 80INX ETANN Data Sheet. Intel, Corp., Santa Clara, CA (1993).

Isard, M., Blake, A.: Condensation: conditional density propagation for visual tracking. Int.
J. Comput. Vis. 29(1), 5-28 (1998)

https://dx.doi.org/10.1007/978-1-4020-8387-7_162,10.1007/978-1-4020-8387-7_162
https://dx.doi.org/10.1007/978-1-4020-8387-7_162,10.1007/978-1-4020-8387-7_162

References 231

45

46.

47.

48.

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

. Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept.
Psychophys. 73(2), 201-211 (1973)

Johnson, J.L.: The signature of images. IEEE International Conference on Neural Network,
In (1994)

Johnson, J.L., Padgett, M.L.: PCNN models and applications. IEEE Trans. Neural Netw.
10(3), 480498 (1999)

Johnson, J.L., Padgett, M.L., Friday, W.A.: Multiscale image factorization. In: Proceedings of
the International Conference on Neural Networks (ICNNO97), pp. 1465-1468 (1997). Invited
Paper.

Kehtarnavaz, N., Griswold, N.C., Kang, D.S.: Stop-sign recognition based on color-shape
processing. Mach. Vis. Appl. 6(4), 206-208 (1993)

Kellmeyer, D., Zwahlen, H.: Detection of highway warning signs in natural video images
using color image processing and neural networks. Proc. IEEE Int. Conf. Neural Netw. 7,
42264231 (1994)

Kinser, J.M.: Fast analog associative memory. Proc. SPIE 2568, 290-293 (1995)

Kinser, J.M.: Object isolation. Opt. Memories. Neural Netw. 5(3), 137-145 (1996)

Kinser, J.M.: Pulse-coupled image fusion. Opt. Eng. 36(3), 737-742 (1997)

Kinser, J.M.: Hardware: Basic requirements for implementation. Proc. SPIE 3728, 222-229
(1998)

Kinser, J.M.: Image signatures: classification and ontology. In: Proceedings of the 4th IASTED
International Conference on Computer Graphics and, Imaging (2001).

Kinser, J.M., Lindblad, T.: Detection of microcalcifications by cortical simulation. In: Bulsari,
A.B., Kalli, S., (eds.) Neural Networks in Engineering Systems, pp. 203-206 (1997).
Kinser, .M., Nguyen, C.: Image object signatures from centripetal autowaves. Pattern Recog-
nit. Lett. 21(3), 221-225 (2000)

Kinser, J.M., Wyman, C.L., Kerstiens, B.: Spiral image fusion: a 30 parallel channel case.
Opt. Eng. 37(2), 492-498 (1998)

Krumbiegel, D., Kraiss, K.F., Schreiber, S.: A connectionist traffic sign recognition system for
onboard driver information. In: Sth IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design
and Evaluation of Man-Machine Systems, pp. 201-206 (1993).

Kumar, B.V.K.V.: Tutorial survey of composite filter designs for optical correlators. Appl.
Opt. 31(23), 47734801 (1992)

Labbi, A., Milanese, R., Bosch, H.: A network of fitzhugh-nagumo oscillators for object
segmentation. In: Proceedings of International Symposium on Nonlinear Theory and Appli-
cations (NOLTA 97), pp. 581-584 (1997).

Lamdan, Y., Wolfson, H.: Geometric hashing: a general and efficient model-based recognition
scheme. In: Proceedings of 2nd International Conference on Computer Vision, pp. 238-249,
IEEE (1988).

Laws, K.I.: Textured image segmentation. Ph.D. thesis, Department of Electrical Engineering,
University of Southern California (1980).

Lee, J., Kunii, T.: Model-based analysis of hand posture. IEEE Comput. Graphics Appl. 15(5),
77-86 (1995). doi:10.1109/38.403831

Lindblad, T., Hultberg, S., Lindsey, C., Shelton, R.: Performance of a neural network for
recognizing AC current demand signatures in the space shuttle telemetry data. Proc. Am.
Control Conf. 2, 1373-1377 (1995). doi:10.1109/ACC.1995.520975

Lindsey, C.S., Lindblad, T., Sekniaidze, G., Minersskjold, M., Skékely, G., Eide, A.: Experi-
ence with the IBM ZISC neural network chip. Int. J. Mod. Phys. C 6(4), 579-584 (1995)
Littmann, E., Drees, A., Ritter, H.: Visual gesture recognition by a modular neural system.
In: International Conference on Art in Neural Networks, Bochum, pp. 317-322 (1996).

Lu, Y., Miao, J., Duan, L., Qiao, Y., Jia, R.: A new approach to image segmentation based on
simplified region growing PCNN. Appl. Math. Comput. 205, 807-814 (2008)

Malladi, R., Sethian, J.A.: Level set methods for curvature flow, image enhancement, and shape
recovery in medical images. In: Proceedings of Conference on Visualization and Mathematics,
pp. 329-345. Springer, Heidelberg (1995).

http://dx.doi.org/10.1109/38.403831
http://dx.doi.org/10.1109/ACC.1995.520975

232

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.
84.
85.

86.

87.

88.

89.

90.

91.

92.

References

McClurken, J.W., Zarbock, J.A., Optican, L.M.: Temporal codes for colors, patterns and
memories. Cereb. Cortex 10, 443-467 (1994)

McEniry, C., Johnson, J.L.: Methods for image segmentation using a pulse coupled neural
network. Neural Netw. World 2(97), 177-189 (1997)

Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM
J. Appl. Math. 50(6), 1645-1662 (1990)

Moody, J., Darken, C.: Fast learning in networks of locally tuned processing units. Neural
Comput. 1, 281-294 (1989)

Morneyv, O.A.: Elements of the optics of autowaves. In: Krirsky, V.I., (ed.) Self-Organization
Autowaves and Structures far from Equilibrium, pp. 111-118. Springer (1984).

Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line stimulating nerve
axon. Proc. IRE 50, 2061-2070 (1962)

Neibur, E., Worgotter, F.: Circular inhibition: A new concept in long-range interaction in the
mammalian visual cortex. Proc. ICNN 2, 367-372 (1990)

Ohlander, R., Price, K., Reddy, D.: Picture segmentation using a recursive region splitting
method. Comput. Graphics Image Process. 8, 313-333 (1978)

Ohta, Y., Kanade, T., Sakai, T.: Color information for region segmentation. Comput. Graphics
Image Process. 13, 224-241 (1980)

Padgett, M.L., Johnson, J.L.: Pulse-coupled neural networks (PCNN) and wavelets: Biosensor
applications. In: Proceedings of the International Conference on Neural Networks (ICNN97),
pp- 2507-2512 (1997). Invited Paper.

Parodi, O., Combe, P., Ducom, J.C.: Temporal encoding in vision: Coding by spiking arrival
times leads to oscillations in the case of moving targets. Neurocomputing 4, 93-102 (1992)
Perez, F., Koch, C.: Toward color image segmentation in analog VLSI: Algorithm and hard-
ware. Int. J. Comput. Vis. 12(1), 1742 (1994)

Piccioli, G., Michelli, E.D., Parodi, P., Campani, M.: Robust road sign detection and recogni-
tion from image sequence. In: Proceedings of Intelligent Vehicles *94, pp. 278-283 (1994).
Pratt, W.K.: Digital Image Processing, 3rd edn. Wiley-Interscience, New York (2001)
Priese, L., Rehrmann, V.: On hierarchical color segmentation and applications. In: Proceedings
of CVPR, pp. 633-634 (1993).

Pynn, J., Wright, A., Lodge, R.: Automatic identification of road cracks in road surfaces. In:
7th International Conference on Image Processing and its Applications, vol. 2, pp. 671-675.
Manchester (UK) (1999).

Raya, T.H., Bettaiah, V., Ranganath, H.S.: Adaptive pulse coupled neural network parameters
for image segmentation. World Acad. Sci. Eng. Technol. 73, 1046-1052 (2011)

Roberts, M.S., Haynes, M.P.: Physical parameters along the hubble sequence. Annu. Rev.
Astron. Astrophys. 32(1), 115-152 (1994)

Rughooputh, H.C.S., Bootun, H., Rughooputh, S.D.D.V.: Intelligent hand gesture recogni-
tion for human computer interaction and robotics. In: Proceedings of RESQUA2000: The
First Regional Symposium on Quality and Automation: Quality and Automation Systems for
Advanced Organizations in the Information Age, pp. 346-352, IEE (2000).

Rughooputh, H.C.S., Rughooputh, S.D.D.V., Kinser, J.: Automatic inspection of road sur-
faces. In: Kenneth, J., Tobin, W. (ed.) Machine Vision Applications in Industrial Inspection
VIIL. Proc. SPIE 3966, 349-356 (2000)

Rughooputh, S.D.D.V., Bootun, H., Rughooputh, H.C.S.: Intelligent traffic and road sign
recognition for automated vehicles. In: Proceedings of RESQUA2000: The First Regional
Symposium on Quality and Automation: Quality and Automation Systems for Advanced
Organizations in the Information Age, pp. 231-237, IEE (2000).

Rughooputh, S.D.D.V., Somanah, R., Rughooputh, H.C.S.: Classification of optical galaxies
using a PCNN. In: Nasrabadi, N. (ed.) Applications of Artificial Neural Networks in Image
Processing V. Proc. SPIE 3962(15), 138-147 (2000)

Rybak, I.A., Shevtsova, N.A., Podladchikova, L.N., Golovan, A.V.: A visual cortex domain
model and its use for visual information processing. Neural Netw. 4, 3—13 (1991)

References 233

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.
107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

Rybak, I.A., Shevtsova, N.A., Sandler, V.A.: The model of a neural network visual processor.
Neurocomputing 4, 93—-102 (1992)

de Saint Blancard, M.: Road Sign Recognition: A Study of Vision-Based Decision Making
for Road Environment Recognition. Springer, New York (1992).

Sandage, A., Freeman, K.C., Stokes, N.R.: The intrinsic flattening of e, so, and spiral galaxies
as related to galaxy formation and evolution. Astrophys. J. 160, 831 (1970)

Searle, L., Zinn, R.: Compositions of halo clusters and the formation of the galactic halo.
Astrophys. J. 225, 357-379 (1978)

Singh, M., Singh, S.: Spatial texture analysis: A comparative study. In: Proceedings of 15th
International Conference on Pattern Recognition (ICPR’02), Quebec (2002).

Singh, S., Singh, M.: Texture analysis experiments with meastex and vistex benchmarks.
In: Singh, S., Murshed, N., Kropatsch, W. (eds.) Proceedings of International Conference on
Advances in Pattern Recognition. Lecture Notes in Computer Science, vol. 2013, pp. 417-424.
Springer, Rio (2001).

Siskind, J.M., Morris, Q.: A maximum-likelihood approach to visual event classification. In:
Proceedings of the Fourth European Conference on Computer Vision, pp. 347-360 (1996).
Smith, S.M., Brady, J.M.: Susan: A new approach to low level image processing. Int. J.
Comput. Vis. 23(1), 45-78 (1997). doi:10.1023/A:1007963824710

Somanah, R., Rughooputh, S.D.D.V., Rughooputh, H.C.S.: Identification and classification
of galaxies using a biologically-inspired neural network. Astrophys. Space Sci. 282, 161-169
(2002)

Srinivasan, R., Kinser, J.: A foveating-fuzzy scoring target recognition system. Pattern Recog-
nit. 31(8), 1149-1158 (1998)

Srinivasan, R., Kinser, J., Schamschula, M., Shamir, J., Caulfield, H.J.: Optical syntactic
pattern recognition using fuzzy scoring. Opt. Lett. 21(11), 815-817 (1996)

Stein, F., Medioni, G.: Structural indexing: efficient 2-D object recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 14(12), 1198-1204 (1992)

Suetens, P., Fua, P., Hanson, A.J.: Computational strategies for object recognition. ACM
Comput. Surv. 24(1), 5-61 (1992)

Swain, M.J., Ballard, D.: Color indexing. Int. J. Comput. Vis. 7(1), 111-132 (1991)
Tomikawa, T.: A study of road crack detection by the meta-generic algorithm. In: Proceedings
of IEEE African 99 International Conference, pp. 543-548, Cape Town (1999).

Tominaga, S.: A color classification method for color images using a uniform color space. In:
IEEE CVPR, pp. 803-807 (1990).

Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F. (eds.) The Handbook of
Patten Recognition and Computer Vision, 2nd edn, pp. 207-248. World Scientific Publishing
Company, Singapore (1998)

Vasquez, M.R., Katiyar, P.: Texture classification using logical operations. IEEE Trans. Image
Anal. 9(10), 1693-1703 (2000)

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H.G., Buta, R., Paturel, G., Fouque, P.: Third
Reference Catalogue of Bright Galaxies. Springer, New York (1991)

Waldemark, J., Becanovic, V., Lindblad, T., Lindsey, C.S.: Hybrid neural networks for auto-
matic target recognition. In: International Conference on Computational Cybernetics and,
Simulation, pp. 40164021 (1997).

Wilensky, G., Manukian, N.: The projection neural network. Int. Jt. Conf. Neural Netw. 2,
358-367 (1992)

Wilson, A.D., Bobick, A.F.: Recognition and interpretation of parametric gesture. In: Pro-
ceedings of the Sixth International Conference on Computer Vision, pp. 329-336 (1998).
Xue, F., Zhan, K., Ma, Y.D., Wang, W.: The model of numerals recognition based on PCNN
and FPF. In: Proceedings of the 2008 International Conference on Wavelet Analysis and,
Pattern Recognition (2008).

Yamada, H., Ogawa, Y., Ishimura, K., Wada, M.: Face detection using pulse-coupled neural
network. In: SICE Annual Conference in Fukui, pp. 1210-1214 (2003).

http://dx.doi.org/10.1023/A:1007963824710

234

117.

118.

119.

120.
121.

122.

References

Yamaguchi, Y., Ishimura, K., Wada, M.: Synchronized oscillation and dynamical clustering
in chaotic PCNN. In: Proceedings of SICE, pp. 730-735 (2002).

Yang, M.H., Ahuja, N.: Extraction and classification of visual motion patterns for hand gesture
recognition.In: Proceedings of the IEEE CVPR, pp. 892-897 (1998).

Yarbus, A.L.: The Role of Eye Movements in Vision Process. USSR, Nauka, Moscow (1968);
Eye Movements and Vision. Plenum, New York (1965).

Zeki, S.: A Vision of the Brain. Blackwell Scientific Publications, Oxford (1993)

Zeki, S.: The visual image in mind and brain. In: Freeman, W.H. (ed.) Mind and Brain, pp.
27-39. W.H. Freeman and Company, New York (1993)

Zhan, K., Zhang, H., Ma, Y.: New spiking cortical model for invariant texture retrieval and
image processing. IEEE Trans. Neural Netw. 20(12), 1980-1986 (2009)

Index

A
a2i, 209, 210
Acousto-optical tunable sensor (AOTF), 180
American Sign Language (ASL), 138
Anchor velocity, 197
argsort, 43, 45
Array, 35
Automatic Target Recognition (ATR), 127
Aurora Borealis, 128
Australian Sign Language (AUSLAN), 138
Autowave, 62, 64, 65, 68-70, 75-77, 80-81,
83, 85, 89, 92, 171, 172
centripetal, 81

B

Back-propagation, 1

Back propagation network, 127
Barcode, 206, 141

Big endian, 46
Binary_propagation, 51

Breast cancer, 92

Byteswap, 46

C
CIMK, 1
Carcinoma, 94
Centripetal autowave, 80-83
Circle, 215
Coefficient of variance, 156
Colorsys, 149
Constructor, 30
Convert
RGB2cube, 209
Corners, 98, 99
Correlate, 220, 221

Cortical model, 84

Coupled oscillator, 74-76, 84
cspline2d, 60, 83, 92, 111
Cube2Image, 209, 211
Cube2ImageF, 209
Curvature flow, 80

Cutup, 167, 168

Cycle, 61

D

Default, 28

de-synchronise, 62

Dictionary, 18

dot, 38

dtype, 41

Dynamic Object Isolation (DOI), 119

E

Eckhorn model, 9, 10, 57, 67
EdgeEncourage, 112, 113
Edge encouraged, 110
EdgeEnhance, 114

Edge enhance, 70

Edge enhancement, 114
Enhance, 117

ePCNN, 171, 174, 176
Error trapping, 32
execfile, 29

F

Face finding, 148

Factorisation, 1, 104

Fast analog associative memory (FAAM), 147,
164, 223

T. Lindblad and J. M. Kinser, Image Processing Using Pulse-Coupled Neural 235
Networks, Biological and Medical Physics, Biomedical Engineering,
DOI: 10.1007/978-3-642-36877-6, © Springer-Verlag Berlin Heidelberg 2013

236 Index

Fast linking, 95, 96, 70, 125, 148 HARRIA, 139
FastLIterate, 72 HARRIS, 141
FastLYIterate, 152 Hash, 18

Feeding, 167 Hodgkin—-Huxley, 6
FileNames, 167, 168 Hubble, 134, 135

Fitzhugh—-Nagumo model, 74, 78
Fourier filter, 87, 88, 133

Foveation, 96, 97, 99, 100, 103, 104 I
corners, 98, 99 i2a, 209, 210
mark, 98 icm
mix, 98 Iterate, 83
FPCNN, 107-109 IterateLS, 83
FPF, 101, 103, 109, 121, 127, 130, 132, 133, Idiopathic pulmonary fibrosis (IPF), 162, 166
143, 172, 174, 182, 217, 218 IDLE, 13
fpf Image
FPF, 217 convert, 56
Fractional Power Filter, 101, 127, 172, 217. merge, 55
See also FPF mode, 55
from---import, 35 open, 54
fromstring, 45 show, 55
split, 55
Image recognition, 87, 88
G Image segmentation, 92
Gabor filters, 167 Image2Stim, 176
Galaxy, 133, 135 Import, 28
Geometry Inheritance, 31
circle, 215 Interference, 72, 77
correlate, 220, 221 Intersecting cortical model (ICM), 57, 74, 77,
cutup, 167, 168 81, 83, 85, 87-92, 130, 131, 133,
FileNames, 167, 168 157-160, 167, 187, 189, 198
FPF, 218 inv, 50
LoadImage, 167, 168 Inverse of a matrix, 50
ManySignatures, 167, 168 IsolateClass, 144, 145
PCA, 228 Iterate, 177
PCE, 221
plop, 215, 216
swap, 220 J
GIF, 61 JPEG, 61
GPS, 140
Guinea pig, 10
K
K-nearest neighbours, 158
H Kaiser window, 182
Halon plate, 182 Key, 18
Hand gestures, 137, 139 Kurtosis, 156
handwrite
IsolateClass, 144, 145
PulseOnNumeral, 145 L
RunAll, 146 Label, 52
UnpackImages, 143, 144 Land mine, 182
UnpackLabels, 144 Lateral geniculate nucleus (LGN), 5

Handwriting, 143 LevelSet, 83, 84

Index

Levelset
LevelSet, 83
Linking, 167
List, 17
Little endian, 46
LoadImage, 111, 167, 168
LoadTarget, 112
Logicon Projection Network (LPN), 127

M

Mammography, 92

Mangnocellular, 5

ManySignatures, 167, 168

Mark, 98

Max, 42

Maze, 201

Mazelterate, 201, 202

Mean, 42

mgconvert
a2i, 209, 210
Cube2Image, 209, 211
Cube2ImageF, 209
i2a, 209, 210
RGB2cube, 211
RGB2YUV, 209, 211
YUV2RGB, 209, 212

Microcalcifications, 93

min, 42

Minimum average correlation energy filter,

217

Mix, 98

Module, 28

Morphology index parameter (mip), 135

Motion estimation, 196

Multi-spectral, 160

N
ndimage, 51
Neural network, 88
NGC, 135
Nonzero, 42, 43
NormPFilter, 113
Numeral recognition, 143
NumPy, 35, 53, 149
Numpy

random, 36, 37

(0]
Object-oriented, 59
Object oriented programming, 30

oi
EdgeEncourage, 112, 113
LoadImage, 111
LoadTarget, 112
oiDriver, 119
On-centre/Off-Surround, 70

P

Parodi model, 10
Pavocellular, 5
PCECorrelate, 115

237

PCNN, 9, 57, 59, 67, 70, 73, 77,79, 83, 87-90,
93, 95-97, 99, 104, 107, 108, 119, 122,
124, 127, 135, 141, 143, 167, 175, 181,

188-190
fast linking, 70
feedback, 107
penn
FastLIterate, 72
FastLYIterate, 152
Iterate, 60
Mazelterate, 201, 202
RunMaze, 202, 203
Peaks, 116
Peak to correlation energy
(PCE), 115, 221
Pickle, 26
Plop, 215, 216
PNG, 61
Principal component analysis
(PCA), 167, 227, 228
Pulse image, 61
Pulse spectra, 155
Pulse-coupled neural network, 57
PulseOnNumeral, 145
Python, 59, 83
Python image library (PIL), 35, 149

R

Radial basis function, 1
Random, 36

ranf, 37

range, 24

ravel, 38, 218
Reaction-diffusion, 84
resize, 38, 47
Retina, 5

RGB, 149, 189
RGB2cube, 211
RGB2YUV, 209, 211
Road surface, 139

238 Index

Rughooputh, S., 133, 137, 139, 203 T

RunAll, 146 Target recognition, 127
RunMaze, 202, 203 TIF, 61

Rybak model, 10 Time, 52

Time signatures, 188
Time-delay neural network (TDNN), 139

S tostring, 45
SciPy, 35, 114 transpose, 47
scipy Travelling salesman, 201
ndimage, 51 Try-except, 32
signal, 51 TSP, 201
SCM, 167 Tuple, 16, 60

Segmentation, 92
Set_printoptions, 36

Shape, 38 U
Signal, 51 ucm3D
Signature, 82, 135, 145 Image2Stim, 176
Singlelteration, 118 Iterate, 177
Skewness, 156 Y2Image, 177, 178
Slicing, 19, 47 Unpacklmages, 143, 144
Sobel, 114 UnpackLabels, 144
Sobel filter, 89
sort, 43
Spiking Neural Network Architecture, 2 v
SpiNNaker, 2 Van der Pol oscillator, 7
Spiral filter, 182 Variance, 156
std, 42 Visual cortex, 3, 5, 6, 9, 10
Striate visual cortex, 5 Von Neumann computer, 1, 2
String, 20

count, 21

find, 21 w

join, 21 Wavelet, 93

lower, 21

replace, 21

rfind, 21 Y

split, 21 Y2Image, 177, 178

upper, 21 YUV2RGB, 209, 212
sum, 42
Swap, 220
Synchronicity, 62 Z
Synthetic discriminant filter, 217 zeros, 37

sys.path, 15, 28 Zetterlund, N., 193

	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Biological Models
	1.1 Introduction
	1.2 Biological Foundation
	1.3 Hodgkin-Huxley
	1.4 Fitzhugh-Nagumo
	1.5 Eckhorn Model
	1.6 Rybak Model
	1.7 Parodi Model
	1.8 Summary

	2 Programming in Python
	2.1 Environment
	2.1.1 Command Interface
	2.1.2 IDLE
	2.1.3 Establishing a Working Environment

	2.2 Data Types and Simple Math
	2.3 Tuples, Lists, and Dictionaries
	2.3.1 Tuples
	2.3.2 Lists
	2.3.3 Dictionaries

	2.4 Slicing
	2.5 Strings
	2.5.1 String Functions
	2.5.2 Type Casting

	2.6 Control
	2.7 Input and Output
	2.7.1 Basic Files
	2.7.2 Pickle

	2.8 Functions
	2.9 Modules
	2.10 Object Oriented Programming
	2.10.1 Content of a Class
	2.10.2 Operator Definitions
	2.10.3 Inheritance

	2.11 Error Checking
	2.12 Summary

	3 NumPy, SciPy and Python Image Library
	3.1 NumPy
	3.1.1 Creating Arrays
	3.1.2 Converting Arrays
	3.1.3 Matrix: Vector Multiplications
	3.1.4 Justification for Arrays
	3.1.5 Data Types
	3.1.6 Sorting
	3.1.7 Conversions to Strings and Lists
	3.1.8 Changing the Matrix
	3.1.9 Advanced Slicing

	3.2 SciPy
	3.3 Designing in Numpy
	3.4 Python Image Library
	3.4.1 Reading an Image
	3.4.2 Writing an Image
	3.4.3 Transforming an Image

	3.5 Summary

	4 The PCNN and ICM
	4.1 The PCNN
	4.1.1 Original Model
	4.1.2 Implementing in Python
	4.1.3 Spiking Behaviour
	4.1.4 Collective Behaviour
	4.1.5 Time Signatures
	4.1.6 Neural Connections
	4.1.7 Fast Linking
	4.1.8 Models in Analogue Time

	4.2 The ICM
	4.2.1 Minimum Requirements
	4.2.2 ICM Theory
	4.2.3 Connections in the ICM
	4.2.4 Python Implementation

	4.3 Summary

	5 Image Analysis
	5.1 Pertinent Image Information
	5.2 Image Segmentation
	5.2.1 Blood Cells
	5.2.2 Mammography

	5.3 Adaptive Segmentation
	5.4 Focus and Foveation
	5.4.1 The Foveation Algorithm
	5.4.2 Target Recognition by a PCNN-Based Foveation Model

	5.5 Image Factorisation
	5.6 Summary

	6 Feedback and Isolation
	6.1 A Feedback PCNN
	6.2 Object Isolation
	6.2.1 Input Normalisation
	6.2.2 Creating the Filter
	6.2.3 Edge Enhancement of Pulse Images
	6.2.4 Correlation and Modifications
	6.2.5 Peak Detection
	6.2.6 Modifications to the Input and PCNN
	6.2.7 Drivers

	6.3 Dynamic Object Isolation
	6.4 Shadowed Objects
	6.5 Consideration of Noisy Images
	6.6 Summary

	7 Recognition and Classification
	7.1 Aircraft
	7.2 Aurora Borealis
	7.3 Target Identification: Binary Correlations
	7.4 Galaxies
	7.5 Hand Gestures
	7.6 Road Surface Inspection
	7.7 Numerals
	7.7.1 Data Set
	7.7.2 Isolating a Class for Training

	7.8 Generating Pulse Images
	7.8.1 Analysis of the Signatures

	7.9 Face Location and Identification
	7.10 Summary

	8 Texture Recognition
	8.1 Pulse Spectra
	8.2 Statistical Separation of the Spectra
	8.3 Recognition Using Statistical Methods
	8.4 Recognition of the Pulse Spectra via an Associative Memory
	8.5 Biological Application
	8.6 Texture Study
	8.7 Summary

	9 Colour and Multiple Channels
	9.1 The Model
	9.1.1 Colour Example
	9.1.2 Python Implementation

	9.2 Multi-Spectral Example
	9.3 Application of Colour Models
	9.4 Summary

	10 Image Signatures
	10.1 Image Signature Theory
	10.1.1 The PCNN and Image Signatures
	10.1.2 Colour Versus Shape

	10.2 The Signature of Objects
	10.3 The Signatures of Real Images
	10.4 Image Signature Database
	10.5 Computing the Optimal Viewing Angle
	10.6 Motion Estimation
	10.7 Summary

	11 Logic
	11.1 Maze Running and TSP
	11.2 Barcodes and Navigation
	11.3 Summary

	A Image Converters
	A.1 Transformation of Grey Scale Images and Matrices
	A.2 Colour Conversion

	B The Geometry Module
	B.1 Circle
	B.2 Plop

	C The Fractional Power Filter
	D Correlation
	E The FAAM
	F Principal Component Analysis
	 References
	Index

