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Cover-design: WMX Design GmbH, Heidelberg

SPIN 12058488 88/3180YL - 5 4 3 2 1 0 Printed on acid-free paper



Listen to the Water-Mill:
Through the live-long day

How the clicking of its wheel
Wears the hours away!

Languidly the Autumn wind
Stirs the forest leaves,

From the field the reapers sing
Binding up their sheaves:

And a proverb haunts my mind
As a spell is cast,

”The mill cannot grind
With the water that is past.”

Sarah Doudney: ”Lesson of the Water-Mill”



Preface

Revenue Management (RM) is a success story in many industries.
American Airlines, for instance, estimated in 1992 that its RM system
contributes additional revenues of US-$ 500 million per year. Lufthansa
attributes a revenue gain of DM 950 million in 1996 and DM 1.4 bil-
lion in 1997 to RM. Since the vast majority of costs are fixed in those
companies, a revenue surplus due to RM almost fully translates to ad-
ditional profit. Needless to say that RM is now considered to be a key
success factor for airlines, hotels and car rental companies. However,
RM techniques nowadays prove to be promising in other industries
as well. In make-to-order manufacturing, for instance, cost cutting has
been the major means to improve profits for a long time. Having imple-
mented tight cost controlling systems, management’s focus shifted to
the other source of higher profits – higher revenues – as an important,
yet underused lever. This book demonstrates how to tap the potential
of RM, in particular if flexible products are involved. Since the majority
of products in broadcasting companies is flexible, this industry serves
as an example.

The contents of the book can be summarized as follows: RM is
defined in chapter 1. In this chapter, applications in a broad range
of industries are presented. Chapter 2 describes two basic RM tech-
niques: Capacity control and overbooking. Recent advances in the field
are highlighted in chapter 3, namely RM in settings where customers
make choices and RM with flexible products. Chapter 4 introduces
issues related to the evaluation of RM techniques, i. e. the genera-
tion of test instances. Chapter 5 deals with the most important aspect
of instance generation: simulation of stochastic demand data streams.
Chapter 6 is based on a case study in Spanish broadcasting companies.
The RM problem in this setting is thoroughly described, the impor-
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tance of flexible products is clarified, appropriate models and methods
are developed and tested on 18,000 instances. Chapter 7 concludes the
book and outlines future research opportunities.

Writing this book would not have been possible without the sup-
port of a number of people: Alf Kimms was both sponsor and mentor
of my research projects. He served as a sparring partner in many fruit-
ful discussions. The participants of many conferences, in particular the
members of the GOR group “Revenue Management and Dynamic Pric-
ing” (chaired by Alf Kimms and Robert Klein), challenged my point of
views and contributed their expert opinions. I am also deeply indebted
to Yvonne Bußhoff, Julia Drechsel, Hannah Dürr, Michaela Graf and
Maria Merker. The support of Kerstin Petzold was invaluable. Finally,
I would like to thank my parents who made so many things possible.

Neuss, April 2007 Michael Müller-Bungart

P.S. If you have comments, questions or any kind of feedback
on this book or RM in general, you can reach me at http://www.
mueller-bungart.de/revenuemanagement.
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1

Defining Revenue Management

1.1 Introduction

Many readers will have noticed that the same seat on the same air-
craft is sold for different prices. These differences can be quite large:
Lufthansa German airlines, for instance, sells flights between Dresden
and Frankfurt/Main for e 109 (return) – a special discount of very lim-
ited availability. There is no such thing like a single “regular” price for
that route to compare with, but our impression is that a “usual” fare
(i. e. a fare that is not part of a special discount offer) is well above
e 200, fares between e 300 and 400 are still not extraordinary, and
passengers even have to pay more than e 450 for some travel dates.
For this (arbitrarily chosen) example the premium for “regular” tick-
ets compared to the discount is in the order of 100 to 400 %. It is
important to stress that we are not talking about different prices for
economy, business and first class – all the prices mentioned above are
for a single seat in the economy class compartment.

The fact that the same seat on the same aircraft is sold for various
prices at the same time implies some challenging decision problems: On
the one hand, it is obviously reasonable to sell seats at the highest pos-
sible prices. Demand is stochastic, though, and the bulk of passengers
with a high willingness to pay (e. g. business travelers) will typically
book close to departure, while other consumers who cannot afford the
highest prices will submit reservation requests very early. On the other
hand, a seat that is empty at the time of departure represents oppor-
tunity costs, because it may have been sold to a paying customer; and
even if the fare received was low, the contribution margin would have
been positive because the marginal costs of carrying an additional pas-
senger are negligible. Given a request of a passenger with a low yield
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the airline thus has to decide whether to accept it (running the risk
of displacing subsequently arriving demand with higher revenue) or to
reject it – which is a bad decision if not enough high yield requests
arrive in the future. In general, the question arises how the given ca-
pacity should be assigned to products (i. e. fares and passengers) such
that the total revenue (profit, contribution margin, . . . ) is maximized.
Aspects related to that general question are subsumed under the term
Revenue Management (RM). We will define that term more precisely
in section 1.2 and describe the field of RM research in section 1.4.

Much like a seat on an aircraft after the time of departure a hotel
room that has not been sold at the end of the day incurs opportu-
nity costs. A similar reasoning can be applied to rental cars, restaurant
tables and capacity in many other passenger or cargo transport busi-
nesses as well as a number of non-transport or non-service industries.
We will outline areas of RM applications in section 1.3.

RM has been a large success in airlines, hotels and other companies
and is nowadays considered to be a key component of capacity manage-
ment in many industries. Klophaus (1998), for instance, reports that
Lufthansa attributes a revenue gain of DM 950 million in 1996 and
DM 1.4 billion in 1997 to RM. Smith et al. (1992) of American Airlines
estimate that the RM system contributes additional revenues of US-$
500 million per year. According to Carroll and Grimes (1995), the rev-
enue increase at Hertz (a car rental company) was up to five percent. A
new RM system improved revenues by US-$ 56 million in the first year
at National Car Rental and was the basis for a successful turnaround
saving the company from liquidation (Geraghty and Johnson 1997).
Kimes (2004) estimated that RM techniques could improve revenues
by more than five percent in a typical restaurant of a US-based chain
of Mexican-style restaurants.

1.2 Characteristics of Revenue Management Problems

An agreed-upon definition that characterizes the concept “Revenue
Management” in one or two sentences has not yet appeared in the
literature. Kimms and Klein (2005), who review a multitude of defi-
nitions in a recent survey, remark that it seems to be rather difficult
to pinpoint the field of RM in a short paragraph. Instead, they study
a wealth of references and compile four common characteristics of (or
prerequisites for) RM problems. Before we discuss these four defin-
ing aspects in some detail we note that it is not unusual to describe
RM in terms of characteristic conditions which give rise to the spe-
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cific problems of the field, see e. g. Bertsch and Wendt (1998), Corsten
and Stuhlmann (1998), Kimes (1989a,b), Klein (2001), Netessine and
Shumsky (2002), Phillips (2005), Swann (1999), Talluri and van Ryzin
(2004b), Weatherford and Bodily (1992) and Wirtz et al. (2003). It is
furthermore important to stress that all these references mention char-
acteristics that are quite similar. We therefore forbear from examining
various approaches to define the term RM – the reader interested in
such a discussion is referred to Kimms and Klein (2005) and Corsten
and Stuhlmann (1998) – and draw on the results of the comparative
survey by Kimms and Klein (2005). They compile the following four
basic characteristics or prerequisites for RM from an extensive study
of the literature: It is necessary to integrate external factors, the op-
erational flexibility is limited, customers behave heterogeneously and
have different valuations for products (and thus capacities), and a stan-
dardized product range is offered over a longer period of time. In the
following we will discuss each characteristic aspect in detail.

Necessity to integrate external factors

To begin with the production of a physical good, the provision of a
service or a combination of both, one or more external factors are nec-
essary. “External” means that these factors have to be supplied by the
customer. Such factors can be the customers themselves (this is e. g.
the case for passenger transportation or hotels), physical goods owned
by the client (e. g. cargo) or intangible items like information (e. g. the
exact specification of an order). The last example shows that while the
necessity to integrate external factors is considered to be a characteris-
tic element of service industries (see e. g. Fitzsimmons and Fitzsimmons
2001, Maleri 1997, Voss et al. 1985) in make-to-order manufacturing
(MTO) crucial external inputs exist as well, namely information. We
thus stress here that RM is by no means limited to service companies.

The dependency on external factors implies two important features
of the problem at hand: It is impossible to anticipate demand, to build
up inventories of finished goods and to satisfy requests from stock;
and the goods or services have to be offered before the production has
begun – this is necessary to induce the supply of the required external
factors by the customers. Frequently, the goods or services are even
sold before the beginning of production (airline tickets, for instance,
are usually paid at the time of purchase, which can be months before
the departure date). This is quite a significant difference compared to,
say, retailing or wholesale where it is unreasonable (or even illegal) to
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advertise products that are not in stock, and the goods are usually paid
after purchase (especially in wholesale).

Limited operational flexibility

A limited amount of resources is given. We know (in a deterministic
setting) or expect (under uncertainty) that there is a mismatch be-
tween capacity supply and demand. However, our means to increase
or decrease supply or demand to overcome this imbalance are limited
such that only minor corrections are possible.

Potential causes for that dilemma are that it is simply impossible
to alter supply and/or demand for mere technical reasons, or that it is
technically possible but economically infeasible to do so. The latter case
occurs if the costs of capacity and/or demand adjustments are higher
than the opportunity costs of rejecting demand (if demand exceeds
supply) or the costs of idle capacity (if supply exceeds demand).

The aforementioned technical difficulties or prohibitive costs of ca-
pacity adjustments are frequently caused by the fact that the amount
of capacity which can be added (or removed) from the given amount
is a large multiple of the average demanded quantity. For instance, a
typical request for a flight ticket will be for one or two seats, while
a typical aircraft has got a couple of hundred seats. A rental car is
usually hired for a few days, but given the enormous loss of value of
a new car rental companies will typically keep vehicles in the fleet for
some months. Since an adjustment of capacity can thus only be made
in relatively high discrete amounts those decisions are rather long-term
and associated with excessive costs. Consequently, we suffer from op-
erational inflexibility in the short run.

Heterogeneous valuations and behavior

Thus far we are in a situation where there is a unavoidable mismatch
between supply and demand, and external factors have to be integrated
such demand cannot be satisfied from stock. If customers are totally
homogeneous (i. e. their valuations of the same unit of resource do
not differ, everybody demands the same amount of resources etc.) the
problem can be solved easily: We just satisfy all requests as they arrive
until there is no more demand or no capacity left. This is called a
“first come first serve” (FCFS) policy. If the valuations and/or other
aspects of customer behavior differ, the problem which requests should
be satisfied becomes rather challenging.
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There is an interesting link between heterogeneous valuations and
behavior that is very relevant here: We can only profit from hetero-
geneous valuations if we are able to distinguish different types of cus-
tomers. This is trivial if e. g. discounts are offered to students or senior
citizens – in such cases we only have to check the respective ID cards.
Typically, however, customers will not voluntarily reveal their willing-
ness to pay (especially if it is above average), so we have to rely on
heterogeneous behavior to separate customer segments. Airlines, for in-
stance, would like to distinguish leisure from business travelers because
the latter have a significantly higher willingness to pay. To discriminate
those segments airlines impose a lot of conditions on discount tickets,
e. g. advance purchase restrictions, cancellation and rebooking fees,
Saturday night stay requirements etc. These factors make a discount
ticket unattractive for most business travelers. The implementation of
such arrangements which should make sure that customers with a high
willingness to pay are not able to buy products or services at sub-
stantially lower prices is called fencing. One might say that companies
induce some form of self selection by fencing. The aforementioned air-
line, for instance, designs its “menu of products” in a way such that
business travelers (with a high willingness to pay) will automatically
avoid the discount tickets.

Standardized product range

The product range consists of goods or services with given and fixed
attributes in the first place, or a product is defined as a bundle of stan-
dardized goods and/or services. Furthermore, the standardized product
range (or the standardized range of goods and services to create prod-
ucts in the sense of bundles) has to be offered for a longer period of
time. Airlines (with the exception of low cost carriers, see page 21) are
an example for the former: A product is basically an itinerary between
two or more places, associated with departure and arrival times, con-
ditions like cancellation fees etc. and a price. An example for the latter
are hotels: The standardized service components are the single night
stay in a particular room type, meals, amenities and other features like
access to wellness areas. These components can be bundled by guests
(according to certain rules), resulting in a price per night (which may
also depend on the day). The price for a multiple night stay is then
given as the sum of the daily prices. Other examples are rental car or
broadcasting companies (see chapter 6 for an extensive treatment of
the latter).
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Both examples are admittedly somewhat ambiguous. For the air-
line example one might as well argue that there is a limited number of
standardized services (basically non-stop flights) that can be combined
to itineraries and various accompanying aspects (e. g. cancellation and
refunding conditions). On the other hand, hotels may offer special week-
end packages with two overnight stays, special meals etc. This would
have the flavor of a product (which can only be bought as a whole or
not at all) in contrast to a bundle of standardized goods and services.
However, the distinction between both cases is not important in the fol-
lowing, and we will simply use the term “standardized product range”
to subsume them.

It is important to stress here that the standardization of the product
range does not imply that all features of the products are defined at the
time of purchase and there are no degrees of freedom left for both the
seller and the customer. At German Railways, for instance, a regular
ticket does not fix the exact departure time, i. e. the passenger is free to
choose between trains that depart at, say, eight, ten or twelve o’clock.
Broadcasting companies, on the other hand, are typically allowed to
schedule a particular advertisement freely within a certain time win-
dow (whose size is in the order of hours). The latter is an example of
so called flexible products. We will introduce these in some detail in
section 3.3; and the RM problem at broadcasting companies will be
covered extensively in chapter 6.

The four characteristics can be prerequisites for RM problems in two
different ways: Firstly, if some aspects are missing problems belonging
to other fields arise, and we have lost the distinctive flavor of RM. The
first three mentioned characteristics are prerequisites in this sense: If
there is no need to integrate external factors we can smooth out the
differences between supply and demand by building up inventories of
finished goods. If we were flexible enough to adjust supply we would
have to decide how much and when to (dis)invest into capacities – the
resulting situation would roughly have the flavor of a newsvendor prob-
lem. Finally, we have already pointed out that if customers’ valuations
and behavior are homogeneous a trivial FCFS policy is optimal.

Standardization of the product range is a prerequisite in a pure tech-
nical sense – if this prerequisite is not satisfied it is simply impracticable
to implement RM methods: If the product range is not standardized
and not offered over a longer period of time it is impossible to fore-
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cast future demand and to make acceptance/rejection decisions in a
reasonable way.

We will now finally summarize the conditions that constitute a RM
problem, or, more broadly speaking, we characterize situations in which
RM can gainfully be used: Since it is necessary to integrate external
factors supplied by the customer into the production process satisfying
demand from stock is impossible. Suffering from a limited operational
flexibility we cannot balance capacity supply and demand. Customers
behave heterogeneously and have different valuations for the same unit
of capacity. Together with the mismatch of available and demanded
capacity this implies that there are some non-trivial decisions to make,
e. g. which requests to reject if demand exceeds supply. However, since
we have been offering a standardized product range for a longer period
of time, we are able to forecast future demand and have a basis for our
decisions.

The concept of “Revenue Management” stems from the airline in-
dustry where those decisions where guided by the objective of revenue
maximization – since the majority of costs in that business is fixed (this
fact is somewhat related to the operational inflexibility) maximizing
revenues is a reasonable approximation of maximizing profits. In MTO
environments there may be substantial variable costs, and profit (or
contribution) maximization – i. e. maximization of revenue minus vari-
able costs – is certainly more appropriate, but for such problems never-
theless the term “Revenue Management” is used (for historical reasons,
one might say). It is interesting to point out in this context that RM was
formerly known as yield management . In the airline industry, however,
the term “yield” signifies the average revenue per passenger. A single
full fare passenger on an otherwise empty aircraft would thus represent
a solution with maximal yield – this is certainly not useful, and hence
the somewhat misleading term yield management was abandoned in
favor of “Revenue Management”.

In the following sections we will highlight RM applications in various
industries (1.3) and describe various problems and methods that are
subsumed under the term RM, thereby developing a structure of the
field (1.4).

1.3 Revenue Management Problems in Various
Industries

The aim in this section is to clarify the general set up of RM prob-
lem in various industries using the four characteristics we have just
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described. We will furthermore outline major features relevant for RM
on a conceptual level, and direct the reader to industry specific ref-
erences. This complements the expositions in Talluri and van Ryzin
(2004b, ch. 11) who focus on current RM implementations in various
industries, and Kimms and Klein (2005) who develop models tailored
to different businesses.

Airlines

Airlines have probably been the first users of RM on a large scale.
Passenger transportation by air is surely the industry that is most often
referred to, and many references are explicitly or implicitly focused on
an airline’s business environment.

For passenger transport the integration of external factors – namely
the passengers themselves – is obviously necessary. Distinct customer
groups – business and leisure travelers, for instance – certainly have
different valuations of the same journey, and they can be differentiated
e. g. by the time of booking (leisure travelers tend to book earlier) or
by their ability to comply with certain restrictions (Saturday night stay
over, for instance). The product range of airlines is fairly stable over
time, only prices may be a bit volatile in competitive markets. The
flexibility with respect to changes in flight plans or capacities is clearly
limited: Published flight plans are usually valid for six months, changes
are thus only minor – for instance, it is rare that existing connections
are closed or new ones are opened during that time. It is possible to
lease aircrafts to increase the available capacity; however, as mentioned
before the increase in capacity (a couple of hundred seats for each flight
undertaken by an additional airplane) is large compared to the number
of seats demanded by an average request. Other limiting factors besides
flight plans and airplanes are e. g. landing slots or legal requirements
like maintenance rules for aircrafts and working time restrictions for
crews.

Given the amount of references that focus on models and methods
for passenger airline RM problems it is certainly not useful to mention
all of them here. We nevertheless like to point out some contributions
by various airline practitioners that give a broader introduction to air-
line RM: Smith et al. (1992) describe the amazing success of RM at
American Airlines. Alstrup et al. (1989) portray the situation at Scan-
dinavian Airlines, focusing on overbooking (see subsection 1.4.1), and
Klophaus (1998) refers to Lufthansa German airlines. Fuchs (1987) in-
troduces airline RM from a practical point of view. The popular book
by Cross (1998, 2001) contains a case study of People Express, a low
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cost carrier (LCC, see page 21) which challenged American Airlines by
offering incredibly low fares. The incumbent was only able to intro-
duce competitive fares by a carefully implemented RM system. Calder
(2003) and Lawton (2002) cover the history of LCCs in great detail.

Railways and Cargo

It is easy to see that the four defining prerequisites of RM can be found
in almost any transport business, let it be passenger or cargo. However,
other transport industries feature quite distinctive characteristics.

At German Railways (Deutsche Bahn, DB), for instance, a regu-
lar ticket is not bound to a particular time or train. Even the route
may not be fixed and can be chosen (within certain limits) by the pas-
senger. In contrast to airlines it is thus uncertain when and on which
trains a customer who has bought a ticket will consume capacity. This
uncertainty is increased e. g. by special tickets for commuters, where
DB does not know how often the customer will travel, and from which
origin to which destination. As a consequence, almost two thirds of all
passengers belong to the group of what DB calls “uncontrolled traffic”
(Köhler 2005).

Other aspects besides revenue increases are relevant for DB as
well. In peak demand situations, for instance, there are frequently not
enough seats for every passenger, i. e. some customers will have to
stand, thus suffering from a very low level of service. An obvious (but
costly) solution is to increase the rolling stock when demand is maxi-
mum (i. e. adding cars or trains). By driving price sensitive customers
who are flexible with respect to travel times to off-peak trains the peak
level of service is increased without having to add new capacity, simply
by using the existing trains more efficiently.

Treatments of the passenger railway RM problem are very rare,
though. Ciancimino et al. (1999) refer to the situation of FS, the Italian
public railway company, and present a deterministic and a probabilistic
model and solution methods. Whelan and Johnson (2004) consider the
situation in the UK and examine how fares and ticket restrictions can
be used to shift demand from peak hours to times where capacity uti-
lization is lower anyway in order to avoid overcrowding. Ben-Khedher
et al. (1998) describe decision support systems at SNCF (a French
railway company) including an RM system. Li et al. (2006) report on
a project at Netherlands Railways dealing with pricing issues in the
context of automatic fare collection systems based on so called “smart
cards”.
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Cargo industries (regardless of the mode of transport) satisfy in
general all four prerequisites as well, the major difference to passenger
transportation being that the external factor is not the customer but
goods owned by the customer. This difference implies some interesting
unique features (see e. g. Kasilingam 1996, Slager and Kapteijns 2004):
While each passenger occupies (at most) one seat, the capacity usage of
cargo is frequently a multidimensional measure (weight, volume etc.).
Passengers will have a preference for a certain itinerary; in particular
the route, the connection times and the total travel time will be rele-
vant. For cargo it is often sufficient if the carrier is able to deliver the
cargo within a certain time window – waiting and travel times as well
as the route taken to the destinations are mostly irrelevant, as long as
the final destination is reached on time. Unlike passengers cargo will
not travel back from the destination to the origin; in fact cargo traffic
is usually asymmetric, i. e. there are many places in the world from
which large amounts of cargo are shipped (but only little is received)
and vice versa.

In some industries other aspects have to be considered as well: A
good deal of air cargo, for instance, is not transported in dedicated
cargo aircrafts but together with passengers and their baggage on ordi-
nary scheduled passenger flights. This implies that the amount of belly
space remaining free for cargo transportation is uncertain, because it
depends on the number of passengers and the amount of baggage they
carry with them.

References on the cargo RM problem have been very rare, but it
has recently attracted some attention. Kasilingam (1996) outlines a
model for air cargo RM. Models and methods for this problem are due
to Amaruchkul et al. (2006), Bartodziej and Derigs (2004), Luo et al.
(2005), Moussawi and Çakanyıldırım (2005), Pak and Dekker (2004)
and Karaesmen (2001, ch. 2). Klophaus (1999) and Slager and Kaptei-
jns (2004) describe the RM system at the cargo division of Lufthansa
German airlines and KLM Cargo, respectively. Wendt (1991) deals with
pricing of cargo plane capacity. Strasser (1996) describes rail freight
RM on a conceptual level, while Campbell and Morlok (1994) indicate
methods for that problem. Furthermore, there are some references deal-
ing with so called stochastic knapsack problems. They share common
features with some RM problems, in particular with simplified versions
of the cargo RM problem, and there are also some loose relationships to
the RM problem in broadcasting companies. We give a brief overview
on the work on stochastic knapsack problems in section 6.6.
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Hotels, Cruise Liners, Casinos, Tour Operators

Much like passenger transport businesses hotels, cruise liners, casinos,
tour operators and other companies of the tourism industry require the
participation of the customer in person. It is evident that the means
to adjust capacities in hotels, cruise liners and casinos is limited: It
is certainly possible to add a small bed to a room or cabin, or to
accommodate a single person in a double or twin room, but only minor
adjustments like these are possible in the short term. Tour operators
face RM problems, too, because they rely on the operation of passenger
transports, hotels etc. Cruise operators frequently bundle their journeys
with trips (mostly flights) to and from the harbor as well.

An interesting aspect of many tourism businesses is that besides di-
rect revenues associated with staying some nights in a hotel or casino or
booking a cruise additional (uncertain) profits are possible. Examples
for hotels include restaurants, bars and conference rooms. This extra
revenue is especially relevant for casinos and cruise liners. In the for-
mer case revenues from gambling, restaurants and entertainment can
be quite significant compared to those from room rents. Cruise liners
profit from the fact that guests are (in a very real sense) “locked in”,
only being able to visit restaurants, bars, entertainment facilities, retail
outlets etc. on board the ship.

While there is quite a large body of literature on hotels (see e. g.
Badinelli 2000, Bitran and Gilbert 1996, Bitran and Mondschein 1995,
Chen 1998, Goldman et al. 2002, Jones 1999, Koide and Ishii 2005,
Lai and Ng 2005, Liberman and Yechiali 1978, Rothstein 1974) there
are only quite a few scientific references on cruise liners, casinos and
tour operators. Hoseason (2005) gives an overview on the cruise RM
problem. Ladany and Arbel (1991) consider the market segmentation
and pricing problem for a cruise liner. Lieberman and Dieck (2002)
deal with the cruise operator’s problem to purchase flights for guests
traveling to and from the harbor by plane. Froeb and Tschantz (2003)
examine the effects of the Princess-Carnival cruise line merger on com-
petition. To analyze that antitrust case they consider a pricing problem
with two competing firms and study the impact of a merger between
both on prices and quantities.

Norman and Mayer (1997) survey the implementation of RM tech-
niques in Las Vegas casino hotels. Hendler and Hendler (2004) give a
very readable introduction to the casino RM problem, explaining the
different sources of revenues and costs (e. g. discounts and free meals
for high-yield gamblers).
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Remmers (1994) presents an overview of the RM in the tourism
industry in general, highlighting the differences between tour opera-
tors which bundle services to a package holiday on the one hand and
providers of original services on the other. Hoseason and Johns (1998)
summarize the tour operator RM problem as well. In an empirical
study, Klein (2000) examines how many tour operators make use of
RM and to what extent. Xylander (2003) extensively investigates the
potential of RM for tour operators and develops tailored models. Würll
(2004) reports on the implementation of an RM system at Thomas
Cook UK. He observes that the major challenge of tour operator RM
is that there is a large number of heterogeneous resources to be used
(planes, hotels etc.) which are frequently purchased from a multitude of
companies in long term contracts. Laws (2005) highlights some issues
with respect to pricing of inclusive holidays. Oppitz (2004) of Thomas
Cook points out that a typical problem of tour operators is that hol-
idays are marked down, i. e. prices decline down to a “last minute”
bargain price. He notes that this has lead to strategic behavior: Cus-
tomers defer purchases to wait for discounts. Such a situation is e. g.
considered by Ovchinnikov and Milner (2005) who present models and
methods for last minute discounts if strategic customer behavior is to
be expected. Su (2005) also deals with strategic customers and derives
conditions under which markdown or markup pricing should be used,
respectively. Similarly, Anderson and Wilson (2003) consider a situa-
tion where customers estimate the probability that a certain fare class
which is not available now will be offered again later and defer their
purchase if the chance is good enough. Wilson et al. (2006) extend this
approach by also considering customers who may purchase products
at a higher price (instead of strategically waiting) if their first choice
product is not available.

Car Rental

The car rental industry is another area of application that has already
received some attention in the RM literature. Evidently, it is necessary
to integrate the customer in person for the production of the service.
The product range is standardized on the basis of different types of
cars, length and date of rent. It is important to distinguish between
business and private customers (like holidaymakers) who have different
valuations of the service. They also behave differently with respect to
the time when they rent (day of week and time of year) and where they
rent. We have already mentioned that there are certainly possibilities
to increase the fleet by adding cars (even in the short term), but given
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the enormous loss of value of a car during the first months this is
only profitable if there is a significant, long lasting shift in demand.
Analogous arguments hold for decreasing the fleet’s size by selling cars
earlier than planned.

Similar to cargo transport a significant proportion of traffic may be
asymmetric, because customers may rent out cars at one station and
return them at another such that some stations will (on average) hire
out more cars than are returned to that station and vice versa. In this
case cars have to be transferred between stations (at a cost). Much
like hotels where we have earlier (or later) departures and arrivals, cus-
tomers may rent out or bring back cars sooner or later than expected,
or cars are even returned to a station other than announced by the
customer. Like in the cargo industry capacity is therefore uncertain.

Carroll and Grimes (1995) and Mayr (2005) describe the RM sys-
tems at Hertz and Sixt (a large German car rental company), respec-
tively. Geraghty and Johnson (1997) report that the implementation
of RM at National Car Rental not only improved revenues by US-$
56 million in the first year but even saved the company from liquida-
tion. Blair and Anderson (2002) and Anderson and Blair (2004) give
an account of a system to measure the performance of RM at Dollar
Car Rental.

Recently, RM applications in the rental business in general (i. e. not
specific to cars) have received some attention, see e. g. Gans and Savin
(2005) and Savin et al. (2005) for models and methods.

Manufacturing

Manufacturing does not seem to be an obvious area for the application
of RM techniques because it is possible to stock finished goods and to
satisfy incoming requests from stock. This implies that it is not nec-
essary to integrate external factors into the production process, and
albeit it is frequently difficult or even impossible to adjust capacity
supply to demand, excess capacity can be employed to build up in-
ventories which are subsequently used to satisfy requests in case of a
demand surplus. This is not to say that planning aspects related to
capacity usage are trivial in this setting; on the contrary this situation
actually gives rise to challenging and very relevant problems, e. g. lot
sizing and inventory control – but certainly not RM problems. This
reasoning is however only applicable to make-to-stock production. If
we consider make-to-order (MTO) environments it is certainly neces-
sary to integrate external factors (namely the specification of the order
by the customer). Since the variety of possible orders is typically large



14 1 Defining Revenue Management

and/or the holding costs are extremely high (otherwise a make-to-order
production would not make sense in the first place) inventories of fin-
ished goods are avoided. Standardization of the product range is pos-
sible by focusing on the inputs. For instance, if only a limited number
of dimensions is used to specify an order, or production uses only a
moderate number of machines these dimensions (or machines) form a
suitable basis for forecasting and optimization models. It goes without
saying that heterogeneous valuations can easily be exploited with MTO
– in the extreme every order has got a uniquely determined price (and
consequently, value).

Rehkopf and Spengler (2005a) present an overview on the RM prob-
lem in MTO environments and Defregger and Kuhn (2004) outline a
model and a heuristic. Spengler et al. (2007, see also Rehkopf 2006,
Rehkopf and Spengler 2005b) apply RM techniques to the iron and
steel industry. In an empirical study Kuhn and Defregger (2005) find
that many paper, steel and aluminum companies satisfy preconditions
for a gainful application of RM, but actual implementations are rare.
This paper also contains a wealth of references, considering as well
related problems if products are made to stock.

Miscellaneous Industries

restaurant RM has recently received some attention, see Kimes (2005)
for an overview. Bertsimas and Shioda (2003) address this problem in
a “classic” way, focusing on whether to immediately accept demand or
not (controlling for waiting times and “fairness”), while other authors
consider somewhat more restaurant specific methods like meal duration
control (see e. g. Kimes et al. 2002) and demand based pricing (see e. g.
Kimes and Wirtz 2002).

Other areas of application include visitor attractions (Hoseason
2006, Leask et al. 2005), computing centers (Dube et al. 2004), telecom-
munication networks (Humair 2001, Lindemann et al. 2003, 2004), in-
ternet service providers (Nair and Bapna 2001), natural gas transport
and storage (Dörband 2005, Dörband et al. 2003), golf courses (Kimes
and Schruben 2002, Kimes and Wirtz 2003) and tickets for sports,
entertainment and other events (Barlow 2005, Cheung 1980, Volpano
2003). In this book we will furthermore indicate applications in the
health care industry (see page 82), and broadcasting companies will be
extensively covered in chapter 6.

Two papers refer to somewhat special organizations as RM users:
Cook (1998) mentions a project conducted with the US Navy where
training facilities have to be booked in advance and it is also gainful to
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reserve some capacity for requests of high yield which typically arrive
very late. Metters and Vargas (1999) consider a pricing problem at a
child care center.

1.4 Structuring the Field of Revenue Management

Having outlined the wealth of industries that successfully apply RM
techniques we will now describe the problem areas that are covered by
the term “Revenue Management”. We begin with capacity control (and
a closely related aspect that is called overbooking), which is at the heart
of RM. Sometimes RM and capacity control are even treated as syn-
onyms. Related problems are subsumed under the term “dynamic pric-
ing”. We will discuss dynamic pricing and auctions in subsection 1.4.2.
In subsection 1.4.3 we finally present various approaches from the lit-
erature to classify capacity control, dynamic pricing and the term RM
itself. We will not resolve the conflicting points of view but clarify the
perspective taken in this book.

1.4.1 Capacity Control and Overbooking

Capacity Control

The seminal example from the airline industry describes one of the core
problems of RM: Low fare passengers book relatively early. The same
units of capacity that are needed to satisfy their requests could though
be used for later arriving requests of higher value as well. We thus will
want to limit access of certain products to the scarce capacity in order
to protect some amount to be spent for other products. This strategy
is called capacity control.

The capacity control problem boils down to the decision whether a
given request should be accepted or not. If we accept, we gain a certain
amount of money (e. g. a ticket price minus a cancellation refund) and
an uncertain amount of money that basically depends on requests and
our decisions in the future. If we reject, the certain amount of money we
get will be lower (actually zero in most cases), but our potential revenue
in the future will probably increase because capacity was protected for
later arriving requests of higher value. At the core of capacity control
is thus the question if the revenue gain outweighs the opportunity costs
of accepting, which are fundamentally the costs of displacing higher
valued requests that (supposedly) arrive in the future.
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In the current RM literature two ways of capacity control have been
discussed: One option is to simply limit the number of requests we
are going to accept for a certain product, i. e. for each product we
decide about the amount of resources that we will (at most) dedicate
to that product. This is called booking limit control, which is discussed
extensively in section 2.2. Another option is to compute or estimate
the opportunity costs of accepting a given request and to accept if and
only if these opportunity costs are exceeded by the revenue gains of
accepting. This can be done e. g. by estimating the opportunity costs
of one unit of each resource. Such estimates are called bid prices. We
will discuss bid prices in section 2.3.

Overbooking

We have noted in section 1.2 that some form of customer integration
is a prerequisite for RM problems. As a consequence, we cannot start
production of the good or service unless the customer supplies one
or more necessary external factors. In some businesses it is frequently
the case that the customer does not provide these factors in the way
that was expected – or even not at all – with or without prior notice.
There is an abundance of examples for such a customer behavior: In the
airline industry for instance, passengers may upgrade from economy to
business class, rebook flights, cancel their trips, or simply do not show
up at check in at all though holding a ticket (this behavior is called
a no-shows). Hotel guests may upgrade, cancel, rebook, not show up
or leave earlier than planned (so called early departures). A rental car
may be returned earlier than expected. In the following we will simply
use the term “cancellation” to refer to any situation where customers
change their plans with respect to capacity usage and give a (timely)
notification about that change; analogously we use “no-show” to signify
the same situations where the notification comes too late or not at all.

In some of the aforementioned cases customers have to pay a can-
cellation (rebooking, early departure, . . . ) fee or a no-shows penalty,
in other cases they may even be refunded fully or in part (in case they
have paid in advance). It is however important to stress that regardless
of fees, penalties or refunds associated with cancellations and no-shows
we always run the risk that scarce resource capacity is not used opti-
mally (because we have already missed some opportunities to use the
units of capacity which became unexpectedly available) or even wasted
(especially in case of no-shows). It is thus reasonable to compensate for
cancellations and no-shows by voluntarily accepting more requests that
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can be satisfied using the given amount of capacity. An airline for in-
stance may accept request for 110 “virtual” seats albeit the respective
cabin of the aircraft is only equipped with 100 “physical” ones. This
strategy is called overbooking.

Since we accept more requests than we (in principle) can satisfy,
given the uncertainty of demand, cancellations and no-shows, over-
booking may lead to oversales. For example out of the 110 passengers
who are booked on a particular aircraft cabin (economy, say) with only
100 seats, 105 might show up at check in. This is not necessarily a se-
vere problem; if e. g. the aircraft also has a business or first class cabin
which is not sold out five economy passengers will be happy to be up-
graded and take a seat in one of the higher class cabins while having
paid the economy price. If no seats are available though, airlines will
frequently ask passengers to voluntarily refrain from flying (and take
the next flight) in exchange of a small fee, drinks and meal vouchers
etc. Finally, the airline may have to downgrade first or business class
passengers to economy, or some passengers may even suffer from what
is called denied boarding (or – less politely – “bumping”) in the airline
industry. Similar options and consequences exist in other businesses.

The downside of overbooking is thus the risk of oversales, which pos-
sibly leads to that customers experience a lower level of service than
they expected – or no service at all. Both consequences will result in a
loss of customer goodwill, contractual or legal penalties and compensa-
tions like hotel vouchers. The benefits of overbooking thus have to be
contrasted with these costs. We will discuss overbooking in great detail
and review state of the art-models and methods in section 2.4.

1.4.2 Dynamic Pricing and Auctions

Pricing as a Means to Drive Demand

The RM problem arises in the first place for the following reasons:
Demand for capacity is likely to be very different from the available
amount, it is not feasible to adjust this amount in the decision period
and there is some heterogeneity in the demand such that the valuations
of a given unit of capacity differ. Thus far we have discussed capacity
control as a means to drive the usage of the scarce capacity in a revenue
maximizing way. Capacity control considers demand as an exogenous
force and basically our only option (yet a powerful one) is to voluntarily
turn down demand in the hope to thereby protect scarce capacities for
an even more profitable use later. It is important to stress that under
this point of view no problem arises if demand is likely to be lower than
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capacity – in this case we will just accept all requests as they arrive,
i. e. we will pursue a “first come first serve” (FCFS) policy.

Shifting our perspective, we can look at demand as a phenomenon
which is admittedly outside our company, yet partly controllable by
certain decisions and actions. For instance, if an airline notices that
demand for a discount fare is high and seats which can be used to ac-
commodate later arriving business passengers’ bookings will be blocked
by low yield requests, it can decide to stop accepting low fare requests
(this would be an example of capacity control). Alternatively, it can
decrease the attractiveness of the discount fare, e. g. by taking away
free meals, frequent flyer miles or introducing cancellation and rebook-
ing penalties – or simply raise the price, thereby not only decreasing
discount demand, but also lowering the opportunity costs of displacing
later booking high yield passengers. If we assume that demands for the
low and the high fare are not independent – e. g. if we decrease the high
fare customers who would have bought the low yield product will pur-
chase the high fare instead –, it may also be an option to analogously
increase the attractiveness of the high fare.

In the context of RM only the price is considered as a means to in-
fluence demand. Two classes of methods are discussed in the literature,
differing with respect to the degree of control of the pricing process:
Dynamic pricing and auctions.

Dynamic Pricing

Dynamic pricing empowers management with full control of the prices.
Prices for products are set either choosing from a (bounded or un-
bounded) real interval or from a finite set of values (e. g. e 19, e 29,
e 39, . . . ). Since every company has to set a price for any product at
least once and a constant price is obviously not a very active instru-
ment to control demand (albeit this may be reasonable or even optimal
under some circumstances) we are interested in cases where the prices
change over time with respect to certain conditions (remaining capac-
ity, demand to come etc.), hence the term dynamic pricing.

A classic example for dynamic pricing is retailing of fashionable
clothing. The merchandise will be practically worthless at the end of
the season, on the other hand the items have to be ordered months
before demand materializes and it is virtually impossible to reorder. It
is thus necessary to stimulate demand by pricing decisions in a way
such that the stock is cleared until the end of the season. Needless to
say that this problem can feasibly be solved using a single price, but it
is easy to imagine that customers who desire to purchase the clothes
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at the beginning of the season (when they are still “hot”) are willing
to pay a premium price that is well above that average. A single price
policy may thus be suboptimal in revenue terms and a dynamic pricing
policy can be used to drive demand in a revenue maximizing way.

It is important to stress that dynamic pricing strives for setting the
prices in a way such that capacity is exhausted (on average) at the end
of the decision period, yet no demand has to be turned down. Ideally,
we are thus able to accept requests in an FCFS manner and the capac-
ity control problem is implicitly solved by applying dynamic pricing.
But as e. g. Bitran and Caldentey (2003) point out, this equivalence
between demand and sales can in general only be created if the price
setting decisions are practically unrestricted, i. e. the price can be any
non-negative number, prices can be changed at any time and arbitrar-
ily often at negligible costs. On the other hand, if prices can only be
changed once a month (say) it will be difficult to control demand in
such a precise way.

Auctions

If an auction is used to set prices, the price is more or less an emergent
result of a bidding process. The total revenue and the extent to which it
can be influenced by the bid-taker depend on the actual implementation
of the auction and mainly on how the winners and the prices to be
paid by the winners are determined. For instance, in a typical auction
a single item is to be sold, the highest bidder wins and has to pay
exactly the amount of her bid. Another way to auction the single item
would be that the highest bidder wins but has to pay a price that
is equal to the second highest (i. e. the first non-winning) bid1. It is
obvious that the same bids will yield a lower revenue in the latter case,
but we can expect the bids to be higher if the bidders can be sure that
they will always pay a price that is strictly lower than their own bid
(if they win). Other aspects that influence the revenue earned in an
auction are e. g. reservation prices and entry fees.

It seems that auctions solve the capacity control problem as well –
a request will be fulfilled and allocated capacity if and only if it is a
winning one. It may be a difficult problem to determine the winners,
though. To see this, suppose that winners have to pay the amount they
bid and we are going to determine the winners in a way that maximizes
1 The former type of auction is called an English auction, the latter is called a

Vickrey auction. See e. g. Milgrom (1989) for an introduction to various forms of
auctions.
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our revenues. If we auction, say, k seats on an airplane and all bids are
for a single seat, winner determination is trivial and equivalent to that
the k highest bidders win. If the bids are for varying amounts of seats
it is already a knapsack problem (which is NP-hard) to determine the
allocation of seats to bids that maximizes the total revenue and the k
highest bids are not necessarily winning. The difficulty of the problem
can be attributed to the fact that the items (seats) are indivisible in
this example (i. e. it is not feasible to award arbitrary fractions of items
to bids). If a number of homogeneous indivisible items are sold in an
auction and participants can bid for an arbitrary number of items we
speak of a multi-unit auction. The problem gets even more difficult if
bidders are presented a variety of items and can bid on arbitrary in-
separable bundles of these – for instance, a passenger who wants to
travel from Dresden to London via Frankfurt may bid for a bundle of
two tickets, one for each part of the journey. Such a setting is called
package bidding or a combinatorial auction. The capacity control prob-
lem can thus still be present in the very challenging form of the winner
determination problem. The latter may be somewhat simpler, though,
because it is solved after the uncertain demand has materialized fully
or in part.

In the following we will use the term pricing to subsume both dy-
namic pricing and auctions.

Applicability of Pricing vs. Capacity Control

Some industries are not suited for dynamic pricing strategies, while in
others it is unreasonable to execute capacity control. If the competition
in an industry is fierce, we have an example for the former group –
under such circumstances companies can only match their competitors’
prices and it is virtually impossible to use the selling price as a control
variable.

In some industries, demand may not be elastic with price for other
reasons. With the words of Mayr (2005), responsible for RM and Pricing
at Sixt, a leading German car rental company: “Nobody will travel to
Leipzig airport and rent a car just because the local station lowers
the rate at weekends.” – much like demand for business air travel,
demand for rental cars (at least at airports) is derived demand and
thus of limited sensitivity with respect to price. This is not to say that
the price of a rental car is an irrelevant attribute, but it is probably
not the only one and a capacity control strategy using other control
variables should be considered as well.
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Even if price is a key driver of demand companies may choose to keep
the price for the same product pretty constant over time for strategic
reasons. German cruise liner operators, for instance, report that holi-
daymakers are easily annoyed if they meet somebody at the bar who
has paid significantly less for virtually the same trip. These companies
are thus eager to keep the prices for a given ship, length-of-stay and
cabin category nearly constant over time (or even refund passengers
who have paid a higher price) because the ability to differentiate the
product “cruise holiday” further is somewhat limited and price changes
are thus difficult to explain to customers.

Finally, the process of changing prices and communicating them
may be too expensive. Klein (2005) mentions the example of package
holidays, which are frequently marketed using printed catalogs. In this
case, it is simply too costly to reprint and redistribute new ones after
a price change. It is, however, possible to markdown these products
through the world wide web or – with a rather limited scope – posters
in travel agencies as “last minute” trips close to the date of travel.

On the other hand, due to the business environment in some in-
dustries it may not be reasonable to implement capacity control. For
instance, reconsider a retail store selling perishable items like food,
fashionable clothing or electronics. Food will have gone to waste after
a short period of time. Clothing and electronics become less valuable
in the eyes of customers over time and since shelf space is a scarce re-
source, these items will sooner or later be replaced by newer goods of
higher value to the customer. In all cases the predominant aspect is not
that early arriving customers purchase items that can be sold later at
higher prices – on the contrary, the core of the problem is that demand
may decline so fast that we are not able to clear our stocks and there-
fore have to bear salvage costs, e. g. opportunity costs for selling goods
at bargain prices. We can summarize the difference between airlines (as
typical users of capacity control) and retailers as follows: In the former
case the opportunity costs of having sold a unit of capacity (a seat) are
driving the problem, while in the latter the key aspects are the oppor-
tunity costs of not having sold a unit of capacity. The retailing setting
thus clearly demands for pricing decisions, not for capacity control.

In some industries both capacity control and dynamic pricing may
reasonably be implemented. We have frequently mentioned airlines as
routine users of capacity control, but the advent of low cost carriers
(LCCs, also know as low fare or no frills airlines) has demonstrated
the power of dynamic pricing in that industry. The sales process of
a typical LCC can be described as follows (cf. Dunleavy and Wester-



22 1 Defining Revenue Management

mann 2005): Only one way-tickets for non-stop flights will be sold, i. e.
albeit you can buy two tickets, say, one for a flight from Dresden to
Frankfurt and another from Frankfurt to London, you will have to dis-
embark in Frankfurt, claim your baggage and check in again, because
the two flights are treated as absolutely independent by the carrier. In
particular, you personally bear the risk of missing your connection in
Frankfurt because your feeder flight is late. In contrast to a “classi-
cal” full service carrier (FSC) which certainly offers connecting flights
traversing a complex network, the LCC thus basically deals with a mul-
titude of isolated problems each related to a single non-stop flight. For
each flight, there is a predefined set of prices, say, e 19, e 29, e 39,
. . . , e 199. Sales will start with one of the lowest prices and every
now and then prices will be increased to the next-higher step. Ideally,
prices will never decrease – this is called markup pricing. It is impor-
tant to stress that the price is the only attribute of the product that
changes over time – besides the price the only difference (imposed by
the sales process we have just described) between the e 19 and e 199
fares is that the former will only available long before the flight date,
while the latter will only be available close to departure. In particular,
the same conditions of purchase, rebooking, cancellation and refunds
etc. apply to all fares. LCCs therefore only implicitly segment their
customers through self selection; for instance, leisure travelers with a
lower willingness to pay than business travelers tend to book earlier
and thus indeed encounter lower prices than the latter. Discussing the
LCC business model in more detail is out of the scope of this book,
so we refer the interested reader to Gorin and Belobaba (2004), who
evaluate the impact of a low fare entrant to an incumbent FSC by sim-
ulation and to Tretheway (2004), who discusses the impact for FSCs
in general due to the advent of the LCCs. Gillen and Morrison (2003)
develop a model to analyze the competitive impact of LCCs. Forsyth
(2003) studies the effect of low cost entries in the Australian market.
Lawton (2002) focuses on strategic concepts for LCCs; and the very
readable book by Calder (2003) covers the complete history of the low
fare business.

Other examples for industries where both capacity control and dy-
namic pricing methods can be implemented include broadcasting, cargo
and make-to-order (MTO) companies. Broadcasting RM will be exten-
sively discussed in chapter 6, where we highlight the similarities to
cargo and MTO in section 6.6.

Note that while our discussion above focused on dynamic pricing
the reasoning will often not change much if auctions are considered:



1.4 Structuring the Field of Revenue Management 23

In a competitive market dynamic pricing is inapplicable because the
sellers are price takers – the argument obviously holds for an auction
as well. If discount prices set by rental car companies do not stimulate
additional demand, neither will the chance to make a bargain in an
auction. If the means of communicating prices do not allow for rapid
and cheap changes, there seems to be no adequate infrastructure to
conduct an auction either.

1.4.3 Relationship of RM, Capacity Control and Pricing

Capacity Control vs. Dynamic Pricing

A unique structure of the RM field has not yet been established in the
literature. In particular, the relationship between capacity control and
dynamic pricing is viewed differently. We have already demonstrated
that in very unrestricted settings dynamic pricing can be considered as
a special case of capacity control where the selling prices are used as
control variables. On the other hand, we might also argue that capacity
control is a special case of dynamic pricing: Capacity control deals with
the question if a given request should be accepted or not. This question
can as well be answered by setting prices. If we want to reject a request
we set the price to an arbitrarily high value such that demand effec-
tively vanishes. The more requests we want to accept, the lower we set
the price. This reasoning is as well limited to fairly unrestricted settings
allowing for arbitrary price changes at any time, though. Noteworthy
in this context, Klein (2007) has pointed out that if resource-specific
bid prices (i. e. estimates of the opportunity costs of a unit of each
resource) are used for capacity control this can equivalently be consid-
ered as dynamic pricing of resources (instead of products). Since the
bid prices are only used internally for the sole purpose of capacity con-
trol, the necessary flexibility with respect to (bid) price changes can
safely assumed to be given and capacity control by resource-specific
bid prices can indeed be considered to be a special case of dynamic
pricing. However, there are yet other means of capacity control, so this
argument does not finally conclude the question.

In more constrained situations the distinction (or relationship) of
dynamically changing selling prices of products and capacity control
seems to be less clear. Reconsider the LCC business model: We want
to use some predefined prices (like e 19, e 29, e 39, . . . ) for a single
seat and basically face the problem to decide when to rise the price from
e 19 to 29, when to take the step from e 29 to 39 etc. This naturally
appears as an implementation of a dynamic pricing policy because the
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only attribute of the product that ever changes is the price. However,
since the prices are chosen from a given and finite set of, say, n prices
we might as well consider the described procedure as a capacity control
policy used for problem n (clearly distinct) products with the additional
restriction that there is at most one product available at any time. This
is also reasonable, because taking each price step indeed has got the
flavor of closing a fare class and opening another in a “capacity control”
way. It is thus difficult to tell whether the LCC way to control prices
is a special case of capacity control or of dynamic pricing.

Finally, we have already mentioned various examples where capac-
ity control is not applicable (but dynamic pricing) is and vice versa:
Retailing fashionable items is a good example for dynamic pricing but
clearly not suited for capacity control, while demand for rental cars,
cruises and package holidays can usually not be controlled using only
the price.

Classifications of the Field

In light of these arguments divergent classifications of the field of RM
are not surprising. We will now present some of the major classifications
and clarify our point of view.

Boyd and Bilegan (2003) claim that RM (using that term as a syn-
onym for what we call capacity control) and dynamic pricing are dis-
tinct concepts. Their major arguments can be summarized as follows:

• Dynamic pricing is typically applied to single, isolated products with
limited availability (e. g. a fashionable shirt), while capacity control
has to deal with managing multiple products which share one or
more common resources with limited availability. This is at best
demonstrated by full service airlines which run complex networks
and offer connecting flights on the one hand and low cost airlines
which only offer isolated non-stop flights on the other: The former
implement capacity control, the latter dynamic pricing (see our dis-
cussion of the LCC business model on page 21).

• Furthermore, dynamic pricing requires to explicitly model the de-
pendency of demand on prices. This is possible, but not necessary
for capacity control. Together with the previous observation this im-
plies that forecasting and optimization methods for dynamic pricing
and capacity control will be fundamentally different.

• Prices are often set with objectives other than demand control in
mind, e. g. a company may strategically decide to keep prices lower
than needed to ensure full capacity utilization in order to prevent
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market entry of new competitors. Another example is given by Biller
and Swann (2006), who developed a pricing method for General
Motors (GM). GM’s problem stemmed from the corporate average
fuel economy regulation in the United States – the emissions and
fuel consumption of the total number for cars sold by a certain
manufacturer is limited by law. GM thus decided to increase or
decrease prices to drive demand away from cars with high emissions
to more environment-friendly cars.

• Pricing and capacity control are often located in entirely different
departments of the organization.

However, Boyd and Bilegan (2003) acknowledge that even though mod-
els (and consequently, methods) of capacity control and dynamic pric-
ing may different, both “are certainly related, and if the underlying
products are identical, the problems are fundamentally equivalent.”
(p. 1379, emphasis added) – this is what we have demonstrated above.
Boyd and Bilegan’s point of view is shared e. g. by Klein (2005).

Talluri and van Ryzin (2004b) pick up the point that both capacity
control and dynamic pricing are obviously related and differentiate the
field of RM into quantity-based and price-based RM, where the for-
mer includes capacity control and overbooking and the latter dynamic
pricing and auctions (see Figure 1.1).

Revenue Management

Quantity-based RM
– Capacity Control
– Overbooking

Price-based RM
– Dynamic Pricing
– Auctions

Fig. 1.1: Revenue Management and Dynamic Pricing (Talluri and van
Ryzin 2004b)

The book by Phillips (2005) covers the whole field of “Pricing and
Revenue Optimization”, and there certainly is more to pricing in gen-
eral then dynamic pricing and auctions. The book thus discusses other,
more general topics, but there is as well an extensive part devoted to
what Phillips calls “Pricing with Constrained Supply”. The structure of
that subject as given by Phillips (2005, Fig. 1.1 on p. 15) is depicted in
Figure 1.2. We see that like Boyd and Bilegan (2003), Phillips (2005)
basically considers Revenue Management as a synonym for capacity
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control and overbooking, but in contrast to the former, RM is a spe-
cial case of pricing (with constrained supply). Phillips (2005) certainly
notices that prices are fixed for capacity control, and demand is thus
driven by controlling the availability of products (with possibly dif-
ferent prices). He gives an interesting argument to subsume capacity
control under pricing anyway: Capacity control as a distinctive way
of controlling the selling prices of products “is a legacy from revenue
management’s origin. The passenger airlines that pioneered revenue
management in the 1980s needed to utilize [. . . ] the booking controls
embedded in their reservation systems as the primary mechanism for
controlling the fares [. . . ]” (p. 120).

Pricing with Constrained Supply

Revenue Management
– Capacity Control
– Overbooking

Markdown Management Customized Pricing

Fig. 1.2: Pricing with Constrained Supply (Phillips 2005, cf. Fig. 1.1,
p. 15)

Similarly, Elmaghraby and Keskinocak (2003) also consider capac-
ity control as a special case of dynamic pricing. Bitran and Caldentey
(2003) present a “generic” conceptual model of the RM problem which
incorporates price-sensitive demand and thus allows both for the mod-
ification of prices over time as well as for voluntarily rejecting demand.
According to their point of view, this model basically is a dynamic
pricing model, and capacity control is considered as a special case with
static prices.

It remains to clarify the position we take up in this book. We have
already mentioned examples where capacity control is applicable but
pricing is not (and vice versa), so it seems to be important to distin-
guish both concepts and we can (in general) not claim that one is a
special case of the other. Yet we certainly acknowledge that there are
examples where a distinction between capacity control and dynamic
pricing is somewhat ambiguous. In the airline industry, for example,
both strategies are applicable, and the LCC sales process with ever
increasing prices taking predefined steps can be seen as a special case
of both capacity control and dynamic pricing.
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If we consider retailing of fashionable goods as a classic example
for dynamic pricing where capacity control cannot be applied we see
that not all four characteristic aspects of a RM problem are satisfied,
namely it is not necessary to integrate external factors. Consequently,
pricing is discussed intensively for make-to-stock production as well (see
e. g. Elmaghraby and Keskinocak 2003, Swann 2001 for an overview),
where there is no need to integrate factors supplied by the customer
either. Some applications of dynamic pricing are thus not covered by
our defining characteristics while others (e. g. LCCs) are. It is further-
more interesting to note that “hybrid” problems have recently been
considered in the literature where a capacity control and a pricing
problem have to be solved simultaneously (see e. g. Gans and Savin
2005). We therefore consider RM (in the strict sense) as a synonym
for capacity control and overbooking. RM as a broader concept sub-
sumes those problems on the one hand and pricing on the other hand.
We yet stress that mixtures are possible: Companies like LCCs solve
a capacity control problem by setting selling prices, capacity control
by resource-specific bid prices can be seen as pricing capacities, and
simultaneous approaches to interdependent capacity control and pric-
ing problems have also been proposed. Figure 1.3 clarifies our point of
view. The upper half of that figure is very similar to Figure 1.1 (based
on Talluri and van Ryzin 2004b); we only have highlighted that some
authors treat RM and capacity control as synonyms, separating it from
pricing, and we have avoided the term “quantity-based RM”, which we
find somewhat ambiguous: A price is (in a rather technical sense) also
a quantity, and pricing is also concerned with matching the demanded
quantities with the given supplies.

1.5 Purpose and Scope of this Book

In this book we focus on situations that satisfy all four characteristic
aspects mentioned in section 1.2, i. e. we extensively cover capacity
control and present the models and methods of overbooking in some
detail. The reader interested in dynamic pricing is referred to the ex-
cellent books by Talluri and van Ryzin (2004b) and Phillips (2005) as
well as the surveys by Bitran and Caldentey (2003), Boyd and Bilegan
(2003) and Elmaghraby and Keskinocak (2003). Various aspects related
to the design of auctions are e. g. discussed by Jehiel and Moldovanu
(2003), McAfee and McMillan (1987) and Rothkopf and Park (2001);
see also the survey by Klemperer (1999) and Talluri and van Ryzin
(2004b, ch. 6). Multi-unit and combinatorial auctions seem to be es-
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Revenue Management

RM in the strict sense
– Capacity Control
– Overbooking

Pricing
– Dynamic Pricing
– Auctions

Mixtures
– Capacity Control by Selling Prices
– Bid Prices as Pricing of Capacities (Klein 2007)
– Simultaneous Capacity Control/Pricing problems

Fig. 1.3: Relationship of Revenue Management, Capacity Control and
Pricing

pecially relevant in the RM context. The former are e. g. treated by
Ausubel (2004) and Elmaghraby (2005). The literature on combinato-
rial auctions is surveyed by de Vries and Vohra (2003); see also the
edited volume by Cramton et al. (2006) for an overview. Jehiel and
Moldovanu (2003) also present an overview of various forms of auc-
tions including multi-unit and combinatorial ones.

The contribution of this book to the field of RM (in the strict sense)
is twofold: An established set of instances to evaluate RM techniques is
not yet available. To the best of our knowledge we are the first to rig-
orously describe aspects related to instance generation in chapter 4. A
crucial part of an RM test bed is a generator for stochastic demand data
streams. We develop such a data stream simulator in chapter 5. Sec-
ondly, we cover the RM problem in broadcasting companies in chapter 6
in great detail. Broadcasting companies are rarely treated in the cur-
rent RM literature. Furthermore, the business environment of TV or
radio stations features so called flexible products which have only re-
cently attracted attention in the RM community. A flexible product
leaves the seller some degrees of freedom with respect to the produc-
tion of the requested good or service. We have, for example, already
mentioned cargo RM where the shipper is typically free to choose the
route and travel times of the transported goods as long as the final
destination is reached on time.

The remainder of the book is structured as follows: We review the
state of the art of capacity control and overbooking (RM in the strict
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sense) in the following chapter. Chapter 3 covers recent advances of the
field, in particular RM models and methods that explicitly take cus-
tomer choice behavior into account as well as flexible products. Chapter
4 introduces issues related to the evaluation of RM techniques using a
standard test bed of instances. A crucial part of such a test bed is a
demand data simulator which is developed in chapter 5. Chapter 6 is
dedicated to the RM problem in broadcasting companies. We summa-
rize our findings and outline future research opportunities in chapter 7.



2

Capacity Control and Overbooking

In this chapter we review the state of the art of capacity control and
overbooking. Our exposition is complemented by the surveys and in-
troductory articles due to Bertsch and Wendt (1998), Boyd and Bile-
gan (2003), Corsten and Stuhlmann (1998), Kimes (1989a,b), Kimms
and Klein (2005), Klein (2001), McGill and van Ryzin (1999), Netes-
sine and Shumsky (2002), Pak and Piersma (2002) and Tscheulin and
Lindenmeier (2003); see also the books by Daudel and Vialle (1992,
1994), Phillips (2005) and Talluri and van Ryzin (2004b). Comprehen-
sive overviews on earlier results are contained in Belobaba (1987a),
Williamson (1992) and Weatherford and Bodily (1992).

2.1 Introduction

We have noted in section 1.2 that there are four conditions which give
rise to RM problems:

(1) Some form of integration of the customer into the production pro-
cess is necessary.

(2) The flexibility to adjust the available resource capacity to demand
is very limited.

(3) Customers are heterogeneous and thus show different valuations of
products.

(4) The product range is standardized and remains unchanged over a
longer period of time.

By (1), incoming requests cannot be fulfilled from stock. By (2),
we may be forced to turn down demand, because the available capacity
does (probably) not suffice to satisfy demand. (3) implies that the same
unit of resource can be used to produce goods with different revenues
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(or contribution margins), therefore it is not trivial to decide which re-
quests should actually be accepted or rejected. (4) allows us to forecast
future demand in a reasonable way, and to solve the decision problem
of acceptance and rejection of demand we just outlined by a suitably
defined capacity control policy. The purpose of capacity control is to
limit access of different products (with different values) to the scarce
resources, especially by reserving capacity for requests of high values
that (supposedly) arrive in a later point in time.

Capacity control policies can be distinguished based on the type of
control variables that are used into booking limit controls (section 2.2)
and bid price controls (section 2.3), where we subsume approaches
based on approximate dynamic programming techniques under the lat-
ter term1. When we discuss these types of policies, we will assume that
the capacities of the resources are given and fixed, and that we will
never accept more requests than we are able to satisfy given the lim-
ited resource availability. As we have described in subsection 1.4.1 it is
common in many industries to intentionally accept more requests that
can (in principle) be satisfied, though. This practice of overbooking is
discussed in section 2.4. In our exposition we will always assume that
our capacity control and/or overbooking decisions do not influence cus-
tomer behavior. For instance, a customer whose request for a flight at
e 100 is rejected will not “buy up” and purchase a flight at e 200
instead. We relax this assumption in the subsequent chapter.

Since many references focus on airlines we will adopt three terms
from that industry: Leg, itinerary and fare. We have already used
itinerary and fare in their obvious meanings, it seems nevertheless
worthwhile to define these three concepts more rigorously, describe their
relationships and clarify how we use them. A leg is a non-stop flight
from an origin O to a destination D such that passengers may board
and disembark at both O and D. A leg is thus an atomistic resource
used in the production of flight transport services. A flight network
operated by an airline consists of many legs, which can be combined to
a multitude of itineraries. Airlines charge different prices for the same
itinerary, e. g. based on advance purchase or refunding restrictions. In
the context of a given itinerary, these price levels are called fares. The
terms leg, itinerary and fare can analogously be used in the cargo busi-
ness or for other modes of transport, e. g. railways. A combination of an
itinerary and a fare will be called a product. More generally, a product
is designated by production coefficients rij ≥ 0 (i. e. rij is the amount
1 We will discuss a third type of policies (offer set policies) which are only useful

for choice-based RM in section 3.2.
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of resource i = 1, . . . ,m used by product j = 1, . . . , n) and a price vj.
Products may have the same production coefficients (i. e. it is allowed
that rij = rik, i = 1, . . . ,m for j �= k). In an airline example m is the
number of legs in the network and if product j corresponds to a booking
of one seat on a certain itinerary we have rij = 1 if that itinerary uses
leg i (and 0 otherwise). If we discuss two or more products with the
same underlying itinerary (production coefficients) which is clear from
the context we frequently use the word “fare” as a synonym for prod-
uct. This is especially the case for single leg problems (i. e. problems
with m = 1) where there is only one itinerary.

2.2 Capacity Control by Booking Limits

In this section, we will first introduce the notion of a booking limit. Sec-
tion 2.2.1 will contain some models, but we will defer the discussion of
methods to the literature review (subsection 2.2.3). In subsection 2.2.2,
we will discuss nested booking limits in great detail; but as before, meth-
ods to actually compute booking limits will not appear before 2.2.3.

2.2.1 Introduction

A booking limit is the maximal amount of a particular product to be
sold. If n is the number of products and bj ≥ 0 is the booking limit
of product j = 1, . . . , n, we will accept demand for product j until
the total amount requested is greater than or equal to bj. Denote the
revenue (or contribution margin) of product j by vj > 0. Let m be the
number of resources, ci the capacity of resource i, and rij be the amount
of resource i consumed by product j. If we assume a deterministic
setting and demand for product j is given by dj ≥ 0, then Model 2.1
describes a simple way to determine booking limits. This model assumes
a single decision period; a multi-period model is e. g. presented by
Kimms and Müller-Bungart (2003).

Model 2.1 is an LP, which can efficiently be solved using standard
software. This simple structure of the model is however based on two
additional assumptions:

• The amount of a product j is measured on a continuous scale, thus
the booking limit bj can be any non-negative real number. If we
consider e. g. an airline RM problem, we will have to deal with
integer booking limits bj denoting the maximum number of seats on
any aircraft i = 1, . . . ,m devoted to product j. In this case, (2.2)
has to be replaced by bj ∈ N0, and the problem becomes NP-hard.
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Model 2.1: Deterministic Model to Obtain Booking Limits

max
n∑

j=1

vjbj

s. t.
n∑

j=1

rijbj ≤ ci i = 1, . . . , m (2.1)

0 ≤ bj ≤ dj j = 1, . . . , n (2.2)

• It is allowed that requests are only partly satisfied. For example, a
request of a family for three seats on an aircraft (i. e. a request for
three units of a product j) can be accepted by allocating only two
seats to that request, yielding a revenue of 2vj .

An extension of the model to stochastic demand is straightforward.
Suppose that demand Dj is a discrete random variable, thereby relax-
ing the first of the aforementioned assumptions. As usual, we assume
that the objective is to maximize expected revenues. This is formu-
lated as Model 2.2. A similar model for continuous demand can easily
be derived.

Model 2.2: Non-Linear Probabilistic Model to Obtain Booking Limits

max
n∑

j=1

vj

⎡
⎣bj−1∑

k=1

kP (Dj = k) + bjP (Dj ≥ bj)

⎤
⎦

s. t.
n∑

j=1

rijbj ≤ ci i = 1, . . . , m (2.1)

bj ∈ N0 j = 1, . . . , n

Model 2.2 is non-linear, though. To obtain a linear model let bj be
an upper bound for bj , e. g. derived from (2.1):

bj = min
i=1,...,m

ci/rij
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We define the decision variable:

xjk =

{
1 if the booking limit of product j is set to k

0 otherwise

j = 1, . . . , n, k = 1, . . . , bj (2.3)

Naturally, we require that
∑bj

k=1 xjk ≤ 1 for each j and if
∑bj

k=1 xjk = 0
the booking limit is zero as well. The booking limit of product j is then
formally defined as:

bj =
bj∑

k=1

kxik

The expected revenue obtained if the booking limit of product j is set
to k is:

vjk = vj

[
k−1∑
l=1

lP (Dj = l) + kP (Dj ≥ k)

]

Model 2.32 is then a linear equivalent of Model 2.2.

Model 2.3: Linear Probabilistic Model to Obtain Booking Limits

max
n∑

j=1

bj∑
k=1

vjkxjk

s. t.

bj∑
k=1

xjk ≤ 1 j = 1, . . . , n

n∑
j=1

rij

bj∑
k=1

kxik ≤ ci i = 1, . . . , m (2.4)

xjk ∈ {0, 1} j = 1, . . . , n, k = 1, . . . , bj (2.5)

2 A considerably simpler version of this model for the airline network RM problem
is presented by Williamson (1992, p. 71).
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2.2.2 Nested Booking Limits

Introduction

The booking limits obtained from models 2.1, 2.2 or 2.3 feature an
interesting property: Due to (2.1) resp. (2.4), the available resource
capacity is partitioned by the booking limits. Figure 2.1 depicts the
situation for an airline RM problem with a single leg, i. e. m = 1. We
have intentionally chosen a very simple example with just three fares
v3 = 500, v2 = 300, v1 = 100. The available capacity c1 = 32 is parti-
tioned by the booking limits b3 = b2 = 12, b1 = 8, i. e. eight (twelve)
seats are exclusively reserved for fare 1 (fares 2 and 3, respectively).

If demand is deterministic (as assumed in Model 2.1), this is clearly
an optimal strategy. If demand is stochastic, partitioned booking limits
are suboptimal, because the 13th request for the product with the high-
est fare (500 e) will always be rejected, even if seats (that were meant
a priori to accommodate passengers paying lower fares) are vacant. Un-
der uncertainty it is obviously smarter to give passengers paying 500 e
access to the entire cabin and to accommodate passengers paying 300
e also using the eight seats which have initially been allocated to the
lowest fare class. This strategy – which is called nested capacity control,
or simply nesting – is depicted in Figure 2.2.

As we will soon see it is useful to express the nested booking limits
as resource specific booking limits bij measured in units of the capacity
of resource i. Thus bij ≥ 0 is the amount of resource i that is (non-
exclusively) available to product j. This approach is also used e. g. by
Klein (2005). In Figure 2.2, we use nested booking limits b13 = 32, b12 =
20, b11 = 8.

If m = 1 and r1j = 1, j = 1, . . . , n there is admittedly no difference
between the booking limit bj (measured in units of the product) and
b1j , but we will see that for m ≥ 2 or varying rij using bj not only
complicates the notation, but also leads to wrong results. Furthermore,
we can always compute bj from bij, i = 1, . . . ,m by

bj = b1j/r1j for m = 1
bj = min

i=1,...,m
rij>0

{bij/rij} for m ≥ 2

Note that nested booking limits cannot be obtained using static
models like 2.1, 2.2 or 2.3, because the order of stochastic arrivals is rel-



2.2 Capacity Control by Booking Limits 37

500 e 300 e 100 e

Fig. 2.1: Partitioned Booking Limits (Kimms and Müller-Bungart
2003)

500 e
300 e

100 e

Fig. 2.2: Nested Booking Limits (Kimms and Müller-Bungart 2003)
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evant in that setting, thus a dynamic model is required3. It is possible,
though, to obtain lower and upper bounds by iteratively solving static
models, see Kimms and Müller-Bungart (2004) and Müller-Bungart
(2004).

Nested booking limits can be expressed equivalently as protection
levels4. In Figure 2.2, 12 seats are protected for the highest fare class
from access of all other fare classes, 24 seats are protected for fare
classes 2 and 3 from 1, and 12 seats are protected for class 2 from 1.
Formally, we define the protection level pij of product j on resource i
to be the amount of this resource that is protected for other products,
i. e.

bij + pij = ci i = 1, . . . ,m, j = 1, . . . , n (2.6)

In Figure 2.2, we have p11 = 24, p12 = 12, p13 = 0.
For a nested capacity control we have to define a “ranking” of prod-

ucts such that product j can access resource capacity that was originally
meant to be used for product k if and only if j “ranks” (nests) above
k. Formally, we need a permutation π of the product indexes 1, . . . , n
such that j nests above k if and only if π (j) > π (k). This permutation
is called the nesting order. For the convenience of notation we define
π−1 (k) to be the product which is in the k-th position in the nesting
order, i. e. π−1 (1) is the product nesting lowest and π−1 (n) is nesting
highest.

If we have m = 1 and r1j = c for all j = 1, . . . , n and a constant c > 0
like in Figure 2.2, defining a nesting order is very simple: W. l. o. g.
we can assume that vj �= vk for all j �= k, and the nesting order π is
simply increasing by fare, i. e. π (j) > π (k) ⇔ vj > vk.

The concept of nested capacity control gets more complicated if
we allow for rij �= rik for j �= k and/or m ≥ 2. We will address these
problems shortly, but before we describe nested capacity control in more
detail for the simple “airline single leg” case m = 1, r1j = c (where we
can assume w. l. o. g. that c = 1). We will see that there are at least
two very different ways to execute control given nested booking limits
(or equivalently protection levels), namely standard nesting and theft
3 It is interesting to note that the order of stochastic arrivals is not relevant if we use

(nested) booking limits but also implement overbooking; see page 86. However,
in this case a dynamic model is necessary as well.

4 Note that there is a subtle difference in the wording: The counterpart of a booking
limit is called a protection level. This is, however, plainly a difference in language,
and there does not seem to be a particular reason not to use the word protec-
tion limit. This term is albeit never used in the English literature; everybody
uses “protection level”. In contrast Klein (2005) uses – in German – the words
“Buchungslimits” and “Schutzlimits”.
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nesting. We will then consider the “airline network” case m ≥ 2, r1j ∈
{0, c}. Finally, we will allow for arbitrary rij and deal with problems
with m = 1 and m ≥ 2 in turn.

Standard and Theft Nesting

A nested booking limit control seems to be as simple as its partitioned
counterpart, but it is not. Consider the situation depicted in Figure 2.2
where we have nested booking limits b13 = 32, b12 = 20, b11 = 8. Under
a partitioned booking limit policy, the decision rule was: “Accept at
most bj requests for product j!”. If we analogously used “Allocate at
most bij units of resource i to product j!” here, it would be possible
to accept, say, six requests for product 1 and 19 requests for product
2. That would leave only seven seats vacant for the highest fare class,
while we intended to protect twelve seats for it. This observation implies
that some booking limits – or equivalently the protection levels, see
(2.6) – have to be reduced in a meaningful way whenever a request is
accepted. Theft nesting decreases the booking limits of all products,
where standard nesting usually just decreases the booking limit of the
requested product and all higher nesting products. Table 2.1 shows
the behavior of both methods using the example from Figure 2.2 and
a given stream of requests. We index the requests by t. The columns
ct
1, b

t
1j , p

t
1j give the remaining capacity and respectively the updated

booking limits and protection levels after the t-th request has been
decided on. Note that since product 3 is nesting highest pt

13 = 0 holds
for all t, therefore this column has been omitted. Decisions that differ
between standard and theft nesting are marked with a “*”.

The idea of standard nesting is demonstrated by the requests
t = 1, . . . , 3: The first request is for product 1. One of the eight seats
shown in the front part of the cabin in Figure 2.2 is (virtually) used to
accommodate it. The number of seats that are protected for 2 and 3,
however, are unaffected, i. e. p11 and p12 remain unchanged. In t = 2, we
accept a request for product 2. It thus seems to be no longer necessary
to protect 24 seats for both 2 and 3, so we decrease p11 by one. Sim-
ilarly, we decrease both p11 and p12 after having accepted the request
for product 3 in t = 3.

Theft nesting, on the other hand, tries to protect the chosen number
of seats for the highly ranked products as long as possible by “stealing”
the seats from the lowest ranking fare classes. For instance, we see from
Table 2.1 that the first eight requests (which are all accepted) are (vir-
tually) placed in the first two rows of seats shown in Figure 2.2, thereby
“stealing” a seat from fare class 1 one at a time. As a consequence, up
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Table 2.1: Example: Standard vs. Theft Nesting

ac
ce

pt
? Standard Nesting

ac
ce

pt
? Theft Nesting

ct
1 bt

11 bt
12 bt

13 pt
11 pt

12 ct
1 bt

11 bt
12 bt

13 pt
11 pt

12

t j 32 8 20 32 24 12 32 8 20 32 24 12
1 1 yes 31 7 19 31 24 12 yes 31 7 19 31 24 12
2 2 yes 30 7 18 30 23 12 yes 30 6 18 30 24 12
3 3 yes 29 7 18 29 22 11 yes 29 5 17 29 24 12
4 2 yes 28 7 17 28 21 11 yes 28 4 16 28 24 12
5 2 yes 27 7 16 27 20 11 yes 27 3 15 27 24 12
6 2 yes 26 7 15 26 19 11 yes 26 2 14 26 24 12
7 2 yes 25 7 14 25 18 11 yes 25 1 13 25 24 12
8 2 yes 24 7 13 24 17 11 yes 24 0 12 24 24 12
9 2 yes 23 7 12 23 16 11 yes 23 0 11 23 23 12

10 2 yes 22 7 11 22 15 11 yes 22 0 10 22 22 12
11 2 yes 21 7 10 21 14 11 yes 21 0 9 21 21 12
12 2 yes 20 7 9 20 13 11 yes 20 0 8 20 20 12
13 2 yes 19 7 8 19 12 11 yes 19 0 7 19 19 12
14 2 yes 18 7 7 18 11 11 yes 18 0 6 18 18 12
15 2 yes 17 6 6 17 11 11 yes 17 0 5 17 17 12
16 1 yes 16 5 5 16 11 11 no* 17 0 5 17 17 12
17 1 yes 15 4 4 15 11 11 no* 17 0 5 17 17 12
18 1 yes 14 3 3 14 11 11 no* 17 0 5 17 17 12
19 1 yes 13 2 2 13 11 11 no* 17 0 5 17 17 12
20 1 yes 12 1 1 12 11 11 no* 17 0 5 17 17 12
21 1 yes 11 0 0 11 11 11 no* 17 0 5 17 17 12
22 1 no 11 0 0 11 11 11 no 17 0 5 17 17 12
23 2 no 11 0 0 11 11 11 yes* 16 0 4 16 16 12
24 2 no 11 0 0 11 11 11 yes* 15 0 3 15 15 12
25 3 yes 10 0 0 10 10 10 yes 14 0 2 14 14 12
26 3 yes 9 0 0 9 9 9 yes 13 0 1 13 13 12
27 3 yes 8 0 0 8 8 8 yes 12 0 0 12 12 12
28 3 yes 7 0 0 7 7 7 yes 11 0 0 11 11 11
29 3 yes 6 0 0 6 6 6 yes 10 0 0 10 10 10
30 3 yes 5 0 0 5 5 5 yes 9 0 0 9 9 9
31 3 yes 4 0 0 4 4 4 yes 8 0 0 8 8 8
32 3 yes 3 0 0 3 3 3 yes 7 0 0 7 7 7
33 3 yes 2 0 0 2 2 2 yes 6 0 0 6 6 6
34 3 yes 1 0 0 1 1 1 yes 5 0 0 5 5 5
35 3 yes 0 0 0 0 0 0 yes 4 0 0 4 4 4
36 3 no 0 0 0 0 0 0 yes* 3 0 0 3 3 3
37 3 no 0 0 0 0 0 0 yes* 2 0 0 2 2 2
38 3 no 0 0 0 0 0 0 yes* 1 0 0 1 1 1
39 3 no 0 0 0 0 0 0 yes* 0 0 0 0 0 0
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to t = 8, p11 = 24 and p12 = 12, but the booking limit b1 drops to zero
albeit only one out of the eight requests have actually been for product
1. After t = 9 it is no longer possible to protect 24 seats for products
2 and 3, simply because only 23 seats are still vacant, so p11 decreases,
while p12 remains unchanged until t = 28. Since the booking limit b1

drops to zero so early, the requests for product 1 in t = 16, . . . , 22 are
rejected.

To describe standard and theft nesting in a formal and general way,
let k be the product that is demanded by the t-th request. The update
rule for ct

i is easy to describe and independent of the form of nesting
that is used: If the t-th request is accepted, ct

i = ct−1
i − rik.

If standard nesting accepts a request, the booking limits of k and
all higher nesting products are reduced. However, we also have to keep
in mind that the booking limit of any product is always higher than
the booking limits of lower nesting products. For that reason, we e. g.
also decrease b11 in t = 15. Formally, if the t-th request is accepted, we
have5:

bt
ij =

{
bt−1
ij − rik π (j) ≥ π (k)

min
{

bt−1
ij , bt

ik

}
π (j) < π (k)

i = 1, . . . ,m, j = 1, . . . , n

(2.7)
This update rule ensures that bt

ij ≥ 0 for all i, j, t, since bt
ik ≥ rik holds

if the t-th request is accepted. Note that it is reasonable to require that
b0
i,π−1(1) ≤ . . . ≤ b0

i,π−1(n) holds for the initial booking limits b0
ij, i =

1, . . . ,m, j = 1, . . . , n if standard nesting should be used, because the
update rule will otherwise decrease the booking limits by the “min”
operation anyway. We will see that this can be a problem if m ≥ 2.

Theft nesting simply reduces all booking limits – we only have to
make sure that the booking limit does not get negative (this would e. g.
happen with b11 in t = 9). If the t-th request is accepted, we thus set

bt
ij = max

{
0, bt−1

ij − rik

}
i = 1, . . . ,m, j = 1, . . . , n (2.8)

For both forms of nesting, the protection levels are given by (2.6),
i. e. pt

ij = ct
i − bt

ij for all i, j, t.
The following table shows the performance of both methods, i. e.

the number of accepted requests and the revenue, as well as the total
number of requests:
5 For these and the following formulas cf. Klein (2005, p. 178-180).
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Products
Requests 1 2 3 Revenue
Standard Nesting 7 13 12 10,600
Theft Nesting 1 15 16 12,600
Total 8 15 16 –

We see that theft nesting has performed significantly better than stan-
dard nesting – in fact, theft nesting behaved like an optimal policy
accepting all high value demand for products 2, 3. This is, however,
due to the fact that our initial protection levels were way too small
in comparison to the actual demand – we protected only 12 seats for
product 3 and 24 seats for products 2 and 3, where an optimal strategy
would have protected 16 and 31, respectively. If the protection levels
(or equivalently, the booking limits) are set more carefully, the basic
idea of standard nesting seems to be more reasonable: If a request for
product j is accepted, it is no longer necessary to protect the amount
of resources used for that particular request.

The question whether standard or theft nesting performs better
on average is still open: Klein (2005) develops a rather sophisticated
method of capacity control (see page 76) and compares it with var-
ious booking limit heuristics from the literature both using standard
and theft nesting. He finds that standard nesting performs significantly
better. Bertsimas and de Boer (2005) point out that most of the heuris-
tic methods (as those used by Klein 2005) do implicitly assume that
standard nesting is used and thus may perform poorly if actual book-
ings are controlled using theft nesting. In their computational experi-
ments, they agree with Klein (2005) and find that with respect to those
heuristic methods standard nesting performs indeed better. Bertsimas
and de Boer (2005), however, propose a very advanced method to com-
pute nested booking limits that explicitly takes into account whether
standard or theft nesting will be used to control bookings. For their
sophisticated approach, they find that theft nesting performs better.
The question whether standard outperforms theft nesting on average or
vice versa is thus still not settled. Nevertheless, Bertsimas and de Boer
(2005) are certainly right when they demand: “the operational nesting
policy [...] clearly should affect the booking limits” (p. 101).

Many authors note (see e. g. Klein 2005, Talluri and van Ryzin
2004b) that standard and theft nesting are identical if requests arrive in
strictly “low-to-high” order, i. e. if all requests for product π−1 (1) arrive
before any other request, then all requests for product π−1 (2) arrive
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etc6. If demand arrives in such “blocks”, i. e. all requests for product
j1 arrive earliest, and if the first request for product j2 �= j1 arrives j1

will never be demanded again, however, we can easily use a dynamic
policy that uses only a single booking limit b, namely the booking limit
for the product that is just booking. The details of such a method are
given by Algorithm 2.1. Note that Algorithm 2.1 assumes that a single
resource is used, but an extension to m ≥ 2 is straightforward. We
see that difference between partitioned and nested capacity control in
this algorithm is minor: We are using all the remaining capacity c − a
in step 3, while a “strict” partitioned capacity control would only use
c − b, thus giving away b − a units of the resource.

Algorithm 2.1: “Nested” Booking Limit Control for Block Demand

1. Let j be the index of the product that is just booking and c be the remain-
ing capacity. Initialize j = the product to book first, whichever it may be
and c = c1.

2. Compute the booking limit b ≤ c for product j. Set the amount of the
resource a allocated to product j to 0.

3. Wait for the next request. If this request is for product k �= j set j =
k, c = c − a and goto 2.

4. If a < b increase a by r1j and accept, otherwise reject.
5. Goto 3.

The Airline Network Case

We are now going to consider nested capacity control on two or more
resources. We again focus on the airline case first, i. e. we assume that
m ≥ 2 and rij ∈ {0, c} , i = 1, . . . ,m, j = 1, . . . , n and a constant
c > 0. W. l. o. g. we may assume that c = 1. Figure 2.3 shows a
very simple example: We have two legs (non-stop flights): one between
Dresden (DRS) and Frankfurt/Main (FRA), and one between FRA and
London (LHR). The former is resource 1, and the latter is resource 2.
Three itineraries are possible, which are shown in the figure. For the
sake of simplicity, we assume that prices are not differentiated, and
we thus have three products (one fare on each itinerary). Formally, we
have m = 2, n = 3, r11 = 1, r21 = 0, r12 = 0, r22 = 1, r13 = r23 = 1, v1 =
150, v2 = 250.
6 Such a model of the arrival process of demand is called a block demand model.

This and other demand models are discussed extensively in section 5.1.
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Dresden Frankfurt/Main London
150 e 250 e

v3 e

Fig. 2.3: Nesting Order on a Small Network

Standard and Theft Nesting

The implementation of both standard and theft nesting to the network
case using formulas (2.7) and (2.8) is straightforward, we thus omit an
example here. Some minor technical details are yet worth mentioning.
Consider the simple example shown in Figure 2.3. Suppose that the
nesting order is π (j) = j and let c1 = 100, c2 = 200. Since product 3 is
nesting highest, we set bi3 = ci3, i = 1, 2. Note, however, that though
b23 = 200 we will never use more than 100 units of resource 2 because
resource 1 will then already be exhausted. It is of course possible to
set b23 ≤ 100, but that would require (at least if we use standard
nesting) that b22 ≤ 100 as well – this restriction does not seem to be
necessary; furthermore b22 ≤ 100 is not a very sensible booking limit
for product 2, because we know beforehand that product 2 can always
use 100 units of resource 2 anyway. So let us assume that we have
chosen to set b22 = 150. We then simply let b12 = 100 = c1 = b13.
Note that this implies that no seats are protected for products nesting
higher than product 2 (i. e. p12 = c1 − b12 = 0), but this is irrelevant
because product 2 does not use resource 1. Analogously, we thus set
b21 = b22 = 150. b11 can then be set arbitrarily as long as b11 ≤ 100.

In general, it is reasonable to set

bij =

{
ci π (j) = n

bi,π−1(π(j)+1) π (j) < n, rij = 0

Nesting Order

Defining a nesting order for m ≥ 2 resources is not trivial, even for our
simple example. To see this, note first that the nesting order between
the products 1 (DRS – FRA) and 2 (FRA – LHR) is not important,
because they do not share common resources. This is a difference com-
pared to problems with m = 1 – in this case, a nesting order is always
a total ordering of the products; in the network case, a partial ordering
may be sufficient. The relevant question is thus the position of product
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3 in the nesting order. Obviously, product 3 should nest above prod-
ucts 1, 2 if v3 ≥ 400 – given a request for the connecting flight, we will
always accept it, and use seats meant to be used for products 1 or 2 to
satisfy it if necessary, because the potential revenue obtained by selling
those seats to local passengers is never higher. Charging a price for the
connecting flight that is higher than the total price of the two local
flights is, however, somewhat unrealistic, because the higher v3, more
and more passengers will choose to buy two tickets for the two local
flights, claim their baggage and check in again in FRA to save v3 − 400
e.

If v3 < 400, the optimal nesting order is not obvious: Accepting a re-
quest for product 3 may displace two local passengers yielding a higher
(total) revenue. The nesting order thus strongly depends on the distri-
bution of demand for the three products and the amount of available
capacity on the two resources. For instance, if it is rather unlikely that
demand for products 2, 3 will ever exceed the given capacity of resource
2, but resource 1 is a bottleneck that heavily constrains the number of
tickets that can be sold for products 1, 3, product 3 should nest above
product 1, because the yield per seat on the bottleneck resource is much
higher. On the other hand, if demand for the two local products is very
high compared to the available amount of resources 1 and 2, respec-
tively, accepting a connecting passenger will almost certainly displace
two local passengers, resulting in a net revenue loss.

Formally, an optimal nesting order would be based on the differences
vj−oj (t, c) where oj (t, c) is the opportunity cost of accepting a request
for product j where t is the remaining time (“time-to-go”) and c =
(c1, . . . , cm) denotes the remaining capacity (“capacity-to-go”). These
opportunity costs take into account that allocating scarce resources
to product j may result in a loss of revenue if future requests are
blocked. If the costs oj (t, c) were given, an optimal nesting order with
time- and capacity-to-go t, c would be any permutation π satisfying
π (j) > π (k) ⇒ vj − oj (t, c) ≥ vk − ok (t, c). However, given oj (·), an
optimal RM policy is trivially determined: Since oj (·) incorporates the
potential loss of revenue by the displacement of any future request,
it is obviously optimal to accept a request for product j given t, c if
and only if vj − oj (t, c) > 0 – that would only be suboptimal if the
potential revenue loss in the future was greater than vj, but if that was
the case, oj (t, c) > vj would hold. It thus seems to be impossible to
solve the interdependent problems of determining an optimal nesting
order and optimal nested booking limits in isolation; both problems
have to be solved simultaneously. Nevertheless, it is of course possible
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to determine a nesting order heuristically first, and to compute nested
booking limits based on that nesting order afterwards. An obvious way
is to use estimates o′j (·) of the opportunity costs oj (·). Such estimates
are called bid prices, which are discussed intensively in section 2.3.

A classic heuristic to determine a nesting order for the network case
is included in a capacity control method which is called Displacement
Adjusted Virtual Nesting (DAVN). Before we describe DAVN, we will
introduce the concept of virtual nesting.

Virtual Nesting

In the 80s and early 90s standard airline computer reservation systems
(CRS) were only capable of implementing a leg-based booking limit
control with a very limited number of booking classes (ca. four to ten)
per leg (see e. g. Fuchs 1987 for an impression of the capabilities of
CRS of that time). However, in a hub-and-spoke network the number
of products that make use of an inter-hub leg may easily be in the
order of hundreds, so it was necessary to map this large number of
products into the limited number of booking classes per leg in order to
implement network capacity control using the existing CRS. As a con-
sequence, capacity control is executed on CRS booking classes which do
no longer represent an actual product, but a mapping of many products
to “virtual” one.

Using these “virtual” CRS booking classes for capacity control is
called virtual nesting and can be described as follows: We are going
to use Bi booking classes for leg (resource) i = 1, . . . ,m. Because the
booking classes on leg i do not reflect actual products they are called leg
buckets. If product j = 1, . . . , n uses resource i, it is assigned to one of
the Bi leg buckets. This is called clustering or indexing of products (we
will make some remarks on the problem of indexing below). If rij > 0
let bi (j) be the bucket of product j on leg i. Note that a certain product
j may be in different buckets on different legs. We then consider each
of the m legs separately, determine a nesting order of the Bi buckets
and nested booking limits βik for each bucket k = 1, . . . , Bi on each
resource i using an arbitrary optimal or heuristic method suited for sin-
gle resource problems. Note that optimization techniques to determine
nested booking are out of the scope of the virtual nesting method – it is
important to stress here that virtual nesting is not about optimization
itself, it is a just a “control framework” (Smith and Penn 1988, p. 130).

If a request for product j arrives, we check if one of the booking
limits βi,bi(j) for each i with rij > 0 is exceeded. If so, the request
is declined, otherwise it is accepted and the booking limits βik are
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adjusted in the usual (standard or theft nesting) way. Literally, we
accept j if it is accepted “on each leg”.

This way of booking limit control was pioneered by American Air-
lines (Smith and Penn 1988, see also Smith et al. 1992) and United
Airlines (Wysong 1988). According to Smith and Penn (1988) the term
“‘virtual nesting’ was chosen to reflect the fact that availability for a
market class is never stored in the system; it is determined as necessary
from the leg bucket availabilities” (p. 131).

Nowadays, CRS of larger airlines have probably been updated in
order to overcome some of the limitations that lead to the development
of virtual nesting in the late 80s. However, the idea of virtual nesting
has got some remarkable advantages that are still very relevant today:

• Maintaining a CRS is very expensive; and since the CRS is such a
crucial part of the sales process it is updated only very cautiously.
Smaller airlines and other companies may thus still operate older
CRS that suffer from some of the restrictions observed in the 80s.
For instance, we are aware that a pretty large German airline’s CRS
only allows for 26 booking classes per leg because in that CRS a
booking class can only be a letter from A to Z.

• The number of products on a network can grow very large. If we
e. g. consider a hub-and-spoke network with a single hub and m
spokes, we have m local and m (m − 1) /2 connecting itineraries. If
the number of different fares per itinerary is constant on average,
the number of products is in the order of m2, i. e. O

(
m2

)
space is

needed to store the booking limits for each and every product. If
we use a virtual nesting approach (with a constant number of leg
buckets per leg), only O (m) space is necessary. Since m can easily be
in the order of hundreds for a larger airline, this saving is certainly
relevant.

• Virtual nesting is a method to decompose a network problem with m
resources and a huge number of products into m independent single
resource problems with a very limited number of products on each
resource. This reduction of the problem size can greatly improve the
efficiency of RM optimization methods. However, it goes without
saying that the decomposition may lead to inferior solutions due to
the inherent loss of information.

Virtual nesting controls have received some attention recently, see e. g.
Bertsimas and de Boer (2005) and van Ryzin and Vulcano (2005, 2006).
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Displacement Adjusted Virtual Nesting

It remains to be shown how the products are indexed to leg buck-
ets – given the loss of information by decomposition of the network
problem to a leg-wise problem with a small number of buckets this is
obviously a crucial part of the method, see e. g. Talluri and van Ryzin
(2004b, p. 105). A classic approach to this problem is using so called
displacement adjusted leg revenues or values net of opportunity cost.
The resulting control framework is called Displacement Adjusted Vir-
tual Nesting, which is usually attributed to Smith and Penn (1988).
The aforementioned authors Bertsimas and de Boer (2005), van Ryzin
and Vulcano (2005, 2006) all use DAVN to implement a virtual nesting
capacity control. Since the method is only roughly outlined by Smith
and Penn (1988), our exposition in Algorithm 2.2 follows Bertsimas
and de Boer (2005) using material from Williamson (1992, p. 112-118).
Similar descriptions can be found in van Ryzin and Vulcano (2005,
2006).

Algorithm 2.2: Displacement Adjusted Virtual Nesting

1. Solve Model 2.1 (which is an LP) optimally using forecasted values for
dj , j = 1, . . . , n. Let µi, i = 1, . . . , m be the optimal shadow prices (dual
variable values) for the restrictions (2.1).

2. Compute

vij = vj −
m∑

k=1
k �=i

rkjµk for each leg i = 1, . . . , m

3. For each leg i, index (cluster) all products j with rij > 0 and “similar”
vij into Bi leg buckets. The nesting order among these leg buckets is then
such that the bucket with the highest vij values nests highest.

4. For each leg i, compute (nested) booking limits βik for each leg bucket k =
1, . . . , Bi using an arbitrary method suited for single resource problems
(recall that issues of optimization are not covered by DAVN).

5. If a request for product j arrives, check if one of the booking limits βi,bi(j)

for each i with rij > 0 is exceeded. If so, reject, otherwise accept and
update the booking limits βik according to the standard or theft nesting
rules.

The values vij computed in step 2 are called the displacement ad-
justed leg revenues (Bertsimas and de Boer 2005) or values net of op-
portunity cost (Williamson 1992). The shadow prices obtained from
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Model 2.1 are used to estimate the opportunity costs of displacing pas-
sengers on other legs. Using dual information from deterministic LPs
is a standard method to obtain bid prices (opportunity cost estimates)
for products, see subsection 2.3.3 for a discussion.

Smith and Penn (1988) propose to index products into leg buckets
(step 3) in a way such that demand is evenly distributed among the
buckets. Other methods are e. g. discussed by Talluri and van Ryzin
(2004b, p. 103-107), Bertsimas and de Boer (2005) and van Ryzin and
Vulcano (2005). As mentioned before, a typical indexing scheme will
not avoid that the same product j is assigned to different buckets on
different legs, i. e. j may be in a very high nesting bucket on leg i1, but
in a lower nesting bucket on leg i2. As Klein (2005, p. 181) – albeit in
another context – points out, this can be a problem, because this may
effectively avoid that requests for product j are accepted: If product
j is in a very low nesting bucket k on leg i, the booking limit bik will
(especially if theft nesting is used) – run to zero very soon, and further
requests for product j will be rejected, although it might be nesting
higher in other leg buckets.

Nesting on a Single Resource with Varying Resource
Consumption

The concept of nested capacity control is very easy to understand if
m = 1 and r1j = c or m ≥ 2 and rij ∈ {0, c} – then we may assume
w. l. o. g. that c = 1 and arrive at the airline RM problems which we
have just discussed.

The setting gets a little more complex if we consider the single
resource-case (m = 1) but allow for varying r1j. W. l. o. g. we assume
that the production coefficients r1j are positive integers – if some r1j are
fractional, we simply multiply r1j and c1 by the common denominator.
We can consequently assume that c1 is also a positive integer; and since
all r1j ∈ N the remaining capacity after accepting some requests will
always be integer as well.

The varying resource consumption has remarkable consequences for
the nesting order. To see this, consider the following small example
with n = 3 products:

j r1j vj vj/r1j

1 2 180 90
2 5 400 80
3 3 255 85

It seems to be natural that the yields vj/r1j (measured in revenue per
unit of capacity) determine the nesting order, i. e. an optimal nesting
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order is then given by any permutation π such that π (j) > π (k) ⇒
vj/r1j ≥ vk/r1k. However, this is only true if it is possible to fulfill
requests – possibly only partly – with continuous amounts of the prod-
ucts. For instance, consider a situation where the remaining capacity is
c1 = 5, and a request for product 1 (with the highest yield) arrives. If
the aforementioned assumptions hold, we will immediately satisfy this
request, because in the future we can at best use the remaining 3 units
of capacity to satisfy 1.5 requests for product 1 (at 270), 0.6 requests
for product 2 (at 240), or gain 255 by satisfying a single request for
product 3. Product 1 is thus indeed nesting highest.

On the other hand, if products can only be sold in discrete amounts,
the situation is very different: With c1 = 5, we can at best satisfy two
requests for product 1 (at 360), and one request for product 2 and 3 (at
400 and 255, respectively). In this situation, product 2 nests highest.
However, this nesting order is not stable: It is easy to see that e. g. for
c1 = 6 product 1 nests highest, and for c1 = 9 product 3 nests highest.

Admittedly, the difficulties to define a nesting order diminish if c1

is large with respect to the r1j. For instance, it is a simple exercise
to show that π (1) > π (2) (i. e. product 1 nests above product 2) if
c1 ≥ 6, π (1) > π (3) if c1 ≥ 16 and π (3) > π (2) if c1 ≥ 21. The
nesting order π (1) = 3, π (2) = 1, π (3) = 2 suggested by the yields
vj/r1j is thus optimal and stable for all c1 ≥ 21. For a “reasonable”
problem instance, a near-optimal (stable) nesting order can thus easily
be determined and standard and theft nesting can be applied in the
usual way.

Nesting on Multiple Resources with Varying Resource
Consumption

We now consider cases with two or more resources and varying pro-
duction coefficients. As before, we can assume w. l. o. g. that all rij

are non-negative integers and that the available/remaining capacities
ci are integers as well. As a simple example, we use an instance of a
RM problem with m = 2, n = 3, c1 = 250, c2 = 100 and the following
rij :

rij j = 1 j = 2 j = 3
i = 1 4 5 5
i = 2 3 1 2

Since the airline network RM problem is a special case of the setting
that we discuss here, finding an optimal nesting order is a difficult
problem here as well. Suppose, however, that we determined a nesting
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order heuristically (by a method that is similar to that used in DAVN,
say) for our example, and obtained π (j) = j for all j = 1, 2, 3. Let
c1 = 250, c2 = 100. By the nesting order, b13 = c1, b23 = c2. Suppose
we wanted to sell at most 30 units of product 1 and 40 units of product
1. This would lead to b11 = 120, b12 = 200, b21 = 90, b22 = 40. These
booking limits are shown in Figure 2.4. Note that the booking limits
on resource 1 are according with the nesting order, but on resource 2
they are not (this would require that b21 ≤ b22 = 40). Recall that if
we use standard nesting, b22 will be sooner or later reduced to b21, see
(2.7). Theft nesting, however, works, and standard nesting could also
be implemented if we refrain from setting bt

ij to a value that is not
greater than the booking limit bt

ik of any higher nesting product k.
We are now going to discuss whether a modified standard nesting

update rule and the theft nesting update rule as given by (2.8) are a
sensible way of capacity control for our small example. Before we begin,
it is important to point out that standard and theft nesting work as
before if the initial booking limits b0

ij obey b0
i,π−1(1) ≤ . . . ≤ b0

i,π−1(n).
However, as we have seen, this can be – depending on the rij – quite
restrictive.

If the t-th request is for product k and we accept it, we use the
following “modified standard nesting” update rule:

bt
ij =

⎧⎨
⎩max

{
0,min

{
ct
i, b

t−1
ij − rik

}}
π (j) ≥ π (k)

min
{

ct
i, b

t−1
ij

}
π (j) < π (k)

i = 1, . . . ,m, j = 1, . . . , n

– since we usually do not update the booking limits of products j with
π (j) < π (k), we have to make sure that all booking limits are non-
negative and not greater than the remaining capacity. For theft nesting,
however, the update rule (2.8) remains unchanged.

c1 = b13 = 250

b12 = 200

b11 = 120

c2 = b23 = 100

b21 = 90

b22 = 40

Fig. 2.4: Nesting on Two Resources
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Note that for instances with m ≥ 2 and varying rij it is absolutely
crucial to use the resource specific booking limits bij instead of the
usual product specific booking limits bj. To see this, note first that a
suitable rule for any booking limit to be updated (regardless of the
form of nesting to be used) is as follows: Let the t-th request be for
product k and accept it. Update bj (if necessary) by setting:

bt
j = min

i=1,...,m

{
bt−1
j rij − rik

rij

}
= min

i=1,...,m

{
bt−1
j − rik/rij

}
This can lead to booking limits that are systematically to low, as the
following example shows: Suppose that at t (t+1) a request for product
2 (1) arrives and is accepted. Since product 3 nests highest, its booking
limit is always updated regardless of the form of nesting. Suppose that
bt−1
3 = 20 and equivalently, that bt−1

13 = 20 · 5 = 100, bt−1
23 = 20 · 2 = 40.

We then have for bt
3, b

t+1
3 resp. bt+1

13 , bt+1
13

bt
3 = min {20 − 1, 20 − 1/2} = 19

bt+1
3 = min {19 − 4/5, 19 − 3/2} = 17.5

bt+1
13 = 100 − 5 − 4 = 91

bt+1
23 = 40 − 1 − 3 = 36

By the resource specific booking limits, the maximal number of book-
ings to be accepted for product 3 is min {91/5, 36/2} = 18, but the
product specific booking limit is already strictly lower (namely 17.5).
Formally, this is can be explained by the fact that the min-operation
is unnecessarily performed twice:

bt
j = min

i=1,...,m

{
bt−1
j − ri,k2/rij

}
= min

i=1,...,m

{
min

h=1,...,m

{
bt−2
j − rh,k2/rhj

}
− ri,k2/rij

}

≤ min
i=1,...,m

{
bt−2
ij − ri,k1 − ri,k2

rij

}

where k1, k2 are the first and the second products for which requests
are arrive and are accepted.

Thus we are going to use the resource specific booking limits and
consider now a stream of 30 requests for product 1. By construc-
tion, these requests are all accepted. Since product 1 is nesting lowest,
all booking limits are updated, regardless whether standard or theft
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nesting is used. Clearly b30
11 = b30

21 = 0 and c30
1 = b30

13 = 130, c30
2 =

b30
23 = 10. For product 2, we have b30

12 = 200 − 3 · 40 = 80 and
b30
22 = max {0, 40 − 30 · 3} = 0. Since b30

22 = 0, we are not going to
accept any request for product 2. Obviously, product 1 has used all the
capacity that was meant to be used for product 2 – this is certainly
not what we wanted when we let product 2 nest above product 1. The
result is, however, totally in accordance with the protection levels: As
in the initial situation (see Figure 2.4), b30

12 = 80 units of resource 1
are protected for product 2. On resource 2, there was no protection for
product 2, though.

These somewhat strange effects are caused by the fact that rij > rik

for some i and j �= k, but there is also another resource h �= i such
that rhj < rhk – such a case was impossible in the “airline network”
setting where rij ∈ {0, c}, because for j �= k and all i = 1, . . . ,m either
rij = rik = c or at least one of the production coefficients rij, rik is
zero. Note that such a case is also impossible in an “airline network
with group bookings” setting – where rij ∈ {0, cj} and cj > 0 denotes
the size of the group –, because if rij = cj ≥ rik = ck for j �= k and
some i, then for all h = 1, . . . ,m, h �= i either rhj ≥ rhk or rhj = 0.

We conclude from this small example that standard and theft nest-
ing can be applied to such “non airline” instances in the usual way
if the initial booking limits b0

ij are monotone in accordance with the
nesting order, i. e. b0

i,π−1(1) ≤ . . . ≤ b0
i,π−1(n) holds. Otherwise we have

from rij > rik and rhj < rhk that the protection level is zero for the
higher nesting product on one of the resources, which means that the
proper nesting of products is not guaranteed. Table 2.2 summarizes our
findings for different types of problems.

It goes without saying that nested booking limits are still advan-
tageous under uncertainty compared to partitioned ones, but it is
doubtable whether nested capacity control in the (strict) form as we
have discussed it so far is useful for “non airline” RM problems with
m ≥ 2. For such instances, other forms of capacity control that do
not exclusively assign capacity to products (thereby capturing positive
features of nesting) but are not booking limit controls may be more
effective, e. g. the bid prices controls discussed in section 2.3. Another
option is to use booking limits without explicitly allocating capacity
to products, yet without having to rely on a nesting order of products.
This is possible in the context of overbooking, see section 2.4. Figure 2.5
shows how these categories of capacity control methods are related.
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Table 2.2: Effectiveness of Nested Booking Limit Controls

Nesting Order Standard/Theft
Nesting

Airline: Single Leg
(m = 1, w. l. o. g. r1j = 1)

trivial work

Airline: Network
(with Group Bookings)
(m ≥ 2, rij ∈ {0, cj}, w. l. o. g.
cj ∈ N)

Heuristics available work

Single Resource
(m = 1, w. l. o. g. r1j ∈ N)

near-optimal order
easy to find work

Multiple Resource
(m ≥ 2, w. l. o. g. rij ∈ N)

Heuristics available
practically limited to

monotonic b0
ij

Allocation of Capacity to Products

Exclusive (Partitioned
Booking Limits) Non-Exclusive

Nested Booking
Limits

Non-Nested Booking
Limits (w/

Overbooking)

Non-Booking Limit
Controls (e. g. Bid

Prices)

Fig. 2.5: Nested and Non-Nested Capacity Control Strategies

2.2.3 Literature Review

After having explained booking limit controls in great detail we now
describe the state of the art. We begin by reviewing the literature on
the deterministic demand models. Since partitioned booking limits only
make sense in the deterministic setting, and uncertainty is involved in
most RM problems in practice, these are at the same time the only
models that deal with partitioned booking limits; the remainder of the
literature review will thus be devoted to stochastic models to obtain
nested booking limits.
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It is interesting to note that most authors dealing with overbooking
problems use booking limit policies as well. Instead of mentioning those
references twice, we defer a discussion of them to section 2.4.

Deterministic Demand

Model 2.1 is a simple LP. If we add the requirement that bj ∈ N0, it
becomes fairly general linear integer problem. There is a large body of
literature both on LPs and linear integer problems, but there seem to
be only quite a few references that explicitly consider a RM context.
Glover et al. (1982), for instance, develop a network flow formulation
of the airline network RM problem if demand is deterministic (or fore-
casted values are used). Not every constraint from the airline business
can be incorporated into the network flow formulation, though; Glover
et al. (1982) thus implement an iterative procedure such that the net-
work flow problem is solved optimally, violated “side constraints” (if
any) are added to the problem, the problem is resolved, and the process
iterates. Chen (1998) applies the network flow formulation by Glover
et al. (1982) to a hotel revenue management problem. Due to the dif-
ferent structure of the RM problem in hotels no side constraints are
necessary. To the best of our knowledge, these are the only references
that consider deterministic models to obtain booking limits – it goes
without saying that many other authors consider deterministic models,
however, their aim is usually to obtain bid prices, not (partitioned or
nested) booking limits, see subsection 2.3.3.

It should further be noted that if dj = 1 (i. e. bj ∈ {0, 1})
Model 2.1 becomes a so-called multiconstraint or multidimensional
knapsack problem (see e. g. the survey by Fréville 2004). Note that
the probabilistic model 2.3 is of this type. If we have m = 1 (and
bj ∈ N0), the problem is called the bounded knapsack problem (see
e. g. Pisinger 2000). Both problems are also discussed in Martello and
Toth (1990) and Kellerer et al. (2004).

Littlewood’s Rule, Belobaba’s EMSR/EMSRb and Related
Research

The earliest reference with respect to nested booking limit controls
seems to be Littlewood (1972). Littlewood considers a single leg airline
RM problem with two fares v1 > v2. The low fare passengers are as-
sumed to book before the high fare ones; the RM is thus to decide when
to stop low fare bookings, i. e. how many seats are to be protected for
the high fare passengers. The high fare bookings will then, of course,
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be accepted until the capacity c1 is exhausted. We are thus using a sin-
gle booking limit b21, and if the number of seats allocated to low fare
passengers is a ≤ b21, c1 − a seats are available for the high fare. The
situation is thus identical to the one assumed to derive Algorithm 2.1.

Littlewood (1972) proposed the following formula – which became
famous as Littlewood’s Rule – to compute the protection level p21 =
c1 − b21. For a consistent presentation, we use the notation and terms
of Belobaba (1987b, 1989). Define

EMSRj (p) = vj · Pj (Dj ≥ p) (2.9)

where Dj is a random variable denoting demand for product j with
distribution Pj (·). EMSRj (p) is then the additional (marginal) ex-
pected revenue if the p-th seat is protected (exclusively!) for product
j, or the expected marginal seat revenue for short. Littlewood’s rule is
then: Decrease p12 (i. e. accept the low fare passengers) as long as

v2 ≥ EMSR1 (p12) (2.10)

It is interesting to note that Littlewood’s rule (2.10) only depends on
the demand distribution of the high fare; the demand distribution of
the low fare is completely irrelevant. That seems to be somewhat odd
on first sight, but recall that it is assumed that low fare passengers
book strictly first. The only decision we thus have to make is when to
stop accepting low fare bookings.

Littlewood’s rule has got a charming intuitive notion: Accept class
2 requests as long as the certain revenue v2 is not smaller than the
expected revenue if the remaining p12 seats are all sold to class 1
passengers – that will happen with probability P1 (D1 ≥ p12). Actu-
ally, Richter (1982) has shown that if low fare passengers indeed book
strictly first, the marginal analysis that is implicitly undertaken to
obtain Littlewood’s rule is correct, i. e. (2.10) is an optimal decision
rule. Furthermore, Titze and Griesshaber (1983) conducted a simula-
tion study and investigated the performance of Littlewood’s rule if the
“low before high” assumption is relaxed. They found that even if this
assumption only holds approximately, the revenue obtained is largely
unaffected.

As Brumelle et al. (1990, p. 184) point out, (2.10) has got an in-
teresting, albeit probably unwanted, implication: Transform (2.10) to
obtain

v2 ≥ v1 · P1 (D1 ≥ p12) ⇔ P1 (D1 ≥ p12) ≤ v2/v1

If we assume a continuous demand distribution, we have
P1 (D1 ≥ p∗12) = v2/v1 for the optimal protection level p∗12. If the
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low fare is, say 40 % of the high fare (i. e. v2/v1 = 0.4), the optimal
protection level will be set in a way such that the probability to turn
at least one high yield customer away – i. e. P (D1 ≥ p12) – is 0.4
as well. The event of turning down customers is known called spill,
and as Brumelle et al. (1990) note, a probability of 0.4 to spill a high
yield passenger seems to be “higher than most airline managers would
accept” (p. 184). Albeit these observations are certainly correct, three
remarks are in order: (1) The argument relies on the fact that there
is ample low fare demand such that indeed all c1 − p12 are sold to
low fare passengers, and exactly p12 seats remain (alas, if low fare
demand was low, there was no need for a high fare protection level
p12 in the first place). (2) Though a spill probability of 40 % might
intuitively seem too much, Richter (1982) has proven that Littlewood’s
rule (2.10) is an optimal policy with respect to the expected revenue
(not with respect to the spill). If the airline managers nevertheless feel
that 40 % is too much, they seem to be risk averse, and maximizing
the expected revenue (which assumes a risk neutral decision maker) is
not the correct objective. It is noteworthy that Brumelle et al. present
an approach that assigns penalty costs to high fare passenger spill
thereby correcting for risk aversion. Other approaches that consider
capacity control under risk aversion are due to Weatherford (2004) and
Barz and Waldmann (2006). (3) Even in light of the facts shown by
Brumelle et al. (1990), Littlewood’s rule shows a sound behavior: If the
low fare rises (decreases) relatively to the high fare, the probability to
reject a high fare customer rises (decreases), because the opportunity
costs of doing so decrease (rise) accordingly.

Belobaba (1987b, 1989) uses the EMSR calculus for problems with
three or more fares by applying (2.10) to all pairs of products. Formally,
assume that the nesting order is decreasing with the product indexes,
i. e. product 1 is nesting highest and product n is nesting lowest. Then,
for all j = 1, . . . , n and all k = j + 1, . . . , n compute the number of
seats pk

1j that are protected for k and from j using (2.10), i. e. pk
1j is

the smallest number that satisfies

vj ≥ EMSRk

(
pk
1j

)
(2.11)

The total protection level for product k is then given by p1k =
min

{∑k−1
j=1 pk

1j , c1

}
, and the booking limit is thus bk = c1 − p1k. Note

that Belobaba (1987b, 1989) uses a slightly different terminology: What
he calls a “nested protection level” of product k is the difference b1k −
b1,k+1, i. e. the additional number of seats that is protected from k + 1
for k (and higher nesting products). Since this notion of a protection
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level is less frequently used, we stay with our definition that pik is the
total amount of resource i that is protected from k for all higher nesting
products.

As Robinson (1995, p. 257) points out, Belobaba (1987b, 1989) does
not take into account that all fare classes j1, j2 < k are nested, too. For
instance, p1

13 and p2
13 denote separately the number of seats protected

from fare class 3 and reserved for 1 and 2, respectively. But fare class
1 has in addition access to p1

12 seats. The optimality condition e. g. of
Brumelle and McGill (1993) (this reference is discussed below) takes
this into account. Thus, the EMSR method gives (under the assump-
tions of Littlewood 1972) the optimal protection levels for the first and
highest fare class 1, but just heuristic levels for fare classes 2, . . . , n− 1
(recall that there are no seats protected for the lowest class n). Note
that this implies that the booking limits for classes 1 and 2 are optimal.

The EMSR-method is in principle presented by Belobaba (1987b,
1989) as a “model free” approach. However, it is implicitly based Lit-
tlewood’s assumption that the lowest fare class books first, then the
second lowest fare class and so forth up to the highest fare class which
books last. Such a model of the arrival process of demand is called a
block demand model ; this and other demand models are discussed exten-
sively in section 5.1. Wollmer (1992) and Brumelle and McGill (1993)
develop dynamic models for this “low-to-high” booking case – we have
already pointed out that the order in which bookings arrive is relevant
under nested capacity control and thus a dynamic model is necessary.
Roughly speaking, Brumelle and McGill (1993) present a continuous
version of Wollmer’s model to facilitate the analysis. Robinson (1995)
considers a more general case where bookings arrive sequentially by
product as well, but that sequence does not have to be monotone with
the fares. Note that for all three models – besides the assumption of the
sequential booking order – it is of crucial importance that demand is in-
dependent, i. e. the random variables Dj are independently distributed
of each other, and also independent of the actions of the revenue man-
ager. This assumption may well be violated if closing a lower fare class
induces “buy ups”, i. e. bookings of higher fare classes by passengers
who would have bought a lower one if it was available. We will treat
buy ups and other forms of customer behavior influenced by capacity
control decisions in chapter 3.

It is interesting to note that Wollmer (1992), Brumelle and McGill
(1993) and Robinson (1995) all prove that the optimal policy under
block demand is indeed a nested booking limit policy. The similarities
of these models and optimality conditions are investigated by Li and
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Oum (2002), who show that the models by Wollmer (1992), Brumelle
and McGill (1993) and Curry (1990) are analytically equivalent. Laut-
enbacher and Stidham (1999) present a unified view on the models
of Belobaba (1989), Brumelle and McGill (1993), Curry (1990), Lit-
tlewood (1972), Robinson (1995), Wollmer (1992) and Lee and Hersh
(1993).

Wollmer (1992) found that the EMSR booking limits may be far
away from the optimal ones; however, in his study the performance
of EMSR with respect to the expected revenue was close to optimal.
Brumelle and McGill (1993) agree with both points: They show that
EMSR may over- as well as underestimate the optimal protection lev-
els. The revenue performance of EMSR was ca. 0.5 % below the opti-
mum at worst. Robinson (1995) attributes the results of Wollmer (1992)
and Brumelle and McGill (1993) to the facts that the number of fare
classes used in those studies was small – recall that EMSR gives the
optimal booking limits for the two highest fares –, the difference be-
tween highest and lowest fare was relatively small and the demand was
very high, such that a reasonable RM policy will focus on protecting
seats for the higher-valued fare classes (which are treated correctly by
EMSR). Robinson (1995) defines a theoretical demand setting in which
the EMSR-booking limit of the n + 1-st fare class approaches zero as
n → ∞ while it is a strictly positive constant under the optimal policy.
However, it is important to stress that the two aforementioned refer-
ences (and many others) find that EMSR seems to be a near-optimal
policy with excellent revenue performance.

To address the disadvantage of EMSR that nesting is only taken
into account between pairs of products, Belobaba (1992) introduced an
improved version of this method which he termed EMSRb. The basic
idea is to compute the protection level p1j directly, i. e. to set it to the
minimum value that satisfies

vj ≥ v (1, . . . , j − 1) P

(
j−1∑
k=1

Dj ≥ p1j

)

where

v (1, . . . , j − 1) =

j−1∑
k=1

E [Dk] vk

j−1∑
k=1

E [Dk]

is the “expected revenue” from fare classes 1, . . . , j − 1.
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The drawback of EMSRb is obviously the need to determine the
distribution of

∑j−1
k=1 Dk. However, for certain distributions of the Dj,

the distribution of the sum can easily derived. For instance, if the Dj

are independently distributed Normal (Poisson) random variables, the
sum follows a Normal (Poisson) distribution as well.

A further extensions of the EMSR-concept is due to Belobaba and
Weatherford (1996), who incorporate choice behavior (see section 3.2
for an in-depth discussion of choice-based RM). Belobaba and Wilson
(1997) test how EMSR-methods perform under competition.

We continue our review by considering references that are similar in
structure to Belobaba’s work. Brumelle et al. (1990) also consider two
fare classes on a single leg and assume that the lower one books strictly
first, but they allow for that high- and low fare demand are dependent.
They show that Littlewood’s rule is still optimal in this case (where
the corresponding conditional probabilities are to be used instead of
the unconditional ones) if the demand distributions exhibit a certain
monotonicity property, called monotonic association. This condition
may fail to hold if low and high fare demand are negatively correlated.
Passenger buy ups – where low fare passengers purchase the high fare
because lower fare class bookings are no longer accepted – as a special
case of positive demand correlation are examined. The result is the
same as given by Belobaba (1987b, eq. 5.53 on p. 140), who proposed
it without formal proof.

Bitran and Gilbert (1996) consider the RM problem in hotels where
guests with 6pm reservations (i. e. if the customer does not arrive until
6pm, the room may be rented to another guest) arrive first, then walk-
ins (i. e. guests without a reservation) and then guests with guaranteed
reservations (rooms dedicated to that reservations are not given away
at any time). They obtain an optimality condition of similar structure
like (2.10).

Van Ryzin and McGill (2000) develop an adaptive approach for
a protection level (nested booking limit) policy on a single airline leg
where bookings arrive in a “low-to-high” order. Based on the optimality
conditions of Brumelle and McGill (1993) they develop a procedure to
update the protection levels after demand has been observed. These
protection levels are then used to control bookings in the next period,
where demand is then observed again, and the process iterates.

Gallego and Phillips (2004) consider the airline RM problem on a
single leg with two products and a flexible product, i. e. if a customer
purchases the flexible product, the airline will decide later whether she
will actually receive product 1 or product 2 (see section 3.3 for an
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in-depth discussion of flexible products). The solution of this problem
involves sophisticated usage of EMSRs.

Dynamic Booking Limit Policies

So far we have only considered static booking limit policies, i. e. poli-
cies that determine booking limits once (at the beginning of the time
horizon); and these booking limits remain unchanged over the entire
horizon. It goes without saying that all policies which are of static na-
ture can be reoptimized – especially if demand forecasts and other data
are updated –, but by a dynamic booking limit policy we mean a method
that explicitly considers the dynamic nature of the demand process by
letting the booking limits bijt vary with time t. Note that almost all
models we have discussed thus fare have (implicitly or explicitly) as-
sumed that requests arrive in a “low-to-high” order. Admittedly, this
model of the demand process contains some, albeit very limited form
of dynamics7, and evidently, if a booking limit policy is optimal in the
block demand setting it is a static one.

To arrive at a truly dynamic booking limit policy we thus have
to consider a more general model of the arrival process. Lee and
Hersh (1993) deal with a single leg airline RM problem and pro-
pose to divide the time horizon into T periods which are so small
(i. e. T is so large) that there is at most one request per period.
This is called a micro period model of demand, see section 5.1. De-
note the probability that a request for product j arrives in period
t by Pjt ≥ 0, j = 1, . . . , n, t = 1, . . . , T . Naturally, we require that∑n

j=1 Pjt ≤ 1 for all t, and if
∑n

j=1 Pjt < 1 there is a positive proba-
bility P0t = 1−∑n

j=1 Pjt that there is no request in t. Time is counted
backwards from T to 0. Denote the maximum expected revenue from
period t on with a capacity of c seats remaining by Vt (c). The value
function Vt (c) can be defined recursively for all t = 1, . . . , T and all
c > 0 by:

Vt (c) = P0tVt−1 (c) +
n∑

j=1

Pjt max {Vt−1 (c) , vj + Vt−1 (c − 1)}

= Vt−1 (c) +
n∑

j=1

Pjt max {0, vj − ∆Vt−1 (c)}
(2.12)

7 The “low-to-high” block demand model and other assumptions about the dynam-
ics of demand are thoroughly discussed in section 5.1.
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where ∆Vt−1 (c) = Vt−1 (c)−Vt−1 (c − 1) is the marginal cost of capac-
ity, or equivalently the opportunity cost of accepting a request in period
t if c seats are remaining. The boundary conditions are V0 (c) = 0 for
all c and Vt (0) = 0 for all t.

We immediately conclude from the definition of Vt (c) that a re-
quest for product j in period t given capacity c will be accepted if and
only if vj ≥ ∆Vt−1 (c), i. e. if the revenue of the request exceeds the
opportunity cost of accepting it – a quite intuitive result.

It is important to stress that (2.12) is not a booking limit model
per se. Rather an optimal policy would consist of having a table of
∆Vt−1 (c) ready for all t and all c, and look the needed value up if
a request for product arrives. Note however, since T is in the order of
1,000s or 10,000s methods to reduce the storage space required for such
tables, as well as to reduce the computational burden are certainly in
order. Fortunately, Lee and Hersh (1993) show that Vt (c) and ∆Vt (c)
are monotone in various respects such that the optimal policy is given
by a set of critical booking capacities p (j, t) i. e. a request for product
j in period t is accepted if and only if c ≥ p (j, t) – in other words
p (j, t) is the protection level of product j in period t. Furthermore,
these protection levels are non-increasing in t, such that it is sufficient
to store the protection levels for those periods t in which p (j, t + 1) >
p (j, t) holds for the first time. The monotonicity of p also simplifies the
computation. To summarize, (2.12) suggests an optimal control based
on the opportunity costs ∆Vt (c), but it turns out that an optimal
dynamic protection level control (or equivalently, a dynamic nested
booking limit control) exists. Bitran and Mondschein (1995) obtain a
similar result for hotel RM if it is assumed that every guests stays for
exactly one night. Bitran and Mondschein (1995) also consider dynamic
booking limit policies for multiple night stays.

It is interesting to note that Lee and Hersh (1993) also consider
group bookings. This is modeled by using the probabilities Pjkt that
a request for product j in period t is for k tickets. For this case the
optimal policy can be characterized by a set of critical decision periods,
i. e. for each product j, request size k and remaining capacity c there
exists a critical period t such that a request for j of size k given c
seats remaining is accepted up to t and declined afterwards. Again,
this implies a reduction in both computational times and storage space;
however, the optimal policy can no longer be formulated using optimal
protection levels (or booking limits).

Subramanian et al. (1999) extend Lee and Hersh’s model by incor-
porating overbooking (they do not consider group bookings, though).
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Remarkably, the optimal policy turns out to be a booking limit policy as
well. However, the booking limit of product j does not only depend on
the period t, but also on the “state” of the system. The notion of a state
depends on the assumptions that govern the cancellation and no-show
probabilities. For instance, if these are independent of the product, a
one dimensional state variable denoting the total number of requests is
sufficient; if more general assumptions are considered, the dimension of
the state is unfortunately linear in the number of products, it will thus
only be feasible to store the optimal booking limits for each and every
state if the number of products is moderate. Furthermore, the booking
limits are not necessarily monotone in the remaining time, and for some
given state and remaining time, it may be optimal to reject requests of
a certain fare class while request for other classes with lower fares are
accepted, i. e. the nesting order is not automatically monotone with
respect to the fares.

Talluri and van Ryzin (2004a) consider RM problems on a single
airline leg without group bookings and overbooking, but they incorpo-
rate choice behavior, i. e. they assume that an arriving customer will
consider all products that are available at the time of her request and
choose one (or none at all) according to a certain choice model. Talluri
and van Ryzin (2004a) develop a model that is similar to (2.12). We
defer a discussion of choice-base RM and this reference to section 3.2,
but take the opportunity to point out that for certain well known choice
models a nested booking limit policy turns out to be optimal again.

Zhao and Zheng (2001) consider a single leg airline RM problem
with two products (a low and a high fare) and three types of customers:
Two types who will only buy the low or the high fare, respectively, and
a flexible type, who will buy the low fare if it is available and the
high fare otherwise. They assume that demand is generated by a non-
homogeneous Poisson process (see chapter 5 for a discussion of such
arrival processes). Note that this implies that time is continuous (in
contrast to the aforementioned references where time was discrete). A
remarkable feature of Zhao and Zheng’s model is that the discount
fare class cannot be reopened once it has been closed. Using these
assumptions it is shown that the optimal policy is a protection level
policy, i. e. the discount fare class should be closed if the remaining
capacity drops below a certain level. The protection levels depend on
the remaining time to departure and are in general not monotone.

Mayer (1976) deals with airline RM and presents booking limit-
based models for partitioned capacities (without cancellations and no-
shows) and for overbooking. There are two types of passengers (groups
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and individuals), and the partitioned booking limits depend both on
the period t and the available capacity at the beginning of t. Note that
Mayer (1976) allows for more than one request per period; his model
is thus a macro period model (see section 5.1).

Alstrup et al. (1986) also consider an overbooking problem with
macro periods. The booking limits for the two types of reservations
(passengers) vary by period.

Nested Booking Limit Controls for Multiple Resources

Thus far we have discussed references which focus on single resource
problems. An obvious way to extend those approaches to cases with
two or more resources are the virtual nesting controls which we will
discuss in the following.

Bertsimas and de Boer (2005) and van Ryzin and Vulcano (2005,
2006) all pursue a simulation optimization approach (see Algorithm 5.1)
to a displacement adjusted virtual nesting control (DAVN, see page
48). Bertsimas and de Boer (2005) treat both capacity and demand as
discrete measures. Van Ryzin and Vulcano (2005) develop a fluid ap-
proximation of Bertsimas and de Boer’s model to facilitate the analysis.
Van Ryzin and Vulcano (2006) pursue a similar approach in a choice
based setting.

Gosavi et al. (2007) also design a simulation optimization method
for RM problems on two or more resources including overbooking, but
they consider a “pure” booking limit approach where each product j
has got its own booking limit and is not mapped into virtual classes
like in the virtual nesting approaches mentioned before.

Curry (1990) develops an approach for network RM that has got
the flavor of a virtual nesting approach (see page 46 f.): Let N be the
set of products. Partition N into subsets such that for every pair of
products j, k ∈ Nh in the h-th subset rij = rik holds for every resource
i = 1, . . . ,m. If we consider an airline RM problem, Nh is a set of
fare classes that belong to a certain itinerary. Consider each subset Nh

separately and cluster similar products into a so called nest. Determine
a ranking of products in each of the nests. Higher ranked products can
access capacity that is available to lower ranked ones, but capacity is
not shared between nests. Note that this especially means that capacity
is not nested among different itineraries (in the airline case) or products
j, k where rij �= rik for at least one i. The problem is then solved in
(roughly) two steps:

1. Allocate capacity exclusively to every nest, i. e. determine parti-
tioned “booking limits” bg for each nest g.
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2. Consider each of the nests separately. For every product in nest g,
compute (nested) booking limits given the amount of capacity bg

that has been exclusively assigned to the nest.

Note that the problem is decomposed twice: By partitioning N into
subsets of products with the same production coefficients, and by the
allocation of all products of a particular subset to the nests. It is impor-
tant to stress that – in contrast to virtual nesting – the problem to be
solved in step 1 is not a single but a multi-resource problem. However,
since the products in nest g all have the same production coefficients,
the problem in step 2 can be seen as a single resource problem.

2.2.4 Discussion of Booking Limit Controls

Albeit we have seen that it is not obvious how the control policy should
actually be implemented if booking limits are nested, booking limit con-
trols are fairly easy to understand. The most important airline comput-
erized reservation systems (CRS) support only booking limit controls.
Since these CRS are mature information systems of crucial importance
to the sales process, changes in the software are typically rare and only
minor. Authors who consider to develop capacity control policies that
should actually be implemented by major airlines are thus typically
forced to focus on booking limit policies, possibly with a very limited
number of booking classes per leg such that a virtual nesting approach
is in order.

It is interesting to note that booking limit policies do not need to be
optimal, i. e. under certain assumptions the optimal capacity control
may not be a booking limit policy. As remarked above, Lee and Hersh
(1993) have e. g. shown that the optimal policy cannot be expressed
by booking limits if group bookings are considered. Subramanian et al.
(1999) demonstrated that the optimal booking limits are very diffi-
cult to determine and the optimal nesting order may not be given by
the fares if overbooking is integrated into the capacity control problem.
Furthermore, we have already mentioned that many of the authors who
prove that a booking limit policy is optimal rely on that demand for
different products is independent. To see that dependent demand can
be a problem, consider the following example which is due to Chatwin
(1998, example 2 on p. 817): We have a single leg airline RM problem
where the capacity of the airline is c1 = 1. There are two fares v2 > v1;
therefore the booking limit for product 2 is obviously b21 = 1. Demand
for the higher valued product is stochastically decreasing in the low-
fare demand, i. e. the higher demand for product 1, the lower demand
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for the other product. Assume that two outcomes for the random vari-
ables Dj , j = 1, 2 are possible: D1 = 1,D2 = 1, and D1 = 2,D2 = 0.
This implies that there are exactly to requests and the remaining time
is naturally divided into two periods (for the first and second request,
respectively). Suppose that demand for product 1 arrives strictly be-
fore any demand for product 2. Given these assumptions – which are
admittedly harsh –, an optimal policy will clearly reject the first re-
quest (which can only be a request for the low fare), and accept the
second, whatever it is. This means, the booking limit for product 1
would have to be b11 = 1 (if the second request is a low fare request),
and it would have to be b11 = 0 (if the second request is a high fare
request). Note, however, that this problem can be avoided by using
a dynamic instead of a static policy, i. e. by letting the booking lim-
its b11, b21 vary in the two periods, or (equivalently) by allowing that
the booking limits are revised (reoptimized) between the two periods.
Chatwin (1998) presents two other examples where the optimal policy
cannot be a booking limit policy as well.

2.3 Capacity Control by Bid Prices

2.3.1 Introduction

Capacity control by (nested) booking limits for RM problems with mul-
tiple resources is somewhat difficult to implement. Even in the “airline
network” case, which is (as we have seen) considerably simpler than the
general case with arbitrary rij , it is not clear what an optimal nesting
order is. Furthermore, we have already outlined that an “ideal” ca-
pacity control strategy would look very different from a booking limit
control (see page 46): The revenue vj would be compared with the
opportunity costs oj (t, c) of accepting (basically the loss of future rev-
enue by displacing other requests), and we would accept if and only if
vj ≥ oj (t, c).

Note that we have already (implicitly) discussed such an approach;
see our remarks with respect to the work of Lee and Hersh (1993,
page 61 in this book): As described by (2.12), we will accept a re-
quest for j in period t if and only if vj ≥ ∆Vt−1 (c) where ∆Vt−1 (c) =
oj (t, c) = Vt−1 (c) − Vt−1 (c − 1). However, Lee and Hersh (1993) have
shown that for their micro period model of single leg airline RM (with-
out group bookings) an optimal booking limit policy exists, and Subra-
manian et al. (1999) and Talluri and van Ryzin (2004a) have extended
this result to more general cases. Thus it is not necessary to e. g. store
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a (presumably large) table of opportunity costs oj (t, c) to implement
capacity control.

On the other hand, the results of Lee and Hersh (1993), Subrama-
nian et al. (1999) and Talluri and van Ryzin (2004a) heavily rely on
certain monotonicity properties of the value function Vt (c). We are not
going to discuss these properties in detail, but note that already Lee
and Hersh (1993) prove that if group bookings are considered, these
monotonicity results fail to hold and the optimal capacity control pol-
icy is not necessarily a booking limit policy. Subramanian et al. (1999)
analogously show that if group bookings are neglected, but overbooking
is considered, the optimal policy may no longer be monotone; comput-
ing and storing the optimal booking limits is thus impossible for all but
the smallest examples. Bertsimas and Popescu (2003) finally provide
an example that these monotonicity results do not hold for the mul-
tiple resource case (m ≥ 2); see also Feller (2002) for examples and a
discussion.

Let us therefore formulate a recursive value function similar to (2.12)
extending the approach by Lee and Hersh (1993) to a problem with
m ≥ 2 resources and group bookings: The time horizon is divided into T
discrete periods such that there is at most one request per period. Time
is counted backwards. vj and rij are (as before) the revenue and pro-
duction coefficient of product j with respect to resource i = 1, . . . ,m,
respectively. Define rj = (r1j , . . . , rmj). Given the initial capacity, the
maximal amount of any product that can be demanded by any request
is clearly bounded – at most K units of any product can be requested,
say. Denote the probability that a request arrives in period t = 1, . . . , T
is for k = 1, . . . ,K units of product j = 1, . . . , n by Pjkt ≥ 0. We require
that

∑
j,k Pjkt ≤ 1 holds for all t. The probability of no arrival in t is

then P0t = 1 −∑
j,k Pjkt ≥ 0. Denote the maximum expected revenue

from period t on with remaining capacity c = (c1, . . . , cm) by Vt (c).
The value function Vt (c) can be defined recursively for all t = 1, . . . , T
and all c ≥ 0 by:

Vt (c) = P0tVt−1 (c) +
n∑

j=1

K∑
k=1

Pjkt max {Vt−1 (c) , vj + Vt−1 (c − rj)}

= Vt−1 (c) +
n∑

j=1

K∑
k=1

Pjkt max {0, vj − ∆Vt−1 (c, rj)}

(2.13)
where ∆Vt−1 (c, rj) = Vt−1 (c) − Vt−1 (c − rj) is the marginal cost of
rj units of capacity, or equivalently the opportunity costs oj (t, c). The
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boundary conditions are V0 (c) = 0 for all c ≥ 0 and Vt (c) = −∞ for all
t and all c = (c1, . . . , cm) such that ci < 0 for at least one i. This value
function is investigated intensively by Bertsimas and Popescu (2003),
and as mentioned before they present examples showing that the nice
monotonicity results of the single leg case do not hold here.

Again, we see that it is optimal to accept a request for j in t given
capacity c if and only if vj ≥ oj (t, c) = ∆Vt−1 (c, rj). Dynamic pro-
gramming techniques will thus deliver the correct opportunity costs
oj (·), but it is apparent that it will only be possible to compute and
store values of V (·) – or equivalently oj (·) – for very small examples.
An obvious alternative of capacity control is to approximate the oppor-
tunity costs oj (t, c) using estimates o′j (t, c). That is, if a request for j
arrives at time t and the vector of remaining capacities is c, we accept
if and only if vj ≥ o′j (t, c). Such an estimate of the opportunity cost is
called a bid price, and the decision rule is to accept any request that
exceeds its bid price.

To lower the storage requirements for the bid prices to a practical
level, the values o′j (t, c) should be given by a function (that can be
computed “online” if a request for j arrives given t and c), or a reduced
version of an o′j (·) table should be stored (for some selected values of
t and c) such that if a request for j arrives in t and c is the vector
of remaining capacities, the required value o′j (t, c) is interpolated from
the stored ones.

2.3.2 Forms of Bid Prices and Their Optimality

The term “bid price” is used in the literature both for resource specific
and product specific opportunity cost estimates. For instance, Talluri
and van Ryzin (2004b) and Klein (2005) use the term “bid price” for an
estimate of the opportunity cost ωi (·) of a unit of resource i. A request
for product j is then accepted if and only if vj exceeds (or is equal
to) the threshold

∑m
i=1 rijωi (·). However, this threshold itself is called

the “bid price” e. g. by Bertsimas and Popescu (2003). Actually, they
call any threshold o′j (·) such that a request for product j is accepted
if and only if vj ≥ o′j (·) a (product specific) bid price; and the special
cases where o′j =

∑m
i=1 rijωi (·) for some resource specific opportunity

cost estimates ωi – as considered by Talluri and van Ryzin (2004b) and
Klein (2005) – are called additive bid prices. Bertsimas and Popescu
(2003) propose methods to compute non-additive bid prices which will
be discussed below.

It is debatable which of the approaches is simpler: In the former
case, only m values ωi (t, c) are needed (for each t, c), and given these
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values the product specific bid prices is trivially computed. On the
other hand, there is no clue what values of ωi (t, c) we should choose,
while it is clear that for o′j (t, c) at most n values have to be considered,
namely the values8 vj , j =, 1 . . . , n (this argument is due to Günther
et al. 1999). The number of products n may be very large, though.

Bertsimas and Popescu’s terminology seems to be reasonable, be-
cause if the o′j (·) are computed in a different, non-additive way, the
resulting capacity control policy clearly still belongs to the same class
of policies. In this book we will thus differentiate (if necessary) between
resource specific bid prices ωi (·) and product specific bid prices; how-
ever, most of the time “bid price” will mean the latter, i. e. we follow
the broader notion used e. g. by Bertsimas and Popescu (2003).

Talluri and van Ryzin (1998) present a very simple example for
which any additive bid price policy is suboptimal: We have m = 2, n =
3, T = 2 and we assume that any request is at most for K = 1 unit
of any product, therefore we drop the index k. Demand data, prices,
production coefficients and capacities are given by Table 2.3.

Table 2.3: Additive Bid Prices: Counterexample (Talluri and van
Ryzin 1998)

rij j = 1 j = 2 j = 3 ci

i = 1 1 1 0 1
i = 2 1 0 1 1
vj 500 250 250

Pjt t = 2 t = 1
j = 1 0.4 0.8
j = 2 0.3 0
j = 3 0.3 0

Obviously an optimal policy would accept the request in period
t = 1 if it arrives and there is sufficient capacity remaining. Formally:

V1 (c) =

{
0.8 · 500 = 400 c = (1, 1)
0 otherwise

The marginal cost of capacity in period t = 2 given the initial ca-
pacity c = (1, 1) is thus ∆Vt−1 (c, rj) = ∆V1 ((1, 1) , rj) = 400 for all
j = 1, 2, 3. An optimal policy would thus accept only the request for
8 This argument assumes that we do not accept requests if the remaining capacity

does not suffice to accommodate it. With overbooking, it might be necessary to
explicitly decide that no further request should be accepted (regardless of the
product). In this case, an n + 1-st value (e. g. maxj=1,...,n {vj} + 1) is necessary.
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product 1 (if it arrives) and reject requests for products 2, 3 because
v1 = 500 > 400 > v2, v3. This yields a total expected revenue of

V2 (1, 1) = V1 (1, 1) + P12 · [v1 − ∆V1 ((1, 1) , r1)] = 400+ 0.4 · 100 = 440

However, for period t = 2 there are certainly no bid prices ω1, ω2 > 250
such that v1 = 500 ≥ ω1 + ω2, i. e. all additive bid price policies are
suboptimal.

On the other hand, we have already seen above that for pretty gen-
eral RM problems an optimal (non-additive) policy using product spe-
cific bid prices ∆Vt (c, rj) always exists (albeit it is typically computa-
tional infeasible). Talluri and van Ryzin (1998, Proposition 1) arrive at
a similar conclusion for a much more elaborate dynamic model of the
RM problem. They also formally state conditions for the optimality of
additive bid prices.

It is interesting to note that a (resource or product specific) bid
price can be far away from the true opportunity costs, but the resulting
policy can still be optimal (this example is mentioned by Talluri and
van Ryzin 1998): Consider an airline single leg RM problem without
group bookings, cancellations etc. Suppose that requests arrived in a
high-to-low order – obviously a “first come first serve” (FCFS) policy
is optimal in that case. An FCFS policy can be seen as a bid price
policy where all product specific bid prices o′j (·) = 0, or all resource
specific bid prices are ωi = 0 as well. However, for a reasonable instance
of an RM problem, the true opportunity costs of allocating product j
(like ∆Vt−1 (c, rj) above) of using a unit of resource i will be strictly
positive.

The most popular way – and a quite successful approach – to com-
pute additive bid prices is using the shadow prices of linear programs.
We will describe this method in detail in the next subsection. We will
then discuss the drawbacks of such methods and some more advanced
approaches to overcome them.

2.3.3 Additive Bid Prices from Deterministic Linear
Programs

Introduction

Model 2.1 is a fairly general LP to describe the capacity control prob-
lem, and it elegantly includes cases where we have m ≥ 2 and/or arbi-
trary rij . On the downside, it assumes that demand is a known parame-
ter dj , and that the amount of product sold is measured on a continuous
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scale. In most RM applications of interest (airlines, hotels etc.), how-
ever, products are sold in discrete units, and demand is a (discrete)
random variable Dj . To simplify the problem, set dj = E [Dj ]. This is
a widely used procedure to replace uncertain quantities with determin-
istic values in stochastic optimization problems, see e. g. Scholl (2001)
for this method as well as for alternatives. Furthermore, we relax the
restriction that the amounts of products have to be integer9 and arrive
at our LP, Model 2.1.

If we solve this LP optimally, we obtain partitioned booking limits
(with fractional values), but since we are interested in a bid price control
we completely ignore these. As a byproduct we get optimal shadow
prices (dual variable values) µi ≥ 0 for the restrictions (2.1). These can
be used to compute a bid price for a request of a single unit of product
a j as follows:

o′j =
m∑

i=1

µirij (2.14)

This is somewhat similar to the computation of the displacement ad-
justed leg revenues used by DAVN (see Algorithm 2.2). The bid price
for a request of k ≥ 0 units of product j is k · o′j . Observe that (2.14)
works fine even for large m and/or arbitrary values of rij. o′j is clearly
an additive bid price where we estimate the opportunity cost ωi of a
unit of resource i by the shadow prices µi.

It is important to stress that o′j as given by (2.14) depends neither
on the remaining capacities c nor on the remaining time t. Since the
decision rule is “Accept a request for product j in t given capacities c
if and only if vj ≥ o′j (t, c)!”, the bid price policy in this case can be
expressed by a simple mapping ν : {1, . . . , n} −→ {0, 1} where

ν (j) =

{
1 vj ≥ o′j
0 otherwise

(2.15)

and we accept any request at any time for all products j ∈ N ′ where

N ′ = {j : ν (j) = 1} (2.16)
9 Note that – depending on the rij – the constraint matrix may be totally uni-

modular (see e. g. Nemhauser and Wolsey 1988; Schrijver 1986, 2003), implying
that an optimal basic solution of the LP will be integer if the input data ci, dj

is integer as well. Among others this is the case if the LP can be formulated as
a network flow problem. A network flow formulation for the airline network RM
problem is due to Glover et al. (1982); it can be applied to all airline networks
without cycles. This includes e. g. line networks and hub-and-spoke networks with
a single hub. See also the discussion by de Boer et al. (2002).
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– as long as the remaining capacity suffices to accommodate the request.
Williamson (1992, p. 90) formulates: “. . . inventories are either open
to bookings or closed, there are no explicit booking limits for different
[products].” In other words, requests for products in N ′ are controlled
in a “first come first serve” (FCFS) fashion. It is interesting to note that
this is clearly a form of capacity control with non-exclusive allocation
of capacity to products (see Figure 2.5). Bid price controls can easily be
implemented in existing CRS that allow for control by nested booking
limits only: If the CRS is capable to store a booking limit bj for each
product j we just set

bj =

⎧⎨
⎩

mini=1,...,m:
rij>0

{ci/rij} j ∈ N ′

0 otherwise

– or (even simpler), the products j ∈ N ′ are not stored at all in the
CRS. If the CRS only allows to store a limited number of leg wise
booking limits, create a single “leg bucket” (see page 46) for each leg
and index all products from N ′ that use that leg into that bucket. The
booking limit of the bucket on any leg i is than simply the capacity ci.

The concept of bid prices obtained from LP shadow prices has been
introduced by Simpson (1989), who proposes to use a network flow for-
mulation (practically identical to the one developed by Glover et al.
1982) to enhance the computational efficiency. The concept was inves-
tigated thoroughly e. g. by de Boer et al. (2002), Klein (2005) and
Williamson (1992).

Discussion

The method to compute bid prices we just outlined can practically be
applied to any industry, as long as the RM problem can be approx-
imated by a deterministic LP – this is usually possible by replacing
random variables by certain values and by relaxing integrality con-
straints. Kimms and Klein (2005), for instance, present a variety of
linear models for a broad range of industries.

A bid price policy based on such deterministic LPs is very easy to
implement: To compute the shadow prices µi basically a forecast of the
demand dj (e. g. E [Dj ]) is necessary. The resulting LP can be solved
efficiently using off-the-shelf software. The storage requirements are
low: n bits are practically sufficient (the value of the j-th bit is given
by ν (j)). The bid price policy can trivially be expressed as nested,
product specific-booking limits bj (which demands O (n) space) or “leg
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bucket” booking limits (O (m) space is then necessary for the booking
limits). Since the computation of o′j using (2.14) basically requires to
compute a weighted sum; and in practical applications many of the rij

are be zero such that it may even be sufficient just to store the shadow
prices µi (in O (m) space) and compute o′j online at each instant where
a request for product j arrives. Finally, we can also choose to delete all
products j �∈ N ′ and execute a simple FCFS control on the remainder
– thereby actually saving storage space.

This simplicity with respect to the implementation comes at a cost.
The set of products is basically partitioned into two subsets: One set of
products for which requests are always rejected, and one set of products
that has access to the entire capacity. In the former case, the company
has designed and marketed a product of which not a single unit will
be sold. Customers will probably be very annoyed if they find that a
product that is e. g. heavily advertised by the marketing department
is not made available by the revenue managers. On the other hand
products with a low yield that belong to the group of “open” products
may block capacities that could have been used more profitably later for
products of higher value – this was exactly the reason why a capacity
control strategy was implemented in the first place. Nested booking
limits, in contrast, are a much more precise form of control.

A usual way to tackle the inflexibility of deterministic LP bid prices
is to reoptimize the LP on a regular basis using the remaining capac-
ities and updated forecasts of the demand to come. Since capacity is
allocated by accepting requests, capacity gets more scarce and thus
more valuable. For a typical problem, requests for products with a low
yield will arrive earlier, so that high valued demand to come increases
relative to lower valued demand, and the opportunity costs of displac-
ing a request increase. Both effects lead to rising shadow prices µi, thus
products with lower vj will become closed for sales bit by bit. However,
depending on the realization of demand, the number of requests that
are actually accepted and the updated forecasts, the shadow prices may
also decrease (e. g. if demand between two reoptimizations was unex-
pectedly low). In this case, a product that has already been closed may
become available again – probably an unwanted effect, since it may
annoy consumers who purchased products at a high prices before the
reoptimization or it may motivate customers to withhold requests in
the future in order to await even cheaper offers. If the computational
costs of reoptimizations cannot be afforded during the booking process
bid price tables can be computed in advance. In either case we ap-
proximate bid prices that are varying with t and c. It is interesting to
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note that there are examples where reoptimization of the LP worsens
the performance of the bid price control in revenues terms (see Cooper
2002a,b).

The use of LP shadow prices to estimate opportunity costs is theo-
retically appealing because the meaning of µi is exactly that the objec-
tive function value would change by k · µi if the capacity ci of resource
i is increased or decreased by k ≥ 0 (see e. g. Bertsimas and Tsitsik-
lis 1997, Winston 1994). However, this statement is actually limited to
changes k which are so small that the optimal basis remains unaffected;
and the result is limited to LPs, i. e. it does in general not apply to inte-
ger problems. If we accept a request for a large and/or integer amount
of product j, the opportunity cost estimate o′j may well be misleading;
see Domschke and Klein (2004) for a discussion. Albeit there are some
attempts to define the notion of a shadow price for linear integer prob-
lem as well – see Domschke and Klein (2004) and the references therein
–, none of these methods is actually implemented in solvers that are
commercially available, so that using these methods would involve a
good deal of programming efforts.

Furthermore, due to an effect that is called primal degeneracy the
optimal shadow prices may not be unique (this problem is noted by
Bertsimas and Popescu 2003 and others). As a consequence, the op-
portunity costs may not be given correctly by the shadow prices. The
aspect of degeneracy is also discussed e. g. by Domschke and Klein
(2004) and Talluri and van Ryzin (1999, 1998).

We have already seen that there are very simple examples where any
additive bid pricing scheme will be suboptimal. Note however that the
additive bid prices (2.14) are asymptotically optimal (Cooper 2002a,b,
Talluri and van Ryzin 1998), i. e. if both capacities and demand are
scaled by some factor, (2.14) gives optimal bid prices as this factor
approaches infinity.

A frequently mentioned issue is that dj may be a small number.
German airline specialists report that E [Dj ] may well be smaller than
1. Obviously that would lead to a booking limit bj = 0 for the inte-
ger problem; for LP value of bj may be positive, but then it will be
fractional. However, we are not interested in optimal values for bj (let
them be integer or fractional) anyway, we only use the shadow prices.

2.3.4 Advanced Approaches to Compute Additive Bid Prices

We have already mentioned the most important improvement of the
bid price method based on deterministic LPs: Frequent reoptimiza-
tions help to approximate a variation of the resource specific shadow
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prices with remaining time t and remaining capacity c. However, this
is a rather “ad hoc” method that does not explicitly take the dynamic
nature of the demand process into account; and other drawbacks which
we have discussed in the previous subsection clearly remain.

One of them is that we use a deterministic model to solve a prob-
lem that is of inherently stochastic nature. It is thus natural to use
probabilistic models to obtain bid prices. This is not necessarily more
complicated than obtaining bid prices from a deterministic LP – con-
sider, for instance, Model 2.3. This model is linear, and if we relax (2.5),
we obtain an LP and can derive shadow prices µi from the resource re-
strictions (2.4) as smoothly as before.

Such an approach has been investigated intensively by Williamson
(1992) and de Boer et al. (2002) for an airline network without group
bookings. Note that Model 2.3 can be simplified considerably for this
application. Both find that these stochastic bid prices show inferior
performance in revenue terms compared with their deterministic coun-
terparts. This is at first surprising, because one would intuitively sus-
pect that an approach that explicitly takes the uncertainty involved
into account would perform better. However, as both Williamson and
de Boer et al. point out, the deterministic as well as the probabilistic
model assumes that capacities are partitioned, while the actual control
is nested. As a consequence, the stochastic LP protects more seats for
products with high revenues, because the probability that Dj ≥ E [Dj]
can be quite significant – the deterministic LP simply bounds the book-
ing limit by E [Dj], i. e. the “probability” of more demand is zero. The
actual control is a nested one, though and thus the reservation of more
seats for higher valued products is not necessary. With the words of
Williamson (1992, e. g. on p. 173) the probabilistic model “overpro-
tects” seats. Talluri and van Ryzin (1998) report on further evidence
supporting de Boer et al. (2002) and Williamson (1992) and rigorously
discuss the reasons on theoretical grounds.

It is important to stress that these results are limited to the simple
stochastic model that has been used by Williamson (1992) and de Boer
et al. (2002). Higle (2005), for instance, presents much more sophis-
ticated stochastic programs (one of them even explicitly accounts for
nesting) and finds that bid prices obtained from these models outper-
form the classic deterministic ones.

Talluri and van Ryzin (1999) propose another approach to integrate
distributional information into the computation of bid prices, yet stay-
ing with an easy-to-solve model: If the distributions of Dj , j = 1, . . . , n
are known, we can use a computer simulation to generate realizations
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dj , j = 1, . . . , n of these random variables (see subsection 5.2.1), use
these values as inputs of Model 2.3 and record the shadow prices µi. It-
erating this procedure N times delivers shadow prices µk

i , k = 1, . . . , N .
We then set ωi =

∑N
k=1 µk

i /N and proceed as before. This is not only
a very elegant method to include stochastic information in the deter-
ministic LP, but it is also well justifiable on theoretical grounds (see
Talluri and van Ryzin 1999). The bid prices obtained by randomized
linear programming are thoroughly investigated e. g. by Klein (2005).
He finds that the performance of this approach somewhat depend on the
context, but he points out that its ratio of (expected) revenue gained
to computational time is remarkably good.

Pak and Dekker (2004) and Spengler et al. (2007) pursue a similar
approach: Given N simulated realizations of demand, bid prices are
computed. The final bid price to be used in actual control is then the
average of these bid prices. These references are discussed in some detail
in section 6.6.

Klein (2005, 2007) proposes a parametric method to compute re-
source specific bid prices: Time runs backward from T to 0. Suppose
a request arrives at time t. Denote the allocated capacity at t by
ct
i, i = 1, . . . ,m. Let the random variable Dj be the total demand (over

[T, 0]) and the random variable Djt be the demand to come from t on
(over [t, 0]). Define the average capacity demanded of resource i up to
time t:

ut
i =

n∑
j=1

rij (E [Dj] − E [Djt])

Note that there is a subtle but relevant difference between ct
i and ut

i:
The former is a constrained measure of the capacity demand (i. e. after
rejecting orders), where the latter is unconstrained.

Let ωi, αi, βi ≥ 0 be parameters that guide the computation of the
bid price of resource i. Klein (2005, 2007) proposes a time-oriented and
resource-oriented way to compute bid prices ωt

i :

ωt
i = ωi + αic

t
i − βi (T − t) (time-oriented)

ωt
i = ωi + αic

t
i − βiu

t
i (resource-oriented)

ωi is called the base bid price of resource i which is increased or de-
creased with respect to the allocated capacity and the remaining time
t or the unconstrained capacity demand ut

i.
We certainly have the intuition that bid prices should depend on

remaining time and capacity, where bid prices should increase if the
remaining time and/or capacity is small. This is modeled in an elegant
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and efficient way here, making this approach very appealing. Klein uses
a linear function with just three parameters per resource to express this,
thus O (m) space suffices to store the necessary information and the bid
prices can be computed online.

The parameters ωi, αi, βi are determined using a simulation opti-
mization approach. Klein (2005, 2007) present results from computa-
tional experiments which show that the parametric bid prices perform
better in revenue terms than deterministic and randomized linear pro-
gramming bid prices. On the other hand, the running times of the
method are much higher. However, the necessary simulation runs to
determine the parameters ωi, αi, βi can be undertaken offline before
the start of the planning horizon, and albeit reoptimizations are cer-
tainly possible, they are – in contrast to other bid prices approaches –
not necessary.

2.3.5 Non-Additive Bid Prices and Approximate Dynamic
Programming

Resource specific bid prices are appealing from a theoretical point of
view, and they are easy to implement. We have just seen that paramet-
ric approaches can be used to take the variation of the bid prices with
respect to remaining time and capacity into account. The approaches
we have discussed in this book allow for an online computation of the
product specific bid price (threshold of accepting) o′j ; and they confine
themselves to O (m) storage space.

On the other hand, additive bid prices are not able to execute op-
timal control even for very simple examples like the one depicted in
Table 2.3. Talluri and van Ryzin (1998) point out that the failure of
additive bid prices are caused by two reasons: The effect of a significant,
simultaneous reduction of the capacities of various resources cannot be
expected to be equal to the sum of the individual effects in general; and
the availability of a product basically depends on the available capac-
ity on the “most constraining” resource – that is, if rij > ci for some
i, we cannot accept a request for product j even there may be ample
capacity left on other resources. This is clearly not a linear relationship
between the available capacities and opportunity costs. In fact, in the
counterexample, the opportunity costs of accepting a request in period
t = 2 are independent of the resource consumptions of the products
because any acceptance will destroy the possibility to accept a request
in period 1.

The RM problem can – in principle – be solved by applying dynamic
programming (DP) techniques on the value function (2.13). This leads



78 2 Capacity Control and Overbooking

to optimal bid prices oj (t, c) = ∆Vt (c, rj) and thus to an optimal bid
price policy. However, it is not possible to compute Vt (·) for all but
the smallest examples – in fact, even if it were possible, the resulting
table of oj (t, c) would be huge and could not feasibly be stored on any
computer. We basically have three options to approach this problem.
These are obviously not identical, but equivalent with respect to the
fact that all try to approximate the optimal policy in a heuristic way:

• Approximate the opportunity costs oj (t, c) using a function o′j (t, c)
(e. g. a neural network) such that this function depends on a very
limited number of parameters (i. e. it can be stored efficiently) and
it can be computed online. The capacity control strategy is then to
accept a request for product j given t, c if and only if vj ≥ o′j (t, c).

• Approximate the value function Vt (c) using a function with the
same properties as the one discussed for o′j (t, c). Accept a request
for product j given t, c if and only if vj ≥ Vt−1 (c) − Vt−1 (c − rj).

• Denote the optimal action given the state t, c and a request for
product j by aj (t, c) ∈ [0, 1] where aj (t, c) denotes the probability
that the request is accepted10. Approximate aj (t, c) using a function
with the same properties as discussed before. If a request arrives for
product j given t, c accept/reject according to the approximation
a′j (t, c).

The first two options obviously still constitute bid price policies,
while the last is an “indirect” bid price policy in the following sense:
Admittedly opportunity cost estimates are no longer explicitly used,
but we have seen that the optimal actions – if the true opportunity
costs oj (t, c) were available – would be given by:

aj (t, c) =

{
1 vj ≥ oj (t, c)
0 otherwise

(2.17)

The third option thus does not estimate the opportunity costs them-
selves, but tries to mimick the actions of a policy given optimal oppor-
tunity costs.

All these options try to approximate exact approaches based on DP.
Techniques of approximate DP are usually summarized using the terms
Neuro-Dynamic Programming (Bertsekas and Tsitsiklis 1996) or Rein-
forcement Learning (Sutton and Barto 1998; Spall 2003, chapter 11);
10 We have seen that the value function (2.13) allows for a deterministic optimal

policy such that aj (t, c) ∈ {0, 1}, see (2.17. However, a deterministic policy is
just a special case of a stochastic one, and it may be useful to allow for non-
deterministic heuristics.
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see also the edited volumes by Kaelbling (1996) and Si et al. (2004) and
the introductory articles and surveys by Kaelbling et al. (1996), Van
Roy and Tsitsiklis (1997) and Van Roy (2001). Note that approximate
DP techniques are by no means limited to bid price controls; Bertsi-
mas and de Boer (2005), for instance use a simulation optimization
approach to approximate a recursive value function using a booking
limit control.

Bertsimas and Popescu (2003) present various ideas to approximate
the opportunity costs oj (t, c), and we will briefly summarize some of
them here. The first idea is based on the observation that the shadow
prices obtained from the deterministic LP can be misleading because
the optimal basis may change if the decrease in resource availability is
“large”. In this case, however, it is possible to reoptimize the LP after
having decreased ci, i = 1, . . . ,m and to compare its optimal revenue
with the optimal LP revenue without decreasing the capacity. Formally,
suppose that a request for product j arrives in period t given capacity
c. Denote the vector of expected demand to come from period t on
by dt. Let LP (c, d) be the optimal objective function value of our
deterministic LP (Model 2.1) given capacities c = (c1, . . . , cm) and
demands d = (d1, . . . , dn). The opportunity cost estimate of accepting
the request is then given by oLP

j (t, c) = LP
(
c, dt−1

)−LP
(
c − rj, d

t−1
)
.

A similar idea is used by Pak et al. (2003). Note that this approximation
method uses the first of the three options mentioned.

This way of computing opportunity cost estimates controls for
changes in the optimal basis, and – as Bertsimas and Popescu (2003)
point out – the estimate is unique, regardless of the uniqueness of the
dual optimal solutions. On the other hand, the optimal control is still
based on a deterministic model, and it is necessary to optimize two LPs
“online” whenever a request arrives. However, the second of the LP is
only a slightly modified version of the first, and for certain network
structures the network flow formulation by Glover et al. (1982) may be
used to further enhance the computational efficiency.

To integrate some distributional information into the process Bert-
simas and Popescu (2003) pursue a similar approach like Talluri and
van Ryzin (1999): If a request for product j arrives given t, c, gener-
ate N realizations of the demand vector dt−1,1, . . . , dt−1,N and com-
pute oLP,k

j (t, c) = LP
(
c, dt−1,k

) − LP
(
c − rj , d

t−1,k
)

at a time. The
opportunity cost estimate is then given by the average: o′j (t, c) =∑N

k=1 oLP,k
j (t, c) /N .

A third idea is to use a so-called rollout policy. A rollout policy is a
standard method for approximate DP, see e. g. Bertsekas and Castanon
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(1999), Bertsekas et al. (1997). Its basic idea can be summarized as fol-
lows: Let V (·) be any recursive value function that describes the opti-
mal objective function value (maximal expected revenue in our case). If
all values of V (·) were given, optimal control would be trivial. Suppose
that we confine ourselves to a heuristic policy H, yielding suboptimal
values V H (·). We can then define a new heuristic H ′ (different from H)
that uses the values V H (·) as if these were the true values V (·), i. e.
H ′ is an “optimal” control given V H (·) (in contrast to a truly optimal
control which would be based on V (·)). H ′ is called a rollout policy
(based on H). It is obvious that this process can be iterated, i. e. we
can define a rollout policy H ′′ based on H ′ and V H′

etc.
In our case H could e. g. be the policy using the LP-estimates

oLP
j (·) or the randomized policy based outlined above. Denote V H

t (c)
the expected revenue using H from period t on given the remain-
ing capacity c. A rollout policy then uses the estimates o′j (t, c) =
V H

t−1 (c) − V H
t−1 (c − rj). It is, however, still computationally infeasible

to compute and store all values V H
t (c); Bertsimas and Popescu (2003)

therefore propose to evaluate V H
t (c) by simulation for only a few values

of t, c and interpolate missing values online as needed.
Gosavi et al. (2002, see also Bandla 1998, Gosavi 2004) consider

an airline single leg RM problem and apply to it a variant of tempo-
ral difference learning (see e. g. Sutton and Barto 1998 for details).
Roughly speaking, the algorithm presented by Gosavi et al. (2002) ap-
proximates the “reward” that is associated with taking a certain accep-
tance/rejection decision. In our notation that reward is vj −oj (t, c) if a
request for product j arrives at time t given capacity c and is accepted.

Cooper and de Mello (2006) consider “hybrid” policies as an ap-
proximate DP method. Such policies are based on the observation that
an optimal policy (based on exact DP methods) is computationally
feasible if the number of periods is small. Therefore a heuristic policy
is used until a certain “switching time” after which an optimal policy
is used – hence the name “hybrid policy”.

2.4 Overbooking

2.4.1 Introduction

The Impact of Overbooking

We have already introduced overbooking in subsection 1.4.1 as the
practice of intentionally accepting more requests than can be satisfied
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using the given (and practically fixed) capacity. For instance, we might
accept requests for 110 seats on a given leg despite the fact that the
aircraft serving that leg has only got 100 seats. The reasoning behind
overbooking is that many customers change their plans (e. g. rebook
a flight or depart earlier from a hotel), cancel their request or simply
do not show up on time (or not at all) to be serviced. In all cases the
company runs the risk to bear opportunity costs due to the loss of
potential profit because capacity that was reserved for such requests
is not gainfully used. The optimization problem of overbooking is to
balance those opportunity costs with the cost of oversales – besides
direct costs like fees for customers who voluntarily withdraw from being
serviced, penalties, vouchers for drinks, meals, hotels etc. there may be
a loss of customer goodwill, especially in the case of downgrades and
denied boardings.

The potential of overbooking – at least in the airline industry – is
generally considered to be huge: Alstrup et al. (1989) state that the
no-show rates are five to twenty percent in Europe and 15 to 30 per-
cent in the US, resulting in an annual revenue loss of around US-$ 50
million for each airline. They estimate that an improved overbooking
method could increase the revenue of Scandinavian Airlines by US-
$ two million per year. Smith et al. (1992) report that the additional
revenue gained by American Airlines due to overbooking is well above
US-$ 200 million for each of the years from 1988 to 1990. With over-
booking the number of actually empty seats on sold-out flights is now
ca. 3 %, while they estimate that it would be around 15 % without.
They mention that on average ca. 50 % of all reservations for a flight
are cancelled or the reserved passenger does not show up. Klophaus
(1998) states that Lufthansa German airlines encountered more than
four million no-shows in 1997 (an equivalent of 10,000 empty 747s).
Due to overbooking, Lufthansa was able to confirm 630,000 additional
requests, yielding ca. DM 250 million extra revenue.

The aforementioned no-show and cancellation rates are easily
recorded and thus can be considered to be quite accurate. In this respect
there is an obvious potential for overbooking. The revenue gain due to
overbooking is somewhat difficult to assess, though. Suzuki (2006, 2002)
investigates two aspects of overbooking that may frequently be over-
looked in such estimations: Firstly, “bumped” passengers may refrain
from traveling with that carrier again, thereby causing future losses
in revenue. In an empirical study Suzuki (2002) finds, however, that
the current overbooking levels of US carriers yet create gains that out-
weigh these losses. Secondly, as Suzuki (2006) points out, estimates of
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the benefits of overbooking are usually based on the assumption that
the otherwise empty seats are filled with “new” passengers who e. g.
would have purchased tickets of competing airlines, used other modes
of transport or not traveled at all if the flight was sold out. He presents
a simulation model that also accounts for “flight switchers” who would
have bought tickets of the same airline if their requests were declined
due to the absence of overbooking. He finds that the true contribution
of a passenger accommodated due to overbooking is substantially lower
than implied by the assumption of “all new” passengers.

Overbooking alone cannot dissatisfy customers – in fact, overbook-
ing can increase the level of service in at least two ways: By explic-
itly taking cancellations, no-shows etc. into account, customers whose
reservations would have been declined can be serviced, and since suc-
cessful overbooking policies increase capacity utilization, sales volume
and revenues, customers may enjoy lower prices. Even if overbooking
leads to oversales, reactions like upgrades may actually raise customer
satisfaction. On the other hand, the degree of dissatisfaction can be
quite significant, especially if customers are involuntarily denied ser-
vice. This effect has been investigated empirically by Lindenmeier and
Tscheulin (2005, see also Lindenmeier 2004). Wirtz et al. (2003) con-
sider a broader context and present examples for potential conflicts with
customers caused by the implementation of capacity control, price dif-
ferentiation and overbooking. They also report on practical solutions
to various of these issues, mentioning e. g. that the efforts of the North
American airline industry to actively ask customers to take the next
flight (for a compensation, of course) in case of oversales has lead to
that 90 % of all passengers denied boarding are now volunteers.

The Relationship of Overbooking and Capacity Control

If there is a capacity control problem to be solved and at the same
time overbooking should be implemented, both problems are appar-
ently intimately intertwined. It is though possible that overbooking is
practiced without implementing a capacity control policy. * Examples
include health care and shared hosting services. In the former case, the
capacity control problem is typically avoided by making appointments
(the situation thus lacks the necessary condition “operational inflex-
ibility”) – except of course for emergencies, where rejecting patients
is out of the question. Hence no capacity control problem arises both
for emergencies and regular patients. Green et al. (2006), for instance,
consider a diagnostic facility at a hospital with three types of patients:
outpatients (with scheduled appointments), inpatients (non-emergency
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cases without appointments) and emergencies. Emergencies have to be
treated immediately, but it is allowed to freely choose between in- and
outpatients (if one or more patients of each type are waiting for ser-
vice). Service delays incur a waiting cost, and there is a penalty cost
for all patients not treated at the end of the decision period. In princi-
ple, however, all patients have to be serviced, i. e. the basic problem is
to prioritize waiting patients and to manage the outpatient’s appoint-
ments.

The capacity control problem is thus indeed absent in most health
care facilities like hospitals. Chapman and Carmel (1992), on the other
hand, report on a weight control and life-style change center where a
mild form of price differentiation was implemented, demanding for a
capacity control policy.

In any case, however, patients may cancel their appointments or
simply fail to show up on time. We then clearly suffer from some op-
erational inflexibility because existing capacity that was reserved for a
particular patient can now has to be used gainfully for others, otherwise
it will be wasted. Despite the absence of operational inflexibility (and
hence a capacity control problem) under “normal” conditions, over-
booking can thus increase the efficiency of the health care provider.
This industry is e. g. covered by Kim and Giachetti (2006). Similar ob-
servations can be made for shared hosting services, see e. g. Urgaonkar
et al. (2002) for an overbooking problem in that business.

A similar reasoning shows that situations with a single product can
give rise to overbooking problems while the capacity control problem
is trivial: If an airline, say, only sells a single product (i. e. a single
itinerary at a single fare) an FCFS strategy is obviously optimal. If
there are cancellations and no-shows and overbooking problem never-
theless arises.

2.4.2 Literature Review

In the following we will review the state of the art of overbooking. Since
this book focuses on capacity control, we will mainly cover references
that deal with overbooking in the context of a RM problem. We will
thus concentrate on references stemming from the last 30 years. Sur-
veys of earlier results and reviews of the history of overbooking can
be found in Etschmaier and Rothstein (1974) and Rothstein (1971a,
1985). McGill and van Ryzin (1999) survey the literature as well, and
very readable introductions to the field of overbooking are given by
Phillips (2005, ch. 9) and Talluri and van Ryzin (2004b, ch. 4).
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An earlier stream of literature which is nevertheless worth mention-
ing considers bumping by auctions. Simon (1968) was probably the
first to suggest that the selection of passengers to be denied boarding
should be solved using an auction. If an airline notices that a par-
ticular flight is oversold, it should pass envelopes and bidding forms
to passengers, who in turn submit sealed bids denoting the minimum
amount of money they are willing to accept as a compensation to wait
for the next flight. The lowest bids win, there are as many winning bids
as passengers need to be bumped, and the winners are awarded their
bids in cash, plus a ticket for the next flight. This proposal has sub-
sequently been discussed by Falkson (1969), Rothstein (1971a), Simon
(1970, 1972), Vickrey (1972) and Nagarajan (1979). However, it should
be stressed that the procedures discussed in those papers only consider
the problem to select those passengers who are denied boarding.

We begin by reviewing the literature dealing with a single product.
This case does not give rise to a capacity control problem, but the
models and methods for a single product are nevertheless useful to
determine the level of overbooking (expressed as overbooking pads).
Overbooking pads can be seen as a means to solve the overbooking
and capacity control problem one after the other. In the next but one
section we will then deal with approaches which attempt to solve both
problems simultaneously.

Overbooking with a Single Product and Overbooking Pads

An obvious way to deal with both the overbooking and capacity control
problem is to determine an overbooking level for each and every physical
resource, compute the resulting “virtual” capacity, and then choose any
of the previously discussed optimization models and methods to solve
the capacity control problem using the virtual capacity instead of the
physical one. If the overbooking level is 10 %, say, and the physical
capacity of a particular resource is 100, capacity control would act as if
the actual capacity of that resource was 110. The 10 additional units of
resource are called an overbooking pad. Determining overbooking pads
is sufficient in single product setting (where no capacity control problem
is involved), we thus review the literature both on overbooking pads
and single product overbooking problems.

Overbooking pads can be determined by setting a lower bound on
the service level (i. e. the probability of oversales) or by considering
the trade off between the revenue of an (average) product and oversale
costs. Such models are e. g. presented by Phillips (2005, ch. 9) and
Talluri and van Ryzin (2004b, ch. 4).
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Besides the comprehensive treatment in the aforementioned books
references dealing with single product overbooking problems or over-
booking pads seem to be rare. Rothstein (1971b) considers the over-
booking problem of a single product and develops a dynamic model
with discrete time, allowing for time varying demand and cancellation
probability distributions. This approach is applied to hotels by Roth-
stein (1974).

Bodily and Pfeifer (1992) deal with the same type of problem and
present static decision rules to compute booking limits given vari-
ous “survival” probability distributions, where “survival” of customers
means that they finally show up to be serviced.

Coughlan (1999) roughly describes the overbooking optimization
procedures at Aer Lingus. A single leg at a time is considered. Denote
the number of products using that leg by n. Let dj be the historical
(mean) demand and sj be the no-show rate of product j. Compute
the overbooking level for the leg: w =

∑n
j=1 dj (1 + sj) /

∑n
j=1 dj . The

expected revenues and costs using that overbooking levels are then
estimated and w is updated until convergence is reached. The resulting
“padded” capacity is then used as a basis to compute nested booking
limits using the EMSR method.

Recently, the overbooking problem for cargo airlines has received
some attention. We have already mentioned that cargo RM has got
some unique features in contrast to passenger RM (see page 9). In
particular, cargo does not mind taking another route or waiting for
hours in inconvenient places for a connecting flight (as long as the
final destination is reached on time). With respect to overbooking, this
implies that cargo does not care about being denied “boarding” either
– cargo can simply be offloaded in the case of oversales, and stored
somewhere to wait for another flight (possibly on a different route).
However, offloading and storing cargo is connected with costs, and the
carrier certainly has to take care that all orders are finally satisfied on
time. Luo et al. (2005) develop models and corresponding methods that
minimize the sum of expected spoilage cost (if the overbooking level
was to low) and the expected offloading cost. They consider a single
aircraft and (at most) two dimensions of the cargo (volume and weight).
Demand (in the sense of requests before no-shows are revealed) is an
aggregate measure, i. e. there are random variables Bv, Bw denoting
the total demanded volume and weight, respectively. Remarkably, this
implies that there is no capacity control problem to be solved, because
the possibility varying values of requests is intentionally not taken into
account.



86 2 Capacity Control and Overbooking

An aggregate formulation like the one by Luo et al. (2005) is exam-
ined (and rationalized) by Moussawi and Çakanyıldırım (2005). They
argue that usually so many orders are loaded into an aircraft that the
size of a typical shipment is negligible compared to the aircraft’s ca-
pacity and it is justified to assume that cargo is divisible. Furthermore,
showing up, loaded and offloaded cargo have the same density (weight
per volume) in practice. Both arguments together imply that it is not
necessary to distinguish between individual shipments. Moussawi and
Çakanyıldırım (2005) consider a profit maximizing approach (where
profit is revenues minus offloading costs) and show that the aggregate
model is a useful approximation for what they call the “detailed formu-
lation”. However, since the revenue of an order of volume v and weight
w is effectively given by a · max {v,w} – where v has to be scaled ap-
propriately –, and a similar relation holds for the offloading cost, given
the “same density” and “divisible cargo” assumption a capacity control
problem does not arise here as well.

Simultaneous Approaches to Capacity Control and
Overbooking

Capacity control and overbooking are obviously interdependent: The
decision whether or not requests should be accepted beyond the avail-
ability of capacity has certainly got implications for capacity control.
The capacity control policy, on the other hand, decides which requests
are accepted or rejected and thus determines to a great degree the prob-
ability of oversales and oversale costs. It is thus reasonable to solve both
problems simultaneously.

Booking limit policies are naturally suited for capacity control if
overbooking is implemented at the same time – compared with the
non-overbooking case, the booking limits will simply be higher. The
formulas we presented in subsection 2.2.2 which describe standard and
theft nesting can then be applied without any change; it is however
interesting to note that these somewhat complicated “bookkeeping”
procedures are not necessary with overbooking: Suppose we are given
booking limits b1, . . . , bn for n products and simply accept requests as
long as the number aj of confirmed units of product j is not greater
than bj. aj is possibly altered every now and then by cancellations,
rebookings etc. In some point in time, no-shows are revealed and sj ≤
aj requests for product j have to be satisfied. Note that up to now not
a single unit of capacity was assigned to any product, and we thus have
a capacity control policy with booking limits, non-exclusive allocation
of capacities, but there is no explicit nesting order (see Figure 2.5).
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To determine now which requests (if any) are though declined, a
bumping procedure is implemented. This procedure at the same time
assigns resource capacity to all non-bumped requests. It is important to
stress that this step is also necessary if the booking limits are updated
in the usual standard or theft nesting way. Like for nested booking
limit controls without overbooking we thus need a dynamic model with
at least two periods: One reservation period in which requests arrive
and one service period11 , where we decide which requests are finally
satisfied.

To summarize, if overbooking is implemented using booking limits,
it is not necessary (but possible) to distinguish standard and theft
nesting, because capacity will only be assigned to requests after no-
shows have been revealed and no further requests arrive. Due to this
bumping procedure, a capacity control strategy based on booking limits
thus always implicitly belongs to the class of policies that do not assign
capacities exclusively to products. Note that a nesting order is not
necessary. Many of the problems that we outlined in Table 2.2 are
therefore avoided.

It is also possible to implement overbooking by bid prices: Let
o′j (t, c) be the estimated opportunity costs of accepting a request at
time t given the vector of remaining capacities c = (c1, . . . , cm). With
overbooking, some ci may be negative. The overbooking level can then
be controlled by setting o′j (t, c) > vj if some ci have dropped below
certain (non-positive) values. A bid price approach taking overbooking
into account is due to Bertsimas and Popescu (2003). To the best of our
knowledge, however, this is the only bid price approach so far, and the
references we mention in the following are all booking limit approaches
to simultaneously solve the capacity control and overbooking problem.

Chatwin (1998) investigates the overbooking problem on a single
leg. Models for problems with a single (“stationary”) fare and with
time-varying (“nonstationary”) fares are presented. The latter case in-
cludes a capacity control problem, while the former obviously does not.
Chatwin (1998) focuses on conditions implying that a booking limit pol-
icy is optimal12. He presents settings for which optimal booking limits
can be derived by dynamic programming and studies the monotonicity
properties of the recursive value functions used. Chatwin (1999) ex-
11 The terms service and reservation period are due to Karaesmen and van Ryzin

(2004b). We will discuss this reference in some detail below.
12 We have already presented an example due to Chatwin (1998) for the non-

optimality of booking limit policies on page 65. In this example the use of over-
booking was unnecessary, though.
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tends this work by allowing for time-dependent cancellation refunds as
well, i. e. there is still only a single type of service, but a request (can-
cellation) at time t will be related with a revenue (cancellation refund)
of f (t) resp. c (t) where both f (t) and c (t) are known, piecewise con-
stant functions of time. Chatwin (1999) proves that for this setting an
booking limit policy exists such that the booking limit is a piecewise
constant function of time as well.

Liberman and Yechiali (1978) examine the overbooking problem at
a hotel where they focus on a single type of room sold for a particu-
lar night (i. e. they deal with a single resource problem). The room is
basically sold for a single fixed price per night (a single product prob-
lem in that respect), but Liberman and Yechiali (1978) allow for two
remarkable actions on the part of the hotel’s management: If bookings
are relatively low, rooms are marketed more intensively by increased
advertising efforts, introducing a discount etc., leading to additional
acquisition costs which actually decrease the contribution margin of
the product. If bookings are relatively high (and oversales are likely),
management can cancel confirmed reservations (at a penalty cost).

Alstrup et al. (1986) consider a single leg overbooking problem with
two types of passengers and apply a stochastic dynamic programming
approach. A remarkable feature of their model is that though the air-
craft is divided into cabins (one in the front part for the higher class, a
second in the rear part for the lower class), the high class cabin in the
front can be split between low and high class passengers using a cabin
divider. Low fare passengers seated in the front part will thus enjoy a
slightly higher level of service due to an increased legroom, but never-
theless they will receive the same meals like the passengers seated in
the rear part of the aircraft. A similar problem is studied by Ringbom
and Shy (2002). Pak et al. (2003) consider a comparable setting for a
network problem. Alstrup et al. (1989) report on a study conducted
at SAS and estimate that the improved overbooking method described
by Alstrup et al. (1986) could increase the revenue of Scandinavian
Airlines by US-$ two million per year.

Koide and Ishii (2005) deal with capacity control and overbooking at
hotels. They cover reservations of a specific room type for a single night,
i. e. the scope of the paper is a RM problem with a single resource. That
particular room type is rented at two different rates. Reservations and
cancellations follows a “low to high”-like pattern.

Zhao and Zheng (2001) study a single leg airline RM problem with
two products (a low and a high fare) and three types of customers:
Two types who will only buy the low or the high fare, respectively,
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and a flexible type, who will buy the low fare if it is available and the
high fare otherwise. An extension of their model takes no-shows and
overbooking into account.

Belobaba (1987b, 1989) presents an extension of his EMSR heuristic
(see page 55 ff.) to incorporate overbooking levels (“overbooking fac-
tors”). These overbooking levels are assumed to be given and a method
to determine them is not presented.

Subramanian et al. (1999) consider the single leg airline RM prob-
lem with an arbitrary number of products. They show that the optimal
policy is a booking limit policy, where the optimal booking limits de-
pend in general on the remaining time and the number of accepted
requests (see our discussion on page 62). Furthermore, they show that
the optimal policy is in general not monotone and the optimal nesting
order is not necessarily given by the fares.

Brumelle and Walczak (2003) extend the approach due to Subrama-
nian et al. (1999) by considering group bookings (“batch arrivals”) in
addition. They also show that in general the value function (and hence
the optimal policy) is not monotone.

The absence of monotonicity implies that it will be impossible to
compute or store the optimal policy for all but the smallest examples.
Gosavi et al. (2002, see also Bandla 1998, Gosavi 2004) thus pursue a
heuristic approach for the overbooking problem on a single leg based
on an approximate dynamic programming technique called temporal
difference learning (see subsection 2.3.5 for an overview of capacity
control by approximate dynamic programming). The aim of temporal
difference learning is to approximate the acceptance/rejection decisions
of the optimal policy. In this sense the approach by Gosavi et al. (2002)
is not a booking limit policy, and the authors intentionally make no
attempt to examine the structure (or type) of an optimal policy.

Amaruchkul et al. (2006) consider a cargo RM problem on a single
leg where demand can be categorized into a finite number of types.
The volume Vil and weight Wil of the l-th request of type i are random
variables. A revenue function ri is associated with each type i, thus in
contrast to the previously mentioned references on cargo overbooking
(see page 85) a capacity control problem has to be solved. The model al-
lows for that the (random) volume and weight showing up at departure
differs from the volume and weight announced at the time of request,
i. e. the carrier faces the problem of “partial show-ups” (and, as an
extreme case, no-shows). Consequently, overbooking is simultaneously
taken into account.
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Shlifer and Vardi (1975) present optimality conditions for one and
two types of passengers booking on a single flight leg, and for a network
consisting of two consecutive legs. In the latter case, there is only one
type of passengers for each of the three itineraries. El-Haber and El-
Taha (2004) also consider two-leg networks and pursue an approach
similar to Subramanian et al. (1999). They also outline an extension to
networks of three or more consecutive legs (line networks).

Karaesmen and van Ryzin (2004b, see also Karaesmen 2001) con-
sider an overbooking problem with an arbitrary number of “reservation
classes” (products). Their approach can roughly be described as follows:
Bookings arrive during a reservation period. A request for reservation
class i = 1, . . . , n is accepted if and only if the number of accepted reser-
vations xi is not greater than the “overbooking level” (booking limit)
ui. In the following service period, the number of no-shows is revealed
and surviving requests are assigned to “inventory classes” j = 1, . . . ,m
with finite capacities cj . If a reservation class i request is assigned to
inventory class j a profit aij (or cost if aij ≤ 0) results – a request for
a rental car may for instance be satisfied by a larger or smaller car,
resulting in an increase or decrease of customer satisfaction reflected
by the aij. Survivors are assigned to inventory classes such that the
sum of the aij is maximized (this is a transportation problem which
can be solved easily). One of the inventory classes is a “virtual” one
with practically unlimited capacity such that service is in fact denied
to requests which are assigned to that particular class.

The setting considered by Karaesmen and van Ryzin (2004b) can
be seen as a capacity control/overbooking problem on a single group
of substitutable resources. Karaesmen and van Ryzin (2004a, see also
Karaesmen 2001), on the other hand, jointly solve the capacity control
and overbooking problem on a network (with two or more resources).
Substitution of capacities is not taken into account, though.

Gosavi et al. (2007) develop a simulation optimization approach for
airline RM problems with two or more legs and an arbitrary number of
products. Their approach is “model free” and thus allows for a variety
of demand and cancellation processes.
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Recent Advances in Revenue Management

3.1 Introduction

3.1.1 Problems with Substitution and/or Multimodal
Products

Thus far we have discussed models and methods of capacity control and
overbooking that are already well established RM tools. However, al-
most every approach which we have discussed up to now was implicitly
based on the following two assumptions:

• The mode of production is fixed and known to the customer before
the time of purchase. For instance, if a customer buys a ticket for
a single seat from Dresden to San Francisco we have assumed that
the itinerary and the travel times are explicitly known to both the
passenger and the airline at the time the ticket is bought. Speaking
more generally, for each product j = 1, . . . , n and each resource
i = 1, . . . ,m a known constant rij ≥ 0 was given denoting the
amount of resource i that is necessary to deliver a unit of product
j.

• Because the mode of production was fixed, there were no decisions
to be made for the supplier (except of course whether to accept
or reject an arriving request). Similarly, customers did not make
choices either – we have assumed that an arriving customer has got
a preference for a certain designated product j and if j should not
be available she just exits the market.

In this chapter we will relax one or both of these assumptions. We
begin with so called choice-based RM problems which arise in situa-
tions where customers make choices, all else being like in the previous
chapter. More precisely, the attributes of all products are fixed before
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purchase, customers observe the set of available products (the so called
offer set) as they arrive to make a request and choose a product from
the offer set (or decide not to purchase at all and exit). In retailing or
similar industries where customers arrive and choose from inventory on
hand – such situations are frequently considered for pricing approaches
– we speak of substitutable demand. Under these circumstances avail-
ability of products is typically not driven by a capacity control policy
but rather by influencing demand (e. g. by dynamic pricing) such that
inventories are depleted in an organized way; see our discussion on
page 20.

If the mode of production is not defined before purchase (i. e. mul-
tiple modes of production are possible and either the customer or the
supplier chooses a mode of production later) we speak of multimodal
products (Petrick and Klein 2005) – in contrast to unimodal products
where the mode of production is fixed before purchase. Gallego and
Phillips (2004) use the term specific product for unimodal products. In
this book, we will use both expressions interchangeably.

If a customer purchases a multimodal product one option is that
she chooses which resources are used and when (i. e. the mode of pro-
duction is defined by the consumers). An example (which we have al-
ready mentioned on page 9) is German Railways (Deutsche Bahn, DB),
where a regular ticket does not oblige to take a particular train at a
designated time but the passengers may (more or less freely) choose
the actual departure time. To the best of our knowledge RM problems
with this way of customer behavior have not yet been discussed in the
literature, but we propose the term flexible customers for such situ-
ations (DB speaks of “uncontrolled traffic”). It is interesting to note
that DB’s RM department accounts for uncontrolled traffic by simply
subtracting the expected number of flexible passengers from the num-
ber of available seats in a particular train. Then, “conventional” RM
methods are applied to control the remaining capacity (Köhler 2005).

Both choice-based RM/substitutable demand and flexible customers
are subsumed under the term customer-driven substitution. It is impor-
tant to stress that this term refers to the fact that some final choices are
made by customers. It goes without saying that their choices are lim-
ited (but not precisely “driven”) by previous decisions of the supplier,
in particular those to offer or not to offer certain products.

If we reverse the situation and assume that the supplier makes
choices – besides the decisions connected with capacity control and
overbooking as we have discussed them in the previous chapter – we
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speak of supplier-driven substitution. Based on the first assumption we
can distinguish situations with uni- and multimodal products.

In the latter case, the decision to define the mode of production is
explicitly reserved for the supplier. For instance, the aforementioned
trip from Dresden (DRS) to San Francisco (SFO) involves connecting
either in Munich (MUC) or in Frankfurt/Main (FRA). Thus far we
have assumed that a passenger chooses one of the itineraries. Now we
also allow that the customer agrees to that the carrier defines the exact
route after purchase. If the supplier commits to a particular mode of
production (a route in this case) and notifies the customer immediately
after purchase, this is called routing control (in reference to the airline
industry). If the supplier reserves some flexibility and notifies the cus-
tomers well after purchase (e. g. shortly before production begins and
uncertain demand has mostly been revealed) we speak of flexible prod-
ucts.

It is important to stress the distinction between flexible products
and e. g. upgrades in car rental companies: In the former case, the cus-
tomer demands a compact car and the supplier agrees to deliver exactly
this type of vehicle at the designated date and location. If the supplier
is not able to deliver a compact car due to oversales or the inherent
uncertainty of capacity in the car rental business (see page 12) and
provides a midsize car, this is simply an upgrade. Oversales and other
circumstances leading to (unplanned) upgrades are typically considered
to be nasty events associated with excessive costs and roughly speak-
ing (but somewhat simplifying) our goal was to keep the probability of
such incidents very low. We might say that if the mode of production
has to be changed after purchase because of oversales or the like, this
is a (usually negative) surprise for the seller and/or the customer.

The possibility of such upgrades is of course a very relevant aspect
which has to be taken into account for capacity control and overbooking
methods, but it is fundamentally distinctive from a situation where
customers are indifferent between two or more options and agree with
the supplier that their requests can be satisfied e. g. either by a compact
or a midsize car. In the such a case, for instance, the supplier will have to
pay a certain premium for the additional flexibility, i. e. the indifferent
customer will enjoy a lower price. This implies that flexible products
have to be designed and priced very carefully to avoid cannibalization
of customers who would have bought the existing specific products (at a
higher price) if the multimodal products had not been available. In the
case of upgrades it is finally uncertain whether an upgrade will become
necessary or not, hence it is uncertain whether the supplier has to bear
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the costs associated with it – in contrast to the certain price premium
the supplier has to pay for the additional degrees of freedom associated
with flexible products.

If the actual mode of production is fixed before purchase and there
can still be some opportunities for the supplier to make decisions: Anal-
ogously to the substitutable demand case where customers e. g. decide
which goods to pick from a retailer’s shelf we can think of substitutable
inventories where suppliers decide which type of product is used to
satisfy a certain request given the amounts in stock. In this case the
production already has taken place, thus its mode is trivially fixed be-
fore purchase. A typical setting of such a problem will assume that
inventories are allocated to requests after demand has been revealed
and a fundamental part of the problem is to decide about the amount
of initial inventory.

It is necessary to emphasize some distinctive characteristics between
substitutable inventories and flexible products: In the former case we
are typically dealing with a given amount of finished products (i. e.
physical goods). Then, uncertain demand is revealed fully or in part
and we have to allocate the given inventories to demands according to
certain rules (e. g. demand for a 1.8 GHz processor may be satisfied
using a 2 GHz processor but not vice versa), where it may be allowed
to leave some demand unsatisfied (at a cost, e. g. holding costs) to save
some inventories for subsequent periods. Typically there is a one-to-
one correspondence between units of the substitutable products, i. e.
exactly one unit of product j is necessary to satisfy a demand for one
unit of product i �= j. An important part of the problem is to determine
the initial inventory of each and every product.

Problems with flexible products, on the other hand, do not fea-
ture substitutable products but substitutable resources. In principle,
demand for a unit of a certain product (e. g. a flight from Dresden
to San Francisco) is – in the absence of overbooking – satisfied with a
unit of that exact product, but the supplier decides which resources are
actually used to provide the product (i. e. the DRS-MUC/MUC-SFO
legs or the DRS-FRA/FRA-SFO legs). Finally, the amount of resources
available is assumed to be given, i. e. the capacity investment decisions
have already taken place and are out of scope of the problem at hand.

Table 3.1 summarizes the various kinds of problems we have outlined
so far based on the distinction between customer and supplier-driven
substitution on the one hand and the time to define the mode of pro-
duction on the other hand.
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Table 3.1: Categorizing Problems with Substitution and/or Multi-
modal Products

Before purchase, the mode of production is
fixed

(unimodal products)
open

(multimodal products)
Customer-driven
substitution

Choice-based RM,
Substitutable Demand

Flexible Customers

Supplier-driven
substitution

Substitutable Inventory Routing Control,
Flexible Products

It is important to stress that Table 3.1 only shows how problems can
be categorized based on the two dimensions. It is however possible to
consider mixtures of those “pure” problems – Gallego et al. (2004a), for
instance, deal with a problem with flexible products and take as well
into account that passengers observe the offer set and choose between
flexible and specific products.

3.1.2 Relationship to the Field of RM

A typical problem with substitutable demand or inventory involves
stocks of finished goods; the operational flexibility is thus not very
limited – some authors even allow for backlogging of demand. As men-
tioned before, the situation is typically considered as a “newsvendor-
like” problem where the fundamental decision is to determine the ini-
tial amount of capacity or inventory and – in the case of substitutable
inventory – to allocate the given capacity to realized demand. Such
problems are certainly related to the field of RM (namely choice-based
RM) – in particular, some problems may appear as subproblems in
typical RM settings. Consider, for instance, a car rental company: Ca-
pacity is uncertain, so after capacity control decisions have been made
a rental station may decide to get cars from other stations which ex-
pect a relatively low demand. After both the uncertain demand and
the uncertain capacity are revealed, capacity is assigned to orders. We
thus basically have a substitutable inventory problem: Capacity is pur-
chased in an investment phase (with random yields in this case) and
subsequently allocated to demand. This example is e. g. mentioned by
Netessine et al. (2002).

However, problems where inventory decisions are to be made are
somewhat out of scope of RM in the strict sense as it is considered in
this book (see our discussion on page 20). The reader interested in sub-
stitutable inventory is thus referred to Bassok et al. (1999), Bitran and
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Dasu (1992), Hsu and Bassok (1999), Netessine et al. (2002), Shumsky
and Zhang (2004) and Van Mieghem and Rudi (2002), where transship-
ments of stocks are also allowed, as well as Bish and Wang (2004), who
also include pricing decisions in their model. Noteworthy in this con-
text is the overbooking approach of Karaesmen and van Ryzin (2004b)
where it is similarly assumed that demands are allocated to capacity
after no-shows have been revealed and it is obvious whether oversales
have occurred or not (see page 90).

Substitutable demand problems at retailers etc. where customers
choose among the available products and the fundamental problem is
as well to determine the initial stock levels are e. g. covered by Agrawal
and Smith (2003), Anupindi et al. (1998), Bell (2001), Mahajan and
van Ryzin (2001b), Netessine and Rudi (2003) and Smith and Agrawal
(2000). Parlar (1988) considers a game theoretic approach for a prob-
lem with two competing firms which offer a substitutable product and
customers choose between firms. Mahajan and van Ryzin (2001a) ex-
tended this approach to multiple competitors.

Since there are no references dealing with flexible customers the
sequel of the chapter will be devoted to choice-based RM and flexible
products. In section 3.2 we deal with the former and present models
and methods which take into account that customers make choices
depending on the set of products which is available at the time of their
request. As a consequence our decisions to open or close products for
sale influence the demand process – an issue that we have neglected
so far. Our exposition complements the work of Kimms and Müller-
Bungart (2006), who present a very readable introduction to the field
of choice-based RM. In section 3.3 we consider routing control and
flexible products.

3.1.3 Further Recent Advances of the Field

There are yet other novel aspects about RM that have only recently
attracted attention from researchers. These include RM problems with
cooperating firms, giving rise to so called alliance RM problems; see
e. g. Belobaba and Darot (2001), Boyd (1998), Domschke et al. (2005)
and Vinod (2005). Another new area of RM research includes RM in
competitive environments. An earlier simulation study is due to Be-
lobaba and Wilson (1997); however, RM under competition has not
attracted much interest until the work of Chen (2000), Dasci (2003),
Netessine and Rudi (2003), Netessine and Shumsky (2005) and Froeb
and Tschantz (2003), who consider a pricing problem with two com-
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peting firms in the context of the Princess-Carnival cruise line merger
(see page 11).

Gallego (2004) and Gallego et al. (2004b) have proposed another
innovative approach which they term RM of callable products. If a cus-
tomer purchases one of the callable products the supplier reserves the
right to later “rebuy” the product to use the regained capacity for
other, higher yielding products. Of course, the supplier will have to
pay the customer a “recall price” (which has to be higher than the
original purchase price); and callable products will have to be deeply
discounted (compared to non-callable products) because customers will
expect a premium for their potential loss of utility.

While both alliance RM, RM under competition and callable prod-
ucts are very interesting and new developments, there are not many
references to discuss yet and we thus refrain from covering them in this
book in more detail.

3.2 Choice-based RM

3.2.1 Introduction

A typical assumption for capacity control models is that our decisions
to accept or reject requests for certain products do not influence de-
mand. In other words we assume that each of our clients is interested in
only one particular product and if the request is rejected the prospec-
tive consumer just exits the market. This model of customer behavior
is called independent demand (ID) because the demand process is in-
dependent of our decisions (see section 5.1 for this and other ways to
categorize demand models).

The ID assumption seems to be a bit simplifying because customers
may obviously react in many different ways if their requests are rejected:

• Rejected customers may be willing to buy a product at a higher price
(e. g. a flight from Dresden to Frankfurt at e 200 if tickets for e 109
are not available). This is called a vertical shift (Belobaba 1987b,
1989), an upgrade (Brumelle et al. 1990), diversion (Belobaba and
Weatherford 1996, Zhao and Zheng 2001) or a buy up (Andersson
1998).

• Consumers frequently purchase a slightly different product from the
same company if the exact product which they demanded in the first
place is not available. Passengers, for instance, may choose to travel
at twelve o’clock if no tickets (at prices which they find acceptable)
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are available for the eight o’clock flight. This is called a horizontal
shift (Belobaba 1987b, 1989) or recapture (Andersson 1998).

• Some customers will acquire a similar competitive product (e. g. a
flight with carrier B instead of A). This is called deviation (Ander-
sson 1998) or overflow (Netessine and Shumsky 2005).

• Finally customers may buy a substitute good (e. g. they travel by
rail instead of by air), or they completely give up their plans and
exit the market.

Despite this abundance of customer reactions the ID assumption is
underlying almost all models and methods which we have discussed in
the previous chapter. Assuming ID is quite convenient because it allows
to model the demand for product j as a simple exogenous random vari-
able Dj (or analogously a as stochastic process with fixed and known
properties, e. g. in the case of micro period models). If we explicitly
consider buy up behavior or the like, demand for a certain product
can no longer be described by parameters with known values but are a
result of our decisions.

ID can be somewhat justified by fencing (see page 5), i. e. the efforts
of the seller to avoid that customers with a high willingness to pay can
purchase products with a low price (e. g. Saturday night stay over
restrictions for discounted airline tickets). This should prevent buy ups
because ideally a customer will demand a certain product if and only
if the price matches her willingness to pay, i. e. she does not qualify for
similar product which is available at a lower price and is not willing to
buy up to a product which is offered at a higher price.

However, we cannot expect that the means of fencing are always
implemented so perfectly that buy up behavior can be neglected; and
fencing certainly does not preclude horizontal shifts or deviation. Fur-
thermore, buy ups reduce the positive effect of overbooking (Suzuki
2006) – in some cases it may be useful to overbook less and close fare
classes earlier to encourage buy ups and thus increased revenues with-
out the risk of oversales. Finally, neglecting choice behavior can lead
to very undesirable results in the long run, as a thorough analysis by
Cooper et al. (2006) shows: They consider a single leg airline RM prob-
lem with just two fares. It is reasonable to assume that some customers
who purchase the low fare (if it is available) are willing to buy up to
the high fare as well. As a consequence, the observed (constrained or
unconstrained) demand for the low fare will be higher than the “pure”
low fare demand, i. e. the demand by passengers who are only willing
or able to buy the low fare. If more low fare bookings are accepted
(e. g. because the protection level of the high class is lowered), more
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low fare tickets will be sold at the expense of the high fare. Since most
RM models assume independent demand, the forecasted high yield de-
mand will decrease, the high fare protection level will thus be decreased
even more, and the process iterates. The result is a down spiral with
ever decreasing protection levels for the high class and consequently
decreasing high yield sales and revenues.

In the remainder of this section we will discuss various approaches
to incorporate customer choice behavior. We will disregard deviation
to competitive or substitute products. Our exposition will begin with
airline single leg problems – in this case the only relevant aspects of
behavior are buy ups. A simple means of accounting for this kind of
action are buy up probabilities. We discuss two types of policies with
such probabilities, namely booking limit policies and so called offer set
policies – the latter type of policy is new in comparison to the previous
chapter because under ID it was not necessary to explicitly consider
the impact of the set of products which are (not) offered.

As mentioned in section 1.5, this book focuses on capacity control.
However, we are only aware of two references that deal with choice-
based pricing anyway: Zhang and Cooper (2005b), whose approach will
be discussed on page 110, and Bitran et al. (2006). The latter consider
a pricing problem of a retailer. Inventories of substitutable products
are already given, consumers observe the set of available products (i. e.
those which have not already stocked out) and choose among them
according to a choice model based on the price set by the retailer.
A remarkable feature of this approach is that two types of customer-
driven substitution are taken into account: Inventory-driven substitu-
tion – stock outs force customers to choose other products (or to leave
the store) – and price-driven substitution – consumers may decide to
purchase a different product because they find their first choice to ex-
pensive.

3.2.2 Airline Single Leg Problems

Booking Limit Policies for Single Leg Problems with Buy Up
Probabilities

Belobaba (1987b, 1989) extended his EMSR-heuristic to incorporate
vertical shifts using buy up probabilities. Recall the basic formulas
(2.9), (2.11) of the EMSR method without buy ups: The expected
marginal revenue of the p-th seat for product j is defined as

EMSRj (p) = vj · Pj (Dj ≥ p)
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where vj and Dj are the revenue and random demand of product j,
respectively. Product 1 is nesting highest and n is lowest. Then set the
number of seats pk

1j that are protected for product k = j +1, . . . , n and
from j to the smallest number satisfying

vj ≥ EMSRk

(
pk
1j

)
Now denote the probability that a customer whose request for fare

j > 1 has been rejected buys up to j − 1 by uj (Belobaba 1987b, 1989
only considers buy ups to the next higher fare class). It is assumed
that uj is known and constant. If uj > 0 we will want to protect an
additional number of qj seats for j−1 from j to encourage buy ups. The
value of protecting the qj-th seat can then be computed as follows: This
seat can be used for a customer buying up to j − 1, yielding vj−1 with
probability uj . If there is no buy up – this happens with probability
1 − uj – the seat can employed to a class j − 1 customer in the usual
way. We thus set qj to the smallest number satisfying

vj ≥ ujvj−1 + (1 − uj) EMSRj−1

(
pj−1
1j + qj

)
(3.1)

As Hopperstad (2000) points out (albeit in an other context) this
and other models with buy up probabilities have got a “self-fulfilling
prophecy feature”: If the buy up probability uj gets larger so does the
additional protection qj. The lower fares will thus close earlier and the
fraction of buy ups may indeed be (somewhat) higher. However, it goes
without saying that this effect decays in practice if the protection level
qj is set to a very high value.

Brumelle et al. (1990) prove that the decision rule (3.1) is optimal
for n = 2 (recall that EMSR delivers the optimal booking limits for the
two highest products as well for the case without buy ups). As they
note on p. 190, Pfeifer (1989) basically derives the same result.

Bodily and Weatherford (1995) extend the methods by Pfeifer
(1989) and Brumelle et al. (1990) to obtain a heuristic decision rule
for problems with three or more fare classes. Belobaba and Weather-
ford (1996) subsequently outperformed this method by incorporating
buy up probabilities in the EMSRb (Belobaba 1992, see page 59 in this
book).

Botimer and Belobaba (1999) propose a modeling framework where
the burden of a customer to accept the additional restrictions imposed
on fare classes with lower prices is given by a cost function. Demand
is a deterministic function of the prices and these costs. Booking limits
are used to encourage buy ups.
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Zhao and Zheng (2001) consider a problem with two fares and three
types of customers: Two “rigid” types (who will only demand either the
lower or the higher fare) and a “flexible” type, who prefers the lower
fare but will buy up if the low fare class is closed. A remarkable feature
of Zhao and Zheng’s model is that the discount fare class cannot be
reopened once it has been closed. Under these assumptions the optimal
policy is a protection level policy, i. e. the discount fare class should
be closed if the remaining capacity drops below a certain level. The
protection levels depend on the remaining time to departure and are in
general not monotone. An extension of the model accounts for no-shows
and cancellations by overbooking.

Offer Set Policies for Single Leg Problems

buy ups to class j may occur if we close a lower fare class i > j.
Speaking more generally demand for a product j depends on the subset
S of products that is offered, the so called offer set. It is thus natural
to consider the offer set S as a decision variable.

There is a noteworthy link between offer sets and bid prices poli-
cies: We have demonstrated that bid prices policies partition the set
of all products {1, . . . , n} into the set N ′ of products which are offered
(and has access to the entire available capacity) and the complement
{1, . . . , n} \N ′ which is not at all available – see (2.15), (2.16). However,
the “offer set” N ′ of bid price policies was the result of the decision
rule that a product j is available if and only if vj ≥ o′j where o′j is the
bid price (opportunity cost estimate) of product j. With choice-based
RM the offer set is explicitly made a decision variable.

In the following we discuss two models for single leg airline RM
problems using offer sets as decision variables. Both are extensions of
the micro period model by Lee and Hersh (1993).

You’s (2001) Model

Recall the assumptions used by Lee and Hersh (1993, see page 61 in this
book): The time horizon is partitioned into T micro periods, i. e. T is so
large that there is at most one request per period. Time runs backwards
from T to 0. Pjt ≥ 0, j = 1, . . . , n, t = 1, . . . , T is the probability that a
request for product j arrives in period t. Denote the maximum expected
revenue from period t on with a capacity of c seats remaining by Vt (c).
As before 1 is the index of the most expensive product and n denotes
the lowest fare.
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Similar to the references we have discussed in the previous para-
graphs You (2001) uses buy up probabilities to account for vertical
shifts: Let uij ≥ 0 be the probability that a passenger denied fare class
i = 2, . . . , n buys up to j = 1, . . . , i − 1. Naturally we require that∑i−1

j=1 uij ≤ 1; and if this inequality is strict there is a positive proba-
bility that a customer exits if class i is not available. Note that uij is
constant, implying that if class i and j are both unavailable an arrival
demanding class i is lost with probability uij – in particular the frac-
tion of customers uij that buy up from i to j will not “further buy up”
to one of the classes 1, . . . , j − 1. This greatly simplifies the analysis of
the model.

Let U i
t (c) be the maximum expected revenue from period t on with

a capacity of c seats remaining if product i = 1, . . . , n is not available.
Define the complete sets1 Aj = {1, . . . , j} for all j = 1, . . . , n. For
the convenience of notation let A0 = ∅. U i

t (c) is then given for all
t = 1, . . . , T , i = 1, . . . , n and c ≥ 1 by

U i
t (c) = max

S⊆Ai−1

⎧⎨
⎩∑

j∈S

uij (vj + Vt−1 (c − 1)) +

⎛
⎝1 −

∑
j∈S

uij

⎞
⎠Vt−1 (c)

⎫⎬
⎭

= Vt−1 (c) + max
S⊆Ai−1

⎧⎨
⎩∑

j∈S

uij [vj − ∆Vt−1 (c)]

⎫⎬
⎭ (3.2)

where ∆Vt−1 (c) = Vt−1 (c) − Vt−1 (c − 1) is (as before) the marginal
cost of capacity. For all i the boundary conditions are U i

0 (c) = 0 for all
c and U i

t (0) = 0 for all t. We thus conclude that U i
t (c) ≥ 0 for all i, t

and c.
It is important to stress that determining the maximizer S ⊆ Ai−1

is trivial if the value ∆Vt−1 (c) is readily available because uij is a
constant not depending on S. An optimal offer set is therefore given by
S = {j ∈ Ai−1 : uij [vj − ∆Vt−1 (c)] ≥ 0}. Because v1 > . . . > vn and
∆Vt−1 (c) is a constant independent of S and i we have:

j ∈ S ⇒ vj ≥ ∆Vt−1 (c) ⇒ vk ≥ ∆Vt−1 (c) , k = 1, . . . , j − 1
⇒ k ∈ S, k = 1, . . . , j − 1

As a consequence, the maximizing offer set S is always a complete set
Aj ⊆ Ai−1 where j = ji

t (c) is the cheapest fare class we offer given a
request for i = 2, . . . , n in t given capacity c:
1 This term is used by Talluri and van Ryzin (2004a), a reference which we will

discuss next.



3.2 Choice-based RM 103

ji
t (c) = max {k ∈ Ai−1 : vk ≥ ∆Vt−1 (c)}

To simplify the notation in the following define j1
t (c) = 0 for all t and

c.
Given a request for product j it is obviously optimal to accept if

and only if vj + Vt−1 (c − 1) ≥ U j
t (c). Vt (c) is thus recursively defined

as follows for all t = 1, . . . , T and c ≥ 1:

Vt (c) =

(
1 −

n∑
i=1

Pit

)
Vt−1 (c)

+
n∑

i=1

Pit max
{
U i

t (c) , vi + Vt−1 (c − 1)
}

= Vt−1 (c) +
n∑

i=1

Pit

· max

⎧⎨
⎩ max

S⊆Ai−1

⎧⎨
⎩∑

j∈S

uij [vj − ∆Vt−1 (c)]

⎫⎬
⎭ , vi − ∆Vt−1 (c)

⎫⎬
⎭

= Vt−1 (c)+
n∑

i=1

Pit max

⎧⎨
⎩

ji
t(c)∑
j=1

uij [vj − ∆Vt−1 (c)] , vj − ∆Vt−1 (c)

⎫⎬
⎭

As before the boundary conditions are V0 (c) = 0 for all c and Vt (0) = 0
for all t. We see from the last formula that the optimal offer set if a
request for product i arrives in t given capacity c is basically determined
by accepting the request or choosing the cheapest available fare class
ji
t (c) < i.

You (2001) thoroughly investigates the monotonicity properties of
the value function and the structure of the optimal policy. The results
can be formulated as follows: For each period t and each product i
there exists a critical capacity ct (i) such that a request in t for i with
c seats remaining is accepted if and only if c ≥ ct (i), i. e. ct (i) is a
time dependent protection level. If a request is rejected, the cheapest
product ji

t (c) < i determining the offer set can analogously be found:
If c < ct (i) the request is rejected and there exists critical capacities
γt (i, j) such that ji (t) = j if and only if γt (i, j − 1) < c ≤ γt (i, j).
Again, γt (i, j) is something like a “protection level”.
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Note that these results are somewhat natural extensions of those
due to Lee and Hersh (1993). You (2001) subsequently also considers
group bookings and again obtains results analogous to those of Lee and
Hersh (1993): Critical booking capacities do not longer exist, but the
optimal policy can be formulated as a set of critical decision periods.

Talluri and van Ryzin’s (2004a) Model

You’s model is still based on a rough approximation of choice behavior:
If product i is not available a fraction uij of passengers buy up to j. If
this is also not available, they exit. Modeling choices made by customers
in a more subtle way would assume that the customers observe the
offer set S ⊆ {1, . . . , n} and choose among the available products. The
choice process would be described by a choice model, e. g. based on
utility maximization assumptions.

It is important to stress that such a way of modeling customer choice
has got implications which may seem counterintuitive and are novel in
comparison to the ID models as well as the models with buy up proba-
bilities we have discussed so far (including You 2001). For instance, the
following holds for policies derived from those “classic” models: If a re-
quest for fare class j is accepted all more expensive products should be
available as well. This is the basic idea behind nested booking limits;
and it was easy to see that the assumptions of You (2001) also im-
plied that all optimal offer sets are complete sets Ai = {1, . . . , i} (recall
that product 1 is nesting highest and n nests lowest). However, if we
assume that customers always observe the offer set and then make a
choice we can easily see that this is not necessarily the case. Consider,
for instance, an example with n = 3. It can be optimal to offer the
incomplete set {1, 3} if enough customers who buy the most expensive
product 1 under these circumstances would buy the cheaper product
2 if it was available and/or customers who now purchase the cheap-
est product 3 would not buy 2 anyway even if it was available (i. e.
there are no buy ups from 3 to 2). We will soon demonstrate this more
formally.

Talluri and van Ryzin (2004a) develop a choice-based model for the
airline single leg case allowing for complex choice behavior. It is a micro
period model as well, similar to Lee and Hersh (1993) and You (2001),
i. e. T is the number of periods, there is at most one arrival per period
and time runs backward to 0. Let N = {1, . . . , n} be the set of products.
Let λ be the (time independent) probability of an arrival in any period.
Denote the probability that an arriving customer buys product j ∈ S
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if S ⊆ N is the offer set by Pj (S). We will see below that this way of
modeling includes ID as a special case.

The value function is given by:

Vt (c) = max
S⊆N

⎧⎨
⎩∑

j∈S

λPj (S) (vj + Vt−1 (c − 1))

+

⎛
⎝1 −

∑
j∈S

λPj (S)

⎞
⎠Vt−1 (c)

⎫⎬
⎭

=Vt−1 (c) + max
S⊆N

⎧⎨
⎩∑

j∈S

λPj (S) (vj − ∆Vt−1 (c))

⎫⎬
⎭ (3.3)

where ∆Vt−1 (c) = Vt−1 (c) − Vt−1 (c − 1) is (as before) the marginal
cost of capacity; and we have the usual boundary conditions Vt (0) = 0
for all t and V (0, c) = 0 for all c.

In contrast to (3.2) it is not easy to determine the maximizer S
in (3.3). The important difference between those formulas is that in
the former uij was a constant (independent of S) while the analogous
probability Pj (S) in the latter depends on S. As a consequence, the
inclusion of a product j in an offer set S being a maximizer in (3.3) is
in general independent of its margin mj (t − 1, c) = vj −∆Vt−1 (c) – in
the ID case and in You’s model mainly the sign of mj is relevant. To
demonstrate the difference we consider the situation for a given period
t and capacity c and drop the arguments of mj to improve readability.
Note that ∆Vt−1 (c) is a constant independent of the product for given
t and c. The following (somewhat surprising) situations may arise:

• It may be optimal to turn down demand for products j with a
positive margin mj > 0. This will be the case if enough customers
who purchased j if it was available buy up to the more expensive
product i (which has an even higher margin mi = mj +vi−vj). This
is the case which we have describe verbally in the above example: It
was optimal to offer {1, 3} because there were enough buy ups from
j = 2 to i = 1.

• It may be optimal to turn down demand for products i with high
margins mi, even though products j with lower margins mj < mi are
available. Natural examples for this case arise if fencing is imperfect.
Let i, j be products such that vj < vi and suppose for the ease of
simplicity that no effective fencing measure are implemented, i. e. no
customer buys i if j is available. Assume further that the probability
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of purchase of other products than i, j is not affected by whether
i, j, or both are available or not; and likewise, the probability of
purchase of i or j depends only on the inclusion of i or j into the
offer set. As noted before the marginal costs of capacity of i and j
are identical, implying and mi > mj. Assume that mj > 0. In the
independent demand case, an optimal policy will accept both i and
j. In the choice based case this is certainly possible, but if we offer
j customers willing to buy i will purchase j instead. So we will offer
either i or j; and offering both is effectively equivalent to offering
j only. In the former case we loose all customers willing to buy the
cheaper product j only; in the latter, all high-yield customers will
divert to the cheaper product j. If the “low yield only” demand
is high, it may be advantageous to offer j, but not i, because the
additional demand will overcompensate the loss due to the “buy
downs” of high yield customers.

• It may be optimal to accept demand for a product j with a neg-
ative margin mj < 0. Of course, this can be optimal if and only
if the inclusion of j to the offer set will stimulate enough demand
for some other products i with a positive margin mi > 0, i. e. the
inclusion of j into S will increase the probability Pi (S). It seems
to be hard to imagine a realistic situation that gives rise such a
behavior of Pi (S), but a possible explanation could be a so called
extremeness aversion of consumers: Customers seem to be reluc-
tant to choose alternatives with extreme values of certain attributes
(e. g. the most expensive product). Simonson and Tversky (1992),
for instance, report on an experiment where respondents were asked
to choose between two cameras, one of which was somewhat better
but also more expensive. The preference for the second (more ex-
pensive) alternative increased significantly after a third (even more
expensive) camera was added. The same paper gives an account of
a similar experiment with microwave ovens yielding practically the
same result. Speaking more generally, adding products to the offer
set can change the “frame of reference” (Smith and Nagle 1995) of
customers thereby increasing the probability of sale of other prod-
ucts.

We can summarize the differences between the optimal policies in
the ID case and the choice-based case as modeled by Talluri and van
Ryzin (2004a) as follows: In the independent demand case, the optimal
policy can easily be determined if a table of ∆V is available – a product
is available at time t given remaining capacity c if and only if vj ≥
∆Vt−1 (c). In the choice base case, even if a table of ∆V is available,
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finding the maximizer S ⊆ N of∑
j∈S

λPj (S) (vj − ∆Vt−1 (c))

is (in general) not trivial. If the probabilities Pj (S) lack a convenient
structure there may be no better way than searching exhaustively over
all subsets of N . However, the number of subsets is exponential in n.

Talluri and van Ryzin (2004a) nevertheless are able to prove impor-
tant monotonicity properties of ∆V . They furthermore show that in
general only efficient sets can be maximizers in (3.3), i. e. an optimal
policy only offers efficient sets. To characterize efficient sets define the
probability of purchase Q (S) and the expected (immediate) revenue
R (S) for each offer set S ⊆ N :

Q (S) =
∑
j∈S

Pj (S) (3.4)

R (S) =
∑
j∈S

Pj (S) vj (3.5)

A set T ⊆ N is inefficient if there exist probabilities α (S) ≥ 0,∑
S⊆N α (S) = 1, such that∑

S⊆N

α (S)R (S) > R (T ) and (3.6)

∑
S⊆N

α (S)Q (S) ≤ Q (T ) (3.7)

Otherwise, T is efficient. Note that obviously a deterministic optimal
policy always exists so that it is in principle not necessary to allow for
random policies as used in the definition of efficient sets. However, this
minor technical change greatly simplifies the analysis.

This notion of efficiency is quite intuitive: If there exists a random-
ization of offer sets with a strictly greater revenue, but with a lower
or equal probability of purchase (i. e. a lower or equal probability to
consume scarce capacity), T seems to be a poor choice for an offer set.

Denote the number of efficient sets by m ≤ 2n. Let the collection
of efficient sets be indexed such that Q (S1) ≤ Q (S2) ≤ . . . ≤ Q (Sm).
Then R (S1) ≤ R (S2) ≤ . . . ≤ R (Sm) as well – if Si �= Sj were efficient
sets such that Q (Si) ≤ Q (Sj) but R (Si) > R (Sj), Sj would not be
efficient.

We use that fact to simplify our notation a little further: Define
Qk = Q (Sk) , Rk = R (Sk), k = 1, . . . ,m where Qk, Rk are indexed



108 3 Recent Advances in Revenue Management

such that both are increasing with k. The Bellman optimality equation
(3.3) becomes:

V (t, c) = V (t − 1, c) + max
k=1,...,m

{λ (Rk − Qk∆V (t − 1, c))} (3.8)

Talluri and van Ryzin (2004a) then prove that an optimal policy is
monotone in the following sense: An optimal policy selects an offer set
from the ordered collection of efficient sets, i. e. an index k∗ that is a
maximizer in (3.8). k∗ is decreasing in remaining capacity and increas-
ing in remaining time. Note that this result is totally independent of
the actual structure of the choice model, i. e. of the Pj (S).

The efficient sets can in general (for arbitrary Pj (S)) only be deter-
mined by complete enumeration. Talluri and van Ryzin (2004a) try to
derive necessary and sufficient conditions for that the optimal policy is
nested by fares, i. e. all efficient sets are complete sets Ai = {1, . . . , i}
and the order of those sets is exactly A1, . . . , An. When we discussed
an example with n = 3 products above we have already mentioned
conditions under which it is optimal not to offer the “middle” product
2 but both the most expensive and cheapest products 1, 3. In this case
an optimal policy would not be nested by fares. Talluri and van Ryzin
(2004a) present a numerical example illustrating such a situation.

Since the example shows that the optimal policy is not nested by
fares for arbitrary choices of Pj (S) Talluri and van Ryzin (2004a) focus
on special choice models and are able to show that for certain struc-
tures of Pj (S) a nested by fares policy is optimal for the ID case (this
is exactly the result of Lee and Hersh 1993), a choice model where cus-
tomers purchase the lowest open fare and the multinomial logit model
of choice. We will briefly describe these models in turn, i. e. we will
show how they are defined in terms of the Pj (S).

In the ID model of “choice”, customers will either buy a specific
product (if it is available) or not at all:

Pj (S) =

{
qj j ∈ S

0 j �∈ S

where qj ≥ 0 is the probability that an arriving customer chooses prod-
uct j (if it is available). We require that

∑n
j=1 qj ≤ 1.

If customers purchase the lowest open fare the choice probabilities
can be stated formally as follows:

Pj (S) =

{
qj j = maxS

0 otherwise
j = 1, . . . , n, S ⊆ N
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Again, qj ∈ [0, 1] is the probability that an arriving customer purchases
product j (if it is the cheapest product available). Note that it is not
necessary that

∑n
j=1 qj ≤ 1 holds.

A necessary condition for the optimality of a “nested by fares” policy
is that Q (S) is increasing in S. Note that Q (S) = qmax S . Let S ⊂ T ⊆
N and compare Q (S) and Q (T ). Let jT = maxT\S. If jT < maxS, we
have Q (T ) = Q (S). If jT > maxS, we have Q (T ) = qjT

. So to satisfy
this condition we have to require that q1 ≤ q2 ≤ . . . ≤ qn. This does not
seem restrictive, though: It is natural to assume that fewer customers
purchase (i. e. qj drops) if the prices raise (i. e. max S drops).

In a multinomial logit model (MNL) of choice each alternative j ∈ N
is assigned a utility uj . We denote the utility of the no-purchase option
by u0. Since utility is ordinal w. l. o. g. u0 = 0. The choice probabilities
under a MNL can be formally defined as follows: Define wj = euj > 0
and note that w0 = 1. Then the choice probabilities are given by

Pj (S) =
wj

w0 +
∑

j∈S wj
=

wj

1 +
∑

j∈S wj
j ∈ S ∪ {0}

and zero otherwise.
The MNL is a choice model with rather convenient analytical prop-

erties. This and other models of choice are studied extensively by e. g.
Ben-Akiva and Lerman (1985), Maier and Weiss (1990), Ortúzar and
Willumsen (1994) and Train (2003). The MNL has got some drawbacks
(see e. g. Bhat 2000, Koppelman and Sethi 2000, Müller-Bungart 2002
for a discussion and alternatives), but it is nevertheless widely used
in the airline industry. A typical application of the MNL and related
choice models is forecasting of market shares – in this case the utility
uj of a product is expressed by a function depending on attributes like
departure time, flight duration etc. The probability Pj (S) is then in-
terpreted as forecast of the market share of product j if S is the set
of available products. Coldren et al. (2003), for instance, use a MNL
model for this purpose; the pitfalls of MNL in this area of application
as well as improvements are e. g. discussed by Grammig et al. (2005),
Müller-Bungart (2002) and Scheidler (2003).

3.2.3 Network Problems

If we extend our focus from single legs to networks we not only have to
take buy ups but also recaptures into account. In light of our discussion
in the previous subsection an obvious approach is to use both buy up
and recapture probabilities to describe both kinds of behavior. Jiang
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and Miglionico (2006), for instance, extend the model of You (2001)
with buy up probabilities to the network case.

Andersson (1998, see also Algers et al. 1993) reports on at project
at Scandinavian Airlines Systems (SAS). Survey and actual booking
data are used to calibrate a logit model of choice (see Algers and Beser
2001 for details). If the parameters of the logit model are estimated
with the choice set S and once again with the set S\ {i} for a product
i the fraction of passengers uij that buy product j ∈ S\ {i} if product
i is not available can be computed (Algers and Beser 2001, S. 42).

The uij can be interpreted as buy up (if i and j share the same
itinerary) or recapture probabilities. These values are used as parame-
ters in a deterministic LP to determine nested booking limits (under a
given nesting order).

Tontsch and Hoehl (2005) report on a similar effort at German Rail-
ways: buy up and recapture probabilities are estimated based on survey
and booking data. The estimation problem is complicated by the fact
that customers who buy up to regular full-fare tickets are free to choose
their travel times (see page 9).

Zhang and Cooper (2005a) do not consider a full network of flights
but a single pair of cities (one origin and one destination) and a set of
(two or more) non-stop flights connecting them. The demand process
is a mixture of ID and a choice model: On the one hand each passenger
is willing to pay a certain designated price only, i. e. there are no
buy ups or downs. However, each passenger will choose between all
flights for which the chosen fare is still available. Zhang and Cooper
(2005b) consider a pricing problem on a network of the same structure
(i. e. a set of n parallel substitutable flights between one origin and
one destination). At any time there is only one price for vj for flight
j = 1, . . . , n. Arriving customers will choose among the flights (or do
not purchase at all) where the probability to choose flight j (or to exit)
depends on the vector of prices.

Van Ryzin and Vulcano (2006) consider a virtual nesting booking
limit control (see page 46) for a multi-resource problem. Customers are
assumed to behave as follows: Every customer can rank the n products
according to preference. An example of such a ranking for n = 5 would
be (2, 1, 5, 0, 0), i. e. the customer strictly prefers 2; if 2 should not be
available 1 would be chosen, and then 5. 3 and 4 will never be chosen
regardless of the availability of 2, 1 and 5. Demand of each customer is
a continuous random variable Q. This demand is satisfied in continuous
amounts from the available supply according to the ranking (note that
the available amounts of the products are consequences of the decisions
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– protection levels or booking limits – of the seller). For instance, if
Q = 4 in our example and 3.5, 2 and 0.5 units of products 2, 1 and 5
are respectively made available, the customer will receive 3.5 units of
product 2 and 0.5 units of product 1. These assumptions – especially
the fact that demanded and satisfied amounts are continuous quantities
– simplify the analysis.

If we assume that customers observe the offer set and make a choice
it is natural to extend the recursive value function (3.3) to the network
case: Let m be the number of resources and c = (c1, . . . , cm) be the
vector of remaining capacities. Let rij ≥ 0 be the amount of resource
i = 1, . . . ,m needed to produce a single unit of product j = 1, . . . , n. Let
rj = (r1j , . . . , rmj) be the vector of production coefficients of product
j. Note that this way of modeling not only covers network problems
(with m ≥ 2) but also problems with group bookings. For instance, if
product j represents a booking of a group of four using legs two, three
and five out of five we would have rj = (0, 4, 4, 0, 4).

For the ease of notation define N (c) = {j ∈ N | rj ≤ c}, the set of
sellable products (without overbooking) given remaining capacities c.
The value function is then given by:

Vt (c) = max
S⊆N(c)

⎧⎨
⎩∑

j∈S

λPj (S) [vj + Vt−1 (c − rj)]

+

⎛
⎝1 −

∑
j∈S

λPj (S)

⎞
⎠Vt−1 (c)

⎫⎬
⎭

= Vt−1 (c) + max
S⊆N(c)

⎧⎨
⎩∑

j∈S

λPj (S) (vj − ∆Vt−1 (c, rj))

⎫⎬
⎭

= Vt−1 (c) + max
S⊆N(c)

⎧⎨
⎩∑

j∈S

λPj (S) mj (t − 1, c)

⎫⎬
⎭

where ∆V (t − 1, c, a) = V (t − 1, c) − V (t − 1, c − a) denotes the
marginal cost of the capacity a and mj (t − 1, c) = vj −∆V (t − 1, c, rj)
denotes the margin of product j given remaining capacity c and time
t. Due to the use of N (c) only the boundary condition V0 (c) = 0 for
all c is necessary.

Similar formulations are e. g. presented by Gallego et al. (2004a) and
van Ryzin and Liu (2004). Gallego et al. (2004a) also incorporate flex-
ible products, consequently we defer a discussion of their approach to
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the next section. Van Ryzin and Liu (2004) draw upon ideas and results
of Gallego et al. (2004a) and approximate the stochastic dynamic value
function by a static deterministic LP. This LP can be derived as follows:
As with the single leg case – see (3.5) – define R (S) =

∑
j∈S Pj (S) vj

and assume that R (S) is the deterministic revenue associated with the
decision to offer the set S ⊆ N of products. Analogously to (3.4) de-
fine Qi (S) =

∑
j∈S Pj (S) rij and assume that this is a deterministic

amount of resource i used by any request. Finally, assume that λ is a
deterministic rate of arrival. Our decision is now how long a certain
offer set S should be made available, i. e. we have to decide on the
number of micro periods t (S) in which S ⊆ N is the offer set. Note
that it is not necessary to decide on precisely when to offer a particular
set of products because all parameters – especially λ and Pj (S) – are
deterministic and independent of the periods t. Originally t (S) has to
be integer, but we consider a continuous relaxation. The result is an
LP, see Model 3.1.

Model 3.1: LP to Approximate Choice-based Network RM (Gallego
et al. 2004a, van Ryzin and Liu 2004)

max
∑
S⊆N

λR (S) t (S)

s. t. ∑
S⊆N

λQi (S) t (S) ≤ ci i = 1, . . . , m

∑
S⊆N

t (S) ≤ T

t (S) ≥ 0 S ⊆ N

Model 3.1 has got two drawbacks: The number of variables t (S)
is exponential in the number of products, thus a column generation
approach is in order. We cannot expect that the subproblem of such an
approach (i. e. the problem to find a new column with negative reduced
costs – or to prove the no such column exists) can be solved efficiently
for an arbitrary choice of the Pj (S), but Gallego et al. (2004a) show
that the MNL model of choice provides a tractable subproblem. Van
Ryzin and Liu (2004) present an alternative proof. Furthermore, an
optimal solution of Model 3.1 only specifies how long certain products
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should be offered – in which periods they should be offered is irrelevant
in the deterministic time homogeneous setting, but under stochastic
settings the offer set should depend on remaining time (and remaining
capacity). Van Ryzin and Liu (2004) thus develop a heuristic based
on a DAVN-like decomposition of the network problem into single leg
problems (see Algorithm 2.2).

Van Ryzin and Liu (2004) show that the optimal objective function
value of the deterministic LP and a reformulation of the stochastic
problem are asymptotically identical where “asymptotic” refers to the
fact that both the number of periods T and the vector of capacities c
(i. e. the right hand sides of the LP) are scaled by a common factor
θ and the limit for θ → ∞ is considered. An analogous result holds
for the deterministic LP of network RM with independent demand (see
page 74).

For the single leg case Talluri and van Ryzin (2004a) have shown
that an optimal policy only offers efficient sets S ⊆ N . The definition
of efficient sets – see (3.6), (3.7) – carries over to the network case if
we define Q (S) = (Q1 (S) , . . . , Qm (S)). Van Ryzin and Liu (2004)
mention that in the network case inefficient sets cannot be eliminated
from consideration in general. However, it can be shown that an optimal
solution of Model 3.1 only uses efficient sets.

3.3 Routing Control and Flexible Products

The discussion in the previous section was devoted to choice-based RM
with unimodal products. In this section, we consider multimodal prod-
ucts (namely routing control and flexible products), but we disregard
choice behavior first. At the very end of the chapter, however, we will
discuss an approach by Gallego et al. (2004a) which incorporates both
flexible products and customer choice behavior.

3.3.1 Introduction

Supplier-driven substitution means that the actual mode of production
can be defined by the provider of a good or service and not by the
customer. If this choice is made immediately after purchase – e. g. an
airline tells a customer the definite itinerary right after booking – we
speak of routing control. If the supplier reserves the right to commit to
a certain mode of production well after purchase, we speak of flexible
products. With a little abuse of the terminology we apply the term
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“multimodal product” in this section to both routing controlled and
flexible products to increase readability.

We have already mentioned that multimodal products are the use in
some industries because the customer simply does not care about the
mode of production. In cargo transport (see page 9), for instance, the
customer will typically be indifferent with respect to the route taken by
the goods as long as they arrive on time. In the broadcasting industry,
where the RM problem arises because customers want advertisements
to be placed in commercial breaks of limited length, it is not completely
irrelevant when a particular spot will be broadcast, but the airtimes
will only be roughly defined by the customer in a typical contract and
flexible products are thus prevalent in this industry. Broadcasting com-
panies are discussed extensively in chapter 6.

In other industries, however, flexible products are quite novel. Aida
Cruises, for instance, recently started to offer holidays where the cus-
tomer only chooses the length of the trip, type of cabin and date of
travel and the company will then choose the actual ship and cabin
such that the customer’s preferences are satisfied (Petrick and Klein
2005).

Whether routing controlled/flexible products are added to an exist-
ing portfolio of specific products or the bulk of products is multimodal is
irrelevant for an obvious advantage: Demand can be allocated to capac-
ity after uncertainty has (mostly) been revealed (acceptance/rejection
decisions, however, still have to be made under uncertainty). This re-
duces the operational inflexibility (which is a defining prerequisite for
RM problems; see our discussion on page 4) and allows to better balance
capacity supply and demand. Gallego and Phillips (2004) use the term
“risk pooling” to summarize this advantage. risk pooling is especially
relevant if demand is volatile and demand forecasts are very unreli-
able. This effect has been investigated by Petrick and Klein (2005) in
a small simulation study. They considered a situation with three single
leg flights departing within a time window of two hours. There were
three fares for each flight, where the third fare was either a specific
product (priced e 150) or a flexible product (at e 120). The former
“unimodal” setting yielded a better revenue if the forecast error was
five percent or less – the multimodal setting strongly suffered from
cannibalization in those scenarios –, but if the forecast error was ten
percent or higher the multimodal setting outperformed the unimodal
one, where the effect of risk pooling (and hence the revenue advantage)
increased with the forecast error.
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For a further discussion of advantages and disadvantages of flexible
products it is important to distinguish between cases where the major-
ity of products is unimodal, i. e. the supplier commits to a precise mode
of production before purchase (e. g. airlines, cruises) and cases where
it is common that the customers do not know which resources are used
to satisfy their orders (e. g. cargo, broadcasting). For instance, for the
cargo or broadcasting industry (where flexible products are prevalent)
the relationship of prices of uni- and multimodal products or the de-
sign of the latter in comparison to the former is not an issue because
specific products are virtually inexistent. The differentiation is similar
to our discussion on page 5: In the one case the product range is stan-
dardized, in the other a product is defined as a bundle of standardized
subservices.

If the bulk of products is unimodal, a routing controlled/flexible
product which is added to the existing portfolio of specific products is
typically a “menu of (existing unimodal) products”. For instance, an
airline that offers trips from DRS to SFO via FRA or MUC will cer-
tainly sell two specific products (the DRS-FRA-SFO and DRS-MUC-
SFO itineraries). A multimodal product “DRS-SFO” where the airline
chooses if the DRS-FRA/FRA-SFO or DRS-MUC/MUC-SFO legs are
respectively used is closely related to both unimodal products – namely,
the price of the multimodal product will have to be lower, i. e. the airline
will have to pay a premium for the gain in flexibility; or conversely, the
customers expect a premium for their loss of utility. However, since the
multimodal product will be considered inferior to the existing unimodal
ones, it is possible to demand a lower price for a product that is very
similar to existing ones without cannibalizing much existing demand.
We can hope that the bulk of requests for the new multimodal product
stems from “new” customers who are not able or not willing to buy one
of the unimodal products (this is what Gallego and Phillips 2004 call
“demand induction”). An interesting dilemma arises here, though: If
new multimodal products are too “cheap” (compared with their specific
counterparts), the probability of demand induction is high, but so is the
probability of cannibalization because customers will “buy down” from
the specific products. If they are too “expensive”, cannibalization due
to buy downs will be negligible, but not much additional demand will
be created either. An analogous situation arises if a deeply discounted
(specific) product is added to an existing portfolio with very similar
products (i. e. flights that traverse the same itinerary) at much higher
prices. As before, we thus have to implement a careful capacity con-
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trol strategy to limit access to both deeply discounted and multimodal
products in order to avoid blocking of revenues and cannibalization.

Petrick and Klein (2005) add that not only pricing but also the
design of multimodal products may be an issue – for instance, if an
airline reserves the right to assign the customer a departing flight within
a time window of twelve hours, this can be considered “unfair” by
prospective passengers and this multimodal product will not be bought
even if the price is very low.

3.3.2 Literature Review

We have mentioned some references dealing with cargo RM on page 10.
However, most of the references deal with single leg problems (where
routing is trivially not an issue), Bartodziej and Derigs (2004) and Pak
and Dekker (2004) being the only exception. Pak and Dekker (2004),
however, intentionally disregard the possibility of routing cargo and
assume that all products are unimodal. Bartodziej and Derigs (2004)
use forecasted values of future demands in a deterministic model where
the problem of routing cargo through the network is solved under the
objective of maximizing the yield per kilogram. In this model, cargo
is treated as a “fluid” though, i. e. it is possible to route arbitrary
fractions of kilograms along paths.

The broadcasting industry is discussed extensively in chapter 6,
so we postpone a discussion of the relevant literature. In section 6.6
we highlight the relationship between the broadcasting and cargo RM
problems.

We begin our review of literature related to routing control and
flexible products with the former: Talluri (2001) considers an airline
network RM problem. For every origin-destination pair there is a frac-
tion of passengers who are indifferent between various routes as long
as the departure and arrival times do not vary much. Talluri (2001)
assumes independent demand, i. e. there are some passengers who are
interested in a single specific product and exit if it is not available, while
some passengers are only willing to buy a single multimodal product
(i. e. a single origin-destination pair). In particular, the latter group of
passengers will not “buy up” to one of the specific products (because
these are more expensive, for instance). Talluri (2001) presents model
and a bid price method for this problem. The bid price method works
as follows: Let vj be the revenue of the multimodal product and Mj

be the set of routes – or more generally, the set of modes of produc-
tion. Let rp

ij be the amount of resource i consumed if mode p ∈ Mj is
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used to provide j. Let ωi denote a resource-specific bid price which Tal-
luri (2001) obtains from deterministic or probabilistic linear programs.
Define the bid price of product j if mode p is used: op

j =
∑m

i=1 ωir
p
ij.

Let p∗ = arg minp∈Mj

{
op
j

}
. Determining this minimum is – in the air-

line case – a shortest path problem; in the general case it can be done
through complete enumeration if the number of modes |Mj | is not too
large. If vj ≥ op∗

j accept and use mode p∗ (a route in Talluri’s case) for
j, otherwise reject. Since the mode of production (route) p∗ is never
changed in the future, the supplier commits immediately to a mode of
production, i. e. we have an example for multimodal products in the
form of routing control.

Chen et al. (2003) consider the same problem and propose bid prices
approaches based on deterministic and stochastic programs as well as
approximate dynamic programming. They argue that the standard way
to compute bid prices (as carried out by Talluri 2001) may be mislead-
ing because the demand constraint is no longer a simple upper bound
on a decision variable (see inequality (2.2) in Model 2.1). They propose
an improved bid price method which requires to solve an LP, obtain
shadow prices from the optimal solutions, find the K shortest paths
based on those shadow prices and iterate until convergence is reached.

Gallego and Phillips (2004) consider a problem with two flights A
and B, each with a single fare. As a third product the carrier offers
flexible product flexible product AB where the carrier will assign pas-
sengers to one of both flights well after purchase. Independent demand
for all three products is assumed. The decision horizon is divided into
two periods. In the first period all products are available, in the second
period passengers can only book the specific products.

The authors are able to prove some very appealing results for the
second period problem: Let aA, aB be the number of accepted bookings
during the first period for the specific products A and B, respectively.
Let c1

A, c1
B be the initial capacities and define c2

j = c1
j −aj for j = A,B.

Let a be the number of accepted bookings for the flexible product.
If overbooking is not allowed in the second period and b2

A, b2
B are the

booking limits to be used b2
A + b2

B = c2
A + c2

B −a holds and it is optimal
to assign c2

j − b2
j seats on flight j = A,B to the flexible product at the

beginning of period 2.
Gallego and Phillips (2004) show that – in the absence of overbook-

ing – the optimal booking limits b2
A, b2

B can be determined by selecting
the c2

A + c2
B − a highest EMSR values of both flights. This solution can

be used as a basis to determine optimal booking limits with overbook-
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ing by successively increasing either of the booking limits. Gallego and
Phillips (2004) finally propose a heuristic for the first period problem
(where both the two specific and the flexible product are available).

Gallego et al. (2004a) consider a problem with flexible products on
m ≥ 2 resources. The company offers a set P of specific products and
a set F of flexible products where each flexible product j ∈ F is asso-
ciated with a subset Pj ⊆ P of specific products such that a request
for product j can be satisfied by any product in Pj . We require that
F ∩ P = ∅. Demand for product j follows a homogeneous Poisson pro-
cess with rate λj (see chapter 5 for details on this and other forms of
arrival processes). The assignment of specific products to flexible prod-
uct requests takes place at the very end of the decision period. Gallego
et al. (2004a) present a dynamic programming formulation whose basic
ideas can be summarized as follows: Let c = (c1, . . . , cm) be the vector
of remaining capacities and f =

(
f1, . . . , f|F |

)
be a vector such that fj

is the number requests accepted for the j-th flexible product. The ex-
pected revenue from period t on given c and f is denoted by Vt (c, f). If
we accept a request for a specific product c is decreased accordingly; if
a request for the j-th flexible product is accepted we increase fj. Time
runs forward and the end of the decision period is T . The boundary
conditions are then given by:

VT (c, f) =

⎧⎨
⎩−∞ if it is impossible to satisfy the f requests for

flexible products with the remaining capacity c
0 otherwise

Gallego et al. (2004a) then study a deterministic approximation of
the stochastic problem. If stochastic demand is replaced by determin-
istic quantities, the resulting problem is basically to determine parti-
tioned booking limits for the specific and the flexible products. Define
N = P ∪F and let dj , vj , bj be the given demand, revenue and booking
limit of product j ∈ N , respectively. A suitable model formulation has
to make sure that it is always possible to accommodate all requests
for flexible products. We therefore define the decision variable zjk to
denote the number of specific products k ∈ Pj to satisfy demand for
product j ∈ F . For each k ∈ P define the set Fk of flexible products
j such that k ∈ Pj . Model 3.2 then describes the deterministic control
problem.

Gallego et al. (2004a) consider the LP-relaxation of that model and
prove that it provides an asymptotically optimal policy (i. e. if both
the length of the decision period T and the available capacities are
scaled by a common factor θ and the limit for θ → ∞ is considered).
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Model 3.2: LP to Approximate Network RM with Flexible Products
(Gallego et al. 2004a)

max
∑
j∈N

vjbj

s. t.

∑
k∈P

rik

⎛
⎝bk +

∑
j∈Fk

zjk

⎞
⎠ ≤ ci i = 1, . . . , m

∑
k∈Pj

zjk = bj j ∈ F

zjk ∈ N0 j ∈ F, k ∈ Pj

bj ∈ N0 j ∈ N

Furthermore, they use the LP to derive resource-specific bid prices.
Like Talluri (2001, see above), they propose to accept a request for a
flexible product j if its revenue vj exceeds the minimum bid price of
the products in Pj .

Finally, the authors extend their approach by incorporating choice
behavior. To do this, they let the rate of the arrival process λj (S)
depend on the offer set S. The resulting stochastic problem is again
approximated by a deterministic LP, which is basically a mixture of
Models 3.1 and 3.2. The number of variables in this LP is exponential
in |N |, but it can be solved efficiently by column generation for cer-
tain “attraction models” of choice, namely the MNL model. As before,
the LP provides an asymptotically optimal solution to the stochastic
problem.



4

Evaluating Revenue Management Techniques:
Instance Generation

After having described a wealth of RM techniques we are now ready
to develop instance generation methods suitable to evaluate their per-
formance. To the best of our knowledge we are the first to address this
question in detail. This chapter introduces the problem of generating
instances and highlights several related issues. We will see that the most
important module of an instance generator is a simulator for stochastic
demand data streams. This aspect will be extensively covered in the
following chapter.

4.1 Introduction

Different methods for optimization problems vary in many ways. In the
end, both researchers and practitioners are interested in those meth-
ods which “perform best”, where performance is measured in running
time, quality of the solution (i. e. objective function value) and mem-
ory usage. Various approaches exist to evaluate optimization methods
(or other algorithms) with respect to those measures. Two prominent
examples are worst case analysis and computational studies. The latter
requires to implement the method, run it on a test bed of system-
atically generated instances and record the desired quantities (e. g.
running time in wall clock seconds, average deviation of the objective
function value from a bound, number of Branch and Bound nodes).

If authors develop new procedures and want to publish results with
respect to their performance it would be desirable to have an estab-
lished standard test bed available for at least two reasons: A common
set of agreed-upon instances obviously facilitates the comparison of dif-
ferent methods for the same problem. Furthermore, authors save the
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time of developing an instance generator – a quite formidable task, as
we will see in this and the subsequent chapter.

While a standard test bed would thus be beneficial for all researchers
in a given field, to the best of our knowledge no such test bed for RM
problems is publicly available to date. In this chapter, we thus make
a first attempt to outline relevant aspects of RM instance generation.
We categorize these aspects into static (or deterministic), stochastic
(or dynamic) and statistical ones. The static/deterministic aspects are
highly application specific, so we only cover them very briefly. Subsec-
tion 6.5.1, which contains a description of our instance generator for
the broadcasting RM problem, can serve as an example here: The expo-
sition of the instance generating method is mostly devoted to features
which are specialties of the broadcasting industry. Stochastic/dynamic
aspects are introduced in section 4.3 and extensively discussed in the
next chapter. When generating instances, we should also keep some
statistical issues in mind. These are outlined in section 4.4, and we will
make some remarks on selected issues from that area (namely param-
eter estimation) in section 5.4 as well.

Because we focus on capacity control as being the core problem of
RM in this book, the features of the capacity control problem will act
as a guideline for our exposition. However, since the aim of this chapter
is to introduce and overview instance generation, our findings should
be fairly general and apply to e. g. dynamic pricing problems as well.
The same holds for large parts of the next chapter.

4.2 Deterministic/Static Aspects

Deterministic aspects are known before the evaluation of methods be-
gins. A typical example for objects whose properties are revealed in
advance are products and resources, while e. g. demand is stochastic.
As a consequence, the latter may vary between subsequent replications
while resources and products are static.

As mentioned in the introduction of this chapter, a reasonable
method to generate those static objects (e. g. products and resources)
highly depends on the considered application. In an airline RM prob-
lem, for instance, the resources will be described by a network of non-
stop flights (legs). Each leg i will be associated with a capacity ci de-
noting the number of seats on the aircraft. If there are multiple cabins
(e. g. economy, business and first class) on the aircraft and the RM
problem at hand allows for up- or downgrades of passengers (e. g. in
the case of oversales), ci will be a vector of capacities denoting the



4.2 Deterministic/Static Aspects 123

number of seats in each cabin. The dimension of ci may depend on i if
aircrafts serving different legs may have a different number of cabins.

A typical way to define an airline network is to consider a particular
structure, e. g. single leg, line or hub-and-spoke networks (see e. g.
Klein 2005). If we confine ourselves to a certain type of network, an
actual instance can typically be described with just a few parameters,
e. g. the number of line segments or the number of hubs and inbound
and outbound spokes. The capacities are then usually set to a realistic
number of seats (100 to 400, say), taking the structure of the network
into account – for instance, it is reasonable to assume that the number
of seats on in- and outbound spokes are identical, while the capacity
on inter-hub links is somewhat larger. However, as we will see in the
next section, the absolute amount of capacity is not too relevant; much
more important is the relationship of demand to available capacity.

In many applications the number of products is connected in a nat-
ural way with the number of resources and their relationship (e. g. legs
which are linked to network of flights). For instance, if we consider the
a hub-and-spoke network with mi inbound and mo outbound spokes,
there will be mi + mo local and mi · mo connecting itineraries. It is
reasonable to assume that the number of fares for each itinerary is a
constant f , yielding f · (mi + mo + mi · mo

)
products.

Defining the characteristics of the products can be somewhat more
difficult, though. In our airline example we have e. g. to define the
fares in a reasonable way. If the fares are decision variables (e. g. in
a dynamic pricing problem), we have to define a finite or infinite set
of feasible prices and to describe how demand reacts on price. Setting
prices gets even more difficult if group bookings are taken into account.
However, if we decide to consider groups of sizes up to four persons,
the resource consumption of product j is trivially defined – rij = gj

(where gj ∈ {1, 2, 3, 4} is the group size) if the itinerary corresponding
to j uses leg i, otherwise rij = 0.

If flexible products should be added to the problem and each flexible
product should be defined as a “menu” of specific products those menus
have to be properly defined. The situation gets more difficult if specific
products are virtually inexistent; for instance, when we developed our
instance generator for the broadcasting industry (see subsection 6.5.1) a
large amount of details had to be taken into account. Another example
is the cargo industry – in this application, each order’s weight and
volume (and maybe even the price) is unique. In this case, products
are no longer deterministic objects and the characteristics of any order
are to be generated along with the stochastic and dynamic demand
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process. This aspect will be discussed next; and we return to the cargo
example after having described some more general features.

4.3 Stochastic/Dynamic Aspects

In RM problems we frequently have to deal with a random demand pro-
cess. Not only the total number of requests and the times when they
arrive are unknown, but there are also related issues like cancellations,
no-shows and other uncertain events associated with the demand pro-
cess, e. g. early departures at hotels or rental cars which are returned
too late or at other stations than expected. Further random events
which are possibly of relevance are e. g. varying yields of a production
process or machine breakdowns. However, the latter issues are typi-
cally disregarded in RM problems; in the following we will thus focus
on demand as the primary source of randomness. It is to be understood
that the term “demand” subsumes in this chapter not only the arrival
process of requests, but also cancellations, no-shows etc.

While there are many examples of unpredictable events in typical
RM problems, it may be well justified to study settings where demand
and other parameters are deterministic quantities, e. g. if the degree
of uncertainty is very low in the application at hand. For instance, our
investigation of the broadcasting industry revealed that there are very
good reasons to use a deterministic model (section 6.2); see also subsec-
tion 5.1.2 for a more general assessment of the utility of deterministic
models and references on RM problems under certainty. Determinis-
tic models for RM problems will frequently be a static ones similar to
Model 2.1, possibly extended to incorporate multiple periods (such a
model is e. g. presented by Kimms and Müller-Bungart 2003) or special
features of a particular industry (Kimms and Klein 2005, for instance,
develop models for various industries). In these cases, demand for prod-
uct j is basically given by a parameter dj , and it is sufficient to draw
these parameters from a suitably defined random distribution to gener-
ate multiple instances. However, if flexible products are prevalent and a
typical request is for a bundle of those demand data generation can be
a very complicated process even in the deterministic setting; see e. g.
our discussion for the broadcasting industry in subsection 6.5.1.

Let us now consider the problem of generating demand data if de-
mand is stochastic. Since a defining characteristic of an RM problem
is the necessity to integrate external factors (see section 1.2), products
have to be booked in advance, because customers have to be encouraged
to provide those factors at the time of production well before it begins.
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It is thus typically not sufficient to draw the total demand from a ran-
dom distribution, because the exact times at which requests occur are
relevant. Consequently, it is necessary to simulate a stochastic process
creating arriving booking or cancellation requests. We will extensively
deal with such processes in the subsequent chapter, so we refrain from
a more detailed discussion at this point.

For other aspects of demand it may be sufficient to use (static)
random variables with suitably defined distributions. The number of
customers who have purchased product j but do not show up at the
time of production may e. g. be denoted by a random variable Nj.
In this case, instance generation – very roughly – means choosing a
distribution of Nj (e. g. Normal), generating parameters (e. g. mean
and standard deviation) by drawing from a random distribution (e. g.
uniform over some interval) and drawing a realization ni

j of Nj for
each replication i. However, while the number of no-shows (and simi-
lar aspects) may reasonably described by static distributions, they are
certainly related to the stochastic demand process. For instance, when
generating a realization of ni

j of Nj , we have to make sure that ni
j ≤ di

j

where di
j is the realized (and accepted) demand for product j in the

i-th replication. Albeit Nj describes a static event, the distribution of
Nj thus has to depend on the stochastic demand process in a suitably
defined way.

An arriving request may have properties which are random as well.
In the previous section we have mentioned the example of the cargo
industry, where each incoming order practically has got unique volume,
weight and probably even price. The arrival process thus has got the
flavor of so called compound processes (see e. g. Ross 2003). In our
example, each arrival is associated with realizations of three (possibly
dependent) random variables, namely weight W , volume V and price
R. In contrast to the number of no-shows Nj there is not necessarily
a relationship between the stochastic arrival process and the random
variables V , W and R, but it is easy to imagine that e. g. the price R
depends on the arrival time – if an order is submitted shortly before
the transportation should begin, this may well be an urgent express
delivery which is priced higher.

Regardless of demand being stochastic or deterministic, the data
describing the static and the dynamic dimensions of a RM problem
have to be related in a meaningful way: For instance, consider a capacity
control problem with n products and a single resource of capacity c. To
produce a single unit of any product, we need r units of the resource.
Since r does not vary across the products we can assume w. l. o. g. that
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r = 1. Demand is stochastic and arrives from n independent processes
where arrivals from process j will demand product j and exit if it is
not available (i. e. we assume independent demand). Cancellations, no-
shows etc. are neglected. Let the random variable D represent the total
demand and note that by construction D is as well the amount of the
resource that is required to satisfy each and every request. If P (D > c)
is now very low, a “first come first serve” (FCFS) policy will be close to
optimal, and it is probably not useful to test other methods of capacity
control on such an instance. To obtain meaningful results in this setting,
the parameter c and the parameters defining the n stochastic demand
processes (which determine the distribution of D) cannot be generated
independent of each other. A useful requirement, for instance, could
be that E [D] /c is larger than, say, 0.9. A similar argument obviously
holds if demand is deterministic and D is a known constant.

The relationship E [D] /c (or D/c in the deterministic setting) is
called the nominal load factor. It seems to be useful to define various
demand scenarios for a given c by starting with a ratio E [D] /c of
e. g. 0.9 and to subsequently increase it until it is well above 1. The
need for capacity control (and the effectiveness of sophisticated capacity
control policies compared to FCFS) should ceteris paribus increase with
E [D] /c.

Related with the stochastic demand process are e. g. decisions con-
cerning customer choice models. We might define, for instance, that
customers choose according to utility maximization principles (e. g.
they behave according to multinomial logit model of choice), and util-
ity of a product j is given as a linear function of price and restrictions
associated with it.

4.4 Statistical Aspects

Revenue Management is an application-oriented area of research. To
test RM models and methods it is thus desirable to use actual prob-
lem data from practice (e. g. a historical demand data stream of an
airline). Analogously, if we have chosen, say, a particular stochastic de-
mand process, we will want to assess whether this process fits demand
processes observed in practice. Many aspects of practical RM instances
can easily be observed, namely the static and deterministic ones (e. g.
how many seats are in a typical aircraft’s economy class cabin, what
types or cars are in use in most rental companies etc.). To capture the
dynamic and stochastic nature of demand of RM problems in practice,
demand data samples are necessary. It is typically a formidable task
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to obtain a sample of demand data in practical applications, though,
because typically only sales data is recorded, i. e. we have only infor-
mation about the fraction of requests that have been accepted, and
demand that has been rejected by an RM policy or simply because the
available capacity was exhausted is not covered. Almost any “demand
data” in practice is thus – at best – a record of the so-called constrained
demand, and unconstraining is necessary to gainfully use this data for
estimation and forecasting, see e. g. Talluri and van Ryzin (2004b). Fur-
thermore, the primary purpose of information systems used to record
sales data is usually not data collection, but the processing and/or
support of the sales process. Relevant information may thus be miss-
ing, and facts found in the database may be erroneous or implausible,
see e. g. Müller-Bungart (2002) who reports on typical flaws in airline
reservation systems data.

The situation gets worse if we are dealing with choice-based RM
problems: Since we assume that an arriving customers observes the
offer set and selects a product (or decides to exit) according to some
choice model, it would be necessary to record the set of products which
was available at the time of any arriving request in order to be able to
analyze customers’ choice behavior. This information is however almost
never been stored in the sales database in practice, but it can be pos-
sibly retrieved from the optimization systems in the RM department.

It is thus difficult (but not impossible) to extract the necessary
demand data from information systems which are used in practice.
Furthermore, if RM models are enriched e. g. by incorporating choice
behavior and revenue improvements are estimated to be significant, it
will pay off to modify sales databases and related software such that
relevant data is recorded more precisely and additional aspects (e. g.
about available offer sets) are captured. Thus suppose that an accurate
sample of a demand data stream is given. Two questions are now rele-
vant with respect to instance generation: Does our chosen model of the
stochastic arrival process fit such a typical data stream? Our arrival
process will depend on some parameters which allow for a very broad
range of arrival patterns. What values of parameters have to be used
to create an instance which closely resembles situations encountered in
practice? Knowing the answer to that question allows us to not only
use a few given demand data streams, but also to create many different
streams as they could have occurred in practice.

To answer both questions it is necessary to estimate the parameters
of the chosen arrival process from the given demand data samples.
When choosing a stochastic process for demand data, we should thus
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always keep in mind that the parameter estimation problem does not
get too difficult. In the following chapter, we will cover issues related to
stochastic arrival processes in great detail. We make some brief remarks
on parameter estimation in section 5.4.



5

Simulation of Stochastic Demand Data Streams

The previous chapter contained a comprehensive overview on the in-
stance generation problem. It turned out that the deterministic aspects
of an RM problem are highly application specific. In addition, we have
seen that some statistical issues, e. g. cleaning and unconstraining de-
mand data obtained are also relevant. While the former again strongly
depends on the actual degree of errors or omissions in the data, stan-
dard methods for the latter are available. In this chapter we thus focus
on the dynamic and stochastic aspects of instance generation: the sim-
ulation of stochastic demand data streams.

To simulate stochastic arrival processes it is necessary to implement
a random instance generator which produces demand data streams as
an output. Doing this is quite a formidable task to do, because of at
least two reasons. Firstly, the demand data must fit to the resource
structure and the capacity limits in a meaningful way (see our discus-
sion in section 4.3). And secondly, the details of implementing portable
demand data generators, i. e. generators which output the same repro-
ducible, stochastic data stream even when run on different computers
involve a huge amount of technical details. Our impression is that up
to today, the research community does not use a common, established
method in this area. The creation and simulation of test demand data
is usually described very roughly and it seems to be very hard if not im-
possible to use precisely the same data that other authors used before.
To the best of our knowledge, no demand data generator (let alone a
complete instance generator) is available to the public.

In this chapter, we will give an in-depth description of how to im-
plement a portable generator for stochastic demand data streams. One
of the results of our efforts is an executable program for Microsoft
Windows platforms.
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We begin by reviewing the literature with respect to demand mod-
els and demand data generation. We continue by giving an in-depth
description how a single demand data stream can be generated (sec-
tion 5.2), then we show how to combine multiple data streams in a
meaningful way (section 5.3) under independent demand, choice-based
RM and for RM problems with flexible products. We make some brief
remarks on parameter estimation, i. e. on how to compute the necessary
inputs for our demand data generator given records of actual, historic
demand in section 5.4. Section 5.5 summarizes our findings and points
out what has to be done further to develop a fully-fledged instance
generator.

A preliminary version of sections 5.2 and 5.3 can be found in Kimms
and Müller-Bungart (2007b).

5.1 Literature Review

Lee (1990) describes a censored Poisson process to model the booking
process at airlines. He assumes that reservations arrive according to a
non-homogeneous Poisson process (NHPP). He focuses on estimation
and forecasting, especially in light of censoring due to limited aircraft
capacities and booking limits. Albeit Lee (1990) does not explicitly
treat the simulation of data streams, his work can be seen as “a starting
point for developing simulations of the airline booking process” (Lee
1990, p. 13).

Weatherford et al. (1993) present a model of the demand process
in some detail. Like Lee (1990) they use a NHPP with a specified
rate function. A slightly varied version of their approach is used by
de Boer et al. (2002), who conduct an in-depth simulation study on
airline network RM methods, and Bertsimas and de Boer (2005), who
develop a simulation optimization approach to airline network RM with
nested booking limits. Klein (2005) gives a quite detailed description
of the methods he used to simulate stochastic demand data.

We will discuss the arrival process introduced by Weatherford et al.
(1993) and the variant used by de Boer et al. (2002) and Bertsimas
and de Boer (2005) in great detail in subsection 5.2.3. We will show
that their approach has got some advantages in comparison to Klein
(2005). But to the best of our knowledge, these are the only references
explicitly covering at least some aspects of demand data generation.
To analyze whether these approaches provide a useful starting point
for a RM demand data generator we will review references presenting
RM models or methods in the following. We will focus on two aspects
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related to demand data generation: What generation procedures are
used in classic references, and what models of demand are used in the
first place to develop RM models and methods – i. e. we are dealing
with both the issues of simulating and modeling demand. The latter
aspect is relevant because the demand simulator has to fit the demand
model. Our review will emphasize demand models, because if authors
conduct a simulation study to test their methods, this seems to be done
frequently in a rather “ad hoc” manner and details of the simulated
demand process are rarely given. Obviously we cannot cover each and
every reference in the field of RM, so that we will attempt to give a
representative overview by reviewing demand models and simulation
methods from some of the more influential papers. We also consider
literature that deals with overbooking and dynamic pricing. We begin
with categorizing demand models. We will then take a closer look at
different methods to model the dynamics of the arrival process.

5.1.1 Categorizing Demand Models

Demand models in the literature can be characterized along the follow-
ing two dimensions:

• The degree of interaction of customers and the environment
• The dynamics of the arrival process

With respect to the degree of interaction in the current literature
basically two types of demand models have appeared so far: Indepen-
dent demand and choice models (see section 3.2). In the former case
demand is independent of the environment. In particular, it is assumed
that the RM policy – especially the decision of the company (not) to
offer a certain product – does not influence the customer’s behavior. As
an example, if a prospective airline passenger desires to book a ticket
from A to B on a certain itinerary at fare X, and she finds that this
particular product is not offered at the time of her request, she just
exists the market and refrains from buying anything. In particular, she
will not pay a higher or lower price, she will not travel half an hour later
or sooner, or choose a different itinerary. So in an independent demand
model, there is hardly any interaction at all between the customers and
the environment. Under a choice model of demand, on the other hand,
an arriving customer will take the set of available products (the offer
set) into account and choose among these products (or decide not to
buy at all), e. g. based on a utility maximization scheme.

As van Ryzin (2005) points out, the choice model may be augmented
and broadened by taking other possible forms of customer behavior into
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account. For instance, a customer may not only choose from the offer
set, but also strategically decide about when to demand a product. As
an example, consider a retailing company that follows a markdown pric-
ing scheme. Customers being flexible with respect to the time of pur-
chase will probably learn to wait until prices have been lowered. Other
examples include markdown pricing of package holidays; see page 12
for a discussion and references. Besides this strategic “demand timing”
behavior, customers will also consider offers of competing companies,
where the notion of competition can be very broad: With respect to
travel, for example, airlines and railroads may be competitors.

The independent demand model seems to be a simplifying approxi-
mation of customer behavior only. On the other hand, Müller-Bungart
(2002) found empirical evidence for that a large part of airline pas-
sengers in the North American market is indeed “loyal” to a certain
product (i. e. a combination of origin, destination, time of travel etc.).
This evidence is, however, based on sales and check in data (i. e. con-
strained demand after rejecting customers, overbooking, no-shows etc.),
and some factors that are likely to be important for the traveler (namely
the fare) were missing in the data.

5.1.2 Modeling the Dynamics of Demand

With respect to the dynamics of demand the models used in the lit-
erature so far can roughly be classified as depicted in Figure 5.1. In
this subsection, we will review the literature along these categories of
demand models, mentioning the methods of simulation (if simulation
experiments have been conducted) at a time. We will then discuss some
references that deal with simulation optimization approaches which are
independent of a particular demand model.

Deterministic Demand

At the first level of Figure 5.1, we can differentiate between deter-
ministic and stochastic demand. Deterministic demand seems to be
somewhat less appropriate for RM problems because a large part of
the problem’s complexity arises from the uncertainty. There are never-
theless a number of good reasons to consider deterministic demand:

• Even if the number of incoming requests and their properties are
known with certainty, given the scarce resource capacity knapsack-
like problems typically arise. In all but the simplest cases these
problems are NP-hard and thus challenging research problems in
their own right.
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Dynamics of Demand

Deterministic Demand Stochastic Demand

Continuous Time Discrete Time

Block Demand Macro Periods Micro Periods

Fig. 5.1: Modeling the Dynamics of Demand

• The degree of uncertainty may in some settings be very low so that
a deterministic approach is justified (see e. g. the discussion in sec-
tion 6.2 for the broadcasting industry) or forecasted values may
safely be used for the unknown quantities. Glover et al. (1982), for
instance, present a deterministic model for airline network RM based
on forecasted demands.

• Solutions obtained from deterministic models can be used to ap-
proach the problem under uncertainty heuristically. A classic ex-
ample are bid price methods. Bertsimas and Popescu (2003), Pak
et al. (2003) and Talluri and van Ryzin (1999), for instance, develop
rather sophisticated methods to compute such bid prices from de-
terministic models; see also Pak and Dekker (2004) and Spengler
et al. (2007) who also deal with bid prices but describe the RM de-
cision problem using a micro period model (see below). All of these
references contain computational studies, where homogeneous and
non-homogeneous Poisson processes are used to simulate the arrival
process of demand.

• In some RM problems under uncertainty their NP-hard determinis-
tic counterparts may actually appear as subproblems. In the broad-
casting industry, for example, it may not be trivial to decide if an
incoming request (with then known properties) can feasibly be ac-
cepted. An analogous problem arises if bid price controls should be
used, because it is not trivial to estimate an order’s opportunity cost
as well. Both aspects are investigated in detail in section 6.6.
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Stochastic Demand, Continuous Time

Continuous Time models of stochastic demand are frequently used in
dynamic pricing papers, see e. g. Gallego and van Ryzin (1994, 1997)
and Feng and Gallego (2000, 1995). The models in these papers assume
that demand is generated by a “controlled” Poisson process, where the
term “controlled” refers to the fact the intensity of demand (i. e. the
rate of the Poisson process) depends on price in the dynamic pricing
context.

Gallego et al. (2004a) consider RM problems with flexible products
(see section 3.3). They assume a choice model of demand where ar-
rivals are generated by a Poisson process. The rate of the process λ (S)
depends on the offer set S. This dependency is formalized by an “at-
traction model”, e. g. the Multinomial Logit model of discrete choice.
Virtamo and Aalto (1991) consider a number of servers accepting reser-
vations arriving from a non-homogeneous Poisson Process (NHPP).
Zhao and Zheng (2001) deal with a single leg airline RM problem with
two fares and three types of customers: Two “rigid” types (who will
only demand either the lower or the higher fare) and a “flexible” type,
who prefers the lower fare, but will buy the other product if the low
fare class is closed. The arrivals of the customer types are created by
NHPPs.

All of the mentioned references except Feng and Gallego (1995) and
Gallego and van Ryzin (1994) contain simulation studies where the
respective variant of Poisson processes is used to generate arrivals.

Block Demand

A classic example for block demand is the “lower fare classes book first”
assumption. In this model, n products are sold at distinct prices. If we
order the products non-decreasingly by price (i. e. product 1 is the
cheapest and n is most expensive), it is assumed that all requests for
product i arrive strictly before any request for products i + 1, . . . , n,
so that if the first request for product i arrives no further requests for
products 1, . . . , i − 1 will ever appear. The assumption that lower fare
classes book strictly before higher ones is – of course – a simplification,
albeit a useful one, because if high value customers arrived early, the
opportunity costs of displacing later arriving customers decreases or
even vanishes. Clearly, the RM problem is more severe if customers
with a low valuation arrive earlier and possibly displace customers with
substantially higher valuations.
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Speaking more generally, in a block demand model it is assumed
that requests can be partitioned into a finite number of groups such
that requests from each group arrive in homogeneous “blocks”. The
time horizon is naturally divided into discrete periods by these blocks.
Typically, references presenting a block demand model assume inde-
pendent demand as well, but from a theoretical point of view a block
demand does not necessary imply independent demand. We may, for
instance, use block demand in a choice based RM setting by defining
the two blocks “leisure travelers” and “business travelers” (where the
former strictly arrive before the latter), and customers from each group
will behave according to a different choice model (the leisure travelers
may e. g. put great weight on the price, but be flexible with respect
to travel time, while it is the other way round for business travelers).
Van Ryzin and Vulcano (2006), for instance, use a block demand-like
model in their simulation experiments on an RM problem with choice
behavior.

Littlewood (1972) introduced his famous “marginal seat revenue”
rule based on the assumption that two types of passengers (low- and
high fare passengers) book on a single flight leg, and that the low fare
passengers book first. Richter (1982) has shown by marginal analysis
that (under these assumptions) Littlewood’s rule is an optimal policy.
Brumelle et al. (1990) also consider two fares booking on a single leg
where demand for the high fare depends on the booking limit for the
low fare (i. e. some denied low fare passengers may decide to “buy
up”), and low and high fare demand do not need to be stochastically
independent.

Belobaba (1987b, 1989) formalizes Littlewood’s rule in a system-
atic way and develops the “Expected Marginal Seat Revenue” (EMSR)
method that is applicable to three or more fares. Belobaba (1992)
presents an improved version of this method which he terms EM-
SRb. Belobaba and Weatherford (1996) incorporate choice behavior,
and Belobaba and Wilson (1997) test how EMSR-methods perform
under competition. Note, however, that despite its close connection
to the block demand model of Littlewood, the EMSR-method is pre-
sented as a “model free” approach, i. e. it is not based on a particular
demand model. Thus it is just a heuristic (albeit a very successful
one with widespread use in practice). Curry (1990), Wollmer (1992)
and Brumelle and McGill (1993), on the other hand, present exact ap-
proaches to the “lower fare classes book first” demand model with three
or more fares. Li and Oum (2002) prove that the optimality conditions
of all three models are equivalent. Robinson (1995) extends the “lower



136 5 Simulation of Stochastic Demand Data Streams

fare classes book first” setting and considers a block demand model
where different fare classes book sequentially, albeit the sequence is
not necessarily monotone with respect to the fares. Lautenbacher and
Stidham (1999) present a unified view on the contributions of Belobaba
(1989), Brumelle and McGill (1993), Curry (1990), Littlewood (1972),
Robinson (1995), Wollmer (1992) and Lee and Hersh (1993), where the
latter is a micro period model (see below).

Other references with block demand models include Bitran and
Gilbert (1996), Coughlan (1999), Gallego and Phillips (2004) and van
Ryzin and McGill (2000).

To implement methods based on block demand models it is clearly
sufficient to know the distribution of the total demand Dj in block
j. Belobaba and Weatherford (1996) and Bitran and Gilbert (1996),
for instance, use Poisson distributions, Belobaba (1987b) uses Normal
distributions, Brumelle and McGill (1993) and Wollmer (1992) assume
that Dj is approximately Normal. Brumelle et al. (1990) consider de-
pendent demands and thus assume a bivariate Normal distribution.
Belobaba (1987b, 1989) and Coughlan (1999) also test their methods
on real airline data.

Macro Periods

A straight-forward way to relax the strict assumptions of block demand
models is to partition the booking period into T discrete periods such
that the demand mix in two periods is not related. If these periods are
very small (i. e. T is very large) we can safely assume that at most one
request appears in any period t and arrive at what we call a demand
model with micro periods (micro period model for short). If the periods
are larger, so that many requests for different products can show up
during any period t we obtain a model with macro periods. In both
cases the aim is typically to describe the RM problem at hand in terms
of a recursive value function Vt (·) that gives the maximal expected
revenue from period t on. The problem can then be solved exactly by
dynamic programming techniques (at least for smaller examples).

In a macro period model, it is assumed that the distribution of de-
mand Djt in period t is given, where the index j could denote the prod-
uct (in an independent demand model) or a certain group of customers
with a certain type of choice behavior (in a choice model of demand).
The exact order of requests in period t is not modeled, so that the
situation is practically equivalent to collecting all requests over period
t and record the totals Djt at the end of the period. Like in a block
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demand model, knowing the distribution of the “aggregate” Djt is ab-
solutely sufficient. The resulting arrival process has got the flavor of
a compound counting process, but its actual mathematical properties
depend crucially on the distributions of Djt and the periods’ lengths.
Note that – from a very technical point of view – a block demand model
is a special case of a model with macro periods where T is the number
of blocks and P (Djt = 0) = 1 for all j, t = 1, . . . , T, j �= t.

Macro period models are certainly appropriate if immediate accep-
tance/rejection is not necessary and requests can be “batched” over a
longer period of time. This is e. g. the case in broadcasting companies,
see chapter 6 and in particular section 6.6. However, the macro period
assumption seems to be a bit unrealistic for many classical RM appli-
cations (the airline industry, for instance) where immediate response to
any request is necessary. In such cases, macro period models seem to be
only appropriate if rather simple RM policies are used, e. g. partitioned
booking limits. Under a partitioned booking limit control customers
can always be notified immediately (just check if the booking limit is
already exceeded), and the dynamics of the arrival process are simply
irrelevant (one “macro period” covering the entire planning horizon is
sufficient). Macro periods are nevertheless useful if booking limit poli-
cies are used in connection with overbooking, because in that setting it
is not necessary to immediately allocate capacity to a request (that can
be done shortly before the service commences, at the same time when
it is decided which customers are rejected). Therefore, immediate noti-
fication of customers is possible (again, just check the booking limits),
but some form of nesting capacities among products is also implicitly
involved. Karaesmen and van Ryzin (2004b), for instance, develop an
overbooking model with just two periods (see page 90). The first pe-
riod is the reservation period (where requests arrive), and the second
period is the service period (where the number of no-shows is revealed).
Incoming requests in the first period are accepted according to a book-
ing limit policy. Capacity is not allocated to requests until the service
period, where it is decided which customers have to be rejected after
all (if not all requests can be accommodated due to the overbooking).
Karaesmen and van Ryzin (2004b) use Poisson demand in a computa-
tional study.

The first RM model with macro periods is due to Laux (1971). He
considers order acceptance/rejection in a make-to-order environment.
Mayer (1976) deals with airline RM and presents booking limit-based
models for partitioned capacities (without cancellations and no-shows)
and for overbooking. Alstrup et al. (1986) also consider an overbooking
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problem where all macro periods are days. They use data from Scan-
dinavian Airlines Systems and assume that the number of requests in
period t follow a Poisson distribution with time-dependent intensity
λ (t). The number of cancellations is assumed to follow a Binomial
distribution. Chan et al. (2006) consider a pricing problem in manufac-
turing. They assume that demand Dt in macro period t is a (general)
stochastic function of price. They use the coefficient of variation (de-
fined as Standard deviation (Dt)/Mean(Dt)) to measure what they call
“demand uncertainty”. Williamson (1992) reviews and tests various
methods for RM problems in airline networks. In her simulation ex-
periments a macro period approach is pursued: The booking horizon
is divided into periods by so called “revision points” at which the RM
policies are reviewed and reoptimized. Independent demand is assumed,
and the distribution of demand to come Djt for product j in each of
the future periods t is assumed to be given. The author uses Poisson,
Normal, and Gamma distributions in her simulations.

Micro Periods

Macro period RM models are rare, because classic RM applications
require immediate acceptance/rejection of orders. Micro period models
are therefore more common: They allow for notifying customers and
allocating capacity at the moment the request arrives, because in every
period t there is at most one request. The periods will have to be small
for that purpose, so that the resulting arrival process has got the flavor
of a non-homogeneous Poisson process (NHPP) where the probability
of two or more events in any time interval is likewise negligible if that
interval is small (see e. g. Ross 2003). Typically, the demand process
is described by probabilities Pjt ≥ 0 where the index j could denote
again the product or a group of customers with a distinct type of choice
behavior. Of course

∑
j Pjt ≤ 1 has to hold for every t, and if

∑
j Pjt < 1

there is a positive probability that there is no arrival in period t. Note
that micro period models imply nested capacity control, because it is
assumed that the company decides on each request one at a time, so
that there is no exclusive allocation of capacities to demand classes.

Lee and Hersh (1993, see page 61 in this book) develop a micro
period model for airline RM on a single leg without overbooking and
independent demand. In a second model they also take group bookings
(i. e. requests for more than one seat) into account. The arrival process
in this case is described by the probabilities Pjmt that an arrival in
period t requests m ∈ {1, . . . ,M} seats at fare j where M is an up-
per bound for the number of seats demanded in a single request (e. g.
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M = C, where C is the number of seats on the aircraft, but M can
be set to much smaller values for practical purposes). They show how
to determine the number of micro periods T and the probabilities Pjt

based on the assumption that demand for product j follows a NHPP
with piecewise constant rate (as was mentioned earlier, the Poisson
process seems to be closely connected in spirit to micro period mod-
els of demand). They also compute the necessary number of periods
T for some examples. Interestingly, Lautenbacher and Stidham (1999)
present a Markov decision process unifying Lee and Hersh’s micro pe-
riod model and the block demand models of Belobaba (1989), Brumelle
and McGill (1993), Curry (1990), Littlewood (1972), Robinson (1995)
and Wollmer (1992).

Subramanian et al. (1999) extend Lee and Hersh’s first model by
including overbooking (they do not consider group bookings, though).
In their demand model, in each period there is either demand for a
single seat at a single fare, or a cancellation of a single seat at a single
fare, or no request at all. They present two approaches to estimate the
needed probabilities from the parameters of a NHPP (one is identical
to the method proposed by Lee and Hersh 1993).

Both Lee and Hersh (1993) and Subramanian et al. (1999) conduct
computational experiments on some small examples. Tables of the prob-
abilities Pjt used in the experiments are given. Two other references
where a micro period model is developed and tested in a simulation
study where the probabilities are given by tables are You (1999) and
van Ryzin and Liu (2004).

Since the micro period model is so closely related to a NHPP, Bert-
simas and Popescu (2003), Bitran and Mondschein (1995), Pak and
Dekker (2004), Spengler et al. (2007) and Talluri and van Ryzin (2004a)
use Poisson processes in their simulation studies of their micro period
models.

Simulation Optimization Methods

Numerous authors have recently developed simulation optimization
methods for RM problems. These methods are typically independent
of a demand model, hence we review them separately in this section. A
simulation optimization approach is roughly outlined as Algorithm 5.1.

Bertsimas and de Boer (2005) use a slight variant of the NHPP
defined by Weatherford et al. (1993) in their simulation optimization
approach to airline network RM with a nested booking limit control.
Van Ryzin and Vulcano (2005) present a continuous version of Bertsi-
mas and de Boer’s approach. In their experiments, they assume a “low
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Algorithm 5.1: Simulation Optimization

1. Choose a particular control method, e. g. a booking limit control or a bid
price control. Denote the control variables by x1, . . . , xn.

2. Choose an initial control x0
1, . . . , x

0
n, e. g. by using a heuristic, or by choos-

ing the values x0
i at random from a suitable domain.

3. Simulate stochastic demand data streams and execute the current control.
Record relevant data (e. g. revenue, load factor) for each replication.

4. Update the control in light of the simulation results and iterate until
convergence (or another stopping criterion) has been reached.

to high fare” block demand arrival process, where the total demand
for each fare follows a truncated Normal distribution. The same au-
thors pursue a similar approach (both with respect to the methods and
the computer experiments) in a choice based setting (van Ryzin and
Vulcano 2006). Like Bertsimas and de Boer (2005) and van Ryzin and
Vulcano (2005), Gosavi et al. (2007) also consider booking limit con-
trols on a network with independent demand, but they also incorporate
overbooking. Klein (2005, 2007) implements a simulation optimization
approach for a bid price control on a network with independent demand
and without overbooking (see page 76). Both Gosavi et al. (2007) and
Klein (2005, 2007) use NHPPs in their simulations.

Van Ryzin and Vulcano (2005, 2006) assume that demand is suf-
ficiently “smooth” to prove local convergence of their approach, but
they apply it to discrete demand cases in their computational studies
as well. The other references practically allow for any demand pro-
cess (however, their methods do not converge or no rigorous proof for
convergence is given). Hence we can indeed claim that simulation op-
timization approaches that have recently appeared are independent of
the demand model. At the same time, we note that the bulk of authors
use NHPPs in their simulations, van Ryzin and Vulcano (2005) – who
use a block demand model for that purpose – being the only exception.

Summary

We categorized the RM literature based on the underlying model of the
dynamics of demand. Figure 5.1 shows the relationships of the different
categories. In addition, there are approaches – namely those based on
simulation optimization – that do not rely (or at least not much) on a
particular model of demand.
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During the course of our literature review, we found that continu-
ous time models are explicitly based on Poisson processes. In dynamic
pricing or choice-based RM situations the intensity of these processes is
“controlled” by the prices or the offer set. Not surprisingly in computa-
tional experiments on continuous time models such Poisson processes
are used for simulation as well. For the purely deterministic models
and especially the micro period models and simulation optimization
approaches the NHPP seems to be the state of the art, so we focus on
the NHPP in the following.

For block demand and macro period models, only the aggregate dis-
tribution of demand (per block or per period, respectively) is relevant.
Our literature review has revealed that most of the references with
block demand models have appeared in the 80s and early 90s. Macro
period models are rare because they are only of limited scope with
respect to potential RM applications. We thus do not explicitly con-
sider simulating demand for block demand and macro periods further.
Note, however, that the methods to simulate a NHPP we are going to
describe can nevertheless be used to generate stochastic demand data
streams to evaluate the performance of such methods if the rather strict
assumptions on the demand process are relaxed.

Most references implement a NHPP with a piecewise constant rate
(with a very limited number of steps), and the choice of a particular rate
function is almost never explained. A notable exception is Klein (2005,
2007), who uses a triangular rate (see Figure 5.2): There is no arrival
before tb. At this point, the intensity grows linearly until a maximum
λ∗ at time t∗, and then decays to 0 such that there are no arrivals after
te. This approach is fairly general (since the four parameters can be
chosen arbitrarily), the resulting arrival process seems to be realistic
from an intuitive point of view, and – as Klein (2005) shows – the
resulting NHPP is very easy to simulate. However, there seems to be no
empirical evidence supporting Klein’s process. In the following section,
we will give an in depth description of the arrival process introduced
Weatherford et al. (1993) and the variant used by de Boer et al. (2002)
and Bertsimas and de Boer (2005). As we will see, this process has got
a number of advantages compared to Klein’s approach.

5.2 Simulating a Single Demand Data Stream

We begin by describing how to simulate a single demand data stream.
If we assume independent demand and have n productsk, we can (in
principle) use n such streams to generate demand data for all products.
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λ (t)

ttb tet∗

λ∗

Fig. 5.2: triangular Arrival Rate as Used by Klein (2005, 2007)

Since the purpose of demand data simulation is to test RM models and
methods, the n data streams have to relate to each other in a meaningful
way. We will address this question in section 5.3.

In choice-based RM problems, a single demand data stream may
already be enough – it creates a single stream of customer arrivals who
then choose among the available products. If it is desired to differentiate
between, say, n different classes of customers (e. g. business and leisure
travelers in the airline case) and customers of different types arrive
according to different demand processes, we can analogously use n data
streams to generate arrivals of n types of customers.

Our exposition here (and in the following sections) will be com-
pletely independent of the area of application. This is to say that the
methods are not limited to the airline case (or any other industry).
We will confine ourselves to arrival processes of a certain mathematical
structure. This structure – which is backed by some limited empirical
evidence from the airline industry – covers a broad range of arrival pat-
terns and should thus be suitable for many industries and applications.

Simulating a stochastic data stream requires to generate random
numbers with computers. We therefore start by making some brief re-
marks on random number generation. We then describe how such ran-
dom numbers can be used to simulate NHPPs. We continue by defining
a special structure for the rate function of the NHPP and show how a
simulation of NHPPs with that particular rate function can be imple-
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mented. We then review its properties and demonstrate its advantages
in comparison to previous approaches.

5.2.1 Random Number Generation

A computer is a deterministic machine, thus it is not capable to produce
streams of “truly random” outputs. The best we can expect is that if a
computer simulates tosses of a fair coin, say, the output will appear as if
it was constructed by tossing a real fair coin. Therefore random number-
generating methods are often called pseudorandom number generators.
Actually all pseudorandom number generators of interest are of the
form xn+1 = f (xn) where xn, xn+1 are the n-th and n + 1-st random
numbers, respectively, and f is a deterministic function. As a conse-
quence, anybody that knows f and xn can predict the following random
numbers xn+1, xn+2, . . . with absolute accuracy. This seems to be odd,
but it is – in fact – a desirable property, because researchers conduct-
ing simulation studies can supply f (in form of a C++-program, for
instance) and the so called seeds x0 to their fellows, who will then be
able to reproduce the complete stream of random numbers. A random
number generator with that property is called portable. Note that it is
somewhat difficult to port random number generators between operat-
ing systems or even different machine types, because some implemen-
tation details (libraries, processor word length etc.) are different.

Developing a pseudorandom number generator which indeed out-
puts streams that appear to be truly random is a formidable task and
numerous authors point out that the implementations of random num-
ber generators shipped with programming languages and operating sys-
tems may not be very good (Bratley et al. 1987, p. 192, Knuth 1998,
p. 193, Law and Kelton 2000, p. 406). We use L’Ecuyer’s portable pseu-
dorandom number generator Mrg32K3A that has been thoroughly
tested. A C-implementation is given in L’Ecuyer (1999), packages for
other programming languages are available for download (L’Ecuyer
et al. 2002).

Like almost all pseudorandom number generators Mrg32K3A gen-
erates uniformly distributed random numbers from the real interval
[0, 1]. Random numbers following other, uni- or multivariate distribu-
tions have to be obtained from these uniform random numbers by trans-
formations. There is a large body of literature on such transformations,
e. g. Bratley et al. (1987), Devroye (1986), Knuth (1998), Law and Kel-
ton (2000) and Niederreiter (1992).
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5.2.2 Simulating NHPPs (with Arbitrary Rate Functions)

We are now going to show how a non-homogeneous Poisson process
(NHPP) can be simulated. A NHPP is characterized by its rate function
λj (t) such that the higher λj (t) for any point in time t, the more
arrivals from this process are to be expected. If λj (t) = c for all t
and a constant c, the intensity of arrivals does not vary over time, and
the resulting process is called a homogeneous (or stationary) Poisson
process (HPP). A detailed introduction into HPPs and NHPPs is e. g.
given by Ross (2003).

We are given a random number generator which is able to produce
uniformly distributed random numbers from the real interval [0, 1]. In
the following, we denote such random variables by U ∼ U (0, 1). As
usual, capital letters indicate random variables, and the corresponding
lower-case letters indicate realizations, e. g. u is a realization of U . We
use superscripts to denote a sequence of independent random variables
or their realizations, e. g. U1, U2, . . . , UN or u1, u2, . . . , uN .

Using the realizations u1, u2, . . . we want to simulate the j-th stream
of demand, i. e. a NHPP with rate λj (t). “Simulating” precisely means
to generate an ordered list t1, t2, . . . such that ti is the time of the i-th
arrival. Denote the time horizon by [0, T ] where 0 is the beginning and
T is the end of the horizon.

If λj (t) = λ for all t ∈ [0, T ] and a constant λ, we actually have a
homogeneous Poisson process (HPP). This process is not particularly
realistic, but very easy to simulate: It is a well known fact (see e. g. Ross
2003) that the interarrival times of a HPP are exponentially distributed
with rate λ. To generate random numbers X ∼ exp (λ), we can use the
so called Inverse Transformation method (see Bratley et al. 1987, Law
and Kelton 2000, for instance): If u is a realization of a random variable
U ∼ U (0, 1) then x = − ln u/λ has got the desired distribution. To
simulate the HPP, we generate a stream x1, x2, . . . , xN of N realizations
of X ∼ exp (λ) such that

∑N
i=1 xi > T and

∑N−1
i=1 xi ≤ T . Then the

counting process having arrival times
∑i

j=1 xj , i = 1, . . . , N − 1 is a
realization of the desired HPP.

The situation is a little bit more complicated for a true non-
homogeneous Poisson process with a non-constant rate, because the
interarrival times can no longer be computed in such a simple way.
Lewis and Shedler (1979) have developed an elegant method to sim-
ulate a NHPP, which is called Thinning, based on the following idea:
Assume that λj (t) < ∞ for all t ∈ [0, T ] (a very reasonable assump-
tion, especially when we have the purpose of generating demand data
in mind). It follows that for each t ∈ [0, T ] a finite real number λj (t)
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exists such that τ ∈ [t, T ] ⇒ λj (t) ≥ λj (τ). Suppose that arrival times
for the interval [0, t] have already been generated. Simulate a HPP (as
described before) with a rate of λj (t). Literally speaking, this HPP has
got “too many” arrivals, so reject an arrival at time τ with probability
λ (τ) /λj (t), thereby “thinning out” the stream of arrivals (hence the
name of the method).

The complete simulation technique can then be formally describe as
follows: Given the values λj(t), we generate a sequence of independent
random variables X1, U1, X2, U2, . . . where Xi is a random variable
with exponential distribution with rate λj(ti) and ti =

∑i−1
j=1 xj. We

stop as soon as we have reached a sequence of length N such that∑N
i=1 xi > T and

∑N−1
i=1 xi ≤ T . Consider now the set of indices

I =

⎧⎨
⎩i ∈ {1, . . . , N − 1} : ui ≤

λj

(∑i
j=1 xj

)
λj(ti)

⎫⎬
⎭

The counting process having arrival times
∑i

j=1 xj, i ∈ I constitutes
the desired NHPP with rate λj (t).

Since the Thinning method is obviously most efficient if λj (t) is as
small as possible, we simply set

λj (t) = max
τ∈[t,T ]

λj (τ) (5.1)

This maximum can be computed by a closed formula for our rate func-
tions λj (t) (see below).

5.2.3 The Beta-Gamma Arrival Process

The Thinning method is completely independent of the rate function
λj (t) and works for all NHPPs with finite intensities. We are now going
to specify the details of the rate function as we have implemented it.

Properties of a General NHPP

We start by pointing out some key properties of a NHPP (see e. g. Ross
2003) with rate λj (t): Denote the number of arrivals up to time t by the
random variable Nj (t). The expected number of arrivals is E [Nj (t)] =
Λj (t) where Λj (t) =

∫ t
0 λj (u) du. The number of arrivals in the interval

(t, t + d] is then distributed Poisson with rate Λj (t + d) − Λj (t), i. e.
we have:
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P (Nj (t + d) − Nj (t) = x) = e−(Λj(t+d)−Λj(t))
(Λj (t + d) − Λj (t))x

x!
(5.2)

In particular, for the number of arrivals in the interval (0, T ] (i. e. the
total demand) we have:

P (Nj (T ) = x) = e−Λj(T ) Λj (T )x

x!
The total demand is thus a random variable that follows a Poisson
distribution with parameter λj where the constant λj is defined by
λj = Λj (T ); and an analogous statement holds for the demand in any
interval (t, t + d] ⊂ [0, T ], see (5.2).

The following aspect is also interesting: Suppose, we have recorded
exactly n arrivals up to time u ≥ 0. The probability to have exactly x
arrivals in the interval (t, T ] is then

P (Nj (T ) − Nj (t) = x|Nj (u) = n) = P (Nj (T ) − Nj (t) = x)

This equality follows from the “independent increments” property of
the NHPP, which is also known under name “memoryless property”.

In words, a NHPP has got the following features:

• Demand in any subinterval as well as total demand follows a Poisson
distribution.

• Observed demand does not convey information about demand to
come.

The first property implies the following: Since demand is Poisson,
the distribution of demand depends only on the single parameter λj

of the Poisson distribution, where the mean demand is µj = λj, the
standard deviation is σj =

√
λj, and the coefficient of variation is

σj/µj = 1/
√

λj. As e. g. Williamson (1992, p. 146) points out, this is
certainly a loss of flexibility compared to distributions like the Normal
or the Gamma, where the standard deviation and the coefficient of
variation can be defined independently of the mean.

The second property seems to be somewhat odd as well. Note that
both properties are totally independent of the actual form of λj (t),
as long as Λj (t) is a constant for all t ∈ [0, T ]. Actually, λj (t) can
be an arbitrary complicated deterministic function – as long as it is
integrable, the integral Λj (T ) =

∫ T
0 λj (u) du evaluates to a constant,

and the above stated properties provably hold. This is the case for al-
most any rate function used in the literature so far, namely the popular
(piecewise) constant and (piecewise) linear rates, e. g. the one used by
Klein (2005, 2007, see Figure 5.2).
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Description of the Beta-Gamma-Rate Function

To overcome the disadvantages we just noted, we propose to use the
following rate function, which was introduced by de Boer et al. (2002)
and Bertsimas and de Boer (2005) based on ideas of Weatherford et al.
(1993):

λj (t) = Dj · β (t) (5.3)

where Dj is a random variable that follows a Gamma distribution with
parameters γj , δj and β (t) is the density function of the Beta distribu-
tion standardized on the interval [0, T ].

The density function of the Gamma distribution is defined as

f(dj) =
δ
−γj

j

Γ (γj)
e−dj/δjd

γj−1
j with Γ (γj) =

∫ ∞

0
e−xxγj−1dx .

A few examples of this function are plotted in Figure 5.3. Expectation
and standard deviation of the Gamma distribution are given by the
following formulas:

E [Dj ] = γjδj σ (Dj) =
√

γjδj (5.4)

dj0 50 100 150 200 250 300 350 400

f(dj)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

(0.5, 200)
(1, 100)

(
1.2, 83 1

3

)(2, 50)

(
3, 33 1

3

)

Fig. 5.3: Examples of Gamma Density Functions with Parameters
(γj , δj)
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We have implemented a method described by Marsaglia and Tsang
(2000) to generate Gamma random variables with parameters γj and
δj . For this procedure, a random variable with standard Normal distri-
bution is required. Marsaglia and Tsang (2000) provide an algorithm
for generating standard Normal random numbers as well, but we have
implemented a simpler textbook routine named Polar method that is
described, for instance, by Knuth (1998) and Law and Kelton (2000).

The density function of the Beta distribution over the interval [0, T ]
is defined as

β(t) =
1

T · B(αj , βj)

(
t

T

)αj−1(
1 − t

T

)βj−1

where B(αj, βj) is the Beta function

B(αj, βj) =
∫ 1

0
tαj−1(1 − t)βj−1dt =

Γ (αj)Γ (βj)
Γ (αj + βj)

(5.5)

See Figure 5.4 for an illustration of the density function of the Beta
distribution.

dj0 30 60 90 120 150 180 210 240 270 300 330 360

f(dj)

0
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

(1.5, 10)
(1.5, 5)
(5, 8)
(6, 6)
(10, 1.5)

Fig. 5.4: Examples of Beta Density Functions with Parameters
(αj , βj) and T = 360

Note that limt→0 β (t) = ∞ if αj < 1, and limt→T β (t) = ∞ if
βj < 1, so we should always choose αj ≥ 1 as well as βj ≥ 1 to generate
demand data. It should be remarked that for αj > 1 and βj > 1 the
Beta density function has a unique peak at
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αj − 1
αj + βj − 2

T (5.6)

Three special cases are worth to be mentioned:

(1)If we choose αj = 1 as well as βj = 1, we get λj(t) =
Dj

T
– a

constant rate.
(2)If we choose αj = 1 and βj = 2, we get λj(t) =

2Dj

T
− 2Dj

T 2
t – a

linear rate with λj(T ) = 0.

(3)If we choose αj = 2 and βj = 1, we get λj(t) =
2Dj

T 2
t – a linear rate

with λj(0) = 0.

If we want to compute the Beta density function, the basic prob-
lem is to evaluate the Beta function B (αj , βj) which means that we
need to evaluate the Gamma function Γ (x). Unfortunately, the inte-
gral that defines Γ (x) has no closed-form solution in general, there-
fore we have to approximate the value of Γ (x) numerically. Note that
Γ (x) = (x − 1) Γ (x − 1) holds for x > 1 and

x ∈ N ⇒ Γ (x) = (x − 1)!

The values of Γ thus grow very fast, so that it became common practice
to approximate ln Γ (see e. g. Press et al. 1992). We have implemented
the approximation along the lines of Pugh (2004). B(αj, βj) can then
be computed using

B (αj, βj) = eln Γ (αj)+ln Γ (βj)−ln Γ (αj+βj)

Properties of the Beta-Gamma-NHPP

Since the rate of the Beta-Gamma-NHPP depends on the random vari-
able Dj, it is a special case of a so called doubly stochastic Poisson pro-
cess, which is sometimes called a mixed Poisson process (Cox and Isham
1980, p. 10-11, 70-75) or a Cox Process – this term is based on the sem-
inal paper by Cox (1955). These special kind of point processes are cov-
ered in some more advanced textbooks, see e. g. Kingman (1993, chap-
ter 6), Reiss (1993, p. 59-61), Daley and Vere-Jones (2003, p. 169-175).
A comprehensive treatment can be found in Grandell (1976, 1997).

This process is to be simulated as follows: For each replication, gen-
erate a realization dj of Dj . (5.3) then becomes a deterministic function,
and we can use the Thinning method to generate the arrival times. This
again clarifies the term conditional Poisson process: The realization of
the process is conditioned on the realization of Dj .
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Since β (t) is a density function over [0, T ], we have
∫ T
0 β (t) dt = 1,

and the expected demand E [N (T ) |Dj = dj ] is:

E [Nj (T ) |Dj = dj ] = Λj (T |Dj = dj ) =
∫ T

0
djβ (t) dt = dj

– in other words, the total demand (which is a random variable, Dj)
is spread over the interval [0, T ] by the density function β (j). Interest-
ingly, similar approaches are used to model arrivals to call centers, see
e. g. Avramidis et al. (2004) and Jongbloed and Koole (2001).

It is worth to be highlighted that there is empirical evidence to use
a Gamma distributed random variable for modeling the expected total
demand of a product. For instance, Beckmann and Bobkoski (1958)
report that a Gamma distribution is reasonable for the total demand
in the airline case. Similarly, de Boer et al. (2002) report that in de
Boer’s master’s thesis it turned out that the sales process of tickets in
an airline case fits (5.3).

In addition to the empirical relevance, there are also good theoretical
reasons for using a Gamma distributed random variable. One reason is
that the marginal distribution of the NHPP turns out to be a negative
Binomial distribution. We thus do not only avoid the potential pitfalls
of Poisson demand, but we can also compute the probability that the
total demand equals a certain value dj with a closed formula (see e. g.
Stuart and Ord 1987). Furthermore, the parameter estimation prob-
lem is simplified (see section 5.4). Another reason is that the posterior
distribution of the events of the NHPP turns out to be a Gamma distri-
bution as well1 (see e. g. DeGroot 1970). Both properties are certainly
not relevant for the simulation of demand data streams alone, but they
are of course extremely important for any RM optimization technique.

Note that these advantageous features are unique compared to any
other demand process that has been used in the literature so far.

The variant used by Weatherford et al. (1993)

It is interesting to note that Weatherford et al. (1993) assume a slightly
different rate, namely:

λj (t) = D · pj · β (t)

where D is a single Gamma random variable (which does not depend on
j) and pj is the probability that an arrival is of type j (where type can,
1 For the convenience of the reader, both results are presented in Appendix A,

along with some additional remarks.
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again, be a product, a customer group with a specific choice behavior
etc.). This approach seems to be considerably less flexible, because for
fixed pj, means and variances can only be varied simultaneously and not
individually for a particular j. Using our approach we can, for instance,
keep the average number of arrivals of type j constant and only increase
or decrease the variance. Therefore, we have chosen to implement the
variant of de Boer et al. (2002) and Bertsimas and de Boer (2005).

Defining the Parameters

So far we have intensively discussed the structure of the rate function
to be used in our simulations, as well as the properties of the resulting
NHPP and the demand. It remains to be described how the parameters
αj , βj of the Beta density function and the parameters γj, δj of the
Gamma distribution should be chosen. The former define solely the
intensity of arrivals over time, and the latter solely determine the total
demand to come, thus we can decide about αj , βj and γj, δj in isolation.

For the former, we assume that it is intuitive for the user to specify
the value of the mode

αj − 1
αj + βj − 2

T

(i. e. where the peak intensity is) as input. In addition, the user of our
simulator has to specify the value of the variance of the beta distribu-
tion

αjβj

(αj + βj)2(αj + βj + 1)

as input as well. In our setting, this is not the variance af a random
variable but it defines the shape of the peak: If the variance is low, the
peak is very sharp and off-peak demand is negligible. If the variance
is high, the peak “flattens” and there is also considerable demand be-
fore and after the peak. Figure 5.5 illustrates several Beta distribution
functions with the same mode for different values αj and βj (and the
corresponding variance). Given mode and variance, the parameters αj

and βj can be derived uniquely.
The parameters γj , δj can easily be specified by defining the mean

and standard deviation of Dj using formulas (5.4), that is, the condi-
tional expectation of the total demand is defined. Since we know that
the marginal distribution of the total demand is a negative Binomial,
we can also specify mean and standard deviation of the total demand
directly, and then derive the parameters γj, δj defining the distribu-
tion of Dj . However, since the choice of γj , δj influences total demand,



152 5 Simulation of Stochastic Demand Data Streams

dj0 30 60 90 120 150 180 210 240 270 300 330 360

f(dj)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

(1.1, 1.03, 0.08)
(2, 1.33, 0.06)
(5, 2.33, 0.03)
(8, 3.33, 0.02)
(10, 4, 0.01)

Fig. 5.5: Several Beta Distribution Functions with Parameters (αj , βj)
and T = 360 such that the Variance Lies within 0.01 to 0.08
and the Mode Equals 270

in the following section we argue that the parameters γj, δj should be
determined jointly in a systematic way for all j.

5.3 Simulating Multiple Demand Data Streams

To determine the parameters which influence the total volume of de-
mand, we propose to base the choice on the expected capacity uti-
lization: If demand is high, capacity utilization will also be high, and
the RM problem gets more difficult. So if we want to be able to gen-
erate instances with predefined characteristics, capacity utilization is
certainly a relevant measure. The expected capacity utilization is some-
times called “nominal load factor”, because it specifies the “load” on
the available resources as a percentage of the resource availability. This
load is only “nominal”, because in a reasonable RM setting, this load
factor will be close to or higher than 1 – if expected demand was con-
siderably lower than the available resources, there would be no need
for RM techniques in the first place, and a simple FCFS policy would
be optimal. The “actual” load factor will of course be at most 1.

Determining the expected capacity utilization does not only depend
on the resource capacities and the dynamics of demand (namely our
parameters γj , δj), but also on the degree of interaction of customers
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and the environment. We will thus differentiate in the following between
independent demand and choice models of demand. In our software,
we have implemented the former, because – as we will see – taking
the nominal load factor into account when generating demand for RM
problem with choice behavior depends heavily on the choice model to be
used. In subsection 5.3.3, we demonstrate how our methods can be used
to cover RM problems with flexible products, both with independent
demand and choice models of demand.

5.3.1 Expected Capacity Utilization Under Independent
Demand

Let E be the set of resources and N be the set of products. We are going
to use |N | independent data streams to generate demands for each of
the products. ce > 0 denotes the capacity of resource e ∈ E. For each
resource e ∈ E and each product j ∈ N , let rje ≥ 0 be the capacity
on resource e that is needed for one unit of product j. In the airline
case, for example, rje is the number of seats that are occupied on leg
e if one ticket of type j is sold. Thus for single-person tickets, it holds
that rje ∈ {0, 1} and a value rje = 0 indicates that the flight for which
ticket j is sold does not use leg e. Note, however, that the following
procedure is by no means limited to the airline case without group
bookings – since we do not make any further assumptions about the
relationship of resources and E, the capacities ce and the coefficients
rje, any application can be covered by our method.

The expected capacity utilization Ue on resource e is then

Ue =

∑n
j=1 rjeE [Dj ]

ce

As indicated before, Ue is an input used by our software to derive the
parameters γj, δj . We assume that the load factor on each resource is
identical, i. e. that Ue = U holds for all e ∈ E. An instance is easier
to define this way, and much less parameters are needed to describe it.
This facilitates the comparison of computational results. Furthermore,
the additional flexibility of allowing U to vary with e does not seem to
add much to an instance generation scheme. If we consider, for instance,
a hub-and-spoke network with two hubs, it may well be that the load
factor on the inter-hub link is considerably higher. The RM problem
will then be driven by the bottleneck, and the load factor on the spoke
legs will not be very important. It would thus be no harm to increase the
load factor on the spoke legs as well. However, using resource specific
capacity utilizations Ue in the following would not at all be a problem.
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Given U we define the parameters γj, δj for all j ∈ N using
Algorithm 5.2. An important prerequisite for that algorithm is that
for each resource e ∈ E there exists at least one product such that the
product only uses this resource, i. e. there has to exist a product j such
that rje > 0 and rjf = 0, f ∈ E\ {e}. We believe that this assumption
is not restrictive in most applications. For the airline case, for instance,
it seems to be reasonable to assume that tickets are available for each
single non-stop flight.

Algorithm 5.2: Defining γj , δj using U under Independent Demand

1. Set P = ∅ where P denotes the set of all products for which demand data
has already been generated.

2. Given U , the “available” capacity c′e on resource e is computed to be
c′e = U · ce for all resources e ∈ E.

3. Determine the set E′ of resources with c′e > 0. If E′ = ∅ then stop.
4. Choose an resource e∗ such that c′e∗ ≤ c′e for all e ∈ E′.
5. Consider the set Pe∗ ⊆ {1, . . . , n} of all products j with rje∗ > 0 which

are not in P already (i. e. j �∈ P ).
6. For each product j ∈ Pe∗ the user is requested to specify a proportion

πj > 0 as input to define what amount of the capacity is expected to
be demanded by product j. These proportions must be set such that∑

j∈Pe∗
πj = 1 holds. To ease the usage of our software, our code auto-

matically chooses πj = 1
|Pe∗ | so that no further user input is needed.

7. For each product j ∈ Pe∗ determine γj , δj such that

γjδj =
πjc

′
e∗

rje∗

holds. To do this, we request the user to specify the value of the coefficient
of variation

σ(Dj)
E[Dj ]

=
1√
γj

for each product j ∈ {1, . . . , n} as input which yields γj and from which
δj can then be derived.

8. Update P = P ∪ Pe∗ .
9. For each product j ∈ Pe∗ consider all resources e ∈ E′ with rje > 0 and

update c′e = c′e − rjeE[Dj ].
10. Goto 3.
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5.3.2 Expected Capacity Utilization Under a Choice Model
of Demand

Let E,N, ce, rje be as before. Under a choice model of demand, we do
not have a one-to-one correspondence between products and demand
data streams – in fact, the number of streams can be chosen arbitrar-
ily. For the ease of exposition, we will consider the case with a single
demand data stream first, i. e. the problem is to define parameters γ, δ
in a meaningful, systematic way based on an (expected) nominal load
factor U .

A choice model of demand specifies a choice probability Pj (S) that
product j ∈ S is chosen if S ⊆ N is the offer set. In a reasonable choice
model, we have Pj (S) ≥ 0, j �∈ S ⇒ Pj (S) = 0 and

∑
j∈S Pj (S) ≤ 1

– it is allowed that
∑

j∈S Pj (S) < 1, i. e. there may be a positive
probability that no product is chosen if set S is offered.

For given values γ, δ and a fixed offer set S ⊆ N , the expected
utilization of resource e ∈ E is then:

Ue (S) = γδ

∑
j∈S Pj (S) rje

ce
(5.7)

In this formula, Pj (S) is the probability that rje units of resource e
are consumed. The expected capacity consumption for any request is
then

∑
j∈S Pj (S) rje, and γδ is the expected number of requests. The

offer set S is though unknown at the time of instance generation be-
cause it depends on the RM policy, and our instance generation scheme
should clearly be independent of the method to be tested. Note that
this problem did not occur in the independent demand case because we
assumed that customers will choose a single, known product. If their
desired product is not available they will exit the market. While the ac-
tual load factor thus depends on the RM policy indeed, the “nominal”
load factor does not.

For the choice setting, it seems natural to use the offer set N in
(5.7), i. e. we consider the case the choice of product is not restricted
by the RM policy. This is (in some sense) analogous to the independent
demand case where we define the nominal load factor to be the frac-
tion of capacity of each resource demanded under the assumption that
choice is in the first place not restricted by the RM policy as well. Note
that even if all products N are offered this does not guarantee that any
request is granted under all circumstances, because we may run out of
capacity for some of the products in the offer set. For given values γ, δ
we therefore define the expected utilization of resource e ∈ E to be



156 5 Simulation of Stochastic Demand Data Streams

Ue (N). However, it would be absolutely no problem to replace N with
any non-empty offer set S ⊆ N in the following.

It is obviously impossible to choose γ, δ such that Ue (N) = U holds
for some given U and all e ∈ E like in the independent demand setting.
We therefore require that U is the average nominal load factor:

U =
∑

e∈E Ue (N)
|E| =

γδ

|E|
∑
e∈E

∑
j∈N

Pj (N) rje/ce (5.8)

In addition, the coefficient of variation should be specified. Like in
Algorithm 5.2, this yields γ, and δ can then be derived from (5.8).

If we use m ≥ 2 demand data streams where demand of type i =
1, . . . ,m follows choice model Pij (S), we have:

Ue (S) =
m∑

i=1

γiδi

∑
j∈S Pij (S) rje

ce

As for the independent demand case, we then need values 0 < πi < 1,
denoting the fraction of total demand arriving from stream i. Let U be
again the average nominal load factor. We have:

πiU =
γiδi

|E|
∑
e∈E

∑
j∈N

Pij (N) rje/ce (5.9)

If the coefficient of variation with respect to stream i is specified as
well, it can be used together with (5.9) to derive γi, δi.

5.3.3 Expected Capacity Utilization with Flexible Products

Under a choice model of demand, defining the expected capacity uti-
lization becomes a little bit tricky because the choice behavior of cus-
tomers introduces uncertainty about the resource consumption induced
by arrivals. With flexible products, the situation is somewhat similar,
because which resources are actually consumed by a request is deter-
mined by the supplier in that case.

For the ease of exposition, we assume independent demand first. Let
N be again the set of products – some of which may be flexible –, and
we have demand arriving from |N | stochastic data streams such that
customers from stream j will try to buy product j and exit the market
if it is not available.

Let E and ce be defined as before. The problem is now to specify
the resource consumption coefficients rje for a flexible product j. For
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instance, let j be a flexible product that is either produced on resource
e ∈ E or on resource f �= e. We model this situation by using the
coefficients r′je, r

′
jf , where r′je denotes the amount of resource e that is

consumed by product j if j is actually scheduled to use e. Let us assume
that we have an estimate πje ≥ 0 of the probability that product j will
be scheduled on resource e. We require that πje = 0 ⇔ r′je = 0. We can
then define the expected resource consumption coefficients rje = πjer

′
je

and proceed by using Algorithm 5.2.
It remains to be defined how sensible estimates πje can be obtained

– these probabilities obviously depend heavily on the realized demand
process, the acceptance/rejection policy and the method used to sched-
ule the flexible products. However, since flexible products will be sched-
uled in a way to fill up capacity that would otherwise not be used, an
estimate can be obtained as follows: Let j be a flexible product that
can either use resource e or resource f . Then it is reasonable to assume
that the probabilities to consume resource e or f are given by

πje =
Ue

Ue + Uf
and πjf =

Uf

Ue + Uf
, respectively.

Since we want to generate an instance where the nominal loads Ue are
identical for each resource e ∈ E, these probabilities are exactly 1/2.
To formalize this finding, let E′

j (e) ⊆ E be the set of resources that can
be used instead of e ∈ E for the production of j. As a convention, let
e ∈ E′

j (e), such that we have E′
j (e) = {e} for all non-flexible products

j. The desired probabilities are then given by πje = 1/ |E′ (e)|.
If we desire to generate demand data for a RM problem with flexible

products under a choice model of demand, we simply define rje =
πjer

′
je = r′je/ |E′ (e)| as for the independent demand case and proceed

using the ideas presented in subsection 5.3.2.

5.4 Some Remarks on Parameter Estimation

If real-world demand data is given, it is certainly interesting to estimate
the parameters αj , βj , γj , δj so that “real” demand data (that is, de-
mand data generated using actual parameter values) can be simulated.
This is also a crucial part needed to assess if our model of arrivals (5.3)
fits demand data from practice. In this section, we will make some brief
remarks on how to estimate αj , βj , γj , δj given a sample of the j-th de-
mand data stream. We have already mentioned in section 4.4 that it
may be difficult to obtain such a sample in practice for various reasons;
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in the following we will however assume that the recorded sales data
has already been cleaned and unconstrained properly.

Since we know that total demand follows a negative Binomial dis-
tribution, γj, δj can easily be estimated given a sample of the observed
total demand, see Avramidis et al. (2004) and Jongbloed and Koole
(2001) for a description that is directly related to negative Binomial
demand created by a NHPP with a rate function governed by a Gamma
random variable.

Many authors describe non-parametric methods to estimate the rate
function λj (t) of a NHPP; see e. g. the seminal paper by Leemis (1991)
who describes how a piecewise linear approximation of the rate can be
obtained. However, such methods are not suitable for our purposes,
because we actually want to estimate the parameters αj and βj from a
given sample and use these estimates as inputs for our simulator.

Estimating αj, βj poses some difficulties, because the Beta function
can only be evaluated numerically. We will roughly outline a weighted
least squares estimator and a maximum likelihood estimator along the
lines of Massey et al. (1996), who consider the (already non-trivial)
problem to estimate the parameters a, b for a NHPP with a linear
rate, i. e. λ (t) = a + bt, t ∈ [0, T ]. Since the demand data streams
are independent, we will omit the index j in the following to improve
readability.

In principle, a realization of a NHPP is the number n of total arrivals
observed in [0, T ] and an ordered list of event times t1 < . . . < tn. These
event times can be used directly for estimation, see e. g. Johnson et al.
(1994) and Kuhl et al. (1997). However, like Massey et al. (1996), we
assume that the [0, T ] has been divided into N subintervals. Let tk be
the beginning of the k-th interval, k = 1, . . . , N . We require that t1 = 0
and for ease of notation we define tN+1 = T . Denote the total demand,
i. e. the observed number of arrivals by d. It is important to emphasize
that given the sample of the realized process d is no longer a random
variable but a known constant. Denote the number of arrivals in the
k-th interval by Yk – a random variable (depending on α, β) following
a Poisson distribution with parameter λk where

λk =
∫ tk+1

tk

λj (t) dt =
∫ tk+1

tk

d · β (t) dt

= d

∫ tk+1

tk

1
T · B(α, β)

(
t

T

)α−1 (
1 − t

T

)β−1

dt

Upon substituting z = g (t) = t/T ⇒ dt = dz/g′ (x) = Tdz we
obtain:
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λk = d · 1
B (α, β)

∫ tk+1/T

tk/T
zα−1 (1 − z)β−1 dz

= d
[
Itk+1/T (α, β) − Itk/T (α, β)

]
where

It (α, β) =
1

B (α, β)

∫ t

0
zα−1 (1 − z)β−1 dz for all t ∈ [0, 1] (5.10)

is the incomplete Beta function2. Comparing (5.10) with (5.5) we see
that I1 (α, β) = 1.

For the weighted least squares estimator, we assume that Yk = λk +
εk, where εk is a random variable with mean 0. As usual, let yk be
the realization of Yk and denote the weight of the k-th observation by
wk. To obtain weighted least squares estimates αw, βw for the unknown
parameters α, β we have to solve the following optimization problem:

min
αw ,βw

N∑
k=1

wk (yk − λk)
2

= min
αw ,βw

N∑
k=1

wk

(
yk − d

[
Itk+1/T (αw, βw) − Itk/T (αw, βw)

])2 (5.11)

For the derivatives of the objective function with respect to αw, βw

the derivative of the incomplete Beta function is necessary. Like the
Beta function, the incomplete beta function and its derivatives have
no closed form and numerical approximation is necessary – see e. g.
Boik and Robison-Cox (1998), who present a suitable method as well
as Fortran 77, Matlab and S-Plus source codes.

For the maximum likelihood estimator, recall that Yk ∼ Po (λk),
thus

P (Yk = y) = e−λk
λk

y

y!

Since a NHPP has independent increments (the “memoryless prop-
erty”), Y1, . . . , YN are independent random variables, and the likelihood
of the sample y1, . . . , yn is given by
2 Note that some references also use the term incomplete beta function for the

integral
∫ t

0
zα−1 (1 − z)β−1 dz. (5.10) is then called “regularized (incomplete) Beta

function” or “incomplete Beta function ratio”.
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L (y1, . . . , yn |α, β ) =
N∏

k=1

e−λk
λk

yk

yk!

⇒ ln L (y1, . . . , yn |α, β ) =
N∑

k=1

ln e−λk
λk

yk

yk!

= −
N∑

k=1

λk +
N∑

k=1

yk ln λk −
N∑

k=1

ln (Yk!)

Since
N∑

k=1

λk = d

N∑
k=1

Itk+1/T (α, β) − Itk/T (α, β) = d

and ln λk = ln d + ln
[
Itk+1/T (α, β) − Itk/T (α, β)

]
the optimization problem to be solved is

max
αm,βm

N∑
k=1

ln
[
Itk+1/T (αm, βm) − Itk/T (αm, βm)

]
Again, numerical methods are necessary to evaluate the derivative of
It (α, β).

5.5 Summary and Future Research Opportunities

In this section we have shown how to simulate stochastic demand data
streams to test RM methods. Based on an extensive study of the exist-
ing literature, we have selected an approach that has got a number of
advantages over existing methods. The approach is totally independent
of the area of application and it is suitable for independent demand,
choice-based RM and RM problems with flexible products.

In light of the typical “ad hoc” nature of demand data generation
in current research practice, we have made an important step towards
the creation of systematic test-bed for RM problems.

Future work should develop these core algorithms further to yield
a fully fledged instance generator for RM problems. Then a standard
test-bed should be established and be used by researchers working in
this field in order to ease the comparison of different RM approaches.
In more detail, the following steps are necessary:

1. Identify what characteristics of resources, products, capacities etc.
make RM problems hard or easy to solve.
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2. Develop an instance generator that creates instances (i. e. resources,
products, capacities etc.) with given characteristics, especially a
given degree of “difficulty”.

3. Generate a systematical set of test-instances in the spirit of, for
example, Barr et al. (1995) to establish a standard test-bed for
future work.

Another interesting project is to assess the fit of the model of ar-
rivals (5.3) to real-world data of various industries. As mentioned, there
exists (albeit somewhat limited) supporting evidence for the airline in-
dustry. Assessing the fit of the model requires estimating the parame-
ters αj , βj , γj , δj for a given stream of demand data. In section 5.4 we
have outlined the estimation problem very briefly. We haven seen that
the estimation problem provides a fruitful area of challenging research
problems as well.



6

Revenue Management in Broadcasting
Companies

Advertising is the predominant source of revenues for most broadcast-
ing companies like TV or radio stations. Much like a seat in an airplane
(which cannot be sold after departure) ten seconds of time in a TV or
radio program cannot be sold to an advertiser once this time frame has
passed. Given the inflexibility of adjusting the “capacity” (i.e. adver-
tising time slots) with a varying demand, broadcasting companies are
strongly motivated to differentiate prices, thereby exploiting customer
heterogeneity, attracting more customers (= advertisers) and increas-
ing demand. Faced with operational inflexibility on the one hand and
different values of demand on the other hand, RM problems arise.

Based on a detailed description of the RM problem in broadcasting
companies (section 6.1), we derive a mathematical decision model in
section 6.2. Section 6.3 deals with feasible, 6.4 with optimal solutions
of the problem. The methods proposed in these sections are evaluated
on a test bed of 18,000 instances. The instance generation procedure
and the test results are described in section 6.5. 6.6 provides an outlook
on stochastic and dynamic aspects of the problem. 6.7 contains some
concluding remarks.

An earlier version of sections 6.1 and 6.2 can be found in Belloch
Egea, Kimms, and Müller-Bungart (2007). Kimms and Müller-Bungart
(2007a) present preliminary results on the heuristics (section 6.3).

6.1 Introduction

6.1.1 Case Study: Broadcasting in Spanish Television

To obtain a realistic impression of the advertising business in broad-
casting, we conducted an in-depth research of Spanish television corpo-
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rations. In particular, the following description is based on two broad-
casting networks, RTVE and RTVV.

RTVE (Radio Television Espanola) is a public company, but the
main source of its revenues is advertising: In 2003, the overall revenue
was e 877.2 million, of which e 697.2 million (79.5 %) came from adver-
tising and sponsoring, only e 83.9 million (9.6 %) were funded by public
authorities. RTVE runs two national TV channels (“La Primera” and
“La Dos”), on which the following description will focus. “La Primera”
and “La Dos” gained a market share of 23.4 and 7.2 %, respectively, in
2003, where the largest competitors, “Tele 5” and “Antena 2”, obtained
21.5 and 19.5 %. In addition, RTVE runs a multitude of regional TV
channels and four national, 17 regional and 46 local radio stations.

RTVV is a regional broadcasting company based in the area of
Valencia, which covers Valencia, Castellon and Alicante. It runs the
TV channel “Canal 9” and some radio stations. The market share of
“Canal 9” (with respect to its limited regional coverage) was 18.2 % in
the first quarter of 2005. Canal 9 is the market leader for regional news-
casts with a market share of 23.8 %, ahead of its competitors Telecino
(22.4 %), Antena 3 (20.7 %) and TVE1 (19.7 %). RTVV was publicly
owned until October 1st, 2003, when it was transferred into private
ownership. Two thirds of its funds are still supplied by its owners and
public sources. Advertising revenues where 4̃0 million in 2003.

In the remainder of this section, we describe how orders are placed,
prices are determined and spots are scheduled in these two companies.
However, the situation in other broadcasting companies is very similar
– see e. g. Bollapragada et al. (2002) who describe the situation at
NBC, a US broadcasting company1. The reader should especially keep
in mind that – although we will mostly speak about TV – the problem
analogously arises in radio stations.

6.1.2 The Process of Ordering and Scheduling TV Ads

The process of ordering and scheduling TV ads can roughly be de-
scribed as follows: An advertiser (synonym: customer, client) sends an
order to a broadcasting company. The advertiser may be the company
whose products are described in the ads, or an intermediary, such as
an advertising agency. The order defines the number of spots to be
broadcast, and when these spots should be aired. It is very common
that the advertiser does not precisely define the airtimes of its spots,
but only some rather general rules. For example, the advertiser may
1 This reference is discussed in some detail in section 6.1.6.
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request that all spots should be aired within the next 30 days, where
20 percent of which should be aired on weekdays in the morning, and
80 percent should be aired on weekends in the afternoon. Thus, we are
dealing with multimodal (or flexible) products, where the actual mode
of “production” is not precisely defined by the customer’s order, but
can be decided on by the broadcasting company. The price the adver-
tiser has to pay for the order, however, is fixed and known to both
parties before the spots are actually scheduled by the TV network.

Advertisers may cancel scheduled spots according to certain rules.
The broadcaster may or may not charge a cancellation fee (penalty),
and the advertisers may be fully, in part, or not at all refunded, in
case they have already paid. Naturally, there are no “no-shows” in this
application: Cancellations close to the planned airtime (48 hours in
advance, say) are not allowed, because it is impossible to modify the
planned schedule for technical reasons, i. e. if the advertiser has not
canceled until that time, the full price will be charged and the spot will
be aired.

In the following subsection we describe how prices are determined
for a single spot. Usually, however, an order consists of a many spots,
and special price setting rules apply. These are described in the next
but one subsection.

6.1.3 Determining Prices for Single Spots

The price to be paid by an advertiser for a single spot is basically
determined by the following aspects:

• Context of its airing
• Duration
• Scheduling Flexibility

Context

Advertisements (typically consisting of a couple of spots) may interrupt
a running show or be aired between two consecutive parts of the TV
program. A group of spots which is consecutively aired is called a com-
mercial break (or simply a break for short). The parts of the program
which surround a break are called its context. The context determines
how many viewers and what target groups will (probably) be reached
by the spots in a particular break. It goes without saying that the price
for a spot in peak-demand contexts is much higher. To determine a ba-
sic fee for a spot, the broadcasting companies partition the weekdays
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in time windows (“hour strips”). Table 6.1 shows a simplified example
of prices for a 20 second-spot – this is the standard length in Spanish
television – with respect to its context, defined by the weekday, the
hour strip and the show. Note that the price for a second ranges from
e 27.50 to e 510.

Table 6.1: Spot Price with Respect to Context

Monday to Friday Saturday Sunday
07:00 Telediarioa

Infantilb e 1,50508:00 Matinal e 550

09:00
Los Desayunos de

TVE e 640
10:00 Saber Vivir e 640 Infantilb e 1,505 Infantilb e 2,405
11:00 Por la Mañana e 870

12:00 Aśı con las cosas
e 1,050 Música Uno e 1,600 Redifusión e 2,700

13:00 Aśı con las cosas
e 4,500

14:00
Corazón de Otoño

e 7,300
Cartelera TVE
e 2,900

Cartelera TVE
e 3,350

15:00 Telediario a e 10,200
16:00 Telenovelac Sesión de
17:00 e 6,700 tarde e 6,900
. . . . . . . . . . . .

a Newscast
b Program for children
c Soap opera

Duration

Given a price table like Table 6.1, the price of a second in a particular
break is basically determined and the price of a spot of given length can
easily be computed. For spots which are longer than 45 or shorter than
15 seconds a surcharge on the basic fee is applied, i. e. very short or
very long spots are penalized. The minimum length of spot is typically
defined by the terms and conditions of the broadcasting company or
even regulated by law. RTVE and RTVV do not accept spots that are
shorter than five seconds, and very short spots are only accepted if they
are closely related to other, longer spots of the same advertiser in the
same break.
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Scheduling Flexibility

As mentioned before, orders sent to broadcasting companies represent
multimodal products. The price tables published by the broadcasting
companies (like Table 6.1) are only a rough representation of the ac-
tual TV program. If a customer chooses an hour strip for a spot, the
broadcasters are usually free to schedule a spot in any break in the
desired time window. The companies will typically notify the client of
the planned airtime, however, they are usually not obliged to pay a
compensation if the actual airtime should be different. In addition, a
typical contract allows the broadcaster to schedule the spot without
compensation in the hour strip immediately before or after the booked
one, as long as the difference is not greater than half an hour and the
same spot is not aired twice in the same break.

On the other hand, the advertiser may define the actual break where
a spot is to be aired, or even the actual position in break for a surcharge.
Because it is assumed that the viewer’s attention is maximal at the very
beginning and end of a commercial break, these positions are most
expensive. Some advertisers may like to define other positions than the
first or the last as well, e. g. if two spots that advertise the same product
should be aired with a fixed time lag.

6.1.4 Determining Prices for a Bundle of Spots

So far we have described how prices for a single spot are determined.
In addition, there are certain rules that may apply if an order consists
of more than one spot. First of all, most broadcasting companies offer
a kind of volume discount: If the overall value of an order exceeds a
certain amount, the price is discounted by some percentage. Special
scales of discounts apply to special programs. Table 6.2 shows the scale
of discount for spots that are placed in the context of football matches,
depending on when the spot should be aired and how many matches
are covered by the order.

Broadcasting companies also offer bundles of hour strips and con-
texts as so called modules. Typically, these modules are derived from
the viewing habits of certain target groups. Table 6.3 exemplarily shows
a “family module”, which is meant to cover the preferred viewing times
of families. If advertisers book this module, they receive a discount of
55 % on the basic fees as defined by the broadcaster’s price table (see
e. g. Table 6.1). The value of the order placed by the customer must be
no less then e 14,000 (after discount). 10 % of this value has to be used
to place spots in the time window Monday to Sunday, 14:00 - 15:30.
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Table 6.2: Special Scale of Discount for Football Matches

Number of Matches
Airtime Single Match Complete

Round (19
Matches)

Complete
Season (38
Matches)

Before Match 0 % 15 % 35 %
Half-Time 0 % 15 % 35 %
After Match 0 % 15 % 35 %
Before+Half-Time 5 % 20 % 40 %
Before+Half-Time+After 20 % 35 % 55 %

Broadcasting companies use modules to acquire high-valued orders.
Another major advantage is that a module forces customers to place
spots in hour strips of relatively low demand (between 24:30 and 03:00
in the module depicted in Table 6.3, for example). The customers, on
the other hand, profit from the very high discounts. Furthermore, they
can use modules to easily address certain target groups (families in our
example).

6.1.5 The Revenue Management Problem in Broadcasting
Companies

Having clarified how orders are placed and prices for orders are de-
termined we proceed by summing up the preconditions for the RM
problem in broadcasting companies:

Table 6.3: Family Module

Day Time Window Necessary Quota
Monday to Sunday 14:00 - 15:30 10 %
Monday to Friday 21:00 - 24:00 15 %Saturday and Sunday 20:30 - 24:00
Monday to Friday 16:00 - 20:30 45 %Saturday and Sunday 16:00 - 20:00
Monday to Friday 09:30 - 12:30 10 %
Monday to Sunday 24:30 - 03:00 20 %

Discount: 55 % on the basic fees
Minimal Order Value: e 14,000 (after discount)
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Customer Integration

For the production of the “spot broadcasting” service it is evidently
necessary that the customer sends an order to the broadcasting com-
pany in which the number of spots, their lengths, the desired hour strips
etc. are defined – the situation here is very similar to “manufacture-to-
order” production systems. In later stages of the production process,
the material to be broadcast has to be supplied (i. e. taped TV spots
or the like).

Limited Resource Flexibility

The essential resources involved in the production process are time
slots, i. e. potential commercial breaks interrupting the program for
advertisements. The number and length of these commercial breaks is
clearly limited in two ways: The audience will not tolerate an arbi-
trarily high number of spots – after a certain quantity of advertising
is exceeded, the viewer’s attention will deteriorate. Plus, the amount
of time used for advertisements is limited by law in many countries,
e. g. in the European Union (Council of the European Communities
1989). On the other hand, the number of commercial breaks cannot be
arbitrarily reduced, because broadcasting advertisements is a major (if
not the predominant) source of income for many companies.

Furthermore, once the broadcasters have decided about the TV pro-
gram (most likely including approximate numbers and lengths for com-
mercial breaks in every hour strip) and published a price table like
Table 6.1, they are bound to follow that scheme, because potential ad-
vertisers (and possibly the audience as well) expects this schedule to
be stable for some time. The situation here is very similar to airlines
which cannot arbitrarily change their flight schedules once they have
been published as well.

Heterogeneous Customer Behavior

It goes without saying that given the variety of products which can be
advertised on TV or radio, different advertisers will address different
target groups. In addition, the advertiser’s valuation of TV spots will
strongly depend on product and target group characteristics – for some
products TV advertising will be more effective than for others. As a
consequence, different customers will prefer different hour strips, the
amount of spots to be broadcast will strongly depend on the clients,
and their willingness to pay will certainly vary.
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Product Range

Price tables like Table 6.1 essentially represent a standardized product
range. Special scales of discount or modules (see Table 6.2 and Table 6.3
for examples) allow customers to combine these “basic products” into
an individual product tailored to their specific needs. This can be com-
pared to an airline, where customers can combine multiple non-stop
flights to an individual itinerary.

Like a flight schedule, a TV program will stay stable for a longer
period of time. Slight modifications – like postponing a certain show
for a quarter of an hour or replacing the comedy series A with comedy
series B – are possible, but the context of an hour strip will only be
marginally affected. In addition, the viewing habits can be expected
to be very stable over time. For instance, the audience might expect
that there is a newscast on weekday mornings, a soap opera in the late
afternoon and a program for children on weekends.

In summary, all four conditions are satisfied, and opportunities to
gainfully use RM techniques in broadcasting companies exist. Although
the broadcaster’s ability to match demand for advertising time slots and
available capacity is limited, a typically order does only roughly spec-
ify time windows where spots should be aired. So the companies still
have some flexibility in substituting capacities to satisfy their customers
needs – broadcasting companies can be seen as a typical example for
multimodal products.

Do TV and radio stations currently make use of RM? Our research
of Spanish companies revealed that both RTVE and RTVV will indeed
reject orders, at least if not all spots of a given order can be scheduled
according to the client’s preferences. If an order is rejected, RTVE and
RTVV will respond with a counteroffer, in which they propose different
airtimes for the spots. However, these counteroffers only seem to occur
if an order cannot be accommodated, i. e. feasibly scheduling the given
spots is impossible. But this mechanism of offers and counteroffers could
easily be augmented by RM techniques, such that an order is voluntarily
rejected because the broadcaster chooses to protect remaining time
slots for orders to come with higher revenues. This idea is rarely treated
in current research, though, as the following review of the relevant
literature shows.
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6.1.6 Literature Review

The only publicly available reference with respect to RM in broadcast-
ing companies seems to be Bollapragada et al. (2002). The authors
picture the sales process at NBC, a US television network. The situ-
ation they describe is very similar to the one we found at RTVE and
RTVV: Potential customers send orders to NBC. A typical order only
loosely specifies the time windows when spots should be aired. NBC will
try to meet the customer’s specifications. However, due to the limited
“airtime inventory” (Bollapragada et al. 2002) available for advertising
it may be infeasible to fully match the customer’s preferences. In this
case NBC prepares a schedule that follows the original order as closely
as possible. The proposed schedule is sent back to the customer, who
may reject it. In this case, negotiations take place. If they fail, the deal
is lost.

The vast majority of the entire airtime inventory (60 to 80 percent)
is sold during two or three weeks, shortly after the new programming
schedule has been published. This is called the up-front market; the
remaining market is called the scatter-market.

Bollapragada et al. (2002) do not consider to reject orders: All orders
are – in principle – accepted (possibly after a modification by NBC
and/or the client), hence all spots have to be scheduled according to
the rules defined by the customers’ orders. The resulting schedule is
called a sales plan by NBC. Since the revenue that can be obtained
is fixed, NBC applies a cost-minimizing approach. The cost of a sales
plan consists of two major components:

• The airtime inventory is limited, and highly-demanded airtime
(which Bollapragada et al. 2002 call premium inventory) is more
valuable than others. It is desirable to use as little premium in-
ventory as possible in a given sales plan because this airtime can
probably be sold later at premium prices. Thus, Bollapragada et al.
attach a “cost per second” factor to each time slot in the planning
horizon, reflecting opportunity cost of blocking airtime that can be
profitably used to accommodate subsequent orders.

• Since all orders are accepted, it is typically impossible to completely
satisfy all specifications as defined by the customers’ orders. The
failure to meet a customer’s guidelines is reflected in penalty costs.

In contrast to this work, the approach we pursue here will be a
capacity control scheme where orders are rejected if we expect to be
able to allocate the scarce inventory to more valuable orders later. Like
done by Bollapragada et al. (2002), this will mean to take the different
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opportunity costs of airtime inventory into account. Furthermore, we
will not allow for a violation of the customer’s specifications, not even
at a penalty cost.

Also closely connected to our work is Köcher (2002, 2000, 2004),
who discusses a controlling scheme for ad sponsored companies. Köcher
(2002, chap. 10) describes on a conceptual level how a system of ac-
cepting and rejecting orders to maximize revenues could be designed.
Though Köcher does not develop models or methods for this RM prob-
lem, her work stresses the relevance of our approach.

To the best of our knowledge, other references dealing with RM
problems in broadcasting companies are not publicly available. Loosely
related RM-problems can be found in the cargo industry and in make-
to-order environments. We will briefly summarize these references in
section 6.6. Here we proceed by reviewing the literature on closely re-
lated, but not identical topics.

Scheduling a given set of TV spots (which is a crucial part of the RM
problem we will cover) has been dealt with in only quite a few papers.
Brown (1969) describes the situation at the TV channel “Thames Tele-
vision” and demonstrates various difficulties of scheduling spots man-
ually. He outlines an algorithm for the systematic exchange of spots of
different lengths between breaks to gain room for additional spots. Bal-
achandra (1977) presents a simulation study concerned with the impact
of spots depending on the advertising schedule. Hägele et al. (2000)
prove that the problem as defined by Brown (1969) is NP-complete.
Bollapragada et al. (2004) refer to the problem at NBC and develop
an algorithm to schedule spots which should be aired more than once
such that all transmissions of the spot are distributed as uniformly
over time as possible. Bollapragada and Garbiras (2004) again refer to
NBC and describe the scheduling problem using some of the restric-
tions we will also use here. In that respect the work of Bollapragada
and Garbiras (2004), which deals with the problem of scheduling but
not with order acceptance/rejection, is very similar to a major part
of our problem. An important distinction between both approaches is,
though, that Bollapragada and Garbiras (2004) allow for the violation
of some constraints (at a penalty cost), where our approach strictly en-
forces all constraints (to be described later). This requirement makes
finding a feasible schedule for a given set of orders much more thorny
in our problem.

Quite a large body of the literature deals with designing TV timeta-
bles that attract many viewers, e.g. Cancian et al. (1995), Horen (1980),
Reddy et al. (1998), Rust and Eechambadi (1989). Webster (1985) mod-
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els audience behaviors and analyzes whether a spectator watching a
certain show will also watch the following program. Although we as-
sume throughout the chapter that the TV timetable has already been
defined, this research is relevant because the timetable determines the
attractiveness of the program for viewers, and hence influences the de-
cision of advertisers to place orders and choose time windows for spots.

The scheduling of advertisements on web pages is related to the
problem at hand, albeit not identical. Frequently discussed problems
in this area are how so called advertising banners of varying sizes should
be placed on the screen, and how the banners should change over time
(e.g. Adler et al. 2002, Aggarwal et al. 1998, Dawande et al. 2003,
2005, Dean and Goemans 2003, Freund and Naor 2004). Other areas
of research related to Internet advertising include how the impact of
online commercials can be evaluated (e.g. Cao 1999), how banners on
web pages can be inserted depending on the actual, individual visitor
(e.g. Yager 1997), or how individualized advertisings by email (not
spam) can be designed (e.g. Ansari and Mela 2003). Messages tailored
to individual customers (or groups of customers) are also discussed in
the area of mobile telephony (e.g. Barwise and Strong 2002, de Reyck
and Degraeve 2003) and digital television (e.g. Lekakos et al. 2001,
Thomas 2000).

General information and statistics on TV advertising are regularly
published, for Germany for example by the German Association of the
Advertising Industry (Zentralverband der deutschen Werbewirtschaft
2004). Text books on media economics also cover television, of course,
see e.g. Heinrich (1999) or Altmeppen and Karmasin (2004).

A comprehensive overview on the radio business is presented by
Czygan (2003), for instance. Numerous authors investigate the impact
of radio advertising. Geer and Geer (2003), for example, analyze the
effect of political ads in election campaigns, Verhoef et al. (2000) focus
on radio commercials intended to provoke an immediate reaction of
the listener (e.g. a telephone call), and Verhoef and Donkers (2005)
compare advertisements by mail, Internet, radio and TV. To the best
of our knowledge, research directly related to the scheduling of radio
spots is rare, Lambert (1983) and Marx and Bouvard (1990) seem to
be the only exceptions.

Summing up, a review of the literature reveals that research dealing
with accepting orders and scheduling of ads at the same time does not
yet exist. We therefore describe an approach to these interdependent
problems, aiming at solving them simultaneously. We continue by de-
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veloping a concise mathematical model for the simultaneous solution
of order acceptance and spot scheduling.

6.2 Mathematical Model

This section (and the remainder of the chapter) will mainly deal with
the RM problem in broadcasting companies under certainty, i. e. we
will assume that all orders, their values, the spots to be scheduled and
their properties are completely known. We will give an outlook on how
to take uncertainty into account in section 6.6.

We have chosen to focus on the problem under certainty for the
following reasons:

• As reported by Bollapragada et al. (2002), the vast majority of air-
time in the US market is sold in a short period of time (the up-front
market). That means that quite a large body of all orders can be
collected and whether to accept or reject a particular order can be
decided upon given a batch of other orders, whose properties are
known with certainty. The situation at NBC is further simplified by
the fact that there are only 250 customers, where 20 % of the cus-
tomers account for 80 % of the revenues and the variation of each
customer’s buying behavior is low, so that this year’s demand can
easily be predicted using last year’s demand. Consequently, Bol-
lapragada et al. (2002) have chosen a deterministic approach as
well. Although we are not aware of the transaction volumes in the
up-front and the scatter markets or the customer distribution in
Spanish television, we know that it is not necessary to immediately
notify advertisers about whether their orders have been accepted or
not, so at least some “batching” of orders is certainly also possible
in that market.

• Under uncertainty, if an order arrives, the following questions have
to be answered:
– Is it possible to accommodate the order, given the remaining

resource capacity and taking possible reschedules of already ac-
cepted orders into account?

– If so, it is profitable to accommodate the order? Note that this
strongly depends on the resources to which the order is assigned.

In a standard airline RM problem (without overbooking), it is trivial
to see whether the remaining resource capacity suffices to accommo-
date a given order, largely because rescheduling passengers to other
planes is (not yet) an option. In the problem at hand with multi-
modal products, however, answering the first question is equivalent
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to finding a feasible schedule for all orders that have already been
accepted, plus the order that has just arrived. In addition, we will
have to decide to which resources we (at least temporarily) assign
the new order (this is also trivial in the standard airline case). Thus,
under uncertainty, we also need decision models and methods to deal
with these subproblems. Since these problems also arise in the de-
terministic setting, the models and methods we are going to present
will also form a crucial part of any method that deals with the prob-
lem under uncertainty. We will take a closer look on that aspect in
section 6.6.

• In the broadcasting industry, practically all products are flexible,
and while most Spanish broadcasting companies will notify cus-
tomers shortly after their orders have been accepted about the ac-
tual airtimes of the spots, these may be changed without incurring
penalties later. The final scheduling of spots thus takes place in a
deterministic setting, after uncertainty of demand has been fully re-
vealed. Since we deal with the simultaneous problems of accepting
orders and scheduling spots this problem can be solved easily by
the models methods we will subsequently discuss – only the deci-
sion variables representing the acceptance/rejection decisions have
to be fixed.

• We will also see in section 6.6 that developing an exact model for the
problem under uncertainty is cumbersome. Namely, it seems to be
impossible to define the stochastic process creating incoming orders
in a useful way. Plus, like for many other RM problems, any exact
model will mainly consist of a recursive value function that could
(in principle) be computed by dynamic programming. However, the
“curse of dimensionality” (i. e. the exponential growth of the state
space with the size of the problem) will render an exact approach
based on that model impracticable anyway. Successful heuristic ap-
proaches in such cases often depend on deterministic models (like
those we are going to present here), where unknown quantities are
replaced by “typical” values. Bid prices computed from an LP where
the uncertain demand is replaced by its expected value are a promi-
nent example. In the context of dynamic programming such ap-
proaches are called certainty equivalent control (CEC, cf. Bertsekas
2000, section 6.1). A CEC-scheme has been successfully applied to
RM problems by Bertsimas and Popescu (2003), for instance.

Thus, in the remainder of the section, we develop a deterministic,
linear mixed-integer program for the problem at hand after introducing
some notation.
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6.2.1 Formalizing the Supply Side

The timetable (TV program) which has been published by the TV
network is the base for all advertising contracts. This timetable remains
fixed over the planning horizon. The timetable defines a number of
time slots for commercial breaks of a determined length. Denote the
set of all breaks in the planning horizon by B. For each b ∈ B, let
0 ≤ dmin

b ≤ dmax
b be the minimum and maximum duration, respectively,

of break b. We chose to model the length of a commercial break like
this, because it seems unrealistic that the length of b is known and
fixed before the actual schedule of spots is determined. However, if this
should be the case for some break b, we can easily represent this by
letting dmin

b = dmax
b . Furthermore, if a commercial break is optional, we

can set dmin
b = 0.

6.2.2 Formalizing the Demand Side

Let O be the set of orders sent to the TV network by advertisers. With
each order o ∈ O, there is associated a price (revenue, profit, . . . ) of
vo > 0. An order o ∈ O consists of a non-empty set of spots So. For the
convenience of notation, we assume that the total number of spots is S
and that the set of all spots is {1, . . . , S}, so that So ⊆ {1, . . . , S} , o ∈
O. Naturally, we require

⋃
o∈O So = {1, . . . , S} and So ∩ Sp = ∅ for all

o, p ∈ O, o �= p. An order o ∈ O must either be accepted in its entirety
(i. e. all spots s ∈ So have to be feasibly scheduled), or fully rejected.

For each spot s = 1, . . . , S a set of breaks ∅ �= Bs ⊆ B where s
could be scheduled is given. Note that the advertiser may precisely
define the commercial break where s will be aired by letting |Bs| = 1.
The length of s = 1, . . . , S is denoted by 0 < ls ≤ minb∈Bs {dmax

b }.
Bundles of spots that should be scheduled in the same break in any
event (i. e. a short one following a longer one to “remind” the audience
and increase the advertising effect) can formally be treated as a single
spot of appropriate length. Denote the set of all spots (regardless of
the order to which they belong) that can be scheduled in break b ∈ B
by S (b) ⊆ {1, . . . , S}. S (b) can be formally defined as follows:

S (b) = {s = 1, . . . , S | b ∈ Bs }
We require

∑
s∈S(b) ls ≥ dmin

b , b ∈ B without loss of generality.
It is common to assure that ads for two competing products (e. g.

BMW and Chrysler cars) are not aired in the same break. We model
these conflicts as follows: Let C ⊆ 2{1,...,S}. C ∈ C implies that all spots
s ∈ C are in conflict and cannot be scheduled in the same break.
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In addition to specifying a set of breaks where a spot s can be
scheduled, the advertiser may define that s should be the first spot or
the last spot in a break. Of course, we have to make sure that there
is at most one spot in the first and last position, respectively, in each
break. We model this fact as follows: For each break, add two conflict
sets to C, say Cfirst

b , C last
b ⊆ S (b). If s ∈ Cfirst

b , s should be scheduled
in the first position; C last

b is analogously defined4.

6.2.3 A Linear, Mixed-Integer Model

We will now derive a linear, mixed-integer model from our formal de-
scription. We use the following decision variables:

yo =

{
1 if order o is accepted
0 otherwise

o ∈ O

xsb =

{
1 if spot s is scheduled in break b

0 otherwise
s = 1, . . . , S, b ∈ Bs

Note that the binary decision variable xsb is absolutely sufficient to
represent a feasible schedule, although the position of s in b is not
precisely determined: The exact order of spots that have been scheduled
in break b is irrelevant in our setting.

For notational convenience, define

BC := {(b, C) ∈ B × C | |S (b) ∩ C| ≥ 2}
The objective is to maximize revenues obtained from accepted or-

ders. The complete model is given as Model 6.1. By (6.2), revenue vo

can be obtained if and only if all spots of order o are scheduled. (6.3) re-
stricts the length of all breaks b ∈ B to the given minimal and maximal
lengths. By (6.4), no conflicting spots are scheduled in the same break.
4 Some TV networks, e. g. RTVV, allow the advertiser to specify the exact position

of a spot in a break (the fifth, the tenth, . . . ). Our modeling approach here
restricting the advertisers’ choice of position to the first and the last is accordance
with Bollapragada and Garbiras (2004). However, additional positions can easily
be added to our model: Add corresponding sets C5

b , C10
b , . . . to C; plus additional

restrictions to ensure that exactly three spots are scheduled between the first and
the fifth, for example. Note that it may then be difficult to determine a feasible
schedule, though: The TV network cannot guarantee an advertiser that his spot
will be aired as, say, the fifteenth spot in a break b, because the number of spots
in b is result of the scheduling process, and this number may be smaller than or
equal to 15.
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Since Cfirst
b , C last

b ∈ C, this restriction ensures as well that each break
b ∈ B has got at most one first and last spot, respectively. Restrictions
(6.5) define the decision variables xsb as stated verbally before. Finally,
it’s sufficient to require yo ∈ [0, 1] in (6.6): Since the xsb are binary, yo

will be integer by (6.2).

Model 6.1: Broadcasting Model

max
∑
o∈O

voyo (6.1)

s. t. ∑
b∈Bs

xsb = yo o ∈ O, s ∈ So (6.2)

dmin
b ≤

∑
s∈S(b)

lsxsb ≤ dmax
b b ∈ B (6.3)

∑
s∈C∩S(b)

xsb ≤ 1 (b, C) ∈ BC (6.4)

xsb ∈ {0, 1} s ∈ {1, . . . , S} , b ∈ Bs (6.5)
0 ≤ yo ≤ 1 o ∈ O (6.6)

The problem at hand is NP-hard in the strong sense, because it con-
tains the Multiple Knapsack problem as a special case (cf. Martello and
Toth 1990, p. 8 for a proof). Therefore, we have to develop enumerative
methods to solve it optimally. To enhance the efficiency of enumera-
tive methods, lower bounds are needed. We deal with this issue in the
next section, where we develop heuristics so that lower bounds can be
derived from feasible solutions.

6.3 Heuristics

6.3.1 Assessing the Difficulty of Finding Feasible Solutions

If dmin
b = 0, b ∈ B, accepting no orders and scheduling no spots (i. e.

setting yo = 0, o ∈ O, xsb = 0, s ∈ {1, . . . , S} , b ∈ Bs) is trivially
feasible. Unfortunately, if dmin

b > 0 for some break b, finding a feasible
solution is difficult:

Theorem 6.1 If dmin
b > 0 for some b ∈ B, finding a feasible solution

to Model 6.1 is NP-complete.
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Proof. Clearly, the problem is in NP. We proof NP-hardness by re-
striction (Garey and Johnson 1979, p. 63-64). Consider an instance of
Model 6.1 with a single break, i. e. B = {1} and 0 < dmin

1 ≤ dmax
1 .

As a further simplification, let there be no conflicts (C = ∅), and
|So| = 1, o ∈ O, so that we can decide about each spot in isolation.
Therefore, the problem to find a feasible solution can be stated as fol-
lows: Is there a subset of spots T ⊆ S (1) such that

∑
s∈T ls ≤ dmax

1

and
∑

s∈T ls ≥ dmin
1 ?

This is a Knapsack problem where S (1) is the set of items, ls is both
profit and weight of item s ∈ S (1), dmax

1 is the Knapsack’s capacity
and dmin

1 is the “value goal” (profit threshold). Since Knapsack is NP-
hard, the problem of finding a feasible solution to Model 6.1 is indeed
NP-complete.

Therefore, if dmin
b > 0 for some b ∈ B, finding a feasible problem

is – roughly speaking – as difficult as finding the optimal solution. As
a consequence, we will mainly consider the case dmin

b = 0, b ∈ B in
the following development of heuristics, i. e. we will allow our heuristic
methods to fail if dmin

b > 0 for some b ∈ B, though a feasible solu-
tion might exist. The reader should also note here that the minimum
duration constraints are less restrictive in practice, since breaks can
always be filled by trailers of the broadcasting company promoting the
TV program. Plus, since revenue tends to increase with the number of
scheduled spots, we can hope that solutions with relative high objective
function values will tend to “fill up” the breaks and therefore automat-
ically satisfy dmin

b . Finally, if the broadcasting company has notorious
problems to fill many of the breaks with spots, demand seems to be to
low for being able to reject orders, and thus there would be no need for
capacity control techniques in that particular company.

Before we begin to develop heuristics, it is also noteworthy that we
obtain a difficult feasibility problem if an assignment of values to the
variables yo, o ∈ O is given, even though dmin

b = 0, b ∈ B holds. For
the trivial assignment yo = 0, o ∈ O, there exists of course a feasi-
ble schedule, so we restrict ourselves to nontrivial assignments (where∑

o∈O yo ≥ 1) in the following. For a given assignment, denote the set
of accepted spots (that have to be scheduled) by Sa =

⋃
o∈O:yo=1 So.

Analogously, define Sa (b) = Sa ∩ S (b). If |Bs| = 1, s ∈ Sa, it is trivial
to verify whether a feasible schedule exists or not. If more than one
break is possible for some spots, the problem gets difficult:
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Theorem 6.2 Let a non-trivial assignment be given. If |Bs| > 1 for
some spots s ∈ Sa, deciding whether a feasible schedule exists or not is
NP-complete, even if there are no conflicts.

Proof. Clearly, the problem is in NP. We then restrict ourselves to
instances with just two breaks, i. e. B = {1, 2}, where dmax := dmax

1 =
dmax
2 > 0 (recall that we assume dmin

1 = dmin
2 = 0). Spots s where

Bs = {1} or Bs = {2} could be scheduled trivially, so w.l.o.g. let
Bs = B, s ∈ Sa. Therefore, deciding whether a feasible schedule exists
or not requires to answer the following question: Is there an assignment
f : Sa −→ {1, 2} such that∑

s∈Sa:f(s)=b

ls ≤ dmax b ∈ {1, 2}

holds. This is the Bin Packing Problem, which is NP-hard in the strong
sense (Garey and Johnson 1979, p. 124). Deciding whether a feasible
schedule exists is thus NP-complete.

Finally, for a non-trivial assignment of values to the variables yo, o ∈
O, taking the conflicts into account is again difficult, even if the number
of breaks for some spots is not greater than 3, and the break length
restrictions are not restrictive:

Theorem 6.3 Let a non-trivial assignment be given. If |Bs| ≥ 2 for
all spots s ∈ Sa and |Bs| ≥ 3 for some spots s ∈ Sa, deciding whether a
feasible schedule exists or not, is Πp

2 -complete, even if the break length
constraints are not restrictive (i. e. dmax

b is sufficiently large, e. g.∑
s∈Sa

b
ls ≤ dmax

b , b ∈ B holds).

Proof. We show that our problem is equivalent to a graph coloring
problem: Let G = (V,E) be the conflict graph where V = Sa and we
add an edge {s1, s2} to E if the spots s1 and s2 can be scheduled in the
same break and are in conflict, i. e. {s1, s2} ⊆ Sa (b) for some b ∈ B
and {s1, s2} ⊆ C for some C ∈ C. To each node s ∈ Sa we assign a list
of colors Bs. The problem is now to decide whether there exists a list
coloring of the conflict graph, i. e. an assignment g : s ∈ V −→ Bs such
that g (s1) �= g (s2) for all {s1, s2} ∈ E. This problem is Πp

2 -complete
(cf. Erdös, Rubin, and Taylor 1979, where the result is attributed to
A. L. Rubin).

As mentioned before, we will focus on the case dmin
b = 0, b ∈ B.

Using AMPL and CPLEX 8, we implemented two general MIP-based
heuristics, Dive-and-Fix and Relax-and-Fix along the lines of Wolsey
(1998, p. 214-216), two heuristics based on the LP Relaxation of the
model and a Greedy heuristic.
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6.3.2 MIP-Based Heuristics

The idea of the Dive-and-Fix heuristic is to solve the LP relaxation, fix
some variables that are “almost binary” (but have fractional values) to
0 or 1 and resolve the resulting LP. It consists of the steps described
as Algorithm 6.1.

Algorithm 6.1: Dive-and-Fix Heuristic

1. Solve the LP-Relaxation of the problem.
2. Let x∗

sb, s ∈ {1, . . . , S} , b ∈ Bs be the optimal values of the x-variables.
Let F = {(s, b) : x∗

sb �∈ {0, 1}} be the set of x-variables that are fractional.
3. If F = ∅, a feasible solution has been found, so STOP. Otherwise let

F ∗ =
{

(s, b) ∈ F

∣∣∣∣min {x∗
sb, 1 − x∗

sb} = min
(s′,b′)∈F

{min {x∗
s′b′ , 1 − x∗

s′b′}}
}

be the indices of the variables closest to integer (but fractional).
4. For all (s∗, b∗) ∈ F ∗: If xs∗b∗ < 0.5, fix xs∗b∗ = 0, otherwise fix xs∗b∗ = 1.
5. Resolve the resulting LP. If it is infeasible, the heuristic has failed, so

STOP. Otherwise goto 2.

The Relax-and-Fix heuristic processes the orders sequentially in a
greedy fashion. If order o is processed, the integrality restriction (6.5)
is enforced for all s ∈ So, b ∈ Bs and relaxed for all other variables.
If a feasible solution is found, the values of xsb, s ∈ So, b ∈ Bs are
fixed, and the next order is processed. A detailed description is given
as Algorithm 6.2.

In contrast to Dive-and-Fix, Relax-and-Fix will always return a fea-
sible solution, because we can always fix variables to 0 in step 3 to
ensure feasibility.

6.3.3 LP-Based Heuristics

While Dive-and-Fix and Relax-and-Fix solve LPs (or MIPs, respec-
tively) in an iterative fashion, the heuristics to be described in this
section have a simpler structure: Only one LP is solved, and after that
a single IP is solved. Therefore, we can expect these heuristics to be
much faster. In the first heuristic, called ForceOnes, we solve the LP
relaxation of the problem, fix all variables yo, xsb with an optimal LP-
value of 1 to that value and try to find an optimal (or at least feasible)
solution for the remaining IP in five seconds using CPLEX. ForceZeroes
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Algorithm 6.2: Relax-and-Fix Heuristic

1. For the ease of exposition, let the orders be indexed such that v1 ≥ . . . ≥
v|O|. Let o∗ = 1.

2. Consider the relaxed problem:

max
∑
o∈O

voyo

s.t. (6.2), (6.3), (6.4), (6.6) and

xsb ∈ {0, 1} s ∈ So∗ , b ∈ Bs

0 ≤ xsb ≤ 1 s ∈ {1, . . . , S} \So∗ , b ∈ Bs

Try to find an optimal solution to that problem using CPLEX while im-
posing a time limit of two seconds (wall clock time) on the computation.

3. If an optimal (or at least a feasible) solution was found, fix yo∗ and xsb, s ∈
So∗ , b ∈ Bs to the values returned by CPLEX. Otherwise, fix yo∗ and
xsb, s ∈ So∗ , b ∈ Bs to 0.

4. Let o∗ = o∗ + 1. If o∗ ≤ |O| goto 2.

works analogously: Variables with an optimal LP-value of 0 are fixed
to that value, and the remaining IP is solved using CPLEX, again with
a time limit of five seconds. Note that ForceZeroes will always return
a feasible solution, where ForceOnes may fail to find one, though the
(integer) feasible region of the original problem is non-empty by as-
sumption.

6.3.4 Greedy Heuristic

Like Relax-and-Fix, Greedy processes the orders sequentially according
to their prices. If order o is processed, we try to find a feasible solution
such that yo = 1. If that succeeds, the values of yo and xsb, s ∈ So, b ∈
Bs are fixed, and the next order is processed. Otherwise we fix yo

and xsb, s ∈ So, b ∈ Bs to 0. The Greedy heuristic is summarized as
Algorithm 6.3. Since we fix variables to 0 in step 4 if no feasible schedule
for an order was found, Greedy always generates a feasible solution in
our instances.

Note that Greedy will, in general, not produce the same solution as
Relax-and-Fix: For some o ∈ O, the latter may find that yo = 0 is an
optimal solution to the relaxed problem in step 2. Thus, yo is fixed to
0. Greedy, on the other hand, may find that a feasible solution with
yo = 1 exists, so yo is fixed to 1.
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Algorithm 6.3: Greedy Heuristic

1. For the ease of exposition, let the orders again be indexed such that v1 ≥
. . . ≥ v|O|. Let o∗ = 1.

2. Solve the LP relaxation of the problem. If yo∗ = 1 and xsb ∈ {0, 1} , s ∈
So∗ , b ∈ Bs, an integer feasible schedule for o∗ has been found, so fix these
variables and goto 5.

3. Otherwise consider the modified problem:

max
∑
o∈O

voyo

s.t. (6.2), (6.3), (6.4), (6.6) and

xsb ∈ {0, 1} s ∈ So∗ , b ∈ Bs

0 ≤ xsb ≤ 1 s ∈ {1, . . . , S} \So∗ , b ∈ Bs

yo∗ = 1

Try to find an optimal solution to that problem using CPLEX, imposing
a time limit of two seconds on the computation.

4. If an optimal (or at least a feasible) solution was found, fix yo∗ = 1 and
xsb, s ∈ So∗ , b ∈ Bs to the values returned by CPLEX. Otherwise, fix yo∗

and xsb, s ∈ So∗ , b ∈ Bs to 0.
5. Let o∗ = o∗ + 1. If o∗ ≤ |O| goto 2.

6.4 Optimal Solutions: Branch and Cut

As mentioned before, the problem at hand is NP-hard, so we have to re-
sort to enumerative methods of exponential worst-case complexity. For
linear models like Model 6.1, two fundamental techniques have proven
to be very effective: Branch and Bound (B&B) and cutting plane meth-
ods. Introductory discussions of both techniques can be found in Win-
ston (1994, chapter 9) and Bertsimas and Tsitsiklis (1997, chapter 11),
for instance.

To find provably optimal solutions for the problem at hand, we use
a combination of both methods that is called Branch and Cut. After
outlining cutting plane methods, we will introduce some basic concepts
of polyhedral theory. Then, we will describe how to separate and lift
cover cuts in great detail.

6.4.1 General Outline of Cutting Plane Methods

Consider the LP-relaxation of an integer problem (IP). This LP can
be solved efficiently, but an optimal solution will almost certainly have
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fractional variables, i. e. it will not be a feasible solution for the original
problem (if so, an optimal solution to the original IP has been found
as well and we can stop here). This situation is depicted in Figure 6.1,
where a graphical representation of a very simple LP with two vari-
ables (x1 and x2) and two restrictions (drawn as solid lines) is shown5.
The two linear restrictions, together with the non-negativity constraints
given by both axes form the feasible region of the LP (shaded area).
Since the cutting planning method is totally independent of the ob-
jective function anyway, we have intentionally omitted it for the sake
of clarity. Nevertheless, assume that the extremal point (2.4, 2.2) is an
optimal solution to the LP.

Let us now enforce integrality restrictions on both decision vari-
ables, i. e. x1, x2 ∈ N0 should hold. The integer feasible points form a
two-dimensional point grid which is also shown in the figure. As a con-
sequence, the new integer problem has only got 14 feasible solutions,
namely the dots that happen to fall in the shaded area. As we can
clearly see from the figure, the LP optimum is not integer feasible. We
now add a so called cutting plane (or a cut for short) to the problem.
A cutting plane is a linear inequality with the following two properties:

• The inequality is a valid inequality, i. e. every integer feasible point
satisfies it.

• The valid inequality is violated by the current LP-optimum, i. e. it
is being “cut off” from the feasible region by the cutting plane.

The reader can easily verify that the cutting plane shown as a dashed
line in the figure satisfies both properties.

As a simple example, consider the feasible region of a small knapsack
problem:

40x1 + 50x2 + 60x3 ≤ 100 x1, x2, x3 ∈ {0, 1} (6.7)

Since at most two items can be packed into the knapsack, x1 + x2 +
x3 ≤ 2 is a valid inequality, i. e. it is satisfied by any binary feasible
point. If we consider the LP-feasible point x1 = x2 = 1, x3 = 1/6,
we immediately see that this valid inequality acts as a cutting plane,
cutting of this point from the feasible region.

The fundamental idea of a cutting plane method is now to add
cutting planes to the LP-relaxation of a (thorny) problem with integer
valued variables until the optimal LP-solution satisfies “by chance” all
integer constraints, and – because of the fact that no cutting plane
5 A similar picture appears in many references on cutting plane methods, see e. g.

the cover of Schrijver’s (1986) book and Winston (1994, Figure 30 on p. 541).
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Fig. 6.1: LP- and Integer-feasible Region for a Simple Linear Model

cuts off an integer feasible point – an optimal integer solution has been
found. This approach is outlined in Algorithm 6.4.

Algorithm 6.4: Outline of a General Cutting Plane Method

1. Consider the LP-relaxation of a linear integer problem.
2. Optimally solve the LP. If the optimal solution satisfies all integrality

constraints, it is an optimal solution to the binary problem as well: STOP.
3. Otherwise, add one (or more) cutting plane(s) to the problem and goto

step 2.

A crucial part of the algorithm is obviously finding a cutting plane
in step 2. This is called the separation problem, because we try to find a
valid inequality that separates the current LP optimum from the feasi-
ble region. Typically, we will not try to find an arbitrary violated linear
inequality but restrict ourselves to certain types, i. e. inequalities of a
certain mathematical structure. Before we address the separation prob-
lem for specific types of inequalities in detail, we discuss an important
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question with respect to Algorithm 6.4: Does this algorithm terminate
in a finite number of iterations for any linear integer problem? Inter-
estingly, the answer is yes. In his seminal work, Gomory (1960a, 1958,
1963, 1960b) defined general cutting planes suitable for any linear in-
teger problem, i. e. given an integer-infeasible solution in step 2, a so
called “Gomory cut” that is violated by it can (quite easily, in fact) be
derived from the optimal Simplex tableau. It can be shown that adding
Gomory cuts in each iteration leads to an optimal solution (given that
one exists) in a finite number of steps under some minor technical con-
ditions, see e. g. Schrijver (1986, section 23.8) for a proof.

Gomory’s method is easy to understand and can be applied to all
problems where all variables (including slack/excess variables) are inte-
ger. However, it has not been very successful in practice (Bertsimas and
Tsitsiklis 1997, p. 482-484). In addition, it requires the optimal simplex
tableau and detailed information about which variables are (non-)basic,
so it is somewhat difficult to implement with standard LP-solvers.

Note that like in an LP-based Branch and Bound-scheme, we add
a linear inequality in step 3 that is violated by the current fractional
solution. But in contrast to B&B-methods, this inequality does not
“cut off” any integer solutions, so the feasible region is not divided in
two (or more) parts, and branching is not required. This constitutes the
major advantage of this method: Although we need some extra memory
for additional inequalities added to the problem, storing a (potentially
huge) B&B-tree is not necessary. Another nice feature (that was already
mentioned) is that a cutting plane approach is totally independent of
the objective function, where it is a crucial part for B&B, at least for the
bounding part. So if we decide to change the objective function of our
problem – maximizing the sheer number of scheduled spots, minimizing
costs like Bollapragada et al. (2002), subtracting penalty costs from the
revenue function (6.1), or the like – our approach remains unchanged.
Finally, adding cutting planes (= new restrictions) to a problem can
only decrease the LP upper bound. So if a good feasible solution is
available, we may prove its optimality without iterating over and over
until Algorithm 6.4 delivers a feasible solution.

The disadvantages, on the other hand, of a pure cutting plane
method are:

• An exponential number of cutting planes (i. e. an exponential num-
ber of iterations) might be necessary.

• Solving the separation problem in step 2 of the algorithm can be
(depending on the type of valid inequality we are using) an NP-
hard problem.
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• For some problems, only a limited number of types of valid inequal-
ities are known, so that it may technically be impossible to solve
the problem to optimality only using the narrow range of available
cutting planes.

• It was mentioned that adding cutting planes may help to decrease
the LP upper bound. However, practical experience suggests that
this (theoretically positive) effect usually has got a rather limited
impact, because after a few iterations the bound will no longer im-
prove significantly. This behavior is called “tailing off”.

Since we are trying to solve an NP-hard problem, the first disadvantage
is inherent (unless P = NP ), but of course for certain problems other
enumerative methods may exist that have a better average performance
than a pure cutting plane approach.

Given all these disadvantages, it may be (practically) impossible or
inefficient to optimally solve the problem using cutting planes alone.
Instead, we are using a combination of cutting planes and B&B, which
is called Branch and Cut (B&C): If we can no longer (efficiently) find
violated inequalities, we make a branching step, hoping to bring some
progress into the process.

6.4.2 Effectiveness of Cutting Planes

We have already pointed out that although Gomory cuts represent a
general approach to any linear integer problem, they do not seem to
be very effective in practice. So a few remarks about the potential
effectiveness of valid inequalities are in order. We start by repeating
some concepts from Wolsey (1998, p. 15):

Definition 6.1 Let X ⊆ R
n. Then

conv (X) =

{
x : x =

t∑
i=1

λix
i,

t∑
i=1

λi = 1, i = 1, . . . , t where t < ∞,
{
x1, . . . , xt

} ⊆ X

}
(6.8)

is called the convex hull of X. conv (X) is the set of all points that can
be expressed as a convex combination of a finite set of points from X.

Proposition 6.1 conv (X) possesses the following properties:

1. conv (X) is a polyhedron.
2. The extreme points of conv (X) all lie in X.
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As a consequence, an optimization problem with a linear objective
function on the arbitrarily defined feasible set X can be replaced by
an LP, whose feasible region is conv (X). This impressing result is of
limited use, though, because for many problems of interest an exact
description of the polyhedron conv (X) is unknown or of exponential
size.

Algorithm 6.4 utilizes Proposition 6.1 as follows: Starting with a
description of X given by the linear restrictions plus the integrality
constraints, it relaxes the integrality constraints to obtain a (first)
polyhedron and augments the resulting constraint matrix with cutting
planes until a “sufficient” approximation of conv (X) has been reached.
By sufficient we mean that it is possible to identify an extremal point
of conv (X) that is found to be an optimal solution for the original
problem. Thus, at its core, a cutting plane methods tries to find an
approximation of the polyhedron conv (X) using linear inequalities. Of
course, we will restrict ourselves to valid inequalities; a concept which
has already been introduced informally. It can be defined formally as
follows:

Definition 6.2 Let X ⊆ R
n, π ∈ R

n, πo ∈ R. The linear restriction
πx ≤ π0 is called a valid inequality if x ∈ X ⇒ πx ≤ π0.

For efficiency, we will certainly want to add only valid inequalities
that are “absolutely necessary” to approximate conv (X). Before we
formally define what “necessary” means, Figure 6.2 (which is a slightly
modified version of Figure 6.1) demonstrates the geometric notion of
this concept. The shaded area is still the LP-feasible region, where the
straight lines representing the linear restrictions have been shortened
for the sake of clarity. The lower dashed line is the original cutting plane
from Figure 6.1. It is clearly superior to the upper dashed line, which
is not even necessary do define the shaded LP-polyhedron. However,
although the original cutting plane cuts a bit of the LP-feasible region,
it is clearly inferior to the valid inequalities depicted by dotted lines.
These two dotted lines (together with the axes, i. e. the non-negativity
constraints) are what Wolsey (1998, p. 14-15) calls an “ideal” represen-
tation, because no integer feasible point is cut off, and every extremal
point of the resulting polyhedron is integer.

How can we find such beautiful inequalities that are necessary to
describe conv (X) (or any other polyhedron)? An important result for
our further efforts is that a valid inequality is necessary for the descrip-
tion of a polyhedron if and only if it is a so-called facet. Since we are
not concerned about the technical details – the interested reader is re-
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Fig. 6.2: Visualization of the Necessity of Various Cuts

ferred to Wolsey (1998, p. 142-147) and Neumann and Morlock (1993,
p. 530-535) –, we just summarize the important results here:

Definition 6.3 Let P be a polyhedron and πx ≤ π0 be a valid inequality
for P .
πx ≤ π0 is called a supporting inequality of P if {x ∈ P : πx ≤ π0} is
not empty.
The set F = {x ∈ P : πx = π0} is called a face of P . We say that the
valid inequality πx ≤ π0 represents or defines F . F is called proper if
∅ �= F �= P holds.
A proper face F is called a facet of P if F is maximal, i. e. no other
face of P contains F as a proper subset.

Proposition 6.2 Under certain technical conditions, a valid inequality
is necessary for the description of a polyhedron if and only if it is facet
(cf. Wolsey 1998, p. 142).

We will demonstrate the use of Proposition 6.2 by means of an example
on page 198.

Thus, we will try to only use cutting planes that are facets of the
convex hull of the integer feasible region.
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6.4.3 Cutting Planes for Knapsack Restrictions: Cover Cuts

We will only use restrictions of the knapsack type to generate cutting
planes, i. e. constraints of the form:∑

j∈J

ajxj ≤ a xj ∈ {0, 1} , j ∈ J (6.9)

W.l.o.g. we assume that aj and a are integers and that 0 < aj ≤ a, j ∈ J
(cf. Glover 1965, p. 890 and Martello and Toth 1990, p. 14).

We are interested in the knapsack polyhedron PK , defined as the
convex hull of all binary points that satisfy (6.9):

PK = conv

⎧⎨
⎩xj ∈ {0, 1} , j ∈ J :

∑
j∈J

ajxj ≤ a

⎫⎬
⎭

A subset of items C ⊆ J is called a cover if
∑

j∈C aj > a. Since aj, a

are integers, this is equivalent to
∑

j∈C aj ≥ a + 1. If C is a cover, the
following inequality is obviously valid for PK :∑

j∈C

xj ≤ |C| − 1 (6.10)

(6.10) is called a cover inequality or cover cut for PK . The valid inequal-
ity x1+x2+x3 ≤ 2 for the knapsack restriction 40x1+50x2+60x3 ≤ 100
– see (6.7) – was a cover cut, since 40 + 50 + 60 > 100.

A cover C is minimal if any subset C ′ ⊂ C is not a cover. If C is a
minimal cover, (6.10) defines a facet of the restricted polyhedron:

conv

⎧⎨
⎩xj ∈ {0, 1} , j ∈ C :

∑
j∈C

ajxj ≤ a

⎫⎬
⎭ (6.11)

– this polyhedron is restricted in the sense that all variables xj, j ∈ J\C
are forced to 0.

Our focus on constraints of the knapsack type (6.9) with positive
integers a, aj is not restrictive, since Model 6.1 only contains binary
variables anyway, and any constraint in a model containing only binary
variables can be transformed into one or two knapsack constraints. To
see this, consider the equality restriction (6.2) for some fixed o ∈ O, s ∈
So as an example:∑

b∈Bs

xsb = yo ⇔
∑
b∈Bs

xsb ≥ yo and
∑
b∈Bs

xsb ≤ yo
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We proceed with the ≥-constraint (the method works in exactly the
same way for the ≤ constraint):∑

b∈Bs

xsb ≥ yo ⇔ yo −
∑
b∈Bs

xsb ≤ 0

Substituting xsb with its complement xsb = 1 − xsb as described by
Glover (1965) and Martello and Toth (1990) yields the desired form:

yo −
∑
b∈Bs

xsb ≤ 0 ⇔ yo −
∑
b∈Bs

(1 − xsb) ≤ 0 ⇔ yo +
∑
b∈Bs

xsb ≤ |Bs|

Analogous transformations for the other inequalities (if necessary) lead
to the following set of knapsack constraints with positive coefficients:

yo +
∑
b∈Bs

xsb ≤ |Bs| o ∈ O, s ∈ So (6.12)

yo +
∑
b∈Bs

xsb ≤ 1 o ∈ O, s ∈ So (6.13)

∑
s∈S(b)

lsxsb ≤ dmax
b b ∈ B (6.14)

∑
s∈S(b)

lsxsb ≤ −dmin
b +

∑
s∈S(b)

ls b ∈ B (6.15)

∑
s∈C∩S(b)

xsb ≤ 1 (b, C) ∈ BC (6.16)

However, many of these knapsack constraints cannot be used to
derive a violated cover cut. For instance, consider (6.12) for some fixed
o ∈ O, s ∈ So. We have |Bs| + 1 items of weight 1 and a knapsack
of capacity |Bs|. The only subset of items that has got a total weight
greater than |Bs| is thus the set of all |Bs|+1 items, yielding the cover
cut:

yo +
∑
b∈Bs

xsb ≤ (|Bs| + 1) − 1 = |Bs|

– this cover cut is identical to (6.12). The knapsack constraints (6.13)
and (6.16) explicitly state that at most one item can be packed into
the knapsack, thus any cover will contain at least two items, and lead
to a cover cut with a right hand side of at least 2 − 1 = 1, i. e. it will
never be stronger than the original inequality. Since we typically deal
with instances where dmin

b = 0, b ∈ B, we focus our exposition in the
following on the constraints:
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s∈S(b)

lsxsb ≤ dmax
b b ∈ B (6.17)

– however, the methods we are going to describe can be applied to
the transformed minimum break length restrictions (6.15) without any
change.

So if C ⊆ S (b) is a minimal cover of the break length constraint of
break b ∈ B, the resulting cover inequality defines obviously a facet of
the restricted polyhedron

PC = conv

{
xsb ∈ {0, 1} , s ∈ C :

∑
s∈C

lsxsb ≤ dmax
b

}
(6.18)

In the remainder of this subsection we will address the separation
problem, i. e. the question of how to find violated cover cuts for a given
break length constraint (6.17). The covers we will find will usually not
be minimal, so we are going to minimize them. As mentioned before, a
minimal cover defines a facet of the restricted polyhedron (6.11). So we
will finally show how to obtain a facet for the original polyhedron PK

by a procedure called lifting. We will describe two methods that deal
with the necessary steps of separation, minimization, and lifting:

1. A “classic” method, that closely follows standard references on the
separation problem and the lifting procedure.

2. A method along the lines of Gu et al. (1998).

“Classic” Method

Separation

The problem to separate a violated cover cut for the break length con-
straint of some break b ∈ B can be stated as follows: We are given an
optimal LP-solution x∗

sb ∈ [0, 1] , s ∈ S (b) such that at least one of the
variables has a fractional value. We have to find a subset C ⊆ S (b) (if
one exists) such that:∑

s∈C

ls ≥ dmax
b + 1 (6.19)

∑
s∈C

x∗
sb > |C| − 1 ⇔|C| −

∑
s∈C

x∗
sb =

∑
s∈C

(1 − x∗
sb) < 1 (6.20)

(6.19) states that C is a cover. By (6.20) the solution at hand violates
the cover inequality defined by C.
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We approach the separation problem by defining the following bi-
nary decision variables:

zs =

{
1 if s ∈ C

0 otherwise
s ∈ S (b)

Using these decision variables, the separation problem for cover cuts
can be stated as the following auxiliary knapsack problem:

ζ = min
zs∈{0,1},s∈S(b)

⎧⎨
⎩ ∑

s∈S(b)

(1 − x∗
sb) zs :

∑
s∈S(b)

lszs ≥ dmax
b + 1

⎫⎬
⎭ (6.21)

Let z∗s , s ∈ S (b) be an optimal solution and C = {s ∈ S (b) : z∗s = 1}
be the corresponding cover. By (6.20), the corresponding cover cut∑

s∈C x∗
sb > |C| − 1 will be violated by x∗

sb if ζ < 1. If it is indeed
violated, it is at the same time the “most violated” cover, i. e. the
difference

∑
s∈C x∗

sb− (|C| − 1) is maximal. In other words, ζ measures
the “degree of violation” of the cover inequality, where ζ ≥ 1 signifies
no violation; and if ζ < 1, the violation gets greater if ζ gets smaller.
We can exploit this fact in our Branch and Cut procedure as follows:
If ζ = 0.99, say, we have clearly found a violated cover; but it is not
“very violated”, and the LP-solution will probably not improve much
if we add the cover inequality and re-solve the resulting LP. So we may
well decide to save the effort if ζ ≥ ζ ′ where ζ ′ is a threshold of 0.95
(say).

It remains to be shown how we intend to solve the knapsack prob-
lem (6.21), which is obviously NP-hard itself. However, the problem
can usually be enormously reduced by removing quite a large number
of spots from S (b), thereby reducing the mere size of the knapsack
problem to be solved. These simplifications are given by Crowder et al.
(1983, p. 813, eq. (2.13)), and for the convenience of the reader we
briefly summarize them here:

1. We can remove all s from S (b) where x∗
sb = 0, because they can

never be in a violated cover. Intuitively, these spots cannot “con-
tribute to the violation” of the cover inequality, because adding
them to C just increases |C|−1, but does not increase

∑
s∈C x∗

sb. To
formally prove this observation, suppose that C is a cover violated
by x∗

sb and that ∃t ∈ C : x∗
tb = 0. Then

∑
s∈C (1 − x∗

sb) ≥ 1−x∗
tb = 1,

contradicting (6.20).
2. We can remove all s from S (b) where x∗

sb = 1, because if a violated
cover exists, there exists a violated cover such that all these spots
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are in it. To see this, we give the knapsack problem to be solved
(6.21) a closer look: If x∗

sb = 1 for some s, its objective function
coefficient is 0, so that the objective function does not increase
if zs = 1. On the other hand, since ls > 0 it became easier to
satisfy the knapsack restriction. Thus, if an optimal solution to
(6.21) exists, we can always find an optimal solution z∗s such that
x∗

sb = 1 ⇒ z∗s = 1.

We therefore basically have to deal with the following two subsets
of spots:

C2 = {s ∈ S (b) : x∗
sb = 1} (6.22)

K1 = {s ∈ S (b) : 0 < x∗
sb < 1} (6.23)

C2 is the subset of spots that we can put into the cover without further
consideration. K1 is the subset of spots on which we effectively have to
make a decision. Define d := dmax

b −∑
s∈C2

ls, the remaining time that
has to be “covered” by the spots in K1. Note that d ≥ 0, i. e. the spots
in C2 alone do not suffice to cover dmax

b , because x∗
sb satisfies the break

length restriction of break b and therefore:

dmax
b ≥

∑
s∈S(b)

lsx
∗
sb ≥

∑
s∈C2

lsx
∗
sb =

∑
s∈C2

ls

Obviously, if
∑

s∈K1
ls < d+1, no cover exists and we can stop here

(this is especially the case if K1 = ∅). Otherwise, we finally remove
some spots from K1 because of their lengths ls as follows: In a classical
knapsack problem with a max-objective and a ≤-constraint – see (6.9) –
we can rule out all “big” items j with aj > a: These items cannot feasi-
bly be put into the knapsack. Our separation problem is a min-problem
with a ≥-constraint, but we can analogously identify some “big” spots
in K1 that have to be in the cover, thus further reducing the problem.
To see what signifies a big spot, we consider the transformation to a ≤-
knapsack constraint (see Appendix B for a transformation of the entire
knapsack problem):∑

s∈K1

lszs ≥ d + 1 ⇔ −
∑
s∈K1

ls (1 − zs) ≤ −d − 1

⇔
∑
s∈K1

lszs ≤
∑
s∈K1

ls − d − 1

where zs = 1−zs as before. The set of big spots is thus defined as big ={
s ∈ K1 : ls >

∑
s∈K1

ls − d − 1
}
. Let small = K1\big. Note that every

spot s ∈ big has to be in the cover indeed, i. e. we have
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t ∈ big ⇒
∑

s∈small

ls +
∑

s∈big\{t}
ls < d + 1

To see this, just insert the definition of a “big” spot into that formula:

∑
s∈small

ls+
∑

s∈big\{t}
ls =

∑
s∈K1

ls−lt <
∑
s∈K1

ls−
⎛
⎝∑

s∈K1

ls − d − 1

⎞
⎠ = d+1

Thus, a very small knapsack problem remains: Only the spots in
small are relevant. We solve this knapsack problem using the Combo
algorithm by Martello, Pisinger, and Toth (1999). A C-implementation
of this algorithm can be downloaded from Pisinger’s website (http://
www.diku.dk/~pisinger/codes.html). Appendix B shows how we
dealt with some minor technical issues of using this implementation
gainfully in our context.

Combo is very fast, and the remaining knapsack problems are typ-
ically very small, so this exact approach to the separation problem has
proven to be effective. The whole procedure of cover cut separation is
summarized as Algorithm 6.5.

Minimization

Let C be a cover separated by Algorithm 6.5. Obviously, C is not
necessarily minimal, but deriving a minimal cover from C is particularly
easy: Just remove spots from C until C is a minimal cover. In the
following paragraphs we make some brief remarks on how to choose
spots to be removed.

As before, let z∗s be an optimal solution to the knapsack problem
(6.21), i. e. z∗s = 1 if s ∈ S (b) is part of the cover (and 0 otherwise). By
construction, Algorithm 6.5 sets z∗s = 1 for all s ∈ C2, thus C consists
of two distinct parts, namely all spots in C2 and possibly some spots
from K1: C = C2 ∪ {s ∈ K1 : z∗s = 1}.

As a starting point, we show that only spots s ∈ C2 can be removed
from C to obtain a minimal cover. To prove this, suppose C\ {t} with
t ∈ K1 was also a cover, i. e. C\ {t} is also a feasible solution of (6.21).
The objective function value of C in (6.21) was:∑

s∈C

(1 − x∗
sb) =

∑
s∈C2

(1 − x∗
sb) +

∑
s∈K1

(1 − x∗
sb) z∗s

On the other hand, the objective function value of C\ {t} is:
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Algorithm 6.5: Separation of Cover Cuts

Input: A break b ∈ B, the relevant data of this break: dmax
b , S (b), ls for all

s ∈ S (b), a fractional solution x∗
sb for all s ∈ S (b) and a threshold ζ′ ≤ 1.

Output: A “most violated” cover ∅ �= C ⊆ S (b) and its degree of violation
ζ < ζ′, or the information that no violated cover with a degree of violation
below the threshold exists.

1. Identify the set C2 of spots that are trivially in the cover, and the set K1

of “interesting” spots:

C2 = {s ∈ S (b) : x∗
sb = 1} K1 = {s ∈ S (b) : 0 < x∗

sb < 1}
2. Let d ← dmax

b −∑
s∈C2

ls. If
∑

s∈K1
ls < d + 1: STOP – no violated cover

exists.
3. If |K1| = 1 let ζ ← ∑

s∈K1
(1 − x∗

sb). If ζ < ζ′ return C = C2 ∪K1 and ζ.
Otherwise STOP – no violated cover with a degree of violation below the
threshold exists.

4. Partition K1 in big and small items:

big =

{
s ∈ K1 : ls >

∑
t∈K1

lt − d − 1

}
small = K1\big

5. Let ζ ← ∑
s∈big (1 − x∗

sb). If ζ ≥ ζ′: STOP – no violated cover with a
degree of violation below the threshold exists.

6. Let d ← d −∑
s∈big ls. If d + 1 ≤ 0 return C = C2 ∪ big and ζ.

7. Note that
∑

s∈small ls ≥ d + 1 (see step 2). Therefore the following knap-
sack problem is feasible; solve it using Combo:

z = min

{ ∑
s∈small

(1 − x∗
sb) zs :

∑
s∈small

lszs ≥ d + 1, zs ∈ {0, 1} , s ∈ small

}

8. Let ζ ← ζ + z.
If ζ < ζ′ return C = C2 ∪ big ∪ {s ∈ small : zs = 1} and ζ.
Otherwise STOP – no violated cover with a degree of violation below the
threshold exists.

∑
s∈C\{t}

(1 − x∗
sb) =

∑
s∈C2

(1 − x∗
sb) +

∑
s∈K1\{t}

(1 − x∗
sb) z∗s

Since t ∈ K1 ⇒ 0 < x∗
tb < 1 ⇒ 1− x∗

tb > 0 the latter is strictly smaller,
contradicting the optimality of C.

Furthermore, if we only remove spots s ∈ C2 from C, the “degree
of violation” ζ will not change:
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ζ =
∑
s∈C

(1 − x∗
sb) =

∑
s∈C2

(1 − x∗
sb)+

∑
s∈K1

(1 − x∗
sb) z∗s =

∑
s∈K1

(1 − x∗
sb) z∗s

This implies:

• If the cover inequality was not violated before minimization (i. e.
ζ ≥ 1), it will neither be afterwards.

• If the cover inequality was violated before (i. e. ζ < 1), it will also
be afterwards.

• In either case, the difference between left hand side and right hand
side of the cover inequality will remain unchanged, and it will still
be the “most violated” one.

So with respect to (6.20), we could safely remove C2 completely from
C; but of course we will also have to keep in mind that the resulting
subset of C should also be a cover, i. e. it should satisfy (6.19). So we
iteratively remove spots from C2 as long as∑

s∈C

ls ≥ dmax
b + 1 ⇔

∑
s∈C2

ls ≥ dmax
b + 1 −

∑
s∈C\C2

ls

There seems to be no agreed-upon method in the literature how to
select the “victims” to leave the cover. But given the fact the we obtain
a facet of the restricted polyhedron (6.18), it seems to be desirable to
keep C as large as possible. Finding the largest subset C ′ ⊆ C still
satisfying (6.19) such that no proper subset of C ′ satisfies (6.19) is again
a knapsack-like problem. We simply use Dantzig’s (1957) procedure to
heuristically solve it and remove spots from C2 with decreasing lengths
ls to obtain a minimal cover. If we denote the cover found in this way
by C ′, we have obtained a facet of the restricted polyhedron PC′ .

Lifting

Since we consider only a single break length restriction at a time, the
best we can expect is to find a facet for the polyhedron PS(b), but up
to now, we only have a facet of a restricted version of it. This facet
induces of course a valid inequality for PS(b), but typically this cut will
not be very strong. To see this, consider a slightly modified version of
the knapsack constraint (6.7):

40x1 + 50x2 + 60x3 + 30x4 ≤ 100 x1, x2, x3, x4 ∈ {0, 1} (6.24)

Clearly, the inequality

x1 + x2 + x3 ≤ 2 (6.25)
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is still valid (because {1, 2, 3} is still a cover). However,

x1 + x2 + x3 + x4 ≤ 2 (6.26)

is also valid, and this inequality is stronger, because some feasible so-
lutions (e. g. x1 = x4 = 1, x2 = 0, x3 = 0.5) satisfy the former, but not
the latter. Using Proposition 6.2, we can give a theoretical argument
why this is the case: Let

X = {x1, x2, x3, x4 ∈ {0, 1} : 40x1 + 50x2 + 60x3 + 30x4 ≤ 100}
and consider the (unrestricted) polyhedron conv (X). Let F1, F2 be the
faces of conv (X) defined by (6.25) and (6.26), respectively. F1 is clearly
a proper subset of F2, so (6.25) does not define a facet of conv (X).

Literally speaking, our cutting plane will be stronger if more vari-
ables appear in it with a non-zero coefficient. Fortunately, variables
that are missing in a given valid inequality can be added using a pro-
cedure called lifting. To introduce this concept formally, consider the
knapsack polyhedron PK . Let

n∑
j=1

πjxj ≤ π0 (6.27)

be a valid inequality for PK . Let U = {j ∈ {1, . . . , n} : πj = 0} be the
set of variable indexes that appear with a zero coefficient in this in-
equality. As we have seen, If U �= ∅, (6.27) will frequently not be a
facet of the PK , because if some k ∈ U and some π′

k �= 0 exist such
that

n∑
j=1
j �=k

πjxj + π′
kxj ≤ π0 (6.28)

is also a valid inequality for PK , then the face defined by (6.27) is clearly
a proper subset of the face defined by (6.28). So lifting is basically a
method of trying to find such non-zero coefficients π′

j for all j ∈ U . We
will demonstrate this method using our example: Consider the knapsack
polyhedron for the restriction (6.24) and the valid inequality (6.25). We
are searching for a so called lifting coefficient π4 ≥ 0 such that

x1 + x2 + x3 + π4x4 ≤ 2 (6.29)

is also valid. If x4 = 0, we can choose an arbitrary value for
π4. If x4 = 1, (6.29) is valid if and only if x1 + x2 + x3 +
π4 ≤ 2 is valid for all x1, x2, x3 ∈ {0, 1} satisfying 40x1 + 50x2 +
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60x3 ≤ 100 − 30 = 70. (6.29) is particularly hard to satisfy if
x1 + x2 + x3 is maximal, i. e. π4 ≤ 2 − η has to hold where
η = max {x1 + x2 + x3 : 40x1 + 50x2 + 60x3 ≤ 70, x1, x2, x3 ∈ {0, 1}}.
In our example, η = 1 and we have π4 ≤ 2 − 1 = 1. Certainly, we
obtain the strongest inequality for the maximum value of π4, namely
π4 = 1. The resulting inequality happens to be (6.26).

The procedure we have just shown using our tiny examples can be
generalized to larger problems. Using that procedure, which is due to
Padberg (1975), variables are lifted one by one by solving a sequence of
Knapsack problems, hence this method is called sequential (up-)lifting.
Algorithm 6.6 summarizes the details of the general procedure.

With respect to the quality of the resulting cuts, we have the fol-
lowing result (Padberg 1975, p. 835):

Theorem 6.4 If the valid inequality
∑

j∈C πjxj ≤ π0 used as in input
for Algorithm 6.6 is actually a facet of the restricted polyhedron

Algorithm 6.6: Sequential Up-Lifting (Padberg 1975)

Input: A knapsack restriction
∑

j∈J ajxj ≤ a, valid inequality
∑

j∈C πjxj ≤
π0 such that C ⊂ J .

Output: Lifting coefficients πj , j ∈ J\C such that
∑

j∈J πjxj ≤ π0 is also a
valid inequality.

1. Let U = J−C. Order the elements in U arbitrarily, i. e. let U = {j1, . . . , jt}
where t = |U |. We are going to lift the elements in U using the order
jq, q = 1, . . . , t. For the ease of notation define the sets:

Uq =

{
∅ q = 0
{j1, . . . , jq} q = 1, . . . , t

2. Let q = 1.
3. Solve the following knapsack problem:

zq = max
∑
j∈C

πjxj +
∑

j∈Uq−1

πjxj

s. t. ∑
j∈C

ajxj +
∑

j∈Uq−1

ajxj ≤ a − ajq

xj ∈ {0, 1} j ∈ C ∪ Uq−1

4. Set πjq = π0 − zq and increment q. If q ≤ t goto 3.
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conv

⎧⎨
⎩xj ∈ {0, 1} , j ∈ C :

∑
j∈C

ajxj ≤ a

⎫⎬
⎭

the output of this algorithm be will actually be a facet of Pk.

The theorem states in words: If we start with a “strong” inequality
for the restricted polyhedron, we obtain a strong inequality for the
unrestricted polyhedron as well.

It is interesting to note that lifting may turn a non-violated valid
inequality into a violated one. To see this, consider the knapsack restric-
tion (6.24) and the LP-feasible point x1 = x4 = 1, x2 = 0, x3 = 1/2.
This point does not violate the valid inequality (6.25) but its lifted ver-
sion (6.26). As a second example, consider the minimal cover {1, 2, 4}
for (6.24), inducing the valid inequality x1 + x2 + x4, which – in con-
trast to (6.25) – defines a facet of a restricted polyhedron. By lifting
we obtain the facet x1 + x2 + x3 + x4 ≤ 2. The LP-feasible point
x1 = 1/4, x2 = 0, x3 = x4 = 1 violates the latter, but not the former.

Since the solution of knapsack problems is involved, sequential lifting
is typically an NP-hard task as well. Note, however, that an upper
bound zq ≥ zq is absolutely sufficient to define the lifting coefficient πjq

in step 4 of the algorithm – precisely, we can safely set

πjq = max {0, π0 − zq}
and still obtain a valid inequality (albeit the resulting inequality may
no longer be facet defining). It is also evident, however, that using an
upper bound zq will result in smaller lifting coefficients πjq , i. e. the
resulting inequality will be stronger if we use stronger bounds zq (or,
at best, the true optimum zq).

For cover cuts – i. e. valid inequalities such that πj = 1, j ∈ C –,
the use of upper bounds zq is not necessary, because Zemel (1989) has
developed an efficient implementation of Padberg’s procedure based on
dynamic programming. It is summarized as Algorithm 6.7. One key
point of Zemel’s algorithm is that we can readily compute numbers
βs, γs, s ∈ S (b) \C such that βs ≤ αs ≤ γs, where βs and γs are integers
with a difference of at most one, i. e. either βs = γs or βs + 1 = γs.
βs = γs ⇒ αs = βs = γs immediately, and the rest of the spots can be
efficiently treated by dynamic programming techniques.

Algorithm 6.8 summarizes the complete “classic” method of cover
cut separation, minimization, and lifting in a nutshell. Note that we
have deliberately chosen not to lift a non-violated cover inequality –
despite the fact that a violated inequality may be obtained from a
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Algorithm 6.7: Efficient Lifting Procedure for Cover Cuts (Zemel
1989)

Input: A cover C, the set S (b) and the spot lengths ls, s ∈ S (b).
Output: Lifting coefficients αs for each s ∈ S (b) \C.

1. Let U ← S (b) \C. Compute:

mk ← Sum of the k smallest ls, s ∈ C k = 0, . . . , |C|
bk ← Sum of the k greatest ls, s ∈ C k = 0, . . . , |C|
βs ← Largest integer k, such that bk ≤ ls s ∈ U

γs ← Smallest integer k, such that m|C|−1−k ≤ b − ls s ∈ U

2. Determine the set I of “trivial” and the set J of “non-trivial” spots:

I ← {s ∈ U : βs = γs} J ← {s ∈ U : βs + 1 = γs}
Let αs ← βs, s ∈ I.

3. Order the elements in J arbitrarily, i. e. J =
{
s1, . . . , s|J|

}
and compute

the lifting coefficients for each s ∈ J by dynamic programming:
a) Let As1 (z) ← mz, z = 0, . . . , |C| − 1.
b) For all k = 1, . . . , |J |:

i. Let zsk
← max {z : Ask

(z) ≤ dmax
b − lsk

}.
ii. Let αsk

← |C| − 1 − zsk
.

iii. If αsk
= 0 or z < αsk

, let Ask+1 (z) ← Ask
(z) for all z =

0, . . . , |C| − 1.
Otherwise we let Ask+1 (z) ← min {Ask

(z) , αsk
+ Ask

(z − αsk
)}

for all z = 0, . . . , |C| − 1.

non-violated one by lifting. This was done because preliminary com-
putational experience suggested that the additional lifting effort rarely
pays off by increasing the efficiency of the entire Branch and Cut-
scheme. This observation can intuitively explained as follows: Let
x∗

sb ∈ [0, 1] be the LP-optimal solution and C be the minimal cover
obtained in step 2 of Algorithm 6.8. After lifting, we obtain the facet∑

s∈C xsb +
∑

S(b)\C πsxsb ≤ |C| − 1. By construction, only variables
with x∗

sb < 1 and a relatively small value of ls are not in C and have
been lifted (see steps 1 and 4 to 7 of Algorithm 6.5). The latter prop-
erty implies that βs = 0 will frequently hold in Algorithm 6.7 such
that πs ∈ {0, 1}. So we can expect πsx

∗
sb to be very small, and adding∑

S(b)\C πsx
∗
sb to the left hand side of the cover cut will not change the

degree of violation much. Thus, if we lift a non-violated inequality in
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step 3, the result will frequently be not violated as well, and if violated
it will rarely be strong.

The Method by Gu et al. (1998)

Gu et al. (1998) point that it may not be worth the effort to separate the
most violated cover inequality if we are finally interested in a violated
lifted inequality, because (as we have already seen) lifting may turn a
non-violated inequality into a violated one. They therefore propose a
separation scheme that is very strongly driven by the optimal LP-values
x∗

sb, see Algorithm 6.9.
Note that step 1 of Algorithm 6.9 is identical to the first step of

Algorithm 6.5. Also note that adding the variables with the largest x∗
sb

to the cover – see steps 2 and 3 of Algorithm 6.9 – is a simple greedy ap-
proach to solving the knapsack problem (6.21) of the “classic” method
by selecting the items with the smallest objective function coefficient
1 − x∗

sb. Because this step is almost completely independent of the co-

Algorithm 6.8: Classic Method of Cover Cut Separation, Minimiza-
tion, and Lifting

For each b ∈ B:

1. Try to separate a cover cut for b by Algorithm 6.5 using a threshold of
ζ′ = 0.95. If no cover cut can be found with the desired degree of violation:
STOP.

2. Minimize the given cover by successively removing elements from C2 until
any further removal will lead to a violation of the cover property. As
argued before, this will not change the degree of violation.

3. Lift all variables that are not in the cover using Algorithm 6.7.

Algorithm 6.9: Cover Cut Separation as Proposed by Gu et al. (1998)

1. Identify the set C2 of spots that are trivially in the cover, and the set K1

of “interesting” spots:

C2 = {s ∈ S (b) : x∗
sb = 1} K1 = {s ∈ S (b) : 0 < x∗

sb < 1}
Set C ← C2.

2. Sort the elements in K1 in order of non-increasing x∗
sb.

3. While
∑

s∈C ls ≤ dmax
b , add elements from K1 to C according to the

sorting order.
4. If

∑
s∈C ls ≤ dmax

b : STOP, no violated cover exists. Otherwise return C.
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efficients ls, Gu et al. (1998) call their approach coefficient independent
cover generation.

To minimize a cover C returned by Algorithm 6.9, Gu et al. (1998)
define C1 = C\C2 and remove elements from C1 until C1 is empty or no
element from C1 can be removed without violating the cover property.
It is easy to see, though, that the resulting cover is not necessarily
minimal. Consider the following example: Let dmax

b = 70 and C2 =
{1, 2} , C1 = {3} where l1 = 30, l2 = 20, l3 = 45. We cannot remove
spot 3 from C1, because 30+20 ≤ 70. Spot 2, however, can be removed
from C2 to obtain the minimal cover {1, 3}. So we have decided to also
remove spots from C2 (again starting with spots of greater length) if
the resulting cover is not minimal after removing spots from C1.

To strengthen the cover inequality by lifting the variables that are
not in the cover Gu et al. (1998) do not only use the up-lifting procedure
we just described, but also a concept that is called down-lifting. The
difference is that up-lifting starts with a valid inequality of a restricted
polyhedron where a subset of variables – call it U – is fixed to 0 and
systematically modifies the coefficients of variables from U to obtain a
valid inequality for the unrestricted polyhedron – literally speaking, the
variables in U are “lifted up” from their fixed value of 0 to a value of
1. If variable s is “lifted up” to 1, we obtain its lifting coefficient πs by
Algorithm 6.6 – recall that πs can be chosen arbitrarily if xsb = 0. The
lifted inequality is valid regardless of the value of xsb. Analogously,
down-lifting starts with a valid inequality of a restricted polyhedron
where a subset of variables U is fixed to 1 and obtains a valid inequality
for the unrestricted polyhedron by “lifting down” the fixed variables to
a value of 0.

Formally, down-lifting means starting with a valid inequality (or
even a facet) of

conv

⎧⎨
⎩xj ∈ {0, 1} , j ∈ J :

∑
j∈J

ajxj ≤ a;xj = 1, j ∈ J\C
⎫⎬
⎭ (6.30)

– note the restriction xj = 1 – and (sequentially) considering the case
xj = 0, j ∈ J\C to obtain a valid inequality (or facet) of the unre-
stricted polyhedron.

Finding a facet of (6.30) is cumbersome, though. As a first approach
to the problem, select an arbitrary subset C of J such that 1 ≤ |C| < |J |
to avoid trivial cases. Setting xj = 1, j ∈ J\C implies the modified
knapsack constraint:
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j∈C

ajxj ≤ a −
∑

j∈J\C
aj

Let C ′ ⊆ C be a minimal cover for this constraint. It induces a facet of

conv {xj ∈ {0, 1} , j ∈ J :∑
j∈J

ajxj ≤ a;xj = 1, j ∈ J\C;xj = 0, j ∈ C\C ′
}

– this polyhedron is only a restricted version of (6.30) unless C = C ′,
which is unlikely to hold since C ′ is minimal. So we restrict ourselves
to the less ambitious task to start with a facet of

P = conv {xj ∈ {0, 1} , j ∈ J :∑
j∈J

ajxj ≤ a;xj = 1, j ∈ C2;xj = 0, j ∈ J\ (C1 ∪ C2)
}

where C1, C2 ⊆ J,C1 ∩ C2 = ∅ and |C1| ≥ 2. Such a facet is easy
to find: Let C be a minimal cover of the knapsack constraint. Then
partition C arbitrarily into two disjoint subsets C1, C2. C induces the
valid inequality ∑

j∈C1

xj +
∑
j∈C2

xj ≤ |C1| + |C2| − 1

Clearly, ∑
j∈C1

xj ≤ |C1| − 1 (6.31)

is valid for and defines a facet of P , because the definition of P assumes
that xj = 1, j ∈ C2. These restrictions are typically crucial for the
validity of (6.31). To see this, let C1 = {1, 2} , C2 = {3} , a1 = a2 =
1, a3 = 1000, a = 1001. Since the weights of the items in C1 is very
small, they are not able to cover the whole capacity a without the very
large item in C2, such that (6.31) – which becomes x1 + x2 ≤ 1 in this
example – is indeed valid only if x3 = 1.

As we see from this example, the right hand side of (6.31) has to
be increased if xj = 0 for some j ∈ C2. Formally, we have to find down
lifting coefficients πj ≥ 0, j ∈ C2 such that∑

j∈C1

xj +
∑
s∈C2

πjxj ≤ |C1| − 1 +
∑
s∈C2

πj

is a valid inequality.
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Continuing our small example, we have to find π3 ≥ 0 such that
x1 + x2 + π3x3 ≤ 1 + π3 is a valid inequality. Obviously, it is valid for
any π3 if x3 = 1. If x3 = 0, we clearly want π3 to be as small as possible.
It is easy to see that π3 = 1 is the minimal feasible value, and we obtain
the valid inequality x1 +x2 +x3 ≤ 2 – which is (by chance) the original
cover inequality for our initial cover C = C1 ∪ C2 = {1, 2, 3}.

The generalization of this procedure is straightforward and leads
to Algorithm 6.10, which is a direct analogue of Algorithm 6.6. Note
that this algorithm does not assume that C1 ∪ C2 = J , i. e. there
may be some variables remaining in J\ (C1 ∪ C2) that can be up-lifted
afterwards.

Again, we have to solve a sequence of NP-hard knapsack problems
in step 3 of the algorithm, and again, it is clearly sufficient to use an
upper bound zq, where smaller bounds will deliver stronger inequalities.
Since Gu et al. (1998, p. 433) report that Martello and Toth’s (1977)
procedure to compute an upper bound for the knapsack problem per-
forms as good as an exact approach based on dynamic programming,
we have thus chosen to implement the former.

After separating and minimizing a cover, Gu et al. (1998) partition
the remaining variables into various subsets and up- or down-lift them
in a particular order. Algorithm 6.11 summarizes the details of the
entire approach as we have implemented it. Note that in steps 4a), b)
and c) we process the variables in the given order that results from the
previous steps of separation and minimization, i. e. F (which is basically
the remainder of K1 from Algorithm 6.9) is sorted non-increasingly by
x∗

sb, C2 is sorted non-increasingly by ls and R is in no particular order.
Gu et al. discuss different possibilities for this “second level ordering”
of variables to be lifted, but they mention that the second level ordering
is not important (p. 433).

6.4.4 Heuristics Applied During the Branching Process

After having described how we have implemented the Cutting Plane-
part of our Branch and Cut-method, we now deal with some of the
questions with respect to the Branch and Bound-part. As argued be-
fore, adding cutting planes can only decrease the LP-upper bound, so
we have chosen not to implement any other methods to compute up-
per bounds. The forthcoming subsection describes how we branch into
subproblems and how the next node to be processed is selected from
the tree of unprocessed nodes. Here we will describe how we try to
find feasible solutions to derive lower bounds. The heuristics we have
described in section 6.3 provide a first lower bound, but this bound can
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Algorithm 6.10: Sequential Down-Lifting

Input: A knapsack restriction
∑

j∈J ajxj ≤ a, two disjoint subsets C1, C2 ⊆
J , an inequality

∑
j∈C1

πjxj ≤ π0 that is valid if xj = 1, j ∈ C2.
Output: Down-lifting coefficients πj , j ∈ C2 such that

∑
j∈C1∪C2

πjxj ≤ π0 is
a valid inequality regardless of the value of any variable in C1 ∪ C2.

1. Let U = C2. Order the elements in U arbitrarily, i. e. let U = {j1, . . . , jt}
where t = |U |. We are going to lift the elements in U using the order
jq, q = 1, . . . , t. For the ease of notation define the sets:

Uq =

{
∅ q = 0
{j1, . . . , jq} q = 1, . . . , t

2. Let q = 1.
3. Solve the following knapsack problem:

zq = max
∑
s∈C

πsxs +
∑

s∈Uq−1

πsxs

︸ ︷︷ ︸
LHS of the

current valid inequality

s. t. ∑
s∈C

asxs +
∑

s∈Uq−1

asxs

︸ ︷︷ ︸
ajq does not appear here,

because xjq is fixed to 0

≤ b −
∑

U\Uq

as

︸ ︷︷ ︸
These variables are

still fixed to 1

xs ∈ {0, 1} s ∈ C ∪ Uq−1

4. Set πjq = zq −
⎛
⎝π0 +

∑
j∈Uq−1

πj

⎞
⎠

︸ ︷︷ ︸
RHS of the

current valid inequality

and increment q by 1. If q ≤ t goto 3.

be considerably improved after a few branching steps where some of
the variables have been fixed to binary values. The basic idea of the
two heuristics we are going to describe is to use the current LP values
y∗o , o ∈ O and x∗

sb, s ∈ {1, . . . , S} , b ∈ Bs to find a feasible solution. As
before, we assume that dmin

b = 0, b ∈ B. Since the two heuristics only
differ in how they select the next spot to be scheduled – one uses a
deterministic, the other a randomized selection rule –, both are sum-
marized as Algorithm 6.12. Note that we use both heuristics on every
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Algorithm 6.11: Cover Cut Separation, Minimization, and Lifting
Along the Lines of Gu et al. (1998)

For each break b ∈ B:

1. Separate a cover using Algorithm 6.9.
2. Consider the elements in C1 with non-decreasing values of x∗

sb. Remove
spot t if

∑
s∈C1∪C2\{t} ls ≥ dmax

b + 1.
3. Consider the elements in C2 with non-decreasing values of ls. Remove spot

t if
∑

s∈C1∪C2\{t} ls ≥ dmax
b + 1.

4. Let C be the resulting minimal cover. Define C = S (b) \C, F ={
j ∈ C : x∗

j > 0
}
, R = C\F . Lift the variables in the following order using

the following methods:
a) Up-lift the variables in F using Algorithm 6.7.
b) Down-lift the variables in C2 using Algorithm 6.10 where zq is replaced

as described by the Martello/Toth bound zq to save time.
c) Up-lift the variables in R. Since the valid inequality we have obtained

so far is no longer a cover cut, we cannot use Algorithm 6.7. Instead,
we directly implemented Algorithm 6.6 where zq is replaced by the
Martello/Toth bound zq to save time.

node where the LP was feasible but the LP-solution is not integer. If
the deterministic heuristic finds a spot that is “nasty” to schedule, it is
saved in sbranch proposed for branching (see Branching Rule 2 below).

6.4.5 Branching Rules and Node Selection

Our method uses four branching rules in total. It is to be understood
that the branching rules are processed in the order given, i. e. if the first
branching rule fails to branch the given node, we use the second etc.
The fourth branching rule is constructed in a way that it will always
be able to branch the given node.

For the description of the branching rules, let y∗o , o ∈ O and x∗
sb, s ∈

{1, . . . , S} , b ∈ Bs be the given LP solution.

Branching Rule 1

If not all y∗o are binary, choose an y∗o that is closest to 0.5 (using vo to
break ties) and create to children using the restrictions yo = 0 and yo =
1, respectively. This branching rule has got three major advantages: The
upper bound will almost certainly decrease. It is virtually impossible
that both children will lead to an optimal solution. Fixing yo = 0 in the
down branch will force all xsb, s ∈ So, b ∈ Bs variables to zero. These
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Algorithm 6.12: Heuristics Applied At Each Node

1. Let y∗
o , o ∈ O and x∗

sb, s ∈ {1, . . . , S} , b ∈ Bs be the optimal LP-solution
at the current node. Start with an empty plan and schedule all spots s
where all x∗

sb, b ∈ Bs are binary. If a spot s is scheduled in this way, the
corresponding order is considered to be “fixed”.

2. Let o (s) be the order to which spot s belongs. Sort the remaining spots
by y∗

o(s). Break ties using vo(s), ls and maxb∈Bs x∗
sb (in that order), where

higher values are preferred, respectively. The result is the ordered list P .
Set sbranch = 0.

3. If P is empty: STOP. Otherwise schedule the first spot s from P using a
deterministic rule: Try to schedule s in each b ∈ Bs with decreasing x∗

sb. If
that fails, try to remove an already scheduled spot that belongs to an
order of lower revenue. If such a spot exists, remove it from the plan,
add it to the back of P , and schedule s. In either case, if sbranch = 0,
set sbranch = s.

stochastic rule: Select one b ∈ Bs at random, where the distribution is
given by the x∗

sb and try to schedule s in b. Note that if
∑

b∈Bs
x∗

sb < 1,
there is a positive probability that no b is selected and scheduling s is
not even tried.

4. If s has not been scheduled remove all spots belonging to the same order
from the plan and from P .

5. Goto 3.

variables can be removed from the problem, so that the LP to be solved
in the down branch will often be considerably smaller.

Branching Rule 2

If the deterministic heuristic (see the previous subsection) has proposed
a spot s for branching and not all x∗

sb are binary, consider restriction
(6.2):

∑
b∈Bs

xsb = yo. Since all y∗o are binary at this point by the
first branching rule, the fact that some x∗

sb is fractional implies y∗o = 1
and |Bs| ≥ 2, so that (6.2) has got the form of an special ordered set
(SOS) constraint for the current LP-values. Therefore, we will perform a
branching step that is similar to an SOS-branching, where the basic idea
is to partition Bs into two subsets B1

s and B\B1
s such that

∑
b∈B1

s
x∗

sb
is as close to 0.5 as possible, and then to branch into two children using
the restrictions

∑
b∈B1

s
x∗

sb = 0 and
∑

b∈B\B1
s
x∗

sb = 0, respectively. Note
that none of the branches explicitly or implicitly fixes yo.

Finding a subset B1
s ⊆ Bs such that

∑
b∈B1

s
x∗

sb is as close to 0.5
as possible, however, is a knapsack problem. The problem is trivial if
maxb∈Bs x∗

sb ≥ 0.5. Otherwise, a simple heuristic approach is to sort all
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non-zero x∗
sb, b ∈ Bs and add all b to B1

s (a) with increasing x∗
sb, (b)

with decreasing x∗
sb, or (c) alternating (i. e. adding the largest, then the

smallest, then the second largest etc.) until
∑

b∈B1
s
x∗

sb > 0.5. Table 6.4
shows various examples and the results obtained by the three heuristic
rules. As we can see, all rules can fail badly, so we have chosen to
implement all three and chose the best solution.

Since s was proposed by the heuristic for branching, we hope that
this branching rule helps to find a better feasible solution with an im-
proved lower bound.

Branching Rule 3

Use the conflict restriction (6.4) to branch in the following way: For
some fixed (b, C) ∈ BC, let C ∩ S (b) = {1, . . . , n}. (6.4) implies that
either spot 1, or spot 2, or . . . , or spot n, or none of these is scheduled
in break b. Using this observation, we create n + 1 children.

We select a particular conflict restriction to branch on as follows:
Consider the conflict restrictions first where the inequality is tight,
i. e.

∑
s∈C∩S(b) x∗

sb = 1 holds. Find a conflict restriction such that at
least one fractional variable appears in it and

∑
s∈C∩S(b) lsb is max-

imal. Break ties using the relative frequency of fractional variables
in the restriction. If no such conflict restriction is found, consider
the remaining conflict restrictions where the inequality is strict (i. e.∑

s∈C∩S(b) x∗
sb < 1 holds) in exactly the same manner.

Branching Rule 4

If none of these rules produced a branching yet, search for a spot with a
fractional x∗

sb of greatest length ls (breaking ties using the revenue vo of
the corresponding order if necessary). At this point we may also choose
the spot such that x∗

sb is closest to 0.5, but since the xsb variables do
not influence the objective function, many LP-solutions with the same

Table 6.4: SOS-Branching: Examples∑
b∈B1

s
x∗

sb

x∗
sb increasing decreasing alternating

{0.25 − ε, 0.25, 0.25, 0.25 + ε} 0.75 − ε 0.5 + ε 0.75
{2ε, 0.5 − ε, 0.5 − ε} 0.5 + ε 1 − 2ε 0.5 + ε

{0.25 + ε/2, 0.25 + ε/2, 0.5− ε} 0.5 + ε 0.75 − ε/2 0.75 − ε/2
{0.125, 0.25, 0.25, 0.375} 0.625 0.625 0.5

(ε > 0 is a small number.)
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objective function value do probably exist, so the fact that some x∗
sb

is close to 0.5 conveys almost no information. Since we have already
dealt with the conflict restrictions in the previous branching rule (and
found nothing), we focus on spots of great length, because they have
the greatest impact on the remaining constraints, namely the break
length restrictions.

Having chosen a spot s, we perform an SOS-branching on s as de-
scribed in Branching Rule 2.

Node Selection

As long as the gap between global upper bound UB and best lower
bound LB (defined as (UB − LB) /LB) is greater than a parameter
g, we use a “depth first” approach, because feasible solutions that can
help to improve the lower bound are found deeper in the tree. Among
nodes of the same depth, we prefer nodes with a larger upper bound.
If the gap is smaller than or equal to g, we switch to a “best first”
approach, processing nodes with larger upper bounds first. Ties (if any)
are broken by depth (where greater depth is preferred).

6.4.6 Additional Implementation Details

Reduced Cost Variable Fixing

Reduced cost information from the optimal LP solution can be used to
fix variables if a lower bound for the optimal objective function value is
given. This method is e. g. described by Nemhauser and Wolsey (1988,
p. 389), see also Wolsey (1998, p. 109-110). It is based on a variant of
the simplex method for bounded variables, which allows variables to be
nonbasic if they attain their lower or upper bound even though these
bounds may be non-zero (see e. g. Winston 1994, p. 587-591). The basic
result follows, stated for max-problems:

Theorem 6.5 (Reduced Cost Variable Fixing) Let xj ∈ R, j =
1, . . . , n be the optimal solution to an LP relaxation of an IP. Denote
the reduced costs of xj by cj where

cj ≤ 0 if xj is nonbasic at its lower bound
cj ≥ 0 if xj is nonbasic at its upper bound

Let zLP be the optimal objective function value of the LP relaxation.
Let z be a lower bound.
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If xj is nonbasic at its lower bound in the optimal LP solution and
zLP + cj ≤ z, then xj can be fixed to its lower bound.

Analogously, if xj is nonbasic at its upper bound in the optimal LP
solution and zLP − cj ≤ z, then xj can be fixed to its upper bound.

Reduced cost fixing has turned out to be crucial for the effectiveness
of our method.

Fixing variables, Removing Columns and Rows

To find more variables that can be fixed we consider each row of the LP
at hand one by one. If the row contains only non-negative coefficients
and its sense is = or ≤ we update the upper bounds of all variables in
that row. Since all our variables are binary, this frequently means that
a variable can be fixed to 0 (namely if its upper bound drops below 1).

Because smaller LPs are easier to solve, we remove columns from the
problem whenever variables are fixed, let it be by branching, updating
bounds or reduced cost fixing. Due to the removal of columns, rows will
get empty or contain only a single element. In the former case, we check
if the problem became infeasible; if not, the row is simply removed. In
the latter case, we update the upper or lower bound (if the row has got
a ≤ or ≥ sense, respectively) or fix the variable (if the row has got a =
sense) and remove the row.

Cut Pool Management

Cut Pool Management serves two purposes: The first is to control LP
size by removing cuts that are no longer effective, the second is to
reuse cuts that have proven to be effective. The former issue is dealt
with a local cut pool, for the latter we use a global cut pool. A very
readable overview on cut pool management (and other issues related
to implementing a Branch and Cut scheme) is given by Ralphs et al.
(2001).

Though we remove some rows (and columns) using the routines
described above, adding cutting planes (see step 3 of Algorithm 6.4)
means adding rows to the LP at hand, which thus tends to grow larger
and larger. But the larger an LP is, the longer it takes to solve it.
Therefore we keep track of the cuts we added to the LP in a local cut
pool: For each cut in each LP, we record the so-called age of a cut. If
a cut is slack in an iteration, the age is increased, otherwise the age is
reset to 0. If a cut gets older than a certain age (this is a parameter of
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our implementation), it is removed from the LP. When branching, the
local cut pool information is transferred to the children.

A global cut pool improves the efficiency of a B&C-scheme as fol-
lows: If we separate a (violated) cut in a certain node, and we know that
it is globally valid (i. e. the valid inequality is also valid in any other
node, regardless of the previous branching/cutting steps), we store it
in a global cut pool. At any given node, before we try to separate a
violated inequality – typically an operation of high computational cost
–, we iterate over the cuts in the global cut pool and add any cut that
is presently violated to the LP (and to the local cut pool). Note that all
the cuts we discussed so far are globally valid, so in our implementation
we can add any cut that we just separated to the global cut pool. To
control the size of the global cut pool, we record an “age” of any cut
in it. Analogously to the local cut pools, this age is reset to 0 if a cut
is restored into any LP, and it is increased every time it is not found
violated. Cuts older than a certain age (a parameter) are removed.

6.5 Test Bed

We have implemented the B&C approach in C++ using the CPLEX
8 Callable Library to solve the LPs. We used a Pentium 4 computer
at 3.06 GHz with 1 GB of RAM for all computational experiments.
In this section we present results on the performance of our heuristics
(see section 6.3) and our B&C-scheme based on a carefully defined test
bed of 18,000 instances. We start by describing our instance generation
procedure.

6.5.1 Instance Generation Procedure

To the best of our knowledge, no systematic test-bed for this problem
(or a similar one) is available from the literature. Bollapragada and
Garbiras (2004, p. 343-344) briefly summarize the data of their exam-
ple, a practical instance from NBC: It contained 4500 spots and 900
breaks. They also mention that their instance had 662 conflicts. How-
ever, only 516 conflicts can feasibly be resolved. Note that Bollapragada
and Garbiras (2004) assume that all spots have to be scheduled. Un-
resolved conflicts incur a penalty cost. In contrast, our model does not
allow for any conflicts, but not all spots have to be scheduled.

Our test-bed is based on strong practical evidence from Spanish
television (see subsection 6.1.1). Bollapragada and Garbiras (2004) de-
scribe a similar situation for NBC, so we do strongly believe that the
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setting we describe in the following is representative for many broad-
casting companies.

Preliminary Considerations: Length of Breaks and Spots

In all of our instances, we let dmin
b = 0. In this case, a trivial feasible

solution exists (yo = xsb = 0).
It seems reasonable that all breaks have the same length, so we

set dmax
b = 360 (6 minutes) for all b ∈ B. In Spanish television, for

instance, the standard length of a spot is 20 seconds, so we should have
18 spots in a break on average. The minimum length of a (regular)
spot is 10 seconds, and the length of a spot hardly exceeds 120 seconds.
Therefore, we choose ls at random, where the distribution pl is given
by the following table:

l pl l · pl

10 0.395 3.95
20 0.450 9.00
30 0.070 2.10
45 0.050 2.25
60 0.020 1.20
90 0.010 0.90

120 0.005 0.60∑
1 20

Size of the Instances and Prices

It remains to be defined how we determine the number of breaks (i.e.
the set B), the overall number of spots (S), the number of orders (O),
the distribution of spots among orders (So) and breaks (Bs) and the
conflicts (C).

We let the number of breaks be |B| ∈ {10, 15, 20, 50, 100}. Given
|B|, we let S = NLF · |B|, where NLF ∈ {15, 18, 20, 25, 30, 35}. The
reasoning behind this is as follows: In RM problems, it is common to
define the relation between demand and available resource capacity (see
Kimms and Müller-Bungart (2007b) and section 4.3 for a discussion).
This relation is called the nominal load factor. In all our instances,
we can schedule on average 18 spots per break. So if NLF ≤ 18, the
number of spots that we can schedule is mostly limited by the conflicts,
hence it should be possible to accept (almost) all orders. As the nominal
load factor grows, the RM problem becomes c. p. more important since
more and more orders will have to be rejected.
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We assume that the spots are evenly distributed among the breaks –
a reasonable assumption, otherwise it won’t make sense to have breaks
of (roughly) the same length in practice – so for each s ∈ {1, . . . , S}
we let |Bs| = �α |B|�, where α ∈ {0.1, 0.2}. Then, we uniformly choose
|Bs| breaks from B for each s = 1, . . . , S.

To determine the number of orders |O| and the distribution of spots
to orders (i.e. the sets So), we use the following procedure: Let q ∈
{1, 5, 10, 20, 50, 100} and then define |O| and So as follows: Let |O| =
�S/q�. If S/q is integer, we assign the first q spots to S1, the second
q spots to S2 and so forth, i.e. |So| = q, o ∈ O. Otherwise, we raise
q by redefining q = �S/ |O|�. If S/ |O| is integer, we assign the first q
spots to S1, the second q spots to S2 and so forth, i.e. |So| = q, o ∈ O.
Otherwise, the sets So, o = 1, . . . , S − q · |O| are assigned q + 1 spots
each, and the rest of all orders are assigned q spots each.

Given the Bs, we can compute the sets S (b). We will use these sets
to define conflicts as follows: Denote the number of conflicts per break
by c ∈ {0, 1, 5}. Each C ∈ C has the same size |C| ∈ {2, 3}. So for each
break b ∈ B we create c conflicts by selecting |C| spots at random from
S (b) each time.

For the prices vo, we compute the total length of all spots in o by
lo :=

∑
s∈So

ls. Then, we let vo = lo · uo, where uo ∼ U (25, 500). This
means that a second costs between e 25 and 500; that is the usual price
charged in Spanish television.

Summary

Summing up, we have varied the parameters as follows:

|B| ∈ {10, 15, 20, 50, 100}
NLF ∈ {15, 18, 20, 25, 30, 35}

α ∈ {0.1, 0.2}
q ∈ {1, 5, 10, 20, 50, 100}
c ∈ {0, 1, 5}

|C| ∈ {2, 3} (if c > 0)

Therefore, we had 5 · 6 · 2 · 6 = 360 combinations of |B| , NLF,α, q.
So there were 360 parameter combinations with no conflicts, and
360 · 2 · 2 = 1, 440 instances with conflicts, that’s 1,800 combinations
altogether. For each combination we generated 10 instances, totaling
up to 18,000 instances. For |B| ≥ 15 we just generated 10 instances for
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each combination and used them as they were. For |B| = 10 we gener-
ated instances for each combination until we could optimally solve them
with AMPL/CPLEX 8 on a Pentium 4 computer at 3.06 GHz within
60 seconds6 to assess the performance of our heuristics in comparison
to optimal solutions. In all cases CPLEX was started on the solution
obtained by the Greedy heuristic supplying an initial lower bound.

On average, an optimal solution for an instance with 10 breaks could
be obtained in 3.35 seconds (with a standard deviation of 9.55 seconds).
Table 6.5 reveals that almost 80 % of all instances could be solved in
a second or less. On the other hand, 138 instances took more than 30
seconds.

Table 6.5: Optimal Solution Times

Time Instances (abs.) Instances (%)
up to 1 second 2873 79,8 %

1 to 5 sec. 243 6,8 %
5 to 10 sec. 115 3,2 %

10 to 30 sec. 231 6,4 %
30 to 60 sec. 138 3,8 %

Not surprisingly, the average computational time increases with
NLF and α and decreases with q. The effect of the number of con-
flicts per break and the number of conflicting spots, c and |C| is less
clear, though (see Table 6.6): On the one hand, the computational times
are higher for c = 5. On the other hand, if there are more conflicts, the
feasible region gets smaller, and a Branch and Bound procedure may
converge faster, so instances with c = 1 have been solved faster (on
average) than instances with c = 0.
6 Recall that all computational times reported on in this book are wall clock times.

Table 6.6: Effect of Conflicts on Computational Times

c |C| Instances Avg. Time
0 - 720 3.23
1 2 720 2.87
1 3 720 3.03
5 2 720 3.58
5 3 720 4.05
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6.5.2 Heuristics

Heuristic Performance on Instances with 10 Breaks

We are now going to evaluate the performance of our heuristics. We
start with the instances with |B| = 10, where we can compare the
heuristic LBs with the known optimal revenues. We begin with review-
ing the computational times and the number of feasible solutions found
for each heuristic in Table 6.7. Relax-and-Fix, Greedy and ForceZe-
roes were guaranteed to find feasible solutions for all 3,600 instances.
ForceOnes and Dive-and-Fix found feasible solutions in approx. 80 %
of all cases.

Before we summarize the computational times, note that the average
and maximal times given in Table 6.7 refer to all 3,600 instances, i.e.
the cases where ForceOnes and Dive-and-Fix have not found a feasible
solution are included.

For the small instances here (with |B| = 10), ForceOnes and
ForceZeroes were very fast and never reached their time limit of 5
seconds. Dive-and-Fix and Relax-and-Fix performed well on average.
The Greedy heuristic was a bit slower. Also note that the time limit
of 2 seconds for each order used by Relax-and-Fix and Greedy was (on
average) not restrictive.

Table 6.7: Feasible Solutions and Computational Times

Heuristic feasible solution Time
found not found Avg. Max.

Dive-and-Fix 2,991 83.1 % 609 16.9 % 0.84 9.00
Relax-and-Fix 3,600 100.0 % 0 0.0 % 0.67 9.00
ForceOnes 2,764 76.8 % 836 23.2 % 0.05 0.61
ForceZeroes 3,600 100.0 % 0 0.0 % 0.05 0.14
Greedy 3,600 100.0 % 0 0.0 % 2.15 29.00

425 instances had an optimal revenue of 0, and all heuristics found
this optimal solution in all cases. Table 6.8 assesses the quality of the
lower bounds for the remaining 3,175 instances using the percentage
gap between lower bound and optimum, which is defined as follows:

Gap =
Optimal Revenue − Lower Bound

Optimal Revenue
∈ [0, 1]

The very bad performance of Dive-and-Fix is due to the fact that it
produced a lower bound of 0 in 2210 of the 2566 instances (ca. 86 %),
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though the optimal revenue was non-zero. These instances have a gap
of 100 %. The average gap for the remaining 356 instances is only
6.4 %, with a standard deviation of 8.8 % and a maximum of 71.9 %.
Nevertheless, the performance of Dive-and-Fix is unsatisfactory.

ForceOnes produced the best gaps. On the other hand, it failed
to produce a lower bound at all for over 25 % of all instances with
non-zero optimal revenue. This also largely explains why the number
of optimal solutions found is relatively small: ForceOnes indeed found
optimal solutions in only 35 % of the 3,175 instances, but in over 48 %
of the instances where it found a feasible solution.

Relax-and-Fix is outperformed by ForceOnes with respect to gaps.
On the other hand, Relax-and-Fix is guaranteed to find a feasible solu-
tion (in our instances), where ForceOnes is not, and it finds the most
optimal solutions. Its gaps are better than ForceZeroes’ (which will also
find a feasible solution for sure), but the latter is faster. Greedy per-
forms slightly worse than ForceZeroes on average, but the deviation of
the gaps is smaller.

Table 6.8: Heuristic Gaps

Heuristic Feasible Gap Optimum found
solutions Avg. Std.-Dev. Max.

Dive-and-Fix 2566 80.8 % 87.0 % 32.5 % 100.0 % 1 0.03 %
Relax-and-Fix 3175 100.0 % 2.9 % 9.9 % 100.0 % 1444 45.48 %
ForceOnes 2339 73.7 % 1.4 % 2.9 % 36.4 % 1138 35.84 %
ForceZeroes 3175 100.0 % 4.0 % 13.1 % 100.0 % 1312 41.32 %
Greedy 3175 100.0 % 4.8 % 7.6 % 61.3 % 1262 39.75 %

Instances with a Large Number of Breaks

For the larger instances with |B| ∈ {15, 20, 50, 100} we could not ob-
tain optimal solutions within satisfactory computational times, so in
this section we will compare the heuristics among each other. Ta-
ble 6.9 shows that it got clearly more difficult for Dive-and-Fix and
ForceOnes to find feasible solutions for medium-sized instances with
|B| ∈ {15, 20}. For instances with 50 and 100 breaks we had to impose
an overall time limit of 60 seconds on Dive-and-Fix, Relax-and-Fix and
Greedy to finish the computational study within a reasonable amount
of time. Thus, Relax-and-Fix and Greedy may now fail to find a feasi-
ble solution due to the time limit. Table 6.9 shows that indeed for the
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majority of instances with 100 breaks, both did not finish within 60
seconds.

Except for Dive-and-Fix, the relationship of computational times
given by Table 6.10 is similar to the small instances with |B| = 10:
ForceOnes and ForceZeroes were very fast. Both have reached their
time limits of five seconds now (marked by “*” in the table). However,
their typical performance is clearly not affected by the time limit. To
obtain a meaningful average time for Dive-and-Fix, Relax-and-Fix and
Greedy, we have excluded the instances where the time limit of 60
seconds (marked by “***” in the table) has been reached. Relax-and-
Fix and Greedy performs satisfactory on a typical instance. Both do in
general not seem to be restricted by the maximum processing time of
two seconds per order. The computational time of Dive-and-Fix is less
favorable, though.

For |B| = 15, there were 283 instances where the best lower bound
found was 0. All these instances were feasibly solved by all heuristics.
The remaining 14,117 instances were again compared using a percent-

Table 6.9: Feasible Solutions for |B| ∈ {15, 20, 50, 100}
Heuristic 15 Breaks: feasible solution 20 Breaks: feasible solution

found not found found not found
Dive & Fix 2298 63.8 % 1302 36.2 % 1022 28.4 % 2578 71.6 %
ForceOnes 2585 71.8 % 1015 28.2 % 1358 37.7 % 2242 62.3 %

Heuristic 50 Breaks: feasible solution 100 Breaks: feasible solution
found not found found not found

Dive & Fix 571 15.9 % 3029 84.1% 155 4.3 % 3445 95.7 %
Relax & Fix 3047 84.6 % 553 15.4 % 1022 28.4 % 2578 71.6 %
ForceOnes 1127 31.3 % 2473 68.7 % 1087 30.2 % 2513 69.8 %
Greedy 2903 80.6 % 697 19.4 % 1203 33.4 % 2397 66.6 %

Table 6.10: Wall Clock Times in Seconds

(“*” and “***” indicate that the time limit of 5 resp. 60 seconds was reached)

Heuristic 15 Breaks 20 Breaks 50 Breaks 100 Breaks
Avg. Max. Avg. Max. Avg. Max Avg. Max.

Dive & Fix 3.75 25.00 9.60 41.00 26.85 *** 43.46 ***
Relax & Fix 1.10 11.00 2.52 21.00 16.62 *** 30.86 ***
ForceOnes 0.07 * 0.13 * 0.63 * 1.23 *
ForceZeroes 0.07 1.28 0.13 0.73 0.84 * 3.57 *
Greedy 3.65 52.00 5.94 76.00 14.79 *** 28.93 ***
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age gap defined as follows:

Gap =
Best Lower Bound − Lower Bound

Best Lower Bound
∈ [0, 1] (6.32)

For |B| ∈ {15, 20}, Dive-and-Fix suffers again from the fact that it
delivers a lower bound of 0, though the best bound is strictly greater.
However, the effect is smaller: Only 755 (37.5 %) and 19 (1.9 %) in-
stances (out of all instances where Dive-and-Fix found a feasible solu-
tion) are affected, respectively.

Table 6.11 summarizes the statistics on the gaps as defined by
(6.32). For |B| = 15, the results are pretty similar to the previous
case: ForceOnes is best, but fails to find a bound on many instances.
Relax-and-Fix is (slightly) better than ForceZeroes on average. The
former finds the best bound more often, but the latter is much faster.
Greedy performs slightly worse than both, but is very robust in the
sense that the deviation of the gaps is small.

For |B| = 20, the performance of Dive-and-Fix was again unsat-
isfactory. ForceZeroes retained its position. Relax-and-Fix was clearly
best, but Greedy competed well, showing again a very small deviation
of the gaps. Surprisingly, ForceOnes was outperformed by both Relax-
and-Fix and Greedy. For the very large instances with |B| ∈ {50, 100},
all heuristics have a similar performance with respect to the gaps, only
ForceZeroes is slightly behind. However, ForceZeroes is very successful
in delivering the best bound for |B| = 100, albeit this observation can
largely be attributed to the fact that all other heuristics fail to produce
a bound at all on more than two thirds of the instances.

6.5.3 Branch and Cut

In this subsection we present computational results on our B&C-
scheme. We compare our method with AMPL/CPLEX 8. Furthermore,
we investigate the effectiveness of the heuristics applied during the
B&C-process and the effectiveness of our cutting planes. Before we be-
gin, we have a closer look at the performance of our five heuristics with
respect to optimal solutions.

Instances That Have Already Been Solved by the Heuristics

Since we intend to supply the best known lower bound to both CPLEX
and our B&C-method, it is reasonable to check which of the instances
have already been solved optimally by the heuristics. A rather simple
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Table 6.11: Gaps for Instances with |B| ∈ {15, 20, 50, 100}
Heuristic Feasible Gap Best Bound

solutions Avg. Std.-Dev. Max.
|B

|=
15

Dive & Fix 2015 60.7 % 43.0 % 45.8 % 100.0 % 432 13.0 %
Relax & Fix 3317 100.0 % 3.3 % 12.4 % 100.0 % 2195 66.2 %
ForceOnes 2302 69.4 % 0.9 % 2.0 % 22.7 % 1241 37.4 %
ForceZeroes 3317 100.0 % 3.6 % 9.0 % 100.0 % 1424 42.9 %
Greedy 3317 100.0 % 4.6 % 7.4 % 61.7 % 1438 43.4 %

|B
|=

20

Dive & Fix 1022 28.4 % 8.2 % 19.4 % 100.0 % 468 13.0 %
Relax & Fix 3600 100.0 % 0.5 % 2.0 % 33.0 % 2918 81.1 %
ForceOnes 1358 37.7 % 1.6 % 1.9 % 12.5 % 416 11.6 %
ForceZeroes 3600 100.0 % 4.5 % 7.1 % 35.6 % 361 10.0 %
Greedy 3600 100.0 % 1.9 % 2.9 % 13.3 % 1877 52.1 %

|B
|=

50

Dive & Fix 571 15.9 % 0.0 % 0.0 % 0.5 % 561 15.6 %
Relax & Fix 3047 84.6 % 0.3 % 1.1 % 13.1 % 2338 64.9 %
ForceOnes 1127 31.3 % 0.7 % 1.0 % 5.6 % 557 15.5 %
ForceZeroes 3600 100.0% 4.1 % 4.0 % 20.7 % 453 12.6 %
Greedy 2903 80.6 % 1.0 % 1.7 % 13.1 % 1601 44.5 %

|B
|=

10
0 Dive & Fix 155 4.3 % 0.0 % 0.1 % 0.6 % 153 4.3 %

Relax & Fix 1022 28.4 % 0.2 % 0.8 % 6.3 % 802 22.3 %
ForceOnes 1087 30.2 % 0.4 % 0.7 % 3.8 % 633 17.6 %
ForceZeroes 3600 100.0 % 1.9 % 3.3 % 15.1 % 2286 63.5 %
Greedy 1203 33.4 % 0.2 % 0.8 % 6.4 % 1063 29.5 %

indicator is the LP-bound: Let LB be the best lower bound found by
any of the five heuristics. Let UB be the simple LP-upper bound that
is obtained by simply solving the LP-relaxation of Model 6.1 without
adding any cutting planes. An optimal solution obviously has been
found if LB = UB holds.

Define Gap = UB−LB
LB for LB > 0. Table 6.12 shows aggregated val-

ues for that gap, as well as how many instances have already been solved
to optimality by the heuristics. If we subtract this number from 3, 600
– this is the number of instances for each |B| ∈ {10, 15, 20, 50, 100} –,
we get the remaining number of instances that have to be solved by
CPLEX and our own B&C implementation.

If we compare Table 6.12 with Table 6.8 we see that the LP bound is
indeed a bad indicator of optimality: For |B| = 10, only 471 instances
have been provably solved to optimality by the heuristics, while the
true value is (at least) more than twice as high. We also see, how-
ever, that large instances seem to be solved quite satisfactorily by the
heuristics. This is somewhat surprising, but can be attributed to the
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Table 6.12: Heuristic Lower Bounds vs. LP Upper Bounds

Breaks Instances Gap
Best LB > 0 optimal Remaining Avg. Std.-Dev. Max.

10 3,175 88.2 % 471 14.8 % 3,129 15.3 % 33.0 % 360.0 %
15 3,317 92.1 % 485 14.6 % 3,115 15.0 % 38.2 % 529.1 %
20 3,600 100.0 % 817 22.7 % 2,783 4.4 % 7.7 % 170.0 %
50 3,600 100.0 % 758 21.1 % 2,842 2.1 % 2.4 % 14.5 %

100 3,600 100.0 % 651 18.1 % 2,949 4.2 % 4.0 % 19.0 %

fact that we have varied the parameter q (which determines the num-
ber of spots per order) between 1 and 100, while the overall number of
spots increases with the number of breaks. We have selected ForceZeros
(which delivered feasible solutions for all 18,000 instances) to demon-
strate this effect in Table 6.13: Clearly, the smaller q is, the smaller the
number of spots per order and the LP bound gets better, because the
impact of orders which are only “partly” scheduled gets smaller. On the
other hand, for fixed q the LP bound’s quality increases with |B|, due
to the fact that for fixed NLF , an instance with 10 breaks will have
10 ·NLF spots (i. e. approximately 10 ·NLF/q spots per order), where
an instance with 100 breaks will have 100 · NLF spots, i. e. ten times
the number of spots per order. Again, the impact of fractional orders
decreases in the latter case. However, it seems to be reasonable that
the number of spots per order q is independent of the overall number
of spots S, so we have intentionally chosen not to modify our instance
generator.

Parameter Settings

Like most B&C-schemes our program allows for a fairly large number
of parameters to be varied. In the following we outline some of the most
influencing choices we can make:

• We can add cuts in the root node only or in other nodes as well.
If we decide to add cuts in non-root nodes, too, there are yet more
options:
– We can add cuts in each and every node.
– We can refrain from adding cuts if at least one yo is fractional. In

that case the next branching step will branch on one of the frac-
tional yo variables anyway, and this may change the LP solution
dramatically (see subsection 6.4.5). It is thus questionable if it is
worth the effort to add cuts based on the current LP solution.
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Table 6.13: ForceZero’s Bounds vs. LP Upper Bounds

Breaks q Instances Gap
w/ LB > 0 Avg. Std.-Dev. Max.

10 1 600 0.7 % 0.5 % 2.6 %
10 5 600 2.8 % 2.1 % 24.7 %
10 10 600 9.0 % 13.3 % 99.5 %
10 20 592 29.3 % 51.2 % 360.0 %
10 50 477 38.9 % 39.5 % 267.6 %
10 100 257 49.7 % 22.8 % 94.3 %
15 1 600 0.7 % 0.5 % 2.9 %
15 5 600 2.5 % 1.4 % 15.7 %
15 10 600 7.5 % 11.4 % 129.4 %
15 20 599 27.2 % 54.1 % 529.1 %
15 50 521 45.3 % 57.9 % 336.2 %
15 100 396 53.0 % 35.0 % 130.9 %
20 1 600 0.9 % 0.5 % 3.0 %
20 5 600 2.6 % 0.9 % 5.3 %
20 10 600 4.3 % 1.3 % 8.4 %
20 20 600 7.0 % 1.9 % 13.1 %
20 50 600 15.2 % 4.8 % 31.5 %
20 100 600 30.4 % 16.6 % 170.0 %
50 1 600 0.8 % 0.5 % 1.8 %
50 5 600 2.6 % 0.7 % 4.3 %
50 10 600 4.0 % 1.0 % 6.7 %
50 20 600 5.9 % 1.3 % 9.5 %
50 50 600 10.2 % 2.4 % 16.1 %
50 100 600 16.6 % 4.6 % 26.9 %

100 1 600 0.9 % 0.5 % 1.9 %
100 5 600 2.8 % 0.8 % 4.6 %
100 10 600 4.4 % 1.2 % 7.1 %
100 20 600 6.5 % 1.6 % 10.2 %
100 50 600 9.6 % 2.0 % 14.6 %
100 100 600 13.5 % 2.5 % 19.0 %

– We may choose not to add cuts if all yo variables are already fixed
to binary values, because in this case the objective function value
(which depends on yo only) is also fixed, therefore adding cuts can
no longer improve the bound. On the other hand, it is uncertain
whether the remaining feasibility problem can be solved faster
using branching steps only, because adding cuts are also used to
cut off fractional solutions and that may be helpful as well.
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In summary our choice should be guided by the following trade off:
If we add more cuts we can (on average) expect to solve the problem
with fewer nodes. However, separation, minimization and lifting of
cuts is computationally costly, and it may thus pay off to save this
time at the expense of having to branch, store and restore more
nodes.

• Two types of cut separation, minimization and lifting procedures are
supported: The “classic” one and one along the lines of Gu et al.
(1998) (see pages 192 and 202, respectively). We have the option to
use both methods, only one of them or none. Again, we can hope
to need fewer nodes if we add more cuts (i. e. use both methods),
but this does not necessarily imply that the average computational
time decreases.

• We have two types of heuristics as well (see subsection 6.4.4). Like
for our two types of cut-methods, we may decide to use both, only
one or neither of them (with similar consequences).

• The basic idea of a cutting plane method is to add one or more cuts
to an LP, solve the augmented LP, add some more cuts based on the
new LP optimum (if it is not already integer), solve this LP again
etc. We have already mentioned that in most cases the LP bound
does not change much after quite a few iterations; a behavior that
is called “tailing off”. If we detect tailing off, we will want to make
a branching step. Algorithm 6.13 outlines how our program solves
and reoptimizes the LP at every node. Note that if and how cuts
are separated in step 8 depends on the settings that we have already
described, e. g. if no cuts should be added if all yo are fixed this will
be checked in step 8, and no cuts will be added if indeed no yo is
free.
As we can see from Algorithm 6.13, our method of detecting “tailing
off” is based on the two parameters tailoffGap and maxIter. An
improvement of the upper bound will be considered insignificant if
it is smaller than tailoffGap, and we will allow for at most maxIter
iterations without improvement. maxIter will be reset if there was
a significant improvement or if we were able to restore some global
cuts – this operation is much less costly than separating new cuts,
it thus seems to be safe not to limit this operation.

Furthermore, we have mentioned that we use a “depth first” ap-
proach until the gap between the best lower and best upper bound is
smaller than or equal to g. We have chosen to set g = 10% and have
not experimented with varying it, because we have noticed that in the
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Algorithm 6.13: Iterative Steps of LP-solving Conducted at Every
Node

1. Set noProgress = 0, lastUB = −∞.
2. Solve the LP. Denote the LP upper bound by UB. If an optimal solu-

tion was found, check if UB is smaller than or equal to the best known
lower bound. If so, the actual node can be pruned immediately, otherwise
proceed with step 3.

3. If the LP solution is already integer, we are done. Otherwise proceed with
step 4.

4. Fix variables based on reduced costs (see Theorem 6.5 on page 210).
5. If lastUB < 0 or (lastUB − UB) /UB > tailoffGap reset noProgress =

0 and set lastUB = UB, else increment noProgress by one and stop here
if noProgress > maxIter.

6. Remove all cuts that have been slack for the last three iterations from the
local cut pool (i. e. from the LP).

7. If some cuts from the global cut pool are violated by the current LP
solution, add all of them to the LP, set noProgress = 0 and goto 2.

8. If the parameters allow (or demand) it, separate cuts. If some violated
cuts have been found, add them to the LP and goto 2. Otherwise stop
here.

bulk of instances this gap is already in the order of one to four percent
after a few nodes.

It goes without saying that testing each and every possible parame-
ter combination on all 18,000 instances is out of the question. We thus
decided to choose an initial set of parameters in a rather “ad hoc”
manner mainly based on intuition and observations that we made on
a handful of instances. The result is what we call (in reference to Gu
et al. 1998) the “default algorithm”. The default algorithm uses the
following parameters:

• Cuts are added in root and non-root nodes of the tree, but not if all
yo are already fixed.

• Both types of cut-methods and heuristics are used.
• Tailing off detection uses the parameters tailoffGap = 0.001 (0.1 %)

and maxIter = 2.

This default algorithm has been tested on all 18,000 instances. Based
on the results we then selected a sample of around 500 instances and
investigated the impact of various parameter settings in great detail.
This led to other sets of parameters – “non-default” algorithms – which
were then tested again on a large sample of instances.



6.5 Test Bed 225

Performance Using Default Settings

Recall that for |B| = 10 we ran and reran our instance generator until
ten examples that could be solved by AMPL/CPLEX within 60 seconds
had been generated for each of the 360 parameter combinations. We
thus focus on instances with 15, 20, 50 and 100 breaks and compare
the ability of our default algorithm to obtain optimal solutions with
that of CPLEX. We will later compare the running times of CPLEX,
the default and the non-default algorithms.

15 Breaks

With a time limit of 60 seconds we obtained the results as depicted in
the upper half of Table 6.14. Our default algorithm solved 71.5 % of
all instances, among them 68 where CPLEX was stopped by the time
limit before an optimal solution was found. On the other hand, CPLEX
solves slightly more instances, and it solved 145 instances to proven
optimum where our own implementation could not succeed within 60
seconds. 744 instances (23.9 %) have neither been solved by CPLEX
nor by our method, so we decided to increase the time limit to 300
seconds. As we in the lower half of Table 6.14, our method caught up
with respect to the number of solved instances, but still more than one
fifth of all instances remain unsolved. We therefore decided to increase
the running time to 900 seconds, but using the full sample of over 600
instances was of course out of the question. So we carefully selected
148 instances (with small NLF s, large qs etc.) and tried to solve them
to optimality using CPLEX within 900 seconds. The average time per
instance was more than 880 seconds, so the whole effort took more than
36 hours, and only 9 instances (ca. 6 %) were solved.

For the default algorithm, we considered the same 148 instances. It
turned out that one of these had already been solved by the default al-
gorithm. Given the poor performance of CPLEX we decided to enlarge
the sample in the hope to be able to solve some more instances and to
thus retrieve some reasonable results. We therefore added another 91
carefully selected instances to the sample (i. e. we had 238 instances
in total) and tried to solve these within 900 seconds. The average time
per instance was more than 870 seconds, so the total running time was
about 58 hours. The result was similar: 33 instances (ca. 14 %) were
solved; out of the 147 instances we tackled both with both procedures,
CPLEX solved 9 and the default algorithm solved 7. There was no
overlap in these solutions, i. e. the 7 instances solved by the our own
B&C-implementation have not been solved by CPLEX and vice versa.
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In light of these results it did not seem to make sense to increase the
running time beyond five minutes.

Table 6.14: 15 Breaks: Optimal Solutions after 60 and 300 seconds

After 60 seconds:

Default

C
P
L
E
X time limit solved

time limit 744 23.9 % 68 2.2 % 812 26.1 %
solved 145 4.7 % 2,158 69.3 % 2,303 73.9 %

889 28.5 % 2,226 71.5 % 3,115

After 300 seconds:

Default

C
P
L
E
X time limit solved

time limit 639 -105 20.5 % 122 +54 3.9 % 761 -51 24.4 %
solved 136 -9 4.4 % 2,218 +60 71.2 % 2,354 +51 75.6 %

775 -114 24.9 % 2,340 +114 75.1 % 3,115

20 Breaks

Using a running time of 300 seconds we obtained the results that are
shown in Table 6.15. Note that the number of solved instances dropped
dramatically for both methods compared to problems with 15 breaks
(see Table 6.14).

Table 6.15: 20 Breaks: Optimal Solutions after 300 seconds

Default

C
P
L
E
X time limit solved

time limit 1,670 60.0 % 128 4.6 % 1,798 64.6 %
solved 138 5.0 % 847 30.4 % 985 35.4 %

1,808 65.0 % 975 35.0 % 2,783

Why did the problem get so seriously tough stepping from 15 to 20
Breaks? This can be attributed to our choice of the number of breaks
|Bs| where each spot can be scheduled: We defined |Bs| = �α · |B|�
where α ∈ {0.1, 0.2}. So for |B| = 15, α = 0.1, each spot can only be
scheduled in a single break, and scheduling is trivial, while for |B| =
15, α = 0.2 and |B| ≥ 20 we have |Bs| ≥ 2 and scheduling becomes a
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crucial part of the problem. To demonstrate this fact we have prepared
Table 6.16 which highlights the differences for instances with |B| =
15 (the aggregated results have appeared in Table 6.14). Note that
there are 1,800 instances for both α = 0.1 and α = 0.2. Somewhat
surprisingly 24.1 % of the instances with α = 0.2 have been solved
optimally by the heuristics, but only 2.8 % for α = 0.1 such that 1,366
resp. 1,749 instances remain. We see that both CPLEX and the default
algorithm have practically solved each and every instance with α = 0.1
but a little more than half of all instances with α = 0.2 remain unsolved.
We note that our default algorithm is slightly behind for α = 0.1 but
slightly ahead for α = 0.2.

Table 6.16: 15 Breaks: Optimal Solutions after 300 seconds by α

Instances α = 0.1 α = 0.2
solved by CPLEX 1,747 99.9 % 607 44.4 %
solved by default 1,691 96.7 % 649 47.5 %

total 1,749 1,366

50 and 100 Breaks

Both CPLEX and the default algorithm performed very poorly on the
larger instances: CPLEX could optimally solve 365 and 287 instances,
and the default algorithm solved 248 resp. 103 instances. Recall that
there were both 3,600 instances for |B| = 50 and |B| = 100, and around
700 of each have already been solved by the heuristics (see Table 6.12),
i. e. only one out of ten given instances have been solved by either
method and the heuristics have solved twice to three times as many
instances. This is though not very surprising because the number of
binary variables xsb is given by |B| ·NLF ·α · |B| – that is in the order
of 1,000s for |B| = 50 and in the order of 10,000s for |B| = 100.

Performance of the Heuristics

For each instance, we have recorded the number of times the deter-
ministic and the random heuristic (see Algorithm 6.12) have improved
the bound. It turned out that the latter rarely succeeded, so we have
decided to turn it off in our subsequent experiments. Since it does not
seem to be useful to use no heuristic at all and merely wait until the
LP-solution becomes binary by chance, only the deterministic heuristic
has been used in the following experiments.
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Evaluating the Parameter Settings

So far we have seen that our default algorithm is competitive with
respect to its ability to obtain optimal solutions within a reasonable
amount of time. It is thus a suitable basis for further experiments with
the aim to investigate the impact of various parameter settings. Since
optimally solving instances with 50 or 100 breaks seems to be out of
scope of both CPLEX and our implementation we have focused on in-
stances with |B| ∈ {15, 20}. For the upcoming experiments, we selected
all instances with 15 or 20 breaks that have been solved by the default
algorithm in a time that was longer than 30 seconds – if the computa-
tional time is smaller, it seems to be useless to tune the parameters to
improve the performance. That yielded 265 instances. To investigate
whether other parameters could improve our ability to solve instances
to optimality we selected all instances that have been solved by CPLEX
but not by the default algorithm. These are 136 resp. 138 instances,
see Tables 6.14 and 6.15. Note that this is quite a nice distribution,
because the fraction of solved and unsolved instances is thus approx-
imately 50 % each. Using these 539 instances we studied the effect of
varying some of the parameters. We will discuss our findings in the
following.

Adding cuts depending on yo

Recall that adding cuts cannot improve the LP upper bound if all
yo are fixed (to binary values). Furthermore, it may not be useful to
add cuts if some yo is fractional, because the following branching step
will certainly change the values of many fractional variables, possibly
rendering the cuts to be added useless. With respect to the values of
yo, three strategies are thus possible:

• Always add cuts regardless of the yo.
• Add cuts if all yo are binary, but only if some yo is still free (this is

the default setting).
• Do not add cuts if all yo are binary (this is especially the case if all

yo are fixed).

Note that a fourth potential strategy “Add cuts if all yo are fixed, but
only if some yo is still non-binary.” is infeasible because if all yo are
fixed, they always attain binary values.

Table 6.17 compares the three strategies with respect to the number
of instances that have been solved optimally. The running times for the
strategy that “always” added cuts and the strategy that did “not if all
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yo are binary” were practically identical based on the 166 instances
that have been solved by both. Thus “always” is clearly to be preferred
because it solves more instances. Given the bias in our sample of 539
instances we cannot compare the running times of either method with
the default algorithm in a really sensible way, but we note that there
were 139 instances which have been solved by all of the methods. For
these, the default algorithm needed ca. 97 seconds on average, where
it took both other methods around 85 seconds. The running times of
the other strategies thus seem to be reasonable.

Table 6.17: Comparison of Strategies to Add Cuts Depending on yo

Strategy Instances solved
always 317 58.8 %
default 265 49.2 %
not if all yo are binary 192 35.6 %

Adding cuts in the root node only

We then addressed the question whether it pays off to add cuts only in
the very first node and solve the remaining “tightened” formulation of
the problem (with a probably improved LP upper bound) using branch-
ing steps only. This method is sometimes called “Cut and Branch”. If
cuts should be used in the root node only we felt that maxIter = 2
may be a bit too small, therefore we tried three different strategies set-
ting maxIter = 10 and maxIter = 10,000 as well (the latter basically
implies that there is no “tailing off” detection at all and we only stop
to add cuts if we are not able to find any more violated ones). In all
these cases we added cuts regardless of the values of yo; however, these
settings should not affect the results because in the root nodes rarely
all yo will be binary, let alone fixed. A further option we considered
is not to add cuts at all and solve the problem by a pure Branch and
Bound (B&B) approach.

Table 6.18 shows how many instances out of 539 have been solved
by each of the four variants and compares the running times with the
strategy to “always” of Table 6.17 based on the instances that have
respectively been solved by either method. We have also compared the
four strategies among each other with respect to average times, but the
impression is the same as given by the table: maxIter = 2 and pure
B&B need ca. 35 seconds, where the other take around 45 seconds.
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The default parameter setting (maxIter = 2) performed best both
with respect to the number of instances solved and the running times
compared with “always”, thereby evidencing (in a somewhat limited
way, though) that our initial choice for maxIter was not too bad.
Adding cuts in the root node only leads to a poor performance with re-
spect to the number of instances solved – any of the variants discussed
in Table 6.17 solve 50 to 100 % more, and “always” has solved practi-
cally all instances that have been solved by the four strategies. On the
other hand, all the four strategies are much faster than “always” – this
may be attributed to the fact that these four only solve a little more
than 100 “easier” instances out of 539, where the additional effort to
add cuts in non-root nodes does not pay off indeed. We will investigate
this question in some more detail later.

Table 6.18: Comparison of Strategies to Add Cuts in the Root Node

Comparison with “always”
Strategy solved Instances Avg. time Avg. time “always”
maxIter = 2 127 23.6 % 106 37.4 55.6
maxIter = 10 109 20.2 % 94 46.6 63.0
maxIter = 10,000 113 21.0 % 97 47.5 60.9
pure B&B 112 20.8 % 93 37.0 52.0

Methods to add cuts

Thus far we have always used both the “classic” method and the one
due to Gu et al. (1998, the “GNS”-method) to separate, minimize and
lift cuts. Using the former method only (and adding cuts regardless of
the yo) we were only able to solve 157 instances in 300 seconds; using
only the latter (and disregarding the yo as well) we solved 225. Com-
pared with the “always” strategy, which solved much more instances,
the running times were practically identical, thus we will definitely use
both methods in the following. As a final remark, 134 instances have
been solved by either strategy, and GNS was much faster on average.
This demonstrates the power of this method; on the other hand, the
success of “always” demonstrates that it is definitely useful to combine
both GNS and the classic method.

Performance Using Non-Default Settings

As we have seen in the last paragraphs the default parameter settings
have shown a very satisfactory performance. We have though indicated
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two potential ways to improve the results: Adding cuts “always” (re-
gardless of the yo) may help to solve more instances to optimality within
a time limit of 300 seconds. It will then be interesting to compare the
running times with the default algorithm and with CPLEX as well.
Adding cuts in the root node only (using maxIter = 2) seems to be
promising with respect to time, but thus far we have only been able
to compare the running times based on a very small number of in-
stances, because the capability of this strategy – which we call “root2”
in the following – to optimally solve instances in a reasonable time
seems to be somewhat limited. We will thus compare the performance
of the default, the “always” and the “root2” parameter setting with
CPLEX based on instances with 15 and 20 breaks first. We have al-
ready seen that the ability of both the default algorithm and CPLEX
to solve larger instances are very limited, so we defer the evaluation of
the other methods on instances with |B| ∈ {50, 100}.
Instances with 15 and 20 breaks

Table 6.19 shows how many instances have been solved by each of the
four methods for 15 and 20 breaks, respectively (The results for default
and CPLEX have already appeared in Tables 6.14 and 6.15). Again,
we see that there is a big difference between instances with 15 and 20
breaks because of the scheduling problem. For 15 breaks, CPLEX is
just a little ahead to default, always is a little behind both. For 20
breaks, always is clearly ahead, default and CPLEX are tied. root2
is largely behind for 15 breaks and still a little for 20 breaks, but in
neither case the gap is as large as we have had to fear in light of the
previous comparison to always (see Table 6.18).

Table 6.19: Optimal Solutions after 300 Seconds by Method (15-20
Breaks)

Number of Instances Solved
Method 15 Breaks 20 Breaks
default 2,340 75.1 % 975 35.0 %
always 2,300 73.8 % 1,056 37.9 %
root2 2,001 64.2 % 926 33.3 %
CPLEX 2,354 75.6 % 985 35.4 %

3,115 2,783

Tables 6.20 and 6.21 show that there is a large overlap between the
instances that have been solved by the methods or where the time limit
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has been reached, respectively. For 15 breaks, over 60 % of all instances
have been solved by each of the method, and for 18 % no method
found a provably optimal solution within 300 seconds. The next largest
group is formed by 224 (7.2 %) instances that have been solved by all
methods except root2 (which has solved the least number of instances).
The picture is somewhat similar for 20 breaks, where almost 30 % of all
instances have been solved by any method, and neither method could
solve almost 60 % of them.

Table 6.20: Solved and Unsolved Instances (15 Breaks)

Method Instances
default always root2 CPLEX

time limit time limit time limit time limit 561 18.0 %
time limit time limit time limit solved 106 3.4 %
time limit time limit solved time limit 17 0.5 %
time limit time limit solved solved 8 0.3 %
time limit solved time limit time limit 55 1.8 %
time limit solved time limit solved 13 0.4 %
time limit solved solved time limit 6 0.2 %
time limit solved solved solved 9 0.3 %

solved time limit time limit time limit 33 1.1 %
solved time limit time limit solved 69 2.2 %
solved time limit solved time limit 4 0.1 %
solved time limit solved solved 17 0.5 %
solved solved time limit time limit 53 1.7 %
solved solved time limit solved 224 7.2 %
solved solved solved time limit 32 1.0 %
solved solved solved solved 1,908 61.3 %

3,115

Table 6.22 compares the running times in wall clock seconds for the
1,908 instances with 15 breaks that have been solved by either method.
We see that the vast majority of instances is solved very fast. CPLEX
is clearly ahead, root2 is a little faster than always and default, which
have a very similar performance. root2 is, however, not as fast as we
have expected in light of Table 6.18. We have also examined the running
times of each method on the 2,000+ instances that have respectively
been solved. These times are of course not comparable – so we omit
a corresponding table –, but we note that the overall picture remains:
CPLEX is fastest, and the other methods nevertheless solve the bulk
of instances in one second or less.
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Table 6.21: Solved and Unsolved Instances (20 Breaks)

Method Instances
default always root2 CPLEX

time limit time limit time limit time limit 1588 57.1 %
time limit time limit time limit solved 66 2.4 %
time limit time limit solved time limit 14 0.5 %
time limit time limit solved solved 9 0.3 %
time limit solved time limit time limit 64 2.3 %
time limit solved time limit solved 40 1.4 %
time limit solved solved time limit 4 0.1 %
time limit solved solved solved 23 0.8 %

solved time limit time limit time limit 30 1.1 %
solved time limit time limit solved 10 0.4 %
solved time limit solved time limit 6 0.2 %
solved time limit solved solved 4 0.1 %
solved solved time limit time limit 23 0.8 %
solved solved time limit solved 36 1.3 %
solved solved solved time limit 69 2.5 %
solved solved solved solved 797 28.6 %

2,783

Table 6.22: Running Times (15 Breaks)

Time Instances (Absolute and Cumulative %) Solved by Method
(seconds) default always root2 CPLEX

up to 1 1,574 82.5 % 1,591 83.4 % 1,608 84.3 % 1,844 96.6 %
1 to 2 120 88.8 % 108 89.0 % 125 90.8 % 24 97.9 %
2 to 5 95 93.8 % 94 94.0 % 88 95.4 % 23 99.1 %

5 to 10 51 96.4 % 54 96.8 % 42 97.6 % 4 99.3 %
10 to 30 50 99.1 % 45 99.2 % 27 99.1 % 4 99.5 %
30 to 60 9 99.5 % 6 99.5 % 7 99.4 % 3 99.7 %

60 to 120 5 99.8 % 6 99.8 % 5 99.7 % 3 99.8 %
120 to 240 4 100.0 % 4 100.0 % 5 99.9 % 3 100.0 %
240 to 300 0 100.0 % 0 100.0 % 1 100.0 % 0 100.0 %

1,908 1,908 1,908 1,908

Table 6.23 shows that the results for 20 breaks are somewhat simi-
lar: Most instances are solved very fast. CPLEX is fastest, way ahead
of root2, which is before always and default. The ranking of the last
three is as before, but the differences are clearly larger. Again, we note
that the picture is similar if all instances that have been solved are
considered respectively for each method.
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Table 6.23: Running Times (20 Breaks)

Time Instances (Absolute and Cumulative %) Solved by Method
(seconds) default always root2 CPLEX

up to 1 290 36.4 % 314 39.4 % 363 45.5 % 618 77.5 %
1 to 2 111 50.3 % 95 51.3 % 143 63.5 % 49 83.7 %
2 to 5 143 68.3 % 161 71.5 % 147 81.9 % 76 93.2 %

5 to 10 125 83.9 % 112 85.6 % 77 91.6 % 17 95.4 %
10 to 30 96 96.0 % 90 96.9 % 51 98.0 % 16 97.4 %
30 to 60 16 98.0 % 15 98.7 % 8 99.0 % 10 98.6 %

60 to 120 11 99.4 % 7 99.6 % 7 99.9 % 8 99.6 %
120 to 240 4 99.9 % 3 100.0 % 1 100.0 % 1 99.7 %
240 to 300 1 100.0 % 0 100.0 % 0 100.0 % 2 100.0 %

797 797 797 797

Instances with 50 and 100 breaks

Despite our discouraging results using default and CPLEX for instances
with 50 and 100 breaks we nevertheless tried to solve them using always.
The results for all three methods are compiled in Table 6.24. We see that
all methods have been largely outperformed by the heuristics. In light
of these results, and given the fact that the running time for the 5,500+
instances using root2 can be expected to be ca. 18 days we refrained
from testing root2 on the larger instances. Since the performance of all
methods was very poor and the number of instances that have been
solved was very small, it does not seem reasonable to examine the
running times, so we omit them as well.

Table 6.24: Optimal Solutions after 300 Seconds by Method (50-100
Breaks)

Number of Instances Solved
Method 50 Breaks 100 Breaks
default 248 8.7 % 103 3.5 %
always 290 10.2 % 124 4.2 %
CPLEX 365 12.8 % 287 9.7 %

2,842 2,949
Best heuristic 758 651

3,600 3,600
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Summary

To obtain optimal solutions for the RM problem in the broadcasting
industry we implemented a B&C-approach. We tested a “default” pa-
rameter set on all 18,000 instances and found that it was competitive
compared to AMPL/CPLEX 8. Both our method and CPLEX were
not able to satisfactorily solve instances with 50 or 100 breaks, so we
focused on instances with 15 and 20 breaks. We evaluated the impact
of various parameters on the performance of our method based on a
carefully selected sample of over 500 instances. Based on our findings,
we have developed two improved parameter sets, “always” and “root2”.
The former adds cuts in each and every node of the tree, regardless of
the values of yo (the default algorithm refrains from doing so if all yo

are fixed), and the latter does add cuts in the root node only (the de-
fault settings demand that cuts are added in non-root nodes as well).
CPLEX, default and always could solve ca. three quarters of the in-
stances with 15 breaks, where it was only around two thirds for root2.
The latter was a little faster than default and always, though, but if
an optimal solution was found for an instance, this was a matter of
a few seconds for any method and the vast majority of instances. For
20 breaks, root2 solved one third of the instances, default and CPLEX
mastered ca. 35 %, and for always it was even around 38 %. root2 was
clearly faster than default and always, but again the running times
of all methods have been in the order of seconds for the majority of
instances that have been solved.

6.6 Some Remarks on RM in Broadcasting Companies
Under Uncertainty

Up to now, we have assumed a deterministic setting where the set of
orders O and all related parameters where given with certainty. In this
section we will sketch models and methods dealing with the planning
situation under uncertainty.

The TV program that has been published by the broadcasting com-
pany in Spain is valid for a limited amount of time only. Bollapragada
et al. (2002) report that the programming schedules in the US cover a
year. So we can safely assume a finite time horizon. As before, we will
denote the set of breaks over this horizon by B. Our experience with
Spanish broadcasting companies suggests that the vast majority of cus-
tomers sends their orders by fax – this seems to be similar to NBC (cf.
Bollapragada et al. 2002) where a standardized request form is used –,
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so that immediate notification of customers whether their order is ac-
cepted or rejected is not necessary. Thus orders can be “batched” over
one day, for instance, and customers are notified at the beginning of
the next business day. So the time horizon is naturally partitioned into
T < ∞ discrete periods (e. g. days). Time is counted backwards from
T to 0. We do neither explicitly model counteroffers made by Spanish
broadcasting companies if an order cannot be accommodated, nor re-
submissions of rejected orders by customers (a usual practice at NBC).
Once an order has been rejected, however, and is resubmitted to the
company in a modified form, it can be treated as a completely new
order, so that the difference between a “really new” and a “modified”
order is not important in our model.

Our objective function is the revenue-to-go R (t,O) where t is the
number of remaining periods and O is the set of orders that have al-
ready been accepted. The expected revenue over the complete time
horizon is thus given by R (T, ∅); or by R (T,O) if some orders are al-
ready accepted at the beginning of the planning horizon – this may e. g.
be the case if long term contracts are also made, or if a rolling horizon is
used (in this case O is the set of orders that have been accepted in previ-
ous planning “rolls”). We denote the set of orders that arrives in period
t by Ot. An order o ∈ Ot is a tuple o = (vo, So, {(ls, Bs) , s ∈ So} , Co)
where vo > o is the revenue, So �= ∅ is the set of spots (characterized by
the lengths ls and the sets of admissible breaks Bs), and Co is the set
of conflict sets. A conflict set C ∈ Co is a subset of the set of already
accepted and new spots

⋃
o∈O So ∪

⋃
o∈Ot

So. We allow that Ot = ∅.
Given a set of new orders Ot, we will need to know whether it is

feasible or not to accept a subset O′ ⊆ Ot of them. For that purpose
we need a variant of Model 6.1. To simplify the notation define

S
(
O′) :=

⋃
o∈O

So ∪
⋃

o∈O′
So

S
(
O′, b

)
:=

{
s ∈ S

(
O′) : b ∈ Bs

}
BC

(
O′) :=

{
(b, C) ∈ B ×

(⋃
o∈O

Co ∪
⋃

o∈O′
Co

)
:
∣∣S (

O′, b
) ∩ C

∣∣ ≥ 2

}

Using that notation a set of new orders O′ can be accepted if and
only if Model 6.2 has got a feasible solution. Note that we have inten-
tionally omitted the minimum break length restrictions, because early
in the planning horizon the set of orders O∪O′ will be small, such that
a feasible schedule obeying minimum length restrictions may not exist
although we clearly have the opportunity to fill up breaks with spots in
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later stages of the decision process. It is thus sufficient to ensure that
the minimum break length restrictions are satisfied at t = 0 – this can
be enforced by defining:

R (0, O) =

⎧⎪⎪⎨
⎪⎪⎩
−∞

if a feasible schedule of the accepted spots s ∈
So, o ∈ O such that the minimum break length
restrictions are satisfied does not exist

0 otherwise

If we allow the violation of some restrictions (minimum break lengths
or conflicts, for instance) at a penalty cost, we can e. g. define:

R (0, O) = minimum penalties s. t. that all accepted spots
s ∈ So, o ∈ O are scheduled

Model 6.2: Accept New Orders: Feasibility Check

find xsb, s ∈ S (O′) , b ∈ Bs

s. t. ∑
b∈Bs

xsb = 1 s ∈ S (O′)

∑
s∈S(O′,b)

lsxsb ≤ dmax
b b ∈ B

∑
s∈C∩S(O′,b)

xsb ≤ 1 (b, C) ∈ BC (O′)

xsb ∈ {0, 1} s ∈ S (O′) , b ∈ Bs

Define a (O,O′) = 1 if Model 6.2 is feasible for a given set of accepted
orders O and a given set of new orders O′ (and 0 otherwise). At time
t it is thus optimal to accept a subset of orders that is a maximizer of

max
O′⊆Ot

{
a
(
O,O′) ·

(
R
(
t − 1, O ∪ O′)+

∑
o∈O′

vo

)}

We now have to describe a stochastic process that creates the ar-
rivals of orders – that is, we have to define the probability P (Ot) that
Ot is the set of orders collected on day t. In the classic passenger airline
case, in hotels or rental car companies, defining an arrival process is
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not too difficult, because the number of products n is clearly finite.
If we assume independent demand, we can just use n different arrival
processes where an arrival from process j ∈ {1, . . . , n} is equivalent
to a request of product j (see chapter 5 for an in-depth description of
such processes). If we consider choice-based RM (see section 3.2) we
can use m different arrival processes and define Pij (t, S) be the prob-
ability that a customer arriving from stream i ∈ {1, . . . ,m} chooses
product j ∈ S at time t if S ⊆ {1, . . . , n} is the set of products that
is available. In both cases we an use a compound process to describe
that a arriving customer may request a random quantity of a product:
Let Xij (t) be the random variable denoting the quantity of product j
that is demanded by a customer arriving from process i at time t and
define a – continuous or discrete – probability distribution on Xij (t)
(see e. g. Ross 2003, p. 321-326 for an introduction to the compound
Poisson process).

The problem at hand, however, is similar to cargo-RM or RM in
make-to-order (MTO) environments, where the characteristics of an
order – revenue, number of spots, their lengths, conflicts etc. – allow
for such a large number of combinations that the number of potential
“products” is practically infinite. A description of P (Ot) has to include
many of the aspects we have covered in subsection 6.5.1 (distribution
of spot lengths, conflicts, order size, admissible breaks etc.) where we
described our instance generator. Taking the complexity of the instance
generation procedure into account, even a definition of P (Ot) that only
approximates the variety of characteristics – let alone one that leads
to a useful model – seems to be impossible. Such a situation where the
stochastic aspects of a dynamic model are hard to describe formally is
called the “curse of modeling” in the context of dynamic programming.
In his paper related to demand modeling, van Ryzin (2005) states that
in complex demand settings “modelling itself becomes the obstacle”
(p. 208, emphasis of the original).

So not surprisingly, to the best of our knowledge only models with a
limited focus on the uncertainty involved in the cargo-/MTO RM prob-
lems have appeared in the literature: Kasilingam (1996) deals with the
air cargo-RM problem, but assumes that all requests can be grouped
into a limited number of categories (i. e. products), so basically the
same arrival processes like in air passenger RM problems can be used.
This is certainly not applicable for the broadcasting industry, and – as
Pak and Dekker (2004, p. 3) point out – it does not seem to suit the
cargo RM problem very well. In their conceptual paper, Campbell and
Morlok (1994) outline an approach where it is analogously assumed
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that demand can be partitioned into a limited number of “demand
classes”. Pak and Dekker (2004) roughly outline a dynamic program-
ming-approach to cargo RM, but do not go into the details (much like
we do here) – namely they do not specify the arrival process as well. We
agree with Pak and Dekker (2004) who report that a dynamic program-
ming approach is intractable and less suited for a practical use. Bar-
todziej and Derigs (2004) follow – technically speaking – an approach
similar to ours, in the sense that they use forecasted values of future
demands in a deterministic air cargo model. In their paper, demand is
given as a unidimensional measure (weight per origin/destination pair).

Somewhat related to this area of research are stochastic knapsack
problems, where items of (possibly random) size and random profit
arrive over time, and items can be accepted or rejected to maximize
overall profit with respect to the limited size of the given knapsack;
see Kleywegt (1996) for an overview. Kleywegt and Papastavrou (1998)
and van Slyke and Young (2000) consider variants of the problem where
all items have the same size. Papastavrou et al. (1996) and Kleywegt
and Papastavrou (2001) come closer to our problem by allowing for
random sized items, but like all aforementioned references they only
cover the problem with a single, one-dimensional knapsack. Young and
van Slyke (1994) consider both the unidimensional and the multidi-
mensional cases, but again in a “passenger airline”-like setting with a
limited number of demand classes.

Spengler et al. (2007) consider RM problems in MTO manufactur-
ing. They develop an exact model based on the assumption that the
number of orders nmax to arrive over the finite planning horizon as well
as the characteristics of the j-th order j = 1, . . . , nmax are given. The
finite time horizon is divided into micro periods such that at most one
order arrives in period t. The stochastic process of the arrivals is then
given by the probabilities Pjt that order j arrives in period t, where it
is allowed that 1−∑nmax

j=1 Pjt < 1 (i. e. no order arrives in period t). So
technically speaking, we are again dealing with nmax different types of
orders (where nmax is in the order of 10,000s per year), and in period
t an order of type j appears with probability Pjt. This does not seem
to appropriate for the RM-problem in broadcasting companies; and as
the authors point out, an exact solution approach based on that model
is impossible due to the computational burden anyway.

Pak and Dekker (2004) and Spengler et al. (2007) come closest in
spirit to the situation encountered here. Pak and Dekker (2004) have
suggested a bid price-approach to cargo RM, Spengler et al. (2007)
have used a similar method in the MTO context. We briefly outline a
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method for the broadcasting problem under uncertainty along the lines
of these references. However, our approach will be considerably more
complicated, because we will also have to deal with the manufacturer’s
flexibility to schedule orders – Spengler et al. (2007) dealt with the
situation of a specific company without flexibility, and Pak and Dekker
(2004) neglect the possibility of (re-)routing cargo based on the present
circumstances.

A bid price is nothing but an estimate of the opportunity costs of
accepting an order (see section 2.3). We will consider additive bid prices
here, i. e. the bid price of a given order is the weighted sum of the op-
portunity costs of the resources it consumes. In our problem, the only
resources we are dealing with are the breaks B, which are of limited
length dmax

b . The potential use of a resource b ∈ B is further narrowed
by conflicts. We will neglect the minimal break length restrictions be-
cause – as mentioned before – they only play a minor role in practice.
Therefore, we need an estimate λb of the opportunity cost of a second
of time in break b ∈ B, and analogously an estimate γb for the oppor-
tunity cost of placing a spot that may conflict with other spots arriving
later.

Like in Pak and Dekker (2004) and Spengler et al. (2007) such esti-
mates can be obtained by simulation: A variant of our instance gener-
ator (see subsection 6.5.1) could be used to generate set of orders O. A
classic way to compute bid prices is then to solve the LP-relaxation of
Model 6.1 and use the averaged optimal shadow prices of restrictions
(6.3) and (6.4) as estimates λb and γbC , respectively (cf. Talluri and
van Ryzin 1999). γb may then be defined as the average of the γbC .
Note that Pak and Dekker (2004) and Spengler et al. (2007) develop
much more elaborate and efficient methods to compute bid prices.

Given λb, γb, the bid price of a single order o′ will certainly depend on
how the spots are finally scheduled (Pak and Dekker 2004 and Spengler
et al. 2007 do not have to deal with this problem, because their products
are inflexible). We therefore try to find a schedule of the spots So that
minimizes the order’s bid price (see Model 6.3). In this model, πs is an
estimate of the probability that a spot will conflict with spots arriving
in the future. Each spot can certainly be unique, however the conflict
mainly depends on the product being advertised, and on the desired
(first or last) position. If s advertises a sports shoe, πs can e. g. be set
to the observed fraction of spots that also advertise sportive clothing.
As before, O is the set of already accepted orders.
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Model 6.3: Minimal Bid Price of a New Order o′

bp (o′) = min
∑

s∈So′

∑
b∈Bs

λbxsb + γbπsxsb

s. t. ∑
b∈Bs

xsb = 1 s ∈ S ({o′})
∑

s∈S({o′},b)

lsxsb ≤ dmax
b b ∈ B

∑
s∈C∩S({o′},b)

xsb ≤ 1 (b, C) ∈ BC ({o′})

xsb ∈ {0, 1} s ∈ S ({o′}) , b ∈ Bs

Note that our cutting plane approach can be used to optimally solve
this problem without any change because cutting planes are indepen-
dent of the objective function.

We will accept order o′ if vo ≥ bp (o′) (and reject otherwise). In
the problem at hand, however, we are not dealing with one order at
a time (and immediate notification), but with a set of orders Ot. It is
of course possible to extend the idea of Model 6.3 to cases with two
or more orders. Model 6.4 is such an extension, where we maximize
the revenue of all accepted orders, and the first restriction ensures that
only orders o are accepted where the difference between revenue vo and
bid price bp (o) is greater than e 1/M .

Using Model 6.4, however means to solve a considerably larger in-
teger problem. It may thus be sensible to consider each order o ∈ Ot

separately, according to a carefully selected ordering of the orders in
Ot. Such an ordering may be based on an estimate of yield, e. g. defined
by

vo∑
s∈So

1
|Bs|

∑
b∈Bs

λb + γbπs

– in the denominator, the opportunity costs of placing the spot s ∈ So

in break b is estimated by averaging over all breaks Bs.
The bid price approaches by Pak and Dekker (2004) and Spengler

et al. (2007) were very successful in the respective contexts. The method
we have just outlined is therefore worth considering, but other heuristic
methods e. g. based on principles of Neuro-Dynamic Programming or
Reinforcement Learning (cf. Bertsekas and Tsitsiklis 1996, Sutton and
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Model 6.4: Bid Price Policy for a Set of New Orders O′

max
∑
o∈O′

voyo

s. t.

yo ≤ M ·
(

vo −
∑
s∈So

∑
b∈Bs

λbxsb + γbπsxsb

)
o ∈ O′

∑
b∈Bs

xsb = 1 s ∈ So, o ∈ O

∑
b∈Bs

xsb = yo s ∈ So, o ∈ O′

∑
s∈S(O′,b)

lsxsb ≤ dmax
b b ∈ B

∑
s∈C∩S(O′,b)

xsb ≤ 1 (b, C) ∈ BC (O′)

xsb ∈ {0, 1} s ∈ S (O′) , b ∈ Bs

0 ≤ yo ≤ 1 o ∈ O′

Barto 1998), or other methods of stochastic search and optimization
(cf. Spall 2003) can also be used to overcome the “curse of modeling”.

6.7 Concluding Remarks

Based on a case study of Spanish broadcasting companies we developed
a rigorous mathematical model of the RM problem. Bollapragada et al.
(2002) describe a similar situation for NBC, thus we conclude that our
findings are widely applicable to broadcasting companies in Europe and
the US. Albeit there is a large body on the broadcasting industry in
general, we are the first to develop RM models and methods for this
business. Somewhat unique for the broadcasting RM problem is the
predominance of flexible products. This greatly increases the problem’s
complexity, because we have not only to decide on the acceptance or
rejection of orders but also on the schedule of accepted spots. Both
problems are clearly interdependent, because if we manage to schedule
spots of a given order to some less demanded breaks, the opportunity
costs of accepting this order decreases and it becomes (more) profitable
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to accept it. RM problems with flexible products have only recently
attracted attention in the literature.

We have dealt with the RM problem in broadcasting companies
under certainty in great detail. We have developed various heuristics
as well as a B&C approach to obtain optimal solutions. We have used
a tailored instance generator to generate 18,000 problem instances of
various sizes to test our heuristics and the B&C procedure. Both the
heuristics and various parametrizations of the exact method performed
very satisfactory.

Although our exact methods were able to solve the deterministic
problem in a few seconds, we have seen that many of the larger in-
stances cannot be solved within a reasonable amount of time. This is
not surprising, because the problem at hand is NP-hard, but we nev-
ertheless tried to push the boundary between solvable and unsolvable
instances a little further. For instance, we have tried to find better up-
per bounds by Lagrangian relaxation. Trying various formulations we
found, though, that relaxations which can be solved efficiently do not
help to speed up the B&C procedure.

We also considered reformulating Model 6.1, aiming at column gen-
eration approaches. One was based on the observation that for each
order o ∈ O the number of assignments of spots s ∈ So to breaks (i. e.
the number of feasible values for the xsb, s ∈ So, b ∈ Bs) is clearly fi-
nite. We might say that for each order o, there are at most To schedules
of the spots s ∈ So. We can thus equivalently formulate Model 6.1 by
using the decision variable yot, o ∈ O, t ∈ To where yot = 1 if schedule t
is used for order o (and 0 otherwise). Similarly, the number of possibil-
ities to assign spots s ∈ {1, . . . , S} to any break b ∈ B is clearly finite;
for break b the number of such patterns is Pb, say. We can then use the
decision variable zbp to model the problem at hand, where zbp = 1 if
pattern p is used for break b (and 0 otherwise). Since both the number
of “schedules” and “patterns” is large, column generation methods are
in order to solve the LP relaxation of the resulting problem formulation.
However, preliminary computational experience suggested that the LP
bound obtained in this way was not better than the upper bound given
by the LP relaxation of Model 6.1 (augmented by cutting planes).

We have finally outlined exact and heuristic approaches to the RM
problem in broadcasting companies under uncertainty. We have seen
that our treatment of the deterministic problem serves as a necessary
foundation for models and methods for this problem. The applicability
of the B&C procedure to the stochastic problem is facilitated by the fact
that a Branch and Cut approach is largely independent of the objective
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function. Working out the details of an approach for the RM problem
under uncertainty seems to be a fruitful area for future research. We
are convinced that our findings will prove to be very useful for that
task, and for the solution of other RM problems with flexible products
in general.



7

Conclusion

7.1 Summary and Results

The first chapters of this book contain a comprehensive introduction
to the field of RM. In chapter 1, we have characterized a typical RM
problem based on the four prerequisites necessity to integrate external
factors, limited operational flexibility, heterogeneous valuations and be-
havior and standardized product range. We have illustrated that RM
concepts can be applied to a wealth of industries. Based on the defining
characteristics and various example applications we have presented a
structure of the field demonstrating the relationship of capacity con-
trol, overbooking, dynamic pricing and auctions. We have seen that
not every application from those four areas satisfy the prerequisites;
we have thus focused on “RM in the strict sense”, i. e. capacity control
and overbooking.

We have reviewed the state of the art of capacity control and
overbooking in chapter 2. This chapter concentrated on already well-
established models and methods, but we also covered some rather novel
approaches, e. g. approximate dynamic programming or simulation op-
timization. In the subsequent chapter we highlighted recent advances
of the field. At the center of our discussion were RM problems with
customer- or supplier-driven substitution and multimodal products.
Our analysis was based on a thorough categorization of such problems
(see Table 3.1), and we highlighted the relationship of those problems
to the field of RM in the strict and in the broad sense. We have also
briefly mentioned some references on alliance RM, RM under competi-
tion and callable products.

Chapter 4 and 5 outlined necessary steps to evaluate RM models
and methods, i. e. how to generate instances of RM problems. Up to
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now, issues related to instance generation have not yet been treated
in a rigorous way; and while many authors conduct simulation studies
and computational experiments to test their methods we have got the
feeling that this is still be done in a rather “ad hoc” way. To facilitate
the comparison between different RM methods a standard test bed
would be highly desirable. To the best of our knowledge, we are the
first to address this problem in a comprehensive and systematic way.
In chapter 4, we have outlined and categorized the relevant aspects
of instance generation. The following chapter focused on one of the
most difficult parts, namely the simulation of stochastic demand data
streams. An extensive review of the literature helped to structure ex-
isting models with respect to assumptions related to the arrival process
(see Figure 5.1). The remainder of the chapter covered the simulation
of a single and multiple demand data streams and the parameter esti-
mation problem. Independent demand, choice-based RM and RM with
flexible products have been taken into account.

We have seen in chapter chapter 3 that there are only a few ref-
erences that cover RM problems with flexible products. Furthermore,
in the existing approaches it is assumed that a large fraction of all
products is unimodal and a flexible product is a “menu” of certain spe-
cific ones. In the broadcasting industry, however, specific products are
practically not existent such that the existing approaches cannot eas-
ily be transferred. Actually, the broadcasting industry has not received
much attention at all from the RM community; our extensive treat-
ment in chapter 6 thus is one of the very first attempts to address this
area of application in a rigorous way. We have conducted an in-depth
case study of the business environment of Spanish broadcasting com-
panies. The results served as a basis for a rigorous formal description
and a mathematical model. We have developed various heuristics for
that problem as a well as an exact approach based on Branch and Cut.
Those methods have been evaluated on a test bed of 18,000 instances
and performed quite well. We have finally outlined approaches to the
RM problem in broadcasting companies under uncertainty and seen
that our model and methods are a necessary and useful prerequisite to
tackle the stochastic problem as well.

7.2 Future Research Opportunities

The two major contributions of this book can be found in chapters 4,
5 and 6: We are the first two approach the instance generation prob-
lem in a rigorous way. Furthermore, we are among the few authors
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who consider RM problems with flexible products and an application
of RM to the broadcasting industry. Our findings build a useful basis
for future research. For instance, we have outlined the relevant aspects
of instance generation in chapter 4. We have intentionally disregarded
the deterministic/static aspects, but we have roughly indicated how
resource and product data could be generated for instances from the
airline industry. It would be useful for the RM community to work out
the many details of such an airline instance generator, to implement it
and to make an executable file of this implementation publicly avail-
able. This would be a preliminary step towards a standard test bed
for airline RM problems. It should be followed by the phases which we
have already mentioned in section 5.5:

1. Identify what characteristics of resources, products, capacities etc.
make RM problems hard or easy to solve.

2. Develop an instance generator that creates instances (i. e. resources,
products, capacities etc.) with given characteristics, especially a
given degree of “difficulty”.

3. Generate a systematical set of test-instances to establish a standard
test-bed for future work.

Our detailed description of the RM problem in broadcasting com-
panies brings an area of application into play which has not yet been
considered by the RM community. We have seen that our model and
methods can be used gainfully for the problem under uncertainty. How-
ever, we have intentionally made only brief remarks on the stochastic
setting in this book, thus it will be fruitful to study this problem in
some more detail. Additional findings and results for the RM problem
in broadcasting companies will have impact for other areas of applica-
tions as well, especially for those where flexible products are prevalent
as well (e. g. the cargo industry).

Somewhat related (but obviously not identical) are RM problems
with flexible customers (see Table 3.1) which have been indicated in this
book for the first time. Practical applications with flexible customers
do clearly exist (e. g. German Railways); and it seems to be rather
challenging to develop a capacity control strategy if flexible customers
are involved. Such problems will thus provide a fruitful field of future
research as well.
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Demand Distribution of the
Beta-Gamma-Arrival Process

In this part of the appendix, we will present some details about the
non-homogeneous Poisson process (NHPP) over the interval [0, T ] with
rate function (5.3):

λ (t) = D · β (t)

where we have dropped the index j to simplify the notation, D ∼
Γ (γ, δ) and β (t) is the density function of the Beta distribution stan-
dardized on the interval [0, T ].

Denote the number of arrivals up to time t from this process by
N (t). We have already seen that the conditional expectation of N (T )
is given by:

E (N (T ) |D = d) = d

As mentioned previously, the marginal distribution of P (N (T )) is
a negative Binomial, and the posterior distribution of D is a Gamma
as well. This will be shown in section A.1 and section A.2, respectively.

A.1 Marginal Distribution of N (T )

N (T ) follows a Poisson distribution with intensity Λ (T ) =
∫ T
0 λ (t) dt,

i. e. the conditional distribution of N (T ) is given by:

P (N (T ) = n |D = d) = e−d dn

n!
(A.1)

D follows a Gamma-distribution with parameters γ, δ, i. e. the density
is given by:

f (d) =
δ−γ

Γ (γ)
e−d/δdγ−1 (A.2)
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By the definition of the conditional probability, we have:

P (N (T ) = n) =
∫ ∞

0
P (N (T ) = n |D = u) f (u) du

=
∫ ∞

0
e−u un

n!
· δ−γ

Γ (γ)
e−u/δuγ−1du

=
δ−γ

Γ (γ) · n!

∫ ∞

0
e−u(1+1/δ)un+γ−1du

We substitute:

z = g (u) = u (1 + 1/δ)

⇒ u =
z

1 + 1/δ
= z · δ

1 + δ
, du =

dz

g′ (u)
=

dz

1 + 1/δ
=

δ

1 + δ
· dz

Thus:

P (N (T ) = n) =
δ−γ

Γ (γ)Γ (n + 1)

∞∫
0

e−z

(
z · δ

1 + δ

)n+γ−1 δ

1 + δ
dz

=
δ−γ

Γ (γ)Γ (n + 1)

(
δ

1 + δ

)n+γ−1 δ

1 + δ

∞∫
0

e−zzn+γ−1dz

=
1

Γ (γ)Γ (n + 1)

(
1

1 + δ

)γ ( δ

1 + δ

)n

Γ (n + γ)

Let p = (1 + δ)−1:

P (N (T ) = n) =
Γ (n + γ)

Γ (γ)Γ (n + 1)
pγ (1 − p)n (A.3)

This is the probability mass function of the negative Binomial dis-
tribution, somewhat generalized by allowing that γ is not integer.

A.2 Posterior Distribution of D

Using (A.3) crucially depends on knowing the parameters γ, δ defining
the exact distribution of D. In a typical application, these values will
not be known exactly, i. e. γ, δ are random quantities themselves and
forecasted values have to be used. Formally, we have forecasted values
γ0, δ0 and thus assume that the a priori distribution of D is Gamma
with parameters γ0, δ0. We then observe N (t), the number of arrivals



A.2 Posterior Distribution of D 251

up to time t, and ask for the posterior distribution of D, P (D |N (t)).
Since we know both the prior distribution of D and the conditional
distribution P (N (t) |D ), this can be easily be done using Bayes’ The-
orem, which can be stated in the following form:

Theorem A.1 (Bayes’ Theorem) Consider a sample X1, . . . ,Xn.
Let the random variables Xi, i = 1, . . . , n be i.i.d. with distribution
f (x | θ). The parameter θ ∈ Θ is unknown and to be estimated. We
consider θ as a random variable and assume that it follows the prior
distribution ξ (θ). We can “update” this distribution in light of our
sample X1, . . . ,Xn using Bayes’ Theorem:

ξ (θ|X1, . . . ,Xn) =
f (X1, . . . ,Xn | θ) ξ (θ)∫

Θ f (X1, . . . ,Xn | θ) ξ (θ) dθ

=
f (X1 | θ) · . . . · f (Xn | θ) ξ (θ)

g (X1, . . . ,Xn)
(A.4)

where g (X1, . . . ,Xn) =
∫
Θ f (X1 | θ)· . . . ·f (Xn | θ) ξ (θ) dθ and we have

used the fact that f (X1, . . . ,Xn | θ) = f (X1 | θ) · . . . · f (Xn | θ), since
the random variables X1, . . . ,Xn are independent.

We will first consider updating the distribution of D in light of the
total demand N (T ) to derive the fundamental result. How to use N (t)
– the more realistic case – is treated afterwards. The extension to N (t)
is straightforward, only the notation gets a little more complicated.

Posterior distribution of D given a sample of N (T )

For the ease of notation, let X be the random variable N (T ) and
X1, . . . ,Xn be a sample of X – that is, we have simulated/observed
the NHPP n times and recorded the total demand Xi of the i-th
replication/observation. We start by computing g (X1, . . . ,Xn). Define
y =

∑n
i=1 Xi and use (A.1) and (A.2) to obtain:

g (X1, . . . ,Xn) =
∫ ∞

0
P (X1 |D = u) · . . . · P (Xn |D = u) f (u) du

=
∫ ∞

0

uy∏n
i=1 Xi!

e−nu δ−γ

Γ (γ)
uγ−1e−u/δdu

=
δ−γ

Γ (γ)
∏n

i=1 Xi!

∫ ∞

0
uy+γ−1e−u(n+1/δ)du

Upon substituting t = u (n + 1/δ), we obtain:
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g (X1, . . . ,Xn) =
δ−γ

Γ (γ)
∏n

i=1 Xi!
· Γ (y + γ)
(n + 1/δ)y+γ

Thus:

f (D = u |X1, . . . ,Xn ) =

uy∏n
i=1 Xi!

e−nu δ−γ

Γ (γ)
uγ−1e−u/δ

δ−γ

Γ (γ)
∏n

i=1 Xi!
· Γ (y + γ)
(n + 1/δ)y+γ

=
(n + 1/δ)y+γ

Γ (y + γ)
uγ−1e−u(n+1/δ)

The posterior distribution of D in light of the sample X1, . . . ,Xn is
thus a Gamma with parameters γ + y, (n + 1/δ)−1.

Posterior distribution of D given an observation of N (t)

Updating the distribution of D depending on a sample of N (T ) is
not particularly helpful in practice. Therefore, we consider now the
case that a single observation of some N (t) is given, i. e. we have
simulated/observed the arrival process up to time t and counted the
arrivals. We will make use of the following proposition:

Proposition A.1 (Linear Transformation) Let X be a continuous
random variable and Z = a + bX where a, b are constants and b > 0.
Let G and g be the distribution and density function of X, respectively.
The distribution and density function of Z, F and f are then:

F (x) = G

(
x − a

b

)
f (x) =

1
b
g

(
x − a

b

)
Proof. Consider the distribution function first. We have

X = (Z − a) /b

For the event Z ≤ x the following holds:

Z ≤ x ⇔ (Z − a) /b = X ≤ (x − a) /b

⇒ P (Z ≤ x) = P (X ≤ (x − a) /b)
⇒ F (x) = G ((x − a) /b)

Since f and F are intimately related, it is sufficient to check that
the following holds:
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−∞

1
b
· g

(
u − a

b

)
du =

1
b

∫ (x−a)/b

−∞
b · g (y) dy

= G ((x − a) /b) = F (x)

Proposition A.2 If X ∼ Γ (γ, δ) and Z = cX where c is a constant
with c > 0, then Z ∼ Γ (γ, cδ).

Proof. By the previous proposition, the density of Z is:

f (x) =
1
c

δ−γ

Γ (γ)
e−

d
cδ (d/c)γ−1 =

(cδ)−γ

Γ (γ)
e−

d
cδ dγ−1

– indeed the density of a Gamma random variable with parameters
γ, cδ.

Consider now a subinterval (s, t) ⊂ [0, T ]. The number of arrivals
in that interval follows a Poisson distribution with parameter

∫ t
s D ·

β (u) du, i. e. the parameter is a random variable D′ = c · D where
c =

∫ T
s β (u) du ∈ (0, 1). By the proposition, D′ ∼ Γ (γ, cδ). Suppose

we have a single observation X1 of the number of arrivals in the interval
(s, t). As we have seen, the posterior distribution of D′ in light of X1

is a Gamma with parameters γ + X1,
(
1 + 1

cδ

)−1. Since D = c−1D′, its
posterior distribution is a Gamma with parameters γ+X1, (c + 1/δ)−1.
This result is intuitive, since we saw that for a sample of N (T ) of size
n, we obtained a Gamma with parameters γ+

∑n
i=1 Xi, (n + 1/δ)−1. In

this case, we just have a “sample” of N (T ) of “size” c < 1, and obtain
an equivalent formula.



B

Implementation of the Combo Algorithm:
Technical Details

To separate the most violated cover for a given break b and the cor-
responding maximum length restriction

∑
s∈S(b) lsxsb ≤ dmax

b we have
to solve the following knapsack problem (see our discussion starting on
page 193):

ζ = min
∑
s∈K1

(1 − x∗
sb) zs

s. t. ∑
s∈K1

lszs ≥ d + 1

zs ∈ {0, 1} s ∈ K1

Since every break b ∈ B is treated in isolation the index b is fixed
anyway, we thus drop it in the following to improve readability.

We solve this knapsack problem using the Combo algorithm by
Martello, Pisinger, and Toth (1999). A C-implementation of this algo-
rithm can be downloaded from Pisinger’s website (http://www.diku.
dk/~pisinger/codes.html).

Combo cannot be applied directly to our problem for various rea-
sons. The first issue is that Combo deals with knapsack problems with
a max objective and a ≤ restriction. It is however very easy to transform
the min problem with a ≥ restriction into that form (see e. g. Martello
and Toth 1990, p. 15) by complementing the decision variables, i. e. by
substituting ys = 1 − zs:

ζ = min
∑
s∈K1

(1 − x∗
s) (1 − ys) = min

∑
s∈K1

(1 − x∗
s) −

∑
s∈K1

(1 − x∗
s) ys
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The new objective function is thus:

z = max
∑
s∈K1

(1 − x∗
s) ys

and we have ζ =
∑

s∈K1
(1 − x∗

s) − z. Analogously we obtain for the
restriction: ∑

s∈K1

ls (1 − ys) =
∑
s∈K1

ls −
∑
s∈K1

lsys ≥ d + 1

⇔
∑
s∈K1

lsys ≤
∑
s∈K1

ls − d − 1

Two minor technical restrictions remain to be solved:

1. Combo assumes that both the “weights” ls and “profits” 1 − x∗
s

are integers. While ls are integer by assumption, 1 − x∗
s ∈ (0, 1) by

the definition of K1 – see (6.23). We therefore multiply x∗
s by 106

and truncate the remaining decimal places. Thus at most 10−6 is
lost for each item s, i. e. 106 items would be necessary to wrongly
conclude that a violated cover inequality existed.

2. Every item has to fit into the knapsack, i. e. ls ≤
∑

s∈K1
ls−d−1 has

to hold. This restriction may be violated in our application. Con-
sider the following (artificial) example: Let K1 = {1, 2, 3, 4} , l1 =
1, l2 = 20, l3 = 4, l4 = 3, d = 25. Then

∑
s∈K1

ls = 28 and the knap-
sack’s capacity in the max formulation is 28 − 25 − 1 = 2, i. e. the
items {2, 3, 4} do not fit. In the min problem the restriction reads:

1x1 + 20x2 + 4x3 + 3x4 ≥ d + 1 = 26

We conclude that the items which to do not fit into the knapsack
in the max formulation have to be inserted into the knapsack in the
min variant of the problem. This follows from the fact that zs = 1−
ys. For the sake of completeness, we also show this result formally:
Let big =

{
s ∈ K1 : ls >

∑
i∈K1

li − d − 1
}

, small = K1\big. We
show that each and every element k ∈ big has to be part of the
cover in the min formulation, i. e. we show that:

k ∈ big ⇒
∑

s∈small

ls +
∑

s∈big\{k}
ls < d + 1

Recall that
∑

s∈K1
ls ≥ d + 1 holds. Choose an arbitrary k ∈ big.

We have:
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s∈small

ls +
∑

s∈big\{k}
ls =

∑
s∈K1

ls − lk

<
∑
s∈K1

ls −
⎛
⎝∑

s∈K1

ls − d − 1

⎞
⎠ = d + 1

The knapsack problem thus simplifies to:

ζ =
∑
s∈big

(1 − x∗
s) + min

∑
s∈small

(1 − x∗
s) zs

s. t. ∑
s∈small

lszs ≥ d + 1 −
∑
s∈big

ls

zs ∈ {0, 1} s ∈ small

If
∑

s∈big (1 − x∗
s) ≥ 1, no violated cover exists and we can stop

here. If d + 1 −∑
s∈big ls ≤ 0 the problem is trivial. Otherwise we

transform as before:

ζ =
∑
s∈big

(1 − x∗
s) +

( ∑
s∈small

(1 − x∗
s) − z′

)
=

∑
s∈K1

(1 − x∗
s) − z′

z′ = max
∑

s∈small

(1 − x∗
s) ys

s. t.

∑
s∈small

lsys ≤
∑

s∈small

ls −
⎛
⎝d + 1 −

∑
s∈big

ls

⎞
⎠ =

∑
s∈K1

ls − d − 1

ys ∈ {0, 1} s ∈ small
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ment Techniken. Presentation at the 2004 meeting of the GOR group
“Revenue Management & Dynamic Pricing”, Berlin, 2004. (Cited on

page 12.)
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advance purchase restrictions, 5, 32
Aida Cruises, 114
airlines, 8–9
airtime, 114, 164, 165, 167, 170–172,

174, 175
alliances, 96
aluminium industry, see metal

industry
always (algorithm for broadcasting),

228–235
American Airlines, 2, 8, 9, 47, 81
AMPL, 180, 215, 219, 225, 235
auctions, 19–20, 22, 25, 27–28, 84

B&B, see Branch and Bound
B&C, see Branch and Cut
behavior of customers, 3–7, 63,

97–113, 131, 132
and broadcasting companies, 169,

173, 174
and demand data streams, 126,

127, 135, 136, 138, 151, 153,
156

and EMSR, 99–100
and flexible products, 119
and overbooking, 16
buy down, 106, 115
buy up, 32, 58, 60, 97–102, 104,

105, 109, 110, 116, 135
flexible customers, 9, 92
influence of RM on, 32, 131

strategic, 12, 131–132
Beta distribution, 147–149, 151, 249
Beta function, 148, 149, 158

incomplete, 159
bid prices (see also chapter 2), 16,

28, 133
and flexible products, 116–119
and simulation optimization, 140
for broadasting RM, 240–242
for cargo RM, 239
for manufacturing, 239
stochastic, 75
vs. offer sets, 101
vs. pricing, 23, 27

bidder, see auctions
bidding, see auctions
block demand, 43, 58, 61, 134–137,

139–141
booking limits (see also chapter 2)

and buy ups, 99–101
and demand data streams, 130,

137
and flexible products, 117, 118
and simulation optimization, 139,

140
dynamic, 61, 62
nested, see nesting
partitioned, 36, 43, 53, 54, 63, 64,

71, 75, 118, 137
static, 61
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vs. offer sets, 104
bound

lower, 84, 178, 205, 209–211,
215–220, 224

upper, 34, 38, 117, 138, 186, 187,
200, 205, 207, 210, 211, 220,
223, 224, 228, 229, 243

Branch and Bound, 121, 183, 186,
187, 205, 215, 229, 230

Branch and Cut, 183, 187, 193, 201,
205, 211, 212, 219–221, 225,
235, 243

break (broadcasting), 165, 176
buckets, see nesting: virtual nesting
bumping, see denied boarding
bundle of products/services, 5–6, 11,

12, 20, 115, 124
business travelers, 1, 5, 8, 22, 135,

142
buy down, see behavior of customers:

buy down
buy up, see behavior of customers:

buy up

cancellations, 5, 6, 15–18, 22, 63, 70,
101, 124, 125, 137–139, 165

cannibalization, 93, 114–116
capacity control (see also chapter 2),

15–16
vs. dynamic pricing, 20–27

capacity utilization, 9, 24, 82, 152,
153, 156

car rental, 2, 4, 5, 12–13, 16, 20, 23,
24, 90, 93, 95, 124, 126, 237

cargo, 9–10
overbooking, 85–86

Carnival (cruise liner company), 295
casinos, 11–12
child care, 15
choice behavior, see behavior of

customers
clustering, see nesting: virtual

nesting
coefficient of variation, 138, 146, 154,

156

column generation, 112, 119, 243
Combo algorithm, 195, 196, 255, 256
commercial break, see break

(broadcasting)
computer reservation systems, 46,

47, 65, 72
computing centers, 14
conflict (broadcasting), 176, 215
constrained demand, see demand,

constrained
contribution margin, 1, 2, 7, 32, 33,

88
convex hull, 187, 189, 190
cover cut, 183, 190–193, 195,

200–202, 207
cover, minimal, 190, 192, 195, 197,

200, 201, 203, 204, 207
Cox Process, 149
CPLEX, 181–183, 212, 215, 219, 220,

225–228, 231–235
CRS, see computer reservation

systems
cruise liners, 11–12, 21, 24, 97, 114,

115
customer behavior, see behavior of

customers
cut, see cutting plane and cover cut
cut pool, 211–212, 224
cutting plane, 183–190, 198, 205,

211, 219, 220, 223, 241, 243

DAVN, see nesting: virtual nesting:
Displacement Adjusted Virtual
Nesting

DB, see Deutsche Bahn
default (algorithm for broadcasting),

224, 225, 227–235
demand

block, see block demand
constrained, 76, 98, 127, 129, 132,

158
deterministic, 36, 54–55, 71–73,

124, 126, 132–133, 141
for broadcasting RM, 174, 175,

235, 239, 243
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induction, 115
stochastic, 34, 118, 132, 134
timing, see behavior of customers:

strategic
denied boarding, 17, 81, 82, 84, 85,

87, 90
deterministic heuristic, 206–208, 227
deterministic linear programs, 33,

70–76, 79, 110, 117, 119
Deutsche Bahn, 6, 9, 92, 110

uncontrolled traffic, see behavior
of customers: flexible customers

deviation, 98, 99
displacement, 2, 15, 18, 45, 49, 66,

73, 134
displacement adjusted leg revenues,

see nesting: virtual nesting:
Displacement Adjusted Virtual
Nesting

Displacement Adjusted Virtual
Nesting, see nesting: virtual
nesting: Displacement Adjusted
Virtual Nesting

displacing, see displacement
Dive-and-Fix, 180, 181, 216–219
diversion, see behavior of customers:

buy up
Dollar Car Rental, 13
downgrade, 17, 81, 122
duality, see shadow prices
dynamic pricing, 17–19

and demand data streams, 134,
141

instance generation for, 122
vs. capacity control, 20–27

Dynamic Programming, 32, 68,
77–80, 87–89, 117, 118, 136,
175, 200, 201, 205, 238, 239,
241

early departure, 13, 16, 124
efficient set, see offer set: efficient
EMSR, see expected marginal seat

revenue
entertainment, 11, 14

events (RM for), 14
expected marginal seat revenue,

55–60
and behavior, see behavior of

customers: and EMSR
and demand data streams, 135–136
and flexible products, 117
EMSRb, 59–60, 100, 135

external factor, 3, 4, 6–8, 10, 13, 16,
27, 124

extreme point, 184, 187, 188
extremeness aversion, 106

face, 11, 23, 189, 198
facet, 188–190, 192, 197–201, 203,

204
fare, 32–33
fashionable products, 18, 21, 24, 27
FCFS, see first come first serve
fencing, 5, 22, 98, 105
first come first serve, 4, 6, 18, 19, 70,

72, 73, 83, 126, 152
fluid, 64, 116
ForceOnes, 181, 182, 216–220
ForceZeroes, 181, 182, 216–220
forecasting, 7, 14, 24, 32, 61, 72, 73,

109, 114, 127, 130, 250
frame of reference, 106
FS (Italian public railway company),

9
full service carrier, 22, 24

Gamma distribution, 138, 146, 147,
150, 151, 249, 252, 253

generating realizations of, 148
Gamma function, 149
gas industry, 14
General Motors, 25
German railways, see Deutsche Bahn
golf courses, 14
Gomory, 186, 187
goodwill, 17, 81
Greedy (heuristic, broadcasting),

180, 182, 183, 215–220
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group bookings, 53, 62, 63, 65–67,
70, 75, 89, 104, 111, 123, 138,
139, 153

health care, 82, 83
Hertz, 2, 13
holidays, see casinos, cruise liners

hotels and tour operators
horizontal shift, 98
hospitals, see health care
hotels, 2, 3, 5, 6, 11–13, 17, 55, 60,

62, 71, 81, 85, 88, 124, 237
hour strip, 6, 166–171, 173
HPP, see Poisson process: homoge-

neous
hub, 46, 47, 71, 123, 153

inclusive holidays, see casinos, cruise
liners hotels and tour operators

independent demand, 97–99, 104–
106, 108, 110, 113, 116, 126,
130–132, 135, 136, 138, 140,
141, 153, 155–157, 160, 238

indexing, see nesting: virtual nesting
internet advertising, 173
internet service providers, 14
iron industry, see metal industry
itinerary, 32–33

as standardized product, 5–6
nesting among, 64
passage vs. cargo, 10

KLM cargo, 10
knapsack problem

bounded, 55
multiconstraint, see knapsack

problem, multidimensional
multidimensional, 55, 239
multiple knapsack, 178
polyhedron, 190, 198
stochastic, 10, 239

LCC, see low cost carrier
leg, 32–33
leg buckets, see nesting: virtual

nesting

leisure travelers, 5, 8, 22, 135, 142
lifting, 183, 192, 198–207, 223, 230
Logit, 108–110, 112, 119, 126, 134
low cost carrier, 5, 9, 21–24, 26
Lufthansa, 1, 2, 8, 10, 81

macro periods, 64, 136–138, 141
make-to-order, see manufacturing
make-to-stock, see manufacturing
manufacturing, 3, 7, 13–14, 22, 25,

27, 137, 138, 169, 172, 238–240
marginal costs, 1, 62, 67, 69, 102,

105, 106, 111
markdown, 12, 21, 26, 132
markup, 12, 22
memoryless property, 146, 159
menu of products, 5, 115, 123
metal industry, 14
micro periods, 61, 66, 98, 101, 104,

112, 133, 136, 138–139, 141,
239

Microsoft Windows, 129
MNL, see Logit
module (broadcasting), 167, 168, 170
monotonic association, 60
monotonicity

of booking limits, 53, 54
of booking sequence, 58, 135
of demand distributions, 60
of nesting orders, 63
of value functions and policies, 62,

63, 67, 68, 87, 89, 101, 103,
107, 108

Mutinomial Logit, see Logit

National Car Rental, 2, 13
Navy, 14
NBC, 164, 171, 172, 174, 212, 235,

236, 242
negative Binomial distribution, 150,

151, 158, 249, 250
nest (cluster of similar products), 45,

53, 64, 65
nesting, 36–66
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nesting order, 38, 44–46, 48–51,
53, 57, 63, 65, 66, 86, 87, 89,
110

by fares, 108, 109
protection levels (see also nesting),

98–101, 103, 111
standard nesting, 38, 39, 41, 42,

44, 51
standard vs. theft, 39–43
theft nesting, 39, 41, 42, 44, 47–51,

53, 86, 87
virtual nesting, 46–49, 64, 65, 72,

110
Displacement Adjusted Virtual

Nesting (DAVN), 46, 48–49,
51, 71, 113

Netherlands Railways, 9
network flow, 55, 71, 72, 79
NHPP, see Poisson process:

non-homogeneous
no-shows, 16, 17, 63, 81–83, 85–87,

89, 90, 96, 101, 124–126, 132,
137, 165

nominal load factor, 126, 152, 153,
155–157, 213

Normal distribution, 60, 125, 136,
138, 140, 146, 148

NP-complete, 172, 178–180
NP-hard, 20, 33, 132, 133, 178–180,

183, 186, 187, 193, 200, 205,
243

offer set, 32, 92, 95, 99, 101–108,
111–113, 119, 127, 131, 132,
134, 141, 155, 156, 291, 292

efficient, 107, 108, 113
operational flexibility, 3, 4, 7, 95
order (broadcasting), 164–165
overbooking (see also section 2.4), 8,

16–17, 25–28, 54, 63–65, 67, 69
and buy ups, 98
and customer behavior, 101
and demand data streams, 132,

137, 139
and flexible products, 117, 118

and simulation optimization, 140
and substituable inventories, 96
cargo, 85–86
pads, 84–85

overflow, 98
oversales, 17, 81, 82, 84–86, 88, 93,

96, 98, 122

package holiday, see casinos, cruise
liners hotels and tour operators

paper industry, 14
parameter estimation, 110, 122, 127,

128, 130, 150, 157–161, 251
People Express, 8
piecewise constant rate, 139, 141,

146
piecewise linear rate, 141, 142, 146,

158
Poisson

distribution, 60, 136–138, 145, 146,
150, 158, 249, 253

process, 134, 139, 141
censored, 130
compound, 125, 137, 238
conditional, 149
controlled, 134, 141
doubly stochastic, 149
homogeneous, 118, 133, 144, 145
mixed, 149
non-homogeneous, 63, 130,

133, 134, 138, 139, 141, 142,
144–146, 149–151, 158, 159,
249, 251

stationary, see Poisson process:
homogeneous

polyhedron, 187–190, 192, 197–200,
203, 204

portable, see random numbers
preference, 10, 91, 106, 110, 114, 170,

171
premium inventory, 171
premium price, 1, 19, 93, 94, 97, 115,

171
primal degeneracy, 74
Princess (cruise liner company), 11
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product
callable, 97
multimodal, 92, 93, 95, 113–117,

165, 167, 170, 174
specific, 92, 93, 95, 108, 114–118,

123
unimodal, 92, 95, 113–116

product range, standardized, see
standardized product range

radio, 28, 163, 164, 169, 170, 173
railways, 6, 9–10, 92
random numbers, 129, 142–144, 148
rebooking, see cancellations
recapture, 98, 109, 110
Reduced Cost Variable Fixing,

210–211
Relax-and-Fix, 180–182, 216–219
reoptimization, 61, 66, 73, 74, 77, 79,

138, 223
restaurants, 2, 11, 14
retailing, 3, 18, 21, 24, 27, 92, 94, 96,

99, 132
Revenue Management

defined, 1–29
success of, 2

risk
aversion, 57
neutral, 57
pooling, 114

rollout policy, 79, 80
root2 (algorithm for broadcasting),

231–235
routing control, 93, 95, 96, 113–117
RTVE (Spanish broadcasting

company), 164, 166, 170, 171
RTVV (Spanish broadcasting

company), 164, 166, 170, 171,
177

SAS, see Scandinavian Airlines
Saturday night stay restriction, 5, 8,

98
Scandinavian Airlines, 8, 81, 88, 110,

138

scatter market, 171, 174
self selection, see fencing
sell up, see behavior of customers:

buy up
separation (of cutting planes), 183,

185, 186, 192–195, 200, 202,
205, 212, 223, 224, 230, 255

shadow prices, 48, 49, 70–76, 79, 117,
240

shared hosting services, 82, 83
simulation optimization, 64, 77, 79,

90, 130, 132, 139–141, 291, 295
Sixt (German car rental company),

13, 20
SNCF (French railway company), 9
Spanish broadcasting companies,

163–164, 166, 170, 174, 175,
212–214, 235, 236, 242

special ordered set, 208–210
spill, 57, 85
spoilage, see spill
sports, 14
standardized product range, 3, 5–7,

170
steel industry, see metal industry
substitution, 90–96, 170

tailing off, 187, 223, 229
telecommunication, 14
test bed, 28, 29, 121, 122, 163, 212
Thinning, 144, 145, 149
Thomas Cook, 12
time window, see hour strip
tour operators, 11–12, 21, 24
tourism, see casinos, cruise liners

hotels and tour operators
transformation of random variables,

144, 252
transportation, 3, 8, 10, 90, 125
triangular rate, see piecewise linear

rate

unconstraining, see demand,
constrained
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uncontrolled traffic, see behavior of
customers: flexible customers

United Airlines, 47
up-front market, 171, 174
upgrade, 16, 17, 82, 93, 97
US Navy, see Navy
utility, 97, 109, 115, 126

maximization, 104, 126, 131

valid inequality, 184–190, 197–200,
203–207, 212

valuation, 3–8, 12, 14, 17, 31, 134,
169

vertical shift, see behavior of
customers: buy up

violated inequality, 184–187, 191–
193, 196, 197, 200, 202,
255–257

visitor attractions, 14

wholesale, see retailing
willingness to pay, 1, 5, 22, 98, 169

yield management, 7



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




