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Supervisor’s Foreword

Density functional theory is remarkable. By searching over the single particle
electron density alone, in principle, it provides the exact quantum mechanical
ground state energy of a given system and the corresponding exact ground state
electron density. It achieves this incredible feat via the exact density functional,
which, for any input electron density, outputs the sum of the kinetic, Hartree and
exchange-correlation energies for the ground state many-body wavefunction
which generates this input electron density. As we add the final electrons to a
semiconductor when filling the valence bands, the density functional tells us that
the change in energy on adding each successive electron is almost constant.
However, when we add an extra electron, which has to enter the conduction
band, the exact density functional tells us that the change in energy must differ,
discontinuously, from its previous value. The difference in these energies is, in
fact, the band gap of the semiconductor and exact density functional theory
reproduces its value precisely even though the single particle electronic density
changes by an infinitesimally small amount each time an electron is added to the
system. Additionally, although the contribution to the single particle electron
density from a given set of orbitals might equate to four and a half electrons, for
example, the exact density functional captures the knowledge that electrons
cannot be divided and that this occupancy can only occur because the true many-
body wavefunction is a superposition of configurations, perhaps one which puts
four electrons in this set of orbitals while another represents five electrons. In
situations like this, the exact density functional is capable of precisely deter-
mining the energies associated with this many-body wavefunction.
Unfortunately, we are not as clever as the true density functional. Our crude
approximations of the density functional break some of the physical constraints
on the true many-body wavefunction, with a consequent detrimental effect on the
predicted energies and densities. For example, all of the available density func-
tionals get band gaps wrong, often badly underestimating them, and numerous
approximate functionals quite happily place non-integer numbers of electrons on
particular sites. It is my view that no density functional that we may create will
ever overcome all of these problems simultaneously, although it is often possible

vii



viii Supervisor’s Foreword

to overcome one shortcoming using an approximate functional designed for that
purpose. However, while such a functional will, by construction, give better
results for the targeted property, it may then give worse predictions of other
properties than standard functionals and it is thus in no real way closer to the
exact density functional.

Given the complexity of many-body wavefunctions it is, perhaps, remarkable
that available density functionals work as well as they do—often predicting
physical properties to within an accuracy of a few percent. Furthermore, density
functional theory allows us to perform predictive calculations on systems con-
taining many thousands of atoms, while we can only compute many-body wave-
functions for a handful of electrons. One approach to alleviate the shortcomings of
the available density functionals is simply to insert the physics that is missing in
these approximate functionals. For instance, it has now become very common to
add an explicit van der Waals interaction between the atoms as an additional
contribution to the total energy in a density functional theory calculation. Another
widely used approach is the so called DFT 4 U method whereby a Hubbard U
interaction is added to reproduce the physics of strongly correlated localised
electronic orbitals. The weakness of previous implementations of DFT + U, in
which the occupancy of the orbitals is constrained to be an integer number of
electrons, was that the results depended on the choice of the projectors used to
determine the occupancy of the localised orbitals. This thesis presents a method in
which these projectors may be determined self-consistently during the
DFT + U calculation, thus providing an approach to overcome this weakness in
previous implementations. This approach has been implemented in the linear
scaling density functional code ONETEP and is shown to retain the linear scaling
of computational cost with system size. This thesis contains applications of this
technique to bulk nickel oxide, ligated iron porphyrins of biological interest and
the copper phthalocyanine dimer, as well as scaling tests on nickel oxide nano-
clusters containing over 7,000 atoms.

In order to develop the projector self consistent DFT + U methodology, it was
necessary to master the full mathematical complexities of tensorial calculus in the
context of electronic structure calculations. This thesis contains a detailed
exposition on the use of nonorthogonal orbitals, the construction of contracted
tensorial invariants, energy minimisation algorithms on curved spaces and the
Christoffel symbol corrections needed to ensure that the density matrix retains its
idempotency, to first order, as the functions in which it is expanded are updated.
This thesis provides a very detailed, yet readable, account of these issues and
could become the standard reference on this topic for the electronic structure
community.

Many technological materials rely on strongly correlated electronic systems
for their functional properties and atoms that host strongly correlated electronic
orbitals are found in the active sites of many proteins. DFT methods have usually
struggled to describe such systems accurately and the results of DFT + U studies
have fundamentally depended on the set of projectors used in such calculations.
As a result of the work presented in this thesis, we are moved a step closer to the
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accurate and routine description of such systems using first principles quantum
mechanical approaches.

Cambridge, June 2011 Prof. Mike C. Payne
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Chapter 1
An Introduction to Linear-Scaling
Ab Initio Calculations

Atomistic modelling is a powerful tool that allows numerical experiments to be
conducted which may be used to predict the properties of new materials, or known
ones under novel user-defined conditions, and to test the validity of physical models
against experiment.

Density functional theory (DFT) is, without a doubt, the most successful method
currently available for making quantitative theoretical predictions of the properties
of real materials. The popularity of atomistic simulations using DFT is owed to its
capability of accurately and reliably reproducing the ground-state properties of many
quantum-mechanical systems ab initio, that is provided only with a set of reasonably
well-controlled approximations and the atomic positions. Those positions may, if so
required, also be altered according to quantum-mechanical forces.

Physical attributes determined by the electronic ground-state and reproducible
using DFT include: equilibrium geometric structures and any magnetic ordering;
phase transitions between structures; cohesive binding energies; elastic moduli;
transfer of charge and magnetisation between species; local electric and magnetic
moments; polarisabilities and susceptibilites in the low and high-frequency limits;
and potential energy isosurfaces [1]. Moreover, the results of a ground-state DFT
calculation often serve as an excellent starting point for sophisticated methods for
describing excited-state properties. These include the GW approximation [2-6],
Dynamical Mean Field Theory [7-10] and time-dependent Density Functional
Theory (TDDFT) [11, 12]. We refer the reader to excellent reviews on atomistic
modelling using DFT in Refs. [1, 2, 13, 14].

1.1 The Challenges of Spatial and Electronic Complexity

A number of factors, unfortunately, currently limit the applicability of atomistic
modelling with DFT and hence its usefulness for guiding or stimulating experi-
mental innovation. Foremost among these is the issue of computational expense:
the realistic study of many systems requires the explicit treatment of system sizes

D. D. O’Regan, Optimised Projections for the Ab Initio Simulation of Large and 1
Strongly Correlated Systems, Springer Theses, DOI: 10.1007/978-3-642-23238-1_1,
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(or simulation times, if ionic dynamics are of importance) which are beyond the
reach of currently available computing technology. This is particularly true when
conventional algorithms for solving for the ground-state density, which scale cubi-
cally with the number of atoms, are used. Irrespective of ever-increasing compu-
tational resource availability, it is only by using algorithms for which the effort
increases linearly with system size that we may routinely bring first-principles simu-
lation to bear on many complex systems which are pertinent to the technological,
environmental and medical challenges of the twenty-first century.

Additionally, one finds that for a large class of systems of immediate technological
or biological interest, particularly some of those comprising open-shell first-row
transition metal or lanthanoid ions and categorised as “strongly-correlated”, DFT
in its most commonly practiced forms may perform very poorly, even qualitatively
disagreeing with experimental observation in certain respects. In strongly-correlated
systems, simple mean-field approximations for the interactions between electrons
exceed their regime of applicability and more sophisticated techniques are needed
to augment their description. A different, but not altogether unconnected issue is the
intrinsic unsuitability of ground-state DFT for describing excited-state properties
such as absorption spectra, multiplet splittings, non-equilibrium transport etc., when
it is often these properties which are most easily observed experimentally.

In this dissertation, we present computational methodology to tackle the obsta-
cles of large system size and strong correlation effects simultaneously. Examples of
comparatively large systems where strong electron interaction effects play a role,
and of the type that we have in mind, are shown in Fig. 1.1. From left to right, these
are: a catalytic rare-earth oxide surface in a partially reduced multiple-valence state,
which has a high density of sites of strong electron correlation; the crystal structure
of a well-studied molecular magnet [15], whose antiferromagnetically coupled iron
centres (green prisms) harbour strong correlations; and a B-DNA structure interca-
lated with two artificial base pairs mediated by Cu®* ions (green spheres) [16].

We work in the framework of a linear-scaling implementation of DFT in order
to tackle the issue of system size, which allows us to demonstrate computational
performance tests on a strongly-correlated oxide system of over 7,000 atoms. Much
of our theoretical investigation focuses on the optimisation of nonorthogonal repre-
sentations of single-particle states, which we show to be necessary for accurate, fully
ab initio simulations of very large systems, and we derive a number of new analyt-
ical results in this area. For the study of strongly correlated systems, we employ the
popular and efficacious DFT + U method. We detail a linear-scaling implementation
of DFT+ U, rigorously generalise it to the case of nonorthogonal projections and
offer a novel ab initio method for their optimisation.

1.2 Outline of Dissertation

We begin the dissertation with a brief introduction to the construction of linear-
scaling ab initio methods and to the spatially localised representations which are
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Fig.1.1 Some large strongly-correlated systems of interest, in order of decreasing density of corre-
lated sites: a slab of the catalytic multiple-valency lanthanoid oxide CeO, with a partially reduced
surface (left); the crystal structure of the canonical binuclear molecular magnet [{Fe(bt)(NCS),}»
bpym] (bt=2,2-bithiazoline, bpym=2,2-bipyrimidine) [15] (middle); and a modified DNA structure
[16] with artificial Cu** mediated pyridine—2—,6—dicarboxylate : pyridine base pairs (right)

used to project out the ground-state Kohn—Sham orbitals, namely Wannier functions
of both the orthogonal and generalised nonorthogonal varieties. We also address the
study of large strongly-correlated systems with linear-scaling cost, in particular those
too large to study with conventional cubic-scaling approaches.

In this chapter, we offer a broad introduction to ab initio simulation with Kohn—
Sham DFT, with a particular emphasis on linear-scaling methods. The foundations
of the theory are first detailed, as well as its limitations. The devices used in practical
application of the theory are discussed, including the Born—Oppenheimer, exchange-
correlation functional, periodic boundary condition and pseudopotential approxima-
tions and their ranges of applicability. We go on to describe the formulation of
Kohn-Sham DFT in terms of the single-particle density matrix, the attenuation of
the spatial non-locality of which is used, for systems in which it is appropriate, as an
artifice by which the linear-scaling of computational effort with system size may be
achieved.

In Chap.2, we describe the physics of strongly-correlated materials and mole-
cules, explaining the failure of conventional local-density type exchange-correlation
functionals for such systems and motivating the construction of localised correc-
tions for self interaction to alleviate these problems. We offer an introduction to a
popular and effective example of such a correction, the DFT + U method, and give
the details of our linear-scaling implementation of this technique in the ONETEP
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code. We demonstrate its power in scaling tests on nano-clusters of the canonical
strongly-correlated insulator nickel oxide.

Chapter 3 addresses the question of optimising the spatial form of the Hubbard
projectors used to delineate the strongly correlated subspaces used in locally-
corrected ab initio methods such as DFT + U. We investigate the projector-dependence
of the ground-state properties of a prototypical correlated molecular system, iron
porphyrin, and, in order to alleviate this ambiguity in the method with respect to
the choice of Hubbard projectors, we propose the use of generalised Wannier func-
tions as Hubbard projectors in a novel self-consistency scheme. We demonstrate the
performance of this projector self consistent DFT + U on the same molecular system.
This chapter has been published in abbreviated form in Ref. [17].

We continue the theme of optimising subspace projections in Chap. 4, published in
Ref. [18], where we consider the optimal way in which to construct a projection oper-
ator from a set of nonorthogonal spanning vectors, namely Hubbard projectors. By
maintaining the tensorial invariance of all scalars computed using such a projection,
as well as a number of other physically-motivated properties, we derive a solution
to this problem which differs to the numerous alternatives available in the literature.
We discuss the effect of our formalism, with comparison to the most comprehensive
one previously proposed, in a projector self-consistent DFT + U study of both bulk
nickel oxide and the copper phthalocyanine dimer.

In the closing chapters of the dissertation, we present an original study of the
geometric and tensorial consequences of optimising a nonorthogonal representa-
tion, which bears fruit in the form of beneficial and hitherto unused corrective terms
which, for example, preserve the density-matrix to first order when the representation
isupdated. This also furnishes a new approach for optimising models for strong corre-
lations. Chapter 5 describes original research on the geometric aspects of using a set
of nonorthogonal support functions, or representation vectors, for the single-particle
density matrix. In particular, observations concerning the Riemannian manifold asso-
ciated with the support functions offer new insights into the behaviour of support
function optimisation and how this may be made more efficient. Geometric consider-
ations allow us to solve an important problem in linear-scaling ab initio methods, that
is a rigorous theory for density-matrix idempotency preservation under changes to
the support functions. Chapter 6 provides details of a numerical study on conjugated
polymer molecules of an implementation of the most immediately pertinent results
of this theory in a modern linear-scaling DFT code.

In Chap.7, finally, we discuss the challenge of computing the Hubbard interac-
tion tensor U, generalising two methods which have been previously proposed to the
case of nonorthogonal Hubbard projectors, with linear-scaling expense. We make
use of the geometric arguments of Chap.5 to investigate how this tensor should
be changed when the Hubbard projectors are optimised, opening the way for effi-
cient DFT + U calculations for large systems which are self-consistent over both the
Hubbard projectors and interaction tensors. We conclude, in Chap. 8, by summarising
the main results of the dissertation and suggesting some future avenues for research.
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1.3 The Born—Oppenheimer Approximation

We now introduce the background to the methodological developments introduced
later in the dissertation. We first put the basic principles behind the practical utilisa-
tion of Kohn—Sham DFT on a firm footing and then focus on topics relating to its
linear-scaling implementation. In practice, the construction of a contemporary linear-
scaling DFT code and the introduction of any new functionality, such as described in
Chaps. 2, 3 and 6, involves a substantial investment in software development and opti-
misation for parallel-computing architectures. We do not attempt to detail matters of
computer science in this dissertation but we emphasise physical concepts. We begin
by providing some of those pre-requisite to linear-scaling DFT in this chapter.

We are generally concerned with the interacting quantum mechanical system
composed of N electrons and A/ atomic nuclei, located at positions r; and R;, respec-
tively, and described by the Hamiltonian

évz +Z Va, sz_rﬂ
) e
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Here {M;} and {Z;} are the masses and charges of the nuclei and Hartree atomic
units are used, so that h = e = m, = 4me¢g.

For simplicity, we neglect the possibility of an externally-applied electromagnetic
field, effects resulting from the finite volume of the nuclei and assume that we are in
the non-relativistic regime. Since the Hamiltonian is time-independent, its solution
may be written as a product of purely spatial and purely time-dependent functions,
as in

MZ t\)l'—‘

~
I

1i=1

¥ ({ri}, {R7}) = @ ({ri}, {R;}) © (2). (1.2)

The energy eigenvalues ¢ of the electronic-ionic, or vibronic, system are given by
the solution of the time-independent Schrodinger equation [19], that is given by

H|® ({r;}, {Ry})) = &|® ({r;}, (R ), (1.3)

where |®) is the time-independent many-body wave-function. The time-dependent
part |®) then evolves, for a given eigenvalue and initial phase 6y, according to the
time-dependent Schrodinger equation, so that

i%@(t)zz?@)(t) = O () =exp (b —iet). (1.4)

In principle, |¥) completely describes all physical properties of the combined elec-
tronic and ionic system. In practice, however, we must make some approximations,
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beginning with the Born—Oppenheimer approximation described in this section, in
order to render the computation of these properties tractable.

Assuming that the vibronic wave-function may be constructed using functions
which depend on the electron-nuclear distances, r; — Ry, itis clear that the expectation
values of its Laplacian with respect electronic and ionic positions are identical. Since,
however, the mass of the typical nucleus is a number of orders of magnitude greater
than that of the electron, the average electron velocity is expected to be several orders
of magnitude greater than that of the nuclei. The motion of the electrons is thus
effectively instantaneous with respect to the time scale of nuclear motion, meaning
that the electrons may relax to their lowest-energy configuration very quickly for a
given ionic configuration. The Born—Oppenheimer adiabatic approximation [20] is
invoked to separate the electronic and ionic degrees of freedom, treating the electrons
as though they were moving in a static potential due to the nuclei, by assuming a
separable form for the vibronic wave-function, so that it is given by

@, R) =¥ @;R)nRy). (L.5)

An electronic Schrodinger equation may then be defined in terms of a given set
of nuclear positions, {R;}, so that

N

Sldwily LS A e o
= 2" 2oz -l o IR =il - .

the solution of which we will hereafter be primarily concerned.

Operating with the full Hamiltonian of Eq. 1.1 on the separable vibronic wave-
function, of Eq. 1.5, allows, in principle, for solution of the motion of the atomic
nuclei. The eigenvalues and eigenfunctions of the electronic Schrédinger equation,
Eq. 1.6, depend parametrically on the nuclear positions, however, and the second
component of the Born—Oppenheimer approximation is the neglect of vibronic
coupling terms involving the gradient and Laplacian of the electronic wave-function
with respect to nuclear positions. The solutions of the resulting ionic Schrédinger
equation, given by

N N 77

2-LW+E@m+1§-———n=m (1.7)
oM, R 2 IR; — Rg]| ’ '
J=1 J.K#J

provide the nuclear dynamics within this approximation, where the adiabatic poten-
tial energy surface E ({R;}) is given by the position dependent equilibrium energy
of the electronic system.

In many physical systems, the Born—-Oppenheimer approximation is quite adequate
to describe the properties of interest. Furthermore, in practice, due to the substantial
masses of the nuclei and consequent particulate nature, it is often sufficient to solve
for the motion of the nuclei, using the classical analogue of Eq. 1.7, via molecular
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dynamics methods [13, 21]. The neglect of the vibronic coupling terms is not appro-
priate for all systems and phenomena, however, and by precisely constraining the
nuclei to the adiabatic surface we cannot describe any superconductivity, vibrational
spectroscopy, photochemistry or fast-ion effects such as radiation damage.

1.4 Density Functional Theory

Numerous techniques, approximate or effectively exact, have been developed to solve
the many-body Schrodinger equation of Eq. 1.6. It is currently quite computationally
impossible, however, to routinely apply many-body methods to systems composed
of the number of atoms, i.e., hundreds to hundreds of thousands, required to capture
the complexity of most systems of interest. In general, ignoring for the moment the
spin degrees of freedom and assuming a real-valued many-particle N-electron wave-
function W discretised on grid of M points in each of three Cartesian directions, W is
a function of 3N coordinates and so M3V scalars are needed to describe it [14]. For
realistic atomistic simulations, these numbers become intractably large, and so the
many-particle wave-function is truly beyond reach. Moreover, for many observables
of interest, it is not straightforward to construct expectation values from the many-
body wave-function, even if it were known. In any case, it is only necessary to find
the momentum-dependent density of states, the electron density and the density pair-
correlation function for a theoretical description of most physical observables [22].

In their seminal work of 1964, Hohenberg and Kohn (HK) rigorously showed, in
two theorems, that all ground-state properties of an interacting many-electron system
may be expressed, at least in principle, as a functional of its ground-state electron
density distribution [23] and, crucially for practical application of the theory, that the
ground-state may be located by variational minimisation of the energy with respect
to the density. Returning to the numerical example given above, the electron density
is described by M3 scalars and it is thus a much simpler and more tractable function
than the wave-function. The formalism in question, in which the electron density is
promoted as the quantity central to the description of the ground-state properties of
many-electron systems [1], is the acclaimed and highly successful density functional
theory (DFT) .

We begin our introduction to DFT by defining the electron density n (r) for an
N-electron system described by a normalised ((V'|¥) = N) quantum state vector
| W), assumed to be antisymmetric under particle exchange so as to satisfy the Pauli
exclusion principle [24], by

N
n(r) = (W[i|w) :/Hdri W (r, 12, -, o) % (1.8)

i=2

We denote, for a given static local external potential, V (r), including all system-
specific details such as the ionic potentials, the ground-state wave-function by [Wg).
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We may decompose the electronic Hamiltonian as H, = F + V, where F is the
universal (possessing an identical form for all systems) contribution consisting of
the kinetic energy and electron-electron interaction terms, namely

N

N
F=T+Vin Z : Z i—r,l (1.9)

j#i

For a given number of electrons, the external potential fully determines the
Hamiltonian and hence all of the resulting physical observables. The eigenstates
of the Hamiltonian may be found by solving Eq. 1.6; and the energy E of a given
state |W) is given by its expectation value with the Hamiltonian,

E = (V|Hy|V) = (W|F|W) + /dr oxt (¥) 1 (F) . (1.10)

In particular, the ground-state, | W), and thus its charge density, denoted n¢(r), are
dependent only on the external potential. In their seminal work, Hohenberg and Kohn
[23] showed that the converse is also true, that the mapping between the space of
all external potentials and the space of non-degenerate v-representable ground-state
densities (the class of v-representable densities are those which are derived from
solving the Schrodinger equation with some external potential) is also injective, so
that:

First HK theorem There exists a one-to-one mapping between the ground-state
density ng (r) of an N-electron system and the external potential V (r) acting
upon it.

We may prove this statement by contradiction. Suppose that there is another
external potential V' (r), differing from V (r) by more than an additive constant,
but which gives rise to the same ground-state density ng (r) . Let us denote the
ground-states of the Hamiltonians constructed with V (r) and V' (r) by |Wp) and
|W()), respectively, with corresponding ground-state energies E? and E™. Then,
using Eq. 1.10, we may write

O < (W|H|W') = (W H,IV) + (V| Hy — H))| )
= E/O—i-/dr [VEe) -V @] (1.11)
and, simply swapping the states and potentials, conversely,
< (WIH[|W) = (W|Hy|V) + (V|H, — H|P)

= EO+/dr [V @) -V ®]n®. (1.12)

Addition of the inequalities of Eqs. 1.11 and 1.12 yields the contradiction E? +
E’% < EV4+ E'0 invalidating our assumption that two non-trivially different external
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potentials may give rise to the same ground-state density and proving the theorem.
Thus, remarkably, the ground-state wave-function and hence the ground-state expec-
tation value of any observable 0 may, in principle, be calculated as a functional only
of no(r), as in

00 = Olnol = (Wolnol|O|Wolnol). (1.13)

The constrained-search approach to DFT [25, 26], extends the HK formalism to all
densities that can be obtained from a (possibly degenerate) antisymmetric N-electron
wave-function (that class known as N-representable) and we now follow this method
to reproduce another important result, the second Hohenberg—Kohn theorem.

We first define, by searching over the set of N-body antisymmetric wave-functions
which give rise to the ground-state density n(r), the universal functional F[n] as the
minimum possible expectation value of the internal-energy operator F with that
density. Thus, we may write

Fn] = min (V|F|V) = (V| F V), (1.14)
n[¥]—n
where |W[,,) is the state which is found to reproduce n(r) and to minimise the internal
energy.
Using this, we may uniquely define the lowest energy of the density n(r), when
immersed in an arbitrary potential V (r), as

Ey [n] = F [n] +/dr V(@) n () = (Wl F + VW) (1.15)

Given this external potential, there exists a ground-state wave function |\Wy) which
provides the lowest possible energy E¥, as well as reproducing the ground-state
density no(r), so that by the variational principle, for all N-representable n (r),

EY < Eynl. (1.16)
Noting that |[\W() generates the ground-state density nq (r), however, we find that

min (W] F|W) < (W] F|Wo) =

n[W]—nqo
min (W] F|W) +/dr no(©)V(r) < (Wol F|Wo) + (Wo|V|Wo) =
n[W]—ng

Eylngl < EY. (1.17)

Since E(\), is, by definition, the ground-state energy, and combining expressions
1.16 and 1.17, we are led to the statement of the second Hohenberg—Kohn theorem,

Second HK theorem For all N-representable densities n(r), Ey[ng] < Ey[n],
where E 3 is the ground-state energy of an N-electron system, with ground-state
density no(r), corresponding to the external potential V(r).
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The Hohenberg—Kohn theorems demonstrate that the task of calculating the
ground-state energy of an interacting N-electron system in the presence of a fixed
external potential is equivalent to the variational problem of minimising the energy
functional Ey[n] with respect to the density. The minimum of Ey [n] is attained at
the ground-state density and other extrema of this functional are attained at densi-
ties corresponding to excited states of the system, although these are not guaranteed
to reproduce the full spectrum of electronic excitations [27]. If the ground state is
degenerate, even in the case that some of the degenerate ground-state wave-functions
produce the same density, the energy functional remains well defined [28].

Unfortunately, however, no exact method exists to carry out the variational minimi-
sation procedure described above. In particular, no universally-reliable approxima-
tion for the universal functional of Eq. 1.14, for which the Hohenberg—Kohn theorem
guarantees existence and which must include all many-body interaction effects, exists
[14]. The Kohn—Sham approach, which recasts DFT as a single-particle theory via
an effective potential and which we will now describe, is the most widely used in
practical applications of the theory.

1.5 The Kohn-Sham Equations

Conceptually, the Kohn—Sham approach to DFT, proposed in Ref. [29], can trace its
origin to soon after the introduction of the Schrédinger equation, when Hartree intro-
duced his self-consistent field method for approximately solving for atomic wave-
functions and energies [30]. This method involves iteratively solving the Schrédinger
equation for a single particle, subject to an approximate, self-consistently updated,
effective potential due to the atomic nuclei and other electrons. The required anti-
symmetry of the wave-function, hence the exchange repulsion between electrons,
was neglected, a shortcoming which was later rectified by Fock; see Ref. [31, 32].
The latter method, known as “Hartree-Fock”, remains a valuable tool for quantum
chemistry calculations in spite of neglecting electronic correlation effects. Approx-
imating, in effect, the functional F [n] by a sum of the kinetic, T7r [n], and elec-
trostatic, Uy [n], energies of a classical charge distribution n(r), the Thomas-Fermi
approximation [33, 34] may be viewed as another early precursor to Kohn—Sham
DEFT [22], one in which

Fn]~Trp[n]+ Uy [n]

3 5\ 3 s 1 ,n(@n(r)
o (3;1 ) /drn3 (r)+§//drdr S (1.18)

Simple classical approximations such as this do not lead to qualitatively accurate
results for anything but the simplest atoms, however, for instance predicting mole-
cules to be unstable in some cases [35].

The approach proposed by Kohn and Sham, in Ref. [29], was to construct an
exact mapping between the interacting N-electron system and a reference system



1.5 The Kohn—Sham Equations 11

of N non-interacting fermions. The Hohenberg—Kohn theorems also apply to the
reference system but with a greatly simplified internal energy, namely the kinetic
energy of N non-interacting fermions, denoted 7 [n]. Remarkably, Kohn and Sham
demonstrated that there generally exists an effective potential, denoted Vg s(r), in
the presence of which the ground-state density of the reference system is identical
to that of the true interacting system.

In the Kohn—Sham approach, the total-energy functional of the interacting system
is first decomposed into constituent contributions as

En] = T, [n] + Up [n] + Exe [n] + / drn () Vo (0, (1.19)

where the exchange-correlation energy E,.[n] is defined to be that due to all
many-body quantum effects which are not included in the other terms. Variational
minimisation of the energy functional is performed, subject to the particle-number
conservation constraint, via

S[E[n]—u(/dr n(r)—N)] =0, (1.20)

giving the Euler—Lagrange equation in terms of the internal-energy functional F [n],
external potential and chemical potential pu,

8F[n]

dn(r)

+ Vext(r) = p. (1.21)

Since the non-interacting reference system is required to also obtain its minimum at
the same density, variational minimisation of the Kohn—Sham energy must yield an
equivalent expression, and specifically we may write this in the decomposed form

8T [n] , n(r) SEyc[n]
5n () +/dr r—v| " o

+ Vexi (r) = . (1.22)

Next, defining, uniquely by justification of the first Hohenberg—Kohn theorem,
an effective Kohn—Sham potential as

n (r')

Ir —r’|

Vks[n](r) = /dl" + Vie [n] (1) + Vexr (1), (1.23)

with the exchange-correlation potential given by

SE,[n]
Vie [n] (r) = Sn—(r)’

(1.24)
we see that Eq.1.22 may be cast into the form of Eq. 1.21. Therefore, the Euler—
Lagrange equation of the non-interacting reference system with potential Vxg,

8T [n]

) + Vks[n] (r) = u, (1.25)
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must yield identically the same ground-state density as the original interacting
N-electron system.

Since the kinetic energy of the non-interacting reference system may be expressed
as a sum of its contributions from a set of single-particle orbitals, v; (r), specifically

N
Tilnl=—> > fi / dr i} (1) V25 (x), (126)
i=1

1
2

where f; is the occupation number of the i orbital, it is natural to solve Eq. 1.25
using a set of N single-particle Schrodinger equations,

~ 1 N
Hgsyi = [—Evz + vmm} Vi = €. (1.27)

These are the Kohn—Sham equations and their non-interacting single-particle eigen-
functions, named Kohn—Sham orbitals, reproduce the ground-state density of the
interacting system via

N
nw = filgim). (128)

i=1

The independent-particle energy of the reference system, sometimes known as
the band energy, is given by the sum of the eigenvalues of the Kohn—Sham system

N
B = Zf,-e,- = Ts[n] +/dr Vks (r)n (r), (1.29)
i=1

and it may be corrected to give that of the original interacting system by adding
corrective terms, as per

E=E"" —Uyn —/dr Vie @) 1 (r) + Eyc [n]. (1.30)

The Kohn—Sham problem, due to its non-linearity in the density, must be iteratively
solved by alternately optimising the density and updating the Kohn—Sham potential
accordingly, at each iteration, until a self-consistent solution is reached [1, 13].
The Kohn—Sham DFT formalism is, if the exact functional E . [n] is known, a
rigorous theory for the ground-state properties of an electronic system; one which
greatly simplifies the task of solving for the ground-state density. In many cases,
furthermore, the Kohn—Sham eigenvalues, and corresponding orbitals, may provide
a good approximate description of the true spectrum of electronic excitations and
related spectroscopic properties. However, any such interpretation of the individual
solutions to the Kohn—Sham equations must be performed with care since they may
potentially differ greatly from the true excitation spectrum of the Hamiltonian in some
materials, more usually when many-body correlation effects are substantial [36].
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1.6 Exchange, Correlation and the
Local Density Approximation

Inevitably, since it encapsulates all complex many-particle interactions in a functional
of a scalar field, the explicit form of the exchange-correlation Ey. [1] is unknown
for all but the simplest model systems.

By definition, E. [n] is composed of the difference between the interacting and
noninteracting kinetic energies, given by T [n] = T [n] — T, [n], and the difference
between the interacting and electrostatic Coulomb energies, written as U, [n] =
U [n] — Uy [n]. Following Ref. [14], it is instructive to separate E . [n] into a sum
of terms purely due to exchange, E, [n], and correlation effects, E. [n].

A density-functional form of the exchange energy Ey [n] is not known, although
Fock showed that it may be exactly expressed in terms of single-particle orbitals
generating the density [32], explicitly

=—= Zﬁf;//d AR WATION (131)

Ir —r'|

l/l

The exchange effect is due to the Pauli exclusion principle, the fact that no two
fermions may occupy the same quantum state [24], and it lowers the Coulomb repul-
sion energy by spatially separating electrons of equal spin. When using a wave-
function in the form of a single Slater determinant, the single-particle kinetic energy
T [n] is exactly described by Eq. 1.26 and so the the kinetic energy correction 7 [n]
is a part of E, [n], that is purely a correlation effect [3, 14].

The correlation energy, E.[n], in turn, may be interpreted as the difference
between the true ground-state energy and that obtainable with a single self-consistent
Slater determinant. The correlation effect includes all many-body repulsion between
electrons of opposite spin and it always lowers the total-energy. There is no univer-
sally accepted definition of a “strongly correlated system”, although it is clear that
this is a reasonable description if the magnitude of E, [n] is comparable to that of
T [n] or Uy [n][14]. For such systems, some of which are of great interest and which
we describe in detail in Chap. 2, we may be justifiably doubtful of the accuracy of the
single-determinant Kohn—Sham wave-function computed using mean-field approx-
imations to E,. [n].

The exchange-correlation energy may be recast in the form of a classical elec-
trostatic interaction between the charge depletion hole density, ny.(r, r’), due to
the effects of exchange and correlation, and the inhomogeneous electron density
distribution n(r) inducing it [37, 38], using the expression

Eroln] = //d dr ’”(r)”’“(r PO ) (1.32)

_r/|

where n,.(r, r') may be defined in terms of the density pair-correlation function.
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Importantly, it may be shown that the exact E . [n] depends only on the spherical
average of ny.(r, r’) and that it also satisfies the sum rule [39] given, where n, (r, r’)
is the charge depletion generated by exchange only, by

/dr’ Nye(r,¥') = /dr’ ny(r,r') = —1. (1.33)

The Local Density Approximation (LDA) for exchange and correlation appeared
early in the development of DFT, and it still maintains much popularity and applica-
bility. In the LDA, the contribution to E,.[n] due to each infinitesimal volume
element dr is approximated by that corresponding to a homogenous electron gas
with the same density # (r) in that volume element. We may therefore write

ELPA(n] =/dr EPA () n(r) = (1.34)
LDA LDA
VEPA (= 2B M 10 o) ) T
n (r) dn n=n(r)

where €, LD A (n(r)) is the exchange-correlation energy per electron of a homogeneous
electron gas of density n(r). A commonly used LDA functional for practical DFT
calculations is the Perdew—Zunger parameterization [40]. This satisfies some known
analytical properties of E . [n], fits the numerical Monte Carlo data of Ceperley and
Alder [41] and the analytical high-density expression of Gell-Mann and Brueckner
[42].

It has been shown that the LDA reproduces the physical attributes of certain
systems which have very inhomogeneous charge densities with reasonable accuracy,
perhaps owing to the fact both that it satisfies the sum rule for n,.(r, r’), Eq.1.33,
and that the spherical averages of the exact n,.(r, r’) and that predicted by the LDA
are often quite similar in form [39]. However, the LDA exhibits the tendency (partly
due to spurious self-interaction effects, e.g., the self-evident conditions E. [n] = 0
and Ey [n] = —Upy [n] are not satisfied by the LDA applied to a one-electron system
[14]) towards systematic overestimation of cohesive binding energies, consequently
underestimated bond lengths, underestimated local moments, and underestimated
insulating energy gaps (the ionisation potential and electron affinity are reproduced
by the exact functional).

Numerous advances upon the LDA have been developed in order to improve
the description of the complex electronic interactions occurring in real systems.
More sophisticated approximations to the exchange-correlation functional include,
for example, hybrid functionals which involve some fraction of the exact exchange
[36], the optimised effective potential method [43], self-interaction [39] and orbital-
polarisation corrections [44] to the LDA and the DFT + U method [45, 46] which
we introduce in Chap.2. No method has yet been developed which systematically
and faithfully reproduces the physics of a large range of systems while incurring a
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favourable computational expense. Generalised Gradient Approximations (GGA),
however, are semi-local extensions to the LDA which include information on spatial
fluctuations in the density, e.g.,

EZ nl = /dr ¢ (@ VamIL V@, (135)

and, particularly in molecular systems, often offer some improvements over the
LDA. The widely-used GGA functional of Perdew, Burke and Ernzerhof (PBE) is
constructed using analytical conditions known for the exact functional and it provides
satisfactory results in a wide variety of systems [47]. It is the exchange-correlation
functional predominantly employed in this dissertation.

1.7 Spin-Density Functional Theory

We have hitherto treated the total-energy as a functional of the charge density alone,
including the spin-dependent nature of the Pauli exclusion principle in the differ-
ence between exchange and correlation effects but otherwise ignoring the degrees
of freedom introduced by the electron spin. This formalism is inadequate for many
systems, including all open-shell molecules and extended systems that exhibit spon-
taneous magnetisation. Here we restrict ourselves to the case of collinear electron
spins, however, although the theory of DFT for non-collinear magnetism has been
developed to describe canted magnetisation which, for example, is characteristic
of systems, such as those comprising rare-earth metals, where spin-orbit coupling
plays an important role [48]. It is then sufficient to treat the density of spin-up and
spin-down electrons, written as n' (r) and n¥ (r) , respectively, separately in order
to provide the system the variational freedom to spontaneously form magnetic struc-
tures or to interact to an externally-applied magnetic field (at least in the Zeeman
limit).

In this widely-used approach, known as spin DFT (SDFT) [38, 49], individual
Kohn—Sham equations are solved for the up and down-spin components of the density,
labelled by the spin index o, so that

. 1
AZ sy = [—Evz + V) (r)] Y@ =y @) (1.36)

The total spin density n(r), the magnetisation density m(r) and the internal magnetic
field, B (r), may be calculated, respectively, using

n(r)=nt @) +n* (), (1.37)

m(r) = o (nT (r) — nt (r)) and (1.38)
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Bue ) = o (VL0 = VL ). (139)

where (¢ is the Bohr magneton [14]. The Hartree term remains unchanged in the
SDFT formalism and so the spin-dependence of the potential enters only through
f/;;’ ) The analogue of LDA for SDFT, dubbed LSDA [49], is usually constructed
using interpolation procedures which preserve certain properties such as the theoret-
ically exact spin-scaling relation for exchange [50], given by

ESPET [nt 0t | = % (EPFT [2nt |+ EPTT [20t]). (1.40)

1.8 The Pseudopotential Approximation

We now describe an additional computational expedient, the well-known pseudopo-
tential approximation [51-53], for obviating the explicit treatment of tightly-bound
core-level atomic orbitals which are observed to participate little in, and to be only
slightly perturbed by, chemical bonding. The valence eigenstates, whose energy-
levels are much more susceptible to the atomic environment due to the substantial
cancellation between the ionic Coulomb potential and the repulsive screening effects
of the core electrons, are retained for evaluation. The stipulation of orthogonality
between the valence and the more spatially localised core electrons necessitates rapid
spatial oscillations in the former and, consequently, a prohibitively great number of
basis functions, or Fourier components, are needed to describe them accurately. The
computational economy afforded by the pseudopotential approximation thus greatly
exceeds that simply due to the reduction of the number of eigenstates to be solved
for. Moreover, with care, the removal of the core electrons may improve the accuracy
of total-energy differences under changes to the external potential, since these will
comprise a significantly greater proportion of the total energy.

Following Ref. [54], let us consider a valence state |1 '#/¢"°¢) which is an eigen-
value of an atomic Hamiltonian H with eigenvalue E. We suppose that we may
construct a smoother pseudo-state |1 75¢“4°) by subtracting a linear-combination of
core states, so that

core

Y2ty = [P P I) £ anl ). (1.41)

The required orthogonality between the valence state and each core state actually
fixes the coefficients a,, and, with Eq. 1.41, this gives
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0= (aly ") = Caly ™) + an =

an = — (Y|P Poe14)

core

[Yreneey = [ Prendey — 3 1) Ol P, (1.42)

This expression may be immediately re-cast into a more useful eigenvalue equation
for the pseudised state, namely

[ﬁ + D (E—Ey) |xn><xn|} [ Pendo) = E|yPoende), (1.43)

so that the correct valence eigenvalue E is reproduced if the pseudo-Hamiltonian
differs from the original original by the potential

core

y non—local (E) = Z (E = Ep) |xn) (tnl- (1.44)

The sum of the ionic potential and ynon=local (EY \yhich s repulsive and localised to
the core-region, provides a shallow smoothly-varying pseudopotential for the valence
electrons.

The core states {|x,)} and their energy levels E,,, for each atomic species, are
usually fixed throughout, having been first computed in an all-electron isolated-atom
DFT calculation for an appropriate electronic configuration. The energy argument
E of the pseudopotential is, in practice, evaluated at the corresponding valence-
state energy of the atomic system; the validity of this approximation, known as the
transferability of the pseudopotential, depends on the extent to which, for all core
levels n and where AE is the change to E in moving from the atomic to chemical
environment, £ — E,, > AFE holds.

In order to properly preserve the scattering properties of the pseudised core
states, a different pseudopotential must be computed for valence states of different
angular momentum [, although independently of the azimuthal quantum number
m for spherically-symmetric atomic potentials. Supposing that the potential due to
core electrons vanishes beyond a cutoff radius r., the valence wave-functions are
expressible as the separable product of a radial function R; and spherical harmonic
Yim,

Yim (r; E) = Ry (; E) Yp (0, 9) - (1.45)

It may be shown that the scattering phase shift §; of a plane-wave of energy £ = %kz
is given by

i ko) — tan 3 n} kr)
rere  Ji(kre) —tan (&) ny (kre)’

ilog [R; (r; E)] (1.46)
dr
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Fig.1.2 Pseudopotential for
atomic chromium (A set of
RRKIJ Pseudopotentials were
generated using Opium
http://pium.sourceforge.net,
and the GGA input
parameters available therein,
optimized for a minimum
plane-wave cutoff of 680eV,
albeit with a
scalar-relativistic correction
for all species and, for the
transition-metal ions, some
slight modifications to the
core radii and a non-linear
core correction of
Fuchs—Scheffler
characteristic radius 1.3a.u.)
[55, 56]. Ionic and pseudised
potentials (fop panel); the | =
0 channel is chosen as local.
Probability amplitude of the
all-electron and pseudised
atomic wave-functions,
including semi-core 3s
electrons as valence states
(middle panel). Density
distribution of core, valence
and partial-core

(rvLec = 0.77 ap)
manifolds (bottom panel)
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where j; (kr) and n; (kr) are the spherical Bessel and spherical von Neumann func-
tions, respectively. Furthermore, for a given cutoff radius and radial function evalu-
ated there, R; (r¢; E), the energy derivative of this expression is proportional to the
norm of the wave-function in the core region; the latter is given by

Te
47r/dr r2R? (r). (1.47)
0

As aresult, by forcing R/ seudo v satisfy both Egs. 1.46 and 1.47 through stipulating
that, for each required angular momentum channel,

Rlpseudo r) = Rlvalence (r) for all r > re, (1.48)

we may construct norm-conserving pseudopotentials; we refer the reader to Refs. [55,
57-59] for technical details, which preserve the scattering properties of the original
atomic potential up to first order in E. A locally-acting pseudopotential is usually
also included to represent the average effects of angular momenta higher than the
maximum represented, /4., so that generally we have

Imax 1
&pseudo — "}local + Z Z |Ylm>‘7[n0n_loml<ylm|~ (1.49)
l

m=—I

An important caveat in applying the pseudopotential approximation to spin
polarised atomic species where there is a significant spatial overlap between densi-
ties due to core and valence electrons, respectively n. and n,, notably in first-row
transition-metal ions onwards, is that, unlike the Hartree contribution, the exchange-
correlation potential is generally linear in neither the charge density nor magnetisa-
tion density. In particular, it is usually assumed in pseudopotential construction that
the valence contribution, n,, to the pseudopotential exchange-correlation contribu-
tion

VO [ne +ny, €1 = VO [ny, &] (1.50)

completely cancels. It does not in general, but the approximation may be particu-
larly hazardous when the pseudised and all-electrons spin polarisations, respectively
defined as

nD @) —nlP (r) n @) —nlP (r)
=T and &0 = Fhem (131

significantly differ [60]. The non-linear core correction (NLCC) is a first-order
method by which a smoothly-varying component of the core spin-density, the
so-called partial core, with characteristic smoothing radius ryrcc, is retained for
addition to the valence density upon computation of the exchange-correlation poten-
tial and energy [56, 60]. A numerical example of a norm-conserving, non-local,
non-linear core corrected pseudopotential is shown in Fig. 1.2.



20 1 An Introduction to Linear-Scaling Ab Initio Calculations

1.9 Periodicity and Brillouin Zone Sampling

In this section and the next, we begin to discuss some of the technical details of
the linear-scaling DFT method, known as ONETEP [61, 62], which we primarily
employ for our numerical studies. Even with the simplifications to the task of solving
for the ground-state density discussed in previous sections, the explicit treatment
of the Kohn—Sham orbitals in extended systems such as solids, molecular crystals
etc., which may have effectively infinite spatial extent as well as infinite cardinality
remains, with no further artifice, computationally intractable.

However, if we may reasonably suppose that the atomic nuclei in the system at
hand are arranged in a perfectly periodic lattice, with primitive cell vectors {a j} ,
then the (non-relativistic) Kohn—Sham potential also has the periodicity of the Bravais
lattice, so that

3
Vks (r+R) = Vgs (r); R=anaj; ni € 7. (1.52)
i=j

In this case, we may make use of Bloch’s theorem, which we briefly demonstrate
below, to reformulate our stated problem into one for the solution of a finite number
of Kohn—Sham eigenequations, labelled by a continuous set of crystal momentum
vectors k in the first Brillouin zone. For a more detailed treatment of the principles
outlined in this section see Refs. [63, 64].

We begin by noting that since the periodicity of the potential implies the periodicity
of the Hamiltonian, then, with translation operators fx defined to advance the vector
argument of scalar functions by a displacement X, we may write that

TRH(@)=H(@+R)=H ()=
TR[H (1) i (1] = H @ +R) i (r +R) = H (1) Ty (r) =
[I:I f"R] =0, for all R given by Eq.1.52, =
TRYR (r) = ¢ (R) YR (r), where ¢ € C. (1.53)

Here we have used the fact that the commutativity of the Hamiltonian and lattice
translation implies that quantum numbers simultaneously exist to label eigenfunc-
tions of both operators.

The exponentiation identity ¢ (R +R’) = ¢ (R) ¢ (R’) immediately suggests a
natural representation for the periodic eigenvalues of lattice translation, specifically

3
c(R)=exp(tk-R);: k= x;bj; a-b; =215, (1.54)
j=1

where the complex numbers {x j} are general pre-multipliers for the reciprocal lattice
vectors {b j} . It is clear from the above that crystal momentum vectors, k and K’,
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which differ by a reciprocal lattice vector, k — k' = G = Z?:] n;b;, are equivalent
for our purposes.

Next, considering the function u;k (r) = exp (—tk - r) ¥k (r) , for a given eigen-
state of the Hamiltonian, labelled i, we find that

Truik (r) = exp (k- (r — R)) Yix (r + R)
= exp (—tk - T) Yk () = ik (1) . (1.55)

Thus, we conclude that the eigenfunctions {;i} of the spatially-periodic
Hamiltonian H may be written (the statement known as Bloch’s theorem) as

Vik(r) = exp (k- 1) ujk (1), (1.56)

i.e., as the product of a cell-periodic function u;k(r) and a plane-wave of complex
wave-vector k. The reformulation of the Kohn—Sham equations into Bloch form
appears as a set of Hermitian eigenvalue equations for the cell-periodic functions
u;x (r), where adependence on the Bloch vector k enters the the Hamiltonian operator
and, consequently, the band occupancies fik.

We suppose, next, that we may neglect any effects due to the boundary of the
system under study and that we may therefore impose periodic (Born—von Kédrmén)
boundary conditions to our sample, let us say of Nygmpre = N1 X Np x N3unit cells,
so that

Vik (r) = Yk (r + Njaj) . (1.57)

As an immediate result, the set of permitted Bloch vectors k is reduced to a discrete
set of Nygmpie real-valued vectors which, as we have shown, may be restricted to the
first Brillouin zone since they are equivalent modulo any reciprocal lattice vector G.

For infinite systems, where Nygmpie — 00, the number of distinct k-points in the
Brillouin zone diverges and, in principle, since the occupied Kohn—Sham states at
each point contribute to the electronic potential for the periodic sample [13], contin-
uous integration over the Brillouin zone is required in order to calculate the elec-
tronic density and Hamiltonian. However, since the eigenstates of the Hamiltonian
vary smoothly between proximate k-points [65], it may be shown that Brillouin zone
integrals may be well-approximated by sampling at a small number of carefully
selected and weighted Bloch vectors [66, 67]. The magnitude of the error thereby
introduced is reduced by increasing the finesse of k-point sampling, whereupon the
total-energy converges, not necessarily monotonically, to its limiting value.

Bloch’s theorem does not strictly apply, of course, to systems where translational
symmetry is broken in one or more directions, such as molecular systems, defec-
tive crystals and layered heterostructures. In principle, a complex-valued contin-
uous reciprocal-space sampling must be reintroduced in the direction in which the
symmetry is broken. This technical difficulty is usually circumvented by using
a periodically-repeated supercell filled with a sufficient quantity of the medium
surrounding the object under scrutiny (e.g., vacuum surrounding a molecule, or pris-
tine crystal surrounding a point defect) to ensure that it is isolated (both in the sense
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of orbital overlap and of electrostatic interactions) from its artificial periodic images
[68]. In practical calculations, the supercell volume is increased until the total energy
is adequately converged.

For large systems of interest for linear-scaling methods, e.g., for the supercell
volumes 2..;; necessary to study molecular systems or defective crystals, under
periodic boundary conditions, the first Brillouin zone volume

@)’
chll

Qusipy = (1.58)

is sufficiently small that the k-dependence of the Kohn—Sham eigenstates is negli-
gible. In this regime, a single point, usually the I'-point (zone centre k = 0), is
used to sample reciprocal space (the eigenstates may then be assumed real-valued).
In order to emulate a calculation which uses a regular grid of N; vectors in each
reciprocal-lattice directions using a I'-point only formalism, an example of which
is described in Chap.4, an explicit repetition of the supercell by a factor of Ny in
each Bravais lattice direction is used to provide an equivalent sampling of the Bloch
momentum dependence.

1.10 The Plane-Wave and Psinc Basis Sets

It is necessary, in practice, to restrict the Hilbert space available to the supercell-
periodic Kohn—Sham wave-functions to a computationally manageable subspace
spanned by a finite set of basis functions. A good choice of basis set provides for
efficient evaluation of spatially-dependent operators, such as potentials, and differ-
ential operators, which are usually computed in reciprocal space. Moreover, it is
advantageous if the basis can be systematically improved using variational parame-
ters or if the basis functions reflect some of the physical nature of atomic systems,
e.g., form eigenvectors of angular momentum and possess a suitable number of radial
nodes, so that a small set may efficiently reproduce the ground-state density.

A truncated basis set of plane-waves is very common choice for periodic DFT
calculations, particularly in conjunction with the pseudopotential approximation
previously described, since it allows for very efficient Fourier transformation using
FFT techniques. The supercell-periodic part of the k-dependent Kohn—Sham wave-
functions may be expanded as a Fourier series of discrete plane-waves, labelled by
the wave-vectors G of the reciprocal lattice, so that the functions themselves admit
a plane-wave representation given by

elk'ru,’k(l‘) — etk-l‘ |:z Cik,GetG‘r:|
G

> cinpge®TOT. (1.59)
G

Yik(r)
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While, in principle, an infinite set of plane-waves is needed to fully reproduce
the wave-functions at each k-point, a truncated Fourier expansion may be used in
practice since the contributions beyond a system-dependent bandwidth are negligible.
A kinetic cut-off energy E ., is used as the single variational parameter in plane-wave
methods; meaning that wave-vectors satisfying %|k + G|2 < E_,; are retained in the
wave-function expansion and the resulting error in the total-energy is monotonically
reduced by increasing E.,;, augmenting the basis, until acceptable convergence is
obtained [13].

In DFT methods for which the computational effort scales linearly with system
size, as we go on to discuss, it is necessary to attenuate the interactions between
spatially well-separated areas of the supercell. This may be carried out using effi-
cient localised (approximately atomic-like) basis functions or, as in the case of the
ONETEP method [61, 62] on which we concentrate hereon, the concatenation of
a variational basis set with such a set of functions. The latter, known as the repre-
sentation, support functions [69], project out the space of Kohn—Sham orbitals and
are afforded the variational freedom of the basis within certain approximations, as
we later detail. In order to retain the systematic improvability and orthogonality of
a plane-wave basis, but with the spatial localisation required to efficiently expand
spatially-localised support functions {¢, (r)}, the elegant approach used in ONETEP
is to use the real-space representation of a truncated set of plane-waves.

These, variously known as Fourier-Lagrange, periodic bandwidth limited delta,
or psinc functions [70, 71], are defined by

3 Ji
1
Dy () = [[ - D7 e emron), (1.60)
i=1""" pi=—1I

where the number of grid-points in each lattice direction is N; = 2J; + 1, J; € N,
and are immediately recognisable as approximations to Dirac delta functions at the
points r,, since

Qcell / G-(r—
Dy (¥) 2 8 (r — 1) = dG &' (r=Tum) 1.61
{m) () = 8 ( ) )} (1.61)

The psinc basis is thus wholly equivalent to a plane-wave basis truncated to arhombo-
hedron of reciprocal lattice vectors and the finesse of the real-space grid, represented
by

3

Tim) = Z%ai: m; €{0,1,---, N; — 1}, (1.62)
i=3 !

must be increased until the energy and other properties of interest are well converged.
The stated kinetic energy cutoff of a ONETEP calculation is approximate, however,
since it is computed using the reciprocal-space radius generating a sphere with the
same volume of the aforementioned rhombohedron.
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Fig.1.3 Periodic cardinal
sine, or psinc, function
centred at the origin of a
two-dimensional square
lattice of periodicity

N;.,j = 21. The function has
unit value at its centre-point
and zero value at all
inequivalent grid points

The cell-periodicity Dy, (r) = Dy (r + R) of the psinc functions may be
shown, as may the fact that each function is localised to one grid-point alone and
well-normalised, so that Dymyms (Vi jiaps) = Smypy OmapsOmsps and real-valued
everywhere in the supercell [70]. The graph of a particular psinc function, which
limits to a cardinal sine function as N; — 00, is depicted in Fig. 1.3. The evaluation
of the overlap integrals between functions represented on the psinc grid and the
matrix elements of local and differential operators are all calculable using efficient
Fourier transforms and parallelised sums over grid points. The overlap integral of a
real-valued cell-periodic support function ¢, (r) and a r(,)-centred psinc function,
denoting Ngeyy = N1 X N2 X N3,

G
o chll

(Gryyy _ Necell D
% B (6) e = g (tpmy),  (1.63)

/ dr Dy () (1) = 3

is exactly the psinc-centred evaluation of the bandwidth-limited approximation to
¢ [70]. The orthogonality of the psincs follows as a very convenient consequence
of this, which we can show by replacing ¢ by any Dy,,/}«(,,}. The value of a support
function at an arbitrary location r may, conversely, be represented as a summation
over the simulation cell via

¢2 (1) =" Cimy.a Dymy (r): where (1.64)
{m}

Ni—1 N>—1 N3—1

Compa =g (tpmy) and > = > > >

{m} q1=0 q2=0 q2=0

In practice, all spatial functions are approximated by their Fourier-filtered counter-
parts and so, hereafter, we suppress the corresponding superscript D.
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Kohn—Sham DFT methods in which the eigenstates are explicitly expanded in the
basis typically incur a cubic asymptotic scaling of computational effort with respect
to the number of atoms, N, in the supercell; a prohibitive cost for N' > 103 at
present. The orthonormality condition

8ij = / dr ¢ ()¢ (r); Vi, je{l,--- ,N}; NN, (1.65)

chllO(N

which must be maintained during energy minimisation, makes the spatial non-locality
of the eigenstates abundantly clear to be the fundamental cause of this computa-
tional bottleneck. Much progress has been made in recent years with DFT methods
which realise the intrinsic linear-scaling nature of the density-functional and we
refer the reader to Refs. [72, 73] for comprehensive reviews. Here, in particular, we
focus on methods, such as those described in Refs. [61, 69, 74-78], which explicitly
minimise the total-energy functional with respect to the density-matrix representa-
tion of the zero-temperature Kohn—Sham wave-function in order to circumvent the
explicit imposition of Eq. 1.65. In doing so, as we explain in the following section,
we may exploit the “near-sighted” nature of the quantum mechanics [79].

The density-matrix of a quantum system at temperature 7 is generally given by
the normalised Hermitian partition function,

—pH e PE ;) (0 1
¢ _ i O M p=—r. (1.66)

y = — = —,
Trle=BH] > e PEi 8T

from which we may evaluate the statistical average of a many-body operator O via
the trace

Y e PR 01W;)
= Z] e—ﬂEj

Usually, in the context of Kohn—Sham DFT, we are concerned only with the zero
temperature limit

0=(0)=Tr [(’))9] (1.67)

P =W (Wil. (1.68)

Of rather more practical utility, however, is the integral of y over N — 1 and N — 2
co-ordinates (for N-particle systems), which yields the reduced single-particle and
two-particle density matrices, p (r, r ) and po (rl, ry;ry,r 2) , respectively. The
single-particle p is sufficient to evaluate the expectation values of single-particle
operators (e.g., the frequency-integrated Green’s function p (r, r’) = —tlim,_,,
G (t -t ) , local potentials and kinetic energy) and p, is needed for two-particle
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operators (e.g., the many-body Hamiltonian, two-particle Coulomb interactions, the
exchange-correlation hole) [14]. Significantly, only the diagonal part of ¢ is needed
to compute the density, so that n (r) = p (r,r) and we may always express the
density-functional in terms of the density-matrix. For a periodic system, the wave-
function takes the form of a single Slater determinant of single-particle Bloch orbitals
wi(l: ) (r), with occupancies fi(“), so that

(l‘|,0(a)|l' (2“;13 Z / dk f(a) (@) (r) 1p(a)*( /). (1.69)
i 1sBz

The density-matrix idempotency,

P =5 = p@ (r,r) = /dr” P (r,x") p ) (x",¥), (1.70)

is the defining condition for a pure, fermionic, spin-collinear state, and it ensures
that fl(lf) € {0, 1}, for all i, k and o, and thus that the Pauli exclusion principle [24]
is respected. The satisfaction of the idempotency requirement, as well as particle-
number conservation, Tr [5°)] = N@), is the foremost challenge in constructing
methods with which to minimise functionals in the density-matrix representation.
Numerous strategies have been proposed to drive the density-matrix to idempotency
during total-energy minimisation, the longest established of which simply add a
idempotency-deviation penalising term P [,6] to the energy functional, such as the
functional of McWeeny [80],

E[p]=E[p]+aP[p]: P[A] =Tr[(ﬁ—ﬁ2)2]. (1.71)

The minimum of the functional E approaches that of E, from below, with an error
scaling with the inverse of the penalty pre-factor « [81].

The McWeeny functional is employed in ONETEP in a number of different guises;
see Ref. [81] for a complete overview. Most simple of these, however, is the purifying
transformation pp41 = 3 /63[ - 2,6,3n equivalent to a recursive steepest descents
minimisation of P [,6] and depicted in Fig. 1.4. For three density matrices, each with
sets of eigenvalues { fll} , { flz} and { ff} which satisfy, for all i,

file [l—zﬁ’#}; f,-2€ [#’ 1+2\/§i|; fi3€|:__1 §i|’

2°2

the purifying transformation is stable; devoid of occupancy flipping about f; = 0.5;
or produces a “weakly idempotent” density matrix (i.e., f; € [0, 1]) in one step,
respectively.

When a sufficient level of idempotency has been reached ONETEP using puri-
fying transforms, LNVD method [82-84] may be used to minimise the total energy
functional while refining the density-matrix further. In this remarkable technique, the
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Fig.1.4 Orbits of the 10+ .
McWeeny [80] purification \ [ //’
transformation 0.8 A

fut1 =3 —2f for
occupancies f; in the
interval [-0.5, 1.5], e.g.,
—0.45 (green), 0.45 (red),
0.55 (cyan) and 1.45 (blue)

: 05 1.0 1)
—o02f

energy is directly minimised with respect to an auxiliary density-matrix &, related to
the density-matrix by one iteration of the purifying transform, i.e., p = 362 — 263,
for each spin channel. The total-energy is re-expressed in terms of & such that
Ernvp [6] = E[p]. Here, however, a generalised Kohn—Sham energy functional,
proposed in Ref. [85], is used in order to accommodate non-integer density-matrix
eigenvalues f;. The resulting functional E; v p is minimised only at physically-
meaningful integer occupancies, nonetheless, with no multiple minima, meaning
that the density-matrix is driven towards idempotency in a computationally efficient
manner as the energy is minimised.

A number of modifications to the energy functional have been proposed which
provide that the trace of the density-matrix is also driven towards the correct
number of electrons, beginning with the LNVD [82] grand potential defined as 2 =
E—uN=Tr[p (I:I — )], where the chemical potential w is determined numerically.
In ONETEP, the HSMP [81] variant of the LNVD method is used, in which the auxil-
iary density-matrix is defined in terms of a purified and renormalised density-matrix,
so that

s N 362 —263 w7
P T e =267 '

Density-matrix search directions computed using this transformation provide that the
gradient of the electron number is projected out of the energy gradient by construc-
tion, so that the chemical potential is effectively self-determined.

1.12 Wannier Function and Density-Matrix Localisation

A characteristic property of quantum mechanical systems is their “near-sightedness”,
the fact that locally-evaluated expectation values depend little on the details of
spatially-distant parts of the system [79]. A reformulation of the periodic Bloch
(o)
ik

wave-functions v, (r) which is suited to the study of localisation properties was
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proposed by Wannier [86], whose eponymously named functions are defined, and
localised to a unit cell at the lattice vector R, by

1
Qeelr \? _k-
w3y = (—“ ) / dk e~ %Ry (9, (1.73)

@2r)?
15'BZ

The unitarity of the Fourier transform preserves the orthonormality of the Bloch
orbitals, so that

/ dr w' R @ w7, () = SRR - (1.74)

Supposing that the band-occupancies are k-independent, i.e., restricting ourselves
to insulating systems, we may write the single-particle density-matrix in terms of
Wannier functions as per

P (r Zzw“” @) £ (). (1.75)

A set of exponentially-localised Wannier functions,

w (x) ~exp (—Alx —xol), where A o< \/Epand—gap- (1.76)

may be constructed for the one-dimensional tight-binding model [79] and similar
exponential decay properties have been rigorously shown also for real insulating
crystals [87-89]. This is a crucial result for linear-scaling ab initio methods, since,
as a consequence of Eq.1.75, the elements of the real-space representation of the
single-particle density-matrix then also decay exponentially with spatial distance, so
that

P (r,1') ~exp (—Ir —1']). (1.77)

Thus, we may justifiably truncate the real-space representation of the density-matrix
for insulating systems, neglecting elements for which |r — r’| > Ry, so that the
information which needs to be stored scales linearly with system size. The system-
dependent characteristic cutoff distance R.,; determines the number of atoms beyond
which the linear-scaling regime holds, but, since it controls the extent to which the
variational freedom of the density-matrix is restricted, it also is a parameter with
respect to which convergence must be tested.

It is, of course, computationally impractical to manipulate the expression of the
density-matrix on a real-space grid such as that provided by the variational psinc
basis. A separable expression of p in terms of a minimal set of spatially localised
support functions [69] {¢;}, a special case of which is Eq.1.75, is employed in
practice. In the case of an orthonormal and spin-independent set of support functions,
we may write
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N
v =6, U7, (1.78)
i=1
so that
P ( Z ¢ (1) K77 (v') (1.79)

where the density kernel [80] is given by

K(U) (d) |b‘((f)|¢ ZUI(:)]C"(U)U'E;T)T (180)
n

The support functions themselves are usually spatially truncated, in practice, usually
to atom-centred spheres of species-dependent radii r,; that are variational parame-
ters. Thus, if support functions A and B are centred on atoms positioned at R4 and

R? and cutoff at radii r2, and r2 ,, respectively, then

‘RB —RA‘ > Rew 418, +78, = K% =0 (1.81)

and a linear-scaling increase in the number of non-zero matrix elements of K ) with
system size is achieved.

1.13 The ONETEP Method

ONETERP is a linear-scaling total-energy and force code which is based on the prin-
ciples which we have described in the previous sections. Central to the ONETEP
methodology is the utilisation of a set of spatially-truncated support functions in the
form of Nonorthogonal Generalised Wannier Functions (NGWFs), suppressing the
spin index,

1 N

o S2cen \? — kR ' B

|¢aR>—( (2n)3) [ axe 2 vl (M7 0 5], (182)
z =

the expansion coefficients Cyy,),.o of which, in a psinc basis, are variationally opti-
mised in situ (i.e., not as a pre or post-processing step) in order to minimise the
total-energy functional with accuracy equivalent to a plane-wave method [61, 69,
90, 91]. Here, the transformation matrix

M (k) = / dr ¢% (r) Yk (1) (1.83)
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is not necessarily unitary and we make use of the Einstein summation convention

proposed in Ref. [92], whereby repeated indices within the same expression are

summed over unless the indices are contained in parentheses. We hereafter use Greek

indices for nonorthogonal vectors and assume Brillouin zone centre sampling only.
The NGWF overlap matrix is defined and computed as

Qcent
N ClyaCimp (cf. Eq.1.64), (1.84)

Neeli {
m}

so that we may express the orthonormality of Kohn—Sham orbitals as

M Sup MY = 53;. (1.85)

1

Here, we note that when dealing with nonorthogonal functions, we must distinguish
between covariant vectors, e.g., NGWFs ¢, (r), and the corresponding contravariant
vectors, e.g., the NGWF duals ¢# (r), which inter-depend via the bilinear relationship

(PuldP) =80 = 6% (1) =g () SP* SP* = (Sup) .

(1.86)
We return to this topic in further detail in Chap. 5. The density kernel in the nonorthog-
onal case, the generalisation of Eq. 1.80, is conventionally given in terms of the dual
functions, so that

(¢°18167) = K*P = >~ My fuM,P. (1.87)

Thus, for example, we may write the total number of electrons and the independent-
particle energy, respectively, as

N =2K*Sg, and E'P = 2K (ps|Hs|ps), (1.88)

where the factors of two appear for spin-degeneracy.

An important technical point is that the action of differential operators on the
density matrix, such as the Laplacian, for example, are not evaluated in the whole
simulation cell, but instead in a smaller rhombohedron of psinc functions whose
volume is independent of the system size. This expedient, known as the FFTBOX
approximation, relies on the smoothness of the NGWFs in reciprocal space due to
their real-space localisation, since it effectively reduces the sampling rate of the
former. The projection from the simulation cell onto the subspace spanned by the
FFTBOX psinc functions may be written as an operator 75(/5“), so that we may write
the kinetic energy, for example, as

T = =K ($p|V2|pa) ~ —KP(pp| Pl V? Pipe|ba).  (1.89)

where the argument (Ba) locates the FFTBOX at an origin r(gy) such that NGWFs
¢ and ¢g are fully enclosed. The FFTBOX approximation ensures that the cost for
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each Fourier transform does not depend on system size, so that the total cost of such
operations scales linearly with the number of atoms.

Inthe ONETEP total energy minimisation scheme, two nested conjugate-gradients
constrained search loops are performed in order to minimise the total-energy with
respect to the density matrix, in a manner which is reminiscent of that proposed, in a
somewhat different context, in Ref. [93]. The NGWFs and the corresponding density
kernel which yield the ground-state energy

E® = min E [n] = min E 4]
n p
min £ [/3 ({K“ﬂ}, {qba})]
- ot £ o]

= {CI?:;IL}E [{C{m},a}] ;  where

£ [{c{m},a}] = min E [{K“ﬂ} : {c{m},a}] (1.90)

(ko)

are located such that the density-matrix is idempotent, well normalised and commutes
with the Hamiltonian. A simple schematic of the nested search scheme is shown in
Fig.3.4, where the outer and inner loops of interest to this chapter are coloured in
blue and red, respectively.

In the outer energy minimisation loop, the density kernel is kept fixed while
the total energy is variationally minimised with respect to the spatial profile of the
NGWFs. For an idempotent density-matrix, the outer loop corresponds to solving
the Kohn—Sham eigenvalue problem. It should be noted that a number methods have
been proposed in which equations of motion are set up for the support functions
[78, 94-96], but that the NGWFs in ONETEP are perhaps unusual in that they are
afforded the variational freedom of a plane-wave equivalent basis, at least within
generous truncation spheres. In the inner loop, the energy is minimised with respect
to the density kernel matrix elements, while the NGWF expansion is kept fixed. In
this process, we locate the best idempotent density-matrix commuting with its own
self-consistent Hamiltonian in the current NGWF representation.

Rather than detail the formulae needed to optimise the NGWFs, density kernel and
ionic positions here, we give a detailed example of how to compute the contribution
to each, due to a particular correction useful for the study of strongly correlated
systems, in Sects. 2.5, 2.4 and 2.6, respectively. For more expansive expositions on
the ONETEP method, we refer the reader to Refs. [61, 74, 81, 91, 97].

The techniques that we have described in this chapter amount to a remarkable
collective achievement in the field of electronic structure theory, one which provides
for a wide variety of systems, including some quite large structures when linear-
scaling approaches are used, to be successfully simulated. One of the remaining
difficulties, however, is the reliable treatment of strong electron correlation effects,
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which we have mentioned in Sect. 1.6 and which, in the context of linear-scaling
DFT, we now proceed to discuss in more detail.
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Chapter 2
Linear-Scaling DFT + U for Large
Strongly-Correlated Systems

Electronic correlation effects, perhaps even more so than large system sizes, have
long captivated electronic structure theorists. In this chapter, we seek to tackle both
challenges simultaneously, detailing and demonstrating a linear-scaling implemen-
tation of an efficacious ab initio method for strongly-correlated materials.

Specifically, we begin by describing the physics of strongly-correlated systems
and we discuss the difficulties experienced, and their origins, when exchange-
correlation (XC) functionals of the local density approximation type are applied
to such materials.

We describe the popular Density Functional Theory + Hubbard model (DFT + U)
method for overcoming these difficulties, briefly discussing its historical develop-
ment and motivating it as a corrective idempotency penalty functional of a type
frequently employed in linear-scaling DFT methods.

We detail an implementation of DFT + U for which the computational effort for
calculation of the ground state energy and forces scales linearly with system size.
Expressions for optimising the density and ionic positions are derived in full and
in a manner which is applicable to any ab initio approach which employs a set of
spatially localised, possibly nonorthogonal, functions to represent the single-particle
density matrix. We assume no specific form for the projectors used to define the
correlated subspaces in DFT + U and include the necessary adaptations to allow for
their nonorthogonality.

2.1 Strongly-Correlated Systems

The routine ab initio study of strongly correlated systems, that is those for which the
accurate description of the physics is beyond the capacity of band-structure methods
such as the unrestricted Hartree—Fock approximation [1], or, somewhat less strictly-
speaking, Kohn—Sham DFT [2, 3] within local or semi-local approximations to the
XC functional, remains a challenge for electronic structure calculations.

The physics of localised electrons bound to first-row transition metal or lanthanoid
ions in such systems is important for understanding and harnessing the behaviour
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of complex systems such as molecular magnets [4], inorganic catalysts [5] and the
organometallic molecules that facilitate some of the most critical chemical reactions
in biochemistry [6]. Indeed, it is often such physics which is central to the interesting
functionality of such materials.

Despite its success at predicting ground-state properties of materials, Kohn—Sham
DFT [2, 3] fails to describe the physics of such strongly correlated systems when
local or semi-local XC functionals are used, often predicting results that are not only
quantitatively but qualitatively inconsistent with experiment.

One example of such a failure is the case of Mott—Hubbard insulating solids [7],
characterised by narrow bands of 3d or 4f orbital orbital character adjacent to the
Fermi level; the LSDA [8] may badly underestimate local magnetic moments and
may even predict a non-zero density of states at the Fermi level [9, 10].

In order to understand the origin of this deficiency, not least because it serves to
motivate the DFT + U method, let us consider the renowned Hubbard model [11-
13] for strongly correlated fermionic systems. The Hubbard Hamiltonian is usually
written in terms of Fermionic creation, c( o) , and annihilation, c( ) , operators, where
it is defined as

A = Z tmm/cgfﬁcl(;)
mm’

+ % S Unmmmre D110, 2.1)
mm'm"m'"
the indices {m} labelling sites in which the electrons, with spin index o, may reside.
In a continuum model for a real strongly-correlated system, it is useful to use a
spatially localised set of single-particle basis orbitals {¢,,} , which we assume here to
be spin-independent, with which the creation and annihilation operators, respectively,
are spatially resolved via replacement by field operators as per

E @) = gnmc?. and T =D gr @D (22
m m

These basis orbitals may, for example, take the form of Wannier functions constructed
from a linear-combination of Bloch states, as described in Chap. 1. Here we assume
that the basis is orthonormal, but the generalisation to the nonorthogonal case is
available [14].

In the Hubbard model, the Coulomb repulsion between electrons is introduced by
the Hubbard U parameter, that is in its orbitally-decomposed form

Ui/ = / dr / dr’ g, (0) ¢ () 0 (v, 1) g (1) @ (1)

For a given form of interaction ¥ (r, r ), the Hubbard U introduces an energy penalty
for occupying nearby orbitals and thus correlates the behaviour of different electrons.
The factor of one-half eliminates double-counting over pairs of electrons.
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The tendency for the electrons to delocalise, by minimising their kinetic energy,
is governed by the simple hopping term

bnm' = /dl' (ﬂm (I‘) [ V + Vext (r)j| Pm’ (I') (23)

which may also include any externally imposed potential.

We will briefly discuss a very simple approximation to the Hubbard model,
applied to a simple geometry. Ignoring all but density-density interactions, i.e.,
m = m"”, m" = m'”; interactions between electrons on one site, i.e., m = m’;
nearest-neighbour single-particle same-spin hopping terms only, where m’ = m + 1
in one dimension; and identical interaction strengths on each site, we simplify the

Hamiltonian to

(0’) — Z C(G)' (0)+ UZﬁ(cr) (— xr) (2.4)

mm
Here ﬁﬁ,‘f ) (G)T ( ) measures the occupation of site m with an electron of spin o
and the Pauli prmmple excludes double-occupancy by electrons with identical spins.

Let us apply this model to a periodic chain of sites, for example a one-dimensional
chain of s-orbitals or Hydrogen atoms. We may consider two limits. In the limit of
U <« t, where correlation effects are weak or the atoms lie close together, the
reduction of the kinetic energy is the dominant factor and the low-energy eigenstates
are made up of delocalised linear combinations of the basis orbitals. There is no strong
distinction between the energy terms acting on occupied and unoccupied levels and
there is a continuum of states crossing the Fermi level. At the opposite limit, where
the Hubbard U or inter-atomic spacing are large, so that U > ¢, the minimisation of
orbital double occupancy is paramount, the eigenstates become spatially localised
on their basis orbitals. In this case, at half-filling, an energy gap of approximately
U =~ I — A, where, respectively, I and A are the ionisation potential and binding
affinity of hydrogen, opens between the occupied and unoccupied levels, in the same
way as in a Mott—Hubbard insulator.

Next, let us see how Kohn—Sham DFT may fit into such a framework. The mapping
of the interacting many-electron system onto an equivalent system of noninter-
acting fermions, which are subject an effective single-particle potential, is central
to periodic band-structure methods such as Kohn—Sham DFT. In the language of the
Hubbard model, we would write the hopping matrix elements of the Kohn—Sham
Hamiltonian as

ol = / dr v, (r)[ V2 4 Vot (0) + Ve [1] (r)} Y (1), (2.5)

where, in fact, the hopping term makes up the Hamiltonian entirely.

The use of mean-field approximations for the effective potential, \7ch [n] (),
such as the LSDA [8], is appropriate and highly successful in systems where the
magnitude of the electron’s kinetic energy is large compared with that of the Coulomb
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interaction between them, so that U <« ¢ in which case the neglect of explicit
Coulomb correlations is justified. In such systems, usually comprising elements
whose 3d or 4f atomic-like states are either completely empty or filled, the electrons
are said to be delocalised, or itinerant in extended systems, and are only scattered
weakly by atomic centres.

In strongly correlated systems such as Mott—Hubbard insulators, however, the
low-dispersion electrons associated with partial occupation of the aforementioned
localised 3d or 4f atomic orbitals do not fall in the regime of U < . The LSDA may
thus be found to be severely lacking in accuracy due to its lack of explicit Coulomb
correlations.

Itis clear that within such simple mean-field band-theories, returning to our simple
example, that the hydrogen chain spuriously remains metallic as we increase the inter-
atomic distance, retaining a diminishing, though finite, density of states at the Fermi
level.

The origin of this apparent failure has been understood since the work of Perdew et
al. [15] and is related to the unphysical curvature of the energy functional with respect
to electronic occupation number [16—18] inherent to LSDA-type functionals unless
a self-interaction correction is employed [19]. In the following section, we describe
the DFT + U method that, depending on how we wish to look upon it, reintroduces
explicit Coulomb interactions to the Kohn—Sham Hamiltonian or reintroduces the
appropriate derivative discontinuity to the XC functional.

2.2 The DFT + U Method

A number of sophisticated methods to correct the description of strong correla-
tion effects within Kohn—Sham DFT have been developed which provide a good
compromise between accuracy and computational expense. Many of these methods,
notably DFT +Hubbard U (DFT+U) [20, 21] and DFT +dynamical mean field
theory (DFT + DMFT) [22, 23] for static and dynamical spatially localised Coulomb
correlation effects, respectively, share a common history and conceptual motivation
which is based on the Hubbard model we have discussed. In such methods, the elec-
tronic system is subdivided into a set of spatially localised correlated subspaces and
the remainder which acts as a bath for particle exchange. The description of the strong
Coulomb interactions, i.e., U > t, between particles in the correlated subspaces is
deemed to be beyond the capacity of the XC functional, so that explicit supplementa-
tion using the Hubbard model is required. In the remainder of the system, the kinetic
energy is supposed to be large relative to Coulomb interaction, i.e., U < ¢, and the
XC functional is assumed to perform adequately. In this manner, a Hubbard model
interaction may be used to augment the description of the screened Coulomb inter-
actions in the correlated subspaces while retaining the computationally inexpensive
mean-field model for the free-electron like remainder of the system.

Figure 2.1 illustrates, as an example, a spatially delocalised single-particle orbital,
Y (r), together with a localised Wannier function (technically an NGWF), ¢,, (),
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Fig.2.1 Detail of a Cu**-mediated DNA base pair [24] in the system on the right of Fig.1.1,
showing the delocalised highest occupied majority-spin molecular orbital (left) for comparison
with a localised NGWF of localised 3d-orbital character (right)

used to represent it in an artificial molecular system of technological interest.
The description of the Coulomb interactions within the partially filled Cu®* (3d)
sub-shell of such systems may benefit from the use of DFT + U.

We will henceforth describe the orbitals used to delineate the strongly corre-
lated subspaces as Hubbard projectors. These are typically spatially localised on a
particular transition-metal or lanthanoid atom and usually, but not necessarily, of the
same number per correlated site as the number of orbitals, 2/ ) 4+ 1, in the most
localised hydrogenic valence sub-shell of the atom at that site, e.g., we use five
Hubbard projectors for a 3d sub-shell. Localised Wannier functions built from the
Kohn-Sham eigenfunctions may offer an efficient set of Hubbard projectors, and we
discuss this possibility further in Chap. 3 and Ref. [25].

In DFT+U, consistency between the subspaces and the bath is provided by
ensuring that the electronic density-matrix for the complete system remains subject
to the usual requirements of idempotency, compatibility with the ground-state Hamil-
tonian and proper normalisation. In DFT + DMFT, on the other hand, self-consistency
over the density is not routinely enforced at present, although successful examples
of such calculations have been demonstrated [26]. The equivalence of the correlated
subspace Green'’s functions and the projection of the full Green’s function onto these
subspaces is, however, required.

Generally for these methods, the occupancy matrix of each correlated subspace
is the object which provides, for a given set of Hubbard U parameters which may
or may not depend on the density and its response, the necessary information on
the electronic density-matrix to the Hubbard model which describes intra-subspace
interactions. In Chap. 3, published in Ref. [25], we will describe a self-consistent
method for delineating the correlated subspaces based on Wannier functions; in
Chap. 4, published in Ref. [27], we discuss the definition of subspace occupancy
matrices when using nonorthogonal projector functions; and in Chap.7 we address
the computation of the Hubbard U parameters in the nonorthogonal formalism.
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Letusrestrict ourselves initially, for simplicity, to the case of orthonormal Hubbard
projectors labelled {m} at correlated site 7, for which the occupancy matrix of spin
o electrons is given by

’(&(a) —Tr [ (i (1)7 (n)] ( f,f)lﬁ(”)lw,ﬂf/)% (2.6)

Considering, as our starting point, the first rotationally-invariant form of DFT + U
introduced in the literature, that of Refs. [28, 29] and known as LSDA + U. In this
method, the correlation, classical Coulomb repulsion and exchange parts of the
fermionic Hubbard Hamiltonian, Eq. 2.1, are expressed separately for each spatially
localised correlated subspace. The trace of these interaction terms with the appro-
priate occupancy matrices gives the energy expectation value of the Hubbard Hamil-
tonian, for each subspace, with the Kohn—Sham density-matrix.

Summation over correlated sites and the electron spin index gives the energy
correction due to explicit Coulomb interactions for this density-matrix, which is
given by

1
Ev=53 {U(”,, D@, (D

mm" ' m'm m"m"”
To{m}
() (N (1)(0) (H(o)
+ (Umm//m/m/// - Umm//m///m/) mm nm m///} (27)

Here, the first, second and third terms correspond, respectively, to spin off-diagonal
density-density repulsion (correlation), spin-diagonal density-density repulsion and
spin-diagonal exchange effects. If unscreened Coulomb interactions are used to build
the Hubbard U parameters, this is the Hartree-Fock approximation to the Coulomb
energy of the correlated subspaces.

The contribution to the DFT energy functional arising from the correlated
subspaces and already included in the conventional exchange correlation term in
a mean-field sense must be subtracted in order to approximately remove double-
counting of the Coulomb interactions. The DFT + U energy functional is thus gener-
ally given by

Eprr+v = Eprr + Ev — Epc. (2.8)

The double-counting term used in this rotationally-invariant form of LSDA + U
model is the simple “atomic limit" approximation detailed in Ref. [30], calculated
by presupposing an integer occupancy of the correlated subspaces and thus given by

Epc = _Z {U(I)N(I)(G) (ZN(I)(U) 1)

lo o

_ g ND@©@) (N<1><<r> _ 1) ] (2.9)
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Here, the total occupancy for a given site and spin and subspace-averaged
Coulomb repulsion and spin-diagonal exchange parameters are denoted, respectively,
by

ND©) — z: ND@) (2.10)
1
o _ v 2 )
T @D + 1) oot 16 o
m’
1
I 2 : (1)
J( ) = Umm’m/m’ (212)

@0) @D +1) A

Alternative forms of the double-counting correction, such as those described in
Refs. [20, 31], are also available although we do not discuss them further.

Following Ref. [16], which offers a simplified rotationally-invariant DFT + U
functional which itself is based on previous proposals in Ref. [10], we next neglect the
corrections associated with exchange effects and with interactions between electrons
of different spin. Some manipulation allows us to re-write the DFT + U correction,
in this approximation, as

1 195 (@), (@) _ (1), ()0
EDFT+U:§Z{ZUmmmm ( 7 N M’ im )

Io Umm

_y D@ (Nm(o) _ 1) ] (2.13)

1 %) D)) (D), (Do)
= 5 Z Z { (Umm mm U ) mmU m m
lo mm'

mm mm mm m m

Finally, we may simplify this further by approximating the orbitally-decomposed
Ur(n]rzl e DY its average scalar U () in which case the first term in Eq.2.14 vanishes

to give the widely-used simplified DFT + U functional

1
— I (,, (Do) pD@), (@)
Eprriu = 3 ZZ U (nmm, S’ — Moyt i )

Io mm’
1 nf. o (Do), ()
- EZZU( )( : (G) anm/ mm : (2’15)
lo m

The interaction averaging approximation, which is expected to be most valid for
a spherically symmetric correlated subspace immersed in an isotropic environment,
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D

~ gD 1)
0~y Vm,m’e{l,...,21< +1}, (2.16)
might suggest that we may alternatively replace the scalar approximation U () by its
orbital dependent counterpart in Eq.2.14. This also gives a rather simple DFT + U
functional,

1 8 I (Do) (I)(0)
EDFT+U = E Z Umm,mm, (}'lsnr)n((f)(smm/ — I’lmm/a nm,mU ) )

lo mm’

however it is not of practical utility since it is not invariant under unitary rotations
among the Hubbard projectors. We return to the question of constructing tensorially
valid DFT + U corrections with orbital-dependent parameters in Chap. 7.

The principal effect of the DFT + U correction Eq. 2.15 is to approximately emulate
the exact XC functional by introducing a derivative discontinuity in the total-energy
with respect to the occupancy matrix of the correlated subspaces at integer values.
The DFT + U correction to the Kohn—Sham potential, given by

A 1
Vorriu = D > UPlgD) (Eamm/ —n{ >) (or | 2.17)

Io mm'

acts to restore the correct occupancy dependence of the potential, and is attractive or
repulsive for occupancy-matrix elements greater or less than one-half, respectively.
The result, to a first approximation, is the penalisation of non-integer correlated
subspace occupancies and, consequently, an opening of an energy gap of order U
between the occupied and unoccupied Kohn—Sham states which have a large overlap
with the Hubbard projectors, thus facilitating the simulation of strongly-correlated
systems such as Mott—Hubbard insulators within Kohn—Sham DFT.

The DFT + U correction to the energy functional allows a simple interpretation,
or perhaps motivation, as an idempotency penalty-functional [32] of the type often
used to maintain the idempotency of the Kohn—Sham density-matrix in linear-scaling
DFT. Assuming that the particles occupying the correlated subspaces interact strongly
with each other, compared to their interaction with the bath, each subspace effectively
acts as an individual open quantum system. As such, we could separately impose
the density-matrix idempotency condition, i.e., Fock antisymmetry, of the projected
density-matrix for each subspace.

However, the idempotency of the density-matrix for the complete Kohn—Sham
system is a condition which must be exactly satisfied, at the ground-state, and the
idempotency of each subspace density-matrix is, in general, a competing condition.
Thus, the subspace idempotency may be only partially enforced up to an idempotency
functional of the form

(o)
ZTr I:)L(I)(a) (ﬁ(l)(a) _ ﬁ(l>(a)2)]; A (Do) — % (2.18)
lo

which penalises the degradation of fermionic behaviour in each correlated subspace.
Since the strength of the effective Coulomb interactions is closely related to the extent
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to which the derivative discontinuity is lacking in the XC functional, and the latter
is responsible for the spurious partial-occupancy of localised states (or correlated
subspace idempotency deviation) by that functional, the Hubbard U parameter may
be heuristically identified with the pre-factor of the idempotency penalty-functional.

2.3 Framework for Linear-Scaling DFT + U

‘We now proceed to describe the implementation of the DFT + U functional defined by
Eq.2.15 in a contemporary approach to linear-scaling DFT. Firstly, in this section, we
establish a notational framework for expressing the Hubbard projectors, which are
permitted to be nonorthogonal for each correlated subspace, in terms of a localised
nonorthogonal set of support functions of the type typically used to represent the
Kohn—Sham density matrix in many linear-scaling approaches.

Due to the spatial localisation of both the Hubbard projectors and the support
functions, matrix sparsity patterns naturally play an important role in the construction
of our linear-scaling DFT + U method. In fact, as we will show, matrix sparsity
patterns allow us to carry out DFT+ U calculations involving a large number of
correlated subspaces in a very efficient manner.

We will make due comment on matrix sparsity issues, when appropriate, as
we describe the elements of our linear-scaling implementation of DFT + U. Linear
scaling with respect to the number of correlated subspaces in the system may be
achieved for some elements of the DFT + U module, and, in less favourable cases,
with respect to the total number of atoms in the simulation cell.

We begin by expressing the Hubbard projectors {%511 )} spanning each correlated
subspace [ in terms of the nonorthogonal basis functions {¢y} via the linear trans-
formation

oS (1) = ¢ (1) S V). (2.19)

Here, we must assume that the Hubbard projectors are fully expandable in the
frame of their surrounding NGWPFs, though this does not introduce any limitation,
in practice, since the explicit expansion of the projectors in the psinc function basis
is used in the update of the NGWFs themselves. We also assume, for notational
simplicity, that identical Hubbard projectors are used for each spin channel, although
the generalisation to spin-dependent projectors is straightforward.

Here S*? = (¢*|¢P) is the contravariant metric on the NGWFs, as usual, and it
follows that the transformation matrix between covariant basis functions and projec-
tors is given by

Vi = (0pleSD), (2.20)

which may be a very sparse matrix for a low density of correlated subspaces.
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It will be convenient to establish the adjoint (once covariant for the support func-
tion index and once for the Hubbard projector index) transformation matrix as

Wi = Vit =0 |¢a). 2.21)

oam

The metric on each correlated subspace is discussed in detail in Chap. 4 and Ref.
[27]; most of the expressions in this chapter extend readily to the delocalised Hubbard
projector duals discussed there. Here, for brevity, we will restrict ourselves to the
case of the localised Hubbard projector duals defined by

1 ! I 1
o) =1y YOm0l = (gl es)), (222)

where an individual metric tensor Oﬁ) is used for each correlated subspace, as we
propose in Chap.4 and Ref. [27], in order to maintain the tensorial invariance of the
total energy.

The generalised occupation matrix for each correlated subspace, a mixed tensor
with respect to the projector indices, is expressed in the support function represen-
tation as

n(l)’(;lf)m = (g (1)|’5(U)|(p(1)m>

"o

( (1)|¢ )K(G)Otﬁ<¢ |(p(1)>0(1)m m

"ot

— WK @BYD, o

_ (WU)K(“)V(”O(”) m,, (2.23)
m
where
K@ = Z M(G)aikfi(l:)(M(U)T)ikﬂ (2.24)
ik

is the density kernel relating support functions (assumed to be spin-independent) to
Kohn—Sham orbitals via a linear transformation matrix M (@)%, = (¢% Wi(l: )).
The DFT + U correction to the total energy, in the case of a generalised spin-

!
dependent two-index interaction tensor U (1),(,,‘7) "™ (approximations for the interaction
tensor of various rank are discussed in Chap.7), is generally computed using the
matrix trace

Eprryu = Z U(I)(U)m [ (I)ﬁff/)m” (Sm’ﬁ‘ —n(l)quo)m)]

1 UDwD gy ol
=2 5”[ x (1 _ W“)K(")V(I)OU)) } (2.25)

1,0

where here, with further examples to follow, we use multiple continued lines within
braces to describe lengthy scalar expressions.
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Of course, it is undesirable, both from the point of view of implementation and
computational efficiency, to explicitly use separate V), W@ and 0 matrices
for each site. This requires individual matrix products to be carried out for each site
before the sum over sites is computed. If care is taken, however, we may safely embed
all of these small matrices into large, very sparse, V, W and O matrices for the entire
system. These large matrices then fit seamlessly into the hierarchical, parallelised,
sparse algebra routines found in a modern linear-scaling DFT code such as ONETEP.

Let us analyse this strategy in greater detail, taking as an example the computation
of the occupancy matrix

n(l)’(;:)m’ — WrEZQK(“)aﬂ V(I) om'm’ (2.26)
Working from right to left and temporarily placing a site index before each projector
index to clarify its meaning, first consider the product

(VO)(I)m Z Vo(symr 0C/1DM Om" — vy oM D' (2.27)
J

which retains the same sparsity pattern as V due to the block-sparsity of the O matrix
(the size of each block is the number of projectors spanning the subspace on the site
in question).

Next, taking the product from the left with the density kernel,

(KVO)(J)a(I)m/ — g (©@)eap % O)I(SI)m’ ’ (2.28)

we see that this too has the same sparsity as V when no density kernel truncation
is applied, in which case the indices « and S run over all NGWFs. When kernel
truncation is enforced, however, the number of values which « can take is reduced
and the effort needed for the sum over § is diminished.

Only on the final step, where we compute

Dm’ ’
n " = Wsyma (KV 0) @D (2.29)

do we accumulate extraneous information on the off-site non-locality of the density
matrix. Were we to compute this matrix in full and then consider its square, for
example, we would find that

K " I 7 7
an))r(n ym Et}v{))( ym'’ £ n(a)’%l)m n(a)r(nl)m . (2.30)

The former is what is generated in the matrix product, while the latter is what
we require. This problem is resolved by explicitly truncating the required occupancy
matrix

Dm' /
™ = Wiryma (KV 0)( @D (2.31)
to the same sparsity pattern as O (which is also the same as that of U), thus eliminating
any unwanted off-site occupancies. In practice, the unnecessary elements are never
actually computed, and no wasted effort is incurred, since the sparse algebra system
takes into consideration the sparsity pattern of the product matrix.
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2.4 Variations with Respect to the Density Kernel

In the ONETEP code, and indeed most current linear-scaling DFT methods, the
LNVD [33-35] technique, described in Chap. 1, is used to minimise the energy with
respect to the density-matrix, bringing it closer to commutativity with the Kohn—
Sham Hamiltonian while simultaneously driving it towards idempotency. This takes
place in the inner energy minimisation loop in ONETEP, where the NGWFs are kept
fixed and a non-linear conjugate gradients minimisation of the energy with respect
to the matrix elements of the LNVD auxiliary density kernel, L@ s carried out.

The Kohn—-Sham density kernel is related to the auxiliary density kernel via one
iteration of the McWeeny purification transform, i.e.,

K@% — (3LSL — 2LSLSL)@*F . (2.32)

In our treatment of DFT + U, we go a step further and provide the more general
expressions needed for the HSMP [36] adaptation of the LNVD method, in which
a density kernel K () is expressed as a purified and normalised auxiliary density
kernel, explicitly

K©@eeBN©  (31S], — 2LSLSL)(@)*F N(©)

R@ab _ — ’
K©Y3ss, (3LSL — 2LSLSL) )7 S5,

(2.33)

where N(?) is the correct occupancy of spin channel o. The kernel renormalisation
introduces terms in the gradient akin to a chemical potential, which project out any
first-order changes to the electron number, driving the density kernel K@) towards
both normalisation and idempotency as the energy is minimised.

To locate the doubly-covariant derivative of the DFT + U energy term with respect
to the auxiliary density kernel, stressing that it is computed strictly using the purified
and renormalised density kernel, we make use of the chain-rule for matrix derivatives
to write (suppressing the spin index for concision)

0Eprr+u  OEprryu 0K*
aLeB 9K« LB’ 2.34)

It may be readily shown that the latter term is given by

aKlK'
aLeB

3(84 Sy L7 + L Sy085)

SQSﬁyLV”SnngK
—2 ( +LY SyeSpy LT + LY SJN?L’?S SEOIBZ . (2.35)

The derivative of the DFT + U energy term with respect to the purified density
kernel K*® may be broken into products of derivatives and rearranged as follows
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We may next write the gradient with respect to the density kernel in terms of a
preconditioned contribution to the Hamiltonian, denoted by H2FT+U | identifying
the DFT + U correction to the chemical potential needed to preserve the electron
number of the system as

DFT+U 1-6n
MDFT+U _ Hn6 K (2.37)
(K ysSéy) ’
since
DFT +U 1,0
dEDFT+U N prr+u e K"
= H, e 1
oK (K Spa) (K72Ssy)
N DFT+U _  DFT+U
- Im . S ]
(K“/f‘S,go,) [ w 122 i
N -
_ JPFT+U (2.38)

(K Spa) ™

The DFT+ U contribution to the Hamiltonian, used in the above and which is
computed using the purified and renormalised density kernel, in practice is given by

DFT+U __ dEprr+u
HLK

aKLK
(Hm'’ Hm” (Hm'’
. Z lU([)m oy " . onpy " n(l)m/ B n([)m” 8nm” (2.39)
T L K« gKu m" meoogKw |0
1

In order to express this in terms of the NGWF representation, we begin by noting
that the partial derivative of the occupation matrix, for a given subspace, with respect
to an arbitrary density kernel K*°, is given by

A TR
oK« = K [ my
1 8 (1) 1 " !

= wihsrsivin, 0hmm

"o !

= whyD othm'm’ (2.40)

sy, () Am"m’
K7y 0]
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The trace of this over the Hubbard projectors gives the covariant support function
representation of the Hubbard projection for subspace C'), that is

™ ) I
> axa = Vew O WI) = P, 2.41)
m
It follows that the products of the occupancy matrix and its derivative, always
computed in the frame of Hubbard projectors in practice since there they each have
the block-diagonal sparsity pattern of O, are expressed in the support function repre-
sentation as

2111(( 'ZI:TZK O (W%) V&)/”Ou)m’”m”) (W”) KV(1>0<1>)m’f/
— Wb (P<1)KV(1> 0(1));”’ (2.42)
and, taking the complimentary product,
an'Om’ m” ,
”(iz)m”aK(Laﬁm = (W(I)KV(”O(I))m (W,fll,,)l VK(,In),,,O(I)’”Wm)

m'

= (wxP®) (vo®) (2.43)
mit

K
We are free to evaluate the Hubbard U interaction operator as a mixed tensor in
the NGWF representation, so that

I 1) oy (Dmm!’ pr(Dm"” vy, (1)
U = vilommy mw, ) s (2.44)
As aresult, noting that the Hubbard projection operator and the Hubbard interaction
operator commute but that the density-matrix and the Hubbard interaction operator
may not, the DFT + U term in the covariant Hamiltonian, denoted H.(f)DFT+U, is
expressed in the support function representation by

@ p)
H(g)DFTJrUzzl _pWO gy p) ) (2.45)
(09
T2\ _ywpg© p)

The DFT + U term in the total-energy, on the other hand, is succinctly expressed
as

1 o
Bl = 25U (POK©@ - P(’)K(")P(’)K(”))y . (2.46)
1

The associated DFT + U independent-particle, “band-structure", energy correction,

E g;T U= HLQF T+U KXt does not equal the energy term Eprr+p and so the energy
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correction entering into the computation of 27+ is not the same as the correction
to the total-energy. This explicitly demonstrates that DFT + U is a correction beyond
the independent-particle approximation.

The required DFT + U contribution to the covariant gradient is then provided by
the product of the preconditioned term in the Hamiltonian and the derivative of the
density kernel with respect to its auxiliary counterpart. We find that this is given by
(again suppressing the spin index)

8EDFT+U _ N rTDFT+U oK™
oLef  (Kv3Ss,) ** ALY
_ N
(3LSL — 2LSLSL)"? Ss,,
3 (HLS + SLH)
x - - “p ) (2.47)
—2 (HLSLS + SLHLS + SLSLH),,,

Here, I:I.. is shorthand for the preconditioned DFT + U term in the Hamiltonian
and is given by
I:IDFT-FU — HDFT+U _ MDFT+US ) (248)

Explicitly, we may now write the DFT + U correction to the Hamiltonian as

I
Peg (5 — PK)y" — (PKP) 5507

AP Z Y %U,g”r — (PK — 2PKPK)," Sy
1 x (K7385,) "
For a refinement of the auxiliary density kernel L*?, any update must also be a
contravariantly transforming tensor, as noted in Refs. [14, 37]. In order to provide
such a search direction, it is necessary that we pre- and post-multiply the above
covariant gradient with the contravariant metric tensor on the NGWFs, that is the
inverse overlap matrix of the NGWFs at the point at which the gradient itself is
computed, to give

@ap (=1 OEDFT+U (o—1\%P
GDFT+U_(S ) T (S ) (2.49)

Carrying this out, we obtain the DFT + U contribution to the contravariant density
kernel gradient,
©@ap N
DETHU ™ (3LSL — 2LSLSL)"? S5,

i N s
3(S*1HL+LHS*1) ¢

x \ i ) , (2.50)
) (S—lHLSL +LAL + LSLHS‘I)

where H is a shorthand for the preconditioned correction to the Hamiltonian given
by Eq.2.48.
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2.5 Variations with Respect to the NGWFs

Now that we have shown how to incorporate DFT + U into density-matrix based
methods which used a fixed nonorthogonal representation, we turn our attention to
the outer energy-minimisation loop in ONETEP. We consider the contribution due to
DFT + U of the total-energy variation with respect to the expansion coefficients of the
NGWEF for a fixed, optimised, density kernel. The results of this section, of course,
apply to any technique which optimises its representation functions for minimal
energy, such as those described in Refs. [38—41].

The required derivative with respect to covariant support functions may be broken
into its contributing parts as

0Eprriy _ dEprriv (9K™ K™ 0K™ 35,
dpy (1)~ 9RO \ DK™ 9y (r) * S,y 0y (1)

)
Z dEprr4u 9Per
)
7 aPEr 0, (r)
_ yDFTHU K" JK* N AK"\ 9S;,
on AK®™ 3S,,  3Su

a¢y (r)
)
Z dEprr+u 9Per 2.51)
) ’ :
T 0Py 9y ()

As for the density kernel gradient, the NGWF gradient is calculated using the
purified and renormalised density kernel and so contains a preconditioning term
which drives the trace of the density-matrix to the correct occupancy of the system.

The covariant metric explicitly depends on the covariant functions and, assuming
real-valued NGWFs for simplicity, we find that

8SAU
d¢y (r)

=8/ ¢, (1) + 87 ¢ (r). (2.52)

The terms in the parentheses of the second to last line of Eq.2.52 evaluate to

oK _ N oK™ K™ (2.53)
S (K*PSpa) | (K72S5y) ] '

oK™ N 81sY K" S, d (2.54)
— — an .
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S
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Contraction between the DFT + U term in the Hamiltonian and these terms provide
a tensor Q°*® which generates the contribution to the NGWF gradient due to mixing
among the NGWFs, given by

G = HDFT+U(aIZr]0 IK™ 31%"0)

— +
] 0K*¥ 98S;, S (2.56)

N ~ - - A
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The remaining terms involve the Hubbard projections themselves, and changes
beyond linear mixing of the NGWFs. We begin with the action of the DFT+ U
contribution to the Hamiltonian on the correlated subspace projections, that is

et = s | S (R okeoR) |
dPe; dPe; 7 Y
Lo 2 [(r0k - poiroR) ]
2 P, v
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where H, OE;)DF”U is the contribution from each site in Eq. 2.45. The Hubbard projec-
tion operators depend explicitly on the covariant NGWFs which overlap with their
corresponding Hubbard projectors (or Hubbard projector duals) and this dependence
may be expressed as

)
0Pey _ 9 [V(J)O(])m’mW(J)]
¢y (r) 3, (r) L " "

= 5L g\) @) 0 MWD v oM me(D (ry sy, (2.58)

where we have assumed real-valued Hubbard projectors. We may combine the latter
two results to compute the remaining DFT + U term in the NGWF gradient, that is
for each site J,
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Here, due to the subspace-localised nature of the DFT + U correction, only those
NGWFs ¢, which explicitly overlap with the Hubbard projectors expressed on the
grid (p,(nj) contribute and thus need to be summed over.

To conclude, the contravariant gradient of the DFT + U energy with respect to the
NGWEFs is given by the expression

aEDﬂ_ yv ve [ fDFT+U
7, = [Q ¢U+ZK K o] | . (2.60)

Since, however, we require a covariantly transforming NGWF update in order to
improve upon those functions while preserving their tensorial character, the above
contravariant gradient needs to be multiplied with the covariant metric tensor to give
the necessary covariant DFT+ U NGWF gradient term,

8 () =284y [QV”QSV + D K”* [FI(”DF”U@]} (r). (2.61)

J

2.6 Variations with Respect to Ionic Positions

While DFT + U is less commonly applied as a method to improve first-principles
atomic geometries than to rectify local moments and spectra, recent success with
corrected ionic structures [42—46] encourage us to think of DFT + U as a true correc-
tion for ab initio energeties. A linear-scaling implementation of the DFT + U force
corrections may be useful, for example, in systems such as biological organometallic
complexes, where GGA functionals may tend to systematically overbind ligands to
transition-metal ions. As such, we have implemented the DFT + U forces terms, as
well as the total-energy minimisation scheme, in the ONETEP code. We shall now
describe the required methodology.

We assume that the ground-state density for a given ionic configuration is located
before the forces are computed, so that the total-energy is variationally minimised
with respect to both the NGWF expansion coefficients and the matrix elements of
the density kernel.

The DFT + U correction then contributes to the ionic forces only via the spatial
dependence of the Hubbard projection operators, that is for the ion labelled j,

)
aEDFT U aEDFT UaP
Fj=—— 0 = " O (2.62)
J

apy] OR;
In this expression, since the Hubbard projectors are usually considered to be asso-
ciated with one atomic site only, the subspace index J need only run over subspaces
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centred on ion j only. We will henceforth suppress the summation symbol, for nota-
tional clarity, since the generalisation to multiple subspaces per ion is straightforward.

The spatial derivative of the NGWF representation of the Hubbard projection oper-
ator may be expressed as a spatial derivative of the (real-valued) covariant projectors
and contravariant subspace metric tensor themselves. First, however, we define the
NGWF representation of the spatial derivative of the Hubbard projectors as the three-
component vector

J
X = (9| Vg

- / dr ¢ (r) [ / dG (—iG) e 'Gryl)) (G)],

and Y,(ﬂjg = XgQ is its transpose for each component. The required projection deriv-
ative is thus given by
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Here, we have neglected the term involving the partial derivative of the metric
tensor with respect to ionic positions, as it vanishes for the localised subspace repre-
sentation we use here and which we go on to discuss in more detail in Chap.4.
The neglect of this term is appropriate when using either conventional atom-centred
system-independent Hubbard projectors or the self-consistently determined variety
which we describe in Chap. 3 and Ref. [25], since a rigid displacement of all Hubbard
projectors for a correlated subspace does not change the metric tensor on that
subspace.

Combining this expression with the result of Eq.2.57, in order to evaluate the
force expression of Eq.2.62, we conclude that the tensorially consistent DFT + U
contribution to the ionic forces is given, again simplifying using the real-valued
nature of both Hubbard projectors and NGWFs, by the easily-evaluated trace of
sparse matrices

Fj = —2X() 0D wi) glDPrry gee, (2.65)
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2.7 Scaling Tests on Nickel Oxide Nano-Clusters

The first row transition-metal monoxide NiO has, for some considerable time,
posed difficulties to Kohn—Sham density-functional theory and to electronic struc-
ture theories generally. As such, it has served as a valuable proving-ground for
novel approaches such as periodic unrestricted Hartree-Fock theory [47], the self-
interaction corrected local density approximation [19], the GW approximation [48],
LDA +DMFT [49] and first-principles methods for calculating the Hubbard U para-
meter [16, 50] in DFT+ U.

Experimentally, the paramagnetic phase of NiO is found to possess a rock-salt
crystal structure with a lattice constant of approximately 4.17 A [10]. At ambient
temperature, NiO is a type-II antiferromagnetic insulator with a local magnetic
moment of between 1.64 and 1.9 up [16], with a Néel temperature of approximately
523K [9].

Due to the persistence of the magnetic moment and the optical gap, which lies
at approximately 4 eV, of this material above the Néel temperature, it falls broadly
into the category of a Mott insulator [47]. However, the material has been somewhat
reclassified as a charge-transfer insulator since experimental data has shown that
the states close to the top of the valence band possess a predominantly oxygen 2p
character while those in the conduction band are of nickel 3d-orbital character [51].

Irrespective of nomenclature, it has long been recognised that LDA-type exchange
correlation functionals [8] qualitatively fail to reproduce the physics of this material,
grossly under-estimating the local magnetic moment, the Kohn—Sham gap (if it is
imbued with a physical interpretation) and assigning an incorrect fully 3d-orbital
character to the valence band edge, but that the DFT + U method successfully corrects
these deficiencies [10, 16, 21, 50, 52].

2.7.1 Computational Methodology

We performed scaling tests on NiO nano-clusters of varying size, comparing the
computational effort required for DFT + U and uncorrected DFT calculations. We
have chosen approximately spherical nano-clusters with an even number of nickel
ions, so that we may tentatively assume an open-shell singlet multiplicity, analogous
to the bulk antiferromagnetic ground state. In fact, however, we might expect that a
transition to a ferrimagnetic or ferromagnetic ground state occurs below some critical
cluster size, as it has been predicted for very small iron oxide clusters of interest for
data-storage technology [53, 54].

While it is certainly of worthwhile to explore this possibility further using linear-
scaling DFT + U, it exceeded the scope of this study, since the spin multiplicity has
no direct bearing on computational expense. Moreover, since calculations on nano-
clusters of varying sizes may be expected to exhibit differing convergence behaviour,
we simply ran the energy-minimisation algorithm for a fixed number of iterations
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and did not attempt to achieve the ground-state. In Chap.4, published in Ref. [27],
we return to this material in its bulk form, addressing the DFT + U description of its
physical properties in detail.

2.7.2 Scaling of Computational Effort for DFT+ U

A moderate set of run-time parameters was used, since our principal interest was to
test the increase in effort needed when the DFT + U functionality was included in
the calculation. These parameters included a 500eV equivalent plane-wave cutoff
energy, a spin-polarised density kernel, the LSDA XC functional [8], a 25 a( density
kernel cutoff with 7.5 ag NGWF cutoff radii, nine NGWFs for each nickel ion and 4
each for oxygen. A fixed number of one NGWF update step and three density kernel
update steps, with three penalty-functional idempotency corrections per density
kernel update step, were used to test the scaling behaviour without the dependence of
convergence behaviour on system size. NGWF overlap matrix inversion was carried
out using Hotelling’s algorithm [55] and a cubic simulation super-cell of three times
the diameter of each nano-cluster was used, up to a maximum super-cell size of
approximately 300 ag. Hydrogenic projectors of the type discussed in Chap. 3 were
used for DFT + U.

Figure2.2 shows computational timing data for ONETEP energy-minimisation
of selected NiO nano-clusters containing up to 7,153 atoms on 300 nodes of a
commodity supercomputer. A reasonable linear fit was obtained in spite of the rather
small number of data points available; the available memory was exceeded when
attempting calculations of a larger cluster of 11,513 atoms. The zero-time intercept
lay at 450-500 atoms, indicating very efficient initialisation of the pre-requisite data
in these calculations.

The NiO nano-clusters are by no means a favourable case for the DFT + U method,
since approximately half of the ions host correlated subspaces. Nonetheless, we see a
very small increase in computational time when the DFT + U functionality is applied,
of approximately 5%, and preservation of linear-scaling performance.

Figure 2.3 shows the time spent computing the DFT + U projection operator and
its contribution to the total-energy and Hamiltonian. This indicates that no aspect
of this functionality appreciably deviates from linear-scaling behaviour. Also shown
is the timing for one calculation of the DFT + U contribution to the ionic forces,
also exhibiting favourable scaling for those calculations which fell within memory
resources. Significantly, however, we note that the total time spent in these subrou-
tines makes up only a small fraction of the increase in cost incurred by DFT + U,
remaining at less than 1% of the total computational time.

In order to understand where the dominant contribution to the additional cost
originates, if not in the DFT + U subroutines themselves, we direct the reader to
Fig.2.4, where the size-dependent sparsity of some important matrices, with and
without DFT + U, is quantified.
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Fig.2.2 Scaling tests of energy-minimisation functionality, including three density kernel optimi-
sation steps and one NGWF update step, comparing DFT and DFT + U. Four sizeable nano-clusters
of NiO were tested on 300 processing cores
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Fig.2.3 Timing of the DFT + U subroutines in the test calculations shown in Fig.2.2

For a conventional DFT calculation, the sparsity of the Hamiltonian matrix is
dominated by the NGWF representation of the non-local pseudopotential. This in
turn is computed using the product of the overlap matrix between the NGWFs and the
non-local pseudopotential projectors with its transpose. In essence, pairs of NGWFs
which overlap with a common non-local projector must be represented in the Hamil-
tonian, and the same is true of pairs of NGWFs overlapping with a common Hubbard
projector when DFT + U is used.
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Fig.2.4 Nano-cluster size dependence of filling factors of principal matrices. These matrix fillings
partially determine the computational cost for DFT and DFT + U

Non-local pseudopotential projectors tend to have radii not in excess of 2 ag for
lighter elements, up to and including the first-row transition metals. However, the
Hubbard projectors may require radii significantly greater than this, as indicated by
the Hubbard projector density shown in Fig.3.1 for 3d-type projectors.

In our implementation of DFT + U, we attributed a cutoff radius to all Hubbard
projectors equal to the NGWF cutoff radii of their host ions, in this case 7.5 ag. This
was primarily to allow the use of self-consistently determined Hubbard projectors
in the form of NGWFs, as we go on to discuss in Chap. 3. When using hydrogenic
projectors of smaller characteristic radii, it is almost certainly sufficient to use reduced
Hubbard projector cutoff radii for computational efficiency, but we did not explore
this possibility. The significant increase in the filling of the Hamiltonian matrix in
DFT + U over DFT, and thus the computation of it products with other quantities
such as the density kernel, is thus largely responsible for the incurred increase in
computational expense. The increased Hamiltonian filling has consequences too for
the calculation of the gradient of the energy with respect to the NGWF expansion
coefficients, as indicated in Fig. 2.5, which shows the fractional increase in time spent
in some principal operations in the energy-minimisation algorithm.

Due to the increase in the number of matrix elements in the Hamiltonian when the
DFT + U contribution is included, it takes close to twice as much effort to calculate
its expansion on the psinc grid. Moreover, since the grid-expansion of the action of
the Hamiltonian on the NGWFs is also required for the energy gradient with respect
to NGWFs, this too is made more costly by DFT + U.

Of course, when using hydrogenic Hubbard projectors, at least for first-row transi-
tion metal ions, we could safely reduce the cutoff radii of the Hubbard projectors and
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Fig.2.5 Fractional increase in time spent on selected operations when the DFT + U functionality
is activated

therefore the number of matrix elements included in the Hamiltonian, if so desired.
If carried out, this would be expected to further reduce the increase in linear-scaling
pre-factor for these systems from approximately 5% closer to the much lower fraction
which is purely due to the DFT + U subroutines.

2.8 Concluding Remarks

We have detailed a linear-scaling implementation of the widely-used DFT + U method
for treating strongly-correlated systems from first-principles. The formalism is gener-
ally appropriate to methods which minimise the energy with respect to the single-
particle density-matrix, and allows for the optimisation of a nonorthogonal represen-
tation, nonorthogonal Hubbard projectors and ionic positions.

We have demonstrated the preservation of linear-scaling performance on strongly-
correlated nano-clusters in excess of 7,000 atoms. Even for systems such as these,
with a high density of correlated sites, the increase in computational pre-factor is
rather modest. The method is, furthermore, expected to incur negligible extra cost in
large systems comprising only a small number of Hubbard subspaces.

We expect that our method may be helpful in bringing linear-scaling DFT
to bear on more problematic systems than those to which it is usually applied,
for example binding-sites in organometallic enzymes, heterostructures containing
magnetic layers for data storage and processing, defective oxides and interfaces with
catalytic oxide surfaces.
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Chapter 3
Projector Self-Consistent DFT+U Using
Nonorthogonal Generalised Wannier Functions

The DFT+U energy functional depends not only on the electronic density and the
Hubbard interaction parameters, but additionally on a set of projections which delin-
eate the correlated subspaces.

In this chapter, we describe a formulation of the density-functional theory +
Hubbard model (DFT+U) method that is self-consistent over the choice of projectors
used to define these subspaces. In order to overcome the arbitrariness in this choice,
we propose the use of nonorthogonal generalised Wannier functions (NGWFs) as
projectors for the DFT+U correction. We iteratively refine these NGWF projectors
and, hence, the DFT+U functional, such that the correlated subspaces are fully self-
consistent with the DFT+U ground-state.

We discuss the convergence characteristics of this algorithm and compare some
ground-state properties thus computed with those calculated using hydrogenic
projectors. The prescribed approach is implemented within, but not restricted to,
a linear-scaling DFT framework, namely the ONETEP code, and may be applied to
any optimisation procedure for localised orbitals. An abbreviated form of this chapter
has been published in Ref. [1]. Reprinted with permission from David D. O’Regan,
Nicholas D.M. Hine, Mike C. Payne and Arash A. Mostofi, Phys. Rev. B 82,
081102(R) (2010). Copyright (2010) by the American Physical Society.

3.1 Localised Strongly-Correlated Subspaces

Localised correlated subspaces, central to strongly correlated ab initio methods such
as DFT + Hubbard U (DFT+U) [2, 3] and DFT + dynamical mean field theory
(DFT+DMFT) [4, 5], are usually defined by a set of 3d and/or 4f atomic-like orbitals,
termed “Hubbard projectors”, that must, in general, be chosen a priori. Any phys-
ically plausible set of localised functions may, in principle, be used as Hubbard
projectors and those that have been previously employed include hydrogenic wave-
functions [6, 7], Maximally-localised Wannier functions [8], and LMTO-type atomic
orbitals [2, 9]. The choice of such projections introduces an adjustable parameter
(in the generalised sense of a vector field) which, as we go on to show for the DFT+U

D. D. O’Regan, Optimised Projections for the Ab Initio Simulation of Large and 65
Strongly Correlated Systems, Springer Theses, DOI: 10.1007/978-3-642-23238-1_3,
© Springer-Verlag Berlin Heidelberg 2012



66 3 Projector Self-Consistent DFT+U

case (on which the concentrate hereafter), constitutes an unsatisfactory arbitrariness
in such methods.

The task of generating an “optimal” set of Hubbard projectors is somewhat ill-
defined insofar as that to do so we must necessarily make a judgement regarding
which properties of such projectors are deemed to be most crucial. For the majority
of authors who have historically undertaken the implementation of an ab initio
method for strong local correlations, simplicity of computation has undoubtedly
been assigned a high priority. As a result, most of the currently available methods
employ, as Hubbard projectors, a physically appropriate subset (one with the correct
angular-momentum character and number of radial nodes) of their basis functions
(in the case of methods which use atomic orbitals as such) or localised valence
pseudo-orbitals (more usually for plane-wave methods), since the necessary repre-
sentation of the Kohn—Sham orbitals in terms of such functions will be conveniently
pre-computed and readily available in the code.

Further considerations may include whether accurate ground-state properties,
such as total-energies and local moments, or a good reproduction of experimental
quasiparticle spectra by the Kohn—Sham eigenspectrum takes precedence. We take
the view that, while the two requirements might not be mutually exclusive for all
systems, it is preferable to focus on the former when assessing the relative merits
of different approaches since satisfying the latter is, at best, a fortuitous effect in
Kohn—-Sham DFT+U, much as it is for conventional Kohn—Sham DFT. An interesting
alternative possibility is the “many-body projector orbitals”, of Ref. [10], which are
constructed to exactly reproduce pre-ordained many-body expectation values such as
spin or orbital moments. If, on the other hand, one wishes to concentrate on spectro-
scopic properties, one could argue that, since the true quasiparticles are themselves
nonorthogonal in general, it could be perhaps more promising to admit Hubbard
projector nonorthogonality. We examine, in detail, the technical ramifications of
Hubbard projector nonorthogonality in Chap.4 and Ref. [11].

These considerations notwithstanding, in this chapter we demonstrate that the
spatial form of Hubbard projectors in the form of hydrogenic orbitals may strongly
influence computed properties and may even lead to physically unreasonable predic-
tions. While we do not have an objection to the use of computationally convenient
basis functions, indeed far from it, we do contend that a clear statement of what
functions are used as Hubbard projectors, so frequently overlooked in the literature
on this subject, as well as what interaction parameters are used etc. is needed in order
to clearly describe, for the sake of reproducibility, the DFT+U technique.

We go on to present, in this chapter, an approach in which the ambiguity in the
choice of Hubbard projectors is removed, and in which they are determined self-
consistently with respect to the DFT+U ground-state. We first outline the theoret-
ical framework of our approach, and present results of calculations on ligated iron
porphyrin FeP. We demonstrate that optimised nonorthogonal generalised Wannier
functions (NGWFs) provide an efficient and natural, for linear-scaling calculations,
choice for Hubbard projectors and one which performs well in our proposed tech-
nique for self-consistently delineating the subspaces in which correlation effects play
an important role.
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3.2 Methodological Framework

Our implementation is within the framework of linear-scaling DFT, described in
Chap. 1, however the same self-consistent projector methodology may be applied to
any DFT approach that solves for localised Wannier-like functions (either directly,
or indirectly in a post-processing step using an interface to a code such as Wannier90
[12]). Furthermore, our approach may be readily combined with recently-proposed
methods to calculate U parameters from first-principles [6, 7, 13], detailed in Chap. 7,
facilitating an entirely parameter-free and self-consistent formulation of DFT+U. We
use a rotationally-invariant DFT+U correction term,

(I)(o)
Ey = z |:Zn Znn’f,nﬂ’?} , (3.1
mm’

lo
where UD(@) represents the screened Coulomb repulsion between electrons of spin
o, localised on the correlated site 1. Equation 3.1 is, in effect, a penalty functional for
deviation from idempotency of the projection of the single-particle density-matrix
onto each correlated subspace.
The occupancy matrix in the case of a set of M nonorthogonal Hubbard projectors

|g0(1)) m € {1, ..., M}, localised on site /, is given by

ng{)(o)m Z (0) (U)|P(I)m Wf(”)) (32)
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where I/I(a) is a Kohn—Sham eigenstate for spin channel o with band index i, crystal

momentum k and occupancy f; (@ ), and P(I)m |g0,(,11 ))(go(l )’"/l is the Hubbard
projection operator. The contravariant dual vectors |¢ /") are related to the covariant

projectors through the site-centred overlap matrix 0;1131/ = (Om D |<p(1)) which is a
metric on the correlated subspace
(I .y, DOmy _ D\ A DHm'm. (Dm'm” A () _ om’
D jphmy = oDy oDm'm, ghm'm" o) sm" (3.3)

Our definition of the occupancy matrix, which is motivated and described in
detail in Chap.4 and Ref. [11], differs to that of Refs. [14, 15] and has the following
desirable properties: the expressions are tensorially correct; the energy and resulting
potential are rotationally invariant; the resulting potential is Hermitian and localised
to the correlated site; and the trace of the occupancy matrix gives the occupancy
of the correlated site. The contravariant metric O™ is calculated only as an
inverse of the covariant overlap matrix OY(,{;,,, therefore, the duals of the Hubbard
projectors are also localised to the site. As a result, and in contrast with previously
proposed approaches to DFT+U models using nonorthogonal projectors, the DFT+U
potential constructed from the tensorially consistent energy for a given correlated
site remains manifestly local to that site. We note that for the special case of an
orthogonal set of projectors on each site, the projection operator is self-adjoint and
the above expressions reduce to the DFT+U correction of Ref. [6, 7].
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3.3 The Spatial Form of Hydrogenic Subspaces

Solutions of appropriate orbital symmetry of the Schrédinger equation for the
hydrogenic-like atom, such as linear muffin-tin orbitals, are a common choice of
Hubbard projectors [2, 9, 13] for DFT+U calculations. These hydrogenic projectors
are generally characterised by an effective charge Z and effective mass ratio a,,, the
ratio of which in turn determines their spatial diffuseness.

Of course, for a given value of U, results of DFT+U calculations with different
values chosen for Z will not necessarily yield the same ground-state properties [13,
16]. Let us briefly discuss the properties of such hydrogenic orbitals, which we use
in this study to investigate the dependence of computed DFT+U observables on the
choice of spherically-symmetric projectors. We also propose a simple method for
estimating an appropriate Z parameter appropriate to pseudopotential methods.

Hydrogenic projectors are defined on a radial real-space grid according to the
familiar formula for the nodeless [ = n — 1 solutions of the hydrogen atom

Z\: (zr\"" Zr
Ong=n—1 () =N|— — exp | — , (3.4)
nay au nay

where the constant N provides the appropriate normalisation as per

/l(p(r)|2r2dr =1. (3.5)
0

Equivalently, and often more conveniently for computational purposes, the
Fourier-Bessel transform [17],

&)
2
Gni=n-1(q) = \/; / Gni=n—1(r) Ji (gryr?dr, (3.6)
0

where j; is the spherical Bessel function of the first kind, may be used to construct
the normalised nodeless projectors, on the reciprocal-space radial grid, of the general
form

quflzn‘F%

—— 3.7
(ZZ + (nq)z)n-i-l
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the normalisation constant M being related to N. Shown in Figs.3.1 and 3.2 are the
probability densities of 3d orbital projectors, in real and reciprocal space, respectively,
for various values of the effective nuclear charge Z. The ratio of effective masses is
hereafter absorbed into the effective Z for convenience.

In real multi-atomic systems, the 3d manifold is always somewhat distorted from
spherical symmetry by hybridisation effects. This effect is expected to be more
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pronounced in the case of molecular systems, since in this case the orbitals are more
spatially delocalised than their counterparts in solids. Thus, constraining the form of
the Kohn—Sham orbitals via the DFT+U with hydrogenic Hubbard projectors may
be limited, in some cases, in its capacity to recover the subtleties of the localised
electronic structure which are often responsible for the interesting physical behaviour
in transition-metal containing clusters, surfaces or defective solids.

For example, in the case of binding of small molecules to catalytic solid-oxide
surfaces, where the DFT+U correction is often beneficial, spurious Hubbard occupan-
cies have been suspected of leading to inaccurate predictions of binding energies [16].
Additionally, even in pristine solids, the spherical-symmetry approximation may be
inappropriate in cases where the correlated states are strongly hybridised with those
of greater band-dispersion (which are usually associated with neighbouring ligands)
and so the corresponding orbitals may differ significantly from those representable
by atomic wave-functions.

Nonetheless, the use of the valence pseudo-orbitals of appropriate orbital character
as Hubbard projectors is, however, somewhat justifiable as a first approximation,
since these are consistent with the pseudised isolated-atom core potential which
is not vastly dissimilar to that felt by the spatially localised Kohn—Sham states.
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Table3.1 Effective nuclear charges for 3d-orbitals of the late transition-metal ions calculated using
various methods

Species Clementi—-Raimondi Pseudo max. Pseudo RMS
Manganese 10.5282 9.0188 9.3329
Iron 11.1798 8.7957 8.4575
Cobalt 11.8554 8.8932 8.7351
Nickel 12.5295 9.0242 9.0251
Copper 13.2006 9.0636 9.2514

Clementi—-Raimondi corresponds to pioneering atomic Hartree—Fock calculations described in Ref.
[20]. In the second column, labelled “Pseudo Max.” are those values for Z computed by fitting the
maximum radial probabilities of relativistically and non-linear core corrected PBE valence atomic
pseudo-orbitals for these species to the analytical form for hydrogenic orbitals. The third column,
“Pseudo RMS” is as in the previous, but the Z is computed by minimising the RMS deviation
(integrated up to a radius of 10ag) between the hydrogenic pseudo-orbitals and their hydrogenic
counterparts

This technique is most commonly used in plane-wave pseudopotential methods such
as CASTEP [18] and QUANTUM-ESPRESSO [19].

In order to simulate the use of valence pseudo-orbitals as Hubbard projectors in
ONETEP, we use hydrogenic orbitals with a radial probability distribution which is
fitted to that of the corresponding pseudo-orbitals for the precise pseudopotential used
in the calculation. The effective charge felt by the valence electrons of 3d character
depends not only on the form of the pseudopotential but also on the screening effects
of inner valence electrons and on the chemical environment.

Similar effective charge values were found by matching the maxima of the prob-
ability distributions (the maximum radial probability for hydrogenic orbitals of prin-
cipal quantum number n = [ 4 1 is attained at 75y = ”7) and minimising their
root mean squared deviation, and generally the hydrogenic orbitals are slightly more
spatially compact than the true valence pseudo-orbitals, while having a smoother
profile about the peak value.

Table 3.1 shows the effective charge values for the 3d-orbitals in some selected
transition metal species. The results for iron, a particular example where we observe
that there is some noticeable deviation between the Z values computed by either
matching the maxima of the pseudo-orbital and hydrogenic orbital or minimising
their root mean squared difference, are illustrated in Fig. 3.3. As we go on to show in
a study of iron porphyrin, Z values estimated using either method provide projectors
which perform close to optimally with respect to the set of orbitals described by
Eq.3.4.

3.4 Wannier Functions for Localised Subspaces

In order to obtain accurate occupancy matrices in DFT+U, a set of projectors
is required which adequately accounts for electronic hybridisation and which, if
possible, is defined unambiguously for the system under study without the need for
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any any a priori assumptions. Wannier functions, in particular Maximally Localised
Wannier functions (MLWFs) [21, 22], are computed by minimising the quadratic
spread of the Wannier functions for a set of Kohn—Sham eigenstates and provide a
complete and minimal basis with which to construct tight-binding models from ab
initio orbitals.

Wannier functions have been used with good effect to augment DFT with localised
many-body interaction corrections [23—-26], in which application they exactly repro-
duce the nature of the chemical hybridisation of the correlated subspaces, while
simultaneously retaining the crucial attribute of spatial localisation. There is, further-
more, numerical evidence to suggest that MLWFs constitute the projector set which
maximises the on-site Coulomb repulsion, and hence the U parameter [8]. We will
return to this topic in Chap. 7.

The NGWFs generated by the energy minimisation scheme of the ONETEP linear-
scaling code [27, 28] are a readily accessible set of localised orbitals which are
calculated with linear-scaling computational cost.

Thus, in the ONETEP linear-scaling method, it is rather natural to use a localised
subset of the NGWFs obtained at the end of a ground-state calculation, with appro-
priate orbital character, as Hubbard projectors for defining the DFT+U occupancy
matrix, since those functions are fully adapted to the chemical environment and are
generated with linear-scaling cost. NGWFs, as with MLWFs, reflect the balance
between the competing tendencies of electron itinerancy and localisation in strongly
correlated systems and, as a result, provide an accurate representation of the occu-
pancy of the correlated site.

The projector self-consistency technique, we go on to define, may be applied
to either MLWFs or NGWFs, though we demonstrate numerical tests only for the
latter. The manner in which one goes about decoupling of correlated subspaces from
the remainder of the system differs somewhat depending on whether MLWFs or
NGWFs are used as Hubbard projectors, and there are advantages associated with
each approach. For the case of MLWFs, one is faced with the choice of whether
to construct Wannier functions for the entire band-structure, and then to select the
appropriate subset of these according to some criterion (e.g., localisation or angular
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Table 3.2 Spherical

harmonic decomposition of NGWF %) p(%) d%) %)
the Lowdin 1 0.000 0.000 99.999 0.000
orthonormalisation of the 2 0.001 0.003 99.991 0.005
optimised NGWFs on a 3 0.237 0.002 99.760 0.001
copper atom in (CuPc), at 4 0.000 0.001 99.998 0.001
PBE+U=6¢V with 5 0.000 0.000 99.999 0.001
hydrogenic projectors, see 6 99.063 0.174 0711 0.052
Chap. 4 and Ref. [11] 7 0.030 98.520 0.325 1125

8 0.186 99.475 0.221 0.118

9 0.000 98.501 0.210 1.289

momentum characterisation), or to attempt to disentangle the energy bands in a user-
defined energy window.

The latter method brings with it the disadvantage of necessitating user intervention
in the band-selection procedure and the advantage that one then has strict control over
the extent of the resulting projection over the Kohn—Sham eigenspectrum. The former
method is more akin to that which is unavoidable when using NGWFs, and requires
no intervention aside from the choice of a function selection procedure but in principle
does not disallow some spillage of the Hubbard projection to energies outside the
correlated window. NGWFs, in practice, are initialised with pure real-valued linear
combinations of eigenstates of angular-momentum and tend to retain this definite
character, mixing negligibly with eigenstates of different angular momentum as they
undergo optimisation, as shown in Table 3.2.

3.5 The Self-Consistent Projector Method

Our goal in proposing a scheme whereby the Hubbard projectors are determined
self-consistently is to obviate any presuppositions concerning the spatial form of
the correlated subspaces. The advocated method dictates iteratively solving for the
Kohn—-Sham ground-state (iteratively in the literal sense that a sequence of Kohn—
Sham ground-states are solved for) using as Hubbard projectors for one iteration
the converged NGWFs (or indeed MLWFs, as we have discussed) from the DFT+U
ground-state calculation of the previous iteration.

In this way, the Hubbard projectors may converge to those that are optimally
adapted for their own DFT+U ground-state density. This scheme, as we go on to
show, rapidly and monotonically converges to an unambiguously defined DFT+U
ground-state which, for a given U parameter and for the systems we have studied, is
of substantially lower energy than that computed using our best system-independent
hydrogenic projectors (at least with the NGWF optimisation criterion of energy
minimisation used here). The unambiguous definition of our procedure certainly
does not imply that it is the unique projector optimisation scheme, far from it, and
we would expect alternative, and perhaps physically valid, Wannierisation schemes
to yield somewhat different results.
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We direct the reader’s attention to Fig.3.4 for a visual representation of the
projector self-consistent DFT+U method. The energy minimisation scheme in
ONETEP, discussed in detail in Chap. 1, considering first a conventional DFT+U
calculation, takes the form of two nested conjugate-gradients energy minimisation
loops. In the inner loop (coloured red) the density kernel is optimised for a fixed
set of NGWFs using a combination of penalty functional [29] and LNVD [30-32]
methods in order to minimise the energy while maintaining the idempotency and
normalisation of the density matrix. In the outer loop (coloured blue), the energy is
directly minimised with respect to the expansion coefficients of the NGWFs in the
psinc basis, with full variational freedom within their truncation sphere.

If a projector self-consistent DFT+U calculation is required, a third, outermost,
self-consistency loop (coloured green, and not an energy-minimisation cycle) is
invoked in which a subset of the optimised NGWFs of appropriate orbital symmetry
are selected as the Hubbard projectors and used to generate the correlated subspaces
for the next total-energy minimisation. A visual illustration of such an NGWF for
FeP(CO) is given in Fig.3.5.

A set of conventional hydrogenic projectors, with a user-defined Z parameter, are
used for the first iteration of the scheme, and the hydrogenic projection operator is
retained thereafter in order to determine which NGWFs form a Hubbard projection
the product with which attains a maximal trace, and thus which should be used as
projectors for the next iteration. Referring the reader once more to Table 3.2, there
is no ambiguity as to which functions are appropriate for spanning the correlated
subspaces for the systems we have studied.

The converged NGWFs and density kernel are carried over from one Hubbard
projector iteration to initialise the next in order to expedite convergence. Sequential
changes both to the total energy and to the projection over the hydrogenic initial
guess, sustained over a given number of Hubbard projector iterations, are used as
convergence criteria for the method.

It is important to emphasise that the energy is not directly minimised with respect
to the expansion coefficients of the Hubbard projectors in the outermost loop, since
it would violate the variational principle if either the Hubbard projectors or the
interactions U were allowed to change during energy minimisation [15].

The projector-update process alternates between direct variational minimisation
of the total energy (with respect to the density) for a fixed set of projectors and renewal
of the projectors (in a sense equivalent to the density-mixing method for solving non-
linear systems [33, 34]—though no actual mixing with projectors from iterations is
actually needed for numerical stability). In practice, the projectors rapidly converge
towards those which coincide with a subset of the NGWFs which reproduce the
ground state density corresponding to the DFT+U correction which they themselves
define.
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Fig.3.4 Schematic of the projector self-consistent DFT+U scheme appropriate to the ONETEP
method

3.6 Application to Ligated Iron Porphyrins

In order to isolate and analyse the effect of projector-dependence of DFT+U ground-
state properties, the effect of overlap between projections on different sites must be
eliminated. The simplest way to achieve this in an unbiased fashion is, of course, to
study a system where the sites do not overlap at all, or preferably one which consists
of one correlated subspace in contact with a bath, thus requiring the introduction
of no approximations additional to the DFT+U ansatz. In this section, we study the
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Fig.3.5 A localised NGWF for FeP(CO) at PBE+U = 6 eV, of predominantly 3d,, character,
which is used as a Hubbard projector in the self-consistent DFT+U scheme. The left image shows
the initial guess for the NGWF (from the STO-3G set). The central shows the form of the NGWF
after it has been fully optimised to minimise the energy in the presence of the DFT+U correction
(using hydrogenic Hubbard projectors with the Clementi—Raimondi effective charge [20] for iron
3d orbitals). The right image illustrated the final form of the NGWF after it has been refined in
projector self-consistent DFT+U

projector-dependence of the DFT+U ground state of such a single-site molecular
system and apply our self-consistent approach to rectify this dependence.

3.6.1 Iron Porphyrin Derivatives

We applied our proposed method to the iron porphyrin (FeP) molecule. Metallopor-
phyrin systems, such as FeP, play an important role in certain biochemical processes,
not the least important of which involve the oxyheme-based proteins used for oxygen
transport. The ability of metalloporphyrins to bind simple molecules is also of interest
for technological purposes, particularly in the case of FeP which has potential for
use as an electronic gas sensor since it has a greater affinity for CO and NO than Oy;
the latter is a factor in mammalian respiration.

We have chosen the molecular systems FeP and its derivatives with axial ligands,
FeP(CO), FeP(O;) and FeP(NO), as test cases in this study because porphyrins
and metalloporphyrins have emerged as the standard test-bed for ab initio methods
for treating strong correlations in molecular systems. Multiple valence character
due to near-degenerate localised states on the transition-metal ions is at once the
feature of metalloporphyrin complexes which makes them such effective host sites for
numerous biological reactions, but also that which makes them somewhat challenging
for conventional exchange-correlation functionals which tend to fractionally occupy
these states.

The quantum mechanical study of iron porphyrin and its derivatives has a long
and distinguished history, and is still a topic of active research. In recent years, they
have been used as benchmark systems for novel methods such as DFT+U, see Refs
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Table 3.3 Averaged lengths of central bonds of the iron porphyrin derivative structures optimised at
the PBE+U=0¢eV level at their ground spin state, we abbreviate closed-shell singlet and open-shell
singlet by CSS and OSS, respectively

Bond length (ag) Spin-state X-0 Fe-X Fe-N N-C
FeP Triplet - - 3.79 2.61
FeP(CO) CSS 2.20 3.28 3.81 2.61
FeP (0y) 0SS 2.32 3.38 3.82 2.61
FeP(NO) Doublet 2.17 3.32 3.85 2.61

[35-38], many-body perturbation theory for molecular systems, as in Refs. [39, 40],
and a range of calculations employing hybrid exchange-correlation functionals.

3.6.2 Computational Methodology

We performed fully converged energy minimisation on FeP, and its axial complexes
with carbon monoxide, oxygen and nitric oxide, using the ONETEP code [27].
We used spin-polarised DFT+U within the PBE generalised-gradient (GGA) [41]
and pseudopotential! [42] approximations. An equivalent plane-wave kinetic energy
cutoff of 1,000eV was used with a cubic simulation cell of side-length 37 A.

The NGWFs were spatially restricted to atom-centred spheres of radius 5.3 A
and no density kernel truncation was applied. Since the principal focus of this study
was on the explicit dependence of computed DFT+U ground-state properties on
variations in the Hubbard projectors for a given U value, optimised PBE (U=0¢eV)
structures were used in order to avoid any indirect effects due to the expected small
resultant changes in bond lengths; details of the most crucial bond parameters are
provided, with the concomitant spin multiplicity, in Table 3.3.

3.6.3 U and Z-Dependence of Magnetic Dipole Moments and
Interaction Energies

Shown in Fig. 3.6, with data points joined by a cubic spline curve as an aid for the
eye, is the interaction energy between FeP and CO as an illustration that the binding
affinity between moieties in DFT+U can be strongly influenced by the localisation of
the Hubbard projectors. As can be seen, the binding affinity is not uniquely defined

' A set of RRKJ Pseudopotentials were generated using the Opium code,
http://opium.sourceforge.net, using the GGA input parameters available therein, optimized
for a minimum plane-wave cutoff of 680eV, albeit with a scalar-relativistic correction for all
species and, for the transition-metal ions, some slight modifications to the core radii and a
non-linear core correction of Fuchs—Scheffler characteristic radius 1.3 a.u.


http://opium.sourceforge.net
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Fig.3.6 The interaction [ ____T______T_ T T "]
energy, positive for an
unbound ligand, of the CO
and FeP moieties (fop panel)
and the magnetic dipole
moment projected onto the
correlated manifold of
triplet-state FeP (bottom
panel). Both are plotted at
various U as a function of the
effective charge Z used to
define the hydrogenic
projectors (solid lines), while
dashed lines show those
quantities calculated with
self-consistent NGWF
Hubbard projectors. Blue
lines indicate the binding
threshold (fop) and the ideal
projected moment (bottom)
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when hydrogenic projectors are used, although this may be partly compensated by a
projector-dependent first-principles [6, 7, 13] U parameter. At U=6¢V it varies from
approximately 0.04—0.69 eV over the range of Z considered; at U=4e¢V the result is
even qualitatively ambiguous as a function of Z.

Using self-consistent NGWF projectors (dashed lines) generally results in ener-
getically less favourable ligand binding, demonstrating that, for a given value of U,
NGWEF projectors more effectively counteract the spurious tendency of GGA func-
tionals to over-bind ligands to FeP [35]. Also shown in Fig.3.6 is the projection of
the magnetic dipole moment of FeP due to single occupancy of Kohn—Sham orbitals
of primarily dy, and dy, character in its ground-state, onto the correlated subspaces.
This varies strongly with the value of Z chosen for the hydrogenic projectors (solid
line), with only a narrow range of Z at U=6¢eV giving values that are close to the
expected 2.0 up for optimal projectors.

Moreover, a pathological inconsistency with experiment emerges in that U values
of sufficient magnitude to achieve the requisite moment (for some Z) bring us into
the unphysical regime where FeP+CO binding is disfavoured. Conversely, the use of
self-consistent NGWF projectors (dashed) results in a projected magnetic moment
which lies within the physically reasonable range and is rather insensitive to changes
inU.



78 3 Projector Self-Consistent DFT+U

7.25
7.00
6.75
6.50
6.25 B
6.00
5.75

Fig.3.7 The total occupancy
of the correlated manifolds
of FeP(CO) and FeP at
PBE+U=6¢V plotted as a
function of the effective
charge Z used to define the
hydrogenic projectors (solid
lines). Also shown are these
total occupancies calculated
at Hubbard projector
self-consistency

5.50¢ FeP(CO) - hydrogenic ~ +

Total occupancy of correlated subspace

(long-dashed lines) 525k FeP - hydrogenic ~ x
FeP(CO) - NGWF ------
5.00 | _FeP-NGWF -~
7 8 9 10 11 12

Hydrogenic projector effective charge Z

3.6.4 Z-Dependence of Subspace Occupancy
in FeP and FeP(CO)

One expects that for sufficiently large effective nuclear charge Z (corresponding
to excessively localised projectors) the Hubbard occupancy will be only slightly
perturbed by the presence of a ligand bound to the transition-metal ion.

This supposition is borne out in Fig. 3.7, where we show the converged values of
the total occupancy of the correlated Hubbard manifolds of the FeP and FeP(CO)
molecules at PBE+U=6¢V as a function of the effective charge Z (a separate total
energy minimisation was performed for each Z value).

Nominally, the iron ion of both molecules has a 3d° shell. One notices that at
lower values of Z the diatomic ligand contributes additional charge density to the
correlated manifold, while the suppressed occupancy and neglect of the chemical
environment at higher values of Z renders these orbitals hardly suitable as Hubbard
projectors for defining the DFT+U occupancy matrices.

Also shown (dashed lines) are the corresponding Hubbard occupancies computed
using self-consistently determined NGWF projectors. These match those for hydro-
genic projectors of Z &~ 8, which is not at all dissimilar to the effective charge esti-
mated by fitting to the valence pseudo-orbitals for the ion in question. The precise
crossover point is, of course, dependent on the chemical environment, demonstrating
the hazard incurred by using system-independent Hubbard projectors if sensitive
quantities like binding affinities are required.

3.6.5 Z-Dependent Kohn—-Sham Bandgap of FeP and FeP(CO)

For strongly-correlated solid oxide materials, the DFT+U method is frequently
thought of as a method for correcting the tendency of DFT-LDA to underestimate the
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Kohn—Sham gap (with respect to the experimental insulating gap) more so than as
an energetic correction. In such systems, where the states adjacent to the Fermi level
have a predominantly localised character with a significant weight on the Hubbard
projectors, the effect of DFT+U is to increase the splitting between these occupied
and virtual low-dispersive bands by an energy difference on the order of U.

The picture is infrequently so clear for molecular systems, however, and at all
reasonable values of U, the Kohn—Sham orbitals adjacent to the Fermi level of FeP
or FeP(CO) exhibit strongly hybridised character between localised Fe 3d and the
delocalised heterocycle C p, or axial ligand-centred orbitals. The DFT+U correction,
therefore, does not have the straightforward effect of opening the HOMO-LUMO
gap since the system may respond by decreasing the weight of the Hubbard projector
on these orbitals, while increasing the contribution of the probability density of the
orbitals on the heterocycle ring, leaving the Kohn—Sham gap only slightly perturbed.

As aresult, the Kohn—Sham HOMO-LUMO gap of the metalloporphyrin systems
studied were found to be relatively insensitive to the form of the projectors used for
the DFT+U correction, see Fig.3.8. In this sense, if one were only interested in the
magnitude of the band-gap and not the details of its spectroscopic nature, the method
is rather forgiving of crude approximations for the Hubbard projectors. The self-
consistent NGWF projectors reproduce the HOMO-LUMO gap over a range of Z
values which is consistent with the energetics and local moments.

3.6.6 Z-Dependent Electric Dipole Moments of FeP and FeP(CO)

As a final observation on the dependence of the DFT+U ground-state properties on
projector diffuseness, we note that the computed magnitude of the electric dipole
moment of the FeP(CO) molecule exhibits a particularly strong Z dependence, as
shown in Fig.3.9. Both the DFT+U energy term and the total energy are also shown
for comparison. An interesting feature of this graph is that the dipole moment, which
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is largely due to the axial ligand binding with the transition-metal ion, takes on a
minimum at a Z value close to that which minimises the energy. The Z in question is
close to that estimated using the valence pseudo-orbitals.

We heuristically interpret the coincidence of these minima as occurring when the
Hubbard projectors best match the form of the Kohn—Sham orbitals of correlated 3d
character, that is when those projectors are most suitable for the electronic structure
of the molecule. In this situation, the correction is most efficient in reducing the
spurious spatial extent of the strongly-correlated orbitals, and so their contribution
to the electric dipole moment from is minimised, while at the same time minimising
the DFT+U contribution to the energy.

Naturally, since the diatomic ligand perturbs the iron ion’s chemical environ-
ment, there is some slight difference between the Z values which minimise the
total-energies in FeP(CO) and FeP, see Fig.3.10 for the latter. Changes in energy
due, ostensibly, to small errors in system-independent estimates for Z may readily
be on the order of 10~2Ha, however, as we can see. The total-energies and electric
dipole moments computed using self-consistent NGWF projectors lie, significantly,
at somewhat lower values than any achievable using their hydrogenic counterparts,
perhaps reflecting their greater capacity to represent subtleties in the spatial form of
the strongly-correlated states.

3.6.7 Dependence on the Interaction Parameter U

For a given system, together with its pseudopotentials and an exchange correlation
functional, the DFT+U method remains dependent both on the Hubbard projectors
and on the interaction parameters U. The projectors and parameters interdepend in
a rather complicated way; on the one hand a set of Wannier function projectors may
be self-consistently optimised for pre-defined U parameters, on the other hand those
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parameters may be computed from the screened response of the system which in turn
depends on the projectors. We return to this topic in in Chap. 7.

The projectors consist of a vector field at each site and contain much more infor-
mation than the U parameter, generally, even if the latter takes the form of a tensor.
We do not subscribe to the notion, therefore, that computing the U parameter may
always correct for poorly-chosen Hubbard projectors.

Clearly, a self-consistency procedure over both projectors and parameters is highly
desirable, and though it is not immediately clear that there may be a unique solution
to such a scheme in general, this perhaps depends on how the scheme is constructed,
initial conditions and of course the nature of the system it is applied to. One might,
however, reasonably expect that the members of the family of solutions would yield
similar physical predictions if the scheme were constructed in a physically plausible
way.

While we have not undertaken such a calculations, we have investigated the U-
dependence of various properties using both self-consistent NGWF projectors and
with the conventional hydrogenic variety. The effective charge used to generate the
hydrogenic orbitals was the Clementi—Raimondi charge [20] of Z = 11.17 for iron
3d-orbitals. While we have already shown that this is not the Z at which the energies
for these species at PBE+U=6¢eV are minimised, we chose it in order to make an
unbiased comparison between the performance of the self-consistent projectors and
conventional projectors constructed using a tabulated value from the literature.

Figure 3.11 shows the U-dependence of the total electric dipole moment in various
FeP derivatives. The general effect of the self consistent NGWF projectors is to
enhance the effect of the DFT+U correction on the moments with respect to the
hydrogenic projectors, that is to enlarge the suppression of the electric dipole moment
(by localising the charge density onto the transition-metal ion and hence away from
the axial ligand), and the augmentation of the magnetic dipole moment, as shown in
Fig.3.6.


http://dx.doi.org/10.1007/978-3-642-23238-1_7
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Fig.3.11 The magnitude of the electric dipole moment of FeP(CO) and FeP, plotted as a function
of the U parameter. Solid lines show the moments calculated using hydrogenic projectors corre-
sponding to effective charge Z = 11.17. Also given are those calculated with self-consistent NGWF
Hubbard projectors (dashed lines)

This general trend is due to the NGWFs having more weight on the axial ligands
due to their ability to deviate from spherical symmetry, The very low electric dipole
moment of the approximately-planar FeP molecule, incidentally, is not strongly asso-
ciated with the central region of the porphyrin and so is not greatly affected by either
the choice of projectors or parameter.

A complementary observable is, perhaps, the interaction energy between FeP and
the diatomic axial ligands CO, O, and NO, since it is strongly dependent on both
the nature of the Hubbard projectors and the U parameter. This is shown in Fig.3.12,
and also in more detail for the FeP+CO case in Fig.3.6. The observed trend in
all cases is for binding to become less energetically favourable with increasing U,
until unbinding is predicted to occur beyond a certain value which is both system
dependent and, quite substantially, projector dependent.

The predicted and spurious unbinding of the ligand at higher U values is due to
the contraction of the 3d-like orbitals onto the transition-metal ion and their further
submergence below the valence band edge, reducing the bonding character with o -
orbitals on the axial ligand. Since these calculations were carried out at the optimised
PBE+U=0¢eV geometry, one might reasonably expect that, for both projector types,
the reorganisation of the ionic geometry might go in favour of binding and somewhat
mitigate the U-dependence of the binding affinity. This point notwithstanding, the
preference to binding with NO over CO, and that over O2, for moderate U values, fully
accords with the known behaviour of this system. The order of binding preference
eventually changes with increasing U, but only in the unphysical region of positive
interaction energies.

Binding is less favourable for each molecule when using NGWF projectors
and this trend increases with increasing U value. We observe approximately linear
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Fig.3.12 Binding energy of the CO, O and NO molecules to FeP at PBE plotted as a function
of U. All energies are calculated at PBE+U=0eV geometries for the ground spin-states of FeP,
FeP(CO), FeP(O2) and FeP(NO), and each of the respective diatomic reagents. Solid lines show
the results calculated using hydrogenic projectors corresponding to effective charge Z = 11.17.
Dashed lines show the binding energies calculated at Hubbard projector self-consistency

behaviour in the binding energy curve beyond a certain (system and projector depen-
dent) U value. This is because, beyond that value, the Kohn—Sham orbitals have
effectively taken on a form very close to that of the Hubbard projectors. Thereafter,
the response of the system stiffens and the energy of both reagent and product simply
increases linearly with the U parameter.

3.7 Convergence of the Projector Self-Consistency Algorithm

Figure3.13 demonstrates the stable convergence of the projector self-consistent
DFT+U method for FeP+CO for a range of U parameters. The graph shows the
difference between the total energy at a given projector self-consistency step, at
various values of U, and that at which the convergence criterion was satisfied—that
is an energy change of less than 1078 Ha maintained over three iterations. Each
data point represents an individual variational total-energy minimisation, wherein
the Hubbard projectors are re-constructed from the optimised ground-state NGWFs
from the previous iteration.

The energy decreases rapidly and stably as the Hubbard projectors are refined,
a consequence of the NGWFs themselves being optimised by an energy minimisa-
tion calculation at each projector iteration. This confirms our understanding that the
NGWFs are well-adapted for the hybridised character of the Kohn—Sham orbitals,
providing a representation of the density which reduces the DFT+U energy term.
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Fig.3.13 The difference in total energy E and the total energy at projector self-consistency Escr as
a function of the projector self-consistency iteration. The procedure is initialised (iteration 0) with a
set of hydrogenic 3d projectors to construct the correlated subspace, using the Clementi—Raimondi
[20] effective charge of Z = 11.17 for iron 3d orbitals

Since the NGWF representation is then also optimal for the densities associ-
ated with the correlated subspaces, at projector self consistency, it provides a good
description of the subspace occupancies. In this way, more spatially diffuse self-
interaction corrections are introduced than with purely hydrogenic Hubbard projec-
tors, in a complementary manner to such methods as DFT+U+V [43] which allow
more general interaction terms between sites.

The change to the total energy when the set of projectors is updated is naturally
greater with a greater U parameter, so the total-energy convergence of the projector
self-consistency algorithm is somewhat slower for larger values of U. While the
total-energy is not guaranteed to decrease at each successive projector update itera-
tion, in practice, we find that it usually decreases monotonically, and approximately
exponentially, as the projectors are updated. We have found that, unlike many other
non-linear systems where previous histories of solutions are mixed in to damp oscil-
latory behaviour, the projector update scheme is very robust in this sense and no
mixing with previous Hubbard projectors is required.

3.8 Computational Cost of Projector Self-Consistency

The ground-state density from one Hubbard projector iteration is used to initialise that
of the following iteration and so much fewer NGWF optimisation steps are required
at each successive projector update step. As depicted in Fig.3.14, this results in an
overall computational effort for achieving projector self-consistency that is only a
small overhead compared to the conventional DFT+U approach.
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Insetin Fig. 3.14, the trace of the product between the NGWF Hubbard projection
at each self-consistency step and the hydrogenic initial guess projection, is plotted
as the difference from its stationary value. The stationary point is defined as that
at which the trace of the NGWF-hydrogenic projector product varies by less than
1078 electrons. This shows that the correlated subspace actually converges in very
few iterations indeed, with close to ideal exponential behaviour. The subsequent
decreases in the total energy shown in the principal graph are thus primarily due to
further refinement of the density, with effectively converged Hubbard projectors.

3.9 Forces in Projector Self-Consistent DFT+U

In order to achieve meaningful insight into the U-dependence of bond formation, it
is necessary to allow for Hubbard projector update consistent with variations in the
molecular geometry. As such, if one were to re-optimise the Hubbard projectors at
each step of a molecular dynamics simulation, however, one expects that additional
Pulay terms in the ionic forces might be required in order to account for changes
in the spatial profile of the Hubbard projectors with ionic displacement. It would
appear a nontrivial task to predict the requisite first-order change of the form Wannier
functions with atomic position.

In the particular case of the ONETEP method, where the ground-state at any
given atomic configuration the energy in is, by definition, variationally minimised
with respect to the expansion coefficients of the NGWFs, the force calculation is
simplified if a subset of these converged NGWFs are those selected as Hubbard
projectors. We may assume that the forces are computed only when the energy is
strictly stationary with respect to the NGWPFs, as they should be, and that the NGWFs
which are selected as Hubbard projectors do not change from one ionic configuration
to the next; this is most likely and may be easily confirmed.
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Since the Hubbard projectors are themselves NGWFs which minimise the energy,
the first derivative of the energy with respect to the expansion coefficients of the
Hubbard projectors vanishes also, in a similar manner to the vanishing change in the
Kohn—Sham orbitals to first-order in ionic position. As a result, no first-order terms
appear in the ionic forces in addition to the usual derivative of the projectors with
respect to ionic position which appears in conventional DFT+U, given by Eqgs.2.65
and 4.32.

3.10 Concluding Remarks

In conclusion, we have proposed and demonstrated a method within DFT+U for
obtaining Hubbard projectors that are unambiguously-defined, optimally adapted to
their chemical environment, and consistent with the DFT+U ground-state density.
Our implementation may be incorporated into any method that either solves directly
for localised Wannier-like states, or which computes such states in a post-processing
fashion. If combined self-consistently with approaches for calculating U from first-
principles [6, 7, 13], which we embellish further in Chap. 7, this work opens up the
possibility of parameter-free DFT+U calculations for large systems.
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Chapter 4
Subspace Representations in Ab Initio
Methods for Strongly Correlated Systems

We present, in this chapter, a generalised definition of subspace occupancy matrices in
abinitio methods for strongly correlated materials, such as DFT + U and DFT+DMFT,
which is appropriate to the case of nonorthogonal projector functions.

By enforcing the tensorial consistency of all matrix operations, we are led to a
subspace projection operator for which the occupancy matrix is tensorial and accu-
mulates only contributions which are local to the correlated subspace at hand. For
DFT + U in particular, the resulting contributions to the potential and ionic forces are
automatically Hermitian, without resort to symmetrisation, and localised to their
corresponding correlated subspace. The tensorial invariance of the occupancies,
energies and ionic forces is preserved. We illustrate the effect of this formalism
in a projector-self consistent DFT+ U study of a representative pair of strongly
correlated systems. We refer the reader to Chap.3 and Ref. [1] for a description
of the projector-self consistent DFT + U method. This chapter has been published
in Ref.[2]. Reprinted with permission from David D. O’Regan, Mike C. Payne
and Arash A. Mostofi, Phys. Rev. B 83, 245124 (2011). Copyright (2011) by the
American Physical Society.

4.1 Motivation

The definition of the correlated subspace occupancy matrices for the DFT +
Hubbard U (DFT + U) [3, 4] or DFT+dynamical mean field theory (DFT+DMFT)
[5, 6] methods is quite unambiguous when using a set of orthonormal projectors and
it is described in Chap. 2. The question of how to properly extend the formalism to
allow for the possibility of nonorthogonal spanning functions, however, is one under
active debate [7, 8] and one of immediate practical consequence.

It is frequently useful to permit the nonorthogonality of the basis functions for the
Kohn—Sham [9] states in ab initio methods which make use of sophisticated spatially-
localised orbitals for such functions, particularly in linear-scaling density functional
theory methods [7, 10-12]. Additionally, either for reasons of computational conve-
nience, as in Refs. [7, 13, 14], or for the purposes of achieving self-consistency over

D. D. O’Regan, Optimised Projections for the Ab Initio Simulation of Large and 89
Strongly Correlated Systems, Springer Theses, DOI: 10.1007/978-3-642-23238-1_4,
© Springer-Verlag Berlin Heidelberg 2012
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the correlated subspaces, as in Ref. [1] and Chap. 3, it is common to use a subset
of these nonorthogonal basis functions as projectors for the correlated subspaces,
the subset termed Hubbard projectors. As we demonstrate below, however, it may
be hazardous to over-identify the Hubbard projectors with the basis set from which
they are drawn.

In this chapter, we offer a revised definition of the subspace occupancy matrix for
ab initio methods which use nonorthogonal projectors to define the strongly corre-
lated subspaces. We show that by enforcing the tensorial consistency (see Chap. 5 for
further detail on the significance of this) of all matrix operations we are led imme-
diately to a simple definition of the projection operator, for each subspace, which is
fully localised to that subspace. In contrast to previously proposed formalisms of Ref.
[7] and references therein, this gives rise to Hermitian corrections to the potential
and ionic forces, without any post hoc symmetrisation, which are also localised to
the spaces in which the correlation correction is required. The resulting occupancy
matrix reproduces the electron number of the subspaces and is tensorial. Thus, for
example, its trace is invariant under both unitary rotations and the generalised Lowdin
transformations [15] described in Ref. [8].

In order to illustrate the performance of the proposed formalism, we applied it to
the DFT + U method in a study of two strongly correlated systems, namely bulk nickel
oxide and the gas-phase copper phthalocyanine dimer, and compared our predictions
to those resulting from the most comprehensive alternative formalism available at
the time of writing, the “dual representation” of Ref. [7].

A set of nonorthogonal generalised Wannier functions [10] optimised using the
projector self-consistent DFT + U method, described in Ref. [1] and Chap. 3, was used
in order to carry out our computational study with a minimum of user intervention
in the construction of the nonorthogonal Hubbard projectors.

4.2 Nonorthogonal Representations of the Occupancy Matrix

Generally, in order to extract low-energy Hubbard-model like models from ab initio
DFT simulations, as in the DFT + U method described in Chap.2, we require the
projection of the single-particle density-matrix

PO =D WV Wi, (4.1)
ik

where wl.(lf ) is a Kohn—Sham eigenstate for spin channel o with band index i, crystal
momentum k and occupancy fi(") , onto a set of spatially localised subspaces. These
subspaces C), where I is the site index, encompass that part of the Hilbert space
of the Kohn—Sham orbitals which is deemed to be responsible for strong localised
Coulomb interactions beyond the scope of the approximate exchange-correlation
functional.
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The occupancy of subspace C/), which is delineated by a set of M) potentially
non-orthogonal spanning projectors |¢,§11 )), m e {1,..., M}, dubbed Hubbard
projectors, which are associated with subspace /, is generally given by the subspace-
projected density matrix

ADe) IS(I)T,@(U)ﬁ(I)_ (4.2)

The Hubbard projection operator 2, the resolution of the identity for the space
¢ isdefined in terms of the Hubbard projectors, but the exact manner in which this
definition should be made has been the subject of some discussion, as we describe
in the following.

Some important conditions should be satisfied by a sound definition of the occu-
pancy matrix of each correlated site, namely: all operations such as matrix products
and traces should be tensorially consistent so that the total energy, potential and
forces are tensorial invariants (unaltered by arbitrary transformations of the basis
on which the projectors for that site are defined); any potential depending on that
occupancy matrix should be Hermitian and its action should be strictly localised to
the correlated subspace while depending only on occupancies which are themselves
localised to that subspace; the trace of the occupancy matrix should exactly repro-
duce the occupancy of the correlated manifold on that site and if the site is extended
to encompass the entire system then the total electron number should be obtained.

4.2.1 The “Full” and “On-Site” Representations

We generally assume that a set of complex, mutually nonorthogonal Hubbard projec-
tors are used for each individual site and that the correlated subspaces possibly
overlap (we do not consider transformations among the projectors of different corre-
lated sites). Dual vectors of the Hubbard projectors must be defined with respect to
some Hilbert superspace of the correlated manifold, H") > C!), some possibili-
ties for which are the subspace itself (i.e., HD = cU )), the union of all correlated
subspaces (i.e., H) = |J ;1 C (1)) and the space S spanned by all basis functions in
the simulation cell (i.e., ") = S). The Hubbard projector duals are then generally
given by

= 3 leso, 43)
acHD

where §(1** is the contravariant metric tensor for the set of functions spanning ()
(the inverse of their overlap matrix). Physically meaningful inner products, e.g.,
tensorial invariants such as occupancies, energies or forces, are computed between
functions and elements of their set of dual functions only (in the orthonormal case
there is no practical distinction between functions and their duals). For a more detailed
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exposition of tensor calculus applied to problems in electronic structure theory we
refer the reader to Chap.5 and Refs. [16, 17].

In this general case it is immediately clear that the simplest definition of the
occupancy matrix for a given site, that is the projection P = > mec I(p,(,,l )) (go,gll )I
of the valence manifold over the site’s Hubbard projectors,

1 ~ 1
Mo = (0516 10))), (44)

is invalid for nonorthogonal projectors. This widely-used definition of the occu-
pancy matrix, which is entirely appropriate in the orthonormal case such as calcula-
tions described in Ref. [18] and numerous citations therein, simply neglects all such
nonorthogonality, and the trace or powers of such a fully covariant tensor are not
physically meaningful in the nonorthogonal case.

A total site occupancy defined as a trace operation on this matrix, as in

ND@ =3 e, (4.5)
m

implies that such an occupancy is not, in general, a tensorial invariant since it is
formed by a tensorially invalid summation over two covariant indices—as opposed
to a meaningful contraction of indices of opposite tensor character. Occupancies,
just like total energies, should be tensorial invariants, scalars which are unchanged
by transformations of the basis on which the projector functions are defined.

Progress was made in the definition of the occupancies of correlated subspaces
via nonorthogonal projectors when it was noted [14] that tensorially contravariant
projector duals should be involved, a concept known in other contexts for some time
[19]. A definition of the occupancy matrix fully in terms of Hubbard projector duals
was described in Ref. [14], for example, where the projection operator defined as
P = > mecD lpmy (oDm | provides an occupancy matrix

nD@Imm’ — (,(Dm 5(0) ) (Dmy
A 1 ’
= sDme D15 gy s (4.6)

The indices « and 8 run over the spanning vectors of the contravariant metric (i.e.,
the inverse overlap matrix) S)*®, on a superspace H'!) of the correlated manifold
€, and we hereafter make use of the summation convention [20], whereby repeated
indices within the same expression are summed over unless in parentheses.

With projector duals defined this way, the indices « and 8 run over the span-
ning vectors of the contravariant metric (i.e., the inverse overlap matrix) S*® on
a superspace H) of the correlated manifold C'/). Unfortunately, the resulting
matrix trace and powers are again not tensorially valid, as can be seen by taking the
example of the square of this contravariant occupancy matrix, which is of interest
for density—density self-interaction corrections to exchange-correlation functionals.
The resulting expression for the squared occupancy matrix


http://dx.doi.org/10.1007/978-3-642-23238-1_5

4.2 Nonorthogonal Representations of the Occupancy Matrix 93

nZ(I)(a)mm’= Z n(1)(U)mm”n(1)(0)m”m’ 4.7)

m"eC)

implies that the operator

PO = > 1" e (4.8)

m//ec(l)

forms a tensorially traceable identity on C/). Unfortunately, it does not in the case
of nonorthogonal projectors, since an identity operator can only be formed via the
outer product between a projector and a projector dual, and not a dual vector and its
complex conjugate, including the case where the correlated subspace is extended to
the Hilbert space of the entire system (C'!) = S).

The shortcomings in the two definitions of the occupancy matrix described above
have been previously described in detail by Han et. al. in Ref. [7] and are dubbed,
respectively, the “full” (Eq.4.4) and “on-site” (Eq. 4.6) representations in the nomen-
clature described therein. These authors concentrated on the special case where the
dual-generating superspace H!) is the space spanned by all basis functions {|¢¢)} in
the simulation cell, so that H/) = S, in which case Sep = (¢«|¢p) and the Hubbard
projectors form a subset of the basis set. Thus, the same contravariant metric for all
basis functions in the simulation cell is used to generate the dual functions on each
correlated site and in this case the “full” and “on-site” occupancy matrices simplify,
respectively, to

(o) _ (1) (o) ()
Mo~ = z SmeC(’)aKaaﬁSﬂm’eC(’) (4.9)
a,BeS
and
n(I)(o)mm’ _ K(o)mEC“)m’GC(” (4.10)

where K (9 = ($%|5()|¢P) is the representation of the density matrix in terms of
basis-set duals. The notation S’;’E) D
vectors of two different spaces, C'/) and H), respectively, so that the block of S,e

in question is generally not square.

reminds us that m and o run over the spanning

4.2.2 The “Dual” Representation

Han et. al. [7], whose invaluable contribution on this subject addressed many of the
salient issues, pointed out that the total number of electrons is not recovered by the
trace of the occupancy matrix if the site is extended to include the entire simulation
cell using the “full” and “on-site” representations, and proposed an alternative “dual”
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representation which solves this particular problem and is generated by the projector

A 1
PO =23 (16 @l 1o ™) (4.11)

meC)

and the corresponding occupancy matrix

. 1
D@ _ 1 (w(l)mlp(g)lw,;/),)vL
2\ (g 151D

1 K(a)meC(’)aS e+
= 5 Z(S K(U)gz/ec(l) : (4.12)
aeS meCDa

Here, the contravariant metric on the complete basis set is used to form the
Hubbard projector duals (which are therefore delocalised across the entire simula-
tion cell, in general, since the inverse overlap matrix is dense even when the overlap
matrix itself is sparse) via o)) = D we 8|q)(§1))S“’”. Symmetrisation is carried
out in a post hoc step in order to both provide a symmetric occupancy matrix and to
retrieve a Hermitian potential.

The “dual” representation shares with the “full” representation the attributes of
Hermiticity and rotational invariance and, furthermore, it has a tensorially and phys-
ically meaningful trace. As such, to our knowledge, it provides the most favourable
occupancy definition hitherto available. However, this occupancy matrix is tensori-
ally ambiguous, consisting of the sum of tensors of differing index character.

One cannot generally symmetrise or antisymmetrise a tensor over indices of mixed
covariant/contravariant character in this way and obtain a matrix which transforms
as a tensor (and be used to generate an invariant occupancy or energy). Thus, while
providing a significant improvement over previously suggested definitions of the
occupancy matrix due to its tensorially invariant trace, the “dual” representation
suffers similar problems with matrix powers as other representations: if we attempt
to compute the square of this matrix we obtain tensorially inconsistent, and thus
physically meaningless, terms in the product of the form n®,n,® and n,°n°,.

4.2.3 Requirement for a Subspace-Localised Hermitian
Projection Operator

Let us step back for a moment and consider why the projection operator

PO= 3 MMell= 3 sl @y

meCW) meC®
acHD2cD
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requires symmetrisation to the “dual” form in order to provide a Hermitian potential
operator. An arbitrary potential operator v, operating on the subspace C/), which
could represent the screened Coulomb interaction, for example, has matrix elements
in the frame of Hubbard projectors given by

vim = 3 (gD Vel s (4.14)
acHWD
The potential operator is thus easily shown to be non-Hermitian in the case where
m,m' e CD cHD S, ¢D #£HD, since

v — pDiyp) — (1)) (I)mm'<(p(’/)|
m

(7
Z |¢(1)>S(I)maV(é)Su)ﬂm’((p(I)|
m «Q, m’
a,feHD
) (Hm'g, )
# D le)shemy, D s gl
a,BeHD "
I / A A A - A
— |(p(1)m>vn(”i/<¢(l)m |= POV pIOT _ pDT (4.15)

The reason for this non-Hermiticity is that the indices «, 8 do not generally run
over functions spanning just the correlated space C/), but rather over those that
span a superspace H ), e.g., typically over the basis functions in the simulation cell,
H = S. This observation is quite general: the dual projectors must be constructed
using the metric on precisely the space spanned by the projectors themselves in
order to build a Hermitian projection operator and hence a Hermitian potential. This
cannot be circumvented in a tensorially-consistent way by symmetrising operators
since tensors can only be symmetrised over pairs of indices if they are either both of
covariant character or both of contravariant character.

A simple, though ultimately incomplete, work-around for this issue is to simply
truncate the sum to the subspace in question when building the Hubbard projector
duals, that is to define a set of approximate dual Hubbard projectors |¢(™") =
> wech |(pr(n[,) NG m'm Tn effect, this corresponds to extracting, for each site I, a sub-
block of the overlap matrix S)*® of size MD) x M (where MD is the number of
Hubbard projectors for site 7, typically 5 for a transition-metal ion) and use this matrix
as an approximate contravariant metric on C/). The advantage of this approach is
that the resulting potential is Hermitian without resorting to symmetrisation and the
approximate duals are localised to the subspace to which they correspond. However,
in this case the Hermitian projection

PO = 3 s gD (4.16)

m,m'eC)

is, at best, an approximation to the identity operator on the subspace C!/) and, in this
case, ((p,(,,l ) lp! )m,) # 8% . We will denote this incomplete formulation the “truncated”
representation and, while we mention it for completeness, we do not recommend its
use.



96 4 Subspace Representations in Ab Initio Methods

4.2.4 The “Tensorial” Representation

Based on the above arguments, we must conclude that in order to build a tensorially-
consistent occupancy matrix which generates a Hermitian potential, the projection
operator for a given subspace C/) must be constructed using exact dual Hubbard
projectors with respect to that subspace only. Thus, with the covariant overlap matrix
of Hubbard projectors defined by

Opr = (03 l03)), (4.17)

mm’
an individual MD x M covariant metric tensor for each correlated site 7, the
proper dual vectors [¢/)") are constructed using the corresponding contravariant
metric O™ (which is obtained as an individual M x M) inverse operation
for each site) as

|(p(l)m> — Z |(pr(nl/)>0(l)m/m; O(I)m/m//or(n[//)m _ 8:"11/. 4.18)
m'eCD)

In the special case where the Hubbard projectors are drawn from the set of func-
tions used to represent the Kohn—Sham wave-functions, the overlap matrix of duals
0D** for each site cannot generally be extracted immediately from the metric S*°
on S. However, in this particular case, the OE. matrix for each site is merely a
sub-block of the basis-function overlap S, and, from this, the contravariant 0Dee
for each site can be computed by a separate inverse operation for each site which is
fast, due to the small matrix dimension.

Employing this definition of the metric tensor on each subspace, the projector
duals remain manifestly as localised to the correlated subspace as the projectors
themselves, they pick up only subspace-localised contributions to the occupancy
and can only apply subspace-localised corrective potentials, as we would expect for
local corrections such as DFT + U or its extensions. The Hubbard projection operator,
in what we will denote the “tensorial” representation,

A 1 ’
PO = 3" e h o el (4.19)
m,m'eC)

is Hermitian and thus gives rise to a Hermitian potential without resort to symmetri-
sation since O!)** is a square overlap matrix,

V(I) P(I)'VP(I) _ |(p(l))V(1)mm < (1)|
_ |§0(1)>0(1)mm V(I) O(I)m m” ( (1)|
m

"

— |¢(1)m)v(1) ) (Hm'! | = pDOypdDF — yi (4.20)

mm’

The occupancy matrix is most easily expressed in its singly covariant and singly
contravariant form, though other forms are readily obtainable from the metric tensor,
so manipulations of the following form can be made:



4.2 Nonorthogonal Representations of the Occupancy Matrix 97

1" = Oeelt®® = 1ee 0°° = O4en®, 0°°. 4.21)

The contravariant—covariant or covariant—contravariant forms of the tensorial
occupancy matrix, the latter given by (the second line applies to the special case
where Hubbard projectors are drawn from the basis set)

"o !

n}(,r{)(c)m’ = (g (I)l,O(g)KD(I))O(I)m m

Z Sima K ﬁSﬁ ,,O(I)m”m’ (4.22)
aBeS

possess a common tensorially invariant trace (a proper contraction over one covariant
and one contravariant index) which recovers the exact number of electrons in the
correlated subspace by construction (the so-called “sum-rule”), so that

NO©@ = 5 phem — 3 e (4.23)

meCW) meCW)

Their powers themselves remain tensors, for example the square nz(l)(‘,;,)m =

n(l)(a,,)lm”n(l)(fn),,m/ is itself a well behaved singly covariant and singly contravariant
tensor with an invariant trace. This occupancy matrix is easily demonstrated to be
invariant under rotations of the set of Hubbard projectors on its site and it is inde-
pendent of the basis used to represent the Kohn—Sham states.

An occupancy matrix which is invariant under element-wise transpose might lend
itself to an interpretation as quantifying the charge shared between Hubbard projec-
tors, and indeed it does in the case of orthonormal Hubbard projectors. However,
it is worth emphasising that in the case of a set of nonorthogonal Hubbard projec-
tors, these functions are merely spanning vectors with no rigorous physical meaning,
and generally no such interpretation of charge shared between orbitals can be made
safely. In fact, in the nonorthogonal case, the occupancy matrix should not be gener-
ally expected to be invariant under element-wise transpose, i.e., n,,, ;é n = n’",/n
Rather, if the duals are defined in a way which preserves the tensonal cons1stency of
1nner products, the occupancy matrix must satisfy instead the more general expression
n,"t = Opyyrn™ m'! " om’"m , where O, and O°®*® are the covariant and contravariant
metric tensors, respectlvely on the subspace in question. As aresult, only the diagonal
elements of the occupancy matrix can be imbued with a physical meaning in the sense
of occupancy and symmetrising the matrix does not recover such an interpretation
for the off-diagonal elements.

4.3 Application to the DFT + U Method

In this section, we illustrate the practical application of the “tensorial” representation
to a particular method for strongly correlated materials, namely the simplified rota-
tionally invariant DFT + U correction of Refs. [18, 21] that was introduced in Chap. 2.
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We also bring the method for computing the U parameter which is described in these
articles, and which is detailed further in Chap. 7, within the tensorial framework.

Itisuseful, but not obligatory, to bear in mind the motivation of the DFT + U correc-
tion as an idempotency penalty-functional for the subspace-projected single-particle
density matrices before considering the nonorthogonal framework; for this we refer
the reader to Chap. 2. Notwithstanding, in this chapter, we provide all the necessary
expressions for the tensorially invariant DFT + U terms in the energy, potential and
ionic forces for use with nonorthogonal Hubbard projectors.

Itis of some importance to demystify the use of nonorthogonal Hubbard projectors
in the case of DFT + U because such a set is often used in contemporary, particularly
linear-scaling, implementations [7, 10-12]. We show in Chap. 3 and Ref. [1] that an
efficient set of Hubbard projectors can be constructed which is self-consistent with
the set of truncated nonorthogonal generalised Wannier functions that minimises the
DFT + U total energy.

When the necessary steps are taken to ensure the tensorial consistency of matrix
operations, orthonormalisation of the Hubbard projectors before their use is rendered
unnecessary. Nonorthogonality is perhaps a desirable property, in fact, for a set of
Hubbard projectors in the form of Wannier functions, as it permits them to have
greater localisation than their equivalent orthonormal counterparts [22].

We concentrate here on the familiar rotationally invariant simplified DFT + U
correction term of Cococcioni and de Gironcoli in Ref. [18], given for an orthonormal
set of Hubbard projectors for each site by

D@

(I)(o)
Z 2 |:Z Nmm — Z nmm’nm/m:| . 4.24)
m mm’

lo

If we further assume that atomic projectors are employed, the scalar U@
represents a spherical average of that Coulomb repulsion. As described in Chap. 2,
this is a simplified version of the rotationally invariant form of the DFT + U functional
given in reference [23]. The extension of alternative forms of the DFT + U functional
to our nonorthogonal formalism is straightforward.

4.3.1 The Tensorially Invariant DFT + U Functional

Let us consider how we might generalise this DFT + U penalty functional to include
orbital-dependent interactions in a rotationally invariant and tensorially consistent
manner. The Coulomb interaction tensor U for a given spin channel and site (consid-
ering the same Hubbard projectors for different spins for brevity of notation) is
given generally by the two-centre integral (N.B. using the Dirac, and not Mulliken,
convention)

U = (00 00 100 (2,0) 1081 0 1), (4.25)

mm/m//m/// -
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Here U (r, r’ ) is the Coulomb interaction screened according to mechanisms
described by an appropriate theory such as linear response [13, 18, 21], constrained
LDA [24-26], constrained RPA [27, 28] or constrained adiabatic LDA [29]. Coulomb
repulsion is represented by those terms for which m = m”; m’ = m””, while direct
exchange is given by those elements with m = m"; m’ = m”. We refer the reader
Chap. 7 for an elaboration on this topic.

In the general, nonorthogonal case, care must be taken in computing and using
the U tensor in order to preserve the tensorial invariance of the DFT+ U energy.
For example, if a tensorial invariant is required which provides the sum of the part
of the tensor describing density-density Coulomb repulsions, it should correctly be
computed by contracting covariant and contravariant indices in pairs of indices of

opposite character, e.g., double-sums of the form, where m, m’ € {1, ..., M},
v,»", ™., o ", or U” " (4.26)

are admissible while those of the form U,/ or U mm'mm’ preak tensorial invari-
ance. Indices are raised and lowered using the metric tensor of the correlated subspace
to which the U tensor corresponds, the contravariant O®® or covariant O,,, respec-
tively, as in

Ummm/m =0"" Umm”m’m’” omm, (427)

A fully projector-decomposed tensorially invariant DFT + U functional may be
constructed using pairwise contractions over the four indices, for example

1 ’ " " " ([)(G)
> Sum s =y (4.28)

2 mm” m'" m
lo
which includes all information on the spurious curvature of the total energy with
respect to orbital occupation up to the resolution of the Hubbard projectors.

A commonly used approximation for the screened Coulomb interaction, at the
time of writing, is where the both the perturbing and probing indices are contracted
over before use, providing a scalar density-density Coulomb interaction. The usual
DFT + U penalty-functional in this fully averaged approximation is thus given in
tensorially-invariant form by the expression, where the interaction tensor is properly
renormalised,

1 ’ ” " 1 )(0)
(1) mm
> 3Usn [ =, (4.29)
lo

4.3.2 DFT + U Potential and Ionic Forces

The DFT + U term in the Kohn—Sham potential, generally given (for real valued U
tensors) by
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Ve =3 lpmy O e, (4.30)
I
has matrix elements
! 1 I " " I
v = o [ =2, (431

in the fully-averaged scalar interaction case. The DFT + U potential is Hermitian
by construction when the Hubbard projection operator built with the subspace-local
tensorial representation of Eq.4.19, is used. No symmetrisation of the occupancy
matrices is needed to ensure this Hermiticity and the potential acts strictly within the
spatial extent of the subspace of whose occupancy it depends.

Correspondingly, the DFT + U contribution to the force on the ion labelled J, with
position Ry, is given by

F, = — <d<ﬂm ‘ (1)>0(1)m/m” (D(@)m" 1, (1) (@)m
m m
d // 1o, 1
Zn(l)(o)m< (1)‘ ‘/’ >0(1)m m V(I)(a)m (4.32)

where, for example, we have made simplifications such as

(@)
dgg(l)m> _ de, >0(I)m’m_ 433)
dRy dRy

Here we have expressed the force term in the frame of Hubbard projectors and
we refer the reader to Eq. 2.65 for its expression, in the case of real-valued Hubbard
projectors, in terms of localised nonorthogonal real-valued support functions.

Condition Eq.4.33 holds if the subspace metric tensor is position independent, in
particular if the Hubbard projectors are simply spatially translated when their host
ion is moved, or when the energy is minimised with respect to the Hubbard projectors
before the force is calculated. The force equation, of course, holds only if we are
on the Hellmann—-Feynman surface, where the density matrix commutes with the
Hamiltonian and so all terms contributing to the force involving derivatives of the
density-matrix with respect to ionic positions vanish.

4.3.3 The Case of Orthonormal Hubbard Projectors

Orthogonal sets of Hubbard projectors, as well as nonorthogonal sets, may provide
a compact and accurate representation of the correlated subspaces and we would not
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wish to detract from their value and ease of use. In this special case, the Hubbard
projectors equal their own duals with respect to their subspace, and the metric tensor
reduces to a Kronecker delta. The Maximally-Localised Wannier functions [30, 31],
for example, formed by minimising the quadratic spread of the Wannier functions for
a set of bands in a specified window of the Kohn—Sham eigenvalue spectrum, have
been shown to provide an excellent minimal basis with which to build tight-binding
models using Kohn—Sham orbitals. These functions also seem to be those which
maximise the four-index trace of the Coulomb interaction [32] The U tensor, or
those elements relevant for screened Coulomb repulsion Ur(nm > 18 @ complicated
object even in the orthonormal case and one whose off-diagonal elements should not
be ignored if possible.

The DFT + U energy functional, in the case where one orbital degree of freedom is
retained and an orthonormal set of Hubbard projectors is used for the site in question,
is given by

1
> v, [n(”(f’) (”(‘,’,?n(’?,,(")]. (4.34)

2 mm”" m’'m” mm m m
lo

This further reduces to the commonly used form of Cococcioni and de Gironcoli
[18] if we take a second trace over the U tensor and disallow orbital off-diagonal
interactions in the above, replacing

1
U}’E’ln)l//m m// Wlth U',E,l///m//'n///m//smm (4'35)
and identifying UD) = U < ., asthe usual subspace-averaged scalar U.

m m-mTm
If one performs an inverse Lowdin transform [15] from an orthonormal set of

projectors to a nonorthogonal frame using the matrix square root of covariant and

contravariant metric on a particular correlated subspace, 02, and 0~2** for that
CD, respectively, then the pre-multiplicative scalar U parameter for that site remains
identically the same, since for each site (if n and n’ index orthonormal projectors and
m and m’ index their nonorthogonal counterparts) we have

E Unn’nn’

nn'

= E Unn/n”n”/ (Snn” (Sn/n///

/

l 1N
= Z Unn'nnm z Onzm —zmn Z On ! 02 m n
nn' m
e 430
mm’

Thus, in the widely used assumption in which the Coulomb interaction is replaced
by a pre-multiplicative scalar times the identity, we retain the usual interpretation of
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the scalar U as the averaged screened Coulomb repulsion between densities in the
subspace described by the Hubbard projectors, or as a penalty-functional pre-factor
which can be varied or computed in order to minimise the self-interaction error,
regardless of whether or not the Hubbard projectors are orthonormal.

4.3.4 Invariance Under Generalised Lowdin Transforms

As suggested in Ref. [8], generalised definitions of the Lowdin transform may be
used where the metric tensor is raised to an arbitrary power A, as is its inverse, and the
canonical Lowdin transform A = % has the status of a special case. Since, however,
by construction

> oo — g, =" s g 4.37)
meC®) ves

the fully averaged scalar U is invariant under such transformations, and independent
of the exponent A, regardless of whether the subspace metric tensor O, or, in the
“dual” representation case, the metric Se¢ On the space of basis functions is used.

Such transforms were explored in Ref. [8] within the context of DFT + U with
nonorthogonal projectors and with the basis set metric tensor S generating the duals
(in which case projector and occupancy matrix symmetrisation was required to
produce a Hermitian potential in generalisations of the “dual” representation to non-
zero or non-unity values of A, and thus tensorial invariance was lost for the reasons
we have explained).

In a sense, this generalised Lowdin transformation exponent A varies the
nonorthogonality of the representation of the occupancy matrices or, equivalently,
(since the basis set metric S introduces spurious contributions to the occupancy
matrix from across the simulation cell) the degree of non-locality of the correction.
The dependence of computed ground-state properties and of the Kohn—Sham gap of
a variety of materials on A, as reported in Ref. [8], demonstrates, in our view, the
ambiguity of population analysis measures, and hence corrections such as DFT + U,
which are built from tensorially inconsistent occupancy matrices where the delo-
calised Hubbard projector duals of the form |¢()") = ZVESW;I))S(_A)V’" are
used in the construction of the Hubbard projector.

The conclusion that the A parameter bears influence on computed properties
accords well with our arguments on the unsuitability of the metric S (on the basis func-
tions in the entire simulation cell) in constructing localised self-interaction correc-
tions such as DFT + U, since that parameter effectively controls the degree of spatial
delocalisation of the Hubbard projector duals and hence, in a sense, the severity of
the tensorial inconsistency in the DFT + U functional. The occupancy matrix for the
“dual” representation subject to a generalised Léwdin transformation, given by

A (I - !
> SO gDl plg) s (438)
y,8€S
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picks up differing non-local contributions (densities from outside the correlated
subspace) with varying A. Spurious non-local contributions are incorporated for
all values of A.

On the contrary to this, however, when the metric tensor O appropriate to the
subspace at hand is used, the generalised Lowdin transformed occupancy matrix

O™ 1Bl 0D (4.39)
m m

m”,mWEC(I)

contains no contributions from outside the correlated subspace it is describing,
for any value of A. The trace of this matrix is fully independent of A, since
oM A=Am"m o ((Amm™ — - o(hm"m” Thig is the case also for the trace of the
square of this matrix, so that the DFT + U correction is entirely independent of A by
construction, and so is unambiguously defined when the appropriate subspace-local
tensorial metric tensor is used to build the projection operator.

4.4 Strongly-Correlated Insulator: Bulk Nickel Oxide

The DFT + U method has previously been applied, in numerous incarnations, to bulk
NiO and it is known to recover the principal features of this strongly-correlated oxide
[4, 13, 18, 23, 33]. Moreover, generalisations to DFT+ U such as first-principles
methods for calculating the Hubbard U parameter [13, 18], the DFT + U+V method
for including inter-site interactions [34], TDDFT+ U [35] and, most pertinent for
this study, previous investigations into subspace representations of nonorthogonal
Hubbard projectors in DFT+ U [7, 8] have also been applied successfully to this
system.

Its principal properties of interest, already described in Chap. 2 are that it is a type-
II antiferromagnetic insulator with a local magnetic moment of between 1.64 and
1.9 p [18] and an optical gap of approximately 4eV with predominantly charge-
transfer, oxygen 2p to nickel 3d, character [36, 37]. We have chosen to study NiO,
therefore, because it is so well characterised and we do not seek to revise any previous
results. Quite on the contrary, we have performed calculations which we hope will
be complementary to those described in Ref. [7], where the “full”, “on-site” and
“dual” representations of a linear-combination of pseudo-atomic orbital basis were
compared in a study on this material.

4.4.1 Computational Methodology

Calculations of the ground-state electronic structure of bulk antiferromagnetic nickel
oxide were carried out within collinear spin-polarised Kohn—Sham DFT [9, 38], and
the simplified DFT + U method proposed in Ref. [18]. The linear-scaling ONETEP
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first-principles package, which is described in detail in Refs. [10, 39, 40], was used.
The pseudopotential approximation! [41] was employed to obviate the explicit treat-
ment of the core states. The LSDA (PZ81) exchange-correlation functional of Ref.
[42] was invoked throughout. Periodic boundary conditions were used with a 512-
atom supercell in order to provide an adequate equivalent sampling in real-space
of the crystal momentum-dependence of the Kohn—Sham eigenstates. A systematic
variational basis of Fourier-Lagrange, also known as periodic cardinal sine or psinc,
functions [43, 44], was used, equivalent to a set of plane-waves bandwidth limited
to a kinetic-energy cutoff of 825eV.

In the ONETEP method, the Kohn—Sham density-matrix is represented in the
separable form

P (1, 1) = ¢o (1) KO g (v) (4.40)

in terms of a set of covariant nonorthogonal generalised Wannier functions (NGWFs)
[10], {¢e (r)}, and a corresponding contravariant density kernel, K *®, for each spin
channel. The density kernel was untruncated in the calculations described here. In the
ONETEP method [39, 40], the total energy is iteratively minimised both with respect
to the elements of the density kernel [45] for a given set of NGWFs, while using a
combination of penalty-functional [46] and LNVD [47-49] techniques to ensure the
validity of the density matrix, and with respect to the expansion coefficients of the
NGWFs in the psinc basis. The converged NGWFs (a minimal set of nine functions
for nickel 4s, 4p, 3d and 4 for oxygen 2s, 2p, truncated to an atom-centered sphere
of 4.0 A were employed in calculations on NiO) are those which are optimised
to minimise the total energy and are thus adapted to the chemical environment,
incorporating all valence-electron hybridisation effects in the ground-state density.

Our principal purpose was to provide an appraisal of the difference in predicted
electronic properties, if any, given by DFT + U when using nonorthogonal Hubbard
projectors with either the “dual” or “tensorial” representations of the correlated
subspaces. The “dual” representation, in particular, was selected for comparison
since it appears to be the most sophisticated of the previously proposed subspace
definitions—although it does break the tensorial invariance of the total energy at the
expense of preserving the Hermiticity of the potential, it has a tensorially invariant
occupancy matrix trace which cannot be said of the manifestly incomplete “on-site”
and “full” representations. The latter three representations were previously compared
in detail in Ref. [7].

In order to provide an unbiased analysis, we used the same experimental lattice
constant for all calculations and, while it perhaps would be interesting to separately
optimise the lattice with the two methods, we leave issues of structural relaxation
to a future study. Moreover, in order to obviate intervention in the construction of

I A set of RRKJ Pseudopotentials were generated using the Opium code,
http://opium.sourceforge.net, using the GGA input parameters available therein, optimized
for a minimum plane-wave cutoff of 680eV, albeit with a scalar-relativistic correction for all
species and, for the transition-metal ions, some slight modifications to the core radii and a
non-linear core correction of Fuchs-Scheffler characteristic radius 1.3 a.u.


http://opium.sourceforge.net

4.4 Strongly-Correlated Insulator: Bulk Nickel Oxide 105

the correlated subspaces so far as possible, we carried out the DFT + U calculations
in the projector self-consistent formalism described in Chap.3 and Ref. [1]. We
also include, for the purposes of comparison, the results of conventional DFT + U
calculations using hydrogenic 3d-orbital Hubbard projectors for each subspace (in
which case there is no ambiguity in the representation for a given projector profile)
which were used as the initial guess for the projector self-consistency cycle in both
the “dual” or “tensorial” cases.”

In the projector self-consistent DFT + U scheme of Ref. [1], as we have described
in more detail in chapter [3], the set of five converged NGWFs of maximal 3d-orbital
character on a transition-metal atom responsible for strong correlation effects (or
seven converged NGWFs of maximal 4f-orbital character on a lanthanoid atom, or
possibly more exotic converged bond-centered generalised Wannier functions) are
selected as Hubbard projectors to redefine the DFT + U occupancy matrices for the
total energy minimisation in the next projector iteration. The energy is not directly
minimised with respect to the expansion coefficients of the Hubbard projectors (since
it would violate the variational principle if either the Hubbard projectors or the inter-
actions U were allowed to change during energy minimisation [ 14]), but the updated
projectors nonetheless converge towards those which equal a subset of the NGWFs
which provide the ground state energy corresponding to the DFT+ U correction
which they themselves define. The projector-update process is repeated, alternating
between direct variational minimisation of the total energy for a fixed set of projec-
tors and renewal of the projectors (in a manner reminiscent of the density-mixing
method for solving non-linear systems [50, 51]—though no actual mixing from
previous projector iterations is needed for numerical stability) until both the density
and projectors are individually converged.

Figure 4.1 shows the set of nine converged NGWFs on a nickel atom in NiO
(LDA+U = 6eV, “tensorial” representation) at projector self-consistency. Those
five with maximal projection onto the “initial guess” hydrogenic 3d-like orbitals are
those which are used to build the correlated subspace for that atom, although there
is little doubt in practice as to which are the most localised. The Hubbard projectors
have adapted, at convergence, to the crystal (or molecular) environment of their host
atom and the associated correlated subspace is usually then somewhat deformed
away from spherical symmetry in order to describe electronic hybridisation effects.

It was of necessity to investigate the behaviour of DFT + U under different defin-
itions without the complication introduced by a definition-dependent interaction U.
While it would be of interest to compute either a scalar or tensor U using different defi-
nitions of the subspace projection and one of the sophisticated methods available for
this task, we felt that it lay beyond the scope of this work to do so. Thus, we performed
conventional DFT + U and projector self-consistent DFT + U calculations across a

2 The effective nuclear charge Z used to construct the hydrogenic projectors, which may influence
predicted observables in the case of system-independent Hubbard projectors [1, 13] but which
does not significantly influence results at projector self-consistency, was estimated by fitting the
hydrogenic radial probability density to that of the corresponding valence pseudo-orbitals in the
sense of least squared deviations (resulting in Z=9.02 and Z=9.10 for 3d-orbital projectors in nickel
and copper, respectively).
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Fig.4.1 Isosurfaces of the set of nonorthogonal generalised Wannier functions (NGWFs) on a
nickel atom in NiO. The NGWFs are those computed at projector self-consistency in the “tensorial”
representation at LDA+U = 6eV. Those in the left column (predominantly 3d — 1, character) and
the top and bottom NGWFs in the middle column (predominantly 3d — e, character) are those used
as Hubbard projectors, while the remaining NGWFs (pseudised 2s-like in the centre and pseudised
2p-like in the right column) lie outside the correlated subspace on that atom. The isosurface is set to
half of the maximum for the 2s and 2p-like NGWFs and 10~3 times the maximum for the 3d-like
NGWFs

range of scalar U parameters, which is perhaps best viewed as a parameter control-
ling the strength of the idempotency penalty-functional on the correlated subspaces
since no off-diagonal elements were included in the interaction parameter.

4.4.2 Occupancies and Magnetic Dipole Moments

In agreement with previous studies [7, 8] on NiO, we have found the DFT+ U
occupancy matrix and local magnetic dipole moment associated with the corre-
lated subspaces in this material depend significantly on the definition used for the
correlated subspace projection operator.

Turning first to the total occupancy of the correlated subspaces, shown in Fig. 4.2,
we find a steady decrease with increasing U parameter, which is almost entirely
due to the DFT + U correction introducing a repulsive potential to the less-than-half
occupied nickel e, orbitals of the minority spin channel. Conversely, we notice that
for the largest element on the diagonal of the occupancy matrix (which is almost
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identical to that of the other majority orbitals of the same symmetry at a given U),
DFT + U introduces an attractive potential tending to fully occupy the corresponding
orbital.

Based on the data shown on the maximal occupancy element for hydrogenic
projectors, for those projectors most commonly used in DFT+ U which are not
adapted to their chemical environment and so cannot fully account for densities
deviating from spherical symmetry, we would conjecture that a rather excessive U
value would be needed to complete the orbital filling. In such a case, the attractive
DFT + U contribution to the potential is expected to remain spuriously large due to
the inadequate description of electronic hybridisation. On the other hand, if we look
at self-consistent NGWF projectors in the “dual” representation, there is a tendency
to overfill the few most occupied Hubbard projectors, to wit the occupancy begins
to exceed unity beyond U =~ 3eV. This latter affliction is a rather hazardous one
for the DFT + U functional, since the contribution to the energy correction arising
from orbitals exhibiting it may become negative in severe cases; this is incorrect
behaviour for a penalty-functional. The reason behind this excessive occupancy is
the spurious non-locality of the Hubbard projector duals in the “dual” representa-
tion, they may pick up density contributions from all across the simulation cell. On
the contrary, when self-consistent projectors are used in the “tensorial” representa-
tion, the maximal matrix elements tend asymptotically to unity with increasing U,
as expected (reaching 0.9998 at U = 8eV).

Considering the local magnetic moment on the nickel atoms, depicted in Fig. 4.3,
we observe the expected increase with the U parameter as the majority and minority
channels of the magnetisation-carrying orbitals become increasingly filled or emptied,
respectively, as DFT + U enforces the idempotency of the subspace density-matrices
more strongly. Beyond a certain value of U ~ 2-3eV, the response to perturbations
stiffens and following this point the increase in magnetisation is approximately linear
with U.

The local magnetic dipole moment has been computed in two different ways, one
being the difference of the traces of the DFT + U occupancy matrices of the two spin-
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channels (and so explicitly dependent on the definition of the subspace projection),
another denoted “Mulliken” corresponding to the total moment associated with the
particular atom (and so is not explicitly dependent on the definition of the subspace
projection but implicitly via changes to the density) provided by the expression

>y (Kmaﬁ _ Ku)aﬁ) Sha. (4.41)
ac A BeS

where S, is the covariant metric on all NGWFs in the simulation cell and A
signifies the set of all NGWFs centred on the host atom of correlated subspace 1.
The two definitions yield similar results in the “dual” case since there is minimal
magnetisation carried by the less localised NGWFs on the nickel atoms. The observed
behaviour is that the NGWF projectors in the “dual” representation yield higher local
moments than the representation-independent hydrogenic projectors and, moreover,
that yielded by the latter is larger than that from NGWF projectors in the “tenso-
rial” representation. Consequently, we would expect the exchange splitting between
energy levels, which makes up a large contribution to the insulating gap in this mate-
rial (it is well-described within unrestricted Hartree—Fock theory [36]), to follow
the same trend. While this behaviour may seem a somewhat unfavourable reflec-
tion on the “tensorial” representation, it is fully in line with our understanding
that the “dual” representation (or any related delocalised “Mulliken”-type analysis)
picks up spurious contributions from neighbouring atoms’ magnetisation densities
by construction. The difference between the “tensorial” and “Mulliken-Tensorial”
curves, ~0.10-0.15up, is precisely this erroneous non-local contribution. The
discrepancy between the “hydrogenic” and “tensorial” curves is of a different nature,
since both are made up of subspace-local moments only, and it is both explicitly
dependent on differences in the spatial profile of the projectors and implicitly depen-
dent due to the consequent changes to the electronic density.

Finally, a comment on Fig. 4.4, in which the magnetisation density in the through-
centers (001) plane is shown at LDA+U = 6eV with hydrogenic Hubbard projectors
along with its change upon moving to self-consistent NGWF projectors in both
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DFT+U = 0eV (LDA) using hydrogenic (Z = 9.02) and NGWF projectors
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Fig.4.5 Density of Kohn—Sham states per spin per atom of NiO at LDA+U = 0OeV together with its
projection onto the union of correlated subspaces using hydrogenic Hubbard projectors and NGWF
projectors in the “tensorial” and “dual” representations

representations of the occupancy matrix. The striped magnetismin the (111) direction
is immediately evident. The difference in the magnetisation provided by projector
self-consistency is rather small (the ratio of the whole-cell RMS change to the whole-
cell RMS initial value is 2.2% in the “tensorial” case and 1.2% in the “dual” case)
and acts in the sense indicated in Fig.4.3.

In the “tensorial” case the projector self-consistency acts to suppress the magneti-
sation in the region of oxygen atom centres very slightly, while the opposite occurs in
the “dual” case along with a tendency to add weak nickel-centered radial oscillations
in the magnetisation density.

4.4.3 Kohn-Sham Eigenspectra

The Kohn—-Sham eigenspectrum computed for NiO using DFT + U with both our
“best guess” system-independent hydrogenic projectors and self-consistently deter-
mined NGWF projectors agree closely and accord with previous studies. Moreover,
in agreement with a previous study of the dependence on the occupancy matrix defin-
ition when using nonorthogonal Hubbard projectors, the representation dependence
of spectral features is rather subtle [7, 8] and is considerably less significant than
the dependence on the U parameter. That is not to say, however, that the differences
yielded may be guaranteed to be fully recovered by a self-consistent determination
or arbitrary variation of the interaction U, since we observe different dependences
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on this parameter for different spectral peaks depending on the correlated subspace
representation.

In order to gain insight into the spectral decomposition of the DFT + U projection
operator for a fixed ground-state density, we begin with the density of Kohn—Sham
states, and its projection onto the union of correlated subspaces, at LDA+U = 0eV
(at which value there is no projector-dependence in the total spectrum and no
representation-dependence on the NGWF Hubbard projectors). This, illustrated in
Fig.4.5, shows the energy interval in which the DFT + U takes explicit effect. All
three subspace definitions have very similar projector weight from approximately
4 eV below to 5eV above the Fermi level (which is set to the mid-point of the insu-
lating gap; a Gaussian smearing half-width of 0.1 eV is employed). At energies below
this, principally corresponding to states of majority-channel nickel 3d, but also with
a substantial oxygen 2p, character, the “tensorial” representation of NGWF projec-
tors has a somewhat greater weight than the hydrogenic and “dual” representations,
although the differences are not very substantial.

At conduction-band energies above 5eV, we expect and observe that the corre-
lated subspaces have increasingly negligible projection towards higher energies (not
visable on a linear scale). The hydrogenic projectors, which are unadapted to the elec-
tronic structure of the system, exhibit a persistent, very weak weight which extends
well into the conduction band. The self-consistent NGWF projectors, being better
suited to their chemical environment, exhibit less of this small spurious energetic non-
locality and the decay with energy is more rapid in the “tensorial” than in the “dual”
case. We hasten to add that the effect is rather weak and that, in any case, Hubbard
projectors in the form of orthonormal Maximally-Localised Wannier functions [30,
31] (particularly those self-consistently determined with the DFT + U eigenstates),
would allow for explicit truncation in the energy range, although perhaps at the
expense of having a greater spatial extent.

Considering, next, a Hubbard U value within the range of values known to give
reasonable agreement with experiment, namely U = 6eV, we have shown the total
density of states (DoS), and its correlated subspace projection, in the three represen-
tations of interest, in the top panel of Fig.4.6. The bottom panel shows the decom-
position of the “tensorial” DoS into its contributions from oxygen atoms and both
predominantly spin-aligned (majority) or spin-antialigned (minority) nickel atoms.
Although all of the dominant features are shared between the eigenspectra of the
various representations, there are some discrepancies which are worthy of mention.
Most notable is the trend for the insulating gap (see also Fig.4.7) to open slightly,
predominantly in the minority e, peak at ~ 2 eV, as we go from “tensorial” NGWF
(2.35eV) to hydrogenic (2.60eV) to “dual” NGWF representations (2.68eV). We
attribute this primarily to changes in the exchange splitting provided by the enhance-
ment of the local magnetic moment, which follows the same trend, as can be seen in
Fig.4.3. We also note a slight suppression of the localised character of the valence
band edge following the same trend, corresponding to states known to have a mixed
nickel 3d—oxygen 2p character. Lower in energy at approximately —7.5eV, the ampli-
tude of the majority e, peak is somewhat suppressed in the “tensorial” representation
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in favour of a broader shoulder of strongly hybridised character towards lower ener-
gies of around —9eV.

Lastly, for NiO, we show the U-dependence of the total DoS in the three DFT + U
correlated subspace definitions in Fig.4.8 and the Kohn—Sham insulating gap in
Fig.4.7. In all cases we recover the canonical DFT + U behaviour for this material,
that is with increasing interaction parameter U the tendency for: the low-energy
(primarily majority-channel e,-like) peak falls deeper into the valence band as an
attractive potential is applied to fill it completely; the strongly nickel #,,-like valence-
band edge at the LDA level gives way to hybridised oxygen 2p character as the 1, -like
states are pushed to lower energies; and the minority-channel nickel e, -like first peak
in the conduction band is increased in energy as it partial occupancy is subjected to
repulsive potential corrections.

The “dual” representation provides a rather similar eigenspectrum to the conven-
tional DFT+ U method when using unoptimised hydrogenic Hubbard projectors,
particularly in the line-shape of the conduction band, although the Kohn—Sham gap
is marginally broader and the majority e, states deep in the valence band have a
greater amplitude. The “tensorial” representation also provides very similar spectra,
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but the gap is closed somewhat with respect to the hydrogenic model, as discussed.
A noteworthy difference between the spectra of the “tensorial” representation and
the alternatives is that, generally, both the majority and minority e, peaks lie slightly
lower in energy and the energy difference between the two (the spin-flip excitation)
is somewhat reduced. Overall, we reiterate that the effects on the spectra due to the
local or non-local construction of the Hubbard projector duals are not sufficiently
great to reasonably draw conclusions regarding the relative merit of methods based
on agreement, or otherwise, with experimental observations. Rather, in this matter,
points of principle such as the preservation of tensorial invariance, or the avoidance
of occupancies exceeding unity, must therefore take precedence in our view.

4.5 Magnetic Molecule: The Copper Phthalocyanine Dimer

Open-shell molecular systems containing transition metal ions sometimes pose a
challenge to first principles simulation within LDA-based approximations [52]. This
is partially due to the tendency of such approximate exchange-correlation functionals
to excessively delocalise magnetisation-carrying orbitals in such systems. As noted
in Refs. [21, 53-55], both energetic properties such as magnetic exchange coupling
and also spectroscopic features such as the nature of the insulating gap and multiplet
splittings can consequently be poorly reproduced by such functionals. Sophisticated
ab initio techniques such as the GW approximation and local correlation methods
such as DFT + U, whose traditional realm of application lies in extended systems such
as extended oxides and their interfaces, are being increasingly applied to molecular
systems and clusters, see for example Refs. [21, 53, 55-57] and references therein.
Spatially-localised corrections such as DFT+ U and its variants are inherently
short-ranged and fit rather seamlessly into linear-scaling implementations of DFT,
in which case it is then often more natural to employ a nonorthogonal set of Hubbard
projectors [7, 10—12]. It is thus of some importance, and perhaps timely, to consider
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molecular systems on a similar footing to solids when considering the merit of
projection methods for DFT + U. The correlated orbitals in molecular systems may
be rather more spatially diffuse and deviate further from spherical symmetry than
their counterparts in solids. As a result, the issue of Hubbard projector-dependence
in DFT + U and then the manner in which the projection operator is constructed from
those projectors, particularly the degree of non-locality in the Hubbard projector



4.5 Magnetic Molecule: The Copper Phthalocyanine Dimer 115

duals, can be expected to play a more significant role in the description of molecular
systems with DFT + U than is the case in more tightly packed structures.

With a view to analysing the dependence on the correlated subspace definition, or
occupancy representation, in the case of molecular systems, we applied our method-
ology to the ground-state of a binuclear open-shell singlet (antiferromagnetically
coupled) complex, the copper phthalocyanine dimer denoted Cu(II)Pc,. Crystalline
CuPc is a semiconducting blue dye which, in pure thin-film form and more exotic
derivatives, is currently attracting intense experimental and theoretical interest due
to its potential for use as a flexible organometallic photovoltaic material [58], as part
of field-effect transistors [59] and, due to its magnetic functionality, in spintronic
data storage or processing devices [60]. In this system, two correlated subspaces
delineated by copper 3d-like states are spatially well separated (with approximately
3.77A between centres) and there is minimal direct electronic bonding between the
localised orbitals in the open Cu-3d shells in the two (approximately) planar moeities.
The result is a very weak indirect-exchange (i.e., acting via intermediary delocalised
ligand states) S = % antiferromagnet with a Heisenberg exchange coupling constant
of J &~ —1.50K; for a detailed analysis of this mechanism we refer the reader to
Ref. [61].

4.5.1 Computational Methodology

A set of 9 NGWFs (4s, 4p and 3d) were used for transition-metal ions, 4 each for
carbon and nitrogen (2s and 2p) and 1 for hydrogen (1s). A large NGWF cutoff
radius of 5.3 A and a kinetic-energy cutoff of 1,000 eV was used. The spin-polarised
PBE [62] generalised-gradient exchange-correlation functional was employed. An
un-solvated and hydrogenated gas-phase dimer model was extracted > from the o (+)
Cu(II)Pc; polymorph structure, with a stacking angle of 65.1 degrees and a distance
between molecular planes of 3.42 A, giving a lateral offset of 1.58 A, as reported
from transmission electron diffraction analysis described in Ref. [63]. While the
phthalocyanine dimer systems are of some experimental interest in and of themselves
[64—66], and similar metal-phthalocyanine dimers have been recently shown to take
on structures which are strongly influenced by dispersion interactions [67] which
are beyond the scope of this study, the dimer system is for us primarily a convenient
simple model of the antiferromagnetic coupling in the extended solid and thus the
unoptimised experimental bond lengths were retained. A simulation cell of 30A x
30A x 20A provided an interatomic spacing between periodic images of at least
13.5A in plane and 16.5A out of plane.

3 We acknowledge and thank Nina Kearsey for her kind provision of the extracted dimer structure
of Ref. [63].
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4.5.2 Magnetic Dipole Moments

The open-shell singlet fragments of the Cu(I)Pc, system consist of single spins
on each copper centre, antiparallel with respect to each other. As such, for the
exactexchange-correlation functional, which contains a derivative-discontinuity with
respect to the occupancies of the exact magnetisation-carrying orbitals, in combina-
tion with a population analysis which exactly reproduces the form of those singly-
occupied orbitals, the local magnetic moment would be identically 1 p. However,
since an approximate exchange-correlation functional may lower the energy by delo-
calising and partially occupying those orbitals [52], a significantly lower value was
recovered. The DFT + U method seeks to ameliorate this condition in two comple-
mentary ways, that is by introducing a derivative-discontinuity to the energy func-
tional which penalises fractional occupancies of the spin-orbitals defined by the
subspace projections and also, in doing so, by effectively constraining the Kohn—
Sham spin-orbitals to more closely resemble the (usually more localised) spatial
form of the correlated subspace.

Inlight of this, the correlated subspace projected magnetic dipole moments, shown
inFig.4.9, indicate that the DFT + U method does not effectively localise the magneti-
sation density to the copper 3d manifold for any reasonable value of the U para-
meter when a localised subspace projection is used. Using conventional hydrogenic
Hubbard projectors, with our best guess for the radial profile, we see that there is only
avery slight increase in the local moment with U. Switching to self-consistent projec-
tors in the “tensorial” representation, we find that it is effectively U-independent and
reduced with respect to the hydrogenic result, though very slightly so since these
projectors differ only very slightly in form from the hydrogenic initial guess in this
particular system.

We have included, for completeness, the values yielded by the approximate “trun-
cated dual” representation, which yielded spurious occupancies greater than unity for
every value of U considered. Conversely, the “dual” representation yields a greater
magnetic moment than the “tensorial” representation, by approx. 0.1y p at U = 0eV,
and this increases steadily at a rate of ~20.02. eV~ !. The reason for this discrepancy
is readily understood via the atom-decomposed Mulliken analysis of Eq.4.41. This
gives 0.10 — 0.12¢ g on each nitrogen atom which is a nearest-neighbour to copper,
as is visualised in the spin-density isosurfaces of Fig. 4.10, and this value remains
approximately constant irrespective of the representation or the U parameter.

In spite of their adaptation to the molecular environment, the self-consistent
NGWEF projectors remain predominantly on the home copper ion and do not have
sufficient weight on the neighbouring in-plane nitrogen 2p orbitals to capture the
magnetisation density associated with them. As a result, in the same manner as the
conventional projectors, they fail to retrieve the magnetisation to the copper 3d,2_ >
orbital within DFT + U. The “dual” representation, however, overcomes this obstacle
apparently due to the dual Hubbard projectors extending over all of the delocalised
states in the system, most notably the other regions which contribute to the magneti-
sation density.
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Fig.4.9 The average magnitude of the projection of the magnetic dipole moment onto the correlated
subspaces of Cu(I)Pc,, plotted as a function of U for various definitions of the subspace projection

Fig.4.10 Spin-density isosurfaces at 5% of maximum in Cu(I[)Pc, at projector self-consistent
GGA+U = 6eV with the “tensorial” subspace representation
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4.5.3 Kohn-Sham Eigenstates

The currently accepted understanding [61, 68, 69] of the spectroscopic nature of the
gap in the copper phthalocyanine monomer is that the HOMO level is dominated by a
doubly-occupied ay, orbital (each moiety is approximately fourfold D4, symmetric)
which consists of a superposition of carbon p, orbitals delocalised on the pyrrole
rings of both monomer units, while the spectroscopically correct LUMO level is a
also a delocalised doubly-degenerate orbital, of e, symmetry composed of a super-
position of 7 orbitals on pairs of macrocycle carbon atoms. We do expect some minor
enhancement of the gap and perhaps alteration of its spectroscopic nature in the dimer
system with respect to the monomer, primarily due to o -bonding between delocalised
orbitals on either moiety, but for the main features of the electronic structure to be
preserved.

It has previously been shown that LDA and GGA-type exchange-correlation func-
tionals do not correctly reproduce the qualitative ordering of states close to the Fermi
level in this system, a pathology which has been attributed to self-interaction errors
in such functionals [68, 70, 71]. The DFT + U insulating gap of the dimer system
within various representations is shown in Fig.4.11, along with the U-dependence
of the states nearest the Fermi energy. For the spin-polarised PBE functional we
find a small gap of 0.7eV for the dimer, whose nature is a charge-transfer excita-
tion between by, orbitals on either moiety. The by, orbital is that which carries the
magnetisation density in the dimer, consisting primarily of copper 3d,2_> o-bonded
to in-plane nitrogen 2p, and as such this system is analogous to the Mott-Hubbard
insulating solids usually treated with the DFT + U correction where both the valence
and conduction-band edges are directly probed by the Hubbard projectors.

The representation dependence of the HOMO-LUMO gap follows the same trend
as the local magnetic moment, due to the DFT+ U correction to the Coulomb-
repulsion gap being somewhat augmented by an associated enhancement to the
exchange splitting caused by the increase in the local magnetic moments. In the
case of the HOMO orbital, a small value of U is needed to push the singly-occupied
by, state to its spectroscopically correct position below the ay,, state and the effect is
rather more strongly pronounced in the “dual” representation than in the spatially-
localised methods. The “tensorial” and “hydrogenic” representations have similar
effects, as expected, since the effect of projector self-consistency is rather small in
this system. In the case of the virtual orbitals, the localised b, character of the
LUMO persists for the “tensorial” and “hydrogenic” methods, which behave simi-
larly, while U > 6eV is sufficient to expose a delocalised e, orbital as LUMO in
the “dual” representation. There is necessarily some small perturbative effect on
delocalised orbitals induced by changes to those which are DFT + U corrected. This
is evident in all projection techniques, however it is worth noting that the effect is
significantly stronger for the “dual” representation, a result of those states having a
larger projection onto the correlated subspaces in that representation.

The overall result is that for this strongly-hybridised system, the “dual” repre-
sentation recovers the expected magnetic dipole moment with significantly more



4.5 Magnetic Molecule: The Copper Phthalocyanine Dimer 119

Fig.4.11 The 1.40
HOMO-LUMO energy gap 130 — %
(top) and the energy levels
adjacent to the Fermi energy 1.20
(bottom) of Cu(1l)Pc;,
plotted as a function of U.
Solid lines show energy
levels of states of
predominantly Cu-centered
b1, character, and to which Hygfogeﬂfc +
. ensorial
the DFT+U correction 0.70 Truncated Dual 2
strongly applies, while 060 ‘ _Dual
dashed lines show energy 0 2 4 6 8
levels of states of more Hubbard U parameter (eV)
delocalised nature (bottom)

1.10

0.90 /

0.80 -

HOMO-LUMO gap (eV)

E!

>
0
= 02
E o0
5}
=~ 0.2
m
>
&n
5]
=
=
A0 Hydrogenic + ¢'31g
1.2 - Tensorial
14 - Dual *
0 2 4 6 8

Hubbard U parameter (eV)

success than the fully localised projections. The spectroscopic nature of the insu-
lating gap is also recovered to a greater degree for a given value of U. We would
contend, however, that it does so for reasons not expected in the DFT + U method.
Specifically, where the local magnetic moment as measured by the “dual” projectors
increases with increasing U, the spatial distribution of this increase is dominated by
the region surrounding the copper ion but also may have substantial diffuse contribu-
tions, as opposed to the “tensorial” or orthonormal “hydrogenic” contributions with
which we are guaranteed to include only subspace-localised densities. Quite aside
from the issue of the broken tensorial invariance inherent to the “dual” representa-
tion, it introduces additional complexity to the already delicate task of selecting the
Hubbard projectors since its occupancy matrices depend on the nature of all of the
basis functions in the simulation cell and their overlaps.

Itis clear that in order to capture the diffuse magnetisation densities in this system
with DFT + U while retaining the tensorial invariance of the total energy, it would
be necessary to include additional in-plane nitrogen 2p-like Hubbard projectors in
the spanning-set of correlated subspaces in the “tensorial” representation (copper
3d and nitrogen 2p function overlap disallows the “hydrogenic” representation). In
such an approach, however, it would seem overly simplistic to use a single scalar
U parameter for each subspace and a more sophisticated projector-decomposed U
tensor would be more appropriate.
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4.6 Concluding Remarks

We have presented a revised formalism for the construction of projection operators,
and consequently the occupancy matrices, of strongly-correlated subspaces using
nonorthogonal Hubbard projector functions in ab initio methods such as DFT+U
and DFT+DMFT. In contrast to the previously proposed “full” [13], “on-site” [14]
and “dual” [7] representations, our definition preserves the important property of
tensorial invariance in the total occupancy of each subspace, the total energy and the
ionic forces, by construction. The expressions needed to implement a tensorially-
invariant DFT + U energy functional and the resulting potential and ionic forces,
both with scalar and tensor interaction parameters, have been presented, along with
the adaptations needed to integrate the formalism with a well-known method for
computing the interaction U from first-principles [18].

It is frequently the case that a subset of the localised nonorthogonal basis func-
tions that are used to represent the Kohn—Sham orbitals are also used as Hubbard
projectors, in practice, either for computational convenience or to achieve projector
self-consistency [1]. In both an analytical study and in a numerical study of a solid-
oxide and a correlated molecular system, we have shown that it may be somewhat
inappropriate to continue to identify the dual space and the metric tensor of the basis
functions with the dual space of Hubbard projectors on each site. For molecular
systems, in particular, the discrepancy compared to orthogonal projectors which is
thereby introduced may be significant. The resulting projector duals (contravariant
vectors) are unsuited to constructing a correction for localised correlation effects,
being spatially delocalised across the entire simulation cell in general. Consequently,
with delocalised duals, a tensor-incompatible symmetrisation of the projection oper-
ator is needed to ensure a Hermitian potential. This may result in unphysical occu-
pancy matrix elements and an uncontrolled spatially delocalised action of the correc-
tive potential which it defines. Put simply, additional non-local interaction terms are
introduced in the “dual” approximation which are extraneous to the requirement of
accounting for the nonorthogonality of the Hubbard projectors.

Our tensorial formalism may be implemented in any methodology which makes
use of a nonorthogonal set of functions to define each correlated subspace and it
inherently retains the spatial localisation of Hubbard projector duals if the projectors
are themselves localised. Consequently, it is less computationally expensive and
simpler to implement in linear-scaling methods in practice than the “on-site” or “dual”
representations which employ delocalised dual projectors. No spurious contributions
to the occupancy of a given subspace are assigned from the complement of that
subspace in the proposed formalism, in contrast to the aforementioned formalisms
and, as a result, the corrective potential arising from it is automatically Hermitian
and localised to the same subspace.

It is our hope that we have dispelled some of ambiguities surrounding this topic
which we feel have arisen inevitably as a result of the neglect of the invaluable tensor
notation. Moreover, as the use of linear-scaling ab initio approaches becomes increas-
ingly widespread, we envisage that this work may aid the routine implementation of
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sophisticated functionality in the nonorthogonal bases typically employed, obviating
the expenditure of explicit orthonormalisation.
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Chapter 5
Geometric Aspects of Representation
Optimisation

The use of non-orthogonal basis sets for the single-particle electronic wave-function
is ubiquitous in linear-scaling density- functional theory and tight-binding approaches,
indeed it is vital to exploit the spatial compactness available to the elements of such
a basis in order to achieve linear-scaling effort with system size [1-4].

The nonorthogonality of such sets does require a particular care with notation,
however. This necessity is, unfortunately, all too often ignored and one occasion-
ally observes basis overlap matrices appearing in a somewhat post hoc fashion in
expressions. On the contrary, we have found that if one is willing to spend some time
acclimatising to the notation of curved spaces, it eventually becomes more natural
to assume nonorthogonality in most derivations and to use the index positions as a
guide in times of uncertainty.

This chapter is intended both as an introduction to some useful, prerequisite
concepts and as an exposition of an original technique, based on geometric principles,
for accelerating and improving the robustness of total-energy minimisation in linear-
scaling DFT. While we do not expand upon earlier textbook results, all non-standard
derivations are provided in full detail. Although, admittedly, these formulae may
appear to be a little daunting at a first glance, they really amount to little more than
linear-algebra and differential calculus.

5.1 Motivation

Many ab initio methods for computing the properties of atomic ensembles make use
of a set of non-orthogonal basis functions to express the electronic wave-function.
In the case of linear-scaling density functional theory [1-5], these are usually, but
not necessarily, spatially-truncated and atom-centred functions which possess the
symmetries of atomic orbitals and are defined in direct space. We denote the set of
these functions as

{po (*) | € {1,...,N}}, 5.1
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where the co-ordinate space on which these functions are defined is represented by
r and N is the cardinality of the function set. Technically, if the functions {¢,} are
fixed throughout the calculation then these may be described as a basis. In general,
however, we allow for the possibility that these functions may change during the
course of a calculation and so the co-ordinate vectors r strictly form the basis, and
the representation vectors {¢y } are usually described as the support functions [3].

Of particular interest, of course, are procedures where the support functions
are optimised in order to minimise the total-energy, as might by applicable to
static density-functional theory [6, 7]. The support functions are described as non-
orthogonal generalised Wannier functions [1], NGWFs, in this case. Other possi-
bilities, for example, are where the support functions evolve in time, as the case
might be for time-dependent density-functional theory (TDDFT) [8], or indeed where
they evolve in order to satisfy some other physically-motivated criterion such as
maximising the Coulomb interaction by some measure, as mentioned in Chap. 7.

In this chapter, we concentrate on the first of these possibilities, where the total-
energy is minimised, however many of the formulae below will carry directly over
to the other situations. Energy minimisation with respect to the support functions
(NGWFs) is a central feature of the ONETEP linear-scaling DFT code [9, 10], where
it is carried out using a particular non-linear conjugate gradients scheme, though
similar energy minimisation methods have been previously employed [4, 11-13]
and the general principle is sure to attract further investigation in the future.

In ONETEP, as we have described in Chap. 1, the optimal representation of
the Kohn—Sham density-matrix in terms of the support functions, that known as
the density kernel, is located (for a given fixed set of support functions) before
the gradient of the energy with respect to the support functions (assuming a fixed
tensor representation of the density-matrix) is computed. The support functions may
be updated using this gradient in different ways, depending on whether a linear or
non-linear (quadratic or cubic) Fletcher—Reeves conjugate gradients step is required.
Usually, no matter how small the step length, the Hamiltonian matrix is completely
re-evaluated when the support functions change, and generally the density kernel
is re-purified (made idempotent with respect to the new support functions) but not
re-optimised for minimal energy during the conjugate gradients trial step.

Certain questions naturally arise concerning such a method, regarding the nature
of the density kernel in particular:

* Supposing we evaluate a change vector to the support functions (with a fixed density
kernel corresponding to the optimal density-matrix for the support functions at
which the change is evaluated), then how much of the effort spent optimising the
density kernel afterwards will just involve recovering something approaching the
quality of the original density-matrix?

» Can some of that effort be obviated by automatically correcting the density kernel
so that it takes into account the curvature (in the sense of differential geometry) of
the Riemannian manifold associated with the support functions and their duals?
How much faster would such a method be, and would there be any other advantages
associated with it?
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* Supposing such a correction could be made, would it imply anything about
the preservation of the normalisation, idempotency, or commutativity between
the density kernel and the Hamiltonian, all of which are usually destroyed when
the support functions change?

* Would it be better to apply such a correction only for the update step actually
selected by the nonlinear conjugate-gradients scheme, or to apply it also every
time a trial change in the support functions is made?

 Given that such a correction could be found, could we go back and make a correc-
tion to the gradient of the energy with respect to the support functions, with the
knowledge that changing them would imply an automatic change in the density
kernel?

In addition, one could ask some questions about the consequent changes to the
Hamiltonian matrix:

* How much of the change in the Hamiltonian matrix, upon support function update,
is due to a genuine change in the electronic structure, and how much is due to
geometrical transformations (rotations within the same space)?

* If the latter part dominates, as it may be expected to in the latter stages of energy
minimisation, then is it really necessary to perform an expensive re-evaluation
of the Hamiltonian matrix each time the support functions or the density kernel
change?

* When we are close to convergence, and changes to the spatial form of the support
functions are expected to be small, would a computationally inexpensive geomet-
rical update of the Hamiltonian matrix elements (or at least the density-independent
components of those elements) suffice, rather than complete re-evaluation?

In this chapter, as well as exploring some interesting aspects of the non-orthogonal
nature of the support functions, we will analytically investigate the consequences
(for the density kernel and the Hamiltonian) of altering the support functions. We
derive corrections to the density kernel and the Hamiltonian, on geometric grounds,
which depend on the support function update vectors and which re-introduce the
conservation of some desirable properties. We have implemented such corrections
for the case of the density kernel, allowing us make some judgements on the first set
of queries on quantitative grounds, and this is described in Chap. 6.

We refer the reader to Ref. [14] for a transparent exposition of the central concepts,
definitions and expressions used in this chapter, and we freely acknowledge this latter
work as the primary source of textbook differential geometry drawn upon. For an
excellent introduction to the field of Riemannian surfaces, one which has aided our
conceptual understanding of the meaning and significance of the covariant derivative
and of Ricci’s Lemma, and which motivated our introduction of the support manifold,
we direct the reader to Ref. [15]. Further useful sources on differential geometry were
Ref. [16] (whose notation we broadly adhere to), Ref. [17] (for affine connections
and curvature tensors) and Ref. [18] (for a robust exposition on underlying concepts
and whose useful bullet notation * which we employ to express the tensorial character
of matrices in cases where explicit indices would complicate the exposition).


http://dx.doi.org/10.1007/978-3-642-23238-1_6

128 5 Geometric Aspects of Representation Optimisation

5.2 Tensor Calculus Applied to Electronic Structure Theory

The support functions, in order to describe the Kohn—Sham orbitals, lie in a Hilbert
vector space which we term the support space and which has nontrivial properties
which result from the nonorthogonality of the support functions. In this chapter, in
order to describe such properties, we will be concerned with the geometry of a surface
defined by the scalar function (generally complex valued, but we will quickly restrict
ourselves to the real-valued case) of a N-tuplet of co-ordinate vectors,

|]-")={]-"(r1,...,rN) eC|r*e® |ae(l,....N}). (5.2)

The support space is equivalent to the cotangent space of the surface defined by
|F), that is

a1F)
Iba) = 1) = 5 2 (5.3)
or, making the spatial-dependence more explicit,
aF (s, ....s%, ..., sN)
¢o (r) = (5.4)

0s® (s', s, sV) = (r,...,r,....T)

Here the index « is a label on position vectors in direct space and N is the cardinality
of support functions—assumed to be the number of distinct Kohn—Sham functions
which need to be described. In practice, it is not necessary to compute the value
of the function F in first-principles calculations, though it is useful to give some
consideration to its properties, as we proceed to show. The surface defined by F is
described here as the support manifold and it may be shown that the support manifold
itself is a smooth surface in R3N @ R when the support functions are real-valued and
linearly-independent [15]. Linear-independence of support functions (which does
not imply orthogonality in general) is an important prerequisite for stable energy
minimisation, perhaps fundamentally for this very reason, and we assume that that
this desirable property is in place in what follows so that continuous derivatives of
all orders may be computed.

The support functions form a set of covariant vectors as an immediate consequence
of their definition in terms of JF, that is if we perform a transformation of the basis
(in direct space) from r to 7, they transform with it according to

b () = L (). (5.5)
ar
The support functions, naturally as elements of the cotangent space to the support
manifold, behave under basis transformations in the same manner as the gradient
vectors of a scalar function.
The space of support functions is accompanied by a dual space, the elements of
which, dual functions, may be written in terms of the support functions as
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pa) = P)Spa Or |9%) = |pp)SP, (5.6)

where S.. is a special matrix characteristic of the manifold known as the metric
tensor and S™ is its inverse. The dual functions transform as contravariant vectors.
This means that under the same transformation r to 7 they behave as the tangent
vectors to the support manifold, that is

- or
P (r) = ﬁdf" (r). 5.7)

In practice, the frame in which the Hamiltonian is computed is conventionally
defined as the covariant and the frame in which the elements of the matrix repre-
sentation of the density-matrix, the density kernel, are defined is consequently the
contravariant. Henceforth, a vector with a subscript denotes a covariant quantity and a
superscript indicates contravariance. Pairs of the same index in the same expression,
one subscript and one superscript, indicate that this index is summed over unless the
index appears in parentheses.

Finally, to elucidate the meaning of the support manifold, suppose that it is every-
where smooth so that its cotangent and tangent spaces are well defined at each point
on the surface. As a result, and since for each set of support functions we can find
a global minimum of the total energy with respect to idempotent density kernels
(using, for example, the LNVD technique [19-21]), there is a one-to-one mapping
between each point on the surface and the best energy achievable (assuming non-
degeneracy) with its tangent and cotangent vectors at that point. The Hohenberg—
Kohn theorem [6] implies that if no further approximations are used (e.g., that the
exact exchange-correlation functional were known, basis-set completeness can be
achieved, the support functions and density kernel are not truncated etc.) and if we
assume that the bijection between support manifold and energy is continuous (we
suppose that it is, on grounds of physical intuition, but we cannot offer a proof) there
is a minimum of the total energy with respect to points on the support manifold. The
problem of extremising the total energy with respect to the support functions (and
their corresponding optimal density kernels) becomes one of extremising F on the
support manifold.

5.2.1 Tensorial Invariance

The support functions and their duals satisfy, by definition, the condition of biorthog-
onality

bo * #P=35,P, (5.8)

where ¢ is the inner product between elements of the vector space of support functions
and its corresponding vector space of dual functions. The natural inner product for
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quantum states is the Hilbert integral, so that the definition of support and dual
functions in terms of each other becomes

bo * ¢F = (Balof) = / dr ¢} (r) ¢f (r) =35,°. (5.9)

Combining Eqgs. 5.6 and 5.9, we immediately find that the metric and its inverse
are respectively given by the overlap matrix of support functions and duals, explicitly

Sup = (Balp) and S =(¢*|¢F). (5.10)

The identity operator on the Hilbert space spanned by the support functions (or duals)
is expanded in terms of these functions by taking the product of the metric and its
inverse, that is

1= 8255 = (9alop) (9P 10%) = 16a) (6% | = 16%) (¢ . (5.11)

Once defined, the metric, Eq. 5.10, together with its derivatives, fully describes the
differential geometry of the support manifold. By definition, the support functions
define the identity of the support manifold, and the covariant support functions and
their contravariant duals are inter-related via the metric, so that

160) S (D] = o) (9 10P) (9] = 1
=10 (¢aldp) (P = 0%) Sap (97 . (5.12)

In order to illustrate what is meant by a tensorial invariant, we consider the trace
of the product of the Hamiltonian H and the density-matrix, o, which are both
assumed to be completely described by the support functions. Using this definition
of the identity operator, we can write the noninteracting energy (also known as the
band-energy) as a tensor expression, as in

E=Te[A5] =16") (6l H10p)(0" 15107 ) (8| = HypKP*. (5.13)

The advantage of the tensorial expression of the noninteracting energy as a
contraction of the covariant second-order Hamiltonian tensor Hyg = (py |I:I |¢g) and
the contravariant second-order tensor K% = (qbﬁ |p|@%) is that the result is a scalar
which is independent of the coordinate system. The scalar E is then said to be
a tensorial invariant and quantities such as energies, integrated occupancies and
magnetisation densities, spectra, the Cartesian components of moments and forces
etc. should possess this quality if they are to carry physical meaning (if they are to be
independent, for example, under arbitrary linear-transformations among the support
functions). This is very important to emphasise: physically meaningful quantities are
only computed via pairwise contraction over indices with opposite tensor character.
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Another scalar invariant of interest, that defined as
857 =160) Sap (59”1, (5.14)

is known as a metric connection on the Riemannian space (a space with a non-trivial
overlap matrix S..) spanned by the vectors of support functions. The infinitesimal
element §s is interpreted as the tensorially invariant measure of distance between a
function ¢ and the nearby function ¢ + §¢ [14].

A crucial point to note is that, as an immediate result of Eqs. 5.5 and 5.7, the
derivative of an invariant quantity with respect to a dual function is an element of
the space of support functions. For example, noting the independence of real and
imaginary parts of the support functions, we have

IE  OHupgKP® .
E)y = = = Plps,”
=5 = aen) ap (9”103,

= Hy,p(0"1519°) (¢s5] = (s | H, s KP°. (5.15)

The converse is also true, that is that the derivative of an invariant quantity with
respect to a support function yields an element of the space of dual functions, a
contravariant vector as we might expect, for example as in

E"y): oE _aHaﬁKﬁa
T olg,)  dlgy)
= (o | H|$5) ($°| KV = (¢°| Hys K 7. (5.16)

= (pa|H8" K P*

5.3 Partial Differentiation of Tensors

The partial derivative of a covariant or contravariant vector (that is with respect to
a representation vector—the co-ordinate basis r is hereafter only used to define the
inner product), or of a higher order fully covariant, fully contravariant or mixed tensor,
does not itself provide a tensor, in general [14]. The components of the resulting
expressions, which are known as the components of coordinate charts, do not trans-
form to the corresponding components of the derivative of the transformed object
(i.e., basis transformation and partial differentiation do not commute in general).
The mathematical object which connects tangent spaces infinitesimally near to
each other, restoring this commutativity, is known as an affine connection. Geometri-
cally, we can understand this as a mechanism for using the curved support manifold
as a fixed surface along which one tangent plane is rolled to another (infinitesimally
proximate tangent plane), and so with respect to which the derivative can be unam-
biguously computed. These affine connections add correction terms to the partial
derivatives, so that they become absolute derivatives and produce objects whose
components transform covariantly or contravariantly, as the case may be. We hence-
forth employ the commonly-used shorthand notation ,e for partial derivation and ;e
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for absolute differentiation. The latter will be defined below for the special case of
the Levi-Civita connection.

For the sake of simplicity, we hereafter restrict ourselves to the real-valued support
functions {¢.} widely used in linear-scaling ab initio methods. The results here do
not necessarily all apply straightforwardly to the case of complex support functions,
particularly with regards to the torsion of the manifold. For the case of real support
functions, the Hermitian metric tensor Sy becomes symmetric and the distance
measure is then uniquely defined. Thus, we may abandon the distinction between
support functions and their complex conjugates, as well as dual functions and their
respective complex conjugates, so that the Dirac “braket” notation is henceforth
suppressed except where it conveniently expresses an inner product.

The support functions and duals are not independent (the tangent and cotangent
spaces are unambiguously defined with respect to each other via the metric tensor)
and thus one has non-zero partial derivatives with respect to the other. The partial
derivative of the metric with respect to covariant support functions is given by

Sip =bady + 8L bp (5.17)
and that of the inverse metric with respect to contravatiant dual functions is
ap _ pesh o st ab
ST =98, +8,0". (5.18)

Technically, the relationship between support functions and their duals is an
example of a holonomic constraint, that is one for which the Lie commutator

Vey = [d)ﬁ ¢V] ¢*

_("Sﬂ a¢ﬁ) (d’y%) (d’y aw) (‘pﬂ 8¢ﬂ)] a
B (¢ﬁa¢ﬂ) (9757) - (¢y aw) (‘ﬁﬂag)]

= [(¢7s302) — (475055) | =9 — 9 =0 (5.19)

vanishes and in which case the evaluation of tensorial derivatives simplifies consid-
erably.

Taking the partial derivative of the identity operator, Eq.5.12, with respect to
the support functions (top line) or dual functions (bottom line), while making the
necessary assumption that the identity operator of the support manifold itself does
not change to first order in the support functions, we find that

al
53 5P pp + ¢a ST dp + pa S8} =0 = . and
14
8% S0P + P25, Bt %S, 5'3—0—8—1 5.20
y aﬂ¢ +¢ aﬁ,y¢ +¢ afOy = _3(]51" (5.20)
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Consequently, we may conclude that, in the special case of a real complete set of
support functions, the fully contravariant and covariant (in a manner of speaking—
these do not transform as tensors) first partial derivatives of the metric are given,
respectively, by

Saﬁsy - ¢(¥Sﬁy — ¢/SSO5V and (521)

Sap.y = — baSpy — PpSay - (5.22)

The opposite signs appearing in the derivative of the metric with respect to its
spanning functions, Eqs 5.17 and 5.18, and with respect to the set conjugate to its
spanning functions, Egs.5.21 and 5.22, are an immediate example of the aforemen-
tioned non-tensorial character of partial derivatives: partial differentiation operators
do not simply commute with changes of index position using the metric tensor.

The assertion that the identity operator may be considered constant while computing
the derivatives of the metric is, undeniably, a somewhat bold one. We do not expect
this to hold rigorously in the early stages of a total-energy minimisation procedure,
though itis bound to attain validity as we approach convergence. As we go on to show,
however, it is analytically and numerically favourable to assume first-order preser-
vation of the support space, and make use of the results, rather than the alternative
of neglecting the geometric ramifications of support function update entirely.

5.4 A Metric Connection on the Support Manifold

Our next task is to check whether the support manifold admits a metric connection, to
wit, whether it admits an affine connection which preserves the metric tensor under
first derivatives. If this is the case then the metric is the special tensor preserved by
absolute differentiation with respect to the tangent or cotangent vectors of the support
manifold at all points—the measure of distance is preserved under differentiation.

In order to determine if this desirable property holds, we consider the Christoffel
symbols (of the first kind), which are defined as

1
Fapy = 5 (Sapy + Sar.p = Spy.a)
1
=5 (—¢aSpy — DpSay — baSyp — by Sup + ¢pSya + Dy Spa)
= — buSpy. (5.23)

Here we freely use the summation convention for superscripts and subscripts.
‘We may define another useful set of Christoffel symbols (those known as the second
kind) by

Thg= SYTsap = — @7 Sup (5.24)
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in spite of the fact that the Christoffel symbols do not generally transform as tensors.
We have made use of the symmetry of the metric tensor in the above (we could not
do so in the case of complex-valued support functions, however), and we do so again
in satisfying ourselves that the torsion tensor defined as

Top = Fgﬁ ~Thy = Yap="Sap — Spa — 0 (5.25)

is zero on the whole surface. We may therefore conclude that the support mani-
fold is torsion-free in the case of real-valued sets of support functions cotangent to
support manifolds admitting completeness preservation. We reiterate that in the case
of complex support functions the metric is Hermitian but not generally symmetric
and so the Christoffel symbol is not as simple as in the real-valued case.

The Christoffel symbols serve as corrections to the partial derivatives which
provide derivatives, known as absolute derivatives, whose components transform as
the components of either covariant or contravariant vectors. The action of absolute
derivatives on tensors of general rank and tensor character, where we again remind the
reader of the shorthand notation ,* for partial derivation and ;e for absolute differen-
tiation, may be generalised from a well-known result for the covariant first derivative
on the mixed rank-2 tensor, given by

Al =ab +10 AL -5 AL, (5.26)
and the contravariant first derivate defined in terms of it, namely
ALY =570 AL (=570 AL 4 §7OT) AG — SYOTEAL. (5.27)

In this way, we may evaluate derivatives on surfaces in the space of support
functions which account for the curvature of the manifold and which thus transform as
tensors. The terms due to partial derivates take into account the change in tensors with
respect to the local tangent (or cotangent—depending on the index positions) space,
while the terms due to the Christoffel symbols, in effect, correct for the infinitesimal
rocking of the tangent (and consequently cotangent) space on the support manifold.
As aresult, tensorial integrity is preserved under absolute differentiation by ensuring
that corrections are made as we move along the support manifold in order to ensure
that we always remain tensorially consistent with the local tangent and cotangent
spaces.

Returning to the evaluation of the absolute derivative of the metric tensor itself,
using Eq. 5.26, we reproduce the well-known result (Ricci’s Lemma) that the terms
due to the partial derivative and due to the Christoffel symbols cancel, so that

Sapsy = Sap.y — LaySsp — T Ssa
= — baSpy — PpSay + ¢a5)6, Ssp + ¢ﬂ8;S,SSa

= — baSpy — PpSay + PaSyp + PpSya
=0, (5.28)
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as required for a metric connection. This provides a post hoc justification for our
choice of Christoffel symbol, namely that known as the Levi-Civita connection, since
it is the unique symbol which leaves the metric invariant under covariant differen-
tiation (that is absolute differentiation with respect to a contravariant vector) on a
torsion-free metric-compatible Riemannian manifold [14]. Geometrically speaking,
then, the distance measure on the manifold of complete sets of support functions does
not change to first order with the support functions when the necessary geometric
corrections are used.

5.5 Variation of the Density Kernel and Hamiltonian

Let us now consider how two important tensors in linear-scaling density functional
theory transform with changes in the support functions, namely the covariant Hamil-
tonian matrix and the contravariant density kernel matrix. These are given by the
expressions, respectively,

Hop = (¢a|H|pp) and K*F =(¢%|p|¢"), (5.29)

where H is the Hamiltonian operator,  is the Kohn—Sham density-matrix and the
spin and k-point indices are suppressed for brevity.

5.5.1 Uncorrected Matrix Updates

One may directly compute the first partial covariant and first partial contravariant
derivatives of these quantities with respect to (real-valued) support functions. In the
case of the Hamiltonian matrix we find, for the contravariant derivative, that

Y
Hp= ¢

= Hppol + Hdud, =6 (Heﬁag + Hw«s;). (5.30)

° iguliion)]

For the covariant derivative, on the other hand, noting that the tangent and cotan-
gent spaces explicitly interdepend via the metric tensor, we obtain

[l Bigp) | =55 O [Sunt0* 181655
= Sus.y H' Sep + SusdS Ho  Sep + Susd’ HOS Sep + Sas H Sepy
= (_(baSSy - ¢8Say)H6€Seﬁ + SD(]/ ﬁ¢ﬁ + Syﬂ[:]‘i’a

+ Sus H' (~@cSpy — #pSey)  (having used Eq. 5.22)

aﬂy—w
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= - d)aHyﬁ - SayI:IQbﬁ + SayI:I¢ﬁ + Sﬂyl:ld)a
— ¢pHay — Spy Hou = — ¢ Hpy — ¢pHay . (5.31)
For the density kernel, we find that the expressions take a similar form, with the

index positions inter-related by index symmetries. The contravariant derivative of
the density kernel is given by

d a0
Kaﬁ,yz ap A AB — Sozzi A . Seﬂ
9, [(¢%1519")] %, (5% (¢s1plgpe) S|

= SV K5 SP + 5%°8) pp SP + S% s pSY SP + S¥ K5 SPY
= (—¢*S — ¢°S*) K5 SV + 57 5o + 57P pp®
+ S Kse (—¢<SPY — ¢PSV)  (having used Eq.5.21)
= — ¢“K"P — 5% ppP + S poP + SPY pp*
— P K — SPY pop*
— — ¢UKPY — pP Ky (5.32)
and the corresponding covariant derivative is provided by
gop_ 0
, 9g7
= 59782 + ppadl = g (Kfﬂs‘; + Kmayﬂ) . (5.33)

(@*1K |¢P)
[ ]

The first order change in the Hamiltonian and the density kernel upon changes A¢.
of the support functions, considering only partial differentials (A), and assuming that
the operators themselves are unchanged by the update in support functions (this holds
exactly if the support functions merely undergo a unitary transformation) may now
be computed. These changes to the Hamiltonian and density-kernel are furnished,
respectively, by

RHup = (Ady |HG) = (g |6) (Hepb] + Hea))
— (AGul¢) Hep + Hae (91 0p) (534)
and

AKP = (Agy|KPY) = (Ay|pe) (—SKPY — SPKT)
= — S“Upe| Ay KTP — K27 (Agy |¢pe) S (5.35)

The matrices (H + AH ) and (K + AK ) , unfortunately, are not generally
those that we require, since they are not always guaranteed to correspond to the
representations of the Hamiltonian and density-matrix in a set of support functions
(dual functions) which are cotangent (tangent) to any point on the support manifold.
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In general, the matrices will have departed from the tangent and cotangent frames
at points on the support manifold infinitesimally close to that at which the partial
derivatives are computed, instead of being consistently transported along a geodesic
line connecting the points. As a result, they may not always act as tensors with respect
to the updated functions (¢ + Ag)..

This point is important to emphasise: if tensors in the frame of support functions
(or their duals) are updated with uncorrected partial derivatives in order to account
for changes in the support functions or simply not corrected at all, the resulting
matrices will no longer, for general support manifolds, behave as tensors at all. In
order to correct the matrices so that they are guaranteed to transform as tensors
for all geometries, and so that they may be contracted properly with the support
functions, we must again turn to the Levi-Civita connection, which provides the
requisite expressions for absolute covariant and contravariant differentiation, i.e.,
which preserves the tensorial character of matrices by construction.

5.5.2 Geometrically Corrected Matrix Updates

Applying covariant absolute differentiation to the Hamiltonian H.. and density kernel
K**, using the standard expressions for covariant and contravariant rank-two tensors,
respectively, we find that

Hup,y = Hyp,y — Heﬂl‘gy — HO,GI‘EV and

B _ paB | pep epb
K =yK*% + KT, + K*TF,. (5.36)

A previously mentioned and computationally useful result, known as Ricci’s
Lemma, is that since the metric tensor is invariant under absolute differentiation
with respect to local tangent vectors, it freely commutes with absolute differen-
tiation. Thus, we can generally write the covariant derivatives above in terms of
contravariant derivatives simply as

H\ = Hop:sS" = Hyp 55° — HepTlsSY — HyeDgs 8%, (5.37)

Ky = KPS = KPS 4+ KPTY Y + KeeTL 8% (5.38)
We note that it is not implied by the above that the individual elements making
up the absolutely differentiated tensor must individually commute with the metric.

In particular, it is generally the case that

HJ)y # HapsS® and KPV £ K5, (5.39)
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since the metric does not generally commute with partial derivatives. Rather, we may
readily assure ourselves that Ricci’s Lemma holds for the sum of the contributions
to the absolute derivatives, as required, by checking that the sum of the commutators
between the metric and the each of the individual terms in the derivative vanishes.

The strategy, then, for computing contravariant absolute derivatives (required
since we usually deal explicitly with the support functions, and not their duals) is to
compute the covariant derivative in full, and then raise the absolute differentiation
index, only afterwards, using the contravariant metric tensor.

The required expression for the absolute derivative of the Hamiltonian thereby
reduces to

Hj = — ¢ HpsS” — ¢pHasS™
— Hep (—heSus) S — Hoe (—eSsp) S
= — o HpsS"" — ppHasS"" + ¢° (HepSus S + HueSspS™)

= = GuHpsSY — by HasS” + ¢ (Hepb) + Hea®)) (5.40)
while that for the density kernel collapses to
K7 = g (KPog + Ke5f ) 5
+ K (—¢*Ses) S + K (=P Ses) S%
= ¢ (KPS + KSPY) — ¢ KPesY — pP K*57
= ¢ (KPS + KUSPY) — 9K FY — pP Ko7, (5.41)
Returning next to our expressions for the first order change in the Hamiltonian
upon support function update, we may compute the change matrix which respects
the curved nature of the support manifold. This differs to that computed when only

the change along the tangent plane is considered, that is the previously computed
and erroneous A H.., and, in fact, we find that

AHyp = (A¢y|Hp)

= (A, 16°) (Hepd) + Head)
— (Ay o) Hps S’ — (A 1) Has S°

= (A¢u|dr) S Hep + Hue S (@ | Adpp)
— (¢alAdy)SY) Hsp — Hos S°Y (Agy )

= HusS” ((dy|A0g) — (A, |dp))
+ ((Adalpy) — (al Ady)) S7° Hsg

= AHup = —2HusS"" (AD|D)[, 5] + 2(API$) [0y 1S7° Hsp. (5.42)

Here, the antisymmetrisation of the support function change vector and the support
function vector at which the derivatives are evaluated is given by the shorthand
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1
(AdlP)ye =73 ((Agy lpe) — (dy1A¢e)) - (5.43)

In the case of the total change of the density kernel, we find that the required
expressions differ only slightly, insofar as

AKYP — (A, |K0¢/3;V)
= (A, |pe) (KPS + K $PY)
— (Agy 97 KPSY — (Agy |97 K6Y
=S (Agy 19e) KD + K (| Agy) ST
— (@*18¢)KP — K (Age|¢F)
=S ((AgyIge) — (dy|Ape)) K
+ K ((9elAy) — (Adeldy)) 877
= AK“P =287 (A|$)[,e] KL — 2K* (Ap| AB) ()77 (5.44)
We will return to these corrections in a numerical study in which we investigate
their effect on the convergence behaviour of the density functional theory solver
known as ONETEP, in which the support functions for the Kohn—Sham orbitals, and
the corresponding density kernel, are individually optimised in order to minimise the
total electronic energy.
In this study, due to a subtlety of the energy minimisation procedure, it will
prove to be useful to individually investigate the effect of terms which make up this

correction. Namely, we will consider the update term due to the tensorially corrected
contravariant partial derivatives,

AP Hup = (A¢y | Hop 5) 5™
= — HysS™ (Adpy|dp) — (bl Ay)S?° Hsg. (5.45)
APKP = (Ap, IKY) S
=S (A ) KL + K (¢e| Ay ) STP, (5.46)
separately to a term due to the Christoffel symbols, the latter being provided by

ACHop = — (Adpy | HepT55) S — (A | Hoe Ig) S°
= HosSY ()| Adp) + (Al ) ST° Hip, (5.47)

ACKP = (Ag, |KPTY)SY + (Ap, |K*TF) S5
= — S (py A )KF — K (Ac|¢,)S"”, (5.48)
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where together these sum to

AHyg =AF Hyp + ACHyp and
AK® = AP K + ACKP. (5.49)

A geometric interpretation of each component, in the case of the density kernel
update, is graphically illustrated in Fig.5.1.

The former correction, A7, is responsible for changes in the density kernel due to
transformations of the dual functions in their local tangent space for a fixed density-
matrix operator. Conventionally, such changes are neglected and so it is assumed that
the density kernel itself remains unchanged during support function update and not
the density-matrix operator. Of course, it is never possible to completely preserve the
density-matrix explicitly when the space spanned by the support functions is allowed
to change, however this term allows us to remove any spurious change in the density
matrix due to unitary transformations among the dual functions.

The latter correction, AC, on the other hand, corrects for the curved nature of the
support manifold by returning the density kernel to the tangent space of the manifold
at its updated point of contact. Without this term, the density kernel would no longer
act as a tensor, and contracting it with the updated support functions would result
in corruption of the total occupancy and idempotency of the density-matrix (this is
evident, in fact, in the numerical examples with follow). Moreover, as we go on to
demonstrate, this correction results in the preservation of both of these quantities, to
first order, and offers some consequent improvement in the numerical behaviour of
the energy minimisation scheme.

5.6 Tensorial Consistency in Energy Gradients

In this section we briefly investigate the non-linear conjugate gradients energy
minimisation scheme used in the ONETEP method. In particular, we discuss what
procedures are needed, if any, to ensure the tensorial validity of the energy gradi-
ents with respect to tangent and cotangent vectors of the support manifold and, in
particular, compliance with geometrically induced corrections to the density kernel.
Energy minimisation is carried out in ONETEP with respect to the support func-
tions within the assumption that the density kernel has no explicit dependence on the
support functions or their duals. Geometrically, we would interpret this assumption
as one whereby the density kernel does not change with respect to the local frame
formed by the dual functions. In effect, the support functions and density kernel are
thus treated as having no explicit inter-dependence, so that the total energy can be
written as a separable functional of these two quantities. The energy is minimised
with respect to the support functions in an outer conjugate gradients search loop with
non-linear trial steps, using an appropriately scaled contravariant gradient

_ — B
Apy =Agy =A E K2 —0K™ =0 Spa- (5.50)
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Fig.5.1 Aninterpretation of the components making up geometric corrections to the density kernel.
Changes in the support functions cause a concomitant alteration to the point of contact of the
tangent space with the support manifold. For a given density-matrix operator, this induces two
separate correction terms to the density kernel. The first, due to partial derivatives of the density
kernel, is associated with changes among the dual functions spanning the tangent space. The second
correction, necessary due to the curvature of the support manifold, is introduced by the Christoffel
symbols. This latter correction ensures that the density kernel retains its tensorial character in the
new frame of support functions
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This technique employs both the gradient and the evaluation of the energy at a
number of trial steps, together with the history of the support function optimisation
(the support function update vector must be conjugate to the space spanned by the
previous update vectors), in order to predict the optimal step length A.

Since no explicit dependence between kernel and support functions is included in
the energy gradients, it is therefore inappropriate to include the APK* and AP H..
terms in the corrections to the density kernel and Hamiltonian, respectively. This
latter observation is borne out in our numerical study detailed in Chap. 6. On the
contrary, however, one cannot constrain the frame formed by the support functions
and their duals in computing the energy gradient, by its very definition, and thus the
inclusion of the Christoffel symbol terms A€ K ** and A€ H.. may not be obviated.

Since, by constraining the metric to preserve the completeness of the support
manifold, we attach an explicit dependence of the density kernel on the support
functions, it is natural to suggest an alternative approach whereby the assumption of
independence between density kernel and functions is dropped, the explicit change in
the kernel with the functions is included in the function gradient, the matrix updates
AP being incorporated accordingly.

Such a scheme appears to be perhaps better controlled and more in keeping with
more conventional cubic-scaling approaches to Kohn—Sham DFT, since in this way
it is the density matrix operator itself (i.e., the single-particle states and their occu-
pancies), and not the density kernel, which remains unaltered to first order during
support function optimisation. We have not explored this possibility, however, as it
would necessitate rather involved alterations to the methodology.

Let us assume, for simplicity, that the conventional ONETEP approach is used and
that no geometric correction is applied to the Hamiltonian matrix, i.e., that it is fully
reconstructed upon function update, but that a compensatory geometric update AK**
to the density may be implied by the support function update. Although we explicitly
constrain the partial derivative of the density kernel with respect to support functions
to zero, there remains the contribution from the Christoffel symbols, ACK **, and it
is necessary to investigate whether this term adds an extra contribution to the support
function energy gradient.

The scalar invariance of the energy means that no Christoffel symbol terms enter
into its partial gradient or tangent vectors with respect to the support functions,
thus the partial derivative of the energy is equivalent to the absolute derivative,
and that derivative commutes with the metric tensor. Nonetheless, changes in the
density kernel implied by support function update should be taken into account in
the total derivatives of the energy. The necessary expression for the energy derivative
is therefore generally given by

OE
rga=( E¥| (k7] S
8a ( K“_'_f()+ BK}/S [5(-.-...f(9 Ba

K***=0
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2 E‘ﬂ‘ Spo + OE [KV’S]
K" =0 dKve L 3¢ Ik =0
= =

op | K&
=yh | EP| . _y Spa + 3K +KerY, . (5.51)
k=0 FKYT2, | e o
=

The first term in the above is the usual corrected derivative of the energy with
respect to the support functions, while those on the right are due to the concomi-
tant change to the density kernel which automatically occurs upon support func-
tion update. We find that the two lattermost terms, involving Christoffel symbols,
together vanish when subject to the constraint that there is no explicit dependence of
the density kernel on the support functions, i.e.,

8 8
[KTY, + K7T2 | e o
8 8
= [~0¢7 Sea K — ¢°Sea K7 | uun _

= — [¢"K*Sea + ¢° KV Sear| g _¢
= — [K""Seq] oo _y =0. (5.52)

In addition, the contribution due to the partial derivative of the density kernel with
respect to the dual functions, remembering that Ricci’s Lemma does not apply to this
term, provides a vanishing correction when subject to the constraint that there is no
explicit dependence of the density kernel on the support functions, vis the expression

(KX ke =g = [ (K8Y + KV8) | _ o =0 (5.53)

Returning, finally, to our expression for the energy gradient, we find that it is not
augmented by any terms in order to account for the geometrically-induced change
in the density kernel with respect to the support functions, and simply remains

rga =1 EP|gn _ g o Spa- (5.54)

We conclude that, at least for the manifold compatible with preservation of the
completeness of the space spanned by the support functions and ignoring changes
induced in the Hamiltonian matrix, no correction is needed in the derivative of the
energy with respect to the support functions in order to make the derivative consistent
with the change in energy induced by compensatory updates to the density kernel.

Let us next make some observations with regard to geometric issues surrounding
the non-linear step which is incorporated in the conjugate gradients energy minimisa-
tion algorithm. We consider the simplest, namely quadratic, step length extrapolation
scheme. In this method, the energy E©) and gradient g.(o) for a given set of support
functions are first computed with an optimised density kernel, after which a step is
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taken in the covariant gradient direction using a step length A1) computed using the
history of the energy minimisation moves. The energy is then recomputed at this trial
step, giving a value E(V. A concave parabola is fitted through the energies E® and
EWM | given the slope g.(o) and the step length A", and the selected step length A
is then that which brings us to the predicted minimum E® of this parabola.

A noteworthy point on the coupling of the non-linear conjugate gradients algo-
rithm to geometrically induced changes to tensors such as the density kernel or
Hamiltonian is that it is generally insufficient to apply the geometric corrections
only after the algorithm has selected an optimal support function step length A(>).
In order to ensure the consistency between gradients and energy differences in the
conjugate gradients step-length selection scheme, it is necessary to apply appropriate
trial corrections to the density kernel and Hamiltonian which are commensurate with
each trial update vector, otherwise the step-length prediction method is not able to
take account of the geometric transport of these tensors. This point is illustrated for
the case of density kernel update in a numerical study described in Chap. 6, where it
is shown that little or no improvement in total energy convergence is offered by the
geometric corrections unless they are fully integrated with the non-linear conjugate
gradients algorithm.

There is a further subtlety to such methods, however, which we mention but do not
explore in detail. Let us re-examine our simple example of a quadratic step prediction
scheme, and suppose that we have carried it out for a given set of support functions
along with their accompanying density kernel. If we return to the original point
E© but instead take a trial step with length A1) =1® — 1) we may compute an
alternative trial energy £ and, as before, calculate an alternative predicted step
length A®® ~ 1 (D and energy E ?*) using a slightly different parabola. The difficulty
here is that, quite aside from the possible non-parabolicity of the energy landscape,
there will generally be a discrepancy the between the energies £ and E*, and
consequently also between the predicted step lengths A® and A(>*). This discrepancy
is due the non-triviality of the Riemann-Christoffel tensor, which expresses the non-
commutativity of parallel transport via different paths on the curved support manifold.
Thus, the optimisation algorithm may not be optimal, in general, for the curved nature
of the manifold. These topics are touched upon further in Appendix A.3, though a full
investigation into how to provide a robust improvement upon the algorithm, perhaps
using a geodesic measure of the step length, remains an avenue for future work.

5.7 First-Order Density-Matrix Preservation

In this section, we investigate the preservation of certain important properties of the
density kernel under support function update when the kernel geometric corrections
are invoked. We will focus on the density kernel correction terms of importance in
the ONETEP method which, due to the treatment of the density kernel as explicitly
independent of the support functions, are those proportional to Christoffel symbols
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only. This investigation provides a motivation for the analysis of the changes observed
in the numerical behaviour of the method, when corrections are applied, described
in Chap. 6.

In order to proceed, let us consider three important properties which must be satis-
fied by the density kernel and the Hamiltonian matrix corresponding to the ground
state. Firstly, the density-matrix must be idempotent if it is to describe fermionic
orthogonal single-particle orbitals. Usually, the idempotency of the density-matrix
is not preserved under changes in support functions in any sense. Assuming that
the idempotency deviation is null before the support function update, the deviation
thereby introduced is given by

b + Ada) K (95 + Agpld?” + AgY)
X Sys K% Sec (¢ + AY| — 1) K (9107 ) Sys K€ Ser (¢ (5.55)

and, typically, a number of iterations of the third-order purifying transformation
K™ =3K"S.K" —2K"S. K" S K™ (5.56)

are required to bring the density matrix back to a sufficiently idempotent state for
the kernel optimisation to proceed. The purifying transformations require a non-
negligible cost to compute but, more importantly, introduce some spoilage to the
density; consequently implying additional effort in inner-loop optimisation in order
to restore the density-matrix to its previous quality. The second property that is, in
general, broken by support function update is the compatibility of the density-matrix
and the Hamiltonian, that is the multiplicative commutativity of these two operators.
Assuming that the compatibility holds before the support functions change (for the
sake of illustration), the error introduced is given generally by

% + A¢*) Hyg KPY (¢ + Ay |
— o + Aga)K*P Hg, (97 + AgY | (5.57)

and, in practice, it makes up an appreciable fraction of the density matrix corruption
which must be first recovered by the LNVD method [19-21] before any improvement
in the density can be obtained from the improved support functions. Finally, of course,
the density kernel must describe the correct number of electrons in the system. No
attempt is made to make sure that the support functions are in any sense normalised—
it would be redundant to do so for nonorthogonal functions—and the occupancy is
absorbed into the density kernel. Following support function update, assuming that
the density kernel is first well normalised, the resulting deviation from the correct
electron number is described by

K (pp + Applde + Ady) — K (Pplhy). (5.58)

Let us now re-evaluate the same expressions for the first order error in the idem-
potency, compatibility and normalisation, applying the corrections to the density
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kernel and Hamiltonian provided by the terms in the absolute derivative proportional
to Christoffel symbols. To first order in the update vector, and noting that the density
kernel correction itself is a first order term in the update vector, the revised error in
the idempotency is given by the expression

of
6o + Ade) (K + ACK)™ (05 + Adglg” + A8")Sys 55

Se
X (K +ACK) " Sec (65 + MG | = 160) K (187) S5 K Set (4]

which approximates, neglecting all but first-order terms in the support function
change vector, to

ap
19a) (AK)" (9517 Sys K Sec (6

18K (05107155 (ACK) See (0]
+ [Ado) KPPl ) Sys K€ Se (¢
+ |a) K (Mgl ) Sys K€ Se (¢
+ o) KP (pp| ADY) Sys KO Ser (9|
+ ) K (95107 ) Sys KO Sec (AgF . (5.60)

This operator in fact vanishes, since it reduces to

o) (—S* (| Ay ) KVP — KOV (A 1) S°F) Sps K€ (pe |
+ 1pa) KP Sps (=S (e |AB, ) KV — K7 (A, o) S°) (el
+ [Ada) K Sps KO (e |
+ o) KP (Adpg|ps) K°€ (e
+ |¢a) K (5| Adps) K (e |
+ o) KP Sgs K°€ (Adpe | = 0. (5.61)

We turn next to the first order error introduced to the compatibility condition. By
necessity, since the kinetic energy, for example, is explicitly dependent on the form
of the support functions, the Hamiltonian operator is fully recomputed whenever the
support functions are updated. First order changes to the Hamiltonian operator could,
in principle, actually be calculated by explicitly considering explicit definitions of
the Hamiltonian, though this is rather beyond the scope of this study. We neglect
perturbations to the Hamiltonian operator here and consider only the geometrically-
induced changes to the compatibility.

Itis of interest, however, to note that first order change in the commutator between
the density kernel and the Hamiltonian matrix computed using the Christoffel symbol
induced corrections, given by
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o o C C By
) +A¢)(H+A H)ﬂ(K+A K) (b + Ay |
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af
— ¢y + Ady) (K + ACK H+ A°H Y 4 AgY
9+ Aga) (K +A°K) " (H + a%H) (97 + 897
— % + AP*) Hup KPY (p, + A, |
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which expands to, neglecting second and higher-order terms in the support function
update vector,

16%) ((Adalde) S Hyp + HayS™ (dc| Adpg)) K77 (9|
— 1) K ((Adpldc) ST Hyy + Hpy ST (91 A,)) (47 |
+ (9% Hop (—SP (dc | Ady) KT — KPP (Agyl9:)SE7) ($y |
— l¢pa) (—S“ (e |AGy) K™P — K*V Ay ;) SP) Hpy (971 (5.63)

This expression may, in turn, be broken up into the fragments

|6°) (Apalpc) S HupKPY (| + 16%) HanS™ (9| App) KPY (|
— 16a) KF (Al ) S Hyy (d7 | — 1) KF Hpy S™ (| Ay ) (7 |
— [6%) Hap (@7 | 0p0) K™ (| — [6%) Hap KP7 (A s
+1Agy) K" Hyy (97 + |¢) K (A |97) Hpy (7 ). (5.64)
Here we immediately see that some pairwise cancellation occurs, and the symmetry

of the operator |¢°)(A¢c|=|A¢:)(P] =|Ad%)(¢p:| can be employed to further
simplify the compatibility error to

6%)(Adu|d") Hyp KP7 (py | — |pa) K Hpy (67| Apy ) (97 |
+1A¢y) K" Hyy (97| — |9%) Hap K" (A
=1A¢") (¢ald") Hyp KP7 (py | — o) K°P Hpy (6" ) (A7 |
+1A¢y) K" Hpy (97| — |¢%) Hap K (A
=|A¢") Hyg KP* (pa| — 1a) K Hpy (A
+1A¢,) K" Hpa(¢%] — 16) Haup KP7 (Ahy . (5.65)
which does not vanish, in general. Of course, since it is antisymmetric by construc-
tion, it possesses a null trace.
Finally, we note that the first order error introduced to the total occupancy of the

system vanishes when the density kernel is appropriately corrected for the parallel
transport of the support space, as we may deduce from
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¢\ «
(K +ACK)" (05 + Adplda + Adu) — K (gpid)
(=5 (P |AGy) K™ — K*" Ayl ) S*) (dplda) + K*P (Adplda)
+ K (¢ M)
— ($plAGy) K™ — K*(Adylda) + K (Adplda)
+ K% (¢ Ady) =0. (5.66)

The preservation of the idempotency and trace of the density-matrix (the density-
matrix is entirely preserved to first order, in fact) is a rather interesting property of the
geometric correction. It arises, fundamentally, as a consequence of the assumption
that the identity operator on the support space does not change to first-order with
the support function update, and so the extent to which this preservation holds in
practice must depend on the validity of this assumption.

These results provide a promising suggestion that the density kernel corrected
using this technique may provide a superior starting point, after support function
update, than the uncorrected kernel, leaving the energy minimisation algorithm in a
better position to find the best density expressible in the updated support space. This
hypothesis is explored in a detailed computational study in Chap. 6.

Our proposed geometric method for density matrix preservation under represen-
tation change may also prove to be useful in wider contexts, such as in the time-
propagation of the representation for dynamical systems, such as in TDDFT, or, as
we discuss in Chap. 7, in the ab initio study of strong correlation effects.

5.8 Concluding Remarks

To conclude, we have performed a detailed analysis of the geometric ramifications
of using nonorthogonal sets of functions to express the single-particle states in ab
initio methods. The Riemannian manifold to which those functions lie cotangent, the
support manifold and its differential geometry, has not been previously studied to our
knowledge. We have shown that when the support functions are altered according
to any mechanism, for example energy minimisation, such geometric considerations
naturally introduce corrective terms to tensors such as the density kernel and Hamil-
tonian.

Moreover, these corrective terms act to preserve the idempotency and trace of the
density-matrix to first order. This provides a solution to the long-standing technical
obstacle of idempotency corruption under representation update. The correction is
trivially implemented in a modern linear-scaling total-energy approach and may
prove to be rather valuable in accelerating and stabilising such methods.
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Chapter 6
A Numerical Study of Geometric Corrections
for Representation Optimisation

The parallel transport of tensors such as the density kernel and Hamiltonian has
been shown in the previous chapter to contribute non-zero correction terms when
the support functions representing single-particle orbitals in density-matrix based
ab initio calculations are allowed to change.

Since support function optimisation is a characteristic feature of linear-scaling
methods which seek to reproduce the accuracy of their cubic-scaling plane-wave
counterparts [1-6], it is particularly important for us to investigate whether such
geometric corrections are a help or a hindrance in realistic total-energy calculations.

We rather take the view that, since these corrections were shown in the previous
chapter to be unambiguously required by the formalism, if their use were to prove
counterproductive in practice then we would suspect the superior performance
observed in their neglect to be due to a somewhat unreliable cancellation of errors.
Fortuitously, however, we have found that, for the systems studied and using the
corrections appropriate to the method in use, convergence may be substantially
improved in both in speed and stability. At worst, convergence is neither signifi-
cantly ameliorated or impaired.

6.1 Computational Methodology for Naphthalene

With a view to elucidating the effect of the geometrically-derived corrections to the
density kernel as it evolves in a changing frame of support functions, we performed
a numerical study of the convergence to the ground state of the naphthalene mole-
cule, a small polycyclic aromatic hydrocarbon with chemical formula C1oHg using
the ONETEP method [1, 2]. The support functions constructed during total energy
minimisation in this method are known as nonorthogonal generalised Wannier func-
tions (NGWFs) [7].

The gas-phase naphthalene molecule and the longer oligoacene molecules studied
later in this chapter were chosen because they have been previously particularly well
studied with first principles methods (particularly naphthalene), see for example

D. D. O’Regan, Optimised Projections for the Ab Initio Simulation of Large and 151
Strongly Correlated Systems, Springer Theses, DOI: 10.1007/978-3-642-23238-1_6,
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Refs. [8—10] and references therein, and because the conventional energy minimisa-
tion scheme in this code already performs rather well for these systems.

The Hamiltonian matrix was fully re-computed upon alteration of either the
NGWFs or the density kernel, as is ordinarily the case in ONETEP, as an investigation
of the perturbative treatment of the Hamiltonian, while worthy, would complicate the
analysis of the parallel transport corrections to the density kernel. The separate terms
making up the absolute differential of the density kernel, due to partial derivatives and
Christoffel symbols, were treated separately in order to confirm our understanding
of which contributions are those appropriate to the ONETEP approach. The effect of
including, or neglecting, the corrective terms to the density kernel within the NGWF
non-linear step-length optimisation scheme (the Fletcher-Reeves algorithm) was also
separately analysed.

A psinc function [11, 12] grid spacing equivalent to a plane-wave energy cutoff of
between 1025 eV and 1135 eV (the basis, in our nomenclature, has a finesse which, for
technical reasons, is anisotropic when a non-cubic simulation cell is used) was used
with NGWPFs, four on each carbon atom, one on each hydrogen, truncated to a sphere
of radius 10 ag (the support functions) to represent the Kohn—Sham density-matrix.
No truncation of the density kernel was applied in the case of naphthalene, the NGWF
overlap matrix was inverted exactly where necessary and the molecular geometry
was optimised (with no geometric corrections) in a fixed supercell large enough to
ensure no overlap between NGWFs and their periodic images (32 ag x 28 ag x 22 ag).

The PBE generalised gradient [13] exchange correlation functional was used
throughout and included in the construction of the pseudopotentials using the OPTUM

2

code.! A convergence threshold of 2 x 1077 Ha a?) was used for the root mean

squared NGWF gradient, with a maximum step length of 4.0 a,, 3 2, and the complete
history of the conjugate gradients steps was retained.

The density kernel was optimised for each set of NGWFs using a combination
of the LNVD [14-16] and penalty functional [17] methods, between 10 and 15
iterations of the former were used on each step. A maximum kernel step length of
6.0 e was allowed, a convergence threshold of 1 x 10719 Ha e~! was used, and no
re-optimisation of the density kernel (by LNVD or penalty functional methods) was
performed at NGWEF trial steps.

Geometric corrections were applied only to the density kernel, as stated, and the
Hamiltonian matrix was re-evaluated completely upon each change in NGWFs or
density kernel.

I A set of RRKJ Pseudopotentials were generated using the Opium code, http://opium.

sourceforge.net, using the GGA input parameters available therein, optimized for a minimum
plane-wave cutoft of 680 eV, albeit with a scalar-relativistic correction for all species and, for the
transition-metal ions, some slight modifications to the core radii and a non-linear core correction
of Fuchs-Scheffler characteristic radius 1.3a.u.
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Fig. 6.1 The absolute value of the deviation of the total occupancy from its ideal value, computed
immediately after NGWF update, as a function of the NGWF update iteration. Behaviour is shown
for the case where no correction is applied to the density kernel upon function change, and when
combinations of corrections corresponding to the partial and geometric terms of the absolute deriv-
ative are performed

6.2 Geometric Density Kernel Corrections in Naphthalene

Figure 6.1 shows the deviation of the total occupancy of the system from its ideal
value (48 e) immediately after NGWF update, as a function of the NGWF update
iteration number. We observe that in this regard, the corrections given by the metric-
corrected covariant partial derivative (A7 K**—denoted PARTIAL and provided
in Eq.5.46 ) and that combined with the correction induced by the Christoffel
symbol (AP K** + AC K **—denoted PARTIAL + CHRISTOFFEL, given by Eq.5.49)
perform worse as compared to the uncorrected density kernel (denoted UNCOR-
RECTED). On the other hand, when the Christoffel-induced correction terms alone
are used (A€ K **—denoted CHRISTOFFEL, see Eq.5.48) the occupancy error suffered
is at almost all stages substantially lower than in the uncorrected method, exhibiting
rather less erratic behaviour.

The CHRISTOFFEL correction, and that correction alone, is required when the
stationarity of the density kernel with respect to the local cotangent space to the
support manifold is assumed during computation of the energy gradient with respect
to the NGWFs, as described in Sect. 5.6 and as is always the case in ONETEP at
present. The terms proportional to Christoffel symbols correct for the rocking of the
tangent space on the support manifold. The observed improvement in the behaviour
of the occupancy when the CHRISTOFFEL correction is used accords well with our
previous analytical result that the occupancy error after NGWF update should vanish
to first order in the NGWEF step length with this method.
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Fig. 6.2 The value of the density kernel idempotency error, computed immediately after NGWF
update, as a function of the NGWF update iteration. Behaviour is shown for the case where no
correction is applied to the density kernel upon function change, and when combinations of correc-
tions corresponding to the partial and geometric terms of the absolute derivative are performed

This condition holds true also for the restriction of the CHRISTOFFEL method to
application only after the optimal NGWF update step has been selected, and not at trial
NGWEF steps in the non-linear conjugate gradients algorithm, an incomplete correc-
tion which we denote LIMITED CHRISTOFFEL. The observed similarity between the
latter two methods, CHRISTOFFEL and LIMITED CHRISTOFFEL, in terms of occupancy
preservation is unsurprising since the occupancy error is evaluated immediately after
the correction which is common to both.

The trace of the idempotency deviation operator, Tr [ — p ], computed imme-
diately after NGWF update, is depicted in Fig. 6.2. In this case, we see that the bene-
ficial effect of the CHRISTOFFEL geometric correction, ACK ¢, is more pronounced
than for the absolute occupancy, indeed towards the end of the calculation the initial
idempotency error is reduced by approximately two orders of magnitude using this
correction (so much so that one could feasibly obviate penalty-functional type idem-
potency corrections entirely towards the latter stages, with a concomitant saving in
computational overhead).

Conversely, the inclusion of the PARTIAL correction, AP K *®, which is not
expected to be appropriate for this energy minimisation algorithm, tends to some-
what disimprove the idempotency of the density matrix and necessitate more NGWF
update steps before convergence is achieved.

As a final point on this topic, we note that the formula for the CHRISTOFFEL
correction, Eq.5.48 , is somewhat reminiscent of a well-known result in density-
matrix theory, first demonstrated in Ref. [17], which states that changes to the density-
matrix o which preserve its idempotency to first order must be expressible in the form
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(i —,3) Ap+ pAt (i —/3). 6.1)

As a result of this similarity, and for the sake of thoroughness, we investigated
numerous density kernel updates of this form. We found that the correction term

AMEDP = — (S = K) (¢ | Ady) K
— K*(A¢sl¢y) (S — K)"P (6.2)

provided the best performance of those investigated in our tests on naphthalene
but that it did not, being derived for stationary NGWFs, offer the improvements
yielded by A€ K** in terms of the density-matrix preservation under NGWF update
seen in Figs. 6.1 and 6.2.

It may be tempting, in this context, to view the density kernel corrections in terms
of the theory of excitations in the density matrix. Formally, given a fixed set of
support functions, we think of the density kernel change AMEK** as one describing
single-particle excitations, of probability (A¢s|¢, ), between the space of occupied
orbitals described by K*® and the space of virtual orbitals described by (S — K)*®®.
Accordingly, the terms A7 K** and ACK®* appear to describe excitations between
the occupied space and the entire support space defined by S°®°. However, such an
interpretation does not capture changes in the support functions themselves, or any
geometric consequences. The similarities between the two formalisms appear to be
serendipitous, therefore, and we do not tend to ascribe an interpretation of general
changes in the support functions, or consequent density kernel corrections, in terms
of single-particle excitations.

6.3 Commutator and Gradient Conjugacy in Naphthalene

Improved initial idempotencies imply that the number of iterations spent by the
LNVD method initially recovering the purity of the density kernel following NGWF
update should be reduced. This is encouraging for the CHRISTOFFEL correction since,
in principle, the LNVD method may, in this case, reach a better density kernel in the
maximum number of iterations allotted to it, and the next NGWF gradient vector
computed will be of a higher quality as a result.

The latter supposition is borne out in Fig. 6.3, which depicts the initial root mean
squared value of the matrix elements of the Kohn—Sham commutator after NGWF
update, pH — Hp, and that following density kernel optimisation for the fixed set
of NGWFs on that step. Similarly to the trend in the density-matrix occupancy and
idempotency, we note that the initial commutator is quite significantly reduced by
the introduction of the appropriate geometric correction, ACK**, while it is actually
increased somewhat over the uncorrected case when other corrections involving
AP K** are used.
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Fig. 6.3 The root mean squared value of the commutator between the density-matrix and the Kohn—
Sham Hamiltonian, computed both immediately after NGWF update and following full density-
kernel optimisation for that fixed set of NGWFs, plotted as a function of the NGWF update iteration.
Behaviour is shown for the case where no correction is applied to the density kernel upon function
change, and when combinations of corrections corresponding to the partial and geometric terms of
the absolute derivative are performed

As aresult of the very conservative minimum of ten LNVD steps being enforced in
these calculations, we observe that all of the methods have ample iterations available
to rectify the commutator to a similar level. We note, however, that until they have
converged—that is in significantly fewer NGWF steps—the Christoffel corrected
calculations (with and without inclusion of the correction in the conjugate gradients
trial steps, respectively, CHRISTOFFEL and LIMITED CHRISTOFFEL) generate a lower
final commutator at almost all stages. Consequently, if a fewer number of LNVD
steps per NGWF step were practicable, as is generally the case as we move to larger
systems, we would expect the Christoffel corrected calculations to more appreciably
out-perform the alternatives.

An interesting point to note is that when the corrections involving the partial
derivatives are used, or if the correction is omitted at the trial steps, we see that the
condition known as a “stuck commutator” results. This happens when the NGWFs
reach a point where the LNVD method cannot minimise the energy while maintaining
the idempotency of the density-matrix, thus providing fruitless attempts at kernel
optimisation. The net effect is that the density kernel and NGWFs can only take very
small steps which lead toward an irredeemable fixed-point with a poor commutator.

The stuck commutator occurs as a result of inconsistencies between energies and
gradients. If the energy minimisation scheme, as it ordinarily stands, is forced to run
to very small convergence thresholds, the result is usually a stuck commutator but
with an acceptable commutator and idempotency value (this results from numerical
noise and the finite spatial extent of the NGWFs). Quite generally, however, if the
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Fig. 6.4 The absolute value of the overlap integral between a given conjugate gradients search
direction and the previous one, as an indicator of the contribution to the extent of failure to meet
the conjugacy condition resulting from that iteration, as a function of the NGWF update iteration
itself. Behaviour is shown for the case where no correction is applied to the density kernel upon
function change, and when combinations of corrections corresponding to the partial and geometric
terms of the absolute derivative are performed

total energy appears to be well converged but the commutator remains unacceptably
large then the calculation is invalidated since the Kohn—-Sham states are then not
necessarily orthonormal.

Both the uncorrected energy minimisation scheme and the full Christoffel
corrected method had yet to meet a stuck commutator when convergence was attained,
however this was not the case for the LIMITED CHRISTOFFEL scheme where correc-
tions are omitted at trial NGWF steps in the Fletcher-Reeves scheme.

As we can see, the calculation is declared to be converged with the
CHRISTOFFEL correction after substantially fewer NGWF update iterations than
are needed in the alternative approaches. This correction offers a useful saving in
computational effort for naphthalene, with a decrease in total computing time of
32% for the set of parameters used. The efficiency could potentially be increased
further by taking advantage of the greatly enhanced degree of density kernel purity
after NGWF update when the CHRISTOFFEL correction is used, since the effort spent
purifying the density kernel using penalty functional methods becomes redundant
from an early stage of the calculation onwards and may be obviated.

At least part of the reason behind the more rapid convergence of the energy
minimisation algorithm, when the appropriate parallel transport terms are introduced
to the density kernel, is evident in Fig.6.4. This figure shows the deviation from
conjugacy between NGWF update steps on successive conjugate gradients iterations,

(i—1)

(g(i)a| 8o ), which should be identically zero if the conjugate gradients scheme
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is performing optimally (the current gradient and the sum of all previous gradients
should be conjugate). The non-zero value in the disconjugacy between steps is due to
the inconsistency between the gradient computed at a point and the energy at which
the next gradient is computed.

There are a number of causes of such inconsistency, which we accept because
they either bring with them a more rapidly converging method or are difficult to
avoid. Firstly, the NGWF update conjugate gradients scheme includes no compen-
sation for the LNVD density kernel update loop which lies (necessarily) within it,
changing the energy in a way which is unpredictable to the outer conjugate gradients
algorithm. Secondly, the algorithm itself is not optimal when the energy landscape
is not perfectly parabolic, and it never is for anything but model systems. Thirdly,
the conjugate gradients algorithm is not optimal when any quadratic or higher order
curve-fitting is used to calculate the step length and hence to accelerate conver-
gence. Finally, and perhaps not altogether insignificantly, since the sum of previous
gradients is itself a rank-one tensor it should, in principle, be parallel transported
into the current frame of NGWFs before its inner product is taken with the current
gradient. We return to this issue and propose a simple technique to overcome it in
Appendix A.3.

Notwithstanding these considerations, Fig. 6.4 strongly suggests that it is of prac-
tical benefit to the conjugate gradients minimisation with respect to the NGWFs to
geometrically correct the density kernel when the NGWFs are updated; in effect
it retrieves some of the inconsistency between energy and gradients in the NGWF
optimisation scheme. The reason for this is quite easy to understand since, as far
as the optimisation scheme for the NGWFs is concerned, the density kernel is fixed
with respect to the frame of NGWFs. However, what we usually fix during NGWF
optimisation is the actual elements of the density kernel matrix, the representation
of the density-matrix in the frame at which the gradient is computed—which is not
quite the same.

The correction introduced by the terms due to the partial derivatives attempt to
compensate the density kernel for the change in NGWFs, so that the density matrix
operator represented by it remains unchanged to first order. These are not required
since we no not assume that the density matrix operator itself is unchanged. The
terms due to the Christoffel symbols, however, ensure that the density kernel remains
atensor after NGWF update by accounting for the change in orientation of the frame.

Some of the discrepancy in the NGWF conjugate gradients scheme is removed
by the latter correction, leading to a more rapid and stable convergence towards the
ground state, while the former is at odds with the assumptions used to compute the
derivative of the energy with respect to the NGWFs and so this disrupts the energy
minimisation scheme. No significant benefit is yielded, however, as shown by the
LMITED CHRISTOFFEL curve, unless the Christoffel corrections are integrated with
the Fletcher-Reeves method and applied when trial NGWF updates are used to find
the optimal step length.



6.4 Total-Energy Convergence in Naphthalene 159

T T T T T T T
= Uncorrected
= _ Christoffel
s 0.1+ = Partial ]
\; = Partial + Christoffel
80 - Limited Christoffel
15}
§ 0.001 F
=
£
=1
S 107 ¢
|
&
5 107
m
S TS N T S A N PR ISR S SRS N ST ST SN SO N UNUN. Y S S S S N
0 5 10 15 20 25 30 35

Support function iteration

Fig. 6.5 The total energy as a function of the NGWF update iteration. Behaviour is shown for the
case where no correction is applied to the density kernel upon function change, and when combi-
nations of corrections corresponding to the partial and geometric terms of the absolute derivative
are performed, and is plotted as the difference from the final total energy given when no correction
is used

6.4 Total-Energy Convergence in Naphthalene

Figures 6.5 and 6.6 show the convergence of the total energy and the root mean
squared value of the NGWF gradient, respectively, evaluated after full density kernel
optimisation. The zero of the energy is set to the lowest energy achieved by any of the
methods considered, which was that with no correction. All methods behave in a very
similar way, by these insensitive measures, until approximately the fifteenth NGWF
iteration. Thereafter, the superior update vector conjugacy and commutator in the
case of the Christoffel symbol corrected kernel admit a rapid falloff in the magnitude
of the gradient vectors and consequently swift convergence. As expected, if the incon-
sistencies between support function and density kernel optimisation algorithms get
smaller as we approach the ground state, the convergence accelerates as they do so.

In the case of the Christoffel correction applied only to the final selected NGWF
update step, the LIMITED CHRISTOFFEL method, the energy and gradient convergence
is very similar to that in the uncorrected case. This shows that, in spite of improved
initial occupancies, idempotencies and commutators after the NGWF update step has
been selected, it is crucial to use the correction at all trial steps in the Fletcher-Reeves
conjugate-gradients algorithm in order to yield the advantages offered by geometric
considerations.

The corrections which involve the partial covariant derivatives of the kernel
perform significantly worse than the uncorrected method in terms of convergence
speed, for the reasons mentioned above. It is perhaps somewhat disappointing that
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Fig. 6.6 The root mean squared value of the NGWF gradient, as a function of the NGWF update
iteration. Behaviour is shown for the case where no correction is applied to the density kernel upon
function change, and when combinations of corrections corresponding to the partial and geometric
terms of the absolute derivative are performed

the energy converges to a value of approximately 3 x 10~° Ha (or approximately
5 x 107%eV/atom) higher in the Christoffel-corrected over the uncorrected case.
This effect is somewhat enhanced by the fact that the root mean squared gradient is
used in the convergence criterion and not the energy directly, however the qualitative
result is not changed. It is, however, rendered redundant by the fact that the error
estimate in the final energy, approximated by the root mean squared value of the
commutator times the number of NGWFs, is on the order of 1 x 10~ Ha (or approx-
imately 2 x 10™>eV /atom) in the uncorrected case and on the order of 4 x 10~° Ha
(or approximately 6 x 10~° eV /atom) in the Christoffel corrected case.

6.5 Computational Methodology for Oligoacene Polymers

We carried out total energy calculations, using the CHRISTOFFEL corrections to the
density kernel, on selected members of the linear oligoacene family of polycyclic
aromatic hydrocarbons (the benzene—naphthalene series). Namely, those systems
studied, whose calculated highest occupied molecular orbitals are shown in Fig. 6.7
for purposes of illustration, were tetracene (C1gH12), octacene (C34Hpp), hexade-
cacene 16-mer (CeeH3g), dotriacontacene 32-mer (C130Heg), hexapentacontacene
56-mer (CreHii6) and hexadecahectacene 116-mer (Cy6H236), the lattermost
containing 702 atoms in total.

Principally, our goal was to eliminate any possibility that the improvement
in the density kernel occupancy and idempotency, the Kohn—Sham commutator
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Fig. 6.7 Highest occupied molecular orbitals of the oligoacene n-mers tetracene (CigHi2),
octacene (C34 Hyp), hexadecacene 16-mer (Cee H36), dotriacontacene 32-mer (C139 Heg), hexapen-
tacontacene 56-mer (Cp6Hji6) and hexadecahectacene 116-mer (Cye6H236) computed using
ONETEP in the PBE approximation

and satisfaction of the gradient conjugacy condition yielded by application of the
CHRISTOFFEL correction to naphthalene was an artefact specific to the naphthalene
molecule. The correction term arising from the partial derivative of the density kernel
contributes to the absolute differential in general, but, as we have shown, it is not
appropriate to include it in ONETEP due to the manner in which the energy gradient
respect to the support functions is computed in that method; we do not investigate it
further in the remainder of this study (Fig. 6.8).

Furthermore, it was of interest to establish what change in the linear-scaling
computational pre-factor might be expected to result from such corrections in the
case of simple linear hydrocarbons and, more fundamentally, what difference is made
to the sensitivity of the energy minimisation algorithm to the degree of the density
kernel truncation (applied to admit linear-scaling performance) by these corrections.

The computational methodology for these larger systems was the same as that for
naphthalene except that, in order to access the linear-scaling regime with a reasonable
computational overhead but still retaining a sufficient accuracy, some of the varia-
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Fig. 6.8 Convergence of the total energy (uppermost data-points, marked “E") and the root mean
squared NGWF gradient (lowermost curves, marked “grad."), with NGWF update steps, for the
116-mer oligoacene molecule. Data is shown for three different values of the density kernel cutoff
threshold, both with and without the CHRISTOFFEL correction to the density kernel

tional parameters and convergence criteria were set to more routinely-used values.
The threshold on the root mean squared NGWF gradient was reduced to its default
value of 2 x 107% Ha ag/ % and the number of LNVD steps per NGWF iteration was
set to a minimum of 4 and maximum of 8. The kinetic energy cutoff was set to a
minimum of 750 eV and the NGWEF cutoff radii were set, for carbon and hydrogen,
respectively, at 8 ag and 6.5 ag. The overlap matrix was not inverted exactly but rather
using a linear-scaling implementation of Hotelling’s algorithm [18].

Atomic positions were generated simply by repetition of the optimised naph-
thalene structure. It is unlikely that details of the geometry effect the qualitative
behaviour of the density kernel purity or total-energy convergence. A large simu-
lation cell was used, of 50 ag in all directions with additive stretching by multiples
of the benzene-ring width in the direction of the polymer chain. The emergence
of periodicity in the multiply degenerate highest occupied Kohn—Sham orbital for
the larger systems, shown in Fig. 6.7, was most likely due to aliasing effects on the
real-space psinc grid. We have not investigated the origins of this phenomenon and
we concede that it may be an artefact of neglecting the tendency to weak Peierls
distortion reported in Ref. [9].

The spatial extent of the density-matrix was probed by performing total-energy
minimisation on the largest system with a varying truncation threshold on the
elements of the density kernel. A threshold of 300ay was sufficient to provide a
100% matrix filling. We found that a large density kernel cutoff was required for
these systems, due to a rapid (approximately proportional to the inverse polymer
length) decrease in the HOMO-LUMO gap with system size, from 1.45eV in the
4-mer down to an insubstantial 0.02 eV from the 32-mer onwards. The convergence
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Fig. 6.9 The density-matrix idempotency error computed immediately after an NGWF update has
been applied, with a 100 ap density kernel truncation threshold, plotted against NGWF iteration
number for oligoacene polymers, both with and without the CHRISTOFFEL correction. The polymers
are labelled by their total number of atoms

of the total-energy and the root mean squared NGWF gradient under these circum-
stances, with and without CHRISTOFFEL corrections to the density kernel, is depicted
in Fig.6.9.

A difference in total energies of approximately 5 x 10~> Ha/atom (approximately
1 x 1073 eV /atom) was found between calculations with a density kernel cutoff of
100 ag (35% matrix filling) and 200 ap (69% matrix filling). It was not possible to
converge the energy reliably at a density kernel cutoff of 50 ag (18% matrix filling)
and both the Kohn—Sham commutator and idempotency error remained unacceptably
large in this case.

We concluded that a threshold of 100 ag was thus ideal for our purposes, providing
a reasonable tolerance for the energy but being quite definitely near the minimum
of what is required for stable convergence in the largest system. Thus, it provided
the sensitivity under perturbations to the density-matrix non-locality to allow us to
investigate whether the geometric corrections aid or destabilise convergence in a
marginal case.

We found that fewer NGWF iterations were needed to converge the calculations
when the geometric corrections were applied with kernel truncation, though negli-
gibly so. The corrections do influence the convergence behaviour and final total-
energy somewhat, tending to slightly reduce gradients values, however the largest
total-energy difference introduced, at 1 x 107° Ha/atom in the 100ag case, was
within the accuracy of the method.
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6.6 Geometric Density Kernel Corrections in Oligoacenes

The preservation of the idempotency of the density-matrix to first order in the NGWF
update vector is the most interesting and promising aspect of the CHRISTOFFEL form
of geometric correction. It was crucial, therefore, to investigate the effects of system
size and density kernel truncation on this property.

The behaviour of the idempotency error for the oligoacene polymers is shown in
Fig.6.9, where a 100 ap density kernel truncation threshold was used. The density
kernel was fully filled for systems up to and including the 32-mer (198 atom) polymer,
while for the 56-mer (342 atom) and 116-mer (702 atom) it stood at 68% and 35%,
respectively. Occasional occupancy error correction, a non-linear scaling step, was
needed to ensure good convergence in the lattermost case.

Itis immediately apparent from this plot that the substantial reduction provided by
the geometric corrections both in the initial idempotency error, at approximately two
orders of magnitude, and the number of NGWF iterations required for convergence,
is remarkably system-independent for those systems with an non-truncated density
kernel. This amelioration suggests that the corrections may be generally beneficial
in systems with no density kernel truncation, and also may hint at some underlying
system-independent limitations in the method in terms of how rapidly the idempo-
tency error upon NGWF update can be removed (approximately exponentially, we
hasten to note, when geometric corrections are employed).

For systems with non-trivial truncation, unfortunately, the small numerical value
of the corrections in practice appears to be overwhelmed by noise in the density
kernel. The corrected calculations tend to possess a purer density-matrix up to
approximately the twelfth NGWF iteration, and do so at the calculation’s conclu-
sion, but the uncorrected calculations may persevere at intermediate stages. Thus,
the density kernel corrections do not provide any additional robustness against heavy
density kernel truncation, perhaps unremarkably since the corrections themselves are
computed via products of truncated matrices.

6.7 Commutator and Conjugacy Condition in Oligoacenes

The commutator between the density kernel and the Hamiltonian, computed after
the NGWFs are renewed, exhibits similar trends to the idempotency. An appre-
ciable and valuable reduction is provided by the geometric corrections for systems in
which the density kernel is non-truncated but no systematic change can be attributed
where truncation does take place. For truncation at longer length scales than the
100 ag used in this study, we would expect to observe an intermediate behaviour
between the two regimes. In any case, in spite of the Hamiltonian being fully recom-
puted, the CHRISTOFFEL correction at best substantially improves, at worst leaves
unchanged, the accuracy bound on the ground-state energy provided by the commu-
tator (Fig.6.10).
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Fig. 6.10 The root mean squared value of the Kohn—Sham commutator computed immediately
after an NGWF update has been applied, with a 100 ap density kernel truncation threshold, plotted
against NGWF iteration number for oligoacene polymers, both with and without the CHRISTOFFEL
correction. The polymers are labelled by their total number of atoms

The deviation from conjugacy between successive NGWF gradients provides
an approximate indicator of the performance of the conjugate gradients algorithm
used to minimise the total-energy. This quantity, divided by the number of support
functions in order to provide a system-size independent measure, is depicted for the
polymers studied in Fig.6.11.

For the four smallest systems, we conclude that the geometric corrections substan-
tially aid the algorithm and improves the quality of the NGWF steps by up to two
orders of magnitude by this measure. Interestingly, for the two larger systems where
density kernel truncation incapacitates the geometric corrections so far as they may
reduce the idempotency deviation and the commutator, those corrections nonetheless
result in noticeable reduction of the gradient disconjugacy, particularly for the largest
system where some occupancy corrections were applied.

The reduction of the conjugacy error is attributable to an improved agreement
between energy changes predicted using the gradient vectors and the actual energies
arrived at. This accords with our analytical prediction that without the geometric
corrections entering the density kernel used to compute the latter energies, there is a
inconsistency between gradients and energies regardless of whether density kernel
truncation is applied. This inconsistency may result in poorer NGWF step lengths
being used and so a conjugate gradients method which is further from optimal for
the energy minimisation problem.
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Fig. 6.11 The conjugacy error between successive NGWF gradients, both with and without
geometric corrections, in total-energy calculations on selected oligoacene polymers. The disconju-
gacy is divided by the number of NGWFs in order to provide a system-size independent measure of
the performance of the conjugate gradients algorithm. The value at the final five NGWF iterations
of each calculation is shown, which a slight artificial displacement in the horizontal axis for clarity;
the true number of atoms is given by the horizontal position of the final data-point of each set

6.8 Computational Performance in Oligoacenes

Linear polymers such as the oligoacenes we have studied are the ideal candidates for a
linear-scaling method such as ONETEP because the NGWF overlap and Hamiltonian
matrices rapidly become very sparse with increasing polymer length, facilitating
optimal parallelisation of computational effort. Moreover, since the non-locality of
the density-matrix occurs predominantly in one dimension, the error due to density
kernel truncation is easily analysed for such systems.

The density kernel cutoff threshold used in our study, which was acceptable but
not generous, allowed for the linear-scaling regime to be easily accessed for the
set of polymers we have studied, see Fig.6.12. On 28 cores of a contemporary
commodity supercomputer we obtained a pre-factor of approximately 1.12 min/atom
for uncorrected calculations which reduced to approximately 1.00 min/atom when
geometric corrections were applied.

This increase in performance seems rather modest in light of the improvements
furnished by the geometric corrections to the density-matrix idempotency, Kohn—
Sham commutator and the gradient conjugacy condition. It comes primarily as a
consequence of slightly more NGWF iterations being required for convergence in
the uncorrected case, also shown in Fig. 6.12, but also the tendency for the uncorrected
calculations to use more than the minimum number of LNV iterations per NGWF
step more frequently than in the corrected case. These are two aspects of the same
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Fig. 6.12 Time taken for a converged total-energy minimisation (left axis, lines) and the number
of NGWF iterations required to do so (right axis, solitary points) for selected oligoacene polymers,
both with and without geometric density kernel corrections for NGWF updates

phenomenon; the Kohn—Sham commutator and NGWF gradients are improved by
the geometric corrections.

There are a number of ways in which the analysis favours the uncorrected case
in terms of overall computational expense and makes a direct comparison difficult.
This is unsurprising, of course, since the ONETEP method has been developed and
optimised without the presence of geometrically corrective terms.

Firstly, upper limits are placed on the density kernel and NGWF step lengths
in order to prevent excessive, destructive steps being taken as a result of impure
density-matrices. These limits are necessary for stable convergence in general, but
are probably excessively severe for the corrected case where the density-matrix is
generally of a much better quality. In order to perform a balanced comparison of
methods in this regard it would be necessary to allow the maximum step lengths to
be dynamically computed on the basis of the idempotency error or commutator, and
this is perhaps an interesting avenue for future investigation.

Additionally, checks and corrections for density-matrix idempotency deviation,
which are performed when either the NGWFs of density kernel are changed, are
necessary in the uncorrected case but are wasteful, and perhaps counter-productive,
in the latter stages of a geometrically corrected calculation.

Most significantly, however, a minimum of four LNVD iterations per NGWF
step were used to provide stable convergence of the energy in both uncorrected and
corrected calculations and thus to perform a comparison. In practice, particularly in
systems with no density kernel truncation, this was most likely not necessary for the
corrected calculations at all stages. For small systems, LNVD optimisation may not
be required at every NGWF step with a geometrically corrected density kernel.
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Finally, and aside from issues of convergence behaviour, is the issue of the conver-
gence criterion used to halt the calculation. The root mean squared value of the
NGWEF gradient is used as the single criterion in the ONETEP code at present. This
is a matter of pragmatism since it gives a good indication of whether the calculation,
if not converged in terms of the total-energy, has stopped making improvements
to the Kohn—Sham eigenfunctions. In practice, of course, we use this measure in
conjunction with the behaviour of the total energy in the final number of NGWF
steps to judge whether true convergence has been obtained.

We are of the view that both of these two criteria and the Kohn—Sham commu-
tator should be used together to provide a threshold of convergence, since the latter
also provides an estimator of the error (due to non-orthogonality between Kohn—
Sham eigenstates) in the total-energy. Were the Kohn—Sham commutator used as a
convergence criterion, in its capacity as an energy uncertainty estimate, instead of
the NGWF gradient, it appears that the speedup due to geometric corrections would
be judged to be somewhat greater.

6.9 Concluding Remarks

In conclusion, we have found that the corrections to the density kernel for NGWF
update furnished by the Christoffel terms provide a valuable enhancement to the
stability and rapidity of total-energy convergence in selected oligoacene polymers.
In particular, the analytical prediction that the purity of the density-matrix should be
preserved to first order is borne out in practice, and additionally there is a significant
improvement to the Kohn—Sham commutator computed after NGWF update. The
partial derivative of the density kernel with respect to NGWFs provides terms which
are not appropriate to the ONETEP method. When the geometric corrections are
included in the Fletcher-Reeves conjugate gradients scheme, the result is a dramatic
reduction in the conjugacy error between successive NGWF gradients. We expect
that such corrections may render a greater variety of realistic, problematic systems
routinely amenable to linear-scaling ab initio methods.
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Chapter 7
Tensorial Aspects of Calculating
Hubbard U Interaction Parameters

First-principles Hubbard U parameters for use in ab initio methods for strongly-
correlated systems, such as DFT+ U and DFT+DMFT, have posed a challenge to
theoretical calculations for some considerable time. These parameters are the matrix
elements of the screened Coulomb operator, U@ (r, r ) , which describes the effec-
tive interactions between single-particle states (either orthonormal Kohn—-Sham
eigenstates or quasiparticles) which form the correlated subspaces.

One might ask which screening mechanisms should be included in U for use
with a given method. If we wish to provide a Hubbard U parameter, or tensor, for
the DFT+ U or DFT+DMFT methods, then the screening mechanisms associated
with the correlated subspaces should not be treated on the same footing as those
of the remainder of the system. For such methods, and we concentrate on DFT + U
here, we must incorporate the nature of the correlated subspaces themselves in the
construction of the screened interaction operator, not just in its matrix elements,
embedding an effective low-energy Hubbard model in the Kohn—Sham system using
a technique known as “down-folding”.

For specific details of some of the methods available for computing interaction
parameters for various purposes, we refer the reader to the original sources for the self-
consistent linear density-response [1-3], constrained Random Phase Approximation
(cRPA)[4, 5], constrained LDA [6-8] and constrained adiabatic LDA [9] methods.

Here we focus, in particular, on the first two such methods, which are constructed
to provide parameters appropriate to the DFT+ U method. We generalise these
methods to the formalism of both a nonorthogonal representation of single-particle
states and nonorthogonal Hubbard projectors, mentioning any obstacles to linear-
scaling performance where appropriate. The expressions in this chapter have not
been implemented in the ONETEP code as yet, but they may serve as a guide
for incorporation of first-principles techniques for the Hubbard U parameter into
a linear-scaling method. Finally, we provide the necessary expressions for the
parallel transport of these interaction tensors after they have been calculated. This
strategy may prove to partially obviate the re-computation of U at each step of the
projector self-consistency procedure of Chap. 3 and Ref. [10], admitting very efficient
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implementation of a proposed combination of first-principles schemes for both
Hubbard projectors and parameters.

7.1 The Linear Density-Response Method

We first consider the generalisation of the self-consistent linear density response
approach, described in Refs. [2, 3], to accommodate non-orthogonal Hubbard projec-
tors. This method is, itself, a development of a previously proposed technique
described in Ref. [1], giving an enhanced description of screening mechanisms by
allowing for the self-consistent reorganisation of the orbitals in response to pertur-
bations.

It has been shown, for the exact exchange-correlation functional, that the total-
energy of an open atomic system in contact with a reservoir varies in a
piecewise-linear manner with atomic orbital occupancies (technically we may
consider time-averaging the system in an ensemble state composed of a fluctu-
ating linear-combination of pure integer-occupancy states) but that for LDA-type
exchange-correlation functionals this does not generally hold [11].

This is generally due to lack of a derivative discontinuity with respect to particle
number in such functionals, a pathology which is responsible for a significant fraction
of their characteristic underestimation of the insulating gap. We refer the reader to
Ref. [12] for an overview of the deficiencies of such functionals in this regard.

In practice, the LDA exhibits smooth, concave (approximately parabolic) energy-
occupation curves, and the minimum of such curves generally occur at fractional
values for the total number of electrons. The problem is particularly pronounced in
strongly-correlated systems, where the LDA may lower the energy by fractionally
occupying the degenerate, spatially localised, states which should be split into occu-
pied and virtual bands. A confounding issue arising from partial occupation of the
localised states is that the spurious Coulomb repulsion between them usually causes
some reduction of their spatial localisation and this, in turn, causes an underestima-
tion of local magnetic moments and a further collapse of the insulating gap due to
diminished exchange splitting.

In the linear-response method, the DFT + U penalty functional is interpreted as a
correction for the spurious curvature of the total-energy of the system, with respect to
the occupancies of the localised orbitals away from integer value, which is exhibited
by approximate exchange-correlation functionals. The Hubbard U is identified as the
erroneous curvature to be cancelled by the DFT + U correction, and the correlated
subspaces, which may deviate from spherical symmetry due to their perturbing envi-
ronment and which measure the curvature and to which the correction is applied, are
those spanned by the Hubbard projectors.

Denoting the total occupancy of site / with spin o by NV a scalar Hubbard
U parameter may be computed as

d2E _ dinndependenl
d (N<1)<a>)2 d (N<1>(a>)2

yo) — (7.1)
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where, as detailed in Refs. [1, 2], the independent-particle (kinetic) contribution to
the density-response is deducted in order to leave only the purely interacting (due
to Hartree and exchange-correlation terms and comparatively small in magnitude)
components appropriate to the down-folded Hubbard model.

The linear density-response method, by construction, measures the extent to which
the description of the Coulomb interactions, represented by the U parameter, are
underestimated in the ground-state response function. It is, of course, very desirable
that the Hubbard U should be calculated using the response of the DFT + U ground
state, and not that of the uncorrected DFT ground state. A promising self-consistency
scheme for this method was proposed in reference [3], whereby the response, U,
is calculated at a number of input values, U in_ after which the extrapolation to
uont (U in — O) is deemed to be the self-consistent value if a good fit can be obtained.

7.1.1 Towards a Projector-Decomposed Method

Letus investigate the generalisation of the linear-response method to compute orbital-
resolved U tensors. It has been shown, for example in Ref. [1], that components of
the U tensor may be rather strongly dependent on the symmetry of the localised
orbitals, for example those of 3d orbitals of e, and 7, symmetry, and so an averaged
scalar response may not be realistic in such cases.

A rank-2 U is associated with the curvature of the total energy with respect to two
different orbital densities, whereas in the rank-4 case it is the curvature with respect
to two different subspace density matrices. We will assume that interactions are
diagonal in the spin-index, although the generalisation to off-diagonal interactions
between spins is straightforward in principle.

To compute the Hubbard U within linear density-response theory, we apply
perturbing potentials to the correlated subspaces in order to numerically measure the
linear-response at the ground state. The perturbing potential, for each site, most gener-
ally takes the form of a Hermitian operator with orbital-dependent matrix elements,
as in the tensor form

& = e DM (@31 = g 0 el (g1 ), (72)
where here and in the remainder of this section we may drop the spin index and
consider only the computation of U for one site at a time, for simplicity.

We seek the curvature of the total-energy with respect to subspace occupancy
matrices, and of course this task is simplified if the derivative may be reformulated

’
in terms of the matrix elements a,&{ ™ of the perturbation instead. As suggested by
Ref. [2], we may move from an expression of the ground-state energy for each value
of the subspace perturbation tensor,

E [afpm’] = min {E [n (r)] + af,{)m/n(’,)’”} , (1.3)
n(r

m
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to a representation of these energies in terms of the subspace occupancy tensor, via
a Legendre transform.

Specifically, if the matrix elements of the subspace density-matrix are chosen as
the independent variables, the perturbation-dependent energy may be re-expressed
as

E [n(l)’"/] = min {E [ar(’f,)m] — nf,{)m/a’(nl/)m} . (7.4)

m
I
a ( /) m
m

We may now take the second derivative of this energy functional, for an arbi-
trary pair of projector indices, m*, m>, separately with respect to two copies of the
subspace occupancy tensor, whereupon we find that

2 (Hm®

d E["m“ ] _ 4 1w 5m5a(1)m4( (Hm’
dnOm” g Dm = o Dm” mdom X \M,4
nm” nm/ nm//

)

dn([)m///

m//

(- X*I)U)m”m, . (7.5)

m m///

Thus, in a manner reminiscent of Janak’s theorem [13] applied to each correlated
subspace, we find that the second derivative of the energy with respect to the subspace
occupancy tensor is equivalent to the negative of the inverse of the first derivative of
the occupancy tensor with respect to the probe potential tensor, namely that of the
static, irreducible linear density-response function x.

The irreducible linear-response function is related to its independent particle
contribution xo and the screened Coulomb interaction operator W. The latter may
be thought of as built from the bare Coulomb operator, the dielectric function and,
if dynamical screening is included (as it is in TDDFT [14]), the second derivative of
the exchange-correlation energy known as the exchange-correlation kernel f.). By
definition, the Hubbard U parameter is formed from the matrix elements of W in the
basis of Hubbard projectors.

The total and independent-particle response functions are related Dyson equation
[15] given by

= Jo+ RoW5 (7.6)

x>

and we may express the total function as a sum of the independent-particle and an
interacting remainder, since

(- 20W) 2 =0

x>
I
—_

A\ —1
= f(oW) %0
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S>W=3"-%" (7.7)

providing a concrete justification of Eq.7.1.

The full and independent-particle inverse response tensors, which have the
same units as Coulomb interactions, are evaluated by numerical finite differences,
according to Eq.7.5. The independent-particle, or non-interacting, component is
given by the response calculated without updating the Hamiltonian for changes to
the ground-state density. These are then used to compute the Hubbard U parameter
using Eq.7.7, approximations and properties of which we go on to describe in the
following subsections.

7.1.2 The Non-Locally Resolved Four-Index U Tensor

It is possible to use one of a hierarchy of approximations for the linear-response
function in practice, depending on whether we wish to include the fully non-local
(within the extent of the subspace) density response, a scalar response in which the
orbital degrees of freedom of both the perturbation and the probe are fully averaged
(as is most commonly used), or an intermediate level of approximation in which one
spatial degree of freedom is integrated over and one is retained.

Suppressmg the removal of the independent-particle response function so that
W=— x ', for brevity of nation, the subspace-projected linear response function
is most generally given by the rank-4 tensor

I " / I
xDmm = (g (r, ) [ o))

08 )
_ dnpy m dn 4 (Dm*m’ (1) (7:8)
- ([)m/// - ) O 0 mim’"’
dC(m,, d /%)
m'm

(N (1)m 1%

that is the negative of the inverse of Eq. 7.5. This describes the individual response of
the components of the subspace occupancy matrix with respect to individual changes
to the perturbation matrix.

In this formalism, the perturbing potential at location r’, applied via the projectors
labelled m” and m"”, induce a change to the density at r, via the response function
X, which is in turn probed by the projectors labelled m and m’. It may be readily
observed that the tensor

m m' m mS m*m’

(I)m” m" _ _X(I)m//m4 O([) O(I)m m'" (79)

is symmetric since the response operator is Hermitian,

(I)m// m" _ X(I)/m”'m”. (7.10)

m m’ m' m
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The projector-dependent U tensor is then evaluated in the convenient form
given by

m l’ﬂs

"o (1))714 m"” "
uh = ol (—x‘l) o (7.11)

7.1.3 The Scalar Interaction U

The most commonly used approximation for the screened Coulomb interaction, at
the time of writing, is where the both the perturbing projectors and probing projectors
are contracted over before use, indeed before their computation, providing a scalar
density-density Coulomb interaction U.

The response function for each site is given in terms of the ingredients of the more
general four-index formalism by

I (Hm' d”(l) 1 -1
mm m
X()——Xm m = T (DOm’ U()———X() (7.12)
aw,,,

which may be conveniently evaluated since the perturbation is applied over the entire
subspace instead of individually to the projectors.

In this approximation, where we consider only a scalar occupancy responding to a
scalar perturbation for each site, the perturbation at r’ is that applied by all projectors
on the site in unison and the response at r is probed together by all the projectors.
The usual DFT + U penalty functional in this fully averaged approximation is thus
given in tensorially-invariant form by the expression

” m (1)(0')
Z U(I) mm [ m/r/n —n /r/n n /// :I (713)

2 mm’ m m

7.1.4 The Locally Resolved Two-Index U Tensor

Itis of interest to investigate the intermediate approximation, that is where one orbital
degree of freedom is retained in the U tensor and the other is integrated over. We are
faced with two possible singly projector-decomposed, tensorially invariant, DFT + U
models of the penalty-functional form.

These, namely, correspond to that formed by considering changes in each element
of the occupancy matrix while using a uniform perturbation (averaging the linear
response over all perturbation channels), that is

- )
> U [t = ] (7.14)
lo
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or that formed by taking the response of the total occupancy of the subspace to
individual orbital-dependent perturbations (averaging the linear response over all
probe channels), that is given by

" (1)((7)
1
E ZU,; R [ (7.15)

Fortunately, this ambiguity is fully overcome by noting that U tensors of the form
of Eq.4.25 (having a symmetric screened Coulomb operator, as we expect for the
static limit where U is real-valued, possess the symmetry property

"o 10 "1

U(I) m"m"™ _ U(l) m""'m (7.16)

In order to see this more clearly, perhaps, consider the density response operators
(recalling that % (r, ') = % (r',r)), where we see that, as required,

dn (I)m

1 N "
» e = (g 1R (0. 7) o D)

@/
Dm"” l I lm

I
<<p,5{)¢‘”’” 1% (r,r) Igo(”’” ou)

dnfr{)m ym"m’ 7
m-m
=~ = X =2 (7.17)
am//

Both the perturbation-averaged and probe-averaged DFT + U functionals, there-
fore, give precisely the same two-index response function and hence the same two-
index U tensor

Dm' _ pr() m'm"” n-1y "
o =uin = (=7 (7.18)

From a computational point of view, the former formulation is much simpler to
carry out in practice, since in this way a single scalar perturbation can be applied to
each site, as it usually is in the linear-response approach, in order to calculate the
projector-decomposed screened response of all elements of the occupancy tensor.

7.1.5 Generalisation of the DFT + U Potential and Ionic Forces to
the Tensorial Formalism

The DFT + U term in the Kohn—Sham potential, generally given (for real valued U
tensors) by
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~ oE /

(o) DFT+U 1 1 )

VDUFT+U = BEEGE = z |pDmyy (D(@)m (@, | (7.19)
1

has matrix elements in the fully orbital-dependent case given by

V(I)((r)m’ _ W) dEprr+U (Hm"'m’
m — Tmm” n(])((r)m’”
m//

1 rom ” " » 1) (@)

= EUIE'EIVZL;" " I:(S:Z/(Sl’;';l/// - nmr{lfsfn/l/// - (SZ,:/nmIZZ/ ]
Loy m'm” ” (1) (o)m sm”

= EUmmu [8311,8;7"1”/ - znm/ 8::;///]
1 o

= U s =20 ] (7.20)

In the fully-averaged scalar interaction U case this simplifies to
I 1
I I (H(o)
y(D@m EU( ) [5:2, —2pe m] i (7.21)

and, in the intermediate singly orbital dependent case, it is given by

’ 1 ’ " ” (o)
V};I)(a)m = EUrE{) " [8:2/ - nm’? 5::” - snn:’ nmr”f:l
l ’ 1
= U™ [5;’;, - 2nfn,)(">’”] . (7.22)

The equivalence of the potentials in the two-index and four-index cases demon-
strates that the latter (the computation of which tensor involves the perturbation
of individual potential matrix elements), while it may be of use in fully orbital-
dependent functionals such as that shown in Eq. 2.7, isredundant for a simple DFT + U
term of the idempotency penalty-functional form.

7.1.6 Prospects for a Linear-Scaling Implementation

The independent-particle response is calculated during the process of computing
the full response, and it does not excessively complicate the calculation. The
usual strategy is that, beginning with the unperturbed ground-state density, the
perturbing potential is added to the Hamiltonian and then the non-interacting energy
is minimised with respect to the density with that perturbed Hamiltonian fixed.

The resulting change in the subspace occupancies is the independent particle
contribution to be deducted from the Hubbard U. The Hamiltonian is then updated
and brought to self-consistency with the density in order to obtain the full response,
so that the non-interacting contribution is effectively computed at the first iteration
of the self-consistency procedure.
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This technique, of course, is more suited to the density-mixing approaches of
conventional DFT methods that to the direct energy minimisation technique used in
the linear-scaling code ONETEP. In the latter, it is not usually necessary to store the
expansion of a fixed Hamiltonian on the basis (the psinc grid, for example) while
carrying out energy minimisation, particularly during minimisation with respect to
the support functions. This, however, is merely a technical obstacle and not one
which fundamentally prohibits implementation of this method.

On the other hand, for a system consisting of a number of inequivalent correlated
sites, it is necessary to separately carry out a number of linear scaling calculations
in order to compute the response associated with perturbations at each site. These
calculations should be, of course, very fast since the ground-state density is used
as a starting point, but nonetheless the cost intrinsically scales with the number of
correlated sites times the total number of atoms present.

7.2 The Constrained Random Phase Approximation

Moving next to our second example of an ab initio method for U, we seek to generalise
the calculation of the Hubbard U tensor using the Many-Body Perturbation Theory
based approach known as the constrained Random Phase Approximation (cRPA) to
the case of a nonorthogonal set of Hubbard projectors.

We formulate the methodology in the form of a nonorthogonal representation of
single-particle states, such as NGWFs, and, where appropriate, we note issues perti-
nent to the potential for developing a linear-scaling implementation of the method.
We closely follow the space—time GW methodology, prescribed in Ref. [16], for the
construction of the screened Coulomb operator, and the description of cRPA itself
which is provided in Ref. [4].

While we do not provide a detailed description of the derivation of the method,
which is rather involved, we hope that the main steps in its construction will be
made clear by our generalisation to nonorthogonal projectors. For further details on
the method’s development, we refer the reader to the seminal work of Ref. [17], in
which many of the salient concepts were clarified, Ref. [4], the article in which the
method was formally proposed, Ref. [9], in which the technique was generalised to
include the exchange-correlation kernel for non-trivial interactions (for example to
the cALDA—constrained Adiabatic Local Density Approximation) and successfully
applied to a number of materials, and Ref. [18], in which cRPA was re-derived on
rigorous foundations in terms of a dynamical Hubbard model.

The essence of the constrained Random Phase Approximation framework is to
partition the polarisability propagation operator, usually computed from the Kohn—
Sham system, into parts corresponding to transitions within the correlated subspace
spanned by the Hubbard projectors on correlated site / only, denoted ﬁc(,l)(”), and all
others (including transitions between subspace and the bath with respect that partic-
ular subspace), denoted ﬁg)(a) = pl) _ f’c(l)(g). For the down-folded Hubbard
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model of the correlated subspace C () the former contribution, ﬁc(l)(”), should be
excluded from the effective screened Coulomb operator.

The Random Phase Approximation (equivalent to a linearised time-dependent
Hartree approximation and implying the neglect of the exchange-correlation kernel)
is used to evaluate the dielectric function and hence the screened interaction. The
fully screened interaction w may be expressed via the bath-screened Wl(;)m (that
which we need to compute the Hubbard U tensor) and the bare Coulomb operator 0,
via the Dyson equation-like expression

A A~ A~ A 71 ~

W([)(g) _ (1 _ Wl(gl)(d)Pé[)(U)) Wl(gl)(o)’ where

~ ~ ~ _1

Wl(gl)(n) _ (1 _ 0Pl(31)(<7)) 5, (7.23)

which makes explicit the interpretation of the interaction Wg)(o) as a partially

screened intermediate between 9 and W)@,

In the process of computing the Hubbard U, which is energy-dependent in this
theory, one obtains the independent-particle spectral function as a useful by-product,
along with much of the machinery needed for GW [19-23] many-body corrections to
the Kohn—Sham spectrum. We show how the frequency dependence of the Hubbard U
may be used to make a simple first-order correction to the DFT + U spectral function
for dynamical correlation effects in the spirit of the perturbative GW method.

The computed Hubbard U, in its static limit, may be used to re-build the DFT + U
correction, as demonstrated in Ref. [5]. Furthermore, it may, in principle, be coupled
to our projector self-consistent DFT + U method, detailed in Chap.3 and Ref. [10],
in order to attain self-consistency over the charge density, Hubbard projectors and
Hubbard interaction parameters.

7.2.1 The Independent-Particle Green’s Function
and Irreducible Polarisability Operator

We begin with the Kohn—Sham (non-interacting) Green’s function, which describes
the probability amplitude for single-particle propagation at a given energy. It may be
expressed in real-space and frequency, for a given spin-channel (where the infinites-
imal § provides a Lorentzian broadening of the poles in order to ensure invertibility)
by

G (v, 1 0) = (r] ((w +)1+ ﬁ“’))*l Ir') (7.24)

In the NGWEF representation, the Green’s function is most naturally expressed as
a doubly contravariant tensor, computed over a frequency range encapsulating twice
the Kohn—Sham bandwidth, by inverting the covariant representation of the inverse
Green'’s function given by
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) ] p
G (@ = (@+) Sy + H: G = (G017 (7.25)

The inversion of the Green’s function with linear-scaling cost is something of a
challenge for energies close to its poles, and it may prove that simple recursive product
methods such as Hotelling’s algorithm [24], for example, may require an excessive
value for the broadening parameter § for accurate results. Further investigation into
methods for inversion of sparse, but close to singular, matrices is required for routine
linear-scaling applications of Green’s function methods.

Within the Random Phase Approximation (which includes dynamical effects but
neglects all but the Hartree interaction between particles and holes), the irreducible
polarisability propagator is given by the convolution of the Green’s function with
itself, that is in matrix language and ignoring spin-flip excitations,

o
PO (i) = —é / Ao/ GO () Sy GOP (o) — ). (7.26)
—00

In order to make the connection between the cRPA and linear density-response
theories clearer, we note that the retarded (computed using DFT or TDDFT) and
time-ordered (computed using many-body perturbation theory) response functions
become equivalent, so that P (w — 0) = x (w — 0), in the static limit appropriate
for building the DFT + U parameters.

From a computational point of view, it is simpler to compute the inverse Fourier
transform of the Green’s function to real time,

1 oo

GO (1) = L / dwe ™ GO (49) (1.27)
27 ) oo

after which the polarisability may be computed using the transform of a simple square

of the time-domain Green’s function, i.e.,

(.¢]

PO () = — / dte ' G (1) 8,.G P (1), (7.28)
—0o0

which computationally simplifies to a sum of products in the static limit.

‘We note that using real time and frequency domains may not be so computationally
efficient or robust as using the imaginary time domain, since the quantities involved
are much smoother in the latter case [16]. However, we present the formalism on
the real axis for clarity. A number of methods have been developed for efficient
evaluation of the polarisability operator in the context of ab initio simulation, in
particular we refer the reader to Ref. [25] for a very elegant approach.

7.2.2 Spectral Functions

Let us briefly mention some quantities which may already be computed once we
have come this far. The density of Kohn—Sham states is equivalent to the spectral
function of the Green’s function, that is
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©) 1 ~x[Gres
DoS®@ (w) = —sgn () 3 [G (a))] Spa- (7.29)
T

Oscillator strengths for independent particle transitions (equivalent to Fermi’s
Golden Rule) are provided by the spectral function of the polarisability operator,
that is

A (@) = Lson (@) 3 [P(")"‘ﬁ (a))] Spa- (7.30)
T

Somewhat more interesting, however, is the weighting of such oscillator strengths
by appropriate moments in order to obtain frequency-dependent polarisabilities, the
simplest being the electric dipole—dipole polarisability

1
o (@) = —sgn (@) (Bulrilop) PP (@) (@yIrj195) 5™, (7.31)

from which the corresponding cross-section for single-particle excitations (photoe-
mission or inverse photoemission) may be computed using the expression

AT )
oij (w) = Tamocl.j (w) . (7.32)

An advantage of computing the polarisability in a frame of localised Wannier
functions, of course, is that we may conveniently decompose it into its contributions
from transitions between functions with different symmetries or host atoms simply
by partially evaluating the sums in Eq.7.31.

The generalisation to rotatory (chiroptical) cross-sections and the inclusion of
dynamical excitation effects are very interesting topics, involving the replacement of
the position operators by angular momentum operators in the above expressions and
the use of TDDFT, respectively; we refer the reader to fascinating articles on these
topics at Refs. [26, 27] and Refs. [14, 28].

7.2.3 The Low-Energy Hubbard Model of cRPA

In order to build the parameters of a Hubbard model only of the correlated subspace,
we must screen all of the Coulomb interactions involving the bath with respect to that
subspace (the theory allows for one inequivalent Hubbard site to be parameterised at
a time). We first compute the polarisability operator for low-energy single-particle
transitions within the subspace, 136(1)(0)’ by taking the real-time product of subspace-
projected Green’s functions given by

Ge' (=@l 167 1) 1g ™), (733)

which, in the NGWF representation of Chap. 2, are expressed as
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GO (1) = WGP @y v, 0O (7.34)

Here we employ the transformation matrix Vg, = (¢a|@),), its transpose
WD, = (@, |he) and the contravariant (with respect to the correlated subspace
only—see Chap. 4 and Ref. [29]) metric tensor oDmm’ (ptDm |<p(1)’"/).

The product of Green’s functions may be carried out in the localised frame of
Hubbard projectors, via the matrix product (where the time domain argument is
understood and the function indices are suppressed for brevity)

tPé[)(") —syd O(I)G(Cl)(cr)Gg)(ﬂ) wdg. (7.35)

The required contravariant irreducible bath polarisability is then given by the
difference of the full and subspace polarisabilities,

[Pél)(o) — GG _ SV(’)O(I)G(CU)(I)G(CG)(I)W“)S- (7.36)

7.2.4 Dielectric Function, Screened Coulomb Interaction
and Hubbard U Tensor

In order to compute the Hubbard U tensor using cRPA, we must first locate the
screened Coulomb interaction of the bath with respect to the correlated subspace at
hand. The dynamically screened Coulomb interaction may be computed, in terms of
the bare Hartree potential,

1

v (l', I'/) = m (737)

and the inverse of the Lindhard dielectric function, € (w) . The latter may be expressed
in real or reciprocal space, respectively, as

W(r.r';w) = /d3r”v (r.x") el (r.r; ), (7.38)

or, considering Gamma-point sampling only for large systems,

/. _ 4r —1 /.
W(G’G’w)_IG||G/|E (G,G,a)). (7.39)

In order to calculate the dielectric matrix, we invoke the RPA expression for the
dielectric function

€ (r, r’; a)) =34 (r — r/) — /d3r”v (r, r”) P (r”, r'’; a)) , (7.40)

which, of course, also has convenient expression in reciprocal space as
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4

(o) ‘. — ’.
€(G, G w) =gy — —=—=P(G,G; w). (7.41)
( ) GG IG| |G| ( )
One possible way to proceed is by directly computing 6( )©) 61 the FFTBOX grid,
at each frequency required, using the formula
e (G, G) =g — i b (G) PV 45 (G). (7.42)

|G| IG’I

It may prove more efficient for large systems, however, to use the NGWF expan-
sion of the Hartree potential, that is

Vap = / / drd’r dg (r)| |¢,9( ). (7.43)

in order to directly evaluate the matrix elements of the dielectric function via
1 1
e (@) = 1,f = vay P (), (7.44)

whence the matrix elements of the screened bath Coulomb interaction are expressed
as

—1
W (@) = ( Y — s PG (a))) V5. (7.45)

The evaluation of the polarisability propagator, dielectric function and screened
Coulomb interaction directly on the psinc grid brings the advantage of NGWF
independence—no loss of accuracy is introduced by the introduction of a spatially
localised representation. On the other hand, if matrix sparsity is adequately accounted
for, the latter should not introduce any detrimental approximations. Let us denote
the sparsity of the density kernel and the NGWF overlap matrix by K and S, respec-
tively. The Green’s function, by construction, has a sparsity pattern similar to the
density kernel, and so the polarisability operator has a sparsity pattern of KSK. The
subtraction of the subspace polarisability does not alter this.

The bare Coulomb interaction may be reasonably assumed to be adequately
described by the sparsity of the Hamiltonian, H, so the dielectric function is fully
described by a matrix of sparsity HKSK. Of course, the dielectric function is, in prin-
ciple, further delocalised upon inversion but, supposing that it may not be necessary
to include a larger number of matrix elements in practice, the screened Coulomb
interaction then is adequately described by a matrix of sparsity pattern HKSKH.
Only a small block of this matrix, of sparsity H, is actually needed for the Hubbard
U tensor, so further economies may, of course, be introduced if Wl(;)ﬁ (w) is not
further required.

The irreducible polarisability propagator, and thus the dielectric function and
screened Coulomb interaction, require expansion on a psinc grid twice as fine as that
on which the Green’s function is represented in order to capture all of the necessary
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Fourier components. Furthermore, the NGWF representation, as it is currently opti-
mised, is adequate only for conduction states lying close to the Fermi level. Additional
NGWFs should be optimised for a substantial number of conduction-band states, or
simply augmented with an appropriate atomic basis, in order to satisfactorily repre-
sent the dielectric function in practice.

Supposing that these technical obstacles may be overcome, then a dynamical and
fully orbital-resolved Hubbard U tensor is provided by alocalised four-centre integral

of the bath-screened interaction WL(;‘;) (w) over the Hubbard projectors, that is (for

a doubly covariant and doubly contravariant example)

1o 10

1 e (1 I "
PO (@) = (DD WO () 19 m"), (7.46)

where only the diagonal Coulomb repulsion elements, whereat m = m”; m’' = m"”,
and the static limit @ — 0 (where U is real-valued) are typically of interest for
re-building the DFT + U correction.

7.2.5 Making Use of a Frequency-Dependent U

We cannot exploit the energy dependence of the Hubbard U in Hamiltonian
formalisms such as DFT + U. Notwithstanding, one may put this frequency depen-
dence to use in order to compute dynamical corrections to the DFT+ U Green’s
function in a perturbative manner. Such corrections could conceivably be made,
say, at self-consistency with the static (w — 0) limit of the U as demonstrated
in Ref. [5].

One may, for example, re-build the Green’s function (and hence the single-
particle spectra) by correcting the ground-state Hamiltonian corrected for dynamical
effects—so that it becomes a model self-energy operator in a similar approach to
that which is often used to approximately correct the eigenvalue differences to first-
order using the GW self-energy operator, while retaining the uncorrected Kohn—Sham
eigenstates.

The correction to be used is simply the DFT+ U potential operator scaled by
the frequency-dependent U (we consider a scalar parameter in this example, for
notational simplicity), that is

Agg)DFT-i-U =3 (Uu)(a) (@) —UD@ (4 = 0)) C;Q(");
1

1 _ (DHmm’
cOD =y (5 _20WK@vo0 wi. (7.47)
7] m'g

2 oam

The inverse Green’s function, and hence the spectral function, is then modified, non
self-consistently, for the frequency-dependence of the Hubbard U, according to

(0)DFT +U
M .

[GW] (@) = (@+15) Sup + HGPITHV@=0 4 AL (7.48)
(0%

of
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As a final remark on this topic, we note that most of the quantities needed to
compute the GW corrections to the quasiparticle energies have already been described
above; GW and cRPA are constructed in very similar ways. In the simplest approxi-
mations to the GW method, known as GOW?, the self-energy is expanded to first order
in the screened Coulomb interaction, while retaining the Kohn—Sham Green’s func-
tion and W, thereby using the self-energy as a correction to the exchange-correlation
potential.

The self-energy operator is then given, as a point-wise spatial multiplication in
the time domain, by

$) (r, ' t) —.G@ (r, r: t) W) (r, vt + 3) , (7.49)

where a Green’s function, first corrected for the dynamical DFT+ U correlations
which we have proposed, may be used in place of the non-interacting Green’s func-
tion, if so desired. The covariant NGWF representation of the self-energy in the
energy domain is given by

Ty (@) = / " dreor / drd’r' ¢, (1) £ (v 1) ¢ (). (7.50)

7.3 Interaction Tensor Update with Hubbard Projectors

In this section, we derive the expressions needed to compute the update to the
Coulomb interaction tensor which is concomitant, to first order, with changes in the
set of Hubbard projectors with respect to which it is defined. This is of importance to a
combined Hubbard projector and interaction tensor self-consistent DFT + U method
since, for example, if the projectors are close to consistency then it may prove to be
preferable to estimate changes to the interaction tensor using the expressions which
we go on to provide instead of an expensive re-computation of the Hubbard U tensor
at each projector update iteration.

On the other hand, if the Hubbard projectors are themselves computed by
maximising the interaction tensor or by minimising its anisotropy, by some appro-
priate measure, then it is necessary to employ the expressions derived in this section
if the projectors are nonorthogonal.

We make use of the geometric principles introduced in Chap. 5 in order to ensure
that the tensorial integrity of all quantities is preserved and we accommodate interac-
tion tensors both of rank-2 and those fully projector-resolved interactions of rank-4.


http://dx.doi.org/10.1007/978-3-642-23238-1_5
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7.3.1 Geometry of the Hubbard Support Manifolds

As we have discussed in Chap. 4 and Ref. [29], distinct (though potentially overlap-
ping) correlated subspaces must be imbued with individual metric tensors, that is
an individual Oﬁ) for each subspace in the covariant representation, if the tensorial
invariance of the total energy is to be ensured. As a result, there is a distinct nontrivial
support manifold, call it a Hubbard support manifold, and a corresponding Levi-
Civita connection (representation-independent definition of differentiation) associ-
ated with each correlated subspace.

As a consequence of the arguments given in Chap.5, many of the results for
the geometry of the principal support manifold also apply to the Hubbard support
manifolds. For example, the correlated subspaces spanned by real-valued Hubbard
projectors exhibit torsion free, hyperbolic geometries.

Applying the same arguments used in our treatment of the support manifold for
the Kohn—Sham states, to the case of the support manifolds for the strongly correlated
states, we invoke the approximation that the correlated subspace spanned by each set
of real-valued Hubbard projectors does not change to first order and so the derivatives
of the identity operator on those subspaces vanishes.

Thus, we separately compute the partial derivative of the completeness relation-
ship,

with respect to the Hubbard projectors for each correlated subspace, contravariant
and covariant, providing, respectively, that

o Dmm'm" _ _ ,(hm g (Dm'm" __ (D" o (Dman” (7.52)
1 I 1
Opnr = =988 Ol = 4 Oy (7.53)

From here, we may construct the Levi-Civita connection on the Hubbard support
manifold (the representation-independent definition of the absolute derivative which
leaves the metric O,, invariant to first order) in an identical manner to our argument
for the principal support manifold.

The Christoffel symbol of the first and second kinds are given, for each
subspace I, by

1

) _ I H)
me/m// - —(Pm Om/m// and (754)
(Hm . A m'm"” <) _ ) )]
Fm/m// =omm Fm///m/m// = —Q mOm/m”' (755)

Henceforth, for notational clarity, we suppress the subspace index I and employ
Greek indices, with the understanding that all implicit summation runs over the
Hubbard projector indices relevant to the correlated subspace in question only.


http://dx.doi.org/10.1007/978-3-642-23238-1_4
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7.3.2 First Order Changes to the Hubbard U Tensor

Using the Christoffel symbols, we may, for example, calculate the covariant absolute
derivative of the fully contravariant rank-2 Hubbard interaction tensor which is
given by

ap 8 B ryas
U =USP +T5U% + 1,0, (7.56)
That of rank-4 is given by the slightly more complicated expression

apys s 8 B 8
UL = U 4 T4 U 4 TL Uy
+ LU T2 U, (7.57)

In order to find the first-order change in the interaction tensor due to a change
in the Hubbard projectors we recall Ricci’s Lemma, which states that covariant
differentiation commutes with the metric tensor. In the case of a rank-2 interaction
tensor, say of form U, °®, the change to the tensor is

sU P = /dr U,P (r) 8¢, (r)
- / dr 03U’ (x) 0 8¢, (1)
— /dr Ous (Uiﬂ + 13U 4+ rng‘*f) (r) 0 ¢, (r)
= /dr Ous (U — @° 0, UP — 9P 0., U) (r) O 89, (r)
= / dr (0gsU% (1) O — @ () UY? — 9P (1) U,") 8¢, (r). (7.58)

Here we have chosen to cast the tensor in its fully contravariant form before
expressing the covariant derivative in its component parts so that the partial derivative
may be most conveniently evaluated.

Similarly, for the case of a rank-4 interaction tensor, say, for example, of the form
U,**,. the partial derivative with respect to the contravariant vectors may be most

easily evaluated by first casting the tensor into its fully contravariant form, so we
compute the first order change in the tensor via the expression
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su,P” dr U,V (1) 8. (r)

8 =/
/ dr Oy; 05,US)"" (r) 0%5p. (r)
Uéﬂyn
= /dr Out Osyy _|_Ff UByn +F§LU§W" (r) 0% 8¢, (r)
+FVLU§’3”’ + T, UsPT
Oot;‘ OSnU’%ﬂyn 096
:/dr _¢aU€ﬂV8 _(pﬁUaEV(S (r)8ge (r). (7.59)
_QOVUaﬁea - §05Uaﬂye

In principle, these expressions are not difficult to compute if the partial derivative
of the interaction tensor is available. Let us first consider the case where the (4-index)
interaction tensor is given by a two-centre integral of a screened Coulomb interaction
operator W, which may be frequency-dependent but not explicitly dependent on the
Hubbard projectors themselves. Such a tensor is generally defined in Dirac notation
by

USPTT = (o P |Wg? ¢")
= /dr/ dr’ ¢* (r) 9** (v) |14 (r,r) ¢” (r) ¢° (r). (7.60)

Considering real-valued functions only, as we are obliged to while remaining in
the realm of simple metric-compatible support manifolds, the partial derivative with
respect to support functions is provided by the sum of integrals

USPT™ = 85 (0P IW1g? @) + 8 (0f W] ” ")
+ 85 (0 P W™ + 80 (0" P |We")
= (55U +sfusr Ut L U o ). (T.6D)

and we conclude that the required term in the first order update to U is given by

By Bey ty
tpyn qoe _ [ SSUTT s+ 0
Oa;O,gnU’e ov¢ _(—l—OVEU ﬂ‘a +85U ﬁw @, (r). (7.62)

o

Using this, and noting an elegant antisymmetry between terms due to partial
derivatives and Christoffel symbols, we can most succinctly express the first-order

change in the interaction tensor due to Hubbard projector update as

8U,"s = ((5¢ulge) = (paldpe)) UT,
+ (807 lpe) — (9P 1890e) U, 75
+ (189" l9e) — (97 1896)) U,

+ ((Bgslpe) — (@slde)) U< (7.63)
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The corresponding expression in the rank-2 case is provided by the somewhat
simpler equation

8Uy” = ((8¢alpe) — (paldpe) U + U,  ((0eldg”) — (3¢clp”)) . (7.64)

‘We may assure ourselves that contraction over two indices in the rank-4 expression
results in cancellation of terms, so that U aﬂ 14 g = sU,” , as expected. Furthermore,
the latter expression is readily seen to be trace-free, as we would expect since the
preservation of the subspace spanned by the Hubbard projectors ensures that the trace
of the interaction tensor is invariant. As a result, the change in the scalar invariant
interaction

o

U =8U," = 6U," ;=0 (6.65)

to first order in changes of the Hubbard projectors when the interaction operator does
not change with the projectors.

7.3.3 Invariance of the Interaction Anisotropy

Some alternative scalar invariants, to the aforementioned trace, include

; g
U=U0,",,
J=0,",0,50% and
3 1 ) 3 1 2
(AU = SULPUR" = 5 (U,) = SUP, U7, = 5 (UaV"‘V) . (7.66)

which represent a measure of the non-local part of the interaction, the averaged same-
spin exchange interaction and the square of the anisotropy of the rank-2 interaction
tensor, respectively. While the first two scalars may be of general interest, we are
more concerned with local Coulomb repulsion interactions and so we do not explore
the projector-dependence of these objects further.

We briefly comment only on the latter tensorial invariant, the anisotropy of the two-
index Coulomb interaction. An interesting question is whether there is any physical
significance to the set of Hubbard projectors, spanning a given correlated subspace,
which provide a maximally isotropic (or minimally anisotropic) interaction tensor.
In that sense, such projectors would represent the optimally spherical representation
of the projection of the interaction operator onto that subspace.

However, the integral of the covariant derivative of the squared scalar anisotropy
with a test change vector vanishes, because



7.3 Interaction Tensor Update with Hubbard Projectors 191
S (AU)? = /dr (AU)? (r) 8¢° (r)

3 3
- /dr (EUaﬁ;éUﬂ"‘ + zUaﬁUﬂ"‘;e - UQ“Uﬂﬁ;G) (r) 8¢° (r)

=/dr (3Ua’3;€Uﬁ"‘) (r) 8¢° (r)

(since/dr Uﬂﬂ;e (r) 8¢ (r) = 0)

=3043U," / dr U (r) 8¢° (r)

3p 8 B
Ue (r) —¢°(r) O U €
=304sUz" [ d € 1)
ad B / r(_(p/g (I') OGCUQ'S @ (r)

35U +8PU) g, (r)
= 300,3Uﬁa dr _(pS (r) OchCﬁ 8¢ (r)
—¢P (r) 0., U*®

Y Bypr ¢
A @ (GU* + 0P U, @, (r)
=3Us / dr(—coa ® U — F v, )2 ®
_ap.e (U‘ﬁ<wt|8<pa> + Uy (. 18¢7) )
B\ —(pald9, ) UTP — (9P 13¢,) U,

=3U5" ((8¢alpy) — (9aldp,)) UTP
+3U5°U,” (9 159”) — (3y l¢P)) = 0. (7.67)

This confirms that the anisotropy is a tensorial invariant, remaining unchanged to
first order in the Hubbard projectors. While this scalar is not, therefore, useful as a
criterion to be extremised with respect to the Hubbard projectors, this result shows
that the anisotropy of the DFT + U interaction tensor remains unchanged to first order
within a projector self-consistency scheme if the appropriate geometric corrections
are applied.

Let us pause for a moment to consider the consequences of these results. If the
Hubbard interaction tensor is initially computed for a given set of Hubbard projec-
tors and interaction, then as long as these projectors span the same fixed correlated
subspace and the interaction operator has no explicit dependence on the projec-
tors, to first order, both the isotropic and anisotropic parts of the interaction tensor
remain unchanged by subsequent alterations to the Hubbard projectors. Thus, the
eigenvectors, and hence any physical interpretations of the interaction tensor, are
unchanged during optimisation of the projectors (to first-order) so long as the appro-
priate geometric corrections are made, implying that re-computation of the U tensor
at each projector-update iteration is unnecessary.



192 7 Tensorial Aspects of Calculating Hubbard U Interaction Parameters

7.3.4 Applicability of the Method

Next, we discuss the regime of validity of the assumptions we have invoked. If the
interaction is not explicitly dependent on the choice of Hubbard projectors then
the contribution to the total energy from a tensorially contracted scalar DFT + U
correction, such as for example

1 1
2Ua (nﬂ“ — nﬁynyo‘) or EUaﬂy(S (ny"‘éé3 —nyﬂncgo‘) (7.68)

and hence the total energy itself, is invariant with respect to changes among the
Hubbard projectors. Changes in the energy may serve to quantify the validity of this
assumption and a consequence of the invariance of the total energy with respect to the
Hubbard projectors is that the density and all its functionals are then also invariant
with respect to the choice of Hubbard projectors.

There is no explicit dependence of the interaction operator on the Hubbard projec-
tors, for example, in the linear density-response formalism. Here, the tensorially
consistent extension of the theory to the rank-4 case, as we have shown, can be
expressed (where we suppress the site indices and deduction of the non-interacting
response for notational brevity) as

Lebrs _ (anw)—l _ daf
—\ ahl " Ongy
9 U‘f dr’ dr"’ wﬁ (I‘/) & (I'/, r///) (,06 (r///)]

o [ff drdr" g (x) p (x, 1) @, ()]

:////drdr dr” dr" ¢% (r) ¢? (r') x

3[0( r r///)] Y (¢ 5 r”
m¢ ( )ﬁ" ( )

////dr dr’ dr” dr’” ¢“ (r) ¢” (r') x

%5 (l‘ —r ) S (r// r///) g{)y (r//) q)a (r///)

= / / dr dr’ % (r)¢” (r) g—;gﬂ (r') ¢’ (r), (7.69)

since the spatial integrals are independent of the functional derivatives.
The operator derivative of the density matrix with respect to the non-local pertur-
bation operator & is equivalent to the required screened Coulomb interaction, that is

S V. p\ !
WEx‘=—A=(£) , (7.70)
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and this has no explicit dependence on the Hubbard projectors in the linear density-
response method. This is not the case for the cRPA technique, however, where the
response function is built explicitly using the subspace projections.

The validity of the assumption that the Hubbard projectors continue to span the
same subspace as they are optimised is dependent both on the manner in which
this procedure is carried out and the nature of the system itself. It is evident from
our numerical study of corrections to the density kernel for support function update
presented in Chap. 6, which is based on this assumption, that it is a reasonable and
numerically sound approximation at least for support functions (NGWFs) optimised
to minimise the total energy.

7.3.5 Changes in Non-Invariant Scalars

One occasionally wishes to identify a scalar which depends on the interaction tensor
and which does vary with the Hubbard projectors. This may then serve as a property
to be minimised or maximised, depending on which is appropriate, in order to set up
an equation of motion to optimise the Hubbard projectors.

The non-invariant scalar most frequently used in the literature for such purposes
is the simultaneous sum over all four indices of the interaction tensor, that is scalars
of the form

U= v, = Z 0(0,/5) = Z J_(aﬁ). (7.71)

o,f=a o,f=a

which we have expressed in terms of the conventional non-invariant two-index
Coulomb repulsion and exchange matrices (which are not tensors in general), respec-
tively defined as
7 Ba 7 op
Uwp) = U, 8 and Jp) = U, 8 (7.72)
An interesting approach described in Ref. [30] was to maximise U with respect
to a set of orthonormal Hubbard projectors. Unitary transformations of an ortho-
normal initial guess were used to preserve this property, and the resulting functions,
intriguingly, were reported to be indistinguishable from MLWFs.
Considering the more general, nonorthogonal, case and implicitly summing over
the index «, we find the first-order change in U with Hubbard projectors to be
given by
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8U =8U,*,
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+ ((8¢% 1) — (@%18¢e)) Uy*y 4+ ((80alpe) — (9aldpe)) U, **
=2 ((8¢alpe) — (9aldpe)) U, +2 ((8¢%9e) — (9% 18¢e)) U, %,
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Here we have considered only real-valued functions and Hermitian operators and
thereby have exploited the symmetry properties

)
u =0, =0 and U =U";". (7.74)

While 8U is generally non-vanishing and may serve as a measure of the magni-
tude of the diagonal components of the interaction tensor, allowing an equation of
motion to be set up for nonorthogonal Hubbard projectors, in principle, the four-index
contraction is not a valid tensorial operation and the resulting U is not invariant under
basis transformations.

Another possible non-invariant measure of the quality of the Hubbard projectors,
in this case one which is minimised for projectors giving an optimally spherically-
symmetric density—density interaction, is the squared anisotropy of the non-invariant
two-index Coulomb interaction matrix Uyg), that is

1
(a0) ZU(aﬁ)U(ﬂa) - §Z(U(aa))2
3 1
=5 U, U, - 32 (U,*,)". (7.75)
off o

In general, we would not promote the use of non-invariant scalars for measuring
the Coulomb interaction when nonorthogonal Hubbard projectors are used. Put
simply, the scalar given by the doubly-traced Coulomb interaction

v=>u, (7.76)

is tensorial invariant by construction, while its individual diagonal and off-diagonal
contributions

U'=> 0= Udp and (7.77)

o, f=a o, f=a
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U= > U= Uup (7.78)
wpra w.pra

are generally not. Of course, no such impediment to their use exists in the case of
orthonormal Hubbard projectors.

7.4 Concluding Remarks

We have discussed two approaches for determining the Hubbard U parameters for
ab initio methods such as DFT + U, in the tensorial formalism needed for nonorthog-
onal Hubbard projectors and in the density-matrix language of a linear-scaling DFT
method. Unfortunately, neither method can be said to be straightforwardly imple-
mentable with linear-scaling cost for materials in which the number of correlated
sites increases with the total number of atoms.

In the regime of very large system size, or of a large number of correlated sites,
when dynamical correlation effects are important or when the implementation of
another many-body perturbation theory method, such as GW, is of interest, we would
tend to advocate the cRPA method. However, difficulties may arise for alinear-scaling
implementation particularly in the numerically challenging matrix inversion required
for the construction of the Green’s function, which needs to be carried out once at
each frequency sampled at, and the inversion of the dielectric function, which needs
to be carried out separately both for each correlated site and each at frequency value.
Moreover, this method has the disadvantage that an accurate set of support functions,
or NGWFs, must be computed for a large number of states above the Fermi level.

On the other hand, the linear density-response method has the advantage that it
depends on the accuracy of the valence bands only, and no conduction-band support
functions need to be optimised. This method is ideally suited to systems with a
small number of correlated sites which are significant to functionality, for example
transition-metal binding sites in a biological enzyme or magnetic impurities in a
conventional semiconductor, in which case linear-scaling cost may be effectively
achieved. A possible technical obstacle may be encountered when the diagonal
elements of the unperturbed subspace density-matrices are close to unity, where
the stiffness of the response may make evaluation of the inverse response tensor
difficult. Somewhat ironically, this is more likely to present a challenge for Hubbard
projectors which are better suited to their chemical environment.

We propose a scheme in which both the Hubbard projectors, as in Chap.3 and
Ref. [10], and the corresponding Hubbard U tensor, as in self-consistent extensions
of the linear density-response [3] or cRPA [5] methods, are both self-consistently
determined, in a complementary fashion whereby the projectors and parameters are
re-optimised on alternate steps. Only with self-consistency between the correlated
subspaces and the associated Hubbard U parameters, of course, may localised correc-
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tion methods such as the DFT + U approximation be said to be truly ab initio and
free from extraneous assumptions.

In practice, it is not immediately clear that such a non-linear system would not be
under-determined, that a self-consistent solution for the density, Hubbard projectors
and U tensors would be the unique solution (that is unique up to arbitrary linear
transformations among the Hubbard projectors for each subspace, with concomitant
corrections to the U tensors). Moreover, in spite of the well-behaved convergence
of the Hubbard projectors with a fixed U, as demonstrated in Chap. 3 and Ref. [10],
it may prove to be necessary to apply a mixing scheme to either the U or Hubbard
projectors in order to avoid oscillatory behaviour in a fully self-consistent method.

If these technical obstacles can be overcome, it is expected that the geometric
approach we have described in this chapter for updating the interaction parameters
automatically with the Hubbard projectors, as opposed carrying out their expensive
re-calculation at each step, may provide a useful acceleration to the proposed fully
self-consistent DFT + U method.
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Chapter 8
Discussion and Conclusion

In this Dissertation, we have described a body of research which, though hopefully
described in a self-contained and internally-consistent way, so far as possible, neces-
sarily takes root in a long and distinguished tradition of methodological development
in ab initio simulation. With such a tradition in mind and a body of accompanying
literature which is by now so vast, one worries about whether sufficient note has been
given of any number of seminal works which have lead towards this modest one.
We can only offer our apologies if this has been the case, any omission is due to our
ignorance and, of course, not deliberate intent.

It has been our goal, from the outset, to grow the metaphorical tree a little bit
wider, as well as taller, to make connections between different approaches and to
open some fresh avenues for research. We close by offering a brief description of
some ideas for future research suggested by this work. First, however, we briefly
summarise what we consider to be the central conclusions of this dissertation.

8.1 Synopsis

In Chap. 1, we provided an introduction to ab initio simulation with Kohn—Sham DFT,
with a particular emphasis on linear-scaling methods. Special focus was placed on
the methodology surrounding the density-matrix formulation of Kohn—Sham DFT,
namely the introduction of support functions, known NGWFs when these functions
are optimised, transformations and auxiliary density kernels used to maintain density-
matrix idempotency, basis sets and short-ranged numerical Fourier transforms for
differential operators.

We began the discussion of strongly-correlated systems, in Chap. 2, first by
introducing some pre-requisite physical concepts, the inadequacy of approximate
exchange-correlation functional for such systems and the popular and efficacious
DFT + U method. We then detailed our linear-scaling implementation of this latter
technique in the ONETEP code. In particular, we offered original derivations of the
tensorially consistent DFT + U contributions to the gradient terms needed to optimise
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the electronic density and atomic positions with linear-scaling cost. In performance
tests on nano-clusters of the correlated insulator nickel oxide, we demonstrated the
preservation of linear-scaling performance with only a minimal increase in compu-
tational effort.

In Chap. 3, we analysed the dependence of the DFT+ U ground-state proper-
ties of the iron porphyrin molecule on the spatial localisation of a hydrogenic set of
Hubbard projectors, quantified by an effective nuclear charge parameter Z. We found
that observables such as electric and magnetic dipole moments and binding affini-
ties can be very strongly affected by the choice of projectors, rendering localised
self-interaction correction methods somewhat ambiguous, and their results difficult
to reproduce, unless the precise procedure used to construct the Hubbard projec-
tors is stated. A novel scheme was introduced that brings the electronic states into
self-consistency with their concomitant Wannier functions. We demonstrated the
behaviour of this projector self-consistent DFT + U method on the iron porphyrin
system, where it offers favourable results.

The salient point of Chap. 4 is that, on grounds of tensorial inconsistency, we
do not concur with the most comprehensive formulation currently available in the
literature for defining the projections over correlated subspaces using nonorthogonal
Hubbard projectors. This seemingly innocuous question is, in fact, one which has
caused a fair degree of dissent and confusion in the literature, as we discussed. By
insisting on the tensorial invariance of all scalars computed with such a projection,
we were led to propose an alternative formulation which, as well as being the first
derived on the grounds of rigorous tensor calculus to our knowledge, has the distinct
advantage of introducing potentials and forces which act locally only to subspaces
on which they are explicitly dependent. This renders it naturally compatible with
corrections for localised correlation effects, such as DFT + U, and for implementation
in a linear-scaling method. We demonstrated the effect of our projection method, by
comparing it to the foremost alternative, in a projector self-consistent DFT + U study
of both bulk nickel oxide and the copper phthalocyanine dimer.

Chapter 5 detailed original research into the geometric ramifications of the use of a
set of nonorthogonal support functions to represent the single-particle density matrix.
This geometric theory allowed us to address a long-standing issue in linear-scaling
ab initio methods, namely the density-matrix purity preservation under support func-
tion optimisation. This development potentially allows for many further advances to
be made, not alone in the energy minimisation problem, but also, for example, in
the optimisation of projections for strongly-correlated subspaces and in the time-
propagation of the density-matrix for large systems.

We applied this geometric methodology to the energy minimisation algorithm of
ONETEP in Chap. 6, describing a detailed numerical study on selected hydrocarbon
polymers. In this study, we verified the principal prediction of the geometric theory,
that is the density-matrix invariance under support function optimisation. We also
noted a number of other advantages, in terms of numerical stability, and suggested
ways in which those gains may be exploited.

In Chap. 7, we discussed the challenge of computing the Hubbard interaction
tensor U with linear-scaling expense. Two ab initio methods for determining U were
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described, generalised to the case of nonorthogonal projectors and cast into the
tensorial formalism of Chap. 4, namely the linear density-response technique and
the constrained Random Phase Approximation. We then drew upon the geometric
arguments of Chap. 5 in order to investigate how this tensor should change with the
Hubbard projectors, suggesting a way in which to accelerate the performance of a
combination of the projector self-consistency technique of Chap. 3 with a method
for determining the Hubbard U.

8.2 Future Work

Finally, we briefly mention some promising directions for future research which are
motivated by this dissertation.

The geometric corrections of Chap. 5 have been implemented in a straightforward
manner in ONETEP and no effort has been made to adapt the energy minimisation
algorithm to take special advantage of the purity of the density-matrix after support
function update. At present, purity checks and safety mechanisms are in place which
are thought to be counterproductive and unnecessary when the geometric corrections
are applied.

Itremains to be seen under what circumstances these mechanisms may be obviated
and if any boost to performance may be achieved. We are only beginning to see the
benefit of this technique, and, in particular, it will be interesting to apply it to some
systems for which energy minimisation has previously proved difficult. Moreover,
we have yet to implement the strategy for adapting the conjugate-gradients algorithm
for the curvature of the support manifold as proposed in Appendix A.3; this stands
as an intriguing direction for future investigation.

It will, of course, be necessary to apply our linear-scaling implementation of
DFT+U to some large systems for the purposes of extracting scientific predic-
tions and further testing our methodological developments. Technologically inter-
esting candidates for study include defective bulk transition-metal or lanthanoid
oxides, particularly where those defects carry a magnetic moment, surfaces of such
substances, or open-shell defect ions in otherwise simple semiconductor crystals.
We are currently engaging in separate collaborative activities for each of these three
system-types.

In the study of such systems, we would be eager to make use of the projector self-
consistent DFT + U technique, of Chap. 3 where possible, since this method seems
to bring us some way towards removing the ambiguity with respect to the choice of
correlated subspaces. Furthermore, its cost is not prohibitive. We would favour the use
of the localised “tensorial” representation of Chap. 4 in such investigations. While
we have implemented the DFT + U forces using conventional hydrogenic projectors,
it would be worthwhile to also do this for the self-consistent Hubbard projectors in the
form of NGWFs, either by re-optimising the projector set at each ionic configuration
step or simply spatially translating them after an initial optimisation. Of course, this
is likely to be rather more challenging in terms of computing resources.


http://dx.doi.org/10.1007/978-3-642-23238-1_4
http://dx.doi.org/10.1007/978-3-642-23238-1_5
http://dx.doi.org/10.1007/978-3-642-23238-1_3
http://dx.doi.org/10.1007/978-3-642-23238-1_5
http://dx.doi.org/10.1007/978-3-642-23238-1_3
http://dx.doi.org/10.1007/978-3-642-23238-1_4

202 8 Discussion and Conclusion

One of our main priorities, moving forward, is to provide a robust implementation
of a first-principles method for computing the Hubbard U tensor. The linear density-
response method, summarised in Chap. 7, is promising in this regard since it appears
to be relatively simple to implement, conceptually transparent and free of artefacts
due to the proximity of periodic images in the size regime appropriate to a linear-
scaling method.

The geometric correction terms discussed in Chap. 7 may perhaps permit us to
reduce the cost of re-computing such interaction tensors when the Hubbard projectors
are altered, by allowing us to compute a first-order estimate of its change instead.
However, it remains to be seen if this approach is beneficial in practice. It is our
ultimate goal, notwithstanding, to concatenate the calculation of both the Hubbard
projectors, and the corresponding U tensor, in a fully self-consistent DFT + U method
for unambiguous calculation of the properties of large strongly-correlated systems.
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Appendix

Geometric Observations

In this appendix, we offer comments on some geometric aspects of the the
optimisation of nonorthogonal support functions, additional to those given in
Chap. 5. In particular, we give a formal geometrical justification of the gradient
correction technique of Refs. [1, 2], together with an estimate of the error incurred;
a characterisation of the differential geometry of the support manifold; and a
simple adaptation of the Fletcher—Reeves non-linear conjugate gradients method
for application to curved manifolds.

A.1 Geometric Error Estimate for Energy Gradients

The metric compatibility of the support manifold has important consequences for
facilitating methods in which the support functions are updated, for example in
order to minimise the total energy. In this particular case, one most easily
computes the direction opposite to the derivative of the energy with respect to the
support functions (noting that no geometric corrections are needed to transport a
scalar invariant), so that the contravariant search direction is given by

OE

ga:_%7 (Al)

which is itself a contravariant vector since

D) = 06 =

won OE  Oor OE _Or ,
g*(r) ——m——&m—gg (r).

In order to preserve the tensorial character of the support functions however,
and to compute update directions which are indeed going to take the energy in its
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direction of steepest descent, we may make use of the metric compatibility of the
support manifold in order to provide a search direction which transforms as a
covariant vector. The necessity of providing gradient steps of the correct tensor
character has been noted and addressed previously in the context of electronic
structure calculations in two seminal works on the topic, namely Refs. [1, 2].

The central point is that we can only add quantities with identical tensor
character while retaining this character. For example, as we have seen in Chap. 4,
published in Ref. [3], we cannot symmetrise a tensor over pairs of indices with
mixed character while generally preserving a tensor. Typically, returning to our
example of an energy gradient, the metric tensor computed at the point at which
the gradient is calculated is used to provide, approximately, a covariant search
direction, so the support functions are updated according to

d)ol( = d)x + /lga = ¢9< + ;”gﬁsﬂou (A3)

where A is an appropriate step length.

Considering partial derivatives of a real-valued metric tensor only, we might
conclude that the error in the metric induced by this approximation at the point db;
is given by

Solz/} — Sup = 2)'<g0<|¢ﬁ>a (A4)

so that the error in the covariant step introduced by neglecting changes to the
metric tensor during the line step is thus on the order of

78" (Sp, — Spa) = 22218" ) (gpl,) = O (7). (A.5)

This is not a complete picture, however, since it ignores the constraint that the
updated support functions must lie in the cotangent space of the support manifold
at some point. In order to properly estimate the error in the covariant step, we must
include the geometric corrections due to the Christoffel symbols in the first
covariant derivative of the metric. As we have previously shown, the absolute
derivative of the metric tensor vanishes (Ricci’s Lemma), so that error in the
metric tensor vanishes to first order in the step length. As a result, we find that the
error is smaller than we might naively expect, since in fact

gl (S, — Spa) = AgPO(2%) = O(2). (A.6)

The neglect of the change in the metric tensor upon support function update is
thus quite fully justified.

The commutativity of the metric with covariant differentiation also allows us to
compute a dimensionless angular quantifier on changes to the set of support
functions. The angle 0 between two unit vectors, ¥ and @, defined at a point on the
support manifold, is given by the familiar formula

cos(0) = P, 0" = 0,5 dp, (A7)
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where the metric tensor is evaluated at that point. This generalises to non-unit
vectors by the renormalised expression
v, 0% L )
cos(0) = . = il ‘ (A.8)
Ve oer] /¥ o5

Consequently, the angle between two vectors ¢ and a nearby vector ¢ + A¢
(also a unit vector since it is complete, by definition), which span the cotangent
spaces at two nearby points on the support manifold, is given by

¢y (9" + A9%)
\/“i’ﬁ(ﬁﬁ‘ \/! ((]57 + A(,ZS.',) (qs)’ + A(,ZS")’

= arccos <N — |¢“A¢a|)

A0 = arccos

VNVN
= arccos (1 — M)
N
~V2e + 0(83/2) <Where &= |¢“f]¢“| < 1), (A9)

where N is the total number of support functions.
This provides an alternative quantifier of changes in the support functions to a
simply computation of the geodesic length of change vector, i.e.,

Al = /A),AP". (A.10)

The ratio of the two measures, that is

AN [NAgAH
TR0\ 2g 00" (A-11)

gives an estimate of the radius of geodesic curvature of the support manifold in the
support function search direction A¢,.

A.2 Differential Curvature of the Support Manifold

Let us next explore some of the geometric properties of the support manifold
generating complete sets of support functions, the Levi-Civita connection on
which is described in Sect. 5.4. A central element of Riemannian geometry is the
skew-symmetric Riemann-Christoffel tensor defined as

Ry =Tl — T+ TAT5, — T4, (A.12)
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which is a commutator on second covariant differentiation. For an example of its
utility, for mixed second derivatives of a rank-1 covariant tensor A, we have that
Rjy540 = Apys — Apsy: (A.13)

For the geometry under investigation here, we obtain that

" 0
F&[f;,' = 7@ [(]st(s/;] = 75;(&5/; — d)aS()‘/;ﬁy and

755 = ¢S, Sop = 67Ssp. (A.14)
The appropriate Reimann—Christoffel tensor is thus provided by
R%yé = _(S;{Séﬁ - (f)aS&[},y + (5%5«,/} + ¢“S~,-/;,5 + 5:S5ﬁ — (5%5«,/}
= —¢"Ssp; + " Sps

(%1¢p)Ss; + (¢%|Ds)Spy — (D7 D) Sy — (D716,)Sps
= 05Sp — 93Sps, (A.15)

which implies that the support manifold is not a flat space in general. Furthermore,
this result shows that second covariant differentiation is not commutative, and in
fact that

Apys — Apsy = SpAs — SpsA,. (A.16)

Although we do not explore the issue of non-commutativity in mixed second
absolute derivatives further, similar expressions may be derived for higher-order
tensors. In particular, it may be necessary to consider mixed second derivatives of
the density kernel, for example, when computing the optimal step length in a non-
linear conjugate gradients scheme optimised for the non-trivial curvature of
support manifold. Such a method lies beyond the scope of this study and remains
as a future avenue for investigation.

Notwithstanding, we may make some further observations on the geometry of
the support manifold. In particular, the fully covariant (known as the curvature
tensor) and fully contravariant versions of the Riemann-Christoffel tensor are
given, respectively, by

Rupys = Sa5Spy — SupSps  and

Raﬁyé _ SMS/iy _ Socysﬁé. (A17)

A related and important quantity, known as the Ricci curvature tensor, is in this
case
R.p = R”;;y; = 5}/;50«, = 038up = —(N — 1)Syp. (A.18)

An Einstein manifold such as this one is a special case of a Riemannian
manifold (one whose Ricci curvature is a scalar multiple of its metric tensor) [4].
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A number of curvature invariants may be built from the Riemann-Christoffel
tensor, the simplest of which is the linear invariant given by the contraction

R =RypS™ = —(N — 1)S,38" = -N(N - 1). (A.19)

The simplest way in which to measure the curvature of the support manifold is
to employ the sectional curvature, which is defined at each point on the surface in
terms of two test vectors in the tangent space, denote them W* and ®°. The
curvature at this point with respect to the plane formed by these two vectors (or
any linear combination of the pair) is given by the scalar invariant

Raﬁwl{ﬂlp)’q)/fq)é

K= : A.20
(S2Sop — SusSyp) PV DF D (4.20)

In our case, we see that the curvature becomes independent of both the test
vectors and, as a result (known as Schur’s theorem [5]), independent also of the
point at which it is evaluated. Such a space of constant curvature

K=-—1 (A.21)

is known as a hyperbolic manifold of unit radius (this may also be established from
Eq. A.19), or a Gauss-Bolyai-Lobachevsky space. Hyperbolic spaces enjoy a rich
set of properties which are, in a sense, opposite to those of spherical surfaces. The
internal angles of triangles made up of geodesic lines sum to less than =, where
they would sum to greater than n for hyperspherical surfaces. Lines which are at
one point parallel tend to drift apart in hyperbolic surface, instead of towards each
other as in the case of spherical surfaces. Generally, the hyperbolic plane may be
thought of as one which contorts in such a manner so that no self-intersection
occurs, i.e., so that no closed geodesic lines are allowed, in contrast to spherical
surfaces which curve inwards to form infinitely many closed geodesic lines.

The geometric properties of the support manifold are surely interesting and
may, with further investigation, yield support function algorithms which are
optimised to take advantage of such properties as manifold curvature, as we
describe in the following section. We refer the reader to Ref. [6], in particular, for
an important work on geometry-adapted energy minimisation algorithms. We have
limited ourselves in this work, however, to making the best of the conventional
conjugate gradients algorithm (albeit with non-linear trial steps) available in the
ONETEP method, investigating the effect of geometric corrections to the density
kernel within that framework in Chap. 6.

A.3 Geometrically-Modified Conjugate Gradients Algorithm

Finally, we briefly elucidate the point concerning the contribution to gradient
conjugacy deviation from support manifold curvature made in Sect. 6.3, proposing
a simple corrective step to approximately remove it. We have not performed this
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correction to the Fletcher—Reeves non-linear conjugate gradients algorithm in the
calculations described in Chap. 6, however, for to do so would further complicate
the analysis of the effect of the geometric corrections to the density kernel.
A numerical investigation remains as a future avenue for investigation.

Let us suppose that the sum of the history of gradients (suppressing the step
lengths for simplicity) including that at step i — 1, and valid in the NGWF
representation at that step, is given by

i—1
GV => gl (A.22)
j=1

The difference between the NGWFs at step i — 1 and the current step i is denoted

A¢,, we have computed the gradient gﬁﬂ and we wish to take its inner product with

G( b, Strictly speaking, we may not straightforwardly do so, unfortunately,

(i-1)

because Gy ' is the valid representation only in the frame of NGWFs at step i — 1.

In order to bring the gradient history Gi"*” up to date, we must consider the absolute

derivative of the gradients with respect to the NGWFs, that is given by
Gl =G,,5" — TGS (A.23)

Of course, since the history of gradients has no explicit dependence on what we

subsequently do to the NGWFs, there is no partial derivative term when we

evaluate this expression at Ggfﬁl), however the term proportional to a Christoffel

symbol is generally non-zero. The gradient history appropriate to the current frame

of NGWFs, call it Ggffl), thus may be computed from that in the previous frame
using the expression

GlU-1

o

GIV 4 (Adpy |G 1F)

GU™Y — (AgyIT2, Gy Vs

GU™D + (Agyle sa,G" )

(0, + (A, 19" Gy . (A24)

As a result, the conjugacy condition for a geometrically adapted conjugate

gradients algorithm is not the conventional expression, <g(")°‘|éf(,i71)>, but rather the
modified form

(67165 ) = (671G )&, + (4180.). (A.25)

This final expression provides a computationally inexpensive first-order
correction to the conjugate gradients algorithm for support function
nonorthogonality.
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