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Preface

The Problems presented here refer to the topics discussed in the corresponding 14
chapters of the Particles and Fundamental Interactions textbook. This Problems,
Solutions and Supplements book is aimed at students in a course of Experimental
Particle Physics, not only as a preparation for a written examination, but also as a
necessary instrument for a deeper understanding of high energy physics. It contains
170 problems of different difficulty levels. Some of them are traditional, covering
most aspects of particle properties and of their fundamental interactions, and some
are more advanced. Some problems are derived from our teaching experience to
undergraduate students; some are derived from the admission examination to the
PhD courses in Italian universities; some are completely original, from our research
activities.

Each problem has an identification number and a title to facilitate the identifi-
cation of the subject discussed in the text. Most problems are solved step-by-step,
to help both students and teachers to get better acquainted to topics presented in
the textbook. We follow the same chapter numeration of the textbook. To avoid
confusion when we refer to chapters, equations, figures and tables of Particles and
Fundamental Interactions, the reference is enclosed in a box. In this way, Fig. 7.2
refers to a figure in this manual, and Fig. 7.2 to a figure in the textbook. As a
general advice, it is useful to try to solve problems only after a first reading of a
book. Before facing the more advanced problems, we suggest to read at least up to
Chap. 8 of Particles and Fundamental Interactions, where the introduction of parti-
cle nomenclature and classification, and the presentation of fundamental aspects of
the interactions are completed.

In addition to problems and solutions, additional material is presented in form
of fifteen Supplements. Four of them present the most powerful accelerators, those
which produce cosmic rays. Cosmic rays were of fundamental importance for the
discovery of most long-living particles, the development of particle physics and that
of astroparticle physics. Three Supplements are devoted to the electronic signals,
to data acquisition systems, to the electronic logics and triggers of the experimental
apparatuses, ending with the computing effort required for the LHC collider. These
issues play also a key role in the contribution that particle physics research provides
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vi Preface

as a spin-off technology. This is also true for other four supplements, presenting ad-
ditional information on interactions between charged particles and matter (multiple
Coulomb scattering, synchrotron radiation) or the use of radioactive decays for dat-
ing old objects. Some problems contain, after the solutions, some comments related
to past, running or future experiments (as for instance that for the neutrino beams
and neutrino oscillations, the search for proton decay, the study of symmetry viola-
tion through the electric dipole moment of the neutron, the measurement of αS , the
study of astrophysical objects using charged particles and/or neutrinos, etc.).

We thank many colleagues, in particular those of the former OPAL and MACRO
groups (now, CMS, OPERA and ANTARES) at the University of Bologna, for their
cooperation. Finally, we are grateful to many students for their suggestions and
questions that allowed us to prepare this work in a way that we hope will be useful
for many.

We are responsible for the errors which inevitably could be present in this man-
ual. Some problems contain approximations, or may be solved in different or more
straightforward way. We apologize in advance for any mistake that could have sur-
vived and that the readers will discover: you are kindly encouraged to inform us.

Sylvie Braibant
Giorgio Giacomelli

Maurizio Spurio

Bologna, Italy
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Chapter 1
Historical Notes and Fundamental Concepts

Problems

1.1. Orders of magnitude. It is important to become familiar with the orders of
magnitude typical of submicroscopic systems. The molecules have dimen-
sions of the order of 10−7 cm, the hydrogen atom of the order of 10−8 cm,
the proton and the neutron of the order of 10−13 cm. The size of a quark is less
than a hundredth of the proton size. Although the proton can be considered
as an almost empty system, it is worth recalling that the vacuum is a complex
system.
(a) Let us hypothesize to be able to align the H2O molecules of a cubic cen-

timeter of water; what would be the length of the very thin line obtained?
(b) The atoms have a size of the order of 10−8 cm; an atom is essentially an

empty system. If we imagine that the dimension of the proton is 1 mm, at
what distance would be the electron in a hydrogen atom?

[A: (a) 20 times the distance Earth-Sun. (b) about 100 m]

1.2. Natural units. In the natural unit system (� = c = 1), derive the dimensional
relations between mass and length and between mass and time.
[A: [M] = [L−1] = [T −1], see Appendix A2 ].

1.3. Consequences of k = 1. The Boltzmann constant is k = 1.38066 ·10−23 J K−1

= 8.6173 · 10−14 GeV K−1. Assuming that the Boltzmann constant is k = 1
and dimensionless the temperature has the dimensions of energy. Determine
the temperature corresponding to 1 eV and to 1 GeV.
[1 eV = 1.1605 · 104 K; 1 GeV = 1.1605 · 1013 K]

1.4. Planck mass. The (dimensionless) gravitation constant can be written as:

αG = GNM2

� c
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2 1 Historical Notes and Fundamental Concepts

(different authors insert a 4π factor).
(a) Verify that αG is dimensionless.
(b) Evaluate αG for the proton mass M = mp .
(c) Evaluate the Planck mass (or Planck energy), MPl . The Planck mass is,

by definition, the mass of the hypothetical particle that would produce
αG = 1.

[See solutions]

1.5. Planck length. Starting from MPl , determine a quantity that has the dimen-
sion of a length [L]. This quantity is defined as the Planck length. The Planck
mass fixes the energy scale where the unification of the gravitational inter-
action with the other three interactions (strong, electromagnetic and weak)
should occur. In string theory, the Planck length is the natural scale for the
string size.
[See solutions]

1.6. Cross-section e+e− → μ+μ−. The cross-section for the e+e− → μ+μ−
process is:

σ = 4π

3

α2
EM

s
(in GeV−2 for � = c = 1).

αEM is the dimensionless electromagnetic coupling constant (called the fine
structure constant in atomic physics) and s = E2

cm. Express the cross-section
in the c.g.s system.
[See solutions]

1.7. Plank units. The Planck units are units of measurement defined exclusively in
terms of five universal physical constants: the Gravitational constant, GN ; the
Planck constant, �; the speed of light in vacuum, c; the Coulomb constant,

1
4πε0

; and the Boltzmann constant, k (see Appendix 5 ). Using the dimen-
sional analysis, find the five so-called base Planck units of mass, length, time,
electric charge and temperature.
[See solutions]

1.8. Kinetic energy. Evaluate the kinetic energy in TeV of a 10 mg mosquito,
moving with a speed of 10 cm/s.
[A: 0.3 TeV]

1.9. Lifetime and path length. Instead of the particle lifetime τ0, the distance,
d = cτ0, travelled by the particle during its lifetime is sometime specified.
Find the momentum of the particle for which this relation is true.
[See solutions]
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1.10. Energy = mass. At which value of β the kinetic energy is equal to the particle
rest mass m0?
[See solutions]

Supplement 1.1: Cosmic Rays and Astroparticle Physics

Before the advent of particles accelerators, the study and discovery of elementary
particles, up to the 1950s, was performed using Cosmic Rays (CRs). Astroparticle
physics is the field of study of the universe using charged and neutral particles, in
addition to the electromagnetic radiation.

One of the main questions in astroparticle physics is the origin of high-energy
CRs. It was discovered at the beginning of last century that energetic charged parti-
cles (mainly high energy protons and heavier nuclei, see Fig. 1.1 [1H06]) produce
showers of secondary particles when hitting the Earth atmosphere. While the energy
spectrum of the cosmic rays can be measured up to very high energies, their origin
remains unclear. There are many indications in favor of the galactic origin of the CR
bulk (protons and other nuclei up to ∼1015 ÷1016 eV); however, it is not possible to
directly correlate the directions of CRs impinging on Earth to astrophysical sources
because CRs are deflected by galactic magnetic fields.

The energy spectrum shown in Fig. 1.1 spans from ∼109 eV to more than 1020 eV
and follows a broken power-law of the form:

[
dNP

dE

]
obs

= K · E−α (cm−2 sr−1 s−1 GeV−1) (1.1)

where α � 2.7 from ∼1010 eV up to ∼3 × 1015 eV and α � 3.1 for 3 × 1015 <E <

1019 eV. Up to energies of ∼1014 eV, the CR spectrum is directly measured above
the atmosphere using stratospheric balloons or satellites. Measurements show that
∼90% are protons, ∼9% are Helium nuclei and ∼1% are heavier nuclei. Electrons
are about 1% of the protons. Below 102 ÷ 103 TeV the mechanism responsible for
the acceleration of particles is plausibly iterative scattering processes of charged
particles in a shock-wave (the so-called Fermi model, which predicts the differen-
tial energy spectrum of accelerated particles). These shock-waves are originated in
environments of exceptional disruptive galactic events, like stellar gravitational col-
lapses (type II supernovae).

Accelerated charged particles are confined in the Galaxy by the galactic magnetic
fields (of average value B ∼ 3 μG) for a time of τD ∼ (3 ÷ 10) × 106 years.1 The
gyromagnetic radius for a particle with charge Ze, energy E, in the magnetic field B

is R � E
eZB

. For this reason, the confinement time τD is not constant but decreases as

1The time τD is also called diffusion time as it corresponds to the CR average time to escape from
the Galaxy. The CR escape probability PD is thus inversely proportional to the diffusion time,
PD ∼ 1/τD .
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Fig. 1.1 Cosmic Ray
spectrum from 109 to
1021 eV as measured on
Earth. Note that the vertical
scale is multiplied by E2. In
the low-energy region, when
measurements are available,
contributions of protons,
electrons, positrons and
antiprotons are reported
separately [1H06]

the particle energy increases. During propagation, higher energy particles (at a fixed
value of Ze) have a larger probability to escape from the Galaxy due to their larger
gyromagnetic radii. It was found (see Supplement 14.1) that τD(E) ∼ E−αD , with
the diffusion exponent αD ∼ 0.6 [1B95]. The measured spectral index (α ∼ 2.7) in
Eq. (1.1) is steeper than the expected spectrum near the sources. The spectral index
αS of the energy spectrum at sources can be estimated using the measured spectrum
(1.1) and the CR escape probability PD(E) ∼ 1/τD(E):

[
dNP

dE

]
sources

=
[
dNP

dE

]
obs

× PD(E) ∝ E−α × EαD ∝ E−αS (1.2)

which gives αS = α − αD � 2, as predicted by the Fermi model [1F49a, 1F49b].
Above ∼ 1014 eV, CR measurements are only accessible from ground-based ex-

periments [S04]. When CRs enter the Earth’s atmosphere they collide with nucle-
ons of atmospheric nuclei (mainly oxygen and nitrogen) and produce a cascade of
secondary particles, the so-called air shower. The basic mechanism of air shower
production of a CR proton on a nucleon N is the reaction:

p + N → π±,π0,K±,K0,p,n, . . . (strange, exotic mesons and baryons) (1.3)

The decays of short-lived hadrons lead to a shower with three components [G90]:
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Fig. 1.2 Muon flux intensity
(in m−2 s−1 sr−1) from the
vertical direction vs. depth
(1 km.w.e. = 105 g cm−2) of
standard rock as measured by
underground experiments.
The shaded area at depths
larger than ∼12 km.w.e.
represents neutrino-induced
muons of energy above
2 GeV. Only neutrinos can
cross such amount of material
[P10]

• the electromagnetic component of photons and electrons;
• the hadronic component of neutral and charged long-living hadrons;
• the penetrating component of muons and neutrinos.

Neutral meson decays (i.e., π0 → γ γ ) lead to the development of the elec-
tromagnetic cascade; the γ ’s create electron-positron pairs which then emit
bremsstrahlung photons in an avalanche process. The cascade stops when the typ-
ical particle energy becomes comparable with the critical energy of the medium
(see Sect. 2.2.3 ). The penetrating component of atmospheric muons is detected
also underground (or under many kilometers of water), see Fig. 1.2 [P10]. The at-
mospheric neutrinos are able to cross the whole Earth. The mechanism of neutrino
oscillations ( Chap. 12 ) was discovered using atmospheric neutrinos.

The showers of secondary particles created by interaction of primary CRs in the
atmosphere are distributed in a large area. Different experimental techniques are
applied to derive the flux of primary CRs through the measurement of secondary
particles. The Extensive Air-Showers Arrays (EAS) are composed of a collection
of detectors distributed on a large area. Scintillators or water-Cherenkov counters
are typically used to detect the passage of charged particles reaching the ground.
Other techniques include the Cherenkov telescopes, which detect the Cherenkov
light emitted by the electrons in the atmosphere and the fluorescence detectors,
which observe the fluorescence light emitted by atmospheric nitrogen excited by the
shower particles. These detectors can estimate many characteristics of the shower:
the number of secondary particles, related to the primary CR energy; the shower
lateral distribution with respect to the axis; the primary CR direction of incidence.
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The measured CR energy spectrum above ∼1019 eV gives a spectral index α ∼
2.5. The flux, still dominated by protons and nuclei, is one particle per kilometer
squared per year per stereoradian. It has long been assumed that these ultra high
energy (UHE) CRs have an extragalactic origin, and can be detected only by very
large ground-based installations [1K11].

The search for UHE CR sources must take into account another effect, the
Greisen-Zatsepin-Kuzmin cutoff (GZK), which imposes a theoretical upper limit
on the energy of cosmic rays from distant sources (see Problem 13.7). Nowadays,
the largest CR array experiment is the Auger Observatory (located in Argentina),
which combines the measurement of extensive air showers and light fluorescence
detection. It covers a surface of ∼3000 km2.

Additional information on CR sources and propagation in our Galaxy can be
found in Supplements 13.1 and 14.1.

Solutions

Problem 1.4

(a) Let analyze the dimensions of the numerator and denominator:

[GN ] = [Energy LM−2] = [L3M−1T −2],
GN = 6.673 · 10−11m3 kg−1s2

[GN M2] = [L3MT −2] = [ML2T −2L] = [Energy · L]
[�c] = [Energy · L].

(b) In the International System (IS), mp = 1.6726 · 10−27 kg. It follows that:

αG = GNm2
p

�c
= 6.6726 · 10−11 · (1.6726 · 10−27)2

1.0546 · 10−34 · 3 · 108
� 5.90 · 10−39.

(c) The Planck Mass is:

MPl =
√

� c

GN

�
√

1.0546 · 10−34 · 3 · 108

6.673 · 10−11

� 2.177 · 10−8 kg/1.7827 · 10−36 eV/c2 kg

� 1.221 · 1028 eV/c2 → 1.221 · 1019 GeV/c2.

Problem 1.5 In the natural unit system, one has [M] = [L−1] (Problem 1.2).
Therefore, it follows that:

lP l = 1

MPl

→ �

MPl c
= � c

MPl c2
= 0.19733 GeV fm

1.221 · 1019 GeV

= 1.616 · 10−20 fm = 1.616 · 10−35 m.
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In terms of GN , one has: lP l = √
�GN/c3.

Recalling that −λe = �/mec is the electron Compton wavelength, the Planck
length corresponds to the Compton wavelength associated with a particle of
mass MPl .

Problem 1.6 Since [σ ] = [L2], the cross-section formula given in the problem
must be multiplied by a factor containing � and c and with the dimensions of
[Energy2] [L2]. This factor is (�c)2.

σ = 4π

3

α2
EM

s
(�c)2 = 4π

3

1

(137.04)2

(0.19733)2

s

GeV2 fm2

GeV2

� 86.8 · 10−7

s
fm2 = 86.8

s
· 10−7 · 10−26 cm2 = 86.8

s
nb.

σ is in nb if s is expressed in GeV2. The same result is obtained using direct con-
version factors:

1 GeV−1 = 1.9733 · 10−16 m = 1.9733 · 10−14 cm

1 GeV−2 = 3.894 · 10−28 cm2 � 3.894 · 10−4 b

σ = 4π

3

α2
EM

s
GeV−2 � 4π

3

1

(137.04)2

3.894 · 10−4 b

s
= 86.8

s
nb.

Problem 1.7

Name Dimension Formula Value (I.S.)

Planck length [L] lP =
√

�GN

c3 1.616252 × 10−35 m

Planck mass [M] mP =
√

�c
GN

2.17644 × 10−8 kg

Planck time [T ] tP = lP
c

=
√

�GN

c5 5.39124 × 10−44 s

Planck charge [Q] qP = √
4πε0�c 1.875545870 × 10−18 C

Planck temperature [T ] TP = mPc
2

kB
=

√
�c5

GNk2
B

1.416785 × 1032 K

Problem 1.9 The distance travelled by a particle with speed v = βc during the
time τ0 is d = βcγ τ0. Remember that p = mβcγ , then βcγ = p/m. It follows:

d = βcγ τ0 = p/mτ0.

The relation d = cτ0 is valid when p/mc = 1. For instance, for a muon, d = cτ0 =
658 m is the average distance travelled by a muon of momentum p = 105 MeV/c.
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Problem 1.10 The kinetic energy is defined as T = E − m0 = γm0 − m0 where
γ = 1√

1−β2
. The kinetic energy value is equal to the rest mass m0 when

T = γm0 − m0 = m0.

This correspond to γm0 = 2m0 or γ = 2. Therefore, one has:

γ = 1√
1 − β2

= 2 −→ β = 0.86.
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Chapter 2
Particle Interactions with Matter and Detectors

Problems

2.1. Atom number density. In the interaction of particles (or nuclei) with matter,
the number of collisions depends on the number of scattering centers per unit
volume. Often, the scattering centers are atomic nuclei. Consider for example
the case of carbon, which has an atomic mass number A = 12 and a density
(specific mass) ρ � 2.265 g cm−3. Determine:
(a) the number of atoms per cm3;
(b) the number of atoms per gram.
[See solutions]

2.2. α particle energy loss. An α particle with 7.4 MeV kinetic energy crosses a
target consisting of a thin copper foil 5 · 10−4 cm thick. Determine:
(a) the ionization energy loss in the copper foil;
(b) the particle kinetic energy and (c) the Coulomb multiple scattering angle

when going out of the foil.
Hint: see Supplement 2.1.
[See solutions]

2.3. Muon Energy loss. A muon of 100 GeV energy crosses without being ab-
sorbed a detector whose mass is mainly due to the hadronic calorimeter and
to the muon detector. The thickness of the crossed material can be considered
as a layer of 3 m of iron. Determine:
(a) what is the dominant energy loss process;
(b) the average energy loss of the muon inside the detector.
Hint: see Supplement 2.2.
[See solutions]

S. Braibant et al., Particles and Fundamental Interactions: Supplements,
Problems and Solutions, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-94-007-4135-5_2, © Springer Science+Business Media Dordrecht 2012
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2.4. Energy transferred. Calculate the maximum energy νmax transferred in elas-
tic scattering of a charged particle with mass M and energy E = T + Mc2 to
an electron at rest:
(a) in the non relativistic case (T � Mc2);
(b) in the relativistic case with M � me;
(c) in the general case.

[A: (c) νmax = 2mec
2(E2−M2c4)

M2c4+m2
ec

4+2Emec2 ]

2.5. Kinematics of the Compton effect. Using the energy and momentum conser-
vation, describe the kinematics of the Compton effect and derive Eq. (2.19) .

Calculate the maximum energy of the recoiling electron Eq. (2.21) .

2.6. Electromagnetic shower. Calculate the average number of particles in an
electromagnetic shower initiated by a 50 GeV photon, after 10, 13 and 20 cm
of crossed iron.
[See solutions]

2.7. Muon from pion decay. Consider a π+ at rest decaying in π+ → μ+νμ.
Calculate the μ+ kinetic energy and evaluate approximately the μ+ range in
liquid hydrogen (specific mass ρ = 0.07 g cm−3).
[See solutions]

2.8. Neutron discovery. In his Letter to the Editor of Nature of February 27, 1932
(Possible Existence of a Neutron), J. Chadwick described the observation of
protons emitted from a target containing hydrogen atoms. The hydrogenated
target was exposed to an unknown radiation of strong penetrating power emit-
ted by beryllium when bombarded by α-particles from polonium. See the
layout presented in Fig. 2.1. The protons (with mass mp) were emitted with
velocities up to a maximum of nearly 3 × 109 cm/s. Since the penetrating ra-
diation emitted by the beryllium was observed to be neutral, it could consist
either of photons or, according to Chadwick’s hypothesis, of neutral particles
with a mass similar to that of the proton, i.e., the neutrons. Assuming that
the neutral radiation emitted by the Be is composed of photons and that the
protons are emitted through the Compton effect induced by these incident
photons, calculate the photon energy Eγ . Discuss why this Eγ is inconsis-
tent with the observation. Finally, discuss the reasons that led Chadwick to
formulate the hypothesis of the neutron existence.
[See solutions]

2.9. Multiple Scattering-1. Calculate the Coulomb multiple scattering angle in
the plane θ0

plane for protons

(a) of 50 MeV/c momentum in 0.1 g cm−2 of aluminum;
(b) of 200 MeV kinetic energy in 2 mm of copper.
[See solutions]
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Fig. 2.1 Layout of Chadwick
experimental apparatus that
led to the neutron discovery.
A beryllium target is exposed
to high-energy α rays from a
polonium source. A strong
penetrating power radiation is
emitted from the Be and hits
the protons contained in the
paraffin layer. The emitted
protons are observed in the
cloud chamber on the right
[2w3]

2.10. Multiple Scattering-2. From considerations based on the Coulomb multiple
scattering on nuclei, determine when a target is thin or thick.
[See solutions]

2.11. Neutron moderation. Neutrons produced in nuclear reactors are emitted with
energies of order of a few MeV and must be slowed down to thermal energies
through elastic scattering on nuclei of a moderator. Determine the neutron
speed variation in each collision assuming that the moderator is (a) hydrogen;
(b) carbon; (c) iron. Show that a non-relativistic calculation is sufficient.
[See solutions]

Supplement 2.1: Multiple Scattering at Small Angles

A charged particle traversing a medium is deflected by many small-angle scatters.
This deflection is due to the superposition of many Coulomb scattering from indi-
vidual nuclei, and hence the effect is called multiple Coulomb scattering. When the
particle is a hadron, the strong interaction also contributes. The cumulative effect
(for thick targets) is a deflection as that shown in Fig. 2.2.

For small deflection angles, the Coulomb scattering distribution is well repre-
sented by a Gaussian distribution. At larger angles (i.e., larger than the angle θ0
defined below), the distribution shows larger tails and the behavior is more similar
to that of the Rutherford scattering. In many applications, scattering at large angles
is negligible and the Gaussian approximation for small angles describes well enough
the projected angle distribution, with a width [P10]:

θ0 = θrms
plane = 13.6 MeV

βcp
z

√
x

X0

[
1 + 0.038 ln(x/X0)

]
(2.1)

where p, βc, and z are respectively the momentum, velocity, and charge number
of the incident particle; x/X0 is the thickness of the scattering medium in units of
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Fig. 2.2 Quantities used to describe the multiple Coulomb scattering. The particle is incident from
the left in the plane of the figure. From [P10]

radiation length ( Eq. (2.15) ). The distribution of the angle in the space has width

θrms
space = √

2θrms
plane.

Supplement 2.2: Muon Energy Loss at High Energies

As for electrons (see Sect. 2.2.3 ), at sufficiently high energies, radiative processes
become more important than ionization for all charged particles. In particular for
muons, the critical energy occurs at several hundred GeV [2G01]. Radiative effects
dominate the energy loss of energetic muons found in cosmic rays or produced at
high energy accelerators. Radiative effects are characterized by small cross-sections,
hard spectra, large energy fluctuations, and generation of electromagnetic or (in the
case of photonuclear interactions) hadronic showers. Above the critical energy, the
treatment of energy loss as a uniform and continuous process is inadequate. It is
convenient to write the average muon energy loss rate as:

−dE/dx = a(E) + b(E)E (2.2)

where a(E) is the ionization energy loss, and b(E) is the sum of energy losses
due to e+e− pair production, bremsstrahlung, and photonuclear processes. In most
approximations, the quantities a, b can be considered constant and independent of
the muon energy E. In this case, the mean range x0 of a muon with initial energy E

is obtained by integrating Eq. (2.2):∫ x0

0
dx =

∫ 0

E

dE/(a + bE) −→ x0 � (1/b) ln(1 + E/Eμ
c ) (2.3)

where E
μ
c = a/b. b(E) can be computed for different materials; it changes only very

slowly with energy. In water, b ranges between (2÷4) · 10−6 g−1 cm2 for muon
energies between 102÷107 GeV. In standard rock, b is 20%÷30% higher than in
water. Since a(E) ∼ 2 MeV g−1 cm2, the critical energy E

μ
c = a/b ∼ 500 GeV

and the radiative losses dominate above several hundred GeV. The rates of energy
loss for positive muons in copper as a function of βγ = p/Mc over nine orders of
magnitude in momentum is reported in Fig. 2.3.
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Fig. 2.3 Total energy loss −(dE/dx) (solid curves) for positively charged muons in copper as a
function of the muon momentum [P10]

Solutions

Problem 2.1 If the scattering centers are the material atoms (or atomic nuclei),
one has:(
Nc = scattering centers

cm3

)
=

(
Na = atoms

cm3

)
=

[
n. of gram-molecule

cm3
· NA · H

]

where H is the number of atoms per molecule, NA is Avogadro’s number, i.e., the
number of molecules in a gram-molecule. The number of atoms per cm3 is Na =
m
M

1
vNAH = ρ

M
NAH , where m is the mass in gram; M is the molecular weight

in gram, v is the volume in cm3 and ρ = m/v is the specific mass. In the case of a
monatomic element, for which H = 1 and M = A (A = atomic mass), one has Na =
ρNA/A. In the case of carbon for example, one has A = 12 and ρ � 2.265 g cm−3,
and the number of atoms per cm3 is:

Na = ρNA

A
� 2.265 · 6.03 · 1023

12

g

cm3

molecule

g moles
= 1.137 · 1023 carbon atoms

cm3
.

The number of atoms per gram is:

Na

ρ
� 1.137 · 1023

2.265

atoms

g
= 5.02 · 1022 carbon atoms

g
.

Problem 2.2 Consider the energy loss given in Eq. (2.9) :

−dE

dx
= 4πz2e4

mev2
Ne ln

γ 2mev
3

ze2ν
. (2.4)
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Taking into account that Ne = NAZρ/A and that re = e2/mec
2, Eq. (2.4) can be

rewritten as:

−dE

dx
= 4πr2

e mec
2 NAZρ

A

z2

β2
ln

mec
2β2γ 2

I
= Cρ

Z

A

z2

β2
ln

mec
2β2γ 2

I
(2.5)

where C = 4πr2
e mec

2NA is a constant numerically equal to C = 0.30 MeV/g cm−2

and I is the average ionization potential that may be parameterized as I =
13.6 · Z eV (13.6 eV is the hydrogen ionization potential). In Eq. (2.5), the en-
ergy loss is factorized in three terms: the constant C, the term (ρ Z

A
) which depends

on the crossed material, the term ( z2

β2 ) which depends on the particle charge and β

times a logarithmic term which slightly depends on the particle βγ .
For copper, one has ρCu = 8.9 g cm−3, Z = 29, A = 64. For the considered α

particle, one must determine the γ and β values from its known kinetic energy
T = E − mα . For c = 1, one has (in natural units):

βγ = p

mα

=
√
E2 − m2

α

mα

�
√

2T

mα

=
√

2 · 7.4

3700
= 0.064.

It is straightforward to verify that γ = E/mα � 1. Placing these values in Eq. (2.5),
one obtains:

−dE

dx
= Cρ

Z

A

z2

β2
ln

mec
2β2γ 2

I
= 0.30 · 8.9

29

64

22

0.0642
ln

0.511 · 106 · 0.0642 · 12

13.6 · 29

= 4.84 MeV/cm

0.0642
ln(5.14) = 1997 MeV/cm. (2.6)

When passing through a thickness of 5 · 10−4 cm, the total energy loss is:

E = 1997 MeV/cm × 5 · 10−4 = 1.0 MeV.

(b) T ′ = T − 1.0 = 6.4 MeV
(c) Let us use Eq. (2.1) and take into account that the radiation length of copper

( Table 2.1 ) corresponds to a path of 1.43 cm. The particle momentum is:

p =
√
(T + mα)2 − m2

α � √
2Tmα = 234 MeV/c.

Therefore (in the plane perpendicular to the motion), one has:

θ0 = 13.6 MeV

0.064 · 234 MeV
· 2 ·

√
5 · 10−4

1.43
(1 − 0.30) = 23 mrad

and θ
space

0 = √
2θ0 = 32 mrad.

Problem 2.3

(a) As shown in Fig. 2.3, at the momentum of 100 GeV/c (remember that in
the relativistic range E = pc) the dominant energy loss process is still that
of excitation-ionization, with dE/dx ∼ 3 MeV cm2/g in the case of copper
(Z = 29, A = 64). Since the energy loss depends only on the ratio Z/A of the
crossed medium, it does not change for iron (Z = 26, A = 56).
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(b) The density of iron is 7.87 g/cm3, and then the muon energy loss in 3 m of iron
is on average

E = 0.003 [GeV cm2/g] · 7.87 [g/cm3] · 300 [cm] = 7.1 GeV.

Problem 2.6 The processes considered here are the e+e− pair creation from pho-
tons, and the bremsstrahlung of electrons and positrons (i.e., the radiation of a high
energy photon and the consequent energy decreases of the electron or positron). In
both cases (see Fig. 4.7 ), the pair production and bremsstrahlung processes can
be approximated as a process corresponding, on average, to the production of two
particles sharing half the energy of the parent particle. The process stops when the
particle energy drops below the critical energy. From that point on, the particles do
not lose energy by pair production or bremsstrahlung (with increasing number of
particles), but through the excitation and ionization processes.

The residual energy of a particle which has crossed a section of material of thick-
ness x is given in Eq. (2.14) . The radiation length and the path length of particles in

iron (given in Table 2.1 ) are respectively 13.84 g cm−2 and 1.76 cm. After 10 cm
of iron, the average energy of each particle is:

E10 = E0e
−x/Lrad = (5 × 104) · e−10/1.76 = 170.4 MeV

higher than the critical energy Ec = 27.4 MeV in iron (see again Table 2.1 ). Since
(on average) all particles have the same energy, the number of particles in the shower
is:

n10 = E0/E = 5 × 104

170.4
= 293.

Applying the same calculation after 13 cm of iron, one finds E13 = 31.0 MeV. This
value is slightly larger than the critical energy, and the corresponding number of
particles is n13 = 1613. For an iron thickness larger than 13.2 cm, the average energy
of the particles becomes smaller than Ec. The multiplicative process becomes less
important with respect to the continuous energy loss mechanism. At a distance of
20 cm, the number of “surviving” particles is less than n13.

Problem 2.7 The four-vector of the particles involved in the π+ → μ+νμ decay
at rest are:

(mπ ,0) → (Eμ,pμ) + (pν,pν).

The neutrino mass is null (or completely negligible at this energy scale), and
Eν = pν . The condition for the momenta of the final state particles is simply:

|pν | = |pμ|
while for the energy, one has:

mπ = Eμ + Eν = Eμ + |pν | = Eμ + |pμ| −→ |pμ| = mπ − Eμ.

Finally, Eμ can be calculated using the mass-energy-momentum relation:

m2
μ = E2

μ − p2
μ = E2

μ − (mπ − Eμ)
2
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from which, one finds:

Eμ = m2
μ + m2

π

2mπ

= (105)2 + (138)2

2 × 138
= 109 MeV.

The momentum of the emitted muon is:

pμ = mπ − Eμ = 138 − 109 = 29 MeV/c.

Figure 2.3 allows to determine the range of particles with known momentum.

In fact, in this case, one has:

βγ = pμ/mμ = 29/105 � 0.3

which corresponds to a value of R/M = R/mμ = 1 g cm−2 GeV−1 (from in-
spection of the figure). Taking into account the specific mass of liquid hydrogen
(ρ = 0.07 g cm−3) and the muon mass (mμ = 0.105 GeV), one has:

range = R/mμ

ρ
· mμ = 1 × 0.105

0.07
� 1.5 cm.

Problem 2.8 Protons emitted by the hydrogenated target have maximum velocity
β = v/c = 0.1 and maximum momentum (in natural units, c = 1) pp = mpβ =
938 × 0.1 � 94 MeV. The maximum kinetic energy Tp of the proton is:

E = Tp + mp =
√
m2

p + p2
p =

√
9382 + 942 = 942.7 MeV → Tp = 4.7 MeV.

Let us assume that the protons in the hydrogenated target are extracted through
Compton elastic scattering from photons coming from the beryllium. The pho-
ton energy hν can be derived from the kinematics of the Compton effect given in
Eq. (2.21) . The maximum energy of the scattered particle is:

Tp = hν
2Γ

1 + 2Γ
with Γ = hν

mp

.

Therefore, one can write:

Tp = 2(hν)2

mp + 2hν
.

Denoting hν ≡ x, this corresponds to a second degree equation:

2x2 − 2xTp − mpTp = 0 → x =
2Tp ±

√
4T 2 + 4 · 2 · mpTp

4
.

The solution with the negative sign must be excluded because it gives negative x.
Thus, one has:

x ≡ hν =
2T +

√
4T 2 + 4 · 2 · mpTp

4
� 9.4 + √

8 · 938 · 4.7

4
= 51 MeV.
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Using energy and momentum conservation laws, Compton concluded that the radi-
ation emitted by the beryllium is incompatible with the hypothesis of photons. The
γ radiation emitted by exited nuclei is indeed below 10 MeV.

A more likely solution is that the neutral radiation incoming to the hydrogenated
target is made of neutral particles with a mass similar to that of the proton. The
elastic scattering between two particles with equal mass (one moving and one at
rest) allows the transfer of the whole kinetic energy of the moving particle to the
particle at rest (see Problem 2.11). Therefore, a neutron (the neutral counterpart of
the proton) emitted from the Be target with a kinetic energy of ∼4.7 MeV is able to
transfer such an energy to a proton at rest.

Problem 2.9

(a) The deflection of charged particles due to the multiple scattering is discussed
in Supplement 2.1. According to Table 2.1 , the radiation length of Aluminum
is XAl

0 = 24.0 g cm−2. Here, x = 0.1 g cm−2. The width of the projected angle
distribution is given in Eq. (2.1). To evaluate βpc, remember that p = mβcγ ;
E = mc2γ and thus pc/E = β . The energy for a p = 50 GeV/c proton is

E =
√
p2 + m2

pc
4 � mpc

2 = 938 MeV −→ β = pc

E
= 50

938
= 0.053.

This corresponds to βpc = 0.053 × 50 MeV = 2.66 MeV.
The width of the projected angle is equal to:

θa
0 = 13.6

2.66

√
0.1

24.0
(1 − 0.208) = 5.1 × 0.064 × 0.79 = 0.26 rad.

(b) According to Table 2.1 , the radiation length of Copper is XCu
0 = 12.9 g cm−2.

The Copper density is ρCu = 8.96 g cm−3. Thus, 2 mm of Copper corresponds
to x = 0.2 × 8.96 = 1.79 g cm−2. The energy of the protons with kinetic en-
ergy T = 200 MeV is E = T + mpc

2 = 1138 MeV. The corresponding mo-

mentum is pc =
√
E2 − m2

pc
4 = 644 MeV. The relativistic factor β = pc/E =

644/1138 = 0.56 and βpc = 644 × 0.56 = 365 MeV.
The width of the projected angle distribution is:

θb
0 = 13.6

365

√
1.79

12.9

(
1 + 0.038 ln

1.79

12.9

)
= 0.037 × 0.37 × 0.925 = 0.013 rad.

Problem 2.10 Equation (2.1) depends on three factors: (i) a kinematic factor
∼(βpc)−1 which does not depend from the characteristic of the target; (ii) the fac-
tor z which depends on the particle electric charge; and (iii) the factor

√
x/X0(1 +

0.038 lnx/X0). This is the only term which depends on the material. The condition
of a thin target corresponds to x � X0. Remember that ( Table 2.1 ) X0 = 36; 24.0;
12.9; 13.8 g cm−2 in air, aluminum, copper and iron, respectively. Considering their
respective densities, the values correspond to a path length of 300 m in air, 8.9 cm
in Al, 1.43 cm in Cu, 1.76 cm in Fe.
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Problem 2.11 Let us consider the collision in the system in which the nucleus is at
rest. It can be considered that the nucleus mass is M � mnA. The incoming neutron
has a mass mn and its velocity is v, v′, before and after the collision, respectively.
After the collision, the nucleus has a velocity V . By imposing the non-relativistic
energy and momentum conservation laws, one has:

1

2
mnv

2 = 1

2
mnv

′2 + 1

2
(mnA)V 2 (2.7)

mnv = mnv
′ + (mnA)V (2.8)

The non-relativistic formulae are valid because the neutron kinetic energy T is of

the order of a few MeV and β = p/M �
√

2T
mn

� O(0.1).

Solving the system by eliminating V , one obtains a second order equation which
admits two solutions. One of the two (v′ = v) should be eliminated, because it pre-
dicts a behavior independent of A corresponding to a non-physical solution. The
other solution is:

v′ = v
1 − A

1 + A
(2.9)

For the different nuclei considered here, one has:

(a) Hydrogen (A = 1), v′ = 0. All the energy of the neutron is transferred to the
proton (the small difference in mass between n and p is neglected).

(b) Carbon (A = 12), v′ = −0.85v. The percentage variation in speed (in absolute
value) is: v/v = |v − v′|/v = 15%.

(c) Iron (A = 56), v′ = −0.965v. The percentage variation in speed is: v/v =
3.5%.

The best moderators are therefore the elements with an atomic number A as small
as possible.
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Chapter 3
Particle Accelerators and Particle Detection

Problems

3.1. Energy and momentum. An on-shell particle with mass m, total energy E

and momentum p satisfies the relation E = +√
p2c2 + m2c4. For pions with

m = mπ+ = 140 MeV/c2, calculate E for p = 0.1, 1,10 and 100 GeV/c.
[See solutions]

3.2. Protons in a magnetic field. Calculate the curvature radius of the orbit of
protons with momentum p = 10, 103, 105 MeV/c in a magnetic field B =
1 Tesla.
[See solutions]

3.3. Relativistic time dilatation. Determine the lifetime of a μ+ with a momen-
tum of 10 GeV/c in the laboratory system; in the muon rest frame τ0 = 2.2 μs.
How far can it go before decaying?
[A: γ = E/mμ = 95; t = γ τ0 = 2.1 · 10−4 s; d = cγ τ0 = 6.3 · 106 cm]

3.4. Center-of-mass energy. Calculate the energy available in the center-of-mass
(c.m.) system using incident pions with 10 GeV/c2 kinetic energy in the lab-
oratory against
(a) a proton at rest;
(b) an electron at rest.

3.5. Threshold energies. Calculate the threshold energy in the laboratory systems
for the production of:
(a) π0 mesons in the reaction pp → ppπ0;
(b) π mesons in the reaction πp → ππp;
(c) K+ mesons in the reaction pp → pΛ0K+;
(d) Σ+ hyperons in the reaction pp → pΣ+.

S. Braibant et al., Particles and Fundamental Interactions: Supplements,
Problems and Solutions, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-94-007-4135-5_3, © Springer Science+Business Media Dordrecht 2012
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In all cases, assume that the target protons are at rest.
(N.B. The reaction pp → pΣ+ is only possible through the weak interac-

tion.)
[See solutions]

3.6. Antiproton production-1. Consider the antiproton production

p + p → pppp

through a beam of protons with a momentum p = 5.5 GeV/c colliding
(a) on protons in a hydrogen target;
(b) on protons in an iron target.
Calculate the threshold energy and the energy in the c.m. system. Is the pro-
duction possible in both cases?
[See solutions]

3.7. Antiproton production-2.
(a) What is the threshold energy of the reaction pp → pppp?
(b) Determine the kinetic energy available for a target proton bound in a nu-

cleus and moving with a Fermi momentum pF (i) towards the incident
proton, (ii) in the opposite direction and (iii) orthogonally.

[Hint: see the solution of the previous problem.]

3.8. Two-body decay. Consider the decay + → π0p. Determine the energy and
momentum of the two particles in the c.m. system.
[See solutions]

3.9. Three-body decay. Consider the decay K0 → π0π+π−. Determine:
(a) the minimum and maximum values of the π0 energy and momentum in

the K0 rest system;
(b) the maximum value of the momentum in the lab. system, assuming a K0

with a momentum pK = 100 GeV/c.
[See solutions]

3.10. J/ψ production. The J/ψ particle is a meson with a mass mJ/ψ =
3.096 GeV and made of a cc quark-antiquark pair. This particle was dis-
covered ( Chap. 9 ) both in proton-proton collisions and in electron-positron
collisions.
(a) A proton beam collides on a target of protons at rest; calculate the incident

proton beam energy required for the reaction:

pp → ppJ/ψ

(b) In the case of electrons, the particle was discovered in a particle collider in
which the e+ and e− beams had the same energy but opposite momenta.



Problems 21

Fig. 3.1 Electrically charged
particle moving in a magnetic
field B. L is the detector
dimension, ρ the radius of
curvature and s the sagitta of
the particle orbit

Calculate the beam energy necessary for the J/ψ production:

e+e− → J/ψ

The J/ψ decays with a very short lifetime, τ ∼ 10−20 s.
[See solutions]

3.11. e+e− pair. A positron and an electron produced in a process of pair pro-
duction in the laboratory system have four-momenta P+ = (E+,p+) and
P− = (E−,p−). What is the energy of each particle in the system in which
the e+e− pair has momentum equal to zero?
[See solutions]

3.12. pe− collisions. At the HERA collider in Hamburg, 820 GeV protons collide
frontally with 30 GeV electrons.
(a) Calculate the relativistic invariant

√
s.

(b) Guess the reason why the protons have an energy of 820 GeV and the
electrons only of 30 GeV.

(c) What would be the c.m. energy using 850 (= 820 + 30) GeV protons col-
liding with electrons at rest? Why would this situation be less desirable?

[See solutions]

3.13. Momentum measurement in a magnetic field. The variables needed for
the measurement of a fast electrically charged particle moving in a magnetic
field are shown in Fig. 3.1. L is the detector dimension, B the (constant)
magnetic field assumed perpendicular to the beam direction, ρ the radius of
curvature and s the sagitta (see also Fig. 3.9c ) of the particle orbit; pt is the
momentum projection in a plane orthogonal to the magnetic field. Neglecting
Coulomb multiple scattering, determine:
(a) the relation between pt and s;
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(b) the precision on the measurement of the transverse momentum if pt =
1 GeV/c, B = 10 kGauss, L = 1 m and s = 200 μm (where s is the
error on the sagitta).

[See solutions]

3.14. π,K discrimination. Consider a magnetic spectrometer which selects pos-
itively charged particles with momentum p = 0.5 GeV/c in a beam mainly
made of π+ and K+. The discrimination between the two particles is made
using the time-of-flight technique. For this purpose, two scintillation detectors
are placed 3 m apart. Each plastic scintillator has a thickness of x = 2 cm,
density ρ = 1.03 g cm−3 and radiation length X0 = 40 cm. Determine:
(a) the π and K velocities;
(b) the energy loss in the first scintillator;
(c) the average deflection angle due to Coulomb multiple scattering for the

π+ and K+ after the first detector.
[See solutions]

3.15. Luminosity at the Tevatron. Calculate the luminosity at the Fermilab Teva-
tron collider. (a) In the interaction region called B0, assuming the follow-
ing parameters: circumference C = 2πR = 6.28 km; number of protons per
bunch Np = 6 · 1010; number of antiprotons per bunch Np = 2 · 1010; num-
ber of bunches NB = 6; correction factor G = 0.9, to take into account the
finite bunch length of about 50 cm; average transverse radius of each beam
rB0 = 43 μm. (b) Calculate the luminosity in the interaction region E0, where
the average transverse radius is rE0 = 380 μm.
[See solutions]

3.16. Beam attenuation. The interactions between particles in the beam pipe of an
accelerator with the residual gas present in the beam pipe lead to the atten-
uation of the beam. This effect reduces the permanence lifetime of particles
inside the beam pipe, which must be re-filled.
(a) Calculate the half-life of a proton beam circulating in a storage ring of

100 m radius. The vacuum in the beam pipe corresponds to 10−6 mm Hg.
Assume that the residual gas is hydrogen and that the total pp cross-
section is 40 mb.

(b) Evaluate the beam half-life if the vacuum is 10−9 mm Hg.
[See solutions]

3.17. Reconstruction efficiency. Cosmic ray tracks can be measured using spark
chambers: each chamber has an efficiency of 93%. To reconstruct a track, at
least 3 points (and therefore the use of at least 3 chambers) are required. What
is the track reconstruction efficiency for a system made of 4 chambers? And
for a system of 5 chambers?
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3.18. Synchrotron radiation at LEP. The LEP collider was a storage ring of 27 km
circumference where e+, e− beams circulated in opposite direction.
(a) Determine the energy loss due to the synchrotron radiation for each rev-

olution of an electron of 50 GeV energy (LEP-Phase 1) and of 100 GeV
energy (LEP-Phase 2).

(b) Determine the intensity of the magnetic field needed to keep on orbit the
electrons and positrons for both energies of 50 and 100 GeV; assume a
uniform magnetic field along the ring.

(c) Determine the energy loss variation if the e+, e− beams are replaced with
proton and antiproton beams (assuming they have the same energy as the
e+, e− beams).

[See solutions]

3.19. Synchrotron radiation at LHC. The LEP has been substituted, in the same
tunnel, by a pair of storage rings where two proton beams can circulate in op-
posite directions (the Large Hadron Collider, LHC). The protons are deflected
by a set of 1230 magnets, each 14.4 m long. The LHC design foresees that
each proton beam shall reach a maximum energy of 7 TeV.
(a) What should be the absolute value of the magnetic field to bend the pro-

tons with the maximum energy?
(b) What will be the energy irradiated from a proton per lap; and per second?
[See solutions]

3.20. Muon factory. To reduce the energy loss due to the synchrotron radiation
of electrons, it was suggested to build a muon storage ring (muon factory).
The muons produced in pion decays are collected and directed into the ring.
To obtain a high efficiency, it is necessary that the muon direction does not
change appreciably from the direction of the charged particle which initially
decays.
(a) Determine the muon maximum angle of deflection in the laboratory sys-

tem with respect to the direction of a pion decaying with a momentum of
20 and 200 GeV/c.

(b) Write the formula of the maximum angle as a function of energy.
[See solutions]

3.21. Particle-antiparticle pair production. Consider the production of a particle-
antiparticle pair from a high energy positron beam colliding on electrons as-
sumed at rest.
(a) Calculate the minimum positron beam energy necessary to produce a pion

pair (mπ = 140 MeV/c2).
(b) In the laboratory system, determine the maximum diffusion angle of the

pions with respect to the direction of a 150 GeV energy positron beam.
(c) Demonstrate that, for beam energies much larger than the production

threshold, the maximum opening angle of the created pair, in the labo-
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ratory system, becomes independent of the energy. Calculate the value of
this angle for a pair of pions. (If θ1 is the diffusion angle of the particle and
θ2 that of the antiparticle, the opening angle θ is defined as θ = θ1 + θ2.)

Supplement 3.1: Synchrotron Radiation

Synchrotron radiation is the electromagnetic radiation generated by charged parti-
cles that are accelerated on a curved path or orbit [3W03]. The radiation was named
after its discovery in 1946 in a synchrotron accelerator where charged particles were
accelerated. The radiated energy is proportional to the fourth power of the particle
energy and is inversely proportional to the square of the accelerator radius R. For
electron colliders, like LEP, this was the limiting factor on the final beam energy
that can be reached.

Classically, any accelerated charged particle emits electromagnetic radiation. The
radiated power is given by the relativistic Larmor formula [J99] (in c.g.s. units):

P = dE

dt
= 2e2

3c3
a2 (3.1)

where a is the particle acceleration. For a non-relativistic circular orbit, the accel-
eration is just the centripetal acceleration, v2/R. The relativistic acceleration is ob-
tained from its definition, where τ = t/γ is the proper time and m the particle mass
at rest:

a = 1

m

dp

dτ
= 1

m
γ
d(γmv)

dt
= γ 2 dv

dt
= γ 2 v

2

R
(3.2)

The radiated power (neglecting the time dependence of γ ) is:

dE

dt
= 2e2

3c3
a2 = 2e2

3c3

[
γ 2 v

2

R

]2

= 2e2γ 4v4

3c3R2
(3.3)

Since the velocity v → c for relativistic particles, the term γ 4 = [E/(mc2)]4 de-
pends on the fourth power of the particle energy and becomes the dominant factor
in the energy loss rate. For an accelerator, the radius R is fixed and the synchrotron
radiation loss dependence suggests the construction of accelerators as large as pos-
sible.

For colliders, the energy loss per orbit can be estimated as:

E = dE

dt
t = dE

dt

(
2πR

v

)
= 4πe2γ 4β3

3R
(3.4)

Inserting the numerical values for electrons, one has:

E [MeV] = 0.088 · (E [GeV])4/R [m] (3.5)

The LEP e+e− collider had a radius of 4300 meters and (during Phase 1) a beam
energy of 50 GeV. Thus, for LEP, the energy loss per lap was about ELEP =
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0.088(50)4/4300 = 128 MeV, and ELEP /E ∼ 0.26%. It seems a tiny quantity,
but the beam frequency was f = 11240 Hz (see Problems 3.18 and 3.19).

The energy radiated within the photon energy interval d(�ω) has a characteristic
behavior [C03]. In particular, the critical frequency ωc is related to the mean energy
per photon [P10]:

〈�ω〉 = 8

15
√

3
�ωc where ωc = 3γ 3c

2R
(3.6)

The critical frequency for electrons (and positrons) in a collider is:

�ωc [keV] = 2.22 · (E [GeV])3/R [m] (3.7)

Synchrotron radiation may also be deliberately produced as radiation source
for numerous laboratory applications in the X-ray band. The radiation pattern
is distorted by relativistic effects from the isotropic dipole pattern into an ex-
tremely forward-pointing radiation cone. This makes circular accelerator the bright-
est known sources of X-rays. The synchrotron radiation has been used for spec-
troscopy and diffraction studies since the 1960s. Nowadays, most accelerators dis-
missed from high energy frontier research are used as storage rings to accelerate
electrons which produce synchrotron radiation along different beamlines tangent to
the accelerator ring. Typically, the beamline includes X-ray optical devices which
focus and collimate the X-rays, and control the photon flux and bandwidth.

Synchrotron light is an ideal tool for many types of research; it also has indus-
trial applications. Some of the advantages of synchrotron radiation are that the X-
rays have short wavelength and can penetrate matter and interact with atoms. In
addition, these facilities can produce high concentrated, adjustable and polarized
radiation thus ensuring a high focusing accuracy even for the smallest targets. Some
of the experimental techniques exploiting synchrotron beamlines include: structural
analysis of crystalline and amorphous materials; diffraction analysis of microcrys-
talline samples; crystallography of proteins and other macromolecules; small angle
X-ray scattering and absorption spectroscopy; tomography; X-ray imaging in phase
contrast mode; high pressure studies, and others.

Solutions

Problem 3.1 We get E = 0.17 , 1.01, 10.001, 100.0001 GeV, respectively.
Note that at high energies, there is no substantial difference between momentum

and energy; as a consequence, it is therefore convenient to use the natural unit sys-
tem in which c = 1. In this way, mass, energy and momentum are expressed in the
same units.

Problem 3.2 One must apply Eq. (3.20b) . For 10 MeV/c protons, one has:

R(m) = p (GeV/c)/(0.3 · B (Tesla)) = 3.3 × 10−2 m.
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Since the formula depends linearly on the momentum, the curvature radius is re-
spectively 102, 104 times larger for the two other cases.

Problem 3.5 Consider the relativistic invariant, E2 −p2 (c = 1), both in the c.m.
system and in the laboratory system:

E∗2 − p∗2 = E2
lab − p2

lab. (3.8)

In the c.m. system, one has: p∗2 = 0. In the laboratory system, the incident pro-
ton (1) collides on the target proton (2) at rest. One has: Elab = (E1 + m2),
plab = p1; therefore, expressing the particle energy as the sum of the kinetic en-
ergy and the mass energy, E1 = T1 + m1, one can write:

E∗2 = (E1 + m2)
2 − p2

1 = E2
1 + m2

2 + 2E1m2 − p2
1

= m2
1 + m2

2 + 2(T1 + m1)m2 = (m1 + m2)
2 + 2T1m2 (3.9)

From this and using s = E∗2, one has:

T1 = s − (m1 + m2)
2

2m2

�⇒
p + p

s − 4m2
p

2mp

(3.10)

(in the last equality, the incident and target particles are assumed to be protons with
m1 = m2 = mp).

(a) For pp → ppπ0, the minimum energy required to produce the 3 final state
particles is equal to

√
s = 2mp + mπ0 . In the c.m. system, each proton must

have, in addition to their rest mass, a kinetic energy equal to at least half the
mass of the third particle (the pion in this case) that must be produced (here,
about 67.5 MeV).

In the lab. system, from Eq. (3.10):

T1 = (2mp + mπ0)2 − 4m2
p

2mp

= 4m2
p + m2

π0 + 4mpmπ0 − 4m2
p

2mp

= m2
π0 + 4mpmπ0

2mp

�⇒
(mπ � mp) 2mπ0 � 270 MeV

(b) For the πp → ππp reaction, one has:

T1 = (2mπ + mp)
2 − (mπ + mp)

2

2mp

= mπ

[
3

2

mπ

mp

+ 1

]
= 1.22mπ = 171 MeV

(c) For the pp → pΛ0K+ reaction, one has:

T1 = (mp + mΛ + mK)2 − 4m2
p

2mp

= (938 + 1115 + 497)2 − 4 · 9382

2 · 938
= 1590 MeV

(d) For the pp → pΣ+ reaction, one has:

T1 = (mp + mΣ)2 − 4m2
p

2mp

= (938 + 1190)2 − 4 · 9382

2 · 938
= 538 MeV
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Problem 3.6

(a) Production on hydrogen (protons): This is an “economic” reaction in terms of
the baryon number conservation: 1 + 1 → 1 + 1 + (−1) + 1.
The threshold energy corresponds to Et = 4 · mp = 4 · 0.938 = 3.75 GeV.

The incident proton energy is E1 =
√
m2

p + p2
p = √

0.9382 + 5.52 = 5.58 GeV.

The square of the sum of the four-momenta (P1 for the incoming proton, and
P2 for the proton at rest) is a relativistic invariant. The total energy in the c.m.
system corresponding to the given values is:

s = |P1 + P2|2 = ∣∣(E1,p1) + (mp,0)
∣∣2 = ∣∣(E1 + mp,p1)

∣∣2
= E2

1 + m2
p + 2E1mp − p2

1 = 2m2
p + 2E1mp = 2mp(mp + E1)

√
s =

√
2mp(mp + E1) = 3.48 GeV

This value
√
s = 3.48 GeV is smaller than the threshold energy Et = 3.75 GeV.

Therefore, the energy available in the c.m. system is insufficient to create the
desired final state.

(b) Production on iron nuclei: the target protons have a Fermi momentum of about
pF � 200 MeV/c in absolute value (see Chap. 14 ). The energy of the target

proton is, in the most favorable case, E2 = √
0.9382 + 0.22 = 0.959 GeV. The

total energy in the c.m. system is equal to:

s = (E1 + E2)
2 − (p2

1 + p2
2)

2

= 2m2
p + 2E1E2 − 2p1p2

= 2
(
m2

p + E1E2 + p1p2
)

√
s =

√
2
(
m2

p + E1E2 + p1p2
)

√
s =

√
2
(
m2

p + 5.58 · 0.959 + 5.5 · 0.2
) = 3.83 GeV

√
s = 3.83 GeV is above the threshold energy Et = 3.75 GeV. Therefore, the

energy available in the c.m. system can be sufficient to create the final state with
an antiproton.

Problem 3.8 To maintain generality, the decaying particle is denoted A and the
final state particles are denoted B,C. Their four-momenta are respectively (mA,0)
and (E∗

B,p∗
B), (E∗

C,p∗
C). The index ∗ reminds us that the variables are defined in the

c.m. system (for a two-body decay, it coincides with the frame where the particle A

is at rest). Before the decay, one has
√
s = m = 1232 MeV.

After the decay, one has (E∗
B + E∗

C,p∗
B + p∗

C) and:

s = m2
B + m2

C + 2E∗
B · E∗

C − 2p∗
Bp∗

C

= m2
B + m2

C + 2E∗
B · (√s − E∗

B

)+ 2p∗2
B

= m2
B + m2

C − 2m2
B + 2E∗

B · √s
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having used the fact that
√
s = E∗

B + E∗
C , E∗2

B − p∗2
B = m∗2

B and that p∗
B = −p∗

C .
Finally, one can write:

E∗
B = s − m2

C + m2
B

2
√
s

(3.11)

and similarly

E∗
C = s − m2

B + m2
C

2
√
s

(3.12)

Placing the numerical values in the equations, one finds: E∗
B = E∗

π =
12322−9382+1402

2·1232 = 267 MeV and E∗
C = E∗

p = 12322−1402+9382

2·1232 = 965 MeV. The
corresponding values of the absolute values of the momenta are: p∗

p = p∗
π =√

E∗2
π − m2

π = 227 MeV/c.

Problem 3.9 This problem differs from the previous one since there are now three
particles in the final state (B,C,D), which can share in many ways the rest mass
energy of the decaying particle:

√
s = mA = E∗

B + E∗
C + E∗

D . In this problem, one
has mA = mK0 = 498 MeV.

(a) We can now identify B = π0. The minimum energy corresponds to the produc-
tion of a π0 at rest, with E

∗,min

π0 = m0
π = 135 MeV.

The maximum energy is obtained when the momenta of the two charged pions
are parallel but with a direction opposite to that of the π0. Using Eq. (3.11) and
the same calculation as that of the previous problem, one has (mπ+ = mπ− =
140 MeV, mπ0 = 135 MeV):

E
∗,max

π0 = s2 − (mπ+ + mπ−)2 + m2
π0

2
√
s

= 189 MeV (3.13)

The corresponding maximum momentum is: p
∗,max

π0 = √
1892 − 1352 =

132 MeV/c.
(b) The Lorentz γ factor for the K0 (the Lorentz boost) must be first calculated

(EK = pK ):

γ = EK

mK0
= 100/0.498 = 201; β � 1

In the laboratory system, the maximum momentum is obtained when the π0 is
emitted in the direction opposite to the π+π− system but in the same direction
as the K , i.e., with cos θ∗ = +1. Using the Lorentz transformation:

pmax
π0 = γ

(
p

∗,max

π0 cos θ∗ + βE
∗,max

π0

) = 201(0.132 + 0.189) = 64.5 GeV/c.

Problem 3.10 The situations presented in this problem correspond to the typical
production of a particle in the laboratory system (case (a)) or in the center-of-mass
system (case (b)).
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(a) The energy-momentum four-vectors of the two protons are: (E,p1), (mp,0).
The variable E is the incident proton total energy that must be determined.
Calculating s in the laboratory system, one has:

s = (E + mp,p1)
2 = (

E2 − p2
1

)+ m2
p + 2Emp = 2m2

p + 2Emp (3.14)

Solving the equation in terms of E, one has:

E = s − 2m2
p

2mp

(3.15)

We must now determine the quantity s of the final state (two protons plus
the J/ψ particle). The minimum value of the invariant s corresponds to the
production at rest:

s = [
(mJ/ψ,0) + (mp,0) + (mp,0)

]2 = (mJ/ψ + mp + mp)
2

= 4m2
p + m2

J/ψ + 4mpmJ/ψ (3.16)

Placing Eq. (3.16) in Eq. (3.15) and using the numerical values mp =
0.938 GeV, mJ/ψ = 3.096 GeV, one obtains:

E = 2m2
p + m2

J/ψ + 4mpmJ/ψ

2mp

= 12.24 GeV (3.17)

(b) In the case of a production in a collider, the calculation of the invariant quantity
s is directly obtained in the c.m. system since the lepton-antilepton pair has
four-momenta: (E,p), (E,−p). In this case, one has:

s = (2E)2 = m2
J/ψ (3.18)

from which one can derive that the electron and positron energy in the collider
must be:

E = mJ/ψ

2
= 1.548 GeV (3.19)

Problem 3.11

s = (E+ + E−,p+ + p−)2 = E2+ + E2− + 2E+E− − (
p2+ + p2− + 2p+p− cos θ

)
= 2m2

e + 2E+E− − 2p+p− cos θ

In the system frame where the four-momenta are (E′+,p′), (E′−,−p′), one has E′+ =
E′− = E′ and s = (2E′)2 (see Eq. (3.18)). Therefore:

E′ =
√

2m2
e + 2E+E− − 2p+p− cos θ

2
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Problem 3.12

(a) The relativistic energy-momentum invariant is equal to:

s = m2
1 + m2

2 + 2E1E2 − 2p1p2 cos θ (3.20)

In a high-energy collider, cos θ = −1 and: |p1| � E1 � m1, |p2| �
E2 � m2. Equation (3.20) becomes:

s = m2
1 + m2

2 + 2E1E2 + 2p1p2 � 4E1E2 (3.21)√
s � 2

√
E1E2 = 2

√
820 · 30 = 314 GeV. (3.22)

(b), (c) Particles lose energy through synchrotron radiation with an energy depen-
dence (E/m)4, see Supplement 3.1; to minimize the energy loss the best
option is to use relatively low-energy electrons.
Indeed, for electrons at rest and protons of 850 GeV, one has:

s = m2
1 + m2

2 + 2m2E1

√
s �

√
2m2Ep + m2

1 =
√

2meEp + m2
p (3.23)

�
√

2 · 850 · 0.511 · 10−3 + 0.9382 = 1.32 GeV.

In this case, the energy available in the c.m. is much smaller than (3.22).

Problem 3.13

(a) The track curvature and the sagitta are assumed to be measured with a track-
ing device (for instance, the central device in collider detectors, see Chap. 9 ).
The momentum component in the plane transverse to the magnetic field is (see
Problem 3.2):

pt [GeV] = 0.3B [T]ρ [m]
Referring to the geometry sketched in Fig. 3.1, one can write:

(L/2)

ρ
= sin

θ

2
� θ

2
(for small θ) → θ � L

ρ
= 0.3BL

pt

(3.24)

and:

s = ρ

(
1 − cos

θ

2

)
� ρ

[
1 −

(
1 − 1

2

θ2

4

)]
= ρ

θ2

8
� 0.3

8

L2B

pt

(3.25)

(b) Assuming that pt = 1 GeV/c, L = 1 m and B = 10 kGauss = 1 T, the sagitta
is:

s = 0.3

8

121

1
= 0.038 m = 3.8 cm

Neglecting the uncertainties in L and B , the relative uncertainty on pt is:

pt

pt

= s

s
= 200 μm

0.038
= 5 × 10−3 = 0.5%
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Problem 3.14

(a) Let us use the natural units (c = 1). The particle velocity can be determined
from the particle momentum and energy:

p = mvγ ; E = mγ → v = p

E

The masses of the two particles are mπ = 140 MeV and mK = 494 MeV. Thus,
for p = 0.5 GeV (inserting the factor c at the end):

vπ = p√
p2 + m2

π

= 0.963 c

vK = p√
p2 + m2

K

= 0.711 c

The time-of-flights between the two scintillator layers are:

tπ = 3 m

vπ
= 10

0.963
× 10−9 s = 10.4 ns

tK = 3 m

vK
= 10

0.711
× 10−9 s = 14.1 ns

(b) The energy loss in the first scintillator layer depends on the particle βγ . The
value βγ = p/m for the two particles is:

(βγ )π = (0.5/0.14) = 3.7; (βγ )K = (0.5/0.5) = 1

By inspection of the curve for the energy loss in carbon shown in Fig. 2.2a ,

we get dE/dx ∼ 1.75 MeV g−1 cm2 in the case of the pion, and dE/dx ∼
2.7 MeV g−1 cm2 for the kaon. We use the carbon curve as representative of
a material made of light elements, as a plastic scintillator, which is a polymer
with C, O and H nuclei. The energy loss in the detector thickness is:

(E)π = (dE/dx) × ρ × x = 1.75 × 1.03 × 2 = 3.6 MeV

(E)K = (dE/dx) × ρ × x = 2.7 × 1.03 × 2 = 5.6 MeV

(c) The average deflection angle due to Coulomb multiple scattering is given by
Eq. (2.1). For the kaon, with βK = 0.711:

θK
0 = 13.6 MeV

βKcp

√
x

X0
[1 + 0.038 ln(x/X0)]

= 13.6 MeV

0.71 × 500 MeV

√
2

40
[1 − 0.11] = 7.5 × 10−3 rad

For the pion, θπ
0 = 5.5 × 10−3 rad.
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Problem 3.15

(a) The formula for the luminosity in terms of the collider parameters is
(Sect. 3.3) :

L = fNpNpNBG

4πr2
B0{

Revolution period τ = 2πR/c = 6.28 · 103/3 · 108 = 20.93 μs

Revolution frequency f = 1/τ = 1/2.093 · 10−5 = 4.78 · 104 Hz
(3.26)

With the data given in the problem, the luminosity in the region B0 is:

LB0 = 4.78 · 104 × 6 · 1010 × 2 · 1010 × 6 × 0.9

4π(4.3 · 10−3 cm)2
� 1.3 · 1030 cm−2 s−1.

The denominator of Eq. (3.26), A = 4πr2
B0

, contains the beam mean radius,
rB0 , which is actually larger horizontally than vertically. More accurate compu-
tations take account of this distortion.

(b) In E0, the luminosity in B0 is reduced by the factor (rE0/rB0)
2 = (380/43)2 =

78. Therefore, one has:
LE0 = LB0/78 � 1.7 × 1028 cm−2 s−1.

Problem 3.16 In technical units, the vacuum inside a container is expressed in
mm Hg. Remember that one atmosphere corresponds to 760 mm Hg. Actually, the
interesting parameter for the propagation of particles is the density number of the
residual gas nuclei inside the vacuum pipe. This can be estimated from the well
known equation for gases:

Patm

P
= ρatm

ρ
(3.27)

where the atmospheric density corresponds to ρatm = 1.22 kg m−3 = 1.22 ·
10−3 g cm−3 and Patm = 760 mm Hg.

The density of matter inside the vacuum pipe, where the pressure corresponds to
P = 10−6 mm Hg is therefore:

ρ = ρatm

(
P

Patm

)
= ρatm

(
10−6

760

)
= 1.3 × 10−9ρatm = 1.6 × 10−12 g cm−3

The density number Na (cm−3) of the gas inside the pipe can be derived from ρ,
assuming that the residual gas is composed of hydrogen with A = 1, through the
relation (NA is the Avogadro’s number):

Na = ρNA

A
= 6.0 × 1023 × 1.6 × 10−12 = 9.6 × 10−11 cm−3 (3.28)

The beam is attenuated by following the exponential law N(x) = N0e
−x/λ, where

λ is the interaction length. λ is inversely proportional to the cross-section σ (cm2)
and to the density number (cm−3):

λ = 1

σNa

= 1

40 · 10−27 × 9 · 10−11
= 2.6 × 1013 cm = 2.6 × 1011 m (3.29)
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The number of revolutions in the accelerator, Nλ, which corresponds to λ is:

Nλ = 2.6 × 1011 m

2πR
= 4.1 × 108

where R = 100 m is the accelerator radius. To cover one revolution, a particle,
travelling at the light speed c, takes:

t = 2πR

c
= 628

3 × 108
= 2.1 × 10−6 s

The beam lifetime τ in the vacuum pipe (i.e., the time when the remaining particles
are 1/e of the initial ones) is the number of covered revolutions Nλ multiplied by
the time necessary to cover one revolution:

τ = Nλ × t = 4.1 108 × 2.1 · 10−6 = 860 s

In the problem, it is also requested to compute the beam half-life t1/2, i.e., the time
when 50% of the protons survive in the vacuum pipe. This quantity is connected to
the lifetime given in Eq. (14.20) :

t1/2 = 0.693τ � 600 s = 10 min

(b) For P = 10−9 mm Hg, the half-life is three orders of magnitude higher, i.e.,
about 170 hours.

Problem 3.18

(a) The energy loss per orbit is given in Eq. (3.4):

E = 4πe2γ 4β3

3R

Inserting the numerical values, one has: E [MeV] = 0.088 · (E [GeV])4/

R [m]. For R = 4300 m, it corresponds to:

E(LEP-phase I) = 0.088 · 504/4300 = 128 MeV

E(LEP-phase II) = 0.088 · 1004/4300 = 2046 MeV

Increasing the beam energy by a factor of 2 causes an increase of the radiation
energy loss by a factor of 16.

(b) Using the result of Problem 3.2, at high energy, one has E = pc and one finds
B [T] = E [GeV]/(0.3R [m]) from which B = 0.04 T at E = 50 GeV and
B = 0.08 T at E = 100 GeV.

(c) The radiation energy loss depends on γ 4 = (E/m)4. At the same energy, the
emission from a proton beam is a factor (me/mp)

4 = 9 × 10−14 smaller than
that of an electron beam with the same energy.



34 3 Particle Accelerators and Particle Detection

Fig. 3.2 Pion decay in the
c.m. system

Problem 3.19

(a) If the magnets were evenly distributed throughout the tunnel of radius R =
4300 m, the magnetic field (see previous problem) for E = 7 TeV should be
B [T] = E [GeV]/(0.3R [m]) = 5.4 T. However, the magnets occupy only
[14.4 m × 1230/(2π × 4300)] = 66% of the circumference. Each dipole mag-
netic field should therefore have B = 5.4/0.66 = 8.3 T.

(b) The proton revolution period is τ = 2πR/c = 9 · 10−5 s. Using the expression
for the energy loss for electrons, scaled by (me/mp)

4, one obtains:

E(LHC) = 0.088 · 70004

4300
·
(

me

mp

)4

= 4.4 × 10−3 MeV = 4.4 keV

The energy loss per second is: E(LHC)
t

= 4.4 × 10−3/9 · 10−5 = 49 MeV/s.

Problem 3.20 Let us first consider the pion decay (Fig. 3.2) in the c.m. system
(mπ = 139.6 GeV; mμ = 105.7 GeV). The muon energy E∗

μ in the c.m. system has
been determined in Problem 2.7:

E∗
μ = s + m2

μ

2
√
s

= m2
π + m2

μ

2mπ

= 109.8 MeV

and therefore, the muon momentum is p∗
μ =

√
E∗2

μ − m2
μ = 29.8 MeV/c. Similarly

for the neutrino, considering that in the c.m. system E∗
μ + E∗

ν = mπ , one has:

E∗
ν = s − m2

μ

2
√
s

= m2
π − m2

μ

2mπ

= 29.8 MeV

To calculate the emission angle in the laboratory system, it is necessary to determine
the longitudinal p‖ and transverse p⊥ components of the muon momentum. The
emission angle is given by the relation:

tan θ = p⊥
p‖

(3.30)

The longitudinal and transverse components of the muon momentum are determined
by the Lorentz transformation:

p‖ = γ
(
βE∗

μ + p∗
μ cos θ∗) (3.31)

p⊥ = p
∗μ
⊥ = p∗

μ sin θ∗ (3.32)

where θ∗ is the muon emission angle in the rest system of the pion with respect to
the direction of the pion in the laboratory system (this corresponds to the direction
of the Lorentz boost). The value of the Lorentz boost γ is determined by the pion
energy:

γ = Eπ

mπ

= 143 for Eπ = 20 GeV
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The β = √
1 − γ−2 value can therefore be obtained, but in this context, it can be

approximated with β = 1. From Eq. (3.30), and recalling that p∗
μ = 29.8 MeV, one

obtains:

tan θ = p⊥
p‖

= p∗
μ sin θ∗

γ (βE∗
μ + p∗

μ cos θ∗)

= 29.8 sin θ∗

γ (109.8 + 29.8 cos θ∗)
= f (θ∗)

γ
(3.33)

The function f (θ∗) does not depend on the particular kinematic situation. The max-
imum value (maximizing the function f (θ∗) or representing it in a graphical way
and finding the maximum by inspection), is f max(θ∗) = 0.255 and it occurs at
θ∗ = 1.85 rad = 106◦ (note that this angle is larger than 90◦). In the lab. system,
this corresponds to

θmax = arctan

(
0.255

γ

)
� 0.255

γ
= 1.8 · 10−3 rad = 0.10◦

for γ = 143 corresponding to pions of 20 GeV/c momentum. As the Lorentz boost
factor is linearly dependent on the energy, θmax is one order of magnitude smaller
for pions of 200 GeV/c.
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Chapter 4
The Paradigm of Interactions:
The Electromagnetic Case

Problems

4.1. Yukawa range of weak interactions. The weak interaction is due to the ex-
change of W± (or Z0) bosons. In the framework of a Yukawa-like model
describing the weak interaction, and assuming that the W has a mass of
M = 80 GeV/c2, calculate the range of the weak interaction and compare
the obtained value with the size of a nucleon.
[A: R = �/Mc � 3 × 10−16 cm ]

4.2. Free electron emission. Show that the decay e → eγ (Fig. 4.2a) cannot
satisfy, at the vertex, the energy and momentum conservation laws if the initial
electron and the particles in the final state are free (this process is therefore
prohibited).
[See solutions]

4.3. Impact parameter and elastic scattering angle. Using classical kinematics,
demonstrate, for the Coulomb elastic scattering (see Fig. 4.9b ), the relation

tg θ
2 = zZe2

2Ecb
between the scattering angle θ , the kinetic energy Ec = (p2/2m)

of the incident particle and the impact parameter b.

4.4. Lifetime and path length. A π− meson interacts in a bubble chamber, in a
point of coordinates x1 = −50 cm, y1 = 50 cm, z1 = 20 cm, t1 = 0 s pro-
ducing some mesons, including a K− (vertex 1). The K− meson travels at a
constant speed until it interacts in a region containing counters and chambers
(vertex 2 at the position x2 = 88 cm, y2 = 48 cm, z2 = 25 cm, t2 = 5.31 ns).
Calculate for the K−:
(a) the travelled distance,
(b) the flight time (corresponding to its lifetime measured in the laboratory

system),
(c) the velocity,
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(d) the K− lifetime in the frame in which the particle is at rest,
(e) the probability that the K− decays along the travelled distance.
[See solutions]

4.5. Radiocarbon dating. The half-life, t1/2, of the carbon 14 isotope, 14
6 C, is

5730 years. The concentration of this isotope, in the atmosphere, with respect
to the stable isotope 12

6 C is 14
6 C/12

6 C = 1.0 · 10−12.
(a) What is the ratio 14

6 C/12
6 C in an object which ended its life 12000 years

ago?
(b) An artifact made of wood has a concentration of 14

6 C corresponding to
58% of the concentration in a similar object made of freshly cut wood.
Determine the age of the original sample.

[See solutions]

4.6. Rutherford scattering. The α particles are helium nuclei. A flux of Φ =
5.0 · 107 particles/s of 8.0 MeV energy collides on a gold target 4.0 μm thick.
A sector of a circular detector, concentric with the beam, is placed at a dis-
tance of 3.0 cm after the target (see Fig. 4.9a ). The smaller radius of the
circular sector from the beam axis is rmin = 5.0 mm while the larger radius is
rmax = 7.0 mm. Determine the number of particles reaching the detector per
second. Discuss and comment the case in which rmin → 0.
[See solutions]

4.7. Electromagnetic transition probability. Using the second Fermi golden
rule, Eq. (4.28) , show that the annihilation probability of positronium

(bound state e+e−) in the singlet state 1S0 (i.e., the state in which the electron
and positron spins are antiparallel) is given by:

W
(1
S0 → γ γ

) = 4πα2

m2
e

|ψ(0)|2 (4.1)

where |ψ(0)|2 represents the probability that the electron and the positron are
in the same region of space. Draw the Feynman diagram of the annihilation
process into two photons.
[See solutions]

4.8. Positronium annihilation. In the hydrogen atom, the wave function of the
state 1S0 of the electron moving around the proton, is known from atomic
physics:

∣∣ψ(r)
∣∣ = 1√

πa3/2
e−r/a (4.2)
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where a is the Bohr radius of the hydrogen atom:

a = 4πε0�
2

mee2
= �

mecα
= 0.5 · 10−10 m (4.3)

Using Eq. (4.1), determine the lifetime of the positronium in the 1S0 state.
[See solutions]

4.9. Dirac theory-I.1 Dirac proposed an equation that would satisfy the energy-
momentum relativistic relation (E2 = p2 + m2), but containing only first or-
der space-time derivative. Show that the eigenvalue equation:

Eψ = i�
∂

∂t
ψ = Hψ (4.4)

can be written as:

i�γ 0 ∂

∂t
ψ + i�γ · ∇ψ − mψ = 0 (4.5)

where the γ matrices are defined in Appendix A4 .
[See solutions]

4.10. Dirac theory-II. Prove that the Dirac equation Hamiltoninan:

H = α · pc + βmc2 (4.6)

commutes with the total angular momentum operator

J = �L + 1

2
�σ . (4.7)

[See solutions]

4.11. Dirac theory-III. Prove that the Dirac equation Hamiltonian:

H = α · pc + βmc2 (4.8)

commutes with the generalized helicity operator (A.27) :

Λ =
(

σ ·p
p

0

0 σ ·p
p

)
(4.9)

[See solutions]

1For the following four problems, the reader should know the content of Appendix A4 .
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4.12. Dirac theory-IV. Show that the 4-component wave function

ψ =
(
φ

χ

)
ei(p·r−Et) (4.10)

where φ and χ are 2-component spinors, satisfies the Dirac equation if:

φ = σ · p
E − m

χ and χ = σ · p
E + m

φ. (4.11)

[See solutions]

Supplement 4.1: Radiocarbon Dating

The radiocarbon dating is one of the most famous dating techniques which uses
radioactive isotopes. Radiocarbon is quite important because it can be used to deter-
mine the age of matter which lived up to ∼ 50,000 y ago [4B90].

Cosmic rays consist of high energy protons and heavier nuclei ( Chap. 13 and
Supplement 1.1) arriving in the upper Earth atmosphere. The atmosphere behaves as
a hadronic calorimeter: the interactions of cosmic rays with atmospheric nuclei pro-
duce showers of hadrons. Among the hadrons, the neutrons, in particular, bombard
the nitrogen nuclei, 14

7 N, which are the major atmosphere constituent. This induces
the reaction:

n + 14
7 N → 14

6 C + p (4.12)

Carbon has two stable isotopes: 12C and 13C. The 14
6 C produced in the atmosphere

has the (relatively) short half-life t1/2 = 5730 years. The amount of 14
6 C in a sample

is halved after 5730 years due to radioactive decay.
Due to the almost stationary cosmic ray flux on Earth, the production of 14

6 C in
the atmosphere is constantly occurring with a fixed rate since a very long time, so
there is a fairly constant ratio of 14

6 C to 12
6 C atoms in the atmosphere. This ratio is

approximately (1.0 ÷ 1.3) × 10−12.
When plants fix atmospheric carbon dioxide (CO2) into organic material during

photosynthesis, they incorporate a given quantity of 14
6 C corresponding to the level

of its concentration in the atmosphere. After their “death”, plants are for instance
used to make textiles or are consumed by other organisms (humans or other ani-
mals). Due to the metabolism of living organisms, also humans and animals have a
14
6 C to 12

6 C ratio at the level of the atmospheric concentration. From the instant of
the vegetal or animal death, the 14

6 C fraction in the organic material decreases due

to its radioactive decay. The law of the radioactive decay is given in Sect. 4.5.2 .

Remember that in Eq. (4.42) , N(t) = N0e
−t/τ , the quantity τ is the lifetime which

is related to the half-life, t1/2, by the relation: t1/2 = τ ln2.
After a time t , comparing the remaining 14

6 C fraction of a sample to that expected
from atmospheric 14

6 C allows to measure the age of the sample. Its low activity limits
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the age determination by counting techniques to the order of 50,000 years. That can
be extended to perhaps 100,000 years using more advanced accelerator techniques.

As the level of atmospheric 14
6 C is affected by variations in the cosmic ray in-

tensity (which is in turn affected by variations in the Earth’s magnetic field), high-
accuracy measurements can only be achieved through a fine calibration of raw, i.e.,
uncalibrated, radiocarbon dates. The available standard calibration curves are based
on the comparison of radiocarbon dates of samples that can be dated independently
by other methods such as the examination of tree growth rings, deep ocean or ice
sediment cores, lake sediments, coral samples, and others. The most accurate curve
extends back quite accurately up to 26,000 years. Any errors in the calibration curve
do not contribute more than ±16 y up to the last 6,000 y and no more than ±163 y
over the entire 26,000 years [4R04].

Radiometric dating was extended to many other elements. For instance, the
uranium-lead radiometric dating was used to date Earth rocks with a precision of
less than two million years in four-and-a-half billion years (see Chap. 14 ).

Solutions

Problem 4.2 Consider, for example, the decay e → eγ and let see if, in the ref-
erence system in which the initial electron is at rest (the electron c.m. system), the
energy and momentum conservation laws can be simultaneously satisfied. The mo-
mentum of the initial state is equal to zero. To have a momentum equal to zero in
the final state, the photon must be emitted with momentum with the same magni-
tude and in the opposite direction with respect to the electron (pe = −pγ ). But in
this case, the final state energy is:

Ee + Eγ =
√
m2

ec
4 + p2

e c
2 + |pγ |c

which is always larger than the initial energy Ei = mec
2, unless the photon energy

is Eγ = 0 and therefore pe = 0.
The radiation emission from a free electron is possible when (for instance) a

recoiling nucleus is present, as shown in Fig. 4.2c .

Problem 4.4

(a) d = √
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 1.38 m

(b) t = 5.31 · 10−9 s
(c) v = d

t
= 1.38

5.31·10−9 = 2.6 · 108 m
s

(d)

β = v

c
= 2.6 · 108

3 · 108
= 0.87, γ = 1√

1 − β2
= 2.03

t∗ = t

γ
= 5.31 · 10−9 s

2.03
= 2.6 ns
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(e) The probability P that a particle with lifetime τ survives at the time t∗ is P =
e−t∗/τ . In this case: τK− = 1.2 · 10−8 s = 12 ns, and P = e−2.6/12 = 0.80. Then,
only 20% of K− of that velocity decay within a path length of 1.38 m.

Problem 4.5

(a) The radioactive decay law is N(t) = N(0)e−t/τ , where τ is the lifetime, N(t)

the number of nuclides surviving after a time t and N(0) are those present at
the initial time. In the case of the two carbon isotopes, since the 12

6 C is stable,
one has N12(t) = N12(0) and:

N14(t)

N12(t)
= N14(0)e−t/τ14

N12(0)
= 1.0 · 10−12e−t/τ14

The half-life is related to the mean lifetime through the relation:

1

2
= e−t

1/2
14 /τ14 −→ τ14 = t

1/2
14 / ln 2 = 8267 y

The ratio between the numbers of nuclei of the two isotopes after a time t∗ =
12000 years, is therefore:

N14(t
∗)

N12(t∗)
= 1.0 · 10−12e−t∗/τ14 = 0.23 · 10−12

(b) In this case, the ratio between the two isotopes at the time t = 0 and the un-
known time t∗, is 0.58; therefore, one must have:

N14
(
t∗
)

N14(0)
= N14(0)e−t∗/τ14

N14(0)
= 0.58 −→ t∗ = −τ14 ln(0.58) = 4503 y

Problem 4.6 The Rutherford differential cross-section is given in Eq. (4.54) :

(
dσ

dΩ

)
R

= Z2z2e4

(4Ec)2 sin4 θ/2
(4.13)

In this case, z = 2, Z = 79, Ec = 8.0 MeV. The solid angle dΩ = 2π sin θdθ , inside
which the scattering must be considered (indeed, there exists a symmetry in the
azimuthal angle), is included in the range [θmin, θmax] which is determined from the
condition:

tan θmin = 0.5/3.0 = 0.166 −→ θmin = 0.165 rad

tan θmax = 0.7/3.0 = 0.233 −→ θmax = 0.229 rad
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The cross-section σ is obtained by integrating Eq. (4.13):

σ =
∫ θmax

θmin

(
dσ

dΩ

)
R

2π sin θdθ =
∫ θmax

θmin

Z2z2e4

(4Ec)2

2π 2 sin θ
2 cos θ

2

sin4 θ
2

2d
θ

2

σ = Z2z2e4

(4Ec)2

2π

sin2 θ
2

∣∣∣∣
θmin

θmax

(4.14)

It is clear that for θmin → 0, Eq. (4.14) is divergent: this is due to the fact that the
Rutherford formula is meaningless at small angles since the finite dimensions of the
target and projectile were neglected.

Equation (4.14) is expressed in the c.g.s. unit system, in which e = 4.8 ·
10−10 esu, 8 MeV = 8 × 1.6 · 10−6 erg. Inserting the numerical values, one obtains:

σ = 792 · 22(4.8 · 10−10)4

42(1.24 · 10−5)2

2π

sin2 θ
2

∣∣∣∣
θmin

θmax

= 5.0 × 10−25 2π[37.1 − 19.4]

= 5.7 × 10−23 cm2 (4.15)

for a scattering angle within the range [θmin, θmax]. To obtain the number of scat-
tered particles, one must calculate the number of gold nuclei per area unit of a
sheet 4.0 μm thick. The atomic number of gold is A = 197 and the density is
ρ = 19.3 g/cm3; therefore, a mole of gold has a mass MA = 197 g and the num-
ber of atoms per cm3 is:

N = ρNA

MA

= 5.87 1022 atoms/cm3

The number of atoms per area unit of a sheet d = 4 × 10−4 cm thick, is therefore:

n = Nd = 5.87 · 1022 × 4 · 10−4 = 2.35 · 1019 cm−2

The number of particles that enter the detector per second is thus:

Ndet = Φnσ = (
5.0 · 107) (2.35 · 1019) (5.7 × 10−23) = 6.7 · 104 s−1

which corresponds to 0.13% of the initial beam.

Problem 4.7 Here, natural units (� = c = 1) are used. For the electromagnetic
interaction, the matrix element |Mif | can be replaced with the bosonic propagator

given in Eq. (4.32) , f (q) = g0g

q2+m2 , with m = 0 since the photon is massless, and

g/4π = e, g0 = e; thus, Eq. (4.28) becomes:

W = 2π

(
4πe2ψ(0)

q2

)2
dN

dE0
(4.16)
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Fig. 4.1 Feynman diagrams
for the annihilation
e+e− → γ γ

The term ψ(0) must be inserted to take into account that the electron and positron
are not free particles (described by a wave function of the type given in Eq. (4.11) ),
but bound in a particular state (i.e., positronium) with a generic wave function ψ(x).
The quantity |ψ(0)|2 determines the probability for the e+, e− to be in the same
region of space.

The phase space factor in (4.16) is that of a two-body decay, as discussed in
Sect. 8.6.1 ; it is given by: dN/dE0 = E2

0/2π2. In addition, from the Feynman
diagrams (see Fig. 4.1), one can deduce that, for the annihilation process in the c.m.
system, one has s = m2

e = E2
0 = q2. Since in the natural unit system, one has α = e2,

one can finally rewrite (4.16) as

W = Γ
(1
S0 → γ γ

) = 2π

(
16π2α2|ψ(0)|2

m4
e

)
m2

e

2π2
= 16πα2

m2
e

∣∣ψ(0)
∣∣2 (4.17)

Warning: note that we have indicated W = Γ . In our textbook, W has the dimen-
sion of [time]−1 (Sect. 4.5) , while Γ has the dimension of [energy] (Sect. 7.5) .

However, remember that W represents the inverse of the lifetime: W = τ−1 and
that the lifetime and the total width Γ are related through the uncertainty princi-
ple (Sect. 7.4.2) : τΓ = Γ/W = �. Therefore, in the natural unit system in which
�= 1, one has Γ = W .

In Eq. (4.17), a factor of 4 is missing because the spins were not taken into
account so far. In the initial state, the spin is zero. The spin of the photon is sγ = 1.
The spin multiplicity of the final state is not (2sγ +1)2 = 9, but 4 because the photon
has only two polarization states. The conservation of the angular momentum allows
only 2 of the 4 states. Another factor of two arises from the fact that the two photons
are indistinguishable (generating the two diagrams of Fig. 4.1). Finally, the total
width of the process is:

Γ
(1S0 → γ γ

) = 4πα2

m2
e

∣∣ψ(0)
∣∣2 (4.18)

Problem 4.8 In the Bohr theory, the positronium would never annihilate. In fact,
Bohr theory requires stationary orbits with mevr = � and the positron and elec-
tron can not overlap. Quantum mechanics provides orbits described by a probability
density function. Equation (4.2) has a finite value at the origin, r = 0. The positro-
nium wave function is derived from that of the hydrogen atom replacing the value
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of the Bohr radius with that of the positronium. The Bohr radius is obtained as-
suming an infinite mass for the proton. For the positronium, the reduced mass of
the two electron system must be taken into account. This implies that in Eq. (4.3),
one must replace me → μe = me/2. The positronium radius a′ has a value twice
that of the hydrogen atom: a′ = 2a. The wave function at the origin is therefore:
ψ(0) = 1√

π(2a)3/2 . Finally, Eq. (4.18) becomes:

Γ
(1S0 → γ γ

) = 4πα2

m2
e

1

π(2a)3
= 4πα2

m2
e

(meα)
3

8π
= meα

5

2
= 5.2 · 10−12 MeV

(4.19)
The lifetime τ is related to the width Γ by the uncertainty principle:

τ = �

Γ
= 6.6 · 10−22

5.2 · 10−12
= 1.3 · 10−10 s

The measured value [4K04] is τmea = 1.244 · 10−10 s.

Problem 4.9 As we saw in Appendix 4 and Eq. (A.17) , the most simple
Hamiltonian operator for a free particle has the form: H = α · p + βm, where α

and β are the matrices defined in (A.19) . The equation Eψ = i� ∂
∂t
ψ = Hψ can

therefore be written as:

i�
∂

∂t
ψ + i�cα · ∇ψ − βmc2ψ = 0.

Multiplying on the left by β , using natural units c = 1 and defining:

γ = βα, γ i = βαi i = 1,2,3, γ 0 = β

the following equation is obtained:

i�γ 0 ∂

∂t
ψ + i�γ · ∇ψ − mψ = 0.

Problem 4.10 In the four-spinor representation, the σ Pauli generalized matrix in
Eq. (4.7) is

σ =
∣∣∣∣σ 0

0 σ

∣∣∣∣ . (4.20)

The total angular momentum J commutes with the Hamiltonian H if:
[(

�L + 1

2
�σ

)
,H

]
= 0. (4.21)

This correspond to the condition that both [L,H ] = 0 and [σ ,H ] = 0. By definition,
it is:

L = Lx i+Lyj+Lzk = r×p = (ypz−zpy)i+(zpx −xpz)j+(xpy −ypx)k (4.22)
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The condition [L,H ] = 0 is demonstrated using the following commutation rules:

[xj , xk] = [pj ,pk] = 0, [xj ,pk] = i�δij (4.23a)

(the second condition comes from the quantum definition of momentum, p =
−i�∇) and

[Lj ,β] = 0, [α, r] = [α,p] = 0. (4.23b)

Since the α and β matrices do not depend neither on r nor on p, one has:

[Lx,H ] = [LxH − HLx] = i�(αypz − αzpy)

[Ly,H ] = [LyH − HLy] = i�(αzpx − αxpz)

[Lz,H ] = [LzH − HLz] = i�(αxpy − αypx)

Analogously, the condition [σ ,H ] = 0 follows from the commutation rules:

[σk,αk] = [σk,β] = 0, [σj ,αk] = 2iαk

(
0 1
1 0

)
(4.24)

from which follows that:
[
�

2
σx,H

]
= �

2
[σxH − Hσx] = i�c(αypz − αzpy)

[
�

2
σy,H

]
= �

2
[σyH − Hσy] = i�c(αzpx − αxpz)

[
�

2
σz,H

]
= �

2
[σzH − Hσz] = i�c(αxpy − αypx)

and finally [(�L + 1
2�σ ), H ] = 0.

Problem 4.11 It is easy to demonstrate that:

α · p =
(

0 σ

σ 0

)
· p = α · p

(
0 1
1 0

)
=

(
0 1
1 0

)
α · p (4.25)

The Hamiltonian operator can be written as:

H =
(

0 1
1 0

)
α · p +

(
1 0
0 −1

)
m. (4.26)

From the definition of Λ and from (4.25) and (4.26), it follows:

[Λ,H ] = [ΛH − HΛ] = 0. (4.27)
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Problem 4.12 Let us insert the wave function expression

ψ =
(
φ

χ

)
ei(p·r−Et)

in the compact form of the Dirac equation:

i
∑
μ

γ μ ∂

∂xμ
ψ − mψ = 0

where μ = 0, . . . ,3.
Performing the derivatives and taking into account the matrices αi and β defined

in (A.19) , the following matrix equation is obtained:

(E − α · p − βm)

(
φ

χ

)
= 0.

which corresponds to:
[(

1 0
0 1

)
E −

(
0 σ

σ 0

)
p −

(
1 0
0 −1

)
m

](
φ

χ

)
=

(
0
0

)

from which one obtains:

Eφ − σ · pχ − mφ = 0

Eχ − σ · pφ + mχ = 0

or

φ = σ · p
E − m

χ, χ = σ · p
E + m

φ.
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Chapter 5
First Discussion of the Other Fundamental
Interactions

Problems

5.1. Neutron and antineutron. How do you distinguish a neutron from an antineu-
tron? And how can you distinguish a neutrino from the corresponding antineu-
trino?
[See solutions]

5.2. Gravity and electric forces. Estimate the size of a hypothetical hydrogen atom
whose electron and proton are bound only by the gravitational force.
[See solutions]

5.3. Feynman diagrams. Draw the Feynman diagrams that illustrate the following
reactions; indicate the involved fundamental interaction.
(a) e−p → e−p

(b) e+e− → νeν̄e
(c) e−p → νen

(d) ud → uddd̄

[See solutions]

5.4. Tau decay. Consider the decay τ− → e− + X.
(a) Which neutral particles form the system X?
(b) Draw the Feynman diagram for this process.
[See solutions]

5.5. �++ decay. Estimate the decay fraction ratio

Γ
(
++ → pe+νe

)
/Γ

(
++ → pπ+)

[See solutions]
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Fig. 5.1 Decay chain of the Σ+(1383) baryon. The lifetime of each decay channel are reported
in parentheses

5.6. Neutron star. A neutron star is produced by the gravitational collapse of stars
more massive than 8M�, where M� is the mass of the Sun. In the center of the
star remains a sort of giant nucleus, consisting of only neutrons, held together
by its own gravitational force. Calculate the radius of a neutron star assuming
that:
(i) the mass of the nucleus is 1.4M� and

(ii) the density of the neutron star is constant.
[See solutions]

5.7. Σ+ decay. Explain the decay chain of the Σ+(1383) baryon, see Fig. 5.1. In
terms of quarks, the Σ+ is made of quarks [uus].
[See solutions]

Supplement 5.1: Baryon Number Conservation: the Search for
Proton Decay

In the Standard Model of particle physics (see Chap. 11 ), quarks and leptons are
placed in separate multiplets and the baryon number conservation forbids the proton
decay. However, there is no known gauge symmetry which generates baryon number
conservation. Therefore, the validity of baryon number conservation must be consid-
ered as an experimental question. Grand Unified Theories (GUTs, see Chap. 13 )
place quarks and leptons in the same multiplets; therefore, quark ↔ lepton tran-
sitions are possible: they are mediated by massive X, Y bosons, respectively with
electric charges of 4/3 and 1/3 (see Fig. 13.3 ). Because the mass of these gauge
bosons are predicted to be very large, such processes are expected to be very rare.

Starting from the 1980s, the search for proton decay was the main reason for
developing underground laboratories and large detectors [5P84]. The simplest GUT
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model, SU(5), predicts a proton lifetime value of τp ∼ 1030 years for the process
p → e+π0. The expected number of events per year in a decay channel with branch-
ing ratio BR is

N = (f · NN · MF · T · BR · ε)/τp (5.1)

where f is the proton fraction (f = p/(p + n)) in the target, NN is the number of
nucleons in 1 kt mass (∼ 6 · 1023 · 109), MF (in kt) is the fiducial mass (an olympic
swimming pool contains ∼ 3 kt of water), T is the detector lifetime (in years) and ε

is the overall detection efficiency. The simplest GUT prediction leads to the possible
observation of many proton decay events in a kt-scale detector.

For nucleon decay searches, the most competitive experimental techniques use
water Cherenkov detectors and tracking calorimeters. The pioneering proton decay
experiments were water Cherenkov (IMB, Kamiokande) and tracking calorimeters
(KGF, NUSEX, Soudan). The latter consists of sandwiches of iron plates and ion-
ization/scintillation detectors. The Cherenkov detection allows for larger masses,
while tracking calorimeters provide better space resolution and good identification
of electrons, muons and charged kaons. The main background comes from low en-
ergy atmospheric neutrinos. A large fraction of this background can be eliminated
by selecting events well contained in the detector fiducial volume and by apply-
ing topological and kinematical constraints. The largest experiment currently taking
data is Super-Kamiokande (SK), with a total mass of ∼50 kt.

The proton decay p → e+π0 (μ+π0) is almost background free. The proton at
rest decays in two light particles, carrying the ∼ 1000 MeV of its rest mass. Let
us shortly describe the procedure used by SK [5K09] to set the strongest limits on
the proton lifetime (>8.2 × 1033 and 6.6 × 1033 years at the 90% confidence level
for p → e+π0 and p → μ+π0, respectively). To reduce the contamination from
external neutrons, the detector volume was restricted to the inner 22.5 kt (fiducial
volume) of the detector which is surrounded by 11,146 20-inch diameter photo-
multiplier tubes (PMTs). The e+ (or μ+) produces Cherenkov light. The photons
arising from the π0 decay, π0 → γ γ , originate an electromagnetic shower which
produces a signal similar to that of the electron. The intersection of the Cherenkov
light cone with the instrumented detector surface generates signals having the shape
of “rings”. In multi-ring events, as expected for hypothetic proton decays, the direc-
tions and opening angles of visible Cherenkov rings were reconstructed, and each
identified ring was classified as a showering electron-like ring or a non-showering
muon-like ring.

The particle momentum was estimated by the number of detected photo-
electrons. Kinematics constraints were used. The total momentum in an event
is Ptot = |∑i pi |, where pi is the reconstructed momentum vector of the i-th

ring. The total invariant mass is Mtot =
√
E2

tot − P 2
tot , where the total energy

Etot = ∑
i

√
p2
i + m2

i , and mi is assumed to be the electron or muon rest mass,
according to the particle identification through ring shapes. In order to select proton
decay signals, the following selection criteria were applied:
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Fig. 5.2 Total momentum versus total invariant mass distributions for Monte Carlo (MC) proton
decay events (left panel), 500 year-equivalent MC atmospheric neutrino events (central panel)
and data (right panel). All events satisfy the selection criteria for p → e+π0 except for (E). The
boxes in the plots indicate the selection criterion described in (E). Points in the signal box of the
atmospheric neutrino MC are shown with a larger size

(A) the number of rings is two or three; (B) one of the rings is e-like (μ-like)
for p → e+π0 (p → μ+π0) and all the other rings are e-like; (C) for three ring
events, the reconstructed π0 invariant mass is between 85 and 185 MeV/c2; (D) the
muon can eventually decay in the detector; (E) the reconstructed total momentum is
smaller than 250 MeV/c, and the reconstructed total invariant mass is between 800
and 1050 MeV/c2.

The proton decay signal sample and the background sample from atmospheric
neutrino interactions were simulated using Monte Carlo procedures, which take into
account accurate simulation of the detector response. For each simulated signal and
background event, the reconstructed total momentum and total energy were inserted
in a two dimensional plot (first two panels of Fig. 5.2). From the null signal (no real
data are present in the box signal of the third panel of Fig. 5.2), using Eq. (5.1),
SK was able to derive the limits quoted above. These experimental limits exclude
without any doubt the simplest GUT models (which predict a proton decay lifetime
smaller than the experimental lower limits). Many more proton decay modes were
searched for, all with null results. At present, larger project are proposed to im-
prove by more than one order of magnitude the limit on the proton lifetime (Hyper-
Kamiokande and LAGUNA projects).

Underground laboratories (mainly motivated by the need to reduce the back-
ground in proton decay experiments) are also used for different experimental stud-
ies:

• Detection of low energy phenomena, E < 20 MeV, as solar neutrinos, neutri-
nos from stellar gravitational collapse, the search for neutrino-less double-beta
decays and searches for rare phenomena. The main problem is the radioactivity
background; refined detectors, often of large mass, are needed. For the detection
of low energy neutrinos, the most important parameters are the detector mass and
the energy threshold (∼ MeV);
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• Study of ∼1 GeV events, like in nucleon decays and in atmospheric/beam neu-
trino oscillations. The main feature of a detector is its mass (1–50 kt) and the
capability of identifying neutrino events;

• Detection of through-going particles, high energy muons, monopole candidates,
etc. The main feature of these detectors is the area.

Solutions

Problem 5.1 The neutron decays into n → pe−νe: the lighter charged particle
in the presence of a known magnetic field behaves as a negatively charged particle.
The antineutron decays into n → pe+νe: the lighter charged particle in the presence
of a known magnetic field behaves as a positive particle.

When the neutrino interacts (excluding neutral current interactions), it produces
a negatively charged lepton (the νe produces an electron, the νμ a muon). The an-
tineutrino always produces an antilepton, with a positive electric charge.

Problem 5.2 The module of the gravitational force FG and of the Coulomb force
FE acting between the proton and the electron in the hydrogen atom are respec-
tively:

FG = GN

mpme

r2
; FE = 1

4πε0

e2

r2
.

Inserting the numerical values of mp,me , the gravitational constant GN and the
vacuum dielectric constant ε0, their ratio is:

FG

FE

= 4πε0GN

mpme

e2
= 5 × 10−40.

The radius of an atom bounded by the gravitational force can be determined using
the angular momentum quantization rule and the orbit stability condition as in the
Bohr atom: {

mevr = �

mev
2r−1 = F.

Obtaining mev = �/r from the first equation and substituting the corresponding
quantity in the second equation, one finds r3 = �

2/F ·me; therefore, the radius r is:

r =
(

�
2

F · me

)1/3

.

The ratio between the Bohr radius of the hydrogen atom a = 0.5 × 10−10 m where
F = FE and the radius rG of an atom bounded by the gravitational force (F = FG)
is:

a

rG
=

(
FG

FE

)1/3

= (
5 × 10−40)1/3 = 8 × 10−14
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Fig. 5.3 e−p → e−p elastic
scattering

Fig. 5.4 e+e− → νeν̄e
annihilation: (left) weak NC
interaction through a Z0

boson exchange and (right)
weak CC interaction through
a W± boson exchange

Fig. 5.5 e−p → νen CC
interaction

from which rG = (0.5 × 10−10)/(5 × 10−14) = 625 m.

Problem 5.3

(a) e−p → e−p. The fundamental force involved is the electromagnetic interac-
tion. A negligible contribution from the weak interaction (when the photon in
the figure is replaced by a Z0) can also be assumed (Fig. 5.3).

(b) e+e− → νeν̄e . The fundamental force involved is the weak interaction. The
weak interaction ( Chap. 8 ) can take place through the exchange of a charged

massive vector boson, the W±, or through a neutral one, the Z0. The exchange
of a W± corresponds to a weak charged current interaction (CC), while the
exchange of a Z0 is a weak neutral current interaction (NC). The electron-
positron annihilation occurs both in NC and in CC, as shown in Fig. 5.4.

(c) e−p → νen. The fundamental force involved is the weak charged current inter-
action, involving a u quark of the proton (the others two quarks act as spectators)
and an electron (Fig. 5.5).

(d) ud → uddd̄ . The fundamental force involved is the strong interaction with the
radiation and successive decay of a gluon.
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Fig. 5.6 ud → uddd̄

Free quarks have not been observed so far. This process always occurs inside
hadrons, with one (or more) spectator quark. For instance, if the presence of an
additional spectator u quark is assumed, the process shown in Fig. 5.6 can be
that of a spin 3/2 + = [uud] which decays into a spin 1/2 proton (= [uud])
plus a π0 = [dd].

Problem 5.4

(a) In the reaction, besides the electric charge, the lepton family numbers Le,Lν,Lτ

must be preserved. The status [X] must therefore have the following quantum
numbers:

[X] = [Lτ = 1;Le = −1;Q = 0].
In the final state, one particle of the doublet

(
ντ
τ−

)
and one of the doublet

(
νe

e+
)

must thus be present. From the first doublet, the particle cannot be a τ− because
the energy conservation in the rest frame of the decaying τ would be violated. It
must therefore be a ντ . To ensure the electric charge conservation, the positron
cannot be present and the member of the second doublet that must be used, is
the νe.
Therefore, X = ντ νe.

(b) The Feynman diagram for the τ decay is shown in Problem 8.3b.

Problem 5.5 The ++ → pe+νe decay is due to the weak interaction, with a
u-type quark that transforms into a d-type quark by emitting a W+. The vertices
connected by the W vector boson are characterized by a coupling constant αW ∼
10−5.

The ++ → pπ+ decay is due to the strong interaction, with a coupling constant
αs ∼ 1. The expected ratio between branching ratios is then:

Γ (++ → pe+νe)

Γ (++ → pπ+)
�

(
10−5

1

)2

∼ 10−10.

The weak interaction channel is so rare that it has never been observed so far.

Problem 5.6 Nuclei are incompressible and the volume of a nucleus corresponds
to the volume of its constituents. A proton has mass mp = 1.6 × 10−24 g and its
volume is that of a sphere with radius R0 ∼ 1.3 × 10−13 cm. The density of matter
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inside the proton radius (the nuclear density) is:

ρN = mp

4π
3 R3

0

= 2 × 1014 g/cm3

The sun mass is M� = 2 × 1033 g. The considered neutron star mass is MNS =
1.4M� = 2.8 × 1033 g. Assuming that the neutron star density be constant, one has
ρNS = ρN = MNS/(4π/3R3). It follows that the radius R is:

R = 3

√
3MNS

4πρn

= 3

√
3 · 2.8 · 1033

4π2 · 1014
= 1.45 × 106 cm = 14.5 km

Problem 5.7 The decays presented here are briefly analyzed; they will be dis-
cussed in detail in later chapters. The quark composition of the particles is given in
the squared brackets. The first decay is due to the strong interaction (process similar
to that shown in Fig. 5.6):

Σ+ = [usu] → us(dd)u → [usd][du] = Σ0π+

In this case, it was energetically favorable to produce a (dd) quark-antiquark pair.
The quarks are then combined to form the two physical states Σ0π+. The lifetime
is that typical of strong interaction decays (∼ 10−23 s).

The Σ0 has a composition [uds], the same as that of the Λ0 baryon. However,
the Σ0 is part of a particle triplet (with Σ+,Σ−) with similar characteristics. The
strong isospin value I = 1 is attributed to the Σ triplet. The Λ0 is instead a singlet
state with I = 0. This quantum number represents a symmetry of the wave function
which is conserved by the strong interaction, but not by the electromagnetic interac-
tion. The Σ0 → Λ0γ decay is indeed due to the electromagnetic interaction, with a
characteristic lifetime of 10−19 s.

The Λ0 decays through the weak interaction (see Fig. 8.17b ), with a lifetime of

∼ 10−10 s:

Λ0 = [uds] = (ud)s → (ud)W−u → (ud)(du)u → [udd][uu] = nπ0

The s quark can change into a different quark flavor only via the weak interaction.
The W− vector boson decays in turn into a du pair.

Finally, the neutron decays in pe−νe through the weak interaction, with a lifetime
∼900 s. Note that the last two processes have long lifetimes compared to those
typical of the electromagnetic and strong interactions. However, they differ from
each other by about 12 orders of magnitude. An additional important factor in the
decay is the free energy E0 available in the final state: the transition probability
depends on E5

0 in the case of a three body decay. For the Λ0, the available energy
is EΛ

0 = mΛ − mn � 175 MeV; in the case of the neutron, one has En
0 � 1 MeV.

Finally, as shown in Chap. 8 , the decay of a strange quark s → uW− is suppressed

by a factor of 20 compared to the decay of a d quark d → uW−. The product of
these two factors provides the difference between the Λ0 and n lifetimes.
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Chapter 6
Invariance and Conservation Principles

Problems

6.1. Electric dipole of the neutron. Show that if a particle (for instance, the neu-
tron) has a non vanishing electric dipole moment dE , both parity and time
reversal invariance are violated.
[See solutions]

6.2. CP of neutron decay. Consider the β neutron decay, n → p + e− + νe, and
apply the parity operator; does the resulting process exist in nature? Then, ap-
ply the charge conjugation operator. What kind of process do you obtain? What
can be concluded about the CP operator in β decay?
[See solutions]

6.3. η0 decay. Pseudoscalar meson. The pseudoscalar meson η0 has quantum
numbers JPC = 0−+, mass 548 MeV, full width Γ = 1.30 keV. The main
decay modes (from the PDG) and corresponding branching ratios (BR) are:

Decay BR

η0 → γ γ 0.393
η0 → π0π0π0 0.326
η0 → π0π+π− 0.227

There are also upper limits for the following decays:

Decay BR

η0 → γ γ γ <1.6 · 10−5

η0 → π0π0 <3.5 · 10−4

η0 → π0γ <0.9 · 10−6

η0 → e+μ− or e−μ+ <6 · 10−6

S. Braibant et al., Particles and Fundamental Interactions: Supplements,
Problems and Solutions, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-94-007-4135-5_6, © Springer Science+Business Media Dordrecht 2012
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(a) Determine the lifetime of the η0 decay and which interaction induces the
decay.

(b) Explain, using conservation laws, the reason why the decays with the upper
limits quoted above were not observed. Remember that the photon has
JPC = 1−−, and the π0 has JPC = 0−+.

[See solutions]

6.4. Σ decay. Explain why the Σ0 hyperon decays into Λ0γ instead of nπ0.
[See solutions]

6.5. Ω− decay. Discuss the possible decay modes of the Ω− particle allowed by
conservation laws. Show that the weak interaction decay is the only possible
one.
[See solutions]

6.6. Pion decay. The π0 meson has spin zero and mass mπ = 135 MeV/c2, and
decays into two photons. Since the measurement of the characteristics of the
final state photons provides information on the π0 spin/parity, determine:
(a) the angular distribution of the emitted photons in the π0 rest frame;
(b) the shape of the energy spectrum of the emitted photons in the laboratory

system;
(c) the maximum and minimum energy of the emitted photons when the π0

has an energy of 0.8 GeV.
[See solutions]

6.7. Conservation law rules. Verify if the following reactions satisfy all conserva-
tion laws:
(a) K0p → K−pπ+
(b) π−p → K−Σ+
(c) π−p → Σ

−
Σ0p

(d) pp → π+π+π−π−
(e) π+p → K+Σ+
[See solutions]

Solutions

Problem 6.1 Consider a particle with spin (see Fig. 6.1); the spin defines a direc-
tion in space. The particle can be neutral but with a different distribution of positive
and negative electric charges, so that the particle has a classical electric dipole mo-
ment dE . Since the particle is rotating, it also has a magnetic dipole moment dM .
The same argument is valid for negatively or positively charged particles, with an
asymmetric charge distribution.
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Fig. 6.1 A neutral fermion (the neutron, for instance) is represented here as a spherical object with
an asymmetric charge density (upper left). The particle has a magnetic dipole moment dM (here
antiparallel to the spin). The particle mirror image is represented on the right, and its time-reversal
image at the bottom. The particle spin defines a direction in space. Both P and T transforma-
tions leave the magnetic dipole moment antiparallel to the spin. Both P and T transformations
change the relative orientation of the electric dipole moment. Therefore, the original particle can
be distinguished from its mirror or its time reversal image

The original particle (left upper part of Fig. 6.1) has spin parallel to the electric
dipole moment dE , and spin antiparallel (i.e., parallel but with opposite directions)
to the magnetic dipole moment dM . By performing a parity inversion (right up-
per part of Fig. 6.1), the electric dipole moment dE and spin are now antiparallel,
whereas the magnetic dipole moment and spin remain antiparallel. Thanks to the
electric dipole moment dE , it is therefore possible to distinguish the original parti-
cle from its mirror image, and the parity conservation is violated.

If we now perform a time reversal transformation, as shown in the bottom part of
Fig. 6.1, the particle will spin in the opposite direction with respect to the original
particle and the magnetic dipole moment dM changes its direction as well. For the
neutron, both the magnetic dipole moment dM and the spin invert their directions
and therefore, they remain antiparallel. The electric dipole moment dE remains un-
changed but since the spin has changed direction, they are now antiparallel to each
other. There is a clear difference and the original and time reversal pictures can be
distinguished.

In conclusion, if the particle has a non vanishing electric dipole moment, both
the time reversal and parity invariance are violated [P87].

Problem 6.2 The application of the operators P and C to p and e+ gives no
particular problem. The problem arises instead for the νe. The parity operator trans-
forms a right-handed νe into a left-handed νe, which does not exist. After the ap-
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plication of P , the charge conjugation operator transforms the left-handed νe into
a left-handed νe , which has the correct helicity. Only the consecutive applications
of the two operators P and C is therefore possible. The application of CP to the
neutron β decay produces the possible process n → pe−νe.

Problem 6.3

(a) τ = �/Γ = 6.6·10−22 MeV s
1.3·10−3 MeV

= 5.1 · 10−19 s. This is a lifetime typical of the elec-
tromagnetic interaction, as shown also by the fact that the decay into two pho-
tons has the largest BR.

(b) Forbidden decays.

• η0 → γ γ γ . The decay into 3 γ ’s has a charge conjugation eigenvalue C =
(−1)3. The η0 has C = +1. The decay into 2 photons is allowed, while the
decay into 3 photons is forbidden because the electromagnetic interaction
conserves C.

• η0 → π0π0. The decay into 2 π0’s has a parity eigenvalue P = (−1)2. The
η0 has P = −1. The decay into 3 pions is allowed, while the decay into
2 pions is forbidden because the electromagnetic interaction conserves P .

• η0 → π0γ . The η0 has spin zero, while the final state has spin 1. The decay is
forbidden by angular momentum conservation (verify that also C is violated).

• η0 → e+μ− or e−μ+. These decays are forbidden by lepton flavor number
conservation.

Problem 6.4 In terms of the valence quarks, the two Σ0 and Λ0 baryons have the
same (uds) composition. The Σ0 represents the neutral particle of a I = 1 strong
isospin triplet state, while the Λ0 is an isospin singlet, with I = 0. The Σ0 decay
into a Λ0 is forbidden in the strong interaction (which conserves the isospin), but it is
possible in the electromagnetic interaction (see Table 6.4 ). The decay into nπ0 is a
strangeness violating decay, which is forbidden both in strong and electromagnetic
interactions.

Problem 6.5 The Ω− particle is a three s quark state and has strangeness S = −3.
Both the strong and electromagnetic interactions conserve the quark flavor and
therefore, the strangeness. The only allowed decays are through the weak inter-
action. Note that the lifetimes of the decay products are long enough so that their
tracks are visible in bubble chamber pictures (see Problem 8.11)

Problem 6.6

(a) Consider the decay of N0 neutral pions. If the π0 has spin 0, the angular distri-
bution of the emitted photons in the c.m. system must be isotropic, since there
is no preferential direction:

dN

dΩ∗ = N0

4π
(6.1)
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where dΩ∗ is the infinitesimal solid angle in the c.m. system. From (6.1), one
derives:

dN = N0

4π
dΩ∗ = N0

4π
2πd cos θ∗ −→ dN

d cos θ∗ = N0

2
. (6.2)

The angle θ∗ in the c.m. system is that formed between the direction of the
considered photon with the direction of the pion in the laboratory system. If the
pion had non-null spin, its projection along the direction of motion would give
rise to structures in the angular distribution of the emitted photons.

(b) In the pion rest system, independently of the emission angle, each photon has an
energy equal to E∗

γ = mπ

2 and a momentum p∗
γ opposite each other. Let us now

express the energy of the photon in the laboratory system. In the lab. system, the
pion energy-momentum four-vector is equal to (Eπ ,pπ ), and the two reference
systems have a relative Lorentz boost equal to:

β = |pπ |
Eπ

; Γ = Eπ

mπ

.

(Note that the capital letter Γ is used for the Lorentz factor Γ = 1/
√

1 − β2,
to avoid confusion with the symbol γ of emitted photons.) As β,Γ are known,
the photon energy can be determined in the lab. system (remembering that this
system is seen by the pion with a negative velocity) using the Lorentz transfor-
mation:

Eγ = ΓE∗
γ + βΓp∗

γ · cos θ∗ (6.3)

from which one derives:

Eγ = Eπ

mπ

mπ

2

(
1 + β cos θ∗) −→ Eγ = Eπ

2

(
1 + β cos θ∗) (6.4)

having used the relation p∗
γ = E∗

γ .
Note that depending on the angle of emission in the c.m., the photon energy in
the laboratory can vary between:

Emin
γ = Eπ

2
(1 − β); Emax

γ = Eπ

2
(1 + β). (6.5)

The shape of the energy spectrum of emitted photons in the laboratory frame,
dN/dEγ , is obtained by differentiating Eq. (6.3) with respect to the variable
cos θ∗:

dEγ = βΓp∗
γ · d cos θ∗ −→ d cos θ∗

dEγ

= 1

βΓp∗
γ

(6.6)

from which one finds:

dN

dEγ

= dN

d cos θ∗
d cos θ∗

dEγ

= N0

2

1

βΓp∗
γ

. (6.7)

All the quantities in the right member of Eq. (6.6) are constant, which means that
the distribution of the number of photons is constant in the range [Emin

γ ,Emax
γ ].



64 6 Invariance and Conservation Principles

(c) For a π0 with energy Eπ = 0.8 GeV, one has:

β = pπ

Eπ

=
√
E2

π − m2
π

Eπ

= 0.9856

From Eq. (6.5), one finds Emin
γ = 7.2 · 10−3Eπ ; Emax

γ = 0.9920Eπ .

Problem 6.7 Reaction (b) is forbidden as the final state has strangeness quantum
number S = −2, while the initial state is not strange.
Reaction (d) cannot occur through the strong interaction. The antiparticles have the
same isospin of particles: hence the initial state (pp) has isospin I = 1. In the final
state, there are 4 particles with isospin I = 1.



Chapter 7
Interactions of Hadrons at Low Energies
and the Static Quark Model

Problems

7.1. Range of the nuclear force. Despite the fact that the quarks within a neutron
or a proton interact via the exchange of gluons, the strong interaction between
a proton and a neutron can be viewed as due to the exchange of a pion. If the
π has a mass of 140 GeV/c2, calculate the distance at which the strong force
is effective.
[See solutions]

7.2. Λ0 decay at rest. For the Λ0 → pπ− decay at rest, calculate the momentum
and the energy of the final state particles.
[See solutions]

7.3. π− interactions. A target of liquid hydrogen (density ρ = 0.06 g cm−3) has
a volume of 100 cm3. A monoenergetic π− beam with 300 MeV/c momen-
tum collides on the target. The beam is broad, uniform and with an intensity
of Φ = 107 π− m−2 s−1. The cross-section for the reaction π−p → π0n at
300 MeV/c is σ = 45 mb.
(a) Calculate the number of γ -rays produced per second (recall that the π0

meson decays into two photons, π0 → 2γ , in a very short time).
(b) Calculate the mean free path of 300 MeV/c π− in liquid hydrogen.
[See solutions]

7.4. Antiproton capture at rest. The antiprotons captured at rest in deuterium
give rise to the reaction pd → nπ0. Determine:
(a) the deuterium binding energy;
(b) the total energy of the emitted π0 meson;
(c) the process that occurs in terms of valence quarks.
[See solutions]
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7.5. Energy thresholds. Consider the collisions of K
0

and K0 mesons on protons
at rest.
(a) Calculate, in the laboratory system, the minimum kinetic energy of the

K
0

and of the K0, necessary to induce respectively the following reac-
tions:

K
0 + p → Λ0 + π+ (7.1)

K0 + p → Λ0 + K0 + K+ (7.2)

(b) With the help of Table 7.3 , write the reactions in terms of valence
quarks.

[See solutions]

7.6. φ(1020) decay. Explain why the φ(1020) vector meson cannot decay into
two π0 mesons.
[See solutions]

7.7. ψ decay. Explain why the ψ(3685) → J/ψ(3097)π0 decay is not allowed by
the strong interaction, while the ψ(3685) → J/ψ(3097)η decay is permitted.
[See solutions]

7.8. �0 decay. The 0[udd] resonance decays mainly in p π− with a width Γ �
100 MeV. Draw the Feynman diagram. Estimate the 0 lifetime. Is there
another possible decay channel?
[See solutions]

7.9. The �++ resonance. Calculate the elastic π+p cross-section for the forma-
tion of the ++ (1232) resonance when
(a) the π+ in the lab. system has a kinetic energy Tπlab

= 190 MeV;
(b) the π+ in the lab. system has a kinetic energy Tπlab

= 300 MeV.
Assume natural units and (mp = 938, mπ = 140, m = 1232, Γ = 120) MeV.
[See solutions]

7.10. Mean free path. For a graphite target (ρ = 2.265 g cm−3), calculate the num-
ber Nn of carbon nuclei per cm3, the absorption coefficient μ for a pro-
ton beam and the interaction length λ. Use a cross-section value of σ =
0.331 · 10−24 cm2.
[See solutions]

7.11. Isospin-1: pion-proton collisions. Express, as a function of the isospin, the
amplitudes of the following collision processes:
(a) π+p → π+p

(b) π−p → π−p
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(c) π−p → π0n

(d) Calculate the ratio between the cross-sections of the above three pro-
cesses, assuming that the I = 3/2 isospin channel is dominant. Explain
the physical motivation for this assumption.

Refer to Supplement 7.1 and Figs. 7.14, 7.15, 7.17 and 7.18 for the isospin
values of the involved particles.
[See solutions]

7.12. Isospin-2: � resonance formation in pion-proton collisions. The  reso-
nance is an I = 3/2 isospin multiplet. Consider the following two formation
mechanisms

π−p → 0

π+p → ++

and determine the ratio between the respective cross-sections.
[See solutions]

7.13. Isospin-3: K−p collisions. Calculate the cross-section ratio of the following
processes:
(a) K−p → π+Σ−
(b) K−p → π0Σ0

(c) K−p → π−Σ+
(d) K−p → π0Λ0

[See solutions]

7.14. Isospin-4: the pd cross-section. Calculate the cross-section ratio for the re-
actions pd →3He π0, pd →3H π+ at a fixed energy in the c.m. system.
[A. σ(pd →3He π0)/σ (pd →3H π+) � 1/2]

7.15. Isospin-5: Strange and Charmed particles. Indicate which is the isotopic
spin of the π−, K−, D0, D+

s mesons and of Σ−, Σ0
c , Ξ+

cc and Ω+
cc baryons.

[Hint: Refer to Figs. 7.17, 7.18 ]

7.16. Weisskopf formula for neutral vector meson decay. Starting from Eq. (4.17):

Γ = 16πα2

m2
e

|ψ(0)|2 (7.3)

derive the Weisskopf formula Eq. (7.59) for the decay of the ρ0,ω0, φ0 neu-
tral vector mesons into leptons.
[See solutions]
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7.17. ρ0 Spin-parity. Determine the spin-parity of the ρ0 resonance produced in
π−p → ρ0n, with the subsequent decay into two pions, ρ0 → π−π+.

In the above reaction a peak is observed at the invariant mass mρ =
mπ+π− = 775 MeV, with a Γ = 149 MeV width. Explain why no π0π0 res-
onance is observed at the same mass.
[See solutions]

Supplement 7.1: Sum of Angular Momentum and Isospin:
the Clebsch–Gordan Coefficients

The formalism of angular momentum composition is widely used in quantum-
mechanics and is described in any textbook. In particle physics, the same formalism
is used in processes involving interactions of hadrons, made of u,d quarks, through
the isotopic spin (or isospin) (see Sect. 7.2 ) composition. The strong interaction
depends on the isospin I , but not on the component along the quantization axis
(conventionally, the z-axis) Iz. Proton and neutron belong to an I = 1/2 isospin
doublet with Iz = +1/2, −1/2, respectively. For the strong interaction, the proton
and the neutron are two degenerate states. The isotopic spin of mesons and hadrons
made of u,d quarks is presented in Figs. 7.14, 7.15, 7.17 and 7.18 .

Suppose to have two particles with isospin I1 and I2 with respective components
along the quantization axis, Iz1 and Iz2 . The isospin composition helps, for instance,
to evaluate the probability that, in π−p collisions, a π−p or a π0n state be formed
(Problem 7.11). We need to calculate the eigenvalue of the sum I = I1 + I2 in a
way that the projection along the z-axis be the sum of the particle third components:
Iz = Iz1 + Iz1 .

Let us define:

• |I1, Iz1; I2, Iz2〉: the eigenstate which describes the sum of the two particles, with
the properties:

I 2
1 |I1, Iz1; I2, Iz2〉 = I1(I1 + 1)|I1, Iz1; I2, Iz2〉 (7.4a)

Iz1 |I1, Iz1; I2, Iz2〉 = m1|I1, Iz1; I2, Iz2〉 (7.4b)

I 2
2 |I1, Iz1; I2, Iz2〉 = I2(I2 + 1)|I1, Iz1; I2, Iz2〉 (7.4c)

Iz2 |I1, Iz1; I2, Iz2〉 = m2|I1, Iz1; I2, Iz2〉 (7.4d)

• |I,M〉: the eigenstate corresponding to the sum in the new basis in which I 2 and
Iz are diagonal:

I 2|I,M〉 = I (I + 1)|I,M〉; Iz|I,M〉 = M|I,M〉 (7.5)
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The eigenstates |I,M〉 can be expressed as a linear combination of the initial eigen-
states:

|I,M〉 =
∑
m1

∑
m2

|I1, Iz1; I2, Iz2〉〈I1, Iz1; I2, Iz2 |I,M〉 (7.6)

The scalar products 〈I1, Iz1; I2, Iz2 |I,M〉 are the so-called Clebsch-Gordan coeffi-
cients, and are reported in Fig. 7.1 for different combinations of I1, I2. The eigen-
values of the sum must fulfill the conditions:

|I1 − I2| ≤ I ≤ |I1 + I2|; M = m1 + m2 = Iz1 + Iz2 (7.7)

Problems from 7.11 to 7.15 help to understand the use of the Clebsch-Gordan coef-
ficients in different situations.

Solutions

Problem 7.1 The uncertainty principle states that:

E · t ≥ �−→ t ≥ �

E
.

The distance traveled in a time t is:

r = c · t.

Therefore, the interaction effective range is given by:

r � �c

E
= �c

mc2
= 197 MeV fm

140 MeV
= 1.4 · 10−15 m = 1.4 fm.

Problem 7.2 The system in which the Λ baryon is at rest coincides with the center
of mass system. The momenta of the two particles in the final state must be equal in
magnitude: pπ = pp . Therefore, one has:

s = (Eπ + Ep,pπ + pp)
2 = m2

π + m2
p + 2EπEp + 2p2

π (7.8)

from which, one finds:

p2
π = s − m2

π − m2
p − 2EπEp

2
(7.9)

The relativistic invariant
√
s is the total energy of the system, and Ep = √

s−Eπ .
Substituting Ep in Eq. (7.9), one can write:

p2
π = s − m2

π − m2
p − 2Eπ(

√
s − Eπ)

2
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Fig. 7.1 Clebsch-Gordan coefficients from [P10]

from which, one has:

Eπ = s − m2
p + m2

π

2
√
s

; Ep = s − m2
π + m2

p

2
√
s

(7.10)



Solutions 71

By inserting the numerical values (c = 1):
√
s = mΛ = 1115 MeV; mπ =

140 MeV; mp = 938 MeV, one obtains:

Eπ = 170 MeV; Ep = 943 MeV

pπ =
√
E2

π − m2
π = 97 MeV/c; pp =

√
E2

p − m2
p = 97 MeV/c

Problem 7.3 The number of interactions per second (i.e., the number of π0 pro-
duced per second) is given by Rπ0 = ΦσN , where N is the number of scattering
centers in the given volume V = 100 cm3. Then: N = ρNAV/A = 3.6 · 1024 cm3,
where NA is Avogadro’s number and A = 1 for hydrogen. Since the π0 decays into
two photons, the number of γ ’s produced per second is:

Nγ = 2Rπ0 = 2 ΦσN = 2×103 cm−2 s−1 ×45 ·10−27 cm2 ×3.6 ·1024 = 324 s−1.

The mean free path is λ = A/(NAσ) = 37 g cm−2.

Problem 7.4

(a) The masses of the involved particles are: mp = mp = 938.3 MeV, mn =
939.6 MeV, md = 1875.6 MeV, mπ0 = 140 MeV. The binding energy is:
BE = md − (mp + mn) = 2.3 MeV.

(b) The π0 energy can be determined from Eq. (3.11) with
√
s = md + mp :

E∗
π = s − m2

n + m2
π

2
√
s

. (7.11)

Inserting numerical values, one finds Eπ = 1253.5 MeV.
(c) In terms of constituent quarks, the antiproton composition is: p = [uud]; the

deuterium nucleus is made of a proton and a neutron: (pn) = [(uud), (udd)].
The interaction process, due to the strong interaction, consists of the annihila-
tion of a ud pair of the antiproton with a ud pair of the proton/neutron. The
remaining (uu) pair forms the outgoing π0.

Problem 7.5 The masses of particles involved in the reaction are expressed
in MeV. For the reaction (7.1), one has:

K
0 + p → Λ + π+

498 938 1116 140 MeV.

The sum of the masses of the initial state is 1436 MeV; the sum of final masses
is 1256 MeV, smaller than the initial one. The reaction can always take place and
kinetic energy of initial particles is not required (the reaction is above the threshold).
For reaction (7.2), one has:

K0 + p → Λ + K0 + K+

498 938 1116 498 494 MeV.
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The sum of the final state masses is mf = mΛ +mK0 +mK+ = 2108 MeV. Assum-
ing that the proton is at rest, the minimum kinetic energy T = EK0 − mK0 required
for the incoming K0 can be determined using the energy-momentum relativistic
invariant s. The energy-momentum of the initial state is:

[
(EK0 ,pK0) + (mp,0)

]
(7.12)

and its relativistic invariant s is:

s = m2
K0 + m2

p + 2mpEK0 (7.13)

For the final state, assuming that the particles are produced at rest:

s = (mΛ + mK0 + mK+)2 = m2
f (7.14)

By equating Eq. (7.13) with Eq. (7.14), one obtains:

EK0 = m2
f − m2

p − m2
K0

2mp

= 21082 − 9382 − 4982

2 · 938
= 1770 MeV. (7.15)

The reaction can take place only if the kinetic energy of the incoming K0 is larger
than T = EK0 − mK0 = 1770 − 498 � 1270 MeV.

(b) In the second reaction, a (ss) pair must be created by the strong interaction:

K
0
p = [sd][uud] → [uds][du] = Λ0π+ (7.16)

K0p = [ds][uud] → [ds](ss)[uud] = [ds][sud][us] = K0Λ0K+ (7.17)

Problem 7.6 The φ meson has spin 1, the π0 meson has spin 0. The conservation
of momentum in the hypothetical φ → π0π0 decay would imply a relative orbital
moment � = 1 (P-wave). Recall that the bosons follow the Bose–Einstein statistics
and that the wave function of a system of identical bosons must be symmetric for
the exchange of any two bosons. The P-wave decay is therefore forbidden by the
Bose-Einstein statistics since a system of two identical bosons (π0π0) in the P-
wave implies an antisymmetric wave function.

With the same reasoning, the possibility for the Z0 → H 0H 0 decay is excluded,
assuming that the H 0 Higgs boson has spin zero. All decays of a vector boson
(J = 1) in two identical scalar particles (J = 0) are excluded, for example ρ0 →
π0π0.

Problem 7.7 The initial state ψ(3685) consists of a pair of cc quarks: it is an
isospin singlet and its isospin (quantum number different from zero only for u,d

quarks) is I = 0. The final state J/ψ has the same isospin assignment.
The π0 is the neutral particle of a I = 1 isospin triplet; its third component is

Iz = 0. The η is an isospin singlet with I = Iz = 0.
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In the following decay:

ψ(3685) → J/ψ π0

isospin 0 0 1,
(7.18)

the isospin is not conserved and the decay is forbidden for the strong interaction. In
the second decay:

ψ(3685) → J/ψ η0

isospin 0 0 0,
(7.19)

the isospin is conserved and the decay is allowed for the strong interaction.

Problem 7.8 The 0 [udd] resonance decays mainly in p π−.

The width of the 0 resonance is Γ � 100 MeV. With E � Γ and t � τ , and
with the uncertainty principle E · t ≥ �, one gets:

τ ≥ �/Γ = 6.6 · 10−22 MeV s

100 MeV
= 6.6 · 10−24 s � 10−23 s.

Another possible strong interaction decay is 0 → nπ0.

Problem 7.9 The Breit-Wigner resonance formula for the ++ with spin 3/2
is given in Eq. (7.27) . The quantities are expressed in the c.m. system and the
energy and momentum must therefore be calculated in this system. In a first step,
the energy-momentum four-vector in the laboratory system is determined knowing
Tπlab

; in a second step, the c.m. system values are obtained.
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In the laboratory system, the pion energy-momentum four-vector is (Eπlab
,pπlab

),
with Eπlab

= mπ + Tπlab
, and that of the proton at rest is (mp,0). The relativistic

invariant is:

s = [(Eπlab
,pπlab

) + (mp,0)]2 = E2
πlab

+ m2
p + 2Eπlab

mp − p2
πlab

= m2
π + m2

p + 2Eπlab
mp

from which, one finds:

Eπlab
= s − m2

π − m2
p

2mp

(7.20)

The pion energy in the laboratory system corresponding to
√
s = m = 1232 MeV

is obtained from Eq. (7.20):

Eπlab
= 330 MeV; Tπlab

= Eπlab
− mπ = 190 MeV

which corresponds precisely to the first kinetic energy value given in the problem.
The pion momentum p∗

π can now be evaluated in the c.m. system, where the π

and proton energy-momentum four-vectors are respectively, (E∗
π ,p∗

π ) and (E∗
p,p∗

p),
with the condition p∗

π + p∗
p = 0. The relativistic invariant in the c.m. system is:

s = (
E∗

π + E∗
p

)2 = m2
π + p∗

π
2 + m2

p + p∗
p

2 + 2E∗
πE

∗
p

= [
m2

π + m2
p + 2p∗

π
2 + 2E∗

π

(√
s − E∗

π

)]
= [

m2
π + m2

p + 2
(
p∗
π

2 − E∗
π

2)+ 2E∗
π

√
s
]

= [
m2

p − m2
π + 2E∗

π

√
s
]

from which, one gets:

E∗
π = s − m2

p − m2
π

2
√
s

; p∗
π =

√
E∗

π
2 − m2

π (7.21)

(a) For Tπlab
= 190 MeV → Eπlab

= 330 MeV → √
s = m = 1232 MeV and

from Eq. (7.21), one finds:

E∗
π = m2

 − m2
p − m2

π

2
√
m

= 267 MeV; p∗
π =

√
E∗

π
2 − m2

π = 228 MeV

The cross-section has a maximum corresponding to:

σ(Tπlab
= 190 MeV) = σmax = 8π(�c)2

p∗
π

2
= 8π(0.389 GeV2 mb)

(0.228 GeV)2
= 188 mb

(7.22)
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(b) For Tπlab
= 300 MeV → Eπlab

= 440 MeV → √
s =

√
m2

π + m2
p + 2Eπlab

mp

= 1313 MeV and from Eq. (7.21), one finds:

E∗
π = s − m2

p − m2
π

2
√
s

= 329 MeV; p∗
π =

√
E∗

π
2 − m2

π = 298 MeV

The corresponding value of the cross-section is:

σ(Tπlab
= 300 MeV) = 8π(�c)2

p∗
π

2

Γ 2/4

(m − √
s)2 + Γ 2/4

= σmax

(
0.228 GeV

0.298 GeV

)2( 0.1202/4

(1.232 − 1.313)2 + 0.1202/4

)

= σmax(0.58)(0.35) = 0.2σmax

Problem 7.10 The number of scattering centers is Nn = Na = ρ
A
NA:

Nn = 1.137 · 1023 (
C nuclei per cm3)

μ = Nnσ = 1.137 · 1023 · 0.331 · 10−24

= 3.76 · 10−2 (nuclei per cm of thickness)

λ (cm) = 1/μ = 26.5 cm, λ
(
g cm−2) = ρ/μ = 60.2 g cm−2.

Note that μ also represents the surface fraction covered with carbon nuclei
(�3.76%) for a target 1 cm thick.

From Eq. (7.8) , one obtains a simple practical formula:

∣∣∣∣− dI

I

∣∣∣∣ = σ · ρ

A
NAn · dx � σ 0.6

n

A

where σ is expressed in barn, the thickness ρdx in g cm−2, A is the atomic weight
and n is the number of targets per atom (in this case n = 1; if the collision arises on
electrons for example, one has n = Z).

Problem 7.11 All mentioned processes are due to the strong interaction which
conserves the isospin. The amplitudes of initial and final states can be parameterized
in terms of isospin values. Transitions occur only between states of the same isospin.
The transition amplitudes are based on internal mechanisms of the strong interaction
and depend on the isospin values.

(a) π+p → π+p

In terms of isospin (states denoted as |I, Iz〉), one has: |π+〉 = |1,1〉 and |p〉 =
| 1

2 ,
1
2 〉. The combination of the third component produces M = 3/2 and the
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only possible total isospin value is I = 3/2. The amplitude of the transition
probabilities π+p → π+p depends on an isospin-dependent operator A3/2:

〈
π+p

∣∣A3/2
∣∣π+p

〉 =
〈

3

2
,

3

2

∣∣∣∣A3/2

∣∣∣∣3

2
,

3

2

〉
= a3/2 (7.23)

(b) π−p → π−p

In terms of isospin |π−〉 = |1,−1〉; the combination of a π− with a proton
|p〉 = | 1

2 ,
1
2 〉 has third component of the isospin along the quantization axis M =

−1 + 1/2 = −1/2 corresponding to 1 − 1
2 ≤ I ≤ 1 + 1

2 . The Clebsch-Gordan
coefficients are obtained from the box 1 × 1/2 in Fig. 7.1, for the columns

J
3

2

1

2

M −1

2
−1

2

and for the line

m1 m2 − 1
1

2
.

Recalling that a square root must be placed over every coefficient in the table,

the Clebsch-Gordan coefficients are respectively for the first column:
√

1
3 and

for the second column: −
√

2
3 . The final state can therefore be written as the

superposition:

|π−p〉 =
√

1

3

∣∣∣∣3

2
,−1

2

〉
−

√
2

3

∣∣∣∣1

2
,−1

2

〉

The amplitude of the π−p → π−p transition probability is:

〈
π−p

∣∣A∣∣π−p
〉 = 1

3

〈
3

2
,−1

2

∣∣∣∣A3/2

∣∣∣∣3

2
,−1

2

〉
+ 2

3

〈
1

2
,−1

2

∣∣∣∣A1/2

∣∣∣∣1

2
,−1

2

〉

= 1

3
a3/2 + 2

3
a1/2 (7.24)

(c) π−p → π0n

For the π−p interaction, the π0n final state is also possible. These particles, in
terms of isospin, are represented by: |π0〉 = |1,0〉, |n〉 = | 1

2 ,− 1
2 〉. One has in

this case M = −1/2 and 1/2 ≤ I ≤ 3/2. The Clebsch-Gordan coefficients are
obtained following the same procedure as that described above but for the line

m1 m2 0 − 1

2
.
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The Clebsch-Gordan coefficients are respectively for the first column:
√

2
3 and

for the second column:
√

1
3 . The state is thus the superposition of:

∣∣π0n
〉 =

√
2

3

∣∣∣∣3

2
,−1

2

〉
+

√
1

3

∣∣∣∣1

2
,−1

2

〉

The amplitude of the π−p → π0n transition probability is:

〈
π0n

∣∣A∣∣π−p
〉 =

√
1

3

√
2

3
a2/3 −

√
2

3

√
1

3
a1/2 =

√
2

9
a3/2 −

√
2

9
a1/2 (7.25)

(d) The relation between the cross-sections depends on the square of the transition
amplitude and on the phase-space factor. Since all the considered transitions
are two-body decays into particles of (almost) the same mass, the phase-space
factor is the same for the three considered processes. Therefore, one can write:

σa : σb : σc = a2
3/2 : 1

9
|a3/2 + 2a1/2|2 : 2

9
|a3/2 − a1/2|2

One can assume that a3/2 � a1/2 because the corresponding process with
isospin 3/2 can occur through the resonant reaction:

π+p → ++ → π+p

which increases the cross-section. With this hypothesis, one obtains:

σa : σb : σc = a2
3/2 : 1

9
a2

3/2 : 2

9
a2

3/2 = 1 : 1/9 : 2/9

If the a1/2 term is not neglected, the values of a3/2, a1/2 can be estimated from
the measured cross-section ratios. The calculation is an example of the predic-
tive capabilities of the isospin formalism. With the only assumption that the
interaction is governed by the strong interaction, a prediction concerning the
cross-section values can be obtained.

Problem 7.12 This problem must be solved following the procedure and nota-
tion described in Problem 7.11. The strong interaction conserves the isospin of the
combination of a proton |p〉 = | 1

2 ,
1
2 〉 plus a pion |π+〉 = |1,1〉, |π−〉 = |1,−1〉.

The initial state is:

∣∣π−p
〉 =

√
1

3

∣∣∣∣3

2
,−1

2

〉
−

√
2

3

∣∣∣∣1

2
,−1

2

〉
.

The final state is represented by |0〉 = | 3
2 ,− 1

2 〉.
The transition amplitude is therefore:

〈
0

∣∣A∣∣π−p
〉 =

√
1

3

〈
3

2
,−1

2

∣∣∣∣A3/2

∣∣∣∣3

2
,−1

2

〉
=

√
1

3
a3/2.
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In the second case, the initial state is |π+p〉 = | 3
2 ,

3
2 〉, the final one is |++〉 =

| 3
2 ,

3
2 〉 and the transition amplitude is:

〈
++∣∣A∣∣π+p

〉 =
〈

3

2
,

3

2

∣∣∣∣A3/2

∣∣∣∣3

2
,

3

2

〉
= a3/2

Since the phase-space factor is the same in both reactions, one can write:

σ(π−p → 0)

σ (π+p → ++)
= |〈0|A|π−p〉|2

|〈++|A|π+p〉|2 = 1

3
(7.26)

Let us compare the prediction with the experimental results, shown in Fig. 7.1 .

The resonant production of the  baryon occurs at
√
s = 1230 MeV. From the

figure, one observes that the total cross-section of the π+p process is σ(π+p →
++) � 190 mb (see also the analytic calculation given in Problem 7.9). The cross-
section of the π−p process is σ(π−p → 0) � 65 mb. Their ratio (65/190) is very
close to the predicted ratio of Eq. (7.26).

Problem 7.13 The isospin ( Figs. 7.14, 7.15 ) of the involved particles are (in ad-

dition to those already considered in the two previous problems): |K−〉 = | 1
2 ,− 1

2 〉;
|Σ+〉 = |1,1〉; |Σ0〉 = |1,0〉; |Σ−〉 = |1,−1〉; |Λ0〉 = |0,0〉. The initial state is rep-
resented by:

∣∣K−p
〉 =

∣∣∣∣1

2
,−1

2

〉
⊗ |1,−1〉 =

√
1

2
|1,0〉 −

√
1

2
|0,0〉

The four final states are:

(a) |π+Σ−〉 = |1,1〉 ⊗ |1,−1〉 =
√

1
6 |2,0〉 +

√
1
2 |1,0〉 +

√
1
3 |0,0〉

(b) |π0Σ0〉 = |1,0〉 ⊗ |1,0〉 =
√

2
3 |2,0〉 + 0|1,0〉 −

√
1
3 |0,0〉

(c) |π−Σ+〉 = |1,−1〉 ⊗ |1,1〉 =
√

1
6 |2,0〉 −

√
1
2 |1,0〉 +

√
1
3 |0,0〉

(d) |π0Λ0〉 = |1,0〉 ⊗ |0,0〉 = 1|1,0〉
from which one obtains:

(a) 〈π+Σ−|A|K−p〉 = 1
2a1 −

√
1
6a0

(b) 〈π0Σ0|A|K−p〉 =
√

1
6a0

(c) 〈π−Σ+|A|K−p〉 = − 1
2a1 −

√
1
6a0

(d) 〈π0Λ0|A|K−p〉 =
√

1
2a0

Problem 7.16 The transition probabilities of Eq. (7.3) was obtained in the case
of a purely electromagnetic process involving leptons.
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Fig. 7.2 Schematic diagram
of the ρ formation and decay

In the case of an annihilation process of neutral vector mesons ( Fig. 7.19 ) ρ0 =
(uu− dd)/

√
2, ω0 = (uu+ dd)/

√
2, φ0 = ss (collectively denoted as V 0) made of

quark-antiquark pairs with electric charge Qi in units of the proton electric charge,
the partial width Γ is obtained from Eq. (7.3) with the replacements α → αQi and
me → mV :

Γ
(
V 0 → �+�−) = 16πα2(

∑
i Qi)

2

m2
V

|ψ(0)|2 (7.27)

the sum extends over the flavors of the valence quarks of the meson (only the quark
s for the φ0 meson). The wave function ψ(0) represents the spatial superposition
of the qq system. It can be considered as unknown; however, since the interactions
between quarks do not depend on the quark flavors, it can be hypothesized that ψ(0)
is, in first approximation, identical for the three vector mesons considered.

Problem 7.17 Here, we consider the formation and decay of a light meson res-
onance; as schematically illustrated in Fig. 7.2, the ρ resonance is formed in π−p

collisions and subsequently decays into two π+π− which are pseudoscalar mesons
(i.e., with JP = 0−).

The ρ can be regarded as a bound state of two spin zero pions with orbital angular
momentum � = 1. The final state parity is Pf = Pπ+ ×Pπ− × (−1)� = −1. For the
initial state, one has therefore J = 1 and odd parity: JP

ρ = 1−. Note that the JP

assignment to a resonance such as the ω, which decays into 3π , is more complex
and requires the use of a Dalitz diagram.

Let us now determine the isospin of the ρ resonance. The ρ decays into two pi-
ons, which are bosons and must therefore have a wave function symmetric under
their exchange, including the isospin. With Jf =1, the angular momentum wave
function is antisymmetric. To construct a symmetric wave function, the isospin
states must also be antisymmetric under the π ↔ π exchange, and only odd isospin
values are possible. Considering in addition the isospin values of the colliding par-
ticles (pπ−), it can be concluded that the ρ resonance has isospin Iρ = 1. Note that
indeed, the ρ exists in three different charged states, ρ−, ρ0, ρ+, respectively with
the third isospin components I3 = −1,0,1. The G-parity being defined as −1�+J ,
one has IG

ρ = 1+.
The ρ meson is a charge eigenstate with eigenvalue C = −1. The charge

conjugation operation implies the transformation π+π− → π−π+ which corre-
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sponds to the inversion of the spatial coordinates, i.e., to the parity transformation:
C|π+π−〉 = (−1)�|π−π+〉 = −|π−π+〉.

Therefore, one finally can write for the ρ resonance: IG(JPC) = 1+(1−−).
Note that the spin of the ρ can be measured studying the angular distribution of

the flight direction of the two pions in the c.m. system [H91]. It is experimentally
verified that Jρ = 1. In fact, the flight direction of the ρ in the c.m. system can
be chosen as the z axis. In this case, the ρ is polarized and considering the angu-
lar distribution of the two pions in the rest system of the ρ, one has �z = 0. The
eigenfunction of the two pions contains the spherical harmonic function Y 0

� which
gives rise to an angular distribution of the type |Y 0

� (θ,ϕ)|2; for � = 1, this distri-
bution reduces to a cos2 θ distribution only. In practice, a slight deviation from a
cos2 θ distribution is observed: the distribution can be more precisely described by
the function: A + B cos θ + C cos2 θ . This can be explained in terms of interfer-
ence of the amplitude of the background, which is spherically symmetric, with the
amplitude of the resonance.

The reason why no resonance is observed in the π0π0 channel is explained in
Problem 7.6.



Chapter 8
Weak Interactions and Neutrinos

Problems

8.1. Universality of weak interactions. According to the Puppi triangle (see
Sect. 8.4.3 ), the weak interaction occurs with the same characteristics and

same intensity for beta nuclear decays, for the muon decay and for the nuclear
capture of negative muons. Explain the reason, using Feynman diagrams.
[See solutions]

8.2. Neutron and muon decay. Taking into account that the neutron lifetime is
τn = 887 s, and that of the muon τμ = 2.2 · 10−6 s, show that the couplings
in these two cases have the same order of magnitude when considering the
phase space factor.
[Hint: See Sect. 8.4.1 ]

8.3. Feynman diagrams. Draw the Feynman diagrams for the following decay
and interaction processes:
(a) μ− → e−νeνμ;
(b) τ+ → e+νeντ ;
(c) νμe

− → νμe
−;

(d) μ+e− → νμνe.
[See solutions]

8.4. Axial and vector couplings. Using the data for the β decay of 14
8 O and of

6
2He reported in Table 8.1 , determine the ratio |gA/gV |.
[See solutions]
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8.5. Sargent rule from Σ± decays. The Sargent rule, Eq. (8.18) :

W = (Γi/Γ )

τ
� G2

FE5
0 � G2

Fm5 (8.1)

can be tested through the Σ± decay.
(a) Show in terms of quark content that the Σ+ is not the antiparticle of

the Σ−.
(b) Draw the Feynman diagrams and calculate, using the particle masses re-

ported in the Review of Particle Physics [P10], the ratio between the life-
times of the following semileptonic decays:

Σ+ → Λ0e+νe; Σ− → Λ0e−νe

(c) Using the lifetimes and branching ratios reported in [P10] for the above
semileptonic decays, compare the measured ratio of decay fractions with
the expected one.

[See solutions]

8.6. Strong and weak interaction lifetimes: the ρ0 and K0 decays. The ρ0 and
K0 mesons decay mainly in π+π−. Explain why the ρ0 lifetime is of the
order of 10−23 s and that of the K0 of the order of 10−10 s. Draw the Feynman
diagrams for both decays.
[See solutions]

8.7. Pion decay branching ratios. Calculate the ratio of the phase space factors
for the following decays:

π− → e−νe

π− → μ−νμ

Estimate the two lifetimes and compare them with the experimental values.
Determine if the results are consistent with the hypothesis that the lifetime is
purely determined by the phase space factor.
[Solution: see Sect. 8.10 ]

8.8. Strange and charmed particle decay. Draw the Feynman diagrams, specify
the couplings and comment the following decays (in bracket, the composition
in terms of the valence quarks):
(a) Λ+

c [cud] → π+Λ0

(b) D+ [cd] → π+K
0

(c) B+ [bu] → π+D
0

(d) B
0
s [bs] → π−D+

s

(e) Λ0
b [bud] → π−Λ+

c .
[See solutions]
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Fig. 8.1 Bubble chamber trace of the first observed Ω− baryon [8B64]. The event was discov-
ered in 1964 by a team of physicists from the Brookhaven National Laboratory, the University of
Rochester and Syracuse University, led by N. Samios of Brookhaven, using the 80-inch bubble
chamber

8.9. Non-leptonic D0 decays. Draw the Feynman diagrams of the following D0

meson decays and estimate the relative amplitudes:
(a) D0 → K−π+
(b) D0 → π−π+
(c) D0 → K+π−
[See solutions]

8.10. Suppression of �S = 1 NC interaction. It is experimentally found that the
NC/CC ratio for the charged K decays is:

(
K+ → π+νν

)
/
(
K+ → π0μ+νμ

)
< 10−8

This is one of the experimental evidence that the weak neutral current decays
with S = 1 change in strangeness are suppressed.
(a) Draw the Feynman diagrams of the two decays.
(b) Check that, assuming the existence of the c quark, the transition proba-

bilities induced by a S = 1 neutral current is vanishing.
[See solutions]

8.11. The Ω− decay products. Figure 8.1 shows the bubble chamber picture of the
first produced Ω− event. An incoming K− meson interacts with a proton in
the liquid hydrogen of the bubble chamber and produces an Ω−, a K0 and a
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K+ meson. All these unstable hadrons decay into other particles. To have an
idea of the scale of the picture, the length of the Ξ0 track is 3 cm.
(a) Show that the reaction K−p → Ω−K0K+ is the minimal reaction for the

production of a Ω−;
(b) Evaluate the minimum momentum of the K− in the laboratory system

in order to produce the Ω−. The K− of the experimental beam had a
momentum of 5 GeV/c.

(c) Discuss the decay of the Ω− presented in the picture.
[See solutions]

8.12. Feynman diagrams and couplings. Draw the Feynman diagrams, specify
the couplings and comment the following decays:
(a) Λ0 → pe−νe

(b) Ξ− → Λ0π−
(c) νμp → μ−++
(d) D0 → K−μ+νμ
(e) D0 → K+μ−νμ.
[See solutions]

8.13. Muon and tau decay. The muon is a charged particle whose mass is
105 MeV/c2 and lifetime ∼2 · 10−6 s. It decays into an electron (me =
0.5 MeV/c2), a neutrino and an antineutrino.
(a) The electron is the only observable particle in the muon decay. Explain

the characteristic of the electron spectrum necessary to demonstrate that
the muon decay at rest is not a two-body decay.

(b) In the case of muon decaying at rest, calculate the maximum electron
energy if three particles are present in the final state.

(c) The τ (mτ = 1777 MeV/c2) lepton decays with the same characteristic of
the muon. Estimate the τ lifetime.

8.14. The CKM matrix. Using the CKM matrix (data from [P10]):
⎛
⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠

=
⎛
⎝0.97428 ± 0.00015 0.2253 ± 0.0007 0.00347 ± 0.00016

0.2252 ± 0.0007 0.97345 ± 0.00015 0.041 ± 0.001
0.0086 ± 0.0003 0.040 ± 0.001 0.99915 ± 0.00005

⎞
⎠

calculate the decay fraction (or branching ratios, BR) of the W boson decays
into all possible quark-antiquark and lepton-antilepton pairs. Remember that
the sum of all the BRs must be equal to 1. For the hadronic decays, the color
factor Nc = 3 must be used.
[See solutions]
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8.15. Bilinear forms. Regarding the bilinear forms defined in Sect. 8.16.1 , prove
that:
(a) The scalar ψψ is a relativistic invariant quantity.
(b) The four-vector current ψγμψ is a relativistic invariant quantity.
[See solutions]

8.16. Phase space in neutron decay. Demonstrate that in the case of the neutron
decay, and neglecting the mass of the electron in the final state, the integral of
the phase space Eq. (8.9) gives:

∫ E0/c

0
p2
e (E0 − Ee)

2dpe = E5
0

30c3
. (8.2)

[See solutions]

8.17. Tau decay branching ratios. The decay fractions of the τ− decay are re-
ported below (data from [P10]):

Particle Mass Mean life Decay mode Decay fraction (Γi/Γ )

(MeV) ×10−15 (s)

τ− 1776.82 ± 0.16 (290.6 ± 1.0) μ−νμντ (17.36 ± 0.05)%

e−νeντ (17.85 ± 0.05)%

h−ντ (11.61 ± 0.06)%

π−ντ (10.91 ± 0.07)%

K−ντ (6.96 ± 0.23) × 10−3

h− ≥ 1 neutral ντ (37.06 ± 0.10)%

(a) Explain why the branching ratios for τ− → μ−νμντ is almost equal to
that of τ− → e−νμντ .

(b) Evaluate the expected ratio between decay fractions

Γ (τ− → hadrons ντ )

Γ (τ− → μ−νμντ )
(8.3)

and compare the prediction to the measured value.
(c) Compare the measured ratio between decay fractions:

Γ (τ− → K−ντ )

Γ (τ− → π−ντ )
(8.4)

with the expected one.
[See solutions]
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Fig. 8.2 Pulse signal shape: (a) almost rectangular and (b) less rectangular. (c) Unipolar and
bipolar signals. The horizontal axis measures time while the vertical axis indicates an electric
current or voltage [L87]

8.18. �S = 1 K decay. Draw a possible Feynman diagram for the K0 → μ+μ−
decay. What can we conclude from the fact that the measured branching ratio
of this reaction is < 10−7?
[See solutions]

8.19. WI decay with spectator quarks. Show that in the hadron model in which
a quark undergoes a decay and the others act as “spectators”, the lifetimes of
the D+(cd), D0(cu) and D+

s (cs) mesons are almost equal.
[See solutions]

Supplement 8.1: Signals, Data Transmission and Electronics

Particle detectors provide information in the form of electric signals, which must
be processed by a series of electronic components followed by on-line and off-line
computers. Here, a few examples of these rather complex systems are schematically
illustrated, emphasizing their modularity, i.e., the possibility to combine them into
modules that can be exchanged. More details can be found in specialized texts [L87,
8T10].

Electric Signal Figure 8.2 shows an output signal of a particle detector. Its main
characteristics are:

(i) Baseline: it is the base reference voltage or current level in absence of signal.
(ii) Signal height or amplitude: the amplitude is the signal maximum height with

respect to the baseline.
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Fig. 8.3 (a) Schematic of a coaxial cable and (b) its equivalent circuit per unit length, (c) distortion
of the signal, (d) cable termination with a terminating resistor R

(iii) Signal width: the signal width is the width at half of the signal maximum.
(iv) Rise time: the rise time refers to the time, measured on the initial part of the

pulse, required for the signal to change from 10% to 90% of its amplitude.
(v) Fall time: the fall time refers to the time, measured on the final part of the

pulse, required for the signal to change from 90% to 10% of its amplitude.
(vi) Analog signals such as the signals shown in Fig. 8.2: they are continuous

signals containing the whole pulse information (such as amplitude, shape,
etc.) as a function of time.

(vii) Digital or logic signals: they are quantized in a sequence of discrete values,
usually: yes or no.

(viii) The signals are fast if the rise time is typically of the order of a few nanosec-
onds.

(ix) The signals are slow if the rise time is typically of the order or larger than a
μs.

(x) Bandwidth: The Fourier analysis of a signal provides information about the
frequency and signal distortion. An electronic system sustains the signal lin-
early, i.e., without distortion, in a certain frequency bandwidth, while outside
of the bandwidth, some frequencies are attenuated or eliminated. A fast elec-
tronics, used with large signals about t = 5 ns wide, must have a bandwidth
ν ≥ 1/t � 200 MHz.

Electric Signal Transmission Electrical signals are usually transmitted through
coaxial cables having a characteristic impedance (see Fig. 8.3a):
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(i) characteristic impedance (typical): Z = V/I � √
L/C, Fig. 8.3b.

(ii) Termination: a cable must be terminated on an impedance equal to its typical
impedance, Fig. 8.3d.

(iii) Reflections: if a cable is not terminated with a resistance equal to its charac-
teristics impedance, a signal is generated at the cable end and is reflected with
the same sign, if the final impedance is high, with the opposite sign if the
impedance is small.

(iv) Signal distortion: in passing through a cable, the signal is distorted as shown
in Fig. 8.3c.

Electronics Consider the following modules:

(i) Preamplifiers: they are usually very close to the detector; they amplify weak
signals and send them on a cable to the rest of the electronics. They amplify
voltages, charges or currents.

(ii) Amplifiers: they amplify signals from a preamplifier and form them in a way
to be conveniently used later.

(iii) Non-linear amplifiers: they can amply, for instance, the part of the signal
above a given threshold.

(iv) Shapers: they shape the signals through delay lines or RC differentiator and
integrator circuits.

(v) Fan-out: are active or passive circuits that distribute a signal to various elec-
tronic circuits.

(vi) Fan–in: they accept different signals and distribute a signal sum.
(vii) Discriminators: they respond to input signals with a height above a certain

threshold; they produce a standard digital output.
(viii) Differential discriminators (single channel analyzer): they are characterized

by two thresholds: a lower and a higher; they allow to select only the signal
pulses whose amplitudes lie within the two thresholds.

(ix) Analog-to-Digital Converters (ADC): they convert the height or the integral
of a signal into a digital number. For instance, the height of a signal between
0 and 5 V may be converted by a 10-bit ADC in a number between 0 and
210 − 1 = 1023. The time necessary for the ADC to perform the analog-to-
digital conversion is ≥1 μs. The so-called flash ADC are very fast compared
to other ADC types, so a single ADC flash can be used to analyze various
channels in sequence, or to analyze the subsequent amplitudes of a pulse,
functioning in this way as a Waveform Analyzer (WFA).

(x) Multi-Channel Analyzers (MCA): they sort the incoming pulses according
to their height and record them in dedicated memories. An ADC may be an
essential element of a MCA.

(xi) Time-to-Digital Converters (TDC): they convert the time between two pulses
into a digital number.

(xii) Coincidence circuits: these are logical units with two input channels that
provide a logic output signal when two input signals are present at “the same
time”, i.e., when the two input signal are coincident.
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(xiii) Flip–flop: this is a circuit with two logic inputs that remains stable in one
of the two logic states until the arrival of a control signal which makes it
change state.

(xiv) Gate generators: they are controllable unit generating a signal of appropriate
length that may be used as a “gate” for ADC, TDC, analyzers, etc. . . .

(xv) Recorders: they record and store signal pulses.
(xvi) Ratemeter: it instantly provides the average number of pulses arriving in a

certain unit of time, for example, every 2 s.
(xvii) Scaler: this is the unit that counts the number of pulses and displays it in a

viewer.
(xviii) Attenuators: in some cases, it is necessary to attenuate the signal pulse before

processing it.

Some electronic modules can be combined to form the electronic logic of an
experiment (or of a part of it). The electronic logic is mainly used to define simple
criteria to rapidly decide if an event must be permanently stored (the trigger, see
Supplement 9.1). Trigger systems are necessary when only a small fraction of the
total event rate can be recorded due to real-world limitations in data storage capacity
and rates. Since experiments are typically searching for interesting events (such as
decays of rare particles, or the combination of the positron and neutron signals, as
in the Cowan and Reines neutrino experiment [8C97]) that occur at a relatively low
rate, trigger systems are used to identify the events that should be recorded for later
analysis.

The present generation of experiments at accelerators can have event rates larger
than 1 MHz and trigger rates that can be below 10 Hz. For example, the Large
Hadron Collider (LHC) has a huge event rate and each experiment has up to hundred
million electronic channels. For this reason (as shown in Supplement 10.1), data
must be reduced by an hardware trigger, a software trigger, and processed with
huge computer facilities.

Solutions

Problem 8.1 All processes foresee the exchange of a W± boson. The muon de-
cay (for instance, μ− → e−νeνμ) is shown in Problem 8.3a. A S = 0 process

corresponds, e.g., to the neutron decay, as shown in Fig. 8.3 . The muon capture

corresponds to the process: μ−p → nνμ, and its Feynman diagram is equal to that
shown in Fig. 5.5c with the exchange e− → μ−, νe → νμ.

Problem 8.3 See Figs. 8.4, 8.5, 8.6, 8.7.

Problem 8.4 The decay 14
8 O → 14

7 N∗ e+ν is a Fermi transition; the transition

probability, given in Eq. (8.3) , is proportional to:

G2
F |MF |2 = G2

FmV
i,sg

2
V = 1.52 × 10−8 MeV2 fm6
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Fig. 8.4 Problem 8.3(a)
Feynman diagram for
μ− → e−νeνμ

Fig. 8.5 Problem 8.3(b)
Feynman diagram for
τ+ → e+νeντ

Fig. 8.6 Problem 8.3(c)
Feynman diagram for
νμe

− → νμe
−. A similar

diagram holds for the
ντ e

− → ντ e
− scattering. For

the νee
− → νee

− scattering,
in addition to the Z0, there is
also the W± exchange, as

shown in Fig. 12.10

Fig. 8.7 Problem 8.3(d) Feynman diagrams for μ+e− → νμνe . As explained in Fig. 4.1 for an

electromagnetic scattering, the process of a W− emission from the electron (left) and subsequent
absorption by the μ+ is indistinguishable from the process of a W+ emission from the μ+ and
absorption from the e− (right)

where the spin and isospin multiplicity factor is mV
i,s = 2 (see Table 8.1 ).

The decay 6
2He → 6

3Li e−ν occurs through a pure Gamow-Teller transition (the
change in the nuclear angular momentum is equal to one). In this case, the factor
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Fig. 8.8 Σ± composition in
term of valence quarks, and
their semileptonic decay

mA
i,s = 6 and one has:

G2
F |MGT |2 = G2

FmA
i,sg

2
A = 7.45 × 10−8 MeV2 fm6

Calculating the ratio between the two transition probabilities, one obtains:
(

6g2
A

2g2
V

)
=

(
7.45 × 10−8

1.52 × 10−8

)

from which, one derives that: ∣∣∣∣gA

gV

∣∣∣∣ = 1.27

value which is very close to the value reported in Eq. (8.26) .

Problem 8.5

(a) In term of quark composition, the baryons with strangeness S = 1 are:

Σ+ = (uus), mΣ+ = 1189.37 MeV;
Σ− = (dds), mΣ− = 1197.45 MeV

Because of the slight mass difference between the u,d quarks, there is a mass
difference between the positive and negative Σ baryons.

(b) The Feynman diagrams for the Σ+ and Σ− semileptonic decay into a Λ0 are
shown in Fig. 8.8. According to the Sargent rule, Eq. (8.1), the probability tran-
sition for a three body decay depends on the fifth power of the free energy avail-
able in the final state E0, and E0 � m, the mass difference between hadrons
in the initial and final states. The final state particle masses, in the consid-
ered semileptonic Σ+ and Σ− decays, are the same, with mΛ = 1115.68 MeV.
Therefore, one obtains:

in the Σ+ → Λ0e+νe: m+ = (1189.37 − 1115.68) = 73.7 MeV

in the Σ− → Λ0e−νe: m− = (1195.45 − 1115.68) = 79.8 MeV
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Fig. 8.9 Strong interaction decay ρ0 → π+π−

Fig. 8.10 Weak interaction
decay K0 → π+π−

The predicted lifetime ratio, according to the Sargent rule, is:

τΣ−

τΣ+
= W+

W−
�

(
73.7

79.8

)5

= 0.67 (8.5)

(c) The measured ratio is obtained from the Σ± lifetimes and branching ratios:

W+ = BR+ · 1

τΣ+
; W− = BR− · 1

τΣ−

where (from PDG):

BR+ = BR(Σ+ → Λ0e+νe) = 2.0 × 10−5

BR− = BR(Σ− → Λ0e−νe) = 5.7 × 10−5

τΣ+ = 0.8018 · 10−10 s and τΣ− = 1.479 · 10−10 s. Finally, one obtains:

(
W+
W−

)
mea

= BR+ · τΣ−

BR− · τΣ+
= 2.0 · 10−5 · 1.479 · 10−10

5.7 · 10−5 · 0.8018 · 10−10
� 0.64 (8.6)

which is in good agreement with the expected value (8.5).

Problem 8.6 The ρ0 decay in two pions is due to the strong interaction (SI),
Fig. 8.9. The corresponding lifetime is that characteristic of the SI. In terms of
quarks, the ρ composition is ρ0 = 1√

2
(uū − dd̄).

In terms of quarks, the K0 composition is K0 = ds̄; it is the lighter strange
meson and cannot decay through the strong interaction, which conserves the
strangeness. It can therefore decay only through the weak interaction with a much
longer lifetime, Fig. 8.10.
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Problem 8.8 In the first two decays shown here below, there is a transition from a
quark c to a quark s implying a strangeness variation (S = 1). These decays cannot
proceed via strong interaction, which conserves the quark flavor, but can arise only
through weak interaction, with much longer lifetimes. For the last three decays, one
has instead a transition with a flavor variation from a quark b to a quark c.

(a) In terms of quarks, Λ+
c = [cud]; it is a charmed baryon. The considered decay

is Λ+
c → π+Λ0. The Λ0 composition is Λ0 = [sud].

(b) The D+ composition is D+ = [cd]; it is a charmed meson. The decay consid-

ered here is D+ → π+K
0
. The K

0
composition is K

0 = [sd].

(c) The B+ composition is B+ = [bu]; it is a beauty meson. The decay designed

here is B+ → π+D
0
. The D

0
composition is D

0 = [cu].

(d) The B0
s composition is B0

s = [bs]; it is a beauty meson. The decay designed

here is B0
s → π−D+

s . The D+
s composition is D+

s = [cs].

(e) The Λ0
b composition is Λ0

b = [bud]; it is a beauty baryon. The decay designed
here is Λ0

b → π−Λ+
c . The Λ+

c composition is Λ+
c = [cud].
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Problem 8.9 They are three non-leptonic weak decays. In terms of valence
quarks, the compositions of the particles involved are:

D0 = [cū], K− = [sū], K+ = [s̄u],
π+ = [ud̄], π− = [dū]

(a) D0 → K−π+
It is a Cabibbo favored decay: the coupling constants at the two vertices con-
nected by the W vector boson correspond to transitions of the type c → s

and u → d , respectively. Both amplitudes are proportional to cos2 θC . The
transition probability (the product of the two amplitudes) is proportional to
[cos2 θC]2 � 0.90.

(b) D0 → π−π+
It is a Cabibbo suppressed decay: the coupling constant corresponding to the
c → d transition is proportional to sin θC ; the coupling constant correspond-
ing to the u → d transition is proportional to cos θC . The total transition prob-
ability is proportional to the product of the square of the coupling constant:
sin2 θC cos2 θC � (0.22)2 � 0.05.

(c) D0 → K+π−
It is a Cabibbo doubly suppressed decay: the coupling constant corresponding to
the c → d vertex is proportional to sin θC ; the coupling constant corresponding
to the s → u vertex is also proportional to sin θC . The total transition probability
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Fig. 8.11 Feynman diagrams
for the charged current (CC)
weak decay K+ → π0μ+νμ
and the neutral current (NC)
weak decay K+ → π+νν

is proportional to the product of the square of the coupling constant: [sin2 θC]2 �
3 × 10−3.

The three processes have therefore relative amplitudes (neglecting mass dif-
ferences in the final state) (a) : (b) : (c) = 0.90 : 0.05 : 0.003. The measured
branching ratios (see the Review of Particle Physics [P10]) are (a) : (b) : (c) =
3.8% : 0.14% : 0.015%, in qualitative agreement with the prediction.

Problem 8.10 The Feynman diagrams for the charged current and neutral current
K+ decays are shown in Fig. 8.11.

(b) Assuming the existence of the u,d, s quarks only, the mechanism which rotates

the (d, s) quarks:
(

u

dc

) = (
u

d cos θc+s sin θc

)
includes a S = 1 term in the NC

current with a coupling ∝ sin θc cos θc:

(u, dc)

(
u

dc

)
= (u, d cos θc + s sin θc)

(
u

d cos θc + s sin θc

)

= uu + (dd cos2 θc + ss sin2 θc)︸ ︷︷ ︸
S=0

+ (sd + sd) sin θc cos θc︸ ︷︷ ︸
S=1

.

With the introduction of the c quark and a second doublet:
(

c

sc

) =
(

c

s cos θc−d sin θc

)
, the neutral current can be rewritten in the form:
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(u, dc)

(
u

dc

)
+ (c, sc)

(
c

sc

)

= uu + cc + (dd + ss) cos2 θc + (ss + dd) sin2 θc︸ ︷︷ ︸
S=0

+ (sd + sd − sd − sd) sin θc cos θc︸ ︷︷ ︸
S=1

(8.7)

and the term with S = 1 is automatically cancelled.

Problem 8.11

(a) In terms of quarks, the compositions of particles involved are:

K− = [su]; p = [uud]; Ω− = [sss]; K0 = [ds]; K+ = [us]

The creation of the Ω− proceeds through the strong interaction; a uu pair in the
initial state annihilates, and two ss pairs are created in the final state:

K−p = [su][uud] → s(uu)ud → s(ssss)ud → [sss][sd][su] = Ω−K0K+

The kaons are the strange mesons with the lowest mass.
(b) The masses of the involved particles are:

mK± = 494 MeV; mK0 = 498 MeV; mp = 938 MeV;
mΩ− = 1674 MeV

Using the discussion of Problem 3.10, one has s = (mΩ− + mK0 + mK+)2 =
(2666)2 MeV2 and the minimum energy of the incoming K− is:

EK− = s − (m2
p + m2

K−)

2mp

= 2695 MeV;

pK− =
√
E2

K− − m2
K− = 2650 MeV/c

The 5 GeV/c of the beam is sufficient to produce the Ω− baryon.
(c) The momentum of the Ω− in the final system is comparable with its mass; the

ratio p/m ∼ 1 and the particle travels, during its lifetime τ , a path length L = cτ

(see Problem 1.9). The Ω− path length observed in the picture of Fig. 8.1 is
L ∼ 2 cm. Its lifetime is τΩ � L/c ∼ (2 cm)/(30 cm/ns) ∼ 10−10 s. (Compare
the result with the measured lifetime as reported in Table 7.3 .)

The Ω− is a S = −3 particle. In the picture, it decays into a neutral par-
ticle plus a π−. The latter is identified by energy-momentum measurement in
presence of a magnetic field. As the strong and electromagnetic interactions
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conserve the strangeness, the Ω− decay occurs trough weak interaction. The
favorite channel for the weak decay of the s quark is:

Ω− = (ss)s → (ss)uW− → [
(ss)u

][du] = Ξ0π−

the (ss) pair in brackets represents spectator quarks. As the path length of the
Ξ0 is similar to that of the Ω−, its lifetime is also of the order of 10−10 s.

The Ξ0 decays into three particles: two of them are γ -rays (denoted with
γ1, γ2 in the picture), and each of them produces an e+e− pair. The γ1, γ2 are
likely produced by a π0 → γ γ decay. The π0 lifetime is ∼ 10−16 s and its path
length of ∼ 10−6 cm is not visible in the picture. The particle almost collinear
with the Ξ0 must be a hadron. The Ξ0 decay is a S = 1 weak interaction
process:

Ξ0 = (su)s → (su)uW− → (su)u[du] = [
(su)d

][uu] = Λ0π0

The Λ0 has a path length (and a corresponding lifetime) 2–3 times larger than
that of the Ω− and of the Ξ0.

Finally, the Λ0 decays into two charged particles: a π− and a proton. Its
S = 1 decay channel is:

Λ0 = (ud)s → (ud)uW− → (ud)u[du] = [
u(ud)

][du] = pπ−

The proton is stable; the charged pions have lifetime sufficient to escape the
region of the picture.

Problem 8.12

(a) The decay Λ0 → pe−νe is a semileptonic weak decay of the Λ baryon. Because
of the s → u flavor transition, this decay is Cabibbo suppressed and the matrix
element is proportional to geνgus = Gs = GF sin θC (see Eq. (8.48c) ).

(b) The Ξ− → Λ0π− is a nonleptonic weak decay. In terms of quarks, it corre-
sponds to the same s → u transition as in the case (a). The W− here decays into
a ud quark pair. The matrix element is proportional to gudgus = GF sin θc cos θc
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(c) The νμp → μ−++ reaction is a weak interaction process with the exchange
of a W− boson. The coupling at the quark vertex is gud and at the lepton vertex
is gμν = geν for the lepton universality. The matrix element is proportional to
gudgeν = GF cos θc

(d) The D0 → K−μ+νμ is a weak decay with a c → s flavor transition. The matrix

element is proportional to geνgcs = GF cos θC (see Eq. (8.58a) ). The c quark

prefers to decay (by weak interaction) in the s quark, see Fig. 8.20 .

(e) The D0 → K+μ−νμ decay is strongly suppressed. In fact (referring to the
above D0 → K−μ+νμ diagram) as quark → antiquark transitions are forbid-
den, it requires a second-order weak interaction transition u → s and c → u.
Second-order means that two W bosons must be exchanged in the Feynman
diagram.

Problem 8.14 In the following table, from left to right are reported: the W+ decay
channel; the square of the CKM coupling times the color factor; the relative decay
fraction. The decay channels with a t quark are forbidden, as mW <mt .
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Decay Nc × V 2
ij BR(%)

W+ → ud Nc × V 2
ud = 3 · 0.9742 = 2.846 31.5%

W+ → cd Nc × V 2
cd = 3 · 0.2252 = 0.152 1.8%

W+ → us Nc × V 2
us = 3 · 0.2252 = 0.152 1.8%

W+ → cs Nc × V 2
cs = 3 · 0.9732 = 2.840 31.5%

W+ → ub Nc × V 2
ub = 3 · 0.00352 = 3.6 · 10−5 4 · 10−6

W+ → cb Nc × V 2
cb = 3 · 0.0412 = 0.048 0.1%

W+ → e+νe V 2 = 1 11.1%

W+ → μ+νμ V 2 = 1 11.1%

W+ → τ+ντ V 2 = 1 11.1%

Sum 9.038 100%

It is easy to verify that the W decays into hadrons represent 67% of the cases, while
the leptonic decay amounts to 33%.

Problem 8.15 A Lorentz transformation between two inertial frames along the x

axis with relative velocity β = v/c can be expressed as:

x′
μ =

∑
ν

aμν(β)xν; aμν =

⎛
⎜⎜⎝

(1 − β2)−1/2 −β(1 − β2)−1/2 0 0
β(1 − β2)−1/2 (1 − β2)−1/2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

In Appendix 4 , we show that the Dirac equation is a relativistic invariant if its
solutions are represented by functions that satisfy the relation:

ψ ′ = Sψ; with S−1γ μS =
∑
ν

aμνγ
ν

where S is an operator that acts only on the spinor part of the wave function ψ .

(a) Regarding the relativistic invariance of the scalar:

ψψ
Lorentz−−−−→ ψ

′
ψ ′ = (

ψS−1)(Sψ) = ψ
(
S−1S

)
ψ = ψψ.

which shows that the quantity ψψ does not depend on the reference system, as
required for a scalar quantity.

(b) Regarding the relativistic invariance of the four-vector:

ψγμψ
Lorentz−−−−→ ψ

′
γ μψ ′ = (

ψS−1)γ μ(Sψ) = ψ
(
S−1γ μS

)
ψ

=
∑
ν

aμνψγ μψψψ.
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The last equality shows that the quantity ψγμψ is correctly transformed as a
space-time four-vector.

Problem 8.16 Neglecting the electron mass, one has: Ee = pec; therefore, one
can write:∫ E0/c

0
p2
e (E0 − pec)

2dpe

=
∫ E0/c

0
p2
e

(
E2

0 + p2
e c

2 − 2E0pec
)
dpe

=
[
p3
eE

2
0

3
+ p5

e c
2

5
− 2E0p

4
e c

4

]E0/c

0
=

[
20 + 12 − 30

60

E5
0

c3

]
= E5

0

30c3
.

Problem 8.17

(a) The branching ratio for the leptonic decays are almost equal because mτ �
mμ,me and the energies available in the final state are almost the same. Due
to the lepton universality, the matrix elements for the e−νe and μ−νμ are the
same.

(b) The decay into hadrons takes place through a qq pair. Only combinations of
quarks u,d, s are allowed, as the c, b, t hadrons have masses larger than that of
the τ . The transition probability for the τ− → du + ντ process is proportional
to G2

F cos2 θc � 0.95G2
F , where θC � 0.23 is the Cabibbo angle. The transition

probability for τ− → su + ντ is proportional to G2
F sin2 θc � 0.05G2

F . The dif-
ference between the particle masses in the final state is small compared to the τ

mass, and the phase space factor is almost the same for the decay into quarks or
leptons.

Each quark flavor, however, has three degrees of freedom (Nc) due to the
color quantum number. The expected ratio between the decay probabilities into
hadrons or muons is:

Γ (τ− → hadrons + ντ )

Γ (τ− → μ−νμντ )
� Nc × Γ (τ− → duντ )

Γ (τ− → μ−νμντ )
= 3 × G2

F cos θ2
c

G2
F

� 2.85

The experimental fraction due to all hadronic decays is obtained by adding the
different final state channels: a hadron and a neutrino; a hadron plus at least one
neutral particle and a neutrino:

Γ (τ− → hadrons + ντ ) = Γ (h−ντ ) + Γ (h− ≥ 1 neutral ντ )

= 0.12 + 0.37 = 0.49

so that, one has:

Γ (τ− → hadrons ντ )

Γ (τ− → μ−νμντ )
= 0.49

0.174
= 2.8

in good agreement with the expected value.



Solutions 101

Fig. 8.12 Example of a
Feynman diagram with a
S = 1 neutral current:
K0 → μ+μ−

(c) Experimentally the ratio Γ (τ−→K−ντ )
Γ (τ−→π−ντ )

= 0.696
10.91 = 0.064.

The decay reported in the denominator is a decay τ− → du + ντ ∝
G2

F cos2 θc. The decay reported in the numerator instead is of the type τ− →
su + ντ ∝ G2

F sin2 θc. The expected ratio is therefore � 0.05
0.95 = 0.053.

Problem 8.18 A Feynman diagram for the possible K0 → μ+μ− decay would
necessarily imply the transformation of a quark pair into leptons via a neutral cur-
rent weak interaction (see Fig. 8.12). This would correspond to a S = 1 transition.
The non-observation of such processes (with a branching ratio BR < 10−7) has led
to the hypothesis that S = 1 neutral currents are not allowed. From the theoret-
ical point of view, this required the introduction of a new quark (the quark c, see
Sect. 8.14.2 ).

Problem 8.19 The lifetimes for the three particles are (from PDG [P10]):
τ(D+) = 1040 × 10−15 s, τ(D0) = 410 × 10−15 s and τ(Ds) = 500 × 10−15 s.
As the strong interaction conserves the flavor, the allowed decay modes are due
to the weak interaction (as evident from the long lifetimes). In the spectator quark
model of weak decays, it is assumed that the non-decaying, or spectator, quarks do
not interact with products of the virtual decay of the other. The three particles are
charmed mesons: the c quark can decay:

c → s ∝ cos2 θc; c → d ∝ sin2 θc

The amplitude probability for the decay of the c quark in the D0,D+,D+
s is the

same for the three mesons.
In the non-strange D0,D+ mesons, the small mass difference between the u or

d quarks allows the decay:

d → u and u → d ∝ cos2 θc

but the phase-space factor is small.
In the strange D+

s meson, the only allowed decay is:

s → u ∝ sin2 θc

but, due to the large mass difference between the two quarks, the phase-space factor
is large. As the decay probability is the product of the amplitude probability and the
phase-space factor, there is a compensation effect for the u,d and s decays of the
second quark in the D mesons.
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Chapter 9
Discoveries in Electron–Positron Collisions

Problems

9.1. The strong coupling constant. Using the data shown in Fig. 9.4 and the po-

tential given in Eq. (9.16) , estimate the value of the strong coupling constant

αs at the energy of charmonium formation. Assume that mcc
2 = 1550 MeV.

[See solutions]

9.2. Event rate in e+e− collider. In a small electron-positron collider of R = 10 m
radius, each beam has a current intensity of I = 10 mA and a transverse area
of S = 0.1 cm2.
(a) Assuming that each of the two e− and e+ beams is contained in one single

bunch and that the beams collide head-on twice per revolution, calculate
the collider luminosity in cm−2 s−1.

(b) The cross-section for the reaction e+e− → π+π−π0 at the peak of the ω

resonance is σ = 1.5 μb. Calculate the number of observed events per hour
for this process.

[See solutions]

9.3. Beam attenuation in the beam pipe. The vacuum in the pipe of an electron
accelerator has a pressure of p = 3 · 10−4 tor. The electron beam corresponds
to an average current of I = 60 mA. If a one meter long (l = 1 m) section is
considered, assuming that the residual gas inside the vacuum pipe is made of
hydrogen atoms and knowing that the e−p → e−p cross-section is σ = 1 μb,
calculate the number of beam-gas collision events expected in one second.
[Suggestion: see Problem 3.16]

9.4. Design LEP luminosity. Determine the theoretical luminosity (see Sect. 3.3 )
of the LEP accelerator using the following parameters: np = na = 4, number of
circulating particle/antiparticle bunches; f = 11240 Hz, revolution frequency;
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I = 1 mA, intensity of the circulating current per beam; σh = 300 μm, beam
width; σv = 8 μm beam height.
[See solutions]

9.5. LEP luminosity from the forward detector. Determine the LEP luminosity
at

√
s = 91 GeV using the experimental information of a forward detector able

to measure elastic e+e− → e+e− collisions. The forward detector covers the
solid angle: 40 mrad < θ < 150 mrad, 0 < ϕ < 2π , and the measured e+e− →
e+e− event rate is R = 0.20 s−1.
[A: (8πα2

�
2c2)

E2 ( 1
1−cos θmin

− 1
1−cos θmax

) = 3 · 1030 cm−2 s−1]

9.6. Radiative return to the Z0. In the case of an e+e− collider, the effective c.m.
energy

√
s
′ is smaller than the initial one,

√
s, if a photon is emitted from the

primary positron or electron. Assuming that the photon energy is Eγ , calcu-
late s′. How does an event with two hadronic jets in the final state look like in
this case?
[See solutions]

9.7. J/ψ resonance. The intrinsic width of the J/ψ resonance is smaller than the
experimental resolution (which was about 2 MeV in the first experiments). It
can be indirectly obtained from quantities that do not depend on the resolution.
Consider the e+e− → J/ψ → e+e− reaction. The measured cross-section in-
tegrated over the resonance is

∫
resonance σe+e−d

√
s � 790 nb MeV. Derive the

value of the J/ψ intrinsic width (ΓJ/ψ ) knowing that the mass of the resonance
is MJ/ψ � 3097 MeV and that the branching ratio for the decay into e+e− is
BR(J/ψ → e+e−) � 0.06.
[See solutions]

Supplement 9.1: Electronic Logic and Trigger

Electronic Logic Figure 9.1 shows the definitions, graphical symbols and the
truth tables of the simplest electronic circuits. The corresponding Boolean logic
expressions are also given. Remember the following logical circuits (or gates):

NOT: provides an output signal which is true if the input is false.
AND: provides an output signal when a signal is simultaneously present on both

input channels.
OR: provides an output signal when a signal is present on at least one of the two

input channels.
XOR: provides an output signal if A is not equal to B.
NAND: provides an output signal if A and B are not both true.
NOR: provides an output signal if neither A nor B is true.
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Fig. 9.1 Definitions, symbols, Boolean expressions and truth tables for some examples of logical
circuits (“gates”)

Trigger In any experiment, particular reactions must be disentangled from back-
ground or other reactions. To do this, specific criteria that identify the reaction are
imposed. The requested electronic logic provides a trigger that activates the record-
ing of the event.

Trigger Example Figure 9.2a shows a simple layout of an pion-nucleon elastic
scattering experiment as performed in the 1960s with only 4 scintillators. The trigger
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Fig. 9.2 (a) Layout of a simple elastic scattering experiment π+p → π+p using 4 scintillator
counters S1, S2, S3, S4. (b) Trigger layout: the incident π+ is defined by the coincidence (S1S2);
the π+ scattered at the angle θ is defined by the coincidence (S3S4). The final trigger is defined by
the coincidence (S1S2S3S4)

is defined as the coincidence in time (S1S2S3S4) that identifies the incident pion
and the pion scattered at an angle θ . When there is a coincidence in (S1S2) and
(S3S4), one has a trigger, and the recording of the pulse heights in the S1, S2, S3, S4
counters is immediately activated. The concordance of (S1S2) and NOT (S3S4) =
(S3S4) would represent an incident pion without scattering at that particular angle.
The coincidence of (S1S2) and (S3S4) represents the searched π+ scattering at the
angle θ . A (S1S2) and (S3S4) would represent a spurious signal.

In more complex experiments, where one wants to measure several reactions at
the same time, the final trigger is an OR of several different triggers. In the case of
the measurement of rare events, you can have triggers of 1st and of 2nd level: the
1st level trigger performs a loose selection; the 2nd level trigger uses more accurate
criteria. For the LHC, the trigger logic is one of the most important and delicate
aspects of the experiment (see Supplement 10.1).

Electronic Standards Let us consider the following standards:

NIM (Nuclear Instrument Module) is a modular standard, in which electronic
circuits (discriminators, coincidence units, amplifiers, etc.) are modules with pre-
defined mechanical and electrical specifications; these modules are inserted in stan-
dard “slots” (bins) of a “NIM” crate that contains all the necessary power supplies.
In this standard, it is simple to assemble (and replace if necessary) the modules
needed to perform an experiment. This standard logic is a voltage (−0.6 V) or
current based logic, with a rise time of about 1 ns and a pulse width ≥10 ns into
impedances of 50 �.

TTL (Transistor-Transistor Logic) and ECL (Emitter-Coupled Logic) are two
other electronic standards whose modules can be inserted in the NIM standard.

CAMAC was originally designed as the standard to use in conjunction with the
NIM standard to connect with computers. All current experiments in particle
physics use computers for their data acquisition system. Over time, the acquisi-
tion system became more complex. It not only records data, but it also carries out
functions of monitoring, calibration, on-line display and analysis of data samples,
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etc. The NIM is not suitable to perform these functions, while the CAMAC can
execute most of them although it is insufficient when the amount of data is too
large. In this case, the FASTBUS standard is preferred. The CAMAC (as FAST-
BUS) is a modular system made of fundamental elements such a CAMAC crate
and several plug-in modules that can be inserted into specific “slots”. The back-
plane of the CAMAC crate contains a set of connections forming the dataway or
the backplane bus that connects all the plug-units between themselves, so that data
can be exchanged between the various modules and sent to the computer, under
the supervision of some controller modules.

The broad use of microcomputers at all levels of the electronics, with temporary
memories, logic triggering systems, etc., has required new connection systems, new
data transfer methods, etc. The most used standard is the VME standard that is used
in conjunction with CAMAC and FASTBUS.

Computers The use of computers is in constant development, with the general
trend towards distributed systems of computers connected in networks and in net-
works of networks. The data acquisition systems tend to use more and more the
World Wide Web (WWW) methodology with reference databases, transfer of mul-
timedia information and on-line monitoring. These methods are also used in main-
taining communications within large collaborations, but also to the outside world.

Solutions

Problem 9.1 A positron and an electron can form a bound state (the so-called
positronium), whose energy levels, described in Fig. 9.4a , are similar to those of

the hydrogen atom. The positronium can be completely described by quantum me-
chanics, since the potential Vem = −αEM/r , where r is the distance between the
positron and the electron, is known. The energy levels can be obtained by solving
the Schrödinger equation, or with the quantization rules of Bohr’s atom. One finds
that (n is the main quantum number):

En = −α2
EMmec

2

4n2
(9.1)

Note that there is a factor of 2 difference compared to the energy levels of hydrogen
atoms. This is due to the fact that the masses me of the electron and positron are
identical and the reduced mass μ = me/2 must be introduced.

For the charmonium (bound state cc), the interaction between the quark and the
antiquark can be described by the potential given in Eq. (9.16) , neglecting the sec-

ond term which dominates only for large values of r (that is certainly not the case
for bound states). (For a full discussion on the spectrum of hadrons containing heavy
c and b quarks, see [9D95].) This implies that the solution of the Schrödinger equa-
tion of the hydrogen atom shall yield the same eigenvalues as for the charmonium,



108 9 Discoveries in Electron–Positron Collisions

with the substitution αEM → (4/3)αS . This allows a rough estimate of αS using the
differences in energy levels shown in Fig. 9.15b .

Consider the states with n = 1, n = 2. In the figure, they are indicated as
11S0, 21S0. The energy difference between the two levels is about E = 500 −
(−100) MeV = 600 MeV. Using the relation for the energy levels En (replacing
me → mc and α → 4/3αs ), one obtains:

E = E2 − E1 =
(

4αs

3

)2
mcc

2

4

(
1 − 1

4

)
.

Using mcc
2 = 1550 MeV and the measured difference E � 600 MeV, one finds:

α2
S = 3E

mcc2
= 1800

1500
� 1.2

This is a rough estimate, showing that the value of αS is very large compared to the
electromagnetic constant [P95].

Quantum Chromodynamics (QCD), the gauge field theory that describes the
strong interaction of colored quarks and gluons, is the SU(3) component of the
SU(3)C×SU(2)L×U(1)Y group theory of the Standard Model of Particle Physics.
The QCD Lagrangian can be formally obtained in this framework (this topic is out-
side the formalism level of this book. Refer for instance to Sect. 9.1 of [P10]). In
this QCD Lagrangian, there is only one free parameter, the strong coupling constant
αS , if the quark masses are fixed. The coupling constant in itself is not a physi-
cal observable, but rather a quantity defined in the context of perturbation theory
(at high transferred momentum) or lattice QCD (for low transferred momentum),
which gives predictions for experimentally measurable observables.

An example of QCD lattice calculation is the value of αS from the charmonium
energy levels is reported in [9A92]. See also Problem 11.5 and [9B96].

Problem 9.2

(a) A current of I = 10 mA corresponds to the fact that a number Ne of accelerated
charged particles move (almost at the light speed c). Taking into account that
the revolution period inside the accelerator is T = (2πR/c) = 2.1 × 10−7 s
and that the electric charge of electrons and positrons (in absolute value) is
e = 1.6 × 10−19 C, one has:

I = (Ne · e/T ) C/s.

The corresponding number of e+/e− in each beam is then:

Ne = [
2πR · I/(c · e)] = 1.3 × 1010.

The machine luminosity (considering n = 2 collisions per revolution, occur-
ring with frequency f = 1/T ) is:

L =
(
Ne+Ne−nf

S

)
= 2N2

e

T S
= 2 · (1.3 × 1010)2

2.1 × 10−7 · 0.1
= 1.6 × 1028 cm−2 s−1.
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(b) The event rate R is obtained by multiplying the machine luminosity by the
process cross-section (1 b=10−24 cm2):

R = Lσ = (
1.6 × 1028 · 1.5 × 10−30) = 0.024 s−1.

Taking into account the number of seconds in one hour, there are 87 events/hour.

Problem 9.4 The luminosity L can be computed from the parameters of the ac-
celerator, using Eq. (3.11b) :

L = f npnaNpNaG

4πσhσv

.

Here, na = np = 4, f = 11240 Hz (which corresponds to the number of revolutions
completed per second by particles in the 27 km long LEP vacuum tube). The factor
G is assumed = 1. The quantity r2 in Eq. (3.11b) used for a beam of circular
transverse section is replaced by σhσv for the beam ellipsoidal section. The current
I = 1 mA corresponds to a number Ne of particles with electric charge e = 1.6 ×
10−19 C (see Problem 9.2) equal to Ne = I/(e · f ) = 0.6 × 1012.

Inserting the numerical values [4πσhσv = 4π(300 × 10−4)(8 × 10−4) = 3 ×
10−4 cm2], one finds:

L = 11240 [s−1] · (0.6 × 1012)2 · 42 · 1

3 × 10−4 [cm2] = 2 × 1032 cm−2 s−1.

Problem 9.6 In a collider, the mass-energy relativistic invariant is:

s = [
(E,p) + (E,−p)

]2 = (2E)2.

If, before the collision, the electron or the positron radiates a real photon with four-
momentum (hν,hν):

s′ = [
(E − hν,p − hν) + (E,−p)

]2

= (2E − hν;−hν)2 = (2E)2 − 2hν(2E).

Then, one has:

s′ = s − 2hν
√
s = s − 2Eγ

√
s.

A radiative event with two hadronic jets in the final state is due to the Z0 decay in
a quark-antiquark pair: e+e− → e+e−γ → Z0γ → qqγ . As in the radiative event
shown in Fig. 9.14 (where a μ+μ− pair is produced in the final state), the vector
sum of the momenta of the three particles observed in the final state (i.e., the two
hadronic jets and the radiated photon) has to be equal to zero. As a consequence,
the two hadronic jets are not collinear (not back-to-back).
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Problem 9.7 The dependence of the J/ψ production cross-section and its decay
into a given channel as a function of energy is given by the Breit-Wigner formula
given in Eq. (9.11) :

σ(
√
s)(e+e−→J/ψ→e+e−) = π−λ2

(2J + 1)ΓeeΓee

(2s1 + 1)(2s2 + 1)[(√s − ER)2 + Γ 2/4]

= 3π−λ2
Γ 2
ee

4[(√s − ER)2 + Γ 2/4] (9.2)

with J = 1, s1 = s2 = 1/2. Compared to Eq. (9.11) , we substituted Γh → Γee to

take into account that the problem gives the BR for the J/ψ decay into an e+e−
pair: Γee = 0.06Γ . This corresponds to the fact that only 6% of the observed J/ψ

events decay into an e+e− pair. Then, Eq. (9.2) becomes:

σ(
√
s) = 3π−λ2

Γ 2
ee

4

1

[(√s − ER)2 + Γ 2/4] . (9.3)

The total width Γ of the resonance can be calculated with the above formula,
providing that

∫
σ(

√
s)d

√
s = 790 nb MeV. By integrating the energy-dependent

part of (9.3), one obtains:

∫ ∞

−∞
1

[(√s − ER)2 + (Γ/2)2]d
√
s

=
∫ ∞

−∞
1

(Γ/2)[(
√

s−ER

Γ/2 )2 + 1]
d

(√
s − ER

Γ/2

)

=
∫ ∞

−∞
1

(Γ/2)(x2 + 1)
dx = 2

Γ

∫ ∞

−∞
1

(x2 + 1)
dx = 2

Γ
[arctgx]∞−∞ = 2π

Γ
.

From (9.3), one has:

∫
σ(

√
s)d

√
s = 3π2−λ2

(0.06)2Γ 2

2Γ
= 790 nb MeV.

The De Broglie wavelength can be computed remembering that the momentum at
the J/ψ production is p = ER/2 = 1548 MeV/c, corresponding to a De Broglie
wavelength of −λ = �/p = 6.6 × 10−22 (MeV s)/1548 (MeV/c) = 1.27 × 10−14 cm.
Inserting the numerical values, one finds:

Γ = 2 · 790 nb MeV

3π2−λ2
(0.06)2

= 0.093 MeV

The J/ψ intrinsic width of ∼93 keV is much lower than the measured width due
to the finite resolution of experimental apparata.
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Chapter 10
High Energy Interactions and the Dynamic
Quark Model

Problems

10.1. De Broglie wavelength. Using the de Broglie relation, determine the mo-
mentum p of a probe particle needed to solve the structure of:
(a) an iron nucleus (A = 56);
(b) a nucleon.
(c) Estimate the particle energy needed to probe the size rq of quarks, know-

ing that the experimental upper limit is rq < 10−16 cm.
[A: (a) 270 MeV/c; (b) 1 GeV/c ; (c) >1.2 TeV/c]

10.2. Electron inelastic scattering. An electron with a E = 20 GeV kinetic en-
ergy collides inelastically on a proton at rest. The electron is scattered at
an angle θ = 5◦ with respect to its original direction and with an energy
E′ = 12 GeV. Calculate the effective mass of the final hadronic system.
[See solutions]

10.3. Structure function. The momentum distribution of the u-type quark in the
proton can be parameterized by the formula Fu(x) � xu(x) = a(1 − x)3.
Determine the constant a with the assumption that the u quarks carry 33%
of the proton momentum.
[See solutions]

10.4. Quark distribution. The distributions of u quarks in the proton and of d

antiquark in the antiproton can be assumed to be represented by the func-
tions: Fu(x) = xu(x) = a1(1 − x)3, Fd(x) = xd(x) = a2(1 − x)3, where
x is the Bjorken variable, i.e., the fraction of the nucleon momentum car-
ried by quarks. Assuming that the quarks contribute to half of the nucleon
momentum, calculate the constant a1 and a2.
[A: a1 = 4/3, a2 = 2/3].

S. Braibant et al., Particles and Fundamental Interactions: Supplements,
Problems and Solutions, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-94-007-4135-5_10, © Springer Science+Business Media Dordrecht 2012
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10.5. Gluon structure function. It is believed that the structure function de-
scribing the distribution of the gluon momentum inside the nucleons, g(x),
strongly increases with decreasing x. Estimate the number of gluons that
would be possible to resolve with deep inelastic e + p → e + X colli-
sions at Q2 = 104 GeV2 at low x values (in the intervals 0.0001 ÷ 0.001,
0.001 ÷ 0.01, 0.01 ÷ 0.1). Assume that at these Q2 values the distribution
function of the gluons is g(x) = 0.36x−0.5.
[See solutions]

10.6. W±,Z0 production at the SppS CERN collider. The UA1 and UA2 ex-
periments at the CERN SppS collider led to the discovery of the W±,Z0

vector bosons of the weak interaction. At the CERN SppS collider, protons
and antiprotons were made to collide with a total c.m. energy of 540 GeV
(later, 630 GeV).

Discuss in terms of quark interactions at which energy the W±,Z0 pro-
duction is obtained.
[See solutions]

10.7. Neutrino/antineutrino cross-section ratio. The ratio R = σν/σν between
the cross-sections of neutrinos and antineutrinos colliding on an isoscalar
target (i.e., a target with an equal number of protons and neutrons) is R � 0.5
(see Fig. 10.12 ). This experimental result cannot be easily accounted for in
the framework of the static quark model of hadrons, since it requires that a
small fraction of the nucleon momentum be carried by antiquarks. In the
dynamic quark model, many sea quark-antiquark pairs are present inside the
nucleon (see Fig. 7.21 ).

Using the measured value of R, and taking into account the coupling
given in Eq. (10.57) of neutrinos and antineutrinos with quarks and anti-
quarks, determine the ratio between the fraction of the momentum carried
by quarks and antiquarks in the nucleon.
[See solutions]

10.8. Quark and antiquark content of ordinary matter. Using the integral of
the quark and antiquark distribution functions given in Eq. (10.67) , deter-
mine the ratio between the fraction of the momentum carried by quarks and
antiquarks in isoscalar nuclei. Compare with the result obtained in the pre-
vious problem.
[See solutions]

10.9. Neutrino beams-1. Muon neutrino beams are extensively used in
many experimental situations, for instance in deep inelastic scattering
as well as in long and short baseline neutrino oscillation experiments
( Chap. 12 ).
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To create a muon neutrino beam, the decays of π+,K+ mesons are
used. A high energy proton interacts with a target nucleon, producing many
charged and neutral particles. A magnetic system (the horn) selects π+,K+
with a defined momentum (narrow-band neutrino beam) or with a large mo-
mentum range (broad-band neutrino beam).

In a narrow-band neutrino beam, π+,K+ are selected with momentum
p = 200 GeV/c. The mesons are driven in a 1 km long vacuum tube, where
they can decay. Determine:
(a) the π+, K+ mean free path;
(b) the fraction of π+, K+ decays at the end of the vacuum tube;
(c) the maximum energy in the laboratory system of the neutrinos produced

in the π+ and K+ decays.
(d) Discuss the narrow-band neutrino beam flux shown in Fig. 8.10 .
[See solutions]

10.10. Neutrino beams-2. Contaminations. Suppose that only positively charged
particles are collected by the magnetic device (horn). The main source of
neutrinos is the decay π+ → μ+νμ. In this muon neutrino beam, there is an
irreducible background of νe and νμ.
(a) Write the processes which produce νe and νμ and give a simple estimate

of their relative number with respect to the νμ as a function of the length
L of the secondary particles decay tunnel.

(b) Evaluate the νe , νμ contamination for long baseline experiments

( Chap. 12 ), assuming L = 1 km, Eμ = 10 GeV.
[See solutions]

10.11. Neutrino beams-3. Off-axis beams. Assume that a neutrino beam is
produced by the decay of high energy pions, with Eπ � mπ , and that
Eν � mπ .
(a) What is the characteristic angle θC of the decay neutrinos with respect to

the direction of the pion in the lab. frame, when the neutrino is emitted
at θ∗ = 90◦ in the pion rest frame?

(b) What is the maximum angle θmax(Eν) between the neutrino and the
direction of its parent pion?

(c) What is the maximum energy Eν(θ) at which a neutrino can be produced
in the decay of a pion if it appears at a given angle θ with respect to the
pion direction?
Discuss the consequences of the existence of a maximum energy Eν(θ).

[See solutions]
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Supplement 10.1: The Computing Effort at the LHC Collider

Data Reduction The Large Hadron Collider (LHC) experiments at CERN gen-
erate huge amounts of data, and special methods are therefore needed to analyze
them efficiently. For a design luminosity of 1034 cm−2 s−1, an average of 20 in-
teractions per bunch crossing are expected every 25 ns, corresponding to an input
rate of 40 MHz. The experiments, as for instance CMS, contain almost one hundred
million detector channels. About 1 MB of zero-suppressed data would be required
per event, resulting in 100 Terabyte of data per second. This is far too large to be
handled and stored. Since most of the events are non interesting soft hadronic in-
teractions, the trigger system performs the difficult task to preselect only interesting
events. The challenge for the trigger system is therefore to reduce the input rate of
40 MHz by a factor 105 ÷ 106 down to a rate of ∼100 Hz which is then written to a
permanent storage. With an event size of about 1 MB, this corresponds to a data size
rate of ∼100 MB/s, which is the maximum rate that can be sustained by the DAQ
system to write and provide the data for the successive off-line reconstruction.

Due to the large complexity of LHC events the CMS experiment, for instance,
has chosen to reduce this rate in two steps: a Level-1 Trigger and a High-Level
Trigger.

The Level-1 trigger is purely hardware based. It is fast and performs the first
rough estimates of relevant quantities. Custom synchronous processors which have
access to a coarse granularity information from calorimeters and muon detectors are
used to produce a list of roughly identified candidates for physics objects (such as
jets o muons). It receives data at the full LHC bunch crossing rate of 40 MHz and
takes the trigger decision for each bunch crossing within 3.2 μs. During this latency
time, the full detector data are stored in front-end pipeline memories. The output
rate is limited by the capabilities of the CMS data acquisition system to 100 kHz,
corresponding to a first reduction factor of ∼400.

The High-Level Trigger is the second step of the trigger chain. It is designed to
reduce the Level-1 output rate of ∼100 kHz to a final output rate of ∼100 Hz. The
High-Level Trigger code runs on a farm of commercial processors and performs the
reconstruction and selection of physics objects using the full event data with fine
granularity and matching information from different sub-detectors.

The only way to reduce the overall analysis time to an acceptable level is to
use multicore laptops, local clusters or global distributed clusters, i.e., the Grid. The
challenge is to provide this parallel computing effort transparently so that users have
not to worry about how to access all of these resources in parallel.

The Data GRID The Worldwide LHC Computing Grid [10w2] project is a global
collaboration linking worldwide grid infrastructures and computer centers. It was
launched in 2002 to provide global computing resources to store, distribute and an-
alyze the 15 Petabytes (15 million Gigabytes) of data annually generated by LHC.
The infrastructure, which serves a community of more than 8,000 physicists, is built
by integrating thousands of computers and storage systems in hundreds of data cen-
ters worldwide; it enables a collaborative computing environment on a scale never
seen before.
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In 1999, when work on the design of a computing system for the LHC data analy-
sis began, it rapidly became clear that the required computing power was far beyond
the funding capacity available at CERN. Nevertheless, a solution was possible since
most of the laboratories and universities across the world and that were collaborat-
ing to the LHC project, had access to national or regional computing facilities. The
obvious question was: could these facilities be somehow integrated all together to
provide a single LHC computing service?

During the development of the LHC Computing Grid, many additional benefits
of a distributed “grid” system became evident:

• Multiple copies of data can be kept in different sites, ensuring access for all sci-
entists involved, independently of their geographic location.

• Having computer centers in multiple time zones eases continuous monitoring and
the availability of expert support.

• No single points of failure.
• Independently managed resources have encouraged novel approaches to comput-

ing and analysis.
• The system can be easily reconfigured to face new challenges, making it able to

dynamically evolve throughout the LHC life span growing in capacity to meet the
rising demands as more data is collected.

• The whole community can take advantage of new technologies that may appear
and that offer improved usability, cost effectiveness or energy efficiency.

• Hardware is constantly being replaced and newer machines typically require re-
cent operating systems and/or versions.

The LHC-grid project is made up of four layers, or “Tiers”; 0, 1, 2 and 3. Each
tier provides a specific set of services.

Tier-0. It is the CERN Computer Center. All data from the LHC passes through
this central hub, but it provides less than 20% of the total computing capacity.
CERN is responsible for the safe-keeping of the raw data (first copy), first pass
reconstruction, distribution of raw data and reconstruction output to the Tier-1’s,
and reprocessing of data during LHC down-times.

Tiers-1. These are large computer centers with sufficient storage capacity and with
uninterrupted support for the Grid. They are responsible for the safe-keeping of
raw and reconstructed data, large-scale reprocessing and safe-keeping of corre-
sponding output, distribution of data to Tiers-2. The 11 Tiers-1 are located (man-
aged) in Canada (TRIUMF), Germany (KIT), Spain (Port d’Informació Cientí-
fica, PIC), France (IN2P3), Italy (INFN), Nordic countries (Nordic Datagrid Fa-
cility), Netherlands (NIKHEF/SARA), Taipei (ASGC), United Kingdom (GridPP)
and USA (Fermilab-CMS; BNL-ATLAS).

Tiers-2. They are typically universities and other scientific institutes, which can
store sufficient data and provide adequate computing power for specific analysis
tasks. There are currently around 140 Tier-2 sites, covering most of the globe.

Tiers-3. Individual scientists can access these facilities through local computing
resources, which can consist of local clusters in a University Department or even
just an individual PC.
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The ROOT Framework The LHC data are analyzed with object-oriented frame-
works aimed at solving the data analysis challenges of high-energy physics. In re-
cent years, the CERN standard program is ROOT [10w3]. ROOT offers an extensive
and flexible set of tools for data storage, analysis and presentation. The data are de-
fined as objects, and special storage methods are used to get direct access to the sep-
arate attributes of the selected objects, without having to touch the bulk of the data.
The system was designed to query its databases in parallel on parallel-processing
machines or on computer clusters. An example of result obtained with this frame-
work is the full invariant mass spectrum of dimuons shown in Fig. 10.25 .

Solutions

Problem 10.2 The energy-momentum four-vectors of the electron before and af-
ter the collision are respectively:

(E,p); (
E′,p′)

The mass of the electron can be neglected compared to the total energy. Inserting
the numerical values E = 20 GeV, E′ = 12 GeV, θ = 5◦, the squared modulus of
the transferred four-momentum q = (E − E′,p − p′) is (see also Eq. (10.9) ):

q2 = −Q2 = −4EE′ sin2 θ

2
−→ Q2 = 1.82 GeV2.

The relativistic invariant of the final state hadronic system W (see Fig. 10.5 and

Eq. (10.29) ) is:

W 2 = m2
p − Q2 + 2mpν = (0.938)2 − (1.82)2 + 15.0 = 14.1 GeV2

where ν = E − E′ = 8 GeV, mp = 0.938 GeV, 2mpν = 15.0 GeV2. It is clear that
W 2 > m2

p and that the scattering is not elastic. The invariant mass of the formed
hadronic system is:

W = √
14.1 = 3.75 GeV

Problem 10.3 The integral of the momentum distribution of the u-type quark
inside the proton over the variable x domain [0,1] must be equal to 0.33:

0.33 =
∫ 1

0
a(1 − x)3dx =

[
a

4
(1 − x)4

]0

1
=

[
a

4

]

from which a = 1.32 is obtained.
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Problem 10.5 The approximate number of gluons in the interval 0.0001 < x <

0.001 is given by (for Q2 = 104 GeV2):

Ng

(
10−4 − 10−3) =

∫ 0.001

0.0001

xg(x)

x
dx =

∫ 0.001

0.0001
0.36 x−1.5dx � 49.

Similarly Ng(10−3 −10−2) � 15, Ng(0.01−0.1) � 5, Ng(0.1−1) � 2. A larger
number of gluons is obtained for higher Q2 and for smaller values of x.

Problem 10.6 In terms of quarks, the production is via the annihilations described
in the reactions (8.64a), (8.64b) for the W± bosons and in the reaction (8.64c)

for the Z0 boson. The different quarks of the p carry a fraction of the momentum
with respective distributions shown in Fig. 10.11 . The antiquarks in the p have the
same momentum distributions as that of the quarks in the p. In first approximation,
the contribution of sea quarks can be neglected.

If E is the energy carried by the proton (antiproton), the energy carried by the xi -
type quarks is xiE. As can be seen in Eq. (8.65) , the W production cross-section
has a maximum for a c.m. energy equal to the boson mass (∼80 GeV). Thus, refer-
ring to Eq. (10.67) , one has:

• 2 u-type (anti)quarks in p (p) carrying on average 20% of the p (p) momentum;
• 1 d-type (anti)quarks in p (p) carrying on average 10% of the p (p) momentum.

The c.m. energy of the system consisting of a quark in the proton and of an antiquark
in the antiproton necessary to produce the reactions ud → W+ Eq. (8.64a) and

du → W− Eq. (8.64b) is on average:

√
xqxqEpEp =

√
2(0.2) × (0.1) + 1(0.2) × (0.1)

3

√
s = 0.14

√
s. (10.1)

At
√
s = 630 GeV, the relation (10.1) gives 88 GeV. Instead, at

√
s = 540 GeV,

the available energy seems below threshold for the production of W vector bosons
via quark-antiquark annihilations. Remember however that in Eq. (10.1), the av-
erage values were used: the quarks with energy in the tail of the distribution of
Fig. 10.11 have enough energy to reach the production threshold.

A similar situation occurs for the boson Z0, whose production cross-section is
smaller.

It is easy to verify that the discovery would be far more difficult in a pp ma-
chine, where the vector boson production occurs through a valence quark and a
sea antiquark. Note that the SppS collider was feasible thanks to the technological
innovation (due to S. Van der Meer [10S85]) on the antiproton stochastic cooling
allowing to obtain a high p luminosity.

Problem 10.7 The left-handed neutrinos and right-handed antineutrinos interact
with left-handed quarks and right-handed antiquarks, as shown in Fig. 10.10 . From
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this observation, the differential cross-sections for neutrinos and antineutrinos can
be derived in terms of the variables x and y, see Eqs. (10.60) and (10.61) :

dσν

dxdy
= σ0

[
xq(x) + xq(x)(1 − y)2] (10.2)

dσν

dxdy
= σ0

[
xq(x)(1 − y)2 + xq(x)

]
(10.3)

Recalling that
∫ 1

0 (1 − y)2dy = 1/3, the integral on the y variable of Eqs. (10.2) and
(10.3) gives:

dσν

dx
= σ0

[
xq(x) + 1

3
xq(x)

]
(10.4)

dσν

dx
= σ0

[
1

3
xq(x) + xq(x)

]
(10.5)

By imposing that the ratio between Eq. (10.4) and Eq. (10.5) be equal to 0.5, one
obtains:

dσν/dx

dσν/dx
= 1/3xq(x) + xq(x)

xq(x) + 1/3xq(x)
= 0.5 −→ xq(x) = 5xq(x)

from which q(x) = 5q(x). The ratio between the momentum fraction carried by
quarks with respect to that carried by antiquarks in isoscalar nuclei must be equal to
5 to explain the σν/σ ν ratio.

Problem 10.8 The value obtained in the previous problem is consistent with what
can be obtained from the distributions of u, d quarks and q antiquark given in
Eq. (10.67) :

∫
xu(x)dx = 0.2;

∫
xd(x)dx = 0.1;

∫
xq(x)dx = 0.06

An isoscalar target with equal number of protons and neutrons have an equal number
of u and d quarks. Therefore, one has:

∫
x[u(x) + d(x)]dx∫

xq(x)dx
= 0.2 + 0.1

0.06
= 5

Problem 10.9

(a) The mean free path of a particle in the laboratory system is defined as λ = βγ cτ ,
where τ is the particle lifetime in the rest frame. The π,K lifetimes are given in
Table 7.3 : τπ = 2.6 ·10−8 s, τK = 1.2 ·10−8 s. Since βγ = E/m and inserting
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numerical values (mπ = 0.140 GeV, mK = 0.494 GeV), one finds:

λπ = E

mπ

cτπ = 200

0.14
× 3 · 1010 × 2.6 · 10−8 = 11.1 km

λK = E

mK

cτK = 200

0.494
× 3 · 1010 × 1.2 · 10−8 = 1.46 km

(b) The fraction of decayed particles within the L = 1 km long vacuum tube is:

fπ = 1 − e−L/λπ = 8.6%; fK = 1 − e−L/λK = 50.4%

(c) To determine the energy of the neutrinos in the laboratory system, it is con-
venient to start from the c.m. system. If pπ,pν,pμ are respectively the four-
momenta of the initial state pion, and of the final state neutrino and muon, one
has pπ = pν + pμ. The corresponding relativistic invariant is:

(pπ − pν)
2 = p2

μ −→ m2
μ = p2

π − 2pπpν (10.6)

Note that the last relation is obtained using the fact that the four-momentum
squared is the particle rest mass: p2

ν = E2
ν −|pν |2 = m2

ν . Therefore, for massless
neutrinos, one has p2

ν = 0.

Indicating with (∗) the system in which the pion is at rest, one has p∗
π = (mπ ,0)

and from Eq. (10.6), one obtains:

m2
μ = m2

π − 2mπE
∗
ν −→ E∗

π→ν = m2
π − m2

μ

2mπ

= 29.8 MeV (10.7)

and similarly for the K decays:

E∗
K→ν = m2

K − m2
μ

2mK

= 236 MeV (10.8)

The energy in the laboratory system is obtained by the Lorentz transformation:

Eν = γ
(
E∗

ν + βp∗
ν cos θ∗) (10.9)

where θ∗ is the neutrino emission angle in the c.m. system with respect to the boost
direction of the decaying particle. The maximum energy corresponds to the value
θ∗ = 0. Recalling that Eν = |pν | and that β = 1 (check with the values of γ obtained
below), one obtains:

Eν = 2γE∗
ν

For 200 GeV/c pions, one has γ = Eπ/mπ = 200/0.140 = 1428.
For 200 GeV/c kaons, one has γ = EK/mK = 200/0.494 = 405.
Therefore, the neutrino maximum energy, in the lab. system, is respectively for

200 GeV/c π and K decays:
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Eπ→ν = 2γE∗
π→ν = 2 · 29.8 · 1428 = 85.1 GeV

EK→ν = 2γE∗
K→ν = 2 · 236 · 404 = 191 GeV

(c) The above result justifies the two-box structure visible in Fig. 8.10 for the
narrow-band neutrino beam. Lower values of Eπ→ν , EK→ν are obtained when
the neutrino emission angle in the c.m. system is different from θ∗ = 0. As the
pion/kaon spin is null, the θ∗ angle distribution is isotropic and the correspond-
ing distribution of the number of produced neutrinos as a function of the energy
is flat up to the maximum value. The first step in Fig. 8.10 up to ∼80 GeV is
due to neutrinos from both π → ν and K → ν decays, while at higher energies
only the K decays contribute.

Problem 10.10

(a) The νμ beam from the π+ → μ+νμ decay (which occurs with a probability
P(π → μ) in the decay tunnel) contains νμ, νe from the subsequent decay
μ+ → e+νeνμ (occurring with a probability P(μ → e)). The muon can decay
only once produced, so the relative number of νe, νμ in a νμ beam is:

N � P(π → μ)P (μ → e)

P (π → μ)
= P(μ → e)

(we neglect the fact that the muon has an effective shorter L − X decay length,
with X the path travelled by the pion before decay). The decay probability for
the muon is:

P(μ → e) = (
1 − e

− L
λμ

) = (
1 − e

− Lmμ
Eμcτμ

) = (
1 − e

−0.16 L [km]
Eμ [GeV]

)
(10.10)

having used the fact that λμ = Eμ

mμ
cτμ. In the last equality, the values of the

constants (mμ,c, τμ) were explicitly inserted.
Smaller contributions to the νe contamination arise from to the π+ → e+νe

decay, with BR ∼ 10−4 and from the K+ → π+π0νe decay, with BR ∼ 5 ×
10−2. As the kaons produced by primary proton interactions are ∼10% of the
pions (see Table 10.2 ), the νe component from kaon decays is of the order of
∼ 0.1 × 0.05 = 5 × 10−3 that of the νμ.

(b) When the ratio L [km]
Eμ [GeV] in (10.10) is small, as in this case, the (10.10) can be

approximate as:

P(μ → e) � 0.16
L [km]

Eμ [GeV]
= 0.16 × 1

10
= 1.6%

having inserted the numerical values. The νμ, νe contamination is of the order
of the percent.
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Problem 10.11

(a) The kinematics of the π → μν decay was derived in Problems 3.20 and 10.9.
The pion has spin zero, so the neutrino emission angle θ∗ follows an isotropic
distribution in the pion rest frame. The relation for the angle θ in the lab. frame
between the neutrino and its parent pion is the same as that obtained in Prob-
lem 3.20 for the muon (Eq. (3.33)):

tan θ = p⊥
p‖

= p∗
ν sin θ∗

γ (βE∗
ν + p∗

ν cos θ∗)
= E∗

ν sin θ∗

γE∗
ν (β + cos θ∗)

(10.11)

where γ = 1/
√

1 − β2 = Eπ/mπ is the Lorentz boost. The characteristic angle
of the decay in the lab. frame corresponds to θ∗ = 90◦:

tan θC = 1

γβ
−→ θC � 1

γ
= mπ

Eπ

� 1 (10.12)

when Eπ � mπ .
(b) Let us consider the angle between the neutrino and its parent pion in the labo-

ratory frame as a function on the neutrino energy rather than the pion energy. If
Eπ >Eν � mπ , then β ∼ 1, γ � 1, Eq. (10.11) can be written as:

tan θ � E∗
ν sin θ∗

γE∗
ν (β + cos θ∗)

= E∗
ν sin θ∗

Eν cos θ
(10.13)

remembering the Lorentz transformation for the time-like component of the
four-momentum, p‖ = Eν cos θ = γ (βE∗

ν + p∗
ν cos θ∗). The maximum angle

θ in the laboratory frame at which a neutrino of energy Eν can appear is

sin θ = E∗
ν

Eν
sin θ∗ and since sin θ∗ ≤ 1:

θmax � E∗
ν

Eν

= 29.8 MeV

Eν

(10.14)

which is small for most neutrinos. We used for E∗
ν the relation (10.7) found in

Problem 10.9 for the pion decay.
(c) For a given angle θ , from Eq. (10.13), one obtains:

Eν(θ) � E∗
ν sin θ∗

sin θ
≤ 29.8 MeV

sin θ
. (10.15)

For a given angle θ , there is a maximum possible neutrino energy Eν(θ). The
existence of a maximum energy Eν(θ) for neutrinos that decay at a given an-
gle with respect to their parent pions implies that many different pion energies
contribute to this neutrino energy, which enhances the neutrino spectrum at this
angle-energy combination.
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Fig. 10.1 Pion energy Eπ

needed to produce a neutrino
of energy Eν at various
angles θ . For instance, the
SuperKamiokande detector is
θ ∼ 2◦ ∼ 0.035 off-axis the
T2K beam. All neutrinos
produced by the pion decay
have energy below 1 GeV. At
the distance of 295 km
between Tokai (neutrino
production) and Kamioka
(neutrino detection), a
maximal neutrino oscillation
is expected to occur at
energies lower than 1 GeV

If, for particular reasons, one experimental apparatus needs an enhancement
at a particular neutrino energy,1 the experiment must be displaced by the an-
gle θmax , Eq. (10.14), with respect to the direction of the neutrino beam. The
value of θmax is independent of the proton/pion energy. In this case, the neutrino
beam is called off-axis. The neutrino energy spectrum produced by a typical pion
spectrum can be derived using Monte Carlo simulations. An example is shown
in Fig. 10.1 [10M01].
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Chapter 11
The Standard Model of the Microcosm

Problems

11.1. Lagrangian density for the Klein-Gordon equation. In a quantum field the-
ory invariant under Lorentz transformations, the fields φi are functions of the
space-time coordinates xμ and the Lagrange equation (6.1) is written in
terms of the Lagrangian density L(φi, ∂μφi):

∂L
∂φi

− ∂

∂xμ

∂L
∂(∂μφi)

= 0 (11.1)

such that L = ∫
Ld3x. Show that, for a scalar field φ describing spinless

particles of mass m and Lagrangian density:

Lφ = 1

2
∂μφ∂μφ − 1

2
m2φ2, (11.2)

the Klein-Gordon equation (4.13) is obtained.
[See solutions]

11.2. Lagrangian density for the Dirac equation. Similarly to the previous prob-
lem, show that for a field ψ describing spin 1/2 fermions with a Lagrangian
density:

Lψ = iψγ μ∂μψ − mψψ, (11.3)

the Dirac equation (4.16) is obtained.
[See solutions]

11.3. Z0 partial width. Calculate the value predicted by the electroweak model for
the partial width Γνe for the decay of a Z0 boson in a νe, νe pair at the energy
corresponding to the peak of the Z0 resonance.
[See solutions]
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11.4. The running αS . Using Eq. (11.90) :

αS(Q
2) = 12π

(33 − 2Nf ) ln( Q2

Λ2
QCD

)
(11.4)

compute αS(Q
2) for (a) Q = 8 GeV, (b) Q = 90 GeV and (c) Q = 500 GeV.

For each energy, the number Nf of active flavors must be considered. Assume
ΛQCD = 200 MeV (actually ΛQCD varies discontinuously when it exceeds
the threshold corresponding to the mass of a new quark).
[See solutions]

11.5. αs at the charm threshold. Compare the result of the calculation of the αS

constant obtained using Eq. (11.4) at energies corresponding to the charmo-
nium production, with the result obtained in Problem 9.1.
[See solutions]

11.6. Non-abelian theory. Explain the meaning of a non-abelian theory from a
physical point of view.
[See solutions]

11.7. SU(2) and U(1) symmetry groups. Explain the meaning of the SU(2) and
U(1) groups. Say whether they are or not abelian groups (for the definition of
abelian group, see the solution of the previous problem).
[See solutions]

Solutions

Problem 11.1 The derivatives of the Lagrangian density Lφ with respect to φ and
∂μφ are:

∂Lφ

∂φ
= −m2φ; ∂Lφ

∂(∂μφ)
= ∂μφ.

From these above derivatives and using Eq. (11.1), one obtains:

∂μ∂μφ + m2φ = 0

which is the Klein-Gordon equation in natural units (�= c = 1).

Problem 11.2 The derivative of the Lagrangian density Lψ with respect to ψ and
∂μψ are:

∂Lψ

∂ψ
= −mψ; ∂Lψ

∂(∂μψ)
= iψγ μ
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from which, one obtains:

−i∂μψγ μ − mψ = 0

and its conjugate equation:

iγ μ∂μψ − mψ = 0

which corresponds to the Dirac equation (4.16) in natural units.

Problem 11.3 The Z0 width is given in Eq. (9.19) :

Γν = N
f
c

GFm3
Z

6
√

2
(v2

f + a2
f )

where the color factor N
f
c = 1 for leptons. The couplings vf , af for different

fermions are calculated in the framework of the Standard Model and are reported
in Table 11.3 . For neutrinos: vf = af = 0.5. Inserting the numerical values, one
obtains:

Γν = 1.17 10−5 [GeV]−2 × (91.2 [GeV])3 × (0.52 + 0.52)

6
√

2π
= 0.166 GeV

to be compared with the measured value reported in Table 9.4 .

Problem 11.4 The value Q = 8 GeV is below the threshold for the production
of the t quark, then the number of active flavors is Nf = 5. In this case αS(Q =
8 GeV) = 37.7

(33−10)·7.4 = 0.22.
The value Q = 90 GeV is below the threshold for the production of the t quark, and
Nf = 5. Then αS(Q = 90 GeV) = 0.13.
Finally, at Q = 500 GeV, Nf = 6. Then αS(Q = 500 GeV) = 0.11.

Problem 11.5 In this case, Q ∼ 3 GeV and Nf =4 and αS(Q = 1.5 GeV) = 0.28,
to be compared with the value αS ∼ 1 obtained in Problem 9.1.

Problem 11.6 The term non-abelian comes from the group theory: “non-abelian”
means that A × B �= B × A and involves the matrices algebra [A89]. The physical
meaning can be better understood in terms of Feynman diagrams.

QED is an abelian theory. In terms of Feynman diagrams, this means that a di-
agram with 3 or more photons meeting in a point does not exist: photons do not
interact directly with each other. The interaction between photons can only take
place through diagrams of the type shown in Fig. 11.13 .

QCD is a non-abelian theory. The QCD gluons interact with each other and give
rise to diagrams where 3 or 4 gluons meet in one point, see Fig. 11.12 .

The electroweak theory is non-abelian. A photon can interact directly with a
W+W− pair and similarly a Z0 interacts directly with a W+W− pair.
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Problem 11.7 SU(2) is represented by 2 × 2 matrices of the type(
a b

c d

)

where a, b, c and d can be complex numbers such that:

a∗ = −d; b∗ = −c; c∗ = −b

ad − bc = 1

For example, the group of rotations in the three-dimensional space of spin 1/2 par-
ticles is included in this representation. Such a group can be generated by the Pauli
matrices. U(1) corresponds to eix where x is a real number. U(1) is an abelian group,
while SU(2) is not.



Chapter 12
CP-Violation and Particle Oscillations

Problems

12.1. Neutron-antineutron mixing. Neutron and antineutron are each the antipar-
ticle of the other; they are neutral, just as the K0 and K0. Explain why a
mixing between K0 and K0 can occur, while the mixing between neutron
and antineutron is forbidden.
[See solutions]

12.2. K0,K
0

mixing-1. Describe how to produce a pure K0 meson beam. The
initial K0 beam evolves during propagation in a mixed K0 and K0 state (see
Sect. 12.2 ). The mass difference between the two mass eigenstates K0

1 and

K0
2 is m = m2 − m1 � 1/τ1, with τ1 = 90 × 10−12 s.

(a) Evaluate m;
(b) Write the K0 and K0 intensities as a function of proper time;
(c) Draw a graph of the intensity of the K0 and K0 beams as a function of

the proper time τ1.
[A: See Sect. 12.2.1 ]

12.3. K0,K
0

mixing-2. A K0 beam propagating in vacuum can decay. At a dis-
tance d corresponding to 20 times the K1 lifetime (d = 20cτK1 ) there is a
target that absorbs 10% of the incoming K0 beam. If the interaction cross-
section for K0 is three times larger than that of the K0, calculate the relative
amplitudes of K1 and K2 in the beam:
(a) At t = 0;
(b) Immediately before the target;
(c) Immediately after the target.
Assume low-energy kaons, and neglect relativistic effects.
[See solutions]
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12.4. ε,ε′ CP-violation parameters. The quantities η+−, η00, defined in
Eqs. (12.16) and (12.17) , are related to the CP-violation parameters ε and

ε′ through the relations:

η+− = |η+−|eiϕ+− = ε + ε′ (12.1)

η00 = |η00|eiϕ00 = ε − 2ε′ (12.2)

Demonstrate that the ratio ε′/ε can be determined by measuring the double
ratio R:

R = |η00|2
|η+−|2 = Γ (KL → π0π0)

Γ (KS → π0π0)

/
Γ (KL → π+π−)

Γ (KS → π+π−)
� 1 − 6

ε′

ε
. (12.3)

[See solutions]

12.5. KL semi-leptonic decay. Demonstrate that in the KL semi-leptonic decays,
the asymmetry:

AL = Γ (KL → π−�+νl) − Γ (KL → π+�−νl)

Γ (KL → π−�+ν�) + Γ (KL → π+�−ν�)
. (12.4)

(� indicates the muon or the electron) is related to the CP-violation parameter
ε through the relation:

AL � 2 Re(ε) = (3.32 ± 0.06) · 10−3 (12.5)

Show that the experimental result of (12.5) is consistent with that obtained
in Eqs. (12.23–12.24) for non-leptonic decays.

[See solutions]

12.6. B0 meson tagging. The B0 meson tagging, as shown in Fig. 12.8 , relies

on the presence of a μ+ amongst the decay products. The branching ratio for
the decay into a positive charged lepton is BR(B0 → μ+νμ + anything) =
10.3%. The decay into e+νe has the same BR.

Explain the reason why a positive charged lepton is expected from the B0

decay with the quoted BR.
[See solutions]

12.7. Solar neutrino detection. An experiment devoted to detect neutrinos pro-
duced by the Sun is carried out in a mine using the reaction

νe + 37Cl → 37Ar + e− (12.6)

The detector contains v � 4 · 105 liters of tetra-chloroethylene (C2Cl4). Es-
timate the number of 37Ar atoms that would be produced per day using the
following assumptions:
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1. The solar luminosity is (see Appendix A5 ) L� = 3.84 · 1026 W;
2. 7% of the Sun thermonuclear energy is emitted as neutrinos of average

energy 〈E〉 � 1 MeV;
3. Only 0.1% of these neutrinos have enough energy to trigger the (νe + Cl)

reaction;
4. The interaction cross-section, for neutrinos able to induce the reaction on

the 37Cl nucleus, is σ = 10−43 cm2;
5. The isotopic abundance of 37Cl is 25%;
6. The density of C2Cl4 is ρ = 1.5 g cm−3 and its molecular weight is P =

164 g mole−1.
[See solutions]

12.8. Atmospheric neutrino oscillation-1. Using the two flavor oscillation for-
mula (12.49) , determine the value of the muon neutrino energy Eν which

gives a 100% disappearance probability for:
(a) neutrinos crossing the Earth atmosphere (L ∼ 20 km);
(b) neutrinos crossing the Earth diameter (L ∼ 13000 km).
Comment the result. Use the best fit value of m2 and sin2 2θ .
[A: (a) 40 MeV, below the muon production threshold; (b) 23 GeV]

12.9. Atmospheric neutrino oscillation-2. The MACRO [12A98] experiment ob-
served atmospheric muon neutrino from below. The neutrinos, interacting
below the detector, produce upgoing muons whose zenith direction θ was
measured. The zenith angle is correlated with the neutrino path length L

through the relation:

L = RT cos θ +
√
(RT cos θ)2 + 2RT h + h2 (12.7)

where RT = 6370 km is the Earth radius and h � 20 km the atmospheric
depth. A vertical upgoing muon has θ = 0, while a downward going has
θ = π .
(a) Draw the oscillation probability for νμ → ντ as a function of cos θ for

Eν = 20, 50, 100, 200 GeV;
(b) Assuming that the MACRO signal from the vertical direction is induced

by νμ with energy between 5 and 100 GeV, evaluate the survival proba-
bility P(νμ → νμ)

[See solutions]

12.10. Atmospheric neutrino oscillation-3. Atmospheric neutrinos contain both
νμ, νμ from π±,K± decays. Evaluate the ratio R = (νe +νe)/(νμ +νμ) for
atmospheric neutrinos assuming L = 20 km and for Eμ = 0.2, 20, 200 GeV.

The measurement of an anomaly in the ratio R at low energy was, at
the end of the 1980s, the first indication of an anomaly in the atmospheric
neutrinos, which led to the discovery of the neutrino oscillations [12K04].
[See solutions]
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12.11. Neutrino oscillation matrix. Show that the 3 × 3 unitary matrix (12.51)
representing the mixing between flavor and mass eigenstates can be param-
eterized as:

Ufj =
⎛
⎝1 0 0

0 c23 s23
0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠

(12.8)
Remember that the symbol f represents one of the flavor eigenstate (f =
e,μ, τ ). The symbol j stands for one of the mass eigenstate (j = 1,2,3).
Thus, e.g., the matrix element Uμ3 in (12.51) is:

Uμ3 = s23c13 = sin θ23 cos θ23

12.12. Measurement of the small θ13 mixing angle.
(a) Using the neutrino mixing matrix given in (12.51) , show that for long

baseline experiments (as well as for the atmospheric neutrinos), the con-
tribution from m2

12 terms can be neglected and that the oscillation
probabilities can be expressed in a simplified manner as:

P(νμ → νe) = sin2 2θ13 sin2 θ23 sin2 Φ23 (12.9a)

P(νμ → ντ ) = sin2 2θ23 cos4 θ13 sin2 Φ23 (12.9b)

P(νμ → νμ) = 1 − P(νμ → νe) − P(νμ → ντ )

= 1 − sin2 2θ13 sin2 θ23 sin2 Φ23

− sin2 2θ23 cos4 θ13 sin2 Φ23 (12.9c)

P(νe → ντ ) = sin2 2θ13 cos2 θ23 sin2 Φ23 (12.9d)

P(νe → νe) = 1 − sin2 2θ13 sin2 Φ23 (12.9e)

where Φ23 = m2
23L/4Eν � m2

13L/4Eν .
(b) Describe the best way to experimentally measure θ13 with present tech-

nology.
[See solutions]

Supplement 12.1: Analogy for the Neutrino Mixing

To clarify the concept of neutrino mixing, we consider an orthogonal Cartesian co-
ordinate system whose x and y axes correspond to the flavor eigenstates νμ and ντ .
A second orthogonal Cartesian system, with coordinates x′, y′ corresponding to the
mass eigenstates ν2 and ν3, is rotated by an angle θ with respect to the x, y system.
A point P(νμ,0) on the x axis is a pure flavor eigenstate νμ; the corresponding
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point P(x′
0, y

′
0) in the second reference system has a component along x′ and a

component along y′ and is a mixture of two mass eigenstates. The amount of mix-
ing is determined by the rotation angle θ of the second system with respect to the
first, the so-called mixing angle. If the mixing angle is small, the mass eigenstates
are almost pure flavor eigenstates and vice versa. The energy associated to the mass
eigenstates increases as their rest mass increases (for the same momentum p). Ac-
cording to the mass-energy equivalence, the rest mass of a particle contributes to
its total energy. Like all particles during propagation, the neutrino mass eigenstates
are represented by waves whose frequency increases with energy. Following the
atmospheric νμ path (or that of the solar νe to the Earth), the neutrino mass eigen-
states are waves propagating with different frequencies. If the mass eigenstates have
the same eigenvalue (degenerate states), the waves will reach the detector with the
same phases. These waves recombine to give back exactly the expected νμ or νe
eigenstate detected via a weak interaction in an experimental apparatus. If the mass
eigenstates have different eigenvalues, the waves propagate with different frequen-
cies; they reach the detector with different phases. The waves, as they recombine,
do not always reproduce the initial flavor eigenstate (for instance, νe for solar neu-
trinos).

Supplement 12.2: Dirac or Majorana Neutrinos: the Double β
Decay

In its original formulation, the Standard Model assumes that neutral elementary
fermions (the neutrinos) are massless. This allows the flavor lepton conservation
without introducing additional parameters in the model [12A08].

In the most conventional scheme, neutrinos are Dirac particles: neutrinos can
be distinguished from antineutrinos through their interactions. But parity violation
tells us that neutrinos are left-handed and antineutrinos right-handed. In the four-
component representation of Dirac fermions of Appendix 4 , only two states are
non vanishing. Therefore, there is no reason to exclude the possibility that massless
neutral fermions be the components of a doublet (Majorana particles) in which
“neutrinos” coincide with their own antiparticles: the neutrino is the left-handed
component of the doublet while the antineutrino is the right-handed one.

Weak interactions favor the coupling of left-handed “neutrinos” with negative
leptons and that of right-handed “neutrinos” with positive leptons. The sequence of
reactions:

n → p + e−+ νe is observed (12.10a)

νe + p → n + e+ is not observed (12.10b)

The process (12.10b) is not observed even if the reaction νe + p → n + e+ exists
in nature. This does not imply that νe and νe are different objects, because the weak
interactions have a V − A structure, see Sect. 8.16 . The particles which we call
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Fig. 12.1 Transformations
connecting massive Dirac (a)
and Majorana (b) neutrinos

νe are right-handed and therefore the non observation of the process (12.10b) could
simply be due to a strong dynamical suppression because of the wrong helicity state
of the incoming “neutrinos”. This helicity suppression is the same PLH = (1 − v/c)

factor as that obtained in Sect. 8.10 for the pion decay. For the neutrino, since
v/c = pν/Eν , one can write:

(
1− v

c

)
=

(
1− pν

Eν

)
= 1−

√
E2

ν − m2
ν

Eν

� 1−
Eν(1 − m2

ν

2E2
ν
)

Eν

=
(

mν

2Eν

)2

(12.11)

The sequence of reactions described in (12.10a) and (12.10b) is therefore possi-
ble if two conditions are met:

• νe and νe are identical particles (that is the “neutrino” is a Majorana particle)
• The neutrino mass mν is non vanishing, so that the helicity suppression is large

but not complete.

Following the reference [12K89], it is possible to test the nature of the neutrino
(Dirac or Majorana particle) only if the neutrino is not massless (as found after the
discovery of neutrino oscillations). To understand the difference between Dirac and
Majorana particles, let us consider the existence of a massive left-handed neutrino
νL and the transformations shown in Fig. 12.1. Assuming the CPT invariance to be
valid, the existence of νL implies the existence of the CPT mirror image: a right-
handed antineutrino νR . In addition, as a massive νL travels slower than light, a
reference frame moving faster than νL can be found: in this reference frame, the
neutrino travels in the opposite direction but its spin is unchanged. Therefore, the
Lorentz transformation to this faster moving reference frame transforms νL into a
right-handed νR . This νR may be or may not be the same particle as the CPT mirror
image νR of νL. If it is not the same, νR has its own CPT mirror image νL. Alto-
gether, there are four states with the same mass (see Fig. 12.1a). This quadruplet
of state is a Dirac neutrino denoted as νD . It has distinct particle and antiparticle
states. Dirac neutrinos may also have a magnetic dipole moment and be subjected
to the electromagnetic interaction. In summary, in presence of a mass, Dirac neutri-
nos can transform one into the other through CPT, Lorentz boost and electromag-
netic interactions. On the other hand, if the right-handed particle obtained by the
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Fig. 12.2 Double β decay
diagrams. Diagram (a) shows
the standard 2νβ−β− process
in which two neutrinos are
emitted; diagram (b) shows
the neutrinoless decay. This
process is possible only if the
neutrino is a massive
Majorana particle; it is
searched for in different
experiments but has not yet
been observed

Lorentz transformation to the faster moving reference frame, is the same particle as
the CPT image of the original νL, there are only two states with a common mass
(see Fig. 12.1b) differing only through their helicity. This state doublet represents
a Majorana neutrino denoted as νM . There is no need to define a neutrino and a
antineutrino state. If the “neutrino” is a Majorana particle, the lepton number con-
servation is violated. Note that Majorana neutrinos can transform one into the other
only by Lorentz boost and CPT. Indeed, under CPT, the fields E and B remain un-
changed while the spin of a Majorana neutrino reverses its direction. Therefore, if
the CPT invariance holds, the dipole moments must vanish and an electromagnetic
interaction is not possible.

The most promising way to distinguish between Dirac and Majorana neutrinos
is the neutrinoless double β decay [12K00]. The double β decay processes are de-
scribed by the following reactions:

(Z,A) → (Z + 2,A) + 2e− + 2νe

(
2νβ−β−)

(12.12a)

(Z,A) → (Z − 2,A) + 2e+ + 2νe
(
2νβ+β+)

(12.12b)

that can occur when a single β decay is kinematically forbidden. For example (see
Fig. 14.11 ), the nucleus 106Cd (Z = 48) cannot have a β decay into the Z = 47

state 106Ag that has a mass 0.2 MeV larger, but can have a double β decay into the
Z = 46 state 106Pd that is 2.8 MeV lighter. The process (12.12a) at the fundamental
(quark) level, shown in Fig. 12.2a, is the transition of two left-handed d quarks into
two left-handed u quarks with the emission of two electrons and two νe . The process
is of second order in the weak coupling and therefore, the corresponding decay rates
are very low and with lifetimes of the order of t1/2 > 1019–1021 years.

On the contrary, the neutrinoless double β decay is the exotic process:

(Z,A) → (Z + 2,A) + 2e− (0νββ) (12.13)

without neutrino emission. The leading order diagram of this process is shown in
Fig. 12.2b and can be pictured as a β decay followed by the absorption of the emitted
antineutrino by a different neutron in the nucleus. The process has a very clear
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Fig. 12.3 Energy spectra of
the (2νββ) and (0νββ)
decays. The energy scale is
normalized to the maximum
available kinetic energy Q

experimental signature; indeed, in the standard decay, the sum of the energy of the
two final state electrons has a broad distribution, while in the neutrinoless case, the
sum of the energies of the two emitted electrons is equal to the Q value of the
reaction, where Q is the difference between the masses of the initial and final nuclei
(see Fig. 12.3).

In order to have a neutrinoless double β decay, the neutrino must be its own an-
tiparticle, that is it must be a Majorana particle, and the neutrino mass must be non
zero. The first condition can be easily understood observing that the virtual neutrino
in the diagram of Fig. 12.2b is emitted as νe while it is absorbed as a νe . Reac-
tion (12.13) clearly violates the lepton number by two units. The second condition
results from the fact that the antineutrino emitted in the “first” decay has the wrong
helicity for being absorbed. The absorption is therefore possible without violating
angular momentum conservation only if mν > 0. It can be shown that the amplitude
for neutrinoless double β decay is proportional to the neutrino mass through the
relation:

M(0νββ) ∝
∑
i=1,3

U2
eimi = 〈mνe 〉eff (12.14)

where U is the neutrino mixing matrix. The effective mass 〈mνe 〉eff can be smaller
than the smallest neutrino mass mi . The quantity 〈mνe 〉eff constitutes a lower limit
on the mass of the heaviest neutrino.

More than 60 naturally occurring isotopes fulfill condition for 2νββ . Only eleven
isotopes have been experimentally observed undergoing two neutrino double β de-
cay: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 130Ba, 150Nd, and 238U.
Other isotopes can be subjected to both double β decay and other decays. In most
cases, the double β decay lifetime is so long that it is nearly impossible to disentan-
gle a signal against the background from other radiation.

Double β decays are searched for with different experimental techniques. Direct
detection in a sample material occurs if the decay is recorded in real time. Since
decays can be detected event by event, energy and (in principle) angular distribution
of the final state e− or e+ can be reconstructed if tracks of the charged particles
can be reconstructed (tracking experiments). The charge sign can be determined
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if a magnetic field is applied along the path of the particles. More frequently, the
total energy spectrum of the decay electrons (or positrons) is determined in a calori-
metric approach (calorimetric experiments). The occurrence of a two neutrino or a
neutrinoless double β decay is identified according to the classification shown in
Fig. 12.3.

The current best limits on neutrinoless double β decay come from calorimet-
ric experiments located in the Gran Sasso underground laboratory using 76Ge and
130Te [12C11]. All experiments require a very low background (of the order of
0.2 counts/year/kg/keV) at the expected position of the 0νββ signal. The half-live
limit for the neutrinoless mode is of the order of t1/2 ≥ 1025 years. This limit can be
used to extract a limit on the effective mass (see Eq. (12.14)) at 90% C.L.

〈mνe 〉eff ≤ 0.35 eV (12.15)

the effective mass parameter from the measured lifetime limit is derived after a
difficult calculation of the matrix element between the initial and final nuclei. This
introduces some uncertainty in the limit.

Solutions

Problem 12.1 The oscillations of the K0,K
0

system is due to a second order
weak interaction transition between two quarks, d → s and between two antiquarks
s → d (see Fig. 12.3 ). In this case, a quark transforms into a different flavor quark

and an antiquark into another antiquark.
The transition neutron ↔ antineutron requires the transformation of three quarks

into three antiquarks. But any quark-antiquark transformation is forbidden.

Problem 12.3

(a) The production of K0 occurs through the reaction (12.1) . Referring to

Fig. 12.1 , the initial K0 beam is composed of 50% of K1 and of 50% of K2,

Eq. (12.6b) .
(b) The target is located at a distance d = 20cτK1 = 54 cm. Following the radioac-

tive decay law given in Eq. (4.42) , the K1 component in the beam is attenuated

by a factor N(t)
N0

= e−t/τ = e−20τ/τ = e−20 � 2 · 10−9. At this distance, all K1
have disappeared. Since the K2 component lifetime is about 600 times longer
than that of the K1 (see Sect. 12.2.1 , τK2 � 600τK1 ), its attenuation is negli-
gible. Therefore, before the target, the beam contains almost exclusively the K2
component.

(c) The K2 beam is in turn composed of 50% of K0 and of 50% of K
0
. The eigen-

states interacting via strong interaction when the beam passes through the ma-
terial (assumed of negligible thickness compared to the K1 lifetime) are the K0
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and K
0
. These have different interaction probabilities: 10% of the K0 beam

is attenuated (e.g., from 50 initial K0, 45 survive). Since the interaction cross-
section for K0 is assumed to be three times larger than that of the K0, the at-

tenuation of the K
0

beam is three times larger: 35 out of 50 will survive. When
leaving the target, at the time tc , the beam is made of 45/(35 + 45) = 56% of

K0 and of 44% of K
0
. In terms of the K1 and K2 components, one has:

K1(tc) = (
K0(tc) + K

0
(tc)

)
/
√

2 = (56 + 44)/
√

2 = 70.7

K2(tc) = (
K0(tc) − K

0
(tc)

)
/
√

2 = (56 − 44)/
√

2 = 8.5

The relative ratios between the two components are:

K1(tc)/
(
K1(tc) + K2(tc)

) = 89.3%; K2(tc)/
(
K1(tc) + K2(tc)

) = 10.7%

The target thus becomes a K1 regenerator.

Problem 12.4 If η+− = ε + ε′ and η00 = ε − 2ε′, then:

|η00|2 = ε2
(

1 − 2
ε′

ε

)2

|η+−|2 = ε2
(

1 + ε′

ε

)2

Using the approximation 1
(1+x)n

� 1−nx for |x| < 1 and neglecting second order

terms in ε′2, one has:

|η00|2
|η+−|2 = (1 − 2 ε′

ε
)2

(1 + ε′
ε
)2

�
(

1 − 4
ε′

ε

)(
1 − 2

ε′

ε

)
�

(
1 − 6

ε′

ε

)
.

Problem 12.5 From Eq. (12.15) , the KL is a superposition of K0,K
0

states:

|KL〉 = 1√
2(1 + |ε|2)

[
(1 + ε)

∣∣K0〉− (1 − ε)
∣∣K0〉]

(12.16)

The K
0

can only decay with the emission of a negatively charged lepton, K
0 →

π+�−ν�. In terms of quark constituents, one has:

K
0 = [ds] → ( du)�−ν� = π+�−ν� (12.17)

where s → u�−ν� indicates the (Cabibbo suppressed) weak interaction transition.

It is easy to verify that the transition K
0 → π−�+ν� is forbidden. In a similar way,

the K0 can only decay to:

K0 = [ds ] → (du )�+ν� = π−�+ν� (12.18)
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The probability that the initial |KL〉 evolves and decays into 〈KL → π+�−ν�| is by
definition

Γ
(
KL → π+�−ν�

) = 〈
π+�−ν�|KL

〉
. (12.19)

Neglecting the factor 1/
√

2(1 + |ε|2) in (12.16) (which disappears later in the

ratio) and remembering that 〈K0|K 0〉 = 0, one can write:

〈KL|KL〉 =
[
(1 + ε)

〈
K0

∣∣− (1 − ε)
〈
K

0∣∣][(1 + ε)
∣∣K0〉− (1 − ε)

∣∣K 0〉]

= (1 + ε)2〈K0
∣∣K0〉+ (1 − ε)2〈K 0∣∣K 0〉

Considering now the decay into π+�−ν�, one can write:

〈
π+�−ν�|KL

〉 = (1 + ε)2〈π+�−ν�|K0〉+ (1 − ε)2〈π+�−ν�|K 0〉
= 0 + (1 − ε)2B (12.20)

where B is the branching ratio for the decay K
0 → π+�−ν�. Similarly, for the

π−�+ν� decay, one has:

Γ
(
KL → π−�+ν�

) = 〈
π−�+ν�|KL

〉 = (1 + ε)2〈π−�+ν�|K0〉+ 0

= (1 + ε)2B (12.21)

The CPT theorem insures that the B in (12.20) and (12.21) are equal.
The observable quantity is the asymmetry:

AL = Γ
(
KL → π−�+ν�

)− Γ
(
KL → π+�−ν�

)
Γ
(
KL → π−�+ν�

)+ Γ
(
KL → π+�−ν�

)

= (1 + ε)2 − (1 − ε)2

(1 + ε)2 + (1 − ε)2
= 2

Re ε

1 + ε2
� 2Re ε (12.22)

The experimental result is Re ε = AL/2 = (1.66 ± 0.03) · 10−3. The value ob-
tained from non-leptonic decay is |ε| = (2.23 ± 0.01) · 10−3 Eq. (12.24) , with

the phase φ � 43.5◦ Eq. (12.23) . From this measurement, one derives that Re ε =
|ε| cos 43.5◦ � 1.62, in agreement within errors with the value obtained from the
asymmetry measurement.

Problem 12.6 The B0 is made of a bd quark-antiquark pair. Both the d and b can
decay through the weak interaction:

b → cW+ BR=10.6%−→ c
(
μ+νμ

)
(12.23)

d → uW− BR=10.6%−→ u
(
μ−νμ

)
(12.24)



140 12 CP-Violation and Particle Oscillations

The second arrow reports the BR for the W± decay into a muon and a muon
(anti)neutrino. If the decays (12.23) and (12.24) occur with the same frequency,
a positive or negative muon can be present in the final state of a B0 decay with
the same probability. The W± have the same branching ratio for the decay in the
charged lepton with the same sign, e.g. BR(W+ → μ+νμ) = BR(W− → μ−νμ) =
10.6%.

The values of CKM matrix elements corresponding to the above quark transitions
implies that reaction (12.23) is disfavored with respect to (12.24) (see Sect. 8.14.3
and Problem 8.14). Indeed, the squared ratio between the corresponding matrix el-
ements is (Vcb/Vud)

2 = (0.04/0.97)2 ∼ 0.2%. On the other hand, Eq. (12.24) is
disfavored due to the small value of the available energy E0 in the final state. For
the b → c decay, Eb

0 � mb −mc � 4300−1550 = 2750 MeV. For the d → u decay,
Ed

0 � md −mu � 2 ÷ 5 MeV. As both reactions (12.23) and (12.24) are three-body

decays, the Sargent rule (8.18) can be applied. Thus, the decay (12.24) is sup-

pressed by a factor ∼ (103)5 ∼ 1015 with respect to (12.23). Taking into account
both the CKM matrix element ratio and the phase space factor, the estimated ratio
between the BR of the two considered decays is:

BR(b → cW+)

BR(d → uW−)
∼

(
Eb

0

Ed
0

)5(
Vcb

Vud

)2

� 1015 · 10−3 = 1012

It is therefore very unlikely to observe negative muons in B0 decays.
Note that in the situation sketched in Fig. 12.8 , a uu pair is created during the

hadronization phase; in this case, the reaction is:

bd → (
cW+)

d −→ c(uu )d + W+ = ( cu)(ud) + (
μ+νμ

) = D
0
π−μ+νμ

Problem 12.7 The reaction rate, i.e., the number of interactions per time unit is

R = (σΦNCl) s−1 (12.25)

where σ (cm2) is the reaction cross-section, NCl the number of 37Cl nuclei in the
detector and Φ (cm−2 s−1) the flux of neutrinos with enough energy to induce the
reaction. The total mass of the liquid in the detector is

m = ρv = (
1.5 g cm−3)(4 · 108 cm3) = 6.0 · 108 g

The number of moles present is n = m
P

= 6·108

164 = 3.6 · 106 moles.
The number of C2Cl4 molecules is:

Nmol = nNA = (
3.6 · 106 moles

)(
6 · 1023 moles−1) � 2.2 · 1030 molecules

where NA is Avogadro’s number. There are 4 Cl atoms per molecule, and the total
number of the particular isotope of the chlorine atoms (37Cl) in the detector is:

NCl = 0.25 × (4Nmol) = 2.2 · 1030
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(the factor 0.25 takes into account the final isotopic abundance of 37Cl).
From the solar luminosity and taking into account the Earth-Sun distance D =

150 · 109 m, the energy flux S can be derived:

S = L�
4πD2

= 3.84 · 1026

4π(1.5 · 1011)2
= 1358 W m−2 = 8.5 · 1011 MeV s−1 cm−2

where the conversion factor 1 J = 0.63 · 1013 MeV is used in the last step.
It follows that the flux of neutrinos arriving on Earth (7% of the Sun thermonu-

clear energy), is:

Φν = 0.07
S

〈E〉 = 0.07
8.5 · 1011 MeV cm−2 s−1

1 MeV
= 6 · 1010 cm−2 s−1. (12.26)

Since only 0.1% of neutrinos have an energy sufficient to give rise to the reaction,
the corresponding neutrino flux is:

Φ = Φν/1000 = 6 · 107 cm−2 s−1

Inserting in Eq. (12.25) the values of Φ , NCl and remembering that σ = 10−43 cm2,
one finds:

R = σΦNCl = (
10−43 cm2)(6 · 107 cm−2 s−1)(2.2 · 1030)

= 1.3 · 10−5 events s−1 = 1.3 · 10−5 · 3600 · 24

= 1.1 events day−1 (12.27)

Traditionally, the number of events due to solar neutrinos is expressed in SNU
(1 SNU = 1 count/s for 1036 target atoms). The theoretical prediction for the exper-
iment in question is therefore about 6 SNU: this value is obtained using N = 1036

in Eq. (12.27) [R = (10−43 cm2)(6 · 107 cm−2 s−1)(1036)]. The value obtained with
a more detailed calculation is 8 SNU. The value measured by the Clorine (or Davis)
experiment, averaged over a period of more than 20 years, was 2.6 SNU. This has
given rise to the so-called solar neutrino problem. Raymond Davis Jr. was awarded
the Nobel Prize for the first experimental measurement of neutrinos from the Sun in
2002. The solar neutrino problem was solved theoretically by assuming that neutri-
nos have a small mass and can oscillate. Neutrino oscillations were experimentally
confirmed by many detectors using different experimental techniques.

Problem 12.9

(a) See Fig. 12.4.
(b) The function factor, sin2(πL/Losc), of the oscillation probability given in

(12.49) , passes through a maximum when πL/Losc = Nπ/2 where N is

an integer. Making use of Eq. (12.50) , this corresponds to the condition

Lm2/2.48Eν = N/2 → Lm2/1.24Eν = N . In the energy range from 5 <
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Fig. 12.4 Oscillation
probability as a function of
the zenith angle cosine for
four different energies.
cos θ = 1 represents a vertical
upgoing neutrino. The

formula (12.49) was used,

with L given by (12.7). The
ROOT package [10w3] was
used to draw the plot

Eν < 200 GeV, the left member of the latter equation ranges from about 0.1 to 5
(using L = 2RT and m2 = 2.4 ·10−3 eV2). This means that, in the considered
energy range, the function sin2(πL/Losc) passes through 5 maxima, i.e., for
N = 1, 2, 3, 4, 5. The observed value corresponds to the average of the squared

sinus function, i.e., sin2(πL/Losc) = 0.5.
The expected flux of muon neutrinos from the nadir direction is reduced by

50% in the energy region where MACRO observed neutrino-induced muons.
The same situation occurs for SuperKamiokande (see Fig. 12.14 ).

Problem 12.10 Let consider the probability that a muon produced by a pion de-
cay, decays in turn to an electron (the same for the K → μ → e), as discussed
in Problem 10.10. In the case of atmospheric neutrinos, the path length L corre-
sponds to a large fraction of atmospheric depth. For the three given muon energies
(Eμ = 0.2, 20 and 200 GeV), we have from (10.10):

P(μ → e) � 100%; 15%; 1.5%

respectively. This corresponds to the fact that at low energies (sub-GeV) all muons
decay and the ratio

R = (νe + νe)

(νμ + νμ)
= 1

1 + 1
= 0.5 (12.28)

as for each decayed π+ there is a νμ and a μ+, which in turns decays into positron,
νμ, νe (the same, with charge conjugated particles, for the π− decay). At high en-
ergies, the ratio tends to zero, as the muon has not enough space to decay before
arriving on Earth.
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Problem 12.12

(a) Using the mixing matrix (12.51) and the approximation for a neutrino with

dominant mass (see Sect. 12.6.3 ), one has:

P(να → νβ) = 4|Uα3|2|Uβ3|2 sin2
(
m2

13

4E
L

)

= 4|Uα3|2|Uβ3|2 sin2 Φ23

where α,β indicate two different neutrino flavors (e,μ, τ ) and

Φ23 = m2
23

4Eν

L � m2
13

4Eν

L.

For instance, for νμ → νe, the corresponding oscillation probability (12.9a) is
obtained with α = μ and β = e:

P(νμ → νe) = 4|Uμ3|2|Ue3|2 sin2 Φ23

= 4 sin2 θ23 cos2 θ13 sin2 θ13 sin2 Φ23

= sin2 θ23 sin2 2θ13 sin2 Φ23

where the last member is obtained applying the trigonometric relation sin 2θ =
2 sin θ cos θ .

(b) There are two possibilities:
1. Using the disappearance technique of νe from reactors, through comparisons

of expected and measured neutrino flux with the formula (12.9e). For CPT,
the same oscillation formulas hold for ν and ν.

2. Using the appearance technique of νe from a νμ beam. In this case, formula
(12.9a) is used. Remember that the quantity sin2 2θ23 � 1.

A reactor neutrino oscillation experiment at the Chooz nuclear power station in
France [12C03] was the first νe disappearance experiment (immediately followed by
Palo Verde). The detector was located in an underground laboratory with 300 m.w.e.
(meter water equivalent) overburden rock, at ∼1 km from the neutrino source. It
consisted of a 5-ton target filled with 0.09% gadolinium loaded liquid scintillator,
surrounded by an intermediate 17-ton and outer 90-ton regions filled with undoped
liquid scintillator. Reactor νe were detected via the usual inverse β decay reac-
tion (8.19) . Gd-doping was chosen to maximize the neutron capture efficiency.

The CHOOZ experiment found no evidence for νe disappearance, with a 90% C.L.
upper limit for sin2 2θ13 < 0.19. The Double Chooz, Reno and Daya Bay experi-
ments plan to measure this mixing angle, or to improve the upper limit, with similar
techniques.1

1During the proof correction of this book, the Daya Bay Reactor Neutrino Experiment has mea-
sured a non-zero value for the neutrino mixing angle θ13 with a significance of 5.2 standard de-
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In the accelerator neutrino oscillation experiments with conventional off-axis
neutrino beams (see Problem 10.11), the small θ13 can be measured using the ap-
pearance of electron neutrino in a muon neutrino. The Tokai to Kamioka (T2K)
experiment is a long baseline neutrino experiment designed to measure the mixing
angle in this way. A strong, artificial neutrino beam, produced in J-PARC accelera-
tor complex in Tokai is directed to the Kamioka mine 295 km away from the beam
source. Neutrinos undergo the oscillation process and reach Super-Kamiokande, a
large water Cherenkov detector situated in the mine. The J-PARC complex suffered
from the March 11, 2011 earthquake and tsunami in Japan. In the data collected un-
til then, 6 νe candidates were found with an expected number of background events
[12A11] of 1.5. This is a 2.5σ observation which the collaboration aims to improve
in the next years.
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Chapter 13
Microcosm and Macrocosm

Problems

13.1. Neutrinos from neutron decay. It is believed that cosmic rays are accel-
erated through an iterative mechanism (whose theoretical model is due to
E. Fermi), which consists of a sequence of collisions of charged particles
with the shock wave produced by the explosion of a supernova. In each
collision, a particle gains a small amount of energy. Due to the deflection
caused by magnetic fields, charged particles have a low probability to es-
cape the acceleration region. The situation is different for neutral particles
such as neutrons; they are not subjected to magnetic fields and can elude the
acceleration region.
(a) Give a process in which neutrons can be produced.
(b) What is the minimum energy necessary for a neutron to escape the ac-

celeration region with a probability ≥ 1/e (τn = 887 s)? Assume that the
region size is the order of one light year.

(c) What would be the maximum value of the angle formed by the final state
electron (or neutrino) with the flight direction of the neutron?

[See solutions]

13.2. Search for the proton decay. The Kamiokande detector had a fiducial vol-
ume of 1000 tons of water. Calculate the number of protons in the detector
fiducial volume. If the proton has a lifetime of 1032 years, how many protons
would decay in 1000 tons of water each year?
[See solutions]

13.3. Indirect estimate of the proton lifetime. Geophysical measurements show
that the Earth emits approximately 40 TeraWatt of energy (see also Prob-
lem 14.14). Assuming that all this energy is due to the proton decay process,
whose rest mass transforms into heat, estimate the proton lifetime.
[See solutions]
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13.4. Search for massive exotic particles in Cosmic Rays. New exotic heavy
particles X (e.g., with mass mX = 100 GeV) can be searched studying the
arrival time of hadrons in showers produced in high energy cosmic ray col-
lisions with atmospheric nuclei (see Supplement 1.1). Assuming that these
particles travel 2 km before decay, calculate:
(a) the threshold energy to produce a pair of X particles;
(b) the energy of a particle in the laboratory system for a X produced at rest

in the c.m. system;
(c) the time delay of the massive X particle with respect to the lighter

hadrons in the showers, moving at the light speed c;
(d) the time delay if the particle has mass mX = 1 TeV.
[See solutions]

13.5. Gravitational binding energy.
(a) Show that the gravitational potential energy of a spherical mass M with

uniform density and radius R is VG = −3GNM2/5R.
(b) Calculate the gravitational potential energy of a mass of material equiv-

alent to one solar mass with uniform density and with a radius R equal
to
1. 1 light-year (protostar)
2. 1 solar radius (star)
3. 1000 km (white dwarf )
4. 10 km (neutron star).

[See solutions]

13.6. Supernovae and neutrinos. The 1987A supernova (SN) was located in the
Large Magellanic Cloud at around 170000 light-years from Earth. During
a SN event, a neutrino burst lasting ∼ 2 s is expected. About 10 neutrino
interactions from the SN1987A in 1000 t of water were observed in a time
interval t of less than 10 seconds (assume the value t = 3 s in the cal-
culation). The average energy of supernova neutrinos is about 12 MeV (the
energy range is between Emin = 5 MeV and Emax = 20 MeV). If massive,
the neutrinos with higher energy are expected to arrive on Earth before the
lower energy neutrinos. Estimate:
(a) an upper limit for the neutrino mass from the measured neutrino arrival

time interval t ;
(b) the total energy released in neutrinos by the SN;
(c) the gravitational binding energy 3GNM2/5R of the star, taking into ac-

count that the neutron star formed in the explosion has mass 1.4M� and
radius R = 10 km.

[See solutions]

13.7. Propagation of protons in the cosmic microwave background radiation:
the GZK effect. The Universe is filled with a cosmic microwave background
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radiation (CMBR) with a black body spectrum and an average tempera-
ture of ∼2.7 K (E = 10−3 eV). The average density of CMBR photons
is ργ = 400 cm−3. The high energy cosmic ray protons, originated from
extragalactic sources, can interact with the microwave cosmic background
radiation through the resonant reaction:

p+γ → + → π+n

→ π0p

(a) Find the threshold energy that protons must have to induce this reaction.
(b) Calculate the average distance traveled by a proton before undergoing

the resonant reaction, knowing that the cross-section of the process is
σpγ = 250 μb.

This process limits the size of the Universe from which ultra-high energy
protons can arrive. This is the so-called Greisen-Zatsepin-Kuzmin (GZK)
cut-off named after the physicists that first hypothesized it.
[See solutions]

13.8. γ -rays attenuation in the CMBR. High energy gamma-rays can interact
with lower-energy photons through the process γ + γ → e+ + e−. This
process has a cross-section σ = (8π/9)r2

e where re = 2.8 × 10−15 m is the
classical electron radius.
(a) Find the threshold energy of the high energy gamma-rays so that the

reaction can take place through the interaction with
1. the cosmic microwave background radiation;
2. infrared photons (∼ 0.1 eV);
3. optical photons (∼ 2 eV).

(b) For these three cases, calculate the average distance travelled by the high
energy gammas before being converted. Compare the results with the
size of the Universe.

[Hint: use the solution of Problem 13.7]

13.9. Neutrino telescopes. A neutrino telescope (NT) detects secondary particles
produced in neutrino interactions as νμN → μX (see Supplement 13.1). The
neutrino-induced muons travel in a volume of 1 km3 of ice or water, where
a number Npmt of photomultipliers are plunged. Assume that:
1. The muon track length is 1 km;
2. A muon emits 350 Cherenkov photons per cm of water (Sect. 2.11) ;
3. The PMT have a 10′′ diameter (1 inch = 2.54 cm) and a quantum effi-

ciency εpmt � 0.25;
4. The PMTs are inside optical module, with light collection transparency

of 80%;
5. The water absorption length is λabs = 50 m in the 400–500 nm range

(100 m for the ice);
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6. The number of detected photoelectrons necessary to reconstruct a muon
track is Np.e. = 100.

Estimate the number of optical sensor Npmt needed to track a muon.
This number is one of the major impact factors on the cost of an experi-

ment.
[See solutions]

13.10. Cosmic Rays in galactic magnetic field. The Galaxy is filled with magnetic
fields with average modulus of B = 3 μG and directions coherent for a length
of 1 ÷ 10 pc. Evaluate the curvature radius of a cosmic ray proton with
1012, 1015 and 1018 eV in the galactic magnetic field. Compare the curvature
radius with the Galaxy dimensions (radius ∼15 kpc, thickness ∼200 pc).
[Hint: see Problem 3.2. A: 3 10−4, 0.3, 300 pc.]

13.11. Cosmic accelerators of Cosmic Rays. Using dimensional arguments, esti-
mate the maximum energy of a charged particle (with charge Ze) accelerated
in a strongly varying magnetic field. Apply the relation to the case of a neu-
tron star rapidly rotating around its axis (pulsar) with mass M = 1.4M� and
magnetic field B = 107 T. Explain how such magnetic field can be generated
and estimate the pulsar angular velocity.
[See solutions]

13.12. Search for magnetic monopoles. A muon with energy E = 10 GeV and a
(hypothetical) magnetic monopole (MM) with magnetic charge g = 68.5e =
gD and speed v1 = 0.01c crosses a 25 cm thick layer of liquid scintillator
(for instance that of the MACRO experiment at Gran Sasso laboratory, with
density ρ = 0.85 g cm−3). Evaluate for the muon and for the (hypothetical)
MM:
(a) The total energy lost in the liquid scintillator;
(b) The energy lost in the scintillator that produces light;
(c) The total energy lost for a MM with v2 = 0.3c. Show that MM with

β > 0.1 behave as particles with an equivalent electric charge Ze = gβ .
Refer to the energy loss given in Fig. 2.2(b) for charged particles and that
given in Fig. 13.1 for particles with magnetic charge.
[See solutions]

Supplement 13.1: Cosmic Accelerators

Some galactic accelerators must exist to explain the presence of Cosmic Rays (CRs)
with energies up to the 1019 eV (see Supplement 1.1 and Problem 13.11). It is
roughly expected that galactic accelerators are related to the final stage of the evo-
lution of massive, bright and relatively short-lived stellar progenitors [L92].
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Fig. 13.1 (a) Energy loss of magnetic monopoles with magnetic charge g = 1, 2, 3, 6, 9gD as a
function of β = v/c in Si (density ρ = 4.3 g cm−3; this is a relatively high density, similar to that
present inside the Earth). (b) Energy loss in form of visible light dL/dx (in MeV/cm) produced
by a magnetic monopole with magnetic charge g = gD , 3gD , 9gD and for a relativistic muon in a
scintillator as a function of β

Due to the influence of galactic magnetic fields (Problem 13.10), charged CRs
do not point to the sources. Neutral particles (gamma-rays and neutrinos) do not
suffer the effect of magnetic fields: they are among the decay products of accelerated
charged particles but cannot be directly accelerated.

The astrophysical production of high energy gamma-rays and neutrinos is sup-
posed to occur mainly through the decay of neutral and charged pions produced in
interactions of high energy protons with the matter or photon fields surrounding the
source. Accelerated protons interact with photons in the surroundings of the CRs
emitter, predominantly via the + resonance:

p + γ → + → πo + p

p + γ → + → π+ + n.
(13.1)

Protons also interact with the ambient matter (protons, neutrons and nuclei), giv-
ing rise to the production of charged and neutral mesons:

p + N → π±,πo + X. (13.2)

Very high energy γ -rays (Eγ > 100 MeV) and neutrinos are produced by the
meson decays. Neutral mesons decay in photons (observed on Earth as γ -rays):

πo → γ γ (13.3)
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while charged mesons decay into final states with neutrinos:

π+ → νμ + μ+

↪→ μ+ → νμ + νe + e+

π− → νμ + μ−

↪→ μ− → νμ + νe + e−

(13.4)

Cosmic Rays, Gamma-Rays and Neutrinos The accelerator mechanisms that
produce CRs, can also produce high energy photons and neutrinos through the pro-
cesses (13.3) and (13.4). In this scenario (hadronic model) the energy escaping from
the source is distributed between CRs, γ -rays and neutrinos.

The energy spectrum of CRs is a power law E−αS , where the spectral index
αS � 2 (see Supplement 1.1). The multiplicity of charged particles produced by
hadronic interactions like (13.2) has the smooth ln s dependence (see Fig. 9.19 ).

Only a small fraction of the c.m. energy is converted into mass. Therefore, due to
energy conservation, most of the initial proton energy transforms in kinetic energy
of the outgoing particles. The produced charged mesons have the same energy spec-
trum as the initial CR proton, as well as their daughter γ -rays and neutrinos from
(13.3, 13.4). For this reason, it is expected a power low spectrum also for γ and ν,
with αS ∼ αν ∼ αγ .

Electrons accelerated by astrophysical objects can produce γ -rays but not neu-
trinos (leptonic model). The most important process which produces high energy
γ -rays in the leptonic model is the Inverse Compton (IC) scattering.1 IC γ -rays are
produced in the interactions of energetic electrons with ambient background photon
fields: the cosmic microwave background radiation, and the diffuse galactic radia-
tion of star light. Most of observed TeV γ -ray galactic sources (see below) have a
power law energy spectrum E−αγ , where αγ ∼ 2.0 ÷ 2.5. The values of the spectral
index are very close to the expected spectral index of CR sources, αS . This leads
to the conclusion that some of the TeV γ -rays sources can also be the sources of
galactic CRs.

MeV-GeV Photons Sources emitting MeV-GeV photons were first observed in
the 1990’s by the Energetic Gamma-ray Experiment Telescope (EGRET) on board
of the CGRO satellite. Following its launch in June 2008, the Fermi Gamma-ray
Space Telescope (Fermi) began a sky survey which produced a deeper and better
resolved map of the γ -ray sky than any previous space mission. The initial result for
energies above 100 MeV [13F09] regards the 205 most significant γ -ray sources,
which are the best characterized and best localized ones. Most of them are in the
galactic plane, and were associated with known pulsars (see Supplement 14.2).

1The inelastic scattering of photons in matter results in a decrease in energy of an X-ray or gamma-
ray photon; this is the so-called Compton effect. The Inverse Compton effect corresponds to the
fact that a low energy photon is scattered to higher energies by a high energy electron.
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Photons with E > 100 GeV Gamma-rays above 100 GeV are detected on
ground, using the Imaging Air-Cherenkov Technique (IACT) [13A08, 13D08].
When impinging the Earth’s atmosphere, the high energy γ -rays collide with the
nuclei present in the atmosphere, producing a cascade (shower) of high energy rela-
tivistic secondary particles. These emit Cherenkov photons, at a characteristic angle
in the visible and UV range, which move through the atmosphere. The atmospheric
showers induced by cosmic rays can therefore be observed on the surface of the
Earth through the detection of the Cherenkov light.

The pioneering ground based γ -ray experiment was built by the Whipple collab-
oration in the 1990’s. During the last decade, several ground based γ -ray detectors
were developed, both in North and South Earth hemispheres. At present, the new
generation apparatuses are the H.E.S.S., VERITAS and MAGIC telescopes. These
IACT telescopes have produced a catalogue of TeV γ -ray sources, with a concen-
tration of sources in the galactic plane.

Possible Galactic and Extragalactic Sources It is commonly believed that about
10% of the energy emitted in galactic supernovae (SN) explosions at an approximate
rate of 3 per century can provide the power needed to account for the observed cos-
mic rays up to ∼1015 eV through the iterative Fermi mechanism [1F49a]. If the
final product of the SN is a neutron star, already accelerated particles can gain ad-
ditional energy, due to the neutron star strong magnetic field. Shell-type SN Rem-
nants (SNR) are considered to be the most likely sites of galactic CR acceleration,
hypothesis supported by recent observations from the TeV γ -ray IACT.

Figure 13.2 [13O02] shows a diagram first produced by Hillas (1984). Hillas
derived the maximum energy which a particle of a given charge Ze can reach, inde-
pendently of the acceleration mechanism (see also Problem 13.11). It was obtained
from the simple argument that the particle radius in the magnetic field BμG (in units
of 10−6 Gauss) should be smaller than the size Rkpc (in kpc) of the acceleration
region. This energy E(EeV) (in units of 1018 eV) is given by:

E(EeV) ∼ βZBμGRkpc (13.5)

where β is the velocity of the shock wave in the Fermi model or in any other ac-
celeration mechanism. Figure 13.2 gives the relation between the dimensions of the
astrophysical objects and the magnetic fields needed to contain the accelerating par-
ticle.

Other galactic candidates as CR sources are the pulsar wind nebulae. They dif-
fer from the shell-type SNRs because there is a pulsar in the centre which blows
out equatorial winds and, in some cases, jets of very fast moving material into the
nebula. Microquasars are galactic X-ray binary systems, which exhibit relativistic
radio jets, observed in the radio band. The name is due to the fact that they are mor-
phologically similar to the so-called quasars, i.e., very energetic and distant Active
Galactic Nuclei (AGN). Indeed, the presence of jets makes the microquasars similar
to small quasars. This resemblance could be more than morphological: the physical
processes that govern the formation of the accretion disk and the plasma ejection in
microquasars are probably the same ones as in large AGN.
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Fig. 13.2 Example of the
diagram first produced by
Hillas. Acceleration of
cosmic rays up to a given
energy requires magnetic
fields and sizes above the
respective line. Some source
candidates are still
controversial
(1 EeV = 1018 eV,
1 ZeV = 1021 eV)

Ultra High Energy (UHE) Cosmic Rays (>1019 eV) are likely of extragalactic
origin. Active Galactic Nuclei (AGN) or gamma-ray bursts (GRBs) are the prin-
cipal candidates. AGN are galaxies with a very bright core of emission embedded in
their centre, where a supermassive black hole (106 ÷ 109 solar masses) is probably
present. GRBs are short flashes of γ -rays, lasting typically from milliseconds to tens
of seconds, and carrying most of their energy in photons of MeV scale. A possible
origin of the GRBs with duration of tens of seconds is the collapse of massive stars
into black holes.

Detectors for Cosmic Neutrinos A large volume neutrino detector behaves as a
telescope when the neutrino direction is reconstructed with an angular precision of
1◦ or better. This is the case for high energy charged current νμ interactions [13C10].

The small interaction cross-section of neutrinos allows them to come from far
away, but it also consists in a drawback, as their detection requires a large target
mass. The idea of a neutrino telescope based on the detection of the secondary par-
ticles produced in neutrino interactions was first formulated at the beginning of the
1960’s by Markov. He proposed to install detectors deep in a lake or in the sea
and to determine the direction of the charged particles with the help of Cherenkov
radiation. Starting from the Markov idea and from the present knowledge of TeV
γ -ray sources, the challenge to detect cosmic neutrinos is open for a multi-km3 scale
apparatus with at least 5000 detector units (see Problem 13.9).
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The pioneering project for the construction of an underwater neutrino telescope
was due to the DUMAND collaboration, which attempted to deploy a detector off
the coast of Hawaii in the 1980s. At that time, the technology was not enough ad-
vanced to overcome the challenge and the project was cancelled. In parallel, the
BAIKAL collaboration started to work in order to realize a workable detector sys-
tem under the surface of the Baikal lake.

A major step towards the construction of a large neutrino detector in deep ice
was due to the AMANDA collaboration. AMANDA operated optical sensors placed
in the ice layer of the Antarctic starting from 1993. After the detector completion
in 2000, the AMANDA collaboration proceeded with the construction of a much
larger apparatus, the IceCube detector [13w3], whose construction was completed
early 2011.

In water, the pioneering DUMAND experience is being continued in the Mediter-
ranean Sea by the ANTARES experiment. The final goal is the construction of
a km3-scale detector in the Mediterranean Sea. KM3NeT [13w4] is an European
deep-sea research infrastructure, which will host a neutrino telescope with a volume
of at least one cubic kilometer at the bottom of the Mediterranean Sea.

Fiat lux. It was written, and scientists never fail to observe new spectacular as-
trophysical discoveries when new experimental techniques on new photons wave-
lengths become available: from the Cosmic Microwave Background observation up
to the TeV γ -ray astronomy using Imaging Air-Cherenkov Technique.

Fiat neutrinos, it was never written, and Mr. Pauli himself has feared that this
particle would never be discovered. Nevertheless, observation of solar neutrinos
and of neutrinos from the supernova 1987A opened up a new observation field.
High energy neutrino astronomy is a young discipline derived from the fundamen-
tal necessity of extending conventional astronomy beyond the usual electromagnetic
messengers.

Solutions

Problem 13.1

(a) Neutrons can be produced through the interaction of protons with the electro-
magnetic radiation in the environment surrounding the supernova through the
resonant formation of a  baryon:

p + γ → + → π+ + n.

In addition, neutrons can be produced in the interaction of high energy protons
with other protons in the supernova remnant environment.

(b) A high energy neutron (β � 1) in the observer’s system has a decay length
L = Γ τnc, where Γ = E/(mnc

2) (see Sect. 3.6.1 ) is the Lorentz factor and
τn, the neutron lifetime in the rest frame system.



154 13 Microcosm and Macrocosm

The survival probability is P = e−L/cΓ τn , and P = 1/e when L = cΓ τn.
The length given in the problem is one light-year. Therefore, one has (1 year =
3.15 · 107 s):

L = 3.15 · 107c = Γ τnc −→ Γ = 3.15 · 107

887
= 3.5 · 104

which corresponds to a neutron energy of:

E = Γmnc
2 � 33000 GeV = 33 TeV.

Any larger value of Γ gives a higher survival probability.
(c) The maximum kinetic energy for the electron (or neutrino) in the beta decay is

Tβ = Eβ − me � 0.78 MeV (see Sect. 8.3.1 ). Assuming that the electron (or
neutrino) is emitted in the direction perpendicular to the direction of motion of
the neutron with energy E, the angle in the observer system is:

tan θ � θ = Tβ/E � 2.3 · 10−8.

While the electron can be deflected in its motion by magnetic fields, neutrinos
“remember” the original direction of the neutron. The detection of neutrinos
from astrophysical sources could help to identify the sources (still unknown) of
cosmic rays detected on Earth (see Supplement 1.1).

Problem 13.2 The number of atoms in one cm3 of a material with mass number A
is given by NAρ/A, where NA is Avogadro’s number. For a molecule of water, the
mass number is A = 18, and the number of protons per molecule is Z = 8 + 1 + 1.
Since 1000 t of water occupy a volume of V = 109 cm3, the total number of protons
in the fiducial volume of the Kamiokande detector was:

N = NAρVZ

A
= 6 · 1023 × 109 × 10

18
= 3.3 · 1032. (13.6)

Denoting with τp the proton lifetime, the number of surviving protons, during an
observation time t , is N(t) = Ne−t/τp . Since t � τp , the series expansion at the
first order can be used and one has: N(t) = Ne−t/τp = N(1 − t

τp
). If the proton

lifetime is 1032 years, the number of protons decaying in one year is:

ND = N − N(t) = N
t

τp
= 3.3 · 1032 × 10−32 = 3.3.

Other experiments, in addition to Kamiokande, searched for signal events compati-
ble with the proton decay (see Supplement 5.1). No plausible candidate was found,
and a lower limit on the proton lifetime was set to be larger than 1033 years (at least
in the decay channel p → e+π0, in which it was thought to be easier to observe the
proton decay).
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Problem 13.3 The Earth mass is MT = 6 · 1024 kg. The number Np of protons
(assumed to be 50% of the nucleons) is:

Np = 0.5 × MT

mN

= 1.8 · 1051

where mN = 1.67 · 10−27 kg is the nucleon (p or n) mass.
Let us assume that the whole energy produced inside the Earth is due to the

proton decay, which transforms its rest mass (mp = 938 MeV) into heat. Since
1 eV = 1.6×10−19 J, one has Emp = 938 MeV×1.6 ·10−13 J/MeV = 1.5 ·10−10 J.
If τp denotes the proton lifetime, one has:

40 TW = Np × Emp

τp
−→ τp = 1.8 · 1051 × 1.5 · 10−10 J

40 · 1012 J/s
= 6.75 · 1027 s.

Since 1 year = 3.15 · 107 s, this corresponds to τp = 2.1 · 1020 y.
This indirect limit is much worse than any direct experimental limit (see Supple-

ment 5.1 and previous Problem). However, the obtained value is much longer that
the Universe age!

A power of 40 TW corresponds to an energy flux on the Earth surface (RT =
6300 km = 6.3 · 108 cm) of Φ = 40×1012 W

4π(6.3·108)2 = 8 · 10−6 J cm−2 s−1. This can be

compared with the 0.14 J cm−2 s−1 arriving on Earth from the Sun.

Problem 13.4

(a) For the formation of a pair of X particles in the c.m. system, the c.m. energy
must be equal to at least twice the X particle mass. The threshold energy is
therefore

√
s = 2MX . In the laboratory system, the four-momentum of the cos-

mic ray proton is (E,p) and that of the target nucleon at rest is (m,0). In this
case, one can write:

s = (E + m,p)2 = E2 + m2 + 2Em − p2 = 2m2 + 2Em

and (m = 1 GeV):

E = s − 2m2

2m
= (2MX)2 − 2m2

2m
� 2

M2
X

m
= 2

1002

1
GeV = 20 TeV.

The corresponding momentum of the incident particle is p � E.
(b) In the laboratory system, the four-momentum in the direction of motion of each

particle is (E′,p′) = (MXγ ′,MXγ ′β ′). Using the momentum conservation law,
one has:

p = 2MXγ ′β ′ −→ γ ′β ′ = E

2MX

= 2 × 104

200
= 100
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from which one can derive:

1002 = (
γ ′β ′)2 = β ′2

1 − β ′2 −→ β ′ = 0.9999; γ ′ = 100.

The energy of the X particle in the laboratory frame is E′ = 100MX = 10 TeV.
(c) The delay of the particle X with respect to a particle that propagates with speed

c is:

t = L

v
− L

c
= L

cv
c

− L

c
= L

c

(
1

β ′ − 1

)
= 2 · 103

3 · 108
× 1 · 10−4 = 0.7 ns.

Problem 13.5

(a) Consider an homogeneous sphere of density ρ and radius r , whose mass is m1 =
4
3πr3ρ. A spherical mass shell of radius r + dr with mass dm2 = 4πr2drρ

surrounding m1 interacts with a gravitational potential dU = GN
m1dm2

r
. The

work done by the gravitation to construct a sphere of radius R and mass M =
4
3πR3ρ corresponds to the gravitational binding energy:

|U | =
∫ r=R

r=0
dU = GNρ2 4

3
π4π

∫ r=R

r=0
r4dr = 3

5

GN

R
M2.

(b) The potential energy can be derived using the gravitational constant GN =
6.67×10−11 m3 kg−1 s−2 and recalling that 1 J = 1

1.6·10−19 eV = 1
1.6·10−13 MeV.

1. One light-year corresponds to 3 · 108 [m/s] × 3.15 · 107 [s] � 9 · 1015 m. One
solar mass is equivalent to M = 2 · 1030 kg. Therefore, one has:

|Uprotostar | = 3

5
6.67 · 10−11 (2 · 1030)2

9 · 1015
= 1.7 · 1034 J � 1047 MeV.

2. For the same mass in the solar radius R = 7 · 108 m, one has:

|Ustar | = 3

5
6.67 · 10−11 (2 · 1030)2

7 · 108
= 2.2 · 1041 J � 1.4 · 1054 MeV.

3. For a white dwarf of radius R = 1000 km, one has:

|UWD| = 3

5
6.67 · 10−11 (2 · 1030)2

106
= 2 · 1044 J � 1.3 · 1057 MeV.

4. For a neutron star of radius R = 10 km, one has:

|UNS | = 3

5
6.67 · 10−11 (2 · 1030)2

104
= 2 · 1046 J � 1.3 · 1059 MeV.
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The gravitational potential (or binding) energy of an object held together by
gravity alone (which is negative), is the amount of energy required to pull all
the material apart, to infinity. It is also the amount of energy that is liberated
(usually in the form of heat) during the accretion of such an object from material
falling from infinity.

In a star, there is roughly the same binding energy as there is thermal energy
(this can be shown using the virial theorem). In white dwarfs, the thermal energy
is unimportant, instead, it is the degeneracy energy of the electrons which is ex-
pected to be comparable to the gravitational binding energy. In neutron stars,
it corresponds to the degeneracy energy of the neutrons (see Supplement 14.2).
Nuclear physics is necessary to explain how stars maintain equilibrium against
gravity ( Chap. 14 ). Particle physics [13H97] is necessary to explain how en-

ergy is released during a gravitational stellar collapse, when 99% of the binding
energy of a neutron star is released as neutrinos (see next Problem).

Problem 13.6 The main observable process is the antineutrino interaction with a
free proton (the hydrogen nucleus): νep → ne+

(a) From the definition γ = 1√
1−(v2/c2)

and E = γmν (using natural units with

c = 1), one has:

v

c
=

(
1 − 1

γ 2

)1/2

� 1 − m2
ν

2E2
. (13.7)

For a massive neutrino, one can write:

vmax

c
= 1 − m2

ν

2E2
min

; vmin

c
= 1 − m2

ν

2E2
max

. (13.8)

This corresponds to a difference in speed (v = vmax − vmin) depending on the
particle energy:

v

c
= m2

ν

2

(
1

E2
min

− 1

E2
max

)
. (13.9)

A relatively large value of mν would lead to a sufficiently long delay be-
tween the arrival time of high and low energy neutrinos. In particular, the exper-
iments would detect events with decreasing energy as a function of arrival time
(higher energy neutrinos would arrive earlier). This was not observed, and it
was therefore possible to set an upper limit on the neutrino mass. Assuming that
the arrival time delay of supernova neutrinos on Earth depends on the different
propagation speeds, one can write:

c
t

D
= c

tmax − tmin

D
= c

vmin

− c

vmax

= cv

vminvmax

� v

c
(13.10)

assuming v � vmax � vmin � c.
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Equating Eq. (13.9) with Eq. (13.10), one has:

ct

D
= v

c
= m2

ν

2

(
1

E2
min

− 1

E2
max

)
. (13.11)

It can be concluded that mν = 0 corresponds to t = 0. Experimentally, it is
found that t < 3 s. Using the information given in the problem and D = 1.7 ·
105 × 3.15 · 107c, the upper limit on the neutrino mass mν is:

mν ≤
√√√√ 2ct

D · ( 1
E2

min

− 1
E2

max
)

=
√

2 · 3 · c
5.4 1012 · c · ( 1

55 − 1
202 )

� 5.5 · 10−6 MeV

(13.12)
that is, mν ≤ 6 eV.

(b) The total energy released by the supernova as a neutrino burst is ∼ Ntot · 〈E〉
where the neutrino average energy 〈E〉 is about 12 MeV. Denoting as Φν

(cm−2), the neutrino flux on Earth, the total number of neutrinos at the source
(assuming an isotropic emission) is: Ntot = Φν · 4πD2, where D is the distance
from Earth to the source. The measured flux Φν is obtained by requiring that
ΦνσNtar where σ is the interaction cross-section and Ntar is the number of
free protons on the target, be equal to the number of observed events, that is
about 10.
If the neutrinos interact only with the free protons, i.e., the hydrogen nuclei of
the water, the cross-section is given by Eq. (8.28) :

σ � 7 · 10−44 cm2〈E〉2 � 1 · 10−45 m2.

The number Ntar of free proton on target is:

Ntar � 2
1000 t

18/NA

� 7 · 1031 protons (13.13)

(note the difference from Eq. (13.6)). Therefore, the measured flux on Earth is:

Φν � 10/(σNtar ) � 1.5 · 1014 m−2.

Finally, the total number of neutrinos and the total energy emitted at the source
are:

Ntot = Φν4πD2 � 5 · 1057

Total energy � Ntot 〈Eν〉 � 6 · 1058 MeV.

(c) The sun mass is M� = 2 · 1030 kg. The gravitational binding energy released to
form a neutron star of radius 10 km and mass 1.4M� is (see Problem 13.5):

UG = −3 × 6.67 · 10−11 × (2.8 · 1030)2

5 × 104
� −3.1 · 1046 J � −1.9 · 1059 MeV.
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Detailed studies show that, in the process of gravitational stellar collapse, about
99% of the gravitational binding energy is released as neutrinos.

Problem 13.7 In term of quark composition, the + resonance with m =
1232 MeV has the same structure as that of the proton (uud). The minimum en-
ergy is required when the + is produced at rest:

√
s = m. If pp , pγ are the

four-momenta of the proton and photon, the resonance is produced when:

s = (pp + pγ )
2 = m2

 −→ m2
p + 2EγEp − 2pppγ = m2

. (13.14)

For a photon, |pγ | = Eγ and at high energy Ep � pp . In this case, Eq. (13.14)
becomes:

2Ep(Eγ − Eγ cos θ) = m2
 − m2

p.

The minimum value for Ep occurs when θ = π (the directions of the photon and of
the proton are opposite). In this case:

Ep = m2
 − m2

p

4Eγ

= 1.6 · 1020 eV (13.15)

where the values Eγ = 10−3 eV, m = 1232 MeV, mp = 938 MeV are inserted in
the last member.

(b) The mean free path of a proton in the CMBR is:

λ = 1

σpγ ργ

= 1

250 · 10−30 × 400
= 1025 cm = 3 Mpc.

In the final equation, the distance is expressed in parsec, unit familiar to as-
tronomers. The conversion is 1 pc = 3 · 1018 cm. Note that this is a small dis-
tance in terms of the dimensions of the universe.

Problem 13.9 The detection surface of a 10′′ PMT is Apmt � πr2 � 0.05 m2

where r = 25.4/2 cm is the PMT radius. Such PMTs have the advantage to fit inside
commercial pressure-resistant glass spheres (called optical module, OM) and have
been chosen by the IceCube and ANTARES neutrino telescopes (Fig. 13.3). The
overall efficiency of an OM is somewhat reduced with respect to that of the PMT,
due to the presence of glass, glue between the glass and the PMT, and mu-metal
cage for magnetic shield. The overall efficiency is εom � 0.8εpmt = 0.2.

The effective volume of a PMT is Vpmt = Apmt × λabs � 0.05 [m2] × 50 [m] =
2.5 m3. One Cherenkov photon falling inside this effective volume can produce a
photoelectron (p.e.) with a probability εom � 0.2.

Let us call Npmt the number of optical sensors inside the instrumented volume.
The rate R between the effective PMT volume of Npmt and the instrumented volume
(1 km3) is:

R = Vpmt × Npmt

109 [m]3
= 2.5 × 10−9Npmt (13.16)
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Fig. 13.3 (a) Sketch of an ANTARES optical module (OM). A large hemispherical (10 inches
in diameter) photomultiplier (PMT) is protected by a pressure resistant glass sphere. The outer
diameter of the sphere is 43.2 cm. A mu-metal cage protects the PMT from the Earth magnetic
field. An internal LED is used for the calibration. (b) PMT quantum efficiency commonly used in
ice or water (from Hamamatsu) [13C10]

Assuming that a muon emits 350 Cherenkov photons per cm of water, the total
number of Cherenkov photons emitted by a muon with a 1 km long track, in the
wavelength range of the PMT sensitivity, is Nγ � 3.5 × 107. The fraction converted
into photoelectrons which gives a signal is:

Np.e. = Nγ × R × εom

� (
3.5 × 107) · (2.5 × 10−9Npmt

) · εom
= 1.8 × 10−2Npmt (13.17)

We must take into account that in most cases many photons arrive on the same
PMT during the integration window of the electronics (which is of the order of
20–50 ns). For this reason, an average of about Np.e. ∼ 100 p.e. are necessary to
reconstruct the muon track. The number of optical sensors in a neutrino detector
follows straightforward from Eq. (13.17):

Npmt � 100/1.8 × 10−2 � 5000 (13.18)

The IceCube collaboration has completed the construction of a telescope with
4800 OMs buried in ice; a neutrino telescope in the Mediterranean sea plans to use
between 5000 and 10000 OMs, depending on the financial budget.

Problem 13.11 A fast rotating neutron star (if the rotation axis is different from
the direction of the magnetic field) induces an electric field E through the Faraday
law: ∇ × E = 1

c
∂B
∂t

. From dimensional arguments, if L is the length of the region
where the magnetic field changes,

E
L

= 1

c

dB

dt
,
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the maximum energy Emax which an accelerated particle can gain is:

Emax =
∫

ZeEdx =
∫

Ze
L

c

dB

dt
dx =

∫
Ze

L

c
dB

dx

dt
= ZeLBβ (13.19)

where β = v/c is the particle velocity.
The condition dictated by Eq. (13.19) is due to Hillas, which derived Emax inde-

pendently of the acceleration mechanism (Fig. 13.2).
The typical magnetic field of a star with radius R = R� is B = 10−3 ÷ 10−2 T.

After a gravitational collapse, the neutron star radius is of the order of RNS = 10 km.
By imposing conservation of the magnetic field flux, the magnetic field on the neu-
tron star surface increases to BNS = (R/RNS)

2B = 107 ÷ 108 T.
By inserting numerical value in (13.19), for a relativistic (β � 1) proton around

a neutron star (L = 10 km), one obtains (c.g.s. units):

Emax = ZeLBβ = 4.8 · 10−10 [esu] × 106 [cm] × 1011 [Gauss]

� 5 · 107 erg � 3 · 1019 eV

where the conversion 1 eV = 1.6 · 10−12 erg is used in the last member.
The pulsar angular velocity is estimated in Supplement 14.2

Problem 13.12

(a) A muon with E = 10 GeV/c2 energy has momentum p = 10 GeV/c (its
mass can be neglected). The energy loss per unit path can be derived from
Fig. 2.2(b) : (dE/dx)μ � 2 MeV g−1 cm2. Note that we use the carbon curve

as representative of a material made of light elements (see Problem 3.14). The
liquid scintillator has density ρ = 0.85 g cm−3. The energy loss of a through
going particle crossing 25 cm of liquid scintillator is: Eμ � (2 · 25 · 0.85) �
43 MeV.

In 1931, Dirac introduced the magnetic monopole (MM) in order to ex-
plain the quantization of the electric charge, which follows from the exis-
tence of at least one free magnetic charge. He established the basic relation-
ship between the elementary electric charge e and the basic magnetic charge
g: eg = n�c/2, where n is an integer, n = 1,2, . . . . The magnetic charge is
g = ngD , where gD = �c/2e = 68.5e is the so-called unit Dirac charge. The
specific energy loss for a MM with magnetic charge g = gD = 68.5e can be
derived from Fig. 13.1(a) (lowest curve). At the speed v1 = 10−2c, one has
(dE/dx) � 1 [GeV/cm]/4.3 [g cm−3] � 0.2 GeV g−1 cm2. The energy loss of
a MM in the scintillator would be: E � (0.2 · 25 · 0.85) GeV � 4.3 GeV, i.e.,
a factor about 100 times larger than that of a relativistic μ.

(b) From Fig. 13.1(b), for a muon, one has (dL/dx)μ � 0.05 MeV/cm; it follows
that Eμ = (0.05 · 25) MeV = 1.25 MeV. The fraction of energy loss that pro-
duces visible light corresponds therefore to about 1.25/43 = 3% for a particle
near the ionization minimum, as it is the case for a relativistic muon. For a MM
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with β = 10−2, one has (dL/dx) � 2 MeV and EMM � 50 MeV, which cor-
responds to about 50/4300 = 1% of the total energy loss. The processes that
emit light largely increases for β > 0.1, as shown in Fig. 13.1(b).

(c) From Fig. 13.1(a), the energy loss for a MM with β = 0.3 is: (dE/dx) �
18 [GeV/cm]/4.3 [g cm−3] � 4.2 GeV g−1 cm2. The corresponding energy loss
in the scintillator would therefore be E � 4.1 · 25 · 0.85 � 89 GeV. If the MM
behaves as a particle with an equivalent electric charge e = gβ , one has:

(dE/dx)MM � (dE/dx)μ(g/e)
2β2

because the energy loss due to excitation-ionization depends on the square of the
particle electric charge. This equation approximates the curve of Fig. 13.1(a) for
β ≥ 0.1. For β = 0.3, this would correspond to a muon with momentum:

pμ = mμvγ = mμβc
(
1 − β2)−1/2 � 105 · 0.3(1 − 0.09)−1/2 � 33 MeV/c.

Such a muon looses 7 MeV g−1 cm2 (see Fig. 2.2(b) ). Therefore, the corre-
sponding energy loss is:

(dE/dx)MM � 0.007 · (68.5)2 · 0.09 � 3.0 GeV g−1 cm2

which is not too different from the value of 4.2 GeV g−1 cm2 obtained above.
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Chapter 14
Fundamental Aspects of Nucleon Interactions

Problems

14.1. Half-life and lifetime. Derive the value of the half-life t1/2 of a radioactive
element when its lifetime τ is known.
[A. t1/2 = τ ln 2]

14.2. Hydrogen isotopes. The natural hydrogen is a mixture of two stable iso-
topes, hydrogen and deuterium. The deuterium nucleus has a binding energy
of 2.23 MeV. The atomic mass of the natural hydrogen is 940.19 MeV. Cal-
culate the relative abundance of the two isotopes in the natural hydrogen.
[See solutions]

14.3. Nuclear fusion. The deuterium nucleus 2
1H has a binding energy of

2.23 MeV. The tritium nucleus 3
1H has a binding energy of 8.48 MeV. Cal-

culate the energy necessary to bring two deuterium nuclei to the distance of
r = 1.4 · 10−13 cm. Estimate the corresponding temperature. These condi-
tions are necessary to activate the fusion reaction:

2
1H + 2

1H → 3
1H + X

Indicate which particle X is produced in the final state and calculate the
energy released in the fusion reaction.
[See solutions]

14.4. Probability in radioactive decays. The probability of a radioactive atom to
decay in 1 second is equal to 5×10−11. What is the probability that 5 decays
take place in 1 second in a statistical sample made of 9 × 1010 atoms? And
what is the probability for 15 decays?
[See solutions]
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14.5. Radioactivity. The α-decay of the radium isotope (226
88 Ra) has a half-life

t1/2 = 1602 years. The unit of activity (1 Curie = 1 Ci) is defined as the
number of disintegrations per second of a gram of radium.
(a) Write the decay reaction.
(b) Calculate the number of nuclei in one gram of 226

88 Ra.
(c) Calculate the number of disintegrations per second corresponding to the

activity of 1 Ci.
[See solutions]

14.6. Carbon isotopes. The natural carbon contains 98.89% of 12
6 C and 1.11% of

13
6 C, respectively having atomic masses M(12

6 C) = 12.000 u and M(13
6 C) =

13.003 u.
(a) Calculate the atomic mass of the natural carbon.
(b) A living organism contains a small fraction r of 14

6 C with respect to the
natural carbon. This fraction is r = 1.3 · 10−12. The 14

6 C is a radioactive
isotope which undergoes β− decays with a half-life t1/2 = 5730 years.
Calculate the activity of a gram of carbon in a living organism.

(c) The activity of a fossil containing a mass of carbon equal to m =
5.000±0.005 g is measured. If n = 3600 decays are recorded in 2 hours,
calculate the age of the fossil. Also estimate the error on the measure-
ment.

[See solutions]

14.7. Nuclear reactor. A nuclear reactor produces 2 × 109 Watts.
(a) Calculate the number of fission events occurring per second assuming

235U → A1
Z N + A2

92−ZN + neutrons + 200 MeV.

(b) Estimate how many kilograms of uranium are consumed in one year
knowing that the proton mass is mp = 938 MeV and that the 235U bind-
ing energy is ∼8 MeV/nucleon.

[See solutions]

14.8. Fermi momentum. Calculate the Fermi momentum pF and energy EF

of nucleons in the 16
8 O nucleus. Assume a spherical nucleus with radius

R = 1.25A1/3 fm. The binding energy of the nucleus is 128 MeV. Calcu-
late the depth of the potential well in the Fermi gas model. (Neglect the
mass difference between proton and neutron).
[A. pF = 240 MeV/c; EF = 30 MeV; U = 38 MeV. See Sect. 14.3.1 ]

14.9. Neutron moderation in nuclear reactors. A nuclear reactor has a graphite
moderator. The carbon nuclei can be effectively considered free to recoil
when hit by fast neutrons. A fast neutron (1 MeV of kinetic energy) collides
elastically against a nucleus of carbon 12.
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(a) What are the initial speeds of the two particles in the center-of-mass
system?

(b) In the c.m. system, the direction of the velocity of the carbon nucleus
changes by 135◦ after the collision. What are the direction and kinetic
energy of the neutron in the laboratory system after the collision?

(c) How many elastic collisions are needed on average for the neutron,
assuming that the angular deviations are uniformly distributed in the
c.m. system, so that its energy in the laboratory system is reduced from
1 MeV to 1 keV? Assume an average energy loss as the mean between
the minimum and maximum values.

14.10. Nuclear radioactive chain. In a nuclear radioactive chain, τ1 is the lifetime
of the parent nucleus (type 1) in the decay nucleus1 → nucleus2. The daugh-
ter nucleus (type 2) subsequently decays with a lifetime τ2. Assuming that
at the initial time (t = 0), the daughter nuclei are absent (N2(0) = 0) and
N1(0) = N0, determine the condition and the time necessary in order that
the two nuclear activities become equal.
[See solutions]

14.11. Nuclear binding energy-I. Using the Weizsacker formula (14.15) for the
nuclear binding energy:

BE = a0A − a1A
2/3 − a2

Z2

A1/3
− a3

(A − 2Z)2

A
± a4

A1/2
(14.1)

calculate the binding energy of isobar nuclei with A = 27: 27
12Mg, 27

13Al, 27
14Si.

Determine which is the more stable nucleus and indicate which terms of the
binding energy formula make the other isotopes less stable.
[See solutions]

14.12. Nuclear binding energy-II. Using the Weizsacker formula (14.1) for the
nuclear binding energy:
(a) Show that the 64

29Cu nucleus can decay either through β+ and β−; write
the decay reactions.

(b) Calculate the maximum energy for the positron and the electron in each
reaction.

(c) Which decay occurs with the largest probability?
[See solutions]

14.13. Geiger-Nuttal law. The isotopes of thorium 90Th decay by α emission
(mα = 3727.38 MeV) to radium 88Ra isotopes. The measured lifetimes of
three of these decays are reported in the last column of the following table.
The binding energy (BE), the total angular momentum J and parity P of the
nucleus before and after the decay are also indicated.
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Z A BE (MeV) JP Z A BE (MeV) JP τ (s)

90 230 1755.22 0+ 88 226 1731.69 0+ 3.4 · 1012

90 229 1748.43 5/2+ 88 225 1725.30 3/2+ 3.3 · 1011

90 228 1743.19 0+ 88 224 1720.41 0+ 8.7 · 107

Calculate the kinetic energy, momentum and angular momentum of the emit-
ted α particles in the above thorium decays. Compare the obtained values
with the energies and lifetimes in the Geiger-Nuttal plot, Fig. 14.9 . One

of the decays has lifetime about two orders of magnitude larger than the
extrapolation of other data. Explain qualitatively why.
[See solutions]

14.14. Measurement of geo-neutrinos. Geophysical measurements show that the
Earth emits approximately 40 TeraWatt of energy. Models predict that ap-
proximately 40% of this energy outflow is due to the decay of radioactive
nuclei, 90% of which being due to the uranium and thorium decay chains.
(A 238U nucleus induces a cascade of 8 α and 6 β transitions and the chain
ends in the stable 206Pb isotope. The 232Th induces a cascade of 6 α and 4 β

transitions that terminates in the 208Pb isotope.)
(a) Evaluate the flux on Earth surface of neutrinos emitted in the β decays

of the U and Th chains (geo-neutrinos), assuming that neutrinos (with
average energy of ∼1 MeV) carry 10% of the uranium/thorium released
energy.

(b) Guess which reaction and detector are needed to detect geo-neutrinos.
[See solutions]

14.15. Nuclear muon capture. Explain and discuss the process of nuclear capture
of a μ− in a hydrogen nucleus μ−p → nνμ, and in a heavier nucleus, for ex-
ample aluminum (Z = 13, A = 27). Consider that the lifetime is τ = 2.16 μs
for a free μ−, while it is τAl = 0.88 μs in aluminum.
Determine the μ− mean free path in Al.
[See solutions]

14.16. μ-mesic atom radius.
(a) In the framework of Bohr’s atomic theory, determine the radius R0 of a

mesic atom consisting of a proton and a μ−.
(b) For a mesic atom consisting of a nucleus and a μ−, calculate the atomic

number Z for which the nuclear radius equate the size of the mesic atom
(use Fig. 14.2 for the relationship between A and Z).

[A. (a) R0 = 256 fm; (b) Z � 50]
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Supplement 14.1: Nuclear Collisions of Cosmic Rays During
Propagation in the Galaxy

The astrophysical mechanisms that produce planetary systems (such as the solar
system) and those that accelerate cosmic rays (CR) seem to be closely connected,
as shown in Fig. 14.12 . Both are related to the gravitational collapse of stellar

objects with mass larger than our Sun (M ∼ 10M�). However, Fig. 14.12 shows

a clear difference between the relative abundances of the Li, Be, B elements in the
CRs with respect to that in the solar system. In particular, the ratio R between the
number of Li, Be, B with respect to the C, N, O nuclei is RCR � 0.25 in the CRs,
while it is Rss ∼ 10−5 in the solar system. Li, Be, B act as catalysts of thermonuclear
reactions in stars ( Sect. 14.10.1 ) and a low abundance in the case of stellar collapse
is expected, as the collapse occurs when material for fusion in the star is no longer
available.

The presence of a relatively large number of Li, Be, B elements in the primary
CRs can be explained by the fact that CRs propagate in the Galaxy before reaching
the Earth. The interstellar medium is filled with matter (mainly hydrogen) and Li,
Be, B elements are produced during propagation of heavier CR nuclei interacting
with protons. To simplify the problem, let us globally identify the Li, Be, B elements
with the symbol L (which stands for light elements) and the C, N, O elements with
M, medium elements.

The abundant M-type CR nuclei propagate in the Galaxy, constantly deflected
by galactic magnetic fields. Along the way, they interact with protons of the inter-
stellar medium. This give rise to the so-called spallation process; the result of this
interaction process is the expulsion of some nucleons from the hit nucleus. The spal-
lation of M nuclei on protons produce L nuclei and can be quantitatively studied
with accelerator data. The table below (from [14S90]) reports the spallation cross-
section (in mb) for the reaction p + X → Y + anything. The C, N, O elements are
the target nuclei X and the Li, Be, B isotopes are the fragment nuclei Y . For in-
stance, the probability that a proton interacting on a Carbon nucleus produces a 11

5 B
is 31.5/252.4 = 12.5%.

Nuclear Target (X)

Fragment (Y ) Fragmentation cross-section (mb)
Z A C N O

Li 3 6 12.6 12.6 12.6
Li 3 7 11.4 11.4 11.4
Be 4 7 9.7 9.7 9.7
Be 4 9 4.3 4.3 4.3
Be 4 10 2.9 1.9 1.9
B 5 10 17.3 16.0 8.3
B 5 11 31.5 15.0 13.9

Total cross-section (mb) 252.4 280.9 308.8
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The average probability PML that a medium element produces a light element is
28%. This value is obtained by summing all the partial cross-sections in the table,
divided by 252.4 + 280.9 + 308.8 mb. Thus, during propagation:

NM + p → NL + X with PML = 0.28. (14.2)

The mean free path (in g cm−2) (see Problem 7.10) is λ = Amedium/(NAσ). NA

is Avogadro’s number and σ is the nuclear cross-section on protons. For nuclei
in the interstellar medium, Amedium = 1. The nuclear radius scales with the cubic
root of the atomic number A, Eq. (14.7) , and the spallation cross-section is σ �
(πR2

0)A
2/3 � 45A2/3 mb. The cross-section and the mean free path of M and L

nuclei are:

σM � 280 mb −→ λM � 6.0 g cm−2 (14.3)

σL � 200 mb −→ λL � 8.4 g cm−2 (14.4)

The problem is to determine the quantity of crossed galactic medium ξT = xT ρ

that CRs must cross to reproduce the observed RCR ratio between Li, B, Bo and
C, N, O nuclei. xT is the travelled distance (in cm) and ρ is the interstellar density
(in g cm−3). We can write a system of differential equations for the number of M
and L elements as a function of path length (in g cm−2) ξ = xρ. The equation that
describes the reduction of the number of M nuclei during their journey is:

d

dξ
NM(ξ) = −NM(ξ)

λM
(14.5)

From the quoted astrophysical considerations, we can assume that L nuclei in CRs
are not produced at the sources (stellar collapses), but following the spallation of
heavier M elements. Their number increases with increasing path length of M
nuclei. The differential equation that describes the number of produced L nuclei as
a function of path length ξ contains a positive source term and a negative attenuation
term:

d

dξ
NL(ξ) = +PML

λM
NM(ξ) − NL(ξ)

λL
(14.6)

The source term increases with probability PML as the spallation of M nuclei occur
during propagation. The attenuation term is similar to that affecting the M nuclei
in Eq. (14.5).

Equations (14.5) and (14.6) are coupled, since the number of L nuclei depends
on NM(ξ). Equation (14.5) can be immediately solved as:

NM(ξ) = N0
Me−ξ/λM (14.7)

Some algebra is needed to solve (14.6). First, substitute NM(ξ) with Eq. (14.7);
then multiply both sides by eξ/λL ; the two terms containing NL can be considered
as the derivative of the product of two functions:

d

dξ

(
NL(ξ) · eξ/λL) = PML

λM
N0
M · e(ξ/λL−ξ/λM) (14.8)
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Fig. 14.1 Evolution of the
number of M and L nuclei as
a function of the path
length ξ . Near the sources
(ξ = 0) the L nuclei are
absent. As ξ increases,
NL increases as light nuclei
are produced by
fragmentation of M nuclei.
For instance, if the path
length is equal to
ξ = 15 g cm−2, the ratio is
NL/NM = 1. The measured
ratio is NL/NM � 1/4,
corresponding to
ξT = xT ρ � 5 g cm−2

As the equation contains exponential functions, the ansatz is of the form
NL(ξ) = c · (e−ξ/λL − e−ξ/λM) where c is a constant to be determined with the
boundary condition NL(0) = 0. By placing the test solution in Eq. (14.8), we obtain

an identity if the constant c is c = PML·N0
M

λM
· λMλL
λL−λM

. The solution of (14.6) is:

NL(ξ) = PML

λM
· N0

M · λMλL
λL − λM

· (e−ξ/λL − e−ξ/λM
)
. (14.9)

The two functions (14.7) and (14.9) are shown in Fig. 14.1, where the unknown
parameter is assumed N0

M = 1.
The N0

M parameter is not measurable (it represents how many M nuclei are
emitted per second in the Galaxy from the sources). The measured quantity is the
ratio of RCR = NL/NM = 0.25, which does not depend on N0

M. The value of
ξ = ξT which gives the measured value of RCR is determined using the ratio be-
tween Eqs. (14.7) and (14.9) (or through the inspection of Fig. 14.1):

ξT = xT ρ = 5 g cm−2. (14.10)

This quantity is called the average escape length of CRs from our Galaxy. Since the
value of the density of the interstellar material is ρ ∼ 0.3 ÷ 1 cm−3 = (0.3 ÷ 1) ×
1.6 · 10−24 g cm−3 [14K01], the travelled distance x corresponds to:

xT = ξT /ρ = 5 g cm−2

(0.3 ÷ 1) × 1.6 · 10−24g cm−3
= (3 ÷ 10) · 1024 cm = 1 ÷ 3 Mpc

(14.11)
(1 parsec = 3 × 1018 cm).

In Supplement 1.1, the diffusion (or confinement) time τD of CRs in our Galaxy
was introduced. From Eq. (14.11), the average value of τD can be derived:

τD = xT /c = (3 ÷ 10) · 1024 cm

3 · 1010 cm/s
� (1 ÷ 3) × 1014 s = 3 ÷ 10 My. (14.12)
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Fig. 14.2 Observed Boron to
Carbon ratio, measured as a
function of the energy by the
HEA0-3 satellite experiment
[14E90]. The line represent
the result of a prediction with
a leaky box model of our
Galaxy in which the diffusion
time of CRs is τD ∼ E−0.6

As ξT depends only on RCR , it does not depend on the observer’s position: in
any other position in the Galaxy, a hypothetical observer would measure the same
NL/NM ratio, obtaining the same value of τD .

The obtained value of xT (14.11) is orders of magnitude larger than the thickness
of the galactic disk (∼300 pc). This confirms that the CRs are confined inside the
Galaxy because they are constantly deflected by galactic magnetic fields. As the
gyromagnetic radius for a particle with charge Ze, energy E, in the magnetic field B

is R � E
eZB

, it is expected that the confinement time τD is not constant but decreases
as the particle energy increases (at a fixed value of Ze). During propagation, higher
energy particles have a larger probability to escape from the Galaxy due to their
larger gyromagnetic radii (leaky box model of the Galaxy).

The energy-dependence of the diffusion time was derived by observing that the
ratio between L-to-M elements changes as a function of their energy E. Figure 14.2
shows the boron-to-carbon ratio (representing the L and M elements) as a function
of E. As the energy increases, the escape probability PD ∼ 1/τD of C increases,
and the number of secondary boron produced by C interaction on interstellar matter
decreases. The dependence of τD on E is derived by adapting Monte Carlo simula-
tions with the measured data, and cannot be easily analytically derived. In [14E90],
it was found that the dependence on energy of the escape length (14.10) is:

ξT (E) = 34

(
E

Z

)−0.6

g cm−2. (14.13)

This energy dependence was used in Supplement 1.1 to derive the energy spectrum
of CRs in the proximity of the sources.
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Supplement 14.2: Quantum Mechanics and Nuclear Physics →
White Dwarfs and Neutron Stars

White Dwarfs When stars like our own sun die, they become white dwarfs, as
∼ 97% of stars in our Galaxy which are not massive enough to become a neutron
star. A white dwarf is a small star made of electron-degenerate matter. The material
in a white dwarf no longer undergoes fusion reactions (Sect. 14.10) , so the star
has no source of energy, nor it is supported by the heat generated by fusion against
gravitational collapse. It is supported only by electron degeneracy pressure, causing
it to be extremely dense.

The Pauli exclusion principle disallows fermions from occupying the same quan-
tum state. If one has a potential well (such as the one that in first approximation holds
particles to form the star), fermions start filling up the quantum levels. The highest
energy filled by the nuclei or electrons is called the Fermi energy (Sect. 14.3.1) .
Degenerate states occur when the Fermi energy is larger than the typical thermal
energy.

Let consider first the case in which the degeneracy in a star is due to the atomic
electrons. The degeneracy energy can be estimated using Heisenberg’s uncertainty
principle

x · p ∼ d · p ∼ �.

If the number density is n [cm−3], then each fermion is essentially confined to a
cube of d3 ∼ 1/n. This implies that the typical momentum of an electron is p ∼
�/d ∼ �n1/3 . The energy of a typical electron is therefore:

E ∼ p2

2me

∼ �
2n2/3

2me

in the non-relativistic case (14.14a)

E ∼ pc ∼ �n1/3c in the relativistic case. (14.14b)

If the collapsing star has Ne electrons, the total degeneracy energy of the star is
Edeg = ENe.

Let consider only the relativistic limit (14.14b). This limit is reached when the
relative distance x = d between electrons decreases and the energy increases up
to the value pc = mec

2. Thus, from Heisenberg’s principle, one can write:

d (pc) ∼ �c → d ∼ �

mec

ρeC = μ

d3
= μ

(�/mec)3
∼ 3 · 1013 g cm−3

(14.15)

where ρeC is the critical density of matter for degenerate atomic electrons, and μ =
mp + me. When the density ρ of the collapsing star is below ρeC , we are below the
relativistic limit, and Eq. (14.14a) holds.
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The total degeneracy energy of the star in the relativistic case (when the density
reached ρeC ) is obtained using Eq. (14.14b):

Edeg = ENe = �n1/3cNe ∼ �cM
4/3∗ η4/3

R∗m4/3
p

(14.16)

where we have used the fact that the total number of electrons in a star with mass
M∗ and radius R∗ is Ne = M∗Z/Aμ = M∗η/μ (where A is the atomic mass, Z is
the number of electrons per atom and η = Z/A) and n = Ne/V ∼ Ne/R

3∗ .
Finally, we can use energy equipartition to estimate the equilibrium (see also

Problem 13.5). This is done assuming that the gravitational binding energy |U | is of
order the degeneracy energy. Hence:

Edeg ∼ |U | −→ �cM
4/3∗ η4/3

R∗μ4/3
∼ 3

5

GNM2∗
R∗

. (14.17)

Note that the radius of the star cancels out! As the mass M∗ increases, the radius
decreases and once white dwarfs become compact enough for the electrons to be
relativistic, there is a solution with only one mass (which we indicate as the Chan-
drasekhar mass limit), irrespective of the radius.1

The final (universal) value of the mass from (14.17) is (neglecting the 3/5 factor,
as before, the 4π/3 for the sphere volume was also neglected):

M∗ ∼
(

�cη4/3

GNμ4/3

)3/2

=
(
�cη4/3

GNμ2

)3/2

μ. (14.18)

In the last equality, as M∗ and μ have the same dimension (mass), the quantity
between brackets is adimensional. If we consider hydrogen, μ ∼ mp and η = 1.

The term ( �c

GNm2
p
) appears in the textbook in Chap. 5 , Eq. (5.2) . It corresponds

to the inverse of the gravitational coupling constant, αG. Thus, Eq. (14.18) can be
written as:

MCh ∼ mp

α
3/2
G

= 1.6 · 10−24 g

(5.9 · 10−39)3/2
= 3.5 · 1033 g = 1.4M�. (14.19)

Equation (14.18) shows that � appears in the Chandrasekhar mass limit MCh: the
Planck constant not only determines the interaction of elementary particles,
but also the mass scale and the inner structure of stars. The evolution and struc-
ture of cosmic objects is determined by a known physics law and by the values of
fundamental constants.

1We leave the student to work out the radius-mass relation for the non-relativistic case. When the
density in a white dwarf is below ρeC , as its mass increases, its radius becomes smaller and smaller,

scaling as M
−1/3∗ . As the white dwarf approaches the mass limit MCh, the electrons become rela-

tivistic, and the dependence on mass becomes sharper than −1/3 as M∗ → MCh.
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The typical radius of a white dwarf can be worked out from the ratio between the
mass MCh and its density ρeC . Note that in (14.15), the quantity �/mec corresponds

to the electron Compton wavelength −λe = 3.8 · 10−13 m (see Appendix A5 ), and

ρeC = mp/−λ3
e . Thus, one can write:

RWD ∼
(
MCh

ρeC

)1/3

=
(

mp−λ3
e

α
3/2
G mp

)1/3

= −λe

α
1/2
G

= 3.8 · 10−13

(5.9 · 10−39)1/2
� 5 × 106 m.

(14.20)
The radius of a white dwarf is a few thousand kilometers, and depends on the elec-
tron Compton wavelength.

Neutron Stars A neutron star is a type of stellar remnant that can result from
the gravitational collapse of a massive star (M > 8M�) during a supernova event.
As the core of a massive star is compressed during a supernova, increases in the
electron Fermi energy allow the reaction (with threshold 1.36 MeV):

e− + p → n + νe.

The weak interacting neutrinos escape, the matter cools down, the density increases
and nuclei in the center of the star become neutron-enriched. At some point, the nu-
clei break into their components and enough neutrons were created so that they be-
come degenerate. The neutron degeneracy pressure immediately stops the collapse
and an equilibrium state is established. The transition from collapse to equilibrium
is very sudden, and the infalling material experiences a bounce against the degen-
erate core, which creates an outward-propagating shock wave (the supernova). The
shock wave (which is the mechanism involved in the cosmic rays acceleration) is
further boosted by the neutrino pressure from the core [13H97].

From the mathematical point of view, the description of the neutron star equi-
librium is similar to the case of the white dwarf. The degenerate fermion is now
the neutron, and the critical density is obtained from (14.15) with the exchange
me → mn ∼ μ, where mn is the neutron mass. Thus, neutrons become relativistic
when the density reaches the value:

ρnC
= mn

(�/mnc)3
= mn

−λ3
n

∼ 1017 g/cm−3. (14.21)

The total degeneracy energy has the same value as that given in Eq. (14.16)! The
only change is to replace the number of electrons Ne = M∗η/μ with the number
of neutrons: Nn = M∗/mn, which corresponds to η = 1. In this condition, the same
equality (14.17) between the degeneracy energy and binding energy |U | holds, and
the mass limit for a neutron star assumes the same value of the Chandrasekhar mass
limit (14.19). The upper limit for a neutron star mass is the same as that of a white
dwarf. As ρnC

∼ 103ρeC the neutron star radius is much smaller than RWD and
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from (14.20):

RNS ∼
(
MCh

ρnC

)1/3

=
(

mp−λ3
n

α
3/2
G mp

)1/3

= −λn

α
1/2
G

= 2.1 · 10−16

(5.9 · 10−39)1/2
= 3 × 103 m.

(14.22)
The radius of a neutron star, object with a mass MNS ∼ 1.4M�, is of the order of a
few km.

A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation.
The radiation can only be observed when the beam of emission is pointing towards
the Earth. The rotation period and thus the interval between observed pulses is very
regular, and the periods of their pulses range from 1.4 milliseconds to 8.5 seconds.
This rotation slows down over time as electromagnetic radiation is emitted.

The millisecond rotating period for young pulsars can be estimated using basic
physics arguments. A star like our sun has a radius R ∼ 7 · 105 km and rotates at
1 revolution per 30 days, so that the angular velocity is ω ∼ 2.5 · 10−6 rad/s. After
the collapse, the neutron star has a radius RNS ∼ 10 km. For conservation of the
angular momentum, one can write:

MR2ω = MR2
NSωNS

ωNS =
(

R

RNS

)2

× ω =
(

7 · 105

10

)2

× 2.5 · 10−6 = 12500 rad/s (14.23)

so that TNS = 2π
ωNS

= 0.5 · 10−3 s.

Solutions

Problem 14.2 Using the proton and neutron mass, mp = 938.27 MeV and mn =
939.56 MeV, the deuterium nucleus has a mass: md = 938.27 + 939.56 − 2.23 =
1875.6 MeV. Denoting with x the 1

1H abundance, one can write:

mpx + md(1 − x) = 940.19 −→ x = 0.9980.

Consequently, the deuterium abundance is (1 − x) = 0.20%.

Problem 14.3 At the distance r , the Coulomb energy is given by EC = e2/r ,
where e is the elementary charge e = 4.803 × 10−10 esu. Using the conversion
factors, 1 erg = 10−7 J and 1 eV = 1.602 × 10−19 J, one has:

EC = e2/r = (
4.8 · 10−10)2

/1.4 · 10−13 = 1.65 · 10−6 erg � 1 MeV.

Using the Boltzmann constant k = 8.617 × 10−5 eV K−1, this energy corresponds
to a temperature of T = EC/k = 1.2 × 1010 K.

The particle X corresponds to a proton (1
1H) and the Q value of the reaction is

Q = 8.48 − 2 · 2.23 = 4.02 MeV.
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Problem 14.4 The decay (or emission) probability in one second is the activity
of the sample, A = 5 × 10−11 s−1. The average number of decays per second for a
sample of N0 = 9 × 1010 atoms is:

λ = N0 × A = 4.5 s−1.

This corresponds to the average value of a Poisson statistical distribution. The Pois-
son statistics gives the probability that a certain number n of events occurs when the
average probability is λ:

P(n) = e−λ λ
n

n! . (14.24)

For n = 5, the probability is P(5) = 17%, while for n = 15, it is P(15) = 5 × 10−5.

Problem 14.5

(a) The radium decays to radon:

226
88 Ra → 222

86 Rn + 4
2He.

(b) The number of nuclei per gram of material is:

N = NA/226 = 2.66 × 1021

where NA = 6.022 × 1023 mol−1 is Avogadro’s number.
(c) The activity (14.21) of 1 g of radium (1 y = 3.15 · 107 s) is:

A = N/τ = N ln 2/t1/2

= 2.66 × 1021 · 0.69/
(
1602 · 3.15 × 107) = 3.7 × 1010 s−1.

Problem 14.6

(a) The natural carbon atomic mass is:

M(C) = (98.89 × 12.000 + 1.11 × 13.003)/100 = 12.011 u.

(b) The 14
6 C lifetime is τ = t1/2/ ln 2 � 8270 y. The number of 14

6 C isotopes present
in one gram of carbon is: N = 1.3 × 10−12NA/A = 6.5 × 1010. The carbon
activity is:

A0 = N/τ = 6.5 × 1010/
(
8270 [y] · 3.15 × 107 [s/y]

) = 0.25 s−1 g−1

(c) With 3600 disintegrations measured in 2 hours (7200 s) in a 5 g sample, the ac-
tivity of one gram of the fossil carbon is A(t∗) = 3600/(5 ·7200) = 0.1 s−1 g−1.
The ratio between the activity of the fossil and of the new carbon sample is:

A
(
t∗
)
/A0 = e−t∗/τ → ln

[
A
(
t∗
)
/A0

] = −t∗/τ.
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The age of the fossil is therefore:

t∗ = −τ ln(0.4) = 7580 y.

The main error comes from Poisson fluctuations of counts; the percentage er-
ror corresponds to n/n = √

3600/3600 = 1.67%, while m/m ∼ 0.1%. The
corresponding error on the age determination is about 130 y.

Problem 14.7

(a) The power P = 2 GW in this problem corresponds to that of a large nuclear
power plant. Each elementary reaction releases Q = 200 MeV = 200 · 1.6 ×
10−13 J = 3.2 × 10−11 J. The number N of reactions per second required to
maintain a power of 2 GW is then:

N = P/Q = 2 · 109 J/s

3.2 · 10−11 J
= 6.3 · 1019 reactions/s.

(b) The mass of a 235U nucleus can be approximated as that of 235 protons (mp =
938 MeV) minus ∼8 MeV/nucleon of binding energy:

mU = 235 · (938 − 8) � 2.2 × 105 [
MeV/c2]

� 2.2 × 1011 [
eV/c2]

� 3.9 × 10−25 [kg]

using the conversion factor: 1 [eV/c2] = 1.6 × 10−19 [J]/(3 × 108 [m/s])2 =
1.8 · 10−36 [kg]. The fuel mass M1y used in one year (T = 3.15 × 107 s) is:

M1y = N · mU · T = 6.3 × 1019 · 3.9 × 10−25 · 3.15 × 107 = 774 kg.

Problem 14.10 The activities of the two nuclei are given in Eq. (14.25)

A1(t) = N0λ1e
−λ1t

A2(t) = N0
λ1λ2

λ2 − λ1

(
e−λ1t − e−λ2t

)

with λ1 = 1/τ1; λ2 = 1/τ2. The two activities are equal at the time t = t∗ such that
A1(t

∗) = A2(t
∗), that is:

N0λ1e
−λ1t

∗ = N0
λ1λ2

λ2 − λ1

(
e−λ1t

∗ − e−λ2t
∗)

After some algebra, one finds:

λ1/λ2 = e−(λ2−λ1)t
∗
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and

t∗ = ln(λ2/λ1)/(λ2 − λ1). (14.25)

This equation makes sense if (λ2 − λ1) > 0, or (equivalently) τ2 < τ1 (this is the
situation depicted in Fig. 14.1, considering λ1 = λM;λ2 = λL). In this case, a type
2 nucleus decays faster than the parent nucleus; nucleus 2 activity, null at t = 0,
becomes equal to that of the type 1 nucleus at a time t∗ and then decreases. For
t � t∗, equilibrium is reached when the ratio between the activities is approximately
constant:

A2(t)

A1(t)
−→ λ2

λ2 − λ1
(14.26)

(this equation can be derived neglecting the term e−λ2t in A2(t) in the limit
t −→ ∞). This is the transient equilibrium situation. If τ2 � τ1, type 2 nuclei de-
cay immediately after the formation and activities are approximately equal λ2N2 =
λ1N1. This situation is called secular equilibrium.

If (λ2 − λ1) ≤ 0 (or τ2 ≥ τ1), Eq. (14.25) has no real solutions. In this case,
the activity of type 2 nuclei increases rapidly due to the type 1 nucleus decays and
reaches the maximum value at time t∗ = (lnλ1/λ2)/(λ1 − λ2). At time t � t∗, the
number of type 1 nuclei is much reduced and the activity of type 2 nuclei decreases
exponentially with lifetime τ2. In this case, equilibrium between the activities is not
reached.

Problem 14.11 The binding energy is obtained from Eq. (14.1) using the coeffi-
cients given in Table 14.2 : (a0 = 15.74, a1 = 17.61, a2 = 0.71, a3 = 23.42) MeV.
a4 = 0 since the nucleon is odd (A = 27). The values of each term of Eq. (14.1) are
(in MeV):

Z a0A −a1A
2/3 −a2

Z2

A1/3 −a3
(A−2Z)2

A
Sum (MeV)

12 425.0 −158.1 −34.1 −7.8 224.9

13 425.0 −158.1 −40.0 −0.9 225.9

14 425.0 −158.1 −46.4 −0.9 219.5

The more stable nucleus is 27
13Al, with the largest binding energy. The first two terms

(volume and surface terms) depending only on A are equal for the three nucleus.
The Coulomb term decreases the binding energy as Z increases. The asymmetry
term has the larger (absolute) value for the 27

12Mg, because the largest difference
between the number of neutrons and protons, |2Z − A| = 3. This term is equal for
27
13Al and 27

14Si (|2Z − A| = 1).
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Problem 14.12

(a) The two decays are: 64
29Cu → 64

28Ni e+νe and 64
29Cu → 64

30Zn e−νe.
(b) The maximum energy is Tmax = 0.93 MeV for the positron of the β+ decay and

Tmax = 0.67 MeV for the electron of the β− decay.
(c) The β+ decay, because of the larger energy available in the final state.

Problem 14.13 The binding energy of the α particle is very high:

BE(α) = 2mp + 2mn − mα = 28.3 MeV.

The energy Eα of the α particle (by energy conservation) is given by the difference
between

Eα = BE(α) − [
BE(Th) − BE(Ra)

]
for the three different isotopes. Inserting the numerical values given in the table, one
obtains: Eα = 4.77, 5.17, 5.52 MeV for thorium isotopes with A = 230, 229, 228,
respectively.

For the two 0+ → 0+ transitions (thorium with A = 230,228) no changes in the
nuclear angular momentum are involved. The emitted α particle has no orbital an-
gular momentum, and thus Tα = Eα , where Tα is the kinetic energy. In this case,
the momentum of the alpha particle can be determined by the non-relativistic re-
lation pα = √

2Tαmα . Consequently, pα = 188 MeV/c in the case of 230
90 Th and

pα = 201 MeV/c in the case of 228
90 Th.

For the 229
90 Th, the α particle must have a non-zero orbital angular momentum (for

angular momentum conservation). Thus, the particle must have rotational energy,
accordingly causing a reduction in the kinetic energy. Therefore, Tα < Eα , and only
an upper limit on the linear momentum can be derived (pα < 195 MeV/c).

This fact explains the reason why the lifetime of the 229
90 Th is much higher than

expected (τ ∼ 108 s) using the value of Eα = 5.17 MeV in Fig. 14.9 : the quantity

which is relevant for the tunneling effect is the kinetic energy of the α particle, not
the total energy (which includes the rotational one).

Problem 14.14

(a) A power of 40 TW corresponds to an energy flux on the Earth surface (RT =
6300 km = 6.3 × 108 cm) of

Φ = 40 × 1012 W

4π(6.3 × 108)2
= 8 × 10−6 J cm−2 s−1.

Assuming that 40% of that energy is due to nuclear reactions, and that 10%
is carried by Eν = 1 MeV neutrinos (1 J = 6.25 × 1012 MeV):

Φν = 0.4 · 0.1 · Φ · 6.25 × 1012

Eν

= 2 × 106 ν

cm2 s
.
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(b) The geo-neutrino are electron antineutrinos (νe), as those emitted by a nuclear
reactor. Antineutrinos above a certain energy threshold can be detected using
the same technique as that used by Cowan and Reines for the first neutrino ob-
servation (see Sect. 8.5 ). Compared to the reactor neutrino flux at the Cowan
and Reines experiment, the geo-neutrino flux is about a factor ∼107 smaller.
A large enough number of measured events can be obtained only by:

• using a larger detector;
• increasing the observation lifetime;
• reducing the energy threshold to detect νe .

All the above condition were fulfilled by the Borexino detector at Labora-
tori Nazionali del Gran Sasso (Italy) which observed geo-neutrinos through the
inverse-beta reaction (8.19) with a 252.6 ton yr exposure. The low-energy
νe threshold of 1.8 MeV was allowed by the unprecedentedly low intrinsic ra-
dioactivity achieved in Borexino and by the high photon yield of the used liquid
scintillator [14B10].

Problem 14.15 In analogy with the Bohr atomic theory, one can calculate the
radius of a muonic atom (i.e., an atom in which an electron is replaced by a cap-
tured μ−). For a nucleus with Z protons:

r
μ
Z = r0

Z
· me

mμ

where r0 � 0.53 Å is the Bohr radius which ( Appendix A5 ) is inversely propor-
tional to the mass of the orbiting particle. For a mesic atom, the radius of the orbit
is a factor me/mμ = 1/207 smaller. For the ground state of the hydrogen atom, for
example, one has: rμ0 = 2.56 · 10−3 Å.

Let us define τf ree the lifetime of a free muon in vacuum. When in matter the
competitive process of the capture of negative muons by atomic nuclei is present,
with lifetime τcapt , the effective lifetime is reduced. Following Eq. (4.44) , the ef-
fective muon lifetime τ corresponds to:

1/τ = 1/τf ree + 1/τcapt .

In other words, 1/τcapt represents the probability per time unit of the capture pro-
cess, while 1/τf ree is that of spontaneous decay. Since the measured lifetime of μ−
in aluminum is 0.88 μs, one obtains τcapt � 1.49 μs.

The μ− capture process (μ−p → nνμ) in hydrogen or in a heavier nucleus
depends on the fraction of time that the muon is “inside” the nuclear region (as
the weak interaction process can be considered point-like). Let us assume that the
captured muon orbits in the ground state, with spherical symmetry. The probabil-
ity density of finding the muon is thus constant inside the sphere with radius r

μ
Z .

The probability f that the muon is present inside the nucleus is proportional to
the ratio between the volume of the nucleus and that of the orbital radius r

μ
Z , i.e.:
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f � (Vnucleus/Vorbit ) = (RA/r
μ
Z)3, where RA is the radius of a nucleus with atomic

weight A. This radius is given in Eq. (14.7) : RA � 1.2×10−5 3
√
A (in Å). The frac-

tion of time that the muon spends “inside” the nuclear matter, where the muon can
be captured by a proton, is:

f � (
RA/r

μ
Z

)3 � 1.03 × 10−7AZ3.

For the hydrogen (Z = A = 1), fH = 1.03 × 10−7; for the aluminum (Z = 13,
A = 27), fAl � 0.61 × 10−2. The muon capture probability in hydrogen is therefore
relatively small.

One can now calculate the mean free path λcapt of negative muons. It depends
on the lifetime τcapt of the capture process, on the muon speed v and on the fraction
of time f in which the muon is inside the nucleus:

λcapt = f τcaptv,

where v = Zcα = Zc/137 is the muon speed in an atomic orbit (from the atomic
theory, similarly to electrons). Numerically, the mean free path in aluminum is
λcapt � 26 cm.
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Index 189

Weak interaction, 81

Weisskopf formula, 67

Weizsacker formula, 165

White dwarf, 146, 157, 171, 173
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