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PREFACE

The three authors of this book are my colleagues (moreover, one of them is

my wife). I followed their work on the book from initial discussions about its con�

cept, through disputes over notation, terminology and technicalities, till bringing

the manuscript to its present form. I am honored by having been asked to write the

preface.

The book consists of three Parts. Though they may seem disparate at first

glance, they are purposively tied together. Many topics are discussed in all three

Parts, always from a different point of view or on a different level.

Part I presents basics of financial mathematics including some supporting topics,

such as utility or index numbers. It is very concise, covering a surprisingly broad

range of concepts and statements about them on not more than 100 pages. The

mathematics of this Part is undemanding but precise within the limits of the chosen

level. Being primarily an introductory text for a beginner, Part I will be useful to

the enlightened reader as well, as a manual of notions and formulas used later on.

The more extensive Part II deals with stochastic decision models. Multistage

stochastic programming is the main methodology here. The scenario�based approach

is adopted with special attention to scenarios generation and via scenarios appro�

ximation. The output analysis is discussed, i.e. the question how to draw inference

about the true problem from the approximating one. Numerous applications of the

presented theory vary from portfolio optimal control to planning electric power ge�

neration systems or to managing technological processes. A case study on a bond

investment problem is reported in detail. A survey of numerical techniques and

available software is added. Mathematics of Part II is still of standard level but the

application of the presented methods may be laborious.

The final Part III requires from the reader higher mathematical education inclu�

ding measure�theoretical probability theory. In fact, Part III is a brief textbook on

stochastic analysis oriented to what is called diffusion financial mathematics. The

apparatus built up in chapters on martingales and on stochastic integration leads to

a precise formulation and to rigorous proving of many results talked about already

in Part I. The author calls his proofs honest; indeed, he does not facilitate his task

by unnecessarily simplifying assumptions or by skipping laborious algebra.

The audience of the book may be diverse. Students in mathematics interested

in applications to economics and finance may read with benefit all Parts I,II,III and

then study deeper those topics they find most attractive. Students and researchers

in economics and finance may learn from the book of using stochastic methods in

their fields. Specialists in optimization methods or in numerical mathematics will get

acquainted with important optimization problems in finance and economics and with

their numerical solution, mainly through Part II of the book. The probabilistic Part

III can be appreciated especially by professional mathematicians; otherwise, this

Part will be a challenge to the reader to raise his/her mathematical culture. After

all, a challenge is present in all three Parts of the book through numerous unsolved

exercises and through suggestions for further reading given in bibliographical notes.

I wish the book many readers with deep interest.

xi
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1

Part I

FUNDAMENTALS

I.1 MONEY, CAPITAL, AND SECURITIES

money, capital, investment, interest, cash flows, financing business, securities, fi-
nancial market, financial institutions, financial system

1.1 Money and Capital
Money is the means which facilitates the exchange of goods and services. Com-

monly, money appears in forms like banknotes, coins, and bank deposits. There are
three functions ascribed to money: (i) a medium of exchange, (ii) a unit of value,
expressing the value of goods and services in terms of a single unit of measure
(Czech Krones, e.g.), (iii) a store of wealth. Money is, no doubts, better means for
trade than barter (direct exchange of goods or services without monetary consid-
eration), but still insufficient for more complicated and/or sophisticated financial
operations like investment.

Capital is wealth (usually unspent money) or better to say accumulated money
which is used to produce or generate more wealth via an economic activity.

1.2 Investment
Individuals or companies face the problem how to handle their income. They can

either spend it immediately, or save it, or partly spend and partly save. In either
of the mentioned possibilities, they must decide how to spend and how to save. In
the latter case (saving), they postpone their immediate consumption in favour of
investment. In that case, they become investors and investment may therefore be
defined as postponed consumption. Usually, the consumption–investment decision
is made so as to maximize the expected utility (level of satisfaction) of the investor.
While the immediate consumption is sure (up to certain limits), the result of an
investment is almost always uncertain. Investments (or assets) can be classified
into two classes; real and financial. A real asset is a physical commodity like land,
a building, a car. A (financial) security or a financial asset represents a claim
(expressed in money terms) on some other economic unit. (see [143], e.g.).

1.3 Interest
The reward for both postponed consumption and the uncertainty of investment is

usually paid in the form of interest. Interest is a time dependent quantity depending
on, roughly speaking, time to the postponed consumption. Interest in wider sense
is either a charge for borrowed money that is generally a percentage of the amount
borrowed or the return received by capital on its investment. Simply, interest is

Typeset by



2 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

the price of deferred consumption paid to ultimate savers. Note that the actual
allocation of savings in a reasonably functioning economy is accomplished through
interest rates, see next Section. In other words, capital in a free economy is allocated
through a certain price system and the interest rate expresses the cost of money.

1.4 Cash Flows
A cash flow is a stream of payments at some time instances generated by the

investment or business involved. The inflows to the investor have plus sign while
the outflows have minus sign. In accounts, the inflows are called black figures while
outflows are called red or bracket figures since they appear either in red color or in
brackets. As a rule, net cash flows are considered; it means that at any time instant
all inflows and outflows are summed up and only the resulting sum is displayed.
See I.3 for a more detailed analysis of cash flows.

1.4.1 Cash Flows Example. An investor buys an equipment for USD 90000
today. After one year he or she still is not in black figures and the loss is USD
15200. In the successive years 2, 3, 4, 5, 6 the profits (in USD) are 45000, 60000,
25000, 22000, 12000, respectively. At the end of the sixth year the investor sells the
equipment for the salvage value USD 15000. The net cash flow for years 0, . . . , 6
is (-90000, -15200, 45000, 60000, 25000, 22000, 27000=12000+15000). Graphical
illustration is given in Figure 1.

1.5 Financial and Real Estate Investment
Since handling money and capital itself is a rather complicated task, there are

financial intermediaries and other financial institutions which should, in principle,
handle money and capital efficiently. Financial institutions are business firms with
assets in the form of either financial assets or claims like stocks, bonds, and loans.
Financial institutions make loans and offer a variety of financial services (invest-
ment, life and general insurance, savings, pensions, credits, mortgages, leasing, real
estates, etc.).

1.5.1 Financing the Business – Description

Almost every economic activity (of an individual, firm, bank, city, government)
must be financed. In principle, there are two possibilities how to realize it; either
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from own funds or from outside sources (creditors, debt financing). Own funds of
a company may be increased by issuing stocks resulting in the increase of equity
while the debt financing usually takes form of either bank credit or issuing the debt
instruments like corporate bonds. The better the expected performance of the firm
is, the cheaper funds (money) are available. The financial public look on the perfor-
mance of a firm through the ratings and the prices of financial instruments already
issued by the firm on the market (mainly Stock Exchange). The most important
corporations providing rating are Moody’s Investor Service (shortly Moody’s) and
Standard & Poor’s Corporation (shortly Standard & Poor’s). Both the rating and
price are important signals to the investors.

1.5.2 Financing the Business – Summary

We have seen that there are three main possible ways of financing; by equity
(issuing stocks), and two ways of debt financing, i.e., by issuing the debt instruments
like corporate bonds or just by acquiring a bank credit. A modern firm uses all
the above possibilities and it is the task of financial managers to balance them. It
is not so surprising that some very prospective American companies have debt to
equity ratio about 70 per cent. The idea is simple; if you borrow at some 7 per cent
and gain 11 per cent from the business, you are better off.

The fully self-financed company seems to be rather old-fashioned now. The tra-
dition of the European family business may serve as an example. There are rare
exceptions still surviving in these days, even among big firms in Europe. Neverthe-
less, the prosperous debt financed firm makes usually more profit than a comparable
self-financed company.

1.6 Securities
Security (in what follows here we mean a financial security) is a medium of

investment in the money market or capital market like shares (English) or stocks
(American), bonds, options, mortgages, etc. Security is a kind of financial asset
(everything which has a value or earning power). Speaking in accounting terms,
the holder (purchaser) of it has an asset while the issuer or borrower (seller) has a
liability. Security usually takes the form of an agreement (contract) between the
seller and the purchaser providing an evidence of debt or of property. The holder
of a security is called to be in a long position while the issuer is in a short position.
Security usually gives the holder some of the following rights:

returning back money or property
warranted reward
share on the profit generated by money provided
share on the property
right on decision making concerning the use of money provided.

But a security may also be an agreement between two parties (often called Party
and Counterparty) on a financial or real transaction between the two. This is the
case of swaps, partly the case of forwards and futures. It is difficult to say who is
the issuer and who is the holder, in this case.

The basic types of securities and their forms are listed below. See [143], [138],
[105], [172] for more details.

(1)
(2)
(3)
(4)
(5)
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1.6.1 Fixed-Income Securities

Fixed-income securities are debt instruments characterized by a specified ma-
turity date (the date of payoff the debt) and a known schedule of repaying the
principal and interest.

1.6.1.2 Demand Deposits

Commercial banks and saving societies offer to their clients checking accounts or
demand deposits which are interest bearing but the interest is usually very small.
A better situation is with savings accounts, a type of time deposit. Here money is
saved for a prescribed period of time and any early withdrawal is subject to penalty
which usually does not exceed the interest for the period involved. The interest is
higher than that of applied to demand deposits and sometimes may vary.

1.6.1.3 Certificates of Deposit

Very popular, particularly for the institutional investors, are the Certificates of
Deposit, shortly CD’s, mainly issued by commercial banks in large denominations.
They also take the form of time deposits with fixed interest but the early withdrawal
is severely penalized. CD’s are usually issued on the discounted base, at a discount
from their face value. Roughly spoken, if you want to buy a CD of the face CZK
1000000, say, payable after one year, you buy it for some CZK 920000. Remember
that the return in this case is not 8 per cent.

1.6.1.4 Treasury Bills

A typical money market securities issued by the central bank are Treasury bills,
T-bills. Their main purpose is to finance the government or their fiancées. They
have maturities typically varying from weeks to one year and are also issued on the
discount base.

There is one interesting point in issuing securities of the above type. A careful
government (even the Czech one, now) issues T-bills through the auction. Prior
to each auction, the central bank (representing the government, in many countries
behaving independently of the government) announces the par (face) value of the
security and the upper limit of the bid expressed in terms of the interest rate. Also
the intended volume (total face value) is announced.

For example, the issuer (the bank in this case), announces that the accepted
offers are up to 8 per cent p.a. It means that the issuer will only accept the offers
below this rate. The submitted bids are collected and ranked according to the
offers with respect to the volume and interest rate. Since the offer of the issuer is
competitive, the investors who wish to catch the offer must carefully choose both
the offered interest and the volume. The strategy of the issuer is the question of
allocation, the problem which will be discussed later.

Note that similar policy or technique (auction) is also often used by commercial
banks as well as by highly rated firms (rated as blue chips, AAA, in Standard &
Poor’s rating scale).

For a detailed analysis including a discussion of auctions see [143].
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1.6.1.5 Coupon Bonds

A coupon bond is the long-term (usually from 5 to 30 years) financial instrument
issued by either central or local governments (municipals), banks, and corporations.
It is a debt security in which the issuer promises the holder to repay the principal,
par value, face value, redemption value, or nominal value F at the maturity date
and to pay (periodically, at equally spaced dates up to and including the maturity
date) a fixed amount of interest C called coupon for historical reasons. The ratio
c = C / F is called coupon rate, sometimes simply interest. A typical period for the
coupon payment is semiannual, rarely annual, but both the coupon and coupon
rate are expressed on the annual base. The number of periods in a year is called
frequency. In case of semiannually paid coupon, the frequency is 2. The bond is
usually valued at a time instant between the issuing date and the maturity date.
So that more important for the valuation purposes is the length of time to the
maturity date called maturity of the bond. Maturity differs from the whole life of
the bond in that only remaining payments of coupons and principal are considered.
A cash flow coming from a coupon bond is illustrated in Figure 2.

1.6.1.6 Callable Bonds

The simple coupon bond described above has an obvious disadvantage for the
issuer; if the interest rates fall during the bond life, it is often possible for the issuer
to get cheaper funds, for instance by issuing bonds with lower coupon. The security
which partly gets rid of this feature is callable bond. The situation is the same as
with the usual coupon bonds but in this case, the issuer has the right to buy some
or all issued bonds prior to the original maturity date or to call them, in other
words. Since the earlier repayment of the face value may cause an inconvenience
to the bondholder (particularly with the reinvestment at lower interest than the
coupon), the issuer should pay a reward to the bondholder in the form of call
premium. The call dates and call premiums are stated in the offering statement.
For example, if the bond is called one year before the maturity date, the payment is
101 per cent of the par value, if two years before, the payment is 102 per cent, etc.
The call premium generally decreases with the date of call closer to the maturity
date. Strictly speaking, the callable bond is not a fixed-income security since the
payments coming from it are uncertain and depend both on the issuer policy and
market interest rates.
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1.6.1.7 Zero Coupon Bonds

A zero coupon bond, shortly zero, or discount bond pays only the face value at
maturity. It is issued at discount to par value (like CD) and it pays par value at
maturity. One reason for issuing such a type of bonds is that in some countries (like
USA) the issuer may deduct the yearly accrued interest from taxes even though the
payment is not made in cash. The bondholder (purchaser) must calculate interest
income in the same way as the issuer calculates the tax deduction and should pay
either corporate or personal tax even though no cash has been received. However,
if the purchaser is a tax-exempt entity, like a pension fund or an individual who
buys the bond for its individual retirement account, it pays no tax from the accrued
interest. See [25] p. 578 for more details.

A coupon bond may be considered as a series of zero coupon bonds, all but last
with face value equal to the coupon payment, and the last with the face value equal
to the coupon payment plus the face value of the underlying coupon bond. This is
not only a theoretical construction; the coupon components and face value of US
Treasury bonds may be traded separately and such securities are called STRIPS –
Separate Trading of Registered Interest and Principal of Securities. There are also
derivative zero coupon bonds; a brokerage house buys usual coupon bonds, strips
the coupons, and resells the stripped securities as zero coupon bonds.

1.6.1.8 Mortgage-Backed Securities

A lending institution that loans money for mortgages combines a large group of
mortgages and thus creates a pool. The mortgage-backed (pass-through) security
is then a long term (15 to 30 years) instrument that is collateralized by the pool
of mortgages. As the homeowners make their (usually monthly) payments of the
principal and interest to the lending institution, these payments are then ”passed
through” to the security holders in the form of coupon payments and the principal.
The coupon is naturally less than the interest paid by homeowners, but the level
of default is low. First, there is a warranty in real estate, second, there is a large
pool of loans which diversifies the default risk.

See [143] for more details.

1.6.2 Floating-Rate Securities

Floating-rate securities’ payments are not fixed in advance and rather depend
on some underlying asset. The reason for issuing such securities is to reduce the
interest rate risk for both the seller and the buyer. Typical examples are floating-
rate bonds and notes with a coupon or interest periodically adjusted according on
the underlying instrument (base rate) like LIBOR, PRIBOR, discount rate of the
central bank etc. or they are simply tied to some interest rate like prime rate of a
commercial bank (the interest rate for highly rated clients of the bank).

Note that LIBOR (London InterBank Offered Rate) is the daily published in-
terest rate for leading currencies (GBP, EUR, USD, JPY, ... ) with a variety of
maturities (one day or overnight, 7 days, 14 days, 1 month, 3 months, 6 months, 1
year). LIBOR is calculated as the trimmed average (two smallest and two largest
values are not considered) of the interest rates on large deposits among 8 leading
banks in Great Britain. Similarly PRIBOR is an abbreviation for Prague Interbank
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Offered Rate and is calculated in a similar way like LIBOR. Usually the calendar
Actual/360 applies to all transactions.

Typically, the actual coupon rate is the interest rate of the underlying asset plus
margin (spread). If the underlying instrument is LIBOR, e.g., the actual coupon
rate may be actual LIBOR plus 100 basis points or actual LIBOR plus 3 per cent.
The floating rates may be reset more than once a year leading to short-term floating
rates while in the opposite case we speak of long-term floating rates. We also speak
about adjustable-rate securities or variable-rate securities, see [60], [61].

1.6.2.1 Example (I bonds). I bonds are U.S. Treasury inflation-indexed saving
bonds introduced in September 1998 with maturity on September 2028 in denom-
inations varying from USD 50 to USD 10000. The rate – currently 6.49% p.a.
– consists of two components; a fixed rate 3.6% which applies for the life of the
bond, and inflation rate measured by the Consumer Price Index which can change
every six months. I bonds earnings are added every month (coupon is added to the
principal) and the interest is compounded semiannually. Only Federal income tax
applies to the earnings. Investors cashing before 5 years are subject to a 3-month
earnings penalty.

1.6.3 Corporate Stocks

Issuing stocks is a very popular method of financing business and further devel-
opment of a company (corporation, firm). The most important types of stocks are
common and preferred stocks. A common stock (US), ordinary share (UK) is the
security that represents an ownership in a company. The equity of a company is the
property of the common stock holders, hence these stocks are often called equities.
For the investors, the stock is a piece of paper or a record in the computer giving
him or her the right to engage in the decision processes concerning the company
policy according to the share on common stock (voting right). Also it entitles the
owner to dividends which consist of the amount of company’s profit distributed
to stockholders. This amount equals earnings less retained earnings (the part of
earnings intended for reserves and reinvestment).

A preferred stock gives the holder priority over common stockholders. Preferred
stockholders receive their dividend prior to common stockholders. Usually the
dividend does not depend on the company’s earnings and often is constant, thus
resembling a coupon bond. In case of bankruptcy, the preferred stockholders have
higher chance to see their claims to be satisfied. On the other hand, often they do
not have voting right.

Stocks have another feature which is called limited liability that means that their
value cannot be negative in any case.

1.6.4 Financial Derivatives

Financial derivative securities or contingent claims are the instruments where
the payment of either party depends on the value of an underlying asset or assets.
The underlying assets in question may be of a rather general form, e.g. stocks,
bonds, commodities, currencies, stock exchange indexes, interbank offer rates, and
even derivatives themselves. The underlying assets thus fall into two main groups;
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commodity assets and financial assets. The derivatives are now traded in enormous
volumes all over the world. Estimated figure for options only at 1996 was about $35
trillion. The most common derivatives are forwards, futures, options, and swaps.

1.6.4.1 Forwards and Futures

A forward contract is an agreement between two parties, a buyer and a seller,
such that the seller undertakes to provide the buyer with a fixed amount of the
currency or commodity at a fixed future date called delivery date for a fixed price
called delivery price agreed today, at the beginning of the contract. For both parties
this agreement is an obligation. By fixing the price today the buyer is protected
against price increase while the seller is protected against price decrease. Forward
is typically a privately negotiable agreement and it is not traded on exchanges.
The forward contract is a risky investment from two reasons, at least. First reason
is obvious; since the spot price of the underlying asset generally differs from the
delivery price, the loss of one party equals the profit of the counterparty and vice
versa. The second reason is the default risk in which case the seller is not willing
to provide the buyer with delivery. There are also nonnegligible costs in finding a
partner for this contract and fair delivery price. Therefore, the forward contracts
are usually realized between reliable, highly rated parties. No money changes hands
prior to delivery.

A simple example is a forward contract between a miller and a farmer producing
corn. Today, April 11, 2001, they agree that the farmer will deliver 1000 bushels of
corn for the delivery price USD 2.5 per bushel on September 30, 2001, the delivery
date. Both parties consider these conditions of the contract as good. Assume that
the spot price of corn on the delivery date would increase to USD 3 per bushel.
Without the forward contract, the miller would have to buy for this price which
might cause problems to him. On the other hand, with the spot price decrease to
USD 2 per bushel on delivery date, the farmer who would have to sell for this price
might have to go to the bankruptcy.

A futures contract shortly futures, is of a similar form as the forward but it has
additional features. The futures is standardized (specified quality and quantity,
prescribed delivery dates dependent on the type of the underlying asset). The
futures are traded (they are marketable instruments) on exchanges. One of the
most popular is Chicago Board of Trade (CBT). To reduce the default risk to
minimum, both parties in a futures must pay so called margins. These margins
serve as reserves and the account of any party in the contract is daily recalculated
according to the actual price of the futures, the futures price. Such a procedure
is called marking to market. The initial margin must be paid by both parties at
the initiation of the contract and usually takes values between 5 to 10 per cent
of the contract volume. The maintenance margin is a prescribed amount below
the initial margin. If the account falls below this margin, it must be recovered
to the initial margin by an additional payment called a variation margin. The
contractors’ accounts bring interest. The futures exchange also imposes a daily
price limit which restricts price movements within one business day, ±10 per cent,
say. The responsibility for default is transferred to a clearing house that is also
responsible for the clients’ accounts, see [25] and [143].
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The reports on futures prices in financial press provide the daily opening, highest,
lowest, and closing price, the percentage change, the highest and lowest price during
the lifetime of the contract, and the total number of currently outstanding contracts
called open interest.

1.6.4.2 Options

An option is a contract giving its owner (holder, buyer) the right to buy or sell a
specified underlying asset at a price fixed at the beginning of the contract (today)
at any time before or just on a fixed date. The seller of an option is also called
writer. It must be emphasized that an option contract gives the holder a right
and not an obligation as it was the case of futures. For the writer, the contract
has a potential obligation. He must sell or buy the underlying asset accordingly
to the holder’s decision. We distinguish between a call option (CALL) which is the
right to buy and a put option (PUT) which is the right to sell. The fixed date of a
possible delivery is called expiry or maturity date. The price fixed in the contract
is called exercise or strike price. If the right is imposed we say that the option is
exercised. If the option may be exercised at any time up to expiry date, we speak
of an American option and if the option may be exercised only on expiry date, we
speak of a European option. These are the simplest forms of options contracts and
in literature such options are called vanilla options.

The right to buy/sell has a value called an option premium or option price which
must be paid to the seller of the contract. It must be stressed that the option price
is different from the exercise price!

Like futures, options are mostly standardized contracts and are traded on ex-
changes since 1973. The first such exchange was the Chicago Board Options Ex-
change (CBOE). Most common underlying assets are common stocks, stock market
indexes, fixed-income securities, and foreign currencies. Options are usually short-
term securities with typical maturities 3, 6, and 9 months. At any time there are
options with different maturities and different strike prices available on the mar-
ket. An example (taken from [143]) shows how the long term options are quoted in
financial press on January 15, 1992, is in the following table:

Option Expiry Strike
ATT Jan 93 25
ATT Jan 93 35
ATT Jan 93 35p
ATT Jan 93 40
ATT Jan 93 40p
ATT Jan 93 50

This is an example of American options with different strike prices with the under-
lying asset AT & T common stock and with the same expiry date, the third Friday
January 1993.  standing at strike price means a PUT option, the others are
CALLs. ”Last” means the closing price.

Another type of options are exotic or path-dependent options. These options
(if exercised) pay the holder the amount dependent on the history of the under-
lying asset. Despite their ”exotic” features, they are successfully used for hedging
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A compound option is simply an option where the underlying asset is another
option. If we consider only plain vanilla options, we have four possibilities again.
For brevity, we describe the mechanism of a call-on-a-call European type compound
option. Such an option gives the holder the right to buy a call option for the price

exercise and the expiry
A chooser option or as-you-like-it option is an option which gives the holder the

right to buy or sell either a call or a put option. We give an example of a call-on-
a-call-or-put. Such a chooser option gives the holder the right to purchase for the
exercise price at expiry time either a call or a put with exercise price at
time

An Asian option is a path-dependent option with payoffs dependent on the aver-
age price of the underlying asset during the life time of the option. Such an average
plays the role of the exercise price. Thus, the average strike call pays the holder
the difference between the asset price at expiry and the average of the asset prices
over some period of time, if positive, and zero otherwise. The problems arise from
the proper definition of the average involved, continuous or discrete sampling, if
discrete, then from prices sampled hourly or from closing prices, etc.

A lookback option has a payoff which also depends on maximum or minimum
reached by the underlying asset over some period prior to expiry. Such a maximum
or minimum plays the role of the exercise price.

1.6.4.3 Swaps

Swaps, like forwards, are mostly individual contracts between two highly rated,
reliable parties which well fit the needs of both. Although the swaps are individual
contracts, in practise they often follow the recommendations of the International
Swaps and Derivatives Association (ISDA). A swap may be briefly characterized as
an agreement on exchange of cash flows in future times with a prescribed schedule.
There are two main categories of swaps; interest rate swaps and currency swaps.

purposes. Since the creativity and fantasy of the developers of such products is
practically unbounded, we only give some examples. Note that most of the men-
tioned options may be either of European or American type. For more details see
[172] and [105], e.g.

A binary or digital option pays the holder a fixed amount of money if the value
of the underlying asset rises above or falls below the exercise price. The payoff is
independent of how far from the exercise price the asset value was at the exercise
time.

A barrier option is a usual vanilla option but it may only be exercised if either
the asset value does not cross a certain value – an out-barrier , or if the asset price
crosses a certain value – an in-barrier  during the life of the option contract. There
are four possible cases:

up-and-in; the option pays only if the barrier is reached from below,
down-and-in; the option pays only if the barrier is reached from above,
up-and-out; the option pays only if the barrier is not reached from below,
down-and-out; the option pays only if the barrier is not reached from above.

(1)
(2)
(3)
(4)

at the expiry The second call option is on an underlying asset with the
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In practise, the two are often combined. Swaps are used to manage interest rate
exposure or uncertainty concerning the future exchange rates.

An interest rate swap is a contract between two parties to exchange interest
streams with different characteristics based on a principal, notional amount, some-
times called the volume of a swap. The interest rates may be either fixed or floating
in the same or different currencies.

A pure currency swap is a forward contract on the exchange of different currencies
on some future date (maturity) in amounts fixed today. Another type of a currency
swap is a cross-currency swap that consists of the initial exchange of fixed amounts
of currencies and reverse final exchange of the same amounts at maturity. One or
both parties may pay interest during the lifetime of the swap.

1.6.4.4 Example (Combined swap). Notional amount: CZK 34,500,000
Fixed amounts:
Initial exchange: Party A pays EUR 1,000,000 to party B, party B pays CZK

34,500,000 to party A. Maturity 10 years.
Final exchange (after 10 years): Party B pays EUR 1,000,000 to party A, party

A pays CZK 34,500,000 to party B.
Floating amounts:
Party A pays to party B semiannually E6M - 3.5 per cent (spread or margin)

from notional amount based on the floating rate day count fraction Actual/360,
i.e., CZK ((E6M–3.5)/100) · (182/360) · 34,500,000. Here E6M stands for LIBOR
interest rate on EUR with maturity 6 months.

1.6.5 Miscellaneous Securities

Here we briefly mention a sample of other types of derivatives met in financial
practise.

A warrant  is a derivative security which gives the holder the right to buy a
specified number of common stocks for a fixed price called exercise price at any
time during the lifetime of the warrant. Such a security resembles a CALL option
but there are two differences. First, warrant is a long-term security, 10 years say,
while options have maturities up to two years. Second, perhaps a more important
feature of the warrant is, that it is issued by the same company which issues the
underlying stock while options are traded among investors.

Another type of security with an option is a convertible bond. Such a bond gives
the bondholder the right to exchange the bond for another security, typically the
common stock issued by the same company or just to sell back the bond to the
issuing company. This is an example of a convertible bond with put option. Firms
usually add the conversion option to lower the coupon rate. On the other hand, the
issuer may reserve the right to call back the bonds and upon call, the bondholder
either converts the bond into stocks or redeems it at the call price (convertible bond
with call option). In this case, the coupon rate must be higher than that of usual
coupon bond. In both cases we speak of conversion premiums.

Let us turn to floating-rate bonds (see 1.6.2). Most issuers cap their obligations
to ensure that the floating coupon rate does not rise above a prespecified rate
called cap. Thus if the face value of a bond is F, the floating rate (say LIBOR
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Usually caps and floors take the form of consequent payments called caplets and
floorlets, respectively.

1.7 Financial Market
Financial market consists of money market and capital market. Money market is

a market with short-term assets or funds, up to one year say, like bills of exchange,
Treasury bills (T-bills), and Certificates of Deposit (CD’s). Capital market is a
market which deals with longer-term loanable funds mainly used by industry and
commerce for investment and acquisition. Usually capital markets handle securities
which are related to the time horizon longer than one year.

1.8 Financial Institutions
The role of financial institutions is simple. Financial intermediaries (commercial

banks, insurance companies, pension funds, e.g.) acquire debts issued by borrowers
(IOU – the abbreviation for ”I Owe You”) and at the same time sell their own
IOUs to savers. Every bank (with rare exceptions in the Czech Republic) is happy
to accept your savings and handle them. It is a debt which is used by the bank
in the form of loans and investments. Examples of other financial institutions are
security brokers (bringing buyers and sellers of securities together), dealers, who –
like brokers – intermediate but moreover purchase securities for their own accounts.
There are investment bankers, mortgage bankers, and other miscellaneous financial
institutions in this category, as well.

1.9 Financial System
In a civilized country, all the activities mentioned above go through the financial

system which can be simply illustrated by the following scheme:

Ultimate borrowers, savings-deficit units

Financial Intermediaries

Ultimate savers, savings-surplus units.

The needs or wishes of borrowers and savers are different, of course. The borrow-
ers need long-term loans, acceptance of significant risk by the lenders, and larger
amounts of credit. Perhaps the highest priority of the lenders is liquidity, which
means the availability of the funds (money) at the moment when these are re-
quested. The natural needs of the savers are safety of funds and, particularly for
small investors, accessibility of the securities in small denominations.

on EUR with maturity 6 month + 3 percent) and the cap then the payment is
On the other hand, some issuers offer buyers an interest rate below

which the coupon rate will not decline; such a rate is called floor. If the floor is
then the payment is
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I.2 INTEREST RATE

interest rate, compounding, present value, future value, calendar convention, de-
terminants of the interest rate, term structure, continuous compounding

2.1 Simple and Compound Interest
Interest rate (also rate of interest) is a quantitative measure of interest expressed

as a proportion of a sum of money in question that is paid over a specified time
period. So if the initial amount of money is PV (also called principal or present
value) and the interest rate is for the given time period, then the interest paid at
the end of the period is and the accumulated amount of money at the end
of the period (called future value or terminal value) is

Alternatively, the interest rate is quoted per cent. It will be clear from the context
where means and vice versa. Note that is another frequently
used symbol for the rate of interest, particularly if speaking of the rate of return.

Let us consider more than one time period, say T periods, with T not necessarily
integer, and the same interest rate for one period. There are two approaches how
to handle interests after each period. Under simple interest model, only interest
from principal is received at any period. Thus the future value after T periods is

Under compound interest model, the interest after each period is added to the pre-
vious principal and the interest for the next period is calculated from this increased
value of the principal. The corresponding future value is

In the context of the compound interest model, the process of going from present
values to future values is called compounding.

2.1.1 Remark (Mixed Simple and Compound Interest)

Some banks or saving companies use a combination of simple and compound
interest if T is not an integer. Let where denotes the entire
part and {} denotes the fractional part of the argument. Then the future value is
calculated as
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2.1.2 Exercise. Decide what is better for the saver: future value of the savings
calculated from (3) or (4).

Speaking of interest rates, it is important to state clearly the corresponding unit
of time. In most cases, the interest rate is given as the annual interest rate, often
stressed by the abbreviation p.a. (per annum). The usual notation is p.a.
or equivalently p.a. Rarely, interest rates are given semiannually (p.s., per
semestre), quarterly ( p.q., per quartale), monthly (p.m., per mensem), daily (p.d.,
per diem). The period of compounding is similarly one year, six months, three
months, one month, or one day. If the unit of time for the given interest rate differs
from the period of compounding (which is often the case), it is very important to
emphasize that we consider interest rate compounded semiannually, say. In
this case it means that the interest rate is so called nominal interest rate, and for
every six month’s period the actual interest rate is Generally, let be the
nominal rate of interest per unit time compounded within the unit time so
that there are periods, each of length and the interest rate is per
period. We also say that the nominal interest rate is payable mthly. Thus the
future value of PV after T periods is

Of course, the actual interest rate per unit time called effective rate of interest
is not equal to the nominal rate of interest. Obviously,

2.1.3 Exercise. Compare the effective rates of interests if for
and comment the result.

2.2 Calendar Conventions
Assume the unit time is one year. If the number of periods is not an integer,

there are different methods to count the difference between two dates. Consider
two dates, say, expressed in the form

January 13, 2013, is therefore expressed as 20130113. The most frequent
conventions:

Calendar 30/360 or Euro-30/360. Under this convention all months have 30
days and every year has 360 days. The number of periods T is calculated as
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Calendar US-30/360. In this case, all dates ending on the 31st are changed to
the 30th with the following exception: if and then
is changed to the first of the next month.

Calendar Actual/Actual. This convention assumes the actual number of days
between two dates with the actual number of days in the year.

Calendar Actual/360. The actual number of days in each month but 360 days
in the year are considered. As a result, the number of periods within one year can
exceed one.

Calendar Actual/365. The actual number of days in each month and 365 days
in each year are considered. The leap year assumes 365 days.

Most computer systems are equipped with calendar functions, particularly with
the function which returns the number of days between two dates. For exam-
ple, Mathematica offers the function DaysBetween [date2, date1] which returns the
actual number of days between two dates. The arguments date takes the form
{year, month, day} so that March 14, 2001 is {2001,3,14}in this notation. In
financial packages, the same Mathematica function has option DayCountBasis ei-
ther "Actual/Actual"or "30/360" .

2.2.1 Exercise. Analyze the effect of the calendar conventions on savings from
the point of view of a saver or a borrower.

2.3 Determinants of the Interest Rate
In a free economy, interest rates, as a price of money, are mainly determined by

market supply and demand, and partly mastered by the government or central bank
via money supply policy. Interest rates vary with economic environment, market
position, used financial instrument, and time. The economic units which are willing
to pay higher interest rates for the funds (=borrowed money in this case) expect
higher returns on their investments. The returns are usually measured by the rate
of returndefined by:

sometimes quoted in per cent.
Every investment should be valued from the point of view of return, risk, infla-

tion, and liquidity. The firm with higher return will pay higher interest for funds
(money). With the rate of return 25 per cent the firm pays 20 per cent interest
with pleasure. Another firm, with the rate of return 20 per cent, would not pay
20 per cent interest since then it would not have reason to develop any activity.
More risky investment should be more expensive than an investment with (almost)
certain return, in terms of interest rates. Inflation also makes funds more expen-
sive. If the inflation is high, the funds may be not accessible. Short term funds
(money borrowed for short time) are usually cheaper than long term funds (money
borrowed for long time). Short term interest rates more or less reflect the actual
state of the economy while long term interest rates reflect expectations, rational
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or less rational. Situation is more complicated, however, see the concept of yield
curves next in this part. Denote the rate of interest comprising all the factors
mentioned above. In this context, is also called cost of capital.

2.3.1 Remark (Taxation)

Almost all incomes coming from investment are subject to taxes. The few exemp-
tions are returns on some government or municipal bonds, e.g. Thus the taxation
reduces the returns. Moreover, the taxes are often different for various types of
investment and sometimes are progressive, i.e., the higher the return, the higher
the taxes. Thus any investment should be carefully valued with respect to tax
consideration.

2.4 Decomposition of the Interest Rate
Taking into account all the factors which affect the so called quoted or nominal

interest rate we can write

where denotes the risk free interest rate if we do not consider inflation,
(inflation premium) is the expected rate of inflation, (default risk premium)
is the premium charged for the default risk, that is the risk that the debtor will
not pay either principal or interest or both. Sometimes it is called credit risk. The
term (liquidity premium) stands for the risk that an asset in question is
not readily convertible into cash without considerable cost. Finally, (maturity
risk premium) is the premium for the risk produced by possible changes of interest
rates during the life of an asset. There are two types of the maturity risk. Consider
bonds, e.g. For long-term bonds, it is the interest rate risk; if the market interest
rate rises, the prices of bonds go down. This kind of premium rises when the interest
rates are more volatile. For short-term bonds, it is the reinvestment rate risk; if
these bills become due and the actual interest rates are low, the reinvestment will
result in interest income loss.

Sometimes the decomposition is given in additive form (see [25], e.g.)

which is a good approximation of (7) if the components of are sufficiently small
since the cross-factors of type are small of twice higher order than the original
components.

In real world, there is practically no riskless investment. For simplicity, however,
the government bonds are usually considered riskless. In this case, the offered
return also includes the expected rate of inflation, so that the risk free rate with a
premium for expected inflation is

In what follows, without further notice we will consider the riskless rate with the
inflation premium.
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It is also necessary to note that the above decomposition depends on the time
period involved. So if we consider the one-year quoted interest rate, the corre-
sponding expected inflation is a one-year inflation, and the risk free-rate is derived
from one-year T-bills rates and the maturity risk premium has a negligible influ-
ence on the nominal rate in a stable economy. For a ten-years’ quoted interest
rate we should take ten-years yields of the government bonds for the riskless rate
and carefully consider the other factors affecting the nominal interest rate; default,
liquidity, and maturity premium in this case.

2.4.1 Remark (Rating)

Useful guides to credit risk evaluation for corporate bonds are conducted by
recognized agencies like Standard and Poor’s and Moody’s. Based on an analysis of
the firms they provide a classification into rating categories. According to Standard
and Poor’s, AAA is the highest rating reflecting extremely strong capacity to pay
interest and to repay principal, AA means very strong capacity, A may be effected
by economic conditions, etc. Further categories are BBB, BB, B, CCC, CC, C,
D. Categories below BBB are sometimes considered as speculative or junk bonds.
Refinement may be made by adding + or – signs. Similar categories provided by
Moody’s are Aaa, Aa, A, Baa, Ba, B, Caa, Ca, C, D.

2.4.2 Example. In January 1991 the quoted interest rates for U.S. T-bonds,
AAA, AA, and A were 8.0, 8.9, 9.1, and 9.4 per cent, respectively. See [25], p.
109. All these bonds had similar maturity, liquidity, and other features. So the
only difference is in the default risk premium. Using formula
for the default premium risk we get and

respectively.

2.4.3 Real Return

interest which can be calculated from the obvious relation

or

For small values of the components appearing in the last formula, we can use the
approximation Moreover, let be the tax rate imposed on the
earned interest from deposits. Then we get

for the real return.

If is the nominal rate of interest on deposits and is the rate of inflation,
then the real return on deposits is sometimes expressed in terms of the real rate of
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2.4.4 Example. In the Czech Republic, year 1997, the inflation rate was 0.10
(official source), could have been taken as 0.11 (an over-optimistic value at some
banks), and tax on the return on deposits was 0.15 (by law). Then we obtain the
negative real return –0.6 per cent. In April 2001, the yearly inflation has been
estimated as 4.1 per cent and one year term deposits net yield was about 3 per
cent. So again we get the negative real return at about –1.1 per cent.

2.4.5 Exercise. Derive the corresponding relation for the real percentage increase
in purchasing power if the percentage increase in salaries is the inflation rate is

and is the tax rate.

2.4.6 Example. Let us consider two investments, A and B, say, with gross re-
turns and subject to taxes and respectively. The two investments
provide the same net yield if

holds.

2.5 Term Structure of Interest Rates
All the interest rates in this Section relate to the equal time periods. Suppose

is the actual rate of interest at time on an investment called spot
interest rate and are the one-period interest rates on
an investment beginning at times respectively, called
forward rates for one period implied in the term structure at time At time we
know spot rates Obviously, we can put We have

From this formula we can simply obtain the forward rates

The one-period forward rates may simply span any desired length of time. Thus,
forward rate beginning at time implied in the term structure at time

is

Due to the liquidity premium the relations between spot and forward rates are rarely
fulfilled exactly in practise. Instead of we should consider
where the L’s are the liquidity premiums embodied in the forward rates. Usually
the liquidity premiums are increasing:
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2.6 Continuous Compounding
In theory, continuous compounding plays a crucial role. The idea of continuous

compounding comes from the usual concept of compounding for the number of
compounding periods approaching to infinity. In this case, we consider the nominal
interest rate called the force of interest or often interest rate  in the
continuous financial mathematics) per unit time so that the future value FV of the
initial investment PV (at time after time T becomes

In other words, the future value grows exponentially with time according to

This formula is often presented in the form

If the investment is taken at time instead of (usually and is
represented by the present value then

So far, we have considered the force of interest to be a constant. But, the above
formulation allows us to simply extend it to the case of variable force of interest

depending on time The accumulation factor then becomes instead of
and the future value at time T of the unit investment at time therefore

is

Analogously, the expression of the present value in terms of the future value and
the time dependent force of interest reads:

The function

is called discount function and for it is abbreviated to so that
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2.6.1 Example (Stoodley’s Formula). A flexible model has been suggested
by Stoodley. In spite of the fact that this model is mainly of theoretical interest,
it is useful for giving a sight of a possible behavior of the time development of the
interest rate. The Stoodley’s formula says that

where and are properly chosen or estimated parameters.

2.6.2 Exercise. Study the behavior of the force of interest following the Stood-
ley’s formula dependent on the parameters appearing in the formula.

2.6.3 Example (Discount Function of the Stoodley’s Force of Inter-
est) . The calculation needs some algebra. Write instead of T in the formula for

Then

If we put we get

From this formula it follows that the discount function can be expressed as the
weighted average of the present values with constant interest rates.



I. FUNDAMENTALS 21

I.3 MEASURES OF CASH FLOWS

present value, future value, annuities, equation of value, internal rate of return,
duration, convexity, investment projects, payback method, yield curves

Consider first the sums (payments) related to the equally spaced
time instants 0, . . . , T. The interest rate for one period will alternatively mean
the cost of capital, the opportunity cost rate, i.e., the rate of return that can be
earned on an alternative investment. Sometimes it is called valuation interest rate.
The formulas below are formally valid for but the case is the only
realistic one. The vector represents a cash flow. Values

are inflows (amounts received) and are outflows (amounts paid,
deposits, costs, etc.) Define the discount factor corresponding to the interest rate

by the discount by and the force of interest by the
relation or Beware of the fact that here symbol is
different from the same symbol used from notational reasons in Part III where
will mean the discount function, or more generally the discount process. Summary
of the notation:

3.1 Present Value
One of the most important characteristics of a cash flow CF is its present value,

PV, also called net present value, NPV. ”Net” means that inflows and outflows at
the same time are added together and thus represented by a single number
If needed, the dependence of PV on CF and either or will be stressed:

Note that the present value is expressed in currency units like USD or CZK.
Let be the linear vector space of cash flows, i.e., the space of finite sequences

of maximum length If the actual length of a cash flow is less than
we complete it by zeros. The present value is a linear function on in the
following sense: if then

Let us consider the payments at equally spaced time instants
0, . . . , T, again, but with different interest rates in the compounding periods
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where is the interest rate applied in the period
Then the present value of the given cash flow is

where by definition.
Finally, let us assume that the payments take place in some

general time instants and the corresponding discount factor is
Then

This formula may be generalized to the case of an arbitrary starting (or valuating)
date The present value related to this date is then

One must be careful with proper interpretation of time in this case, however.

3.1.1 Example. Consider the calendar convention Actual/360 and a cash flow
where the now represent dates, the compounding is annual with

the discount factor and the starting date is Let denote
the number of days between the dates Then

With daily compounding with the interest rate p.a., the formula for the
present value reads

A cash flow often represents an investment opportunity. The dependence of the
net present value of such a cash flow is of vital importance for investment decision
making. For the first insight, the graphical representation of the dependence of the
present value on the cost of capital (valuation interest rate) is of interest.

3.1.2  Example. Let us consider the cash flow from 1.4.1

(–90000,  –15200, 45000, 60000, 25000, 22000, 270000)



I. FUNDAMENTALS 23

at times The PV of this cash flow in dependence on the interest
rate is plotted in Figure 3. Such a type of graph is called the present value profile.

3.1.3 Continuous Case

Speaking of interest rates, we were speaking of present values and future values
with constant present values (investments) and a continuously varying force of
interest. Here we deal with the case when even the respective cash flow changes
continuously. For the sake of simplicity let us suppose that the starting point of
time is set to 0 and the time at which the cash flow comes (received or paid, inflows
or outflows) is Let us denote the cash flow coming for the period as
It means that the net income for the corresponding period will be either with
plus or minus sign. So the total payment made between is
Suppose that CF is differentiable so that the derivative exists.
Then the increment in income may be expressed as

Now we have to consider the time value of money. Between the time instants
being small enough, the total income is approximately Therefore, the

present value of money received during the time interval is So
the present value of the cash flow over the whole period is

3.2   Annuities
Consider a series of T payments, each of amount 1 at times 1,...,T. Such a

stream of payments is called annuity immediate (with payments at the end of the
period). The present value of this cash flow for is
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and often it is also called the Present Value Interest Factor of an Annuity abbre-
viated as For we have Sometimes the interest rate is
attached to symbol or

Consider again a series of T payments, each of amount 1 but now at times
Such a stream of payments is called annuity due (with payments at

the beginning of the period). The present value of this cash flow for is

Clearly, for Further,

For an infinite stream of constant payments of amount 1, the annuity is called
perpetuity and if it is immediate or due, its present value is

respectively.

3.3 Future Value
Let us consider the valuation date T, a cash flow and the above

interest rate characteristics Then the future value is

alternatively

Obviously, in this case.

In the case of varying interest rates we have

or

with

In case of general time instants (see (4)) and a constant interest rate i we imme-
diately get the obvious relationship
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3.3.1 Exercise. Modify the last result to the case of the calendar convention
Actual/365.

Let us turn to the annuity immediate of an amount 1 and The future
value of this annuity is

Analogously, for an annuity due, the future value is

Both and are equal to T for

3.3.2 Exercise. Verify the following relations:

3.3.3 Remark

Other useful and frequently used relations:

3.3.4 Exercise. Verify and give the interpretation of the preceeding formulas.
(Hint: the first formula may be explained as the present value of a loan of amount
1 over the period 0,1,.. . , T).

3.3.5 Remark

If the regular payments are all equal to PMT (abbreviation for PayMenT), then
the corresponding present and future values are simply multiples by PMT of the
corresponding and

3.3.6 Remark (Equation of Value)

Due to technical and accounting reasons, the strict convention on the signs (in-
flows plus, outflows minus) leads to the following relations between thefivevariables
involved, i.e., the present value PV, the future value FV, the interest rate the
annuity PMT, and the number of periods T :

Annuity of amount PMT immediate.
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Annuity of amount PMT due.

In the introductory courses, such a type of formulas is known as the equation of
value. This approach is often used on financial calculators or in spread sheets. The
user should carefully input the data with proper plus or minus signs for inflows and
outflows, respectively.

3.3.7 Example (Installment Savings). Consider the investment of CZK 5000
in installment savings for 3 years at 3.6 per cent p.a., compounded monthly, so that

What will be the total of principal and interest at the end? Reason-
ably, installment savings represent an annuity due (payments at the beginning of
the period) so that the equation of value (23) applies with

We have so that Com-
pare this result with the case of 3 installment savings CZK 60000 at the beginning
of every year with yearly compounding at the interest rate per cent p.a.
This results in the total savings Give an explanation as an exercise.

3.3.8 Example and Exercise (Loans). Suppose you are able to repay CZK
5000 monthly for a 3 years’ loan at per cent p.a., compounded monthly.
The question is, how much you can borrow under these conditions. Reasonably, the
payments represent an annuity immediate (payments at the end of period) so that
(22) applies to loan borrowing power

Since you can borrow In case you are
able to pay CZK 60000 at the end of each year at the same interest but compounded
yearly, you will obtain from (22) with that your
loan borrowing power will decrease to As an exercise, calculate
PV under the same conditions if your balance (= remaining debt) is compounded
monthly.

3.4 Internal Rate of Return (IRR)
In a simple Example 3.1.2 we have seen that depending on the interest rate

the present value of a cash flow takes either positive or negative values. So the
critical point is the value of the interest rate that equates the present value to zero.
Consequently, we are motivated to define an internal rate of return (shortly IRR)
as a solution to the equation

In other words, IRR is defined as the interest rate (or the cost of capital) which
equates the present value of inflows (incomes) to the present value of outflows
(costs):
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The equivalent problem is to find a discount factor such that

If then the last equation is an algebraic equation of degree T and hence it
has T roots. Therefore, by the above definition, we have T internal rates of return.
All the solutions can be easily obtained by standard numerical methods. Only real
roots greater than –1 may have an economic meaning, however. Some authors
define IRR as a positive solution to (24). But it can be simply demonstrated that
some (rather strange) cash flows possess only positive IRR’s with difficult economic
interpretation. The cash flow (–1000, 3600, –4310, 1716) has IRR’s 0.1, 0.2, 0.3, e.g.
Nevertheless for ”well-behaved” cash flows we have the following theorem:

3.4.1 Theorem. Let   Suppose
that in the sequence with zeros excluded the sign changes just once.
Then there is exactly one positive IRR.

Proof. We have the equation

with Since the equation reads

Further,

Thus (27) may be written as
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Without loss of generality suppose that Then there exists an index such
that Hence
(28) becomes

and after multiplication by we get

or

say. All the are continuous, increasing, decreasing. Thus
is continuous and increasing. Moreover,

so that there is just one such that and is the only
positive IRR.

3.4.2 Remark and Example (Leasing). Financial leasing is an alternative
form of financing. It takes a form of an agreement between two parties, the lessee
and the leasing company called lessor. The lessee obtains the right to use a (usually
real) asset for a period of time while the ownership of that asset remains with the
lessor. At the end of the lease the ownership still remains with the lessor. But
the residual (or salvage) value is usually negligible. There are many reasons for
leasing, let us mention some of them. First, a company or an individual may not
have money available to purchase the asset. This is often the case if the asset
is too expensive like tanker or airplane. Second, there is a risk that the asset will
become obsolete. Third, in most countries there exists a tax deduction advantage to
promote investment. See [141], p. 512 for details. The following numerical example
presents an analysis of leasing a car. The SKODA car priced CZK 227900 is leased
under the following conditions: the lessee pays the sum of CZK 34185 immediately.
Then the lessee pays (i) monthly for 36 months or (ii)

monthly for 42 months. In both cases the payments are at the end
of the month and the salvage value of the car is CZK 122. The question arises, what
is the effective interest rate counted by the lessor. The IRR methodology gives the
answer. We have annuities with the minus sign
given above, and months, respectively. Using a financial calculator
or spreadsheet program, we find the respective IRR’s are and

per cent monthly, so that and per
cent p.a.
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Investment projects represented by cash flows are called normal or regular  if the
payments change their sign just once, and are called nonnormal or irregular in the
opposite case.

In the above definition of IRR we have implicitly supposed that the inflows from
the project will be reinvested at the same interest rate, i.e., IRR . More often, the
inflows are reinvested at the interest rate equal to the current cost of capital say.
We can overcome this problem by a modification of the definition of IRR following
the principle:

where MIRR is called modified rate of return. In symbols, MIRR is defined by the
equation

It is obvious that in this case (given MIRR can be expressed explicitly. Also
note that for we have

Another modification of IRR makes use of different interest rates for outflows
and inflows, i.e., the different costs of investment and reinvestment capital, and

respectively. The modified rate of return MIRR (we use the same notation) is
then defined by

MIRR can be explicitly calculated again.
Note that sometimes this idea is also used for the valuation of cash flows if

different valuation interest rates are used for outflows and inflows. Using the above
notation, the present value is expressed as

3.5 Duration
The duration is defined as the time-weighted average of the discounted payments:

Duration is expressed in time units. So if the payments are semiannual, for instance,
the duration is expressed in halves of year. It is also called discounted mean term
of the cash flow. We have
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and thus the duration may be expressed as

In economics the last expression is known as elasticity so that we may interpret
the duration as an elasticity of the net present value with respect to the discount
factor. An alternative formula for the duration expressed in terms of the interest
rate reads

From the above expressions it follows that the duration may serve either as a
measure of the sensitivity of the cash flow to the interest rate or as the duration
of the corresponding investment project. The first interpretation will become clear
if we write the first few terms of the Taylor expansion of the relative increment
of the present value of the given cash flow as a function of the interest rate; the
derivatives are taken with respect to the second argument:

Note that duration, unlike the present value, is not a linear function of the
CF’ s. To overcome this disadvantage sometimes the dollar duration is used:

In literature and applications we can also meet the modified duration:

or, in terms of

3.6 Convexity
A finer measure of the sensitivity of a cash flow to the interest rate is the con-

vexity:
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Convexity is expressed in squared time units. If the payments are accomplished
semiannually, convexity is expressed in e.g. Taking into account that

we can substitute in (36) and get a more precise formula for the relative increment
of the present value in the form

In literature we can find a slightly different definition of the convexity, as an ana-
logue to the modified duration:

Then the equation for the relative change of the present value may be expressed in
terms of the modified measures as

3.7 Comparison of Investment Projects
As usual, investment projects will be represented by the corresponding expected

cash flows. Since the future cash flows are uncertain, the results of decision making
process are also uncertain. The detailed qualified analysis may reduce uncertainty,
however.

We will deal with a set of competing projects. The decision maker may accept
one or more projects and may even decide not to accept any. The projects are said
to be mutually exclusive if at most one of the involved projects can be accepted.
And they are said to be independent if an arbitrary number of the competing
projects (including none of them) can be accepted.

There are two broad classes of investment projects that often arise in practise.
In the first case, the investors use their own capital for the initial investment and
they obtain incomes generated by the initial investment in successive periods. Such
projects are characterized by negative payments in the initial period(s) and positive
ones afterwards. Call them class I projects. In the second case, the investors take
a loan at the beginning, make an investment, and then they acquire the benefits
and also should pay back the loan. Such projects are characterized by positive
payments in the initial period(s) and negative ones afterwards. Call them class II
projects.

There is a variety of methods for decision making and we will mention only some
of the principles. All the methods start with a careful analysis of the expected
stream of payments including dividends, interest obtained or paid, salvage value of
the assets at the end of the project’s life, etc. The cost of capital (the valuation
interest rate) should take into account the riskness (uncertainty) of the project.
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3.7.1 Profitability Index

A simple indicator for a class I project is the prof-
itability index defined by

This measure seems to be trivial but in fact it is, in some sense, equivalent to the
measures based on the present value profile as we will see later. Among competing
projects we select those with highest profitability indexes greater than one; we select
none of them if all PI’s are less than one.

3.7.2    Payback Method

Another simple and rough method is the payback method applied again to class
I projects. It is based on the payback period that is the number of periods required
to recover the initial outflows. Formally, let us keep assumptions of Theorem 3.4.1.
For a class I project we have Let be the first index such that
Then the payback period is defined by

Here is the period just preceeding the full recovery, is the uncovered
cost at the beginning of this period, and (obviously positive) is the payment
in the recovering period. If such a does not exist, we set formally the payback
period to infinity. Based on the payback method, we select the project(s) with the
shortest payback period, or none of them if their payback periods all equal infinity.

A little better method based on this idea is the so called discounted payback
method. Let be a properly chosen project’s cost of capital and define

Assume again and the first index such that
Then the discounted payback period is defined as

If such a does not exist we set formally the discounted payback period to infinity.
The decisions based on the discounted payback method are the same as in case of
the usual payback method.

3.7.2.1 Exercise and Problem. Analyze and try to prove the following con-
jecture. For a class I project of length T the discounted payback pe-
riod approaches T as the interest rate approaches the internal rate of the project,

3.7.3 Methods Based on the Present Value Profile

Typically, for class I projects the present value is a decreasing (and often also
convex) function of the valuation interest rate i and the opposite is true for class
II projects; the present value is an increasing (and often concave) function of
However, this is not the rule as shown in the following counterexample.
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3.7.3.1 A Counterexample

Consider an artificial cash flow
The assumptions of Theorem 3.4.1 are fulfilled. The only IRR is 0.006372. But

is decreasing for and increasing for

Hence the investor should take care of the individual present value profile, i.e.,
the graph of the present value in dependence on the interest rate involved.

The leading rule is simple; for a given accept the project if its present value at
this interest rate is positive:

For class I projects, the criterion of positive present value is equivalent to
In case of independent projects we select all the projects with

the positive present values at the given interest rate. If the projects are mutually
exclusive we select that with the highest present value. If we investigate a set of
projects which are mutually exclusive dependent on the valuation interest rate we
should select the project that is determined by the upper envelope of the present
value profiles.

For one project, the critical point is IRR . If PV is a decreasing function of then
we accept the project if the valuation interest rate is less than IRR and reject it
otherwise. Analogously, if PV is an increasing function of we accept the project
if the valuation interest rate is greater than IRR . For projects which do not possess
a monotonous present value profile, we should perform a more careful analysis.

For two or more projects, the critical points are not only the IRR’s of the in-
dividual projects but also their crossover rates. A crossover rate of two projects
is such an interest rate for which the present values of the two projects are equal.
Formally, let us consider two projects and The crossover rate is
defined as a solution to the equation

Obviously, there may be more than one solution so that we must select that one with
a reasonable economic interpretation. Since the present value is a linear function
on the space of cash flows, we see that the crossover rate is in fact the internal
rate of return determined by the difference between the two projects,

In the neighborhood of the crossover rate the investor should take care and carefully
study also the sensitivity of the present value profiles with respect to the interest
rate. This is best done by looking on the duration and possibly on the convexity.
Such an analysis will be better understood from the example.

3.7.3.2 Example. Let us consider five projects:
(1)
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Projects A, B, C, D are class I projects while E is a class II project. represents
the cash flow of a four years coupon bond purchased for the par value 1000 giving
the holder yearly coupons of 47 with redemption value 1000. The present value
profiles of these projects are shown in Figure 4. Visually the present value profiles
of the projects A and C coincide. The payback periods for the first four projects
are

The present value is a decreasing function of for projects A, B, C, D, and an
increasing function for project E. Thus the acceptance region depends on the cor-
responding IRR’s:

Consider first the case of independent projects. We accept A, B, C, D for
For we accept A, B, C. For

(approximately) we accept A, B, C, E; and we accept only E for

(2)
(3)
(4)
(5)

and the discounted payback periods for two selected interest rates

based on the discounted payback method we accept projects A, B, C, D if or
For we accept A, B, C and reject D. If the projects are mutually

exclusive, we accept only A for all three values of

In case of independent projects,
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Second, consider mutually independent projects A, C, E only. Since the projects
A and C have almost identical present value profiles, we must look first at the
difference of their present values. In Figure 5 we have plots of

and We see that
and that the difference is negligible. We also have

and Since the
convexities fulfil the inequality we can decide in favor of
project C against A. Further, the crossover rate for projects C and E is

Thus to summarize, for we accept C and for we
accept E, among the candidates A, C, E. If we consider all the five projects, then
we obviously select B for and E for greater values of

3.7.4 Internal Value

Suppose that the cash flow in question depends also on another variable or
parameter say, For decision making, an important measure is the
value of such that the present value for a given interest rate is zero.
Call this value the internal value of the cash flow and denote it by HIV. (HIV has
been introduced in [83] but we admit that such a simple indicator might have been
known before.) Mathematically, HIV is defined implicitly by the relation

Often, the dependence of the present value on is simple, for instance linear or
quadratic. Hence, for a fixed interest rate, the analysis of the present value profile
becomes more simple. Application of HIV is many-sided. Particularly, HIV is
useful in valuation of all transactions where the foreign exchange rate appears, like
currency swaps. In this case the foreign exchange rate. The HIV can also
be employed for the risk analysis of loans payable in foreign currencies or cash flows
dependent on interest rates like LIBOR, etc. If more than one variable influence
the cash flow involved, the above definition is still of use. The analysis is more
complex in this case, however. Also a two-dimensional analysis if both the interest
rate and vary is a rather complex task and needs a further research and analysis
of particular situations.
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3.8 Yield Curves
Generally, a yield curve plots interest rates paid on interest bearing securities

against the time to maturity. Such a plot makes sense only for a class of comparable
securities. Thus we may plot yield curves for government zero coupon bonds for
maturities 1, 3, 6, 9, 12 months getting a completely different picture for AA rated
firm’s bonds for same maturities. Thus we should take into account the risk factors
(cf. decomposition of interest rate) and also comparable taxation conditions.

Even for the same type of securities (like T-bills), the shape of the yield curve
differs in time, i.e., the shape is different in years 2000 and 2001, say, ceteris paribus.
This feature may be explained by many factors, like the change in spot riskless rate,
inflation, and other exogenous factors. Another important feature is the internal
need of the issuer for short, medium, or long financial funds.

Another problem arising with a yield curves’ presentation is that the yields may
be either declared or actually observed on the market. Here, by declared yields we
mean the promised coupon rates for usual fixed coupon bonds while the actually
observed yields are derived from the spot market price of the respective security,
see I.4 for the calculation.

There is an obvious connection between the yield curve and the term structure of
interest rates (cf. 2.5); for a given type of security (or a group of similar securities)
with different maturities and for a given particular date the yield curve is the
plot of the spot rates The difference is called yield
spread. Sometimes the forward-rate curve calculated from (2.5.13) is plotted.

A typical shape of the yield curve is upward-sloping, which simply means that
the corresponding function is increasing and often concave. Such a yield curve is
called normal yield curve. On the contrary, the yield curve which is downward-
sloping (decreasing and often convex) is called inverted yield curve. Another shape
often arising in practise is a humped curve; the yield curve increases at first and
then decreases for longer maturities. Rarely we can meet a flat, i.e., constant yield
curve or U-shaped curves. However, rather strange images, different from the above
mentioned, can be met with in practise.

The shape and magnitude of the yield curve depend on many factors. Most
important are the risk factors, the liquidity preference, and the expected inflation.
Increasing risk factors (mainly default risk) cause approximately parallel upper
shift of the yield curve. The higher the liquidity preference, the higher the liquidity
premium for lending for longer time periods. With increasing expected inflation in
future periods the longer-term rates become higher and vice versa. See 2.3 and 2.4
for explanation.

For financial decision making and also for analysis we often need yields for ma-
turities which are not available on the market. Thus we must construct them from
existing market data. To this purpose one may use purely numerical approaches
like linear interpolation, e.g. Another recommended approach is based on regres-
sion models. Suppose that we have N comparable fixed or zero coupon bonds 1,
. . .  ,N with maturities and observed yields respectively. The
postulated parametric regression model is (see [55], e.g.)
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where the hypothetical yield curve of a known analytical form depends on an
unknown vector parameter which is to be estimated, and are disturbances
with zero means. The estimate is obtained as an argument of

for a properly chosen for the least squares method and for the
absolute deviation criterion, e.g.). There is also a variety of possible choices for
the analytical form of Having the estimate we may estimate the yield for a
nonobserved maturity as

One of the simplest forms of is a polynomial function of a small degree K

which leads to a polynomial regression. For the corresponding function is a
cubic function and 4 parameters are to be estimated. Due to bad experience with
polynomial regression, other types of are recommended.

One of the successful and recently frequently used models is the model of cubic
splines. Assuming we consider functions such that (i) is a
piecewise cubic function, i.e., equals

(ii) is twice continuously differentiable everywhere; this is (together with (i))
equivalent to

We then choose the function from this class that minimizes a combination of the
residual sum of squares and the integrated squared 2nd derivative of

with a smoothing constant The resulting represents a compromise between
fit of data and smoothness of the fitting curve. Values of the smoothing constant
cover ordinary least squares fitting by a straight line as one extreme, and
pure numerical interpolation by a piecewise cubic functions as the other
one. Details of the method together with an algorithm can be found in [150].

Another flexible model has been treated by Bradley and Crane in [24] (see also
Example II.5.4.4):
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This model should be taken with care, however, because with wide range of observed
maturities severe discrepancies may appear, see the Example below and Figure 8
in II.6. After the logarithmic transform and the reparametrization the last
equation becomes

which is linear in parameters and these may be simply estimated by ordinary least
squares method.

Two alternative techniques of modeling the term structure of a coupon bond will
be discussed in 4.1.3.

3.8.1 Example. Consider declared interest rates for term deposits of the Czech
saving company as in February 1999:
Maturity (in days) 7 14 30 60 90 120 150 180 210 240 270 290
Interest rate (p.a.) 5.4 5.4 6.2 6.1 6.1 6.00 6.00 5.9 5.9 5.9 5.9 5.8
The yield curve is humped. Let us make a comparison of three estimating pro-
cedures: (i) fitting by a cubic function, (ii) fitting by cubic splines, (iii) fitting by
(50). For (i), (iii) there are no alternatives while in case (ii), we have experimentally
chosen the smoothing constant as to get the best fit from the optical point of view.
The estimated curves along with the original rates are plotted in Figure 6. We see
that for such a pattern it is difficult to fit the data satisfactorily by simple analytic
models. Particularly, fitting by the cubic function may lead to a dangerous conclu-
sion, i.e., that for longer maturities the yield curve rises again. This is not the only
exception. Another example (not presented here) shows that even the polynomial
interpolation of a very nice smooth yield curve observed at discrete times (years)
1, ... ,30, resembling a parabola, by a polynomial of the degree 29 reveals unrealis-
tic values for some points within the intervals. We strongly recommend not to use
the polynomial fitting procedure.
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I.4    RETURN, EXPECTED RETURN, AND RISK

return, rate of return, random walk hypothesis, Black-Scholes model, risk, para-
metric value at risk (VaR), nonparametric VaR

Warning
Some symbols used in the following text are very popular both in financial and

financial mathematics literature, unfortunately with a different meaning. Particu-
larly, symbols or R may serve as typical representatives. Sometimes R or means
a return, sometimes the rate of return, sometimes the expected rate ofreturn, some-
times the interest rate, etc. Also, there is an ambiguity in distinguishing between
a random variable and the expected value of it. In financial literature, a random
variable is often stressed by the wave, like and the expected value is simply X,
while in mathematics X is reserved for a random variable and EX stands for its
expected value. The reader is politely asked to pay attention what the respective
symbols mean.

4.1 Return
The concept of return should be considered in a dynamic setup; by return of a

financial asset we mean the difference between the wealth (in monetary units) at
the end and the beginning of the period under consideration. Consequently, this
leads to the following definition of the rate of return ROR, say:

Suppose that the (market) price of the underlying asset (security) at time is
Following the above idea, we may simply define the rate of return as

As in the case of interest rate, we will alternatively use a percentage or a decimal
form of the rate of return; and mean the same. Taking into
account the accumulation (multiplicative) effect and an analogy with the force of
interest, we can define another measure as a rate of return by

that is,

by definition. Note that as defined above are often called logarithmic prices.
For small values of the rate of return, does not differ from too much. By
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Taylor expansion, so that the difference is of order
Thus, for we have e.g. For higher values of the

difference increases. The rate of return for the time horizon T is then defined
by the relation

In case of securities, let us denote by the rate of return for the period
the (market) price of the respective security at the end of period and the
dividend paid for the time interval Then

The first part of the rate of return, represents the so called dividend
yield, or in case of coupon bonds, coupon yield, while the second part,

represents the capital yield. Note that the dividend is usually paid rarely
in comparison with the time period considered, once, or twice a year, say. For
a correct expression of the rate of return we should incorporate the corresponding
part of the dividend into the formula (1). If we consider the time period of one week
with the yearly paid dividend D , we substitute e.g. In the theory,
we must also distinguish between expected returns (ex ante) based on subjective
probabilities and returns coming from historical data (ex post).

For an asset paying no dividends the rate of return becomes

4.1.1 Random Walk Hypothesis

Under the random walk hypothesis the logarithmic prices follow the model

where are either uncorrelated (weak form) or independent (strong form) iden-
tically distributed random variables (shortly iid for the latter case) with
and and represents a drift or trend. Next we will suppose that the

are iid. It follows that the are iid random variables under the random walk
hypothesis. Since for

we have and In the stationary case there are
only random fluctuations about the initial logarithmic price For the original
prices we have
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or

The ratios are therefore iid random variables. Also
the returns are iid under the above assumptions. The case of normally
distributed will be treated in the next Section.

Sometimes it is supposed that the original price process is driven by

with analogous assumptions on
Sometimes even an unrealistic assumption is made that the are independent

identically distributed. However, the independence of does not generally guar-
antee the independence of the returns Just look on the covariance between
two successive rates of return:

which could hardly be zero.

4.1.2 A Simple Model for Price Development

The model presented in this Section serves as a background for more compli-
cated models like Black-Scholes model for option valuation etc. We need only two
assumptions concerning an efficient market: (i) all the past history of the price
development is reflected in the present price; (ii) the response of the market on
any new piece of information is immediate. Assumption (i) resembles a Markov
property.

Let and denote for a moment, being a
starting price. In the model it is supposed that the return, in our case, can
be decomposed into a deterministic and a stochastic part in the following way:

Here the first term is the deterministic part, is called drift or a trend coef-
ficient while the second part is a stochastic term with so called volatility, standard
error or diffusion and standing for the increment of
a standard Wiener process. In more general models, both and may be also
functions of P and Recall that the Wiener process is a stochas-
tic process with continuous trajectories such that with probability 1,
for positive the distribution of is normal and for
any the random variables
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(the increments) are independent. See Part III for more
details. Since the distribution of is (9) may be written in the form

where is an N(0, 1) random variable so that the return possesses the
normal distribution This formula is useful for discrete modeling
and simulation. Formally, for we obtain the stochastic differential equation
(SDE, see Theorem 12.6, p. 223 in [93])

This equation describes the so called geometrical Brownian motion, see Part III
2.2.12. We will now make use of Itô formula to characterize the development of
logarithmic prices. For the Itô formula reads (see Part III, Corollary
2.2.9)

Put The first and second derivatives of with respect to P are
and respectively. After some algebra we obtain the solution to (11) for the
logarithmic prices:

The discrete version of the last equation is (recall that

with distributed as N(0, 1) again.
The solution to the SDE for the price process with given initial value is

(see also 3.1.1 in Part III) so that

(see 3.1.2 in Part III) and therefore

where by the symbol we mean the distribution of the random variable
exp the log-normal distribution with parameters and which are
not its mean and variance, respectively. The density of is

The mean of is and the variance is

As a consequence of (16) we can deduce that the conditional distribution of
given is

After some algebra we obtain the conditional expectation and variance:
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4.1.3 Important Remark

In this Part, unless otherwise stated, by returns we will mean either returns or
rates of returns without further specification. Either of the return defined above
will be considered as a random variable denoted by for the respective
time period.

4.1.4 Expected Return

Often, return is a nonnegative random variable but this is not the rule. Let us
denote F the distribution function of The expected return of is the expected
value

4.2 Risk Measurement
Here we will restrict our explanation only to cases of quantitative measures of

risk. All of the measures discussed here are based on the variance of the random
variable in question, the return in our case.

4.2.1 Standard Deviation – Volatility

Basically, the risk of the return is defined as the standard deviation of

A riskless asset is an asset with so that the return is a constant with proba-
bility one.

In literature we can find an analogous measure based on the variance of the
return, called volatility. This term is used either for the variance or for the standard
deviation of the return or of another stochastic financial variable.

4.2.2 Example. Let us consider two assets, A and B. Suppose that the rates
of return randomly depend on the state of the economy in the way showed in
Figure 7. Obviously, both assets have the same expected rate of return, and
respectively:
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Their respective variances are

so that the risks are and We conclude that the
investment into asset B is less risky than into A.

4.2.3 Value at Risk

Another useful and recommended measure of risk is called Value at Risk, shortly
VaR. (Distinguish between symbols VaR – Value at Risk and var – the variance.)
Value at Risk at confidence level shortly is defined by the relation

In words, is the cut-off point under which the return will attain values
only with some given (small) probability Thus is the per cent
quantile of the distribution of Different financial institutions use different levels
of confidence; the Bankers Trust 99 per cent, J P Morgan 95 per cent, Citibank
95.4 per cent, e.g. Otherwise the confidence level is stated in reverse form, 1 per
cent, 5 per cent, etc., but the meaning is the same; the maximum possible loss will
be more than VaR with probability or it will be less than VaR with probability

4.2.3.1 Parametric VaR

Let us start with the so called parametric VaR. Suppose that the random return
possesses a distribution from a location-scale family of distributions. Let be a
distribution function free of any other parameters and suppose that the distribution

where is a real number called location parameter and is called scale param-
eter. In what follows, we deal with distributions for which the location parameter
is equal to the expected return and the scale parameter is equal to the standard
deviation. If we denote the per cent quantile of the distribution function
as then we get for

and therefore

Sometimes, the last quantity is called absolute value at risk while

function of the return is of the form
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is called relative value at risk. Parameters and are usually unknown (even if
the analytical form of the distribution G is supposed to be known) and typically
they should be estimated by their sample counterparts.

Such an approach is good if we want to calculate VaR for the return based on
data coming from the respective period. If we need VaR for a subsequent period
or periods, we must take into account that both the mean and the volatility
parameter can change in time. There are two simple models with a theoretical
background that overcome this problem.

Firstly, we assume that the mean return does not change in time, but the variance
of it is proportional to time. So if we consider the prospective return after T periods
after the original parameters had been obtained, we suppose that the variance is

It follows that the value at risk may now be computed from the formula

Secondly, if we suppose that the mean is proportional to time, i.e., then
the formula for VaR becomes

Often it is supposed that G is the distribution function of the standard normal
distribution Numerous examples show that this is not a frequent case in practise,
however.

Formulas (20) to (26) relate to return and to its characteristics If is
the rate of return instead, and its characteristics, then the value at risk in
(20) – (26) is expressed in terms of the initial investment as unit, in other words,
the maximum possible loss (in dollars) is

4.2.3.2 Nonparametric VaR

If only little is known about the analytical (parametric) form of the returns’
distributions but a sufficient amount of (historical) data is available, then a proper
method for the risk analysis may be based on a nonparametric approach. Suppose
that the observed returns during a given period (one year, say) are For
data based on daily closing prices from a stock exchange we have about
observations yearly, e.g. We rank the observed returns to get the ordered random
sample

Instead of the theoretical quantile in the above considerations we will use the
empirical quantile defined for by

For a chosen confidence level we may state that the return will not fall under
with probability Similarly, the conclusion for VaR in case of a loss follows.
This may be accepted as true for a one-period prospective, in the above case for one
year ahead. The extension to more than one period needs some kind of speculation,
however. Some regression techniques for a trend investigation may be helpful in
this case.
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4.2.4 Remark (The Distribution of R and Related Quantities)

The simplest assumption in accordance with the random walk hypothesis is that
the R’s are iid and moreover that they are normally distributed. The empirical
studies reveal that this is often not the case. Usually we meet a violation of the
zero skewness and zero excess property of the supposed normal distribution. Some-
times the problem of symmetry is not too severe for returns, but an important
violation may be observed with other characteristics. Concerning excess, the differ-
ence between the theoretical value for a normal random variable (equal to 0) and
the actually observed values sometimes appears to be significant. In [159], p. 45,
the reader may find an analysis of the excess of stock returns which shows that the
distribution of the respective returns is far from normal. See also [109].

4.2.5   Stress Testing

Often it is of interest for an investor to know what will happen if the market
conditions attain their extremes, either in positive or negative direction from the
investor’s point of view. Of course, the more unfavorable, the more important
they are for the investor’s decision making, and they resemble VaR (in the sense of
maximum possible loss) to some extent. A possible method to see what will happen
is based on a scenario analysis. Stress testing starts with a construction of scenarios
covering the extreme situations involved. The scenarios may be developed either
from historical experience (historical scenarios) or from a theoretical model of the
further development of the characteristic in question (hypothetical scenarios).

Stress testing catches the dynamics. It is therefore a task for the decision maker
to state the limits or maximum likely changes for the periods of time under inves-
tigation. There are some recommendations. For example (see [89]), the Deriva-
tives Policy Group suggests the following guidelines for the extreme movements
of the variables involved in derivative’s products (all given in basic points) for a
one month’s period; parallel yield curve shift ±100, yield curve twisting (change in
shape) ±25, stock exchange index change ±10, foreign exchange rate change ±6,
volatility change ±20.

A computational problem can arise with stress testing. If the time horizon covers
T periods, say, and we consider four possible outstanding values of a variable in
question (typically maximum, minimum, mean, and median), we have to generate

scenarios and afterwards to evaluate the desired indicator or measure. For a
typical ten years’ currency swap described in Example 1.6.4.4 with the interests
paid semiannually we have so that the total number of scenarios is
1, 099, 511, 627, 776, a pretty large number of scenarios to be analysed. Note that
actually two variables affect the resulting cash flow in Example 1.6.4.4; the exchange
rate and LIBOR. Hence in fact there are even more than four possibilities at every
period, at least at the initial and the final period.

To avoid this trouble, usually only a few (relative to the total number) of scenar-
ios are selected and the desired measures evaluated. The typical trajectories then
cover the most optimistic and most pessimistic (worst–case) scenarios consisting of
all maximum and minimum values together with the average or median trajectory.

Another reduction of the size of the problem may be reached by a careful se-
lection from the whole set of scenarios. A useful technique of such a selection is a
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Monte Carlo simulation approach. We sample a number of scenarios at random and
evaluate the desired characteristics of every sampled scenario. Such characteristics
create a random sample and its useful descriptive statistics can be calculated. Since
these statistics are obtained from a large number of characteristics, thousands say,
we may employ the standard statistical inference based on a normal distribution’s
assumption, using the central limit theorem’s argument. Note that the Monte Carlo
simulation is generally a very useful device for the risk analysis.
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I.5 VALUATION OF SECURITIES

valuation of different securities (bonds, options, forwards, and futures), arbitrage,
hedging, put-call parity, Black-Scholes formula, binomial model

5.1 Coupon Bonds
Consider a simple coupon bond, coupons fixed, see 1.6.1.5. For the sake of

simplicity assume that the coupons are paid annually. The cash flow to the
holder of the bond is where P is the value invested into
purchasing the bond. At the time of issuing, the issuer sells the bond for its face
value F. If this is not the case, there is something wrong with the initial setup
of the coupon rate. Usually bond valuation does not consider the initial cost of
purchasing the bond, P, and rather takes into account only the future cash flow
resulting from the coupon payments and the redemption of the face value at the
maturity date, so that the corresponding cash flow becomes C, C,..., C, C + F.
Moreover, the history of the past payments is of no interest for the holder, and he
or she values the security on the basis of the expected future cash flow only.

More formally, let us suppose that the time of valuation is while the maturity
time is The coupon payments take place in times
... ,T. At time T there is the additional payment of the face value F. Altogether we
have payments. With the valuation interest rate and the corresponding
discount factor we can express the present value of the above cash
flow sometimes called the dirty, gross, fair, or full price or value of the bond as

This formula provides a correct expression of the present value of the bond.
There is one point to be discussed, however. If is an integer, the above
formula assumes the immediate payment of the coupon at time In practise this
is hardly the case because the issuer states the clause of so called ex-coupon. It
means, that after some date, called ex-coupon date, the bond is traded without the
first forthcoming coupon and the coupon payment belongs to the former holder of
the bond. Thus it is more realistic to adapt (1) to

Sometimes it is useful to invert the time by setting In this case, means
the time to maturity need not be an integer). Then
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with the first term missing if is an integer. The value is called accrued
interest. Using the simple interest method, the accrued interest can be expressed as

The two values slightly differ, of course. Accrued interest is a reward
to the seller of the bond compensating the loss of the next forthcoming coupon.
The difference between the dirty price and the accrued interest is called pure price,
pure value, net value of the bond which therefore takes the form

which is also quoted in the financial press.
A very important measure of a bond is the so called yield to maturity. Let us

suppose that the market price of the bond is MP. Consider the value of the bond
expressed in terms of interest rate either from (1) or (3), ceteris paribus.
Then the yield to maturity, YTM, is defined as a solution to the equation

Since YTM is in fact the internal rate of return and the assumptions of Theorem
3.4.1 are fulfilled, there is just one YTM.

Another very simple but frequently used measure of a bond is its current yield:

Note that so far we have supposed that the coupons are paid annually. We will
discuss other than annual frequency of coupons later.

For further analysis it is convenient to suppose that is an integer. Then the
value of the bond (immediately after the coupon payment), now identical with the
net value, becomes

Note, that in ancient literature this formula is used for calculation of the net value of
the bond if is not an integer. In this case, the net value is calculated as the linear
interpolation between values and
The interpolated value is The dirty value is calculated
as the term standing for the accrued interest, without
taking into account discounting.

From formula (8) we can immediately deduce that the net value of the bond
at the maturity date equals its par value: Further, for the
valuation interest rate equal to the coupon rate the net value of the bond
is equal to the par value independently of the time to maturity:
For is a decreasing function of and for
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The reverse is true for so that the net value is an increasing function
of and Hence, in case the bond is called a discount
bond while in case the bond is called a premium bond. Thus, an increase of
the interest rate will cause the value of the bond to fall, whereas a decrease of this
rate will cause it to rise. As approaches 0 (this means, to the maturity date), the
net value of the bond approaches its par value F. An analysis of (8) also shows
that, ceteris paribus, bonds with longer maturities are more sensitive to changes of

than those with shorter ones.
After some algebra we get a formula for the duration corresponding to the net

value expressed in terms of the discount factor:

or in terms of the valuation interest rate:

For the expression for the duration simplifies to

5.1.1 Example. Suppose we have a bond with par value and coupon
(all in thousands CZK) so that the coupon rate is that is 10 per

cent p.a.

If the market interest rate is 0.05, the bond is a premium one, if it is 0.15, the bond
is a discount one. The dependence of the price of the bond on time to maturity is
graphically illustrated in Figure 8. The decreasing function on the left part of the
figure corresponds to the price of the bond with the valuation interest rate
etc.

5.1.2 Exercise. Investigate modifications of the above formulas in case that the
coupon payments appear semiannually, i.e., with frequency 2, which is perhaps the
most frequent case.
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5.1.3 Remark (Construction of the Yield Curve of Coupon Bonds)

The simplest way is to take a set of similar coupon bonds with different maturities
and their calculated yields to maturity. Then some method of fitting discussed
above may be applied. An alternative approach is known as bootstrapping. (Do
not confuse with the same term used in statistics!) The idea consists in valuating
every coupon payment (and also the principal) using the corresponding spot interest
rate. Thus the present value formula (8) for the valuation of the bond with maturity
T at time is now

Suppose for the simplicity that there are exactly T coupon bonds with maturities
1  , . . . ,T ,  fixed coupons face values and (observed) market
prices For the bond the present value is expressed as

For the first bond, the yield to maturity is, according to (6), calculated from
the relation

For the second bond we use or bootstrap the information from the first bond
already ascertained) using the relation

and by recursion, having known we calculate the yield from
the relation

Care should be taken if the maturities are not equally spaced. In any case, some
fitting procedure is almost always necessary.

5.1.4 Callable Bonds

A callable bond means that the issuer has the right to call back the bond prior
to the designed maturity. In fact, in our terminology, the issuer is the holder of a
call option which has some value itself. Therefore, from the point of view of the
holder of the bond, the price of the callable bond is

The value of this call option may be derived by standard methods given later in
5.2.5 and Part III. Similarly, putable bonds can be issued and valued, see II.6.4.
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5.1.5 Remark (Amortized Bonds)

An amortized bond is characterized by constant installment payments of the
principal and interest like a loan, see 3.3.8. Suppose that the cash flow of the
usual coupon bond is and that of the amortized bond

both of the same length. As an exercise, find such that
the two bonds are equivalent in the sense of the equality of their present values
under the valuation interest rate equal to the coupon rate Remind that
an amortized bond is less risky than a classical coupon bond (it immediately repays
the principal) and hence, in practise, the risk premium offered by the issuer is not
as high as in case of the usual coupon bond. The actual is less than that of
calculated on the above equivalence principle.

5.1.6 Remark (Simple Bonds under Uncertainty)

Suppose that a zero coupon bond pays F with probability and pays with
probability at maturity, where is called the recovery rate and

is called the loss rate. The case is equivalent to the default.
Suppose that the valuation interest rate is The fair value of the bond is the
expected present value:

Further, let us consider a one-period coupon bond with coupon C and par value F
which sells for par F now and pays C + F with probability and with
probability at maturity, having the same meaning as above. The question
is what is the fair value of the coupon C under the valuation interest rate We
equate the present value and the discounted expected future value

solve for C, and get the fair value of the coupon

As an exercise, extend the above one-period case to a multiperiod one.

5.2 Options
We start with the valuation of options since the ideas of their pricing are general

enough to be used for the valuation of other derivative securities. The key concepts,
arbitrage and hedging play a crucial role in the mathematical modeling.

5.2.1 Arbitrage

All the models treated in this book assume no-arbitrageprinciple, in other words,
the absence of arbitrage opportunities. By an arbitrage opportunity we mean any
of the two situations:

(1) At the same time, the same asset is sold at different prices at different
places. Nowadays, this can hardly happen in the financial world since the
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Arbitrage opportunity is often characterized as a ”money pump” and no-arbi-
trage principle by the slogan: ”There is no such thing like a free lunch.”.

5.2.2 Hedging

Hedging may be compared to insurance. It provides an insurance against un-
favorable development of the market from the investor’s point of view. Hedging
may reduce the risk but, under no-arbitrage principle, risk cannot be fully elimi-
nated. In principle, hedging consists of taking two opposite positions in the assets
which are highly negatively correlated. The investor who hedges his/her position is
called hedger. A perfect hedge means that the hedger combines an option and an
underlying asset in such proportions that result in a riskless position and provide
a riskless profit (equal to the riskless interest rate). See also III. 3.3.5. This is
a rather idealized situation, however, since it does not take transaction costs into
account.

5.2.3 Notation

We will assume the continuous-time world with constant riskless rate of interest
(force of interest) applied both to borrowing and lending. Symbols and will
stand for the price of a European CALL and PUT, respectively. Analogously,
symbols C and P will be used for prices of the respective American options. The
price of the underlying asset (usually stock) will be denoted S and we will suppose
that there are no liabilities like dividends connected with this asset during the
period involved. We will also assume that S is a random variable or, more generally
a stochastic process, an approach consistently adopted in Part III. Finally let K
denote the strike price and T the expiry date. If necessary, we add subscript to
stress the dependence of the respective quantity on time, etc. If the
option is exercised, denote the time of exercising by For Europeans,

The payoff of an exercised call option is

and that of a put option is

(16) and (17) are called terminal payoffs. At any given the value for
a CALL and for a PUT is called the intrinsic value of the respective option.
This is the value which the option would have if it were exercised at time If the
intrinsic value is positive, zero, or negative, we say that the option is in the money,
at the money, or out of money, respectively.

(2)

information from one stock exchange is available on the stock exchange on
the opposite side of the globe within a second.
With zero investment at time 0 there is no probability of loss but there is
a possibility of a riskless profit at time 1. More rigorously, an arbitrage
opportunity in this case is a self-financing trading strategy with no initial
investment, and a positive probability of positive profit and zero probability
of negative profit later on (cf. III.3.3 and III.3.3.1).
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5.2.4 PUT – CALL Parity

Let us consider the portfolio long one asset, long one PUT, and short one CALL.
It means that we have bought one asset plus one PUT on that asset and sold
one CALL on the same asset. Both the options on the asset in the portfolio are
European with the same expiry date T and the same strike price K. The value of
the portfolio at time is therefore

Look what will happen at the expiry date. The value of the portfolio becomes

If then and if then
We conclude that such a portfolio is riskless and leads

to the certain gain K . What is the value of the portfolio at time Since
the future value is K , the present value is (for riskless investment
we have used the riskless interest rate Thus we have obtained so called put-call
parity relation:

This is an example of risk elimination. Note that this formula cannot be applied
to American options due to the early exercise feature.

5.2.5 Option Pricing

5.2.5.1 Natural Boundaries

The limited liability condition says that all option prices are non-negative. Since
American options have all features like Europeans plus the right of an early exercise,
they must be worth at least the Europeans:

Further, from the put-call parity relation it follows that

For an American CALL we have

The proof is by the contrary; suppose that Then we can buy
the CALL at immediately exercise it and thus get a riskless profit
which is in a contradiction to the no-arbitrage principle.

5.2.5.2 Exercise. The quantities which are not explicitly mentioned remain con-
stant. Prove the following propositions:

(1)
(2)

(3)

If then and
If then and The same holds
for the Americans.
If then and The same holds for
the Americans.
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5.2.5.3 The Black–Scholes Formula

Let us consider a European call option on a stock, the current price of which is
known and equal to Since the payoff at the expiry date T is the
present value of this payoff is

Next we adopt the so called risk-neutral valuation. Under this approach we do
not consider any risk preferences of the investors. Since the higher the level of risk
aversion, the higher the expected return will be for a risky asset, by excluding
the risk preferences we conclude that the only correct risk-neutral is the
riskless rate. At this point it is important to emphasize that by the above choice
we do not assert that the conditional distribution of given is that for which

It seems to be reasonable to take the conditional expected value of the
discounted payoff given the current value of the underlying asset as the value of
the option but with the expectation taken with respect to the riskless rate

where stands for the expected value in a risk-neutral world. In Black-Scholes
approach we suppose that the conditional distribution of given adjusted for
risk-neutrality (see formula (18) in 4.1.2) is log-normal

To evaluate (21) under assumption (22) we first calculate the expected value

where the random variable X possesses a log-normal distribution with
the probability density function given by formula (17) in 4.1.2. After some algebra
we get

where stands for the distribution function of the standard normal distribution
N(0, 1).  Substituting and into the
expression for gives

where
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Altogether, going back to (21) we have derived the Black-Scholes formula for the
value of a European call option:

An elementary application of the put-call parity relation provides the value of a
European put option

where we used

5.2.5.4 The Binomial Option Pricing Model

We will now assume that the stock price changes only at the equally spaced time
instants The time unit may be arbitrary (month, day, hour, . . .  ).
Further let us suppose that if the stock price is at time then at time it
may take only one of two values, or with probability or respectively.
Thus

Also suppose that the changes are mutually independent and the probabilities do
not depend on time. By the no-arbitrage principle we may suppose that the riskless
interest rate fulfills (Suppose on the contrary that
e.g. Then the investor could borrow any amount of cash at the riskless rate buy
the stocks and sell them for at least after one period. Such a strategy would lead
to a riskless profit Note that the usual assumption is so that
the price can move up and down. Next we state a relationship among and

in a risk-neutral world. The expected return from holding the stock should be
the same as the riskless return resulting from the investment at the riskless rate

Since

by the above argument we conclude that

and this is fulfilled for

Due to our assumptions, is a probability called the risk-neutral probabil-
ity. We can also obtain the risk neutral probability by the following construction.
Consider the so called replicating portfolio consisting of A stocks and B riskless
bonds which gives the same payoff as one European call option on the stock with
the strike price K and expiry date The terminal value of the option is

with probability
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and
with probability

Thus A and B must satisfy the system of equations

The solution to this system is

From the obvious inequality we observe so that the repli-
cating portfolio always involves borrowing cash and buying the stock in the above
proportions. The present value of the CALL is, after substitution from (30), given
by

where is the risk-neutral probability defined in (29).
Up to now we have considered a one-period model. Let us look on a simple

generalization for a multi-period model. After two periods we obviously have

Generally, after periods integer)

This is the binomial model describing the probability distribution of the stock
price after periods. By we will denote the binomial distribution with
parameters i.e., the distribution of a random variable X such that

Consider now a European call option with strike price K and expiry date T.
Using the same argument as in the derivation of (21), but with discrete discounting,
the value of the option at time is given by

In a risk-neutral world we should have used the risk-neutral probability but the
option price can be expressed for an arbitrary We have
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Let J be the smallest non-negative integer such that Put

Then

If the risk-neutral probability, then so that in this case we can
express (35) in the form

With the binomial model, a number of questions arise. We have seen that even
under the assumption of the risk-neutral probability there are some degrees of free-
dom in choice of and We just mention how to handle the unknown parameters
appearing in the model. Some ideas are based on comparing the parameters of
the discrete model to those of the continuous one. Another popular relationship
between and is The choice is also popular. Such assumptions
reduce the dimension of the respective parametric space and open space for a broad
discussion. See [172] and [105] for more details.

Like in classical probability theory, also here there is a close connection between
the binomial model and its limiting counterpart, the normal distribution model,
as a consequence of the central limit theorem for iid random variables with finite
positive variances. See [144] for more details.

Since the binomial model is discrete, it enables a straightforward modeling by
Monte Carlo simulation. The simulation models take the advantage of the fact
that on different stages of the dynamic simulation, numerous specific features and
movements of the real life problems may be incorporated. Note that some of the
mentioned movements, particularly shocks, may hardly be considered in a theoret-
ical model.

5.2.5.5 Options on Assets Paying Dividends

So far we have considered the underlying stock that does not pay any dividend.
We can modify the above results also for a dividend-paying stock. If a stock pays
a dividend during the life time of the option, the payment of the dividend causes
the stock price to fall by an amount equal to the dividend. The dividend yield is
expressed as a proportion of the stock price. For the purposes of this Part, we will
suppose that the dividend yield is constant and understood as continuous like the
force of interest. Hence during the time interval the stock pays
For European options we may still use Black-Scholes’ type formulas (25), (26) but
now with

The formula for a PUT is given by (27) but with from (37).
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5.2.5.6  Valuing American Options

The following widely used, but, in our opinion, questionable argument enables
to value an American option on an asset which does not pay dividends. From the
inequalities of 5.2.5.1 we have

If the option is exercised at time then its value immediately becomes
which is less than the lower bound if the option is still alive. It follows that

an American call option will never be exercised prior to its expiry date and hence
the value of an American CALL should be the same as that of the corresponding
European CALL.

There is no such argument for American put options and/or American options
on dividend paying assets. Further information on the topic can be found in [105],
[116], [172], e.g.

5.2.5.7  Comparative Statics – The Greeks

In option pricing formulas there are actually five variables (also called parame-
ters), and The sensitivity to the option prices on these variables
plays a crucial role in financial decision making and is measured by partial deriva-
tives. Since traditionally these sensitivities are denoted by Greek letters, they are
often called Greeks.

In what follows we will suppose that the options involved are European and that
their prices are driven by the Black-Scholes formula (26) and (27). Note that the
definitions in the form of derivatives given below can be used in a more general
setup. Also note that the respective sensitivities for PUTs can be usually simply
calculated using the put-call parity relation (20). Let V denote the value of either
a CALL or a PUT.

Delta. The delta ∆ is defined by

After some algebra we get the delta for a call and a put option:

Obviously, since the value of a CALL is always an increasing function of
The reverse is true for a PUT. The concept of delta is used for so called delta

hedging. Suppose we are long one asset and short A call options on that asset. The
value of such a portfolio is therefore We wish to determine A so as
to make the value of the portfolio invariant with respect to (small) changes in the
asset price, i.e.,

It follows that the desired the so called hedge ratio .   Nevertheless,
since delta is changing in time, the portfolio should be rebalanced frequently and
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the hedge should be a dynamic hedge. A dynamic hedge can be rather costly,
particularly in case the transaction costs are not negligible. So dynamic hedging
strategies (as well as other strategies dependent on a frequent trading in time) are
good for market makers or brokers and others with low transaction costs. Observe
that the lower the asset price in comparison with K , the higher the hedge ratio.
A similar measure of the sensitivity is the elasticity of the call price with respect
to the asset price defined by Note that always (prove as
an exercise). Hence the call option is more risky than the underlying asset. An
analogue to delta is the duration.

Gamma. The gamma is the second derivative of V with respect to the asset
price:

Gamma for CALL and PUT is the same:

where is the probability density function of the standard normal distribution
N(0, 1). Since the values of both types, CALL or PUT, are convex functions
of Observe that gamma resembles the convexity introduced in I.3.6.

Theta. The theta is the time derivative of V :

The calculation is a bit cumbersome but useful exercise (a good idea is to use some
CAS (Computer Algebra System) like Mathematics®):

Alternatively, using the identity

we get it in the form:

We see that is always negative. From the put-call parity relation we obtain

Nothing can be said about the sign of the last expression.
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Rho. The rho P expresses the dependence on the riskless rate:

for a CALL it takes the form

and for a PUT

Immediately we see that and

Vega. The vega measures the sensitivity of the option price with respect to
the volatility   of the underlying asset:

For both types of options is the same:

Sometimes it is also of interest to investigate the sensitivity to the strike price
but for unknown reasons the corresponding Greek is missing. Nevertheless we have

which is always negative and

which is always positive, both these conclusions in accordance with an intuitive
insight.

5.2.5.8 Exercise. Derive formulas (41), (48), (51), (52), (53).

5.2.5.9 Volatility and Implied Volatility

The parameter the volatility, is of vital importance in option pricing. Since it
is difficult to speculate on its value, usually some estimates must be used.

One of the most frequently used estimates, called the historical volatility, is
based on past data. In practise, this estimator is, in fact, the usual sample standard
deviation, for instance, of quantities in the Black-
Scholes model. A care must be taken however: The time steps for such a calculation
must be in accordance with time units in which the other quantities are measured.
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More sophisticated estimation procedures are based on models of the stochastic
behavior of volatility. See [26] for a review and [127] for a bootstrap estimation of
volatility.

Since the other parameters in the formulas for option pricing are known at time
and also the market value of the option is known, then, after substituting

these known values of the parameters into the Black-Scholes formula (26), we can
determine the unknown volatility. The corresponding equation reads

where is the function resulting from the Black-Scholes formula. A solution to
(54) is called implied volatility. Equation (54) is to be solved for an unknown    given
the values of all remaining quantities. We see that volatility cannot be explicitly
expressed from (54) so that a solution must be found numerically. Moreover, it is
not clear, how many solutions to the mentioned equation exist. If there are more
than one, we should carefully analyze them with respect to a reasonable financial
interpretation.

Modern computer algebra systems provide the users with a variety of routines
and financial application libraries which can be used for the above analysis. See
[147], [148], and http://www.wolfram.com for a possible approach. Some specific
cases may be found in the series of papers of Benninga and Wiener: [9], [10], [11],
[12], [13], [14].

5.2.5.10 Example. Let us consider 6 options, 3 CALL’S and 3 PUT’s, on a Volk-
swagen stock priced at EUR 70.72 April 23, 1999, expiring 3rd Friday, June 1999
with strike prices The actual prices for the
respective CALLs were 6.31, 4.92, 3.77 and those for the PUTs 2.92, 4.08, 5.48. We
have The implied volatilities computed using function
FindRoot in Mathematica are 0.38, 0.38, 0.35 for CALLs and 0.41, 0.42, 0.43 for
PUTs, respectively.

Let us further consider the portfolio consisting of four the above options: long
CALL with strike long PUT with strike short CALL with strike and
short PUT with strike The value of that portfolio as a function of the stock
price S at expiry with today’s prices of the options is:
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This is an example of a combination of options, particularly the so called butterfly
spread. See Figure 9 for the payoff of this portfolio.

5.2.5.11 Exercise. Examine and plot the payoffs of the following combinations of
options (all on the same asset) at expiry:

(1)

(2)

(3)

(4)

long CALL with strike and short CALL with strike and prices
(bullish spread),

long one CALL with strike long one CALL with strike short
two CALLs with strike and prices This is
also a butterfly spread.
long one CALL, long one PUT with the same strike K, called a bottom
straddle,
reverse of (3): short one CALL, short one PUT with the same strike K,
called a top straddle.

Explain the motivation for the above strategies.

5.3 Forwards and Futures
Valuing both forwards and futures is practically the same from the mathematical

point of view and since there is no option but obligation to deliver, it is simpler than
that of valuing options. The seller must deliver the asset at time T. We can derive
the forward price by the non-arbitrage principle. The seller borrows an amount
(=the price of the underlying asset at time at riskless rate and buys the asset.
Hence the forward price must be

otherwise there will be a riskless profit or loss in contradiction to the nonexistence
of the arbitrage. The asset may pay a dividend or need to be stored (like gold,
grain, or oil) with some additional costs. If the corresponding rate is then the
forward price becomes

Note that in case of dividends and if there are some additional costs.
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I.6 MATCHING OF ASSETS AND LIABILITIES

matching, immunization, dedicated bond portfolio, static model, dynamic model,
stochastic model

6.1 Matching and Immunization
In what follows in this Chapter, by assets we mean the inflows and by liabilities

the outflows of a company. The main purpose of matching is to balance assets and
liabilities in such a way that the deficiency is either zero or as small as possible.
Perhaps only of theoretical value is the case of absolute matching; let and be
the total assets and liabilities at time respectively. If for
all we say that assets and liabilities are absolutely matched. This does not sound
realistic, however, so that an alternative approach is needed. The most frequent
method is to match the discounted cash flows and/or other characteristics of assets
and liabilities.

Suppose that the liabilities (assets) are represented by a cash flow
see 3.1. The principle of matched present values of assets and liabilities

at force of interest is then expressed as

This identity can only be satisfied for finite number of with the exception of
the absolute matching. In practise, one can choose the force of interest which

he or she believes will be most likely for the period of time under consideration.
Then the matching condition for the present values is

Since is only an estimate of    there is a danger that for some other forces of
interest, even close to the estimated one, the present value of liabilities will exceed
that of assets. So it is a good idea for an investor to immunize his or her position
by imposing further conditions expressed in terms of derived characteristics of cash
flows. The condition

requires the same duration of assets and liabilities and the condition

guarantees that at least in a small neighborhood of will
hold. If we change condition (4) and require instead

we can give an explicit solution to the problem.
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Suppose is a given vector of liabilities, fixed in the sequel. Let
be a 3-dimensional linear subspace of available assets generated by the base assets

which form the basis of Let us denote a (T + 1) × 3
matrix. Thus every may be expressed as where the coefficients

are uniquely determined. Let us further denote

the derivatives of the discount factors taken at and
a (T + 1) × 3 matrix. The three conditions (2), (3), and (5) may now

be rewritten in the form

or equivalently

If we substitute we get the system of three linear equations for unknown

which possesses the unique solution

provided the inverse exists. Exactly the same formula holds true if we, instead
of three matching conditions, impose matching conditions employing higher order
derivatives.

6.2 Dedicated Bond Portfolio
An important application of the idea of matching assets to liabilities is the invest-

ment strategy known as a dedicated bond portfolio, (see [60] e.g.) which deals with
a proper selection of available bonds. In general, we may think about allocation
of funds among arbitrary investment opportunities represented by their expected
cash flows. A stochastic version of this problem is treated in Part II.1.2.

6.2.1 Static Model

Suppose that we have the time horizon with investment oppor-
tunities represented by cash flows                                                                           ,

and initial acquisition costs (i.e., the cost for buying these cash
flows) It means that is the cost of the investment at time

resulting in the expected future cash flow Further, let
be the expected liabilities over the considered time horizon. Let

the initial wealth of the investor be W = 1. The objective is to create a portfolio
(to find the weights in other words, consisting of the
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above cash flows so as to minimize the total acquisition costs subject to J + 1
matching conditions

where stands for the derivative of the present value with respect to the
force of interest For it means the perfect match of present values both of
assets and liabilities, for and 2 the perfect match of durations and convexities,
respectively, etc. Further imposed conditions on portfolio may be of the type

The lower limit may represent the reasonable amounts of investment while the
upper limit may take into account some legal requirements. For example, in the
Czech Republic, pension funds are not allowed to invest more than 10 per cent into
one asset. In our terms, it means that the respective We also add the
natural condition Altogether, we have a problem of linear programming:

If we abandon condition (8), the theory says that the optimal solution will consist
of at most J + 1 (=number of conditions) positive weights. For J > N – 1 there
may be no solution to the problem. However, this case is of theoretical interest
only, since in practise we usually ask just for matching up to convexity, J = 2, in
this case.

Since there is an uncertainty about the valuation force of interest weusually
need to solve the above problem for a set (scenarios) of expected interest rates and
to discuss the solutions from the fundamental point of view.

6.2.2 Dynamic Model

In the above model, the only dynamics involved has been included via present
values. In practise, the liability schedule is often determined at any time instant,

This may be the case of obligatory balances, reserves, or solvency
margins. At time the inflow is

so that the necessary conditions to meet the liabilities at any time now read

It is a good idea for the investor, even under condition (11), to reinvest a possible
surplus. Suppose that is the short-term reinvestment interest rate for the period
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and is the surplus at time Then the inequality condition (11) becomes
the equality

with the initial surplus if any. Again, the optimal solution is given by solving
the linear program

where

6.2.3   Discussion of the Restrictions

Note that if the short-terms interest rates are higher than the interest rates
coming from the investment into CF’s, the solution will naturally result in x = 0
and some positive

6.3 A Stochastic Model of Matching
Here we give a simple stochastic version of the model given in 6.1. Suppose that

the force of interest is now a random variable. Denote
the vector of discount factors. Note that if possesses a normal distribution then

posses log-normal distributions. Then the surplus S is also a random variable
that may be expressed as

and the expected surplus is The elements of Ed are the moments
of the log-normal random variable We will find the assets a which minimize
the mean squared error Put We have then

This is obviously a convex function in x so that the minimum can be found by
putting the gradient equal to zero:

The solution is

provided the inverse exists. Thus the assets are in the form
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I.7 INDEX NUMBERS AND INFLATION

construction of index numbers, properties of index numbers, stock exchange in-
dexes, inflation, retail price index

In this Chapter we will use the following notation. Let
The symbols (more often

omitted), ”*”, ”/” will mean: (the scalar product),
but is the  matrix with elements

7.1 Construction of Index Numbers
Index numbers (or simply indexes) serve as a means for the comparison of the

same complex event either among territories at the same time (cross-section) or on
the same territory in different times (time series), see [18]. Without loss of generality
we will compare the events over time. The well-known indexes are RPI (Retail Price
Index, used in UK; the USA equivalent of RPI is CPI, Consumer Price Index)
and many of the stock exchange indexes like PX (Prague Stock Exchange), FTSE
(Financial Times Stock Exchange), Dow Jones, Standard and Poor’s (New York
Stock Exchange). All of the mentioned stock exchange indexes appear in various
modifications. Let us consider a complex event A, say the cost of living, which may
only be observed via some particular events like consumption of food,
household expenditures, etc. Usually N is large so that only representatives
out of can be used for computation purposes. We can renumber the
representatives to become In period let the indicator of the particular
event be with weight Denote

Index may be the index of a region or of a time period, e.g.
As we note above, we will consider as time. Similarly, the will usually stand
for the prices while the for the corresponding quantities or weights. It is the
goal of the theory of index numbers to find a scalar characteristics of changes of
a global price level over time. The price index is a number which shows how the
complex event A changes over time with changing prices while quantity index
measures the influence of changes in the quantities

Let be the initial (base) period and be the current period, the price index
describing the change in price level from time to From the historical point of
view, the first attempt resulted in the following naive index

which has the disadvantage that it depends on the quantity units in which the
prices are given. Another index suggested by Edgeworth is simply the geometric
mean of the corresponding ratios of prices:

n × n
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which has the same unfavorable property as (1) but there is an idea behind, i.e.,
if the ratios are random variables possessing a log-normal distribution then
the geometric mean would be a good estimator. A better approach starts with the
idea that the price index should be a weighted arithmetic mean of the ratios
with weights

A suitable (and generally accepted) choice of weights takes the form

For we get the Laspèyres price index

and putting we get Paasche price index

The meaning of the so called aggregate is clear; it is the price of a consumer’s
basket if he or she buys quantities for prices The index numbers are defined
as the ratios of these aggregates.

In practise, there are two ways of comparison: a) we compare the price level
with the initial (base) period and afterwards we obtain if we take the
weights from the base period (base-weighted index) or if we take the
weights from the current period (current-weighted index), b) we create the chain
of indexes with the same meaning as in a).

The index numbers should have some desirable and natural properties: (i)
(ii) (change of time), (iii) (chain rule). Neither

Laspèyrese nor Paasche index generally fulfil (ii) or (iii). For example,

The equality in the last expression is achieved if which is not too realistic
since the individuals adapt to price level. The ratio

is called bias. Let us examine the bias for the Laspèyres index number. Put
and Obviously so that f are

weights. Then
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Denote further the weighted means,
the weighted standard errors,

the correlation coefficient, the coefficients of variation.
Then

If which is the case if the demand increases, consequently the
prices in the next period go up, We can conclude that the Laspèyres
price index has positive bias. The reverse is true for the Paasche index. The basic
ideas concerning this problem may be found in [18].

We give three examples of more sophisticated index numbers which avoid some
lacks of the above indexes. The Lowe price index is defined by

where are weights constant over time, possibly constructed artificially. The
Edgeworth–Marshall price index takes the weights as the arithmetic mean of the
weights of the compared periods

The geometric mean of the Laspèyrese and Paasche index gives the Fisher price
index number

Lowe and Fisher indexes have already the desirable properties (i), (ii), and (iii).

7.2 Stock Exchange Indicators
Most of the stock exchange or market indicators are constructed in a similar

way as the Laspèyres price index. There are some exceptions, however. We start
with one of the oldest indicators, the Dow Jones Industrial Average (DJIA) which
monitors 30 best stocks (called blue chips) traded on the New York Stock Exchange
(NYSE). It is defined by:
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where is called divisor. Originally the divisor (in 1928) was just the number of
involved stocks, Later it served to ensure continuity of the correspond-
ing time series due to mergers, splits, replacement of the companies in the index,
etc. In 1991, This phenomenon may be recognized as the change of
representatives and the problem of continuity can be generally settled down in the
following way. Let be the time of change. Let be the values of the
indicators based on old representatives, and the values based on new
representatives. To ensure the continuity, the following relation must hold:

The indicators based on new representatives are afterwards multiplied by the
continuity factor, until a further change of representatives. Hence the series will
look like

till the next change of the representatives. Most of the indicators are also adjusted
(multiplied by a factor) to commence with the initial value 100 or 1000, say.

Other market indicators use the weights; the market prices are weighted by
the numbers of shares outstanding Therefore the value of the indicator is

where is a proper continuity factor. A popular composite index of this type is
Standard & Poor’s 500 (S & P 500) consisting of 400 industrial, 20 transportation,
40 utility, and 40 financial stocks. Another one is NYSE Composite Index which
consists of about 1600 stocks. Finally, let us mention a sample of other frequently
used indicators which are constructed similarly; NASDAQ (the National Associa-
tion of Security Dealers Automatic Quotation), AMEX (American Stock Exchange)
and non-American indexes Nikkei (Tokyo), FTSI (Financial Times Share Index,
London), DAX 30 (Germany), PX 50 (Prague).

7.3 Inflation
In 2.4 we have seen that inflation has an important impact on the determination

of the interest rate. Inflation means an increase of the general price level and, as a
consequence, a decrease of the purchasing power of money. An opposite to inflation
is the deflation which can occasionally also be observed as in the United Kingdom in
the period 1920–1935. Inflation is measured by the retail price index (RPI, United
Kingdom) or by the consumer price index (CPI, USA).

Usually, the retail price index is constructed as a slight modification to the
Laspèyres price index by a government statistical office and its construction is a
rather complex task. The weights are derived from the sample surveys of the
composition of a consumer basket. They have to change from time to time. At the
beginning of last century, the consumer basket consisted mainly of the essentials;
in the United Kingdom the weight of food was 60 per cent in 1914; some sixty years
later it was only 25 per cent and it decreased to 16 per cent in 1990.
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7.3.1 Example (RPI in the Czech Republic). Thousands of goods are
grouped in 10 main groups and the total of weights is 1000. The groups and
their weights in 1993 were: food 327.1, housing 143.7, transport 104.8, leisure 97.5,
clothing 90.9, household goods and services 77.2, other goods and services 50.5,
public catering and accommodation 47.2, health care 44.2, education 16.9. Thus
the importance of food in the index was 32.71 per cent. Denote these weights as

Let us look on the situation in August 1997 (denoted as 8/1997). The current
monthly inflation is calculated from the index

i.e., 100.7 per cent with 7/1997 set to 100 per cent. Thus the monthly inflation was
0.7 per cent. In comparison to August 1996

or 109.9 per cent. Comparison with the yearly average of 1994 is calculated as

Finally, the yearly inflation for the period September 1996 to August 1997 (9/1996–
8/1997) compared to the same period of the past year is calculated from

so that the current yearly inflation was 7.9 per cent.
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I.8 BASICS OF UTILITY THEORY

utility function, marginal utility, risk aversion, certainty equivalent

8.1 The Concept of Utility
Utility in economic theory means a degree of satisfaction or welfare coming from

an economic activity, from possession or consumption of goods. In financial world,
by utility we usually mean the welfare originated from investment. Suppose that we
have an N-dimensional set of investment opportunities For

will be understood as the volume of the investment into the investment.
In utility theory we suppose that there is an ordering relation on denoted
by If then means that x is weakly preferred to y. If
but not we say that x is preferred to y, and write If and

we say that  is equivalent to y and write x ~ y. It is reasonable to assume
that either or (completeness), (reflexivity), and

(transitivity).

8.2 Utility Function
If there exists a real valued function such that

it is called ordinal utility function, shortly utility function, and the underlying
theory is known as ordinal utility theory. Obviously from it follows that

For any given the set is called
the indifference set. The corresponding plot is called the indifference surface or
indifference curve. This means that from the point of view of an investor, all the
investment opportunities from provide the same degree of satisfaction and the
investor cannot distinguish among them.

Finally note that for decision making the utility function contains only the in-
formation on ordering. In most cases there is no interpretation of a specific value
of U( ). If we consider any increasing function of U( ), the conclusions remain the
same. Such an invariance property  may be an advantage in calculations.

8.2.1 Example. Let us consider the utility function (N = 2)



74 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

The indifference curves for are shown in Figure 10.

In the rightward direction the utility increases.

8.3 Characteristics of Utility Functions
Obviously, the utility function is increasing in the sense of preferences. The

slope of the indifference curve can be expressed in terms of the respective derivative
If then the total differential

and if we let all but and constant we get

gives the marginal rate of substitution; the increase by one unit of must be
compensated by the increase of units of Since usually the increase
of results in a decrease of by units. (Remark, that for unknown reasons
in literature the marginal rate of substitution is defined with the opposite sign as

A simple observation of the behavior of a rational investor leads to the law of
diminishing marginal utility:

With increasing amount of investment the additional satisfaction
or utility will decrease, ceteris paribus.

The explanation is simple. Suppose that in situation A you invest USD 10,000
and get 10 per cent return, i.e. USD 1,000. In situation B you have already invested
USD 1,000,000 and have got 10 per cent return again, i.e. USD 100,000. If you
invest some additional USD 10,000 in situation B, your return will increase to USD
101,000. Surely these additional USD 1,000 in situation B will not be valued as the
same amount in situation A.

Mathematically, the law of diminishing marginal utility says that the utility
function describing reasonable principles of decision making is concave. We can
summarize natural assumptions on a utility function:

The utility function is increasing, concave, and twice differentiable.
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It should be emphasized that the invariance property (application of an increas-
ing function to the utility function) does not preserve concavity in general.

In practise, utility functions usually depend on  through some aggregate func-
tions which may be functions of another utility functions as is the following case.
Let the costs of the respective investments be expressed by the price vector

Further let us suppose that the wealth of the investor is W so that
he or she can choose an arbitrary  satisfying the condition If we do
not suppose an immediate consumption (which brings another problem), we may
suppose Given a utility function U = U( ) we can define another utility
function

which, given depends only on W.

8.4 Some Particular Utility Functions
A broad class of utility functions are separable in the sense

where are utility functions and are positive weights. Such a utility func-
tion is additively separable but since the equivalent utility function

is multiplicatively separable we do not need to stress the kind of separability.
An example of the above is

for positive constants and For this function is linear and for
it is concave. For it becomes

which is always concave. This utility function is evidently related to the Cobb-
Douglas production function
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but this function is both increasing and concave only for Next we
review some other frequently used types of utility functions. Some of them will be
analyzed in the next Section. The utility function

is defined for the values W satisfying where and
are parameters. The exponential utility function

is defined for W > 0, where is a parameter. The already mentioned power
utility function

for becomes the logarithmic utility function

8.5 Risk Considerations
In mean-variance portfolio theory (see Chapter 9 for details) there are two de-

cision variables involved: and the expected return and risk, respectively. One
possible choice among various utility functions is the quadratic utility function

Since the objective is to maximize the utility with respect to some budget con-
straints, the parameter may be interpreted as a measure of the investor’s risk
aversion. The higher the more adverse to risk the investor is. An analogy to (10)
with parametrized expected return is

Obviously, the lower the higher the risk aversion, see II.3.2.1.
So far we have not dealt with random arguments of utility functions. The above

mentioned risk aversion may be explained as follows. The investor may decide
between two investment decisions; the first one results in a fixed certain amount W
while the second one results in a random amount where is a random variable
with zero mean and a positive variance, Since we suppose
increasing utility functions it follows that with probability the resulting
utility will fulfill but with it will be
The expected value of the resulting amount is the same in both cases, equal to W,
but the risk averse investor will prefer certain utility to the expected one:
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It is reasonable to suppose that the last inequality is true for all acceptable levels
of W. By Jensen inequality, (12) is assured if U is strictly concave, i.e.,

If the utility function of an investor is linear, then the investor is called risk-
neutral, and if it is convex, the investor is called risk loving or risk seeking.

In what follows we will suppose that the investors are risk averse. The investor’s
aversion to risk can be measured in many ways but there are two measures of
particular importance: absolute and relative risk aversion. Assume (see [143], p.
478) that the total investment of USD 10,000 is divided between (risky) stocks and
the Treasury bills in equal proportions, USD 5,000 in stocks and USD 5,000 in T-
bills. That is the decision of the investor with the initial wish to invest USD 10,000.
Suppose now that there are USD 100,000 at the investor’s disposal. If the investor
increases the amount invested in stocks from USD 5,000 to USD 20,000, say, then
he or she manifests the decreasing absolute risk aversion. This is the most common
behavior of the investors. With increasing investor’s wealth, the amount invested
in risky assets also increases. Analogously, the increasing absolute risk aversion is
characterized by the behavior of the investor who reduces the dollar investment
into risky assets as his or her wealth increases. If the amount invested into stocks
remains the same (not proportion but amount!), we speak of the constant absolute
risk aversion.

A convenient measure of the absolute risk aversion based on an underlying utility
function has been proposed by Arrow and Pratt and is known as the Pratt-Arrow
absolute risk aversion function:

The related relative risk aversion function is defined by

8.5.1 Remark (HARA Utility Functions)

In (6) we have defined a class of utility functions The utility functions from
this class are called HARA utility functions (abbreviation for Hyperbolic Absolute
Risk Aversion). To find the reason just calculate the corresponding A(W) from
(13).

8.5.2 Exercise. Derive A(W) and R(W) for utility functions presented in 8.4
and comment the results.

8.6 Certainty Equivalent
We have seen that for risk averse investors the utility function is concave. A

natural question arises, what certain amount is needed to achieve the same utility
as the expected utility with a random wealth. In other words, let W be a random
variable representing the wealth and be an amount called certainty equivalent.
By the principle, is the amount that satisfies the equation
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Since for strictly concave utility functions  surely the certainty
equivalent satisfies

8.6.1 Example (Multiperiod Certainty Equivalent Model). Suppose a
nonnegative random cash flow the logarithmic utility func-
tion U(W) = ln(1 + W), and the valuation discount factor      We are looking for
a certainty equivalent cash flow which gives the holder the same
utility in terms of the present value as the expected discounted random cash flow:

and which is ”minimal” in the following sense:

see [100]. The solution is given by the method of Lagrange multipliers. The corre-
sponding Lagrange function is

The solution is found by setting the gradient of L equal to zero

which is equivalent to the system of equations

We conclude that the certainty equivalent cash flow is constant,                           and
can be found from (16):
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I.9 MARKOWITZ MEAN–VARIANCE PORTFOLIO

portfolio, efficient market, market portfolio, efficient portfolio, minimum-variance
portfolio, Sharpe ratio, optimal portfolios of riskless and risky assets, separation
theorem, tangency portfolio, geometry of minimum-variance portfolios

We have mentioned earlier that almost every investment is uncertain with respect
to the gain obtained in the future. A natural question arises, is it possible to reduce
the risk related to investment by some sophisticated procedure? The answer is yes,
and the method is diversification. A very old rule says that you should divide
your disposable funds (wealth) into three equal parts; one third put into deposits,
one third invest into shares, and buy gold for the remaining third. This approach
may seem to be naive but clearly it is a method for reducing risk. Here we deal
with more exact, still elementary procedures, which give the investor hints how to
diversify his or her funds. We deal with the classical topics concerning optimal
portfolio selection, the rigorous treatment of which has been started by Markowitz
[112]. In the explanation we will restrict ourselves to financial assets only (shares,
bonds, derivatives) despite the fact that the ideas and results may be applied to
real assets as well. More details and specific models are treated in Part II.

Although it is not necessary to assume too much for the purpose of the mathe-
matical construction of an optimal portfolio, usually some reasonable and some ar-
tificial restrictive economical assumptions are made in this case, and follow Marko-
witz, Tobin, and Sharpe. A market is said to be the efficient market if it fulfills
the assumptions below. (We add the comments to the assumptions in brackets:
realistic – usually fulfilled, limited – may be fulfilled in most cases, restrictive –
unlikely in most cases, unrealistic – hardly to be fulfilled.)

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)
(9)

The investors make decisions on their portfolios exclusively on the informa-
tion based on the expected returns and covariance structure of returns, or
in other words they have homogeneous expectations (realistic).
The investors choose portfolios with the highest expected return among
those with the same risk (rational behavior, realistic).
The investors choose portfolios with the smallest risk among those with the
same expected return (risk aversion, realistic).
The assets are infinitely divisible (limited, because trading on a stock ex-
change is usually performed in lots – a lot means one hundred stocks,
say – and there are extra costs for trading the fractions of lots).
The investment horizon is one period of time (realistic).
There are no transaction costs and taxes (limited, but the costs or taxes
may partly be incorporated into the returns if they are linear functions of
a traded volume).
There exists just one riskless interest rate and all the investors can lend or
borrow any amount of necessary funds at this riskless interest rate (unreal-
istic).
All the assets in question are marketable (realistic).
The investors can sell assets short (restrictive, mostly by legal regulations).
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(10) No investor can affect the returns of the respective assets substantially (re-
strictive, since, in other words, it means that there is no investor with funds
exceeding the other investors’ funds too much).

(11) All necessary information (about means and covariances) are equally avail-
able to all the investors at the same time (restrictive).

Under these assumptions, the market equilibrium takes place since the investors
have perfect knowledge of the market and behave in a rational way (they are risk
averse).

9.1 Portfolio
By portfolio we mean a group of (financial) assets. A rational investor chooses

his/her portfolio so as to maximize the expected return and to minimize the risk.
More precisely, let us consider N assets, 1,..., N, say, and the wealth (disposable
money) equal to 1. Portfolio is then the vector where
represents the fraction of the unit wealth invested in the nth asset, ..., N,
so that Generally, at the moment, we do not suppose since the
case has an economic meaning. This is the case of short sales; the investor
can sell a security that he or she does not own. It is equivalent to the borrowing
of the respective asset, a kind of speculation. Further, let us suppose that the
returns (alternatively the rates of return) of the N mentioned assets are random
variables with the expected returns
and the covariance matrix where
Alternatively, we will denote the diagonal elements the standing for
standard deviations of the returns: For a given portfolio represented
by weights the expected return on the portfolio is

and the variance of the portfolio (which is an abbreviation for the variance of the
portfolio return) is

The risk of the portfolio is simply the standard deviation

9.1.1 Example. Let us consider two assets A and B in the period of nine years
with the corresponding returns (in per cent): 17, 13, 15, 20, 10, 16, 14, 12, 18
for the asset A and 13, 17, 15, 10, 20, 14, 16, 18, 12 for the asset B. The mean
returns for both the assets based on these historical data are the same and equal
to 15. The risks are also the same, 3.1225. If we invest all the unit wealth to any
of the assets, we can expect a risky return 15 per cent. If we divide our unit wealth
equally between the two assets, we have certain return 15 per cent over the given
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time interval with no risk. This is the case if the returns are perfectly negatively
correlated, see Figure 11.

9.1.2 Market and Efficient Portfolio

A market portfolio is any portfolio in which all the assets come in the same
fractions as they appear on the capital market, expressed by their capitalization
(market value of the respective asset multiplied by the number of the assets). This
is an abstract notion and in practise we usually substitute it by a properly chosen
stock exchange index. A portfolio is called efficient portfolio if there is no other
portfolio x such that

In other words, an efficient portfolio is a portfolio for which there is no other
portfolio with the same or greater expected return and smaller risk.

9.2 Construction of Optimal Portfolios and Separation
Theorems

There is a variety of problems concerning the choice of an ”optimal portfolio”.
Our decisions here will be based just on the information about the expected returns
and the covariance structure of the returns. This is known as Markowitz approach,
see Part II for more details. Two basic problems appear in this context:

(i) to minimize subject to where is the prescribed
expected return. In other words, the investor seeks the expected return with
minimum risk. The corresponding portfolio is called minimum-variance portfolio.
Note that minimizing the risk is equivalent to minimizing the variance.

(ii) to maximize the so called Sharpe’s ratio or Sharpe’s measure of portfolio

subject to
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In any of the problems above the following cases may be considered: x arbitrary
(short sales allowed), (short sales are not allowed), V positive definite (which
implies that there is no riskless asset), or V just positive semidefinite. The latter
case may occur if there exists a riskless asset or if the returns of two assets are
perfectly correlated, e.g., in which case the matrix V is singular. Note that if V is
singular then (ii) has no sense.

9.2.1 Example. Let us consider two assets with expected returns
where is the correlation between

returns and so that

We will analyse the portfolio of the two assets with as a parameter. Obviously,
the risks of the assets 1 and 2 are 3 and 6, respectively. Let denote a
portfolio Since we can express the expected return on the portfolio

and the variance of the portfolio

The dependence between the expected return and risk is usually plotted in the
risk – expected-return plane or the standard-deviation – expected-return plane and
the corresponding curves are called efficient frontiers. For selected values of     the
dependence is illustrated in Figure 12 for We see that zero risk can
be attained only in the case of perfect negative correlation between the returns,

Next we find the minimum-variance portfolio. Since for the
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portfolio variance is a positive definite quadratic form, it suffices to find the root
of the equation

The solution to this equation is

The corresponding expected return and variance of the portfolio are

A simple analysis shows that for the corresponding is in the range [0,1],
while for it exceeds 1, so that to reach the minimum risk it is necessary
to sale short or to borrow the asset 2. In the extreme case so that
the necessary additional fund is obtained by selling the asset 2 of value 1 short,

With zero risk, the maximum expected return is only attainable for
in which case the expected return is 10. This can rarely happen in the real

world. We can also observe that for all risks but one there are two portfolios with
the same risk but two different expected returns.

9.2.2 Remark

The reader may verify that in case of two assets with the
minimum-variance portfolio has

Particularly, for we have for f and for
provided

9.2.3 Example (Riskless Asset). Suppose that we have just two assets, one
riskless with return and one risky (call it A), with expected return and
variance Let us build a portfolio from these two assets with weights standing
for the riskless asset and for the risky asset, Then the expected
return on the portfolio is with variance The
dependence in the risk – expected-return plane is linear. For means
that the investor lends the portion of his or her money at the interest rate

while for the investor borrows at the riskless interest rate. Borrowing
money at the riskless interest rate seems not to be quite realistic, however. The
Government are an exception.
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9.2.4 General Solution (Risky Assets, Short Sales Allowed)

Here we will solve the problem
minimize subject to prescribed.
Suppose V positive definite. We exclude the case for some constant

since in this case the solution is trivial; simply take just one asset for which
Now we can obtain the solution by the method of Lagrange

multipliers. The Lagrange function for the problem is

and the equation

gives the optimal solution

Put and Obviously,
The last inequality is a simple consequence of the Schwarz

inequality since we have supposed 1 and r linearly independent. The constants
can be derived from the initial conditions:

so that

Now we have to distinguish the two cases:

First, let us note that we can hardly meet this case in practise, but, from the
theoretical point of view a for given V we can find a subspace of r’s of dimension
N – 1 satisfying  In this case

so that the minimum-variance portfolio is
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Put

The minimum-variance portfolio may now be expressed in the form (with de-
pendent on

with and where
may be considered as the basis portfolios.

Note that

The optimal portfolio may be expressed in an alternative form:

It is important to emphasize that the basis portfolios and are independent of
the prescribed but the weight does depend on

9.2.5 Remark (Alternative Form of the Minimum-Variance Portfolio)

Put and where is a
portfolio. Then (8) may be expressed in the form

9.2.6 Two Funds Separation Theorem. Let be two minimum-variance
portfolios with expected returns respectively, Then every minimum-
variance portfolio can be expressed in the form for some
Every portfolio of the form is a minimum-variance portfolio.

Proof. Let denote the expected return on the minimum-variance portfolio
Choose     such that                                   that is, The
coefficients in (6) for portfolios a, b are

and since is also a minimum-variance portfolio, the above relations hold for
as well. Now

The second assertion is obvious.
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9.2.7 Remark (Covariance Between the Returns of Two
Minimum-Variance Portfolios)

Let be two minimum-variance portfolios with expected returns
respectively. Then, after some algebra, we get the covariance

As a consequence, the variance of a minimum-variance portfolio x with the expected
return is

The global minimum-variance portfolio is defined as the portfolio for which the
variance attains its minimum. We have

Thus the expected return corresponding to the global minimum-variance port-
folio is

so that and

and the variance of the portfolio is

The usual graphical representation of the set of minimum-variance portfolios is in
the so called expected-return–variance plane or in the expected-return – standard-
deviation plane. The resulting plot is also known as minimum-variance frontier.
From the expression for the variance of minimum-variance portfolios we im-
mediately see that the dependence of the variance on any given expected return
is expressed as a parabola while the dependence of the risk on any given expected
return is expressed as a hyperbola:

The focus of this hyperbola is at the point and The
derivative of is

Taking the limits of this expression as we get the slopes of the
asymptotes of the hyperbola, respectively. For historical reasons,
the plot is in the form where the standard deviation (risk) is on the horizontal axis
while the expected return is on the vertical one. The asymptotes expressed as
functions of are in this case.
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9.2.8 Remark

With the exception there are two minimum-variance portfolios with
the same risk but two different expected returns. If we have the prescribed expected
return then a simple calculation shows that the minimum-variance port-
folio with the prescribed expected return has the same variance,

Thus, in accordance with the definition of an efficient portfolio, the
set of efficient portfolios consists of all minimum-variance portfolios with expected
returns In literature, the minimum-variance portfolios with expected
returns less than B/A are often called inefficient portfolios.

9.2.9 Remark (Orthogonal Minimum-Variance Portfolios)

Let us seek the condition for expected returns of two minimum-variance port-
folios with uncorrelated returns. (Verify that this problem has no solution
if either of these portfolios is the global minimum-variance portfolio.) From the
formula in Remark 2.8.4 it follows that so that

or equivalently,
Note that portfolio is efficient if and only if is inefficient.

9.2.10 Remark

have cov for every portfolio x. This is of course also valid for
any single asset: cov

9.2.11 Maximum of Sharpe’s Ratio (Risky Assets, Short Sales Allowed)

There is no straightforward approach to the problem of direct maximizing the
Sharpe’s ratio defined in (4). Instead, we will solve the problem

maximize the square of the Sharpe’s ratio

subject to V positive definite.
It is important to emphasize that the two problems are not equivalent. The

maximum of (14) may be reached for a portfolio giving negative expected return.
Such a result is useless, of course. Despite the fact that such a case can be rarely met
with on efficient markets, it is necessary to be careful when handling the emerging
markets or in the cases where the investors are not risk averse or simply do not pay
attention to the return to risk ratio.

To attack the problem first note that from the assumption of positive definiteness
of the matrix V it follows that there exists a symmetric square root matrix
From Schwarz inequality it follows that

so that is the upper bound for the squared Sharpe’s ratio, and the equality
holds if and only if for some Since x should be a portfolio, it follows

The global minimum variance portfolio has a peculiar covariance property. We



88 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

that provided the denominator is nonzero. If the denominator
equals zero then there is no solution to the problem. With this exception, the
optimal portfolio is

9.2.12 General Solution (Riskless and Risky Assets, Short Sales
Allowed)

In the presence of a riskless asset (also called riskfree asset) we can not fully
adopt the above theory since the covariance matrix between returns becomes sin-
gular. The modification of the previous results is possible, however. The portfolio
selection problem may now be formulated in the following way. Suppose we have
N risky assets 1,..., N with expected returns r as above, and one riskless
asset 0 with return Let denote the (N + 1) × 1 vector of the
returns. It is economically plausible to suppose that on efficient markets the riskless
return is less than the expected return on any risky efficient portfolio. Since the
global minimum-variance portfolio possesses the expected return we
will therefore assume

The covariance matrix of returns of the risky assets V is again assumed to be
positive definite. The unit wealth is allocated among N + 1 assets 0,1,..., N with
weights and we are seeking a portfolio represented as
which minimizes the squared risk (independent of the portion of the riskless asset)

under the conditions

where is the prescribed expected return on the portfolio and symbol 1 now means
the (N + 1) × 1 vector of 1’s. Taking into account that the second
condition may be rewritten as

where is called expected excess return, that means the return over the return of
the riskless asset. So we are forced to solve the problem of finding

Weight is not involved since afterwards it will be calculated using
The Lagrange function for this problem is
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and from the equation

we obtain the optimal solution

with γ satisfying the condition

or

where A, B, C are defined in 2.8. Such a portfolio is the portfolio with minimum
risk with prescribed expected excess return and will be called minimum-variance
portfolio.

9.2.13 Two Funds Separation Theorem with Riskless and Risky Assets

Define the portfolio consisting of riskless asset only, and by

the so called tangency portfolio, and

9.2.14 Two Funds Separation Theorem. Every minimum-variance portfolio
can be expressed in the form

where

Proof. The proof is obvious.

9.2.15 Corollary

Every portfolio consisting of minimum-variance portfolios is a minimum-variance
portfolio.
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9.2.16 Remark (Covariance Between the Returns of Two
Minimum-Variance Portfolios)

Let be two minimum-variance portfolios with expected excess returns
respectively. With weights given by Theorem 2.10.1 we get

Thus the variance of a minimum-variance portfolio in the presence of a riskless
asset with expected return becomes

9.2.17 Remark (Properties of Tangency Portfolio)

A simple calculation shows that the tangency portfolio has the expected return
so that the expected excess return is

As a consequence, the variance of the tangency portfolio is

Note that, since both the numerator and denominator in (24) are positive, also the
expected excess return is positive.

9.2.18 Assertion. The tangency portfolio belongs to the set of efficient portfolios
of risky assets.

Proof. Since the expected return on the tangency portfolio is
we just calculate the Lagrange multipliers:

9.2.19 Remark

For expected excess return we get This is the case of no
short sales either of the riskless asset or of the tangency portfolio. A very unrealistic
case is the case of borrowing the riskless asset, i.e., which leads to higher
expected returns than the tangency portfolio provides.
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9.2.20 Remark (Geometry of the Minimum-Variance Portfolios with a
Riskless Asset)

The dependence of the variance on the expected return in the expected-return –
variance plane is again a parabola but in the expected-return – standard-deviation
plane it becomes straight line

We have already mentioned that the tangency portfolio is a member of the set of
efficient portfolios of risky assets. The point corresponding to this portfolio in the
expected-return – standard-deviation plane is

The line connecting the points and may be expressed as

For the derivative of the standard deviation of the return of the minimum-variance
portfolio consisting of risky assets only we have

and if we substitute the expected return on the tangency portfolio,

into the last expression, we get the tangency

So is the tangency point of the hyperbola and therefore line is the tangency
line to the hyperbola.

9.2.21 Remark (Short Sales not Allowed)

If short sales are not allowed, we are not able to give an explicit solution to
the problem. The solution may be found by solving the quadratic optimization
problem:

(27) min under the conditions
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I.10 CAPITAL ASSET PRICING MODEL

market portfolio, Sharpe-Lintner model, security market line, capital market line

10.1 Sharpe-Lintner Model
In this Chapter we keep the notation of 9.2.12 and the assumptions of an efficient

market. Capital Asset Pricing Model, shortly CAPM, expresses the expected excess
returns of the individual assets in terms of the market expected excess return.

10.1.1 Alternative Form of the Expected Excess Return

Denote the expected return on the tangency portfolio and the
vector of covariances between excess returns of the risky assets and the excess
return on the tangency portfolio. We have

Hence the variance of the tangency portfolio is

so that On the other hand, so that

10.1.2 Market Portfolio

Under the assumptions of an efficient market all investors on the market select
their portfolios from the set of efficient portfolios. The investors differ only in their
risk aversion. Mathematically it is expressed by weight in Theorem 9.2.14. Higher
values of reflect higher risk aversion. Thus the weighted portfolio (according to
the individual investors’ wealth) consisting of the individual investors’ portfolios
also belongs to the set of efficient portfolios. The aggregate demand for risky assets
is in the proportions of the tangency portfolio. In equilibrium demand and supply
are equal and the proportions (both for riskless and risky assets) create the so called
market portfolio. In other words, the market portfolio is a wealth-weighted average
of the individual investors’ optimal portfolios. If there is no supply of the riskless
asset, the market portfolio coincides with the tangency portfolio. In practise, the
market portfolio is often approximated by a composition of a stock exchange index.
Let us denote such a market portfolio It may be expressed in the form

for some                       Put the part of the market portfolio cor-
responding to risky assets only. The return on the market portfolio M is therefore



I. FUNDAMENTALS 93

the expected return on M is
the variance of the return on M is the expected excess return
on M is and the vector of covariances between
excess returns of the risky assets and the excess return on the market portfolio
reads

Now we substitute into formula (3) and after cancelling the factor we get

where The last formula is known as CAPM also Sharpe-Lintner
model CAPM. For individual assets the CAPM becomes

with                          or

if we denote
The concept of the market portfolio is a bit abstract. By definition, it is the

wealth-weighted sum of the portfolio holdings of all investors. The weights can
hardly be observed in practise however, so for calculation an observable indicator
of the market performance is needed. Usually the market portfolio is approximated
by some stock exchange index like DJIA, S&P 500, FTSI, etc. The stock exchange
indexes serve as proxies for the market portfolio and the US Treasury bill rates
proxy the riskless rate.

10.2 Security Market Line
The graphical representation of (7) and (8) is known as the security market line,

SML. We see that (7) expresses the expected return on the asset as a function
of while (8) expresses the same quantity in dependence on the covariance
We refer to (7) as to the and to (8) as to the covariance version of the
security market line. The quantity for an asset or a portfolio is called factor
beta and it plays an important role in equity (stock) valuation. For the market
portfolio, the corresponding and for the riskless asset Obviously,

also for any efficient portfolio. The factor beta may be considered as a risk
factor. Assets with are riskier than the market average and those with
are less risky than the market average.

For an arbitrary portfolio x, the factor of that portfolio is the
weighted average of the respective defined in (6). While the variance is a
risk measure of an efficient portfolio, beta may be considered as an indicator of the
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market risk of an individual security. For the asset we can express (7) in an
alternative way

where the are disturbances, From this equation we get
the expression for the variance of

Often it is supposed that and are not correlated (questionable) so that (10)
simplifies to

with the interpretation that the total risk is decomposed into the market risk
and the unique or specific risk Only the specific risk is diversifiable in

the sense that by holding the asset in a sufficiently large portfolio, the prevailing
part of the risk of the whole portfolio is that of market risk. In practise, however,
it is not necessary to hold a portfolio mirroring the whole market portfolio. A
comparatively small portfolio of some tens of assets would eliminate most of the
specific risk.

Betas have to be estimated. The most common approach is based on linear
regression from historical data. If we have T observations of returns on the
asset and on the market return (represented mainly by the actual value of a
stock exchange index), we can rewrite (9) in the form of regression
equations

for unknown parameter if the riskless rate is supposed to be known or as

for unknown parameters if the excess return is not directly observable. The
estimate of beta obtained by the least squares principle is

for model (12) where and denote the respective averages. Under (13), the
estimate of is (14) again, and for the estimate is

In equilibrium the returns of all securities would lie along the security market
line. If this is not the case, there is something wrong either with their risk parameter
beta or with their pricing. If the beta on an asset is correct and the return is below
SML, the asset is overpriced. If the return is above SML, the asset is underpriced.
(Explain this phenomenon as an exercise. Note that with increasing price of a
security the return decreases and vice versa.) The difference between the actual
and expected (given by SML) return is called Jensen measure.

Betas are published in financial press and in the so called Beta books both for
individual companies and for industries. For industry like essentials usually
This is typical for goods and services the demand for which is irrespective of the
economic cycle. Thus food manufacturing may have while car industry

and tourism
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10.3 Capital Market Line
Let us have a portfolio with expected return and standard deviation In

the presence of a riskless asset we can modify the Sharpe’s measure of portfolio:

and we will call it modified Sharpe’s measure of portfolio.

10.3.1 Assertion. All efficient portfolios have the same modified Sharpe’s mea-
sure of portfolio.

Proof. For an efficient portfolio the expected excess return may be expressed
for some Similarly, for

the standard deviation we get Thus

Since we can take any of the efficient portfolios as a numeraire, we choose the
market portfolio M. From the above assertion it follows that mean the and the
standard deviation of any efficient portfolio fulfill the relationship

The dependence of the expected return on an efficient portfolio on its standard
deviation is linear and its graphical representation is called Capital Market Line,
CML.

The substantial difference between CML and SML is that CML expresses the
excess return on the efficient portfolios while SML is valid for any security or
portfolio.
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I.11 ARBITRAGE PRICING THEORY

regression model, multifactor model, factor analysis, modified method of principal
components

Arbitrage Pricing Theory, (APT ), also known as Arbitrage Pricing Model, APM ,
serves as a generalization of the single factor CAPM to a multifactor model. The
idea behind the APT is that the returns vary from their expected values due to
unanticipated changes in production, inflation, term structure, and other economic
factors. In the multifactor model it is supposed that the return on an asset is
explained in terms of a linear combination of more factors or indexes. Note that
in CAPM, the expected return on an asset is a linear function of the expected
market return only. The development of APT is based on the assumptions of an
efficient market, see I.9. A technical realization of APT uses two popular statistical
methods; regression analysis and factor analysis.

11.1 Regression Model
We suppose that the return on an asset fixed in this Section) fulfills the

usual model of linear regression

where are explanatory variables independent of the asset return in
question, is a zero mean random disturbance, and are unknown
parameters which are specific for the given asset. Usually an absolute term must
be considered which can be simply done by setting In the regression model
we suppose that the values of are observable while the random deviate is
not. If we have T observations of the vector then (1) becomes

Such observations are usually gathered historical data. It should be emphasized
that are characteristics of the underlying asset and are
independent of the asset but they take different values for different In a sim-
ple regression model it is supposed that and cov

where for and for being also an un-
known parameter. Put

an matrix, and Then we
can express (2) in the matrix form

cov Further let us suppose that and that F has the
full rank, so that the inverse                exists. The ordinary least squares
estimator of is
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with the covariance matrix cov An unbiased estimator of is

The last statistic is used for the construction of the confidence intervals for

11.1.1 Remark

An empirical study of this type with may be found in [143] together with
further references. The variables, based on monthly observations are:                   =
monthly growth in industrial production,      =  change in expected inflation,      =
unexpected inflation,       =  risk premium as the difference in yields of corporate
bonds and long-term Treasury bonds,     = change in the term structure as the
difference in yields of long-term Treasury bonds and (short-term) Treasury bills,

= return on the market portfolio measured by the NYSE index.

11.1.2 Remark

In the preceding remark we have seen that one of the explanatory variables was
the market return. Since we may always include this variable in APT consideration
together with additional explanatory variables, we can not obtain worse fitting than
that with CAPM. This is a well-known fact, the more parameters you have, the
better fit you get. The number of explanatory variables has to be chosen with
care, however, since including highly correlated variables brings the problems with
multicollinearity etc. Refer to standard textbooks on regression analysis, like [180].

11.2 Factor Model
Instead of returns we will now consider standard scores or standardized re-

turns

at a given time instant. In the factor model we suppose that

where are random variables with zero means. are
called common factors or sensitivities, is called unique or specific factor, and

are called factor loadings on the asset Note that in this context,
is also known as the idiosyncratic risk, the asset-specific or firm-specific com-

ponent. The crucial assumption of the factor model is that neither the common
nor the specific factors can be directly observed, i.e., they are unobservable. It
is also supposed that all the factors are mutually uncorrelated. Denote, as usu-
ally,   the
matrix of factor loadings, the vector of common factors, and

the vector of specific factors. The matrix form of (7) becomes
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This is the factor model of returns. We summarize the above assumptions and
make some additional ones:

The last assumption means that for different assets, the specific factors are uncor-
related and may have different variances. Under these assumptions, the covariance
matrix of is

Since we have supposed that is a standardized random vector, R coincides with
the correlation matrix of standardized returns. Hence the nth element of the diag-
onal of R can be expressed in the form

The quantity is called communality and is called uniqueness, specificity, or
specific variance of the respective asset.

Note that the decomposition (10) is far from being unique. For example, if U is
any orthogonal matrix then

where B* = BU is called an orthogonal rotation.
The main objective of the factor analysis may be formulated in the following

way: Given the correlation matrix R, find the number of common factors, a
matrix of factor loadings B and a diagonal matrix with nonnegative elements
such that (10) holds. The number of common factors should be small. This is
a natural requirement since with a high number of common factors we loose the
possibility of their proper interpretation.

There is a plenty of statistical methods aimed for solving the above problem. We
just briefly mention one of the simplest but frequently used method with a clear
motivation. The method is known as the modified method of principal components.
The theoretical background of this method is based on the Lemma below. First
recall that every symmetric N × N matrix allows a spectral decomposition

where are the eigenvalues and the orthonormal
eigenvectors corresponding to the eigenvalues By the Euclidean
norm of a matrix A we mean
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11.2.1 Lemma. Let A be an N x N symmetric positive definite matrix,
and let Then the solution to the problem

minimize

i.e., the best approximation of A by in the sense of Euclidean norm, is given
by

Proof. The proof can be found in textbooks on matrix calculus.

The estimation procedure starts with a guess of the number of common factors.
A heuristic rule says that we take equal to the number of the eigenvalues of R
greater than or equal to one. Then we estimate the communalities. A good initial
approximation is given by

or by the square of the multiple correlationcoefficient in the
regression of the nth variable on the remaining N – 1 variables. From (14) we form
the estimate Now we define the reduced correlation matrix
by

Note that in the theoretical model (10) it is assumed that this matrix is positive
semidefinite. It may not be the case for (15) since instead of we have used
an estimate of it. Nevertheless, since we suppose we can expect that at
least eigenvalues of are positive and we can therefore construct the best
approximation of it based on Lemma 11.2.1:

where from the spectral decomposition of the (surely
symmetric) matrix We then obtain a new estimate of speci-
ficities

We must take the diagonal only since may not be a diagonal matrix. We go
back to (15), form the new reduced correlation matrix and iteratively
improve the estimates of and B until the differences in successive iterations are
sufficiently small. Eventually we get the decomposition

or an analogy to the original model (8)

with f still remaining an unknown vector of common factors. But with known
matrix we may look on (19) as on a linear regression model with unknown
parameters f. By ordinary least squares method we get an estimate of f:
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11.2.2 Remark (Principal Components)

Factor analysis is a generalization of principal components. In the method of
principal components we directly use the spectral decomposition (13) of the covari-
ance matrix of returns

The random variable is called nth principal component, ... ,N.
The principal components have some plausible properties: (i) they are uncorre-
lated, (ii) (iii) the total dispersion of returns measured by is
explained by all the principal components since tr The eigenvalues
are supposed to be ordered, hence the first principal component explains the great-
est part of the total dispersion etc. In practise, often only a few components (3,
say) explain most of the total dispersion (95 per cent, say). We see that the model
of principal components coincides with that of the factor model if we put
and i.e., if no specific factors are considered.

11.2.3 Remark

The interpretation of the common factors represented by their factor loadings is
a difficult and fairly controversial procedure. Roughly speaking, only the first two
common factors may be usually identified with a more or less clear interpretation.
The first factor represents an overall performance of economy giving higher loadings
to the assets with greater importance. The second factor, often interpreted as a
bipolar factor, usually divides the assets into industries which may act in opposite
directions: oil – gas, nuclear power plants – heat power plants, etc.

The interpretation of the factor loadings is easier if each asset is highly loaded
on at most one factor, and if all factor loadings are either large or close to zero.
The assets are then grouped into disjoint sets, each of which is associated with one
factor. The factor has an influence on those assets for which is large. Since

by term we mean close to 1 or –1. We have seen that
the decomposition (10) is also valid for any orthogonal rotation of B. There is a
lot of methods of rotation which, up to some extent, improve the interpretation
of factors in the above sense. Generally, their principle is to find the orthogonal
matrix U such that the rows of the transformed matrix contain a few large
loadings while the others are close to zero. The most popular orthogonal rotation
method is varimax. There are also non-orthogonal methods (oblique rotations) like
quartimin. Note that under oblique rotations the factors are no longer uncorrelated.
All these methods are iterative and difficult from the computational point of view.
See Rao’s contribution in [109], pp. 489–505, for further discussion.
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Many of the topics treated in this Part are classical pieces of finance, financial
mathematics, financial management, and partly of economics. Hence it is quite
natural that there are hundreds of books on similar subjects but they differ in their
viewpoint on the subjects. Also the material involved is treated on very different
levels. Hence the following notes may cover only a small part of the vast existing
literature on the related topics.

Money, capital, and securities. A thorough text on basic financial concepts and
financial institutions is [138]. In [143] the reader will find both theory and many
examples of investment management. [25] and [141] may serve as readable books
on financial management together with accounting considerations which are not
mentioned in this book, however. Only the most important securities (this applies
particularly to derivatives) are mentioned. For more see [60], [88].

Interest rate. A simple arithmetics of interest rate is contained in [114], a deeper
insight in [161]. The section on decomposition is based on various sources like
[143], [25]. Inflation is also treated in 1.7.3. Term structure is important in fixed-
income securities’ analysis. In continuous case, various models of the term structure
are known as Vasicek mean reversion, Cox-Ingersoll-Ross, Merton (Ho-Lee), Hull-
White, Heath-Jarrow-Morton, and other models, see [43], [82], [105]. For modeling
term structure in Mathematica® see [11] and [13].

Measures of cash flows. An elementary approach may be found in any book on
financial arithmetics like [114] or on financial and investment management like [25],
[141], [143]. A thorough discussion on the benefit to leasing is in [76]. The concept
of duration has been ascribed to Frederick Macaulay. Yield curves are often treated
in the context of term structure models.

Return, expected return, and risk. A comprehensive but still elementary trea-
tise on return and random walk’s hypothesis may be found in [26]. [159] is devoted
to modeling returns as time series. Further recommended reading consists of [43],
[85], [109]. The historical development of the log-normal model for a price develop-
ment can be roughly traced as: Bachelier [4], Einstein [56], Merton [116, reprinted
paper of 1973], Black-Scholes [23]. Concerning volatility, here we confine ourselves
only to the case of a constant volatility. Stochastic models of volatility including
popular GARCH are treated in [26], [105], [107], [109], e.g. VaR is ascribed to [118],
despite in Statistics this statistic is known as the quantile for almost one hundred
years. Some recent books on VaR and related topics are [42] and [89].

Valuation of securities. Valuation of coupon bonds is a simple application of
the cash flows’ measures but some literature do not handle the related cash flow
properly. There is a vast literature on the derivatives’ pricing, usually starting
with the Black-Scholes model and covering a lot of generalizations. The pioneering
works are [23], [81], [116]. Recommended reading with further references: [41], [82],
[105]. An original approach based on so called fundamental transform taking into
account stochastic volatility together with a Mathematica® code is presented by
Lewis [107]. The valuation of stocks (value of the firm) is not explicitly covered
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Matching of assets and liabilities. Problem of matching of assets and liabilities
likely originated in life insurance industry, see [114] for reference and description
of Redington’s theory of immunization of a life office. Further reading [143], pp.
638–658, [60], [178]. For a related actuarial model see [173].

Index numbers and inflation. Perhaps the first comprehensive study and theory
of index numbers is the 1922 book The Making of Index Numbers by I. Fisher. Here
we closely followed Bílý [18] who was one of the promoters of actuarial sciences
and econometrics in former Czechoslovakia and before 1948 the chief official at
the Ministry of Finance. Our notation has been adapted for the computational
purposes.
There are hundreds of stock exchange indexes. If from related markets, they are
usually highly correlated. See [61] and [143] for more information. An example of
a relationship between stock prices and inflation is given in [3].

Basics of utility theory. The use of utility theory in modern financial decision
making has origins in the von Neumann–Morgenstern theory. For a detailed analysis
see [85]. Some particular observations are in [88], [116], and [178].

Markowitz mean-variance portfolio. The pioneering contribution to the mod-
ern portfolio theory is paper [112] of Markowitz. Many other authors elaborated
his fundamental idea of portfolio diversification, let us mention [57], [85]. Basically,
the Markowitz model is a one-period model. For multiperiod-selection models as
well as for continuous-time models we refer to [116], [43], and [85]. Generalizations
of portfolio separation theorems to more than two funds may be found in [85],
[116], e.g. Useful nonlinear programming techniques suitable for portfolio selection
algorithms via Mathematica® are in [17].

Capital asset pricing model. CAPM presented here is based on the mean-
variance portfolio theory. For generalizations of the CAPM (consumption-based,
continuous-time, intertemporal, and others) refer to [116].

Arbitrage pricing theory. Originally, the model has been developed as a multi-
factor model (as a model of factor analysis) by S. A. Ross (Arbitrage theory of
capital asset pricing, J. of Economic Theory 13 (1976), pp. 341–60). Due to its
rather difficult tractability caused by a necessity of the interpretation of common
factors, the regression form of APT with specified independent variables seems to
be more convenient in practise, see [143], [109].

here since it often depends on accounting principles which are beyond the scope of
this book. We refer to [25], [36], and [143]. We should emphasize that the practical
derivatives’ valuation needs an extensive computing and some symbolic calculation
is often necessary. See books [147], [162], [163], and papers on special related topics
[9], [10], [12], all making use of Mathematica®.
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Motto: “Investment is, in essence, present sacrifice for future benefit. But the
present is relatively well known, whereas the future is always an enigma. Investment
is also, therefore, certain sacrifice for uncertain benefit.“ [79]

II.1 INTRODUCTION AND PRELIMINARIES

problem of a private investor, stochastic dedicated bond portfolio, mathematical
programs

Our motto clearly reflects the main features of investment problems: necessity
to make decisions under uncertainty and over more than one time period. The
uncertainties concern the future level of interest rates, returns, exchange rates, pre-
payments, external cash flows, inflation, technological innovations, future demand,
etc. There exist various stochastic models describing or explaining these random
parameters (cf. Chapters II.5 and III.3) that are used to build the input for decision
models.

To build a decision model, one has to decide first about the purpose or goal;
this includes identification of the uncertainties or risks one wants to hedge, of the
hard and soft constraints, of the time horizon and its discretization, etc. The next
is the data input and a subsequent algorithmic solution which concludes the first
level of the procedure. Interpretation and evaluation of the results may lead to
model changes and to a new solution or it may require a “what-if” analysis to get
an information about robustness of the results. In the framework of the famous
Markowitz model (cf. Chapter I.9), one may be forced to include further, e.g.,
regulatory constraints, one accepts a suitable model of the random returns, such
as the factor model introduced in Section I.11.2, and uses it to get their expecta-
tions, variances and covariances. There are additional questions, for example, how
sensitive is the investment strategy on the input values of moments of the random
returns and on the chosen risk aversion level. Interpretation of the results should
reflect the model assumptions (not necessarily fulfilled in real-life); for instance, the
Markowitz model is a static model over a fixed period, it is based on the buy-and-
hold strategy applied after the investment decision is made up to the horizon of the
problem. Hence, investment decisions based on its repeated use over more that one
period can be far from a good, suboptimal dynamic decision (cf. [27]).

In this Part we shall deal with discrete time stochastic decision models leaving
the continuous time models to Part III. Let us illustrate the basic ideas on a slightly
modified formulation of a simplified problem of a private investor introduced in [19]:
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1.1 Problem of a Private Investor
The investor wishes to raise enough money for his or her child college education

N years from now by investing into some of I considered investments. Let the
tuition goal be exceeding after N years provides an additional income of
of the excess while not meeting the goal would result in borrowing at the rate

The investor plans to revise his investment at certain time instances
prior to N using an additional information that will gradually become available in
the future. These time instances (and the corresponding time periods) are indexed
by for the initial decision, by for the revisions and by
for the horizon N. The main uncertainty is the return on each
investment within each period which depends on an underlying random element

and is observable at the end of each period. The problem is that the investment
decisions , say made at the beginning of period can be only based on the
already observed history, on the decisions made in the preceding periods and on
the observed returns, i.e., they are nonanticipative of future outcomes. This means,
inter alia, that the investment decisions at the beginning of the
first period are fixed, independent on future realizations of returns.

Assume for a while that the future evolution of returns for
all considered investments is known, i.e., the constant rate of return
for asset valid in period as defined in I.4.1. The investment problem can be
formulated as

subject to

with nonnegative variables denoting the surplus and deficit, respectively;
the middle line disappears for T = 2.

Let T = 3. Consider a discrete probability distribution of concentrated on
a finite number of atoms (scenarios) with probabilities

Denote the corresponding returns,
the scenario dependent second- and third-stage variables, respectively, and solve the
following three-stage stochastic program:

subject to

maximize

maximize



II. DISCRETE TIME STOCHASTIC DECISION MODELS 105

To solve this problem (now an ordinary linear program) one has to choose
scenarios their probabilities to use them when evaluating the returns

for all investments and all scenarios, and to fix the values of

The obtained first-stage decision does not depend on scenarios; using it the in-
vestor hedges (through optimally chosen second- and third-stage decisions
and against the considered future returns so that the expected
value of the final outcome is maximal. Having formulated the problem, we tacitly
assumed that were the minimal values satisfying the listed requirements;
otherwise, we could also borrow having thus surplus of In
more sophisticated models, compensating the difference between the goal and the
actual achievement is a nontrivial (last stage) decision problem. Hence we call also

decision variables.
Notice that the problem is always feasible; this is due to the assumed unlimited

possibilities of borrowing. In addition to nonnegativity conditions, the investment
strategies are explicitly constrained also by cash limitations and structural con-
strains; nonanticipativity enters implicitly.

1.2 Stochastic Dedicated Bond Portfolio
Assuming known short-term reinvestment interest rates for period

the dynamic dedicated bond portfolio model was formulated in I.6.2.2. We rewrite
it as

Here is composition of the portfolio, is the
vector of acquisition prices and the T-vectors and
stand for the cash flows, liabilities and surpluses.

In reality, the future short-term reinvestment rates are hardly known. We assume
instead that are random with a discrete probability distribution
carried by a finite number of scenarios with probabilities In
addition, we allow for possibility of short-term shortfalls; this means that for some
scenarios and time periods (except for the last one) nonzero discrepancies

minimize subject to
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may occur. In such case, the investor borrows this amount and is obliged to repay
it including the interest rate (higher than for a positive spread between the
short-term reinvestment and borrowing rates) in the next period. For each we
consider now the cash flow constraints which include scenario dependent surpluses

and shortfalls In addition, there is a penalty for borrowing
included into the objective function. The resulting problem reads

subject to

and nonnegativity of all variables
This problem can be further generalized to accommodate not only random (sce-

nario dependent) cash flows, liabilities and spread, but also for including trading
possibilities. See the BONDS model 4.3 in Chapter II.4, Chapter II.6 and Section
II.7.3.

In the general case of a T-stage problem a sequence of decisions is built along
each of considered data trajectories in such a way that decisions based on the
same partial trajectory, on the same history, are identical (nonanticipativity) and
the expected outcome (e.g., the expected gain or cost) of the decision process at
time T is the best possible. In the next Chapter the problem will be formulated
as a minimization one but a parallel formulation of a maximization problem is
straightforward. Hence, depending on the interpretation, the models are applied
to maximization of the total expected gain, see Examples 2.2.1 and 2.4 in Chapter
II.2, or to minimization of the total expected cost, etc. We shall use mainly the
concepts and methods of stochastic programming.

As we shall illustrate by selected examples later on, see Chapters II.4 and II.6,
the goal of the decision process can be specified in various ways; one of them
is maximization of the expected utility of the final wealth. In other cases, one
tries explicitly to find a decision which satisfies simultaneously several optimization
criteria; recall the Markowitz model which aims at simultaneous maximization of
expected return and minimization of a suitably defined risk, etc. Chapter II.3
contains a brief introduction to multi-objective programming and discusses selected
applications and modeling issues.

1.3 Mathematical Programs
In this Part, we shall model and solve decision processes under uncertainty via

stochastic programming. Prekopa [130] presents two definitions of stochastic pro-
gramming:
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Stochastic programming deals with mathematical programming problems
where some of parameters are random.

Stochastic programming offers solutions for problems formulated in connection
with stochastic systems, where the resulting problem to be solved is a mathematical
program of a nontrivial dimension.

It is natural then to use terminology common in mathematical programming.
Mathematical program in is a constrained optimization problem

where the set of feasible solutions is defined by constraints as follows:

here are real functions and is a set of specific (e.g., integrality)
conditions. Function is called the objective function . All functions involved may
depend on parameters, which gives a rise to parametric programs or to stochastic
programs if some of these parameters are random.

Linear programs correspond to and all functions linear.
Another important class are convex programs where is a convex set and a
convex function.

In this Part, a basic knowledge of mathematical programming is assumed.

minimize on a set
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II.2 MULTISTAGE STOCHASTIC PROGRAMS

various formulations, nonanticipativity conditions, convexity properties, scenario-
based stochastic linear programs, horizon and stages, the flower-girl problem, com-
parison with stochastic dynamic programming

2.1 Basic Formulations
The model that reflects the decision scheme described verbally at the beginning

of the Introduction can be formulated in the following way:
In the general T -stage stochastic program we think of a stochastic data

process

and of a decision process

The are real while the random elements may be of quite general
nature; mostly, they are real random vectors as well. The realizations of are
called also trajectories or scenarios. We denote by P the probability distribution
of and by its support.

The sequence of decisions and observations is

The decision process is nonanticipative in the sense that decisions taken at
any stage of the process do not depend on future realizations of the data process
or on future decisions whereas the past information as well as the knowledge of
the probability distribution P of are exploited. We assume that the probability
distribution P is known and does not depend on We denote by

the part of the stochastic data process that precedes the stage and,
similarly, by the sequence of decisions at stages
Thus the decision at stage is or more precisely,

The outcome attributed to the sequence (1) is quantified by a function
The aim is to minimize the expected value under both deterministic
constraints ( given sets in ), and
constraints

that may depend on previous decisions and observations; here, are real
functions.

In the sequel we shall suppose that all functions are measurable with respect to
and all expectations exist (this is certainly fulfilled if is a finite set). Relations

containing random elements are assumed to hold with probability 1. To simplify
this exposition we shall assume in addition that all infima are attained; hence we

or

x.
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shall write min instead of inf. This assumption implies that the sets defined by the
constraints,

are nonempty for all histories The first-stage constraints do not
depend on the random element.

The form of (2) reflects the requirement that the choice of decisions is not
explicitly constrained by future decisions and observations. In general, however,
this does not exclude the presence of induced constraints which must be fulfilled
to guarantee the existence of a feasible nonanticipative decision process x and have
to be detected within the algorithmic procedures; see the feasibility cuts in the
Algorithms II.8.3.1 and II.8.4.1.

The corresponding T-stage stochastic program reads:

minimize

subject to and

Realizations of i.e., those behind the horizon, do not affect the decision
process, but they may contribute to the overall observed costs. Thus the decision
process may be affected by the probability distribution of

The special choice of the function in (3) as an indicator function of a certain
interval leads to the probability objective function of the form

where is a given interval of desirable values of . Similarly, the replacement of the
condition that the constraints are satisfied with probability
by the requirement that they hold true with a prescribed probability provides sto-
chastic programs with probabilistic or chance constraints.

It is important to realize that the stages do not necessarily refer to time periods,
they correspond to steps in the decision process. The main emphasis is on the
first-stage decisions which consist of all decisions that have to be selected before a
further information may be exploited whereas the second-stage decisions are allowed
to adapt to this information, etc. In some applications the importance of the best
first-stage decisions is evident: Examples are the decision about the capacity of a
new water reservoir, the decision about an initial contract or allocation of funds or
the initial charge decision for the metal melting process.

Various schemes were considered to reduce the T-stage stochastic program (3)–
(4) to a sequence of similar programs, If is not considered, the
objective functions are then defined recursively as
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The minimization is carried over the respective constraints (2) and the
symbol denotes the expectation with respect to conditioned by

To relate an optimal solution of the T-stage problem to those minimizing the
objective functions certain boundedness assumptions concerning sets

defined by the constraints and convexity of as a function of have to be
fulfilled; see [133]. Then not only the canonical projections of the optimal solution

of the T-stage problem are optimal solutions of the problems,
but also the optimal solutions of the problems can be extended to an optimal
solution of the T-stage problem. For instance, if arg min over the first-
stage constraints and then the next component
of the optimal solution, is obtained by solving over
the second-stage constraints, etc. By introducing a fictious decision which
does not influence the value of the objective function these results may be ex-
tended also to problems which include

Under additional assumptions, e.g., for

Here, or it is an explicitly given function of if contri-
bution of is considered. The two terms in the definition of  functions may
be interpreted as the costs attributed to the decision at stage augmented for
the expected minimal future costs.

Formulation (6)–(7) resembles the backward recursion common in stochastic
dynamic programming, see 2.5. In those models, the goal is to provide a sequence
of decision rules that can be used in particular stages of the decision process and in
any state of the system and that allow the decision maker to pass from observations
to decisions in an optimal way, e.g., for minimal total expected costs. To solve the
problem, i.e., to get the decision rules, one relies on the principle of optimality.

A special case of (6)–(7) is the following multistage stochastic linear pro-
gram with recourse where all functions (with arbitrary indices) in the above
scheme are linear in the decision variables:

subject to

where for for given and observed realizationsof
denotes the optimal value of the stochastic program

(7)
minimize subject to (2).

the scheme (5) can be written as a sequence of nested two-stage stochastic programs
of the following type:
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subject to

and or a given function of and
Here, the are and the remaining vectors and matrices

are of consistent dimensions. For the first stage, the values of all elements in
are known. Again, the main decision variable is that corre-

sponds to the first stage.
According to our assumption, an optimal solution of (9) exists for all and all

considered histories the case of the relatively complete recourse.
The term recourse was originally introduced in the context of two-stage stochastic
linear programs, see Example II.3.3.2, for the cost of compensating constraints
violation. Figuratively it has been used also for multistage stochastic programs
even if the interpretation is not straightforward. We speak of a fixed recourse
problem if the matrices are known nonrandom for all

2.1.1 Exercise – Convexity Properties. Given the history, programs (9)
are deterministic programs with linear constraints. For numerical solution of such
nonlinear programs, convexity of the objective functions is important. To formulate
the convexity results, let us start with a special version of problem (9):

Assume that are independent real random vectors,
convex supports of for and
are known deterministic matrices and the right-hand sides  are linear functions
of Hence, (9) simplifies to

subject to

Using techniques of parametric programming [5] prove the following assertions:

(i) The functions are convex in Hence, the first-stage
objective function is convex and the corresponding
first-stage problem (8) is a convex program,

(ii) The functions are convex in – an important property
for constructing bounds (see 5.3.5, 5.4.9 and 7.3 in Chapters II.5 and II.7,
respectively) and algorithms (see Chapter II.8).

where the functions are defined recursively by

subject to
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2.2 Scenario-Based Stochastic Linear Programs
Assume now that the probability distribution of is concentrated on a finite

number of scenarios. To simplify the exposition we shall work with problems (9)
with the staircase structure, i.e. with for and we put
an extension to the general case is straightforward. For disjoint sets of indices

let us list as all possible realizations of Denote
by the same subscripts the corresponding values of the stage coefficients.
The total number of scenarios S equals the number of elements of Each sce-
nario thus generates a sequence of coefficients

Denote the vector of feasible solutions of the scenario
subproblem, i.e., of the system

Denote further the matrix of system (10), the vector of the right-
hand sides, the vector of the objective function coefficients and
the vectors of the lower and upper bounds. Disregarding the nonanticipativity
constraints we replace the multistage stochastic linear program by

subject to

and the box constraints

Modify the assertion (i) for the general formulation of (9), i.e., for arbitrary
random matrices of coefficients.
Under the independence assumption, the convexity result (ii) extends to
problems with random matrices which are linear in and a parallel
result holds true also for problems with random coefficients only in the
objective functions. Is it possible to prove similar results also for mutually
dependent components in the above problem specifications and/or for
random matrices (i.e., for the random recourse problems)?

(iii)

(iv)
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This is already an ordinary (nonrandom) linear program. The components of the
obtained optimal solution depend on the underlying scenar-
ios they are not nonanticipative. To recover nonanticipativity, we must add
constraints to get scenario independent first-stage decisions
and, moreover, similar constraints to guarantee that the decisions based on
the same history are equal. Such constraints can be expressed in the form
where x consists of carefully grouped components of all decision vectors and
U is a 0-1 matrix of coefficients of the nonanticipativity constraints, which enter
now explicitly the problem constraints. This formulation of the scenario-based mul-
tistage stochastic program has been called the split variable representation or
form.

Another scenario-based formulation of multistage stochastic linear programs is
related to the implicit inclusion of nonanticipativity constraints (compare with (3)–
(4)) and requires a specific organization of data in the form of a scenario tree. Each
value of has a unique ancestor ( the value of the corresponding
we denote it by subscript For instance, for all realizations of
the component Again, denotes the first-stage decision and to each one
assigns the stage decision vector This allows to rewrite the T-stage
stochastic linear program with recourse in the following arborescent form:

minimize

subject to

We adopt the natural choice with The
problem is thus based on the sequences

of possible realizations of coefficients in the objective function (11),
in recourse matrices transition matrices right-hand sides and bounds
in the constraints for all stages, and on path probabilities

of partial sequences of these coefficients, hence,
probabilities of realizations of The path probabilities may be obtained
by stepwise multiplication of the marginal probabilities by the (conditional)
arc or transition probabilities related to the corresponding partial se-
quences of realizations. Probabilities of the individual scenarios are equal
to the corresponding path probabilities On the other hand, given
the structure of the scenario tree the path probabilities can be obtained from the
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scenario probabilities In some cases, it is expedient to use sets of de-
scendants of which consist of those indices for which the transition
probability see Examples 2.2.1 and 2.4.

The size of the linear program (11)–(12) can be very large; for instance, consider
the two-stage problem with random right-hand sides each
consisting of independent random components whose probability distributions
have been approximated by alternative (zero-one) probability distributions: it gives

hence, equationsin (12). The usefulness of special numerical
techniques is obvious, see Chapter II.8. Both the implicit and explicit formulation
of nonanticipativity constraints can be combined, for instance, the implicit form
may relate only to the first-stage decision variables and the explicit one to the
decision variables for stages 2 , . . . , T; see Exercise 2.2.2.

2.2.1 Example – II.1.1 Revisited.   Let T = 3 again. This is the case, e.g.,
if some of the considered investments (a term deposit or short term or medium
term bonds) mature in years and, consequently, the portfolio has to be
restructured at time Hence, there is one more stage of the decision process.
We put the trajectory up to and its continuation from to
N. Following the scheme (11)–(12), we denote by the considered
realizations of by their probabilities and by the possible
realizations of grouped into sets for which the conditional
probabilities notice that This information
about the discrete probability distribution may be represented by a scenario tree,
see Figure 1.

The first-stage decisions are scenario independent, the returns and
the decisions at the second stage of the decision process depend only on the
first part of the subsequent returns the final decisions and compen-
sations depend on the whole history, i.e., on scenarios which consist of and
their “extension” to Their probabilities equal
Following the notation used in (11)–(12), we assign subscripts to random co-
efficients  and to the decision variables and which appear in the second
and third stages. The problem – a three-stage stochastic linear program – reads

subject to

and nonnegativity of all variables.
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2.2.2 Exercise. Let attain only two equiprobable values and
Rewrite the problem considered in Example 2.2.1 in the split variable form and
also in the split variable form applied only to the second and third stage decision
variables, i.e., with additional explicit nonanticipativity constraints for the second
stage. See Figure 2 for illustration of this idea.

2.3 Horizon and Stages
In real-life applications, it is the modeling part of the problem which has become

the most demanding task. Besides the formulation of goals and constraints and
identification of the driving random process building a scenario-based multistage
stochastic program requires specification of the horizon, stages and generation of
the input in the form of a scenario tree, see Chapter II.5.

In a majority of cases, the horizon and the stages are declared as given. In
practise, various situations can be distinguished:

Both the horizon and stages are determined ad hoc, often for purposes of
testing numerical approaches and/or software.
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Both the horizon and stages are determined, e.g., by the nature of the real-life
technological process, see application 4.8 in Chapter II.4; another example is
the flower-girl problem which will be discussed in the next Section.
The horizon is tied to a fixed date, e.g., to the end of the fiscal or hydrological
year, to a date related with the annual Board of Directors’ meeting, or to the
end date of a screening study. Stages are sometimes dictated by the nature
of the solved problem, e.g., by the dates of maturity of bonds, expiration
dates of options or by periodic (quarterly, annual, etc.) management review
meetings. In other cases, they are obtained by an application of heuristic
rules and/or experience, taking into account limitations due to the numerical
tractability. Rolling forward after the T-stage problem has been solved, the
first-stage decision accepted and a new information exploited means to solve
a subsequent T – 1-stage stochastic program with a reduced number of stages
or possibly another T-stage problem with a different topology of stages.
The horizon is connected with a time interval of a fixed (possibly even infinite)
length, given for instance by the periodicity of the underlying random process,
and the number of stages is chosen in dependence on the available comput-
ing facilities. Rolling forward means here the repeated solution of a T-stage
problem of the same structure of stages with the initial state of the system
determined by the applied first-stage decision and by observation of the value
of and using process shifted in time.

For example, the BONDS model, see application 4.2 in Chapter II.4, uses three
one-year periods for the three-year planning horizon of the bank and rolling forward
means that each year the bank is planning as if it wants to optimize its outcome
at the end of the next three years. For production planning problems, a horizon
of 12–18 months divided into three stages is used. Energy generation models, e.g.,
the unit commitment problem 4.7 in Chapter II.4, are usually built for a one-week
horizon consisting of 168 hours arranged into 2 – 12 stages. Short term hydro power
system control may use a horizon of 3 hours subdivided more or less arbitrarily into
stages, whereas the “long” term planning can be related to a weekend. In the last
case, rolling forward will have the same meaning as for the fixed horizon problems
(i.e., shortening the horizon).

There exist further specific features of multistage problems. For instance, the
problem can be solved just once (to retire the debt by a given deadline as much
as possible [40] or to raise money for the college education as in Section II.1.1 and
in Example 2.2.1) or the problem and its solution persist in the future, with new
horizons, taking always into account just the final state of the system at the previous
termination date, i.e., at the previous horizon. To guarantee the possibility of such
continuation, the models are usually extended for additional constraints and/or
terms in the objective function to reduce the end effects, with or without reference
to an additional, auxiliary stage.

For a chosen horizon, the crucial step is to relate the time instants and stages;
this is a common problem both in applications of multistage stochastic program-
ming models and in stochastic dynamic programming with discrete time. The main
limitations of the number of stages are due to numerical tractability. Some recom-
mendations are common for financial applications: Accept unequal lengths of time
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periods between subsequent stages, starting with a short first period. Together
with repeated rolling of the model over time, this may replace well the full dynam-
ics of the decision process even for problems with a few stages. Another, general
suggestion is to break the problem with a long (possibly infinite) horizon into three
phases: To use the scenario tree structure for to design just one de-
scendant from each node for (i.e., the horse-tail structure) and to
aggregate the rest of the process into one additional stationary stage. Using these
suggestions, one approximates the true probability distribution of by a simpler
one for the sake of the numerical tractability. Moreover, in reality, the position of
stages can be uncertain, random or scenario dependent — another interesting open
problem.

2.4 The Flower-Girl Problem
The flower-girl sells roses at price and has to buy them at cost before she

starts selling. Flowers left over at the end of the day can be stored and sold the next
day, when she starts selling the old roses. The roses cannot be carried over more
than one additional day at the end of which they are thrown away. The demand is
random, denotes the demand on the t-th day. The flower-girl wants to maximize
her total expected profit.

The horizon is related to the number of days for which the flower-girl continues
selling roses without break (and also to the fact that our formulation treats only
one-period carry-over). Assume first, that the flower-girl sells roses only during
the weekend, orders the amount on Friday evening, registers the demand on
Saturday, stores the unsold roses (without any additional cost) and, possibly, buys

new roses. Denote the stock left for the second day and the
amount of unsold roses at the end of the second day which is also affected by the
demand on Sunday.

All variables are nonnegative and subject to constraints

the total profit is

If the demand is known in advance, then one of the optimal solutions is
to buy and roses which gives the maximal profit of

Consider now a scenario-based version of this 3-stage problem. The
scenario tree consists of S scenarios corresponding to the considered realizations

of the demand on the first and second day, their
probabilities are We denote again by the
possible realizations of by their probabilities, by the possible realizations
of conditionalon and by their (conditional) probabilities. The
corresponding realizations of the demand on the second day will be denoted In
the notation introduced in (11)–(12) the problem reads:
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subject to

and nonnegativity constraints.
The generalization to the T-stage problem (T > 3) is obvious. We index by t all

variables related with the stage t, i.e., the amount of roses ordered (x), stored (s)
and thrown away at the end of the (t – 1)st day; notice that plays the role
of the only decision variable at the last stage. We obtain:

subject to

with and nonnegativity of all variables. In case that the initial supply
one gets Recall that the number of stages equals one plus

the number of days for which the flower-girl sells roses without break and that for
the three stage problem considered above, i.e., for T = 3, the last inequalities are
redundant.

The scenario-based formulation of the T-stage problem can be written in the
arborescent form or in the split variable form with explicit nonanticipativity con-
straints. Notice that the flower-girlproblem should be more realistically formulated
as an integer stochastic program.

Imagine now that the flower-girl wants to earn as much as possible during the
two months of her high-school vacations; such a 63 stage problem may be solvable
thanks to its simple form. Still some other possibilities should be examined. The
program may be rolled forward in time with an essentially shorter horizon, say, for
T = 8 which covers a whole week. This means that the flower-girl decides as if
she plans to maximize her profit over each one-week period and solves the problem
every day with a known non-zero initial supply of roses and with a new scenario tree
spanning over the horizon of the next 8 days. Another possibility is the aggregation
of stages. With a long horizon and random parameters only on the right-hand side
of the constraints, one may apply the idea of [71] designed for problems with an
infinite horizon: One chooses a tractable horizon T and adds one stationary stage
which takes into account the remaining stages Finally, one may reformulate
the problem into the form of a stochastic dynamic program and solve it by the
backward recursion; see Example 2.5.1.
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2.4.1 Exercise.
(i) Modify the flower-girl problem to include unit carry-over costs q!

(ii) Rewrite the 3-stage flower-girl problem as a sequence of nested two-stage
programs. Observe that the third stage program has an optimal solution

This means that the problem can be alternatively formulated also
as a two-stage problem in which and the
(conditional) probability distribution of is used to evaluate its expectation.

2.5  Comparison with Stochastic Dynamic
Programming

Multistage stochastic programs are in their nature similar to multistage sto-
chastic control problems or to stochastic dynamic programming with discrete time;
they deal essentially with the same types of problems – the dynamic and stochastic
decision processes. The main distinction is in the solution concept. As we have ob-
served, the main emphasis in multistage stochastic programs lies on the first-stage
decisions. On the contrary, in stochastic dynamic programming it is the decision
rule that is of the primary interest. Such decision rule should be available at any
state of the system. An appropriate definition of the state is then the central point
of the dynamic programming formulations whereas in the context of multistage
stochastic programs states usually do not appear.

Given the state and control spaces the initial state and the initial
control the dynamics of the system is described by the system of equations

with given vector-valued transition functions (Equality means again equality
with probability 1.) The goal is to control the evolution of the system by using an
optimal decision rule to get the best total expected outcome of the decision
process.

Formally, one may define and approach the above decision prob-
lem via multistage stochastic programming. Another possibility is to exploit the
Markov character of the system dynamics: with interstage independent the
dynamics as described by (13) is memoryless, and a further restriction of the prob-
lem structure allows to apply solution procedures akin to Bellman’s principle of
optimality. This restriction (besides of the already mentioned interstage indepen-
dence) consists of a certain separability property of the random objective function

e.g. the additive form further of finiteness ofstate
spaces and of compactness of control spaces.

Assume for simplicity that and let
be the expected outcomes related

with the respective stage only. Denote further for by
the transition probabilities
Then the stochastic dynamic program can be reformulated as a Markov decision
problem:
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The collection of the transition probabilities along with the (possibly degen-
erated) probability distribution of the initial state and the control fully
describe the stochastic evolution of the considered system without any reference to
the transition relation (13). The usual approach is to define functions

and to evaluate them by the “backward recursion”

compare with (6)–(7). Let be an optimal solution of (14). Hence, for a
given initial state is the optimal value of the objective function

and is the optimal control for the first stage. The
optimal controls for the subsequent stages depend on the state of the system, say,

which has been attained according to transition probabilities
corresponding to the already obtained optimal controls Hence,

the optimal control at the first stage of the (T – t)-stages program
(14) with the initial state

Solution of the optimization problems (14) may be hard or easy depending on the
application. However, implementation of the “backward recursion“ means to solve
the optimization problems (14) for all stages in dependence on multidimensional
parameters z and to store the values of the functions and of the optimal solutions
of (14) for all states of the system. This puts considerable requirements on the
memory and, therefore, in many applications the number of states turns out to
be prohibitively large. On the other hand, problems with very distant or infinite
horizon and problems with state and control dependent transition probabilities can
be treated efficiently provided that the structure of the problem fits well the solution
method (based on certain Markov properties, separability of the objective function,
etc.), that the dimension of the state vector is not too big and that the number of
constraints is limited. Notice that the considered structure of the problem is tied
with the solution method – the backward recursion connected with the principle of
optimality.

On the contrary, multistage stochastic programs do not use the notion of the
state and their formulation is not connected with any prescribed solution technique.
Therefore, there exists a variety of stochastic programs along with various solution
procedures. The emphasis is on the first-stage decision, mostly with a continuum of
possibilities. Even if it is often possible to characterize the optimal decision rules,

and for t = 1, . . . ,T – 1
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it is not necessary to design a full backward recursion as in dynamic programming
and, due to large dimensionality of stochastic programming problems, such proce-
dure would be hardly tractable. Hence, the numerical methods are not based on
the recursive form (6)–(7) or (8)–(9). It is possible to avoid special requirements
on the Markov structure of the problem. Numerous constraints can be included,
however, integrality of decision variables is a drawback, not an advantage from the
computational point of view. The probability distribution of random parameters,
which is assumed independent of the decisions, is approximated mostly by a discrete
probability distribution before or in course of numerical procedures. The resulting
problems are large mathematical programs, their dimensionality increases rapidly
with increasing number of stages and scenarios.

Hence, the two discussed approaches used for modeling and solution of discrete
time dynamic decision problems under uncertainty are not competitive, they are
merely complementary having different favorable and unfavorable features. Certain
type of the “curse of dimensionality” relates to each of them: In stochastic dynamic
programs, it is connected with the number of states and the dimensionality of the
state and control spaces whereas it is mostly the number of stages which puts
limitations on tractability of multistage stochastic programs.

We conclude this discussion by a simple illustrative example and in the subse-
quent Sections we shall focus on applications of stochastic programming.

2.5.1 Example – The Flower-Girl Problem. Under simplifying assumption
that the random demands are independent and identically distributed, the flower-
girl problem 2.4 can be easily formulated as a stochastic dynamic program and can
be also solved by the backward recursion of dynamic programming.

Assume that t = 1,2,... (demand on the tth day) are independent random
variables such that for all t

where
Since at most K – 1 roses can be sold every day, we may restrict on policies

storing at most K – 1 roses on each day. Recalling that (the control variable)
denotes the number of fresh roses ordered for the day (t = 1,2, . . . ) and that

is reserved for the state variable (i.e. the stock of one day old roses left from the
(t – l)st day and ) we conclude immediately that for any

Hence for any nonnegative integers such that and independently
on the transition probabilities are
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and are equal to zero otherwise.

Obviously, if the order is on the tth day when the stock left from the
previous day is roses, the cost is and the expected amount of the money
obtained by selling the roses is equal to i.e., the expected profit
of the t-th day in notation used for the additive objective function with

equals

The flower-girl problem can be solved now as a standard stochastic dynamic
program. The “backward recursion” (14) reads: and

for t = 1,2 ,…  ,  T – 1 and any i = 0,1, … , K – 1. It can be easily solved for
the considered finite state space and for a large horizon T;
obviously, the integrality of states and of decision variables is exploited.

However, it is hard to apply the backward recursion in more complicated prob-
lems as to the dimensionality of the state vector and/or in presence of numerous
state and control constraints. In the context of the flower-girl, think about a whole
set of traded flowers with various carry-over constraints, inclusion of a limited store
space or of a substitution effect in the (random) demand.
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II.3   MULTIPLE CRITERIA

multi-objective programming, efficient solutions, problems, goal pro-
gramming, Markowitz model, alternative definitions of risk, VaR, expected utility,
tracking models, scenario-based stochastic programs, robust optimization

Very often, plausible economic decisions cannot be chosen only according to one
criterion, such as the maximal profit, production efficiency or yield. In production
planning, environmental criteria have to be taken into account, in macroeconomical
problems regional aspects such as the local unemployment level play an essential
role. Very different, even conflicting goals can be set for a short time horizon and for
the long one, etc. Investment decisions should hedge against risks of various kinds,
such as liquidity, volatility or currency risks. The mentioned disparate criteria will
hardly be satisfied by a uniformly optimal decision. Problems of the above kind
belong under multi-objective programming and we shall briefly introduce the main
approaches for the case of continuous decision variables.

3.1 Theory
Without loss of generality we shall formulate the multi-objective programming

problem for the case of minimization of two or more objective functions:
“minimize” functions on a closed set  briefly

An ideal solution of the multi-objective programming problem (1) is defined
by the property

Ideal solutions exist only rarely and the first task is to introduce another concept
of solution which is acceptable from the point of view of “minimization” of
all considered objective functions.

3.1.1 Definition. A solution is an efficient solution of the multi-objective
programming problem (1) if there is no element for which and

The modification of Definition 3.1.1 to multicriterial maximization problems is
straightforward and the interpretation of efficient decisions is clear: no other feasible
decision is uniformly better with respect to all considered criteria. Multi-objective
programming aims at location of efficient solutions and there are many ways how
to achieve this goal; we shall introduce some of them.
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3.1.2 Theorem. Let be compact, continuous on and
an arbitrary continuous function which is nondecreasing in its arguments.

Then at least one solution belonging to

is efficient for the multi-objective problem (1).

Proof. The set defined by (2) is nonempty due to assumptions; let
Similarly, there exists an optimal solution, say, of the auxiliary problem

subject to

According to the assumed monotonicity property of
Assume that is not an efficient solution of (1). Then there exists such

that and It means that is a feasible solution of the
auxiliary problem and that for an index and for
all remaining indices. Hence, \ which contradicts the
assumed optimality of

3.1.3 Comment

The optimal solution and the numerical tractability of the optimization problem
(2) depend substantially on the choice of the function One of its properties is
obvious: For increasing in its arguments, all optimal solutions of (2) are effi-
cient for (2). In general, an adequate choice of is a difficult problem. It would
not be necessary to deal with multi-objective programming if the choice of was
straightforward.

A special simple choice of the function in Theorem 3.1.2 is

We shall prove that under modest assumptions and using all possible choices of
weights t, (3) generates all efficient solutions of the solved multi-objective problem
(1).

3.1.4 Theorem. For a vector parameter , let be an optimal solution
of
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Assume further that the parameter vector t in (4) is positive or that is a unique
optimal solution of (4). Then is an efficient solution of the multi-objective pro-
gramming problem (1).

The proof follows directly from Definition 3.1.1 and is left to the reader.

3.1.5 Theorem. Let be nonempty, convex, compact and

such that is an optimal solution of (4).

Proof. Denote the convex hull of the set

Efficiency of and convexity of functions imply that and do not contain
common interior points. The two convex sets can be thus separated by a hyperplane
with coefficients

The  special choice of              implies             and, moreover,                    (otherwise
an appropriate choice of in the unbounded set provides arbitrarily large
negative values of . This means that there is a such that

Substituting with an arbitrary we get
the desired result:

3.1.6 Comment

A stronger result holds true for linear functions and a convex polyhedral
set namely, is an efficient solution of the multi-objective problem (1) if and
only if it is an optimal solution of (4) for a positive parameter vector . To
prove this result it is enough to notice that the set is polyhedral and to exploit
this fact when constructing the separating hyperplane.

There are relatively many other approaches that provide efficient solutions:

objective functions, say, choose a threshold vector and solve the
classical optimization problem

(5) minimize subject to and

Assume that for the choice of the set
and prove the following statements:

(i) Let be the unique optimal solution of (5). Then is an efficient solution
of (1).

(ii) Let be an efficient solution of (1). Then there exists such that
is an optimal solution of (5).

1,..., K be convex functions on Then for an arbitrary efficient solution
of the multi-objective programming problem (1) there exists a vector parameter

3.1.7 Exercise - The Select one of the considered
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3.1.8 Exercise – The Mixed Approach. It is related to a different treatment
of distinct objective functions: some of them are put into constraints as in the

approach whereas weights are assigned to the remaining ob-
jective functions. As a result, one solves a parametric programming problem with
parameters in the objective function and on the right-hand sides, e.g.,

subject to

(see [72]). Explore the relationship between optimal solutions of this program and
efficient solutions of (1).

3.1.9 Exercise – The Goal Programming Approach. The main idea is
to try to get a solution from for which the outcome measured by

is as close as possible to the K-vector of the best attainable
outcomes The distances are defined in the space
of function values, a subset of and one is free to use any of (weighted)
distances, Hence, one solves a minimization problem

with a diagonal matrix Using properties of the
distances and Definition 3.1.1 prove the following statements:

(i) Let be an optimal solution of (6) with Then is an efficient
solution of (1).

(ii) For at least one of optimal solutions of the minimax problem

is efficient for (1).

3.1.10   Exercise – Modifications for Multi-objective Maximization Prob-
lems.

(i) Prove that with minimization replaced by maximization, Theorem 3.1.4 holds
true and Theorem 3.1.5 is valid for concave functions

(ii) Modify Theorem 3.1.2 and the approaches described in Exercises 3.1.7 – 3.1.9
for maximization problems.

The techniques of multi-objective programming allow to exclude ”bad”, non-
efficient solutions of the multi-objective problems (1) provided that the selected
criteria can be quantified and that the considered objective functions are a priori
given the same importance. In interactive numerical approaches, see [72], the user



II. DISCRETE TIME STOCHASTIC DECISION MODELS 127

is allowed to change the values of parameters (weights and thresholds) to achieve
an acceptable balance between the criteria. There are various other problems which
have not been tackled here, e.g., an appropriate treatment of hierarchically ordered
objective functions or the case of a finite list of feasible alternatives. We refer to
[140].

3.2 Selected Applications to Portfolio Optimization
In the sequel we shall formulate several well-known problems of portfolio opti-

mization, including the famous Markowitz model, which can be treated within the
framework of multi-objective programming presented in Section 3.1.

3.2.1 The Markowitz Model

We have seen in Chapter I.9 that the Markowitz model was developed for invest-
ments in portfolio under various implicit simplifying assumptions. Among others
it assumes a frictionless market and applies to small rational investors whose in-
vestments cannot influence the market prices and who prefer higher yields to lower
ones and smaller risks to larger ones.

The composition of a portfolio consisting of J risky assets is identified with the
vector x whose components are the fractions of the (disposable)
unit wealth invested in the asset, Depending on circumstances
one may require or to drop the nonnegativity assumptions allowing for
short sales. A unit investment in the share gives a random return over the
considered unit period. The assumed probability distribution of the vector of
returns of all shares is characterized by a known vector of expected returns
and by a covariance matrix whose main diagonal
consists of variances of individual returns.

The “yield from the investment” x is then quantified as the expectation

of the total portfolio return and the “risk of the investment” as the variance or
standard deviation of the total portfolio return

or respectively. According to the assumptions, the investors
aim at maximal possible yields and, at the same time, at minimal possible risks –
hence, a typical decision problem with two criteria, “max” or “min”

and thus the mean-variance efficiency introduced by Markowitz is
fully in line with general concepts of Section 3.1 and the approaches presented there
can be exploited:

The mean-variance efficient portfolios can be obtained by solving various opti-
mization problems, e.g.,
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see (4), where the value of parameter is related to investor’s risk aversion
(small values of correspond to a risk averse investor whereas large values of are
typical for risk seeking investors), or

subject to

where parameter is the minimal acceptable return, cf. 3.1.7, or by maximization
of a suitable aggregating objective function such that fulfills assumptions of
Theorem 3.1.2. Provided that the covariance matrix is positive definite, one
possibility is

hence, Sharpe’s ratio introduced in I.9.2.
Notice that the same sets of efficient portfolios are obtained when the risk is

quantified either by the variance or by the standard deviation of the portfolio
return. To get this conclusion, consider (8) with the objective function and
with its strictly increasing transform

The set is defined by and other conditions on the composition of
the portfolio, e.g., the nonnegativity constraint and upper bounds.

3.2.2 Efficient Portfolios Based on Alternative Definitions of Risk

Objections against the symmetry of the variance of returns as a measure of risk
has lead to various asymmetric risk definitions, such as the quadratic semivariance

the disadvantage are difficulties accompanying numer-
ical solution of the resulting optimization problems.

Following the ideas of [145], Konno and Yamazaki [101] developed and applied
efficient investment decisions based on “risk” defined as the mean absolute deviation

To get a portfolio efficient with respect to and means to solve, for
instance, the program

subject to

(compare with (8)).
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Values of (10) are constant multiples of the standard deviations if the
probability distribution of the random returns is normal

The advantage of this approach is that the sample-based form of (11) with all
expectations replaced by averages based on the sample or historical data can be
transformed to solution of a linear program. It is not necessary to estimate the
variance matrix, hence, it is easier to get the input data than for the Markowitz
model. Also an extension to an asymmetric quantification of risk is straightforward.
Indeed, using

with at the place of (10) reduces to maximization of (10) again. To see
it, rewrite the positive and negative parts using known formulas and

Further approaches are related with the safety-first or probability criterion pro-
posed by Roy [139] at the same time when Markowitz developed his mean-variance
approach. The suggestion is to maximize on the probability

with a given level of the required return of the portfolio. Under normality
assumption the deterministic equivalent is (compare with (9))

Efficient portfolios with respect to the expected return and the probability
(12) can be found e.g. by application of the approach 3.1.7. This
results in the chance-constrained criterion, cf. [160],

with a prescribed level of the total return and with a given probability
The explicit form of (14) under normality assumption reads

here, denotes the quantile of the standard normal distribution
N(0,1).

3.2.2.1 Exercise. Derive the form (13) and (15) of the safety-first and chance-
constrained criteria under assumption of normally distributed returns.
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3.2.3 Quantile Criterion and the Value at Risk (VaR)

The quantile criterion (cf. [97])

for a prescribed probability can be evidently related with quantification of
the risk of the investment by its Value at Risk, VaR introduced in I.4.2.3. Indeed,
the probabilistic constraint in (16) can be written as If the
distribution function F of is continuous and increasing,

the quantile of the probability distribution of satisfies the probabilistic
constraint in (16) sharp. Naturally, small values of are desirable from the
point of view of risk minimization.

To evaluate one needs to get the probability distribution of which
depends on the decision variables – the composition x of the portfolio. This is
a demanding task which is mostly solved by simulations. An exception is the
normal distribution N(r, V) of In this case, the probability distribution of
is whose quantile is

Multiplying it by –1, we obtain the absolute value at risk, see (20) in I.4.2.3 for
– the quantile of the standard normal distribution N(0,1).

3.2.3.1 Example. Assuming normal distribution of returns, derive an explicit
form of an optimization problem which provides efficient solutions of

and compare it with (15). Derive also the explicit form of (16).

3.2.4 Expected Utility Criterion

The generally accepted decision criterion of maximal expected utility of the total
final return offers further possibilities. As to utility functions it
is customary to assume that U is increasing and concave. The last assumption
corresponds to preferences of a risk averse investor who never prefers to accept a fair
gamble of the form – to move to wealth values with probabilities and
respectively, when he could remain at the wealth level Similarly,
preferences of risk neutral or risk seeking investors are described by increasing linear
or convex utility functions, respectively. Consult Chapter I.8.

Numerous early studies dealt with the relationship between various criteria men-
tioned in 3.2.1–3.2.4. It is apparent that for normal distribution of returns, the
portfolios obtained by solving (13), (15) or by minimization of are mean-
variance efficient. Concerning the expected utility maximization, for normal dis-
tribution of returns and for concave utility functions, maximization of
provides mean-variance efficient portfolios as well.



II. DISCRETE TIME STOCHASTIC DECISION MODELS 131

3.2.4.1 Exercise. Assume that the returns are normally distributed, N(r, V).
Derive that for the exponencial utility function with the
optimal solutions of can be found by solving
and are thus mean-variance efficient.

3.3 Multi-objective Optimization and Stochastic
Programming Models

We shall consider now various approaches to mathematical formulation of deci-
sion problems under stochastic uncertainty about the future values of the system
parameters from the point of view of multi-objective programming.

3.3.1 Scenario-Based Stochastic Programs

Assume now that we are supposed to select the “best possible” decision which ful-
fills prescribed “hard” constraints, say, where is a closed nonempty
set. We accept that the outcome of a decision x is influenced by a random element
of a general nature whose realization is not known at the time of decision. The
random outcome of a decision x is quantified by and different realizations
of provide different optimal solutions, say, arg min If the set of
possible realizations of is finite, methods of multi-objective
programming suggest to choose a solution efficient with respect to S objective func-
tions According to Theorem 3.1.4 such efficient solutions
can be obtained, e.g., by minimization (or maximization) of a weighted sum of

In our case, it is natural to use probabilities of scenarios
at the place of weights and the problem to be solved is

The result is the widely used expected value criterion.
Notice that we get efficient solutions regardless the origin of probabilities

e.g., for – the true probabilites or subjective ones, for probabilities offered by
experts, for equal probabilities obtained via simulation or coming from an empirical
probability distribution.

Similarly, using the goal programming approach, see 3.1.9, we may get the track-
ing model

see [38] and 3.3.3.
To apply these ideas to multistage stochastic programs as formulated in II.2 one

should first reformulate them so that the random elements enter only the objective
function, see e.g. (6) or (8) of Chapter II.2.
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3.3.2 Scenario-Based Two-Stage Stochastic Linear Programs

Using the general ideas of Section 2 for T = 2 let us consider problems of the
form

subject to

where are coefficients determined by scenario and
are their probabilities, The first-stage decision x is

scenario independent. For each of considered scenarios, second-stage decisions
are introduced to maintain the fulfilment of constraints by compensating
the discrepance for an additional cost To keep the linearity of
the problem, various possibilities of compensation are modeled by the recourse
matrices The recourse costs are the minimal attainable costs
of compensation. They depend on the first-stage decision and on the considered
scenario and are defined as optimal values of an auxiliary, second-stage program

The structure of the second-stage program (19) is influenced mainly by the recourse
matrices Ws and special cases are distinguished. For instance, the second-stage pro-
gram (19) with matrices where is the unit matrix, distinguishes
only between shortages - penalized by and surpluses
penalized by If the recourse function

This is called the simple recourse problem; see II.4.3 and II.8.2.
The assumption of the relatively complete recourse means that the set of feasible

solutions (18) is nonempty, hence, it is possible to compensate discrepances for an
arbitrary first-stage solution and all considered scenarios. The fixed recourse
problems refer to fixed matrices whereas random recourse assumes
scenario dependent matrices

Using (19), the problem (17–(18) can be rewritten as
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minimize

on the set

compare with (8)–(9) in Chapter II.2. The optimal solution of (20)–(21) is the
so-called here-and-now solution corresponding to the two-stage recourse problem.

Notice, that minimization of the total expected cost of the two-stage decision
process (20) is in full agreement with general ideas of 3.3.1. The objective func-
tion (20) can be further modified; one possibility is parallel to expected utility
maximization in 3.2.4:

subject to (21) with defined by (19), and a convex decreasing dis-utility
or loss function.

A similar reformulation for scenario-based multistage stochastic programs is also
possible and it corresponds to the first-stage decision problems (6) or (8) in Chapter
II.2.

3.3.3 Tracking Models

In the two-stage stochastic program with recourse, such as (17)–(18), the second-
stage variables together with the recourse matrices are used to compensate
the possible discrepancies between and for different scenarios. In this way,
relaxation of “soft” constraints is modeled. There are
various other possibilities, for instance, a simple tracking model related to (17)–
(18) can be formulated as follows: Let be the optimal values of the
individual scenario problems

Assume that for each the scenario problems (23)–(24) have an optimal solution.
The basic compromising or tracking model follows the ideas of goal programming
with respect to minimization of the objective functions (13) and of the possible
differences between and the right-hand sides for all

subject to

subject to
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The optimal solution obtained by solving this problem tracks the optimal solu-
tions of the individual scenario problems (13)–(14) as closely as possible. Various
types of the norm in (25) can be used, recall 3.1.9; the choice influences the optimal
solution of (25) and the solution procedure.

A general form of the tracking model constructed for scenario problems

reads

where the optimal values of all individual scenario problems are supposed to
exist and the parameters

Various types of tracking models have been suggested and applied in finance and
also in water resources, cf. [38]. An example is the portfolio immunization problem,
see I.5.1: The goal is to find the cheapest portfolio of fixed-income securities whose
present value equals the present value of liabilities. Given scenario of interest
rates, the scenario subproblem is

where is the amount of bond j in portfolio, are the initial aquisition prices,
the present values of the bonds and of the liabilities and consists of

some scenario independent constraints. With probabilities of individual scenarios
and with optimal values of scenario subproblems, the tracking model reads

3.3.3.1 Exercise. Formulate a tracking model for the bond portfolio immuniza-
tion problem in which the present values and dollar durations of the portfolio should
be equal to those of liabilities. Consider also the possibility of assigning different
priority weights to deviations from this goal for present values and for dollar dura-
tions.

3.3.4 Robust Optimization

Besides of the minimum risk and maximum yield criteria which appear frequently
in finance, see 3.2.1 – 3.2.4, there are real-life problems which aim also at limited
variability of the second-stage decisions and/or of their costs: It is not acceptable
to apply an optimal compensation strategy which requires repeated changes of
the labour allocation or suggests to spend funds or to repay the debts abruptly.
The requirement of a limited variability is an additional criterion which can be
quantified and included into the overall objective function or into constraints; also
goal programming methods can be exploited.

An example is the robust optimization model [120] which modifies (17)–(18) to
capture the required limited variability of costs. With the variability quantified by
the variance of the costs, the problem is:



II. DISCRETE TIME STOCHASTIC DECISION MODELS 135

Minimize

subject to

The first term in the objective function (29) corresponds for instance to (26),
the second one, with a weight penalizes possible violations of the original
second-stage constraints

subject to

with an appropriately chosen parameter value an upper bound on the acceptable
expected costs.

A further possibility is to replace the objective function in the problem (26)–(27)
by a general performance function of the decision variables and
in addition, to relax the constraints. The resulting model can be formulated as
follows:

Minimize

The newly introduced variables are equal to the cost of the decision x plus
the corresponding cost of the compensation of discrepances by if the scenario
occurs. The additional term in the objective function equals the variance of these
random costs with its weight in the objective function expressed via a scalar
parameter The efficient solutions which are obtained by solving (26)–(27)
for different nonnegative values of can be also obtained via the
approach 3.1.7:

Minimize

subject to (27) and 
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Restricted recourse problems [167] aim at limitation of the dispersion of the
second-stage decisions. According to the principles of multi-objective programming,
the objective function (17) could be extended to

with a nonnegative parameter cf. (26), or the constraints (18) extended for an
additional constraint

where is a chosen tolerance level; see 3.1.7.

From the modeling point of view the choice among the introduced models de-
pends on the nature of the solved real life problem and also on the properties of
the resulting mathematical program, including its numerical tractability and sen-
sitivity of its solution on the input data. Similar models can be developed without
any reference to the two-stage stochastic program (17)–(18).

For multistage stochastic programs, the prevailing ways of including alternative
criteria are based on the or mixed approaches.
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stochastic programming in finance (portfolio revision, BONDS model, ALM model,
general features), production planning, capacity expansion, unit commitment and
economic power dispatch, and in melt control

Advances in theory and algorithms for stochastic programs have contributed to
development of models which capture both the dynamic aspects and uncertainties
of financial and economic problems. We shall introduce several models that have
been, at least partly, applied in practise; to formulate them we shall use, with
reference to Section II.2.2, the split variables form and the arborescent form of
multistage stochastic programs as required.

We shall start with an example of the two-stage stochastic programming prob-
lem: A decision should be selected before realizations of random parameters
can be observed or their values revealed. After this information becomes available
the decision process continues by the second-stage, i.e., by the choice of an auxiliary
decision that depends on the first-stage decision and exploits the already obtained
information. The second-stage decision is interpreted as an updating activity (port-
folio revision, adjustment of the production plan, etc.) that brings about additional,
recourse costs. The requirement that the first-stage decision x cannot depend on
future observations of random parameters corresponds to the already mentioned
more general nonanticipativity property of the multistage decision processes.

4.1 Portfolio Revision
Following [92], we assume that at the beginning of the first period, the investor

chooses an initial portfolio of assets from a set of considered assets indexed by
= 1,...,I. At the end of the period, he or she observes the realization of the

random vector of security returns. At the start of the subsequent period, he can
choose a revised portfolio conditional upon the initial portfolio and on the observed
returns; the set of the considered assets remains unchanged and the investor pays
transaction costs. Hence, contrary to the dedicated bond portfolio management
problem II.1.2, the investor is allowed to trade. His goal is to satisfy the budget
constraints in both periods and to maximize the expected utility of the final wealth,
i.e., the wealth that results from the 1-st and 2-nd stage decisions and from the
(random) returns in the both periods.

Denote
the initial number of shares of security  , the main decision variables;

numbers of shares of security i bought / sold at the beginning of period 2 for
portfolio revision, the auxiliary decision variables;

the resulting number of shares of security   held in period 2;
the initial per-share cost of security

nonrandom exogenous wealth allotments at the beginning of period 1
(2);
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random returns on security in period 1 (2) which replace here the
random element

the cost per unit transaction;
U the chosen utility function.

All decision variables are integers and constraints on the initial holdings are
evident:

The subsequent portfolio revision is limited by the total wealth at disposal (coming
from the previous investment and from the additional external allotment), i.e., by

and the corresponding budget constraint for the second period reads

The second-stage variables are limited by inventory constraints (recall that

The objective function

is maximized with respect to constraints on initial holdings. The optimal value of
the second-stage problem

subject to budget and inventory constraints depends on the first-stage decision x
and on a particular realization of the first-period returns. In spite of a rather
simple structure of the second-stage constraints, it is in general impossible to get
the optimal value of (2) explicitly as a function of x and of and substitute it
into (1). The way out is to approximate the probability distribution of by a
discrete probability distribution concentrated on a finite number of scenarios, say,

with probabilities. The considered
portfolio revision problem reads now
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subject to

The necessary input consists of the initial selection of the considered securities,
of the probability distribution of and of its discretization, of the conditional
probability distribution of that can be discretized as well, of deter-
ministic parameters and and of the utility function U. Some generalizations
are possible, e.g., inclusion of tax on gross profit, possibility of borrowing and con-
sumption.

4.2 The BONDS Model
The pioneering model [24] was designed as a decision support for multiperiod

management of portfolios of fixed income securities, bonds, in commercial banks.
At the beginning of each period, the portfolio manager has an inventory of bonds
and cash and decides which bonds to hold, sell and buy. The possible composition
of the portfolio depends on random cash inflows and outflows, on interest rates, etc.,
random variables which are supposed to have a discrete probability distribution.
The decision variables at the beginning of the t-th period depend on
realizations of the random subsequences and the stages of the decision process
coincide with periods. The first-stage decision variables are scenario independent
and the last stage decisions accepted at the beginning of the T-th period depend
on these nonanticipativity conditions will be spelled out implicitly. The
decision process is affected by the probability distribution of but not by its
realizations.

The goal is to maximize the expected market value of the portfolio at the horizon
T under constraints on cash flow, inventory balance, capital losses, initial holdings
and under nonnegativity of all variables.

Denote
the amount of bond bought at the beginning of period t (in dollars

of initial purchase price);
the amount of bond purchased at the beginning of period and

sold at the beginning of period (in dollars of initial purchase price);
the amount of bond purchased at the beginning of period and

held (i.e., not sold) at the beginning of period (in dollars of initial purchase price).
These decision variables have to be nonnegative, to fulfill constraints on initial

holdings acquired before the beginning of the first period

and on inventory balance
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valid for all and for all scenarios.
Denote further

the capital gain/loss on bond purchased at the beginning of period
and sold at the beginning of period (per dollar of initial purchase price, after

tax);
the annual yield from coupons of bond bought at the beginning of

period t (per dollar of initial purchase price, after tax);
exogenous incremental amount of funds at the beginning of period

The cash flow constraints read

(The transaction costs are taken into account by adjusting the gain coefficients for
the broker’s commission.)

The constraints on capital losses are

where denotes the upper bound on the realized capital losses (after tax)
from sales during a year, is the set of indices of periods which correspond to the
end of fiscal years and is the index of the first period in the fiscal year indexed
by

Let finally              denote the final expected cash value (i.e., expectation
with respect to conditioned by per dollar of the initial purchase price
of the bond purchased at the beginning of period and held at the beginning
of period T or bought at the beginning of period T, and let be the path
probability of the partial sequence The objective function

Using (3) recursively, we obtain
for all
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should be maximized subject to constraints (3), (5), (6).
Again, it is a large scale linear program; the total number of constraints depends

essentially on the number of possible partial sequences for
and it increases rapidly with the increasing number of stages. As the problem
concerns bonds only, no conditions on liabilities or on liquidity are present.

The model was tested for T = 3 yearly periods. Scenarios were generated un-
der the assumption that the conditional probability distributions of the random
interest rates can be approximated in each period by discrete probability distribu-
tions concentrated at three points only. In the notation introduced in Section II.2.2
this gives 3 elements of 9 elements of and the total number of scenarios –
elements of equals 27. See also Example II.5.4.4.

The reported results of backtesting the model on historical data (Salomon Broth-
ers time series of good grade municipal bonds) for bonds characterized by their
maturities (1, 2, 3, 4, 5, 10, 15, 20 and 30 years) indicate that the BONDS model
is a true competition to the typical management tools of banks which use either
the laddered portfolios (in which the amount invested in each of maturity classes is
approximately equal for all maturities) or the barbell maturity structure (in which
the maturities held are structured to the short and long ends with little investments
into intermediate maturities). Moreover, BONDS is a truly dynamic model: The
first-stage decision takes into account all considered future developments and its
feasibility is guaranteed. At the end of the first period, the model is rolled forward,
i.e., the horizon is moved out one more year and the model is solved again, with
the initial holdings from the new portfolio obtained from the preceding application
of the model and with new scenarios which take into account the already observed
changes of the interest rates.

4.3 Bank Asset and Liability Management –
Model ALM

The objective of the ALM model [104] is to maximize the discounted net value of
bank profits minus the expected penalty costs for infeasibility with respect to soft
constraints, subject to numerous constraints on budget, liquidity, structure of cash
flows (deposits / withdrawals), including legal and policy restrictions. There are
many sources of uncertainties such as rates of return, interest rates, deposits flows,
etc. The authors focused on the random deposits flows assigning deterministic fixed
values to the rates of return and to the interest rates. The problem is modeled as
a two-stage multiperiod stochastic program over N periods, with discrete random
variables – the random balance sheet for deposit of the type d at the end of
period Similarly as in Section 4.2 we denote the decision
variables on buying, selling and holding at period the ith asset purchased in period

In addition we introduce
the planned deposit inflow in period
the initial holding of deposit

the amount borrowed in period
the annual rate of withdrawals of deposits

the auxiliary variables that compensate the observed discrepancies of
the deposit balance sheet;
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the (nonnegative) proportional penalty costs associated with the aux-
iliary variables;

the interest rates paid on deposits of type and on borrowing;
the discount rate from period to period 0.

The planned amount of the deposits of type generated in period

can differ from the observed value for each observed value of the
surplus

is compensated by the second-stage variable the shortage

is compensated by The resulting balance constraints on deposit flows read

This form of constraints corresponds to the assumption that for all periods all
decisions on buying, selling, holding assets and on policy

on building deposits and borrowing are made all at once, for all periods,
assets and deposits independently on the future realizations of the random sheet
balances. The only second-stage variables are thus and the
scenarios can be interpreted as N-dimensional vectors of various sheet balance
forecasts up to the end of the planning horizon, say, In this case, the
numerous inventory balance constraints (3) need not be spelled out separately for
each period, they enter in their aggregated form (4) only and the scenarios consist
of different outcomes of the balance sheet figures for all regarded deposits
and all considered periods.

The remaining constraints are in form of linear equations and inequalities that
do not include any random parameters; we shall list them without any details.

The cash flow constraints are of the same nature as (5) with transaction costs
and taxation spelled out explicitly. The incremental funds are generated by
increments on deposits and borrowing. To approximate the continuous flow, one
assumes that one half of period’s net flows arrive at the beginning of the period
and the other half at the end of the period (or at the beginning of the next period).
Denote
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the amount of deposits available for the period computed according to the
above rule. The increment of funds is

with
The legal constraints refer to the peculiar regulations of the case study; they

express conditions like ”the current assets (say, those with
cannot be less that 10% of the total liabilities”:

Policy constraints are introduced to capture the internal policy of the bank; they
put, e.g., limitations on personal loans and mortgages.

Liquidity constraints stem from the requirement that the market value of the
bank’s assets is adequate to meet depositors’ withdrawal claims during adverse
economic conditions. It means that the liquidity risk is taken into account.

The objective function consists of four terms: The discounted cost of direct
borrowing, the net discounted cost of deposits and the expected minimal penalty
cost for a deposit balance violation are subtracted from the discounted total returns
and capital gains on assets purchased in period m and sold in period n
(after tax, with rates respectively):

In the last term of (8), minimization is carried over nonnegative values of and
that compensate the discrepancies of the balance sheet figures for scenario s

and deposit in the period, see (7). This is an example of the simple recourse
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problem mentioned in II.3.3.2 and the minimal feasible discrepancies for a given
value equal

and the resulting objective function is maximized with respect to all decision vari-
ables and subject to all introduced constraints including (7).

As a whole, ALM is a multiperiod two-stage stochastic linear program with sim-
ple recourse that can be solved by linear programming techniques if are discrete
random  variables It was developed for the Vancouver City Saving Credit
Union for a 5-years planning horizon and it has been rolled forward continuously
period after period.

4.4 General Features of Multiperiod Stochastic
Programs in Portfolio Optimization

The most important requirements on realistic models supporting dynamic in-
vestment decisions can be summarized as follows:

To reflect dynamic aspects including the intertemporal dependence of returns,
to aggregate assets and liabilities in one model consistently with the accounting
rules and to consider external cash flows;

To include stochastic behavior of important parameters, such as external cash
flows or returns;

To express investor’s risk attitudes in an adequate way;
To include transaction costs, taxes, etc.
To include legal, institutional and policy constraints;
To respect trade-off among short, intermediate and long term goals;
To keep the model understandable.

These general guiding lines will be discussed below. They can be traced to a
certain extent already in the early models surveyed in 4.1–4.3 and are accented in
recent applications.

A fundamental investment decision is the selection of asset categories and the
wealth allocation over time. The allocation decision involves the proportion of
major asset categories within a portfolio. The level of aggregation depends on
investor’s circumstances. For instance, a benchmark for US pension plans is the
60–40 mix, i.e., allocation of 60% of assets in a stock index and the remainder in
a bond fund. The major assets (a large capitalized stock index, a government or

The last term of (8) can be then replaced by
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corporate bond index and cash) are complemented by other assets depending upon
investors requirements; these are foreign stock and bonds, loans, real-estate funds,
commodities and precious metals, more risky assets, etc. (See for instance [27]).
The portfolio can be rebalanced at the beginning of certain periods to cover the
target ratio. Otherwise, one applies the buy–and–hold strategy which does not
assume any transactions except reinvesting dividends and interest.

The planning horizon at which the outcome is evaluated is the endpoint of the
interval which is further divided into nonoverlapping time intervals indexed
by The portfolio can be rebalanced at the beginning of each of
these time intervals to cover the target ratio or to contribute to maximization of
the final performance at In some cases, additional time instants are
included at which some of economic variables are calculated; after no further
active decisions are allowed. An example is the interest rates forecasts needed for
pricing the long bonds included in portfolio.

A critical issue is the handling of uncertainty. This is done mainly via modeling
probability distributions of random parameters by scenarios and their probabilities;
see Chapter II.5.

The primary decision variables represent the holding in asset category i at
the beginning of time period under scenario s after the rebalancing decisions took
place; the initial holdings are Holdings can stand for the amounts of
money invested in at the beginning of time period t (e.g., in 4.1), or they can be
expressed in dollars of the initial purchase prices (e.g., the BONDS model 4.2), in
face values, in numbers of securities or in lots (e.g., Chapter II.6), etc. Accordingly,
in the first case, the values of the holdings at the end of the period may be affected
by the returns on the market; the wealth accumulated at the end of the period
before the next rebalancing takes place is then

Purchases and sales of assets are represented by variables with transac-
tion costs defined via  coefficients and assuming mostly the symmetry in the
transaction costs; it means that purchasing one unit of at the beginning of period

requires units of cash and selling one unit of results in units
of cash. The inventory balance constraint for each asset category (except for cash,
the asset indexed by  = 0), scenario and time period is

It restricts the cash flows at each period to be consistent.
The flow balance equation for cash for each time period and all scenarios is for

instance

with the cash flow generated by holding one unit of the asset i during the
period (coupons, dividends, etc.) under scenario the
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planned external cash flow at the period under scenario borrowing in
each period under scenario s at the borrowing rate and the pay down of
the liabilities at the beginning of the period and under scenario (For simplicity
we assume that all borrowing is done on a single period basis; a generalization is
possible.)

For holdings, purchases and sales expressed in numbers or in face values, the
cash balance equation contains purchasing and selling prices,

and the inventory balance constraints for all asset categories except for cash (i.e.,
for assumea simpler form

as no wealth accumulation is considered. The network structure of the balance
constraints for all is an example of the network recourse.

The decision variables are nonnegative and the special
form of the balance constraints displays a network structure which facilitates the
algorithmic solution. The last stage constraints may be slightly different from those
for intermediate stages, e.g., no revision and/or no borrowing is allowed.

Depending on the character of securities, amortization factors may be introduced
in the inventory balance constraints. They express the fraction of the outstanding
face value at the end of the interval which reflects the effects of call options, default,
etc. It is easy to include further constraints which force a diversification, limit in-
vestments in risky or illiquid asset classes, limit borrowing, loan principal payments
and turnovers, reflect legal and institutional constraints. It is also possible to force
a specific decision policy, e.g., the fixed-mix policy which can be expressed as

where isa fixed ratio of asset in the portfolio.
Requirements of solvency are often formulated as probabilistic constraints on the

level of total wealth with respect to total liabilities at the end of each period, e.g.,

with a given positive and given probabilities At the same time,
the expected costs due to insufficient solvency may be included into the objective
function along with other types of shortfalls. Inclusion of probabilistic constraints,
however, represents an increased complexity for numerical implementation of the
model. Discrete probability distributions can be used but the related probabilistic
constraints do not in general describe a convex set. The recommended approach is
via auxiliary zero-one variables.
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4.4.1 Exercise. Let be all different realizations of the partial
sequences which may arise at the beginning of stage with probabilities
and denote the deficit or shortfall in case that scenario
occurs. (For simplicity we do not consider here any interstage dependence.) Let

be sufficiently large constants and be 0-1 variables. Show
that the probabilistic constraint on solvency at the end of period can be replaced
by

Whereas the random liabilities are model parameters, various further de-
cisions concerning liabilities can be included in the external cash flows: similarly
as in the ALM model 4.3, one can distinguish decisions on accepting various types
of deposits. Decisions concerning emission of additional debt instruments, on spe-
cific goal payments, on long term debt retirement, etc. can be included as well.
Naturally, the cash balance equation has to take into account the cost of the debt
service.

The objective function is related to the wealth at the end of the planning horizon
this for each scenario consists of the amount of the total wealth

reduced for the present value of future liabilities and loans outstanding at the
horizon and for the costs attributed to shortfalls. At times, however, the investor’s
liabilities are not readily marketable and must be discounted and their market value
estimated, for instance through actuarial models in case of pension plans. The risk
factor can be included into constraints, or it enters the model through the choice
of a suitable utility function. To include short term goals, cumulated penalties
for shortfalls under scenario (e.g., penalties for or for in
4.4.1) are subtracted from the final wealth computed for the same scenario. An
alternative way is to apply a utility function of several outcomes in certain time
instants covered by the model.

Another serious problem is the no-arbitrage property which, whenever assumed
to hold true in the reality, should be also captured by the models. Roughly speaking,
no trading strategy which starts with zero or negative wealth should result in a
nonnegative wealth for all scenarios and in a positive wealth for at least one scenario
some time in the future. Such possibility is reduced by nonnegativity constraints
on all variables (i.e., no short sales are permitted), by a restricted borrowing or
other regulative constraints. Also inclusion of a nonlinear utility function can be
recommended. In the linear case, e.g., for linear utility function of a risk neutral
investor, no-arbitrage property of the model is connected with linear programming
duality: If both the primal and the dual program are feasible, infinite values of the
objective are excluded, see [85] for details.

To initiate the model, one uses scenarios of the returns,
interest rates and liabilities for all t and starts with the known, scenario independent
initial holdings of cash and all considered assets and with

If no ties in scenarios are considered we visualize them as a fan of individual
scenarios which start from the common known values valid
for In this case, no additional information will be released later on and all
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decisions can be computed all at once thanks
to the full foresight of the evolution of random coefficients for each scenario up
to the horizon. In this case, only one additional requirement must be met: the
initial decision must be scenario independent. This
is a simple form of the nonanticipativity constraints and the resulting problem is a
multiperiod two-stage stochastic program. For an example see the ALM model 4.3
or Chapter II.6.

For multistage stochastic programs, the input is mostly in the form of a scenario
tree, the nodes of the tree are related with revealing of an additional information
which makes a basis for the subsequent decision. To build the scenario tree is a
complicated task. The nonanticipativity constraints can enter in an explicit way
by forcing the decisions based on an identical part of several scenarios to be equal
(as it was in the case of the two-stage model) or implicitly by using a decision tree
which follows the structure of the already given scenario tree.

The main interest lies in the first-stage decisions which consist of all decisions
that have to be selected before an additional information is revealed, just on the
basis of the given probability distribution P, i.e., on the basis of the already designed
scenario tree. The second-stage decisions are allowed to adapt to the additional
information, etc.

With the explicit inclusion of the nonanticipativity constraints, the scenario
based multiperiod and multistage stochastic programs can be written as large scale
deterministic programs decomposed along scenarios, see the split variable form dis-
cussed in Section II.2.2. An example is

where is a set of “hard” constraints on the decision vectors such as non-
negativity or scenario independent bounds, represents the nonanticipativity con-
straints and is the performance measure (random objective function) in
case of scenario To solve this program, one can apply general purpose software
for nonlinear programs, to implement special decomposition algorithms which make
use of the structure of the problem, etc.; see Chapter II.8. Nonlinear or integer con-
straints can be included but for the cost of an increased numerical complexity. On
the other hand, if the resulting problem is a large linear program, there are at
disposal special decision support systems which are able to manage efficiently large
scenario based stochastic programming portfolio problems; see Chapter II.8.

4.5 Production Planning
Production planning and utilization of production capacity is an important task

for manufacturing managers. To complete it, they have to face the demand un-
certainty and they are asked to provide production plans over several periods to
avoid abrupt changes and problems connected with the continuation of the produc-
tion. The problem is usually designed for several monthly periods and the plans
are revised on a rolling horizon basis. In the problem formulation, see [59], several
simplifications are introduced:
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Production is always completed in the period in which it begins;
At any given period, whatever cannot be produced in-house can be produced at

a vendor;
All products can be manufactured on the same set of machines and the raw

materials are available in the required quantities.
The objective is to minimize the total cost (discounted to its net present value)

of inventory holding and vendor production. An alternative objective can be to
maximize the expected difference between total revenue and cost.

Let the considered products be indexed by the periods by
the manufacturing machines by and the scenarios (demand

outlooks up to the horizon T) by
The deterministic data consist of

the inventory holding cost per unit of product in period
the unit cost of product obtained from the vendor in period

the amount of capacity of machine needed for producing one unit of product

the available capacity of machine in period
the initial inventory of product

The stochastic data consist of
the demand for product in period under scenario

The decision variables are
the inventory volume of product at the end of period under scenario
the production volume of product in period under scenario
the amount of product obtained from the vendor in period under scenario

Again, the decisions can be made sequentially using the past information only;
this is the nonanticipativity property called sometimes also the implementability
constraint. In the problem formulation, the nonanticipativity constraints will be
briefly summarized as The problem reads

subject to

where is the probability (or the weight) of the scenario
An interesting modification is the model where no alternative source of produc-

tion exists. In this case, decision variables are replaced by the lost
demand of product in period under scenario and replaced by the
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per unit revenue for product in period a further possibility is to introduce into
the objective function another measure of risk or a penalty function related with
the unserved demand.

4.5.1 Exercise. Extend the problem formulation to the case when there is a
choice of vendors from a given set of vendors with prescribed capacities and costs
for delivery of product in period

4.6 Capacity Expansion of Electric Power Generation
Systems – CEP

Electric power generation systems are supposed to serve the uncertain time vary-
ing demand for electricity, called load. The statistical analysis of load can be based
on extensive data sets and historical time series. The required information is the
total length of subintervals belonging to a given time interval [0, T] at which the
load exceeds a given level L: this can be described by a nonincreasing function

The inverse function is the load duration curve. It is again
a nonincreasing function whose values l(t) equal the load L
which is surpassed during time periods of a total length see
Figure 3.

The load can be discretized by assuming that are
its possible values and the corresponding probabilities.

Consider first a simple problem: The aim is to determine the numbers or capac-
ities of R different equipments/ technologies characterized by unit investment costs

and unit operating costs to serve the demand in such a
way that the expected total cost for the capacity expansion is minimal. Denote

the total capacity of equipments of the type and
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the capacity of equipments of the type used to generate power if load equals
i.e., for the operation mode.

The resulting problem

subject to

is a two-stage stochastic program whose second-stage constraints resemble those of
the well known transportation problem.

A more realistic formulation tries to incorporate dynamic features of the capacity
expansion problems which should capture the time evolution of costs and of the
load duration curve, the possible appearance of new technologies, the construction
delays, etc. The vector of random parameters includes not only the random
demand in the considered periods, but also the costs; in more general cases, one
may also consider random life-time of equipments, random construction delays
random date of appearance of new technologies, etc.

An example is a model over T periods with the decision variables and model
parameters dependent on the index of the period and on the considered random
factors, demands and costs; for simplicity, the possibly limited life-time of equip-
ments will not be taken into account. Let us denote

the new capacity decided at time for equipment which becomes available
at time for The existing capacity of equipment at
time that was decided before is denoted

the cumulated new capacity of equipment which is available or already
ordered at time for

Assume now that the load duration curve has been approximated by piecewise
constant function whose different (load) values correspond to
different operation modes, the differences
represent the additional power demanded in the mode for a duration see
Figure 3. We assume here that both and and also the investment costs
and operation costs depend on time and on random parameters

The stochastic model is then

subject to
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where is the capacity of equipment operating in mode at time allocated
to meet the random demand and is the availability factor of equipment in
period Notice that one distinguishes between the capacity which is available at
time e.g., the extension of capacity decided at
and the cumulated existing and ordered capacity up to time

Both continuous and discrete probability distributions of the random element
can be considered and, similarly as in Chapter II.2, constraints involving random
coefficients are fulfilled with probability 1. The comparison of the model with
the general T-stage stochastic program (3)–(4) introduced in Chapter II.2 leads
to the observation that the constraints have to be extended for nonanticipativity
conditions on all decision variables. It is also expedient to consider an additional
emergency backstop technology which is always available but for a high cost.

4.6.1 Exercise. Following the methodology explained in 4.2 reformulate the
capacity expansion problem for the case of a discrete probability distribution of

4.6.2 Comment

For we have
and besides the nonnegativity constraints, the constraints of (10) reduce to

Hence, for fixed costs the difference between (9) and (10) lies only in a
different way of approximating the load curve.

4.6.3 Loss of Load Probability

An important issue for electricity generation problems is the reliability of the
system. The relevant characteristic is called LOLP – Loss of Load Probability and
it is defined by the property that the demand can be satisfied with a probability

on which a lower bound, say, small, is imposed. It
is often limited by the authorities. Using the introduced notation we may formulate
this requirement via probabilistic constraint
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4.6.3.1 Exercise. Assume that The probabilistic constraint
applies for and the capacity is nonrandom for all
equipments. Let be the probability distribution function of The
deterministic equivalent of the probabilistic constraint (11) is

4.7 Unit Commitment and Economic Power Dispatch
The problem is an optimal scheduling of the generating capacity among gener-

ating units of an existing power system. Such schedule attempts to minimize the
generation costs while meeting the demand and other constraints imposed by the
physical characteristic of the system. We are supposed to decide which units to
commit at each time period and (if committed) at what generating capacity.

Disregarding randomness, considering R generating units and T time periods and
using the notation introduced in 4.6 as much as possible we can write a deterministic
model

subject to

Here, functions evaluate the cost of generating provided that the gen-
erating unit was committed. The status of units is modeled via 0-1 decision
variables if unit r is committed at period and otherwise.
Functions provide the costs due to changing the status of generating units in
subsequent time periods. There are lower and upper bounds on the capacity of the
units and a prescribed safetyvolume which expresses the fact that the total
capacity at each period must exceed the predicted demand to avoid disturbances
of the system. There are further constraints on the status of the units, e.g., the
minimum up-time or switch-off requirements; we shall aggregate them as
Further constraints, say, relate the generation capacity and the status
of the unit; an example are the upper and lower bounds in (13).

Besides thermal- and hydro-generating units, which differ by generating costs
and whose physical character influences essentially the construction of functions
there is also a possibility to sell or buy electricity on an open electricity spot market.
We may include these options into constraints (13) as additional generating units
indexed by R + 1 and R + 2, with capacities with a predetermined

where is the -quantile of Elaborate in detail.
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status and assign them unit costs and in
the objective function (12). We denote here by the quoted spot market prices,
the parameters are spreads for buying and selling, respectively.

The size of the resulting mixed-integer nonlinear program depends on the number
of generating units and on the number of periods, usually 168 hourly periods for a
horizon of one week. However, neither the demands nor the spot market prices

are known in advance. To hedge these uncertainties we consider S scenarios –
T-dimensional vectors of couples with probabilities

scenario dependent vectors and
and minimize the expected costs

with respect to all decision variables and subject to

This problem – a mixed-integer stochastic program – has to be further elaborated
to take into account stages of the decision process (the nonanticipativity constraints
will be then included into ), to include the specific character of thermal- and
hydro-generating units, availability and costs of the fuel, environmental restrictions,
etc. End effects have to be treated, namely for hydro-generating units. In addition
to the spot operations on the electricity market, the existing term documents may
be included. In the special case that the commitment decisions z* have been already
accepted the problem reduces to the economic power dispatch problem.

Besides the power generation capacity, it is also the capacity and reliability of
the transmission network which influences the performance of the system. We refer
to [129] for a possible approach based on the stochastic programming methodology.

In spite of its complexity the unit commitment problem belongs presently to
the most popular applications of stochastic programming. It is a mixed-integer
stochastic program and for its efficient solution, both the stochastic programming
methods and stochastic dynamic programming may be combined; cf. [158]. Prob-
lems of this type are solved within large deregulated electricity markets and they
combine various features of stochastic production problems, water resources man-
agement and financial decision problems. The peculiarity is that electricity is a
nonstorable commodity.

4.8 Melt Control:  Charge Optimization
Melt control problems belong to the broad field of production control applica-

tions. They are studied as one of the production steps in iron and steel works. Melt
control problems may be fully separated from other foundry optimization problems,
which simplifies the model building and its solution. Their importance stems from
the fact that foundries usually have high overheads, and hence, even small per-
centual savings may recover a significant amount of money. In addition, material
inputs represent the biggest part of the total melting costs.
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The produced alloys and input materials are composed of certain basic elements
(iron, carbon, etc.). The production process consists of several steps (e.g., charge,
alloying). In each of them, the hot melt in the furnace is enriched with certain input
materials (return materials, scrap, ferroalloys, etc.) and a new mixture is melted
again. Hence, the problem has a natural multistage decision structure. In each
step of the process the melt composition changes and particularly, random losses of
elements in the melt must be considered. During heating of the melt the amounts
of elements change randomly, e.g., due to the rise in slag and oxidation. These
losses are influenced by the composition of the melted material. The remaining
amount of an element is expressed as a linear function in the input quantities of
all considered elements, the coefficients are called utilizations of the considered
element related to the amount of other elements in the melt. In the following
simplified examples, these losses, and hence the related utilizations of elements are
taken as the only random variables. Historical melt reports are available and may
be used to construct scenarios or scenario trees of utilizations for the melt control
problems.

The goal is to find amounts of the input materials in the cheapest way under the
main requirement that the prescribed output alloy composition is achieved. We use
scenario-based two- and three-stage stochastic linear programs to illustrate basic
modeling ideas for charge optimization of induced and electric-arc furnaces. For a
general approach to melt control, developed for any alloy, furnace, and technology
see [126].

4.8.1 Example: Two-Stage Induced Furnace Charge Optimization. We
begin with a simple model for charge optimization of iron production in an induced
furnace – a model with a common two-stage structure: Through the initial charge
decision the final cost of the melt is minimized taking into account also the conse-
quences of possible random losses and the requirements on the final composition of
the melt. The problem written in the arborescent form (11)–(12) of Section II.2.2
reads

subject to

where are stages, is the set of indices of input materials available at
stage

is the number of considered elements at stage and indices and specify them,
are known unit costs of input material,
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are prescribed lower and upper goal bounds for the amount of the ith
element in melt composition at stage

denote the amount of ith element in the unit amount of
input material,

denote the first-stage decision variables, the amount of input material
at the beginning of the melt process,

denote the second stage decision variables, which stay for the addi-
tional amount of input material assigned under scenario

The only random elements are utilizations and we denote
the utilization of ith element related to the amount of lth element in the melt

when scenario occurs, are indices of scenarios and are
their probabilities. The frequently considered case when means that
interactions of random losses are ignored.

In the first-stage constraints, stands for an expert-designed ‘standard’ utiliza-
tion which applies to the first stage. Usually, is chosen.
These constraints reflect the metallurgical rules which aim at the process control
stability and in general, they cannot be neglected. On the other hand, possible
losses of the materials added in the second stage of the melting process are not
considered.

4.8.2 Example – Three-Stage Electric-Arc Furnace Charge Optimiza-
tion. The situation becomes more complicated with a steel production in an elec-
tric-arc furnace. Because of two alloying phases, the whole process must be mod-
eled as a three-stage one. To simplify the model description, we mostly utilize the
notation of Example 4.8.1 and the arborescent form (11)–(12) from II.2.2.

To get the Markovian structure of the model constraints, the melt composition
is described explicitly by additional auxiliary variables describing the state of
the decision process – the amount of melt element at node of stage before
a subsequent decision was taken. We assume an empty furnace at the beginning of
the process, hence, at stage 1, then etc.

The resulting form of the model is

subject to
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Again, the expected cost of melt is minimized subject to constraints requiring
that during the whole melt process the average melt composition satisfies the given
bounds and that the final product satisfies these boundes for all considered scenar-
ios. In the last stage, full utilization of added materials is assumed again.

Let us point out that both models introduced in this Section need further exten-
sions (e.g., involving technological constraints, inventory constraints, and uncertain
scrap composition or for more than three stages) to be a more realistic tool in the
melt control.

At the end, two specific problem and model properties have to be underlined:
Stages are not defined by modeler’s choice because they are given by the

modeled production process.
Because the filled furnace cannot be enlarged or emptied during the process

(contrary to the assumed unlimited borrowing and lending possibilities in financial
applications, to the simplifying assumptions of the production planning problem
4.5 or to trading possibilities on an open electricity market in 4.7), the related hard
constraints imply the fact that relatively complete recourse cannot be assumed.
Hence, feasibility of the first-stage solution must be analyzed.
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II.5 APPROXIMATION VIA SCENARIOS

scenarios and their generation, various levels of the available information, exam�

ples of specific models used for scenario generation (vector autoregressive model,

Black�Derman�Toy model, Vaš�ček model), sample information, postoptimality and

output analysis (consistency, contamination and minimax bounds), scenario tree

generation (clustering, sampling, fitting moments)

5.1 Introduction
A typical, even though not quite realistic assumption in the general formula�

tion of the stochastic programming models is that the probability distribution P

of the random element is known. With P known, the main stumbling block

for algorithmic solution of stochastic programs, see problem (3)–(4) in Chapter

II.2 for instance, is the necessity to compute repeatedly at least the values of the

multidimensional integrals of the involved functions, which themselves need not be

defined explicitly. To overcome this problem, various approximation schemes, both

stochastic and deterministic ones, were designed: One can replace the function

by a simpler one or approximate the true assumed probability distribution P or

both. The goal is to get a numerically tractable optimization problem, or a se�

quence of such problems, whose solution would be acceptable as an approximation

of the solution of the true underlying decision problem.

When approximating the true probability distribution P, one should exploit the

structure of the problem and also the available information about P that comes

from theory, historical data and experience. There are relatively many prospects

if the approximation of P reduces to the approximation of (possibly many) one�

dimensional probability distributions: Besides approximation by a discrete prob�

ability distribution, one can use piecewise uniform distributions (histograms) or

approximate the density by kernel estimates, etc. In the multi�dimensional case,

approximation by discrete probability distributions is the prevailing approach. It

means that the true probability distribution P is replaced by a discrete probability

distribution concentrated on a finite number of points, say, with prob�

abilities The atoms of this discrete probability distribution are the

scenarios which enter the scenario�based formulations of the stochastic program�

ming problems.

The origin of scenarios can be very diverse; they can be atoms of a known genuine

discrete probability distribution, can be obtained in the course of a discretization

/ approximation scheme, by simulation or by a limited sample information, they

can result from recognized regulations or from a preliminary analysis of the prob�

lem with probabilities of their occurrence that may reflect an ad hoc belief or a

subjective opinion of an expert, etc.

The use of scenarios as a representation of uncertainty is not limited to applica�

tions of multiperiod and multistage stochastic programs; several other possibilities

were introduced in Chapter II.3. In addition, scenarios are built to evaluate the

average performance of an already proposed sequence of decisions, to get the covari�

ance structure of intersecurity returns required, e.g., for the Markowitz model, or to
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compute durations for stochastic versions of duration matching and immunization
models for asset/liability management problems.

Naturally, one is interested in results for the true underlying problem. Various
techniques of output analysis for the obtained solution of the approximate problem
help to draw inference about the solution of the true problem. They must be tailored
to the structure of the solved problem and to the approximation technique which is
supposed to reflect the nature of the input data. The next item is the robustness of
the obtained approximate optimal solution and the optimal value: The procedure
should be robust in the sense that small perturbances of the input, i.e., of the chosen
scenarios and of their probabilities, should impair the outcome only slightly so that
the obtained results remain close to the unperturbed ones and that somewhat larger
perturbations do not cause a catastroph. The importance of robust procedures
increases with the complexity of the model and with its dimensionality.

5.2 Scenarios and their Generation
We have introduced scenarios as atoms of the true discrete probability distri-

bution P or of that discrete probability distribution which approximates the true
one. However, the primary aim of scenario generation is to build a manageable
problem which will provide good decisions for the true underlying real-life problem.
This is an ambitious task in which compromise is needed between precision of the
approximation of the probability distribution P and the size and goal of the approx-
imate problem, which, moreover, often requires a specific form of the input (e.g., a
scenario tree for multistage problems). Generation of scenarios is problem specific
and it should reflect both the problem structure and the available information on
the underlying probability distribution. It is natural to use historical data (if any)
in conjunction with an assumed background model, to apply suitable estimation,
simulation and sampling procedures and also to reflect the opinion of the experts
based on their experience, heuristics, etc. For all these reasons the generation of
scenarios cannot be reduced solely to forecasting the future development of the
complex system under consideration.

Concerning the level of the available information, four basic types of problems
may be distinguished:

5.2.1 Full Knowledge of the Probability Distribution

The probability distribution P is fully specified, hence, scenarios can be obtained
by sampling from this probability distribution or by application of a discretization
or simulation scheme. Related to the chosen approximation technique, there are
various possibilities how to draw conclusions about the optimal solution of the
original problem. In its pure form this situation appears mostly in the context of
testing the designed models and/or the performance of newly developed solvers.
The assumed fully known probability distribution (mostly normal, uniform or dis-
crete one) may stem equally from a theoretical model, from historical data or from
an experience of an expert. An example is generation of scenarios for the ALM
model [104] discussed in Section II.4.3.
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5.2.2 Known Parametric Family

In this case, only a parametric family of probability distributions based on a
theoretical model is specified while the parameters of the probability distribution
P are estimated from the available data. The choice of the parametric form of
the probability distribution or of the stochastic process corresponds to the choice
of the model, the estimation of parameters to the calibration of the model and a
subsequent simulation, sampling or discretization procedure follow similarly as in
5.2.1.

This type of information appears frequently in stochastic programming problems
in finance and also in water resources management and planning. This is partly due
to the fact that the relevant stochastic models of interest rates and assets prices or
those of water inflows came to the attention relatively early and both discrete and
continuous time models have been well developed and supported by time series of
historical data. The most common situation is that the random element is in fact
a stochastic process, it explains the use of the word “scenario”.

5.2.3 Vector Autoregressive Models

As an example of the discrete time stochastic models we introduce the vector
autoregressive model of the first order

where the eigenvalues of H fulfill and are jointly independent. The
parameters are estimated from historical data and possibly further adapted
to distinct sources of information (e.g., experts’ forecasts or values of related global
parameters). Let be these estimates.

Starting with a known vector and using the calibrated model (1), scenarios
are constructed step by step as

where is obtained as an observation from by a suitable discretization or
simulation technique.

Similarly, also autoregressive and ARMA models of higher orders or econometric
models with lagged variables may be applied. Factor analysis can be used to get a
small number, say M, of one-dimensional independent factors such that
the covariance matrix of is approximately equal to the elements of
matrix C are time-independent factor loadings.

5.2.4 The Black-Derman-Toy Model

This model introduced in [22] is one of frequently used discrete time models
aimed at generation of interest rate scenarios. Its primary purpose was to provide
a tool for pricing bond options. The model assumptions can be summarized as
follows:

The short interest rates are lognormally distributed, the volatility of their
logarithms depending only on time.

(1)
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Binomial approximation of the normal distribution of ln with time depen-
dent drift and volatility is used at all selected time instants

In the binomial lattice, the short interest rate can move up or down with equal
probability over the next time period; the pairs of “up - down” and “down - up”
moves from any fixed state at a time point result into the same value of short
interest rate at the time point (the path independence property).

As a result, at each time point there are possible states and for the given
horizon T there are equiprobable scenarios. Each of them can be represented
by a vector with T – 1 zero-one digits, say

and the probability of each scenario is The digit 1 at the tth
position corresponds to the “up” move, the digit 0 corresponds to the “down” move
of the one-period short term interest rate in the step The corresponding one-
period short term interest rates for scenario s and for the time interval are
then given as

That is, is a realization of a binomial random variable, its value equals the
number of the “up” moves for the given scenario which occur at time points

See Figure 4 for the lattice with the scenario corresponding to vector
marked out.

The base rates and the volatility factors for all are computed numerically
so that the obtained binomial lattice fits the yield curve and yield volatilities for
zero-coupon government bonds at a given date; this input should be available for
all maturities.
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The Black�Derman�Toy model is currently close to the industry standard. Fo

its application see Chapter II.6.

r

Continuous time stochastic models are mostly represented by stochastic differ�

ential equations of the type

where W is the Wiener process and coefficients fulfill some

assumptions. For instance, solutions of (3) with independent of and satisfying

certain integrability conditions are known as diffusion processes; see III.2.2.

5.2.5 Vaš�ček’s Model for Spot Rates

Consider the following form of the model introduced in [164]:

with a positive constant. It corresponds to the choice

and in (3). It is the so called Ornstein�Uhlenbeck process, a Markov

process with normally distributed increments. In contrast to the Wiener process,

it has a stationary distribution. The instantaneous drift forces the pro�

cess towards its long�term mean the so called mean reversion property, and the

constant instantaneous variance makes it to fluctuate around in a continuous

but erratic way. This also means that, contrary to the Black�Derman�Toy model,

negative values of cannot be excluded.

To apply the model for generation of scenarios of interest rates means to estimate

the parameters and to choose a suitable time discretization Then

with an arbitrarily given initial value and with independent, N (0,1).

There are various extensions and modifications of the initial Vaš�ček model; al�

ternative choices of coefficients provide other one�factor models.

More dimensional continuous time models result by considering multiple sources of

uncertainties, e.g., default possibilities of corporate bonds, prepayment of mort�

gages, influence of inflation on indexed bonds, random behavior of volatilities, etc.

The stochastic differential equations may include more that one factor, i.e., differ�

entials of several independent or correlated Wiener processes instead of one. This

helps for instance to distinguish differences in behavior of the short term and long

term rates. Also the Wiener process can be replaced by the Poisson process to

reflect jumps of the interest rates process, etc.

5.2.6 Multidimensional,  Multifactor  Models

An example is the model of evolution of the vector

of key zero coupon interest rates
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with N factors - the intercorrelated Wiener processes see [87]. Principal com-
ponents method is used to reduce the dimension of the problem. As a result, the
initial N-dimensional Wiener process with correlation matrix    is represented by

non-correlated components and for

with time independent loadings The advantage is that the N - dimen-
sional scenario can be now obtained by generating repeatedly n independent normal
variables

5.2.7 Sample Information

The available sample information about the true probability distribution is based
mostly on observed past data. If the data are homogeneous enough, if they can
be viewed as independent, identically distributed random variables (vectors), the
use of the empirical distribution is straightforward. Otherwise, one could think
of a preprocessing procedure to treat the missing data, smoothing, etc., or of an
adjustment to fit specific values of (sample) moments.

The simplest idea is to use as scenarios the past observations obtained under
comparable circumstances and assign them equal probabilities; see for instance
[157] for scenarios of future electricity demand in a given period of year. Similarly,
[121] suggests to construct scenarios of joint assets returns for a T-period model as

distinct T-tuples of their subsequent observations from n previous periods
and to assign them equal probabilities,

5.2.8 Low Information Level

The above mentioned procedures fail if there are no reliable data. Under such cir-
cumstances, scenarios and their probabilities are mostly based on experts’ forecasts
or even on governmental regulations. For instance, to test the surplus adequacy of
an insurer, New York State Regulation 126 suggests seven interest rate scenarios to
simulate the performance of the surplus. Postoptimality (are the seven scenarios
enough?) and stability analysis of the obtained solutions is crucial even though
it is hardly possible to draw conclusions about the optimal solution of the true
underlying problem.

Under the heading of “low information level” we can also include the cases when
the true probability distribution is described only by several moment values or/and
some simple qualitative properties.

5.2.9 Miscelaneous Sources of Uncertainties

In most applications one can trace interactions of various information levels and
the best thing to do is to use all available information. Past information is often
combined with experts’ opinions and this is probably one possible origin of the
postulated form of the true probability distribution. Different information levels
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and different time-scales of collecting and recording data may apply to distinct
parameters of the model separately.

In portfolio management, different classes of securities require different treat-
ment, deposits and liabilities can be driven by conceptually different external fac-
tors such as mortality rates. For management of a new pension plan, for instance,
the random factors which run the bond market can be well described by a rele-
vant interest rates model, basic requirements on premium and pension payments
are partly known thanks to extensive demographic data whereas the uncertainty
relates to the future preferences of clients. The scenarios and their probabilities are
then based on experts’ forecasts, they may even reflect only certain extremal cases.

If there are independent sources of uncertainties the number of scenarios needed
to represent their mutual influence on the results is the product of the number of
scenarios used to represent the impact of each source separately.

5.3     How to Draw Inference about the True Problem?
Possibilities of drawing conclusions about the optimal solutions and the optimal

value of the true stochastic program using the results of the approximate scenario
based program depend essentially on the structure of the solved problem as well
as on the origin of scenarios. Generally speaking, the output can hardly be more
precise than the input and it is easier to answer questions concerning precision of
the obtained optimal values than those concerning the sets of optimal solutions.

We shall discuss briefly the general methodological devices which can be applied
to the analysis of the scenario based problems that arise as an approximation of the
true problem. The main tools are selected methods of probability theory, asymp-
totic and robust statistics, simulation methods and parametric optimization, the
main sources of errors come from simulation, sampling, estimation and also from
incomplete or unprecise input information. To simplify the exposition, let us con-
centrate on stochastic programs written in the form (compare with (6) in Chapter
II.2 and with (20) – (21) or (25) in Chapter II.3)

on a closed nonempty set which does not depend on P. This notation is
used to underline the dependence of the problem on the chosen probability distri-
bution P of We denote

the optimal value of (4),
the set of optimal solutions of (4), not necessarily

a singleton,
the unique optimal solution of (4) in case that is a singleton.

We accept that the true probability distribution P has been replaced by an-
other probability distribution obtained by parametric or nonparametric methods
and by sampling, discretization and simulation techniques. The precision of the
approximation can be quantified by means of a suitable distance of the two prob-
ability distributions.  The question is how the chosen / evaluated precision of the
approximation influences the differences of the optimal values and
the distances of the sets of optimal solutions for the true problem and
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for the approximate one, respectively. This problem setting falls into the frame
of quantitative stability of parametric programs and presentation of the relevant
results is beyond the scope of this book. Instead, let us start with the notion of
weak convergence to get qualitative stability results.

5.3.1 Definition. Let be probability measures on Borel sets of
the same Euclidean space Then is said to converge weakly to P as if
for any bounded continuous function

To obtain continuity of expectation functionals
means to restrict the class of the considered functions to bounded con-
tinuous functions of or to restrict the set of probability measures to a subset
with respect to which the functions are uniformly integrable. In addition,
we need convergence results also for the optimal values and for the
optimal solutions.

5.3.2 Classical Consistency Results

Under assumptions that is a continuous bounded function of for every
and weakly, the pointwise convergence of the objective functions in

(4) follows from Definition 5.3.1:

If    is compact and the convergence is uniform on    we get immediately

If, moreover, is convex and is strictly convex on for all it is
easy to get in addition the convergence of the (unique) optimal solutions
of to the unique optimal solution of the initial problem (4).

5.3.3 Example – One-Sided Bias. Consider the case where are empirical
probability distributions obtained by simple random sampling from P. It means
that is the relative frequency of the event among independent
copies of and, accordingly, it is a random variable. However, the weak
convergence of to P still holds true with probability 1 (that is, for almost all
sequences of realizations ).

In this case, it is possible to prove that the obtained optimal values have
a one-directional bias in the sense that

Indeed, for any fixed               the function values                are independent, identi-
cally distributed and
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5.3.3.1 Exercise. An empirical point estimate of follows from the Law
of Large Numbers and an asymptotic confidence interval can be obtained from the
Central Limit Theorem.

Prove that Construct the asymptotic confidence interval
for

An upper bound for is the expected value evaluated for an
arbitrary Construct a point estimate of and an asymptotic
confidence interval in a similar way as before. The resulting bounds are important
for designing stopping rules and for tests of quality of a “candidate” solution

To get asymptotic results under less stringent assumptions concerning the ap-
proximating probability measures and the functions requires a different method-
ology which also extends to properties of the sets of optimal solutions. A simpli-
fication is possible whenever the general stability properties with respect to the
probability distribution can be reduced to a finite dimensional parameter case. An
example are probability distributions of a given parametric form (cf. 5.2.2) and the
results concern differences between the optimal values and obtained
for the true parameter value and for its estimate, respectively, etc.

5.3.4 Asymptotic Results for a Parametric Family

Assume that the true probability distribution P is known to belong to a para-
metric family of probability distributions indexed by a parameter
vector belonging to an open set The objective function now depends on

and (4) is a standard parametric program
Let us assume that the optimal value exists for all and is a continuous
function of on a neighborhood of the true parameter value, say, Having a
statistical estimate of and knowing its asymptotic properties we can obtain
parallel asymptotic properties of the optimal value

Whenever with probability 1 or in probability, then
with probability 1 or in probability, respectively.

This assertion can be complemented by the rate of convergence based on the

Let be an asymptotically normal estimate of , i.e., and
be continuously differentiable at with Then is asymptotically

normal,

We shall apply this result in Chapter II.7. Similar assertions can be obtained
for optimal solutions provided that these solutions are unique, continuous, dif-
ferentiable in However, even uniqueness of optimal solutions requires special
assumptions which are not always realistic and their verification is not straightfor-
ward.

Low information level corresponds to the case when the true probability distri-
bution is known to belong to a nonparametric family of probability distributions
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defined, e.g., by fixed values of some moments, by a fixed support or by qualita-
tive attributes such as unimodality. Also the case of scenarios designed by experts
without any obvious relation to the true probability distribution will be included
into this category.

5.3.5 Moment Bounds

In the first case, one may use the results concerning the moment problem: Re-
quired consistent moment conditions can be attained by discrete probability distri-
butions carried by a relatively small number of atoms. These probability distribu-
tions qualify as natural discrete approximations of the true probability distribution
and given the available information, they provide a sensible choice of scenarios and
probabilities. Moreover, one can try to construct minimin and minimax bounds on
the optimal value of the true program:

Under special assumptions about the family and about the structure of the
underlying stochastic program (4), e.g., for the random objectivefunction
convex or concave, and/or separable with respect to , this approach provides
the best case and the worst case discrete probability distributions carried by fully
specifiedscenarios.

A well-known simple example is related with the Jensen inequality. Assume that
is convex for all and that the expectation exists. Then the

Jensen inequality applies, Consider now family of
probability distributions with a fixed expectation, say Jensen’s
inequality provides a lower bound

valid for all and for all This bound is attained for the de-
generated probability distribution   concentrated on Notice that this worst
case probability distribution does not depend on x, a property which cannot be
in general expected. The above discussion implies that, in the considered case,
the lower bound in (6) is the optimal value of the deterministic convex program

5.3.6 The  Contamination  Method

This method applies again to stochastic programs rewritten into the form (4)
and it does not require any specific properties of the probability distribution P. It
is suitable for the postoptimality analysis as it may be used to support conclusions
about resistance of the already obtained optimal output to changes of scenarios and
their probabilities and to check possible influence of out-of-sample scenarios.

Inclusion of additional scenarios or branches of the scenario tree means to pass
from the initial probability distribution P to
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the probability distribution    contaminated by the probability distribution     which
is carried by the additional scenarios or branches of the scenario tree. For fixed
probability distributions        the expected value in (4) computed for the con-
taminated probability distribution is linear in the parameter and under mild
assumptions, its optimal value

is a finite concave function on [0,1] with a derivative

5.3.6.1 Exercise. Let be convex compact and assume that
is continuous in for all (a simplifying assumption). Prove that

is concave on [0,1].

Bounds on the optimal value for an arbitrary follow by properties
of concave functions:

An upper bound for the derivative equals where x(0) is
an arbitrary optimal solution of the initial problem (4) obtained for the probability
distribution P; in case of the unique optimal solution, this upper bound is attained.
Hence, the evaluation of bounds in (8) requires the solution of another stochastic
program of the type (4) for the new probability distribution   to get and
evaluation of the expectation        at an already known optimal solution of
the initial problem (4) but for the contaminating probability distribution

Contamination technique can be useful also in analysis of results obtained under
a fully specified probability distribution P. It is another example of reduction of
the stability problem to a finite dimensional parameter case. Small values of the
contamination parameter are typical for various stability studies. The choice
of may reflect the degree of confidence in expert opinions represented as the
contaminating probability distribution     and so on. By a suitable choice of the
contaminating probability distribution      one can study the influence of including
additional “out-of-sample” scenarios and emphasize the importance of a scenario
by increasing its probability.

5.3.6.2 Example. Consider the problem of investment decisions in the debt and
equity markets in the US, Germany and Japan. Historical data enable to construct
many scenarios concerning returns of investments in the considered assets cate-
gories. We denote these (presumably equiprobable) scenarios by
and let P be the corresponding uniform discrete probability distribution. Assume
that for each of these scenarios, an outcome of a feasible investment strategy, say,

can be evaluated as Maximization of the expected outcome
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provides the optimal value and an optimal investment strategy
The historical data do not cover all possible extremal situations on the market.

However, experts in the investment committee may foresee such events. Assume
that they agreed on one additional scenario capturing this extremal event. This
scenario is the only atom of the degenerated probability distribution    for which

contamination method explained above is based on the probability distribution
carried by the scenarios and on the experts scenario with
probabilities for and The probability assigns a weight
to the view of the investment committee and the bounds (8) (multiplied by -1) are

equiprobable scenarios The contamination parameter
relates again to the degree of confidence to the expert’s view.

Also the structure of the problem influences essentially the possibilities of an
adequate scenario generation. The most complicated problems – the multistage
stochastic programs with interstage dependent coefficients – will be discussed in
the next Section.

5.4     Scenario Trees for Multistage Stochastic
Programs

For scenario-based multistage stochastic programs one assumes that the prob-
ability distribution P of is concentrated on a finite number of scenarios

having probabilities Partial sequences
scenarios at stage are listed as as already intro-
duced in Section II.2.2, together with their path probabilities and arc (transi-
tion) probabilities The set of all scenarios consists of
their probabilities equal the path probabilities and are obtained as products
of the corresponding arc probabilities.

The described structure of the input data is represented as a scenario tree. We
can think of it as of an oriented graph which starts from a root (the only node
at level 0) and branches into nodes at level 1, each corresponding to one of the
possible realizations of and the branching continues up to nodes at level T.
This arrangement is based on the one-to-one correspondence between the partial
sequences and the nodes of the tree at stage t for t = 2 , . . . , T. This means
that for any node at level t, each of the new observations must have only one
immediate predecessor i.e., a node at level t – 1, and a (finite) number of
descendants which result in nodes at level compare with (11)–(12)
in Section II.2.2. The number of descendants of all nodes at a given level
of the scenario tree may be equal. If this occurs for all stages the structure of such
balanced tree can be coded as a product of numbers of descendants of the root and

the best investment strategy is         - an optimal solution of The

valid for all They clearly indicate how much the weight interpreted as
the degree of confidence to the investor’s view, affects the outcome of the portfolio
allocation.

The impact of a modification of every single scenario according to the investor’s
views on the performance of each asset class can be studied in a similar way. We use
the initial probability distribution P contaminated by     which is carried now by
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of nodes at levels 1,... , T – 1. For instance describes the structure of a
scenario tree with 3 branches from the root, 2 branches from nodes at the first and
second levels and no branching at the third level. The total number of scenarios
equals the numerical value of this product, S = 12; see Figure 5. Similarly, Figure 1
depicts a balanced tree of the type

Two special cases of the scenario tree are to be pointed out:

For all stages t = 2, . . . , T, the conditional probability distributions
are equal to the marginal probability distributions the interstage indepen-
dence; in this case, the scenario generation methods apply to each stage separately.

For all stages t = 2 , . . . , T, the supports of conditional probability distributions
of conditioned by realizations are singletons. This means that the scenario
tree is nothing else but a ”fan” of individual scenarios which occur
with probabilities and, independently of the number of periods, the
multiperiod stochastic program reduces to the two-stage one; see Figure 6.

Except for the two special cases mentioned above, to build a representative
scenario tree seems to be presently the crucial problem for applications. It can
be approached from the point of view of a suitable data manipulation, it should
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reflect both the underlying probability assumptions and the existing data, and be
linked with the purpose of the application. It often asks for compromises between
a manageable problem size and the desired precision of the results. In this context,
the important problems are possibilities of trimming the tree, designing strategies
for refining the tree, or tests of the influence of including additional scenarios and
stages; one of the tools is the contamination technique introduced briefly in 5.3.6.

Number of nodes of a scenario tree grows exponencially with the number of
stages. Therefore, an alternative data arrangement may be considered, obtained
for instance by relaxation of the requirement of unique predecessors at the previous
stages. For example, the Black-Derman-Toy binomial lattice, see Figure 4, assumes
a special recombining property of the data paths and consequently, the number of
nodes grows linearly in the number of time periods.

5.4.1 From Data Paths to a Scenario Tree

We shall focus now on generation of scenario trees for the cases when the main
random factors have been detected and enough data paths of their realizations can
be generated in accordance with a parametric or nonparametric model, see 5.2.1 –
5.2.7. In general, these data paths do not display any nonanticipativity property
and do not necessarily follow the time partition imposed by the stages of the sto-
chastic programming formulation. They are used to generate the coefficients of the
solved problem, e.g. the matrices in stochastic
linear program (8) – (9) in Chapter II.2.  For example, industrial project evaluation,
as well as asset and liability management will often include an interest rate process
as one of random elements. Long term pension fund and insurance models also
have to take into account the inflation process. Whereas the data process can be
modeled solely according to theoretical and empirical assumptions, the coefficient
process for scenario-based multistage stochastic programs is by construction a dis-
crete time path-dependent process defined mostly as a deterministic transformation
of the data process.

Hence, the first important step is to delineate the initial structure of the scenario
tree, i.e., the horizon, the number and the character of stages and the branching
scheme. The stages are characterized by the possibility to take additional decisions
based on a newly released information. Such information can be obtained at a
specific date (expiration of an option), every day, week, month, quarter, year, etc.
The horizon of the model can be relatively large when measured in these time units
whereas for computations, it is impossible to use a scenario tree with too many
stages; the majority of contemporary real-life models use 4 –10 stages. The stages
do not necessarily correspond to time periods of an equal length. Typically, the
first stage relates to a relatively short time period whereas the last one may cover
several years.

For initial screening studies the degree of aggregation of possible future out-
comes, which results in number of branches from the individual nodes, is quite
high.   It can be verbally described as distinction of “high” and “low” or “up”
and “down” for branching into two descending nodes, “high”, “medium”, “low”
or “dry”, “medium”, “wet” for branching into three descending nodes.  Another
strategy is to use an extensive branching from the root leading to relatively many,
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say 10, nodes on level 1, use a modest branching from the nodes at the middle of
the tree and a relatively poor branching, e.g., into two descendants for the nodes
at the last levels of the tree. There are some hints concerning the minimal number
of descendants which come from problem specific requirements, such as necessity
to build a model without arbitrage opportunities or to fit some moments of the
probability distribution; see 5.4.7 and 5.4.8.

5.4.2 Clustering

Generating scenarios by procedures which do not account for the tree structure of
input data requires additional steps to build a scenario tree of a prescribed structure.
This has been done often by ad hoc crude methods, by cutting and pasting the data
paths in a more or less intuitive way. Another possibility is to apply cluster analysis.
It is easy to cluster according to the first component (or subvector) of and
to continue by clustering according to the second components (subvectors) of
the objects included into the created clusters, etc. To treat properly the interstage
dependences, consider instead a multi-level clustering scheme which exploits the
whole sequences of observed/simulated data

For each pair of scenarios evaluate a suitable dissimilarity measure, e.g.,

where are suitably chosen nonincreasing positive weights. This allows us to
give emphasis on differences at the beginning of the sequence.

Measures of dissimilarity among the compared objects are used in definitions
of the standard measures of dissimilarity of clusters and used subsequently in the
cluster analysis approaches; see e.g. [74]. The result is clusters,
represented by these can be the mean values or modal values
of the first components of the scenarios included into the relevant cluster.
Probabilities of equal the sum of probabilities of the individual

belonging to the respective cluster.
The clustering procedure continues for each cluster separately, starting with

the second component of the observations included into  or equivalently, with
the first component replaced by and so on.

Assume now that a scenario tree of a prescribed structure has been created. We
may think of the scenarios as of representatives of certain regions which cover
A natural question is: Could the approximation of the initial probability distribu-
tion by the discrete probability distribution corresponding to this scenario tree be
improved, i.e., is there a better representation given the prescribed scenario tree
structure? Such iterative procedure related with the ideas of cluster analysis is
suggested in [124].

5.4.3 Sampling Methods

Development of special sampling methods for creating scenario trees instead of
sampling individual scenarios first is another possibility. Markov structure of data,
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cf. the vector autoregressive model of the first order (1), can be exploited for condi-
tional sampling of scenarios in a way which takes into account the already created
structure of the tree. In this case, depends only on the preceding component

and on an additional random vector which is independent of the history

Contrary to (1), the transition matrix P may depend on Interstage independence
can be regarded as a special form of the Markov structure (9) with P the zero
matrix.

The Markov property (9) allows for a direct sampling from the probability dis-
tribution of at each node which corresponds to an already obtained realization
of Another possibility is to discretize the probability distribution of at a
given number of points and add the obtained realizations to the already known past
values of . The arc probabilities are fixed according to the used discretization
method.

5.4.4 Example. In the BONDS model 4.2 in Chapter II.4, data on one-year
yields on good grade municipal bonds of maturities and
years were available for a period of the past seventeen years. The yield curves of
the specified parametric form

where is the time to maturity, were considered. According to the analysis of the
results, the authors decided to determine the three parameters of the yield curve
(10) using only the one-year, 20-year and 30-year yields and to approximate the
remaining maturities by points on the fitted curve.

Monthly time series were used to determine the probability distribution of the
one-year changes in the one-year rates and the changes in the 20- and 30-year
rates were forecast conditionally on the one-year rate using two separate regression
models. The two regression equations were then used as deterministic functions to
obtain the one-year changes in the long rates from the estimated one-year changes
of the one-year rates.

Scenarios correspond to a discrete approximation of the obtained (normal) dis-
tribution of the one-year changes of the one-year rates concentrated at three points
– the expected value and the expected value ± standard deviation. The parame-
ters of the future yield curves are fitted for each branch of the obtained scenario
tree using the three maturities. The approximated future yield curve was used to
get the input coefficients of the designed model of the type (11) – (12) from Section
II.2.2.

Comparing this procedure with the general hints, the three stages correspond to
the planning horizon of three years, the chosen structure of the scenario tree,
was partly given by the limitations of the computational technology twenty years
ago.  Another reported structure used four stages covering two years by periods of
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3 months, 3 months, 6 months and one year which reflects the increasing uncer-
tainty about events more distant in the future. For the same reason, a five point
approximation of the probability distribution was applied for the first two levels
and a three point approximation for the remaining two levels of the scenario tree:
hence, the total scenarios.

As the main random factor, the one-year changes of the one-year rates were
selected, their probability distribution fitted from historical data, discretized and
used to generate the input coefficients. For testing the performance of the model
on historical data, only the information from the past seven years was used. The
first stage decision was accepted, and the model rolled over for one year forward,
i.e., the earliest year of the used data was dropped and the most recent year of data
was added.

In spite of many simplifications, the optimal BONDS portfolio outperformed (for
the same history of interest rates) the classical investment strategies including the
barbell portfolios based on immunization and the laddered portfolios which use a
forced diversification.

5.4.5 Sequential Importance Sampling-Based Scenario Generation

The recent sequential importance sampling method [35] elaborates further tech-
niques based on the Markov structure of data. It takes into account a given suitably
labeled tree structure already in the course of simulation. Moreover, the sequential
procedure can be adopted for an iterative refinement of the discrete representation
of the underlying continuous data process.

The framework is based on the definition of a scenario tree nodal partition matrix
that uniquely identifies the structure of the associated scenario tree.

The matrix, with the number of rows equal to the number of scenarios and the
number of columns equal to the number of stages, provides the necessary labeling
scheme for the specification of the index sets t = 2,... T, introduced in Section
II.2.2. In the iterative procedure, the matrix is an input to the conditional scenario
generator, and an output from the sampling algorithm. A balanced tree
structure would be described in the matrix as

where, row-wise, every scenario is explicitly labeled. The matrix can clearly accom-
modate any tree configuration in a straightforward way.

The sequential sampling algorithm is designed as an iterative procedure. It
requires initially the specification of the number of stages, T, the maximum number
of possible iterations, a stopping criterion and the initial scenario tree structure
described by the associated nodal partition matrix M. At every iteration, some
version of the stochastic program, such as (11) – (12) in Section II.2.2, is specified
and solved, the nodal values of the importance sampling criterion are evaluated
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along the tree and a new tree structure is defined through an update of the nodal
partition matrix.

The scenario generation procedure is general, and independent of both the math-
ematical characterization of the random data process and the adopted sampling
criterion. The most frequently used models for the data process cover the vector
autoregressive models, see 5.2.3, the random walk models - with or without drift -
with fine time discretization for short term decision problems and Gaussian noise,
see (3), and binomial or trinomial models, e.g., the Black-Derman-Toy model 5.2.4.

5.4.6 Problem Oriented Requirements

When building the scenario tree one tries to avoid as much as possible any
distortion of the available input information. Moreover, the goal of this procedure
does not reduce to an approximation of the probability distribution P but rather to
creating an input which provides applicable solutions of the real-life problem. This
means, inter alia, that problem oriented requirements should be respected. The
motivation comes from various problem areas.

• Scenarios based solely on past observations may ignore possible time trends or
exogenous knowledge or expectations of the user; see Example 5.3.6.2. Moreover,
scenarios coming from historical data need not be directly applicable. See [126]
for a scenario tuning procedure which helps to discover the information hidden in
indirect measurement results contained in past records on specific metal melting
processes.

In financial applications, one prefers that scenario-based estimates of future
asset prices in a portfolio optimization model do not allow arbitrage opportunities;
this may put additional requirements on scenario selection.

Explicitly formulated additional requirements concerning properties of the prob-
ability distribution may help. They can be made concrete through a suitable mas-
saging of the data to obtain the prescribed moments values, given a fixed tree
structure. This idea has appeared for instance in [27] where at the given stage of a
multistage stochastic program, the observed data were grouped and scaled to retain
the prescribed values of expectations and variances. One of the reasons was the
sought possibility of comparisons with the Markowitz mean-variance model.

We shall follow [80] who suggest to build the scenario tree in such a way that
some of statistical properties of the data process are retained, for instance, there
are specified expectations, correlation matrices and skewness of the marginal prob-
ability distributions of

5.4.7 Why Matching Moments?

The question of a possible representation of probability distributions by (infinite)
sequences of moments and approximating them using only a few moments goes
back to Chebyshev and is connected with the moment problem. Moreover, it is
possible to prove that given admissible values of moments, there exists a discrete
probability distribution with these moments and its support has at most m + 2
points. We refer to Chapter 5 of [130] for a brief introduction and selected results
in this direction. For our purposes it means that given values of certain moments
or expectations of continuous functions, say,
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there exists a modest number of scenarios and their probabilities
so that the moment values are retained, i.e.,

To get the scenarios and their probabilities means to find a solution and
of the system (11) extended for nonnegativity conditions on probabilities

and for the additional constraint This is a highly nonlinear numerical
problem.

The system of equations (11) can be further extended for other constraints on
selection of scenarios to represent certain strata, to cover extremal cases, etc.

5.4.8 Fitting Moment Values

For simplicity assume that is a two-dimensional random vector
with the first three moments of the marginal probability
distributions and with the covariance of their joint probability distribution. To
cover an important extremal case, we require in addition that for at least one
scenario, holds true. Let the discrete two-dimensional probability
distribution which matches the true one be carried by S atoms

with probabilities                 ,                    Hence, we search values  of pairs
and scalars such that

For S large enough and for consistent moments’ values, this nonlinear system has
a solution. For a small number of scenarios or for inconsistent moment values the
existence of solution is not guaranteed. Still an almost feasible solution can be
found by the goal programming technique, see II.3.1.10. This means that scenarios

and probabilities can be obtained for instance by solving a weighted least
squares minimization problem

minimize
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subject to

From the optimization point of view, problem (12) is non-convex and may have
many local minima. Nevertheless, the advantage of this formulation is that the
optimal value is zero if the data is consistent and S is large enough, but that the
optimal solution is also a good representation of data in the case of inconsistency;
recall the goal programming approach introduced in II.3.1.10. The parameters
and can be used to reflect importance and quality of data.

Inconsistency can appear if the information about moments comes from different
sources, if implicit specifications are inconsistent with explicit ones, etc. Consider
for instance a problem which covers two periods. Let us specify the variance of

and the variance of the sum But specifying these two variances, we
have said something about the correlation over time. If we now explicitly specify
correlations over time, we are likely to end up with two inconsistent specifications
of the same entity.

There is a numerical evidence in favor of performance of stochastic programs
based on scenario trees with moment values fitted at each node over those based
only on a few randomly sampled realizations. Moreover, taking into account the
wish to approximate well the expectation offunction which appears in the
objective function of the stochastic program (4), it is possible to search for extremal
scenarios, the atoms of the worst or best discrete probability distributions which
fulfill the moment conditions (11). These probability distributions appear in the
lower or upper bounds for the expected value of at a point x or in the
bounds for the optimal value (6). They are valid for all probability distributions
with the given moment values, hence also for the true probability distribution.
Their construction requires that certain convexity properties of hold true.

5.4.9 Example – The Edmundson-Madansky Bound. Let be a bounded
convex polyhedron in and assume that for
all is a convex function of on Let the probability distribution
P on be described only by the condition with (consistence con-
dition); denote the family of such probability distributions by For an arbitrary
fixed            consider a linear function                            such that

Evidently, forall probability distributions
Moreover, thanks to the assumed convexity property, the above infinite dimensional
system of inequalities can be reduced to the finite dimensional system of constraints
on coefficients a, b :
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Hence, the sharpest upper bound for the Edmundson-Madansky bound
(cf. [110]), can be obtained by solving the linear program

subject to (13). Notice also that the optimal solutions of the dual linear program
to (13), (14)

subject to

identify fully the probability distribution for which the expected value
attains its maximum with respect to all probability distributions : by duality,
there is a worst case probability distribution carried by at most extremal points

with positive probabilities which solve the dual problem.
In the special case of a nondegenerated closed interval and

there is a unique feasible solution of the dual problem,

and is the tight upper bound for
for all probability distributions In this case the corresponding worst case
probability distribution does not depend on For evaluation of the
minimax bounds (6), this is an attractive property:

where the upper bound is the optimal value of a scenario based stochastic pro-
gram and the lower bound is the optimal value of the deterministic expected value
problem.

This bounding technique can be modified to a Cartesian product of sim-
plices, i.e., of bounded convex polyhedra whose points have uniquely determined
barycentric coordinates in their representation via extremal points. If
conv is a simplex, then there is a unique solution of

for an arbitrary An example is
a closed interval in considered above.

For all of these results, convexity of the random objective function with
respect to plays an essential role; consider Exercise II.2.1.1 once more.
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5.4.10 Conclusions

We have presented several techniques for generating scenario trees for multistage
stochastic programs of a general structure.

The common starting point for all approaches is the selected or prescribed num-
ber of stages and their allocation. The branching scheme may be developed sequen-
tially. Otherwise, the approaches are tailored to the available input information:

In case of an external scenario generator, cluster analysis can help to build the
scenario tree.

When using a well calibrated stochastic model or its time discretization, the
tree structure can be built within an importance sampling procedure.

In cases of a low information level and for specific requirements we suggest
to build the tree in such a way that the known relevant information (e.g., some
prescribed moments of the marginal and conditional probability distributions) is
recovered.

Still, it is impossible to provide a general recipe for generating scenario trees.
All introduced methods leave a space for the method, problem, data, solver, and
computer specific considerations. Within the steps of each method, there are choices
to be made. For example, we must choose a clustering technique, an importance
sampling criterion, or weights and distances used in various goal programming
versions of (12).

Particular requirements of real-life applications are for instance the no-arbitrage
property, the consistency with past records and reflection of an exogenous knowl-
edge of experts or a foresight. The last of these specific requirements can be treated
by the contamination method.
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II.6 CASE STUDY: BOND PORTFOLIO
MANAGEMENT PROBLEM

scenario-based multiperiod two-stage stochastic program, stability properties, sce-
nario generation, data, numerical results, out-of-sample scenarios, errors due to
estimation

6.1 The Problem and the Input Data
The problem considered here is preserving the value of a bond portfolio of a

risk averse or risk neutral institutional investor over time. This is a problem of
allocation and management of resources, not of trading. It may include additional
features, e.g., presence of fixed or uncertain external inflows or outflows in the fu-
ture or a required balance between assets and liabilities. There are various options
concerning the choice of an appropriate model, starting with deterministic dura-
tion based immunization models or dedicated bond portfolio management models
formulated in Chapter I.6, through their simple stochastic analogs, e.g. Example
II.1.2, or tracking models introduced in Chapter II.3, up to multistage stochastic
programming models discussed in Chapter II.4.

Why not to rely on the duration based immunization models? A good answer is
the following quotation, cf. [90]:

“Many years ago, bonds were boring. Returns were small and steady.
Fixed income risk monitoring consisted in watching duration and avoid-
ing low qualities. But as interest-rate volatility has increased and the
variety of fixed income instruments has grown, both opportunities and
dangers have flourished...”

Yield curves are not flat, do not move in a parallel way, the interest rates are
not constant and an investment in long maturity bonds requires an active trading
strategy. These are the reasons that has led us to an exploitation of multiperiod
stochastic programs with the main random element to be included - the evolution
of the short interest rate over time.

Given a sequence of equilibrium future short term interest rates valid for the
time interval the fair price of the bond at time t just
after the coupon was paid equals the total cash flow generated
by this bond in subsequent time instances discounted to t :

where T is greater or equal to the time to maturity.
However, the considered time points need not coincide with the dates of coupon

payments. Also the sequence of the future short term rates that determines the
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prices (1) is not known precisely, but prescribed ad hoc or modeled in a probabilistic
way. The cash flows need not be known with certainty; this is for instance the
case of indexed bonds, bonds with options or default. Hence, the formula (1) should
be extended for the accrued interest and revised to take into account the effect
of options and other risks related with the bond. The resulting selling and
purchasing prices do reflect also the transaction costs and the bid/ask spread.

Assume for simplicity that the only random factor which influences the fair prices
is the evolution of short term interest rates.  This is then the data process assumed
to be governed by a discrete probability distribution P of T-dimensional vector
of the short rates where (the rate valid in the first period)
is supposed to be known. The possible trajectories of (scenarios) are indexed as

with probabilities
The bond portfolio management problem concerns the Italian bond market

which, prior to the European Monetary Union, was the fourth largest fixed-income
market in the world. The government fixed-income securities represented more than
85% of this market and they included zero-coupon bonds of maturities up to 2 years,
coupon bonds without option (the so called BTPs), with different maturities (3, 5,
10 and 30 years) issued two times per month through a marginal auction without
minimal price, floater bonds, there used to be puttable bonds (CTOs) etc. There
are futures and options on some of BTPs and also bonds with maturities between 3
and 30 years issued by corporations. See Table 1 for BTPs traded on September 1,
1994, their maturities and yields. The yields are obtained from the quoted prices
and the accrued interests. The size and liquidity of the market provides a sound
basis for application of various models of interest rates and for their calibration; its
liquidity can be taken for granted when designing models which admit rebalancing
strategies.
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6.2 The Model and the Structure of the Program
The model designed below is a two-stage multiperiod stochastic program, its

formulation allows for the possibility of intertemporal rebalancing the portfolio.
Let

be indices of the bonds and the dates of their maturities,

the discretization of the planning horizon;
the initial holdings of bond (in lots);

the initial holding in riskless asset (in cash);
cash flow generated under scenario from the unit quantity of bond at time

and are the selling and purchasing prices of bond at time for scenario
obtained from the corresponding fair prices (1) adding the accrued interest

and subtracting or adding scenario independent transaction costs and spread; the
initial prices and are known constants, i.e., scenario independent;

is an external cash flow at time corresponds to an outflow due to
liabilities, stays for external inflows;

are quantities of bond purchased / sold at the beginning of the planning
period, i.e., at

is the quantity of bond held in portfolio after the initial decisions
have been made.

All first-stage decision variables are nonnegative and subject to con-
servation of holdings,

and

where the nonnegative variable denotes the surplus. Notice that in the first
stage, no borrowing is permitted.  This limitation together with the assumed pos-
itive market value of the initial portfolio, implies that the set
of the feasible first-stage solutions is nonempty and bounded. The same property
holds true also in case that a restricted borrowing possibility in the first stage is
permitted.

The second-stage decisions on rebalancing the portfolio, borrowing or reinvest-
ment of the surplus depend on individual scenarios. They have to fulfill constraints
on conservation of holdings in each bond at each time period and for each of sce-
narios

where denote the quantities of bond purchased, sold, held in the port-
folio at time under scenario and constraints on rebalancing the
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portfolio at each time period

with The variables describe the (unlim-
ited) lending/borrowing possibilities for period under scenario  and the spreads

are model parameters to be fixed. Non-zero values of account for the dif-
ference between the returns for bonds and for cash. Assume that i.e., there
is a positive cost of borrowing.

The optimization problem is maximizing the expected utility of the final wealth
at the horizon

subject to constraints (2)–(5) and nonnegativity constraints on all variables, with

The multiplier is fixed according to the problem area. For instance, may
be scenario dependent and values take into account the debt service in the
future. In case of preservation of portfolio value (with no liabilities considered) or
for an investment project terminating at time an arbitrarily large value of
plays a role of a penalty for borrowing at the end of the accounting or planning
period.

Because of the possibility of reinvestment and of unlimited borrowing, the prob-
lem has always a feasible solution. It is a multiperiod two-stage stochastic program-
ming model with random relatively complete recourse and with nonlinearities in
the objective function. The existence of optimal solutions is guaranteed for a large
class of utility functions that are increasing and concave which will be assumed
henceforth. Moreover, for strict inequalities and

the optimal solutions satisfy

It means that at optimality there is no unnecessary trading and borrowing, which
is a natural property.

We obtain a large scale deterministic program with a concave objective func-
tion and numerous linear constraints. The size and the numerical values of the
coefficients of the program result from the application and the available data: the
choice of bonds, their characteristics (initial prices and future cash flows) and initial
holdings, from the scheduled stream of liabilities, transaction costs and spread and
from the way how scenarios of future interest rates are generated and sampled.  The
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main outcome is the optimal value of the objective function (the maximal expected
utility of the final wealth) and the optimal values of the first-stage variables

for all In a dynamic setting, this decision is applied and, at the
end of the first period, the model is solved again for the changed input information
on holdings and on scenarios of interest rates; this is the rolling forward technique.

Assume that the portfolio consists of default free, liquid bonds with maturities
all cash flows are after tax, the transaction costs and bid/ask spreads

are constant.
The following reformulation of the problem is useful for stability and postopti-

mality analysis. Assume that an initial trading strategy determined by scenario
independent first-stage decision variables for all has been ac-
cepted, then the subsequent scenario dependent decisions have to be made in an
optimal way regarding the goal of the model. It means that given the values of
the first-stage variables and with components the required
maximal contribution of the portfolio management under the          scenario to the
value of the objective function is obtained as the value of the utility function com-
puted for the maximal value of the wealth attainable for the scenario
under the constraints of the model, i.e., the utility of the optimal value of the
linear program

subject to

Denote the corresponding maximal value by and rewrite the
program (2) – (7) as

subject to nonnegativity constraints and subject to (2)–(3). Scenarios enter now
only the objective function (12).

The remaining part of this section reviews results on the stability of the problem
(2)–(7), or (2), (3), (12), which are independent of the way how the scenarios of
interest rates were generated and selected.
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6.2.1 Out-of-Sample Scenarios

Assume that the stochastic program (2)–(7) has been solved for a fixed set of
scenarios and that the influence of including other out-of-sample
scenarios should be considered. Such problem can be related to the “what-if”
analysis, to various stability and sensitivity studies, to incorporating investors’
views, etc. One could rewrite the program (2)–(7) for the extended set of scenarios,
with additional variables and additional constraints of the type (4), (5), (7) and
solve it. Another possibility is to use the form (2), (3), (12) whose set of feasible
solutions is not influenced by inclusion of additional scenarios. The additional
scenarios appear only in the objective function which is an expected value of the
utility of the final wealth under a discrete probability distribution carried by a finite
number of scenarios. Being an expected value, the objective function (12) is linear
in the probability distribution.

Denote by P the initial probability distribution carried by S interest rates sce-
narios indexed as with probabilities.                                     Let
be the optimal value of (7) and be an optimal first-stage
solution. For simplicity, assume that the optimal first-stage solution is unique.

Inclusion of other out-of-sample scenarios means to consider another discrete
probability distribution which is carried by the extended set of scenarios. Such
distributions can be modeled as a convex mixture of two discrete probability dis-
tributions: P that is carried by the initial scenarios indexed by with
probabilities and Q carried by the out-of-sample scenarios in-
dexed by with probabilities The weights of the
two probability distributions are given by the contamination parameter and the
contaminated distribution

is carried by the pooled sample of scenarios that occur with probabilities
For instance, if both and are carried

by equiprobable scenarios and this is required also for the pooled sample, we get
Notice that for fixed probability distributions and the objective

function (12) which corresponds to the contaminated distribution is a linear
function of

The bounds for the optimal value of the problem based on the pooled
sample of scenarios follow according to (8) in II.5.3.6:

The additional numerical effort consists in solving the stochastic program

subject to (2)–(3) and nonnegativity constraints for the distribution Q carried by
S' out-of-sample scenarios to obtain and in evaluation and averaging the S'
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function values for the new scenarios at the
already obtained optimal first-stage solution; these are in fact the main numerical
indicators which appear in various simulation studies of the portfolio performance
under out-of-sample scenarios.

Similarly, one can approximate the optimal value using an optimal solution
and the optimal value of the stochastic program

with the objective function (14) based on the alternative probability distribution
Q:

so that

see Figure 7.

6.2.2 Stability Results

We shall discuss now the stability properties of the stochastic program (2)–(7)
with respect to changes in the numerical values of its coefficients. These changes are
consequences of changes in numerical values of the components of the selected
S scenarios of interest rates.
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It is easy to prove that for an arbitrary fixed scenario the optimal value of
(8) – (11), is concave, piecewise linear in the first-stage decision
variables.  (They appear only on the right hand sides of the linear program (8)–(11).)
Moreover, it is possible to prove, that for an arbitrary fixed scenario and for an
arbitrary feasible first-stage decision the scenario subproblems (8)–(11)
are stable linear programs in the sense of [132] provided that and

This implies, inter alia, that the sets of optimal solutions of the pairs
of the dual scenario subproblems are nonempty and bounded and that the optimal
value functions are jointly continuous in

Continuity properties with respect to scenarios, their probabilities and with re-
spect to the first-stage decision variables apply also to the objective function (2) and
the expectations and
are concave with respect to the first-stage decision variables for an arbitrary nonde-
creasing concave utility function U. This means (recall that the set of the feasible
first-stage decisions is nonempty and bounded) that also the optimal value function
of the full problem (12), (2), (3) is continuous with respect to the input parameters

and a certain continuity property (upper semicontinuity in the
sense of Berge) holds true also for the sets of the first-stage optimal solutions; see
e.g. [5].

These results imply that small errors in evaluation of scenarios of interest rates,
of their probabilities and consequently of prices cause only small changes
to the best available scenario-based market values and also to
the optimal value of the overall performance function (12). However, (contrary to
the postoptimality with respect to additional scenarios) there does not yet exist
any general numerically tractable method to quantify these errors. This suggests
to turn the attention to simulation studies. To provide well interpretable results,
these simulation studies have to be tailored to the way the scenarios have been
generated and selected.

6.3 Generation of Scenarios
Our primal goal is to get a sensible investment strategy for the considered bond

portfolio management problem. We expect that this investment strategy depends
on the way the underlying data process has been approximated. In our analysis of
sensitivity of the optimal value of (6) and of the optimal first-stage solution with
respect to the selected scenarios of interest rates we can rely on the theoretical
stability results presented in 6.2.2.

In general, scenarios can be obtained by discretization of a true continuous prob-
ability distribution, from a model calibrated by market data, from historical obser-
vations and in principle, they can be also fixed ad hoc using experts’ forecasts, see
Chapter II.5.  The chosen model of the short rates has to be calibrated so that it fits
the market data reasonably well; this can be formulated as a requirement to price
precisely some of traded financial documents, e.g., the fixed coupon government
bonds.

In this study, we use interest rate scenarios sampled from the binomial lat-
tice constructed according to the Black-Derman-Toy model, see II.5.2.4. The data
from the Italian bond market considered here gave a solid base for its applications,
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whereas interest rate scenarios for thin emerging markets can hardly be based on
historical data or on the estimation techniques discussed below.

The obtained one-period short term rates valid for scenario and for the time
interval are

They are determined by the base rates lattice volatilities and by the chosen
sampling strategy which determines the exponent i.e., the number of
“up” moves in the time discretization points The theoretical binomial
lattice consists of different paths or vectors of interest rates; their components
are given by (16).

To calibrate the Black-Derman-Toy model, i.e., to get the base rates and the
volatility factors or lattice volatilities means to use the yield and volatility
curve related to yields to maturity of zero coupon government bonds of all matu-
rities corresponding to the chosen time steps of the lattice. Such bonds are rare in
the market and have to be replaced by synthetic zero coupon bonds whose yields
correspond to yields of fixed coupon government bonds that do not contain any
special provision such as call or put options.

Various numerical and statistical methods have been used to fit or estimate
the yield curve from the existing market data on yields of fixed coupon government
bonds at the given day. We have applied regression analysis to estimate and test the
analytical form of the yield curve. Instead of yields one could use the corresponding
prices of these bonds as the input. Regarding the assumption of homoskedasticity
commonly present in regression models we decided to use yields.

Having tried different parametric nonlinear models as well as nonparametric
ones, we chose to use a simple form of the yield curve applied in [24] – see I.3.8 and
Example II.5.4.4:

We applied its linearized form to the logarithms of yields: For the market informa-
tion consisting of yields .   of various fixed coupon government bonds
(without option) characterized by their maturities the postulated model is

where the random errors are independent, normal There
is a good reason to accept the hypothesis of approximately normal errors in (17)
which is in line with the assumed log-normal process of short rates approximated
by the Black-Derman-Toy binomial lattice.

The yield curve for September 1, 1994 estimated according to the linearized
Bradley and Crane model (12) is plotted on Figure 8. Naturally, the fit is sensitive
to data. Compare the fit with and without the long bond BTP36665 maturing in
2023. (Maturities of all remaining bonds are less than 10 years.)
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The least squares estimates of parameters ln are approximately
normal, with the mean values equal the true parameter values and the covariance
matrix where is estimated by

and the matrix G consists of rows
To estimate the yields of zero coupon bonds of all required maturities which are

not directly observable, we replace the unobservable logarithm of yield by
the corresponding value on the already estimated log-yield curve. Such estimates
are subject to an additional error.

Assume that the logarithm of the yield for maturity is

with normal, independent of and with the
true parameter values denoted by asterisks. Then ln is approximately normal,

where

The corresponding approximate confidence interval for the logarithm
of yield ln for a fixed maturity is
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and is the corresponding quantile of the with N – 3
degrees of freedom.

The techniques for obtaining volatilities of yields or log-yields are less obvious.
There is not enough data for fitting the volatility curve by a regression model. Most
of the authors work with an ad hoc fixed constant volatility; the volatility curve
may be estimated from historical data or based on the Risk Metrics datasets which
provide historical volatilities computed daily for several main maturities, 1 year, 2,
3, 4, 5, 7, 9, 10, 15, 20 and 30 years. It is suggested to estimate the missing yields
by linear interpolation and to use the volatilities and correlations of the reported
yields to compute the approximate values of yield volatilities for these nonincluded
maturities.

In contrast to the volatility curves obtained independently on the yield curve
model one could get approximate standard deviations of ln from the chosen
parametric model of the yield curve provided that the errors in the applied regres-
sion model are normally distributed. For the linearized Bradley and Crane model
(17) one can use directly the standard deviation which comes from (19) – (20).

Based on the obtained yield and volatility curves, the calibration of the binomial
lattice in agreement with no-arbitrage valuation principles, recall I.5.2.1, follows by
a numerical procedure suitable for solving the large system of nonlinear equations
for the base rates and lattice volatilities

According to (16), the fitted binomial lattice provides different scenarios of
interest rates identified by the binary fractions of T – 1 ones or zeroes, see II.5.2.4.
A smaller, manageable number of scenarios has to be selected or sampled from this
large set.

The nonrandom sampling strategy [177] is based on a uniform approximation
of the expected utility of final wealth, computed with respect to the uniform dis-
tribution over the full set of the scenarios, by an expected value over a sub-
set of these scenarios. Its simplified version can be described as follows: We fix

and assign the index to each possible binary fraction
of length L. The sample point from (0,1) is determined by one of these binary
fractions and by an arbitrary continuation up to binary fraction of length T – 1.

The components of selected S scenarios are then computed according to
(16) using the scenario independent base rates volatilities

and the scenario dependent position on the lattice given by
the exponent in (16) which equals the number of “up” moves needed to reach
the position on the lattice within periods. The prices and cash flows
are evaluated along each of these scenarios and the problem (2) – (7) is solved.  The
main output is the optimal value - the maximal attainable expected utility of final
wealth at time and an optimal first-stage solution, say

6.4 Selected Numerical Results
To simulate the behavior of a value preserving portfolio of fixed income securities

on the Italian bond market we use the model described by (2) – (7) with monthly
steps and for the time horizon of one year
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The initial term structure and the portfolio are related to September 1, 1994.
It is composed of cash (500 mil. Liras) and of typical government bonds, paying
semi-annual coupons and covering two year forward till 29 years maturities (BTPs)
as well as puttable bonds (CTOs), paying semi-annual coupons with the maturity
of 8 years and a possible exercise of the option in the 4th year or with the maturity
of 6 years and an exercise at the 3rd year; see Table 2. The quantities (Qt) of
bonds included into the initial portfolio are expressed in lots (hundreds) of million
items so that the nominal value of the portfolio is 10500 mil. Liras, its initial value
in market prices of September 1st, 1994 is The coupon
yields and the redemption prices are after tax.

In this application, liabilities are not considered, liquidity may be obtained from
the interbank market at a rate greater than that one at which the surplus can be
always reinvested. The additive transaction costs are fixed at ± .01,

and We shall report here only results obtained for the linear
utility function.

To estimate the term structure of interest rates we used the linearized model (17)
applied to the yields obtained by the market quotation of the BTPs on the relevant
day, see Figure 8. Volatilities of log-yields were set equal to the standard deviations
of the normal distribution in (19). The parameters and of the binomial lattice,
see (16), were computed with a monthly discretization along 5 years. To evaluate
the prices of bonds with longer maturities, the computed interest rates have been
kept constant for each scenario after the 5th year. This means that scenarios
were at disposal. Alternative experiments were based on the full binomial lattice
with scenarios.

The first sampling strategy was based on the Zenios and Shtilman approach [177]
with different choices of L = 3, 4, 5, 6 in covering fully the beginning of the lattice,
and proceeding with alternating up-down movements, which resulted accordingly
into 8, 16, 32 and 64 scenarios; the acronyms are ZS(# of scenarios).  It gives
identical first-stage optimal solutions with slightly different optimal values for 8
and 32 scenarios and also for 16 and 64 scenarios.
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A better coverage of the lattice along the investment time horizon
was achieved for a particular, ad hoc choice of 8 scenarios, as reported in Figure 9;
the acronym is Part(8). A different first-stage optimal solution was obtained, the
optimal value was close to the previous ones. Table 3 lists the results. They
illustrate the influence of the sampling strategy on the first-stage optimal decisions
and give a motivation for further sensitivity, postoptimality and simulation studies.

6.5 “What if” Analysis
Assume that the models applied on the input side of the bond portfolio man-

agement problem have been fixed according to our past experience. In the context
of the Black-Derman-Toy model of interest rates it means that the yield curve (17)
has been accepted to get the term structure and a sampling strategy has been used
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to get a modest number of scenarios out of the fitted binomial lattice. Even in this
case there are numerous sources of errors that influence the input of the large scale
mathematical program (2) – (7):

The market data of the given day are used to fit the yield curve, i.e., to estimate
the coefficients in the chosen nonlinear regression model and to estimate the yields
or prices of zero coupon government bonds of all required maturities In
addition, a plausible hypothesis about volatility of these yields (i.e., about standard
deviations of log-yields) is needed. The estimated prices or yields of zero coupon
government bonds of all maturities together with their volatilities are called the
initial term structure.  Evidently, both statistical and numerical errors enter the
initial term structure.

The Newton-Raphson method is used to fit the base rates and lattice volatilities
of the Black-Derman-Toy model in accordance with the term structure. It requires
the solution of a system of 2T nonlinear equations which can be done in several
ways. Additional errors which stem from the chosen numerical procedure seem
to be of minor importance than errors due to estimation of the yield curve and,
namely, due to more or less ad hoc assessment of the volatility curve.

There is an indeterminacy as to the choice and number of scenarios to be used.

The final task is the solution of the large mathematical program (2) – (7) whose
coefficients are burdened by errors of various kinds. The question is the sensitivity
of the optimal first-stage decision (the first-period trading strategy) and of the
optimal value of the objective function on the above mentioned errors.

The form of the fitted interest rates, see (16), allows us to separate the influence of
the input data and of methods used for the lattice calibration from the impact of the
chosen sampling strategy.  Hence, we may concentrate separately on the influence
of the out-of-sample scenarios and on an analysis of errors in the estimated term
structure and their effect on the results.

6.5.1 Influence of Out-of-Sample Scenarios

Instead of the scenarios which may be theoretically obtained from the al-
ready fitted full binomial lattice we select scenarios, following the
Zenios and Shtilman sampling strategy: Fix the number of periods for which all
possibilities (choices of zeros and ones on the first positions) are fully covered.
The remaining digits necessary to complete the full length paths may be selected
for example according to Table 4. For the components alternate
regularly up and down (1 or 0) starting with the indicated value of
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The numerical result reported in Figure 10 records the optimal values and op-
timal initial strategies for two alternative cases based on distributions P and Q
carried by scenarios selected according to B3 and B4, respectively.

Figure 10 contains also values of directional derivatives and of the lower and
upper bounds computed according to (13) for distinct values of and a graphical
representations of these bounds. Expectations
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are listed under headings “means of contam. solutions”.
These results illustrate a possible application of the contamination bounds for

supporting decisions concerning the required number of scenarios (i.e., concerning
the value of L in Table 4): For this example gives the interval [11350.93,
11351.54] for the optimal value of C4 based on scenarios – a pooled sample of sce-
narios from the beds B3 and B4. Exploitation of the more complicated bound (15)
helped to increase the original lower bound 11349.52 obtained according to (13).
(Indeed, the optimal value for C4 computed directly is 11350.97.) It means that
using the double number of scenarios does not increase essentially the precision of
the obtained approximate of the true optimal value for the full hypothetical prob-
lem which would be based on all possible scenarios of interest rates. However,
the listed optimal first-stage investment strategies are quite different.

A similar experiment can be run for the pooled sample of two randomly chosen
beds of scenarios. Bounds for the optimal value based on a pooled sample carried
by scenarios, are obtained for

We considered also the the case B2-shifted with the rates based on the case B2
perturbed by the fixed additive shift of –.000355 (which corresponds to the shift
of 5% of the current B2 rates). Such choice of the couple of scenario beds allows to
analyze the influence of the fixed additive shift of rates on the optimal value. For
the shift of -.000355, both the left lower bound and the upper bound obtained for
contamination of B2-shifted by B2 are very tight, hence, the optimal final wealth
is untouched by this perturbation of the input interest rates.

6.5.2 Errors due to Estimation

The results summarized in the context of estimating the yield curve by paramet-
ric regression, cf. (17) – (20), provide a basis for simulation of log-yields at individual
points  which are needed for fitting the binomial lattice provided that the volatility
curve is not subject to any perturbations:

(i) At each point of the discretization of the time horizon generate the random
error by sampling from the normal distribution the corre-
sponding simulated log-yield at the given time instant   is ln
Let e be the vector of the independent normally distributed components   obtained
in the described way.

(ii) For each vector of log-yields obtained according to (i) get the vector of sim-
ulated yields u, fit the lattice and evaluate the interest rates prices
and cash flows

To guarantee that the numerical method used to fit the Black-Derman-Toy lattice
gave reasonable interest rates when applied to the perturbed yield curves, the range
of perturbations of the initial yield curve was reduced: standard deviations equal

were used instead of those obtained from
(19) – (20).
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By repeated soluving of the scenario based programs (2) – (7) for various sets of
coefficients obtained by the simulation procedure (i), (ii) one gets repeated “ob-
servations” of the optimal value and of the optimal initial trading strategy which
allows to construct empirical distribution of the maximal expected utility of the fi-
nal wealth, a useful information for subsequent, sample-based statistical inference,
and to classify the considered bonds.

Notice that the specific parametric form of the yield curve, such as (17), is not
essential for the simulation experiments delineated above. They can be applied
whenever there is a sound basis for assuming random errors in the model input; the
examples are other regression models and/or other assumed distribution of errors
and also random sampling procedures for selection of scenarios.

The simulation experiment was run for the problem based on the 8 particular
scenarios selected from the binomial lattice fitted up to the horizon of 5 years and
with K = 100. The obtained different optimal first-stage strategies together with
the respective optimal values are listed in Table 5 (the first column lists the
result for the unperturbed yield curve), a survey on how the considered bonds are
distributed with respect to the strategies of selling, holding and buying, is displayed
in Figure 11. Hence, there seem to be only a few typical optimal strategies which
can be verbally described for instance as “cash only”, or “long bond only”, and
which are far from being similar. The reason of such differences is that the short
rates obtained for the slightly perturbed yield curves differ essentially; for interest
rates we found differences up to 80% of values obtained for the unperturbed yield
curve.  These results indicate that, under the fitted yield curve, the longest bond
is a dominant investment as it appears in the most of perturbed cases. This is in
agreement with our earlier observations; in comparison with the assumed behavior
of short term interest rates, the long bond is underpriced by the market.

For 100 simulations, the mean of the (empirical) optimal values is 13 041
with the standard deviation of 2 479, for 1500 simulations this changes to the mean
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value 12 911 with the standard deviation of 2 461. The resulting confidence
intervals around the true optimal value are relatively large. The distribution of
these empirical optimal values is skewed and nonnormal.

Table 5 provides also a comparison of the performance of expected values for the
Buy & Hold (B&H) strategy at the horizon The expected values are computed
again for the same 100 simulations of the particular 8 scenarios selected according
to Figure 9 which are used in the simulated stochastic programs, and their eval-
uation takes into account expiration of the CTOs and the cash flows due in the
considered time period of September 1, 1994 – August 31, 1995.  Comparing the
statistics for the expected values of the Buy & Hold strategies with that for optimal
values for the 100 simulated stochastic programs indicates that the distribution of
the optimal stochastic programming values is shifted to higher function values, is
nonsymmetrical and provides possibilities of rather large values.

In addition, sensitivity of the obtained “candidate” solutions listed in Table 2
on perturbations of the yield curve was tested using bounds constructed along the
lines of Exercise II.5.3.3.1.  The optimal solution obtained for the Part(8) sampling
strategy proved to be the most robust one.

6.6 Discussion
We have applied a very simple model, based on one factor only. Similarly as in

the continuous time models of bond prices with one factor, cf. [81] or [164], the
bonds of the same risk class are equivalent to each other in the terms of their fair
prices; some deviations appear due to transaction costs and due to differences of



198 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

the initial market prices and the theoretical ones. This exactly was the case of the
long bond which was underpriced by the market.

For a more realistic model, one should use two or more random factors, for in-
stance, a two-dimensional data process of the short and long rates or short rates and
inflation. Inclusion of foreign bonds will add the exchange rate process, etc. Also
the presence of liabilities or external cash flows add new sources of uncertainties;
see II.7.3.

It is possible to consider further constraints, such as integrality of some decision
variables, limited borrowing, restrictions on certain investments or duration match-
ing, to use a nonlinear utility function, etc. Inclusion of other types of assets, e.g.,
stock or real estate, means a passage to an asset allocation or an asset and liability
management within aggregated asset classes and to models based on the value of
the investments; see discussions in II.4.4.

An essential generalization is in direction to a multistage version of the con-
sidered bond portfolio management problem. The theoretical results of 6.2.1 and
6.2.2 can be extended to this case and the generalizations mentioned above can be
in principle built in. The problem is the generation of the scenario tree, see Section
II.5.4, which includes fixing meaningful stages as the first step.



II.7 INCOMPLETE INPUT INFORMATION

sensitivity to estimated parameters (volatility in Black-Scholes formula, expected
returns in Markowitz model), incomplete information about liabilities

We shall present now selected approaches suitable for analysis of results of fi-
nancial decision models solved under uncertainty about the stochastic input.  Even
when these approaches seem to be cast for a specific model and/or specific assump-
tions, e.g., for sensitivity of the Black-Scholes formula for pricing European call
options to volatilities in 7.1, or sensitivity to the assumed expected returns for the
mean-variance Markowitz model in 7.2, or for incorporation of incomplete knowl-
edge about distribution of future liabilities in 7.3, there is an open possibility to
exploit them under other quite disparate circumstances. Recall that the contami-
nation technique explained in II.5.3.6 and applied in II.6.5.1 can be also regarded
as one of suitable methods for postoptimality analysis with respect to incomplete
input information.

7.1 Sensitivity for the Black-Scholes Formula
Consider a European call option on a unit quantity of a given stock for the

striking price K at the expiration date T. Assume that the stock price follows the
geometric Brownian process

with given constants drift instantaneous annualized volatility and with the
Wiener process No-arbitrage reasoning and the Itô formula are used to get the
European call price at time as

where is the riskless instantaneous annualized interest rate,

and denotes the distribution function of the standard normal
distribution; see I.5.2.5.3 and III.3.3.

The parameter values are hardly known precisely and various sensitivity mea-
sures have been introduced and applied to hedge against their changes, cf. [81].
We shall focus on sensitivity of to volatility to indicate it we include as a
parameter in The value of can be calculated by comparing the formula for a
similar traded option with its market price, which gives so called implied volatility,
recall I.5.2.5.9, or it can be estimated.  The sensitivity measure Vega introduced in
I.5.2.5.7 as

where denotes the density of the standard normal distribution, is a continuous
function of

199
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Assume now that there is at disposal an asymptotically normal estimate of
so that with for The results of [144], Chapter 3,

briefly presented in II.5.3.4 imply that is asymptotically normal

compare with (5) in Chapter II.5. Moreover, the true unknown value in
can be replaced by its sample counterpart As a result

hence, asymptotic confidence intervals for the option price can be easily com-
puted.

7.2 Markowitz Mean-Variance Model
From the point of view of optimization, an application of Markowitz mean-

variance model in selection of optimal portfolio of risky assets can be reduced to
solution of the following parametric quadratic program, see (7) in II.3.2.1:

on a given convex polyhedral set

and with a nonnegative scalar parameter.
One assumes that the vector of expected returns and the positive definite

matrix V of their variances and covariances are known whereas can be chosen
according to the investor’s attitude towards risk.

The optimal solution and the optimal value  (1) –  (2) de-
pend on V (and on the chosen value of of course) and at the same time, one
can hardly assume full knowledge of these input values. The impact of errors in
expected returns, variances and covariances on the optimal return of the obtained
portfolio was investigated, e.g., in [16] and [31]. Results of simulation studies in-
dicate that errors in expected values are more important than those in the second
order moments and that these errors influence essentially the composition of the
resulting portfolio whereas the portfolio returns are less sensitive.

Inspired by the cited results we shall deal with sensitivity analysis of the optimal
composition of the portfolio and of the optimal value of (l) – (2) on the input values
of the expected returns of the risky assets; we shall complement results based on
parametric programming by stochastic sensitivity analysis delineated in II.5.3.4.
The variance matrix V and the parameter will be kept fixed and they will not
be indicated in our denotation of the optimal value and of the optimal solution of
(l) – (2).

The set of feasible solutions of the quadratic program (l) – (2) can be decom-
posed into finitely many relatively open facets (i.e., open with respect to the linear

of
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manifold of the smallest dimension which contains them) that are identified by in-
dices of the active constraints; interior of and vertices of are special cases of
these facets. The parametric space of vectors can be also decomposed
into finitely many disjoint stability sets linked with the facets by the requirement
that for all belonging to a stability set, the optimal solutions of the qua-
dratic program (l)–(2) lie in the same facet. It is possible to prove (see [5]) that

is continuous on it is linear on each stability set and differentiable on its
interior. If, however, belongs to the boundary of a stability set, looses the
differentiability property and is only directionally differentiable. The optimal value
function is a piecewise linear–quadratic convex function of Thanks to the
assumption that V is positive definite, the optimal value function is differentiable
on the whole parameter space provided that the vectors of coefficients of the active
constraints of (2) are linearly independent; see e.g. [62], Theorem 2.4.5. These
results explain the observed cases of a stability of the optimal value and, at the
same time, of an extremal sensitivity of optimal solutions to small changes of the
vector of expected returns: Whenever the initial value of belongs to the
boundary of a stability set, arbitrarily small changes in can cause transition to
one of the neighboring stability sets. Hence, for each type of transition different
assets are included into portfolio and the composition of the optimal portfolio is
regarded unstable. At the same time, the change of the maximal value of (1) is
small for small changes of Notice that similar situations can be observed also
in case of changes of the parameter (i.e., when tracing the mean-variance effi-
cient frontier) but they are more easy to take in as the changes concern only a
scalar parameter. There exist some generalizations of the cited results to the case
of V positive semidefinite and bounded however, the fact that from the point of
view of quadratic programming there might be multiple optimal solutions indicates
clearly the limitations.

7.2.1 Simple Clarifying Example. Consider the quadratic program maximize

Set can be decomposed into relatively open facets see Figure 12.

on the set
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The corresponding stability sets for parameters are drawn
on Figure 13.

Differentiability of is important for obtaining the form of the approximate
probability distribution of the optimal returns of the portfolio, which are based on
estimates of the true expected returns r obtained by a known appropriate statistical
method. Such results are useful for constructing approximate confidence intervals
for the true optimal value of (l)–(2).

Consider For this parameter value, the optimal solution is the
vertex however, a small change of parameter values causes moving the optimal
solution into the adjacent facets or or into the interior of The cor-
responding changes of the optimal value and of the first component of the optimal
solution are illustrated for fixed            and on Figure 14.



The lack of differentiability of the optimal solutions implies that a parallel
asymptotic result for cannot be in general expected: The asymptotic dis-
tribution of optimal solutions is normal only if the true optimal solution is
differentiable at the true parameter vector i.e., if belongs into the interior of
a stability set.

7.2.3 Exercise. Assume that and V are fixed, that is the arithmetic mean
of observed independent vectors of assets returns and that the assumptions of
the Markowitz model hold true (i.e., the observed returns come from populations
characterized by fixed but unknown expected values and a fixed known variance
matrix V). Apply Theorem 7.2.2 to get the asymptotic 95% confidence interval for
the true optimal value of (1)–(2).

where is the sample counterpart of the variance matrix
The precision of the point estimate of based on the average returns
depends on the sample size and also on the value of
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7.2.2 Theorem. Assume that V is positive definite and that the linear indepen-
dence condition is fulfilled at the point of the true optimal solution
Let be an asymptotically normal estimate of the true expectation

Then the optimal values are asymptotically normal

This type of result was presented in II.5.3.4, formula (5), and the statistical
technique behind is nothing else but asymptotic normality of differentiable functions
of asymptotically normal vectors, so called see e.g. [144], Chapter 3.
The variance matrix of the asymptotic distribution (4) depends on the unknown
expectation However for large enough the gradients in the variance matrix
of the distribution (4) can be evaluated at the estimated expectations and also
variance matrix can be replaced by its sample counterpart Well known
results from parametric programming (e.g. [62]) imply that

evaluated at the optimal solution i.e.,

The final applicable result is
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7.3 Incomplete Information about Liabilities
As the next task we shall consider the bond portfolio management problem (2)

– (7) treated in Chapter II.6. We assume that the interest rate scenarios have been
already fixed and we shall turn our attention to liabilities. In II.6, the liabilities
were modeled as known amounts to be paid at the time Their full knowledge,
however, need not be realistic for instance in management of pension funds, portfo-
lios of insurance companies, etc. We shall assume now that liabilities are random,

with independent of random interest rates. The objective function (the
expected utility of the final wealth) assumes the form

where denotes, similarly to (12) in II.6, the maximal con-
tribution of portfolio management for already fixed first-stage decisions, for a given
scenario of interest rates and for a realization of liabilities, and is obtained
as the optimal value of the corresponding linear program.

We shall further assume that the probability distribution of is not known
completely. Using the available information, we shall try to get bounds on the
optimal value of (5) subject to the first-stage constraints (2)–(3) from II.6 and to
nonnegativity of all variables.

As the first step, it is easy to realize that in the objective
function (5) are concave in the right-hand sides when taken as parameters
in evaluating the maximal final wealth under scenario for fixed feasible first-
stage variables (This familiar property of the optimal value of a linear
program in dependence on right-hand sides was exploited already in Exercise II.2.1.1
for a minimization problem.) For a concave increasing utility function U, also the
individual terms in expectation (5) are concave in the
right-hand sides It means that the Jensen inequality provides an upper
bound for the objective function (5)

The corresponding upper bound for the optimal value of (5) subject to con-
straints on the first-stage variables equals

Hence, replacing the random liabilities by their expectations in the bond man-
agement problem leads to overestimating the maximal expected gain.

The lower bound can be based on the Edmundson-Madansky inequality (see
II.5.4.9) if, in addition, for each the random liabilities are known to belong
to finite intervals, say The general bound, however, is computationally
expensive unless the objective function is separable in individual liabilities, which
is not our case. A trivial lower bound can be obtained by replacing all liabilities

max
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by their upper bounds this bound will be rather loose. Another possibility is
to assume a special structure of liabilities (their independence, a Markov property,
etc.) in which case the lower bound can be simplified provided that the objective
function remains concave with respect to the random variables used to model the
liabilities. Hence, assume that

with a given matrix G of the size and mutually in-
dependent random variables with known expectations and known supports

Accordingly, the individual objective functions

are concave in
For I small enough, the following string of inequalities valid for each of scenarios
and for all feasible first-stage solutions may be useful:

where the components of equal for and for and

The lower bound for the maximal value of the objective function (5) based on
inequalities (6) can be thus obtained by maximization of the weighted sum of the
last terms in (6) for all scenarios subject to the first-stage constraints, i.e., by solving
the corresponding stochastic program with scenarios.

For instance for pension funds it is natural to assume that G is a lower triangular
matrix: The liabilities to be paid at the end of the first period are known with
certainty and their portion, say, corresponds to unrepeated payments (e.g.,
final settlements or premiums) whereas the remaining main part of will be paid
also in the subsequent period (continuing pensions). The liabilities to be paid
at the end of the period 2 can be modeled as

etc. Moreover, it is possible to assume that are mutually independent so
that (6) is a valid and tight lower bound that applies in the case that the intervals

and the expectations a are known.



206 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

II.8 NUMERICAL TECHNIQUES AND AVAILABLE
SOFTWARE*

illustrative examples, stochastic knapsack problem, EVPI, solution techniques for
two-stage stochastic programs (L-shaped algorithm, progressive hedging algorithm)
and their multistage versions, approximations, model management

8.1 Motivation
In this Chapter, we deal with solution techniques including algorithms and soft-

ware. This is necessary since only very elementary educational stochastic programs
can be solved without any computer support. In spite of this fact, we still begin
with a simple example to present various modeling and solution principles in an
instructive way.

8.1.1 Example. Consider a deterministic investment problem formulated as the
knapsack problem:

of the investments, and is the available budget. If the constraints are relaxed to
the optimal policy is implied by the nonincreasing sequence of fractions

Assume now that a, c are fixed but the budget is not known at the moment
of decision making and equals where is a nonnegative random variable.
Hence, the total yield is maximized over a set which depends on the random
right-hand side. Several deterministic equivalents can be formulated and solved.
We shall illustrate them on a simple numerical example

with the probability distribution of specified as follows:

Scenarios can be interpreted as the pessimistic one (no
additional external cash flow), the standard one and the optimistic one, respectively.
Notice that the intuitive decision rule does not depend on the budget and it means
to include the first investment at the maximal possible level, then the second one
and at the last place the third one.

The first possibility is to postpone the decision until the budget is known, the
wait-and-see (WS) approach. It provides three different optimal decisions, one for
each of the three possible realizations of

*by Pavel POPELA

where contains yields on the unit investments,   the costs of realization



II. DISCRETE TIME STOCHASTIC DECISION MODELS 207

and three corresponding maximal values of the yield

The expected optimal yield is then
The pessimistic approach exploits only the guaranteed budget b0 = 3, i.e., pro-

vides the defensive optimal solution and optimal value obtained already
for scenario Notice that is the maximin bound for the optimal value with
minimization over all probability distributions carried by the three considered sce-
narios; compare with II.5.3.5, inequality (6). Using the expected value of the budget
means to replace the right-hand side by and to solve
the linear program

with results and in our case, it is an optimistic
solution (recall results of II.7.3).

As the next step, we relax the budget constraint allowing for a recourse activity,
if necessary. For each scenario, we consider a two-stage decision model

with penalty coefficient interpreted as the cost of additional borrowing or
penalty for delayed payments, etc. The penalty term can be incorporated into
the already discussed models. For illustration, we set up

In this case, we get -components of the optimal solutions as those for
the original example (which does not include any recourse activity). This outcome,
of course, depends on the proportions between the yields c and penalty costs

The two-stage counterpart of the expected value problem

does not reflect the possible dependence of the recourse variables on
Reflecting dependence leads to the here-and-now model formulation

subject to

In our example, this gives the optimal, scenario independent first-stage solution
the non-zero scenario dependent recourse variables

and the optimal value of the objective function
17.5. To get these results, it was necessary to solve a linear program of a larger
size, without possibility to apply the intuitive rule valid for the relaxed knapsack
problem.
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At the end of the example, let us compare the obtained optimal values. First,
we compute the expectation EEV of the expected value solution as follows. We
replace by the solution in (1). To achieve feasibility of (1) in the cheapest
way, the nonzero recourse actions need to have the following values = 13.7,

Then, we compute the objective value of (1),
and hence, EEV = 10(1) + 15(1) + 20(.085) – .2(2)(13.7) – .3(3)(4.7) – .5(6)(0) =
26.7 – 9.71 = 16.99. Notice that the following inequalities are valid in our case:

with the numerical values 6 < 16.99 < 17.5 < 24.85 < 26.7. We see that in our
example the choice of stochastic programming approach is advantageous
in comparison with common sense approaches often used in practise which result in

and EEV; moreover, the lower bound EEV may be replaced by the function
value of (1) evaluated for an arbitrary feasible solution.

A similar chain of inequalities may be constructed also for general stochastic
programs with the lower and upper bounds depending substantially on the struc-
ture of the problem. The interested reader will find a detailed general discussion
about relations of objective function values for various deterministic equivalents in
Chapter 4 of [19]. There are also introduced the following important quantities
together with their bounds (we rewrite them for maximization case with numerical
values taken from Example 8.1.1):

The EVPI denotes the Expected Value of Perfect Information and compares
here-and-now and wait-and-see approaches. It measures how much is reasonable
to pay to obtain perfect information about the future. A small value of the EVPI
informs about a low additional profit when we reach perfect information; the large
EVPI says that the information about the future is valuable. The VSS represents
the Value of the Stochastic Solution and compares here-and-now and expected
value approaches. It is an important characteristic that measures how much can be
saved when the true here-and-now approach is used instead of the expected-value
approach. A small value of the VSS means that the approximation of the stochastic
program by the program with expected values instead of random variables is a good
one.

8.1.2 Exercise. Prove that both EVPI and VSS are always nonnegative, whereas
is an upper bound for only under special assumptions, e.g., if the objective

function in II.3.2.4 is concave in

8.2 Common Optimization Techniques
We see from Example 8.1.1 that there are various ways how to reduce stochastic

programs to deterministic ones whose objective and constraints are usually in the

and



form of expectations having integral representations. For certain cases those inte-
grals can be evaluated by direct integration methods and standard mathematical
programming algorithms may be used to solve the problem. We choose a simple
recourse program as an example.

where is the positive part of and is the negative part of For simple
recourse programs having only random, we denote
and assuming absolutely continuous probability distribution of we can express
the recourse function as the sum of one-dimensional integrals (separability):
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8.2.1 Example. Simple recourse refers to the situation when the recourse func-
tion in

is determined for each and as follows (recall II.3.3.2 and the ALM model 4.3
in Chapter II.4):

Provided that it is easy to solve the second-stage program
(2) (a special form of (19) in II.3.3):

where denotes the marginal distribution function of The separable terms
in (3) offer computational advantages for both discrete and absolutely continuous
probability distributions of Explicit form of the integrals can be obtained for
various distribution functions, e.g., for uniform or normal ones. This allows for a
direct exploitation of mathematical programming methods. Notice, that the simple
recourse models do not use any information about the joint probability distribution
of and only marginal probability distributions are utilized.

The software code called SPORT (Stochastic Programming Optimizer with Re-
course and Tenders) was written for simple recourse linear programs with discrete
probability distribution, see Chapter 14 in [58] for details.



Also stochastic programs with individual probabilistic constraints and random
right hand sides may be transformed into deterministic programs which exploit only
the quantiles of the marginal probability distributions; cf. Chapter 8 of [130].

The two mentioned cases concern problems of a special structure which allows
for a possible splitting of the probability distribution to one-dimensional marginal
probability distributions, with the subsequent use of one-dimensional numerical
integration routines (see (3)) and of general mathematical programming software.
Another manageable case occurs when the probability distribution of is discrete
and concentrated on not too many atoms (scenarios). In the sequel, we shall focus
on the latter case.

For instance, Example 8.1.1 may be treated as a linear program. Mostly, sto-
chastic linear programs with discrete probability distributions discussed in Part II
are large-scale linear programs. Therefore, the well-known revised simplex and in-
terior point methods (e.g., see Chapters 5 and 8 of [7]) are useful. Also nonlinear
scenario-based stochastic programs or other models formulated in Chapter II.3 are
frequently solvable as deterministic nonlinear programs (e.g., see algorithms de-
scribed in Part 3 of [8]). For an overview of classical mathematical programming
algorithms for the solution of stochastic programs with expectations see Chapter 4
in [58].

At first, there are libraries of numerical subroutines, which have extensive op-
timization capabilities (e.g., IMSL and NAG Fortran and C libraries) and their
recent evaluations are contained in lp.faq and nlp.faq files available on Internet.

As the next step in the optimization software development, the optimization al-
gorithms were implemented as ‘black boxes‘ called solvers, using partially or fully
precompiled code. Their main advantages for business applications are commercial
availability, professional vendor support, and only basic input/output format under-
standing required from beginning users. At this moment, we present briefly several
frequently used linear and nonlinear programming solvers; see [117] for details:

OSL (Optimization Subroutine Library), distributed by IBM corporation, con-
tains primal and dual versions of simplex method, three versions of interior-point
methods for large programs, and network simplex method for specially structured
problems discussed, e.g., in [121]. It uses successive linear approximations for qua-
dratic programmming problems, e.g., applicable for the Markowitz model II.3.2.1.
CPLEX and XA solvers implement fast and reliable branch-and-bound methods
for mixed-integer programs useful for modified problems with integer variables, cf.
applications mentioned in Chapter II.4. MINOS and CONOPT are nonlinear pro-
gramming solvers, e.g., useful for expected utility maximization problems. MINOS
is useful for cases with majority of linear or near-linear constraints and CONOPT
gives better results for programs with ‘highly nonlinear’ constraints. To unify in-
put/output format for optimization solvers, the MPS standard format for linear
programs has been developed in the early seventies, see [117].
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maximize

8.2.2 Example. The MPS input file is specified for the following instance of
investment program of Example II.1.1 based on expected values:
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subject to

Using the notation of Example II.1.1, we assign rate 1.4, additional income
goal , wealth investment indices stages

and expected returns = 0.067,    = 0.039,  = 0.05,
= 0.073, = 0.048,

The presented INVEST.MPS input file has several data sections separated by
keywords, and the end of the file is identified by the keyword ENDATA. The NAME
section gives the name to the contained data set. The ROWS section contains the
identifier of a matrix row together with constraint classifying letters E, L, G, N in each
row. The letter N is used for the row of an objective function that is minimized.
The COLUMNS section presents a matrix in column order. Each row of the file
contains a column identifier followed by row identifiers (in the matrix) and nonzero
coefficients. The RHS section contains the row identifiers and nonzero right-hand-
side coefficients. TheRANGES andBOUNDS sections are optional and define additional
limits for constraints and another then nonnegative bounds for variables.

As the example shows, the MPS standard does not represent a user-friendly
interface. For instance, it has unpleasant archaic features such as the limited size
of identifiers (8 characters) and the fixed numerical field format. Therefore, we
may simplify writing of the MPS file using popular spreadsheet programs (e.g., MS
EXCEL utilized for business calculations) as the MPS generators. They can also be
used as optimization tools because they include some of the previously mentioned
solvers as optimization engines. However, the size of solved programs is limited to

NAME Investment

ROWS
N 0BJ

E R0000001
E R0000002
E R0000003

COLUMNS

C0000001 R0000001 1.00000000 R0000002 1.06700000
C0000002 R0000001 1.00000000 R0000002 1.03900000

C0000003 R0000001 1.00000000 R0000002 1.05000000
C0000004 R0000002 -1.00000000 R0000003 1.07300000

C0000005 R0000002 -1.00000000 R0000003 1.04800000
C0000006 R0000002 -1.00000000 R0000003 1.05500000
C0000007 R0000003 -1.00000000 OBJ -1.20000000
C0000008 R0000003 1.00000000 OBJ 1.40000000

RHS
RHS R0000001 1.80000000

RHS R0000003 2.00000000

ENDATA



several hundreds of variables and the tabular form of the input data is convenient
only for small educational programs with dense matrices, which are not typical in
practise.

General purpose mathematical tools seem to be more promising than spread-
sheets as they also involve optimization capabilities. MATLAB as a matrix-oriented
programming language is a suitable tool, particularly, for algorithm development
and testing. Packages including symbolic rules for differentiation such as MATHE-
MATICA and MAPLE also have efficient optimization procedures and specifically
may help with preprocessing and postprocessing tasks. However, these systems
have not been originally developed for the solution of large-scale programs, and
hence, they cannot successfully compete with special purpose systems discussed
below.

The MPS format is a basic interface for test computations but the interfaces
between solvers and data sources become important for the applications (see, e.g.,
preface of [66]). As a further step in the optimization system development, algebraic
modeling languages describe a program by its set of constraints, obvious in mathe-
matics, and they generate the MPS or similar files for solvers. They are based on the
declarative kernel and are extended with some properties of procedural languages
such as statements that control operations flow. They have Windows-like envi-
ronments and have libraries of sample programs for learning by example. GAMS
(General Algebraic Modeling System) [66] is widely used with different computer
platforms. It is designed for linear, nonlinear, and mixed integer programming,
and supports many different solvers (e.g., CPLEX, OSL, MINOS, and CONOPT).
Other widely used modeling languages are AMPL [65] and AIMMS [21].

8.2.3 Example. We continue with the program from Example 8.1.1 and we
introduce its GAMS source code that ends with solution and display statements.
It is contained in file INVEST.GMS:
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$TITLE Investment example
$OFFSYMXREF OFFSYMLIST OFFUELLIST OFFUELXREF
OPTION LIMROW = 0, LIMCOL = 0, SYSOUT = OFF, SOLPRINT = OFF

SET I considered investments, T time, S scenarios;

PARAMETER RHO(I,T,S) random returns, P(S) scenario probabilities;
SCALAR W wealth, G goal, Q additional income, R rate;

$INCLUDE "DATA.GMS"

VARIABLE Z objective function value, X(I,T,S) investment decision;

VARIABLE YPLUS(S) surplus variable, YMINUS(S) deficit variable;
X.LO(I,T,S) = 0; YPLUS.LO(S) = 0; YMINUS.LO(S) = 0;

EQUATION NONANTICIP(I,S), INITIAL(S), INTERMED(T,S), FINAL(T,S), OBJFUNC;
NONANTICIP(I,S)$(ORD(S) NE 1)..

X(I,"1","1") =E= X(I,"1",S);

INITIAL(S)..
SUM(I, X(I,"1",S)) =E= W;

INTERMED(T,S)$(ORD(T) LT CARD(T))..

SUM(I,(1+RHO(I,T,S))*X(I,T,S)=)E= SUM(I,X(I,T+1,S));
FINAL(T,S)$(ORD(T) EQ CARD(T))..

SUM(I,(1+RHO(I,T,S))*X(I,T,S)=)E= G + YPLUS(S)-YMINUS(S);



In some sense, modeling languages follow the design steps of a modeler. At first,
compiler directives and options are set up. Then the SET keyword allows the decla-
ration of indices of a program giving a name to each index. The PARAMETERkeyword
declares real parameters, giving them a name and joining them with indices. Their
values are assigned in the included file DATA.GMS. TheVARIABLE keyword starts a
block that declares variables of a program in a manner similar to parameter declara-
tion. Variable identifiers allocate a data record in memory, and these identifiers will
be used with different suffices for computational or displaying purposes. Suffixes
.LO, .UP, .L, and .M allow separate storing of lower and upper bounds, solutions,
and marginal values respectively. The EQUATION block declares constraints, which
are defined separately. Conditioned generation of individual constraints is specified
with $ symbol. The objective is identified by variable Z on the left hand side of
one constraint. MODEL is a named list of constraints. Its suffixes often serve to
obtain compilation and computation results in the form of model and solver status.
The SOLVE statement joins the model name INVESTMENT, the target of optimization
for the objective (MINIMIZING Z), the solver type (USING LP), and then starts a
computational process. DISPLAY is the original GAMS output statement.

In our case, data definitions are contained in the included file DATA.GMS (see
the compiler directive $INCLUDE "DATA.GMS" in the source code of INVEST.GMS):

The members of index domains are specified within the SET statements. The
values of parameters may be defined as a part of the PARAMETER declaration using
rules for sparse data structures or with SCALAR or TABLE declarations either directly
or through assignment = (see forthcoming Example 8.6.1). Used notation and
parameter values are inherited from Example 8.2.2. In addition, instead of expected
values we consider random returns based on scenarios
with probabilities and

The GAMS user may find some difficulties during its use in financial and indus-
trial applications. They stem from the GAMS original field of use, which was the
support of macroeconomic studies. These studies have often needed software codes
‘for one use’, in contrast to the financial and industrial systems that require codes
‘for permanent use’. For instance, the GAMS does not support database manage-
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OBJFUNC..

Z =E= SUM(S, P(S)*(Q*YPLUS(S) - R*YMINUS(S)));

MODEL INVESTMENT / NONANTICIP, INITIAL, INTERMED, FINAL, OBJFUNC/;

SOLVE INVESTMENT MAXIMIZING Z USING LP;

DISPLAY Z.L, X.L;

SET I / 1 * 3 /, T / 1 * 2 /, S / 1 * 3 /;

SCALAR W / 1.8 /, G / 2.0 /, Q / 1.1 /, R / 1.4 /;

TABLE RHO(I,T,S)

1 2 3

1.1 0.10 0.05 0.07

2.1 0.12 0.03 0.03

3.1 0.08 0.04 0.05

1.2 0.04 0.07 0.08

2.2 0.06 0.06 0.04

3.2 0.01 0.08 0.05;

PARAMETER P(S) / 1 0.1, 2 0.3, 3 0.6 /;



where identifies a finite set of scenarios with proba-
bilities and are decision variables, A, b, and c contain only deterministic
coefficients.

First, we denote as H the LHS matrix composed of all zero and nonzero tech-
nological submatrices A, and For fixed recourse programs (i.e.,

a special basis factorization was suggested. It utilizes separate
submatrix factorizations corresponding to diagonal blocks with W components and
an additional working basis, see Section 12.3 in [130] and references therein.

Interior-point algorithms have become popular, because they proved to be ef-
ficient, especially, with parallel implementations. The most time consuming step
in the interior-point methods is usually related to computations with a matrix

where D denotes a suitable diagonal matrix. The obtained M is
much denser (see [19]) and [7] for explanatory references) than the original con-
straint matrix H, and hence, a direct use of the interior point method need not
be efficient enough. Therefore, a factorization scheme that significantly reduces
the number of necessary arithmetic operations has been developed, see [19]. An
alternative is a split variable representation, which uses an explicit treatment of
nonanticipativity constraints (recall II .2.2). This means that the nonanticipativity
constraint is included only if The new M
is sparser and larger than the original one, hence we have to decide whether we
prefer a small size or a reduced density. Another idea [19] is to form the dual
program of (5), and this dual is then solved with the interior-point method. In
this case, the M matrix is again large, however, it has a special so called sparse
block-row-and-column-bordered structure. We may summarize that due to factor-
ization enhancements, interior-point methods are reported as more efficient than
direct simplex algorithms for large-scale stochastic programs.

Decomposition algorithms advantageously use a dual block-angular program
structure of (17)–(18) in Section II.3.3 to save memory requirements and speed
up computations. It was already noticed in the fifties that the program dual to
(5) has a structure suitable for the Dantzig-Wolfe decomposition. However, the
dual program solution often requires more computations than the primal, because
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ment directly and it must be added separately when it is required. Our discussion
continues in Section 8.6.

8.3 Solution Techniques for Two-Stage
Stochastic Programs

The main advantage of the aforementioned common optimization algorithms and
software tools is that they are easy to use and well-tested for mid size problems.
However, the main disadvantage is that they are inefficient for large-scale stochastic
programs as they do not utilize their special structure.

As the next step, we discuss linear programming algorithms modified for two-
stage scenario-based stochastic linear programs (see II.3.3.2):
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a larger program has to be solved. In addition, extra calculations are needed to
recover the primal program solution. For these reasons, the Benders (dual) decom-
position is applied to the primal program instead of employing the Dantzig-Wolfe
(primal) decomposition for the dual program, although both decompositions are
computationally similar. To detail these ideas, we reformulate the two-stage sto-
chastic linear program as follows:

where is the expectation of the recourse function                                     and denotes the
first-stage feasible set. The L-shaped algorithm (L refers to the shape of matrix
nonzero blocks) discussed further is based on the application of the Benders de-
composition to two-stage stochastic programs. Additional linear constraints called
feasibility cuts approximate the domain K of and another linear constraints
called optimality cuts approximate the shape of the function The stochastic
linear program is decomposed into the first-stage (master) program and a series
of second-stage programs (subprograms). Each subprogram corresponds to one
scenario. The modified master program is solved, the solution is sent to the sub-
programs to identify more precisely their feasible sets. The information about
all solved subprograms is returned to the master program in the form of cuts,
and the algorithm continues with the next iteration (see [91] for further explana-
tory and detailed comments). BDECOM (Benders DECOMposition) is a Benders
decomposition-based solver included in SLP-IOR model management system, see
[113] and Section 8.6. To show the principles of the L-shaped algorithm, we assume
that (5) has a finite optimal value. The general case is discussed, e.g., in [19] and
[130].

8.3.1 Algorithm (LSHAPED)

Initialization of parameters: the number of iteration the number of
feasibility cuts the number of optimality cuts and hence,
vectors d, f and matrices D, F used for the description of cuts are initialized
as empty.
Set and solve the following master program

Let be an optimal solution of this program (If 0,
then cuts (7) are not included, is not considered in the objective and
constraints, and
Solve the following linear programs
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If the optimal value then . Otherwise, for given
the associated dual multipliers (representing

unboundedness of the dual to (6)) to generate a new feasibility cut. Increase
the number of feasibility cuts and define the new th row of matrix
F and the related th component of the RHS vector

and
Solve the following subprograms

Let be the optimal multipliers associated with the optimal solution of
the th subprogram. Increase the number of optimality cuts and
define the new th row of matrix D and the related th component of the
RHS vector d:

If then and is an optimal solution. Oth-
erwise, add this constraint as a new optimality cut to (8), and 

Since its discovery in the late sixties, the L-shaped algorithm has been discussed
and improved in many details (see [19], [58], [91], and [130] for bibliographical
references). Notice that with relatively complete recourse (see II.3.3.2) no feasibility
cuts are necessary, so step can be omitted. Having fixed recourse W in step

we may try to construct a lower bound of possible values of
the random vector and to solve only one program of type (5).
Then, we may utilize a bunching procedure improving the efficiency of computations
in step . The basic idea lies in the fact that the basis B optimal for some
scenario is also optimal for any other scenario satisfying

and where is the subvector of
whose elements correspond to the columns of W, contained in B. Then solving
linear programs that differ only in the right-hand side, we may apply the idea of
building a dual feasible basis tree, i.e. to create a search tree, where each node is
related to a dual feasible basis for the linear program and each arc to a dual pivot
step. Nodes are added to the search tree as they are needed. Then the different
right-hand sides are ‘trickled down’ in the tree until primal feasibility is achieved.
The alternative method called sifting uses linear programming parametric analysis
applied to suitably ordered vectors and see 5.4 of [19] for
further references.

Another L-shaped algorithm variant introduces multiple cuts and deals with two-
stage stochastic quadratic programs, see [19]. In step , are not aggregated
to generate piecewise linear approximation of but are used to construct
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a piecewise linear approximations of Therefore, for scenario-related
optimality cut denotes a left-hand-side matrix and is a right-hand-side vector.
Then, row of and th component of

If we add a regularizing term then we get the quadratic objective function (see
[19]) and in step the master program is replaced by the following program:

The idea to speed up computations with adding a regularizing quadratic term in
the objective as in (12) has resulted in QDECOM (Quadratic DECOMposition)
procedure used in [113]. This method is advantageous when initial cuts force the
approximating solutions to oscillate widely after initialization.

Financial problems may lead to models with a specific structure. If matrix W is
derived from network flow problems (see [121]), then cuts are generated more eas-
ily, see discussion in [91]. In contrast, the presence of integer variables in financial
models causes big solution difficulties, see [99]. If a modeler cannot avoid this situ-
ation, either SIRD2CR developed for SLP-IOR [113] or a modified implementation
of the L-shaped method can be used.

Although the regularizing term introduces the possibility to use nonlinear terms
in the objective, we suggest to employ a Lagrangian-based algorithm for the solution
of scenario-based two-stage stochastic nonlinear programs, having the following
form:

where is the first-stage feasible set and are the second-stage
feasible sets. Program (13) may be rewritten with an explicit description of nonan-
ticipativity constraints (recall II.2.2) in the following form:
(14)

If nonanticipativity constraints are relaxed (e.g., with penalty terms involved in the
objective), then the resulting program is separable with respect to scenario-related
variables, and hence, the solution algorithm is reduced to the repeated solution of
separate updated programs for each scenario. Practitioners using scenario analysis
often utilize the average value of these first stage decisions obtained for individual
scenarios as their decision, which is not the best idea.

The progressive hedging algorithm (PHA) [134] is based on the scenario aggrega-
tion principle. During one PHA iteration, all scenario programs are solved, and the
obtained solutions are averaged to get an approximation of the searched solution.
The objective of each scenario is augmented by terms based on nonanticipativ-
ity constraints and updated with use of iterations’ results. The whole progressive
hedging algorithm has the following form:
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8.3.2 Algorithm (PHA)

Initialization: Set the iteration counter assign weights
and choose and

find the optimal solution of the program:

Compute the new average solution: Update pertur-
bation terms

is near to 0 (measured by then otherwise and

The main advantage from the implementation point of view is that one may
use any locally convergent nonlinear programming algorithm discussed in 8.2 to
solve (15). The updating step is then quite simple to be implemented, even in
parallel. The sequence of converges to the optimal solution for convex programs
(13), and the algorithm’s convergence is also reported for certain nonconvex cases,
see [19]. The use of solution averages in the PHA guarantees robustness of the
computational process, but the algorithm convergence is slow. In the linear case (5),
this algorithm is not as efficient and fast as the L-shaped decomposition. Parallel
implementation of PHA was successfully realized in [122] for problems with network
structure (recall II.4.4).

Another variant of the augmented Lagrangian method called Diagonal Quadratic
Approximation (DQA) [19] is based on writing the nonanticipativity constraints
equivalently in a specific order. For any scenario we choose a unique successor

So, that the bijection mapping defines a cyclic permutation
of all scenarios, and hence, specifies the set of used nonanticipativity constraints

Then, the augmented terms in the objective
are approximated by replacing by the known value The original
augmented Lagrangian program is decomposed into subprograms:

where is a penalty coefficient, represent updated multipliers with values
known from previous algorithm iteration, and denotes the mapping inverse to

8.4 Solution Techniques for Multistage Stochastic
Programs

We focus on numerical techniques for multistage stochastic programs with finite
discrete probability distributions. For this purpose, we may employ and general-
ize our knowledge about two-stage stochastic programming algorithms from 8.3.
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However, new difficulties arise, because the number of possible realizations expo-
nentially increases with the number of stages and scenarios (so called ‘curse of
dimensionality’). Therefore, several input data manipulation ideas how to reach a
manageable size of the problem have been developed. For instance, we can waive the
stochastic character of chosen data and replace these random parameters by some
fixed values; we can ignore the requirement of adapting the decisions according to
the past information; we can aggregate scenarios or stages; we can select only a
few ‘important’ scenarios using statistical techniques or expert’s opinion; we can
decompose the problem into manageable ones to use parallel procedures, etc.

Then, the resulting large-scale linear program can be solved either by general
purpose algorithms or by techniques taking advantages from the special multistage
structure of the problem. So, for multistage programs, there are versions of basis
factorization (see [130] for details) and interior-point methods based on the efficient
rewriting of the program description We shall focus on decomposition-
based algorithms; we refer to [30] for parallel implementations of interior-point-
based methods.

At first, a Scenario-Based Multistage Stochastic Linear Program (SBMSLP) that
is written in the arborescent form (11)–(12) in Section II.2.2 can be solved with the
use of nested Benders decomposition based on generalization of Algorithm 8.3.1 (see
[19] for historical references). To simplify the notation in the forthcoming algorithm
description, we assume that (instead of introduced in (11)–
(12)) in Section II.2.2 for all where

and In addition, we suppose that the considered program has a
finite optimal solution or is infeasible. (This is indeed valid for (11)–(12) in Section
II.2.2.) The unbounded case for our changed description may be treated, e.g., as
in [19].

The nested Benders decomposition is based on the idea of arranging subprograms
in a tree-like structure. For problems with the staircase structure, the subprogram
assigned to tree node has the form:

where and denotes the ancestor of We may see
that the program (17)–(19) extracts its structure from (11)–(12) of Section II.2.2

situated in the tree below is replaced by the approximating variable in (17). At
the tree’s topmost level (we assign the master program does not
change the right-hand side (cf. (17)), at the tree bottom level subprograms
are neither augmented by nor by cutting constraints In general, in

th node, the th feasibility cut (18) is formed as follows:

where is the index of a subsequent infeasible subprogram. The th optimality cut
(19) reads:

using fixed   however the recourse term including objective values of subprograms

(see(see
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We denote by the set of immediate descendants of see II.2.2. During
the solution process, primal information about the optimal solution is sent
down through the tree and bounds subsequent programs modifying . Dual
information (solutions and rays is returned back from
nodes in the form of additional constraints (18)–(19). If the program is
solvable, the computation process stops and the optimum is reached when no new
information about the optimal solution at the top-most level is obtained. So, the
multistage version of the L-shaped algorithm follows:

Initialization of parameters: Set the stage the subprogram
the number of iteration and assign the number of feasi-
bility cuts the number of optimality cuts                 and the value

Assign the variable that controls the sequencing protocol: DI-
RECTION:=FORWARD. Continue with the step
Set and solve the current th subprogram (18)–(20),
If then cuts are not included. When then is
not considered in the objective.
If solved subprogram (18)–(20) is infeasible and then and
the original program is infeasible.
If solved subprogram is infeasible and then + 1 and
generate a new th feasibility cut for subprogram by (21) using
the dual ascent extremal direction given by and Select
the next subprogram with DIRECTION–BACKWARD,
and
If solved subprogram (18)–(20) is feasible, then and denote
its optimal solution. This solution is stored together with the dual solution
denoted as and for further generation of the optimality
cut by (22). If then 1 and
Otherwise, and continue dependingon the value of DIRECTION:
If DIRECTlON=FORWARD then for assign and
and
If DIRECTION=FORWARD and then set DIRECTION:=BACKWARD

and continue.
If DIRECTION=BACKWARD then repeatedly  assign
1 and generate new th optimality cut for subprogram by (22)
using stored information about dual solution.
Redundancy check of the additional optimality cuts: The inequality (22) is
tested for the subprograms using stored values and If
this inequality is satisfied for certain then no optimality cut is added
to the related subprogram. If for an the inequality (22) does not hold
true the related optimality cut is added.
If and no optimality cuts are added to the master program (identified
by then and the optimal solution is found.

8.4.1 Algorithm (MSLSHAP)
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Otherwise or cuts are added), select the next subprogram assign-
ing and Afterwards, if then DIREC-
TION:=FORWARD else DIRECTION:—BACKWARD and

Algorithm 8.4.1 is implemented as the MSLiP software [68]. It works with ran-
dom transition matrices and with more than three stages. It involves efficient
bunching strategies inspired by those discussed in 8.3. An interested reader may
obtain this freeware directly from its author. It was shown that the used fast-
forward-fast-back sequencing protocol is advantageous in comparison with other
tree traversing strategies. MSLiP was adapted to solve each node program using
OSL, see [34]. Further developments mainly deal with parallel computations and
incorporation of sampling (see 8.5) into the nested decomposition. The key problem
is how to avoid the occurrence of computational bottlenecks caused by the need of
synchronization among one master program and many subprograms.

Bender’s-based decomposition for stochastic programs was also implemented
within the SP/OSL library. The first flexible commercial code called IBM Stochas-
tic Solutions designed for SBMSLP is supplemented by a set of callable modules
and particularly the user has node-by-node access to data and solutions for postop-
timality analysis. As the aforementioned MSLiP, it may read a stochastic extension
of the MPS input format, called the SMPS (Stochastic MPS) format.

The SMPS format [20] is based on splitting the program description into three
files:

a) CORE file: This is a standard MPS file, which describes an underlying
deterministic program. Arbitrarily chosen fixed values are used instead of
random parameters.

b) TIME file: splits the CORE file into stages using the north-west corner
coordinates of each stage.

c) STOCH file: describes the actual probability distribution for each random
parameter. The idea is that values from the probability distribution support
replace deterministic values in the CORE file.

8.4.2 Example. Let us return to Example 8.2.2. The CORE file INVEST.COR
is the same as INVEST.MPS. The following TIME file INVEST.TIM specifies the
program’s dynamic structure:

Rows and columns in the CORE file have to respect the ordering given by suc-
cessive periods in the TIME file (i.e. C1, C2, C3 must appear in CORE file before
C4, and C5, ... must come after). The random parameters definition is contained
in STOCH file INVEST.STO:

TIME Example
PERIODS LP

C1 R1 PERIOD1
C4 R2 PERIOD2

ENDATA

STOCH Example
BLOCKS DISCRETE
BL BLOCK1 PERIOD2 0.10
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C1 R2 1.10 R3 1.04
C2 R2 1.12 R3 1.06
C3 R2 1.08 R3 1.01

BL BLOCK2 PERIOD2 0.30
C1 R2 1.05 R3 1.07
C2 R2 1.03 R3 1.06
C3 R2 1.04 R3 1.08

BLBLOCK3 PERIOD2 0.60
C1 R2 1.07 R3 1.08
C2 R2 1.03 R3 1.04
C3 R2 1.05 R3 1.05

ENDATA

The BLOCKS keyword used above allows to introduce a dependence between dif-
ferent random parameters of the same stage. For the compact description of inde-
pendent random variables the SMPS format uses the INDEP keyword. It does not
require the explicit definition of all parameters for all scenarios as the MPS format
presented in 8.2. The SCENARIOS keyword is designed for the SBMSLPs with inter-
stage dependencies, and hence, it also serves in the case of two-stage multiperiod
structure, see II.5.4. Then, sections headed by different keywords may be combined
in one STOCH file to build a complex program structure.

8.4.3 Exercise. Study the SMPS format specification from [20], change Example
8.2.2 input data, and write the corresponding CORE, TIME and STOCH files.

The SMPS format allows unified storing of previously introduced real-life prob-
lems and their data. Therefore, test batteries have been completed and are avail-
able via Internet (see, e.g., WATSON pension fund management test problems and
POSTS collection including ALM, CEP1 – related to Chapter II.4 examples).

Several limitations have been found during the SMPS format use. Particularly,
a manipulation with the dependence structure is cumbersome. For these reasons,
several SMPS format extensions have been proposed and tested by Gassmann and
Schweitzer. In addition, the idea to support decomposition algorithms by modeling
languages has been developed for GAMS. SETSTOCH is a new tool that may
serve as an example of how to link modeling languages and multistage stochastic
programming solvers without the necessity of modifying either language or solver.
Since 1999, a similar GAMS connection is available for the aforementioned IBM
Stochastic Solutions.

After this software intermezzo, we turn back to decomposition algorithms. We
may decompose the large SBMSLP to many relatively small problems related to
individual scenarios. For instance, the problem corresponding to scenario

(see II.2.2), is the following linear program:

subject to constraints (10) in II.2.2. The solution is a part of the optimal so-
lution for the used scenario However, this solution need not be either optimal
or feasible for other scenarios. Hence, for decomposition methods with respect to
scenarios, nonanticipativity constraints should be included in the form of a large
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system of simple binding linear equations for the second stage that spell out ex-
plicitly the corresponding requirements for those that have the
same data up to see II.2.2. A scenario tree can be described by the sequence of

set A in partition when the related decision variables belong to the same
node of the scenario tree.

As done already in II.2.2, for a given scenario we denote by the vector
of all decision variables in the individual scenario problems such
as (22) and (10) in II.2.2. Then, the system of nonanticipativity constraints may
be written as where contains grouped decision vectors and
U is the 0-1 matrix of coefficients of the nonanticipativity constraints.

8.4.4 Exercise. Write down various matrices U for different two-stage and
multistage problems (advice: employ permutation or projection matrices). Omit
redundant constraints and analyze properties of the related penalty terms

that may be used in the forthcoming MSPHA algorithm. Focus on the
algorithm stopping criteria.

The multistage progressive hedging algorithm (MSPHA) (see Algorithm 8.3.2
for its two-stage version) is not limited to linear problems, so we further denote
the program’s objective as and scenario-related constraints as

Nonanticipativity constraints are treated explicitly by where
U is a projection matrix. For instance, given and the nonan-
ticipativity constraints may be expressed as . When
these constraints are omitted, the corresponding penalty terms are included in the
scenario-related programs objectives. Then, the scenario-based multistage stochas-
tic programs may be solved with the following algorithm:

The implementation of MSPHA is quite straightforward. Scenario related prob-
lems are solvable, e.g., in GAMS and the external program may repeatedly update
augmented terms in the objectives.

8.4.5 Algorithm (MSPHA)

partitions of the set S. Given scenarios belong to the same
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8.5 Approximation Techniques
The algorithms presented till now are designed for scenario-based stochastic pro-

grams and for programs with explicitly computed expectations. If the probability
distribution of is continuous or discrete with a very large support, then some
random sampling or deterministic approximation technique must be employed.

Random sampling may be utilized either internally or externally with respect to
the optimization algorithm. For example, the stochastic decomposition algorithm
(SDECOMP) [77] is based on random sampling within the LSHAPED algorithm
8.3.1. It does not use all scenarios but only a single incrementally increasing sample
to build new and update previous cuts. In this way, the outer linearization of
is asymptotically created for two-stage stochastic linear programs with relatively
complete recourse (see [91] for an explanatory discussion and references). Stochas-
tic quasigradient methods (SQG) [58] are another class of internal-sampling-based
algorithms useful for nonlinear programs.

Another possibility is to approximate the original program by external random
sampling. The main idea is to replace the expected value of the objective function
by the realization of the related sample mean. Randomly generated observations
of serve to computation of the point estimate of the objective function. Then,
theoretical results about consistency, sensitivity, and asymptotic normality may
be applied (see Chapter II.5). The considered stochastic programs may also be
approximated by methods that are not necessarily based on random sampling.

For instance, one may relax certain constraints (e.g., nonanticipativity con-
straints in MSPHA algorithm 8.4.5), and then solve the program more easily. This
provides a lower bound of the original objective. In the opposite way, one may add
several constraints, and the optimal value of the modified program gives an upper
bound.

The approximation of the objective is often based on the replacement of the
objective with afunction separable in where are suitable
approximating functions (cf. simple recourse in Example 8.2.1). Then, through this
continuous approximation one replaces the original high-dimensional expectation
with a combination of low-dimensional expectations to obtain an upper bound
for the convex recourse program. The presence of significant interactions between
various components of restricts the usefulness of this technique.

The majority of approximation methods involve discretization of an underlying
probability measure, see Chapter II.5. The discretization may be chosen to provide
upper or lower bounds on the objective function value. For example, let

be a partition of
Then:

where denotes ‘approximately equal’, and are repre-
sentative scenarios of subsets. These scenarios are often defined as conditional
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expectations In addition, if is a convex function with
respect to then instead of is valid (see Jensen’s inequality in II.5.3.5), and
hence, an objective function lower bound is obtained. When is obtained
using a refinement of then the aforementioned bound can be made
tighter: This approximation may be either considered
as the approximation of the objective by a step function in which is constant
on each set or it may be interpreted as an approximation of by a discrete
random element attaining only values with probabilities

The introduced approximation techniques can be iteratively used for solving
stochastic programs by so called approximation schemes. Firstly, for absolutely
continuous probability distributions, the appropriate solver starts its work with a
discretization, which is based either on random sampling or a deterministic approx-
imation. Secondly, the relation between the original program and the approximate
program is analyzed using error bounds. Thirdly, a technique for improving the
accuracy, usually based on a refinement of the approximation, is applied.

We illustrate these ideas by using the L-shaped decomposition algorithm for two-
stage programs (see Algorithm 8.3.1) within an approximation scheme (see [19] for
details and [84] for additional references). Notice that fixed recourse is needed for
the construction of valid bounds and that, in general, applicability of this bounding
approach for multistage problems is restricted due to the required convexity of the
random objective function with respect to

8.5.1 Algorithm (LSHAPPROX)

The same initialization as in Algorithm 8.3.1 (LSHAPED) step is used.
The same master program involving cuts is solved as in Algorithm 8.3.1
step
Similar programs as in the L-shaped algorithm (see Algorithm 8.3.1)step 3.
are solved to obtain a new feasibility cut. The main difference in comparison
with the original L-shaped algorithm is that instead of all realizations

a lower bounding approximation is utilized and resulting and
are stored. If a new feasibility cut is generated, then , otherwise
continue with
Similar programs as in the L-shaped algorithm (see Algorithm 8.3.1 step

are solved to obtain a new optimality cut. Again, the existing lower
bounding approximation is utilized. If then

is optimal relative to the lower bound and Otherwise, add
a new optimality cut and
For an upper bounding approximation find by a suitable pro-
cedure, see, e.g., [19]. If then is optimal.
Otherwise, refine the lower and upper bounding approximations,
and
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8.6 Model Management
All discussed numerical techniques for solving multistage stochastic programs

are demanding as to the input data (including scenarios) and to the programming
efforts. In addition, if a multistage stochastic program is to be applied repeatedly
as a part of a decision support system, additional routines for data processing,
scenario generation, and evaluation of results should be developed.

We can see that data of programs must be transformed in six steps to reach
a solution: a formulation (schemes, texts), an algebraic form (used in modeling
language), an algorithm input (MPS input files), a solver output (MPS output
files), a solution description (produced by modeling language), an analysis form
(tables and graphs). So, model management software should support this data flow
and must coordinate it for different programs and models.

At first, we have already noted (cf. Section 8.2) that optimization techniques
coded as solvers on computers do not stand alone. We know that they are packaged
by modeling tools such as modeling languages. In addition, the communication
with the user is established by the user interface. Such an interface may be a
tool of an operating system, a separate program, or it can be a procedure joint
with an optimization system. Therefore, a modeling tool is again packaged by a
user interface. The user interface helps to realize the well-known idea that the
principal benefit of modeling should be ‘insight, not numbers’. The insight relates
to understanding, and it is reached by a user with the help of various forms of
user interface. A modeling language often uses a standalone editor as the input
interface, and it has built-in procedures as the output interface for the presentation
of results in the form defined by the user.

8.6.1 Example. The source code in INVEST.GMS file from Example 8.2.3 may
continue as follows:

First, assignments and algebraic operations help to prepare report variables.

PARAMETER CPLUS(S), CMINUS(S);

CPLUS(S) = Q*YPLUS.L(S); CMINUS(S) = R*YMINUS.L(S);
FILE OUTPUT / RESULTS.TXT /; PUT OUTPUT; PUT ‘PROFIT:‘/;
PUT ‘Initial W‘,@14,‘| Goal G‘,@31,‘| Objective Z‘,
PUT @48,‘| Income Q‘,@65,‘| Rate R‘/;

PUT W:4:2,@l4,‘| ‘,G:4:2,@31,‘| ‘,Z.L:4:2,@48,‘| ‘,Q:4:2, @65,‘| ‘,R:4:2/;

PUT

PUT

PUT ‘DECISIONS X(I,T,S):‘/;
PUT ‘Time period ‘;

LOOP (T, PUT ‘ | ‘, T.TL:14);
PUT @48,‘|‘,@65,’|’/; PUT ’Investment ’;
LOOP (T, PUT ’ | ’;

LOOP (I, PUT ’ I.TL:4));
PUT @48,’| Surplus YPLUS’,@65,’| Defic. YMINUS’; PUT /;
LOOP (S, PUT ’Scenario ’,S.TL:3;
LOOP (T, PUT ’ |’;

LOOP(I, PUT X.L(I,T,S):5:2));

PUT @48,’| ’,YPLUS.L(S):4:2,’ ’ ,CPLUS(S):6:2;

PUT @65,’| ’,YMINUS.L(S):4:2,’ ’,CMINUS(S):6:2/;);
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Then, PUT statements generate printout pages, see Addendum of [66] for syntax
details. A tabular form of the output is formed with LOOP statements representing
a cyclic flow of operations. Then, the output file RESULTS.TXT has the following
content:

A standard textual presentation of the output data is supported in recent opti-
mization systems by graphical procedures, which provide different data views. An
excellent example is AIMMS [21], which incorporates advanced report writing fa-
cilities. Its project entity includes a list of related pages — windows designed by a
developer for the user.

Recent applications of stochastic optimization show that it is important to use
more than one deterministic equivalent for a given underlying program. These
equivalents may be compared, and the most suitable or easily solvable will be
chosen. The approach of using more than one deterministic equivalent (model) is
called multimodeling. The most important contribution of multimodeling is that
the user learns more about reality using different viewpoints.

The experience with multimodeling applications leads us to the idea of automatic
model building support. The reason is that model building is usually a time-
consuming activity, which has no formal rules. Therefore, modeling languages have
been developed to simplify the task of model changes, and it is now easier to change
individual data items or to switch between data sets. In contrast, structural model
changes must still be done by editing source codes, and this leads to difficulties when
we need to ‘play’ with program’s structural features. These difficulties motivate the
building of special purpose programs designed to support easy changes of model
structure. The approach, which tries to formalize it, is called metamodeling.

Therefore, model management systems can be understood as implementations
of multimodeling and metamodeling ideas. There are only a few such systems
under development. For stochastic programs, we refer to the management system
SLP-IOR [113].

PROFIT:
Initial W
1.80

Goal G
2.00

Objective Z
0.08

Income Q
1.10

Rate R
1.40

DECISIONS X(I,T,S):
Time period
Investment
Scenario 1
Scenario 2
Scenario 3

1
1 2 3
1.80 0.00 0.00
1.80 0.00 0.00
1.80 0.00 0.00

2
1 2 3
0.00 1.98 0.00
0.00 0.00 1.89
1.93 0.00 0.00

Surplus YPLUS
0.10 0.11
0.04 0.05
0.08 0.09

Defic. YMINUS
0.00 0.00
0.00 0.00
0.00 0.00
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II.9 BIBLIOGRAPHICAL NOTES

Introduction and preliminaries. Part II exploits stochastic programming meth-
odology whose motivation and the first simple applications come from the mid
fifties and whose history, theoretical background and introduction to numerical ap-
proaches can be found in several recent textbooks and monographs, cf. [19], [91],
[130]. An extensive list of books and collections on stochastic programming is con-
tained in the preface of [169]. The basics in linear and nonlinear programming are
assumed in Part II. It is briefly surveyed in the textbooks and monographs quoted
above. For more details see e.g. [7], [8].

Multistage stochastic programs. Introduction to multistage problems of sto-
chastic programming including survey of applications and an extensive list of refer-
ences can be found in [45]. We focus here on multistage stochastic programs with
recourse with reference to [130] for stochastic programs with probability constraints
and to [99] for integer stochastic programs. For comparisons with stochastic dy-
namic programming see e.g. [73] or the recent paper [54] and references ib. The
illustrative Example 2.4 was motivated by [29].

Multiple criteria. There are many tangent points between stochastic and multi-
objective programming, see e.g. [72]. Chapter 3 deals with selected methods and
results for multi-objective programming and their applications to static stochastic
models for portfolio management, including the Markowitz model [112]. Criteria
based on alternative definitions of risk were compared for example in [98]. We
delineate in Section 3.3 how to use the concepts of multi-objective programming
for formulation and interpretation of various types of stochastic programs. For
introduction to financial optimization see [176] and for the state of the art in multi-
objective optimization see [78].

Selected applications in finance and economics. The first large-scale ad-
vanced applications of stochastic programming in finance and economics can be
found in [39], [128] and [179]. At that time, water resources planning and man-
agement was one of favorite applications areas, see [128]. Sophisticated approaches
to portfolio management from the seventies, e.g., [24], [106], have become the cor-
nerstones of the contemporary financial applications and have contributed also to
modeling and software development for multistage stochastic programs. Section
4 reflects the fact that at present, the most popular seem to be financial applica-
tions of stochastic programming; see various survey papers and collections, e.g.,
[44], [119], [178], and descriptions of successful applications such as [28]. Our pre-
sentation of general features of multiperiod and multistage stochastic programs in
portfolio optimization in 4.4 has been supported by ideas of [40], [119] and [178].

Applications in planning and management of energy generation and transmission
are booming. Their presentation in 4.6 and 4.7 is based on [108], [130] and [157].
There is an increasing interest in stochastic programming applications for plan-
ning, allocation and management of resources, capacity expansion (see Chapter 12
in [19]), production planning and optimization of technological processes (see appli-
cation 4.8 motivated by [126]), in design of networks, e.g. for telecommunications,
and in logistics problems. In general, macroeconomic applications are rare. They
concern growth models, socio-economic decisions supporting employment, etc.
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Approximation via scenarios. In practise, one uses discrete probability dis-
tributions obtained mostly by approximation of a more complex and possibly not
completely known underlying probability distribution. Chapter 5 devoted to gener-
ation of such sensible discrete probability distributions is based on several papers,
cf. [2], [48], [53]. The critical item is how to create the required input for multi-
stage stochastic programs and how to use the results of the approximated problem
to draw inference about the sought results of the true one. The second mentioned
problem area is usually called “what-if” or output analysis. Methods of output
analysis have to be tailored to the structure of the problem and they should also
reflect the source, character and precision of the input data. Accordingly, the suit-
able approaches are based on results of asymptotic and robust statistics (we use
[144] as the reference book), moment problems, on simulation techniques and on
general results of parametric programming, e.g. [5], [69], [62]; see [49] and references
ib. The contamination method and its application to quantification of changes due
to inclusion of out-of-sample scenarios was elaborated in several papers, see e.g.
[46] and [52].

Case study: Bond portfolio management problem. The case study presented
in Chapter 6 exploits results obtained within the contract “HPC-Finance” of the
INCO ’95 project founded by Directorate General III of the European Commission
in a close collaboration with Professor Marida Bertocchi and her group at the
University of Bergamo. The model is similar to the two-stage multiperiod model
[70]. The need for output analysis is emphasized and various methods described in
Chapter 5 are illustrated. The results are based on papers [15], [50], [51] and [52].

Incomplete input information. Selected techniques suitable for analysis of the
results are applied also in Chapter 7. Except for stability of the European call price
with respect to the estimated volatility, these results were presented in [47].

Numerical techniques and available software. In the eighties, the special
care devoted to software development has resulted in the collection [58], in the
recommended input format [20], in several monographs [77], [84], [113], software
packages and test batteries.

The last Chapter written by Pavel Popela surveys and explains the available
numerical approaches and software. It begins with a simple educational investment
example solvable by simple calculations. Nevertheless, even this simple example
motivates a need of numerical optimization algorithms. Traditional optimization
techniques and software can be used for solution of medium size stochastic pro-
grams (see [117] for a historical overview, [66] for the GAMS description, [65] for
the AMPL guide, and [21] for the AIMMS model development tool). The de-
scription of two main decomposition algorithms (LSHAPED and PHA) and their
computer implementations follows the original papers [68] and [134]. Details and
extensive references on other algorithms may be found in [19]. The brief exposition
on problems of model management follows ideas of [21], [113] and [126].
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Part III

STOCHASTIC ANALYSIS AND DIFFUSION
FINANCE

231

III.1 MARTINGALES

stochastic processes, Brownian motion and martingales, Markov times and stopping
theorem, local martingales and complete filtrations, L2-martingales and density the-
orem, Doob-Meyer decomposition, quadratic variation of local martingales, helps
to some exercises

1.1 Stochastic Processes
Recall first some basic definitions. Until further notice we shall fix a probability

space . A stochastic process is a collection

of real valued random variables. If only a collection , is at
our disposal, we shall speak about a stochastic process on T.

being stochastic processes, we shall call a
d-dimensional stochastic process.

A trajectory of a stochastic process X on a is a function in
given by or by for a fixed random element .

The basic equivalence relation on the set of stochastic processes is that given by
the almost sure equality in the space of trajectories. More precisely, processes X
and Y on T are said to be equivalent if

We write either or a.s.. Observe that implies
that for all and if this holds we say that X is a modification
of Y (and vice versa, of course).

The same definitions and observations apply to a collection of E-valued random
variables where is a metric space. Such a collection is called a stochastic
process with states in or simply . Thus, a stochastic
process is a process with states in .

1.1.1 Example. Let U > 0 be a random variable with an absolutely continuous
distribution, put and . Obviously X is a modification
of Y; on the other hand X and Y are not equivalent as in fact

also

(a P-null set).for some
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Almost sure properties and implications form an important and for a beginner
not quite easy part of stochastic analysis. Read carefully the following probabilistic
statements that refer to some properties of processes X, Y and a positive r.v. U:
Obviously,

implies almost surely that

Outside a P- null set

X=Y on [0,U] with probability one

are equivalent statements and mean exactly that

We shall agree to call a stochastic process continuous, decreasing, ... if all its
trajectories have the corresponding property and also to call it an almost surely
continuous process, almost surely decreasing process, ... if the correspond-
ing property is possessed by trajectories outside a P-null set.

Our text will be centered mainly around continuous processes which assumption
may in some cases simplify our arguments :

Recall that a function is of finite variation if for all

where the run through all finite partitions of the interval and where
The map will be called here the

variation of B.

1.1.2 Lemma. Let X and Y be either left or right continuous processes. Then

(a) X is a modification of Y iff .
(b) If X is a continuous process of finite variation then is a continuous non

decreasing stochastic process.

For a continuous process X of finite variation, the process will be referred
to as the variation of X.

The first part follows easily by continuity of X and Y and by separability of ,
to verify (b), namely the measurability of you need to refresh your analysis
by

1.1.3 Exercise. If is continuous and of finite variation then
is continuous such that

where
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Besides the continuous processes of finite variation, Stochastic Analysis is in-
habited mainly by continuous martingales. These processes, as we shall see later
on, cannot be of finite variation unless they are constant on almost surely.
Nevertheless, there is a concept of variation that makes a very good sense even for
processes with such irregular trajectories as martingales:

We shall say that a stochastic process X is of finite quadratic variation if
there is a process such that

(1)

where and

converge to a r.v. in probability as . We shall also write in
this case and if is a Cauchy sequence in probability.

The process will be called the quadratic variation of X. Note the follow-
ing facts:

(i) The correspondence respects the "modification classes", i.e. if X
is a modification of Y then is a modification of .

(ii) Even though a.s., the quadratic variation need
not be increasing almost surely due to a possible lack of continuity of .

(iii) The definition of is a rather restrictive one: The process X in 1.1 where
is not of finite quadratic variation.

1.1.4 Exercise. A stochastic process X is of finite quadratic variation iff

As we have already observed, the concepts of variation and of the quadratic
variation are not very friendly, indeed:

1.1.5 Lemma. If X is a continuous process of finite quadratic variation then for
any and outside a P-null set

Proof. Fix and choose such that
outside a P-null set N. Because

it follows by continuity of X that and

If L is a linear space of processes of finite quadratic variation we may define a
bilinear form on L by

where is defined by

The process will be called the covariation of X and
Y.

means that r.v.’s
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(a) is a symmetric bilinear form on with values in the set of
all processes on that respects the modification equivalence classes.

Moreover, for all and outside a P-null set the following inequalities hold :

(b)

(c)

Frequently we meet problems that ignore the home space of a stochastic
process X and ask for some properties of its probability distribution, only. Recall
that for a measurable map and a measure on ,
denotes the measure on defined by called the of

Recall also that is called a random variable with values in a metric space
if it is defined on a probability space , attains its values in and is

measurable in the sense where denotes the Borel
algebra of . We shall abbreviate and . Agree
to write and to call the image measure the probability
distribution of .

Having a continuous stochastic process we may observe the
process as a map defined on with values in the space of all
continuous functions defined on suitable metrization of the space
that makes X a random variable with values in is provided by

1.1.7 Exercise. Put for
and prove:

(a) is a metric on such that iff uniformly on each

(b) is a separable complete metric space.
(c) The Borel is generated by closed neighbour-

hoods of the form

and therefore by the sets of the form

Let us agree that speaking about a topology on we shall always mean the
metric topology defined by (a).

Any stochastic process is naturally accompanied by the
system of all its finite dimensional distributions where

goes through all finite increasing sequences in
As expected, the probability distribution of a continuous process X is uniquely

determined by its finite dimensional distributions.

and are of subsets in F and G, respectively, such that  for all

1.1.6 Exercise. Let be a linear space of processes of finite quadratic variation.
Then

.

.
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1.1.8 Lemma. If X is a continuous process then is a -valued
random variable and such as, it has the probability distribution on . More-
over, continuous processes X and Y are equally distributed on iff they have
identical finite dimensional distributions.

To prove such a statement we can not avoid a Dynkin argument: Consider a
nonempty set , a family of its subsets and a family of maps where

goes through an index set U and each is a metric space. We shall denote by
the minimal that contains each and

Obviously, having a measurable space then is an random
variable defined on if and only if .

The operator will appear in our proofs by means of promised

1.1.9 Dynkin Arguments.

If where is a metric space and if then

Let be a vector space of functions that contains constants,
it is closed with respect to uniform convergence and posses the following
property: If are nonnegative and uniformly bounded and
on then .
If contains a subset that is closed under multiplication, then any
bounded -measurable function belongs to .
Weaker forms of (b) are:
Let be a family of subsets of such that implies that
for any sequence If is an algebra then any is
a set in .

holds. If is a family closed under finite intersections then any
belongs to .

Let X and Y be random variables on with values in a separable
complete metric space and an arbitrary metric space , respectively.
Then X is a -measurable random variable if and only if there exists a
Borel map such that holds everywhere on .

Proofs may be found in [135] or in [37].

(a)

(b)

(c)

(d)

(e)

Let be a family of subsets of such that
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We will summarize the basic ingredients that allow to construct a (continuous)
stochastic process with given finite dimensional marginals. In
particular, consider a family of distribution functions

and ask if there is a (continuous) process X such that

holds. Note that if a process X exists such that (3) holds then the family of
distribution functions (2) is consistent, i.e. such that is the marginal
distribution function of whenever

The classical Daniell-Kolmogorov Theorem (see, Corollary 35.4 in [6], p.303)
slightly simplified says

1.1.10. For any consistent system of distribution functions (2) there exists a sto-
chastic process X such that (3) holds.

Once the existence of a process X with given finite dimensional distributions is
established, a natural question arises: Under which conditions can X be modified
to a continuous process Y ? Kolmogorov-Chenstov Theorem (see, 39.3 in [6], p.
335) provides a partial answer.

1.1.11. be a stochastic process such that

(4)

holds for some Then X has a continuous modification.

The natural state space for a continuous process
is the space of continuous maps from to denoted as with the
topology of uniform convergence on compact intervals in . Obviously, the space
is metrizable to a separable complete metric space because it is homeomorphic to
the separable complete product space . We venture to identify both
spaces and apply the notation

Finite dimensional distributions of an  stochastic process
are given as

(2)

(3)

Let

Proof of 1.1.8. The first statement follows by 1.7 (c) and 1.9 (a). To prove
the second one denote by the family of all Borel sets such that

holds. Check that it owns all properties required by 1.9
(d). Denoting by the family of all finite intersections of the sets

it follows that by 1.7 (c) and by 1.9 (d).

STOCHASTIC MODELING IN ECONOMICS AND FINANCE

.
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where is a Borel probability measure on .
If is another process, defined perhaps on a dif-

ferent probability space, agree to write if the processes X and Y have
the identical finite dimensional distributions.

Since is a separable metric space we may repeat arguments for 1.7
(c) to see that the Borel of is generated by sets of the form

where and
denotes the Eucleidian norm in . This and 1.9 (a),(d) yields

1.1.12 Lemma. Let be a continuous process.
Then X is a -valued random variable such that

We will say that is a Gaussian process if all
its finite dimensional distributions are normal. Thus, the -probability
distribution of a continuous Gaussian process X is according to 1.12 uniquely
determined by its mean and by its covariance matrix function given as

A Gaussian process X with for all will be called a centered
Gaussian stochastic process.

The principal definitions of stochastic calculus are as follows:
Having a measurable space we call a filtration of the mea-

surable space if any is a and whenever We agree
to denote

If X is an process on , where is a metric space, we denote

is process if holds for all . This means that X
is an process if and only if is an random
variable for all

Observe that if X is a process on whose trajectory records a random motion
of a particle then the may be interpreted as the history of the motion
up to time because it lists precisely those random events that may or may not
happen to the particle on the time interval while is the that
records the complete motion of the particle.

A very natural continuous process lives on the measurable space
It is defined by for and and called the canonical
or coordinate process. Actually, the process is prepared to posses any probability

holds.  Moreover, if and only if holds.

and call the filtration the canonical filtration of X.
Having a filtration of we shall say that an process X on
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distribution we may choose just considering it as a stochastic process
on . Having a continuous process we shall call the
process the canonical representation of the process
X on . Obviously,

(5)

holds by 1.12. Here denotes the space of continuous functions with
usual topology of uniform convergence and the continuous
projection.

A continuous time version to Daniell-Kolmogorov theorem we appreciate later
on is provided by Varadhan Theorem, see [156], p.34.

1.1.13. For any let be a probability measure on such that the family
is consistent in the sense . Then there is a

unique probability measure on such that holds for any           .

1.2 Brownian Motion and Martingales
Recall that a stochastic process X is said to have independent increments if

the random variables

(6)

for all finite sequences Both above properties are
met by Brownian motion that is defined as a centered Gaussian process with
cov for . The basic existence properties are provided
by

1.2.1 Theorem.
(a) A process X is a Brownian motion iff , it has independent incre-

ments, and holds for
(b) Brownian motion exists and each Brownian motion can be modified to a

continuous process.

A continuous Brownian motion will be called Wiener process and denoted
mostly as . Observe that and

Proof. (a) If X is a Brownian motion then cov
for and the random vector (6) has a normal distribution. It follows
easily that the increments are independent and random variables.
Because the above reasoning is easily seen to be reversible the equivalence (a) is
verified.

(b) Consider and put
Because is a positively semidefinite function on the
are well defined normal distributions that obviously follow the consistency require-
ment of 1.10. It follows by the theorem that there is a stochastic process X with

are independent

.
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finite dimensional distributions given by (3), hence X is a Brownian motion. By
(a) we get for all and X possesses a continuous
modification by 1.11.

The motion as a physical phenomenon was first observed by English botanist
R. Brown in 1897 as the motion of pollen particles in a liquid due to the incessant
hitting of pollen by smaller liquid molecules. Amazingly, the first qualitative treat-
ment of Brownian motion suggested by L. Bachelier in 1900 ([4]) was inspired by
the stock price fluctuations. The physical and consequently mathematical theory of
Brownian motion was set up by A. Einstein in 1906 ([56]) and by N. Wiener in 1923
([171]). Wiener process, i.e. the continuous Brownian motion has since well estab-
lished a claim to be one of the cornerstones of both theoretical and applied modern
probability. Unquestionably, it is also the fundamental stochastic process for the
present text due to its rôle of the stochastic driver of the stock prices dynamics in
a model we shall present in Chapter 3.

1.2.2 Stability and the Quadratic Variation of W.
(a) For any is a Wiener process in-

dependent of the

(b) The process defined by is a Brownian
motion with trajectories continuous on

(c) W is a process of finite quadratic variation with for all

Proof. There are two items of the above statements that need a finer treatment:
Fix and denote

It follows by definition of W that the random variable is independent of the
algebra , hence also of the . By continuity of W we get
that establishes the independence stated by (a).

Fix and let Then

which proves (c)

From the point of view of mathematical analysis the trajectories of W are fairly
pathological:

1.2.3 Trajectories of Wiener Process W. Denote by the set of
such that for and . Then outside a P-null set

(a)

.
.
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(b)
(c)
(d)

and
as

We leave the proof to our reader who may prefer to consult any standard text
book on modern probability, see [6], Chapter IX], for example. We complement 2.3
by

1.2.4 More on Trajectories of W.

(a)

(b) Outside a P-null set a trajectory of a Wiener process is nowhere differen-
tiable on

A very deep assertion (a) is called the law of iterated logarithm. We refer
to [6], Chapter IX, again, for the proofs.

The natural state space for Brownian motion is of course . We shall say that a
continuous d-dimensional stochastic process with
is a d-dimensional Wiener process if it has independent increments

and for where denotes the unit
Hence, a Wiener process is a centered Gaussian process

with the covariance function given as
Only elementary arguments are needed to prove the following statements:

1.2.5 Theorem.
(a) is a Wiener process iff

are independent one dimensional Wiener processes.
(b) Let W be a Wiener process, fix .  Then

is a Wiener process inde-
pendent of the where denotes the canonical filtration
of W.

Wiener process is also a martingale.* The concept of the martingale was first
introduced by J. Ville in 1939, see [166], and the pioneering fundamental results
were discovered for the most part by P. Lévy and J.L. Doob in the period 1934-1950,
see [41].

Recall that a stochastic process where , is a martin-
gale if for all

Test your proficiency in the conditional expectations calculus, see 2.7 below, and
verify the martingale property of W and some of its transformations.

*A strap connecting a horse’s girth to the reins so as to hold down its head (the French language
of the 15th century), later on a special gambling strategy.

.
.

.

.



III. STOCHASTIC ANALYSIS AND DIFFUSION FINANCE 241

1.2.6 Exercise. If then , and

are martingales.

1.2.7 Conditional Expectation Calculus. For any _ there
exists an almost surely unique linear map such
that

We shall also write instead of . The following properties hold whenever
the corresponding (conditional) expectations are defined:

(a)
(b)
(c)
(d)
(e)

(f)
(g)
(h)
(i)
(j)

(k)

By we denoted and will continue to denote that a function is
-measurable random variable for a of subsets of . By

we mean the
See paragraph 15 in [6] for the proofs.
We are prepared to extend usefully the concept of Wiener process and that of

martingale with respect to a given filtration
We shall say that a Wiener process W is an process

if is an Wiener process such that

(7)

We shall say that a one dimensional process X is an (sub-
martingale, supermartingale) if X is an process with
for all such that

respectively.

and are independent.

and

and are independent

both almost surely and in
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1.2.8    Stability of W  w.r.t. a Filtration Change. Let W be a
process. Put . Then

(a)

(b)
(c)

W is a process for any filtration such that
for all
W is an process.
W is an process for any filtration   such that and

are independent for all and are independent

Thus, Wiener property (7) is safely preserved when moving the filtration
downwards as long as we keep the process W to be adapted. An enlargement of

is possible only in special cases as in (b) and (c).

Proof. To verify (b) observe that if then and are
independent for any , hence the assertion follows by continuity of W.

Having W, and as in (c), the
and are independent for . It follows immediately that and

are independent also, which implies (c) because the latter
family of sets is closed w.r.t. finite intersections and generates

1.2.9 Stability of Martingale Property.
(a) If X is an _ then it is also a for any filtration

such that holds for any
(b) Any continuous -martingale X is
(c) Let and be independent filtrations as in 2.8 (c), X an

and Y a . Then X, Y and XY are
(d) Let X be an (a submartingale) such that is in

for for a convex (a convex non-decreasing) Then
is an

Proof. (a) follows easily when using (d) in 2.7. To prove (b) apply 2.7 (j) and
the continuity of X to get for

X and Y in (c) are by 2.7 (e). To prove this for XY observe
that the process is and because and
are independent integrable variables. Fix consider and
Because and are pairs of independent variables

that obviously implies the martingale equality
Finally, (d) is a direct consequence of Jensen Inequality 2.7 (b).

Next, we are going to establish a pair of important martingale inequalities for
which quantity is easily seen to be a random

variable if X is a right-continuous process. Observe also that
is a continuous process whenever the process X has the property.
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1.2.10 Doob’s Inequalities. If X is a right-continuous martingale or a nonneg-
ative submartingale, then

A discrete version of the above inequalities provides

1.2.11 Lemma. If is a martingale or a nonnegative submartingale
then

Proof. Assume first that is a nonnegative submartingale and denote
for Hence, by

submartingale property and finally, if

To prove (b) denote fix and apply (8) to the submartin-
gale to get

Hölder inequality with the exponents and yields

and finally

The proof of (b) is completed by letting . To prove (a) we may assume
that which according to (b) implies that for any and
therefore is submartingale by 2.9 (d). The (a) inequality now
follows in both cases by (8).
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Proof of 1.2.10. The right-continuity of X implies that

and

by 2.11 because each sequence is a
submartingale.

We shall say that a martingale X is an if for
and close this Section by a list of simple martingale properties

1.2.12 Exercise. Let X be an and Then

(a)

(b)

(c)

(d)
(e)

An X with constant is a martingale.
If X is a right continuous nonnegative supermartingale on [0, T] then

1.3 Markov Times and Stopping Theorem
We shall fix a measurable space with a filtration and define a

to be a time if holds for all . We
also enlarge the filtration  putting

and call the . Observe that if then is an
-Markov time and

A Markov time is mostly looked upon as a random time in which some im-
portant event happens to an stochastic process, see 3.6, for example.
Note that the definition of Markov time supports this interpretation by saying that
to determine whether the event appeared or not during time interval is always
possible if we are familiar with the history up to the time . Thus the

may be interpreted as the history of the process up to the random time in
which the event happens, hence the

First, let us summarize some almost obvious properties of Markov times.
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1.3.1 Lemma. Let and be times. Then
(a)
(b)
(c)
(d)
(e)
(f)
(g)

Proof. The definitions yield (a), (b), (c) directly. As for (d) we observe that
for an that (c) implies

By (d) we get (e). As for (f) we have again by (d) and
by (a) and (c) which is all we need to verify the statement.

Finally,

according to (f) which combined with (e) verifies (g).

Also, we will find useful the techniques developed in the next four simple state-
ments.

1.3.2 Lemma. Let bean time and

Then are times and on as

Proof. To see that are Markov times fix  and check that

1.3.2 may be obviously modified to

and

1.3.3 Exercise. Let be a bounded Markov time. Set

Then is a sequence of Markov times.

A filtration is called right continuous if forall
. The property may be used in some cases to simplify the verification that

a random variable is a Markov time.
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1.3.4 Exercise.
(a)

(b)
(c)

If is a right continuous filtration then is an time if and only
if for any and
For any filtration the filration is right continuous.
Consider the canonical  filtration in defined by
(5) and prove that is a strictly smaller than

The following basic integration property requires a probability measure P to
complete our model to

1.3.5 Lemma. Assume that and are times. Then
(a) outside a P-null set

and
(b) almost surely.

Proof. According to 3.1 (f) and (g), (a) is equivalent to

to be valid for all . But this follows directly by the definition of the condi-
tional expectation because according to (d),(f),(g) in
3.1.

For an (a) yields

because the integrand is in again according to 3.1 (d) and (f). Also by
(a) we reason that

and summing up both equalities we get

which is equivalent to (b).

We have already remarked that the concept of Markov time is designed mostly to
denote the time in which a trajectory of a stochastic process X performs something
very important for our purposes:

If is a Borel set we denote where
inf and call the random time variable the first entry of X into B. Agree
to write

for the first entry of into . Speaking generally, each entry time of a
measurable X into a Borel B can be forced to become a Markov time of a properly
extended canonical filtration , see Theorem 6.7 in [93], for example. However,
the following more elementary result covers all cases we shall treat.
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1.3.6 Theorem. Let X be a continuous process. Then
is an time under either of the following conditions:

(a) B is a closed set in
(b) B is an open set in and is a right-continuous filtration.

Proof. In (a) we have , hence

In (b) we write

that verifies (b) via 3.4 (a).

Note that (b) holds also if the continuity of X is weakened to its right-continuity.
Stochastic analysis embraces a lot of measurability concepts. The most impor-

tant one is that of the progressive measurability: We shall say that a stochastic
process X is measurable or simply if

Denote by the space of all processes and call a set
if                       .

1.3.7 Exercise. Fix a filtration and denote by the set of all progressive
subsets of . Verify that

(a)

(b)
(c)

is a such that iff X is an -measurable
map.

is an process.
According to (a) and (b), is and
map Show that the implication can not be reversed.

As always, continuous processes are inclined to be handled more easily:

1.3.8 Theorem. A right-continuous process X is .

Proof. Fix a and observe that

define maps such that on

For a stochastic process X and a random variable we shall
denote

is                     -measurable map
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Obviously, we may interpret the variable as the state of the process X at
the time , hence, for example, is the state in which we find X at the
moment in which its trajectory enters for the first time. Thus, assuming
that X (0) =0 and that X is a continuous process we have
For a progressive process X and Markov time is a random variable:

1.3.9 Lemma. Let X be and an time. Then
is an set;

is an stochastic process;
is an random variable defined on which means

that for any .

Proof. The continuous process is hence
progressive, according to 3.1.(a) and 3.8. This implies (a) because

(a)
(b)
(c)

Denote and observe that of
implies that for any fixed the map T is measurable as

Hence, is an process.
For a fixed  it follows by (b) that and therefore

that proves (c).

The next pair of results is of a basic importance in what follows:

1.3.10 Optional Sampling. If X is a right-continuous (sub-
martingale) and a pair of bounded times, then

holds almost surely.

Proof. Assume that X is a submartingale and that
(i) take their values in such that

The first part of 3.10 follows easily by where
. Choose and check that the submartingale property implies

hence a.s. because by 3.9 (c).
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(ii) Assume that take their values in
Define Markov times by to get a connecting sequence

It follows by (i) that

(iii) Consider arbitrary Markov times
Accoding to 3.3 there are Markov times and that satisfy (ii) for

such that and . According to (ii) we get

Hence, both and are inverse submartingales such that all expec-
tations and are above and therefore convergent in

by Theorem 6.5.10 in [67], p.228, for example*. Thus, the first inequality in (9)
and the right-continuity of X yield

Finally, according to 2.7 (f) and because by 3.9 (c)

where both limits are in

1.3.11 Stopping Theorem. If X is a right-continuous (submartin-
gale) and an time then inherits the corresponding property.

If X is a right-continuous and times then

and if moreover X is a bounded process and finite Markov times, then

Proof. The process is process by 3.9 (b), the random variables
are integrable by 3.10. Assume that X is submartingale. It follows by 3.10

and 3.5 (b) that

holds for all
The latter part of 3.11 follows by 3.5 (b) and 3.10 as

Letting in the above equality we get by 2.7 (f).

*Note that the uniform integrability of and that implies the ,
follows simply by 1.2.7 (g) if X is a martingale or nonnegative submartingale
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1.3.12 Exercise and Example. A right continuous process X is an
iff and forall bounded times

and iff for all and for all times
with card

Setting and for an we get a martingale
with because (apply 2.6 and 2.3
(b)). Hence and is a pair of Markov times such that 3.10 is not valid
anymore.

Markov times provide indeed a mighty tool to tame the continuum of time:

1.3.13 Theorem. Let be a continuous supermartingale. Then outside a
P-null set

where denotes the first entry of X to 0.
Hence, a continuous supermartingale X with almost surely for all

has trajectories that are positive on with probability one, i.e. the X is
an almost surely positive supermartingale.

Proof. It follows by 3.6 (a) that is an -Markov time, hence we may use
Stopping Theorem (or rather its supermartingale version): If we have
nothing to prove. If the contrary is true let denote the minimal such that

Because yields

as . It follows that for all on
outside a P-null set , hence by continuity, for all on

. Putting we exhibit a P-null set outside which the
implication (10) operates.

As for the second part of our theorem suppose that which leads
to a such that . According to the first part the trajectories of
X vanish on with a positive probability, hence a contradiction and
that is exactly our second assertion.

We close this section by extending the stability property of Wiener process given
by 2.2 (a).

1.3.14  Strong Markov Property of W. If W is an process and
an almost surely finite  time, then

For a while fix  denote and choose a
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are Wiener processes, being a process independent of the

Proof. Assume without loss of generality that is a finite Markov time. We
need to verify

If is a countable set, the equality follows easily by its factorization to the atoms
where the are values of . Hence, (11) is proved for each Markov time

defined in 3.2 and the validity of (11) in general is implied by
and finally by the continuity of W and

Since is a Wiener process independent of it follows that
and are equally distributed

random variables. Compute

to conclude that and holds for a Borel
map . Hence, W and B are equally distributed
processes.

The strong Markov property may be applied to establish precisely

1.3.15 Reflection Principle. Let W be a Wiener process. For and
put and let denote the first entry of W to . Then

Note that the Reflection Principle in fact says that

which equality easily comes from by the obvious heuristic argument: Among the
particles which enter before time ”half” of them will be above at time

Proof. Write It is easy to
check that holds where . Hence,

by 3.14.

Thus, for each individual while obviously the dis-
tributions of S and W are singular probability measures in

1.3.16 Exercise. The Markov time has for any the proba-
bility distribution with the density

(11)
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1.4 Local Martingales and Complete Filtrations
Later on we shall appreciate the following extension of the martingale property:
Let X be an continuous stochastic process. We shall say that an

time stops X to martingale if is an Further,
a sequence of times will be called an sequence
for X if almost surely and stops X to an for every
Finally, X is a local if there is an sequence
for the shifted process X – X(0), i.e. if

Fix a filtration and verify as an exercise the following simple but frequently
used properties:

1.4.1 Exercise. Let X be a continuous adapted process and Markov
times. Then

(a) If then stops X to a martingale iff stops to a
martingale, i.e., X is a local martingale iff there is a localization sequence
for X.

(b) X is a martingale is a local martingale is a local martingale.
(c) If and stops X to a martingale then also stops X to a martingale.
(d) X is a local martingale, is a local martingale.

Mostly we shall deal with continuous adapted processes X such that X(0) is a
constant. It follows by (a) that such a process is a local martingale if and only if
there exists a localization sequence for the process X itself.

Warning. It is not true that local martingales need only be integrable in order to
be martingales (see 2.3.7 for a counterexample).

Nevertheless, as we shall see later on, it is very important to recognize true
martingales among local martingales. Agree to call a process X bounded if

for all and i.e. if it is a process with uniformly bounded
trajectories.

1.4.2 Theorem. For a fixed filtration let X be a continuous adapted process.
Then

(a) If X is a local martingale such that holds for all and a
random variable then X is a martingale, especially, bounded local
martingales are martingales.

(b) Let denotes the first entry of Then X is local
martingale iff is a localization sequence for

(c) If X is a nonnegative local with then it is a
supermartingale.

(d) If X is a nonnegative local with such that
holds for a then X is a martingale on
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Proof. (a): Choose a localization sequence for X, say . Stopping Theorem
implies

(11)

Because and as 1.2.7 (f) permits to
pass in (11) to receive for

(b): are Markov times by 3.6, on because all trajectories of
X – X(0) are continuous, hence locally bounded functions on . If X is a local
martingale then is a local martingale by 4.1 (b), hence a martingale
according to (a).

(c): There is a localization sequence for X by 4.1 (a). Fix and check

By Fatou lemma we reason that as
and finally, by Fatou lemma for conditional expectations 2.7 (i) we conclude the

proof of (c):

The assertion (d) is an immediate consequence of 2.12 (d) and our present (c).

Note that 4.2 (b) says that given a local martingale X, the shifted local martin-
gale X – X ( 0 ) owns a localization sequence  such that are
times. This property enables to extend 2.9 to

1.4.3 Stability of Local Martingale Property.
(a) If X is a local then X is a local for any filtra-

tion such that holds for any
(b) If X is a local then it is a local
(c) If X is a local and Y a local then X, Y and

XY are local provided that filtrations are in-
dependent.

Proof. The statements (a), (b) follow easily by 2.9 and 4.2 (b). If X and Y
are as in (c) assume X(0) = Y(0) = 0 without loss of generality (see, 4.1 (d)) and
choose their corresponding localization sequences and such that and

are and times, respectively. According to 2.9 (c) and
are . It follows by 4.1 (c) that are

-martingales also and therefore is an sequence for
XY.

Recall that by 1.5 the only continuous process with finite variation and
with the finite quadratic variation is that for which for all

. Continuous local martingales and those of finite variation behave in a similar
fashion.
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1.4.4 Theorem. Each continuous local martingale X of finite variation is con-
stant almost surely, i.e., for outside a P-null set.

Proof. Obviously we may restrict ourselves to the case that X(0) = 0.
Assume first that the processes X and are bounded, say

fix a and choose a sequence of partitions Then, because
increments of X are orthogonal by 2.12 (c),

Hence, by the dominated convergence theorem and the uniform con-
tinuity of each on . The assertion now easily follows by the continuity of
X.

Let X be a continuous local martingale, say w.r.t. a filtration and its
variation. Then is continuous by 1.2 (b) and by 1.3. It follows by
4.1 (c) and 4.2 (b) that defines an sequence
for X such that and are bounded processes. Hence, by the
first part of our proof, we get for every and taking the limit
we conclude the proof.

The above theorem invites to combine the local martingales and the processes
of finite variation by linear combinations:

Given a filtration call a stochastic process X an if
X = B + M where B is a continuous process of finite variation and M
a continuous local Obviously, are continuous
and processes.

For our future purposes our notation will be as follows:

Sometimes we may prefer to be more specific about the home space of our processes,
thus we may also write or even . Also,
we point out that unlike a martingale we defined a local martingale and a
semimartingale only as a continuous process.
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1.4.5. Each semimartingale can be written in the form

(12)

which decomposition is (according to 4.4) unique in the sense that B, and

Instead of (12) we shall frequently write and call the right-hand
side the stochastic differential of X.

Practically everything we could do in favour of where is a
general filtration we have already done. For further purposes we lack the modifica-
tion stability as

(13) If Y is a modification of an X then Y is

It is obvious that we need filtrations     such that any includes any P-null set
in where is the underlying probability space. In other words we force
ourselves to believe that everything what certainly will happen (or certainly will
not happen) to our particle is known at the time

Let be a complete probability space. A filtration
of will be called a complete filtration if where

Note that a complete filtration is defined only as a filtration of a complete
probability space which ensures that is a hereditary class of sets, i.e., if
is a subset of an then also . As an exercise solve the problems
below to see how comfortable complete filtrations are:

1.4.6 Exercise. Fix a complete filtration .  . Then

(a) If X is an process and are such that
holds for all then Y is an process. In particular, (13)
holds.

(b) If are processes and such that
holds for every then the process X is also

A test for a process X to be adapted is provided by

1.4.7. Let be a complete filtration. Consider for and a
sequence of times such that almost surely.

(a) If are processes then X is a process that also is
(b) If are continuous processes then X is a process that is

and continuous almost surely.
(c) If for all then X is a process equivalent to a process

M, , respectively, are pairs of equivalent processes if is
another decomposition (12).
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For (a) and (b) we do not need to be Markov times.

Proof.

(a)
(b)

(c)

Observe that and apply 4.6 (b).
This follows by (a), observing that is a continuous function on if

X is process that is continuous outside a set by (a)
and (b). Thus, is a continuous and process such
that and for all . It follows by 4.2 (b) that

is a localization sequence for Y, hence .

Adapted processes may be constructed from processes that are defined on
only if

1.4.8. Let be complete filtration and a sequence of times such
that almost surely. Further, let  be either a sequence of or
continuous processes or processes in                  such that

(14)

Then there is a process X that is continuous and in
, respectively, such that in all cases holds for all

We need the to be Markov times only for the part that refers to the local
martingale property.

Proof. It follows by (14) that for where and for all
as Put for all and

. Obviously, again by (14), and all above assertions follow by 4.7
because processes are continuous and in
respectively.

Whatever mathematical profit we may get working in the setting of complete
filtrations we must build up a passage there from the uncompleted ones that would
preserve Brownian motion and the (local) martingale property.

Let be an arbitrary probability space and its arbitrary filtration.
Denote by the set of all for which a P-null set exists such that

holds.. Observe that if is a complete space. Denote
and stay to denote by P also the unique extension of P from

Note that is the standard completion of . Finally
denote for  to construct a complete filtration of the complete
probability space . We shall say that is the P-completion of         .

1.4.9. Let be a filtration of a probability space . Then
(a) If W is a process then W is an  process.
(b) If X is either an or martingaleor

then the same is true with replaced by     .
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Proof. Because any martingale, and
process will keep the corresponding property if it is considered as a

process on the completion we may, without loss of generality, assume
that itself is complete. If it is so, then where
and are independent The statements (a), (b) now follow by the (c)
statements in 2.8, 2.9 and 4.3.

1.5 and Density Theorem
Denote

where, as you may remember,
The space with convergence induced by the pseudometric

provides a suitable operation field for handling continuous processes as the
convergence combines the uniform convergence on bounded intervals with that in

. Next Exercise summarizes simple properties of

1.5.1 Exercise. Verify that

(a) defines a pseudometric on such that

(b) iff in for all
in for all

(c) and if M, are in then iff
in for each              .

A deeper quality of is given by

1.5.2 Theorem. For a fixed complete filtration the pseudometric space
is complete and is a closed subspace.

Proof. Let be a Cauchy sequence in observe that
for all and . Choose such that
holds for all Then for any

if Hence, for any

for and finally for
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It follows that there is an with such that is a Cauchy,
hence a convergent sequence in for by 1.7. Denote its limit by
and put for . Thus, we have constructed a continuous process X
such that

(15)

and therefore the X is an adapted process by 4.6 (b). Also, Fatou lemma and (15)
yield for a fixed

hence . Finally, fix  and choose such that
By Fatou lemma and (15) again

if therefore  and finally
To prove that is a closed subspace consider and such

that holds. The convergence implies that in for
any fixed . Hence,

where all limits are in    .

Before we shall proceed further test your proficiency in the following elements of
measure theory:

Let be a continuous function of finite variation such that B(0) = 0.
Recall that the variation of B denoted by is an increasing continuous function

with by 1.3. Also denote and
. Agree to write or for the locally finite Lebesgue-Stieltjes signed

measure defined on by for          . Let
be Hahn-Jordan decomposition of and its total
variation. Prove that

1.5.3 Exercise. and are increasing (continuous, starting from 0) func-
tions such that and holds.

Recall that and denote the spaces of all
adapted continuous processes B with B(0) = 0 of finite variation and increasing
on , respectively. It follows by 5.3 that where
the latter processes are by 1.3. Thus, provides the
decomposition that is equivalent to Hahn-Jordan decomposition of
corresponding induced measures.

Our aim now will be to give a sense to where G is an
process and . An obvious idea is to integrate separately, if possible,
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each trajectory by Lebesgue-Stieltjes signed measure induced by the
trajectory . Denote

and

The process will be called the integral of a process
with respect to a process where by we have

denoted the space of all processes. Note that is defined as
a continuous process whose trajectories are of finite variation on and we may
ask under what conditions it will also define an process. For a pair

and also denote

1.5.4. Let G be an process and B a process in . Then
and

Having a complete filtration                and agree
to write or if X is a process in such that

. Note that the latter differential shorthand means exactly that outside
a P-null set and the is the Radon-Nikodym derivative of

with respect to
We leave our reader to apply 1.11 (b) and 5.3 to get a neat proof of 5.4.
In some instances we may avoid the progressive measurability of the integrand

G:

1.5.5. For a fixed complete filtration     let G be a process that is
and Moreover assume that all its trajectories are locally
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integrable with respect to the Lebesgue measure on . Then is a
continuous and process.

Proof. Fix and consider a sequence of i.i.d. random variables uni-
formly distributed on and defined on a probability space . The joint
measurability of G implies that

Hence, it follows by strong law of large numbers that if then

for all . Combined with (19) it yields where

It follows that there is at least one with . Denoting
for

hence P-almost surely. The random variable is be-
cause are and the filtration is complete.

For the rest of the present section we will fix a complete probability space
endowed by a complete filtration and close it by establishing a

suitable approximation method to be used in our construction of stochastic integral.
Consider and define

for . Note that
As in 5.1 it is easy to verify the following simple properties of

1.5.6 Exercise. Let be a process such that for all
denote again and prove:

(a) [G – H] defines a pseudometric on
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(b)

(c)

(d)

[G – H] = 0 iff for all and iff outside a P-null
set almost everywhere with respect to the measure
associated with         .

iff for all and if and only if
for all        .

If is a sequence in such that as then
there is a such that                       .

We are interested in finding a suitable simple dense subset of Let
be a locally finite partition of and a bounded

measurable random variable for . Then

will be called an stochastic process. The set of processes
will be denoted by and we note that simple processes are
(the destiny of any trajectory on is determined by and
left-continuous, hence and obviously for any

with for all

1.5.7 Density Theorem. Let be a process such that for
. Then for any there are simple processes such that

Observe that the completeness of is crucial in 5.7, again.
When constructing a sequence such that where

we may restrict ourselves to bounded G’s.
If is a bounded continuous process, say then

where is a sequence of locally finite partitions of
with defines such that and everywhere
on

Thus it remains to prove that for every bounded process there are
bounded continuous adapted processes such that (20) holds. The first step is
provided by

1.5.8 Lemma. If G is a bounded adapted process, then
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defines a sequence of uniformly bounded adapted and continuous processes such
that

Note that 5.8 does not require the progressivity of G.

Proof. Obviously, if then also and are continuous
by 5.5. Moreover, everywhere on

with respect to Lebesgue measure as by the Fundamental Theorem of
Calculus. The Dominated Convergence Theorem now proves (21).

To conclude the proof of 5.7 we may assume that

(hence with , because if A does not posses the additional properties,
the does, and

holds for any bounded progressive process G.

1.5.9 Exercise. Let be a process such that (22) holds. Put

and consider an process G. Then
(i) is a complete filtration such that is an

process that is measurable with respect to

(ii) If H is a continuous and process then H(A) is a continuous
process that is

Consider A as in (22), a bounded progressive process G and define as in 5.9.
As a consequence of 5.9 (i) we are entitled to employ 5.8 substituting there simply
the complete filtration             and     . Hence, there are continuous
uniformly bounded processes such that
for all By 5.9 (ii) we argue that are continuous uniformly
bounded processes such that for all

holds. Because obviously

we arrive at (20) and 5.7 is proved.

and
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1.5.10 Corollary. Let A be a process in CI. Then for arbitrary a
sequence of simple processes exists such that

Proof. Assume first that A is as in 5.7: If G is a bounded process then there are
such that for all according to 5.7, hence such as

in (23). Further, for any we put to get a sequence of
bounded progressive processes such that (23) holds. Observing that the convergence
(23) is generated by the pseudometric
we combine the above pair of convergences to verify 5.10 for our special choice of
A.

Consider A and G as in 5.10. Denote where is the first entry
of A to . According to the first part of our proof there are such that

holds for all Because and
if it follows that as in (23).

1.6 Doob-Meyer Decomposition
Throughout this section we shall fix a complete probability space

endowed by a complete filtration .
The following theorem provides the principal step towards the construction of

stochastic integral and shows that martingale and its quadratic variation are con-
cepts with a deep and rich relation.

Let first                           be a locally finite partition of , i.e.,
with and put

and for arbitrary stochastic process M. Observe that is
continuous adapted provided that M possesses the properties and M is a process
of finite quadratic variation iff is a Cauchy sequence in probability for any

and any sequence of partitions with . Moreover,

1.6.1 Doob-Meyer Decomposition. Let Then M is of finite
quadratic variation and possesses a modification that belongs to CI.

Agree to choose any time we have
Further,
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and if holds for some other then . Moreover,

If M is a bounded martingale then is an

The relation (24) will be referred to as Doob-Mayer decomposition of
Before starting a rather lengthy and complex proof we shall make some prepara-

tory computations for a partition and such that

Apply 2.12 (a) and (b) to get

Hence, if are locally finite partitions, then

We shall also need the following upper boundary independent of the choice of

Because we may assume that                 say Observe that

and use (26) to get

for some
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Hence,

The uniqueness of the decomposition (24) is a direct consequence of 4.4.

Proof for bounded M. Let Our plan is to verify

as it implies directly that M is a process of finite quadratic variation and supported
by (27) it says that

By 5.2 there is a martingale such that denoting

Check that (30) implies that the limit is independent of the choice of
If also observe the mixed sequence

The convergence (31) yields

Thus, the quadratic variation is a modification of which implies (24)
and (25) directly. To conclude the proof for bounded M it remains to show that

is an increasing process almost surely:
In (32) choose such that is a finer partition than for all

and such that is a (countable) dense set in . Fix a pair of points
in observe that for sufficiently large which yields

It follows that outside a P-null set the process is increasing on the set
hence on as . We proved that can be modified to a process in CI.

To prove (29) consider partitions
and the partition generated by

For a fixed           define                    as the maximal point of such that
and compute
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Note that is a martingale by (27), hence as
. Apply (26) and a simple inequality to see that for

any

Denote

It follows by (28) that

By (34) we conclude that

Since is a submartingale and the partition cofinal
in , the inequality (35) implies that

holds for all if . It follows easily by the continuity and boundedness
of M that as and the convergence (29) is proved.

Proof for Let be a localization sequence for M such that
are all bounded martingales. According the first part of our proof

We can also write

that implies

and apply (33) to verifyFix a                  say
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because of the already proved uniqueness of the decompositions (36). By 4.8 there
are continuous adapted processes A and such that

The process A can be obviously chosen in CI. Combining (36) and (37) we arrive
to the equalities

and taking limit there we exhibit the decomposition Every-
thing we need to conclude the proof is to verify

because this would imply that M is a process of finite quadratic variation,
is a modification of and also the convergence (25), of course.

For these purposes fix and and let be such that
Since by (37), we have

as because we have already proved (25) for bounded martingales.

Recall that we have agreed that writing for a local we mean
the modification which belongs to

Consider processes M, N and a locally finite partition
of For denote

1.6.2 Theorem. Let M and N be in Then the covariation of these
processes

defines a process in CFV such that
If for some other then . Moreover,
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Proof. The uniqueness follows again easily by 4.4, for the rest apply Doob-Mayer
theorem and the equalities (39) jointly with

In many cases our reasoning will depend entirely on our ability to compute
and . Below we will present techniques that may smooth the computations.

We will say that processes of finite quadratic variation M, N are orthogonal
if Observe that are orthogonal iff their product MN
is in and that their orthogonality implies

1.6.3 Corollary. Independent local martingales X and Y are orthogonal. In
particular, if                               is an                         Wiener process then

According to 4.3 (c) and 4.9 (b) XY is a local -martingale, hence
by the uniqueness part of 6.2 as the does not depend on the

choice of a filtration by (25).

1.6.4 Corollary. Any continuous semimartingale dX = dB + dM, i.e.,

is a process of finite quadratic variation with . If is also
a process in CSM, then

Proof. We need to prove that for any and any sequence of where
is a locally finite partition of

Because

(41) follows by (40) observing that the first three sequences tend to 0 in probability.
For example

everywhere on because M is continuous and C of finite variation.

Important Remark A. Let Since is the limit in
probability of it does not change if we replace by such that

is a complete space, its complete filtration,
and

Very frequently we shall use
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1.6.5 Theorem. Let M, N be processes in and consider a Markov time
. Then outside a P-null set

Proof. Since

is in by 6.2 and 4.1 (b), it follows again by the uniqueness part of 6.2 that
. The last equality in (42) is less obvious:

Verify first that for all there is a constant such that

whatever we may have a partition . Hence, for any fixed

in probability by (40). Thus, again by (40).

1.6.6 Exercise. If and then is
a process in and

Moreover, if define by
and if Prove that

1.7 Quadratic Variation of Local Martingales
A complete probability space and a complete filtration will

be fixed again. We shall study interactions between a local martingale M and its
quadratic variation . The first observation is that the quadratic variation and
covariation maps help us to recognize when are equivalent processes.
Indeed,

We are left to prove only that
If then and by a localization, and are true

martingales for a sequence of Markov times almost surely. It follows by
2.12. (b) that for all that completes the verification of

The simple device (43) is extended by
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1.7.1 Mutual Continuity of M and . If then outside a P-null
set and for all

holds. In other words, M and have common intervals of constancy with
probability one.

Proof. (a): It follows by the definition of that for each pair of rationals
there exists a P-null set such that for

The continuity of M and implies that for and any interval

that proves in (44).
(b): We shall prove that there is a P-null set N such that outside N and for

any

According to 4.3 (b) we may assume without loss of generality that is a right-
continuous filtration. Denote and recall 3.6 (b) to
confirm that is an It follows that hence

by (43) that is exactly what we promised to prove.
(c): Choose denote observe that

with

by 6.6. The part (b) of the present proof applied to provides a P-null set
such that outside and for any

Using again the continuity of M and we verify in (44) for and
any interval

We may deepen 7.1 a little combining it with 1.5 to get a local version of 4.4:

1.7.2 Corollary. Let dX = dB + dM be semimartingale in CSM. Then outside
a P-null set and for any interval

is of finite variation on is a constant on

Proof. The X is of finite quadratic variation with the continuous by 6.4,
hence we may apply 1.5 to exhibit a P-null set N such that for and all
intervals

is of finite variation on

Combining the above implication with in (44) we conclude the proof.

The integrability of the quadratic variation of a local martingale forces it to be
a true martingale:
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1.7.3 Theorem. Let Then if and only if
for any If then

Proof. Let almost surely be a localization sequence for M such that
are bounded martingales. Then is a true martingale by the

last statement of 6.1 and therefore

First assume that Apply the monotone convergence theorem, (45) and
finally the submartingale part of Stopping Theorem 3.11 to see that

If then by Fatou lemma, (45) and the Monotone Convergence The-
orem

again by (45). Hence, in and if it follows by 2.7 (f)
that

where both limits are in . Hence

by Doob inequality 2.10 (b). Hence, it follows by 4.2 (a) that is a martingale
for any which is exactly as to say that

1.7.4 Exercise. Use the polarization and 7.3
to prove

Hence,

Prove also

hence for all . Having fixed   we note that is a
sequence of uniformly integrable r.v.’s because

Finally, if fix and note that
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1.7.5 Exercise. If and Markov times then for any

and by polarization of (46)

The equalities (46) and (47) may be applied to determine the quadratic variation
and covariation:

1.7.6 Exercise. Let M, N be martingales in Then is the only inte-
grable process in CI for which

holds. Similarly, is the only integrable process in CFV with the property

Recall that as a closed subspace in is a complete pseudometric space
by 5.2 with convergence that is equivalently defined by

according to 5.1 and 7.3.
For local martingales the above equivalence has the following simple form:

1.7.7 Continuity Theorem. If and a fixed then

For the proof we need

1.7.8 Lenglart Inequality. If and then
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To prove the inequality denote by the first entry of into . Then
implies that and by 7.3 we arrive at

Consequently,

by Doob inequality 2.10 (b) which completes the proof of the inequality.

Proof of 7.7. By Lenglart inequality, implies

To prove the part consider anddenote by the first entry of
into . Because is a bounded martingale, it follows by 7.3 that

for any and

that verifies

We shall also need

1.7.9 Kunita-Watanabe Inequality. For and

holds almost surely for any

Remark. Recall that for a we defined the space as the
set of all processes K such that almost surely for
any Having we agree to relax our notation letting

and
Note that Kunita-Watanabe inequality also says that
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Proof. Note that the proof may be relaxed to K and H bounded by the Monotone
Convergence Theorem.

Assume first that K and H are processes, without loss of generality
such that

where is a locally finite partition of and
bounded random variables. Fix and assume, again without
loss of generality, that Let be a
sequence of partitions of with such that
for all Applying successively 1.3 and 1.6 (b) we prove the inequality:

the last term being exactly the right-hand side of Kunita-Watanabe inequality.
If K and H are bounded processes then where

where are simple processes. Hence, outside a P-null set the integrals

tend to zero as The inequality for K and H follows now easily applying
the inequality already proved for

almost surely,

and 5.10 applies to exhibit for a fixed approximations



III. STOCHASTIC ANALYSIS AND DIFFUSION FINANCE 275

1.8 Helps to Some Exercises
1.4 To verify the part of the equivalence you need to prove that the prob-

ability limit in (1) does not depend on the choice of You will achieve this
considering a mixed sequence where

and

1.6 Use the “limit definition” of and the trivial inequalities
and

1.7 To prove (c) apply Lindel öf Theorem to prove that any open set in is
a countable union of open neighbourhoods

2.12 In (d) observe that  As for (e) compute as in (8)

where and perform

3.12 Assume that all are integrable and that for all
at most two valued Markov times Fix define
and check that is a Markov time. Hence,

which proves that X is a martingale. The rest follows by 3.10.

3.16 Use the reflection principle and differentiate

to obtain in the form

and integrate the right hand integral by parts.

5.6 Put for Because is
a random variable on by 5.4 (i), the is defined correctly as a measure
on such that for any A standard procedure 1.11 (b)
shows that for any progressive In particular,

for all and all Hence,

This interpretation proves all four statements. As for (d) recall that
is known as a complete pseudometric space provided that the
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distance of and is given by This and a simple projectivity
argument imply that is also a complete pseudometric space if the distance
of and is given as

5.9 is an process by 1.3.9 because are   finite
Markov times. Obviously

holds. It follows that is an     process (continuous and
and therefore measurable as

It follows that defines a process that is measurable as

which verifies that because
Let H be continuous and without loss of generality bounded pro-

cess. Because there are processes such that
the problem of proving (ii) reduces to verify that where
and is an process. But this follows easily as

6.6 If an time stops M to then is an
time such that

holds because Check that
and compute for a sequence

As for the second part observe that if an time stops N to an
martingale then is an time that stops to an
Compute as the probability limit of where

and for all

7.4 In (iii) let be a localization sequence such that for all
and Then and according to (ii)

where the interchange follows by 2.7 (g) as
by 3.10.
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III.2  Stochastic  Integration

stochastic integral, stochastic per partes and Itô formula, exponential martingales
and Lévy theorem, Girsanov theorem, integral and Brownian representations, helps
to some exercises

Through the present chapter, if not stated otherwise explicitly, we fix a complete
probability space with  a  complete filtration

2.1 Stochastic Integral
We begin by a very standard procedure and define the stochastic integral of

an  process   i.e.

bounded,

with respect to a local martingale  by

(1)

(2)

where and Observe that our definition is independent of the
choice of the partition and that is a continuous

process. Even more is true:

2.1.1 Stochastic Integration - a Junior Grade. Let and
Then and

(3)

Moreover, if then also

Proof. We shall perform the proof in several steps:
(a) If then Obviously, is

measurable and in If K is as in (1) let and assume without loss of
generality  that and Then

holds for all
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because It follows that
(b) for arbitrary                          If is a Markov time such

that is in then according to (a) and
by an obvious localization.

(c) The relation (3) holds for any M and N in          Let as
before. Then straightforward computations via 1.7.6 provide

which proves (3) again by 1.7.6 because is in CFV.
(d) The equality (3) holds for arbitrary M and N: This follows by a localization

of (c), since for any Markov time such that                             we may compute,
using repeatedly 1.6.5,

A good idea for a general definition of the integral seems to be offered by (3):
For and a stochastic process shall be
called the stochastic integral of G with respect to M if

We shall also use notations as: and
and relax our notation to

or etc. as before.
The integral in (4) is a continuous and adapted process by 1.5.4,

since according to Kunita-Watanabe inequality and there-
fore we may modify the definition of as

2.1.2. The stochastic integral is almost surely uniquely determined by the
requirements
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or equivalently by

Indeed, if a process is another one that satisfies the requirements (5),
then  and therefore by 1.7.1.

If there is an such that holds for all
take arbitrary and consider a sequence of Markov times almost
surely such that for all Then outside a P-null set and for all

holds. Letting we get by continuity that I satisfies (5), hence
according to the first part of 1.2.

Denoting

we observe that A is a nonempty set. Indeed, any pair (M, K), where
and K is a simple process, belongs to A and the corresponding stochastic integral

is given by (2).

2.1.3 Theorem. The stochastic integral exists for any                  and

Here are the principal properties of the stochastic integral.

2.1.4      Quadratic Variation. Consider M,
Then

2.1.5 Localization Lemma. and consider a
Markov time Then and

holds. In particular,

2.1.6 Linearity of the Integral. If and
then

such that  exists}
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2.1.7 If                   and                           then                          and it
is a process with such that

hold for all

Remark. Recall that the spaces and (see 1.5.1 and 1.5.6) are en-
dowed by the pseudometrics and respec-
tively. Denoting

and thus defines a pseudometric on equivalent to that given by
(the inequalities in (11) follow by 1.2.10 (b)). The statements of 1.6

and 1.7 now can be read as follows:
For any fixed the map from to is a linear

map such that holds for all
The above isometry is the cornerstone of all definitions of the stochastic integral.

2.1.8 Localization of Integrands and Integrators. Let be a Markov time.
Then for any and

Proof of 1.3, 1.4, 1.5, 1.6 and 1.8. The next steps will constitute the proof of
the above statements:

(a) 1.4 holds for all pairs (M,G) and (N, H) in A: It follows by 1.2 that

hence by the chain rule for the Radon-Nikodym derivations we simply compute
that which verifies 1.4 on A.

(b) 1.5 holds for and arbitrary Markov time Consider any
and According to 1.6.5 and 1.2, we get that

we get
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holds almost surely. This proves that and consequently are in
A and both equalities in (8).

(c) 1.6 holds for because is a linear space and the
covariation is a bilinear form on

(d) 1.7 holds for any such that and It
follows by (a) that holds for all the latter integral
being an integrable random variable by the definition of the space Hence

by 1.7.3. If and it follows by 1.7.4,
1.6.5 and by (a) that

(e) for any and Because
by 1.7.3, it follows by 1.5.7 that there are simple processes such that

Hence, as by 1.7
and the subsequent Remark. It follows by 1.5.2 that where I
is a process in Denote choose and It follows
by 1.1.6 (b) and 1.7.3 that

Further, by Kunita-Watanabe inequality,

Combining both of the above convergences we arrive at
for any and which shows that exists by 1.2 (6).

(f) 1.8 is true for all (M, G) and (N, H) in A and arbitrary Markov time
Choose and Then by (a) and (b) we get

This, of course, implies that

(g) Any (M, G) with and belongs to A: Choose
such a pair and a sequence of Markov times such that and

are bounded processes for any Consequently,
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and because
Hence, according to (e) with and

according to (f). It follows by 1.4.8 that there is a process
such  that holds for any Further, for any and

holds almost surely. Letting in the above equality we get
for all and which, by definition, means that

2.1.9. If and then outside P-null set and for all intervals
either G = 0 almost everywhere with respect to on or

implies that

The implication is an obvious consequence of 1.7.1 applied to the local martingale
whose quadratic variation is equal to

If is such that then we shall agree to write
or

2.1.10 Stochastic Chain Rule.  If  dN = GdM and
then and which equality reads in

the differentials as

Proof. According to 1.4 hence and
therefore Consider finally a and apply (7) in 1.4 twice
to get

what, by definition, yields

2.1.11 Exercise. If then and
holds for all

The continuity of that maps into is most precisely
expressed by

For denote
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2.1.12 Continuity Theorem. For any                      G and in

and in particular,

holds for any fixed

The equivalence follows directly by 1.4, 1.6 and 1.7.7 and permits to transfer
a variety of Lebesgue-Stieltjes integral convergence theorems to the theory of the
stochastic integral. We shall manage with

2.1.13 Dominated Convergence. Let  Assume that           and H
are processes in such that on                 for a fixed
Then either on or uniformly on for all

implies that

Thus, we get

2.1.14 Riemann Integration. Let M be a process in

(a) If K is a process given by (1) with random variables that need
not be bounded then and the stochastic integral is a process
given by (2).

(b)     If F is an adapted continuous process then for any fixed and

Proof. Denote observe that are simple processes and
therefore

if and Letting we verify (a) by means
of 1.13.

According to (a) we have where

Obviously uniformly on for all
and 1.13 applies to prove (b).

Corollary 1.5.10 and 1.12 apply to verify
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2.1.15 Limit Definition of Stochastic Integral. Let and
Then is almost surely a unique process in such that for

arbitrary sequence of simple processes

where is a process defined by (2).

Important Remark B. The limit definition provides an argument for the follow-
ing statements: Let and Recall the Important
Remark A we put forward at the end of 1.6 Section of our text.

(1)

(2)

The stochastic integral does not change if we legally change the
underlying filtration.

More precisely, if is another complete filtration such
that G is a process then and

It follows by 1.5.10 and 1.12 that the
stochastic integrals of G with respect to M on the  filtrations    and
respectively, are equivalent processes.
The stochastic integral does not change if we replace the underlying prob-
ability measure P by a and

Indeed, continues to be a complete filtration and because
obviously the integral is defined also
in the setting of the filtered space It follows again by 1.5.10
and 1.12 that both the P-integral and the Q-integral are equivalent
processes with respect to both P and

Solve the next pair of exercises to accommodate the properties of the stochastic
integral.

2.1.16 Exercise. Consider  an process W and a Borel measurable
function such that for all Then is a
centered Gaussian process with independent increments such that for all

holds.

2.1.17 Exercise.

(i) Consider and finally a such that
G = 0  on Obviously, prove that
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(ii) If and denote and recall
that by 1.6.6. If, moreover then obviously

Prove that outside a P-null set

Let be a continuous semimartingale with the stochastic differential
for a and an Recall that the differential

formula stays for X = X(0)+B+M and the decomposition is unique almost surely.
Denote and define the stochastic integral of a
process with respect to X by

If is such that holds, we write or
The process is a semimartingale in CSM according to 1.5.4 (iii) and

according to the definition of the stochastic integral. It also means that
is the unique decomposition of the left-hand side semimartingale

into the continuous finite variation part and the continuous local martingale one.
Hence, in differentials our definition reads as

It should be stressed that (13) defines the stochastic integral with property
for any and the integral of a G with respect

to a continuous local martingale M as
The domain of this integral enables us to apply the common fundamental proper-

ties both of the Lebesgue-Stieltjes and the stochastic integral, the domain
being importantly large enough for any X to include continuous adapted processes
or more generally locally bounded progressive processes. Recall that a process G
is locally bounded if all its trajectories are bounded on all bounded intervals.

2.1.18 Quadratic Variation. Let X and Y be processes in CSM with stochastic
differentiate and Consider also processes

and Then outside a P-null set

holds.

2.1.19 Dominated Convergence. Let and assume that and
F are processes in such that on for a fixed     If either

on or uniformly on for all then

2.1.20    Chain Rule.  Consider and denote
Then for any we get and

or equivalently
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Moreover, if both G and H are processes in and either G or H is a locally
bounded process then and the above Chain rule formula holds.

The first assertion follows by a combination of Radon-Nikodym Theorem and
the Chain rule formula 1.10.

As for the moreover part chose X as dX = dB + dM  and note in both cases
and hold almost surely for arbitrary

Hence, Radon-Nikodym Theorem implies that and Chain rule for-
mula follows by the first part of 1.20.

2.1.21 Riemann Integration. If  and F is a continuous adapted
process then for any  and

2.1.22 Localization of Integrands and Integrators. Let be a Markov time.
Then for any and any

2.2 Stochastic per partes and Itô formula
The following summation equality yields both the Lebesgue-Stieltjes and sto-

chastic per partes integration formulas:
Let X and Y be continuous processes, a

partition of Then

2.2.1 Lebesgue-Stieltjes Per Partes. If X and Y are processes in CFV then
XY is also a process in CFV such that

holds for all In particular,

In differentials we read 2.1 as

We get (15), hence 2.1 as a whole, by passing in (14) where the second
term tends to 0 because the trajectories of X are uniformly continuous on and
because
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2.2.2 Stochastic Per Partes. Let X and Y be processes in CSM. Then XY
is also a process in CSM such that outside a P-null set and for any

holds. In particular,

In differentials we read 2.2 as

To verify (16), which equality already implies that consider (14) for a
sequence of partitions then apply the definition of and 1.21.

Writing the formula (16) for local martingales only, we spec-
ify the local martingale term in Doob-Meyer decomposition of and of MN,
respectively: and

Next pair of examples suggests the advantages of the differential symbolic:

2.2.3 Example. Let us establish the Doob-Meyer decomposition of where
is the Wiener process with a linear trend:

i.e., the decomposition reads as

2.2.4 Example. Let X and Y be processes in CSM. Then is a process in
CSM, too, by 2.2 and according to (16), 1.6.4, 1.10 and 1.4 the stochastic differential

equals to

It is only natural to consider a semimartigale X where

and a continuous asking a question under which circumstances is
also a semimartingale in CSM and what form its stochastic differential has.
A complete answer is available for where, as usual, we denote
by the set of those that have continuous derivatives

on an open set for all
Agree to read (18) as and observe that putting

we may rewrite (17) as

to be true for any It is easy to extend 2.4 by induction.



288 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

2.2.5    Exercise. Let X be a process  in   and                             a polynomial
Then the formula (19) holds, and in particular, is a process in

To extend 2.5 further, we obviously need

2.2.6   Weierstrass Theorem.  Let be an open set. Then for any
there are polynomials such that for all compacts

Proof. First fix an a compact and According to a deep
extension of the classical Weierstrass theorem, see [142], pp.  596/2-596/3, there is
a polynomial such that

where Because G is a separable and locally compact metric
space there is an increasing sequence of compacts such that and
such that any compact is already subset of some                                             Putting
for a sequence we complete the construction.

The case in 2.6 is the only one which does not require a sophisticated
treatment.

2.2.7  Exercise. Prove 2.6 for

The next theorem is the true cornerstone of Stochastic Analysis.

2.2.8 Itô Formula. Let G be an open set in and
such that everywhere on Then the process is in CSM and its
stochastic differential is given by (19) which means equivalently that

holds almost surely for any In particular,

holds if we choose

Proof. Note that the integrands in (21) are continuous adapted processes, hence
is a process in CSM if the formulas are true.



Choose as in (20). It follows by 2.5 that for any fixed and

holds almost surely. Fix  and and consider compacts

Obviously, and because all the convergences stated by
2.6 are uniform on arbitrary we conclude that for all and uniformly
for

holds as                  Itô formula (21) follows if we let                 in (22) and apply
1.19.

Later on we shall appreciate the following local form of Itô formula: Having a
function             defined on a subset of               we denote

and

at those where the derivatives exist.

2.2.9 Corollary. Consider T > 0 and Let be a
continuous function defined on                   such that           and exist continuous
on Let be a process such that for all

Denote for and choose
arbitrary. Then is a process in CSM with the stochastic differential

where

Proof. Note that Y is a continuous adapted process, that processes
and are in because they are adapted and locally bounded. Hence,
(23) defines a continuous semimartingale if the formula is true.

289III. STOCHASTIC ANALYSIS AND DIFFUSION FINANCE
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Fix U < T and Let and apply 2.8 to get

In (25) we have denoted

and observe that these are processes in such that
and uniformly on [0, T ] for each where

and are processes defined by (24). Theorem 1.19 and the equality (25)
finally prove (23).

2.2.10 Example and Exercise. Consider two models for a two-dimensional
motion (X, Y) with X(0) = Y(0) = 0:

where W and is Wiener and two-dimensional Wiener process, respectively.
In both models X is a centered Gaussian process with

by 1.16 and
Define compute the stochastic differential of C and the

expectation in both models.

Stochastic differential equations, shortly SDE, provide a method how to
generate a rich class of diffusion processes that satisfy the equation
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where W is an process, Borel measurable functions such
that i.e. such that

The equation (26) is called any such that (26) and (27) hold
is called a solution to (26) with the initial condition To meet purposes of our
treatment of the diffusion financial mathematics in Chapter 3 we do not need more
than to be able to solve a general linear equation 2.13. Next two examples show
its possible applications.

2.2.11 Example and Exercise. Langevin Equation. The velocity of the
motion of a Brownian particle in a viscous environment is a solution to Langevin
equation:

where represents the starting position of the particle,  the viscosity coefficient,
in physics making a sense only if

Modify the deterministic solution of and prove that

is up to a P-null set the unique solution of (28). The process X is a Gaussian
process by 1.16, called Ornstein-Uhlenbeck process. Compute

2.2.12 Example and Exercise. Geometrical Brownian Motion. Solve the
SDE

where W is a Wiener process and real numbers. Again, we easily guess the
solution

and verify the validity of our guess by Itô formula.
According to 2.13, the solution (30) is determined almost surely and the process

is called the geometrical Brownian motion. Also ob-
serve that the latter multiplicator is a continuous martingale by 1.2.6 and therefore



292 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

2.2.13  Doléans Equation. Let V and U be processes in CSM and Put

Then X := ZY is the almost surely unique solution to the equation

Proof. Obviously                    and by 2.8 and therefore by 1.18

First we shall prove that the X solves the equation: X is a continuous adapted
process and therefore the right hand side of the equation is a process in CSM.
It follows by 1.20 and by 1.18 that and that

and therefore Integrating per partes and substituting
the above information we get

Since we proved that X is a solution to the equation.
If a process X solves the equation then and putting we

get again Integrating per partes and substituting we get

It follows by 1. 18 that hence and since
we get

Choosing in 2.13 and
respectively we get the equations in 2.11 and in 2.12 as special cases.

Some strange things may happen when diffusion processes are involved (see also
[153]):

2.2.14 Exercise. Consider a planar motion given by

where W is a Wiener process and Let
be the distance of the particle from the origin at time Compute and prove
that is a deterministic process.

Our reader may need some more exercises to master the calculus offered by Itô
formula. A variety of examples and exercises is provided by [111].

To close the present section we introduce a fragment of higher dimension
technologies we shall need later on.
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Having a matrix we denote by the transposition of the A,
by its product with another matrix B, by its inverse, if defined. Agree
any                    vector C to be looked upon as an if involved in a
matrix algebra computation. Also agree that if A is an of integrable
functions then denotes the the elements of which are given as

Consider a  semimartingale                                                 and an
of progressive processes such that for all

involved. Further wewrite and define the stochastic integral of
G with respect to X as an semimartingale
where

The integral will be denoted by or as as usual we shall also write
We will also simplify our notation writing if all

are local martingales.
Recall the definition of the integrals and compute that

if  where and Note that the integration
of an G by a semimartingale results in an
process in while results in an matrix of progressive
processes if the integrals are defined. It may help you to observe the
differential as the column vector and the differential as a
scalar.

Multidimensional Chain Rule Formula needs a more refined treatment, see also
2.19. The assertion 1.10 applies to prove

2.2.15 Chain Rule. Let  and be an
denote Let H be an of progressive processes such that

holds for all

Then and are such that

or  equivalently

is true. Especially, the Chain Rule Formula holds if either of the following conditions
holds:

(a) H is a matrix of locally bounded progressive processes.

(b)   G is a matrix of locally bounded processes and processes are in
for all
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Indeed, if the integrability requirements of the first statement are satisfied then
we argue by 1.11 and 1.10 that

Consider finally a process an
vector and an of progressive

processes such that

holds almost surely. We define a semimartingale by

to reflect the symbolism we have just introduced. Agree to call such a process Y
an                            Itô semimartingale with coefficients C and S.

2.2.16 Gaussian Itô Semimartingales. If and in (31) are deterministic
processes then Y is an Gaussian process such that

where denotes the covariance matrix function of Y.

Y is a Gaussian process due to 1.16 because are inde-
pendent processes. Apply 1.7.4, note that and finally 1.4 to
verify that

Call a S of progressiveprocesses uniformly positive definite
if there is an such that

holds.

where writing also,
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2.2.17 Exercise. Let A be a matrix such that holds for
an and all Then A is a regular matrix such that
holds for all

2.2.18 Orthogonalization of Itô Semimartingales. Assume that Y is a
Itô semimartingale (31) such that the matrix is uniformly positive

definite and such that all are bounded processes. Then

correctly defines a Itô semimartingale such that holds
almost surely.

It follows by 2.17 that all processes are bounded and of course pro-
gressive. Hence, and therefore the stochastic integral
is well defined. Further, the processes are supposed to be bounded, hence

and the relation between Y and follows by 2.15.

2.2.19 Chain Rule. Let Y be an Itô process (31) with locally bounded coefficients
C and S. Then for any the chain rule formula reads
as follows:

and

In other words is an   Itô process with coefficients   and 

Read the definition of the set to see that a matrix H belongs to the
set iff is true almost surely for all

Denote and and note that both and satisfy
requirements of 2.15 (b) and then apply 2.11.

2.3 Exponential Martingales and Lévy Theorem
We start with a simple problem: What functions are such

that is a local martingale whatever may be given Because
and also we get

if holds on and therefore is a local martingale.

Choosing where (the set of all complex numbers)
we get
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2.3.1. If and then

is a complex  local i.e. a process with states in such that both
and are local

If we shall denote and call it the expo-
nential of M. It follows by 2.13 that is the only solution to the equation

with the initial condition X(0) = 1 which provides an alter-
native proof that is a local martingale.

Note that if W is an process then, according to 1.2.6, is a
true martingale for any

Important Remark C.
(a) If and                    then               is a local martingale and therefore a

supermartingale by 1.4.2 (c). More importantly, if T > 0 is arbitrary then
is an on [0, T] if and only if holds by

1.4.2 (d).
In 3.7 we shall present an example of that does not posses the mar-
tingale property on [0, 1].

(b) If and are such that then,
is a true complex martingale, i.e. and are in CM by 1.4.2 (a).

Apply 1.16 to prove:

2.3.2 Exercise. If is a Borel measurable function with
for all and W an process, then

is an or equivalently, holds for all

Now we shall state a theorem that is, by its importance, the next to Itô formula
and is, indeed, one of the cornerstones of Stochastic analysis.

2.3.3 Lévy Theorem. Let be a  continuous
process. Then X is an process if and only if

and

A local version of the statement is as follows:
If, for a fixed T, the stopped process is in with

for                and                  then X is an                    process on the interval [0, T].

Applying Doob-Meyer Theorem we get as a corollary
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2.3.4 One Dimensional Lévy Theorem.
(a) process is the unique local martingale with

(b) A one dimensional process M is iff M and are
processes in

What an exciting property of the normal probability distribution. To verify that
a continuous motion M is Brownian you need only to test the martingale property
of the motion itself and of its transformation

Remark. We cannot avoid the assumption on the continuity of M in (b) :
If is the right-continuous Poisson process with the intensity then

and are martingales.
Agree to call a continuous and adapted process X a local on

[0, T] if, as in 3.3, Prove

2.3.5 Exercise. A continuous adapted process X is a local martingale on [0, T]
iff there is an increasing sequence of Markov times with
such that is a martingale for all

Proof of 3.3. Taking in consideration 1.2.2 (c) and 1.6.3 it is enough to verify
the implication stated by the local version of the theorem.

For any the linear combination defined by
is a process in with

Because for any the local martin-
gale is a true complex as we have already stressed in (b) of
the preceding Important Remark. If and is a bounded random
variable, then

Read first the equality with Y = 1 to see that

and with
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where denotes the characteristic function of the increment
Putting there for a and we get

where is the characteristic function of  random vector
and the characteristic function of Because (33) and (34)

are proved for arbitrary (33) implies that
has the normal distribution and (34) that it is independent of F.
It follows that X is an process on [0, T].

2.3.6 Exercise. Let be a two-dimensional process and
an process. Then

defines another process on the underlying probability space.

We promised to exhibit an example of a nonnegative integrable local martingale
that is not a true martingale.

2.3.7 Example and Exercise. Consider an process W and a se-
quence such that Put

Obviously, and since by 1.8 there is a continuous
process such that hods for any

Observe the process defined by and apply 3.4. (a)
to prove:

(i) is an time such that

almost surely

(ii) If then
Especially, almost surely on and on

(iii) is an nonnegative local martingale, hence a supermartingale,
hence an integrable local martingale. Obviously it is not a true martingale.

(iv) is local martingale whose exponential is not a true mar-
tingale.

The next theorem is a sophisticated inverse to 3.1
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2.3.8 Theorem. Let M be a continuous adapted process with and
Denote

Then with if and only if for all

Proof. The part is provided by 3.1. As for assume first that M and B
are bounded processes, say Then

Hence, is a true martingale for each by 1.4.2 (a). If and
then

It follows from

that

Therefore we may differentiate twice (35) and put to get

for all and This is exactly as to say that M and               are both
true it follows by 1.6.2 that

Finally, let almost surely be a sequence of times such that
It follows that

is a local martingale for any according to 1.4.1 (b). Hence, for any
the process is a true with by the first part of
the proof. It follows by definition that and  letting           we get
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2.4 Girsanov Theory
We shall study what happens with a local martingale and

with a process W if we replace the probability measure P by a
probability measure Q such that P ~ Q.

Assume first that and denote by and the
restriction of P and of Q to the respectively. Obviously, for

Denote and Observe that if N is a

and then for all Moreover, if and
then

and therefore,

Even more generally:

(37) If N is a then is a

Note that there is no reason to expect that D can be modified to a continuous
process.

Denoting

we are in a better position because if then the derivative process
is a continuous with almost surely for all It

follows by 1.3.13 that D is a continuous martingale with trajectories that are outside
a P-null set positive functions on Without loss of generality we always choose

and call it the derivative process of a with respect to P.

Important Remark D. Let

(a) Since and P-null sets coincide, is a complete probability
space and a complete filtration.

(b) The Important Remark A in Section 1.6 says that if then a stochastic
process X is of a finite quadratic variation on if and only if it has
the property on and the P-quadratic variation of X equals almost
surely to its variation.

(c) Note that implies Because for any we have
we are always allowed to choose  as

D is a

as a positive continuous denoted by
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Also remark that the logarithm of the derivation process D := D( |P) is by 2.8
a semimartingale in CSM(P) with the stochastic differential given by

(39) where defines an with

We are now prepared to prove

2.4.1 Theorem. Let be a probability measure with the derivative
process D := D(Q|P). Consider an process N and
Then

(a) N is a martingale if and only if is a
martingale.

(b) is a process in

(c) If M is a process then is process.

Proof. Due to the symmetry stated by (c) in the Important Remark D it is
enough in (a) to verify only implications. For a -martingale N we have
already proved and stated in (37) that DN is a P-martingale. So assume that N is
a local -martingale. According to (37) there is a sequence of Markov times
such that is a P-martingale for all Thus, D(N – N(0)) is
a P-local martingale and DN has also the property because DN(0) is a P-local
martingale by 1.4.1 (d).

We apply 3.8 to prove (b). We shall consider a and prove that
is a continuous local -martingale:

Because it follows by (38) and (39) that outside a P-null set

holds. Hence a combination of 3.1 and (40) proves that is a continuous local
P-martingale and finally that is local -martingale by (a).

If M is a process, then by (b). Since
for every -almost surely by 1.6.4 and by (b) in the Important

Remark D, 3.4 (a) implies that is a process.

Let P, and D be as in 4.1. It follows by (b) that for any with
the stochastic differential
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defines a process It is important to note that even though the
processes X and are identical as continuous adapted processes, they have own
separate identities as semimartingales in CSM(P) and CSM( ). To understand the
following important theorem properly, keep in mind that the identity on the space
CSM is given by

where

2.4.2 Theorem. Let P, and D be as in 4.1, and X processes in CSM(P)
with the stochastic differentials and dX = dB+dM, respectively.
In what follows the identities are almost surely with respect both to P and .

(a) The map defined by (41) is a bijective map
especially CSM( ) = CSM(P) as sets of continuous adapted processes. The
map defined in (b) is bijective map

(b)

(c) If then and especially
holds. If moreover then

holds almost surely.

Proof. The assertion (b) is obvious, see Important Remark (b).
(a) If an easy computation shows that
and therefore by 1.4.4. Since we have also hence

If is a process with apply 4.1 for and
derivation process to see that the process X defined by

is a process in CSM(P) such that This, of course, also proves the bijectivity
of
(c) If G is a process in then the integrals

are finite almost surely for all by 1.7.9 and therefore To verify
the first equality in (c) it is sufficient to prove that

(this follows directly by 1.4), and that
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If is an arbitrary local martingale then for a
It follows by (a) that

Theorem 4.1 is not easy to apply. Mostly we are in a possession of

a positive continuous
such that each is a probability density w.r.t. measure P

rather than of a probability measure which would yield a derivation
process D( |P) . Having a D as in (41) we are able to construct a such
that D = D( |P) if, for example,

(42) there is a positive probability density w.r.t. P, say
such that the martingale D is closed by

which means that holds for all

choosing simply Indeed, for all
and and therefore and D = D( |P).

The most obvious exhibition of a process D such as in (42) is as follows: Choose
an                        and T > 0 to fulfil

recall (a) in Important Remark C, we made before stating 3.3, to argue that
is an on [0, T] which obviously means that

defines a process D as in (42) with
Given an such that (43) holds, the above considerations deliver a

setting for 4.1 and 4.2 specified as

Thus, as a direct corollary to 4.1, we have proved

2.4.3 Girsanov Theorem. If and T > 0 satisfy (43) then
defines a probability measure such that

In particular, if M is a process then defines a
process.

A classical version of Girsanov theorem reads as

which proves that



304 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

2.4.4 Theorem. Let be a
process. Further consider T > 0 and a process in
such that Then defines a probability
measure such that

is a process.

Recall that

Proof. We compute

where It follows by 4.3 that each is a process in and
because

by 4.1, we may apply 3.3 to prove that is a

Observing the condition (43) we should be worried how to verify it. Recall Im-
portant Remark C we put forward at the beginning of 2.3 to remind that given

we get as a local martingale and supermartingale that is a martin-
gale on [0, T] iff (43) holds. Example 3.7 presents an M in with

A handy and a very sophisticated sufficient condition for (53) is delivered by

Novikov Theorem. Let L be a process in and T > 0. Then

The proofs may be found in [131], (1.15) p.318, (1.16) p.319 or in [95], 5.12 p.
198). The condition (44) presents a very strong integrability requirement, indeed.

2.4.5 Exercise. If then L is an on [0,T]
for all and is a submartingale on [0,T].

Next pair of results will serve all our purposes.
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2.4.6 Lemma. For an with (43) holds.

Proof.  is a local martingale with and therefore there are Markov
times almost surely such that is a martingale for each  and
therefore for arbitrary T > 0. Because

we may send to get

2.4.7 Theorem. If and T > 0 are such that almost surely
for a then (43) holds.

Proof. Denote consider and put Then

where the last inequality follows by 1.2.12 (e) because is a positive super-
martingale.

The rest follows easily as

holds for a constant It follows from (45) that and according to
4.6 that

2.4.8 Corollary. Let W be an process, such that
on where is a locally square integrable function Define

Then is a probability measure such that is process on

Our program to exhibit a probability measure for which a P-semimartingale
would become a -Wiener process has been successful on bounded

intervals [0,T]. Next theorem extends the procedure to in some special
cases.
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2.4.9 Theorem. Let be a Borel and locally bounded function.
Then there exists a complete filtration an process W and
a probability measure on such that

where is defined uniquely by

Note that if is as in 4.9.

2.4.10 Exercise. Let in 4.9 be a constant function and define   by (46).
Then is a drifted Wiener process under P, a Wiener process
under  and P, are singular measures (P(N) = 0, (N) = 1 for some
denoting

Proof of 4.9. Denote by the probability distribution of the Wiener process and
by the completion of the space According to 1.4.9
(a), denoting and where is the canonical process on
we define by a complete filtration, by W an process. It
follows by 1.5.4 (ii) that

(47) N is a continuous and process on the space

Our aim is to find a probability measure on such that N will become an
process:

Apply 4.8 with to construct for any a probability measure
on by and put Because
is a it follows by a direct computation that is
true if According to 1.1.13 there is a unique probability measure on

such that holds for all Thus, the is constructed
as required by (46) and to prove that N is an process
fix a Borel set and Since, according to 4.8, is a

process on (47) implies that

and therefore the increment is independent of the
Choosing we get which
yields This, assisted by (47) proves that N is a

process as also
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2.4.11 Upcrossing a Level by Drifted Wiener Process. Consider a shifted
Wiener process and establish the probability distribution of the
first entry where

Put and recall 1.3.16 that provides the density of the distribution
of the Markov time Our reasoning will go along the lines suggested by 4.9 with

Let W and be such as in 4.9. Then
is a process. Obviously,

holds. Hence,

where the equality (1) follows from the fact that the equality (2)
holds because and finally (3) is implied by 1.3.11 because
is a true Hence, we get

and letting in

we arrive at

We conclude that for
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2.5 Integral and Brownian Representations
Having fixed again a complete filtration of a complete probability space

and choosing an we denote

Natural questions are obviously offered: How voluminous subset of is the set
of all M-stochastic integrals SI(M)? What might be a property of M or of to
imply that

Later on in the developments of our proofs we shall be able to appreciate the
fact that the set SI(M) is projectively closed as it is stated by 1.4.8 for the sets of
adapted continuous processes and local martingales, respectively. Recall that we
have denoted by the of all sets in

2.5.1 Lemma. Let M be a process in a sequence of Markov times
such that almost surely and finally                         processes such that

Then there exists a such that

Proof. The projectivity (48) assisted by 1.12 and by 1.5 implies that outside a
P-null set N

Hence, for any there is a Borel set such that
and such that

holds. Define

observe that it is a progressive process for all and check that according to
(50) we get

To prove that recall 1.4.8 and (49) to exhibit a local martingale
such that holds for all It

follows by Fatou Lemma and by (51) that outside a P-null set for all and
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Sending in the above inequality we get that
Finally, choose an apply 1.6.5, (50) and compute that

holds for all and almost surely. Letting we arrive at
to be true for all and therefore Hence, the G

is the process the existence of which is stated by 5.1.

Recall that having processes M and L in we call the local martingales
orthogonal if agree to write if it is so. From the definition of
the stochastic integral it follows that

Any owns a uniquely determined projection to the set of stochastic
integrals SI(M) as specified by

2.5.2 Projection Theorem. Let M and N be arbitrary processes in
Then there exist an and a such that

If is another decomposition (53) then (and therefore
for all by 1.12).

Proof. Verify first the uniqueness statements: It follows by (53) that
hence

Further, consider a bounded Markov time such that
and denote

where the statement is proved as follows: If then
by 1.7 and therefore by 1.2.10 (b) combined with 1.3.9 (c) because

Next we shall prove that is a closed subset of If then
for all as may be seen recalling 1.3.10. Hence, we get

for all that

as Now, let and be such that
holds. If it is so, (54) yields that as for

all hence is a Cauchy sequence in From 1.5.6 (d) it follows
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that there is a such that for all
consequently in the space by 1.7. The latter convergence
implies that

thus
Choose finally a Markov time with the properties

(55) is bounded and both and are processes in

Observe that Since is proved to be a nonempty subspace of
the pseudo-Hilbert space there is a random variable that is

to such that holds for a process G in
Denoting we get such that

We shall prove that L and are orthogonal processes: If is an arbitrary
bounded Markov time, then

because obviously It follows by 1.3.10, as also and
that

Summarize what we have proved. If is as in (55), then there is a local martingale
L and a such that and

holds almost surely. As our summary reads as follows: If
is as in (55) then there is an and such that

holds. Finally, choose a sequence of Markov times such that holds
almost surely, such that (55), and therefore (56) also, hold for arbitrary
Because (56) can also be written as and

it follows from the uniqueness of the decomposition (53) proved
above, that holds for all This yields the projectivity (48) and
therefore by 5.1 the existence of a such that (48) is true. Thus, if

then according to (49)

holds almost surely for all and Passing we get that
which verifies that is the decomposition (53).

holds. Thus, is an according to 1.3.12, hence
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2.5.3 Exercise. For any the set is closed
in the space

2.5.4 Exercise. For any the set SI(M) is closed in the space
with respect to the convergence defined by

To execute the program postulated at the beginning of the present section fix
a continuous  process
and put

Having a probability measure P defined on the we will adapt our
notation as

and

Recall that denotes the P-completion of and the
P-completion of

We also agree to denote by M M ( X ) the set of all probability measures P defined
on the such that any is a and such that

Equivalently, is defined by

by 1.4.9 (b). Later on we shall see why we should be interested in the extremal
points, called the extremal measures, of the convex set MM(X). Recall that a
measure P in a convex set of probability measures is said to be extremal in
if

Denote by the set of all extremal measures in Generally, MM(X) need
not own any extremal points but a possibility to discover a Brownian particle with
trajectories X makes all the difference.

2.5.5 Theorem. If P is a probability measure defined on such that
is a P-Wiener process, then P is an extremal measure

in MM(X).

Proof. Obviously Assume that P is a convex combination of
in M M ( X ) as in (57). Applying 1.4.9 we can see that X is a
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process on and of course for all
Since it follows by the definition that holds almost
surely with respect to any of the measures and for all Theorem
3.3 therefore says that X is simultaneously and
process. Hence on the as the equals to

B a Borel subset of according to 1.1.12.

2.5.6 Exercise. If P is a probability measure on such that a one dimensional
continuous process X is under the P a centered Gaussian process with independent
increments with and where then P is an
extremal measure in MM (X ) .

The extremal martingale measures in MM (X ) are endowed with extremal prop-
erties, indeed. For example, they know only continuous martingales.

2.5.7 Theorem. If P is an extremal measure in MM(X), then any
martingale on can be modified to continuous                                M,
hence to a process M such that

Especially, if is a Wiener process on a proba-
bility space then any                                  has a continuous modification
according to 5.5.

To prove 5.7 we shall need the following corollary to Hahn-Banach theorem
known as Douglas Density Theorem:

2.5.8 Exercise. Let be a measurable space and L a set of
functions. Denote by the set of all probability measures P defined on such
that

Then P is an extremal measure of the convex set if and only if the linear space
generated by and by L is a dense set in

Observe that if we choose in 5.8, where is an
continuous process, and define L by

we get because implies that                                   for all
and therefore

2.5.9 Lemma. Let P be an extremal measure in MM (X). Consider T > 0
and an integrable random variable with EH(T) = 0. Then there
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is a sequence where and
such that

Moreover,

Proof. Note that for any fixed and the random variable
in (59) equals almost surely to where is a

simple process and therefore by 1.1. This and 5.8 yields that
the linear span of

is a dense set in the subspace Thus, there are

such that

Further, if replace by and put for such a and
apply 1.9 to check that that you will get a random variable that equals almost
surely. Thus and therefore (60) holds.

To prove the moreover statement assume without loss of generality that H is a
bounded martingale. Choose and let as in (60). Note
that by 1.7.4 (iii). Hence, therefore

Proof of 5.7. Let and H an assume without
loss of generality that and fix T > 0. It follows by 5.9 that there
are continuous martingales such that as

It follows by 1.2.10 (a) that for any

Hence, we may pick up a sequence such that

holds because for all   It follows by (60) that
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and therefore outside a P-null set is a sequence convergent in
C[0,T]. According 1.4.6 (b) there is a continuous process M on
[0,T] such that almost surely as Because

are constructed to satisfy we get for any the
equalities

where both limits are in Thus, is a continuous
martingale that defines a modification of Because T > 0 was chosen
arbitrary the proof is complete.

What follows is the most important achievement of the present section.

2.5.10 Brownian Representation. Let be a Wiener process
on and H an arbitrary  martingale. Then there is a process

and such that

holds. The process G in (61) is determined on up to a P-null  set.

Proof. Assume without loss of generality that According to 5.2 we
get

Assume that for a

Then, according 5.2 again,

holds. If then

and therefore, (62) yields by induction that (63) holds for It follows by 5.9
that hence (61) is true.

If is a process such that holds, then

on This and Fubini Theorem imply that G = G* almost everywhere on
with respect to
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2.5.11 Corollary. Let W be as in 5.10, T > 0 and an integrable
random variable. Then there is a process such
that

holds.
If, moreover, then in (64) satisfy This

property of a G in (64) determines the G on up to a P-null set.

Proof. Consider an M defined as
According to 5.7 M can be modified to a continuous -martingale H. Thus,
a representation (64) always exists by 5.10.

If in (64) is a square integrable random variable then is a continu-

is another subject for (64) such that

holds, then also is a continuous Hence,

and G = G* holds almost everywhere on with respect to

Having a (P,X) such that where is a
continuous process we shall say that (P, X) has the integral repre-

sentation property (IRP) if arbitrary H can be represented
as

where In particular, for a (P, X) with IRP any
has a continuous modification.

If X is a one dimensional continuous process then the IRP characterizes the
extremal measures in MM(X) . For such a process X denote

2.5.12 Theorem. Let X be a one dimensional continuous process and P a mea-
sure in MM (X). Then P is an extremal measure in MM(X) if and only if (P, X)
has the integral representation property. Moreover, if P is an extremal measure in
MM(X) then

Proof. To verify and the moreover part apply the 5.7 to see that any
martingale has a continuous modification and therefore it is sufficient to prove that

ous and therefore by 1.7.3. If
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any can be represented as where G is a process in
But it follows directly by 5.2 and by 5.9.

Assume that the IRP is present for (P, X). Then (65) says that any
can be represented as where G is a process in

It follows by 5.1 that it remains to be true also for any and
therefore Further assume that holds
for an and some Put

It follows easily that H is a bounded such that P[H(0) = 1] = 1
as is a trivial under P. Because of the IRP property the H owns a
continuous modification L such that The process X is also a

and therefore we get for any and that

holds. It follows that and therefore The
equivalence (52) further yields that Hence,
therefore and P is proved to be an extremal measure inMM (X ) .

An obvious choice of a process is the canonical process
Having chosen such a process we translate our definitions and

notations as follows:
MM := MM( ) is the set of Borel probability measures P in called the

martingale measures, such that the canonical process is a
and such that holds. Equivalently, the set of martingale measures is
defined as the set of where X goes through all continuous martingales with

whenever they may be defined.
The set of martingale measures is a nice set. Its extremal boundary ex(MM)

is according to 5.12 the set of Borel probability measures P on such that
has the integral representation property. It is a set rich enough not only

to include but also to generate the convex set MM via Krein-Milmann and
Choquet Theorem. See III.4 (Bibliographical notes) for references.

2.6 Helps to Some Exercises

1.11 Let without loss of generality and consider a
By Kunita-Watanabe inequality, we get

which shows that The linearity formula 1.11 is then proved
directly by the definition of the stochastic integral.
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1.16 The process is obviously a Gaussian process with independent
increments for any simple deterministic process A general inherits
the above properties because according to 1.5.10 and 1.12 there are deterministic
simple processes such that Apply 1.7 to complete your proof.

1.17 (i) Apply subsequently 1.9 and 1.10 to verify that for any

holds almost surely.

1.17 (ii) Denote it follows by 1.6.6 that
If then, again by 1.6.6,

where is a process defined in 1.6.6.

2.17 If A is a singular matrix, then there is an such that
hence a contradiction.

Take arbitrary and put Compute

3.7 (i) Obviously, where defines a complete filtration.
If then by the limit definition of the quadratic variation

i.e., Y is a process. If is its first entrance to –1 then almost
surely and almost surely.

3.7 (ii) F is in because           implies that
almost surely.

By definition and by 1.8 we prove

Letting we get by 1.5, and therefore (ii).

3.7 (iv) Note that almost surely.
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5.8 Assume that the linear space generated by L and by all constants in
is a dense set in and that in are such that

holds for an Because where are bounded densities,
we get that is a dense set in both spaces too. Hence               because

for all
If is not a dense set in then it follows by Hahn-Banach Theorem

that there is a bounded function such that and
for any Without loss of generality we assume that and

putting we define probability measures                  in        such
that
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III.3 Diffusion Financial Mathematics

Black-Scholes calculus, Girsanov calculus, market regulations and option pricing,
helps to some exercises

Throughout the present chapter, if not stated otherwise explicitly,
will be a complete probability space, an Wiener
process and the completed canonical filtration of W, that is the filtration
defined as for all

3.1 Black-Scholes Calculus
This calculus considers a market where assets, say are traded

continuously at any time or, more frequently, at any time where
is the trading expiration time. Denote the price of

the corresponding security at time and assume that 0 is a bond whose price
is not exposed to the diffusion perturbations generated by the Wiener process W.
Its price is evolved by the equation

i.e., by and where

(2) is a bounded progressive process

called the interest rate process. It follows that the price process of the bond
is a continuous adapted process of finite variation (hence determined
almost surely by

Thus, for all where and therefore
the process enters our calculations as the discount process associated with the
interest rate process Assuming that is a positive deterministic process we get
the asset 0 as a security that offers a riskless possibility of investments. If it is so,
then the discount process denoted as is called in the discount function in
Part I. If moreover, is a constant process, being called the force
of interest in this case, we simply arrive to a continuous time model for a typical
savings bank account.

On the other hand, the assets are assumed to be stocks, or other
risky securities, that of course accompanied by a risk, may offer a more substantial
profit than the safe bond. Their prices exposed to the diffusion W are modeled by
the stochastic differential equations
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where for all  and

and is an vector and an

(5)
of bounded progressive processes, respectively.

The vector process is called the rate of return and the matrix process the
volatility matrix. Hence, the vector of prices of risky securities
is correctly defined as a  Itô process with locally bounded coefficients.

Denoting by D(X) the diagonal defined by we get
(4) equivalently as

and call the return process. Since is an Itô process with
bounded coefficients and X is a continuous process, 2.2.19 implies that X is a
process further equivalently defined by

where Also define an Itô process by

or equivalently by

where
Before trying to defend the equations (4) as a suitable model for stock prices

stochastic dynamics we should convince ourselves that they have a unique solution.
To this end observe that holds and apply 2.2.13 to each
equation separately to prove

3.1.1 Stock Prices. Under (5) the equations (4) have almost surely unique
solutions given by

for all Assuming that all

(11) initial prices are positive numbers,
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and denoting ln and ln we get (10)
as

where denotes the diagonal of an A.

Since for any stock with initial price we may assume (11) and
therefore also that each price process is a positive semimartingale without
loss of generality. Thus, we may write (9), and therefore also (4), equivalently as

by 2.2.19, since both processes D(X) and are continuous adapted and both
X and are Itô processes with locally bounded coefficients.

In case that and are deterministic processes we may be very specific about
the probability distribution in the space By 2.2.16 we verify
directly

3.1.2 Log-Normal Distribution. Assume that all processes and in (5)
are deterministic, further assume (11). Then ln X is an continuous
Gaussian process whose probability distribution in the space is uniquely
determined by

The arguments in favour of the model and terminology are as follows: Obviously,
the equations in (9) justify the return process term chosen to label
the process Note that (9) and 2.1.21 imply for any and

that

holds, hence a more precise justification.

3.1.3 Example and Exercise. The role of the rate of return process and
that of the volatility matrix is easily understood if the coefficients and are
bounded deterministic. Apply 2.2.16 and the Fundamental Theorem of Calculus to
prove:
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holds in this case.
Thus, the rate process controls infinitesimal changes of the mean of the

return process while the volatility matrix is designed to control local changes of
its covariance matrix function. Processes and jointly influence the infinitesimal
behavior of the probability distribution of the random variable

Even a more deep insight provides

3.1.4 Exercise. Under the assumption (5)

holds everywhere on for all
Hence, the rate of return may also be interpreted as an of the

return process

Let us come back to Part I where the random walk hypothesis, supported
by empirical experience about the log-normal distribution of a single stock’s price

was applied to model the price by means of the equation

where W is a one dimensional process. Observing that (15) coincides with (13)
if and the return process is given by we are
encouraged to believe that our more complex model (9) approximates the genesis
of stock’s prices with a acceptable precision.

To summarize what has been said up to now agree to call

the Black-Scholes model (BS-model) if the following hypotheses are satisfied:

(BS1) is a process defined by (1) or equivalently by (3) where is
a bounded progressive process and

(BS2) Processes are defined by (4), also by (8), (9), (10), (12), (13),
processes and are bounded and progressive,

for all
(BS3) The matrix is uniformly positive definite.

In what follows we will fix a BS model

The return process  is a Gaussian process such that almost everywhere on 
and for all
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Remark that the hypothesis (BS3) has not been applied yet, however it will
appear to be crucial in what follows.

The bond and stocks are traded: The investor may continuously change the
structure of his holdings by selling some assets and buying others. Any
fraction (share) of any asset can be traded at any time No commissions are
paid for the transactions.

Denoting by the number of shares of a security held by the
investor at time we do not exclude a possibility of a negative position

A negative position for the bond may obviously be interpreted as a
credit received by the investor to support his operations with the stocks
A negative position for a stock models a short sale operation.
This means that the investor is allowed to sell shares of the security he does not
possess and, of course, has to buy back or pay for in a near future. A typical
situation for a short selling operation is that the investor suspects that the price

of the stock is about to fall rapidly.
Denote by

the total wealth-capital invested in the assets at time and postu-
late that:

The investor has no prior knowledge of future prices to help him design
a winning trading strategy

Since the price processes are positive, trading strategy is equivalently but more
comfortably expressed in terms of the portfolio process given as
for each asset which quantity declares the money value of the shares of possessed
by the investor at time

The investor owns an initial endowment – capital However,
later on, we shall prove that a void initial endowment excludes any possibility
to acquire a future positive capital in decent markets.

The investor’s gains and losses, i.e., positive or negative profits, are entirely
due to his trading strategies given the underlying prices Hence, denoting by

the global profit achieved by the investor up to time we have

Be careful, please, to distinguish the stochastic differential from the product
of the discount process with a process F.

The investor is of course allowed to consume continuously a part of the
profit. A consumption strategy is defined by the rate of his cumulative
spendings up to time

The investor’s combined trading-consumption strategy
has to be self-financing which means that any increase and any decline  of  his
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wealth is entirely caused by gains and losses coming from his investments and
consumption. From the point of view of a single investor the market is closed, there
is no way for money in and no way for money out. The obvious mathematization
of this requirement combined with (17) is given as

An  stochastic process

will be called a trading strategy or T-strategy if almost
surely.

A stochastic process will be called
a portfolio process. The portfolio process defined by

will be called the portfolio process associated with a T-strategy We will
also denote

The stochastic process defined by

will be called the wealth process associated with a T-strategy Since
and is a trivial we argue that there is

such that

The number will be called the initial endowment (associated with
The stochastic process defined as

will be called the profit process associated with a T-strategy
A stochastic process where for all will be referred

to as a consumption process. We shall write and will refer to C as
to an accumulated consumption process.

A pair where is a T-strategy and a consumption process will be called
a trading-consumption strategy or TC-strategy. Any pair where is a
portfolio and a consumption process will be called a portfolio-consumption
strategy or PC-strategy.

Thus, having already fixed a BS-model we add a continuous time market
model whose principal components are given by the following definitions:
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Note that the integrability requirements on a T-strategy say that

or equivalently that

as the processes and X are continuous adapted and positive. The stochastic
process is defined correctly for arbitrary T-strategy because (19) and (5)
are easily seen to imply that holds for each

Let be a TC-strategy. We shall say that it is a self-financing strategy if

holds.

Note that is defined by (16) for a general T-strategy as a progressive
process. However, if the can be accompanied by a consumption process c such
that is a self-financing TC-strategy, we get as a process that can be
modified to a process Y in CSM, in particular, to a continuous adapted process.

We define a self-financing strategy as one that satisfies the requirements (18) and
(17). This definition not quite precisely written as simply
states the accounting balance equation

(22) current wealth=initial wealth + profit – accumulated consumption.

Remark. If we apply a TC-strategy such that all processes and are
simple, we in fact assume that individual trading operations take place at discrete
time points and that the rate of consumption is constant
on each interval Note that         is defined as a self-financing strategy
precisely by (22) in this case.

If we apply a TC-strategy such that all processes and are continuous
and adapted, then according to 2.1.14,

where is the wealth accumulated, according to (22), by trading in discrete
time points while the rate of consumption remains
constant on each interval

We are able to recover the profit process where is a T-strategy, in terms
of the return process that is defined equivalently by (7),(8) or
(9) and of the associated portfolio It follows by (1), (9) and 2.1.10 that
for arbitrary
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holds almost surely because for by (19) and is an Itô
process with bounded coefficients.

Hence, if Y is a continuous adapted modification of then

where is an vector. It follows further by (7) and
2.2.19 that for such a modification Y also

is true as and is a Itô process
with bounded coefficients. Hence, a TC-strategy with an initial endowment

is self-financing if and only if the wealth process has a
continuous adapted modification Y that satisfies

Thus we get

3.1.5 Theorem. Consider the stochastic differential equation

where is a PC-strategy and Then (26) has an almost surely unique
solution Y given for by

Let be a TC-strategy with an initial endowment Then is self-
financing if and only if can be modified to a continuous adapted process Y
that solves (26) with

Recall that denotes the discount process associated with
the interest rate process

Proof. The second statement is already proved by arguments (23), (24) and (25).
Apply 2.2.13 with U and V that are such that U (0) = V(0) = 0 and

which gives to prove that (28) has an almost surely unique
solution given as
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The process Y equals almost surely to the right hand side of (27) by 2.1.20.

The assertion invites to formulate the following definition: The process Y defined
for  equivalently by (26) or (27) or by

where is a PC-strategy and will be called the wealth process gener-
ated by Agree to call the equation (WE) the wealth equation for

The wealth equation expresses the requirement on self-financing behavior of the
investor in the following manner:

3.1.6 Theorem. Let Y be the wealth process generated by Then

defines a T-strategy such that and the following holds true:

is true.

Especially, on by Fubini Theorem because and are progressive
processes. By on a Borel set we mean that equals to almost
everywhere on B with respect to the Lebesgue measure

Proof. The T-strategy defined by (28) is designed to satisfy and
Hence, solves (WE) and is a self-financing strategy by 1.5.

If has properties (29) it follows by 1.5 again that is a modification of Y.
Hence,

holds.

There is a very precise one to one correspondence between the trajectories of the
wealth process Y and that of the PC-process in (WE).

If is another T-strategy that satisfies (29) then

and
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3.1.7 Uniqueness Theorem. Let Y be the wealth generated by  Then
there is a P-null set N such that for all and

Proof. Put Obviously, and a straightforward
computation gives According to 1.7.1 and 1.7.2 there is
a P-null set N such that for and arbitrary

is a function of finite variation on is a constant on

It follows by (BS3) that the last integral equals to 0 iff on (30) is
proved.

Take an arbitrary where N is the P-null set constructed for (30) and
arbitrary If is a constant on then on
according to (30) and therefore by (27)

Hence, for all which implies that on
because

To  verify in (31) assume without loss of generality that the P-null set N we
constructed for (30) is large enough to ensure that for and for all

holds. It follows by (27) that outside N and for all

The equivalence (32) is valid as a consequence of (31).

Remark. It easy to check that 1.7 will stay to be true even in the case of (WE)
with bounded not necessarily nonnegative consumption c and for arbitrary
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3.1.8 Corollary. Let Y and Y* be wealth processes generated by and
respectively. Then outside a P-null set N and for all

Especially,

The generalized wealth process Y–Y* is generated by The
equivalence (33) is therefore verified by (32) in 1.7 and by the subsequent Remark.

Note that if and are progressive processes, then

on almost surely everywhere on

Theorem 1.7 states properties of self-financing strategies that are almost obvious if
termed in the language of finance:

The equivalence (30) states that a trajectory of the wealth is of finite variation
during a time period if and only if we are sure that the investor ceased entirely
to possess risky assets during the period. H is wealth is generated only by trading
the bonds, hence by means of the ordinary differential equation
during the time interval.

Further, the equivalence (31) says that the discounted investor’s wealth becomes
constant on an interval if and only if he owns only bonds and does not consume
anything during the period.

Finally, (32) informs us that the investor goes bankrupt at time and will never
recover from this state until if and only if he owns no bonds, no stocks and
consumes nothing between times and

Most of the problems of (diffusion) financial mathematics we shall encounter in
the present text may be formulated as below.

Given a requirement on the wealth Y and given an initial endowment we seek
answers to the following questions:

Is there a (unique) PC-strategy such that generates a wealth
process Y fulfilling that requirement?

If this is the case, is there an effective construction of a suitable PC-strategy
to get a wealth Y with the desired property ?

One of the principal requirements on the wealth Y is to keep it as a nonnegative
process or even as a positive one. Being ready to adapt our consumption to our
current wealth Y the problem is simple.

3.1.9 Positive Wealth Process. Let and
be an and a one-dimensional process, respectively;

on holds almost surely.

and
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Then there is a PC-strategy such that generates a wealth process Y
having the following property:

Proof. Consider the stochastic differential equation

According to 1.10 below it has an almost surely unique solution Y given by (36)
and (37) that is obviously such that Y > 0 holds. If we define by (34), i.e. as

and the equation (35) is translated
to (WE) and therefore Y is the wealth process generated by

3.1.10 Exercise. For any that are as in 1.9 and for arbitrary equation
(35) has an almost surely unique solution given by

where

3.1.11 Exercise. The price of an arbitrary stock is a wealth
process generated by and where denotes the

unit vector. In other words, the trading-consumption strategy defined
by for and is self-financing.

If we are not willing to accommodate our consumption to our wealth, i.e. if we
fix we may confront a problem of bankruptcy.

Let Y be the wealth process generated by a or, more generally, an
arbitrary process such that holds almost surely. Denote by

and call it the bankruptcy time of the (wealth) process Y.
We feel that a decent model for continuous trading should be such that if the

investor goes bankrupt at then he will never recover from this position.
In other words, we require that only such strategies should be permitted
whose wealth process Y satisfies the equality Note that according to (32)
in 1.7 the equality says that, outside a P-null set, implies

i.e., time of the first entry of Y to {0}
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i.e. that both trading and consumption are dead after the bankruptcy. In particu-
lar,

We shall say that a PC-strategy is admissible for if (38) holds for
the wealth process Y generated by If Y is such a process and (38) is true
only for we shall say that the strategy is admissible up to
time T for the initial endowment

In the forthcoming section we shall prove that a PC-strategy is admissible for
an if and only if where Y is the wealth process generated by

i.e., that the trivial implication can be reversed. Given an arbitrary
PC-strategy and an arbitrary initial endowment there is an obvious way
how to stop to an admissible strategy for

3.1.12 Exercise. Let Y be the wealth process generated by Then
is the wealth process generated by where and
Obviously, is an admissible strategy for

3.1.13 Example and Exercise. Consider a portfolio introduced in 1.11 that
suggests to own forever only one risky security This time, however, generate the
investor wealth by where is a general, perhaps positive, consumption
and The wealth equation (27) says that

according to 1.11.
Thus, generates a wealth that equals almost surely to the price  iff

In order to satisfy his consumption the investor needs to keep selling
shares of the bond short at any time This, however, can not be performed forever
if only admissible PC-strategies generated by where

is the bankruptcy time of Y, are allowed. Note that is the first time when
the discounted price gets on top of the accumulated discounted consumption

Thus, having been forced to trade along the wealth process the
investor has no means to cover his consumption after time that will happen
almost surely if with probability one.

Prove that if and are deterministic processes such that
and are positive processes, then holds almost surely.

(38)  almost surely for all almost surely on

if
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Indeed, to get a reliable model for a secure market we can not ignore the ad-
missibility requirement or equivalently that given by the equality because
otherwise the investor would be allowed to perform the following risky financial
operations:

3.1.14 Example and Exercise. We consider the Black-Scholes model for one
bond and one stock with the following simplifications:

This bears the discount factor and the bond and stock prices        and
respectively, given as

where W is a one dimensional Wiener process. Further, consider the trading con-
sumption model with no consumption, i.e. with where the wealth process Y
generated by a portfolio process and by an initial endowment is

a constant.

Choose and a constant trading strategy defined by

where K > 0 is a fixed number.

Check that where and is the wealth process and the
profit process associated with respectively, to see that defines a self-financing
strategy with the initial endowment The following strategy, called also
a suicide strategy is an example of a short sale financial operation: The investor
starts at time with one dollar initial endowment, sells K shares of the stock
short and buys 1 + K bonds.

Thus, putting in (39) we get the wealth process Y generated by and
by as

and therefore is not an admissible strategy for the initial endowment
Prove that the following assertions hold:

For any the probability distribution of the wealth is supported
by the interval i.e., that the distribution function
is increasing on the interval and equals to 1 on

Letting we get if and if

If then and

for arbitrary and for
and

(a)

(b)

(c)

(d)
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Thus, if the rate of return is grater than one half of the volatility, the trading
strategy is really a suicide one if the infinite trading expiration time is considered.
With we might be inclined to acquire the strategy as a lucrative one
as in this case, if we had not been warned by (d) that the
expected wealth at any time is strictly below the initial wealth and
that as Perhaps even more discouraging is the fact that the
bankruptcy has a positive probability:

The bankruptcy time of Y is easily computed as

Girsanov theorem, together with 2.4.11, offers probabilities for the bankruptcy
before time as

with as and as
More importantly, by 2.4.11, and implies that

Hence, there is no escape from the bankruptcy if the rate of return is greater than
one half of the volatility. Of course, this is something that also follows directly
by (b). If then the investor may avoid the bankruptcy with a positive
probability which decreases from 1 to 0 with K increasing in Indeed,
a high rate of return if compared with the volatility supports the risk coming
from the negative position for the stock.

Finally, according to 1.12, defines an admissible strategy for
the initial endowment which jointly generate the wealth process given by
where the process Y is defined by (40). Let and prove:

We shall revisit the example in 2.14.

3.2 Girsanov Calculus
We shall keep a fixed Black-Scholes model for bond-stocks prices that

is specified by hypotheses (BS1), (BS2) and (BS3). Agree to denote by
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a bounded progressive process that is defined correctly due to (BS3) and 2.2.17.
The process G, as we shall see later on, combines the interest rate process the
rate of return and the volatility to a very useful characteristic of our BS-model.
The process also yields another important discount process D associated with the
model, the process that is defined by

Hence, D is defined as the exponential of the stochastic integral whose
quadratic variation is obviously given as Further define
Itô processes and in CSM(P) by

Section 2.4 on Girsanov calculus provides mathematical tools that are able to
recover deep and important properties of a general wealth process Y defined by
(WE) and (27) equivalently. We shall summarize these techniques into:

(G1) D is almost surely unique solution to

(G2) D is a P-martingale such that for all

(G3) For arbitrary the probability measure defined by
is such that is an process.

(G4) For arbitrary N is a  martingale iff
is a martingale.

(G5) For and arbitrary, holds.

The measure will be referred to as T-Girsanov measure for the Black-Scholes
model (BS1), (BS2) and (BS3).

In (G2), (G3) and (G4) (local) P, and P, processes,
respectively, are understood as (local) and

processes, respectively. Agree also to denote by the (condi-
tional) expectation operator associated by the Girsanov measure and keep the
notation E for that associated with the original measure P.

Indeed, (G1) follows, for example, by 2.2.13. Hence, D is a nonnegative
martingale. Its definition (42) and 2.4.7 imply that since G is a

bounded progressive process. Thus, (G2) is true according to 1.4.2 (d). (G3) is
simply proved by (G2) and by Girsanov Theorem 2.4.4 itself.. Finally, is defined
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as a measure in the Girsanov set with the derivative process that
equals almost surely to Accordingly, (G4) is exactly the statement (a) in 2.4.1.
To prove (G5) apply (G2) and write

The above reasoning touched a supermartingale calculus to be found frequently
in action in the financial mathematics. According to 1.4.2 (c) and 1.3.13 we have

(SP1) Any nonnegative local martingale M is a supermartingale.

(SP2) If M is a nonnegative supermartingale and its bankruptcy time
then outside a P-null set

Note that we may apply 1.4.2 (c) as is a trivial
The following pair of assertions explains the role of our definitions:

3.2.1 Lemma. For an arbitrary portfolio the formula

3.2.2 Theorem. Let be a PC-strategy and Denote by Y the wealth
process generated by Then

defines a process such that is a martingale for arbitrary

The assertion, that in fact coincides with Girsanov theorem, provides the princi-
pal tool of the diffusion financial mathematics: Under the T-Girsanov measure
the process

M = [discounted current wealth] + [discounted cumulative consumption]

has no drift. Under the original probability distribution P, this can happen only
in very restricted BS-models with hence in models that provide no
motivation to trade risky assets

holds.
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Proof of 3.2.1. Denoting the right hand side in (44) as U it follows by 2.2.19
that where

is an  Itô process with bounded coefficients. Further, by 2.2.18 and
(BS3) we get where

Remark that the assertions 2.2.15, 2.2.18 and 2.2.19 may be applied as above,
since all processes are assumed to be bounded and progressive, the pro-
cesses are chosen in and the process is continuous adapted.

Proof of 3.2.2. The middle equality in (45) is just wealth equation (27), the last
one coincides with (44). Fix a and look at (45). According to 2.1.5 and
2.1.22,

holds as on [0, T]. Thus, is a martingale by (G3)
and by 2.4.2 (c).

The preceeding results enable to recognize a wealth process among continuous
adapted processes. We recall the results made available by Section 2.5 on Brown-
ian representations calculus on a unique existence of a solution to the equation

where H is a local P-martingale. Since 2.5.7 and 2.5.10, respectively,
provide the following information:

3.2.3 Theorem. Let c be a consumption process and M a continuous adapted
process with such that DM is a local P-martingale. Then

(BR1) Any P-martingale can be modified to a continuous P-martingale.

(BR2) For any local P-martingale H the equation (46) has a solution
that is unique on up to a set.
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defines a wealth process that is generated by where

and is defined on as a solution to the equation
according to (BR2).

Proof. If then Apply (G1) and 2.2.15 to prove the
relations

Then, the Itô formula 2.2.8 for applied in CSM(P) and (49)
give

where the last but one equality follows by 2.2.19 and is a portfolio given by (48).
Hence, according to 2.1, the process Y defined by (47) is a wealth process generated
by

For further purposes we will denote the space of all wealth processes by and
its sections in the following manner: If is a consumption process, then

is a wealth process generated by a

if is a consumption process and then

is a wealth process generated by a

The genesis of wealth processes Y is described completely by the following state-
ment:

3.2.4 Theorem. Let Y be a continuous adapted process with  and
c a consumption process. Denote

Then the following statements are equivalent:

is a martingale for all

DM is a local P-martingale.

(a)

(b)

(c)
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Moreover,
(d) If is a martingale for a fixed T > 0, then there exists a

wealth process such that holds on [0, T] almost
surely.

Proof. is proved by 2.2. If   is a local for arbitrary
(G4) applies to prove that is a local P-martingale

for arbitrary This obviously implies (c). The implication is a
consequence of 2.3.

To prove (d) put

to define a continuous adapted process such that holds. Thus, if
is a local it follows by (G4) that is a local P-martingale.

Denoting it is a consequence of the implication
that is a wealth process in obviously such that on [0,T].

3.2.5 Example. Let c be a consumption process and Endow both
and the space of all local martingales that start from by the almost
sure equality on Since M is a continuous adapted process iff its transformation

M has the property, we may combine 2.3 and of 2.4 to
state that

is a one to one map
If we provide the space of all portfolios with the almost everywhere

equality on with respect to the measure we observe that the map
yields through (BR2) and 2.3 a dual one to one transformation

defined by

for where Y is the wealth process generated by

Now we are prepared to fulfil our promise made in Section 3.1 to prove that any
admissible PC-strategy generates a wealth process Y that will never recover after
its bankruptcy

3.2.6 Admissible Strategies. Let Y be a wealth process generated by
and its bankruptcy time; T > 0. Then is an admissible strategy up to time
T for the initial wealth if and only if there is a P-null set N such that for
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Hence, a PC-strategy is admissible for a iff holds for the
wealth process Y generated by

Proof. Assume that almost surely for If M is the pro-
cess defined by (45) then is, without loss of generality, a nonnegative local

by 2.2. Thus, is a according to (SP1).
Since is a non decreasing process, we conclude that is a

too. The processes and have obviously the same
bankruptcy times and therefore the implication in (51) follows by (SP2). The
rest of 2.6 is obvious.

Having a finite trading expiration time T the investor will, beyond any doubt,
judge a plausibility of any single PC-strategy according to the final capital Y(T),
that may be attained by its application, compared with an initial endowment

More precisely, claiming a final wealth he searches for a wealth
process Y that would respect a given consumption whose value at time T would
be equal to the claim and that, at the same time, would require as small initial
endowment as possible.

In this respect our definitions will be as follows: Let T > 0 be a trading expiration
time.

A nonnegative random variable will be called a claim at time
T > 0. Saying that is a claim we shall always mean that T is a positive and
finite time and that is a claim in

A wealth process Y will be called a valuation of a claim if
holds. We may also say that Y valuates the claim

A valuation of a claim will be said an admissible valuation of the
claim if holds almost surely for all

The minimal price of a claim and of a consumption or simply of
is defined as the minimum ofall such that there exists an admissible

valuation of with the initial endowment If it exists, the minimal
price will be denoted as

In symbols,

is the initial endowment of an Y in

where

Y is an admissible valuation of

If the minimal price exists, then any process with the
initial endowment will be called a minimal admissible valuation of the
claim and of the consumption c or simply a minimal admissible valuation of

Next three statements are the fundamental achievements of diffusion financial
mathematics.
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3.2.7 Valuations. Consider a consumption process c and a claim Assume
that there exists a valuation of such that

Then

in particular, and are random variables. Further denote

for and assume that is a valuation of that satisfies (52). Then

holds almost surely for all

and for all if and only if

Note that if and that the conditional expec-
tation (54) exists by (53) as is a bounded process on [0, T].

Proof. Note first that and and that

holds for arbitrary according to 1.2.7 (c). Assume that is a
valuation of such that (52) is satisfied. Since is in this case
a nonnegative local by 2.2, it is a by (SP1),
especially (53) is valid. Hence,

holds almost surely for all by (55). We conclude that for any
the inequality is valid almost surely.

If then for both and and

therefore the turns to be a
and we get (56) as equality that holds almost surely for all

The theorem sends an important message:

holds almost surely for all
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3.2.8 Admissible Valuations. Let be a claim, a consumption process and

(a) Y is an admissible valuation of if and only if condition (52) is satisfied.

then Moreover,

(b) if and only if is a and if and only if is a
modification of the process

(c) holds if and only if is an integrable local and it is
not a true

The processes M and in (a) and (b) are defined by (50) and (54),
respectively and is the number specified by (53).

Proof. If a wealth process satisfies (52) and valuates the claim
then almost surely for by 2.7. Hence, Y is an admissible
valuation of

If Y is an admissible valuation of and then almost
surely for by 2.7 and therefore

If then                      for according to 2.7, again, consequently

by (55) and is seen to be a
If is a then (57) holds because Putting

into (57) we get We have proved (b).
To prove (c) note that is a nonnegative local by 2.4, conse-

quently an integrable stochastic process by (SP1). This obviously implies that (b)
and (c) are equivalent statements.

This result is substantially complemented by the following deep theorem:

3.2.9 Minimal Admissible Valuations. Let  be a claim and c a consump-
tion process. Then the minimal price exists if and only if (53) holds.

If the condition (53) is satisfied and Y is a minimal admissible valuation of
then

hold.
In particular, if Y and Y* are minimal admissible valuations of  generated

by a and by a respectively, then on [0, T] and
almost everywhere on with respect to the measure

Proof. If the minimal price exists then by definition.
Further, by 2.8, hence the existence of implies (53).

If is an admissible valuation of with an initial endowment

a valuation of Then
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Assume (53): According to (55) the equality

is valid and therefore N is a It follows by (G4) that is a
P-martingale, hence N has a continuous adapted modification, say M, by (BR1).
Define a continuous adapted process Y as a solution to the equation (50). Note
that and that is a as is a
modification of the process We further reason as follows:

According 2.4 (d) there is a wealth process such that
Y on [0, T] holds. Consequently,

and is an admissible valuation of by 2.8 (a).
Since, according to 2.8, is a lower bound of all such that there is an

admissible valuation of with we have proved that the minimal price
exists and is equal to If Y is an arbitrary minimal admissible

valuation of then and for
by the last statement of 2.7.

The uniqueness part follows by  1.8.

The statements 2.7, 2.8 and 2.9 combined may be summarized to provide a
check for a process to be a minimal admissible valuation and a method how to
compute the minimal price. Also the term the minimal admissible valuation finds
its justification:

3.2.10 A Summary. Let and be a claim and a consumption process,
respectively:

(a) The minimal price exists if and only if
in this case.

(b) A valuation of is a minimal admissible valuation of
if and only if is a on [0, T].

Let be an admissible valuation of Then

(c) almost surely for

(d) Y is a minimal admissible valuation of if and only if
and if and only if for

(e) almost surely if and only if is a local
and not a true

Make it an exercise to prove the statements included to our summary.
The equivalence (e) in 2.10 creates through a mathematical pathology a possi-

bility for a really suicide trading, indeed.

is true for all



III. STOCHASTIC ANALYSIS AND DIFFUSION FINANCE 343

3.2.11 Example and Exercise. A Safe Way to the Bankruptcy. Let us
consider a market where only one bond and one stock are traded until the expiration
time T = 1 and fix a consumption process c.

Since the process defined by (43) is a process, the con-
struction performed in 2.3.7 exhibits a Markov time such that outside a
P-null set

where

holds to be true. The integral being an integrable local
and not a true enters through (c) in 2.8 to arrange for the bank-
ruptcy with probability one:

For an arbitrary define a portfolio by

Consider an initial endowment and let Y be the wealth process generated by
Verify the following statements:

and therefore

hold outside a P-null set.

(b) is an admissible strategy up to time 1 for an initial endowment
(briefly admissible) iff is valid almost surely.

In particular, if and is an admissible strategy, then on [0,1]
and is not admissible for In other words, if then there is
no consumption process c that could be paired with the portfolio to make a
PC-strategy that would be admissible up to time 1 with the initial endowment

Apply (a) and (b) to construct a really bad financial operation:

(c) Choosing to trade without any consumption, i.e. with then for
arbitrary initial investment the portfolio is admissible up to time 1 for
the initial endowment and forces the investor to go bankrupt with probability
one not later than at time T = 1. According to (a), the bankruptcy time of the

The wealth equation for Y is(a)

and
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wealth process Y generated by equals to the Markov time that enters
the definition of the process F.

Thus, the portfolio (59) provides a very safe way how to loose arbitrarily large
amount of money. Look how this is accomplished if for simplicity we assume that
the interest rate and the volatility are given as and respectively:

You need only to keep stubbornly increasing the capital invested to the stock
with the rate at any time before you go bankrupt without any
regards to the dynamics of the price process Obviously, this trading can not
be performed without a to infinity increasing negative position for the bond given
according to (a) almost surely as

if Thus, a huge short sale of shares of the bond is necessarily involved.
We continue to assume that and and note that

generates the wealth process that is an admissible
valuation of the claim with the initial endowment and is not a

on [0,1]. Trivially, and you would do much more better to
skip your investments completely until T = 1 advised by the fact that the minimal
admissible valuation of is a wealth process whose trajectories are constant
zero on [0,1] generated by where In this case the initial wealth

could be better invested elsewhere rather than to get it wasted by the suicide
portfolio

According to 2.10 the problem of the minimal price of when reduces
itself to the problem of finding an admissible valuation Y such that the discounted
process is a on [0, T]. The important aspect of the BS-price
model is that the price process meets the requirement for arbitrary risky security

3.2.12. If only one bond and one stock are traded and T > 0 is arbitrary, then

is a

is a on[0,T].

is a process in such that

holds almost surely for all

Proof. The formula (a) follows by a direct computation. The right hand side
is a by 2.4.6 as the processes and are bounded. It follows
by (G4) that is a on [0, T] for arbitrary T > 0. It follows
by (6) that is a continuous with the stochastic differential

and therefore by (44) in 2.1

(a)

(b)

(c)
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holds. Since on [0, T], we arrive to the formula

that is equivalent to (c) because is a process by (G3).

More generally we may prove:

3.2.13. For any stock and T > 0

Hence, by 2.4.7, is a on [0, T] as is a bounded process.

Proof. As follows from 1.11, is a wealth process generated by where
and the unit vector, Consequently, according

to 2.2, (G3) and by 2.4.2 (c), the corresponding wealth equation is given on the
interval [0, T] as

where is understood as a  process. Hence

holds by 2.2.15. An application of 2.2.13 shows that

3.2.14 Example and Exercise. Consider the Black-Scholes model for one bond
and one stock with

> 0 and further assume no consumption, i.e., Imagine that you are offered
to sign a very exotic contract to pay at time an agreed price to collect
at time T > 0 a total given as

In other words, for the price paid at you will get nothing if the price
enters some time before T and you will collect
if not. What would be a fair price to pay for the claim or rather option The
answer is simple and involves the concepts of the minimal price and that of the
minimal admissible valuation that exist in this case, since

If and if you are allowed to trade only in the framework of admis-
sible portfolios you would not hesitate to sign the contract, since there is no legal

a constant,
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possibility how to valuate by a wealth process with initial en-
dowment If the contract should be dismissed because the minimal
admissible valuation of is less expensive and the rest of the
required price might be invested elsewhere to replicate the total profit.

Prove that and that the minimal admissible valuation of is
given as where

Recall 1.14 to see that Y is a wealth process whose bankruptcy time coincides with
and is an admissible valuation of You will also find there

a formula for that provides an information about the risk born by the
contract.

The interpretation of the minimal price as a fair price for a claim or option will
be thoroughly revisited in the next section.

Via 2.10 we have also solved the problem of the existence of an admissible PC-
strategy up to a given finite expiration time for a given consumption process and a
given initial capital.

3.2.15 The Existence of Admissible Strategies. Let be a consumption
process, T > 0 and Then

is a necessary and sufficient condition for the existence of a PC-strategy
admissible up to time T for the initial endowment

Proof. Assume first that is an admissible strategy up to T for and de-
note by Y the wealth process generated by Consider and

defined by (53) and (54), respectively, where Then,
according to 2.10 (c), holds.

On the contrary assume (61) and put Thus,

According to 2.10 (a), there exists an admissible valuation of the claim
with the initial endowment Consequently, an admissible PC-strategy up to

time T for the initial capital is proved to exist.

PC-strategies admissible up to infinity may frequently cease to exist.
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3.2.16 Exercise. Let be a consumption process and Then an admissible
strategy for the initial endowment exists iff there is a process L with the
following properties:

Prove:
If and are deterministic processes such that and
arbitrary, then there is an admissible strategy for

If an admissible strategy for exists then holds
for all

If there is an such that holds on with a positive probability,
then there is no admissible strategy whatever large initial capital
we may have available.

(a)

(b)

(c)

3.2.17 Exercise. Assume (61) for a consumption process  and a T > 0, put
as in the proof of 2.15. Compute explicitly the

minimal valuation Y of

3.2.18 Exercise. Consider a utility function that is Borel
measurable and such that

For and T > 0 define

where is the set of all consumption processes  such that a portfolio exists
to form a strategy that is admissible up to T for the initial endowment
Prove that the maximal possible utility is given as

where is the set of all consumption processes with

See, [115], [63] (pp. 160-161) and [95] (pp. 379-387) for constructions of a
consumption process that is optimal in the sense of
where and is a smooth concave function on

In 2.3, 2.4, 2.5, 2.6 and in 2.16 we succeeded in formulating the corresponding
results in terms of the original probability distribution P rather than to recall an
associated Girsanov measure The reader might also prefer the principal
results on the minimal admissible valuations and the minimal price of a claim to be
handled analogously. We shall do it now adding to our reasoning an integrability
requirement on the claim under consideration.

and                            almost surely.

for  all
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3.2.19 Integrable Claims. Let be a claim and   a consumption process such
that for some

holds. Then

and the minimal price of is

If Y is a minimal admissible valuation of then for each
by 2.10 (d), and

holds for all

We shall need the following

3.2.20 Lemma. For any and the random variable
has a finite expectation.

Proof. Put and apply 2.1.9 to compute that

holds almost surely for a constant because G is a bounded process. Since
it follows by 2.4.7 that The

integrability of is proved.

Proof of 2.19. Denote
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and define by Consequently, by Hölder inequality, 2.20 and (G3)

is seen to be true. Hence, (64) is proved. It follows that

The minimal price exists and (65) is true by 2.10 (a).
Further, denoting it follows by (55) that is a

on [0, T] and therefore is a on
the interval by (G4). This yields

According to 1.2.7 (c) we arrive at

since (64) implies that the argument of the conditional expectation on the right
hand side is an integrable random variable. Computing V as the solution to (68)
with an assistance of 1.2.7 (c) again, we get (66).

Two Remarks. The Girsanov calculus enters the financial mathematics principally
through the probability measures whose purpose is to remove the drift
that is present in the definition of a general wealth process. There is no harm as far
as a finite expiration time T > 0 is concerned, as and the original distribution P
bear the same random events of probability one and the Radon-Nikodym Theorem
provides a reliable bridge between the and P- stochastic worlds.

The problem of the time horizon can not be easily overcome. Even
though we are able in some special cases (see 2.4.9) to define uniquely a probability
measure Q that coincides with any on the we will not get a
very neat mathematical model. The reasons are that it may happen that Q and
P are singular measures, see 2.4.10, and therefore two different filtrations
and may enter our model with no purpose for financial modeling.

Compared with the standard terminology we have slightly simplified the defini-
tion of the contingent claim that is generally understood as an financial instrument

where called also a terminal payoff, is a claim, a stochastic
process, referred to as a payoff rate, whose mathematical definition coincides with
that of a consumption process. In this context a PC-strategy is called an
admissible hedging strategy against a contingent claim for an initial en-
dowment if for and generates an admissible
valuation of the claim Thus, our definition of a claim is that standard one of
a contingent claim plus (hopefully) an innocent identification of the concept of a
payoff and that of a consumption.
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3.3 Market Regulations and Option Pricing
We shall continue our presentation of the diffusion financial mathematics in the

framework of a fixed Black-Scholes prices model given by (BS1),
(BS2) and (BS3) and assume no consumption being present in our trading model.
Our notations and terminology will be modified in the following obvious manner:

If is a portfolio and an initial endowment, then a wealth process

generated by will be simply referred to as the wealth process generated
by A portfolio will be said admissible up to time T > 0 for an initial
endowment if almost surely for all where Y is defined
by (69).

If is a claim, then will be called the minimal price of
and a minimal admissible valuation of shortly as a minimal admissible

valuation of
The mathematical technology developed in Section 2 and summarized by 2.10

makes possible a modest discussion of market regulations as are or as could be
imposed with all regards to the need to have a market that is both safe and inter-
esting for investors. One more concept contrasting the suicide admissible portfolios
introduced by 2.11 is of considerable importance to make the discussion profitable.

We shall say that a portfolio is an arbitrage opportunity at time T > 0 if
generates a wealth process Y such that

holds.
Obviously, no responsible market regulator would allow such a portfolio to be

operated. Even if he would, the following example shows that both the arbitrage
opportunities and suicide portfolios (such as constructed in 2.11) are disqualified
automatically by their spectacular and lasting need of a credit. The example also
demonstrates that the arbitrage and suicide portfolios are in a sense dual concepts.

3.3.1 Example. Arbitrage Opportunities Exist. Consider K > 0 arbitrary,
define an admissible portfolio by (59) in 2.11 and generate wealth processes
and by and by respectively. The portfolio is constructed
so that the processes and behave as follows:

Thus, the portfolio is not only an arbitrage opportunity at T = 1, it transforms
a void initial capital into a positive wealth in a finite trading expiration time, that
is T = 1 in our case.

As we have seen in 2.11, the suicide process requires a huge increasing negative
position for the bond and therefore the arbitrage opportunity process may be
operated only by means of increasing short sales of stock. A common necessary
condition for such a behavior of an investor is an access to an almost unlimited
credit. Even a very liberal lending practice rules out such a credit and in fact
prohibits implicitly to operate such portfolios as and are.

and
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3.3.2 Exercise. Let be an arbitrage opportunity at T > 0, and     the
wealth process generated by Denote by   the wealth process generated by

Then

Thus, to operate an arbitrage opportunity portfolio starting with an arbitrary initial
capital means that you are sharply better than to invest the initial capital
to the bond and wait for the expiration time T.

As expected, neither true martingales nor non-negative wealth processes provide
opportunities for arbitrage. More precisely:

3.3.3 No Arbitrage Portfolios. Let be a portfolio, denote by Y the wealth
process generated by and consider T > 0. If is a portfolio admissible up
to T for or if           is a on [ 0 , T ] then is not an arbitrage
opportunity at T.

Proof. If is a portfolio admissible up to T for then is a
on [0,T] by 2.2 and (SP1). Thus, is a

on [0, T] in both cases. Consequently, On the other hand,
if is an arbitrage opportunity at T, then

as and P are equivalent measures. Hence, and a contra-
diction is exhibited.

The above assertion is a simple but useful statement: In the set of all portfolios
that are admissible up to T for a fixed initial endowment you will find no
portfolio which would provide an arbitrage opportunity at some time On
the other hand, according to 3.1, you will find there suicide portfolios that generate
wealth processes Y such that holds. It follows by 2.10 (e) that
the trouble making portfolios are exactly those that generate jointly with wealth
processes that are local and that are not true
Thus, it seems that the admissibility itself can not, at least mathematically, guar-
antee a safe and decent market and we are advised to restrict our trading to the
set

of all trading strategies such that

is a portfolio admissible up to T for and generates

a wealth process Y for which is a on [0, T ] .

We may summarize the reasons in favour of a market defined by the set that
deserve a consideration on the part of a market modeller: The investor restricted to

is denied of all arbitrage opportunities and lives without any hope to overcome
a possible bankruptcy according to 2.6. Not so good for him. On the other hand,

and                                            holds.

implies that
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he is rewarded a security in that sense that no suicide portfolio can be met in such
a market which may be considered as a favourable compensation.

The Girsanov measure is designed to remove the drift. A growth of the
wealth is present even under though becomes a (local) martingale in the

hence, basically a process whose expectation is constant on [0,T].

3.3.4 Lemma. Assume that the interest rate is a non-negative process. Let
M be an adapted process such that is a on [0, T] for a T > 0.
Also let be a convex function with such that is a

random variable for any Then, and are
both on [0,T].

Proof. Indeed, if then is a non-increasing process and

holds. Hence, is a random variable for and
is a according to 1.2.9 (d).

Having it follows by 1.2.7 (c), (70) and 1.2.7 (b) that outside a
set

holds. Hence, is a by definition.

As a direct corollary to 3.4, 2.13 and 2.10 (b) we get

3.3.5 Submartingale Growth Under Assume that let
be a convex function with and T > 0.

If for then both and are
on [0,T].

If Y is a minimal admissible valuation of a claim and for
then also both and are on [0,T].

Thus, if and is a convex utility function with such that
and are processes on [0, T], then

are non decreasing functions on [0, T].
Claims whose minimal valuations we studied in Section 3.2 are most impor-

tantly constructed as a betting on the price of a stock say at a specified
time T > 0. We shall start with a notorious stock exchange game called a Euro-
pean call option that is a claim given as where T > 0 is
called the exercise time of the option (also the maturity or expiration time), and
K > 0 its exercise price.
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Obviously, the game goes as follows: The investor signs a contract that makes
possible for him to buy at time T one share of the stock at a price K
if and, obviously, to make a profit if the share is sold
immediately for This option is, of course, not free of charge and we ask
what would be its fair price to be paid at time The answer is simple,
it is the minimal price of since nobody is prepared to pay for
the option a price when there is a trading strategy
that valuates at time T and the rest may be invested elsewhere.

More generally, having a Borel function and a T > 0 such that
the claim will be called the and

T referred to as its exercise time. Any European call is a with
for a K > 0. The minimal price of a exists and is equal to

according to 2.10 (a). It will be called the value of the
Obviously, it might not be enough to know only the value, we need to visualize a
legal valuation Y of the claim with to support the interpretation
of as that of the fair price of the option. Denoting

we call the value of the at time and stress that the
process V is exactly what we need because any minimal admissible valuation of

is a continuous modification of V on the interval [0,T] by 2.10 (d).
However, no explicit formula for the values can by itself provide an exact

control of our investments to attain the option terminal value By 2.10
(b) there exists a portfolio such that

holds for We are justified to call such a portfolio a hedging strategy
against the as such a portfolio is determined uniquely
everywhere on by 1.8.

The valuation of European calls is the highlight of the continuous time finan-
cial mathematics, indeed. The Black-Scholes Nobel price explicit formula for
its value, see [23], was derived by means of solving a partial differential equation
specified below.

3.3.6 Exercise. Let T and K be positive real numbers. Denote

where denotes the distribution function of N(0,1),
and
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for and
Check that is continuous on and

that the derivatives

exist continuous on Also

In other words solves the Cauchy problem with the boundary

3.3.7 The Value of European Call. Consider BS-model with one stock where
the interest rate and the volatility are positive constants. Also consider T > 0
and K > 0. Then

where is defined in 3.6, are the values of the European call with the exercise time
T and the exercise price K.

Moreover, if is a hedging portfolio against then

3.3.8 Exercise. We are able to determine the trading strategy that corresponds
to the hedging portfolio and to the initial endowment on the interval
[0, T]. In the setting of 3.7 prove:

Let be a wealth process associated with a trading strategy
Then is a minimal admissible valuation of iff

Note that the values of European calls are independent of the rate of return
process but depend heavily on the interest rate and the volatility This is an
important feature of the Black-Scholes formula (74), since while there is a chance
to estimate the latter coefficients, it seems to be a problem in the case of b because
of its basically stochastic or even diffusion character.

Proof of 3.7. The process is a by 2.12. We shall prove
that it is an It follows by 2.13 that for

and

holds on

and

and holds
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is true and therefore, again for we get

where Z is a random variable with Hence, is an
martingale on [0,T].

Further, define two continuous adapted processes Y and Z by

The definition of yields the inequality

Apply 1.2.10 (b) to the to see that

Imagine that we have already proved that

If it is so, we may let and see that (76) implies that

Consequently, each is a by 1.4.2 (a) and
is also easily seen to be a as an application of (78) and 1.2.7 (f).
Hence, for all  which is a statement equivalent to (74)
due to (71) and 1.2.7 (c).

We shall prove (77) for a fixed 0 < U < T. It follows by Itô formula 2.2.9 and
2.12 (c) that for all

is true if the integrands are meant as and

Since holds, we integrate per partes to get

and by

holds for all
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and finally, because is the solution to the Cauchy problem (73), we get

and as a local as stated by (77).
It remains to verify (75): Fix U < T and apply (79) and (44) to prove that

equals almost surely to

for all If is a hedging portfolio against  then according to
(72) we get that

holds for all denoting again
It follows by 1.8 that almost everywhere on

for all U < T. Hence (75) holds.

More generally, having positive constants T and a continuous function
we shall say that

continuous, continuous on

solves the problem with the boundary condition if (73) holds
and for all and

It presents no problem to transfer 3.8 to more general

3.3.9 The Value  of Assume a BS-model as in 2.7 and consider a
continuous function Let be a solution to the
problem with boundary such that

where Then is the with values given as
and with a hedging portfolio defined by (75).

Indeed, is the since
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holds.
The proof of 3.9 goes exactly as that of 3.7 the only difference being that

is estimated by means of (80) as

and (76) then reads

Surprisingly, we may also prove, as a corollary to 3.9, a uniqueness result for the
Cauchy problem which is something very far off our present topic:

3.3.10 Exercise. Consider an problem with a boundary
If and are its solutions that satisfy the linear growth requirement

(80), then

In 3.9 and 3.10 we touched, if only slightly, the recent research on stochastic
representations of Cauchy-Dirichlet problems. See, 5.7 Section in [95] and Section
15 in [151].

Choosing we define a called the European
put option with an exercise price K > 0 and an exercise time T > 0. It is easy
to see that the European put is a dual to the European call that suggests a game
where a bet is placed on a small value of the stock at the exercise time T.
By buying a European put option we receive the right (not the obligation) to sell
at time T one share of the stock at a price K.

3.3.11 Example and Exercise. The Value of European Put. Consider a
BS-model as in 3.7, note that

and denote by the value of the European put at time It follows by
3.7 and by 2.12 (b) that

holds for where is the function defined in 3.6. Thus,

and therefore,
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defines afunction such that the value of the European put at is given
by

where  is the value of the European call.
Observe that the function is the only solution to the problem

with the boundary that satisfies the requirement (80).
Prove that the hedging portfolio against the European put is

such that

holds almost everywhere on with respect to

The concept of an option makes its appearance both in the market practice and
in corresponding theoretical models even in a more general form.

For example, an exotic option with an expiration time T > 0 is a claim
where is a Borel function with

the following properties:

Putting

for again, we define the value and the value at time of the ex-
otic option Stress again that is the minimal price of

and V is the process such that any minimal admissible valuation
of is a continuous modification of V on the interval [0,T].

The final value of an exotic option may depend on the history of the price of the
stock as one may wish or may invent: We may choose

and derive a variety of exotic options that are attractive both to the investors and
mathematicians. The examples are such as follows:

the former being called the Asian option, the latter the exotic binary option.
We might even be able in some cases to establish the values of exotic options.

Both in 3.12 and 3.13 we shall assume that a BS-model with one stock is operated
and consider the interest rate and the volatility to be some constants in
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3.3.12 Example. The Value of The random variable

is obviously a claim, hence the value of
is given as

since is a by 2.12 (b). Applying the property in a more
sophisticated manner we get

and consequently, having fixed  and we get by Fubini Theorem

and therefore Thus we have computed the
value of at time as

3.3.13 Example. The Value of Exotic Binary Option. Denote
and assume that It follows by 1.1 that for all

holds, if Since is a process, it follows by 2.4.11 that
almost surely and that

where
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is true. Hence, is an exotic option (we may assume that everywhere on
without loss of generality) and 2.4.11 also provides its distribution

as

Finally,

is the value of at time
Consider the exotic binary option and denote

The minimal price of i.e., the value of the corresponding exotic is
computed as follows:

Up to now we have observed only options with a fixed exercise time T > 0. Let us
now look at T as the final exercise time, an arbitrary earlier exercise time
being also made possible by the option contract. For a it means
that the contractor chooses an to receive at time S not having
been forced by the contract to specify S. It seems that a fair definition of a price

for such a contract should be

is the value of at time Since, for all by
(G5) and the random variable is we also may write

Agree to call the American value of a
If we consider a European call and a European put

valued at time by where we denote either or
respectively, we refer to them as to an American call option

and an American put option, respectively, having on mind the option contract
that makes possible an arbitrary earlier exercise time There are at least
two items that should be clarified:

(1) A choice of an early exercise time should not be expected
deterministic, the contractor picks up S or waits on a later opportunity considering
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the price history and therefore, in fact, his choice is a Markov time
with values in the interval [0,T]. It seems that the American value of a
should be defined rather as

where M(T) denotes the set of all times Recall that
is an variable according to 1.3.9 (c) and 1.3.1 (e).

(2) The definition of the American value of a is based on a heuristics
that seems to be fair only to the seller of the option. The contractor who is offered
to buy the option for the American price value should deserve to know in which
sense the offered price is minimal. Denote

and

The alternative definition of a fair price of the American option by respects
the interests of the investor. Indeed, there is no way how to accumulate by a trading
the final profit that would be equivalent to that coming from entering the option
contract, than to trade along a wealth process

If an American call and not an American put is
considered everything goes smoothly:

3.3.14 The Value of American Option. Assume that the interest rate is a
non negative process. Let be a convex function such that
and hold. Then

and defined by (85) is the minimum of the right-hand side in (85). If Y is
a minimal admissible valuation of then

Thus, for example, if for a K > 0, then any of the American
values we have suggested, is finite and equals to the European value

of the option.
Nothing like that may be true for American puts and a very different behavior

may be expected from the exotic options.

3.3.15 Example and Exercise. Denote and
for a K > 0, assume that only one stock is traded and further simplify the setting
by putting Then

is the value of the European call and put, respectively. Prove that is
increasing on and that there is a T > 0 for which holds.
Specify the set of all T ’s with the latter property.
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and treated in 3.12 assuming there that
is positive constant. Prove that is a decreasing function on and

Proof of 3.14. Obviously, holds for arbitrary
If then

by 1.3.10, since is a by 3.5. The first three equalities
in (86) are proved.

If Y is a process in then Y is an admissible valuation of the claim
such that holds almost surely. According to 2.7 we

have and if then

is true as is the minimal price of the claim by 2.10 (a). Hence,

On the other hand, if Y is a minimal admissible valuation of the claim
then 3.5 yields that

holds almost surely for any if denotes the value of the option
at time It follows that and because

we get that and is defined as the minimum of the
right-hand side set in (85).

3.3.17   Exercise. Let and consider a such as in 3.14. Prove that

is exactly the set of all minimal admissible valuations of

We may summarize the message on American calls and puts provided by 3.14,
3.15 and 3.17 as follows. Let and be such as in 3.15:

If we do not want to buy the American call we must trade along a
wealth process However, to trade with the minimal possible initial
endowment available in the set we are sent back to a minimal admissible valuation
of the European call as the only trading strategy for such a purpose. The
values of the American and European call are the same in all respects,
indeed.

This is not true for the American and European put However, the
equality remains to be valid if one stock is traded and
and are constants. See [102], Theorem 3.39, p.3.5.

3.3.16  Exercise. Denote by the value of the exotic option given as
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3.4 Helps to Some Exercises

1.4 Fix Since the process is progressive and bounded, we apply the Fun-
damental Theorem of Calculus to verify that outside a set N

holds. Thus, everywhere Hence, the
limit in 1.4 is true, since we easily prove that

holds, observing that the processes are bounded.

1.10 The equation (35) reads as where the process V is defined
by (37). According to 2.2.19, the equality (37) defines V as an Itô process whose
quadratic variation is computed as It follows by 2.2.13
that (35) has a unique solution Y given by (36).

1.11    Note that (4) defines the price process and at the same time says
that is a self-financing strategy.

Alternatively, as in 1.9, you may to construct the wealth process generated by
and by The wealth equation for Y reads then as

Hence, according to 1.1.

1.12 Denote by Y* the wealth process generated by and apply 2.1.5
to verify that Thus outside a P-null set holds on

On the other hand, we have on              and so on

1.13 Express  as in (10), apply 1.2.3 (c) to prove that

1.14 In (b) and (c) apply 1.2.3 (c) and (b), respectively, to compute lim
In (d) note that E for all by 1.2.6., for example.

2.10 (a) is proved by 2.9.

2.10 (b) For a the reasoning goes as follows:

Y is a m.a.v. of

is a

Y is an admissible valuation with

Y is a m.a.v. of
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where a m.a.v. is a shorthand for a minimal admissible valuation.

2.10 (c) is proved by 2.7.

2.10 (d) If Y is a m.a.v. of then by (a). If Y is
an admissible valuation of with then is a

on [0, T] by 2.8 (b) and it follows by (b) that Y is a m.a.v. of

2.10 (e) is proved by 2.8 (b).

2.11 (a) If processes and are defined by (43), it follows by 2.2 that

where is a P-stochastic integral with respect to the P-semimartingale
because on [0, 1] and F = 0 on According to (G3) and

2.4.2 (c), is also a integral, hence the equality (60) holds
as stated. The rest of (a) follows by (60) and (58).

2.11 (b) If Y is the wealth process generated by then it is defined
by (60) and we have

Hence the admissibility of implies that On the other
hand, if then and is a claim. It follows by
2.8 (a) that is an admissible valuation of Y(1) iff (52) holds. But the
inequality stated by (a) implies (52), as we have already proved that

2.14 is an admissible valuation of and it is a on
[0, T] by 2.12 (b) and by 1.3.11. Consequently, with isa minimal
admissible valuation of by 2.10 (b).

2.16 Having fixed a consumption and a consider the bijective map
defined in 2.5 Then, a wealth process Y in

is a nonnegative process iff holds almost surely on
Hence, an admissible strategy for exists iff there is a process L such as in
(62).

In (a) observe which is, according to (G2), a process
with properties (62).

In (b) consider a process L that has the properties (62). Since L is a super-
martingale, we get to be true for all

2.18 Note that according to 2.15
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Thus, it remains to prove that for any there exists a such that

For any we have by 2.15. If put
and if choose to construct such a consumption process.

3.2 Note that

3.8 is a minimal admissible valuation of iff

3.10 Fix According to 3.9 we have

where is the value of the at time Hence,
for such that Since it
follows by the continuity of and that for all and finally
that

3.11 Apply (81), (75) and 1.13 to prove that for arbitrary U < T and arbitrary

holds, denoting again This proves (82).

3.17 If Y is a minimal admissible valuation of then it is a process
in by 3.14. Let Y be a process in Then Y is an admissible
valuation of Y(T) and by 2.7. Further,

because the left hand term is exactly the minimal price of Y(T). Since
holds almost surely, we conclude that On the other

hand and so the process Y is proved to be a minimal
admissible valuation of
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III.4 BIBLIOGRAPHICAL NOTES

Not too many results in Part III of the present volume are new and therefore the
main purpose of the following notes is to refer to the sources that inspired our
presentation and proofs. Also, at times, some literature on recent developments is
suggested for additional reading.

Generally, we expect our reader to be a mathematician familiar with the classical
standards of measure and probability theory (discrete-time martingales included)
as excellently summarized, for example, in Chapter II of [135] by L.C.G. ROGERS
AND D. WILLIAMS or in [6] by H. BAUER. Czech speaking readers may substitute
the above references by [152]. We also refer to the monograph [93] written by O.
KALLENBERG for a comprehensive treatise on almost all important achievements
of modern probability.

Martingales. The material covered in this chapter is a tiny section of that made
available by such rich sources as those provided by K. ITÔ AND M. MCKEAN in
[86], D. REVUZ AND M. YOR in [131] and by I. KARATZAS AND D.E. SHREVE in
[95], for example. The reader may find useful [32] by Y.S. CHOW AND H. TEICHER
as a source of information on discrete time martingales. We have made also use of
[37] by C. DELLACHERIE AND P.A. MEYER.
Our proof of Density Theorem 1.5.7 goes in essence along the lines suggested in
[95] (proof of 2.8, p.137). The proof of Doob-Meyer decomposition 1.6.1 heavily
depends on the idea employed in [131] to prove (1.3) Theorem, p. 115.
We refer to [135] and [136] by L.C.G ROGERS AND D. WILLIAMS for a more com-
plex information about continuous local martingales and for recent developments
in the theory of local martingales that need not be continuous.

Stochastic integration. We define the stochastic integral by (4) in III.2 as a
stochastic version of Pettis integral and prove its existence and properties simulta-
neously. The idea is, of course, not an entirely new one, it is very clearly suggested
by Kunita-Watanabe Theorem, see 15.12, p.282 in [93], for example. We have made
use of many sources, name at the very least the books [86], [95], [131], [136] and
[156].
Our proof of Itô formula relies on Weierstrass Theorem as in [93] or [136]. We
boast to prove it indeed for a dimension having found a fitting and proved
Weierstrass theorem in [142] by L. SCHWARTZ. We prove the celebrated P. Lévy’s
martingale characterization of Brownian motion similarly as in [131] or [95] by an
application of Itô formula. See [93] for another and really elegant proof. The impor-
tant example 2.3.7 of an integrable local martingale that is not a true martingale
is basically Exercise 2. in [93], p. 293.
The Girsanov Theory and Brownian representations are presented to respect needs
of the chapter on diffusion financial mathematics. The treatment of this material
is inspired mostly by [131]. Thus, the proof of Girsanov theorem itself is based on
the characterization 2.3.8 that is, in fact, (3.14) Exercise in [131], p. 143 and the
global Girsanov theorem 2.4.9 is a one dimensional refinement of (1.13) Proposition
in [131], p. 317. The proof of 2.4.7, that in our text substitutes Novikov theorem, is
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borrowed from [136], see (37.8) Theorem on p.77. For our construction of Brownian
representations by means of extremal martingale measures through the decomposi-
tion result 2.5.2 we are in debt to the Remark made on p. 202 in [131]. The results
2.5.7 and 2.5.11 are due to M. YOR, see V.4 Section in [131] whose origins come
from [175]. H.v. WEIZSÄCKER AND G. WINKLER in [168] provide further exiting
developments in the field that connects Choquet theory and stochastic analysis.
See also [154] and [155].
There are many other topics in stochastic analysis that deserve a close attention
from any financial probabilist: Time changed martingales, local times, strong and
weak theory of stochastic differential equations, stochastic control are perhaps the
most important items. We refer briefly again to [95], [131], [93], [136] and newly to
[103] for a complete treatment of the above topics.

Diffusion Financial mathematics. Among the sources that influenced this chap-
ter are undoubtedly [75] by J. HARRISON AND S.R. PLISKA as a deep and ingenu-
ously clear initiation to continuous stochastic finance (we borrowed 3.1.14 Example
there) and [123] by M. MUSSIELA AND M. RUTKOWSKI, a treasure reference text
in the field. We also owe a debt to T. ROLSKI, H. SCHMIDLI AND  J. TEUGELS
[137] and R. KORN AND E. KORN [102] for precise mathematical definitions of the
financial concepts that go hand in hand with thorough and elegant clarifications of
their role in Economics. Our treatment of American options is based in part on
the enjoyable monograph [151] of J.M. STEELE. We borrowed there 3.3.4 Lemma,
some sophisticated observations on the meaning of various market regulations and
share 3.2.11 Example of a suicide trading strategy.
Our treatment of Black-Scholes and Girsanov calculus is a modest development of
the original results of I. KARATZAS AND D.E. SHREVE summarized in [95] and
[96]. Namely, the cornerstone result on the minimal price of a claim 3.2.10 is a
compactification of the information that is available in 5.8.A Section in [95].
As we started to write this part of the volume with a strong determination not to
include the results that we could not honestly prove, however attractive they might
be, we had to skip many important topics. Among them are:
The problem of the optimal control of portfolio and consumption processes that we
contacted in 3.2.18 is perhaps the most important one. We refer our reader to [94]
and [102] to obtain an up to date information on the topic. More general models
for stock prices, that go beyond Black-Scholes Gaussian limitations, offer further
possibilities to exploit the Girsanov Calculus and the properties of martingale mea-
sures, we introduced in 2.5 Section. For a more deep treatment of the concept of
arbitrage see [123] and [151], for example. To get a more realistic trading model it
is necessary to consider the size of transaction costs. See [149] and [170] for recent
developments in the field.
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AAA, 4, 17
absolutely matched, 64
aggregate, 69
algorithms for stochastic programs, 206–227

decomposition, 214–215
interior-point, 214
L-shaped, 215–217, 219–221, 225
Lagrangian-based, 217
progressive hedging, 217–218, 223
stochastic decomposition, 224
stochastic quasigradient, 224

ALM model, 141–144
AMEX, 71
annuity, 21, 23

due, 23
immediate, 23

APM, 96
approximation, 158–179, 224–225
APT, 96
arbitrage, 52–53
arbitrage opportunity, 52–53, 350
Arbitrage Pricing Model, see APM
Arbitrage Pricing Theory, see APT
arborescent form, 113
asset, 3, 64

base, 64
commodity, 8
financial, 1, 8
real, 1
riskfree, see riskless asset
riskless, 43, 82, 83, 88
underlying, 7

asset–specific component, see idiosyncratic risk
atom, 104
auction, 4
autoregressive model

vector, 160
available information, 159–164

low level, 163, 166–167
average strike call, 10

backward recursion, 110, 120, 121
bankruptcy, 7

time, 330
barter, 1
Beta books, 94
bias, 69
bill of exchange, 12
binomial lattice, see Black–Derman–Toy model

fitted, 190, 195
binomial model, 56–58
bipolar factor, 100

Black–Derman–Toy model, 160–162, 171, 175,
187, 188, 193

calibration, 188–190
Black-Scholes calculus, 319–333, 368
Black-Scholes formula, 55–56, 61, 199, 353

for European call, 56
for European put, 56
sensitivity to volatility, 199–200

Black–Scholes model, 41, 322
blue chip, 4, 70
bond, 3

amortized, 52
callable, 5, 51
convertible, 11
convertible, with call option, 11
convertible, with put option, 11
coupon, 5, 48–52
dirty price of, see value of bond
discount, 50, see zero coupon bond
fair price of, see value of bond
floating–rate, 6, 11
full price of, see value of bond
gross price of, see value of bond
I bonds, 7
inflation–indexed saving bonds, see I bonds
net value of, 49
premium, 50
pure price of, see net value of bond
pure value of, see net value of bond
putable, 51
to call, 5
under uncertainty, 51
value of, 48
zero coupon, 6

bond portfolio management problem, 180–198
BONDS model, 116–117, 139–141, 173–174
bootstrapping, 51
bottom straddle, 63
Brownian motion, 231, 238–244

geometrical, 291
Brownian representation, 277, 314, 367
BS–model, see Black–Scholes model
bullish spread, 63
butterfly spread, 62, 63
buyer, 8, 9

calendar convention, 13, 14–15
call back, 11
call date, 5
call on a call or put, 10
call premium, 5
call-on-a-call, 10
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CALL, see call option
cap, 11
capacity expansion, 150–153
capital, 1
Capital Asset Pricing Model, see CAPM
capital market, 12
capital market line, see CML
caplet, 12
CAPM, 92, 93, 96
cash flow, 1, 2, 21, 31

certainty equivalent, 78
continuous, 23
measures of, 21–38
net, 2

Cauchy problem, 356
CBOE, 9
CBT, 8
CD, see Certificate of Deposit
CEP, see capacity expansion
certainty equivalent, 77–78

multiperiod, 78
Certificate of Deposit, 4, 12
checking account, 4
Chicago Board of Trade, see CBT
Chicago Board Options Exchange, see CBOE
claim, 339

admissible valuation, 339, 341
minimal admissible valuation, 339, 341
minimal price, 339
valuation, 339, 340

class I projects, 31
class II projects, 31
clearing house, 8
cluster analysis, 172
CML, 95
Cobb-Douglas production function, 75
communality, 98
completeness, 73
compounding, 13

continuous, 13, 19–20
period of, 14

compromising model, see tracking model
conditional expectation, 241
consistent

family of distribution functions, 236
constraints

chance, 109
induced, 109
probabilistic, 109

consumption process, 324
contamination method, 167–169, 185-186, 193–

195
contingent claim, see financial derivative se-

curity
continuity factor, 71
continuity theorem, 272, 283

continuous time market model, 324
conversion premium, 11
convex program, 107
convexity, 21, 30

modified, 30
convexity properties, 111–112
correlation matrix of standardized returns, 98
cost of capital, 16, 21, 22, 31
Counterparty, 3
coupon payment, 48
coupon, 5, 48

rate, 5, 48
covariance, 237
CPI, 7, 68, 71
criterion for optimization

chance-constrained, 129
expected utility, 130
expected value, 131
mean-variance, 127
probability, 109, 129
quantile, 130
safety-first, 129

crossover rate, 33
cubic spline, 37
currency unit, 21
curse of dimensionality, 121

166
daily price limit, 8
Daniell-Kolmogorov Theorem, 236, 238
data process, 181
DAX 30, 71
debt, 3
decision rule, 110, 119–121
dedicated bond portfolio, 65–67

dynamic model, 66–67
static model, 65–66
stochastic model, 105–106

deflation, 71
delivery date, 8
delivery price, 8
delta, 59
delta hedging, 59
demand deposit, 4
density theorem, 231, 257–263, 261, 367
derivative, see financial derivative security
derivative process, 300
descendant, 114
deterministic process, 317
diffusion, 41
diffusion process, 290
discount, 21
discount factor, 21
discount function, 21, 319
discount process, 21, 319
discounted base, 4
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discounted function, 19
of the Stoodley’s force of interest, 20

discounted mean term of the cash flow, see
duration

dividend, 7
divisor, 71
DJIA, 70
Doléans equation, 292
dominated convergence, 283, 285
Doob’s inequalities, 243
Doob-Meyer decomposition, 231, 263–269, 264,

287, 367
Dow Jones, 68
Dow Jones Industrial Average, see DJIA
down-and-in, 10
down-and-out, 10
drift, see trend
duration, 29–30, 64

dollar, 30, 134
modified, 30

duration matching, 198
dynamic hedge, 59
Dynkin arguments, 235

problem, 125, 135
E-process, see stochastic process with states

in E
economic power dispatch problem, 153–154
Edmundson-Madansky bound, 177–178, 204–

205
efficient market, 79
elasticity, 60
elasticity of the net present value with respect

to the discount factor, see duration
empirical quantile, 46
equation of value, 21, 25
equity, see common stock
equivalent, 73
errors due to estimation, 195–197
EVPI, 208
ex-coupon, 48

date, 48
exercise price, 11, 353, see strike price
exercise time, 353
exercised, 9, 53
expected excess return, 88, 90

alternative form of, 92
expected return, 80

on the portfolio, 80
expected utility, 130–131
expected value, 39
Expected Value of Perfect Information, see

EVPI
expected-return-standard-deviation plane, 86
expected-return-variance plane, 86
expiration time, see exercise time

expiry date, see maturity date

process, 237
set, 247

face value, 4, 5, 48
total, 4

factor
common, 97
loading, 97
specific, see unique factor
unique, 97

factor analysis, 97–99
factor beta, 93
factor model, 97–99
feasibility cut, 109, 215, 220
figure

black, 2
bracket, 2
red, 2

filtration, 237
canonical, 237, 246
complete, 231, 252–257, 255, 263, 269, 300
P-completion, 256
right continuous, 245

financial asset, 3
financial institutions, 1, 2, 12
financial intermediaries, 2, 12
financial market, 1, 12
financial security, see security
financial system, 1, 12
financing the business, 1
firm-specific component, see idiosyncratic risk
fixed rate, 7
floating rate

long-term, 7
short-term, 7

floor, 12
floorlet, 12
flower-girl problem, 117–119, 121–122
force of interest, 19, 21, 39

random, 67
forward, 3, 8
forward contract, see forward
forward price, 63
forward rate implied in the term structure

for one period, 18
beginning at time 18

forward-rate curve, 35
free lunch, 52
frequency, 48
FTSE, 68
FTSI, 71
funds, 15
furnace charge optimization

electric-arc three-stage, 156–157
induced two-stage, 155–156
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future value, 13, 21, 24–26
futures, 3, 8

price, 8
futures contract, see futures

gamma, 60
GAMS, 212–213, 226–227
Gaussian process, 237

centered, 237
continuous, 237

geometrical Brownian motion, 42
Girsanov calculus, 319, 333–350, 368
Girsanov theorem, 277, 303, 367
goal programming, 126, 131, 133–134, 176
Greeks, 59–61

hedge ratio, 59
hedger, 53
hedging, 53
here-and-now approach, 133, 207
HIV, 35
holder, 9
homogeneous expectations, 79
horizon, 116–117

immunization, 64
immunize, 64
in-barrier, 10
incomplete input information, 199

about liabilities, 204–205
increment, 42
independent projects, 31
index number, 68–70

base-weighted, 69
construction of, 68
current-weighted, 69

indifference
curve, 73
set, 73
surface, 73

individual scenario problem, 112, 133
inflation, 71–72
inflation rate, 7
inflow, 2, 21
initial endowment, 323, 324
installment savings, 25
integral of a process with respect to a process,

259
integral representation property, 277, 315
interest, 1, 5, see coupon rate

accrued, 49
compound, 13
mixed simple and compound, 13-14
simple, 13

interest rate, 13–20, 13

annual, see p.a.
constant, 20
decomposition of, 16–18
determinants of, 13, 15–16
in continuous math, see force of interest
nominal, 14, 16
quoted, see nominal interest rate
risk free, 16
spot, 18
term structure of, 13, 18, 35, 193

interest rate process, 319
internal value, see HIV
International Swaps and Derivatives Associa-

tion, see ISDA
interstage independence, 120
intrinsic value, 53
invariance property, 73
investment, 1

financial, 1
real, 1

investment projects, 21
comparison of, 31–35

investor, 1
IOU, 12
IRP, see integral representation property
irregular project, see nonnormal project
IRR, 21, 26–29
ISDA, 10
Itô formula, 42, 277, 286–295, 288, 367

Jensen inequality, 167, 204
Jensen measure, 94

knapsack problem
deterministic, 206
stochastic, 206–208

Kolmogorov-Chenstov Theorem, 236
Kunita-Watanabe inequality, 273, 367
kurtosis, 46

Langevin equation, 291
law of diminishing marginal utility, 74
law of iterated logarithm, 240
leasing, 28
Lenglart inequality, 272
lessee, 28
lessor, 28
Lévy theorem, 277, 295–299, 296, 367

one dimensional, 297
liability, 3, 64

limited, 7
LIBOR, 6
linear program, 107

stable, 187
liquidity, 12, 36
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load duration curve, 150
loan, 23
localization of integrands and integrators, 280–

282, 286
location parameter, 44
location-scale distribution, 44
logarithmic prices, 39
London Interbank Offered Rate, see LIBOR
long-term, 5, 6
loss of load probability, 152
loss rate, 52
lot, 79
low information level, 163, 166–167, 204–206

margin, 8, see spread
initial, 8
maintenance, 8
variation, 8

marginal rate of substitution, 74
market equilibrium, 80
market regulation, 319, 350–363
marking to market, 8
Markov decision problem, 120
Markov property, 121

data structure, 172–173
Markov time, 231, 244–251

time, 244
Markowitz model, 81–91, 127–128, 200

sensitivity to expected return, 200–203
martingale, 231, 233, 238–244, 377

complex local 296
exponential, 277, 295–299, 296

241
231, 257–263
244

local, 231, 252–257, 254, 277
local 252
local on [0,T], 297

matching, 64–65
absolute, 64
stochastic model of, 67

Mathematica, 15, 60
mathematical program, 106–107
matrix

scenario tree nodal partition, 174
maturity, 5, see exercise time

date, 4, 5, 9, 53
mean, 237
mean squared error, 67
mean-reversion property, 162
measure

extremal, 311
martingale, 316
T-Girsanov, 334

melt control problem, 154–157
metamodeling, 227

minimum-variance frontier, 86
MIRR, 28
model management, 226–227
moment

prescribed values, 175
problem, 175

moment bounds, 167
minimin and minimax, 167

money, 1
at the money, 53
in the money, 53
out of money, 53

money market, 12
Monte Carlo simulation, 47, 58
Moody’s, 3, 17
mortgage, 3
MPS standard format, 210–211
multifactor model, 96, 162–163
multimodeling, 227
multi-objective program, 123–127, 131–136
multiple cut, 216
mutually exclusive projects, 31

NASDAQ, 71
network structure, 146, 217
New York Stock Exchange, see NYSE
Nikkei, 71
no-arbitrage principle, 52, 175
nominal value, see face value
nonanticipativity, 104, 106, 108, 113, 137, 148,

217
implementability constraint, 149

nonnormal project, 28
normal distribution model, 57
normal project, 28
note, 6
NYSE, 70
NYSE Composite Index, 71

objective function, 107
probability, 109
separability property of, 120, 121
two or more, see multi-objective program

oblique rotation, 100
one-directional bias, 165–166
open interest, 8
opportunity cost rate, see cost of capital
optimality cut, 215
optimization software, 209–212
option, 3, 8, 9–10, 52–63

American, 9, 361, 368
American put, 361
American, value of, 362
Asian, 10, 359
as-you-like-it, see chooser option
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barrier, 10
binary, 10
call, 9
chooser, 10
compound, 10
digital, see binary option
European, 9, 353
European put, 357
European put, value of, 358
European, value of, 354
exotic, 9, 358
exotic binary, 359
exotic binary, value of, 360
exotic, value of, 358

353
American value of, 361
hedging strategy against, 353
value of, 353, 357

lookback, 10
on assets paying dividend, 58
path-dependent, see exotic option
premium, 9
price, see option premium
pricing, 319, 350–363
pricing, natural boundaries, 54
put, 9
vanilla, 9

optional sampling, 248
Ornstein-Uhlenbeck process, 162, 291
orthogonal rotation, 98
out barrier, 10
outflow, 2, 21
output analysis, 159, 164—167, 186–187, 195–

197, 200

p.a., 14
p.d., 14
p.m., 14
p.q., 14
p.s., 14
par value, see face value
parametric family, 160

asymptotic results, 166–167
parametric program, 107, 112, 124–126
Party, 3
payable mthly, 14
payback method, 21, 31

discounted, 32
payback period, 31

discounted, 32
payoff rate, 349
perfect hedge, 53
perpetuity, 23
polynomial function, 36
pool, 6
portfolio, 80–91, 191, 323

barbell maturity structure, 141
efficient, 81, 87, 127—129
global minimum-variance, 86
inefficient, 87
laddered, 141
market, 78, 80, 91–92
minimum-variance, 81, 89
minimum-variance, alternative form of, 85
minimum-variance, geometry of, 91
minimum-variance, orthogonal, 87
no arbitrage, 351
optimal, 81
replicating, 56
revision, 137–139
Sharpe’s measure of, see Sharpe’s ratio
tangency, 89–90

portfolio immunization, 134
portfolio process, 324

associated with T-strategy, 324
position

long, 3
short, 3

postoptimality analysis, 158, 167–169, 185–
186, 192–195

Prague Interbank Offered Rate, see PRIBOR
preferred, 73

weakly, 73
premium

default risk, 16
inflation, 16
liquidity, 16, 18, 36
maturity risk, 16

present value, 13, 21–23
net, 21
profile, 22

Present Value Interest Factor of an Annuity,
see PVIFA

PRIBOR, 6
price index, 68

Consumer Price Index, see CPI
Edgeworth–Marshall, 70
Fisher, 70
Laspèyres, 69
Lowe, 70
Paasche, 69
Retail Price Index, see RPI

price vector, 75
principal, see face value, see present value
principal components, 100

modified method of, 98
principle of optimality, 121
private investor problem, 103–105, 114–115
probability

arc, 114
path, 114
scenario, 114



INDEX 383

transition, 114, 120
transition, state and control dependent, 120

probability distribution, 234
binomial, 57
finite dimensional, 234, 236
log-normal, 42, 321

probability space
complete, 255, 263, 269

production planning, 148–150
profit, 323

process associated with T-strategy, 324
profitability index, 31
projection theorem, 309
put-call parity, 54
PUT, see put option
PVIFA, 23
PX, 68
PX 50, 71

quadratic optimization problem, 91
quantity index, 68
quartimin, 100

Radon-Nikodym derivative, 259
random variable, 39
random walk hypothesis, 40–41, 322

strong form, 40
weak form, 40

rate of interest, see interest rate
effective, 14
real, 17
riskless, 53

rate of return, 15, 39, 320
expected, 39
internal, see IRR
modified, see MIRR

rating, 3, 17
real percentage increase, 18
real return, 17
rebalancing the portfolio, 145, 182
recourse, 111

cost, 132
fixed, 111, 132, 216
matrix, 132
network, 111, 217
random, 112, 132, 183
relatively complete, 111, 132, 183, 216
restricted, 136
simple, 132, 144, 209

recovery rate, 52
redemption value, see face value
reduced correlation matrix, 99
reflection principle, 251
reflexivity, 73
regression model, 96–97

regular project, see normal project
retained earnings, 7
return, 39–43, 43

ex ante, see expected return
ex post, 40
expected, 40, 43

return process, 320
rho, 61
Riemann integration, 283, 286
risk

alternative definitions of, 128–131
credit, see default risk
default, 16
idiosyncratic, 97
interest rate, 16
market, 94
maturity, 16
quantitative measures of, 43
reinvestment rate, 16
specific, see unique risk
total, 94
unique, 94
value at, see VaR

risk – expected return plane, 82
risk averse, 76, 80
risk aversion, 76, 128

absolute, 77
constant absolute, 77
decreasing absolute, 77
increasing absolute, 77
Pratt-Arrow absolute risk aversion function,

77
relative, 77

risk loving, 77
risk neutral probability, 57
risk neutral, 77
risk of the portfolio, 80
risk seeking, see risk loving
risk-neutral valuation, 55
robust optimization, 134–135
ROR, see rate of return
RPI, 68, 71

244
S & P 500, 71
safety of funds, 12
salvage value, 28
sample information, 163
sampling methods, 172–173

importance, 174–175
nonrandom, 190
random, 224

saving account, 4
scale parameter, 44
scenario, 104, 108, 158
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approximation via, 158–179
conditional generation, 174–175
designed by expert, 163, 167–169
generation, 159–164, 180, 187
historical, 46, 163
hypothetical, 46
independent, 148
out-of-sample, 185–186, 194–196
tree, 113–114, 169–179

scenario analysis, 46
SDE, see stochastic differential equation
security, 1, 3–12

adjustable-rate, 7
financial derivative, 7
fixed-income, 4
floating-rate, 6
mortgage-backed, 6
pass-through, see mortgage-backed secu-

rity
variable-rate, 7

security market line, see SML
seller, 8, 9
semimartingale, 254

continuous, 285
287

Itô, 294
decomposition, 255

254
Gaussian Itô, 294
Itô, orthogonalization of, 295
positive, 321

sensitivity, see common factor
sensitivity to estimated parameters, 166, 199–

203
Separate Trading of Registered Interest and

Principal of Securities, see STRIPS
separation theorem, 85, 89
share, see stock

ordinary, see common stock
Sharpe’s ratio, 81, 128

modified, 95
upper bound, 87

Sharpe-Lintner model, 92–93
short sale, 80, 82, 127
skewness, 46
SML, 93–94

beta-version, 93
covariance version, 93

solution
efficient, 123
feasible, 107
ideal, 123

specific variance, see uniqueness
specificity, see uniqueness
spectral decomposition, 98
split variable representation, 113

spread, 7
stability properties, 186–187
stage, 108, 109, 116–117
staircase structure, 112
Standard & Poor’s, 3, 17, 68
Standard & Poor’s 500, see S & P 500
standard deviation, 43
standard error, 41
standard score, 97
standard-deviation–expected-return plane, 82
standardized contract, 8, 9
standardized return, 97
stochastic chain rule, 282, 285, 293, 295
stochastic differential, 255
stochastic differential equation, 42, 162, 290

solution to, 291
stochastic integral, 277–286, 277, 278, 285,

293, 367
quadratic variation, 279, 285
isometry, 280

280
limit definition, 284
linearity, 279
localization lemma, 279

stochastic per partes, 277, 286–295, 287
Lebesgue-Stieltjes, 286

stochastic process, 231
almost surely continuous, 232
almost surely decreasing, 232
bounded, 252
bounded continuous, 261
canonical, 237
canonical representation on 238
continuous, 232
continuous modification, 236
coordinate, see canonical process

231
decreasing, 232
equivalent, 231

sequence, 252
247
measurable, 247

261, 277
independent increments, 238
locally bounded, 285
orthogonal, 268
with states in E, 231

stochastic program, 106, 107
applications in finance, 137–148
dynamic with discrete time, 117, 119–122
general features in portfolio optimization,

144–148
integer, 119
multistage, 106, 108–119
multistage linear with recourse, 111–114
nested two-stage, 110
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scenario-based, 131
scenario-based linear, 112–114
scenario-based multiperiod two-stage, 182–

184
scenario-based two-stage linear, 132-133
solution techniques, 209–225
with probabilistic constraints, 109
with recourse, 111

stock, 3, 7, 319
common, 7
preferred, 7
price, 320
traded, 323

Stock Exchange, 3
stock exchange indices, 68
Stoodley’s formula, 20
stopping theorem, 231, 244–251, 249
strategy

admissible, 331, 338, 346
admissible up to time T, 331
consumption, 323
portfolio-consumption, 324
PC-strategy, see portfolio-consumption strat-

egy
self-financing, 323, 325
suicide, 332
T-strategy, see trading strategy
TC-strategy, see trading-consumption strat-

egy
trading, 323, 324
trading-consumption, 323, 324

stress testing, 46–47
strike price, 9, 53
STRIPS, 6
submartingale

241
growth, 352

supermartingale
calculus, 335

241
surplus, 67

expected, 67
swap, 3, 8, 10–11

combined, 11
cross-currency, 11
currency, 10, 11
interest rate, 10, 11

T-bills, see Treasury bill
terminal payoff, 53, 349
terminal value, see future value
theta, 60
time deposit, 4
top straddle, 63
tracking model, 131, 133–134
trajectory, 108

transition function, 119
transitivity, 73
Treasury bill, 4, 12
trend, 40, 41

uniformly positive definite, 294
uniqueness, 98
uniqueness theorem, 328
unit commitment problem, 153–154
unit of time, 14
up-and-in, 10
up-and-out, 10
upcrossing a level, 307
utility, 73

marginal, 73
utility function, 73, 130, 352

additively separable, 75
characteristics of, 74
convex, 352
exponential, 76
HARA, 77
logaritmic, 76
multiplicatively separable, 75
ordinal, 73
power, 76
quadratic, 76
separable, 75

utility theory, 73
cardinal, 73
ordinal, 73

valuation interest rate, see cost of capital
value at risk, see VaR
Value of the Stochastic solution, see VSS
VaR, 44, 130

absolute, 45, 130
at confidence level 44, 45
nonparametric, 45–46
parametric, 44–46
relative, 45

Varadhan Theorem, 238
variance, 43, 134
variance of the portfolio, 80
variation, 233

finite, 232
quadratic, 231
quadratic, of local martingale, 269
quadratic, of stochastic process, 233
of function, 232
of stochastic process, 232

varimax, 100
model, 162

Vega, 61, 199
volatility, 41, 43, 61–62, 320

historical, 61



386 STOCHASTIC MODELING IN ECONOMICS AND FINANCE

implied, 61, 199
matrix, 320
parametric estimation of, 190

VSS, 208

wait-and-see approach, 206
warrant, 11
weak convergence, 165

consistency, 165
wealth, 323

equation, 327
process, 327
process associated with T-strategy, 324
process, positive, 329

Weierstrass theorem, 288, 367
“what if” analysis, see postoptimality analysis
Wiener process, 41, 238

240
process, 241

quadratic variation, 239
stability, 239
stability w.r.t. a filtration change, 242
trajectories, 239, 240

writer, 9

yield
actually observed, 35
capital, 40
coupon, 40
current, 49
declared, 35
dividend, 40, 58
to maturity, 49
spread, 35

yield curve, 21, 35-38, 188–189, 196
constant, see flat yield curve
downward-sloping, 36
estimating, 188–191
flat, 36
humped, 36, 37
inverted, see downward-slopingyieldcurve
normal, see upward-sloping yield curve
of coupon bonds, 51
U-shaped, 36
upward-sloping, 36

YTM, see yield to maturity

zero, see zero coupon bond


