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Preface

This book grew out from the Lecture Notes of the course in General Relativity
which I gave for more than 15 years at the University of Torino. That course has a
long tradition since it was attached to the Chair of Relativity created at the begin-
ning of the 1960s for prof. Tullio Regge. In the years 1990–1996, while prof. Regge
was Member of the European Parliament the course was given by my long time
excellent friend and collaborator prof. Riccardo D’Auria. In 1996 I had the honor
to be appointed on Regge’s chair1 and I left SISSA of Trieste to take this momen-
tous and challenging legacy. Feeling the burden of the task laid on my shoulders I
humbly tried to do my best and create a new course which might keep alive the tra-
dition established by my so much distinguished predecessors. In my efforts to cope
with the expected standards, I obviously introduced my own choices, view-points
and opinions that are widely reflected in the present book. The length of the orig-
inal course was of about 120 hours (without exercises). In the new 3 + 2 system
introduced by the Bologna agreements it was split in two courses but, apart from
minor readjustments, I continued to consider them just as part one and part two of
a unique entity. This was not a random choice but it sprang from the views that in-
spired my teaching and the present book. I always held the opinion that University
courses should be long, complex and articulated in many aspects. They should not
aim at a quick transmission of calculating abilities and of ready to use information,
rather they should be as much formative as informative. They should offer a gen-
eral overview of a subject as seen by the professor, in this way giving the students
the opportunity of developing their own opinions through the critical absorption of
those of the teacher.

One aspect that I always considered essential is the historical one, concerning
on one side the facts, the life and the personalities of the scientists who shaped our
present understanding, on the other hand concerning the usually intricate develop-
ment of fundamental ideas.

The second aspect to which I paid a lot of attention is the use of an updated and
as much as possible rigorous mathematical formalism. Moreover I always tried to

1At that time Regge had shifted from the University to the Politecnico of Torino.
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convey the view that Mathematics should not be regarded as a technical tool for
the solution of Physical Problems or simply as a language for the formulation of
Physical Laws, rather as an essential integral part of the whole game.

The third aspect taken not only into account but also into prominence, is the
emphasis on important physical applications of the theory: not just exercises, from
which I completely refrained, but the full-fledged ab initio development of relevant
applications in Astrophysics, Cosmology or Particle Theory. The aim was that of
showing, from A to Z, as one goes from the first principles to the actual prediction
of experimentally verifiable numbers. For the reader’s or student’s convenience I
included the listing of some computer codes, written in MATHEMATICA, that solve
some of the posed problems or parts thereof. The aim was, once again formative.
In the course of their theoretical studies the students should develop the ability to
implement formal calculations on a machine, freeing themselves from the slavery to
accidental errors and focusing instead all their mental energies on conceptual points.
Furthermore implementation of formulae in a computer code is the real test of their
comprehension by the learners, more efficient in its task than any ad-hoc prepared
exercise.

As for the actual choice of the included and developed material, I was inspired
by the following view on the role of the course I used to gave, which I extended as a
mission to the present book. General Relativity, Quantum Mechanics, Gauge Theo-
ries and Statistical Mechanics are the four pillars of the Physical Thought developed
in the XXth century. That century laid also the foundations for new theories, whose
actual relations with the experimental truth and with observations will be clarified
only in the present millennium, but whose profound influence on the current thought
is so profound that no-one approaching theoretical studies can ignore them: I refer
to supersymmetry, supergravity, strings and branes. The role of the course in Gen-
eral Relativity which I assumed as given, was not only that of presenting Einstein
Theory, in its formulation, historical development and applications, but also that
of comparing the special structure of Gravity in relation with the structure of the
Gauge-Theories describing the other fundamental interactions. This was specially
aimed at the development of critical thinking in the student and as a tool of forma-
tive education, preparatory to the study of unified theories.

The present one is a Graduate Text Book but it is also meant to be a self-contained
account of Gravitational Theory attractive for the person with a basic scientific ed-
ucation and a curiosity for the topic who would like to learn it from scratch, being
his/her own instructor.

Just as the original course given in Torino after the implementation of the
Bologna agreements, this book is divided in two volumes:

1. Volume 1: Development of the Theory and Basic Physical Applications.
2. Volume 2: Black Holes, Cosmology and Introduction to Supergravity.

Volume 1, starting from a summary of Special Relativity and a sketchy historical
introduction of its birth, given in Chap. 1, develops the general current description
of the physical world in terms of gauge connections and sections of the bundles on
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which such connections are constructed. The special role of Gravity as the gauge
theory of the tangent bundle to the base manifold of all other bundles is empha-
sized. The mathematical foundations of the theory are contained in Chaps. 2 and 3.
Chapter 2 introduces the basic notions of differential geometry, the definition of
manifolds and fibre-bundles, differential forms, vector fields, homology and coho-
mology. Chapter 3 introduces the theory of connections and metrics. It includes an
extensive historical account of the development of mathematical and physical ideas
which eventually lead to both general relativity and modern gauge theories of the
non-gravitational interactions. The notion of geodesics is introduced and exempli-
fied with the detailed presentation of a pair of examples in two dimensions, one
with Lorentzian signature, the other with Euclidian signature. Chapter 4 is devoted
to the Schwarzschild metric. It is shown how geodesics of the Schwarzschild metric
retrieve the whole building of Newtonian Physics plus corrections that can be very
tiny in weak gravitational fields, like that of the Solar System, or gigantic in strong
fields, where they lead to qualitatively new physics. The classical tests of General
Relativity are hereby discussed, perihelion advance and the bending of light rays,
in particular. Chapter 5 introduces the Cartan approach to differential geometry, the
vielbein and the spin connection, discusses Bianchi identities and their relation with
gauge invariances and eventually introduces Einstein field equations. The dynamical
equations of gravity and their derivation from an action principle are developed in a
parallel way to their analogues for electrodynamics and non-Abelian gauge theories
whose structure and features are constantly compared to those of gravity. The lin-
earization of Einstein field equations and the spin of the graviton are then discussed.
After that the bottom-up approach to gravity is discussed, namely, following Feyn-
man’s ideas, it is shown how a special relativistic linear theory of the graviton field
could be uniquely inferred from the conservation of the stress-energy tensor and its
non-linear upgrading follows, once the stress-energy tensor of the gravitational field
itself is taken into account. The last section of Chap. 5 contains the derivation of
the Schwarzschild metric from Einstein equations. Chapter 6 addresses the issue of
stellar equilibrium in General Relativity, derives the Tolman Oppenheimer Volkhoff
equation and the corresponding mass limits. Next, considering the role of quantum
mechanics the Chandrasekhar mass limits for white dwarfs and neutron stars are de-
rived. Chapter 7 is devoted to the emission of gravitational waves and to the tests of
General Relativity based on the slowing down of the period of double star systems.

Volume 2, after a short introductory chapter, the following two chapters are de-
voted to Black Holes. In Chap. 2 we begin with a historical account of the notion
of black holes from Laplace to the present identification of stellar mass black holes
in the galaxy and elsewhere. Next the Kruskal extension of the Schwarzschild solu-
tion is considered in full detail preceded by the pedagogical toy example of Rindler
space-time. Basic concepts about Future, Past and Causality are introduced next.
Conformal Mappings, the Causal Structure of infinity and Penrose diagrams are
discussed and exemplified.

Chapter 3 deals with rotating black-holes and the Kerr-Newman metric. The usu-
ally skipped form of the spin connection and of the Riemann tensor of this metric
is calculated and presented in full detail, together with the electric and magnetic
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field strengths associated with it in the case of a charged hole. This is followed
by a careful discussion of the static limit, of locally non-rotating observers, of the
horizon and of the ergosphere. In a subsequent section the geodesics of the Kerr
metric are studied by using the Hamilton Jacobi method and the system is shown
to be Liouville integrable with the derivation of the fourth Hamiltonian (the Carter
constant) completing the needed shell of four, together with the energy, the angular
momentum and the mass. The last section contains a discussion of the analogy be-
tween the Laws of Thermodynamics and those of Black Hole dynamics including
the Bekenstein-Hawking entropy interpretation of the horizon area.

Chapters 4 and 5 are devoted to cosmology. Chapter 4 contains a historical out-
line of modern Cosmology starting from Kant’s proposal that nebulae might be dif-
ferent island-universes (galaxies in modern parlance) to the current space missions
that have measured the Cosmic Microwave Background anisotropies. The crucial
historical steps in building up the modern vision of a huge expanding Universe,
which is even accelerating at the present moment, are traced back in some detail.
From the Olbers paradox to the discovery of the stellar parallax by Bessel, to the
Great Debate of 1920 between Curtis and Shapley, how the human estimation of the
Universe’s size enlarged, is historically reported. The discovery of the Cepheides
law by Henrietta Leavitt, the first determination of the distance to nearby galax-
ies by Hubble and finally the first measuring of the universal cosmic recession are
the next episodes of this tale. The discovery of the CMB radiation, predicted by
Gamow, the hunt for its anisotropies and the recent advent of the Inflationary Uni-
verse paradigm are the subsequent landmarks, which are reported together with bi-
ographical touches upon the life and personalities of the principal actors in this
exciting adventure of the human thought.

Chapter 5, entitled Cosmology and General Relativity: Mathematical Descrip-
tion of the Universe, provides a full-fledged introduction to Relativistic Cosmology.
The chapter begins with a long mathematical interlude on the geometry of coset
manifolds. These notions are necessary for the mathematical formulation of the
Cosmological Principle, stating homogeneity and isotropy, but have a much wider
spectrum of applications. In particular they will be very important in the subsequent
chapters about Supergravity. Having prepared the stage with this mathematical pre-
liminaries, the next sections deal with homogeneous but not isotropic cosmologies.
Bianchi classification of three dimensional Lie groups is recalled, Bianchi metrics
are defined and, within Bianchi type I, the Kasner metrics are discussed with some
glimpses about the cosmic billiards, realized in Supergravity. Next, as a pedagogi-
cal example of a homogeneous but not isotropic cosmology, an exact solution, with
and without matter, of Bianchi type II space-time is treated in full detail. After this,
we proceed to the Standard Cosmological Model, including both homogeneity and
isotropy. Freedman equations, all their implications and known solutions are dis-
cussed in detail and a special attention is given to the embedding of the three type
of standard cosmologies (open, flat and closed) into de Sitter space. The concept of
particle and event horizons is next discussed together with the derivation of exact
formulae for read-shift distances. The conceptual problems (horizon and flatness) of
the Standard Cosmological Model are next discussed as an introduction to the new
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inflationary paradigm. The basic inflationary model based on one scalar field and
the slow rolling regime are addressed in the following sections with fully detailed
calculations. Perturbations, the spectrum of fluctuations up to the evaluation of the
spectral index and the principles of comparison with the CMB data form the last
part of this very long chapter.

The last four chapters of the book provide a conceptual, mathematical and de-
scriptive introduction to Supergravity, namely to the Beyond GR World.

Chapter 6 starts with a historical outline that describes the birth of supersymme-
try both in String Theory and in Field Theory, touching also on the biographies and
personalities of the theorists who contributed to create this entire new field through
a complicated and, as usual, far from straight, path. The chapter proceeds than with
the conceptual foundations of Supergravity, in particular with the notion of Free
Differential Algebras and with the principle of rheonomy. Sullivan’s structural the-
orems are discussed and it is emphasized how the existence of p-forms, that close
the supermultiplets of fundamental fields appearing in higher dimensional super-
gravities, is at the end of the day a consequence of the superPoincaré Lie algebras
through their cohomologies. The structure of M-theory, the constructive principles
to build supergravity Lagrangians and the fundamental role of Bianchi identities is
emphasized. The last two sections of the chapter contain a thorough account of type
IIA and type IIB supergravities in D = 10, the structure of their FDAs, the rheo-
nomic parameterization of their curvatures and the full-fledged form of their field
equations.

Chapter 7 deals with the brane/bulk dualism. The first section contains a concep-
tual outline where the three sided view of branes as 1) classical solitonic solutions of
the bulk theory, 2) world volume gauge-theories described by suitable world-volume
actions endowed with κ-supersymmetry and 3) boundary states in the superconfor-
mal field theory description of superstring vacua is spelled out. Next a New First
Order Formalism, invented by the author of this book at the beginning of the XXIst
century and allowing for an elegant and compact construction of κ-supersymmetric
Born-Infeld type world-volume actions on arbitrary supergravity backgrounds is de-
scribed. It is subsequently applied to the case of the D3-brane, both as an illustration
and for the its intrinsic relevance in the gauge/gravity correspondence. The last sec-
tions of the chapter are devoted to the presentations of branes as classical solitonic
solutions of the bulk theory. General features of the solutions in terms of harmonic
functions are presented including also a short review of domain walls and some
sketchy description of the Randall-Sundrun mechanism.

Chapter 8 is a bestiary of Supergravity Special Geometries associated with its
scalar sector. The chapter clarifies the codifying role of the scalar geometry in con-
structing the bosonic part of a supergravity Lagrangian. The dominant role among
the scalar manifolds of homogeneous symmetric spaces is emphasized illustrating
the principles that allow the determination of such U/H cosets for any supergravity
theory. The mechanism of symplectic embedding that allows to extend the action of
U-isometries from the scalar to the vector field sector are explained in detail within
the general theory of electric/magnetic duality rotations. Next the chapter provides
a self-contained summary of the most important special geometries appearing in
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D = 4 and D = 5 supergravity, namely Special Kähler Geometry, Very Special Real
Geometry and Quaternionic Geometry.

Chapter 9 presents a limited anthology of supergravity solutions aimed at em-
phasizing a few relevant new concepts. Relying on the special geometries described
in Chap. 8 a first section contains an introduction to supergravity spherical Black
Holes, to the attraction mechanism and to the interpretation of the horizon area in
terms of a quartic symplectic invariant of the U duality group. The second and third
sections deal instead with flux compactifications of both M-theory and type IIA
supergravity. The main issue is that of the relation between supersymmetry preser-
vation and the geometry of manifolds of restricted holonomy. The problem of super-
gauge completion and the role of orthosymplectic superalgebras is also emphasized.

Appendices contain the development of gamma matrix algebra necessary for the
inclusion of spinors, details on superalgebras and the user guide to Mathematica
codes for the computer aided calculation of Einstein equations.

Pietro Giuseppe FrèMoscow, Russia

University of Torino
presently
Scientific Counselor of the Italian Embassy in Moscow
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Chapter 1
Introduction

The Two Most Powerful Warriors Are Patience and Time
Leo Tolstoy

The goal of this second volume is two-fold.
On one hand we want to complete the presentation of General Relativity by ana-

lyzing two of its main fields of application:

1. Black Holes,
2. Cosmology.

On the other hand we want to introduce the reader to Theory of Gravitation Beyond
General Relativity which is Supergravity. The latter invokes, in a way which we
hope to be able to explain, Superstrings and also other Branes.

Sticking to the method followed in Volume 1 we will trace the conceptual de-
velopment of fundamental ideas through history. At the same time we will re-
cast all equations in a mathematical formalism adapted to the embedding of Gen-
eral Relativity into its modern extensions like Supergravity. This is done in or-
der to retrieve the logical development of ideas, which differs from the histori-
cal one and constantly requires revisiting Old Theories from the stand-point of
New Ones. This was the motivation for the particular and sometimes unconven-
tional way of presenting General Relativity we adopted in the first volume. The
reader will fully appreciate the relevance of this strategy when coming to Chap. 6
and to the constructive principles underlying supergravity. The prominence given
to the Cartan formulation in terms of vielbein and spin connection and to the
role of Bianchi identities will reveal its profound rationale in that chapter. There
the reader will find the end-point of a long argument that, starting from Lorentz
symmetry leads first to the distinctive features of a gauge theory of the Poincaré
connection and then, if one admits the supersymmetry charges, to a new alge-
braic category, that of Free Differential Algebras encompassing p-forms and a to-
tally new viewpoint on gauging. The p-forms open the window on the world of
branes and on their dualism with the gravitational theories living in the bulk. In
the rich and complex new panorama provided by the Bestiary of Supergravities and
of their solutions also Black Holes and Cosmology acquire new perspectives and
possibilities.

P.G. Frè, Gravity, a Geometrical Course, DOI 10.1007/978-94-007-5443-0_1,
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2 1 Introduction

Introducing step by step the necessary mathematical structures and framing his-
torically the development of ideas we promise our patient reader to conduct him
smoothly and, hopefully without logical jumps, to the current frontier of Gravita-
tional Theory.



Chapter 2
Extended Space-Times, Causal Structure
and Penrose Diagrams

O radiant Dark! O darkly fostered ray
Thou hast a joy too deep for shallow Day!
George Eliot (The Spanish Gypsy)

2.1 Introduction and a Short History of Black Holes

It seems that the first to conceive the idea of what we call nowadays a black-hole was
the English Natural Philosopher and Geologist John Michell (1724–1793). Member
of the Royal Society, Michell already before 1783 invented a device to measure
Newton’s gravitational constant, namely the torsion balance that he built indepen-
dently from its co-inventor Charles Augustin de Coulomb. He did not live long
enough to put into use his apparatus which was inherited by Cavendish. In 1784
in a letter addressed precisely to Cavendish, John Michell advanced the hypothesis
that there could exist heavenly bodies so massive that even light could not escape
from their gravitational attraction. This letter surfaced back to the attention of con-
temporary scientists only in the later seventies of the XXth century [1]. Before that
finding, credited to be the first inventor of black-holes was Pierre Simon Laplace
(see Fig. 2.1). In the 1796 edition of his monumental book Exposition du Système
du Monde [2] he presented exactly the same argument put forward in Michell’s let-
ter, developing it with his usual mathematical rigor. All historical data support the
evidence that Michell and Laplace came to the same hypothesis independently. In-
deed the idea was quite mature for the physics of that time, once the concept of
escape velocity ve had been fully understood.

Consider a spherical celestial body of mass M and radius R and let us pose
the question what is the minimum initial vertical velocity that a point-like object
located on its surface, for instance a rocket, should have in order to be able to escape
to infinite distance from the center of gravitational attraction. Energy conservation
provides the immediate answer to such a problem. At the initial moment t = t0 the
energy of the missile is:

E = 1

2
mmv

2
e − GMmm

R
(2.1.1)

where G is Newton’s constant. At a very late time, when the missile has reached
R = ∞ with a final vanishing velocity its energy is just 0+0 = 0. Hence E vanished
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4 2 Extended Space-Times, Causal Structure and Penrose Diagrams

Fig. 2.1 Pierre Simon Laplace (1749–1827) was born in Beaumont en Auge in Normandy in the
family of a poor farmer. He could study thanks to the generous help of some neighbors. Later with
a recommendation letter of d’Alembert he entered the military school of Paris where he became a
teacher of mathematics. There he started his monumental and original research activity in Mathe-
matics and Astronomy that made him one of the most prominent scientists of his time and qualified
him to the rank of founder of modern differential calculus, his work being a pillar of XIXth cen-
tury Mathematical Physics. A large part of his work on Astronomy was still done under the Ancien
Regime and dates back to the period 1771–1787. He proved the stability of the Solar System and
developed all the mathematical tools for the systematic calculus of orbits in Newtonian Physics.
His results were summarized in the two fundamental books Mecanique Cèleste and Exposition
du Système du Monde. Besides introducing the first idea of what we call nowadays a black-hole,
Laplace was also the first to advance the hypothesis that the Solar System had formed through the
cooling of a globular-shaped, rotating, cluster of very hot gas (a nebula). In later years of his career
Laplace gave fundamental and framing contributions to the mathematical theory of probability. His
name is attached to numberless corners of differential analysis and function theory. He received
many honors both in France and abroad. He was member of all most distinguished Academies of
Europe. He also attempted the political career serving as Minister of Interiors in one of the first
Napoleonic Cabinets, yet he was soon dismissed by the First Consul as a person not qualified for
that administrative job notwithstanding Napoleon’s recognition that he was a great scientist. Polit-
ically Laplace was rather cynic and ready to change his opinions and allegiance in order to follow
the blowing wind. Count of the First French Empire, after the fall of Napoleon he came on good
terms with the Bourbon Restoration and was compensated by the King with the title of marquis

also at the beginning, which yields:

ve =
√

2
GM

R
(2.1.2)

If we assume that light travels at a finite velocity c, then there could exist heavenly
bodies so dense that: √

2
GM

R
> c (2.1.3)
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In that case not even light could escape from the gravitational field of that body
and no-one on the surface of the latter could send any luminous signal that distant
observers could perceive. In other words by no means distant observers could see
the surface of that super-massive object and even less what might be in its interior.

Obviously neither Michell nor Laplace had a clear perception that the speed of
light c is always the same in every reference frame, since Special Relativity had to
wait its own discovery for another century. Yet Laplace’s argument was the follow-
ing: let us assume that the velocity of light is some constant number a on the surface
of the considered celestial body. Then he proceeded to an estimate of the speed of
light on the surface of the Sun, which he could do using the annual light aberration in
the Earth-Sun system. The implicit, although unjustified, assumption was that light
velocity is unaffected, or weakly affected, by gravity. Analyzing such an assumption
in full-depth it becomes clear that it was an anticipation of Relativity in disguise.

Actually condition (2.1.3) has an exact intrinsic meaning in General Relativity.
Squaring this equation we can rewrite it as follows:

R > rS ≡ 2
GM

c2
≡ 2m (2.1.4)

where rS is the Schwarzschild radius of a body of mass M , namely the unique
parameter which appears in the Schwarzschild solution of Einstein Equations.

So massive bodies are visible and behave qualitatively according to human com-
mon sense as long as their dimensions are much larger then their Schwarzschild
radius. Due to the smallness of Newton’s constant and to the hugeness of the speed
of light, this latter is typically extremely small. Just of the order of a kilometer for
a star, and about 10−23 cm for a human body. Nevertheless, as we extensively dis-
cussed in Chap. 6 of Volume 1, sooner or later all stars collapse and regions of space-
time with outrageously large energy-densities do indeed form, whose typical linear
size becomes comparable to rS . The question of what happens if it is smaller than
rS is not empty, on the contrary it is a fundamental one, related with the appropri-
ate interpretation of what lies behind the apparent singularity of the Schwarzschild
metric at r = rS .

As all physicists know, any singularity is just the signal of some kind of critical-
ity. At the singular point a certain description of physical reality breaks down and it
must be replaced by a different one: for instance there is a phase-transition and the
degrees of freedom that capture most of the energy in an ordered phase become neg-
ligible with respect to other degrees of freedom that are dominating in a disordered
phase. What is the criticality signaled by the singularity r = rS of the Schwarzschild
metric? Is it a special feature of this particular solution of Einstein Equations or it
is just an instance of a more general phenomenon intrinsic to the laws of gravity
as stated by General Relativity? The answer to the first question is encoded in the
wording event horizon. The answer to the second question is that event horizons are
a generic feature of static solutions of Einstein equations.

An event-horizon H is a hypersurface in a pseudo-Riemannian manifold (M , g)

which separates two sub-manifolds, one E⊂ M , named the exterior, can communi-
cate with infinity by sending signals to distant observers, the other BH ⊂ M , named
the black-hole, is causally disconnected from infinity, since no signal produced in
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BH can reach the outside region E. The black-hole is the region deemed by Michell
and Laplace where the escape velocity is larger than the speed of light.

In order to give a precise mathematical sense to the above explanation of event-
horizons a lot of things have to be defined and interpreted. First of all what is infinity
and is it unique? Secondly which kind of hypersurface is an event-horizon? Thirdly
can we eliminate the horizon singularity by means of a suitable analytic extension
of the apparently singular manifold? Finally, how do we define causal relations in a
curved Lorentzian space-time?

The present chapter addresses the above questions. The answers were found in
the course of the XXth century and constitute the principal milestones in the history
of black-holes.

Although Schwarzschild metric was discovered in 1916, less than six months
after the publication of General Relativity, its analytic extension, that opened the
way to a robust mathematical theory of black-holes, was found only forty-five years
later, six after Einstein’s death. In 1960, the American theorist Martin Kruskal (see
Fig. 2.2) found a one-to-many coordinate transformation that allowed him to repre-
sent Schwarzschild space-time as a portion of a larger space-time where the locus
r = rS is non-singular, rather it is a well-defined light-like hypersurface constitut-
ing precisely the event-horizon [6]. A similar coordinate change was independently
proposed the same year also by the Australian-Hungarian mathematician Georges
Szekeres [7].

These mathematical results provided a solid framework for the description of the
final state in the gravitational collapse of those stars that are too massive to stop
at the stage of white-dwarfs or neutron-stars. In Chap. 6 of Volume 1 we already
mentioned the intuition of Robert Openheimer and H. Snyder who, in their 1939
paper, wrote: When all thermonuclear sources of energy are exhausted, a sufficiently
heavy star will collapse. Unless something can somehow reduce the star’s mass to
the order of that of the sun, this contraction will continue indefinitely...past white
dwarfs, past neutron stars, to an object cut off from communication with the rest of
the universe. Such an object, could be identified with the interior of the event horizon
in the newly found Kruskal space-time. Yet, since the Kruskal-Schwarzschild metric
is spherical symmetric such identification made sense only in the case the parent star
had vanishing angular momentum, namely was not rotating at all. This is quite rare
since most stars rotate.

In 1963 the New Zealand physicist Roy Kerr, working at the University of Texas,
found the long sought for generalization of the Schwarzschild metric that could
describe the end-point equilibrium state in the gravitational collapse of a rotating
star. Kerr metric, that constitutes the main topic of Chap. 3, introduced the third
missing parameter characterizing a black-hole, namely the angular momentum J .
The first is the mass M , known since Schwarzschild’s pioneering work, the second,
the charge Q (electric, magnetic or both) had been introduced already in the first two
years of life of General Relativity. Indeed the Reissner-Nordström metric,1 which

1Hans Jacob Reissner (1874–1967) was a German aeronautical engineer with a passion for math-
ematical physics. He was the first to solve Einstein’s field equations with a charged electric source
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Fig. 2.2 Martin David Kruskal (1925–2006) on the left and George Szekeres (1911–2005) on the
right. Student of the University of Chicago, Kruskal obtained his Ph.D from New York University
and was for many years professor at Princeton University. In 1989 he joined Rutgers University
were he remained the rest of his life. Mathematician and Physicist, Martin Kruskal gave very
relevant contributions in theoretical plasma physics and in several areas of non-linear science. He
discovered exact integrability of some non-linear differential equations and is reported to be the
inventor of the concept of solitons. Kruskal 1960 discovery of the maximal analytic extension of
Schwarzschild space-time came independently and in parallel with similar conclusions obtained by
Georges Szekeres. Born in Budapest, Szekeres graduated from Budapest University in Chemistry.
As a Jewish he had to escape from Nazi persecution and he fled with his family to China where
he remained under Japanese occupation till the beginning of the Communist Revolution. In 1948
he was offered a position at the University of Adelaide in Australia. In this country he remained
the rest of his life. Notwithstanding his degree in chemistry Szekeres was a Mathematician and he
gave relevant contributions in various of its branches. He is among the founders of combinatorial
geometry

solves coupled Einstein-Maxwell equations for a charged spherical body, dates back
to 1916–1918.

The long time delay separating the early finding of the spherical symmetric so-
lutions and the construction of the axial symmetric Kerr metric is explained by the
high degree of algebraic complexity one immediately encounters when spherical

and he did that already in 1916 [3]. Emigrated to the United States in 1938 he taught at the Illinois
Institute of Technology and later at the Polytechnic Institute of Brooklyn. Reissner’s solution was
retrieved and refined in 1918 by Gunnar Nordström (1881–1923) a Finnish theoretical physicist
who was the first to propose an extension of space-time to higher dimensions. Independently from
Kaluza and Klein and as early as 1914 he introduced a fifth dimension in order to construct a unified
theory of gravitation and electromagnetism. His theory was, at the time, a competitor of Einstein’s
theory. Working at the University of Leiden in the Netherlands with Paul Ehrenfest, in 1918 he
solved Einstein field equations for a spherically symmetric charged body [4] thus extending the
Hans Reissner’s results for a point charge.
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symmetry is abandoned. Kerr’s achievement would have been impossible without
the previous monumental work of the young Russian theoretician A.Z. Petrov [5].
Educated in the same University of Kazan where, at the beginning of the XIXth cen-
tury Lobachevskij had first invented non-Euclidian geometry, in his 1954 doctoral
dissertation, Petrov conceived a classification of Lorentzian metrics based on the
properties of the corresponding Weyl tensor. This leads to the concept of principal
null-directions. According to Petrov there are exactly six types of Lorentzian met-
rics and, in current nomenclature, Schwarzschild and Reissner Nordström metrics
are of Petrov type D. This means that they have two double principal null directions.
Kerr made the hypothesis that the metric of a rotating black-hole should also be of
Petrov type D and searching in that class he found it.

The decade from 1964 to 1974 witnessed a vigorous development of the mathe-
matical theory of black-holes. Brandon Carter solved the geodesic equations for the
Kerr-metric, discovering a fourth hidden first integral which reduces these differen-
tial equations to quadratures. In the same time through the work of Stephen Hawk-
ing, George Ellis, Roger Penrose and several others, general analytic methods were
established to discuss, represent and classify the causal structure of space-times.
Slowly a new picture emerged. Similarly to soliton solutions of other non-linear
differential equations, black-holes have the characteristic features of a new kind of
particles, mass, charge and angular momentum being their unique and defining at-
tributes. Indeed it was proved that, irrespectively from all the details of its initial
structure, a gravitational collapsing body sets down to a final equilibrium state pa-
rameterized only by (M,J,Q) and described by the so called Kerr-Newman metric,
the generalization of the Kerr solution which includes also the Reissner Nordström
charges (see Chap. 3, Sect. 3.2).

This introduced the theoretical puzzle of information loss. Through gravitational
evolution, a supposedly coherent quantum state, containing a detailed fine structure,
can evolve to a new state where all such information is unaccessible, being hidden
behind the event horizon. The information loss paradox became even more severe
when Hawking on one side demonstrated that black-holes can evaporate through a
quantum generated thermic radiation and on the other side, in collaboration with
Bekenstein, he established, that the horizon has the same properties of an entropy
and obeys a theorem similar to the second principle of thermodynamics.

Hence from the theoretical view-point black-holes appear to be much more pro-
found structures than just a particular type of classical solutions of Einstein’s field
equations. Indeed they provide a challenging clue into the mysterious realm of
quantum gravity where causality is put to severe tests and needs to be profoundly
revised. For this reason the study of black-holes and of their higher dimensional
analogues within the framework of such candidates to a Unified Quantum Theory
of all Interactions as Superstring Theory is currently a very active stream of re-
search.

Ironically such a Revolution in Human Thought about the Laws of Causality,
whose settlement is not yet firmly acquired, was initiated two century ago by the
observations of Laplace, whose unshakable faith in determinism is well described
by the following quotation from the Essai philosophique sur les probabilités. In
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Fig. 2.3 J1655 is a binary system that harbors a black hole with a mass seven times that of the
sun, which is pulling matter from a normal star about twice as massive as the sun. The Chandra
observation revealed a bright X-ray source whose spectrum showed dips produced by absorption
from a wide variety of atoms ranging from oxygen to nickel. A detailed study of these absorption
features shows that the atoms are highly ionized and are moving away from the black hole in a
high-speed wind. The system J1655 is a galactic object located at about 11,000 light years from
the Sun

that book he wrote: We may regard the present state of the universe as the effect of
its past and the cause of its future. An intellect which at a certain moment would
know all forces that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to submit these data to
analysis, it would embrace in a single formula the movements of the greatest bodies
of the universe and those of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present before its eyes. The vast
intellect advocated by Pierre Simon and sometimes named the Laplace demon might
find some problems in reconstructing the past structure of a star that had collapsed
into a black hole even if that intellect had knowledge of all the conditions of the
Universe at that very instant of time.

From the astronomical view-point the existence of black-holes of stellar mass has
been established through many overwhelming evidences, the best being provided
by binary systems where a visible normal star orbits around an invisible companion
which drags matter from its mate. An example very close to us is the system J1655
shown in Fig. 2.3. Giant black-holes of millions of stellar masses have also been
indirectly revealed in the core of active galactic nuclei and also at the center of our
Milky Way a black hole is accredited.

In the present chapter, starting from the Kruskal extension of the Schwarzschild
metric we establish the main framework for the analysis of the causal structure of
space-times and we formulate the general definition of black-holes. In the next chap-
ter we study the Kerr metric and the challenging connection between the laws of
black-hole mechanics and those of thermodynamics.
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2.2 The Kruskal Extension of Schwarzschild Space-Time

According to the outlined programme in this section we come back to the
Schwarzschild metric (2.2.1) that we rewrite here for convenience

ds2 = −
(

1 − 2
m

r

)
dt2 +

(
1 − 2

m

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) (2.2.1)

and we study its causal properties. In particular we investigate the nature and the
significance of the coordinate singularity at the Schwarzschild radius r = rS ≡ 2m
which, as anticipated in the previous section, turns out to correspond to an event
horizon. This explains the nomenclature Schwarzschild emiradius that in Chap. 4 of
Volume 1 we used for the surface r =m.

2.2.1 Analysis of the Rindler Space-Time

Before analyzing the Kruskal extension of the Schwarzschild space-time, as a
preparatory exercise we begin by considering the properties of a two-dimensional
toy-model, the so called Rindler space-time. This is R2 equipped with the following
Lorentzian metric:

ds2
Rindler = −x2 dt2 + dx2 (2.2.2)

which, apparently, has a singularity on the line H ⊂R
2 singled out by the equation

x = 0. A careful analysis reveals that such a singularity is just a coordinate artefact
since the metric (2.2.2) is actually flat and can be brought to the standard form of
the Minkowski metric via a suitable coordinate transformation:

ξ :R2 →R
2 (2.2.3)

The relevant point is that the diffeomorphism ξ is not surjective since it maps the
whole of Rindler space-time, namely the entire R

2 manifold into an open subset
I = ξ(R2) ⊂ R

2 = Mink2 of Minkowski space. This means that Rindler space-
time is incomplete and can be extended to the entire 2-dimensional Minkowski
space Mink2. The other key point is that the image ξ(H) ⊂ Mink2 of the sin-
gularity in the extended space-time is a perfectly regular null-like hypersurface.
These features are completely analogous to corresponding features of the Kruskal
extension of Schwarzschild space-time. Also there we can find a suitable coor-
dinate transformation ξK : R4 → R

4 which removes the singularity displayed by
the Schwarzschild metric at the Schwarzschild radius r = 2m and such a map
is not surjective, rather it maps the entire Schwarzschild space-time into an open
sub-manifold ξK(Schwarzschild) ⊂ Krusk of a larger manifold named the Kruskal
space-time. Also in full analogy with the case of the Rindler toy-model the image
ξK(H) of the coordinate singularity H defined by the equation r = 2m is a regular
null-like hypersurface of Kruskal space-time. In this case it has the interpretation of
event-horizon delimiting a black-hole region.
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The basic question therefore is: how do we find the appropriate diffeomorphism
ξ or ξK? The answer is provided by a systematic algorithm which consists of the
following steps:

1. derivation of the equations for geodesics,
2. construction of a complete system of incoming and outgoing null geodesics,
3. transition to a coordinate system where the new coordinates are the affine param-

eters along the incoming and outgoing null geodesics,
4. analytic continuation of the new coordinate patch beyond its original domain of

definition.

We begin by showing how this procedure works in the case of the metric (2.2.2) and
later we apply it to the physically significant case of the Schwarzschild metric.

The metric (2.2.2) has a coordinate singularity at x = 0 where the determinant
detgμν = −x2 has a zero. In order to understand the real meaning of such a singu-
larity we follow the programme outlined above and we write the equation for null
geodesics:

gμν(x)
dxμ

dλ

dxν

dλ
= 0; −x2(ṫ2)+ (ẋ2)= 0 (2.2.4)

from which we immediately obtain:

(
dx

dt

)2

= 1

x2
⇒ t = ±

∫
dx

x
= ± lnx + const (2.2.5)

Hence we can introduce the null coordinates by writing:

t + lnx = v; v = const ⇔ (incoming null geodesics)

t − lnx = u; u= const ⇔ (outgoing null geodesics)
(2.2.6)

The shape of the corresponding null geodesics is displayed in Fig. 2.4. The first
change of coordinates is performed by replacing x, t by u, v. Using:

x2 = exp[v − u]; dx

x
= dv − du

2
; dt = dv + du

2
(2.2.7)

the metric (2.2.2) becomes:

ds2
Rindler = − exp[v − u]dudv (2.2.8)

Next step is the calculation of the affine parameter along the null geodesics. Here
we use a general property encoded in the following lemma:

Lemma 2.2.1 Let k be a Killing vector for a given metric gμν(x) and let t = dxμ

dλ
be the tangent vector to a geodesic. Then the scalar product:

E ≡ −(t,k)= −gμν
dxμ

dλ
kν (2.2.9)

is constant along the geodesic.



12 2 Extended Space-Times, Causal Structure and Penrose Diagrams

Fig. 2.4 Null geodesics of
the Rindler metric. The thin
curves are incoming
(v = const), while the thick
ones are outgoing (u= const)

Proof The proof is immediate by direct calculation. If we take the d/dλ derivative
of E we get:

dE

dλ
= −∇ρgμν

dxρ

dλ

dxμ

dλ
kν︸ ︷︷ ︸

= 0 since metric
is cov. const.

− gμν

(
∇ρ

dxμ

dλ

)
dxρ

dλ
kν

︸ ︷︷ ︸
=0 for the geodesic eq.

− gμν∇ρk
ν,
dxρ

dλ

dxμ

dλ︸ ︷︷ ︸
=0 for the Killing vec. eq.

(2.2.10)

So we obtain the sum of three terms that are separately zero for three different
reasons. �

Relying on Lemma 2.2.1 in Rindler space time we can conclude that E = x2 dt
dλ

is constant along geodesics. Indeed the vector field k ≡ d
dt

is immediately seen to
be a Killing vector for the metric (2.2.2). Then by means of straightforward manip-
ulations we obtain:

dλ = 1

E
exp[v − u]du+ dv

2
⇒

λ =
{ exp[−u]

2E exp[v] on u= const outgoing null geodesics

− exp[v]
2E exp[−u] on v = const incoming null geodesics

(2.2.11)

The third step in the algorithm that leads to the extension map corresponds to a
coordinate transformation where the new coordinates are proportional to the affine
parameters along incoming and outgoing null geodesics. Hence in view of (2.2.11)
we introduce the coordinate change:

U = −e−u ⇒ dU = e−u du; V = ev ⇒ dV = ev dv (2.2.12)
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Fig. 2.5 The image of
Rindler space-time in
two-dimensional Minkowski
space-time is the shaded
region I bounded by the two
null surfaces X = T (X > 0)
and X = −T (X > 0). These
latter are the image of the
coordinate singularity x = 0
of the original metric

by means of which the Rindler metric (2.2.8) becomes:

ds2
Rindler = −dU ⊗ dV (2.2.13)

Finally, with a further obvious transformation:

T = V +U

2
; X = V −U

2
(2.2.14)

the Rindler metric (2.2.13) is reduced to the standard two-dimensional Minkowski
metric in the plane {X,T }:

ds2
Rindler = −dT 2 + dX2 (2.2.15)

Putting together all the steps, the coordinate transformation that reduces the Rindler
metric to the standard form (2.2.15) is the following:

x =
√
X2 − T 2; t = arctanh

[
T

X

]
(2.2.16)

In this way we have succeeded in eliminating the apparent singularity x = 0 since
the metric (2.2.15) is perfectly regular in the whole {X,T } plane. The subtle point
of this procedure is that by means of the transformation (2.2.12) we have not only
eliminated the singularity, but also extended the space-time. Indeed the definition
(2.2.12) of the U and V coordinates is such that V is always positive and U always
negative. This means that in the {U,V } plane the image of Rindler space-time is the
quadrant U < 0; V > 0. In terms of the final X, T variables the image of the orig-
inal Rindler space-time is the angular sector I depicted in Fig. 2.5. Considering the
coordinate transformation (2.2.16) we see that the image in the extended space-time
of the apparent singularity x = 0 is the locus X2 = T 2 which is perfectly regular but
has the distinctive feature of being a null-like surface. This surface is also the bound-
ary of the image I of Rindler space-time in its maximal extension. Furthermore set-
ting X = ±T we obtain t = ±∞. This means that in the original Rindler space any
test particle takes an infinite amount of coordinate time to reach the boundary locus
x = 0: this is also evident from the plot of null geodesics in Fig. 2.4. On the other
hand the proper time taken by a test particle to reach such a locus from any other
point is just finite.
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All these features of our toy model apply also to the case of Schwarzschild space-
time once it is extended with the same procedure. The image of the coordinate sin-
gularity r = 2m will be a null-like surface, interpreted as event horizon, which can
be reached in a finite proper-time but only after an infinite interval of coordinate
time. What will be new and of utmost physical interest is precisely the interpre-
tation of the locus r = 2m as an event horizon H which leads to the concept of
Black-Hole. Yet this interpretation can be discovered only through the Kruskal ex-
tension of Schwarzschild space-time and this latter can be systematically derived
via the same algorithm we have applied to the Rindler toy model.

2.2.2 Applying the Same Procedure to the Schwarzschild Metric

We are now ready to analyze the Schwarzschild metric (2.2.1) by means of the
tokens illustrated above. The first step consists of reducing it to two-dimensions by
fixing the angular coordinates to constant values θ = θ0, φ = φ0. In this way the
metric (2.2.1) reduces to:

ds2
Schwarz. = −

(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 (2.2.17)

Next, in the reduced space spanned by the coordinates r and t we look for the null-
geodesics. From the equation:

−
(

1 − 2m

r

)
ṫ2 +

(
1 − 2m

r

)−1

ṙ2 = 0 (2.2.18)

we obtain:

dt

dr
= ± r

r − 2m
⇒ t = ±r∗(r) (2.2.19)

where we have introduced the so called Regge-Wheeler tortoise coordinate defined
by the following indefinite integral:

r∗(r)≡
∫

r

r − 2m
dr = r + 2m log

(
r

2m
− 1

)
(2.2.20)

Hence, in full analogy with (2.2.6), we can introduce the null coordinates

t + r∗(r)= v; v = const ⇔ (incoming null geodesics)

t − r∗(r)= u; u= const ⇔ (outgoing null geodesics)
(2.2.21)

and the analogue of Fig. 2.4 is now given by Fig. 2.6. Inspection of this picture
reveals the same properties we had already observed in the case of the Rindler toy
model. What is important to stress in the present model is that each point of the
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Fig. 2.6 Null geodesics of the Schwarzschild metric in the r , t plane. The thin curves are incoming
(v = const), while the thick ones are outgoing (u= const). Each point in this picture represents a
2-sphere, parameterized by the angles θ0 and φ0. The thick vertical line is the surface r = rS = 2m
corresponding to the coordinate singularity. As in the case of the Rindler toy model the null–
geodesics incoming from infinity reach the coordinate singularity only at asymptotically late times
t →> +∞. Similarly outgoing null-geodesics were on this surface only at asymptotically early
times t → −∞

diagram actually represents a 2-sphere parameterized by the two angles θ and φ

that we have freezed at the constant values θ0 and φ0. Since we cannot make four-
dimensional drawings some pictorial idea of what is going on can be obtained by
replacing the 2-sphere with a circle S

1 parameterized by the azimuthal angle φ.
In this way we obtain a three-dimensional space-time spanned by coordinates t ,
x = r cosφ, y = r sinφ. In this space the null-geodesics of Fig. 2.6 become two-
dimensional surfaces. Indeed these null-surfaces are nothing else but the projections
θ = θ0 = π/2 of the true null surfaces of the Schwarzschild metric. In Fig. 2.7
we present two examples of such projected null surfaces, one incoming and one
outgoing.

Having found the system of incoming and outgoing null-geodesics we go over to
point (iii) of our programme and we make a coordinate change from t , r to u, v. By
straightforward differentiation of (2.2.20), (2.2.21) we obtain:

dr = −
(

1 − rS

r

)
du− dv

2
; dt = du+ dv

2
(2.2.22)

so that the reduced Schwarzschild metric (2.2.17) becomes:

ds2
Schwarz. = −

(
1 − rS

r

)
du⊗ dv (2.2.23)
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Fig. 2.7 An example of two null surfaces generated by null geodesics of the Schwarzschild metric
in the r , t plane

Using the definition (2.2.20) of the tortoise coordinate we can also write:
(

1 − rS

r

)
= − exp

[
v − u

2rS

]
exp

[
− r

rS

]
(2.2.24)

which combined with (2.2.22) yields:

ds2
Schwarz. = exp

[
− r

rS

]
exp

[
v − u

2rS

]
rS

r
du⊗ dv (2.2.25)

In complete analogy with (2.2.12) we can now introduce the new coordinates:

U = − exp

[
− u

2rS

]
; V = exp

[
− u

2rS

]
(2.2.26)

that play the role of affine parameters along the incoming and outgoing null
geodesics.

Then by straightforward differentiation of (2.2.26) the reduced Schwarzschild
metric (2.2.25) becomes:

ds2
Schwarz. = −4

r3
S

r
exp

[
− r

rS

]
dU ⊗ dV (2.2.27)

where the variable r = r(U,V ) is the function of the independent coordinates U , V
implicitly determined by the transcendental equation:

r + rS log

(
r

rS
− 1

)
= rS log(−UV ) (2.2.28)

In analogy with our treatment of the Rindler toy model we can make a final coor-
dinate change to new variables X, T related to U , V as in (2.2.14). These, together
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with the angular variables θ , φ make up the Kruskal coordinate patch which, putting
together all the intermediate steps, is related to the original coordinate patch t , r , θ ,
φ by the following transition function:

polar
versus
Kruskal
coord.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ = θ

φ = φ

( r
rS

− 1) exp[ r
rS

] = T 2 −X2

t
rS

= log( T+X
T−X

)≡ 2 arctanh X
T

(2.2.29)

In Kruskal coordinates the Schwarzschild metric (2.2.1) takes the final form:

ds2
Krusk = 4

r3
S

r
exp

[
r

rS

](−dT 2 + dX2)+ r2(dθ2 + sin2 θ dφ2) (2.2.30)

where the r = r(X,T ) is implicitly determined in terms of X, T by the transcen-
dental equations (2.2.29).

2.2.3 A First Analysis of Kruskal Space-Time

Let us now consider the general properties of the space-time (MKrusk, gKrusk) iden-
tified by the metric (2.2.30) and by the implicit definition of the variable r contained
in (2.2.29). This analysis is best done by inspection of the two-dimensional diagram
displayed in Fig. 2.8. This diagram lies in the plane {X,T }, each of whose points
represents a two sphere spanned by the angle-coordinates θ and φ. The first thing to
remark concerns the physical range of the coordinates X, T . The Kruskal manifold
MKrusk does not coincide with the entire plane, rather it is the infinite portion of the
latter comprised between the two branches of the hyperbolic locus:

T 2 −X2 = −1 (2.2.31)

This is the image in the X, T -plane of the r = 0 locus which is a genuine singularity
of both the original Schwarzschild metric and of its Kruskal extension. Indeed from
(5.9.6)–(5.9.11) of Volume 1 we know that the intrinsic components of the curvature
tensor depend only on r and are singular at r = 0, while they are perfectly regular at
r = 2m. Therefore no geodesic can be extended in the X, T plane beyond (2.2.31)
which constitutes a boundary of the manifold.

Let us now consider the image of the constant r surfaces. Here we have to dis-
tinguish two cases: r > rS or r < rS . We obtain:

{X,T } = {h coshp,h sinhp}; h= e
r
rS

√
r
rS

− 1 for r > rS

{X,T } = {h sinhp,h coshp}; h= e
r
rS

√
1 − r

rS
for r < rS

(2.2.32)
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Fig. 2.8 A two-dimensional
diagram of Kruskal
space-time

These are the hyperbolae drawn in Fig. 2.8. Calculating the normal vector Nμ =
{∂pT , ∂pX,0,0} to these surfaces, we find that it is time-like NμNνgμν < 0 for
r > rS and space-like NμNνgμν > 0 for r < rS . Correspondingly, according to a
discussion developed in the next section, the constant r surfaces are space-like out-
side the sphere of radius rS and time-like inside it. The dividing locus is the pair
of straight lines X = ±T which correspond to r = rS and constitute a null-surface,
namely one whose normal vector is light-like. This null-surface is the event hori-
zon, a concept whose precise definition needs, in order to be formulated, a careful
reconsideration of the notions of Future, Past and Causality in the context of Gen-
eral Relativity. The next two sections pursue such a goal and by their end we will
be able to define Black-Holes and their Horizons. Here we note the following. If we
solve the geodesic equation for time-like or null-like geodesics with arbitrary initial
data inside region II of Fig. 2.8 then the end point of that geodesic is always located
on the singular locus T 2 − X2 = −1 and the whole development of the curve oc-
curs inside region II. The formal proof of this statement is involved and it will be
overcome by the methods of Sects. 2.3 and 2.4. Yet there is an intuitive argument
which provides the correct answer and suffices to clarify the situation. Disregarding
the angular variables θ and φ the Kruskal metric (2.2.30) reduces to:

ds2
Krusk = F(X,T )

(−dT 2 + dX2); F(X,T )= 4
r3
S

r
exp

[
r

rS

]
(2.2.33)

so that it is proportional to two-dimensional Minkowski metric ds2
Mink = −dT 2 +

dX2 through the positive definite function F(X,T ). In the language of Sect. 2.4
this fact means that, reduced to two-dimensions, Kruskal and Minkowski metrics
are conformally equivalent. According to Lemma 2.4.1 proved later on, confor-
mally equivalent metrics share the same light-like geodesics, although the time-like
and space-like ones may be different. This means that in two-dimensional Kruskal
space-time light travels along straight lines of the form X = ±T +k where k is some
constant. This is the same statement as saying that at any point p of the {X,T } plane
the tangent vector to any curve is time-like or light-like and oriented to the future if
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Fig. 2.9 The light-cone
orientations in Kruskal
space-time and the difference
between physical geodesics in
regions I and II

its inclination α with respect to the X axis is in the following range 3π/4 ≥ α ≥ π/4.
This applies to the whole plane, yet it implies a fundamental difference in the des-
tiny of physical particles that start their journey in region I (or IV) of the Kruskal
plane, with respect to the destiny of those ones that happen to be in region II at some
point of their life. As it is visually evident from Fig. 2.9, in region I we can have
curves (and in particular geodesics) whose tangent vector is time-like and future ori-
ented at any of their points which nonetheless avoid the singular locus and escape
to infinity. In the same region there are also future oriented time-like curves which
cross the horizon X = ±T and end up on the singular locus, yet these are not the
only ones, as already remarked. On the contrary all curves that at some point hap-
pen to be inside region II can no longer escape to infinity since, in order to be able
to do so, their tangent vector should be space-like, at least at some of their points.
Hence the horizon can be crossed from region I to region II, never in the opposite
direction. This leads to the existence of a Black-Hole, namely a space-time region,
(II in our case) where gravity is so strong that not even light can escape from it. No
signal from region II can reach a distant observer located in region I who therefore
perceives only the presence of the gravitational field of the black hole swapping
infalling matter.

To encode the ideas intuitively described in this section into a rigorous mathemat-
ical framework we proceed next to implement our already announced programme.
This is the critical review of the concepts of Future, Past and Causality within Gen-
eral Relativity, namely when we assume that all physical events are points p in a
pseudo-Riemannian manifold (M , g) with a Lorentzian signature.

2.3 Basic Concepts about Future, Past and Causality

Our discussion starts by reviewing the basic properties of the light-cone (see
Fig. 2.10). In Special Relativity, where space-time is Minkowski-space, namely a
pseudo-Riemannian manifold which is also affine, the light cone has a global mean-
ing, while in General Relativity light-cones can be defined only locally, namely at
each point p ∈ M . In any case the Lorentzian signature of the metric implies that
∀p ∈ M , the tangent space TpM is isomorphic to Minkowski space and it admits
the same decomposition in time-like, null-like and space-like sub-manifolds. Hence
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Fig. 2.10 The structure of
the light-cone

the analysis of the light-cone properties has a general meaning also in General Rela-
tivity, although such analysis needs to be repeated at each point. All the complexities
inherent with the notion of global causality arise from the need of gluing together the
locally defined light-cones. We will develop appropriate conceptual tools to manage
such a gluing after our review of the local light-cone properties.

2.3.1 The Light-Cone

When a metric has a Lorentzian signature, vectors t can be of three-types:

1. Time-like, if (t, t) < 0 in mostly plus convention for gμν .
2. Space-like, if (t, t) > 0 in mostly plus convention for gμν .
3. Null-like, if (t, t)= 0 both in mostly plus and mostly minus convention for gμν .

At any point p ∈ M the light-cone Cp is composed by the set of vectors t ∈ TpM
which are either time-like or null-like. In order to study the properties of the light-
cones it is convenient to review a few elementary but basic properties of vectors in
Minkowski space.

Theorem 2.3.1 All vectors orthogonal to a time-like vector are space-like.

Proof Using a mostly plus signature, we can go to a diagonal basis such that:

g(X,Y )= g00X
0Y 0 + (X,Y) (2.3.1)

where g00 < 0 and ( , ) denotes a non-degenerate, positive-definite, Euclidian bilin-
ear form on R

n−1. In this basis, if X⊥T and T is time-like we have:

−g00T
0T 0 > (T,T)

−g00T
0X0 = (T,X)≤ √

(T,T)(X,X)
(2.3.2)

Then we get:

−g00T
0X0√−g00T 0T 0

<
(T,X)√
(T,T)

≤√(X,X) (2.3.3)
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Squaring all terms in (2.3.3) we obtain

−g00X
0X0 < (X,X) ⇒ g(X,X) > 0 (2.3.4)

namely the four-vector X is space-like as asserted by the theorem. �

Another useful property is given by the following

Lemma 2.3.1 The sum of two future-directed time-like vectors is a future-directed
time-like vector.

Proof Let t and T be the two vectors under considerations. By hypothesis we have

g(t, t) < 0; t0 > 0

g(T ,T ) < 0; T 0 > 0
(2.3.5)

Since:
√−g00 t

0 > (t, t)
√−g00 T

0 > (T,T)
√−g00 t

0T 0 >
√
(t, t)(T,T) > (t,T)

(2.3.6)

we have:

g(t + T , t + T ) = g(t, t)+ g(T ,T )+ 2g(t, T )

⇓
−g00

((
t0
)2 + (T 0

)2 + 2t0T 0
)
> (t, t)+ (T,T)+ 2(t,T)

(2.3.7)

which proves that t + T is time-like. Moreover t0 + T 0 > 0 and so the sum vector
is also future-directed as advocated by the lemma. �

On the other hand with obvious changes in the proof of Theorem 2.3.1 the fol-
lowing lemma is established

Lemma 2.3.2 All vectors X, orthogonal to a light-like vector L are either light-like
or space-like.

Let us now consider in the manifold (M , g) surfaces Σ defined by the vanishing
of some smooth function of the local coordinates:

p ∈Σ ⇔ f (p)= 0 where f ∈C
∞(M ) (2.3.8)

By definition the normal vector to the surface Σ is the gradient of the function f :

n(Σ)
μ = ∇μf = ∂μf (2.3.9)
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Indeed any tangent vector to the surface is by construction orthogonal to n(Σ):

g
(
t (Σ), n(Σ)

)= 0 (2.3.10)

Definition 2.3.1 A surface Σ is said to be space-like if its normal vector n(Σ) is
everywhere time-like on the surface. Conversely Σ is time-like if n(Σ) is space-like.
We name null surfaces those Σ whose normal vector n(Σ) is null-like.

Null surfaces have very intriguing properties. First of all their normal vector is
also tangent to the surface. This follows from the fact that the normal vector is
orthogonal to itself. Furthermore we can prove that any null-surface is generated
by null-geodesics. Indeed we can easily prove that the normal vector n(Σ) to a null
surface is the tangent vector to a null-geodesics. Indeed we have:

0 = ∇μ

(∇νf∇νf
)= 2∇νf∇ν∇μf

= nν∇νnμ (2.3.11)

and the last equality is precisely the geodesic equation satisfied by the integral curve
to the normal vector n(Σ).

A typical null-surface is the event-horizon of a black-hole.

2.3.2 Future and Past of Events and Regions

Let us now consider the pseudo-Riemannian space-time manifold (M , g) and at
each point p ∈ M introduce the local light-cone Cp ⊂ TpM . In this section we
find it convenient to change convention and use a mostly minus signature where
g00 > 0.

Definition 2.3.2 The local light-cone Cp (see Fig. 2.11) is the set of all tangent
vectors t ∈ TpM , such that:

gμνt
μtν ≥ 0 (2.3.12)

and it is the union of the future light-cone with the past light-cone:

Cp = C +
p

⋃
C −
p (2.3.13)

where

t ∈ C +
p ⇔ g(t, t)≥ 0 and t0 > 0

t ∈ C −
p ⇔ g(t, t)≥ 0 and t0 < 0

(2.3.14)

The vectors in C +
p are named future-directed, while those in C −

p are named past-
directed.
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Fig. 2.11 At each point of
the space-time manifold, the
tangent space TpM contains
the sub-manifold Cp of
time-like and null-vectors
which constitutes the local
light-cone

We can now transfer the notions of time orientation from vectors to curves by
means of the following definitions:

Definition 2.3.3 A differentiable curve λ(s) on the space-time manifold M is
named a future-directed time-like curve if at each point p ∈ λ, the tangent vector
to the curve tμ is future-directed and time-like. Conversely λ(s) is past-directed
time-like if such is tμ.

Similarly we have:

Definition 2.3.4 A differentiable curve λ(s) on the space-time manifold M is
named a future-directed causal curve if at each point p ∈ λ, the tangent vector to
the curve tμ is either a future-directed time-like or a future-directed null-like vector.
Conversely λ(s) is a past-directed causal curve when the tangent tμ, time-like or
null-like, is past directed.

Relying on these concepts we can introduce the notions of Chronological Future
and Past of a point p ∈ M .

Definition 2.3.5 The Chronological Future (Past) of a point p, denoted I±(p) is
the subset of points of M , defined by the following condition:

I±(p)=
⎧⎨
⎩q ∈ M

∃ future- (past-)directed time-like
curve λ(s) such that
λ(0)= p; λ(1)= q

⎫⎬
⎭ (2.3.15)

In other words the Chronological Future or Past of an event are all those events
that can be connected to it by a future-directed or past-directed time-like curve.

Let now S ⊂ M be a region of space-time, namely a continuous sub-manifold of
the space-time manifold.

Definition 2.3.6 The Chronological Future (Past) of the region S, denoted I±(S) is
defined as follows:

I±(S)=
⋃
p∈S

I±(p) (2.3.16)
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Fig. 2.12 The union of two
time-like future-directed
curves is still a time-like
future directed curve

An elementary property of the Chronological Future is the following:

I±(I±(S)
)= I±(S) (2.3.17)

The proof is illustrated in Fig. 2.12.
If q ′ ∈ I±(I±(S)) then, by definition, there exists at least one point q ∈ I±(S) to

which q ′ is connected by a time-like future directed curve λ2(s). On the other hand,
once again by definition, q is connected by a future-directed time-like curve λ1(s)

to at least one point p ∈ S. Joining λ1 with λ2 we obtain a future-directed time-like
curve that connects q ′ to p, which implies that q ∈ I+(S).

In a similar way, if S denotes the closure, in the topological sense, of the region S,
we prove that:

I+(S)= I+(S) (2.3.18)

In perfect analogy with Definition 2.3.5 we have:

Definition 2.3.7 The Causal Future (Past) of a point p, denoted J±(p) is the subset
of points of M , defined by the following condition:

J±(p)=
⎧⎨
⎩q ∈ M

∃ future- (past-)directed causal
curve λ(s) such that
λ(0)= p; λ(1)= q

⎫⎬
⎭ (2.3.19)

and the Causal Future(Past) of a region S, denoted J±(S) is:

J±(S)=
⋃
p∈S

J±(p) (2.3.20)

An important point which we mention without proof is the following. In flat
Minkowski space J±(p) is always a closed set in the topological sense, namely
it contains its own boundary. In general curved space-times J±(p) can fail to be
closed.
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Fig. 2.13 In two-dimensional Minkowski space we show an example of achronal set. In the picture
on left the segment S parallel to the space axis is achronal because it does not intersect its chrono-
logical future. On the other hand, in the picture on the right, the line S, although one dimensional
is not achronal because it intersects its own chronological future

Achronal Sets

Definition 2.3.8 Let S ⊂ M be a region of space-time. S is said to be achronal if
and only if

I+(S)
⋂

S = ∅ (2.3.21)

The relevance of achronal sets resides in the following. When considering classi-
cal or quantum fields φ(x), conditions on these latter specified on an achronal set S
are consistent, since all the events in S do not bear causal relations to each other. On
the other hand one cannot freely specify initial conditions for fields on regions that
are not achronal because their points are causally related to each other. In Fig. 2.13
we illustrate an example and a counterexample of achronal sets in two-dimensional
Minkowski space.

Time-Orientability We mentioned above the splitting of the local light-cones in
the future C +

p and past C −
p cones. Clearly, just as all the tangent spaces are glued

together to make a fibre-bundle, the same is true of the local light-cones. The subtle
point concerns the nature of the transition functions. Those of the tangent bundle
TM → M to an n-dimensional manifold take values in GL(n,R). The light-cone,
on the other hand, is left-invariant only by the subgroup O(1, n − 1) ⊂ GL(n,R).
Furthermore the past and future cones are left invariant only by the subgroup of the
former connected with the identity, namely SO(1, n− 1)⊂ O(1, n− 1). Hence the
tipping of the light-cones from one point to the other of the space-time manifold
are described by those transition functions of the tangent bundle that take values in
the cosets GL(n,R)/O(1, n− 1) or GL(n,R)/SO(1, n− 1). The difference is sub-
tle. Let Hp ⊂ GL(n,R) be the subgroup isomorphic to SO(1, n− 1), which leaves
invariant the future and past light-cones at p ∈ M and let Hq ⊂ GL(n,R) be the
subgroup, also isomorphic to SO(1, n − 1), which leaves invariant the future and
past light cones at the point q ∈ M . The question is the following. Are Hp and Hq
conjugate to each other under the transition function g(p,q) ∈ GL(n,R) of the tan-
gent bundle, that connects the tangent plane at p with the tangent plane at q , namely
is it true that Hq = g(p,q)Hpg

−1(p, q)? If the answer is yes for all pair of points
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Fig. 2.14 The edge of an achronal set in two-dimensional Minkowski space. Notwithstanding how
small can be the neighborhood O of the end point of the segment S, which we singled out with the
dashed line, it contains a pair of points q and p, the former in the past of the end-point, the latter
in its future, which can be connected by a time-like curve getting around the segment S and not
intersecting it. Clearly this property does not hold for any of the interior points of the segment

p, q in M , then the manifold (M , g) is said to be time-orientable. In this case
the definition of future and past orientations varies continuously from one point to
the other of the manifold without singular jumps. Yet there exist cases where the
answer is no. When this happens the corresponding manifold is not time-orientable
and all global notions of causality loose their meaning. In all the sequel we assume
time-orientability.

For time orientable space-times we have the following theorem that we mention
without proof

Theorem 2.3.2 Let (M , g) be time-orientable and let S ⊂ M be a continuous
connected region. The boundary of the chronological future of S, denoted ∂I+(S)
is an achronal (n− 1)-dimensional sub-manifold.

Domains of Dependence The future domains of dependence are those sub-
manifolds of space-time which are completely causally determined by what happens
on a certain achronal set S. Alternatively the past domains of dependence are those
that completely causally determine what happens on S. To discuss them we begin
by introducing one more concept, that of edge.

Definition 2.3.9 Let S be an achronal and closed set. We define edge of S the set of
points a ∈ S such that for all open neighborhoods Oa of a, there exists two points
q ∈ I−(a) and p ∈ I+(a) both contained in Oa which are connected by at least one
time-like curve that does not intersect S.

The definition of edge is illustrated in Fig. 2.14. A very important theorem that
once again we mention without proof is the following:



2.3 Basic Concepts about Future, Past and Causality 27

Fig. 2.15 Two examples of Future and Past domains of dependence for an achronal region S of
two-dimensional Minkowski space

Theorem 2.3.3 Let S ⊂ M be an achronal closed region of a time-orientable
n-dimensional space-time (M , g) with Lorentz signature. Let us assume that
edge(S)= ∅. Then S is an (n− 1)-dimensional sub-manifold of M .

The relevance of this theorem resides in that it establishes the appropriate no-
tion of places in space-time, where one can formulate initial conditions for the time
development. These are achronal sets without an edge and, as intuitively expected,
they correspond to the notion of space ((n− 1)-dimensional sub-manifolds) as op-
posed to time.

These ideas are made more precise introducing the appropriate mathematical
definitions of domains of dependence.

Definition 2.3.10 Let S be a closed achronal set. We define the Future (Past) Do-
main of Dependence of S, denoted D±(S) as follows:

D±(S)=
{
p ∈ M

every past- (future-)directed time-like
curve through p intersects S

}
(2.3.22)

The above definition is illustrated in Fig. 2.15. The meaning of D±(S) was al-
ready outlined above. What happens in the points p ∈ D+(S) is completely de-
termined by the knowledge of what happened in S. Conversely what happened in
S is completely determined by the knowledge of what happened in all points of
p ∈D−(S).

The Complete Domain of Dependence of the achronal set S is defined below:

D(S)≡D+(S)
⋃

D−(S) (2.3.23)

All the introduced definitions were preparatory for the appropriate formulation of
the main concept, that of Cauchy surface.

Cauchy surfaces

Definition 2.3.11 A closed achronal set Σ ⊂ M of a Lorentzian space-time man-
ifold (M , g) is named a Cauchy surface if and only if its domain of dependence
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coincides with the entire space-time, as follows:

D(Σ)= M (2.3.24)

A Cauchy surface is without edge by definition. Hence it is an (n − 1)-dimen-
sional hypersurface. If a Cauchy surface Σ exists, data on Σ completely determine
their future development in time. This is true for all fields lying on M but also
for the metric. Knowing for instance the perturbations of the metric on a Cauchy
surface we can calculate (analytically or numerically) their future evolution without
ambiguity.

Definition 2.3.12 A Lorentzian space-time (M , g) is named Globally Hyperbolic
if and only if it admits at least one Cauchy surface.

Globally Hyperbolic space-times are the good, non-patological solutions of Ein-
stein equations which allow a consistent and global formulation of causality. A ma-
jor problem of General Relativity is to pose appropriate conditions on matter fields
such that Global Hyperbolicity of the metric is selected. Unified theories should
possess such a property.

2.4 Conformal Mappings and the Causal Boundary
of Space-Time

Given the appropriate definitions of Future and Past discussed in the previous sec-
tion, in order to study the causal structure of a given space-time (M , g), one has to
cope with a classical problem met in the theory of analytic functions, namely that
of bringing the point at infinity to a finite distance. Only in this way the behavior
at infinity can be mastered and understood. Behavior of what? This is the obvi-
ous question. In complex function theory the behavior under investigation is that
of functions, in our case is that of geodesics or, more generally, of causal curves.
These latter are those that can be traveled by physical particles and the issue of
causality is precisely the question of who can be reached by what. Infinity plays a
distinguished role in this game because of an intuitively simple feature that char-
acterizes those systems which the space-times (M , g) under consideration here are
supposed to describe. The feature alluded above corresponds to the concept of an
isolated dynamical system. A massive star, planetary system or galaxy is, in any
case, a finite amount of energy concentrated in a finite region which is separated
from other similar regions by extremely large spatial distances. The basic idea of
General Relativity foresees that space-time is curved by the presence of energy or
matter so that, far away from concentrations of the latter, the metric should become
the flat one of empty Minkowski space. This was the boundary condition utilized in
the solution of Einstein equations which lead to the Schwarzschild metric and it is
the generic one assumed whenever we use Einstein equations to describe any type
of star or of other localized energy lumps. Mathematically, the property of (M , g)
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which encodes such a physical idea is named asymptotic flatness. The point at in-
finity corresponds to the regions of the considered space-time (M , g) where the
metric g becomes indistinguishable from the Minkowski metric gMink and, by hy-
pothesis, these are at very large distances from the center of gravitation. We would
like to study the structure of such an asymptotic boundary and its causal relations
with the finite distance space-time regions. Before proceeding in this direction it is
mandatory to stress that asymptotic flatness is neither present nor required in other
physical contexts, notably that of cosmology. When we apply General Relativity to
the description of the Universe and of its Evolution, energy is not localized rather it
is overall distributed. There is no asymptotically far empty region and most of what
we discuss here has to be revised.

This being clarified let us come back to the posed problem. Assuming that a flat
boundary at infinity exists how can we bring it to a finite distance and study its struc-
ture? The answer is suggested by the analogy with the theory of analytic functions
we already anticipated and it is provided by the notion of conformal transforma-
tions. In the complex plane, conformal transformations change distances but pre-
serve angles. In the same way the conformal transformations we want to consider
here are allowed to change the metric, that is the instrument to calculate distances,
yet they should preserve the causal structure. In plain words this means that time-
like, space-like and null-like vector fields should be mapped into vector fields with
the same properties. Under these conditions causal curves are mapped into causal
curves, although geodesics are not necessarily mapped into geodesics. Shortening
the distances, infinity can come close enough to be inspected.

We begin by presenting an explicit instance of such conformal transformations
corresponding to a specifically relevant case, namely that of Minkowski space. From
the analysis of this example we will extract the general rules of the game to be
applied also to the other cases.

2.4.1 Conformal Mapping of Minkowski Space into the Einstein
Static Universe

Let us consider flat Minkowski metric in polar coordinates:

ds2
Mink = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) (2.4.1)

and let us perform the following change of coordinates:

t + r = tan

[
T +R

2

]
(2.4.2)

t − r = tan

[
T −R

2

]
(2.4.3)

θ = θ (2.4.4)

φ = φ (2.4.5)
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where T , R are the new coordinates replacing t , r . By means of straightforward
calculations we find that in the new variables the flat metric becomes:

ds2
Mink = Ω−2(T ,R)ds2

ESU (2.4.6)

ds2
ESU = −dT 2 + dR2 + sin2 R

(
dθ2 + sin2 θ dφ2) (2.4.7)

Ω(T ,R) = 1

2
cos

[
T +R

2

]
cos

[
T +R

2

]
(2.4.8)

This apparently trivial calculation leads to many important conclusions.
First of all let us observe that, considered in its own right, the metric ds2

ESU,
named the Einstein Static Universe, is the natural metric on a manifold R× S

3. To
see this it suffices to note that because of its appearance as argument of a sine, the
variable R is an angle, furthermore, parameterizing the points of a three-sphere:

1 =X2
1 +X2

2 +X2
3 +X2

4 (2.4.9)

as follows:

X1 = cosR

X2 = sinR cos θ

X3 = sinR sin θ cosφ

X4 = sinR sin θ sinφ

(2.4.10)

another straightforward calculation reveals that:

4∑
i=1

dX2
i = dR2 + sin2 R

(
dθ2 + sin2 θ dφ2) (2.4.11)

This demonstrates that ds2
ESU = −dT 2 + ds2

S3 . The metric ds2
ESU receives the name

of Einstein Static Universe for the following reason. It is just an instance of a family
of metrics, which we will consider in later chapters while studying cosmology, that
are of the following type:

ds2 = −dt2 + a2(t) ds2
3D (2.4.12)

where ds2
3D is the Euclidian metric of a homogeneous isotropic three-manifold, in

the present case the three-sphere, and a(t) is a function of the cosmic time, named
the scale-factor. In the case of ds2

ESU the scale factor is just one and for this reason
the corresponding universe is static. Einstein, who was opposed to the idea of an
evolving world discovered that by the addition of the cosmological constant his
own equations admitted static cosmological solutions, in particular ds2

ESU. Yet it
was soon proved that Einstein’s static universe is unstable and the great man later
considered the cosmological constant the biggest mistake of his life. He was, in
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this respect, twice wrong, since the cosmological constant does indeed exist, yet the
universe evolves nonetheless. All these questions we shall address in later chapters;
at present what is important for us is the following. By means of the coordinate
transformation (2.4.2)–(2.4.5), we have realized a mapping:

ψ : MMink → MESU �R⊗ S
3 (2.4.13)

that injects the whole of Minkowski space into a finite volume region of the Einstein
Static Universe, whose corresponding differentiable manifold is isomorphic to R⊗
S

3. In order to verify the statement we just made it suffices to compare the ranges
of the coordinates T , R, θ , φ respectively corresponding to the whole R ⊗ S

3 and
to the image of Minkowski-space through the ψ -mapping:

ψ(MMink)⊂R⊗ S
3 (2.4.14)

This comparison is presented below:

R⊗ S
3 Minkowski

−∞< T <+∞ −π < T +R < π

0 ≤R ≤ π −π < T −R < π

0 ≤ θ ≤ π 0 ≤ θ ≤ π

0 ≤ φ ≤ 2π 0 ≤ φ ≤ 2π

(2.4.15)

The specified ranges of the T ±R variables in Minkowski case are elementary prop-
erties of the function arctan(x) which maps the infinite interval {−∞,∞} into the
finite one {−π,π}. To each point T , R is attached a two-sphere S

2 parameterized
by the angles θ , φ. It is difficult to visualize four-dimensional spaces, yet, if we
replace the three-sphere by a circle, we can visualize R ⊗ S

3 as an infinite cylin-
der and the sub-manifold ψ(MMink) corresponds to the finite shaded region of the
cylinder displayed in Fig. 2.16. The reader will notice that we have decomposed
the boundary of ψ(MMink) into various components i0, i±, J±. To understand the
meaning of such a decomposition we need to stress another fundamental property of
the mapping ψ defined by (2.4.2)–(2.4.5). As it is evident from (2.4.6) Minkowski
metric and the metric of ESU are not identical, yet they differ only by the square
of an overall function of the coordinates. This property is precisely what defines the
concept of a conformal mapping.

Definition 2.4.1 Let (M , g) be a (pseudo-)Riemannian manifold of dimension m

and (M̃ , g̃) another (pseudo-)Riemannian manifold with the same dimension. A
differentiable map:

ψ : M → M̃ (2.4.16)

is named conformal if and only if on the image Imψ ≡ψ(M ) the following condi-
tion holds true:

∃Ω ∈C
∞(Imψ) \ g̃|Imψ =Ω2ψ∗g (2.4.17)
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Fig. 2.16 The shaded region
corresponds to the image,
inside the Static Einstein
Universe, of Minkowski
space by means of the
conformal mapping ψ . This
picture visualizes the causal
boundary of Minkowski
space composed of a spatial
infinity i0 a future and a past
time-like infinity i± and a
future and past light-like
infinity J±

where ψ∗g denotes the pull-back of the metric g. The function Ω is named the
conformal factor.

As anticipated above, the basic property of conformal mappings is that they pre-
serve the causal structure. On ψ(M ) ⊂ M̃ we have two metrics, namely g̃|Imψ

and ψ∗g. Generically curves that are geodesics with respect to the former are not
geodesics with respect to the latter; yet curves that are causal in one metric are
causal also in the other and vice-versa. Furthermore light-like geodesics are com-
mon to g̃|Imψ and ψ∗g. Indeed we have the following:

Lemma 2.4.1 Consider two metrics G and g on the same manifold M related by
a positive definite conformal factor Ω2(x), namely:

Gμν dx
μ ⊗ dxν =Ω2(x)gμν dx

μ ⊗ dxν (2.4.18)

The light-like geodesics with respect to the metric G are light-like geodesics also
with respect to the metric g and vice-versa.

Proof The proof is performed in two steps. First of all let us note that the differential
equation for geodesics takes the form

d2xρ

dλ2
+ Γ ρ

μν

dxμ

dλ

dxν

dλ
= 0 (2.4.19)

when we use an affine parameter λ. It can be rewritten with respect to an arbitrary
parameter σ = σ(λ). By means of direct substitution equation (2.4.19) transforms
into:

d2xρ

dσ 2
+ Γ ρ

μν

dxμ

dσ

dxν

dσ
= −

(
dσ

dλ

)−2
d2σ

dλ2

dxρ

dσ
(2.4.20)
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Secondly let us compare the Christoffel symbols of the metric G, named Γ
ρ
μν with

those of the metric g, named γ
ρ
μν . Once again by direct evaluation we find:

Γ ρ
μν = γ ρ

μν + 2∂{μ lnΩδ
ρ
ν} − gμν∂

ρ lnΩ (2.4.21)

Hence we obtain:

d2xρ

dσ 2
+ Γ ρ

μν

dxμ

dσ

dxν

dσ
= d2xρ

dσ 2
+ γ ρ

μν

dxμ

dσ

dxν

dσ
−
(
gμν

dxμ

dσ

dxν

dσ

)
∂ρ lnΩ

+
(

d

dσ
lnΩ

)
dxρ

dσ
(2.4.22)

Let us now apply the identity (2.4.22) to the case where the curve xμ(σ ) is a light-
like geodesics for the metric gμν and σ is an affine parameter for it. Then all terms
on the right hand side of equation (2.4.22) written in the first line vanish. Indeed:

d2xρ

dσ 2
+ γ ρ

μν

dxμ

dσ

dxν

dσ
= 0 (2.4.23)

is the geodesic equation in the affine parameterization and

gμν
dxμ

dσ

dxν

dσ
= 0 (2.4.24)

is the light-like condition on the tangent vector to the considered curve. It follows
that the same curve xμ(σ ) satisfies the geodesic equation also with respect to the
metric Gμν provided we are able to solve the following differential equation:

−
(
dσ

dλ

)−2
d2σ

dλ2
= d

dσ
lnΩ (2.4.25)

for a function λ(σ ) which will play the role of affine parameter with respect to the
new metric. Such an integration is easily performed. Indeed by means of straight-
forward steps we first reduce (2.4.25) to:

ln

(
dσ

dλ

)
= − lnΩ + const (2.4.26)

and then with a further integration we obtain:

λ= k1

∫
Ω(σ)dσ + k2 (2.4.27)

where k1,2 are the two integration constants. So a light-like geodesics with respect
to the metric gμν satisfies the geodesic equation also with respect to any metric G
conformal to g with an affine parameter λ given by (2.4.27). Moreover the tangent
vector to the curve is obviously light-like in the metric G if it is light-like in the
metric g. This concludes the proof of the lemma. �
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Let us summarize. We have found a conformal mapping of Minkowski space
into a finite region of another pseudo-Riemannian manifold so that the boundary at
infinity has been brought to finite distance and can be inspected. This boundary is
decomposed into the following pieces:

∂ψ(MMink)= i0
⋃

i+
⋃

i−
⋃

J+⋃J− (2.4.28)

that have been appropriately marked in Fig. 2.16. What is their meaning? It is listed
below:

(1) i0, named Spatial Infinity is the endpoint of the ψ image of all space-like curves
in (M , g).

(2) i+, named Future Time Infinity is the endpoint of the ψ image of all future-
directed time-like curves in (M , g).

(3) i−, named Past Time Infinity is the endpoint of the ψ image of all past-directed
time-like curves in (M , g).

(4) J+, named Future Null Infinity is the endpoint of the ψ image of all future-
directed light-like curves in (M , g).

(5) J−, named Past Null Infinity is the endpoint of the ψ image of all past-directed
light-like curves in (M , g).

In the above listing we have denoted by (M , g) Minkowski space with its flat met-
ric. The reason to use such a notation is that the same structure of the boundary
applies to all asymptotically flat space-times in the definition we shall shortly pro-
vide.

In order to verify the above interpretation of the boundary it is convenient to dis-
regard the two-sphere coordinates θ , φ restricting one’s attention to radial geodesics
or curves only. In this way Minkowski space becomes effectively two-dimensional
with the metric ds2 = −dt2 + dr2. The conformal transformation (2.4.2), (2.4.3)
maps the half plane (∞ ≥ t ≥ −∞, ∞ ≥ r ≥ 0) into a finite region of the half-
plane (∞ ≥ T ≥ −∞, ∞ ≥ R ≥ 0). This finite region is the triangle displayed
in Fig. 2.17. Radial geodesics in Minkowski space are straight lines in the (t, r)

half-plane. They are time-like if the angular coefficient is bigger than 45 degrees,
space-like if it is less than 45 degrees and they are light-like when it is exactly π/2.
In Fig. 2.18 we display the conformal transformation of these geodesics from which
it is evident that the time-like ones end up in the time-infinities while the space-like
ones end up in spatial infinity. The image of the light-like geodesics are still seg-
ments of straight-lines at 45 degrees which end on the null-infinities defined above.
Analytically the above statements can be verified by calculating some elementary
limits. The image of a straight line t = αr is given by:

T (α, r) = arctan
[
(α + 1)r

]+ arctan
[
(α − 1)r

]
R(α, r) = arctan

[
(α + 1)r

]− arctan
[
(α − 1)r

] (2.4.29)
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Fig. 2.17 The Penrose
diagram of Minkowski space

Fig. 2.18 The conformal
mapping of Minkowski
geodesics into the Penrose
triangle

and we find:

lim
r→∞T (α, r) =

⎧⎨
⎩
π if α > 1
0 if 1 > α >−1
−π if α <−1

(2.4.30)

lim
r→∞R(α, r) =

⎧⎨
⎩

0 if α > 1
π if 1 > α >−1
0 if α <−1

(2.4.31)

More generally we can consider curves t = f (r). The same limits as above hold
true if we replace α with f ′(r).

This concludes our discussion of the causal boundary of Minkowski space which
was possible thanks to the conformal mapping of the latter into a finite region of the
Einstein Static Universe. From this discussion we learnt a lesson that enables us to
extract some general definition of conformal flatness allowing the inspection of the
causal boundary of more complicated space-times such as, for instance, the Kruskal
extension of the Schwarzschild solution.
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2.4.2 Asymptotic Flatness

In this section we describe the definition of asymptotic flatness according to
Ashtekar [8].

Definition 2.4.2 A space-time (M , g) is asymptotically flat if there exists another

larger space-time (M̃ , g̃) and a conformal mapping:

ψ : M →ψ(M )⊂ M̃ (2.4.32)

with conformal factor Ω :

g̃ =Ω2ψ∗g on ψ(M ) (2.4.33)

such that the following conditions are verified:

(1) Naming i0 spatial infinity, namely the locus in ψ(M ) where terminate all
space-like curves, which is required to be a single point, we have:

M̃ −ψ(M )= J+(i0)⋃J−(i0)

(2) The boundary of M , named ∂M is decomposed as follows:

∂M = i0
⋃

J +⋃J −

where by definition we have set:

J ± = ∂J±(i0)− i0

(3) There exists a neighborhood V ⊂ ∂ψ(M ) such that for every p ∈ V and every
neighborhood Op of that point we can find a sub-neighborhood Up ⊂ Op with
the property that no causal curve intersects Up more than once.

(4) The conformal factor Ω can be extended to an overall function on the whole M̃
(5) The conformal factor Ω vanishes on J + and J − but its derivative ∇μΩ does

not on the same locus.

In order to appreciate all the points of the above definition it is convenient to
look at Fig. 2.19 and compare with the case of Minkowski space. The starting point
of the analysis is the obvious observation that any causal curve which departs from
spatial infinity i0 ≡ (π,0) cannot penetrate in the triangle representing Minkowski
space and therefore lies in M̃ −ψ(M ). If the causal curve is future-directed it goes
up, while if it is past directed it goes down so that point (1) of Definition 2.4.2 is
indeed verified. Let us next consider the boundary of the causal future and causal
past of spatial infinity. They are given by the upper and lower side, respectively, of
the triangle in Fig. 2.19, which intersect in i0. Hence point (2) of Definition 2.4.2
is also verified. Let us note that according to this definition J ± are just the Causal



2.5 The Causal Boundary of Kruskal Space-Time 37

Fig. 2.19 The causal
boundary of Minkowski space
following Ashtekar definition

Future and Causal Past of the considered space-time, namely the locus where ter-
minate future-directed and past-directed causal curves, respectively. In the case of
Minkowski space we were able to make a finer distinction by decomposing:

J ± = i±
⋃

J± (2.4.34)

where i± correspond to Future and Past Time-Infinity, while J± are Future and Past
Null-Infinities.

Point (3) of the definition is also visually evident in the case of Minkowski space
and aims at excluding pathological space-times where causal curves might have
chaotic behavior.

Points (4) and (5) are also extracted from the example of Minkowski space
mapped into the Einstein Static Universe. There the conformal factor is

Ω = 1

2
cos

[
T +R

2

]
cos

[
T −R

2

]
≡ cosT + cosR

which vanishes on the two straight-lines:

{ξ, ξ + π}; {ξ,−ξ + π} (2.4.35)

so, in particular on the two loci J ±.

2.5 The Causal Boundary of Kruskal Space-Time

Let us now consider the Kruskal extension of the Schwarzschild metric given in
(2.2.30) where the variable r is implicitly defined by its relation with T and X,
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Fig. 2.20 The Spatial
Infinity of Kruskal space-time
and its Future and Past

namely:

T 2 −X2 =
(
r

rS
− 1

)
exp

[
r

rS

]
(2.5.1)

Let us introduce the further change of variables defined below:

T = 1

2
tan

(
τ + ρ

2

)
+ 1

2
tan

(
τ − ρ

2

)
(2.5.2)

X = 1

2
tan

(
τ + ρ

2

)
− 1

2
tan

(
τ − ρ

2

)

By means of straightforward substitutions we find that:

ds2
Krusk = Ω−2 d̃s

2
Krusk (2.5.3)

d̃s
2
Krusk = 4

r3

rS
exp

[
− r

rS

](−dτ 2 + dρ2)

+ r2(cos τ + cosρ)2
(
dθ2 + sin2 θ dφ2) (2.5.4)

0 = tan

(
τ + ρ

2

)
tan

(
τ − ρ

2

)
+
(
r

rS
− 1

)
exp

[
r

rS

]
(2.5.5)

Ω = (cos τ + cosρ) (2.5.6)

This calculation shows that the map ψ defined by the coordinate substitution (2.5.2)

is indeed a conformal map, the new metric being d̃s
2
Krusk defined by (2.5.4) and the

conformal factor being Ω defined in (2.5.6). Let us then verify that Kruskal space-
time is asymptotically flat and study the causal structure of its boundary. To this
effect let us consider Fig. 2.20. Just as in the case of Minkowski space we represent
the four-dimensional space-time by means of a two-dimensional picture where each
point actually stands for a two-sphere spanned by the coordinates {θ,φ}. The points
are located in the {τ,ρ} plane and such kind of visualization receives the name of
Penrose diagram (Fig. 2.21).

As in the case of Minkowski space we first look for Spatial Infinity and we find
that in the plane {τ,ρ} it is given by the following pair of points:

i0 ≡ {π,0}
⋃

{−π,0} (2.5.7)
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Fig. 2.21 Sir Roger Penrose, was born in 1931 in Colchester (England) and he is Emeritus Rouse
Ball Professor of Mathematics at the University of Oxford. His main contributions have been to
Mathematical Physics in the fields of Relativity and Quantum Field Theory. He invented the twistor
approach to Lorentzian field theories which maps geometrical metric data of a real manifold into
holomorphic data in a complex manifold with signature (2,2). He was the first to propose the cos-
mic censorship hypothesis according to which space-time singularities are always hidden behind
event-horizons and he conceived the idealized Penrose mechanism which shows how energy can be
extracted from rotating black-holes. Probably the most famous of his results is the quasi-periodic
Penrose tiling of the plane with five-fold rotational symmetry. Roger Penrose is also an amateur
philosopher whose views on consciousness and its relation with quantum physics are quite original
and source of intense debate

Indeed this is the locus where terminate the images of all space-like curves. The
duplication of i0 is due to the periodicity of the trigonometric functions and it occurs
also in Minkowski case. There it was disregarded because all copies of i0, namely
{(2n+ 1)π,0}, (n ∈ Z) could be identified without ambiguity. In the Kruskal case,
instead, as we are going to see, i0I = {π,0} and i0IV = {−π,0} must be considered as
distinct physical points since they are separated by the black-hole region which we
are now going to discuss.

Following the scheme outlined in previous section, we search for the causal fu-
ture and causal past of i0 inside the extended manifold (M̃Krusk, g̃Krusk). At this
level a fundamental new feature appears with respect to Minkowski case where,
reduced to the plane {T ,R}, the manifold M̃Mink was identified with the infinite
vertical strip depicted in Fig. 2.19. In the Kruskal case, on the contrary, also the em-
bedding manifold M̃Krusk corresponds to a finite region of the {τ,ρ} plane, namely
the following rectangular region:

{τ,ρ} ∈ M̃Krusk ⇔ −π

2
≤ τ ≤ π

2
and − π ≤ ρ ≤ π (2.5.8)
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Fig. 2.22 The Penrose
diagram of Kruskal
space-time

The upper and lower limits on the variable τ are consequences of the form of
the metric g̃Krusk defined in (2.5.4). This latter becomes singular when r = 0 and
from (2.5.5) we realize that this singularity is mapped into τ = ±π

2 . Hence no
causal curve can trespass such limits which become a boundary for the manifold
(M̃Krusk, g̃Krusk). The range of the variable ρ is fixed instead by modding out the
periodicity ρ → ρ + 2nπ .

Once (2.5.8) is established, it is fairly easy to conclude that the Causal Future
and Causal Past of Spatial Infinity are indeed the lighter regions of the rectangle
depicted in Fig. 2.20. The corresponding boundaries are:

∂J+(i0) =
{
π

2
ξ,−π

2
ξ + π

}⋃{
π

2
ξ,

π

2
ξ − π

}
; ξ ∈ [0,1]

∂J−(i0) =
{
−π

2
ξ,−π

2
ξ + π

}⋃{
−π

2
ξ,

π

2
ξ − π

}
; ξ ∈ [0,1]

(2.5.9)

and on these boundaries the conformal factor (2.5.6) vanishes. Hence all necessary
conditions are satisfied and the Kruskal extension of Schwarzschild space-time is
indeed asymptotically flat.

We can now inspect the causal structure of conformal infinity and we are led to
consider the more detailed diagram of Fig. 2.22, which is the conformal image in
the {τ,ρ} plane of the diagram 2.8 drawn in the {T ,X} plane. We easily identify in
Fig. 2.22 the points i∓ that correspond to time-like Past and Future Infinity, respec-
tively. Just as it was the case for Spatial Infinity also these Infinities have a double
representation in the diagram. Similarly Past and Future Null Infinities are twice
represented and correspond to the segments with ±45 degrees orientation shown in
Fig. 2.22. The conformal image of the singularity r = 0 is also double and it is pro-
vided by the two segments, upper and lower, parallel to the ordinate axis depicted
in Fig. 2.22. The conformal image of the event horizon X2 − T 2 = 0 is provided by
the two internal lines splitting the hexagon of Fig. 2.22 into four separate regions.

Let us know consider, using the language developed in previous sections, the
Causal Past of Future-Null Infinity namely J−(J +). By definition this is the set of
all space-time events p such that there exists at least one causal curve starting at p
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Fig. 2.23 The Causal Past of Future Null Infinity is composed of two-sheets. The Causal Past of
J +

I and the Causal Past of J +
IV. The first corresponds to the region shaded by lines in the picture

on the left, the second to the region shaded by lines in the picture on the right

and ending on J +. Since J + is the union of two disconnected loci:

J + = J +
I

⋃
J +

IV (2.5.10)

we actually have:

J−(J +)= J−(J +
I

)⋃
J−(J +

IV

)
(2.5.11)

A simple inspection of the Penrose diagram shows that the Causal Past of Future
Null Infinity is given by the regions shown in Fig. 2.23, namely we have:

J−(J +) = I
⋃

III
⋃

IV

J−(J +
I

) = I
⋃

III (2.5.12)

J−(J +
IV

) = III
⋃

IV

This conclusion is simply reached with the following argument. The image of light-
like geodesics in the Penrose diagram is given by the straight lines with ±45 degrees
orientation; hence it suffices to trace all lines that have such an inclination and which
intersect Future Null Infinity. The result is precisely that of (2.5.12), depicted in
Fig. 2.23.

In this way we discover a very important feature of region II, namely we
find that it has empty intersection with the Causal Past of Future Null Infinity:
II
⋂
J−(J +)= ∅. This property provides a rigorous mathematical formulation of

that object cut off from communication with the rest of the universe which was firstly
conceived by Openheimer and Snyder as end-point result of the gravitational col-
lapse of super massive stars.

Inspired by the case of Kruskal space-time we can now present the general defi-
nition of black-holes:

Definition 2.5.1 Let (M , g) be an asymptotically flat space time and let J + de-
note the Future Null Infinity component of its causal boundary. A black-hole region
BH ⊂ M is a sub-manifold of this space-time with the following defining property:

BH
⋂

J−(J +)= ∅ (2.5.13)
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The event horizon is the boundary of the black-hole region separating it from the
Causal Past of Future Null Infinity, namely:

H= ∂BH
⋂

∂J−(J +) (2.5.14)

Let us now comment on the properties of region III of Kruskal space-time. Dif-
ferently from the black-hole region II, where all future-directed causal curves end
up on the singularity, in region III this is the inevitable property of past-directed
causal curves. Namely every one who happens to be in region III at some instant of
time had origin in the singularity and came out from there. Furthermore all future-
directed causal curves starting in III necessarily cross the horizon and end up either
in the flat asymptotic region I or in its copy IV. Hence III is just the time reversal of
a black-hole, named a white hole. A white hole emits matter rather than swallowing
it and therefore evaporates as soon as it is formed.

Although white holes are a part of the classical Kruskal vacuum solution, it is
doubtful that they might exist in Nature. When one considers the gravitational col-
lapse of realistic stars, the presence of matter fields in the Einstein equations re-
moves the presence of the white hole sector from their solutions. Furthermore, as it
will become clearer in next chapter where we study the fascinating relation between
the Laws of Thermodynamics and those of Black-Hole Mechanics, white holes vi-
olate the second principle of thermodynamics, reducing rather than increasing the
entropy and this is one more reason for their absence from the physical universe.
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Chapter 3
Rotating Black Holes and Thermodynamics

Tu vedresti ’l Zodiaco rubecchio
Ancora all’Orse piú stretto rotare
Se non uscisse fuor dal cammin vecchio.
Sí ch’ambo e due hann’un solo orizzon,
E diversi emisperi: . . .
Dante Alighieri (Purgatorio Canto IV, 64)

3.1 Introduction

In this chapter we study in considerable detail the quite intriguing and challenging
properties of rotating black-holes encoded in the Kerr-Newman metric which con-
tains only three parameters (m,J, q) corresponding, respectively, to the mass, to
the angular momentum and to the charge of the hole. As anticipated in the previous
chapter, irrespectively from all the details of its initial structure, a gravitational col-
lapsing body sets down to a final equilibrium state described by the Kerr-Newman
metric, which is the unique one, in D = 4, to be static, stationary, axial symmetric
and asymptotically flat. The geodesic problem for this metric is still a completely
integrable one, since there are enough first integrals, yet the explicit integration is
very much laborious because it involves higher transcendental functions and the
classification of trajectories turns out very complicated. We will derive the final in-
tegration formulae but we will present only a simple example of their application
in view of such a complexity. We will instead dwell on the general new properties
displayed by rotating black-holes that allow for a mechanism of energy extraction
whose features have a surprising analogy with the laws of thermodynamics. Such
an analogy is actually only the tip of an iceberg. The horizon area of the black holes
behaves as an entropy and this makes it clear that, in a fundamental quantum theory
of gravity, black holes must necessarily be endowed with a statistical interpretation
in terms of some kind of microstates.

3.2 The Kerr-Newman Metric

Let us consider the standard set up of polar coordinates r , θ , φ for R
3 plus the

parameter t for time. For the angular variables θ , φ labeling the points of each 2-
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Fig. 3.1 Our conventions for the angular coordinates on the S2 sphere are as follows: the azimuthal
angle φ takes the values in the range [0,2π], while the ascension angle θ runs from 0 (the North
Pole) to π (the South Pole). The metric ds2 = dθ2 + sin2 θ dφ2 is singular at θ = 0 and θ = π .
These are coordinate singularities that can be removed by redefining θ

sphere of radius r we adopt the same conventions already utilized in establishing the
Schwarzschild solution. For reader’s convenience we recall them here in Fig. 3.1.

Using this coordinate patch let us introduce a metric depending on three parame-
ters m, α, q whose physical interpretation will be that of mass, angular momentum
and electric/magnetic charge of the black hole, respectively.

It is convenient to introduce the following functions which will play the role of
building blocks for the metric:

ρ(r, θ) =
√
r2 + α2 cos2 θ (3.2.1)

Δ = r2 + α2 − 2mr + q2 (3.2.2)

In terms of these notations the Kerr-Newman metric is given by the following ex-
pression for the line-element:

ds2
KN = − Δ

ρ2

(
dt − α sin2 θ dt

)2 + ρ2

Δ
dr2

+ ρ2 dθ2 + 1

ρ2
sin2 θ

[(
r2 + α2)− α dt

]2

≡ −gμν dx
μ ⊗ dxν = −dτ 2

KN (3.2.3)

Before studying the properties of such a metric it is useful to emphasize its notable
limits in parameter space. They are listed below.

Minkowski If we set all parameters to zero m= α = q = 0 the Kerr-Newman metric
(3.2.3) degenerates into the flat Minkowski metric:

ds2
KN �→ ds2

Mink = −dt2 + dr2 + r2(dθ2 + sin2 dφ2) (3.2.4)

Schwarzschild If we set α = q = 0, but we keep different from zero the mass pa-
rameter m �= 0 the Kerr-Newman metric (3.2.3) degenerates into the spherical
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symmetric Schwarzschild metric. Indeed, under these assumptions we have:

ρ = r; Δ

ρ2
=
(

1 − 2m

r

)
(3.2.5)

so that:

ds2
KN �→ ds2

Schw = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2

+ r2(dθ2 + sin2 dφ2) (3.2.6)

Reissner-Nordström If we put α = 0 keeping both m and q non-vanishing we ob-
tain the so-called Reissner-Nordström metric which is spherical symmetric but
not Ricci-flat. As we shall discuss later on, this metric corresponds to an elec-
trovac solution namely to a solution of the coupled system of Maxwell-Einstein
equations. This solution describes the gravitational field generated by an electri-
cally or magnetically charged monopole of mass m and charge q . If α = 0, we
have

ρ = r; Δ

ρ2
=
(

1 − 2m

r
+ q2

r2

)
(3.2.7)

and

ds2
KN �→ ds2

RN = −
(

1 − 2m

r
+ q2

r2

)
dt2 +

(
1 − 2m

r
+ q2

r2

)−1

dr2

+ r2(dθ2 + sin2 dφ2) (3.2.8)

Kerr If we put the charge parameter to zero, namely q = 0, the Kerr-Newman met-
ric degenerates into the Kerr metric which is Ricci-flat but not spherically sym-
metric. It is only axial-symmetric and it describes a rotating black-hole of mass
m and angular momentum J =mα. In this case we have

ρ �= r; Δ=Δ0 ≡ r2 + α2 − 2mr (3.2.9)

and we find:

ds2
KN �→ ds2

Kerr = −Δ0

ρ2

(
dt − α sin2 θ dt

)2 + ρ2

Δ0
dr2

+ ρ2 dθ2 + 1

ρ2
sin2 θ

[(
r2 + α2)− α dt

]2 (3.2.10)

3.2.1 Riemann and Ricci Curvatures of the Kerr-Newman Metric

The next step in the analysis of the proposed metric (3.2.3) is the construction of the
corresponding curvature forms. As usual we adopt the vielbein formalism and we
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aim at the construction first of the spin connection ωab , secondly of the curvature
2-form Rab , from which we will extract the Riemann and Ricci tensors.

As written in (3.2.3) the Kerr-Newman metric is already presented as a sum of
four squares so that singling out the vielbein 1-forms is an immediate task. Indeed
if we define:

V 0 =
√
Δ

ρ

(
dt − α sin2 θ dφ

); V 1 = ρ√
Δ
dr

V 2 = ρ dθ; V 3 = sin θ

ρ

((
r2 + α2

)
dφ − α dt

) (3.2.11)

we obtain:

dτ 2
KN ≡ −ds2

KN = V a ⊗ V bηab; ηab = diag(+,−,−,−) (3.2.12)

Next we consider the construction of the torsionless spin-connection defined by:

dV a +ωab ∧ V cηbc = 0 (3.2.13)

The solution of (3.2.13) is the following one:

ω01 = (2rq2 − 2mr2 +mα2 + rα2 + (m− r)α2 cos 2θ)

2
√
Δρ3

V 0 + rα sin θ

ρ3
V 3

ω02 = α2 cos θ sin θ

ρ3
V 0 + α

√
Δ cos θ

ρ3
V 3

ω03 = αr sin θ

ρ3
V 1 − α

√
Δ cos θ

ρ3
V 2

(3.2.14)

ω12 = α2 cos θ sin θ

ρ3
V 1 + r

√
Δ

ρ3
V 2

ω13 = αr sin θ

ρ3
V 0 + r

√
Δ

ρ3
V 3

ω23 = α
√
Δ sin θ cot θ

ρ3
V 0 + (r2 + α2) cot θ

ρ3
V 3

Relying on the above result we can proceed to the calculation of the curvature 2-
form, defined by:

Rab = dωab +ωac ∧ωdbηcd (3.2.15)

and we obtain the following result:
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R01 = 1

2ρ6

[−(4mr3 − 6mα2r + q2(α2 − 6r2)+ (q2 − 6mr
)
α2 cos 2θ

)
V 0 ∧ V 1

− 2α cos θ
(
4rq2 +m

(
α2 − 6r2)+mα2 cos 2θ

)
V 2 ∧ V 3]

R02 = 1

2ρ6

[((
α2 − 2r2)q2 +mr

(
2r2 − 3α2)+ (q2 − 3mr

)
α2 cos 2θ

)
V 0 ∧ V 2

− α cos θ
(
4rq2 +m

(
α2 − 6r2)+mα2 cos 2θ

)
V 1 ∧ V 3]

R03 = 1

2ρ6

[((
α2 − 2r2)q2 +mr

(
2r2 − 3α2)+ (q2 − 3mr

)
α2 cos 2θ

)
V 0 ∧ V 3

+ α cos θ
(
4rq2 +m

(
α2 − 6r2)+mα2 cos 2θ

)
V 1 ∧ V 2]

(3.2.16)

R12 = 1

2ρ6

[((
α2 − 2r2)q2 +mr

(
2r2 − 3α2)+ (q2 − 3mr

)
α2 cos 2θ

)
V 1 ∧ V 2

− α cos θ
(
4rq2 +m

(
α2 − 6r2)+mα2 cos 2θ

)
V 0 ∧ V 3]

R13 = 1

2ρ6

[
α cos θ

(
4rq2 +m

(
α2 − 6r2)+mα2 cos 2θ

)
V 0 ∧ V 2

+ ((α2 − 2r2)q2 +mr
(
2r2 − 3α2)+ (q2 − 3mr

)
α2 cos 2θ

)
V 1 ∧ V 3]

R23 = 1

2ρ6

[
2α cos θ

(
4rq2 +m

(
α2 − 6r2)+mα2 cos 2θ

)
V 0 ∧ V 1

+ (q2 − 2mr
)(

2r2 − 3α2 − 3α2 cos 2θ
)
V 2 ∧ V 3]

Inspecting (3.2.16) we see that the intrinsic components of the curvature 2-form,
namely the flat index components of the Riemann tensor, are functions only of the
coordinates θ and r , while they do not depend on the time t and on the azimuthal
angle φ. This is so because the Kerr-Newman metric is static and axial symmetric
namely it admits the following two Killing vector fields:

k ≡ ∂

∂t
; k̃ ≡ ∂

∂φ
(3.2.17)

Furthermore we also note that the non-vanishing components of the Riemann tensor
are of the form:

Rab
cd = (· · · )ab × δabcd + (· · · )ab × εabcd (3.2.18)

Extracting from (3.2.16) the Riemann tensor Rab
cd , we can calculate the Ricci ten-

sor defined by:

Ricab ≡ ηamR
mn

bn (3.2.19)
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and we obtain the following result:

Ricab = q2

2ρ4

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (3.2.20)

We wonder which kind of matter can produce a stress-energy tensor of the form
(3.2.20) so that the constructed metric might be an exact solution of Einstein field
equations. The answer is very simple: an electromagnetic field!

Let us consider the general form of the stress energy tensor for a Maxwell field.
From the Maxwell action:

AMaxwell = −1

4

∫
d4x

√−detgFμρFνσ g
μνgρσ (3.2.21)

varying with respect to the metric we obtain:

T (Maxw)
μν = −1

2
FμρFνσ g

ρσ + 1

8
gμν |F |2 (3.2.22)

where we defined:

|F |2 ≡ FμρFνσ g
μνgρσ = FacFbdη

abηcd (3.2.23)

The stress-energy tensor T (Maxw)
μν is traceless (gμνT (Maxw)

μν = 0) and in flat indices
takes the same form as in curved indices:

T
(Maxw)
ab = −1

2
FacFbdη

cd + 1

8
ηab|F |2 (3.2.24)

For the particular case of an electromagnetic field of the form:

Fab =

⎛
⎜⎜⎝

0 F01 0 0
−F01 0 0 0

0 0 0 F23
0 0 −F23 0

⎞
⎟⎟⎠ (3.2.25)

Equation (3.2.24) yields the result:

T
(Maxw)
ab = 1

4

(
F 2

01 + F 2
23

)
⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (3.2.26)

Due to tracelessness of the stress-energy tensor, Einstein field equations reduce to:

Ricab = κT
(Maxw)
ab (3.2.27)
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which is compatible with result (3.2.20) for the Ricci tensor of the Kerr-Newman
metric if

1

4

(
F 2

01 + F 2
23

)= q2

2κρ4
(3.2.28)

We conclude that the Kerr-Newman metric provides a consistent solution of the
coupled Maxwell Einstein field equations if there exist two functions F01(r, θ) and
F23(r, θ) of the coordinates r, θ such that:

1. (3.2.28) is verified,
2. the 2-form:

F ≡ 2F01V
0 ∧ V 1 + 2F23V

2 ∧ V 3 (3.2.29)

is closed:

dF = 0 (3.2.30)

3. and also coclosed, namely:

d � F = 0 (3.2.31)

where

�F ≡ 2F23V
0 ∧ V 1 + 2F01V

2 ∧ V 3 (3.2.32)

is the Hodge dual of the 2-form F .

Indeed (3.2.30) and (3.2.31) are the two Maxwell equations.
By direct evaluation one can verify that all the above conditions are met by the

following two functions:

F01 = −
√

2q

κ

r2 − α2 cos2 θ

ρ4

F23 = 2
√

2q

κ

αr cos θ

ρ4

(3.2.33)

It follows from (3.2.33) that the Kerr-Newmann solution has both an electric and a
magnetic field, while the non-rotating spherical symmetric limit (α → 0) which is
the Reissner Nodström solution has only an electric field. The electric and magnetic
charges of the rotating black-hole are rigidly related to each other in order to obtain
a consistent solution of Maxwell Einstein equations.

3.3 The Static Limit in Kerr-Newman Space-Time

The key feature of the Kerr-Newman space-time is that it describes the gravitational
field of a rotating black hole. This will become evident by studying the properties
of the world-lines of test particles or observers around the hole.
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Fig. 3.2 An observer
rotating in the equatorial
plane around the hole has an
angular velocity Ω = dφ

dt
with

respect to the fixed stars

Differently from the Schwarzschild metric, which is both static and spherically
symmetric, the KN-metric is static and only axial symmetric. Indeed, instead of four,
the KN-space-time admits only two Killing vector fields corresponding to transla-
tions in the time variable t and in the axial angle φ respectively. In the coordinate
patch we have utilized these Killing vectors have the following simple form:

k = ∂

∂t
; k̃ = ∂

∂φ
(3.3.1)

and their norms and scalar products are directly related to the metric coefficients in
the following way:

(k, k) = gtt = 1 − 2mr − q2

ρ
(3.3.2)

(k̃, k̃) = gφφ = sin2 θ

ρ2

[(
r2 + α2)2 −Δα2 sin2 θ

]
(3.3.3)

(k, k̃) = gtφ = 2mr − q2

ρ2
α sin2 θ (3.3.4)

Consider next an observer which rotates around the black hole along a circular
orbit lying in its equatorial plane. The trajectory of such a test-particle is character-
ized by the following simple equation:

r = const; θ = π

2
; t = s; φ =Ωs (3.3.5)

where s is an affine parameter and Ω is the angular velocity of the particle perceived
by an observer that is at rest with respect to the distant fixed stars (see Fig. 3.2). The
4-velocity of such a test-particle is given by:

u= (1,Ω,0,0)= k +Ωk̃ (3.3.6)

For a physical particle the norm of the 4-velocity is necessarily non-negative and
this yields the following interesting quadratic condition on the angular velocity Ω :

(u,u)≥ 0 ⇒ (k, k)+ 2(k, k̃)Ω + (k̃, k̃)Ω2 ≥ 0 (3.3.7)
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The roots of the above quadratic form are given by:

Ω± =
−gtφ ±

√
g2
tφ − gttgφφ

gφφ
(3.3.8)

and we have physical non-tachyonic observers as long as their angular velocity lyes
in the range between the two roots:

Ω− ≤Ω ≤Ω+ (3.3.9)

Naming:

ω≡ − gtφ

gφφ
= α

2mr − q2

(r2 + α2)2 −Δα sin2 θ
(3.3.10)

the two roots of the quadratic form (3.3.7) can also be rewritten as:

Ωmin ≡Ω− = ω−
√
ω2 − gtt

gφφ
(3.3.11)

Ωmax ≡Ω+ = ω+
√
ω2 − gtt

gφφ
(3.3.12)

The interest of this rewriting comes from the fact that the quantity ω has a distinctive
physical interpretation, namely it is the angular velocity of a locally non-rotating
observer.

Locally Non-rotating Observers Which observers deserve the name of locally
non-rotating? Clearly those whose angular momentum vanish! We now prove that
this happens for those test-bodies whose 4-velocity is orthogonal to the constant
time hypersurfaces t = const, so that they are at rest on them. For a similar observer
the 4-velocity is just the gradient of time, namely:

uμ = ∇μt = gμν∂νt = gμt (3.3.13)

Taking into account the specific form of the Kerr-Newman metric we obtain that the
4-velocity of a locally non-rotating observer is:

u= (gtt , gφt ,0,0
)

(3.3.14)

Consider now the general problem of computing time-like geodesics for the KN-
metric. Just as in the case of the Schwarzschild metric we can address such a prob-
lem starting from the effective Lagrangian1 and writing the corresponding Euler-
Lagrange equations:

0 = d

dτ

∂L

∂ẋμ
− ∂L

∂xμ
(3.3.15)

1Compare with (3.8.5)–(3.8.9) of Volume One.
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Also here we immediately derive two-conserved quantities associated with the
cyclic Lagrangian coordinates t and φ. The first integral of motion � associated with
the azimuthal angle φ is the angular momentum and (3.3.15) provides its definition.
For a test-body moving on a world-line of type (3.3.5) we find

�= gφφφ̇ + gφt ṫ (3.3.16)

According to (3.3.14) the angular momentum of a locally non-rotating observer
(LNRO) vanishes since we obtain:

�LNRO = gφφg
φt + gφtg

tt ≡ δtφ = 0 (3.3.17)

and this concludes the proof of our statement.
The crucial point, however, is that a locally non-rotating observer has a non-

vanishing angular velocity with respect to the reference frame of the fixed stars. In
other words a test-body with a null angular momentum is perceived to rotate around
the hole by a distant observer who is at rest in the asymptotic flat geometry. What
is the actual angular velocity of such a locally non-rotating test body? It is given by
the quantity ω which we introduced in (3.3.10). Indeed the equation:

0 = gφφφ̇ + gφt ṫ = gφφΩ + gφt (3.3.18)

is solved by Ω = ω. Hence

ω= (q2 − 2mr)α sin2 θ

q2 + r2 + α2 − α2 sin2 θ − 2mr
(3.3.19)

is the angular velocity with which rotates with respect to the fixed stars an observer
which is at rest with respect to its local geometry. The behavior of this angular
velocity with respect to the radius r and to the declination angle θ is displayed in
Fig. 3.3.

Static Observers We have seen that those observers who have zero angular mo-
mentum and are not rotating with respect to the local geometry have a non-vanishing
angular velocity Ω = ω with respect to the fixed stars. We can now consider the case
of the static observers defined as those whose angular velocity in the fixed star frame
vanishes, namely Ω = 0. The angular momentum of the static observers does not
vanish. It is equal to:

�= gtφ = − (q2 − 2mr)α sin2 θ

r2 + α2 cos2 θ
(3.3.20)

The physical interpretation of this fact is clear. The black hole rotates and drags all
reference frames along its rotation. In order to stand still, a test-body needs to have
an angular momentum which counterbalance the dragging of the inertial frames.
The question is: how far can the dragging be opposed? The answer is simple: as
long as the 4-velocity of a static observer is time-like. For a static observer (3.3.6)
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Fig. 3.3 Value of the angular velocity ω of a locally non-rotating observer plotted against the
radius r and the declination angle θ . In the planes at θ = 0,π namely at the North and South poles
of the hole, we have ω = 0, i.e. there is no rotational dragging of the inertial frames. On the other
hand ω is maximal on the equatorial plane θ = π

2 . On the other hand ω decreases with the distance
r from the hole and vanishes at r = ∞ where it is uniformly zero for all values of θ

implies that the 4-velocity coincides with the time-translation Killing vector k. In
asymptotic geometry this Killing vector is time-like, but as we get closer to the hole
its norm (k, k) shrinks and there is a surface where it vanishes, namely (k, k) = 0.
This equation defines the static limit:

ΣSL : 0 = (k, k)≡ gtt

⇓
0 = q2 + r2 + α2 − α2 sin2(θ)− 2mr (3.3.21)

⇓
r = r±(θ) ≡ m±

√
m2 − q2 − α2 + α2 sin2(θ)

Corresponding to the two roots of the quadratic equation there are two vanishing
surfaces for the norm of Killing vector k: one outer r = r+(θ) and one inner r =
r−(θ). The static limit corresponds to the outer surface r = r+(θ). An image of the
static limit surface is displayed in Fig. 3.4.

3.4 The Horizon and the Ergosphere

As we have seen in the previous section, a physical observer has an angular velocity
Ω falling in the range (3.3.9) comprised between the two roots Ω± of the quadratic
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Fig. 3.4 The static limit
surface ΣSL defined by
r = r+(θ) is an ellipsoid and
contains inside itself the
spherical surface
r = rH = r+( π2 ) which, as we
discuss in the main text, is the
event horizon ΣH . The static
limit surface is tangential to
the horizon at the North and
South poles of the hole. The
region contained between
ΣSL and ΣH is named the
ergosphere

form (3.3.7). When the discriminant of that quadratic form vanishes, the two-roots
coincide and we have:

Ωmax =Ωmin =ΩH (3.4.1)

Inspecting (3.3.7) we see that its discriminant is given by the expression:

Δ= g2
tφ − gttgφφ = r2 + α2 − 2mr + q2 (3.4.2)

which is indeed the building block function Δ(r) introduced in (3.2.2). The reason
for the choice of its name becomes now apparent.

We claim that the bigger root of the quadratic equation Δ(r) = 0 is the event-
horizon of the black-hole. Let us first spell out the two roots and then motivate our
statement. We have

Δ= 0 → r = r± =m±
√
m2 − (q2 + α2

)
(3.4.3)

Let us now argue in the following way. Given the two Killing vectors (3.3.1) let us
define the family of Killing fields:

χ(Ω)= k +Ωk̃ (3.4.4)

which, as we know from (3.3.6), correspond to the 4-velocities of test-bodies having
angular velocities Ω with respect to the fixed stars. For each χ(Ω) let us consider
the light-like radial curves that admit χ(Ω) as the tangent vector field. Explicitly
we set:

dt = dp; dφ =Ω dp; dθ (3.4.5)

and we obtain the equation:

0 = gtt dp
2 + 2Ωgtφ dp

2 +Ω2gφφ dp
2 + grr dr

2 (3.4.6)

so that for each Ω we have an effective 2-dimensional metric:

ds2 = gpp(r,Ω)dp2 + grr dr
2 (3.4.7)
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where

gpp(r,Ω)= gtt + 2Ωgtφ +Ω2gφφ (3.4.8)

If gpp(r,Ω) never changes sign (namely it is positive definite) then the effective 2-
dimensional metric displays no horizon. If gpp(r,Ω) goes through zero, then in the
p, r plane there is a horizon. However if there is a horizon for a certain time p(Ω)

light can still escape to infinity along some other time p(Ω ′) for which gpp(r,Ω ′) is
positive-definite. In other words we look for the norm of the Killing vectors χ(Ω):

(
χ(Ω),χ(Ω)

)= gtt + 2Ωgtφ +Ω2gφφ (3.4.9)

If all the possible vectors χ(Ω) have negative norm then we are below the horizon.
This implies that we are below the horizon when the discriminant of the quadratic
form (3.4.8) is negative, so that the horizon is indeed given by the condition (3.4.3)
as we claimed. On the horizon r = r+ the equation:

(
χ(Ω),χ(Ω)

)= 0 (3.4.10)

admits only one solution:

Ω =ΩH ≡ α

r2+ + α2
= α

α2 + (m+√m2 − q2 − α2)2
(3.4.11)

The above quantity ΩH can be interpreted as the angular velocity of the event-
horizon in the sense that any physical test-body sitting on the horizon necessarily
rotates with such a velocity with respect to the fixed stars.

The Horizon Area We can now easily calculate the area of the horizon. By defi-
nition we have:

AreaH =
∫
r=r+

√
gθθgφφ dθ dφ = (r2+ + α2)∫ sin θ dθ dφ

= 4π
(
r2+ + α2) (3.4.12)

and by comparison with (3.4.11) we obtain the following very interesting relation
of the horizon area with the mass m and the angular momentum J ≡ mα of the
black-hole:

AreaH = 4π
J

ΩHm
(3.4.13)

3.5 Geodesics of the Kerr Metric

The Kerr metric was discovered at the beginning of the sixties of the XXth century
but it took several years before the problem of integrating its geodesics equations
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was solved. For the Schwarzschild field the geodesics equations are almost imme-
diately reduced to quadratures by regarding them as Euler Lagrange equations of a
mechanical problem with 4 Lagrangian coordinates qμ = (t, r, θ,φ) and exploiting
two facts:

1. There are three first integrals of the motion respectively given by the energy E ,
the angular momentum L and the mass μ of the particle

2. One Lagrangian coordinate can be eliminated from start, since all orbits are pla-
nar and the declination angle θ can be conventionally fixed to the value θ = π

2
without loss of generality.

In this way, after elimination of θ we have a number of conserved charges equal
to the number of effective Lagrangian coordinates and the mechanical system is
necessarily reduced to the quadratures. The really crucial point, therefore, is the
elimination of θ which, in the Schwarzschild case might be seen as a consequence
of the full-spherical symmetry, absent in the Kerr case. At α �= 0 there is dynamics
also in the declination angle θ , while at first glance, the integrals of motion seem to
be just three as at α = 0. Hence integrability seem to be lost for the Kerr metric.

As Carter2 discovered, the truth is more subtle and the Kerr geodesic system is
still fully integrable. The reason for that is the existence of a fourth hidden integral
of motion, the Carter constant K , which exists at all values of α and is, in the limit
α �→ 0, the real source for the trivialization of the θ motion.

In order to discover the Carter constant one has to reformulate the geodesic prob-
lem within the framework of the Hamilton Jacobi approach to classical mechanics
and this is what we shall do in the present section. As a preparation to this task let us
first review the construction of the three integral of motion associated with manifest
symmetries.

3.5.1 The Three Manifest Integrals, E , L and μ

The two first integrals E and L are associated with symmetries of the metric via
Noether theorem (see Sect. 1.7 in Chap. 1 of Volume 1). They exist just because the
two Lagrangian coordinates t and φ are cyclic. On its turn this cyclicity follows from
the existence of the two Killing vectors k = ∂/∂t and k̃ = ∂/∂φ. These properties
are true for the Kerr metric as much as for the Schwarzschild one. Hence also the
Kerr metric admits the first integrals E and L.

Defining the Lagrangian according to the conventions of used in Chaps. 3 and 4
of Volume 1 and using the form (3.2.10) of the Kerr metric in Boyes-Lindquist
coordinates, namely:

L ≡ −1

2
gμν(x)

dxμ

dτ

dxν

dτ

2Brandon Carter is an Australian born theoretical physicist working at Meudon (CNRS), France.
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= −1

2

(
ρ2ṙ2

Δ
+ ρ2θ̇2 + ((r2 + α2)φ̇ − αṫ)2 sin2 θ

ρ2
− Δ(ṫ − αφ̇ sin2 θ)2

ρ2

)

(3.5.1)

we find the Kerr definition of the first integrals of motion E and L. Explicitly:

E = pt ≡ ∂L

∂ṫ
=
(

1 − 2m

ρ2

)
ṫ + α

(
2mr

ρ2
sin2 θ

)
φ̇ (3.5.2)

−L = pφ ≡ ∂L

∂φ̇
= α

(
2mr

ρ2
sin2 θ

)
ṫ − Σ2

ρ2
sin2 θφ̇ (3.5.3)

where, adding the new shorthand Σ2 to the already introduced ones ρ2 and Δ, we
have:

ρ2 = r2 + α2 cos2 θ

Δ = r2 − 2mr + α2 (3.5.4)

Σ2 = (r2 + α2)2 − α2(r2 − 2mr + α2) sin2 θ

Equation (3.5.3) replace the homologous ones of the Schwarzschild case (see
Chap. 3 of Volume One). In the limit α �→ 0 the Kerr metric degenerates into the
Schwarzschild metric and the definitions (3.5.3) of the energy and angular momen-
tum of a test particle flow to the Schwarzschild ones. This is easily checked, noting
that at α = 0 we have ρ2 =Δ= r2 and Σ2 = r4.

Equation (3.5.3) can be effectively interpreted in the following matrix form:
(

E
−L

)
=M(r, θ)

(
ṫ

φ̇

)
(3.5.5)

where the key point is that the 2 × 2 matrix:

M(r, θ)=
⎛
⎝1 − 2m

ρ2
2mrα sin2 θ

ρ2

2mrα sin2 θ

ρ2 −Σ2

ρ2

⎞
⎠ (3.5.6)

is function only of the coordinates r and θ . The same, obviously is true also of the
inverse matrix.

M
−1(r, θ)=

⎛
⎝

ρ2Σ2

4m2r2α2 sin4 θ+(ρ2−2m)Σ2
2mrαρ2 sin2 θ

4m2r2α2 sin4(θ)+(ρ2−2m)Σ2

2mrαρ2 sin2 θ

4m2r2α2 sin4 θ+(ρ2−2m)Σ2
2mρ2−ρ4

4m2r2α2 sin4 θ+(ρ2−2m)Σ2

⎞
⎠ (3.5.7)

Hence if the geodesic flow of the coordinates r , θ has already been determined in
terms of the first integral of motion, namely if we have the two proper-time func-
tions:

r = r(τ,E,L); θ = θ(τ,E,λ) (3.5.8)
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then the matrix M−1 is reduced to a known function of τ and the inverse relation:(
ṫ

φ̇

)
=M

−1(τ )

(
E
−L

)
(3.5.9)

reduces also the integration of the cyclic variables t and φ to quadratures.
The constant of motion μ2 is associated with fixing the reparameterization invari-

ance of the geodesics equation. Indeed, in order for the Euler-Lagrange equations
obtained from the Lagrangian (3.5.1) to be equivalent to the original geodesics equa-
tions it is necessary that the Lagrangian time τ should coincide with the proper time
defined by the metric. This implies that we have to enforce the constraint:

L = 1

2
μ2 where

{
μ2 = 1; time-like geodesics

μ2 = 0; light-like geodesics
(3.5.10)

This condition yields the third manifest integral of motion:

μ2 = ρ2ṙ2

Δ
+ ρ2θ̇2 + ((r2 + α2)φ̇ − αṫ)2 sin2 θ

ρ2
− Δ(ṫ − αφ̇ sin2 θ)2

ρ2
(3.5.11)

3.5.2 The Hamilton-Jacobi Equation and the Carter Constant

Let us recall the essential points of the Hamilton Jacobi method of integration of a
Hamiltonian system.

Given the Hamiltonian:

H(p,q)= piq̇
i − L (q, q̇) (3.5.12)

where the canonical momenta pi ≡ ∂L
∂q̇i

are defined as usual, the Hamilton Jacobi
method consists of constructing the generating function S(τ,p, q) of a canonical
transformation which reduces the new Hamiltonian H̃ to an identically vanishing
function of the new canonical variables (P,Q). In this way we will be guaranteed
that both the new canonical coordinates Qi and the new canonical momenta Pi are
constant, since:

0 = Q̇i = ∂H̃

∂Pi
; 0 = Ṗi = − ∂H̃

∂Qi
(3.5.13)

Calling S(q,P, τ) the generating function of such a canonical transformation,
where qi are the old coordinates and Pi the new momenta, by definition we have
the relations:

pi = ∂S(τ, q,P )

∂qi

Qi = ∂S(τ, q,P )

∂P i

(3.5.14)
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which, provided that S(τ, q,P ) is known, yields the explicit solution of the me-
chanical problem under consideration. Such solution is the complete integral since
it involves exactly 2n integration constants that are nothing else but the new canon-
ical momenta and coordinates (P,Q). The function S is named the Jacobi principal
function and, as a consequence of its definition, it satisfies the Hamilton Jacobi
equation:

∂S

∂τ
+H

(
qi,

∂S

∂qi

)
= 0 (3.5.15)

The question is whether the Hamilton-Jacobi equation can be integrated more easily
than the original Hamiltonian equations. This happens when (3.5.15) is such that it
allows for a separation of the variables. By this we mean that it is consistent to write
the following ansatz for the function S(τ, q,P ):

S(τ, q,P )= E τ +
n∑

i=1

Wi

(
qi,Pi

)
(3.5.16)

where each function Wi depends only on the corresponding old canonical variable
qi . When this is the case the integration of the Hamilton Jacobi equation can be
reduced to the quadratures.

Applying the Hamilton-Jacobi method to the problem of geodesics, the first thing
that we note is one of a general character, common to any metric. Since the La-
grangian is a quadratic form in the velocities, with coordinate dependent coeffi-
cients, the Hamiltonian will be a quadratic form in the canonical momenta with
coordinate dependent coefficients. Indeed in full generality we obtain:

pμ ≡ −gμν(q)q̇
ν ⇒ H(q,p)= −1

2
gμν(q)pμpν (3.5.17)

where gμν is the controvariant metric with upper indices.
In the case of the Kerr-metric we have:

gμν =

⎛
⎜⎜⎜⎜⎝

Σ2

Δρ2 0 0 2mrα
Δρ2

0 − Δ

ρ2 0 0

0 0 − 1
ρ2 0

2mrα
Δρ2 0 0 csc2 θ(α2 sin2 θ−Δ)

Δρ2

⎞
⎟⎟⎟⎟⎠ (3.5.18)

where the chosen order of the coordinates is (t, r, θ,φ). Correspondingly the Hamil-
tonian takes the explicit form:

H(p,q)= −Δ2p2
r +Σ2p2

t −Δp2
θ + α2p2

φ −Δ csc2(θ)p2
φ + 4mrαptpφ

2Δρ2

(3.5.19)
which provides the explicit form of the Hamilton-Jacobi equation. Recalling the
first integrals (3.5.3) we try the following factorized ansatz for the principal Jacobi
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function:

S(τ, q,P )= 1

2
μ2τ + E t −Lφ + σ(θ)+�(r) (3.5.20)

where σ(θ) is some function of the variable θ and �(r) some function of the vari-
able r . The ansatz (3.5.20) is consistent with the definitions:

E = ∂S

∂t
; −L= ∂S

∂φ
(3.5.21)

and yields:

pθ = ∂S

∂θ
= ∂θσ (θ); pr = ∂S

∂r
= ∂r�(r) (3.5.22)

Furthermore, upon insertion into the Hamilton Jacobi equation (3.5.15), the chosen
ansatz reproduces the constraint:

1

2
μ2 =H

(
q,

∂S

∂q

)
(3.5.23)

provided the following equation holds:

Hθ (θ)+Hr (r)= 0 (3.5.24)

where we have introduced the following two functions of the declination angle θ

and of the radius r , respectively:

Hθ (θ) = α2μ2 cos2 θ + (αE sin θ −L csc θ)2 + σ ′(θ)2

Hr (r) = − ((r2 + α2)E −Lα)2

r2 − 2mr + α2
+ r2μ2 + (r2 − 2mr + α2

)
� ′(r)2

(3.5.25)

Since Hθ depends only on the θ variable and Hr (r) depends only on the r vari-
able, (3.5.24) can be true if and only if both functions are constant throughout the
geodesic motion and their constant values are opposite. Namely we must have:

K =Hθ (θ)= −Hr (r) (3.5.26)

The constant K , named the Carter constant is the fourth missing integral of motion
which ensures full-integrability of the mechanical system.

3.5.3 Reduction to First Order Equations

Thanks to the above introduced Carter constant the geodesic equations can be com-
pletely reduced to a first order system. The procedure is straightforward. Varying
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the Lagrangian (3.5.1) with respect to ṙ and θ̇ we find the explicit form of pr and
pθ , respectively:

pr = ρ2

Δ
ṙ (3.5.27)

pθ = ρ2θ̇ (3.5.28)

Solving (3.5.26) for � ′(r)= pr and σ ′(θ)= pθ and equating the results to those of
(3.5.28), we obtain:

ρ2ṙ = ±
√

E 2 −μ2
√
p(r) (3.5.29)

ρ2θ̇ = ±{−α2μ2 cos2 θ − (L csc θ − αε sin θ)2 +K
}1/2 (3.5.30)

where

p(r) ≡ 1

E 2 −μ2

{(
E 2 −μ2)r4 + 2mμ2r3 − (K + α

(−2αE 2 + 2LE + αμ2))r2

+ 2Kmr + α2((L− αE )2 −K
)}

(3.5.31)

is a quartic polynomial in the radial variable r whose coefficients depend alge-
braically on the first integrals of motion E , L, K , μ2.

Changing variable in the second of equations (3.5.30) by setting u = cos θ we
can rewrite it as follows:

ρ2u̇= ±α

√
μ2 − E 2

√
q(u) (3.5.32)

where also q(u) is a quartic polynomial, but it as the special property that it contains
only the even powers of u:

q(u)= u4 + (K + α(2Lε+ α(μ2 − 2ε2)))u2

α2(ε2 −μ2)
+ (L− αε)2 −K

α2(ε2 −μ2)
(3.5.33)

Hence we have the differential system:

ρ2ṙ = ±
√

E 2 −μ2
√
p(r) (3.5.34)

ρ2u̇ = ±α

√
μ2 − E 2

√
q(u) (3.5.35)

Let us name ei , (i = 1, . . . ,4) the roots of the polynomial, p(r), namely let us set:

p(r)=
4∏

i=1

(r − ei) (3.5.36)
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and let us name g1, g2 the two independent roots of the polynomial q(u) which is
necessarily of the form:

q(u)=
2∏

i=1

(
u2 − g2

i

)
(3.5.37)

Eliminating τ from (3.5.35) we conclude that the relation between the variables r
and u is reduced to quadratures, namely:

∫
dr√
p(r)

= iα
∫

du√
q(u)

+ cost (3.5.38)

One finds that the relevant integrals appearing in the above relation can be analyti-
cally evaluated and expressed in terms of the elliptic integral function:

F(ξ |m)≡
∫ ξ

0

dφ√
1 −m sin2 φ

(3.5.39)

Indeed we find:

P(r, ei)≡
∫

dr√
p(r)

= −2
F
(
arcsin

(√
(r−e2)(e1−e4)
(r−e1)(e2−e4)

)| (e1−e3)(e2−e4)
(e2−e3)(e1−e4)

)
√
(e2 − e3)(e1 − e4)

(3.5.40)

W(u, gi)≡
∫

du√
q(u)

=
F
(
arcsin

(
u
g1

)| g2
1
g2

2

)
g2

(3.5.41)

and the final relation between u and r along the geodesics is implicitly given by:

P(r, ei)− iαW(u, gi)= c1 (3.5.42)

where c1 is the first found of the remaining four integration constants.

3.5.4 The Exact Solution of the Schwarzschild Orbit Equation
as an Application

The Schwarzschild metric is a particular limit of the Kerr metric for α �→ 0. Hence
the above formal integration of the geodesic equations in the Kerr case should pro-
vide, as a by-product, also the exact analytic equation of the Schwarzschild orbit
equation, which in Chap. 4 of Volume 1 we treated only perturbatively. As an il-
lustration of the method, in this section we derive the complete analytic form of the
orbit for a massive test-particle moving around a spherical symmetric Schwarzschild
black-hole.



3.5 Geodesics of the Kerr Metric 63

In the Schwarzschild case the equation for the derivatives of the time and az-
imuthal coordinates (3.5.9) reduce to:

φ̇ = L

r2
(3.5.43)

ṫ = r2E

r2 − 2m
(3.5.44)

while the equation for the derivative of the declination angle θ is:

r2θ̇ =
√
K −L2 csc2(θ) (3.5.45)

which follows from (3.5.30) by setting α = 0. From the above relation we conclude
that we can always impose the vanishing of the θ -derivative for any value of θ
by choosing the Carter constant K appropriately. Since in a spherical symmetric
field the actual value of θ is purely conventional, we can just choose to confine all
motions to the equatorial plane by setting:

θ = π

2
; K = L2 (3.5.46)

Fixing α = 0 and K = L2 the quartic polynomial (3.5.31) becomes:

p(r)= r4 + 2mr3

E 2 − 1
− L2r2

E 2 − 1
+ 2L2mr

E 2 − 1
(3.5.47)

which is still quartic but has the property that one of its roots is r = 0. Hence we
can write:

p(r)= r

3∏
i=1

(r − ei) (3.5.48)

and the relation between the three non-trivial roots ei and the physical first integrals
is the following:

L2 = e1e2e3

e1 + e2 + e3
(3.5.49)

m = e1e2e3

2(e2e3 + e1(e2 + e3))
(3.5.50)

E 2 = (e1 + e2)(e1 + e3)(e2 + e3)

(e2 + e3)e
2
1 + (e2

2 + 3e3e2 + e2
3)e1 + e2e3(e2 + e3)

(3.5.51)

At this point we can directly obtain the analytic form of the orbit eliminating dτ

from the two equations:

r2 dr

dτ
= (

E 2 − 1
)√

p(r) (3.5.52)
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r2 dφ

dτ
= L (3.5.53)

In this way we get:

E 2 − 1

L

∫
dφ =

∫
dr√
p(r)

(3.5.54)

From which we immediately get:

E 2 − 1

L
φ = −

2F
(

arcsin
(√

(
e1
r

−1)e3
e1−e3

)
| e2(e1−e3)
(e1−e2)e3

)
√
(e2 − e1)e3

(3.5.55)

which can be rewritten as:

F
(
arcsin

√
X |z) = Y (3.5.56)

X ≡ ( e1
r

− 1)e3

e1 − e3
(3.5.57)

z ≡ e2(e1 − e3)

(e1 − e2)e3
(3.5.58)

Y ≡ −ϕ

2

e3

√
e1e2(e2−e1)
e1+e2+e3

(e2e3 + e1(e2 + e3))
(3.5.59)

The first of (3.5.59) can be analytically inverted in terms of special functions since,
by very definition, we have:

F
(
arcsin

√
X |z)= Y ⇔ √

X = sn(Y |z) (3.5.60)

where sn(Y |z) is the Jacobi special elliptic function sn while F(t |z) denotes the el-
liptic integral of the first kind, whose definition we have already recalled in (3.5.39).

In this way we obtain the final explicit analytic form of the Schwarzschild orbit
for a massive particle depending on the three integration constants e1, e2, e3 which
parameterize the angular momentum L, the energy E and the Schwarzschild emira-
dius m. We find:

r(φ)= e1e3

(e1 − e3)
(
sn

[
−ϕ

2

e3

√
e1e2(e2−e1)
e1+e2+e3

(e2e3+e1(e2+e3))
| e2(e1−e3)
(e1−e2)e3

])2 + e3

(3.5.61)

Equation (3.5.61) contains both closed and open orbit depending on whether the
energy E 2 is less or larger than one. Two examples of orbits described by formula
(3.5.61) are displayed in Figs. 3.5 and 3.6.
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Fig. 3.5 An example of a
closed orbit described by the
exact analytic solution
(3.5.61) of the geodesic
equations for the
Schwarzschild metric. The
values of the roots chosen in
this example are:
{e1, e2, e3} = {2.7,11.7,25.6}
corresponding to
{L2,m,E 2} = {19.98,1,0.95}.
As we see, in this case E 2 < 1
and for this reason the orbit is
closed

Fig. 3.6 An example of an
open orbit described by the
exact analytic solution
(3.5.61) of the geodesic
equations for the
Schwarzschild metric. The
values of the roots chosen in
this example are:
{e1, e2, e3} = {−17.1,2.1,10.9}
corresponding to
{L2,m,E 2} = {100,1,1.5}.
As we see, in this case E 2 > 1
and for this reason the orbit is
open

3.5.5 About Explicit Kerr Geodesics

In the Schwarzschild case we demonstrated the use of the complete integration for-
mulae. The classification of all time-like and null-like geodesics encoded in the final
integration formulae is still very laborious for the general Kerr case because of the
implicit form of the solution. Indeed there are very many different type of geodesics
spherical, and non-spherical, open and closed, retrograding and advancing and so
on. We stop our discussion at this level and we turn to the most intriguing analogy
with thermodynamics.

3.6 The Kerr Black Hole and the Laws of Thermodynamics

Let us now focus on the case of a neutral rotating black-hole by setting q = 0 and
let us reconsider the results we obtained for the horizon area AH of a pure Kerr
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solution and for its angular velocity ΩH . In terms of the black-hole mass m and of
its angular momentum J , (3.4.13) and (3.4.11) can be rewritten as follows:

AH(m,J ) = 8πm

(
m+

√
m2 − J 2

m2

)
(3.6.1)

ΩH(m,J ) = J

2m2(m+
√
m2 − J 2

m2 )

(3.6.2)

Let us now introduce an additional function, whose interpretation we will later re-
trieve:

κ(m,J )=
√
m2 − J 2

m2

2m(m+
√
m2 − J 2

m2 )

(3.6.3)

Calculating the variation of AH(m,J ) in the standard way:

δAH = ∂mAHδm+ ∂JAHδJ (3.6.4)

we can verify the following variational identity:

δm= κ
1

8π
δAH +ΩHδJ (3.6.5)

What is it special about this identity? The answer is striking: it is formally identical
to the first law of thermodynamics if we introduce the following interpretations:

m = U internal energy (3.6.6)

1

8π
AH = S entropy (3.6.7)

κ = 1

T
inverse temperature (3.6.8)

ΩH = −p pressione (3.6.9)

J = V volume (3.6.10)

At first sight this might seem just an arbitrary, meaningless, formal exercise yet a
little bit of further consideration starts revealing the profound significance of the
analogy. First of all if (3.6.5) is the first law of thermodynamics then the second law
should also apply in the form:

δAH ≥ 0 in all physical processes (3.6.11)

thirdly if κ is the inverse temperature, it should be an intensive quantity, namely con-
stant over the body which in our analogy is the event horizon. Clearly the function
κ(m,J ) introduced in (3.6.3) as such a property yet the interesting point is that we
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can identify this expression with a quantity defined in terms of the black-hole geom-
etry that is constant over the horizon and has a well defined physical interpretation.
Let us postpone this identification for a moment and consider the last implication of
the thermodynamical interpretation of (3.6.5). Indeed if all the rest is as we claimed
the term

δW =ΩHδJ (3.6.12)

should be interpreted as some work extracted from a thermodynamical process in-
volving the black-hole. The whole point is precisely this. Do such processes exist by
means of which we can extract energy from a rotating black-hole and do they sat-
isfy the second law of thermodynamics (3.6.11)? The answer is yes and involves in
a crucial way the near horizon region that we named ergosphere in previous pages.
The gedanken experiment showing the mechanism of energy extraction was found
by Penrose in 1969.

3.6.1 The Penrose Mechanism

The Killing vector field k defined in (3.3.1) which becomes the standard time trans-
lation in the asymptotic flat space-time far from the hole is instead space-like inside
the ergosphere as we already noted. Thus for a massive test particle of four momen-
tum pμ = μuμ the energy:

E ≡ pμkμ (3.6.13)

is not necessarily positive inside the ergosphere. Therefore, by making a black hole
absorb a particle with negative total energy we can actually extract energy from the
black hole! Let us see how we can do this. Suppose that from our laboratory, located
far from the hole and at rest with respect to the reference frame of the fixed stars,
we throw a rocket towards the black-hole. Let us denote pμ0 the momentum of our
missile that will navigate along a time-like geodesic. Its energy:

E0 ≡ (p0, k) (3.6.14)

stays constant along the trajectory since it is the scalar product of a Killing vector
with the tangent vector to a geodesic. Suppose that when it enters the ergosphere
the rocket splits into two fragments as illustrated in Fig. 3.7. Conceptually this can
be arranged for instance by means of an explosive connected to a suitable clock. By
local conservation of the energy-momentum we have:

p
μ
0 = p

μ
1 + p

μ
2 (3.6.15)

where p
μ
1,2 are the four-momenta of the two fragments. Contracting equation

(3.6.15) with the Killing vector kμ we obtain:

E0 =E1 +E2 (3.6.16)
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Fig. 3.7 Schematic view of
the Penrose gedanken
experiment

However, inside the ergosphere, we can arrange the breakup of the rocket in such a
way that one of his fragments has negative total energy:

E1 < 0 (3.6.17)

Therefore, if the other fragment will make return to asymptotically flat infinity fol-
lowing its own geodesic it will have an energy E2 which is greater than the initial en-
ergy of our projectile. In other words we have extracted energy from the black hole
which has made some work for us! What has it happened? It is easily understood.
The fragment with negative energy from the ergosphere has crossed the event hori-
zon and it has fallen inside the whole. The latter having absorbed a negative energy
particle has now a slightly smaller mass: m′ = m − |E1|. Let us now consider the
angular momentum of the infalling negative energy particle. By definition we have:

�1 = −(k̃,p1) (3.6.18)

where k̃ is the rotational Killing vector defined in (3.3.1). On the other hand since
the Killing vector χ(ΩH ) is null-like and future-directed on the horizon it follows
that for any physical particle of momentum pμ crossing the horizon we must have:

(
p,χ(ΩH )

)≡E −ΩH� > 0 (3.6.19)

This applies to all particles also to our negative energy rocket-fragment. It follows
that, not only the energy, but also the angular momentum of this latter is negative
and we have:

�1 <
E1

ΩH

(3.6.20)

At the end of the process our black hole has swallowed an object of energy E1 < 0
and of angular momentum �1 < 0. As a result both its mass and its angular momen-
tum have been decreased since:

m′ = m− |E1|
J ′ = J − |�1|

(3.6.21)
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The hole is lighter and rotates slower. The important thing is that as a consequence
of (3.6.20) we have:

δJ <
δm

ΩH

(3.6.22)

3.6.2 The Bekenstein Hawking Entropy and Hawking Radiation

Inserted into the identity (3.6.5) the inequality (3.6.22) implies that, for the Penrose
process, we have:

κ
1

8π
δAH ≥ 0 ⇒ δAH ≥ 0 (3.6.23)

and the thermodynamical interpretation is consistent since both the first and the
second law are respected. It is obviously important to establish that such conditions
hold true for any physically conceivable process. This was advocated with many
arguments and in 1971 a very important result in classical differential geometry was
rigorously proved by Hawking [1], stating that in any time development, governed
by Einstein field equations and involving black-holes, the total sum of all the horizon
areas can never decrease.

Hence the interpretation of the horizon area as an entropy got momentum and in
1974 it was proposed by Bekenstein [2] that the formula:

SBH = 1

8π
AH (3.6.24)

should be interpreted as stating that in all thermodynamical processes of the universe
the black-hole entropy takes part as an addendum to the total statistical entropy.

This stimulated the hunt for the statistical interpretation of the horizon area. In-
deed, if this latter behaves as a true entropy, it means that classical black holes
actually correspond to a very large number Nmicro of quantum microstates and we
have

AH ∝ logNmicro (3.6.25)

Which microstate and in which quantum theory was not clear for a long time and it is
not completely clarified to the present time. Yet the statistical interpretation of black-
holes obtained further evidence from the parallel discovery of the phenomenon of
Hawking radiation [3], which gave an independent argument to identify the above
introduced function κ with a temperature. The actual intrinsic definition of κ is
the following. Let us simply name χ the Killing vector χ(ΩH ) which is null-like
and future directed on the horizon. Since the horizon is a null surface, χ is both
tangential and orthogonal to it. The norm of χ vanishes on the horizon and as such
it is constant on it. The gradient of this norm is therefore normal to the horizon and
as such it is proportional to χ . In other words we necessarily have:

∇μ(χ,χ)= −2κχμ (3.6.26)
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The proportionality factor κ(x) is a space-time function which can be proved to
be constant on the horizon and there precisely equal to the expression introduced in
(3.6.3). It is named surface gravity since it can be shown to be the limiting force that
must be exerted at infinity to hold a unit test mass in place when approaching the
horizon. This interpretation becomes obvious in the Schwarzschild limit (J → 0).
In this case we have κ = 1

2m and, by reinstalling the physical constants, we obtain

κ ∝ GM

R2
s

(3.6.27)

which is indeed the Newton force on the horizon (r =Rs = 2GM

c2 ).
By using quantum field theory in the background metric of a black-hole and

carefully dealing with the creation of particle-antiparticle pairs near the horizon,
Hawking found that all black-holes (including the Schwarzschild one) actually emit
a faint thermal radiation whose temperature is the inverse of κ , evaluated at the
horizon.

This intriguing semiclassical phenomenon gave the final evidence that the ther-
modynamical interpretation of the laws of black hole dynamics is quite sound and
that a statistical interpretation of the Bekenstein Hawking entropy is compelling.
The first example of such an interpretation was obtained by Strominger in 1996 in
the context of string theory. We will not address such a topic in this book but we shall
come back, in Chap. 9, to the structure of the black hole entropy, while discussing
the classical black hole solutions of supergravity. There the entropy acquires a group
theoretical interpretation that is also the main clue to its statistical interpretation in
terms of string microstates.
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Chapter 4
Cosmology: A Historical Outline from Kant
to WMAP and PLANCK

Vos calculs sont corrects, mais votre physique est abominable
Albert Einstein

4.1 Historical Introduction to Modern Cosmology

From most remote antiquity all humans have looked at the sky, have observed the
stars and tried to obtain from them some answers to the most profound and intrigu-
ing questions that challenged their minds. Immanuel Kant (see Fig. 4.1), who was
the first to understand the existence of other galaxies beyond the Milky Way, dis-
posed that the inscription on his grave-stone should specify the most relevant targets
of his life-long philosophical meditation, namely the star globe above our head and
the moral law within it.

Essentially no human civilization, at any time of history and in whatsoever cor-
ner of the Earth was deprived of some kind of cosmology, namely of some general
overview of the sky, of its contents, of its order and structure. Yet, until very recent
times, all theories of the world have been very far from providing some realistic
description of the existing cosmos, since all of them underestimated by several or-
ders of magnitude the actual dimensions of the Universe and our distance from the
closest stars. General Relativity came just at the time when the true ladder of cos-
mic distances started to be unveiled. Modern cosmology developed from these two
seeds: a new geometrical theory of gravity, which is the leading force at very large
scales, and the discovery that the Universe is indeed very large, its constituents being
separated from each other by distances of a previously never suspected magnitude.

4.2 The Universe Is a Dynamical System

Einstein once said: The most incomprehensible thing about the Universe is that it is
comprehensible.

Indeed his theory, General Relativity, proved to be the conceptual framework
where, for the first time in human history, questions about the large scale structure
of the visible universe could be formulated in an algorithmic way obtaining an-
swers and predictions. To a certain extent such answers surprised and disappointed
Einstein, whose fundamental philosophical attitude is revealed by his frequent ex-
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Fig. 4.1 Portrait of
Immanuel Kant (1724–1804)

pressions of faith in Spinoza’s God, namely in a God which manifests his own im-
age through the harmony of the world. Spinoza and Einstein’s God is not a person
and quite different from the personalized divinities of all human religions: he is not
characterized by a human psychology, he is completely orthogonal to the concept
of Divine Providence, whose model comes from the egoistic desires of the human
species. Yet, as Einstein used to say, he does not cast dices.

This well known sentence explains Einstein’s stubborn opposition to the prob-
abilistic interpretation of quantum mechanics and his life long efforts to avoid it.
Moreover Einstein-Spinoza God is infinite and eternal and just for this reason in-
compatible with the idea of creatio ex nihilo, namely of creation from nothing.

The Universe that Einstein cheered is an eternal and static one. Quite ironically
the field equations of General Relativity lead instead to solutions where the Universe
expands or, in any case, evolves. This is precisely what observational data, starting
from 1929, showed in a more and more definite and persuasive way.

Today we know that the Universe is a dynamical system undergoing a contin-
uous, complicated and, somehow, chaotic evolution. The world at large scales is
far from being a place of order and harmony, it is on the other hand a place char-
acterized by violent and catastrophic phenomena, encompassing explosions, gravi-
tational collapses, collisions of galaxies and continuous, gigantic displacements of
energy that remodel its structure, while, in the background, persists an accelerated
expansion, possessing all the features of a creation from nothing, disordered and
probably stochastic.

4.3 Expansion of the Universe

Let us review the historical path through which the contemporary vision of a con-
stantly expanding dynamical Universe replaced Aristotle’s view of a static eternal
world.
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4.3.1 Why the Night is Dark and Olbers Paradox

Heinrich Wilhelm Olbers was born in 1758 at Arbergen in the vicinity of Bremen.
As he reached the appropriate age for that, he went to Saxony where he enrolled
as a student of the Göttingen Medical Faculty. In 1780 he graduated from Göttin-
gen University and made return to Bremen where, during the day, he practiced the
medical profession, while at nights he looked at the sky. At home, doctor Olbers
had transformed his own loft into an astronomical observatory and he was the first
to invent a method to compute the orbits of comets. In 1815 he discovered a new
comet that to the present day bears his name. Earlier he was among the firsts who
observed asteroids. In 1801 the Italian monk Giuseppe Piazzi discovered the first
asteroid, in 1802 Olbers spotted the second and named it Pallas. Five years later, in
march 1807, he discovered a third one that was christened Vesta by Gauss, specially
solicited by its discoverer to name the new celestial body.

Olbers’ obsession was the darkness of the night sky and in 1823 he formulated the
thesis that such fact is in conflict with the hypothesis of an infinite eternal and static
universe. The thesis was published in 1826 and since then it is named the Olbers
paradox, although it seems that the same idea had been put forward by other people
years or centuries before and among them also by Kepler. The paradox consists of
the rather obvious observation that at any angle from the Earth the sight line should
end at the surface of a star, so that the night sky should be completely white. This
would certainly happen if the Universe were infinite and infinitely old: in that case
in any direction we should find at some distance a star and, no matter how large
that distance were, an infinite age of the Universe would grant a sufficient time for
the light emerging from such a star to travel to the Earth. Quite simply, according
to Olbers, darkness of the night points to the fact that the Universe is finite both in
space and time and probably expanding.

4.3.2 Hubble, the Galaxies and the Great Debate

Edwin Hubble (see Fig. 4.2) was born in 1889 at Marshfield in Missouri: his father
was a lawyer and Edwin was the fifth of seven brothers. Very tall and athletic, in
the course of his life he practiced many sports almost professionally. Astronomy
was a passion for him since early youth but became his stable profession only after
some time. At the beginning of his career he was a student of Chicago University
where he actually devoted most of his time to sports. In 1910, being the recipient
of a prestigious fellowship, he went to England where he studied Law at Oxford
University. However, coming back to the States after graduation, he did not become
a lawyer, rather a high school teacher in Kentucky. After one year he quitted also
that profession and went to Indiana where he worked as the coach of a basket team.
In 1914 he left that job and returned to Chicago University where he studied As-
tronomy. In 1917 he graduated defending a doctoral thesis entitled: Photographic
Investigations of Faint Nebulae. In his work the candidate came to the conclusion
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Fig. 4.2 Edwin Hubble
1889–1953

that spiral nebulae are not galactic objects. In this way Hubble was addressing the
most fundamental question of Astronomy that had raised the passionate interest of
scientists for more than a century and that would culminate three years later in the
famous Great Debate that opposed Harlow Shapley to Herbert Curtis in front of
the National Academy of Sciences on April 26th 1920. The question at the root of
the Great Debate is a very relevant and fundamental one and can be summarized as
follows: how large is the cosmos and what is its large scale structure? Indeed it is
correct to state that the real vastity of the Universe was immensely underestimated
in the whole course of human history and that this situation still persisted in the
first decades of the XXth century although some hints of the truth had already been
collected.

For the Ancients the World was essentially constituted by the Sun and the Planets,
namely by the solar system, which they considered surrounded by the fixed star
sphere on whose nature ideas were always very vague (see for instance [1] for more
details).

When the heliocentric theory of Copernicus replaced the Ptolemaic geocentric
system, a new conceptual problem arose whose only resolution resided in the fol-
lowing conclusion: the distance between the Sun and the other stars is actually gi-
gantic to an extent never suspected before. Indeed if the Earth orbits around the Sun
and the fixed stars are fixed with respect to this latter, why we do not see them mov-
ing in the sky progressively changing their angular position from the winter to the
summer solstice? This necessarily implied angular displacement was named paral-
lax and it was immediately noted that measuring it and knowing the distance from
the Earth to the Sun one might compute the distance of the latter from the observed
star. Yet no star displayed such an angular motion and until 1838 no star-parallax
was ever detected. There were just two options: either the heliocentric system was
wrong or all the stars were so enormously far away from the Sun that parallax an-
gles resulted immensely tiny and smaller than the resolution of all the available
instruments.
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Fig. 4.3 The parallax angle is the angular amplitude of the apparent motion of a star due to the real
motion of the Earth around the Sun. The first parallax angle was measured for the star 61 Cygni in
the Cygnus constellation. In 1838, Bessel evaluated it as 0.314 seconds of arc. Explanation of the
Italian wording in the table: Orbita della Terra attorno al Sole = Orbit of the Earth around the Sun.
Stella vicina = Close Star. Angolo di parallasse = parallax angle. Moto apparente della stella =
Apparent motion of the star. Stelle distanti “fisse” = Distant stars, “fixed”

At the beginning of the XIXth century no one could doubt about the correctness
of the Copernican system, explained by Newton’s gravitational law and tested by
more than a century long extensive use of perturbation theory in the calculation
of planetary orbits. Therefore stars were enormously distant from us, yet how far,
enormously meant, could be established only if some parallax angle, no matter how
tiny, could be finally measured.

Such a measure was provided by Friedrich Wilhelm Bessel, the German as-
tronomer and mathematician whose family name is associated with one of the most
important class of special functions. In 1838 he succeeded in determining the paral-
lax angle of 61 Cygni. His measure provided the figure of 0.314 arc-seconds which
corresponds to a distance of 11.4 light-years from the Sun (see Fig. 4.3). In this way
we finally knew that one of the stars closest to us, so close that we can measure its
parallax, is at a distance not smaller than 100 billions kilometers.

This was the first step of the ladder on which Human Mind started to step up in
order to estimate the real spacial extension of the visible Universe.

The same year Friedrich Georg Wilhelm von Struve e Thomas Henderson mea-
sured the parallax of Vega and Alpha Centaury. In the meantime astronomers began
to detect nebulae and the discussion started about their physical nature and about the
nature of the Milky Way, known to Mankind since the very beginning of civilization.

The Kantian conception of Euclidian Geometry, considered a necessary a priori
representation that is the foundation of all external perceptions, constituted an ob-
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Fig. 4.4 Portrait of Sir William Herschel (1738–1822) who was probably the most famous as-
tronomer of the 18th century. Born in Hannover in 1738, he was the son of a musician, officer of
the Military Guard. When his father’s regiment visited England in 1755, young Herschel began to
study English. As the Princes of his native German country became the Royal Family of the United
Kingdom, the future Sir William followed them to Britain, where he continued his musical career
as a teacher, concert player and organist. He was also a composer and his music is worth consider-
ation. His interest for astronomy led him to be the first builder of large telescopes and to make few
sensational discoveries that granted him world-wide fame. Helped in his astronomical ventures by
his sister Carolina, he discovered the planet Uranus. Then he extensively studied nebulae and listed
and classified more than 1500 of them. His giant telescope with a 48 inch aperture was constructed
in 1788 with special funds from the English Crown and until 1840 it remained the largest of the
world. In 1816 Herschel was made “Sir” by the King and in 1821 he was elected first president of
the Royal Astronomical Society

stacle to the development of non-Euclidian Geometry and forced Gauss, who had
the first intuition of its existence, not to publish his own results, in order to avoid, as
he confessed later, the Loud Cries of the Beotes, namely of the post-Kantian philoso-
phers dominating the German culture of his times. So, from this point of view, Im-
manuel Kant was responsible for delaying the comprehension of our Universe with a
heavy conceptual prejudice. From another viewpoint, we have to acknowledge Kant
as an enlightened pioneer of a realistic representation of the Cosmos, representation
that was not yet established on stable grounds in 1920 and became such only a few
years later thanks to the work of Edwin Hubble.

In 1755, in his juvenile work entitled Allgemeine Naturgeschichte und Theorie
des Himmels, namely General History of Nature and Theory of the Sky, Kant was
the first to present the theory of Island-Universes and interpret the Milky Way as
a vast cluster of stars that forms a plane disk of almost perfect circular shape. The
nebulae that we see in the sky and which, few years later, Sir William Herschel (see
Fig. 4.4) started to observe attentively and depict in his famous tables, are nothing
else, said Kant, than similar clusters of stars organized in a way fully analogous to
that of the Milky Way.
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What impressed the young philosopher was the elliptical form of many nebulae.
This led him to think that they might be gigantic circular arrays of stars which appear
elliptical if seen at an angle different from zero. In this way Immanuel Kant was the
first to hint at the existence of galaxies and correctly identified the Milky Way as the
Galaxy which encompasses the Solar System.

In 1920, notwithstanding Kant’s first intuition and notwithstanding the vast
amount of data accumulated in one and a half century of observations that Her-
schel had just initiated, the theory of Island-Universes was just only a hypothesis
accepted by some scientists and opposed by many others.

On April 26th of that year, in front of the National Academy, Harlow Shapley,
who was born in 1885 in the State of Missouri and held, at that time a permanent job
at the Mount Wilson Observatory, claimed that the Galactic System, i.d. the Milky
way, has a radial extension of about 300.000 light-years and that there is evidence
against the vision suggesting that the spirals are galaxies made of stars just as
ours. . . Actually the spirals are not made out of stars, rather they are clouds of gas.
Shapley, however, concluded that, although the spirals are galactic gas clouds and
not new galaxies, yet somewhere else there might exist other stellar systems even
bigger than ours which so far have not yet been identified and lie at such enormous
distance from us that they are unaccessible to present day observation instruments.

In other words the evaluation of the Universe’s spatial extension implicit in Shap-
ley’s arguing was that this latter might be of the order of magnitude of the Milky
Way’s size just as it might be immensely larger. In any case Shapley thought that at
his time there was no experimental chance of answering such a question.

The same day and in front of the same scientific gathering, Herber Curtis, who
had been recently appointed Director of Pittsburg Observatory in Pennsylvania and
who was thirteen year older than Shapley, presented a completely opposite thesis. In
his conclusions he said: Henceforth I subscribe to the following opinion, namely that
the Galaxy is not larger than 30.000 light-years, that spirals are not galactic objects
rather Island-Universes analogous to our own Galaxy and that these facts point to
a much bigger Universe where we may push our sight to distances ranging from ten
to hundred millions of light-years (see [2] for more details on the Great Debate).

By means of his arguing, Curtis had raised the spatial extension of the Cosmos
by a factor one thousand with respect to the cautious estimate of Shapley. In the
same decade the visible Universe was to be extended of another factor 100 reaching
the order of tens of billions of light-years.

Both Shapley and Curtis who respectively died in 1972 and 1942, were to wit-
ness, in the years following 1920, Hubble’s results that, on one side confirmed Cur-
tis’ thesis of island-universes and on the other gave, for the first time, not only an
evaluation of the Universe’s spatial extension but also of its age.

In 1923 Hubble succeeded in enlarging the images of the M31 and M33 galaxies,
respectively known as Andromeda and Triangle Galaxy (see Fig. 4.5). On October
3rd of 1923 he was able to spot a variable star within Andromeda and in a few month
time he had singled out a conspicuous number of Cepheides inside both Andromeda
and the Triangle. As a newcomer to Astronomy, young Hubble had already piled up
such results as to win for himself an imperishable fame and become also the true
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Fig. 4.5 The Galaxies M31
and M33, also known as
Andromeda and the Triangle
Galaxy are, together with the
Milky Way the principal
members of the local group,
composed by these giant
spirals plus a pair of dozens
of smaller galaxies

father of Modern Cosmology. Indeed his discovery clarified once for all the issue
of island-universes. The spirals are not galactic objects, as Shapley affirmed not
earlier than three years before, rather they are other galaxies formed by billions of
typical stars. Furthermore in two of these galaxies Hubble had found a few standard
candles that allowed him to measure their distance. As we further explain in Fig. 4.6
a standard candle in Astronomy is a luminous source whose absolute luminosity is
known a priori from some other identifier. In this way by using the inverse square
law, obeyed by the apparent luminosity with respect to the absolute one, we can
evaluate the distance of the emitting source.

In 1912, Henrietta Leavitt (see Fig. 4.7), from the Harvard Astronomical Obser-
vatory, discovered 25 variable Cepheides within the Small Magellanic Cloud. Of
each of these pulsating stars, Henrietta determined the period P . She noticed that
longer was the period, more luminous was the star, following a precise analytical re-
lation that she was able to fit to the data (see Fig. 4.8). No one had before noted such
relation because of lack of information on the absolute luminosity of the observed
stars. On the contrary the Cepheides of the Small Magellanic Cloud could be con-
sidered all at the same distance from us, since their relative distances are negligible
with respect to distance of the Cloud from us. Hence although the absolute magni-
tudes of the 25 Cepheides were unknown, the ratios of their apparent magnitudes
were essentially equal to the ratio of their absolute ones and Miss Leavitt was able
to draw the period-luminosity curve. Later on by determining the precise distance
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Fig. 4.6 The concept of standard candle is based on Gauss Law of fluxes which is satisfied by
any type of massless radiation like the electromagnetic one. Since the flux through any spherical
surface that surrounds the source is constant, it follows that the apparent luminosity decreases, with
respect to the absolute one, with the square of the distance from the surface. If we happen to know
the absolute luminosity then, by measuring the apparent one, we can easily evaluate the distance
which separates our terrestrial environment from the observed object

Fig. 4.7 Henrietta Leavitt (1868–1921) was completely deaf. This notwithstanding she was one
of the first women who made a scientific career in Astronomy. After graduation from the Rad-
cliffe College, an allied institution of Harvard University, she obtained a job from the Harvard
Observatory as a human-computer, namely as a human resource for those calculations that at that
time, deprived of electronic computers, had to be done by hand. In 1912 she made her great dis-
covery about variable Cepheides. She died from cancer in 1921. Proposed for the Nobel Prize by
Mittag-Leffler she could not get it since she had already died at the time of assignment
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Fig. 4.8 The empirical Law
of Cepheides determined by
Henrietta Leavitt. The
absolute luminosity L of the
star grows with the period P

of variability expressed in
days according to a curve of
type L= P 1.124. Under the
plot, the reader can see a
picture of the Small
Magellanic Cloud within
which, in 1912, Henrietta
Leavitt discovered 25
Cepheides. The Large and
Small Magellanic Clouds
actually are two Dwarf
Galaxies, satellites of our
own Galaxy, the Milky Way.
They are visible with naked
eye in the Austral Emisphere
and were observed by
Magellan in his famous trip
around the world in 1519

of some close-by Cepheides, this type of variable stars was turned into a precious
system of standard candles. In 1913 Hertzsprung established that a Cepheid with
a period of 6.6 days had an absolute magnitude equal to +2.3 and on the basis of
this result, using Leavitt’s curve he determined the absolute magnitude of all the
Cepheides. Few years later Hertzsprung 6.6 value was corrected by Shapley into
5.96 which was not yet the completely correct result but almost it.

By a long tradition that dates back to the Ancient Astronomers Star luminosities
are measured on a logarithmic scale organized as follows. Larger the magnitude
dimmer the star, and stars of magnitude n are always a factor 2.512 brighter than
the stars of magnitude n+ 1.

Magnitude of the star Times dimmer than 1st magnitude stars

1 0
2 2.5
3 6.25
4 15.63
5 39.06
6 97.66
7 244.14

(4.3.1)
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The Greeks had organized all visible stars in six classes of magnitudes where the
magnitude 1 stars were the most luminous. With the invention of the telescope and
modern equipment to measure star magnitudes the scale has been extended in both
directions. Dimmer stars are assigned magnitudes larger than 6 while stars brighter
than first magnitude stars are assigned negative magnitudes. The absolute scale is
fixed by the magnitude of the Moon and of the sun that are respectively given by
−12.7 and −26.75. This means that a magnitude one star has a luminosity which is

1
(2.512)26.75 � 1

5.02 × 10−10 dimmer than the luminosity of the Sun. The new method
of measuring distances based on Leavitt’s discovery produced a new significant leap
forward of Mankind on the cosmic ladder. New unprecedented possibilities opened
up to evaluate the actual dimensions and structure of immensely far away objects.
Hubble took advantage of these possibilities.

Having discovered standard candles in the two spirals Andromeda and Triangle,
he was able to determine their distance from us. As we know today with higher
precision, these are 2.5 and 2.81 millions of light years, respectively. Hubble’s cal-
culation produced two numbers of the same order of magnitude but underestimated
by a factor 2. Responsible for this was the unprecise absolute normalization of the
luminosity-period curve provided by Shapley in 1916.

Apart from this, the relevant point is that Curtis’ viewpoint was entirely con-
firmed. Spirals are not galactic objects, rather they are other galaxies similar to our
own and those closest to us are millions of light-years away from the Sun. Hub-
ble’s paper containing the determination of the distance of M31 and M33 by means
of Cepheides was presented to the American Astronomical Society in Washington
on January 1st 1925. It was awarded a 1000 dollar prize ex aequo with some other
contribution already forgotten in history. After that communication the human per-
ception of the visible Universe had completely changed. It was now established that
Kant’s theory of island-universes was true: the world is made of a number at that
time unknown, but probably enormous, of galaxies, each of which contains a num-
ber of stars of the order of the billion and the distances separating galaxies one from
the other is of the order of the million of light-years.

4.3.3 The Discovery of Hubble’s Law

The most important astronomical discovery of the XXth century that started Modern
Cosmology and transformed it from metaphysical arguing into an observative and
experimental science is Hubble’s law on the universal recession of galaxies [3].

Already in 1914 Slipher had measured the radial velocity of 13 spiral nebulae
and with great surprise he had found that they were all recessional, namely corre-
sponded to an outgoing motion from the Sun, and were quite large. When in 1925
appeared Hubble’s results on M31 and M33, Slipher had already measured the ra-
dial velocities of more than 39 galaxies. Then Hubble began to work with the large
100 inch. reflector of Mount Wilson and in 1929 he already mastered data for 46
galaxies and for 24 of them he also determined their distance using Cepheides, Blue
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Fig. 4.9 Pictorial description
of Hubble’s Law which
implies the expansion of the
Universe

Stars and Novae. Assembling all this information he found a very simple and much
intriguing relation. The radial velocities of all galaxies, once the Sun motion within
the Milky Way was subtracted, appeared to be recessional and proportional to their
distance. In other words all galaxies escape from us and they escape with a velocity
which is faster as they are further away from us.

So in 1929, in the same year of the Wall Street disaster that started the Great
Depression period, Hubble presented the linear law of universal recession:

v =H0 d (4.3.2)

where v is the recession velocity of a galaxy, d is its distance from the center of the
Milky Way and H0 is a universal constant with the dimension of the inverse of a
time which, since then, was named the Hubble constant.

Hubble’s law is the fundamental observational datum which reveals the expan-
sion of the Universe (see Fig. 4.9). With this 1929 result the dark night paradox of
Olbers found its profound resolution and Aristotle’s conception of an ethernal and
static Universe was definitely dismissed. Modern Cosmology was born, whose ob-
ject of study is a Universe in constant evolution: a turbulent physical system of high
complexity whose large scale dynamics is dominated by gravitational interactions
described by Einstein’s General Relativity.

Yet it is interesting to note that nowhere in his 1929 article did Hubble mention
the expansion of the Universe and also in the following decades he was always
quite critical and substantially opposed to the interpretation of his own law as a
manifestation of cosmic expansion, interpretation which was instead adopted by the
whole scientific community. For instance seven years after his discovery in a paper
published on the Astrophysical Journal in 1936, Hubble wrote: If the redshifts are
actually velocity-shifts that measure the expansion speed of the Universe, than the
theoretical models are all inconsistent with observations and the expansion is an
unjustified interpretation of experimental results.

In this reluctance to accept the consequences of his own discovery, Hubble was
influenced by the doubts of Einstein with whom he met many times in California. All
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Fig. 4.10 Georges Edouard Lemaitre (1894–1966), Belgian by nationality, was at the same time
a catholic priest and a mathematical physicist. He studied first in a Jesuit College at Charleroi
and then he studied Mathematics and Physics at the Catholic University of Leuven. He entered a
seminar in 1920 and became a priest in 1923. In the following years he was particularly attracted
and got involved in the General Theory of Relativity, meeting Einstein several times. He worked at
the Astronomical Observatory of Cambridge in England under the supervision of Eddington and
after that at the Massachusetts Institute of Technology in the USA where he wrote his doctoral
thesis. In 1925 he went back to Belgium where he was appointed professor of Leuven University.
There he thought until 1964. Essentially Lemaitre is the father of the Big Bang Theory which was
named such for the first time by Fred Hoyle in a radio broadcast of 1949. For the same concept
Lemaitre used the different name of primeval atom

of its life Einstein could not accept the idea of an expanding Universe and constantly
looked for an alternative way out from the predictions of his own theory. Indeed
Einstein’s field equations, as we will extensively discuss in this chapter, are not only
in agreement with Hubble’s results, rather they codify them into an effective and
consistent theoretical frame.

To Georges Lemaitre (see Fig. 4.10) who, in 1927, independently from Fried-
man, Robertson and Walker derived that solution of General Relativity [4], which
nowadays constitutes the basis of the Standard Cosmological Model and which we
extensively discuss later on, Einstein wrote in French: Vos calculs sont corrects,
mais votre physique est abominable, namely, your calculations are right but your
physical interpretation is abominable.

In order to avoid similar conclusions Einstein introduced the cosmological con-
stant Λ that allowed him to obtain static solutions for the cosmic metric. At the end
of his life Einstein agreed to withdraw such a constant that all experimental data of
that time suggested should be zero. Ironically, suitable reinterpreted, the cosmolog-
ical constant is a manifestation of the Dark Energy, which is responsible not only
for the cosmic expansion but also for its acceleration.
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4.3.4 The Big Bang

How was Hubble’s Law derived and how can it be verified? The answer is by means
of the redshift of atomic spectral lines.

In order to clarify this point it is convenient to consider its analogy with the
familiar Doppler effect in acoustical waves. We all made experience of what happens
when an ambulance goes by, horning his siren. When the vehicle approaches the
tune of its siren is high pitched while, when it runs away from us, the siren tune falls
off and off. Moreover the faster the vehicle runs away, the lower falls the tune. The
same happens for light waves, namely for photons.

The faster a luminous source recedes from an observer the redder it appears to
him. Hence by performing the spectral analysis of the light which comes to us from
distant galaxies we can recognize the structure of spectral lines for all atomic tran-
sitions but we also find that they are all shifted towards low frequencies and that
they are the more shifted the larger is the distance of the observed galaxy. Defining
redshift the percentual change of spectral lines and plotting it against the distance
one obtains a line whose slope is Hubble’s constant H0.

Hence the redshift factor is defined:

z= λ− λ0

λ0
(4.3.3)

where λ is the wave-length of a spectral line observed in a distant galaxy while λ0
is the wave-length of the corresponding spectral line observed in laboratory experi-
ments on the Earth (see Fig. 4.11).

What is the interpretation of Hubble’s Law?
At first sight one might think that it denotes our privileged position in the Uni-

verse. If all cosmic objects radially recede from us, it follows that we are at the
center of the Universe which, once upon a time, was all concentrated in the place
where we are now. Furthermore a linear relation between the recession velocity and
the distance suggests the scenario of a gigantic primeval explosion. At the time when
a bomb explodes all of his fragments are expelled in all directions with different ve-
locities. After some time the faster fragments have run the further and for this reason
they are more distant.

This interpretation which corresponds to an anthropic principle is what suggested
the naming BIG BANG, yet it is somehow naive and conflicts with the homogeneity
and isotropy of the Universe. As a consequence of this homogeneity and isotropy
we should rather suppose that what we see is exactly the same picture seen by any
other observer in any other galaxy. How can we then interpret Hubble’s Law?

The intuitive model is the following one.
The galaxies are like balls arranged on a elastic sheet (the three-dimensional

space) and with respect to that sheet they do not move. Yet it is that sheet that is
uniformly stretched in all directions and as a consequence of this stretching every
ball recedes from every other one. This way of thinking leads us to the concept
of time dependent scale-factor (see Fig. 4.12). Imagine that our three-dimensional
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Fig. 4.11 The redshift of
distant galaxies

Fig. 4.12 The expansion of
three-dimensional space

space is something like the surface of a two-sphere and that the galaxies are arranged
and soldered at fixed locations on that spherical surface. Let us now imagine that
some demon inflates the sphere, namely that he enlarges its radius while times goes
on. All distances between each of the galaxies with all the others have fixed ratios
but they are all proportional to the radius of the sphere which grows in time and so
they also uniformly grow. It is like if the unit of measure increased constantly and
were a function of time. We denote this time dependent unit of measure the scale
factor and we denote it as a(t).

Velocity is the derivative of the distance with respect to time. A simple calcula-
tion shows that we can deduce Hubble’s Law from the above reasoning and identify
Hubble’s constant with the logarithmic derivative of the scale factor at the present



86 4 Cosmology: A Historical Outline from Kant to WMAP and PLANCK

cosmic time t0:

v(t) = d

dt
d(t)= ȧ(t)r

⇓
v(t) = ȧ(t)

a(t)
d(t)=H(t) d(t) (4.3.4)

⇓
H0 = H(t0)

The Hubble constant actually is not a constant, rather it is a function of the cos-
mic time and it encodes information about the first derivative of the scale factor,
namely about the velocity of the expansion of the Universe. The parameter H0 orig-
inally measured by Hubble and determined with increasing precision in subsequent
observations is the value at the present time of the Hubble function H(t).

The first who introduced the notion of Big Bang, namely the theory according to
which the present Universe evolved by expansion in the course of time starting from
an initial state of enormous density, very tiny and extremely hot was Monsegneur
Georges Lemaitre, on the basis of the solution of Einstein equations that bears his
name together with those of Friedman, Robertson and Walker. He never used the
wording Big Bang, rather referred to his own hypothesis as to that of the primeval
atom. As far as we know the name Big Bang was invented as a despising joke
by Fred Hoyle during a radio interview in 1949. Hoyle, like Einstein did not like
expanding universes.

It is almost a historical nemesis that this ironical nickname of a serious but auda-
cious theory became the official scientific name of the standard cosmological model.
The idea of the primeval explosion has so much penetrated the common language
and has become so popular that when my daughter, now twenty-four of age, started
studying history at the elementary school, her textbook started no longer with the
Great Flood rather with the Big Bang.

4.4 The Cosmological Principle

The mathematical basis needed to postulate the type of metric which now goes under
the name of Friedman, Lemaitre, Robertson and Walker (FLRW), arriving at those
conclusions that Einstein so much hated and from which emerges the Big Bang
scenario, are provided by the Cosmological Principle.

This latter assumes two properties that are supposed to characterize the structure
of space-time on very large scales, namely:

1. Isotropy.
2. Homogeneity.

Isotropy means invariance against rotations, namely in whatever direction it is
pointed, our telescope should reveal approximately the same panorama. Homogene-
ity, on the other hand means invariance against translations. In other words what we
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Fig. 4.13 The hierarchy of cosmic distances. First step in the ladder: 100.000 light years, the
Galaxy

see from our own galaxy should be the same landscape observed by any other ob-
server placed in any other galaxy no matter how far from us.

There is no a priori reason to assume the Cosmological Principle and at first sight
no empirical basis for it appears to exist, given the granular structure of our universe
made of stars grouped into galaxies that are, in turn, grouped into galaxy clusters.
Cosmology, however, aims at studying the history of the Universe, analyzing its
evolution at so large scales that we can consider galaxies as the point particles of a
cosmic dust.

Let us then consider the scale-hierarchy.
Indeed the Universe appears granular only at short distant scales.

• 100.000 light-years is the typical dimension of medium size galaxies like our
own, the Milky Way. See Fig. 4.13.

• 10 millions of light years is the scale of galactic clusters. See Fig. 4.14.
• 100 millions of light years is the scale of galactic super clusters. See Fig. 4.15.
• At the scale of one billion of light years, our Universe appears as a homogeneous

soup of galaxies and it may be modeled as a perfect fluid. See Fig. 4.16.

The first basis for the Cosmological Principle is this matter of fact evidence on the
homogeneous distribution of galactic clusters at very large scales.

Mathematically the Cosmological Principle is enforced by assuming that the
space-time metric possesses a set of isometries, namely a set of continuous trans-
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Fig. 4.14 The hierarchy of cosmic distances. Second step in the ladder: 10 millions of light years,
the Local Group and its neighbors

formations that leave it invariant and form among themselves a Lie group. Isotropy
requires that all rotations contained in SO(3) should act as isometries on the cos-
mological metric. Similarly homogeneity requires that there should be three transla-
tional isometries namely as many as the spatial dimensions of the Universe. Impos-
ing such conditions is equivalent to selecting the geometry of constant time sections
of space-time. The proper mathematical treatment of isometries is encoded in the
theory of coset manifolds and symmetric spaces which is a chapter of Lie algebra
and Lie group theory. The geometry of coset manifolds will be summarized in an
appropriate mathematical section in next chapter.

At each instant of time the Universe is a three-dimensional space. Assuming the
Cosmological Principle means that such a space should admit the maximal possible
number of isometries. The mathematical theory of coset manifolds shows that in
dimension d = n such maximal number is 1

2n(n+ 1), namely precisely 6 for d = 3.
Furthermore the same mathematical theory shows that there are just only three max-
imally symmetric manifolds in d = 3. In these spaces the curvature is constant over
the manifold and we just have to decide its sign, namely the sign of the constant
curvature scalar, positive, negative or null. This choice is encoded in a parameter κ
whose possible values are κ = 1,−1,0, corresponding to the three possibilities we
just mentioned. The three maximally symmetric spaces in d = 3 are S

3, namely the
three-dimensional generalization of the sphere, corresponding to κ = 1, the three-
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Fig. 4.15 The hierarchy of cosmic distances. Third step in the ladder: 100 millions of light years,
the galactic superclusters

dimensional analogue H
3 of the pseudo-sphere, corresponding to κ = −1, and R

3,
corresponding to κ = 0, which is the standard three-dimensional Euclidian space.

As we will discuss in great detail later on, having imposed such conditions the
four-dimensional line-element which encodes the cosmic gravitational field, takes
an extremely simple form which is indeed that of the FLRW metric. Naming t the
time coordinate and collectively x the spatial coordinates that label the points of the
chosen three-dimensional manifold, we can write:

ds2 = −dt2 + a2(t) dΩ2
κ (x) (4.4.1)

where dΩ2
κ (x) denotes the line-element of the three-dimensional maximally sym-

metric space selected by the value of κ . Substituting the ansatz (4.4.1) in Einstein
equations and modeling the matter content of the universe as a perfect fluid one
obtains certain differential equations for the scale factor that are named Friedman
equations and have radically different solutions for different signs of the scale fac-
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Fig. 4.16 The hierarchy of cosmic distances. Fourth step in the ladder: 1 billion of light years:
homogeneous distribution of super-clusters

tor. In all cases there is a fast initial expansion, later, however, the expansion velocity
decreases and the deceleration is stronger and stronger as the curvature increases.

The case of negative curvature κ = 1 is named the open universe. As we will
derive in the sequel from Friedman equations the expansion of the open universe
continues indefinitely, yet it slows down until it reaches a linear behavior. When the
open universe is very old, the scale factor grows like a(t)≈ t .

The case κ = 0 is named the flat universe. Also here the expansion is endless,
yet, as we will see, it tends asymptotically to a weaker growth than linear. When the
flat universe is old, its scale factor grows as: a(t)≈ t2/3.

The case κ = 1 is named the closed universe. For positive curvature the scale fac-
tor growth slows down up to zero velocity in a finite time. After that the expansion
reverts into a contraction. The galaxies no longer recede from each other rather they
begin to come together and the further apart they are the faster they approach each
other. The redshift is turned into a blueshift. The universe becomes progressively
smaller and smaller, hotter and hotter. In a finite time the closed universe collapses
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Fig. 4.17 The behavior of the scale factor in a matter filled universe for the three cases of positive,
negative and null spatial curvature

into a state of infinite energy density. The Big Bang is followed, in the closed uni-
verse, by a Big Crunch.

These are the implications, visually summarized in Fig. 4.17 and accurately de-
rived in the next chapter, of the Cosmological Principle, namely of the assumption
that the Universe is isotropic and homogeneous. Is it really such?

4.5 The Cosmic Background Radiation

The final answer to the question posed at the end of the previous subsection came
in 1965 thanks to Arno Allan Penzias and Robert Woodrow Wilson who, for their
discovery of that year were awarded the Nobel Prize in 1978.

Penzias was born in a Jewish family in Munich in 1933, the very same year when
Hitler got to power. Wilson was born three years later in that Texas which at the end
of World-War Two boasted the victory on Germany, as a contemporary newspaper
ironically wrote one of those days: Texas has defeated the Third Reich.

In 1939 Arno Penzias was among the 10.000 Jewish children who were evacuated
from Germany and transported to England with the naval operation later known
as Kindertransport. He was luckier than the majority of his fellow travelers who
lost their parents and relatives in the Nazi lagers of the Holocaust. Arno’s father
and mother succeeded to flee to the United States just six months later than the
evacuation of their son who could reach them in New York. There he lived, studied
and in 1962 he got his Ph.D. at Columbia University.

Penzias and Wilson, who had obtained his Ph.D. from the California Institute of
Technology at Pasadena, met a short time later at the Laboratories of the Bell Tele-
phone Company in New Jersey. Both young researchers had been hired by Bell and
in the little village of Holmdel, near the Company Headquarters at Crawford Hill,
they worked at the construction of a new large radio antenna. The Horn Antenna
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Fig. 4.18 The two discoverers of the Cosmic Background Radiation, Penzias and Wilson with
their instrument, the Horn Antenna

they had designed was conceived for experiments in radioastronomy and telecom-
munications between the Earth and the artificial satellites (see Fig. 4.18). However
there was a problem.

The sophisticated apparatus displayed an excess of antenna temperature of 3.5
Kelvin degrees that the two brilliant engineers could not explain. From Crawford
Hill they phoned Princeton University and discussed their problem with Dicke,
Wilkinson and Roll who were constructing another similar radio antenna. Imme-
diately after that conversation Dicke exclaimed to his collaborators: Guys, they got
it! They made the scoop! Which was the scoop alluded to by that distinguished pro-
fessor who, during World War Two, at the Radiation Laboratory of the MIT, had
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Fig. 4.19 Alexander Friedman (1888–1925) and his student Georgij Gamow (1904–1968)

created the Dicke radiometer, a sophisticated detector of electromagnetic waves?
The scoop was the discovery of the Cosmic Background Radiation. With great intu-
ition Dicke had immediately guessed the origin of that 3.5 K excess. No terrestrial
phenomenon and no instrumental error could explain it. Behind that ultra-cold rem-
nant lurked a cosmic phenomenon that had been predicted, few decades before by
another brilliant fugitive.

Georgij Antonovich Gamow (see Fig. 4.19) was born from Russian parents in
1904 in the imperial town of Odessa, refunded in 1794 by Catherine the Great on
the ruins of the Turkish Town of Khadjibey, just captured by the Russians from the
Ottomans. At the beginning Gamow studied in his natal town at the University of
Novorossya, but in 1922 he went to Saint Petersburg, transformed into Leningrad
after the October Revolution. Here he became student of Alexander Friedman.

This latter, a brilliant Russian Mathematician and Physicist, spent the whole of its
life in Leningrad and prematurely died at the age of thirty-seven in 1925. His name
corresponds to the F in the denomination of the standard cosmological metric. In a
1924 article, published in German on the Zeitshrift für Physik and bearing the title
Uber die Möglichkeit einer Welt mit konstanter negativer Krümmung,1 Friedman,
independently from Lemaitre, presented the cosmological solutions, isotropic and
homogeneous, of the Einstein equations for the three cases of positive, negative and
null curvature (κ = ±1,0) [5]. Robertson and Walker reobtained the same solutions
ten years later. It is also interesting to stress that the mathematical solution of 1924

1On the possibility of a world with negative spatial curvature.
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had no motivation in experimental data since Hubble’s law was discovered only five
years later when Friedman was already dead.

In Leningrad, Gamow, who lost his thesis advisor before the end of his Ph.D., ob-
tained in 1929, established a close friendship relation with another student who was
to become one of the greatest physicists of the XXth century: Lev Davidovich Lan-
dau. Nobel laureate in 1962 for its theory of superfluidity, Landau was the greatest
master of Soviet Physics and the endless series of volumes of his course on theoret-
ical physics, written with his younger collaborator Lifshitz has been the educational
basis of thousand of physicists around the world.

As for intellectual phantasy and scientific successes, Gamow was not that much
inferior to his friend Landau. Differently from the latter who, except for two short
trips to Copenhagen and Zürich, never left the Soviet Union, and suffered also one
year in jail at the time of Stalin Purges, Gamow, who had worked both in Copen-
hagen and Göttingen tried to emigrate as early as 1932. With his wife he tried an
escape on a small boat once on the Black Sea towards Turkey, a second time from
Murmansk to Norway. Both times they failed because of very bad weather condi-
tions, but in 1933 the Gamows succeeded in their intent having obtained from Soviet
authorities the permission to participate to one of the famous Solvay Conferences
in Brussels. There they deserted the Soviet Union and became political refugees.
In 1934 from Belgium they went to the United States where, becoming Americans,
they spent the rest of their life.

Gamow contributed fundamental results in nuclear physics explaining the β-
decay of heavy nuclei and was the inventor of the drop model of the nucleus.

In a paper [6], based on previous results of Alpher [7] and published in 1948
on the Physical Review, Gamow advocated that the Universe should be filled with
an electromagnetic Black Body radiation produced by all the atomic and subatomic
transitions occurred after the Big Bang. For a certain period during the cosmic ex-
pansion this primeval radiation was in thermal equilibrium with ionized matter and
the rest of the energy content of the Universe. However, as the expansion went on,
the primeval radiation fell out of equilibrium with matter that had recombined into
atoms and had become too rarefied in order to interact with radiation. Since that
moment, known as the decoupling time, the cosmic radiation became, according to
Gamow, a fossil which pervades the entire space-time but essentially does not in-
teract with anything. Furthermore because of the cosmological red-shift, due to the
universe expansion, which stretches all the wave-lengths,2 the effective black-body
temperature of the fossil radiation has cooled down to incredibly low values, close
to the absolute zero. Indeed knowing the age of the universe through Hubble’s law,
Alpher and Gamow evaluated the red-shift factor and predicted that the Cosmic Mi-
crowave Background Radiation should have a black-body temperature of the order
of few Kelvins. They advanced the prediction of 5 K.

In an almost accidental way, Penzias and Wilson had discovered the primeval
radiation predicted by Alpher and Gamow. Its temperature was not exactly 5 K
but very close to such number. In the first estimate of the discoverers 3.5 K, in

2The cosmological redshift will be explained in mathematical terms in later sections, at the end of
this historical introduction.
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subsequent more precise measurements 2.75 K. Dicke, Wilkinson and Roll were
constructing a Dicke radiometer in order to detect this cosmic background but they
were not fast enough. Penzias and Wilson had made the scoop and for that scoop
they were awarded the 1978 Nobel Prize in Physics.

The 1965 detection of the CMB (Cosmic Microwave Background) not only con-
firmed Gamow hypothesis and gave the first direct evidence of the Big Bang but
also provided an image of the primeval Universe.

Thirteen billion of years old, the CMB is the light emitted by the Last Scattering
Surface (LSS). By this name we denote the space occupied by the entire energy
content of the Universe at the time of decoupling. Hence the spatial distribution of
the CMB at the present time is a quite faithful image of the spatial distribution of
light sources at that very remote age. As it was immediately evident at that time
and as we could later verify with incredibly high precision, the CMB presents an
absolutely perfect black-body spectrum. The distribution of the energy amplitude
emitted at frequency ν, for unit of surface, unit of solid angle and unit of time,
follows the Planck curve (see Fig. 4.20). The experimental data for the CMB are
reproduced with incredibly high accuracy by the Planck curve corresponding to
temperature T = 2.725 K and this happens in the same way independently from the
direction in which our spectrometer points.

Recalling that what we see through the CMB is a uniformly redshifted image
of the LSS, namely of the primeval Universe we can conclude that this latter was
absolutely homogeneous and isotropic to a very high accuracy.

Therefore the detection of the CMB has been the experimental confirmation
of the Cosmological Principle. The Universe where we live has evolved from an
isotropic and homogeneous state and therefore is accurately described by a FLRW
metric. Assuming this latter, the Einstein equations imply without any possible es-
cape the expansion of the Universe, presently visible through the Hubble law. That
this expansion occurred through the last thirteen billion of years is also confirmed
by the gigantic redshift of the CMB. Starting from a temperature of about 3000 K
that was that of the Universe at the decoupling time, corresponding to about 400.000
years after the Big Bang, in the following 13 billions of years the radiation cooled
down to the present T = 2.725 K.

A trivial calculation provides a shaking evidence of this truth. As we shall prove
later on, the cosmological redshift goes as follows ν0 = ae

a0
νe where νe is the fre-

quency of a photon at the time of emission in the remote past while ν0 is the fre-
quency of the same photon detected at the present time. Similarly a0 and ae denote
the values of the scale factor at the two considered instants of time. From this con-
sideration it follows that the temperature of the cosmic black-body radiation follows
the same law and we have:

Te

T0
= a0

ae
(4.5.1)

From this we obtain the estimate:

a0

ae
∼ 3000

2.725
∼ 103 (4.5.2)
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Fig. 4.20 The perfect
Black-Body spectrum of the
Cosmic Microwave
Background Radiation

On the other hand the ratio between the two considered times is:

t0

te
∼ 13 × 109

4 × 105
∼ 3 × 104 ∼ 104.5 (4.5.3)

According to Friedman equations, the asymptotic behavior of the scale factor in a
flat matter dominate universe is a ∼ t2/3. Now it is remarkable that:

(
104.5) 2

3 ∼ 103 (4.5.4)

In other words the observed redshift of the CMB over the last 12.5 billions of years
from the decoupling is consistent with the expansion of the universe predicted by
Friedman equations in the case of a flat, matter dominated Universe.
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4.6 The New Scenario of the Inflationary Universe

The great success of the Standard Cosmological Model, based on the hypothesis
of the hot Big Bang and the principles of homogeneity and isotropy, which are
mathematically rephrased by assuming the FLRW metric (4.4.1), should not induce
the reader to think that everything has been understood and solved. In Physics the
absolute agreement of a theoretical model with experimental data is often the source
of a conceptual problem, rather than being its solution.

At first sight, such a statement might seem paradoxical, yet a short discussion can
clarify its profound meaning. If reality agrees perfectly and not only approximately
with some modeling of its behavior, that means that the hypothesis underlying our
model do not correspond to some accidental circumstances, rather to some funda-
mental law, and the problem is that of explaining such a law in terms of more pro-
found reasons and principles. A historical example is that of the identity between the
inertial and the gravitational mass. These latter are not approximately equal rather
they are equal with extraordinary precision. This means that a good theory of gravi-
tation should include such an identity as a necessary and founding condition, not as
an accidental fact. Starting from this consideration, as we know, Einstein discovered
General Relativity.

Similarly the Standard Model of Strong, Weak and Electromagnetic Interactions
has proved to be a very precise and accurate description of elementary particle
physics. Yet, this model includes a large number of parameters and the problem
is that of creating a more fundamental theory, within whose frame the values of
the standard model parameters can be predicted equal to those experimentally mea-
sured.

In the case of Cosmology, the high accuracy of the predictions of the Big Bang
Model implies the necessity of explaining in more profound terms the two hypothe-
ses that constitute its foundation, namely homogeneity and isotropy, alias the Cos-
mological Principle.

Considering this issue with a clear and not biased mind, we easily convince our-
selves that there is no a priori reason for the Universe to be so homogeneous and
symmetric, as it proves to be in observations. On the contrary, it would be natural for
it to be highly disordered and inhomogeneous. Indeed one can show that, starting
from a situation that includes anisotropies and inhomogeneities, Einstein equations
tend to enlarge them during time evolution. Therefore, if we confine ourselves to
consider Einstein theory with a Universe content made only of conventional matter
and radiation, then the extraordinary isotropy and homogeneity of the Universe at
present time requires that its initial state was prepared homogeneous and isotropic
with almost infinite precision, which is quite unnatural in any stochastic process.

Different is the perspective if we discover a physical mechanism that can prepare
such isotropic and homogeneous state starting from a generic one.

In 2002 the Dirac Medal of Trieste ICTP,3 which, after the Nobel Prize, is prob-
ably the most prestigious honor available to theoretical physicists, was awarded to
Alan Guth, Andrei Linde and Paul Steinhardt, for their fundamental contributions

3International Centre of Theoretical Physics.
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Fig. 4.21 Alan Guth, Andrei Linde and Paul J. Steinhardt, the fathers of the Inflationary Universe
scenario

to the creation of the Inflationary Universe paradigm (see Fig. 4.21). Alan Guth,
born in the USA in 1947 is professor at the Massachussetts Institute of Technology,
Paul J. Steinhardt, also born in the US, is Einstein professor of Physics at Princeton
University, while Andrei Linde, born in Moscow, studied and worked there, becom-
ing one of the most famous and distinguished cosmologists of the world. In the mid
nineties of the XXth century he accepted the invitation of Stanford University to
join the faculty of its Physics Department.

There are many formulations of the inflationary theory and its details crucially
depend on the structure of the unified theory of all interactions that will prove to
be the one chosen by Nature. For instance, within the framework of supergravity,
regarded as the low-energy limit of superstring theory, there are several interesting
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possibilities to implement the inflationary scenario and determine its parameters in
agreement with the experimental data that are piling up. However, beyond its de-
tailed structure, the great value of the Inflationary Universe is that it provides a very
simple conceptual paradigm, up to now without any rivals, capable of explaining the
isotropy, homogeneity and spatial flatness of the Universe.

Here we do not dwell too much on explanations of Inflation, which will be dis-
cussed in a detailed mathematical way in later sections. We just mention that the
generic mechanism, capable of preparing homogeneous, isotropic and spatially flat
boundary conditions, consists of a primeval phase of exponential expansion that
should have taken place before the age of decoupling and should have also grace-
fully ended. On its turn, an exponential expansion takes place when gravity becomes
repulsive and this happens when the energy content of the Universe is mainly pro-
vided by vacuum energy, for instance the potential energy V (ϕ) of one or more
scalar fields ϕ. Hence, the inflationary universe scenario is just a generic property
of any fundamental theory of particle interactions that contains scalar fields. Funda-
mental spin zero fields, namely scalars, have not yet been detected, but their pres-
ence is ubiquitous in all approaches to unification, they are essential in all versions
of supergravity theory and they are necessary because of symmetry breaking. From
this point of view we can say that Cosmology provides another indirect evidence for
the existence of this type of particles whose detection is by now overdue.4

4.7 The End of the Second Millennium and the Dawn
of the Third Bring Great News in Cosmology

The end of the XXth century and the beginning of the XXIst brought new develop-
ments into Cosmology, almost of the same relevance as the discovery of the Hubble
law in 1929. A new series of data which have become available starting from 1998
caused a substantial revolution in the subject that, by now, has entered an entirely
new phase. Before 1998, theoretical Cosmology was mostly a matter of conjectures
and speculations with a remote chance of verification or disproval. At the end of the
next decade, in mid 2009, when the European Satellite Planck was launched from
the French basis in Guyana towards the Lagrangian point L2 (see Fig. 4.25), theo-
retical cosmology had already evolved into a science that deals with the explanation
of a series of facts established in a substantially firm way. Let us list these facts:

1. Our Universe is spatially flat.
2. Our Universe is presently in a phase of accelerating expansion.5

4July 4th 2012 it was officially announced by CERN that both ATLAS and CMS detectors had dis-
covered a new bosonic particle that seems to be the long sought for spin zero particle implementing
the Higgs symmetry breaking mechanism.
5The 2011 Nobel Prize in Physics was awarded to Saul Perlmutter of the Lawrence Berkeley
National Laboratory, Brian Schmidt of the Australian National Laboratory and to Adam Reiss of
the Johns Hopkins University, for their 1998 discovery of the present accelerated expansion of the
Universe (see Fig. 4.22).
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Fig. 4.22 The three recipients of the 2011 Nobel Prize in Physics that was awarded for the discov-
ery of the present accelerated phase in the expansion of the Universe. From the right, Adam Reiss,
Saul Perlmutter and Brian Schmidt

3. The energy content of our Universe is so distributed. The baryonic matter form-
ing galaxies and providing the luminous content of the world is roughly 6 percent
of the total. Dark matter, whatever it might be, amounts to about 24 percent. The
remaining 70 percent, or even more, is just vacuum energy or, if you prefer, dark
energy.

4. The structure of anisotropies of the CMB is in substantial agreement with the
spectrum of primeval quantum fluctuations as predicted by the inflationary sce-
nario.6

How were these facts established?
The first very important news came around 1998–1999 with the results of two

ambitious surveys of the sky, independently performed by two large international
collaborations of astronomers. The two research groups, involving many observa-
tories around the world and also the orbiting Hubble Telescope, are respectively
named the Supernova Cosmology Project, which developed from an original team of
Berkeley University and the High-Z Supernova Search, led by the Australia’s Mount
Stromlo Observatory. Common task of the two projects was the observation of su-
pernovae of type IA in very distant galaxies, characterized by a high redshift factor z.

Why were astronomers particularly interested in this type of exploding stars?
The reason is simple and analogous to the reason that motivated Hubble to study the
Cepheides in not too far galaxies. By the end of the eighties, after two decades of
study of the supernova spectra, a new powerful class of standard candles had been

6The 2006 Nobel Prize in Physics was awarded to John C. Mather of the NASA Goddard Space
Flight Center and to George F. Smoot, of the University of California at Berkeley for the first
experimental detection of anisotropies in the Cosmic Microwave Background Radiation.
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found. Indeed the spectra and the intrinsic luminosity of all known, nearby, type IA
supernovae had been revealed to be equal. A fascinating theoretical explanation of
these standard candles was also guessed. It was conjectured that type IA supernovae
explosions originate from the following phenomenon. In a binary stellar system one
of the two companions reaches the end of its life transforming first into a red-giant
and then into a white dwarf, sustained against gravitational collapse by the degen-
eracy pressure of the electron gas, as we explained in Chap. 6 of Volume 1. The
other star is still alive and active. If conditions of proximity and relative mass are
right, there will be a steady stream of material from the active star slowly accreting
onto the white dwarf. Over the millions of years, the dwarf’s mass increases steadily
until it reaches the Chandrasekhar limit explained in Chap. 6 of Volume 1. At that
point a runaway thermonuclear explosion is triggered which destroys the dwarf and
manifests itself in observations as a type IA supernova. The crucial point is that the
Chandrasekhar mass, whose value 1.4M� is determined in terms of fundamental
constants of Nature, is the same for any supernova IA. This fixes the intrinsic lumi-
nosity of the event in an absolute way giving rise to an ideal standard candle which
is luminous enough to be seen also in very distant galaxies. Indeed at the time of
explosion and typically for a week after that, a supernova is as luminous as an entire
galaxy.

Using systematically these standard candles and surveying the sky at very high
redshifts z, namely at very large distances from our observation point in the Milky
Way, by the end of 1998, the two collaborations groups were ready to present their
Hubble plots of the redshift versus distance which, for the first time in history,
showed their deviation from linearity (see Fig. 4.23). In this way, we got the first
estimate of the deceleration parameter which is defined as follows:

q0 ≡ − ä(t0)

a(t0)H
2
0

; H0 ≡ ȧ(t0)

a(t0)
(4.7.1)

and parameterizes the aforementioned deviations. To see that, it suffices to consider
the Taylor expansion of the scale factor around the present time:

a(t)= a(t0)

(
1 +H0(t − t0)− 1

2
q0H

2
0 (t − t0)

2 + · · ·
)

(4.7.2)

and recall the definition (4.3.3) of the redshift factor which can be rewritten as fol-
lows:

z= λ(t0)

λ(t)
− 1 = a(t0)

a(t)
− 1 (4.7.3)

since, as we already mentioned and as we will prove later on, the ratio between
the wave-length of a photon at the present time t0 and at the time of emission t is
the same as the ratio of the scale factors at the same instants of time: λ(t0)/λ(t)=
a(t0)/a(t). Inserting the Taylor expansion (4.7.2) into (4.7.3) and inverting the rela-
tion we find:

cz=H0 d +
(

1 + q0

2

)
H 2

0 d
2 + · · · (4.7.4)
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Fig. 4.23 Using type IA
supernovae as standard
candles and systematically
detecting them in very remote
galaxies has provided the
means to determine the
deviation of the Hubble law
from linearity at high
redshifts, in other words to
estimate the acceleration of
the Universe expansion which
has proved to be positive.
This is consistent with the
existence of dark energy,
alias of a positive
cosmological constant

where c is the speed of light and the distance between us and the source as been ap-
proximated as d � c(t − t0). Equation (4.7.4) presents the form of the first quadratic
correction to the linear Hubble law which was experimentally evaluated for the first
time in history in 1998. The surprise was immense since the deceleration parame-
ter q0 turned out to be negative, in other words it was revealed that our Universe is
actually accelerating its expansion at the present time, since ä(t0) > 0.

In later sections, studying Friedman equations, we will show that the acceleration
parameter can be positive only if the energy content of the Universe is dominated
by vacuum energy rather than by ordinary matter and radiation. The evaluation of
q0 was therefore a direct evaluation of the percentage of vacuum energy filling our
Universe: approximately the 70 percent, as it turned out by taking into account the
other important results about the CMB anisotropies which became available in the
following years.

The satellite WMAP (Wilkinson Microwave Anisotropy Probe) was launched
in June 2001 from Cape Kennedy and reached the Lagrangian point L2 where-
from, during seven years it collected and streamed to Earth very important data
on the space distribution of the Cosmic Microwave Background Radiation, in par-
ticular measuring its temperature in each direction of the sky. The oscillations of
the temperature with respect to its average value T = 2.725 K are of the order of
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Fig. 4.24 The microwave image of the primeval sky obtained by the seven year mission WMAP,
that has measured the temperature anisotropies of the Cosmic Background Radiation. With varia-
tions of the order of few milliKelvin the microwave sky displays hotter and colder spots. As shown
in later sections, the temperature variations are a direct measure of the variations in the gravita-
tional potential at the time of decoupling, 400.000 years after the Big Bang and approximately
13 billions of years ago

the milliKelvin; when such hotter and colder spots are reported on a two-sphere
representing the sky one obtains an image of the same type as shown in Fig. 4.24.

Such a plot can be regarded as an image of the Last Scattering Surface at the
time of decoupling of radiation. Furthermore, because of an effect named Sachs-
Wolffe-effect, which we will mathematically explain in later sections, measuring
the temperature variation function δT (x)

T
is nothing else but measuring the primeval

gravitational potential Φ(x) that encodes the perturbation of the metric around its
homogeneous and isotropic form.

In this way the WMAP mission, which was extremely successful, provided us
with a direct measure of the cosmic primeval perturbations just before the time of
radiation decoupling and established a new vision of the early Universe.

From the analysis of the CMB spectrum we learnt that our Universe is spatially
flat κ = 0 and we could confirm its acceleration, obtaining a more precise evaluation
of the amount of vacuum energy (around 72 %).

Furthermore the multipole analysis of the correlation function:

C(x − y)=
〈
δT (x)
T

δT (y)
T

〉
(4.7.5)

confirmed the generic predictions of the Inflationary Universe scenario showing
that, with high probability, the physical mechanism which explains the mysteri-
ous homogeneity and isotropy of our Universe, alias the Cosmological Principle,
is indeed the one for which the 2003 Dirac Medal was awarded. In 2009 a new
radio-telescope was launched by the European Space Agency, named Planck (see
Fig. 4.25). It also was placed in the Lagrangian point L2 from which it started col-
lecting data on the CMB anisotropies with still higher precision than its predecessor
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Fig. 4.25 On the left a view of the WMAP spacecraft which, for seven years, has inspected the
Cosmic Microwave Background Radiation from the second Lagrangian point L2. WMAP was
launched by NASA from Cape Kennedy in 2001. On the right a view of the Planck Telescope,
constructed and launched by ESA in may 2009. Planck is also positioned in the Lagrangian point
L2 and it is monitoring the CMB temperature anisotropies, as WMAP already did, yet with a much
higher precision. In particular the sensitivity of the instrument for low frequencies on board of
Planck reaches the one millionth of a Kelvin

Fig. 4.26 The microwave image of the primeval sky obtained by the Planck satellite, after one
year of data taking

WMP (see Fig. 4.26). With the Planck mission a truly new era of Cosmology has
begun. We expect to obtain detailed information about the spectrum of primeval per-
turbations which might shed light on the detailed structure of the inflationary mech-
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anism and even discriminate among different candidates for its realization within a
fundamental unified theory of all interactions as superstring theory and its super-
gravity descendants.
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Chapter 5
Cosmology and General Relativity:
Mathematical Description of the Universe

Ma sedendo e mirando, interminati
Spazi di là da quella, e sovrumani
Silenzi, e profondissima quiete
Io nel pensier mi fingo; ove per poco
Il cor non si spaura. . .
Giacomo Leopardi

5.1 Introduction

Having completed in the previous chapter our historical review of Physical Cosmol-
ogy, from its very beginning at the end of the XVIIIth century to the challenging
discoveries that reshaped it at the beginning of the XXIst century, it is time to enter
its rigorous mathematical formulation in terms of General Relativity, which consti-
tutes the main goal of the present chapter. As we already extensively pointed out
throughout Chap. 4, the two crucial issues in cosmology are those of homogeneity
and isotropy, whose physical explanation is the goal of the inflationary theory. In
order to understand and correctly utilize these two geometrical concepts within the
context of our geometrical theory of gravitation we have to address in full some
mathematical questions that were only touched upon in the first volume and in pre-
vious chapters of the second. These questions relate to the concept of isometries for
Riemannian and pseudo-Riemannian manifolds. The proper treatment of isometries
leads us to develop the Differential Geometry of Coset Manifolds and Symmetric
Spaces which, besides being ubiquitous in Mathematical Physics, is also very rele-
vant to our subsequent chapters devoted to an introduction to Supergravity, Branes
and Supersymmetric Black-Holes.

After this preparatory step we address the mathematical description of the Uni-
verse by means of metrics that possess the two properties required by the Cosmo-
logical Principle: homogeneity and isotropy.

In order to clarify the independent role of the two symmetry requirements we
begin by discussing homogeneous but not isotropic metrics and we present some
examples. We discuss Kasner solutions and some more intriguing ones based on
non-Abelian three dimensional groups. We outline the celebrated Bianchi classifi-
cation of such homogeneous but not isotropic universes. We emphasize that the cu-
rious mechanisms associated with anisotropic homogeneous universes might play a
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relevant role in higher dimensional gravitational theories like those that emerge in
supergravity and superstring theory.

Next, introducing also isotropy, we go over to the standard cosmological model
and to its back-bone that are Friedman equations. The latter are analyzed in all re-
spects and consequences, discussing the role of the spatial curvature, the available
types of hydrodynamical equations of state and the exact solutions that are known
for them, corresponding to various energy fillings of the Universe. Particular atten-
tion is paid to the embedding of cosmological metrics within de Sitter space.

After discussing horizons and the conceptual problem of homogeneous initial
boundary conditions we go over to discuss the mathematical modeling of the in-
flationary scenario by means of the coupling of gravity to a scalar field, endowed
with a potential. The general framework of the slow rolling phase is presented to-
gether with examples of numerical solutions of the coupled Einstein-Klein-Gordon
equations.

The next addressed topic is perturbations. We discuss in detail the general form
of the scalar perturbations in the coupled Einstein-Klein-Gordon system and we de-
rive the form of the independent scalar degree of freedom which we canonically
quantize. In this way we are able to outline the derivation of the power spectrum of
the primeval quantum fluctuations that is currently experimentally observed in the
anisotropies of the Cosmic Microwave Background. The relation between the fluc-
tuations of the radiation temperature T and those of the gravitational quantized po-
tential Φ is due to the so called Sachs Wolfe effect whose derivation we also present.

5.2 Mathematical Interlude: Isometries and the Geometry
of Coset Manifolds

The existence of continuous isometries is related with the existence of Killing vec-
tor fields which we already utilized in various occasions. Now we have to explain
the underlying mathematical theory in full and this leads us to introduce a relevant
chapter of differential geometry which is the study of coset manifolds and symmet-
ric spaces. The present section is devoted to these topics.

5.2.1 Isometries and Killing Vector Fields

Finite isometries of a (pseudo-)Riemannian manifold Mg are diffeomorphisms:

φ : M → M (5.2.1)

such that their pull-back1 on the metric form leaves it invariant:

φ�
[
gμν(x) dx

μ dxν
]= gμν(x) dx

μ dxν (5.2.2)

1See Sect. 3.3 of Volume 1 for the definition of the pull-back and of the push-forward.
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Suppose now that the considered diffeomorphism is infinitesimally close to the iden-
tity:

xμ → φμ(x)� xμ + kμ(x) (5.2.3)

The condition for this diffeomorphism to be an isometry, is a differential equa-
tion for the components of the vector field k = kμ∂μ which immediately follows
from (5.2.2):

∇μkν + ∇νkμ = 0 (5.2.4)

Hence given a metric one can investigate the nature of its isometries by trying to
solve the linear homogeneous equations (5.2.4) determining its general integral. The
important point is that, if we have two Killing vectors k and w also their commu-
tator [k,w] will be a Killing vector. This follows from the fact that the product of
two finite isometries is also an isometry. Hence Killing vector fields form a finite
dimensional Lie algebra Giso and one can turn the question around. Rather then
calculating the isometries of a given metric one can address the problem of con-
structing (pseudo-)Riemannian manifolds that have a prescribed isometry algebra.
Due to the well established classification of semi-simple Lie algebras this becomes
a very fruitful point of view.

In particular, also in view of the Cosmological Principle, one is interested in
homogeneous spaces, namely in (pseudo-)Riemannian manifolds where each point
of the manifold can be reached from a reference one by the action of an isometry.

Homogeneous spaces are identified with coset manifolds, whose differential ge-
ometry can be thoroughly described and calculated in pure Lie algebra terms.

5.2.2 Coset Manifolds

Coset manifolds are a natural generalization of group manifolds and play a very
important, ubiquitous, role both in Mathematics and in Physics.

In group-theory (irrespectively whether the group G is finite or infinite, contin-
uous or discrete) we have the concept of coset space G/H which is just the set of
equivalence classes of elements g ∈ G, where the equivalence is defined by right
multiplication with elements h ∈ H ⊂ G of a subgroup:

∀g,g′ ∈ G : g ∼ g′ iff ∃h ∈ H \ gh= g′ (5.2.5)

Namely two group elements are equivalent if and only if they can be mapped into
each other by means of some element of the subgroup. The equivalence classes,
which constitute the elements of G/H are usually denoted gH, where g is any repre-
sentative of the class, namely any one of the equivalent G-group elements the class
is composed of. The definition we have just provided by means of right multiplica-
tion can be obviously replaced by an analogous one based on left-multiplication. In
this case we construct the coset H\G composed of right lateral classes Hg while gH
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are named the left lateral classes. For non-Abelian groups G and generic subgroups
H the left G/H and right H\G coset spaces have different not coinciding elements.
Working with one or with the other definition is just a matter of conventions. We
choose to work with left classes.

Coset manifolds arise in the context of Lie group theory when G is a Lie group
and H is a Lie subgroup thereof. In that case the set of lateral classes gH can be
endowed with a manifold structure inherited from the manifold structure of the par-
ent group G. Furthermore on G/H we can construct invariant metrics such that all
elements of the original group G are isometries of the constructed metric. As we
show below, the curvature tensor of invariant metrics on coset manifolds can be
constructed in purely algebraic terms starting from the structure constants of the G
Lie algebra, by-passing all analytic differential calculations.

The reason why coset manifolds are relevant to Cosmology is encoded in the
concept of homogeneity, that is one of the two pillars of the Cosmological Principle.
Indeed coset manifolds are easily identified with homogeneous spaces which we
presently define.

Definition 5.2.1 A Riemannian or pseudo-Riemannian manifold Mg is said to be
homogeneous if it admits as an isometry the transitive action of a group G. A group
acts transitively if any point of the manifold can be reached from any other by means
of the group action.

A notable and very common example of such homogeneous manifolds is pro-
vided by the spheres S

n and by their non-compact generalizations, the pseudo-
spheres H(n+1−m,m)

± . Let xI denote the Cartesian coordinates in R
n+1 and let:

ηIJ = diag(+,+ . . . ,+︸ ︷︷ ︸
n+1−m

, −,−, . . . ,−︸ ︷︷ ︸
m

) (5.2.6)

be the coefficient of a non-degenerate quadratic form with signature (n+1−m,m):

〈x,x〉η ≡ xI xJ ηIJ (5.2.7)

We obtain a pseudo-sphere H
(n+1−m,m)
± by defining the algebraic locus:

x ∈H
(n+1−m,m)
± ⇔ 〈x,x〉η ≡ ±1 (5.2.8)

which is a manifold of dimension n. The spheres S
n correspond to the particular

case H
n+1,0
+ where the quadratic form is positive definite and the sign in the right

hand side of (5.2.8) is positive. Obviously with a positive definite quadratic form
this is the only possibility.

All these algebraic loci are invariant under the transitive action of the group
SO(n+ 1, n+ 1 −m) realized by matrix multiplication on the vector x since:

∀g ∈ G : 〈x,x〉η = ±1 ⇔ 〈gx, gx〉η = ±1 (5.2.9)
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namely the group maps solutions of the constraint (5.2.8) into solutions of the same
and, furthermore, all solutions can be generated starting from a standard reference
vector:

〈x,x〉η = ±1 ⇒ ∃g ∈ G\x = gx±
0 (5.2.10)

where:

x+
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...

0

0
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; x−
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0

1
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.2.11)

the line separating the first n + 1 − m entries from the last m. Equation (5.2.10)
guarantees that the locus is invariant under the action G, while (5.2.11) states that G
is transitive.

Definition 5.2.2 In a homogeneous space Mg , the subgroup Hp ⊂ G which leaves
a point p ∈ Mg fixed (∀h ∈ Hp , hp = p) is named the isotropy subgroup of the
point. Because of the transitive action of G, any other point p′ = gp has an isotropy
subgroup Hp′ = gHpg

−1 which is conjugate to Hp and therefore isomorphic to it.

It follows that, up to conjugation, the isotropy group of a homogeneous manifold
Mg is unique and corresponds to an intrinsic property of such a space. It suffices to
calculate the isotropy group H0 of a conventional properly chosen reference point
p0: all other isotropy groups will immediately follow. For brevity H0 will be just
renamed H.

In our example of the spaces H(n+1−m,m)
± the isotropy group is immediately de-

rived by looking at the form of the vectors x±
0 : all elements of G which rotate the

vanishing entries of these vectors among themselves are clearly elements of the
isotropy group. Hence we find:

H = SO(n,m) for H(n+1−m,m)
+

H = SO(n+ 1,m− 1) for H(n+1−m,m)
−

(5.2.12)

It is natural to label any point p of a homogeneous space by the parameters de-
scribing the G-group element which carries a conventional point p0 into p. These
parameters, however, are redundant: because of the H-isotropy there are infinitely
many ways to reach p from p0. Indeed, if g does that job, any other element of the
lateral class gH does the same. It follows by this simple discussion that the homo-
geneous manifold Mg can be identified with the coset manifold G/H defined by the
transitive group G divided by the isotropy group H.
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Focusing once again on our example we find:

H
(n+1−m,m)
+ = SO(n+ 1 −m,m)

SO(n−m,m)
; H

(n+1−m,m)
− = SO(n+ 1 −m,m)

SO(n+ 1 −m,m− 1)
(5.2.13)

In particular the spheres correspond to:

S
n =H

(n+1,0)
+ = SO(n+ 1)

SO(n)
(5.2.14)

Other important examples, relevant for cosmology are:

H
(n+1,1)
+ = SO(n+ 1,1)

SO(n,1)
; H

(n+1,1)
− = SO(n+ 1,1)

SO(n+ 1)
(5.2.15)

The general classification of homogeneous (pseudo-)Riemannian spaces corre-
sponds therefore to the classification of the coset manifolds G/H for all Lie groups
G and for their closed Lie subgroups H ⊂ G.

The equivalence classes constituting the points of the coset manifold can be la-
beled by a set of d coordinates y ≡ {y1, . . . , yd} where:

d = dim
G

H
≡ dim G − dim H (5.2.16)

There are of course many different ways of choosing the y-parameters since, just as
in any other manifold, there are many possible coordinate systems. What is specific
of coset manifolds is that, given any coordinate system y by means of which we
label the equivalence classes, within each equivalence class we can choose a repre-
sentative group element L(y) ∈ G. The choice must be done in such a way that L(y)
should be a smooth function of the parameters y. Furthermore for different values
y and y′, the group elements L(y) and L(y′) should never be equivalent, in other
words no h ∈ H should exist such that L(y)= L(y′)h. Under left multiplication by
g ∈ G, L(y) is in general carried into another equivalence class with coset represen-
tative L(y′). Yet the g image of L(y) is not necessarily L(y′): it is typically some
other element of the same class, so that we can write:

∀g ∈G : gL(y)= L
(
y′)h(g, y); h(g, y) ∈ H (5.2.17)

where we emphasized that the H-element necessary to map L(y′) into the g-image
of L(y), depends, in general both from the point y and from the chosen transfor-
mation g. Equation (5.2.17) is pictorially described in Fig. 5.1. For the spheres a
possible set of coordinates y can be obtained by means of the stereographic pro-
jection described, for the case of the two-sphere, in chapter two of Volume 1. Its
conception is recalled here in Fig. 5.2.

As an other explicit example, which will be useful in the sequel, we consider
the case of the Euclidian hyperbolic spaces H

(n,1)
− identified as coset manifolds in

(5.2.15). In this case, to introduce a coset parameterization means to write a fam-
ily of SO(n,1) matrices L(y) depending smoothly on an n-component vector y
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Fig. 5.1 Pictorial description
of the action of the group G
on the coset representatives

in such a way that for different values of y such matrices cannot be mapped one
in the other by means of right multiplication with any element h of the subgroup
SO(n)⊂ SO(n,1):

SO(n,1)⊃ SO(n) # h=
(

O 0
0 1

)
; OT O = 1n×n (5.2.18)

An explicit parameterization of this type can be written as follows:

L(y)=
⎛
⎜⎝

1n×n + 2 yyT

1−y2 −2 y
1−y2

−2 yT

1−y2
1+y2

1−y2

⎞
⎟⎠ (5.2.19)

where y2 ≡ y · y denotes the standard SO(n) invariant scalar product in R
n. Why

the matrices L(y) form a good parameterization of the coset? The reason is simple,
first of all observe that:

L(y)T ηL(y)= η (5.2.20)

Fig. 5.2 The idea of the stereographic projection. Considering the S
n sphere immersed in R

n+1,
from the North-Pole {1,0,0, . . . ,0} one draws the line that goes through the point p ∈ S

n and
considers the point π(p) ∈ R

n where such a line intersects the R
n plane tangent to sphere in the

South Pole and orthogonal to the line that joins the North and the South Pole. The n-coordinates
{y1, . . . , yn} of π(p) can be taken as labels of an open chart in S

n
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where

η= diag(+,+, . . . ,+,−) (5.2.21)

This guarantees that L(y) are elements of SO(n,1), secondly observe that the image
x(y) of the standard vector x0 through L(y),

x(y)≡ L(y)x0 = L(y)

⎛
⎜⎜⎜⎜⎝

0
...

0

1

⎞
⎟⎟⎟⎟⎠= 1

1 − y2

⎛
⎜⎜⎜⎜⎜⎝

2y1

...

2yn

1+y2

1−y2

⎞
⎟⎟⎟⎟⎟⎠

(5.2.22)

lies, as it should, in the algebraic locus H(n,1)
− ,

x(y)T ηx(y)= −1 (5.2.23)

and has n linearly independent entries (the first n) parameterized by y. Hence the
lateral classes can be labeled by y and this concludes our argument to show that
(5.2.19) is a good coset parameterization. L(0) = 1(n+1)×(n+1) corresponds to the
identity class which is usually named the origin of the coset.

5.2.3 The Geometry of Coset Manifolds

In order to study the geometry of a coset manifold G/H, the first important step is
provided by the orthogonal decomposition of the corresponding Lie algebra, namely
by

G=H⊕K (5.2.24)

where G is the Lie algebra of G and the subalgebra H⊂G is the Lie algebra of the
subgroup H and where K denotes a vector space orthogonal to H with respect to the
Cartan Killing metric of G. By definition of subalgebra we always have:

[H,H] ⊂H (5.2.25)

while in general one has:

[H,K] ⊂H⊕K (5.2.26)

Definition 5.2.3 Let G/H be a Lie coset manifold and let the orthogonal decompo-
sition of the corresponding Lie algebra be as in (5.2.24). If the condition:

[H,K] ⊂K (5.2.27)

applies, the coset G/H is named reductive.
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Equation (5.2.27) has an obvious and immediate interpretation. The complemen-
tary space K forms a linear representation of the subalgebra H under its adjoint
action within the ambient algebra G.

Almost all of the “reasonable” coset manifolds which occur in various provinces
of Mathematical Physics are reductive. Violation of reductivity is a sort of pathology
whose study we can disregard in the scope of this book. We will consider only
reductive coset manifolds.

Definition 5.2.4 Let G/H be a reductive coset manifold. If in addition to (5.2.27)
also the following condition:

[K,K] ⊂H (5.2.28)

applies, then the coset manifold G/H is named a symmetric space.

Let TA (A = 1, . . . , n) denote a complete basis of generators for the Lie alge-
bra G:

[TA,TB ] = CC
AB TC (5.2.29)

and Ti (i = 1, . . . ,m) denote a complete basis for the subalgebra H ⊂ G. We also
introduce the notation Ta (a = 1, . . . , n−m) for a set of generators that provide a
basis of the complementary subspace K in the orthogonal decomposition (5.2.24).
We nickname Ta the coset generators. Using such notations, (5.2.29) splits into the
following three ones:

[Tj , Tk] = Ci
jk Ti (5.2.30)

[Ti, Tb] = Ca
ib Ta (5.2.31)

[Tb,Tc] = Ci
bc Ti +Ca

bc Ta (5.2.32)

Equation (5.2.30) encodes the property of H of being a subalgebra. Equa-
tion (5.2.31) encodes the property of the considered coset of being reductive. Finally
if in (5.2.32) we have Ca

bc = 0, the coset is not only reductive but also symmetric.
We will be able to provide explicit formulae for the Riemann tensor of reduc-

tive coset manifolds equipped with G-invariant metrics in terms of such structure
constants. Prior to that we consider the infinitesimal transformation and the very
definition of the Killing vectors with respect to which the metric has to be invariant.

5.2.3.1 Infinitesimal Transformations and Killing Vectors

Let us consider the transformation law (5.2.17) of the coset representative. For a
group element g infinitesimally close to the identity, we have:

g � 1 + εATA (5.2.33)

h(y,g) � 1 − εAW
i
A(y)Ti (5.2.34)

y′α � yα + εAkαA (5.2.35)
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The induced h transformation in (5.2.17) depends in general on the infinitesimal
G-parameters εA and on the point in the coset manifold y, as shown in (5.2.34). The
y-dependent rectangular matrix Wi

A(y) is usually named the H-compensator. The
shift in the coordinates yα is also proportional to εA and the vector fields:

kA = kαA(y)
∂

∂yα
(5.2.36)

are named the Killing vectors of the coset. The reason for such a name will be jus-
tified when we will show that on G/H we can construct a (pseudo-)Riemannian
metric which admits the vector fields (5.2.36) as generators of infinitesimal isome-
tries. For the time being those in (5.2.36) are just a set of vector fields that, as we
prove few lines below, close the Lie algebra of the group G.

Inserting (5.2.33)–(5.2.35) into the transformation law (5.2.17) we obtain:

TAL(y)= kAL(y)−Wi
A(y)L(y)Ti (5.2.37)

Consider now the commutator g−1
2 g−1

1 g2g1 acting on L(y). If both group ele-
ments g1,2 are infinitesimally close to the identity in the sense of (5.2.33), then we
obtain:

g−1
2 g−1

1 g2g1L(y)�
(
1 − εA1 ε

B
2 [TA,TB ])L(y) (5.2.38)

By explicit calculation we find:

[TA,TB ]L(y) = TATBL(y)− TBTAL(y)

= [kA,kB ]L(y)− (kAWi
B − kBWi

A + 2Ci
jk W

j
AW

k
B

)
L(y)Ti

(5.2.39)

On the other hand, using the Lie algebra commutation relations we obtain:

[TA,TB ]L(y)= CC
AB TCL(y)= CC

AB

(
kCL(y)−Wi

CL(y)Ti
)

(5.2.40)

By equating the right hand sides of (5.2.39) and (5.2.40) we conclude that:

[kA,kB ] = CC
ABkC (5.2.41)

kAWi
B − kBWi

A + 2Ci
jk W

j
AW

k
B = CC

ABW
i
C (5.2.42)

where we separately compared the terms with and without W’s, since the decompo-
sition of a group element into L(y)h is unique.

Equation (5.2.41) shows that the Killing vector fields defined above close the
commutation relations of the G-algebra.

Equation (5.2.42) will be used to construct a consistent H-covariant Lie deriva-
tive.

In the case of the spaces H
(n,1)
− , which we choose as illustrative example, the

Killing vectors can be easily calculated by following the above described procedure
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step by step. For later purposes we find it convenient to present such a calculation in
a slightly more general set up by introducing the following coset representative that
depends on a discrete parameter κ = ±1:

Lκ(y)=
⎛
⎝ 1n×n + 2yyT κ

1+κy2 −2 y
1+κy2

2κ yT

1+κy2
1−κy2

1+κy2

⎞
⎠ (5.2.43)

An explicit calculation shows that:

Lκ(y)T

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 · · · 0 1 0
0 · · · 0 0 κ

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ηκ

Lκ(y)=

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 · · · 0 1 0
0 · · · 0 0 κ

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ηκ

(5.2.44)

Namely L−1(y) is an SO(n,1) matrix, while L1(y) is an SO(n+ 1) group element.
Furthermore defining, as in (5.2.22):

xκ(y)≡ Lκ(y)

⎛
⎜⎜⎜⎜⎝

0
...

0

1

⎞
⎟⎟⎟⎟⎠ (5.2.45)

we find that:

xκ(y)T ηκxκ(y)= κ (5.2.46)

Hence by means of L1(y) we parameterize the points of the n-sphere S
n, while

by means of L−1(y) we parameterize the points of H(n,1)
− named also the n-pseudo-

sphere or the n-hyperboloid. In both cases the stability subalgebra is so(n) for which
a basis of generators is provided by the following matrices:

Jij = Iij − Iji; i, j = 1, . . . , n (5.2.47)

having named:

Iij =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0 0
0 · · · 1 0 0 } ith row

0 · · · · · · 0 0
0 · · · · · ·︸︷︷︸

j th column

0 0

⎞
⎟⎟⎟⎟⎠ . (5.2.48)

the (n+1)× (n+1) matrices whose only non-vanishing entry is the ij th one, equal
to 1.
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The commutation relations of the so(n) generators are very simple and were
already considered several times in Volume 1. We have:

[Jij , Jk�] = −δikJj� + δjkJi� − δj�Jik + δi�Jjk (5.2.49)

The coset generators can instead be chosen as the following matrices:

Pi =

⎛
⎜⎜⎜⎜⎝

0 · · · · · · 0 0
0 · · · 0 0 1 } ith row

0 · · · · · · 0 0
0 · · · −κ︸︷︷︸

ith column

0 0

⎞
⎟⎟⎟⎟⎠ (5.2.50)

and satisfy the following commutation relations:

[Jij ,Pk] = −δikPj + δjkPi (5.2.51)

[Pi,Pj ] = −κJij (5.2.52)

Equation (5.2.51) states that the generators Pi transform as an n-vector under
so(n) rotations (reductivity) while (5.2.52) shows that for both signs κ = ±1
the considered coset manifold is a symmetric space. Correspondingly we name
kij = k�ij (y)

∂
∂y�

the Killing vector fields associated with the action of the genera-
tors Jij :

JijLκ(y)= kijLκ(y)+Lκ (y)JpqW
pq
ij (y) (5.2.53)

while we name ki = k�i (y)
∂
∂y�

the Killing vector fields associated with the action of
the generators Pi :

PiLκ (y)= kiLκ(y)+Lκ(y)JpqW
pq
i (y) (5.2.54)

Resolving conditions (5.2.53) and (5.2.54) we obtain:

kij = yi∂j − yj ∂i (5.2.55)

ki = 1

2

(
1 − κy2)∂i + κyiy · ∂ (5.2.56)

The H-compensators Wpq
i and Wpq

ij can also be extracted from the same calculation
but since their explicit form is not essential for our future discussion we skip them.

5.2.3.2 Vielbeins, Connections and Metrics on G/H

Consider next the following 1-form defined over the reductive coset manifold G/H:

Σ(y)= L
−1(y) dL(y) (5.2.57)
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which generalizes the Maurer Cartan form defined over the group manifold G, dis-
cussed in Sect. 3.3.1.2 of Volume 1. As a consequence of its own definition the
1-form Σ satisfies the equation:

0 = dΣ +Σ ∧Σ (5.2.58)

which provides the clue to the entire (pseudo-)Riemannian geometry of the coset
manifold. To work out this latter we start by decomposing Σ along a complete set
of generators of the Lie algebra G. According with the notations introduced in the
previous subsection we put:

Σ = V aTa +ωiTi (5.2.59)

The set of (n − m) 1-forms V a = V a
α (y) dy

α provides a covariant frame for the
cotangent bundle CT(G/H), namely a complete basis of sections of this vector bun-
dle that transform in a proper way under the action of the group G. On the other
hand ω = ωiTi = ωi

α(y) dy
αTi is called the H-connection. Indeed, according to the

theory exposed in Chap. 3 of Volume 1, ω turns out to be the 1-form of a bona-fide
principal connection on the principal fibre bundle:

P

(
G

H
,H

)
: G

π→ G

H
(5.2.60)

which has the Lie group G as total space, the coset manifold G/H as base space
and the closed Lie subgroup H ⊂ G as structural group. The bundle P(G

H ,H) is
uniquely defined by the projection that associates to each group element g ∈ G the
equivalence class gH it belongs to.

Introducing the decomposition (5.2.59) into the Maurer Cartan equation (5.2.58),
this latter can be rewritten as the following pair of equations:

dV a +Ca
ib ω

i ∧ V b = −1

2
Ca

bc V
b ∧ V c (5.2.61)

dωi + 1

2
Ci

jkω
j ∧ωk = −1

2
Ci

bc V
b ∧ V c (5.2.62)

where we have used the Lie algebra structure constants organized as in (5.2.30)–
(5.2.32).

Let us now consider the transformations of the 1-forms we have introduced.
Under left multiplication by a constant group element g ∈ G the 1-form Σ(y)

transforms as follows:

Σ
(
y′) = h(y,g)L−1(y)g−1 d

(
gL(y)h−1)

= h(y,g)−1Σ(y)h(y, g)+ h(y,g)−1 dh(y, g) (5.2.63)

where y′ = g.y is the new point in the manifold G/H whereto y is moved by the
action of g. Projecting the above equation on the coset generators Ta we obtain:

V a
(
y′)= V b(y)D a

b

(
h(y,g)

)
(5.2.64)
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where D = exp[DH], having denoted by DH the (n−m) dimensional representation
of the subalgebra H which occurs in the decomposition of the adjoint representation
of G:

adjG= adjH︸ ︷︷ ︸
=AH

⊕DH (5.2.65)

Projecting on the other hand on the H-subalgebra generators Ti we get:

ω
(
y′)= A

[
h(y,g)

]
ω(y)A −1[h(y,g)]+ A

[
h(y,g)

]
dA −1[h(y,g)] (5.2.66)

where we have set:

A = exp[AH] (5.2.67)

Considering a complete basis TA of generators for the full Lie algebra G, the adjoint
representation is defined as follows:

∀g ∈ G : g−1TAg ≡ adj(g) B
A TB (5.2.68)

In the explicit basis of TA generators the decomposition (5.2.65) means that, once
restricted to the elements of the subgroup H ⊂ G, the adjoint representation becomes
block-diagonal:

∀h ∈ H : adj(h)=
(

D(h) 0
0 A (h)

)
(5.2.69)

Note that for such decomposition to hold true the coset manifold has to be reductive
according to definition (5.2.27).

The infinitesimal form of (5.2.64) is the following one:

V a(y + δy)− V a(y) = −εAWi
A(y)C

a
ib V

b(y) (5.2.70)

δyα = εAkαA(y) (5.2.71)

for a group element g ∈ G very close to the identity as in (5.2.33).
Similarly the infinitesimal form of (5.2.66) is:

ωi(y + δy)−ωi(y)= −εA
(
Ci

kj W
k
Aω

j + dWi
A

)
(5.2.72)

5.2.3.3 Lie Derivatives

The Lie derivative of a tensor Tα1...αp along a vector field vμ provides the change in
shape of that tensor under an infinitesimal diffeomorphism:

yμ �→ yμ + vμ(y) (5.2.73)
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Explicitly one sets:

�vTα1...αp (y)= vμ∂μTα1...αp + (∂α1v
γ
)
Tγα2...αp + · · · + (∂αpvγ )Tα1α2...γ (5.2.74)

In the case of p-forms, namely of antisymmetric tensors the definition (5.2.74) of
Lie derivative can be recast into a more intrinsic form using both the exterior differ-
ential d and the contraction operator.

Definition 5.2.5 Let M be a differentiable manifold and let Λk(M ) be the vector
bundles of differential k-forms on M , let v ∈ Γ (TM ,M ) be a vector field. The
contraction ik is a linear map:

iv : Λk(M )→Λk−1(M ) (5.2.75)

such that for any ω(k) ∈Λk(M ) and for any set of k− 1 vector fields w1, . . . ,wk−1,
we have:

ivω
(k)(w1, . . . ,wk−1)≡ kω(k)(v,w1, . . . ,wk−1) (5.2.76)

Then by going to components we can verify that the tensor definition (5.2.74) is
equivalent to the following one:

Definition 5.2.6 Let M be a differentiable manifold and let Λk(M ) be the vector
bundles of differential k-forms on M , let v ∈ Γ (TM ,M ) be a vector field. The
Lie derivative �v is a linear map:

�v : Λk(M )→Λk(M ) (5.2.77)

such that for any ω(k) ∈Λk(M ) we have:

�vω
(k) ≡ iv dω

(k) + divω
(k) (5.2.78)

On the other hand for vector fields the tensor definition (5.2.74) is equivalent to
the following one.

Definition 5.2.7 Let M be a differentiable manifold and let TM → M be the tan-
gent bundle, whose sections are the vector fields. Let v ∈ Γ (TM ,M ) be a vector
field. The Lie derivative �v is a linear map:

�v : Γ (TM ,M )→ Γ (TM ,M ) (5.2.79)

such that for any w ∈ Γ (TM ,M ) we have:

�vw ≡ [v,w] (5.2.80)
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The most important properties of the Lie derivative, which immediately follow
from its definition are the following ones:

[�v, d] = 0

[�v, �w] = �[v,w]
(5.2.81)

The first of the above equations states that the Lie derivative commutes with the ex-
terior derivative. This is just a consequence of the invariance of the exterior algebra
of k-forms with respect to diffeomorphisms. The second equation states on the other
hand that the Lie derivative provides an explicit representation of the Lie algebra of
vector fields on tensors.

The Lie derivatives along the Killing vectors of the frames V a and of the H-
connection ωi introduced in the previous subsection are:

�vAV
a = Wi

AC
a
ib V

b (5.2.82)

�vAω
i = −(dWi

A +Ci
kj W

k
Aω

j
)

(5.2.83)

This result can be interpreted by saying that, associated with every Killing vector
kA there is a an infinitesimal H-gauge transformation:

WA =Wi
A(y)Ti (5.2.84)

and that the Lie derivative of both V a and ωi along the Killing vectors is just such lo-
cal gauge transformation pertaining to their respective geometrical type. The frame
V a is a section of an H-vector bundle and transforms as such, while ωi is a connec-
tion and it transforms as a connection should do.

5.2.3.4 Invariant Metrics on Coset Manifolds

The result (5.2.82), (5.2.83) has a very important consequence which constitutes the
fundamental motivation to consider coset manifolds. Indeed this result instructs us
to construct G-invariant metrics on G/H, namely metrics that admit all the above
discussed Killing vectors as generators of true isometries.

The argument is quite simple. We saw that the one-forms V a transform as a
linear representation DH of the isotropy subalgebra H (and group H). Hence if τab
is a symmetric H-invariant constant two-tensor, by setting:

ds2 = τabV
a ⊗ V b = τabV

a
α (y)V

b
β (y)︸ ︷︷ ︸

gαβ(y)

dyα ⊗ dyβ (5.2.85)

we obtain a metric for which all the above constructed Killing vectors are indeed
Killing vectors, namely:



5.2 Mathematical Interlude: Isometries and the Geometry of Coset Manifolds 123

�kA ds
2 = τab

(
�kAV

a ⊗ V b + V a ⊗ �kAV
b
)

(5.2.86)

= τab
([
DH(WA)

]a
c
δbd + [DH(WA)

]b
c
δad
)

︸ ︷︷ ︸
= 0 by invariance

V c ⊗ V d

= 0 (5.2.87)

The key point, in order to utilize the above construction, is the decomposition of
the representation DH into irreducible representations. Typically, for most common
cosets, DH is already irreducible. In this case there is just one invariant H-tensor τ
and the only free parameter in the definition of the metric (5.2.85) is an overall scale
constant. Indeed if τab is an invariant tensor, any multiple thereof τ ′

ab = λτab is also
invariant. In the case DH splits into r irreducible representations:

DH =

⎛
⎜⎜⎜⎜⎜⎝

D1 0 · · · 0 0
0 D2 0 · · · 0
...

...
...

...
...

0 · · · 0 Dr−1 0
0 0 · · · 0 Dr

⎞
⎟⎟⎟⎟⎟⎠

(5.2.88)

we have r irreducible invariant tensors τ (i)aibi
in correspondence of such irreducible

blocks and we can introduce r independent scale factors:

τ =

⎛
⎜⎜⎜⎜⎜⎝

λ1τ
(1) 0 · · · 0 0

0 λ2τ
(2) 0 · · · 0

...
...

...
...

...

0 · · · 0 λp−1τ
(p−1) 0

0 0 · · · 0 λpτ
(p)

⎞
⎟⎟⎟⎟⎟⎠

(5.2.89)

Correspondingly we arrive at a continuous family of G-invariant metrics on G/H
depending on r-parameters or, as it is customary to say in this context, of r moduli.
The number r defined by (5.2.88) is named the rank of the coset manifold G/H.

In this section we confine ourself to the most common case of rank one cosets
(r= 1), assuming, furthermore, that the algebras G and H are both semi-simple. By
an appropriate choice of basis for the coset generators T a , the invariant tensor τab
can always be reduced to the form:

τab = ηab = diag(+,+, . . . ,+︸ ︷︷ ︸
n+

,−,−, . . . ,−︸ ︷︷ ︸
n−

) (5.2.90)

where the two numbers n+ and n− sum up to the dimension of the coset:

n+ + n− = dim
G

H
= dimK (5.2.91)
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and provide the dimensions of the two eigenspaces, K± ⊂ K, respectively corre-
sponding to real and pure imaginary eigenvalues of the matrix DH(W) which rep-
resents a generic element W of the isotropy subalgebra H.

Focusing on our example (5.2.43), that encompasses both the spheres and the
pseudo-spheres, depending on the sign of κ , we find that:

n+ = 0; n− = n (5.2.92)

so that in both cases (κ = ±1) the invariant tensor is proportional to a Kronecker
delta:

ηab = δab (5.2.93)

The reason is that the subalgebra H is the compact so(n), hence the matrix DH(W)

is antisymmetric and all of its eigenvalues are purely imaginary.
If we consider cosets with non-compact isotropy groups, then the invariant ten-

sor τab develops a non-trivial Lorentzian signature ηab . In any case, if we restrict
ourselves to rank one cosets, the general form of the metric is:

ds2 = λ2ηabV
a ⊗ V b (5.2.94)

where λ is a scale factor. This allows us to introduce the vielbein

Ea = λV a (5.2.95)

and calculate the spin connection from the vanishing torsion equation:

0 = dEa −ωab ∧Ecηbc (5.2.96)

Using the Maurer Cartan equations (5.2.61)–(5.2.62), (5.2.96) can be immediately
solved by:

ωabηbc ≡ ωa
c = 1

2λ
Ca

cd E
d +Ca

ci ω
i (5.2.97)

Inserting this in the definition of the curvature two-form

R
a
b = dωa

b −ωa
c ∧ωc

b (5.2.98)

allows to calculate the Riemann tensor defined by:

R
a
b =Ra

bcd E
c ∧Ed (5.2.99)

Using once again the Maurer Cartan equations (5.2.61)–(5.2.62), we obtain:

Ra
bcd = 1

λ2

(
−1

4

1

2λ
Ca

be C
e
cd − 1

8
Ca

ec C
e
bd + 1

8
Ca

ed C
e
bc − 1

2
Ca

bi C
i
cd

)

(5.2.100)
which, as previously announced provides the expression of the Riemann tensor in
terms of structure constants.
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In the case of symmetric spaces Ca
be = 0 formula (5.2.100) simplifies to:

Ra
bcd = − 1

2λ2
Ca

bi C
i
cd (5.2.101)

5.2.3.5 For Spheres and Pseudo-Spheres

In order to illustrate the structures presented in the previous section we consider the
explicit example of the spheres and pseudo-spheres. Applying the outlined proce-
dure to this case we immediately get:

Ea = −2

λ

dya

1 + κy2

(5.2.102)
ωab = 2

κ

λ2
Ea ∧Eb

This means that for spheres and pseudo-spheres the Riemann tensor is proportional
to an antisymmetrized Kronecker delta:

Rab
cd = κ

λ2
δ
[a
[c δ

b]
d] (5.2.103)

5.3 Homogeneity Without Isotropy: What Might Happen

Having prepared the stage with our discussion of coset manifolds, among which
group manifolds are a particular case, we enter the main issue of mathematical cos-
mology by utilizing the above developed techniques in order to construct space-
time metrics that display homogeneity with the possible addition of full or partial
isotropy. The goal is that of understanding how Einstein equations turn into differ-
ential equations for the free functions fi(t) of the time variable t that parameterize
such homogeneous metrics and solve them if possible. The behavior of the solutions
encodes the possible scenarios of cosmic evolutions.

It is quite important to understand that the two features advocated by the Cosmo-
logical Principle, namely homogeneity and isotropy are completely independent.
For this reason, in this section, we present solutions of the Einstein equations based
on homogeneous but not isotropic metrics. The corresponding cosmic evolution
is very different from the overall expansion motivated by Hubble Law. Without
isotropy the space-like sections of the Universe not only expand or contract, but
also continuously deform during time-evolution.

5.3.1 Bianchi Spaces and Kasner Metrics

A very simple way to realize a four-dimensional cosmological metric which is ho-
mogeneous without any a priori enforcement of isotropy relies on the use of the
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Maurer Cartan forms Ωi of a three-dimensional Lie group G3 satisfying the equa-
tion:

dΩi = t ijk Ω
j ∧Ωk (5.3.1)

where t ijk are the structure constants of the corresponding Lie algebra G3. Assum-

ing that the Ωi are, for instance, left-invariant we have that:

�kI Ω
i = 0; I = 1,2,3 (5.3.2)

where the vector fields kI are the infinitesimal generators of the left translations.
Introducing the ansatz:

ds2
G = −dt2 +Aij (t)Ω

i ⊗Ωj (5.3.3)

where Aij (t) is a time-dependent symmetric positive definite matrix we obtain a
metric which is Lorentzian and admits the three vector fields kI as space-like trans-
lational Killing vectors. The group G3 has a transitive action on the constant time
sections of such a space-time, which therefore realizes a homogeneous but a priori
not isotropic cosmology.

One can insert the ansatz (5.3.3) into the Einstein equations and look for solutions
with various types of matters.

The very interesting point is that in 1898 the Italian geometer Luigi Bianchi, the
same who is responsible for Bianchi identities, succeeded in obtaining a complete
classification of all possible three-dimensional real Lie algebras [1]. The key argu-
ment utilized by Bianchi which exploits the peculiar features of three dimensions is
the following. Given the structure constants t ijk one can define the following new
tensors:

Ak = t iik (5.3.4)

M�i = 1

2
ε�jk

(
t ijk − δijAk

)
(5.3.5)

As a consequence of its definition the matrix M�i =Mi� is symmetric. In terms of
these new objects, the vector Ak and the matrix M�i , the Jacobi identities reduce to
the very simple condition:

M�kAk = 0 (5.3.6)

Hence the classification of all three-dimensional Lie algebras was reduced to the
classification of solutions of (5.3.6). By means of rotations in the basis of generators
the vector Ak can be oriented in a conventional direction, say the first, and the matrix
M�k can be diagonalized. Using this liberty the form taken by the Maurer Cartan
equations of the Bianchi algebras is the following one:

dΩ1 = λ1Ω
2 ∧Ω3

dΩ2 = λ2Ω
3 ∧Ω1 − aΩ2 ∧Ω1 (5.3.7)

dΩ3 = λ3Ω
1 ∧Ω2 − aΩ3 ∧Ω1
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Table 5.1 The classification by Bianchi of three-dimensional Lie algebras

Bianchi type a λ1 λ2 λ3 Identification

I 0 0 0 0 R
3

II 0 1 0 0 Heisenberg algebra

III 1 0 1 −1

IV 1 0 0 0

V 1 0 0 0 Solv(so(1,3)/so(3))

VI0 0 1 −1 0 iso(1,1)

VIa a 0 1 −1

VII0 0 1 1 0 iso(2)

VIIa a 0 1 1

VIII 0 1 1 −1 so(1,2)∼ sl(2,R)

IX 0 1 1 1 so(3)

The algebras VIa and VIIa are actually two continuous families of solvable non-isomorphic Lie
algebras, distinguished by the value of the parameter a. Some of the Bianchi algebras can be
identified with other well known, simple or solvable Lie algebras. Bianchi IX and Bianchi VIII are
simple and correspond to the two possible real sections, respectively compact and non-compact,
of the unique complex Lie algebra A1. Bianchi VII0 is the Lie algebra of the Euclidian group of
the plane E

2 ∼ iso(2), while Bianchi VI0 is the Poincaré Lie algebra in two dimensions iso(1,1).
Bianchi I is just the translation algebra R

3, while Bianchi II is the Heisenberg algebra in two
dimension. Finally according to a general theorem every non-compact simple coset manifold G/H,
where H is a maximally compact subgroup, is metrically equivalent to a solvable group manifold
exp Solv where the corresponding solvable Lie algebra Solv can be constructed from the Lie algebra
G, according to a well defined procedure. Bianchi V is the solvable Lie algebra associated with the
pseudo-sphere SO(1,3)/SO(3).

and the various solutions are classified by specifying the four numbers λ1,2,3 and a.
In this way Bianchi obtained the list of eleven algebras displayed in Table 5.1. An
interesting class of solutions of Einstein equations is obtained by using the Abelian
algebras of Bianchi type I.

5.3.1.1 Bianchi Type I and Kasner Metrics

Within the general class of Bianchi I metrics that can be written as follows:

ds2
Bianchi I = −dt2 +Aij (t) dx

i ⊗ dxj (5.3.8)

we can consider the subclass of Kasner metrics [2], defined below:

ds2
Kasner = −dt2 +

3∑
i=1

t2pi
(
dxi
)2 (5.3.9)
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where pi are real exponents. The Vielbein description of the metric (5.3.9) is the
following one:

E0 = dt; Ei = tpi dxi (5.3.10)

which leads to the following spin connection

ω0i = 1

t
piE

i; ωij = 0 (5.3.11)

and curvature 2-form:

R
0i = 1

t2
pi(pi − 1)E0 ∧Ei; R

ij = 1

t2
pipjE

i ∧Ej (5.3.12)

yielding the following Ricci tensor (in flat indices):

Ric00 = 1

2t2

(
3∑

j=1

p2
j −

3∑
j=1

pj

)

Ricii = 1

2t2
pi

(
1 −

3∑
j=1

pj

)
(5.3.13)

Ricab = 0 if a �= b

It follows that the Kasner metric is a solution of vacuum Einstein equations, namely
it is Ricci flat whenever the exponent pi satisfies the following two algebraic equa-
tions:

3∑
j=1

p2
j = 1;

3∑
j=1

pj = 1 (5.3.14)

Geometrically the locus singled out by (5.3.14) is the intersection of a two-sphere
with a plane and corresponds to a curve in three-dimensions that is displayed in
Fig. 5.3. A parametric solution of equations is given below:

⎧⎨
⎩
p1
p2
p3

⎫⎬
⎭=

⎧⎪⎨
⎪⎩

1
2 (−ω+ √−3ω2 + 2ω+ 1 + 1)

1
2 (−ω− √−3ω2 + 2ω+ 1 + 1)

ω

⎫⎪⎬
⎪⎭ ; ω ∈

[
−1

3
,1

]
(5.3.15)

Equation (5.3.15) provides just one branch of the overall solution. The other
branches are obtained by applying the permutation group S3 to it and altogether
they fill the curve presented in Fig. 5.3.

Any point on this curve {p1,p2,p3} yields a possible vacuum solution of Ein-
stein equations that is named a Kasner epoch. In such Kasner epochs the destiny of
the various space-dimensions is very different: some contracts, other expands, since
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Fig. 5.3 The curve of Kasner
exponents {px,py,pz}
corresponding to Ricci flat
metrics

the exponents pi have typically different signs. For instance a nice rational solution
of the Kasner constraints is provided by:

{p1,p2,p3} =
{

2

3
,

2

3
,−1

3

}
(5.3.16)

Let us now consider metrics of the following type:

ds2
K = −dt2 +

3∑
i=1

a2
i (t)Ω

2
i (5.3.17)

where Ωi are the Maurer Cartan forms of a Bianchi Lie algebra not necessarily of
type I. One can draw a mechanical analogy by identifying:

hi(t)= logai(t) (5.3.18)

with the coordinates of a fictitious ball that is moving in a three-dimensional space
with velocity:2

vi(t)= d

dt
logai(t) (5.3.19)

Kasner epochs correspond to constant velocity trajectories.
A very interesting feature arising while discussing homogeneous non isotropic

solutions of Einstein equations is that of cosmic billiards. These latter are exact so-
lutions of matter coupled higher dimensional gravity where a succession of different
Kasner epochs are glued together, one after the other, in a smooth but sharp way (see

2In higher dimensional gravity theories the ball moves in n-dimensions.



130 5 Cosmology and General Relativity

Fig. 5.4 The cosmic billiard
mechanism envisages
solutions of Einstein
equations that include a series
of Kasner epochs following
each other as a result of a
bounce on the walls of a
billiard table. In higher
dimensional supergravities
the billiard table turns out to
be the Weyl chamber of the
duality Lie algebra pertaining
to the considered model

Fig. 5.4). This provides a possible new paradigm for the interpretation of the extra-
dimensions that occur in superstring based supergravity models. Not necessarily
compact, such extra dimensions might be effectively small because depressed by
decreasing (even exponentially decreasing) scale factors.

In this perspective the billiard mechanism implies that the effective dimensions
of space-time might change with time. While entering a new Kasner phase, the
Universe might acquire new dimensions which were previously contracting and now
they might start expanding, while old expanding dimensions might contract and
progressively disappear. The first idea of such a scenario was put forward by the
Russian physicists Belinsky, Khalatnikov and Lifshitz in [3–6].

5.3.2 A Toy Example of Cosmic Billiard with a Bianchi II
Space-Time

Here we do not present the very rich systematics of supergravity and gravity bil-
liards, for which we refer the interested reader to some comprehensive research
papers and lecture notes [7]. Our goal is just that of illustrating the main conception
of the billiard mechanism by means of a simple toy model that we can realize in
d = 4 space-time dimensions. The chosen toy model corresponds also to a Bianchi
type of homogeneous but not isotropic universe which helps us to emphasize the
role of isotropy in our subsequent discussion of the Standard Cosmological Model.

5.3.2.1 A Ricci Flat Bianchi II Metric

To begin with we study a particular cosmological metric which is Ricci flat and
therefore corresponds to an empty Universe that, nonetheless, expands in some of
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its space-like directions. The Bianchi type II exact solutions presented in this and
in the following subsection were derived a few years ago by this author with his
collaborators Trigiante and Rulik in [8]. The metric is of the following form:

ds2
(d4) = −A(t) dt2 +Λ(t)

(
Ω2

2 +Ω2
3

)+Δ(t)Ω2
1 (5.3.20)

where the three 1-forms Ωi are explicitly given by:

Ω1 = −dz+ ωr2

4
dθ

Ω2 = r cos θ dθ + sin θ dr (5.3.21)

Ω3 = − cos θ dr + r sin θ dθ

and satisfy the following Cartan Maurer equations:

dΩ1 = ω

2
Ω2 ∧Ω3

dΩ2 = 0 (5.3.22)

dΩ3 = 0 (5.3.23)

This means that the constant time sections of the space-time (5.3.20) are 3-
dimensional homogeneous spaces, namely copies of a three dimensional group man-
ifold Gω whose corresponding Lie algebra is the following non-semisimple one

[Ti, Tj ] = tkij Tk

t123 = ω

4
; all other components of tkij vanish (5.3.24)

As it is the case for any group manifold, there exist on Gω two mutually commuting
sets of vector fields that separately satisfy the Lie algebra of the group, namely
the generators of left translations and the generators of right translations. Let us
agree that the 1-forms (5.3.21) are left invariant. Then the triplet of vector fields
that generate the left translations

−→
ki will be such that they satisfy the Lie algebra

(5.3.24) and the Lie derivative of the Ωi along them vanishes.

[−→ki,−→kj ] = t�ij
−→
k� (5.3.25)

�−→
ki
Ωj = 0 (5.3.26)

The explicit form of such vector fields is the following one:

−→
k1 = ∂

∂z

−→
k2 = 2√

ω
sin θ

∂

∂r
+ 2√

ωr
cos θ

∂

∂θ
+

√
ω

2
r cos θ

∂

∂z
(5.3.27)



132 5 Cosmology and General Relativity

−→
k3 = − 2√

ω
cos θ

∂

∂r
+ 2√

ωr
sin θ

∂

∂θ
+

√
ω

2
r sin θ

∂

∂z

and because of (5.3.26) they are Killing vectors of the 4-dimensional metric
(5.3.20). These three are not the only Killing vectors. There is a fourth one gen-
erating O(2) rotations, namely:

−→
kO = ∂

∂θ
(5.3.28)

The Lie derivatives of the 1-forms Ωi are not all zero along
−→
kO , since we have:

�−→
kO
Ω1 = 0; �−→

kO
Ω2 = −Ω3; �−→

kO
Ω3 =Ω2 (5.3.29)

which means that under O(2) the three Ωi arrange into a singlet and into a doublet.
Yet

−→
kO is a Killing vector for (5.3.20), since this metric is written in terms of O(2)

invariants.
An alternative way of writing the metric (5.3.20) uses Cartesian coordinates,

through the standard change of variables:

x = r cos θ; y = r sin θ (5.3.30)

In these coordinates (5.3.20) reads:

ds2
(d4) = −A(t) dt2 +Λ(t)

(
dx2 + dy2)+Δ(t)

(
dz+ ω

4
(x dy− y dx)

)2

(5.3.31)

and the four killing vectors take the very simple form:

−→
k1 = ∂

∂z

−→
k2 = ∂

∂x
− ω

4
y
∂

∂z
(5.3.32)−→

k3 = ∂

∂y
+ ω

4
x
∂

∂z

−→
kO = −x

∂

∂y
+ y

∂

∂x

which will be very useful in our subsequent discussion of geodesics.

5.3.3 Einstein Equation and Matter for This Billiard

Let us now study under which conditions the metric (5.3.20) is a solution of Ein-
stein field equations. To this effect we use the vielbein formalism and we write the
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vierbein as follows:

E0 =√A(t) dt; E1 =√Δ(t)Ω1; E2,3 =√Λ(t)Ω2,3 (5.3.33)

We can immediately calculate the spin connection from the vanishing torsion equa-
tion:

dEA +ωAB ∧ECηBC = 0 (5.3.34)

where for the flat metric we have used the mostly plus convention:

ηab = diag{−,+,+,+} (5.3.35)

We obtain the following result for the spin connection

ω01 = Δ̇

2
√
AΔ

E1; ω02 = Λ̇

2
√
AΛ

E2

ω03 = Λ̇

2
√
AΛ

E3; ω12 = −ω
Δ̇

4Λ
E3

ω13 = ω
Δ̇

4Λ
E2; ω23 = ω

Δ̇

4Λ
E1

(5.3.36)

which can be used to calculate the curvature 2-form and the Ricci tensor from the
standard formulae:

RAB ≡ dωAB +ωAC ∧ωDBηCD =RAB
CD eC ∧ eD

RicFG = ηFAR
AB

GB

(5.3.37)

The Ricci tensor turns out to be diagonal and has the following eigenvalues:

Ric00 = A′(t)Δ′(t)
8A(t)2Δ(t)

+ Δ′(t)2

8A(t)Δ(t)2
+ A′(t)Λ′(t)

4A(t)2Λ(t)
+ Λ′(t)2

4A(t)Λ(t)2

− Δ′′(t)
4A(t)Δ(t)

− Λ′′(t)
2A(t)Λ(t)

Ric11 = ω2Δ(t)

16Λ(t)2
− A′(t)Δ′(t)

8A(t)2Δ(t)
− Δ′(t)2

8A(t)Δ(t)2
+ Δ′(t)Λ′(t)

4A(t)Δ(t)Λ(t)
+ Δ′′(t)

4A(t)Δ(t)
(5.3.38)

Ric22 = Ric33

Ric33 = −(ω2Δ(t))

16Λ(t)2
− A′(t)Λ′(t)

8A(t)2Λ(t)
+ Δ′(t)Λ′(t)

8A(t)Δ(t)Λ(t)
+ Λ′′(t)

4A(t)Λ(t)

With little more effort we can calculate the Einstein tensor defined by:

GAB = RicAB − 1
2ηABR

R = ηFGRicFG
(5.3.39)
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and we obtain a diagonal tensor with the following eigenvalues:

G00 = −(ω2Δ(t))

32Λ(t)2
+ Δ′(t)Λ′(t)

4A(t)Δ(t)Λ(t)
+ Λ′(t)2

8A(t)Λ(t)2

G11 = 3ω2Δ(t)

32Λ(t)2
+ A′(t)Λ′(t)

4A(t)2Λ(t)
+ Λ′(t)2

8A(t)Λ(t)2
− Λ′′(t)

2A(t)Λ(t)

G22 = G33 (5.3.40)

G33 = −(ω2Δ(t))

32Λ(t)2
+ A′(t)Δ′(t)

8A(t)2Δ(t)
+ Δ′(t)2

8A(t)Δ(t)2
+ A′(t)Λ′(t)

8A(t)2Λ(t)

− Δ′(t)Λ′(t)
8A(t)Δ(t)Λ(t)

+ Λ′(t)2

8A(t)Λ(t)2
− Δ′′(t)

4A(t)Δ(t)
− Λ′′(t)

4A(t)Λ(t)

It is a remarkable fact that we can obtain an exact solution of the evolution equations
in the absence of any matter content. What we get is an empty Ricci flat Universe
with rather peculiar properties. Imposing that the Ricci tensor (5.3.38) vanishes (and
hence also the Einstein tensor (5.3.40) does) we get differential equations for Λ(t),
Δ(t) and A(t) that are exactly solved by the following choice of transcendental
functions:

A(t) = exp[tω] cosh

[
tω

2

]

Λ(t) = exp

[
tω

2

]
cosh

[
tω

2

]
(5.3.41)

Δ(t) = 1

cosh[ tω2 ]
In order to write the metric in a standard cosmological form we need to redefine the
time variable by setting:

dτ =√A(t) dt (5.3.42)

so that in the new cosmic time (5.3.20) becomes:

ds2
(d4) = dτ 2 +Λ(τ)

(
Ω2

2 +Ω2
3

)+Δ(τ)Ω2
1 (5.3.43)

Equation (5.3.42) can be exactly integrated in terms of hypergeometric functions.
We obtain:

τ(t)= 2
√

2

3ω
exp

[
tω

4

](√
1 + exp[τω] + 2 2F1

[
1

4
,

1

2
,

5

4
,− exp[tω]

])
(5.3.44)

Although inverting (5.3.44) is not analytically possible, yet it suffices to plot the be-
havior of the scale factors Λ and Δ as functions of the cosmic time τ . This behavior
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Fig. 5.5 Evolution of the
cosmological scale factors
Λ(t) (thick line) and Δ(t)

(thin line) for very early
times, when the Universe is
very young. Λ starts at a
finite value 0.5 and always
grows, while Δ starts at zero,
grows for some time up to the
maximum value 1 and then
starts decreasing

Fig. 5.6 Evolution of the
cosmological scale factor
Δ(t) for late times, when the
Universe grows old. Δ tends
exponentially to zero

is shown in several graphics. In Fig. 5.5 we see the behavior of the scale factors for
very early times.

The early finite behavior of the scale factors has a very important consequence.
This space-time has no initial singularity. Indeed for τ �→ 0 the curvature 2-form is
perfectly well behaved and tends to the following finite limit:

R01 = −1

2
E2 ∧E3; R02 = −1

4
E1 ∧E3; R03 = 1

4
E1 ∧E2

R12 = 0; R13 = 0; R23 = 1

2
E0 ∧E1

(5.3.45)

In Fig. 5.6 we see the evolution of the Δ scale factor for late times just after reaching
its maximum. As we see it rapidly and exponentially tends to zero.
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Fig. 5.7 Evolution of the
cosmological scale factor
Λ(t) for very late times. By
now Δ is essentially zero but
Λ continues to grow and
indefinitely in time with a
power law. The graphic plots
the logarithm of the scale
factor against the logarithm of
time and we see an almost
perfect straight line

In Fig. 5.7 we see instead the very late time behavior of the scale factor Λ. At
asymptotically late times this scale factor grows as a power of time which is slightly
smaller than one.

We can summarize by saying that this funny homogeneous but not isotropic Uni-
verse, which is empty of matter, has a curious history. It has no initial singularity
but it is born finite, small and essentially two-dimensional. It begins to expand and
the third dimension starts to develop. It reaches a state when it is effectively three-
dimensional, although still very small, the two scale factors being of equal size.
Then the third dimension rapidly squeezes and the Universe becomes again effec-
tively two dimensional growing monotonously large in the two dimensions in which
it was born.

This is an example of the billiard mechanism. The effective dimensions of space-
time change more than once in the course of the cosmic evolution. This is further
illustrated in Fig. 5.8 where we show the motion of the fictitious cosmic ball whose
coordinates are:

h1(t)= h2(t)= 1

2
logΛ(t), h3(t)= 1

2
logΔ(t) (5.3.46)

It is evident from the figure that we have two Kasner epochs joined by a smooth
bounce. For very early times t → −∞ and for ω > 0 we have

hi(t)≈ pit : {p1,p2,p3} =
{

0,0,
ω

2

}
(5.3.47)

while for very late times t → ∞ and for ω > 0 we find

hi(t)≈ pit : {p1,p2,p3} =
{
ω

2
,
ω

2
,−ω

2

}
(5.3.48)
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Fig. 5.8 Motion of the
fictitious cosmic ball
corresponding to the exact
Ricci flat metric of Bianchi
type II

5.3.4 The Same Billiard with Some Matter Content

We can find an exact solution of the Einstein equations for the above homogeneous
but anisotropic Universe if we add some matter content. In order to write the Einstein
differential equations in this case, we still need to consider the structure of the stress
energy tensor. As usual, in curved indices this is given by:3

T μν = ρUμUν + p
(
UμUν − gμν

)
(5.3.49)

where ρ is the energy density, p the pressure and Uμ the four-velocity field of
the fluid out of which we assume the Universe to be made of. In an isotropic and
homogeneous Universe this fluid is assumed to be comoving. Namely, just as we
did in the case of stellar equilibrium we assume that the velocity field is orthogonal
to the constant time slices of space-time or equivalently that it has vanishing scalar
product with all the six space-like Killing vectors:

(
−→
U ,

−→
k )= 0 (5.3.50)

In our chosen coordinate system this means U = (1,0,0,0). More intrinsically we
can just state that in flat coordinates the stress energy tensor has the following diag-
onal form:

TAB =

⎛
⎜⎜⎝
ρ(t) 0 0 0

0 p(t) 0 0
0 0 p(t) 0
0 0 0 p(t)

⎞
⎟⎟⎠ (5.3.51)

It is very instructive and of the outmost relevance to calculate the exterior covariant
derivative of the above tensor using the spin connection as determined in (5.3.36).

3In the mostly minus conventions we have ds2 = gμν dx
μ ⊗ dxν and gμνU

μUν = 1.
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We get:

∇T AB = dT AB +ωAFT GBηFG +ωBFT AF ηFG

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E0ρ′(t) E1(p(t)+ρ(t))Δ′(μ)
2
√
A(μ)Δ(μ)

E2(p(t)+ρ(t))Λ′(μ)
2
√
A(μ)Λ(μ)

E3(p(t)+ρ(t))Λ′(μ)
2
√
A(μ)Λ(μ)

E1(p(t)+ρ(t))Δ′(μ)
2
√
A(μ)Δ(μ)

E1p′(t) 0 0

E2(p(t)+ρ(t))Λ′(μ)
2
√
A(μ)Λ(μ)

0 E2p′(t) 0

E3(p(t)+ρ(t))Λ′(μ)
2
√
A(μ)Λ(μ)

0 0 E3p′(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5.3.52)

Then we can easily calculate the divergence of the stress-energy tensor, obtaining:

DAT
A0 = (p(t)+ ρ(t))(Λ(μ)Δ′(μ)+ 2Δ(μ)Λ′(μ))

2
√
A(μ)Δ(μ)Λ(μ)

+ ρ′(t)= 0 (5.3.53)

DAT
Ai = 0; (i = 1, . . . ,3) (5.3.54)

Equation (5.3.53) is a conservation equation that can be easily integrated once one
knows the equation of state, namely the relation between pressure and energy den-
sity:

p = f ( ) (5.3.55)

The equation of state characterizes the type of fluid which is filling up the universe.
In the present anisotropic case we are able to find an exact solution of Einstein field
equations by using the equation of state of a free scalar field. This is the simple
relation:

p = ρ (5.3.56)

To see that this is the equation of state of a free scalar field, it suffices to calcu-
late the stress energy tensor of such a field, assuming that it depends only on time.
Anticipating the formula:

T (scal)
μν = 1

2
∂μφ∂νφ − 1

4
gμν∂ρφ∂σφg

ρσ (5.3.57)

which we derive later in (5.8.4), with a cosmological metric of type ds2 = g00 dt
2 +

gij dx
i dxj , we get:

T00 = 1

4
φ̇2; Tij = −1

4
gij g

00φ̇2 (5.3.58)

and comparing this with (5.3.49) we identify:

ρ = 1

4
φ̇2g00; p = 1

4
φ̇2g00 (5.3.59)
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This implies the equation of state (5.3.56). Substituting such a relation into the con-
servation equation (5.3.53) we obtain the following differential relation:

ρ(t)Δ′(μ)√
A(μ)Δ(μ)

+ 2ρ(t)Λ′(μ)√
A(μ)Λ(μ)

+ ρ′(t)= 0 (5.3.60)

which is immediately integrated to:

ρ(t)= cost

Λ(t)2Δ(t)
(5.3.61)

If we choose the following linear behavior of the scalar field:

φ = 1

4
κt (5.3.62)

where κ is some constant and we choose the following scale factors,

A(t) = e
t

√
κ2
3 +ω cosh

tω

2

Λ(t) = e
1
2 t

√
κ2
3 +ω cosh

tω

2
(5.3.63)

Δ(t) = 1

cosh tω
2

by inserting into (5.3.59) we obtain:

ρ = κ2

64

1

A(t)
= κ2

64
e
−t

√
κ2
3 +ωsech

tω

2
; p(t)= ρ(t) (5.3.64)

Comparison with (5.3.61) shows that indeed the energy density in (5.3.64) is of the
required form and obeys the conservation law, i.e. the field equation of the scalar
field. On the other hand calculating the Einstein tensor, namely substituting (5.3.63)
into (5.3.40) we get:

G00 =G11 =G22 =G33 = κ2

64
e
−t

√
κ2
3 +ωsech

tω

2
(5.3.65)

and in this way we verify that Einstein equations are indeed satisfied.
We can now investigate the properties of this solution. First of all we reduce it to

the standard form (5.3.43) as we did in the previous case. The procedure is the same,
but now the cosmic time τ has a different analytic expression in terms of the original
parametric time t . Indeed, substituting the new form of the scale function A(t) as
given in (5.3.63) into (5.3.42) we obtain the following definition of the cosmic time:
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Fig. 5.9 The cosmic time τ
versus the parameter t for
various values of the
parameter κ . The bigger κ the
thinner the corresponding
line. Here κ = 0 is the
thickest line. The other two
correspond to κ = 1,2
respectively

τ (t)=
2(1+etω) 2 F1(−( 1

4 )+
√

κ2
2 +ω2

2ω ,−( 1
2 ),

3
4 +

√
κ2
2 +ω2

2ω ,−etω)

√
e
t(−ω+

√
κ2
2 +ω2)

sech( tω2 )

1+etω

−ω+ 2
√

κ2

2 +ω2

(5.3.66)

A plot of the function τ(t) for various values of κ (see Fig. 5.9) shows that τ has
always the same qualitative behavior. It tends to zero for t �→ −∞ and it grows
exponentially for t �→ ∞.

Hence we conclude that there is an initial time of this Universe at τ = 0 and we
can explore the initial conditions. In a completely different way from the previous
vacuum solution, this Universe displays an initial singularity and has a Standard
Big Bang behavior. The singularity can be seen in two ways. We can plot the energy
density as given in (5.3.64) and realize that for all values of κ �= 0 it diverges at the
origin of time (see Fig. 5.10).

Alternatively, substituting the scale functions in the expression for the curvature
2-form, we can calculate its limit for t �→ −∞ and we find that the intrinsic compo-
nents diverge for all non-vanishing values of κ , while they are finite at κ = 0 which
corresponds to the empty universe previously discussed.

Let us now analyze the behavior of the two scale factors Λ(τ) and Δ(τ). This
is displayed in Fig. 5.11. For late and intermediate times the behavior is just the
same as in the vacuum solution with κ = 0, but the novelty is the behavior of Λ at
the initial time. Rather than starting from a finite value as in the vacuum solution Λ

starts at zero just as Δ. This is the cause of the initial singularity and the Standard
Big Bang behavior. Further insight in the behavior of this solution is obtained by
considering the evolution plots of the scale factor Λ(τ) for various values of κ , see
Fig. 5.12. We can also look at the behavior of Δ which is plotted in Fig. 5.13.
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Fig. 5.10 The evolution of
the energy density of the
scalar field as function of the
cosmic time, for various
values of κ . The bigger κ , the
thinner the corresponding
line. Here κ = 0.5 is the
thickest line. The other two
correspond to κ = 0.7 and
κ = 1, respectively

Fig. 5.11 The evolution of
the two scale factors as
function of the cosmic time τ
in the dilaton gravity solution.
The thicker line is Λ while
the thinner one is Δ. The
chosen value of the parameter
kappa is κ = 0.7

5.3.5 Three-Space Geometry of This Toy Model

In order to better appreciate the structure of the cosmological solutions we have
been considering in the previous subsection it is convenient to study the geometry
of the constant time sections and the shape of its geodesics. At every instant of time
we have the 3D-metric:

ds2
3D =Λ

(
dx2 + dy2)+Δ

[
dz+ ω

4
(x dy − y dx)

]2

(5.3.67)
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Fig. 5.12 The evolution of
the Λ scale factor as function
of the cosmic time τ in the
dilaton gravity solution and
for different values of kappa.
The thickest line corresponds
to κ = 0. The bigger κ , the
thinner the line as in the other
plots. Here we have
κ = 0,1,2,4. For all κ �= 0,
Λ begins at zero

Fig. 5.13 The evolution of
the Δ scale factor as function
of the cosmic time τ in the
dilaton gravity solution and
for different values of kappa.
The bigger κ , the thinner the
line. Here we have
κ = 0,1,2,4. Δ has always
the same behavior and
increasing κ corresponds only
to an anticipation of the peak

which admits the Killing vectors (5.3.27) as generators of isometries. As we ex-
plained several times, the scalar product of Killing vectors with the tangent vector
to a geodesic is constant along the geodesic. Hence if λ is the affine parameter along
a geodesic and −→

t = {x′[λ], y′[λ], z′[λ]} is the tangent vector to the same, then we
have the following four constants of motion:

A1 ≡ (
−→
k1,

−→
t ) = Δ(−(ωy(λ)x′(λ))+ωx(λ)y′(λ)+ 4z′(λ))

4

A2 ≡ (
−→
kO,

−→
t ) = 1

16

[(
16Λ+Δω2x(λ)2

)
y(λ)x′(λ)+Δω2y(λ)3x′(λ)

−Δωy(λ)2
(
ωx(λ)y′(λ)+ 4z′(λ)

)
− x(λ)

((
16Λ+Δω2x(λ)2

)
y′(λ)+ 4Δωx(λ)z′(λ)

)]
(5.3.68)
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A3 ≡ (
−→
k2,

−→
t ) = (8Λ+Δω2y(λ)2)x′(λ)−Δωy(λ)(ωx(λ)y′(λ)+ 4z′(λ))

8

A4 ≡ (
−→
k3,

−→
t ) = 8Λy′(λ)+Δω2x(λ)2y′(λ)+Δωx(λ)(−(ωy(λ)x′(λ))+4z′(λ))

8

Then the geodesics are characterized by the equations:

A2 = −4A4x(λ)+ 4A3y(λ)+ωA1(x(λ)
2 + y(λ)2)

4
(5.3.69)

and

z′(λ)= 8ΔωA2 +A1(8Λ−Δω2x(λ)2 −Δω2y(λ)2)

8ΔΛ
(5.3.70)

We also have:

x′(λ)= 2A3 +ωA1y(λ)

2Λ
(5.3.71)

y′(λ)= 2A4 −ωA1x(λ)

2Λ

We conclude that the projection of all geodesics on the xy plane are circles with
centers at:

(x0, y0)=
(

2A4

ωA1
,
−2A3

ωA1

)
(5.3.72)

and radii:

R = 2

√
ωA1A2 +A3

2 +A4
2

ω2A1
2

(5.3.73)

and in terms of the new geometrically identified constants (5.3.70) becomes:

z′(λ)= A1(8Λ+ 2Δω2(R2 − x0
2 − y0

2)−Δω2x(λ)2 −Δω2y(λ)2)

8ΔΛ
(5.3.74)

If we use a polar coordinate system in the xy-plane, namely if we write:

x0 = ρ cos[θ ]; y0 = ρ sin[θ ]
x = ρ cos[θ ] +R cos

[
φ(λ)

]; x = ρ sin[θ ] +R sin
[
φ(λ)

] (5.3.75)

where ρ and θ are constant parameters, we obtain that the derivative of the angle φ
with respect to the affine parameter λ is just:

dφ

dλ
= −ωA1

2Λ
(5.3.76)
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Fig. 5.14 In the first picture
we see two geodesics in three
space, while in the second we
see their projection onto the
plane xy

This means that φ itself, being linearly related to λ, is an affine parameter. On the
other hand, the equation for the coordinate z, (5.3.70), becomes:

dz

dφ
= −(8Λ+Δ(R2 − 3ρ2)ω2 − 2RΔρω2 cos(θ − ϕ(λ)))

4Δω
(5.3.77)

which is immediately integrated and yields:

z[φ] = (θ − ϕ)(8Λ+Δ(R2 − 3ρ2)ω2)− 2RΔρω2 sin(θ − ϕ)

4Δω
(5.3.78)

Hence the possible geodesic curves in the three-dimensional sections of the cosmo-
logical solutions we have been discussing are described by (5.3.78) plus the second
of (5.3.75). The family of such geodesics is parameterized by {R,θ,ρ}, namely
by the position of the center in the xy plane and by the radius. The shape of such
geodesics is that of spirals (see Fig. 5.14).

A more illuminating visualization of this three-dimensional geometry is provided
by the picture of a congruence of geodesics. Given a point in this 3D space, we can
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Fig. 5.15 In this picture we
present a congruence of
geodesics for the space with
Λ=Δ= ω= 1. All the
curves start from the same
point and are distinguished by
the value of the radius R in
their circular projection onto
the xy plane

consider all the geodesics that begin at that point and that have a radius R falling in
some interval:

RA <R <RB (5.3.79)

Following each of them for some amount of parametric time λ we generate a two
dimensional surface. An example is given in Fig. 5.15.

The evolution of the Universe can now be illustrated by its effect on a congru-
ence of geodesics. Chosen a congruence like in Fig. 5.15, the shape of the surface
generated by such a congruence depends on the value of the scale parameters Λ

and Δ. We can follow the evolution of the congruence while the Universe expands
obtaining a movie.

Having illustrated the shape and the properties of the geodesics for the three
dimensional sections of space-time we can now address the question of geodesics
for the full space-time. To this effect we calculate first the three dimensional line
element along the geodesics and we obtain the following result

d�2(t, λ)

dλ2
≡ Λ(t)

[
ẋ2(λ)+ ẏ2(λ)

]+Δ(t)

[
ż(λ)+ ω

4

(
x(λ)ẏ(λ)− y(λ)ẋ(λ)

)]2

= (16R2Λ(t)ω2 + (−8Λ(t)+3Δ(t)ρ2ω2+3RΔ(t)ρω2 cos(θ−ϕ(λ)))
2

Δ(t)
)A1

2

64Λ(t)2

≡ F 2(t, φ)

(
dφ

dλ

)2

(5.3.80)

In the last step of (5.3.80) we have introduced the notation:

F 2(t, φ)= (16R2Λ(t)ω2 + (−8Λ(t)+3Δ(t)ρ2ω2+3RΔ(t)ρω2 cos(θ−ϕ(λ)))
2

Δ(t)
)

16ω2
(5.3.81)

and we have used the relation (5.3.76).
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Hence we obtain the complete space-time geodesics from those of three space
by solving the following equation that relates the time coordinate t to the angular
coordinate φ:

−A(t)

(
dt

dφ

)2

+ F 2(t, φ)= k
4

ω2

A1

Λ2(t)
;

⎧⎨
⎩
k = −1 time-like
k = 0 null-like
k = 1 space-like

(5.3.82)

Furthermore, the constant A1 is inessential and can always be fixed to 1 since it can
be traded for the constant A2 which does not appear in the equation. The differential
(5.3.82) appears rather involved since F 2(t, φ) depends both on time and the angle
φ. Yet we can take advantage of the homogeneous character of our space-time and
simplify the problem very much. Indeed due to homogeneity it suffices to consider
the geodesics whose projection in the xy plane is a circle centered at the origin and
of radius R. All other geodesics with center in some point {x0, y0} can be obtained
from these ones by a suitable isometry that takes {0,0} into {x0, y0}. So let us con-
sider geodesics centered at the origin of the xy plane. This corresponds to setting
ρ = 0. In this case we obtain:

F 2(t, φ)|ρ=0 ≡ F 2
0 (t)=

Λ(t)(4Λ(t)+R2Δ(t)ω2)

Δ(t)ω2
(5.3.83)

which depends only on time and the geodesic equations are reduced to quadratures
since we get: ∫ φ0

0
dφ =

∫ t0

−∞

√
A(t)√

F 2(t)− 4k
ω2Λ2(t)

dt (5.3.84)

The convergence or divergence of the second integral in (5.3.84) determines whether
or not there are particle horizons in the considered cosmology. We will discuss the
general concept of particle horizons for isotropic cosmologies later on. There the
particle horizon appears as a spherical surface and is characterized by a radius. In
non-isotropic cosmology as the present one, particle horizon may have a completely
different much less intuitive shape. Curiously, in the above geometry horizons ap-
pear as an angular deficit. For each chosen radius R one can explore the geodesic
(which is a spiral) only up to some maximal angle φmax at each chosen instant of
time.

5.4 The Standard Cosmological Model: Isotropic
and Homogeneous Metrics

Having analyzed the implications of homogeneity without the enforcement of com-
plete isotropy, we turn to the Standard Cosmological Model, by assuming that the
candidate cosmological metric is not only homogeneous but also isotropic, namely
it admits a 6-parameter group G6 of isometries, generated by space-like Killing vec-
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tors. Furthermore isotropy means that G6 includes necessarily an SO(3) rotation
subgroup. The classification of three-dimensional homogeneous spaces with such a
G6 group of isometries reduces to the classification of three-dimensional Euclidian
coset manifolds and we just have three possibilities:

M3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SO(4)
SO(3) � S3 � SO(3) (κ = 1)

SO(1,3)
SO(3) � Solv(SO(1,3)

SO(3) ) (κ = −1)

ISO(3)
SO(3) �R

3 (κ = 0)

(5.4.1)

In the above formula we have emphasized the fact that the three selected coset
manifolds, possessing the required isometry type, are metrically equivalent to three
group-manifolds of dimension three and therefore fall into the Bianchi classifica-
tion. In particular we have the following identifications at the level of Lie algebras:

κ = 1 ⇔ Bianchi Type IX

κ = 0 ⇔ Bianchi Type I (5.4.2)

κ = −1 ⇔ Bianchi Type V

We can describe the geometries of these three spaces simultaneously with a single
formula by writing the following 3D-metric:

ds2
3D = dr2

1 − κr2
+ r2(dθ2 + sin2 θ dφ2) (5.4.3)

We show below that when κ takes the two values ±1 the metric (5.4.3) can be
identified with the pull-back of the flat R4 metric on either the 3-sphere or the three-
dimensional hyperboloid and hence just describes the SO(4) or SO(1,3) invariant
metrics on such coset manifolds, respectively. In the first case the variable r is ac-
tually compact and takes values in the range [0,2π]. In the second case it is non
compact and takes values in the infinite interval [−∞,+∞]. In the case κ = 0, the
metric (5.4.3) is manifestly identical with the flat Euclidian metric in three dimen-
sion, written in polar coordinates and the variable r takes values in the semiinfinite
interval [0,+∞]. As such it admits the Euclidian group of isometries ISO(3).

The only parameter in (5.4.3) which is not fixed by isometries is the global scale
of the three-dimensional space and this we can take to be time dependent: a(t).
Hence we can write the following ansatz for the isotropic and homogeneous cosmo-
logical metric

ds2 = −dt2 + a(t)2
[

dr2

1 − κr2
+ r2(dθ2 + sin θ2 dφ2)] (5.4.4)

and correspondingly we introduce the following vierbein:

E0 = dt; E1 = a(t) dr√
1−κr2

E2 = a(t)r dθ; E3 = a(t)r sin θ dφ
(5.4.5)
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The calculation of the spin connection is immediate and we obtain:

ω01 = ȧ(t)

a(t)
E1; ω02 = ȧ(t)

a(t)
E2

ω03 = ȧ(t)

a(t)
E3; ω12 = −

√
1 − κρ2

ρa(t)
E2

ω13 = −
√

1 − κρ2

ρa(t)
E3; ω23 = −cot(θ)

ρa(t)
E3

(5.4.6)

Next we evaluate the curvature 2-form:

R01 = ä(t)

a(t)
E0 ∧E1; R02 = ä(t)

a(t)
E0 ∧E2

R03 = ä(t)

a(t)
E0 ∧E3; R12 = κ + ȧ(t)2

a(t)2
E1 ∧E2

R13 = κ + ȧ(t)2

a(t)2
E1 ∧E3; R23 = κ + ȧ(t)2

a(t)2
E2 ∧E3

(5.4.7)

which turns out to be diagonal, in the sense that RAB ∝EA ∧EB but with different
time-dependent eigenvalues.

Given these results we can evaluate the Ricci tensor and the Einstein tensor with
flat indices defined by (5.3.37), (5.3.39). We get:

G00 = 3

2

[(
ȧ(t)

a(t)

)2

+ κ

a(t)2

]

G11 = G22 =G33 (5.4.8)

= −
[
ä(t)

a(t)
+ 1

2

(
ȧ(t)

a(t)

)2

+ 1

2

κ

a(t)2

]

In order to write the Einstein differential equations, we still need to consider the
structure of the stress energy tensor. As usual, in curved indices this is given by
(5.3.49) and in flat indices by (5.3.51). Analogously to (5.3.52) we can calculate the
exterior derivative of (5.3.51) in the background metric (5.4.4) and we obtain:

∇T AB = dT AB +ωAFT GBηFG +ωBFT AF ηFG

=

⎛
⎜⎜⎜⎜⎜⎝

E0ρ′(t) (p(t)+ρ(t))ȧ(t)
a(t)

E1 (p(t)+ρ(t))ȧ(t)
a(t)

E2 (p(t)+ρ(t))ȧ(t)
a(t)

E3

(p(t)+ρ(t))ȧ(t)
a(t)

E1 E0ṗ(t) 0 0
(p(t)+ρ(t))ȧ(t)

a(t)
E2 0 E0ṗ(t) 0

(p(t)+ρ(t))ȧ(t)
a(t)

E3 0 0 E0ṗ(t)

⎞
⎟⎟⎟⎟⎟⎠

(5.4.9)
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from which we easily calculate the divergence whose vanishing provides a differen-
tial equation for the energy density:

∇AT
AB =

{
ρ̇(t)+ 3

ȧ(t)

a(t)

(
ρ(t)+ p(t)

)
,0,0,0

}
= 0 (5.4.10)

Having computed all the ingredients we can finally analyze the Einstein equations,
that take the following form:

GAB = 4πTAB + 1

2
ηABΛ (5.4.11)

where Λ is a new constant originally introduced by Einstein and named by him the
cosmological constant. It corresponds to the presence in the gravitational action of
an additional term of the form

∫
Λ

√−detg d4x which is allowed by the principle
of general covariance.

Inserting the results (5.4.8) and (5.3.51) into (5.4.11) we finally obtain the fol-
lowing two equations:

(
ȧ

a

)2

= 8πG

3
ρ − κ

a2
+Λ

(5.4.12)( ··
a

a

)
= −4πG

3
(ρ + 3p)

that are currently known in the literature as Friedman equations.
Obviously these latter have to be supplemented with (5.4.10) which expresses the

conservation of the stress energy tensor. It turns out that these three equations are not
independent. This is just what should happen, since the Einstein tensor is conserved
as a consequence of Bianchi identities. Indeed multiplying the first of (5.4.12) by a2,
taking a further derivative and combining it with the second we obtain the following
result:

 ̇+ 3( + p)
ȧ

a
= 0 (5.4.13)

which is nothing else but the already obtained conservation equation (5.4.10). So we
can just focus on this latter equation and on the first of Friedman equations (5.4.12).

5.4.1 Viewing the Coset Manifolds as Group Manifolds

Before studying Friedman equations, and in order to better appreciate the role of
isotropy versus homogeneity, we reconsider the statement made at the beginning
of the present section, namely that each of the three coset manifolds mentioned
in (5.4.1) can be also viewed as a group manifold and therefore that each of the
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three isotropic, cosmological metrics (5.4.4) admits an alternative description of the
Bianchi type, namely:

ds2[κ] = −dt2 + a(t)2

[
3∑

i=1

(
Ωi[κ]

)2] (5.4.14)

where the 1-forms Ωi[κ] are left-invariant 1-forms satisfying the Maurer Cartan equa-
tions of three different appropriate Lie algebras:

dΩi[κ] = t i[κ]|jkΩ
j
[κ] ∧Ωk[κ] (5.4.15)

identified by their structure constants. Explicitly the appropriate algebras are:

Bianchi
type IX

}
κ = 1 ⇒

⎧⎨
⎩
dΩ1 =Ω2 ∧Ω3

dΩ2 =Ω3 ∧Ω1

dΩ3 =Ω1 ∧Ω2

Bianchi
type V

}
κ = −1 ⇒

⎧⎨
⎩
dΩ1 =Ω1 ∧Ω3

dΩ2 =Ω2 ∧Ω3

dΩ3 = 0

Bianchi
type I

}
κ = 0 ⇒

⎧⎨
⎩
dΩ1 = 0
dΩ2 = 0
dΩ3 = 0

(5.4.16)

From this point of view the candidate cosmological metric might have been much
more general, i.e.

ds2[κ] = −dt2 +
∑
i,j

aij (t)Ω
i[κ] ⊗Ω

j
[κ] (5.4.17)

However such a metric as the above one has only three translational Killing vectors
and describes a homogeneous but not isotropic universe. Isotropy follows only from
the more restrictive so(3) invariant choice:

aij (t)= a2(t)δij (5.4.18)

5.5 Friedman Equations for the Scale Factor and the Equation
of State

In order to study the evolution of the cosmic scale factor we need to supplement the
conservation equation (5.4.13) with an equation of state for the fluid filling up the
universe:

p = f ( ) (5.5.1)

Indeed, upon use of (5.5.1), (5.4.13) reduces to a first order differential equation for
the energy density in terms of the scale factor. We shall consider two extreme cases
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of equations of state:

p =
{

0 dust universe
1
3 radiation universe

(5.5.2)

Combining (5.5.2) with (5.4.13) we immediately find:
{
 a3 = Ĉd = const; dust universe

 a4 = Ĉr = const; radiation universe
(5.5.3)

Equations (5.5.3) are conservation laws and their physical interpretation will be-
come clear through our discussion. For the dust case, its meaning should be appar-
ent already at this stage. In a universe uniquely filled with matter, the energy density
is, by definition:

 matter = Total mass of the Universe

Volume of the Universe
(5.5.4)

while, the volume of the Universe at cosmological time t can be identified with:

Volume = a(t)3 (5.5.5)

so that (5.5.3) states that the total mass of the universe is constant in time.
On the other hand for a universe filled with radiation, things are more subtle. The

energy of a photon is:

Ephoton = �ν (5.5.6)

where ν denotes its frequency. Now assume that the frequency of a photon is red-
shifted by the expansion according to the law:

νemission

νabsorption
= a(tabsorption)

a(temission)
(5.5.7)

it follows that the energy density of radiation at any cosmological time is:

 radiation(t)= Number of photons

Volume of the Universe
× �νemission × 1

a(t)
(5.5.8)

and the second of (5.5.3) is the statement that the total number of photons in the
universe is approximately conserved. As we are going to see, the redshift law (5.5.7)
is indeed true and a fundamental consequence of general relativity.

A realistic universe is neither pure dust nor pure radiation: it contains both com-
ponents since there is both granular matter in the form of galaxies and radiation in
the form of photons or other ultrarelativistic particles. Their relative contribution to
Einstein equations, however, is different at different cosmological times since in an
expanding or contracting universe the ratio of the energy densities is:

 radiation(t)

 matter
= const × 1

a(t)
(5.5.9)
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Consequently it makes sense to analyze the solution of the Einstein equations in
the two idealized cases where either the radiation or the dust is present. The second
solution applies to the present cosmological time when the Universe has already
expanded so much that the radiation contribution has become irrelevant, while the
first solution applies to early times when radiation was, because of (5.5.9), domi-
nating. Indeed as we are presently going to see from our equations in both cases the
behavior of the scale factor a(t) is that of an increasing function of time, at least in a
certain initial interval. Later, depending on the value of the curvature κ , the universe
can also contract.

5.5.1 Proof of the Cosmological Red-Shift

The overall cosmological red-shift is a consequence of the homogeneity and
isotropy of the universe. Let us proof this statement.

Consider the vierbein of a cosmological homogeneous and isotropic space time.
It can be written in the form:

E0 = dt; Ei = a(t)ei (5.5.10)

where ei denote the vielbein of a three dimensional manifold admitting the transitive
action of the symmetry group whose infinitesimal generators are represented by the
Killing vectors kI . By definition we have:

�ke
i =W

ij

k ej (5.5.11)

where the antisymmetric 3 × 3 matrix W
ij

k is the so(3)-compensator. Equa-
tion (5.5.11) implies that we also have:

�kE
0 = 0; �kE

i =W
ij

k Ej (5.5.12)

The Killing vectors kI have purely space-like components. Correspondingly their
squared norm is of the following form:

(k,k)= a2(t) hij k
ikj︸ ︷︷ ︸

=〈k,k〉
(5.5.13)

where 〈k,k〉 denotes the norm of the same Killing vector in the metric of the con-
stant time sections and it is time independent.

It follows that the ratio of the Killing vector norms at different instant of time
equals the corresponding ratio of the scale factors:

√
(k,k)t1√
(k,k)t2

= a(t1)

a(t2)
(5.5.14)
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Fig. 5.16 At time te a source
having quadri-velocity u

μ
e

emits a photon of
quadri-momentum kμ that a
the later time t0 is absorbed
by an observer having
quadri-velocity u0. Σe and
Σ0 are the constant time
slices at the time of emission
and of absorption. Both of
them are Euclidian
three-manifolds admitting the
transitive action of the same
translation group of
isometries

Consider now the situation described in Fig. 5.16. At an early time te a source having
quadri-velocity uμe emits a photon of momentum pμ which is later absorbed at time
t0 by an observer having four-velocity u

μ
0 .

By definition the frequency of photon at emission and at absorption are:

ωe = pμuνegμν; ω0 = pμuν0gμν (5.5.15)

Since the photon is massless we always have that the time and space components of
its four-momentum must be equal. On the other hand since the constant time slices
of space-time admit the transitive action of a group of isometries, every direction
in three space can always be viewed as aligned to a suitable translation space-like
Killing vector kν . It follows from this argument that the frequency of the photon at
the time of emission and of absorption can also be represented as follows:

ωe = pμkν√
(k,k)te

(5.5.16)

ω0 = pμkν√
(k,k)t0

Next we recall that the scalar product pμkν where pμ is tangent to a geodesic and kν
is a Killing vector is constant along the geodesic. This implies that pμkν will be the
same at the emission and at the absorption time; consequently, in view of (5.5.14)
we obtain:

ωe

ω0
= a(t0)

a(te)
(5.5.17)

which is the proof of the cosmological red-shift, already anticipated in previous
pages. As we see the key point in the proof is that any direction taken by the three-
momentum can be considered aligned to a Killing vector and this is true if our
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space-time is homogeneous. In addition we need the same scale factor a(t) in all
directions and this is the outcome of isotropy.

5.5.2 Solution of the Cosmological Differential Equations for Dust
and Radiation Without a Cosmological Constant

If we substitute the first integral given by the conservation law (5.5.3) into the first
of the differential equations (5.4.12) we get:

⎧⎨
⎩

3( ȧ
a
)2 = Cd

a3 − 3 κ

a2 ; dust

3( ȧ
a
)2 = Cr

a4 − 3 κ

a2 ; radiation
(5.5.18)

where we have defined:

Cd
r
= 8πG

3
Ĉd
r

(5.5.19)

Equations (5.5.18) are easily reduced to quadratures obtaining:
⎧⎪⎨
⎪⎩

da
dt

=
√

Cd

a
− κ; dust

da
dt

=
√

Cr

a2 − κ; radiation
(5.5.20)

The differential equation for the scale factor in the case of a radiation filled universe
is immediately integrated and yields the following simple result:

a(t)=

⎧⎪⎪⎨
⎪⎪⎩

√
2
√
Crt − t2 for κ = 1√

t2 − 2
√
Crt for κ = −1

√
2 4
√
Cr

√
t for κ = 0

(5.5.21)

where the integration constant has been fixed by means of the boundary condition
a(0)= 0 (see Fig. 5.17).

As it is evident from the above analytic form the solution for a positively curved
universe (κ = 1) makes sense only in the interval, 0 ≤ t ≤ 2

√
Cr where the function

under square root is positive. Hence while for the open and flat universe (κ ≤ 0), the
scale factor grows indefinitely and the expansion never ceases, the closed universe
undergoes an expansion phase followed by a contraction one which finally concen-
trates again all the radiation into a single point with a diverging energy density.

Although the analytic form of the solution is slightly different, the qualitative
behavior of the scale factor follows exactly the same pattern also in the case of
a dust filled universe, as we demonstrate in the following subsections, separately
analyzing the three cases.
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Fig. 5.17 Evolution of the cosmological scale factor a(t) in the case of a radiation filled universe,
for the three cases of positive (κ = 1), negative (κ = −1) and vanishing spatial curvature (κ = 0).
The thickest line corresponds to the hyperbolic case (κ = −1) where, for late times, the scale factor
grows asymptotically as a ∼ t . The medium thick line corresponds to the flat case where the late
time asymptotic behavior of the scale factor is a ∼ √

t . Finally the thinnest line correspond to the
elliptic case (κ = 1), where the scale factor reaches a maximum and then contracts again to zero

5.5.2.1 Parametric Solution in the Dust Case of a Positively Curved
Universe κ = 1

We solve the differential equation pertaining to this case by means of a suitable
change of variables. We introduce the new variable η and we set:

a = 1

2
Cd(1 − cosη) (5.5.22)

Then we immediately get:

dt = da√
Cd

a
− 1

= 1

2
Cd(1 − cosη)dη (5.5.23)

and hence, by straightforward integration, we find the parametric solution for the
curve describing the evolution of the scale factor in the plane t, a:

a(η) = 1

2
Cd(1 − cosη)

(5.5.24)

t (η) = 1

2
Cd(η− sinη)

In Fig. 5.18 we show two instances of these evolutions. As one sees, in a positively
curved universe, an initial expansion is always followed by a contraction phase.
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Fig. 5.18 Evolution of the cosmological scale factor a(t) in the case of a closed (κ = 1) dust
universe. The amplitude of the expansion, before the contraction sets on, depends on the total
matter content of the universe codified by the constant Cd . In the figure we show two cases Cd = 1
(thicker line) and Cd = 0.6 (thinner line)

The amplitude of the expansion before the contraction depends on the total matter
content of the universe.

5.5.2.2 Parametric Solution in the Dust Case of a Negatively Curved
Universe κ = −1

The solution for the hyperbolic universe is obtained in a similar way. Rather than
(5.5.22) we pose:

a = −1

2
Cd(1 − coshη) (5.5.25)

and, in complete analogy to the previous case, we obtain:

da = 1

2
Cd sinhη dη

(5.5.26)∫
dt = 1

2
Cd(sinhη− η)

so that the parametric description of the scale factor evolution is the following one:

a(η) = 1

2
Cd(coshη− 1)

(5.5.27)

t (η) = 1

2
Cd(sinhη− η)

In this case the universe expands indefinitely and there is no contraction phase. Also
here, the rate of the expansion depends on the total matter content of the universe:
the bigger it is the faster the universe expands. Examples of this evolution are shown
in Fig. 5.19.



5.5 Friedman Equations for the Scale Factor and the Equation of State 157

Fig. 5.19 Evolution of the
cosmological scale factor a(t)
in the case of an open
(κ = −1) dust universe. Also
here the amplitude of the
expansion depends on the
total matter content of the
universe codified by the
constant Cd . The thicker line
corresponds to the case
Cd = 1 while the thinner line
corresponds to the case
Cd = 0.2

Fig. 5.20 Evolution of the
cosmological scale factor a(t)
in the case of a flat (κ = 0)
dust universe. Also here the
amplitude of the expansion
depends on the total matter
content of the universe
codified by the constant Cd .
The thicker line corresponds
to the case Cd = 1 while the
thinner line corresponds to
the case Cd = 0.5

5.5.2.3 Parametric Solution in the Dust Case of a Spatially Flat Universe κ = 0

In the case of zero spatial curvature, (5.5.20) reduce, for a dust universe, to:
∫

dt = 1√
Cd

∫ √
a da (5.5.28)

and hence we find:

a =
(

9Cd

4

)2/3

t2/3 (5.5.29)

We conclude that also the flat, dust filled, universe expands indefinitely and the scale
factor raises as a ∼ t2/3 (see Fig. 5.20), to be compared with the weaker growth
a ∼ t1/2 of the same flat universe when it is radiation dominated.

In Fig. 5.21 we have compared the three kinds of behavior of the cosmological
scale factor for the positively, negatively curved and flat, dust filled universe.

As one sees the qualitative behavior is exactly the same as in the case of radiation.
Such behavior changes dramatically when we consider the case of universes with

a positive space-time curvature, in particular the maximally symmetric de Sitter
space.
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Fig. 5.21 Comparison
between the three types of
dust filled universes. With the
same total matter content
Cd = 1 we have plotted the
behavior of the scale factor in
the three cases of a closed,
open and flat universe. The
line that goes back to a = 0 is
the closed universe κ = 1. Of
the two indefinitely growing
lines the thinner is the open
universe κ = −1, the thicker
is the flat universe κ = 0. The
flat universe, initially expands
faster than the open one, but
at later times it is overcome
by the open universe whose
scale factor grows faster than
t2/3 for t → ∞

Let us explain.
By assuming the cosmological principle, namely homogeneity and isotropy, we

have imposed that the metric of space-time, at the scales of interest for cosmology,
has a large symmetry, admitting six Killing vectors, three rotational ones closing
the so(3) Lie algebra and three translational ones. In the case of positive spatial
curvature κ = 1 the six Killing vectors close the so(4) Lie algebra, for negative
curvature κ = −1 they close the Lorentz algebra so(1,3), while for the flat universe
they close the Lie algebra of the three dimensional Euclidian group E

3.
Yet six is not the maximal number of Killing vectors that we can have in a four-

dimensional manifold. The actual value of such maximal number is 10, namely the
dimension of the Poincaré Lie algebra, iso(1,3), but also of the Lie algebra so(1,4)
and so(2,3). Indeed there are three maximally symmetric pseudo- Riemannian man-
ifolds with Lorentzian signature that, respectively, admit the corresponding group of
isometries, namely Minkowski space Mink4, de Sitter space dS4 and anti de Sitter
space AdS4. It follows that among the various isotropic and homogeneous universes,
classified by the behavior of the scale factor a(t), there should be special ones where
the six-dimensional isometry algebra is promoted to a ten dimensional one. Clearly
imposing the existence of extra Killing vectors puts differential constraints on the
scale factor a(t) which eventually will determine it uniquely.

In the next subsection we analyze in detail de Sitter space and we show that, in
the framework of its geometry we cam embed all the three types of cosmological
metrics (κ = ±1,0), clearly with different forms of the scale factor a(t). This might
seem paradoxical, but it is not. The key point is that the choice of the time t in the
three embeddings is different.
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5.5.3 Embedding Cosmologies into de Sitter Space

The Lorentzian manifold dS, named de Sitter space is identified with the following
coset manifold:

dS = SO(1,4)

SO(1,3)
(5.5.30)

and therefore admits the 10-parameter group of isometries:

SO(1,4) (5.5.31)

The entire coset manifold can be identified as an algebraic locus in R
5, namely as

the set of points satisfying the following quadratic equation:

Y 2
0 −

4∑
i=1

Y 2
i = −H−2

0 (5.5.32)

where H0 is a real number, whose physical interpretation will be that of Hubble
constant.

Using rescaled variables Y
I = Y I /H0, we see that de Sitter space corresponds to

the manifold H
(4,1)
+ in the language of Sect. 5.2.2. Here we introduce other coordi-

nates for the coset manifold by solving explicitly the constraint (5.5.32), in various
ways.

One parametric solution of the above algebraic equation is as follows:

Y0 = H−1
0 sinhH0t

Y1 = H−1
0 coshH0t cosR

Y2 = H−1
0 coshH0t sinR cos θ (5.5.33)

Y3 = H−1
0 coshH0t sinR sin θ cosφ

Y4 = H−1
0 coshH0t sinR sin θ sinφ

and the pull-back of the Lorentzian metric in R
5:

ds2
5 = dY 2

0 −
4∑

i=1

dY 2
i (5.5.34)

on the locus (5.5.32) by means of the parameterization (5.5.33) leads to the follow-
ing metric:

ds2
dS+ = −dt2 + cosh2 H0t

H 2
0

[
dR2 + sin2 R

(
dθ2 + sin2 θ dφ2)]

= −dt2 +
(

coshH0t

H0

)2[
dr2

1 − r2
+ r2(dθ2 + sin2 θ dφ2)] (5.5.35)
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where in the last step we have further posed:

sinR = r (5.5.36)

In this way we have shown that de-Sitter space can be identified with a cosmological
model characterized by:

κ = 1; a(t)= coshH0t

H0
(5.5.37)

The corresponding Hubble function and acceleration parameters are:

H(t) = H0 tanh(H0t) (5.5.38)

ä(t)

a(t)
= H 2

0 (5.5.39)

An alternatively equally good parametric solution of the quadric (5.5.32) is given
by:

Y0 = H−1
0 sinhH0t coshR

Y1 = H−1
0 sinhH0t sinhR cos θ

Y2 = H−1
0 sinhH0t sinhR sin θ cosφ (5.5.40)

Y3 = H−1
0 sinhH0t sinhR sin θ sinφ

Y4 = H−1
0 cosh t

The pull back of the flat metric (5.5.34) on the locus (5.5.32) by means of this second
parameterization (5.5.40) is:

ds2
dS− = −dt2 +H−2

0 sinh2 H0t
[
dR2 + sinh2 R

(
dθ2 + sin2 θ dφ2)]

= −dt2 +
(

sinhH0t

H0

)2[
dr2

1 + r2
+ r2(dθ2 + sin2 θ dφ2)] (5.5.41)

where in the last step we have further posed:

sinhR = r (5.5.42)

In this way we have shown that de-Sitter space can be also identified with a cosmo-
logical model characterized by:

κ = −1; a(t)= sinhH0t

H0
(5.5.43)

The corresponding Hubble function and acceleration parameter are:

H(t) = H0
1

tanh(H0t)
(5.5.44)
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ä(t)

a(t)
= H 2

0 (5.5.45)

A third possibility to obtain a parametric solution of the quadric (5.5.32) is the
following one. First redefine

U = Y0 − Y4; V = Y0 + Y4 (5.5.46)

and rewrite the quadric and the associated Lorentzian metric as follows:

UV −
3∑

i=1

Y 2
i = −H−2

0 (5.5.47)

ds2
(5) = −dU dV +

3∑
i=1

dY 2
i (5.5.48)

Then solve parametrically (5.5.47) as shown below:

U = H−1
0 ρ

Yi = H−1
0 ρxi (5.5.49)

V = H−1
0

(
− 1

ρ
+ ρ

−→
x 2
)

By means of this parameterization the pull-back of the Lorentz metric (5.5.48) on
the locus (5.5.47) becomes:

ds2
dS0

= H−2
0

(
−dρ2

ρ2
+ ρ2 d

−→
x 2
)

= −dt2 +
(

expH0t

H0

)2[
dr2 + r2(dθ2 + sin2 θ dφ2)] (5.5.50)

where in the last step we have set:

ρ = expH0t

x1 = r cos θ
(5.5.51)

x2 = r sin θ cosφ

x3 = r sin θ sinφ

In this way we have shown that de Sitter space can also be seen as a cosmological
metric characterized by:

κ = 0; a(t)= expH0t

H0
(5.5.52)
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namely a flat Universe with an exponentially growing scale factor. The correspond-
ing Hubble function and acceleration parameter are:

H(t) = H0 (5.5.53)

ä(t)

a(t)
= H 2

0 (5.5.54)

The important lesson told by this analysis is that there are cases of cosmological
homogeneous and isotropic metrics where, irrespectively from the sign of the spa-
tial curvature, the universe expands indefinitely, even exponentially. The question
is which kind of energy filling of the universe can yield such solutions, in particu-
lar de Sitter space. The answer will be vacuum-energy. To address such a question
and similar ones we ought to consider the general properties and consequences of
Friedman equations.

5.6 General Consequences of Friedman Equations

Let us reconsider the differential equation (5.4.13) and inspect its solution for a class
of equations of state of the form

p =wρ (5.6.1)

where w is a constant coefficient. We already saw that w = 0 corresponds to bary-
onic matter (dust universe), while w = 1

3 provides the equation of state of relativistic
radiation. Other notable cases will be met soon.

Inserting (5.6.1) into (5.4.13) we get:

ρ̇

ρ
= −3(1 +w)

ȧ

a
(5.6.2)

which is immediately integrated to:

ρ

ρ0
=
(
a0

a

)3(1+w)

(5.6.3)

where ρ0 and a0 are, respectively, the energy density and the scale factor at a refer-
ence instant of time, which we choose to be our own.

Evaluating the first of Friedman equations at current time, we obtain:

κ = a2
0

(
8πG

3
ρ0 −H 2

0

)
(5.6.4)

where it is proper to recall that H0, the Hubble constant, is an experimentally eval-
uated parameter. It follows that the sign of the space curvature of the Universe de-
pends on whether the present energy density is bigger, equal or less than the critical
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density defined by:

ρcrit = 3

8πG
H 2

0 (5.6.5)

In view of this and of (5.6.3), assuming that the energy filling of the Universe con-
sists of various components:

ρ =
n∑

i=1

ρi (5.6.6)

obeying the equation of state (5.6.1) with various values wi of the proportionality
parameter, the first of Friedman equations can be rewritten in the following inspiring
form: (

H

H0

)2

=
n∑

i=1

Ωi
0

(
a0

a

)3(1+wi)

+Ωκ

(
a0

a

)2

(5.6.7)

where the so named dimensionless cosmological parameters have been defined as
follows:

Ωi
0 = ρi0

ρcrit
(5.6.8)

Ωκ = − κ

H 2
0 a

2
0

(5.6.9)

and as a consequence of (5.6.7) obey the consistency condition:

1 =
n∑

i=1

Ωi
0 +Ωκ (5.6.10)

The numbers Ωi
0 express the percentage contributed at the present time by the var-

ious components to the energy-filling of the Universe. It is interesting to note that
the contribution of spatial curvature to the equation can be assimilated to that of a
type of matter obeying the following equation of state:

p = −ρ (5.6.11)

displaying a negative pressure.
By the same token, the second Friedman equation can be rewritten as follows:

q = 1

2

n+1∑
i=1

(1 + 3wi)Ω
i
0

(
a0

a

)3(1+wi)

(5.6.12)

where the deceleration function is defined below:

q(t)= − ä(t)

a(t)H 2
0

(5.6.13)



164 5 Cosmology and General Relativity

Evaluating (5.6.12) at the present time we obtain:

q0 = 1

2

n+1∑
i=1

(1 + 3wi)Ω
i
0 (5.6.14)

which is to be paired with (5.6.10).
Let us now consider the possible energy filling of the Universe at the present time.

Radiation density decays very fast because of the 1/a4 law. Hence its contribution
is certainly negligible and we can forget it. As for matter we can divide it into two
parts:

(a) the visible baryonic matter composed of galaxies and their clusters, whose con-
tribution we name ΩB

0 ( the corresponding coefficient is wB = 0),
(b) the invisible dark matter composed of possibly existing stable massive parti-

cles predicted in unified theories of particle interactions and/or by other non-
radiating conventional matter filling galactic interstellar space, whose contribu-
tion we name ΩD

0 (the corresponding coefficient is wD = 0).

In addition to that we envisage the possible presence of:

(c) vacuum energy, whose contribution we name ΩΛ
0 and whose defining equation

of state is characterized by wΛ = −1.

As we are going to see in next sections, the equation of state p = −ρ describes
the contribution to the overall stress-energy tensor of a cosmological constant or
better of the potential energy of scalar fields. On the other hand, it is evident from
(5.6.13) and (5.6.14) that an accelerating expansion of the universe (ä > 0) is pos-
sible if and only if there are components of its energy filling that have w <− 1

3 and
if they are dominant.

With this assumption we obtain the following two equations for the four cosmo-
logical parameters ΩB

0 , ΩD
0 , ΩΛ

0 and Ωκ
0 :

q0 = 1

2

(
ΩB

0 +ΩD
0

)−ΩΛ
0 (5.6.15)

Ωκ = 1 − (ΩB
0 +ΩD

0 +ΩΛ
0

)
︸ ︷︷ ︸

Ω0

(5.6.16)

Up to the end of the second millennium the only known parameter was ΩB
0 esti-

mated to be ΩB
0 � 0.06 by the observation and counting of galaxies. After 1999,

the measure of the deceleration parameter q0 and the discovery that it is negative
(the universe actually accelerates) revealed that ΩΛ

0 > 0 and provided a constraint
on the remaining parameters that could be completely solved when, both from the
observation of the anisotropies in the Cosmic Background Radiation and from the
supernova project, it was established that Ω0 ∼ 1, namely that our universe is spa-
tially flat.
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With such an information we obtain:

ΩΛ
0 = 1 − 2q0

3
∼= 0.72

ΩD
0 = 2

3
(1 + q0)−ΩB

0
∼= 0.22 (5.6.17)

ΩB
0

∼= 0.06

where the numerical evaluation depends on the experimental result for q0, whose
determination was the motivation for the award of the 2011 Nobel Prize in Physics.

Let us now reconsider the general form of the Friedman Lemaitre Robertson
Walker metric (5.4.4). Introducing the following functions:

R2
κ (χ)=

⎧⎪⎪⎨
⎪⎪⎩

R2
1(χ)= sin2 χ

R2
0(χ)= χ2

R2−1(χ)= sinh2 χ

(5.6.18)

and denoting the volume element of the two-sphere by

dΩ2 = dθ2 + sin2 θ dφ2 (5.6.19)

the metric (5.4.4) can be rewritten as follows:

ds2 = −dt2 + a2(t)
[
dχ2 +R2

κ(χ)dΩ
2] (5.6.20)

where we have performed the coordinate change r =Rκ(χ). It is also convenient to
introduce a further coordinate change to the so named conformal time:

dt = a(η)dη (5.6.21)

upon which (5.6.20) transforms into:

ds2 = a2(η)
(−dη2 + dχ2 +R2

κ(χ)dΩ
2) (5.6.22)

Using such coordinates the radial light-like geodesics are very easily characterized
by the following equation:

0 = −dη2 + dχ2 (5.6.23)

which is immediately integrated to:

χ(η)= ±η+ χ0 (5.6.24)

Relying on this result we can now introduce the concepts of particle and event
horizons.
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5.6.1 Particle Horizon

The concept of particle horizon arises from the finite age of the universe and it is
the correct mathematical formulation, in terms of General Relativity, of the brilliant
intuitions of Olbers (see Sect. 4.3.1). In a finite time, light can travel only finite
distances. Hence the volume of space from which we can receive information at any
given time is limited by a maximum radial distance. Naming ηi the date of birth of
the Universe in the conformal coordinate system, the maximal observable distance
at time η↔ t corresponds to the coordinate given below

χp(t)= η− ηi =
∫ t

ti

dt

a(t)
(5.6.25)

and in physical units is the following one:

dp(t)= a(t)Rκ

(
χp(t)

)
(5.6.26)

We name it the particle horizon.
We are interested in the particle horizon at the current time and therefore we set:

dp ≡ dp(t0)= a0Rκ(χp)
(5.6.27)

χp =
∫ t0

ti

1

a(t)
dt

By means of a change of variable we can now rewrite the limiting coordinate χp as
follows:

χp =
∫ a0

0

1

a2H(a)
da (5.6.28)

where we identified the initial time ti as the moment when the scale factor vanished
a(ti)= 0. Furthermore in (5.6.28) the dependence of the Hubble function from the
scale factor a is given by the first Friedman equation as written in (5.6.7). For a
matter dominated Universe (w = 0), we get:

χp =
∫ a0

0

1

a0H0
√
a(a + (a0 − a)Ω0)

da =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 arcsin h(
√

1
Ω0

−1)

a0H0
√

1−Ω0
for Ω0 < 1

2
a0H0

for Ω0 = 1

2 arcsin(
√

1− 1
Ω0

)

a0H0
√
Ω0−1

for Ω0 > 1

(5.6.29)

and we reach the following conclusion:

dp = 2

H0Ω0
fκ(d0,Ω0); d0 = a0H0 (5.6.30)
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Fig. 5.22 Plot of the function
f−1(d0,Ω0) showing that it is
bounded and of order unity

where the functions fκ(d0,Ω0) depend on the sign of the spatial curvature and are
listed below

fκ(d0,Ω0)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f−1(d0,Ω0)= 1
2 sinh

( 2 sinh−1(

√
1−Ω0
Ω0

)

d0
√

1−Ω0

)
d0Ω0

f0(d0,Ω0)= 1

f1(d0,Ω0)= 1
2 sin

( 2 sin−1(

√
Ω0−1
Ω0

)

d0
√
Ω0−1

)
d0Ω0

(5.6.31)

The relevant point of the above calculation is that the three functions fκ(d0,Ω0) are
all bounded and of order unity in the range where they are physically significant.
For the case of the spatially flat Universe (κ = 0) this is obvious. In the case of
an open Universe κ = −1 the expansion is indefinite and there is no limit to the
distance d0 that we can consider. On the other hand the cosmological parameter is
defined only in the range 0 <Ω0 < 1. Therefore we have to restrict our attention to
the open strip (]0,∞[)× (]0,1[)⊂ R

2. There the function f−1(d0,Ω0) is bounded
and takes values in the interval [0,2]. Its very smooth plot is shown in Fig. 5.22. In
the case of a closed Universe (κ = 1) the cosmological parameter is bounded only
from below (Ω0 > 1), but there is always a maximal distance that we can explore
a
a0

<
Ω0

Ω0−1 corresponding to the absolute maximum reached by the scale factor
during the whole history of such a Universe. The plot of the function f1(d0,Ω0) in
the physically available range is slightly more structured yet it is also bounded and
of order unity as it is shown in Fig. 5.23. The outshot of such a discussion is that in
a matter dominated Universe the particle horizon is finite and its scale is fixed by
the inverse of the Hubble constant:

dp � 1

H0
(5.6.32)

Completely different is the conclusion one reaches in an exponentially expanding
Universe dominated by vacuum energy. Suppose we sit at time t0 and suppose that
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Fig. 5.23 Plot of the function
f1(d0,Ω0) showing that it is
bounded and of order unity in
the physically available range

in our past the Universe was expanding according to the law dictated by w = −1.
To simplify matters let us also assume that we deal with a spatially flat Universe
κ = 0. In that case the Hubble function is actually a Hubble constant H0 and from
the integral in (5.6.28) we obtain:

dp = a0

H0

∫ a0

ai

da

a2
= 1

H0

a0 − ai

ai
(5.6.33)

In the limit ai → 0 we see that dp → ∞, in other words if the exponential expansion
phase started at the very beginning of the Universe, there is no particle horizon
and the distance that can be seen at any later moment of the exponential expansion
extends to the whole physical space. This has a very important consequence which
is the basic motivation to consider inflation. What we can see from the past is what
can influence our present, namely what is in causal contact with us. Therefore we
can conclude that at the end of an exponential expansion, if that expansion started
early enough (ai � 0), the entire resulting Universe originated from a single causally
connected region. If the subsequent expansion of the Universe proceeds through a
matter dominated regime, from the perspective of an observer living in that age, the
same Universe appears instead to be made of a plethora of causally disconnected
regions. This observation will play a fundamental role in understanding why the
inflationary scenario solves the puzzles of the Standard Cosmological Model in a
robust way.

5.6.2 Event Horizon

The event-horizon is the complement of the particle horizon. By definition the event-
horizon is the boundary of the space-time region from which no signal will ever be
received by an observer in its future. According to this definition the events inside
the event-horizon are characterized by radial coordinates χ larger than the following
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limiting one:

χe(η)=
∫ ηend

η

dη= ηend − η (5.6.34)

where η is the conformal time when the considered observer lives while ηend is the
conformal date of death of the Universe. Therefore, in full analogy to our treatment
of the particle horizon, the size of the event horizon at current cosmic time t0 is
determined by:

χe(t0)=
∫ tend

t0

1

a(t)
dt =

∫ aend

a0

1

a2H(a)
da (5.6.35)

Hence for a matter dominated Universe we obtain:

χe =
∫ aend

a0

1

a0H0
√
a(a + (a0 − a)Ω0)

da (5.6.36)

In both cases of an open and a flat universe the above integral diverges for aend → ∞
and therefore there is no event horizon. Different is the case of a matter dominated,
closed Universe. There the scale factor reaches a maximum and then decreases to
zero at the Big Crunch. Recalling (5.5.22)–(5.5.23) we see that in the case of this
universe the conformal time is bounded by ηend = 2π , so that we obtain:

χe = 2π − η

⇓ (5.6.37)

de(η) = 1

2
amax(1 − cosη)| sinη| = dp(η)

where amax is the maximal value of the scale factor attained in the history of the
closed universe, which after that decreases until it vanishes again at the Big Crunch.
The last identity in (5.6.37) is a consequence of the periodicity of trigonometric
functions, sin2(2π − η) = sin2(η), which implies a remarkable consequence: in
closed universes the event and the particle horizons exactly coincide. In the first
expansion phase the event horizon grows along with the scale factor but while the
expansion slows down, it reaches a maximum corresponding to 2

3amax and then
starts decreasing again until it shrinks to zero at the same time when the Universe
attains its maximal extension. After that, while the Universe begins to contract, the
event horizon grows once more and attains again the same maximum 2

3amax. Then
it shrinks along with the Universe and becomes zero at the Big Crunch. The plot of
the event/particle horizon and of the scale factor are compared in Fig. 5.24.

Hence the visible portion of a closed Universe enlarges and shrinks with a differ-
ent periodicity with respect to the expansion scale-time. This leads to the surprising
result that the visible portion of the Universe shrinks almost to zero when it attains
its maximal extension.

Something quite different happens in an exponentially expanding universe. For
simplicity focusing once again on the case of a spatially flat de Sitter space, we
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Fig. 5.24 Plot of the scale
factor and of the
event/particle horizon in a
spatially positively curved,
matter dominated universe. In
both pictures the thin line
corresponds to the scale
factor, while the thicker one
corresponds to the
event/particle-horizon. In the
first picture both a and de/p
are plotted against the
conformal time η, while in
the second they are plotted
against the physical time t

calculate there the event horizon:

de(t)= a(t)

∫ ∞

t

dτ

a(τ )
= exp[H0t]

∫ ∞

t

exp[−H0τ ]dτ = 1

H0
(5.6.38)

where we have made use of (5.5.54). Hence while the Universe undergoes an ex-
ponential expansion the event horizon remains constant and its size is fixed by the
inverse Hubble constant. The set of events causally disconnected from the observer
fills a region which becomes bigger and bigger as time goes on. This elementary
fact has striking implications within the inflationary scenario.

Consider a quantum particle emitted in some physical process at some instant
of time during an exponential expansion phase of the Universe. Suppose that its
wave-length at the emission time is λe < H−1

0 , which we describe by saying that
it is inside the Hubble radius. Stretched by the cosmological red-shift, at a time t

defined by a(t)
a(te)

λe = H−1
0 that wave-length exits the Hubble horizon and becomes

larger than the current event horizon. After that time all physical quantities asso-
ciated with such a wave-length freeze out, since no physical process can any more
alter them. If the exponential expansion phase is followed by another one where
the Universe continues to expand according to a power-like law, then the Hubble
scale H−1(t) will grow once again and the considered primordial wave-length might
reenter, at a later time, the Hubble radius. At that moment the physical quantities as-
sociated with it will be transformed by interactions with the other components of the
post-inflationary Universe and their state at the present time will depend also on the
post-inflationary evolution. At distances larger than the Hubble radius, we see in-
stead faithful images of the remote age associated with the conjectured exponential
expansion.
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5.6.3 Red-Shift Distances

In our observation of the sky at extremely large distances, which means looking at
very ancient objects, the only available method to measure both the space and the
time separation of these sources from the vantage point of our observatory consists
of determining their red-shift factor:

z≡ λ0 − λe

λe
= a(t0)

a(te)
(5.6.39)

where t0 is the current cosmic time when the observed photons are absorbed and te
is the remote time when they were emitted from their source.

It is therefore quite useful to use the red-shift factor as a label both for time and
space distances. Indeed in the conformal coordinate system centered in our labora-
tory, the radial coordinate χ(z) of a distant source at red-shift z is unambiguously
defined as:

χ(z)= η0 − ηe =
∫ t0

te

dt

a(t)
= 1

a0

∫ z

0

dz′

H(z′)
(5.6.40)

and the Hubble function is expressed in terms of z through an immediate manipula-
tion of the Friedman equation (5.6.7):

H(z)=H0

√
Ω0(z+ 1)3(w+1) + (1 −Ω0)(z+ 1)2 (5.6.41)

Let us also observe that for non-spatially flat universes the current value of the scale
factor can be determined from Friedman equation as:

a0 = (H0
√|1 −Ω0|

)−1 (5.6.42)

Hence for the case of a closed or open universe the physical distance of a source at
red-shift z can be written as follows:

D±(z)=
(
H0
√|1 −Ω0|

)−1
R±
(
χ±(z)

)
(5.6.43)

whose explicit form we shall presently evaluate for matter dominated universes. For
the case of a matter dominated flat universe we can make a separate very simple
calculation. Setting Ω0 = 1 and w = 0 in (5.6.41) we get:

χ0(z) = 1

a0

∫ z

0

dz′

H(z′)
= 1

a0

∫ z

0

dz′√
(z′ + 1)3H0

= 2

a0H0

(
1 − 1√

z+ 1

)
(5.6.44)

⇓

D0(z) = 2

H0

(
1 − 1√

z+ 1

)
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Let us now evaluate χ(z) for a matter dominated universe (w = 0) with negative
spatial curvature (Ω0 < 1). In this case, the defining integral yields:

χ−(z) = H0
√|1 −Ω0|

∫ z

0

dz

H(z′)

= 2

(
coth−1(

√
1 −Ω0)− tanh−1

(√
zΩ0 + 1

1 −Ω0

))
(5.6.45)

If we perform the same calculation for a matter dominated (w = 0) closed universe
(Ω0 > 1) we obtain instead the result:

χ+(z) = H0
√|1 −Ω0|

∫ z

0

dz

H(z′)

= 2

(
tan−1

(√
z+ z+ 1

Ω0 − 1

)
− cot−1(

√
Ω0 − 1)

)
(5.6.46)

Let us now calculate R±(χ±(z)). With some algebraic effort we can verify that in
both case the result is the same namely:

R±
(
χ±(z)

)= 2
√|Ω0 − 1|
(1 + z)Ω2

0

(
zΩ0 + (Ω0 − 2)(

√
1 + zΩ0 − 1)

)
(5.6.47)

Using once again (5.6.42) and inserting the above results into (5.6.43) we conclude
that:

D±(z)=D(z,Ω0)≡ 2

H0Ω
2
0 (1 + z)

(
zΩ0 + (Ω0 − 2)(

√
1 + zΩ0 − 1)

)
(5.6.48)

The interesting point is that in the limit Ω0 → 1 we exactly retrieve D0(z):

lim
Ω0→1

D(z,Ω0)=D0(z) (5.6.49)

This allows us to consider D(z,Ω0) as the spatial distance of any source at red-shift
z for any possible value of the cosmological parameter Ω0.

5.7 Conceptual Problems of the Standard Cosmological Model

As we anticipated in Sect. 4.6, the great success of the Standard Cosmological
Model based on the principles of homogeneity and isotropy does not remove a fun-
damental conceptual problem which can be summarized in the following question:
why is our Universe so much homogeneous and isotropic?

The main source of the problem is the quality of Einstein equations that, in the
course of time evolution enlarge perturbations and anisotropies rather than damping
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them. Therefore if our Universe is so much homogeneous at the present time it must
have been even more so in the past and this is quite unnatural. Who has prepared
such fine tuned homogeneous initial conditions? The paradox becomes evident if
we compare the extension of the Universe with the causal horizon at various times.
The argument is masterly presented in chapter five of [9] and we just follow the
reasoning of that author.

Let us consider as initial time that fixed by the Planck scale which corresponds
to:

tPlanck ∼ 10−43 s (5.7.1)

The present time is instead fixed by the Hubble scale H0 and we have:

t0 ∼ 14 billion years ∼ 1017 s (5.7.2)

The present size of the homogeneous region covers all the visible Universe and
therefore is of the order of the present horizon scale namely:

�hom(t0)= �hor(t0)∼ ct0 ∼ 1028 cm (5.7.3)

Since, as we said, anisotropies and inhomogeneities cannot be washed away by the
expansion of the Universe when it proceeds according to power laws, then assuming
that this was the case, it follows that the size of the homogeneous region at the
Planckian time must have been the following:

�hom(tPlanck)= �hom(t0)
a(tPlanck)

a(t0)
(5.7.4)

and we can compare it to the size of a causally connected region at the same time,
which is the horizon scale at Planckian time:

�hor(tPlanck)∼ ctPlanck ∼ 10−32 cm ≡ �Planck (5.7.5)

In this way we obtain:

�hom(tPlanck)

�hor(tPlanck)
= 1060 × a(tPlanck)

a(t0)
(5.7.6)

How can we estimate the ratio a(tPlanck)
a(t0)

? The answer is simple: from the temperatures
of the black-body radiation. Because of the cosmological red-shift the ratio between
scale factors is proportional to the inverse ratio of radiation temperatures:

a(tPlanck)

a(t0)
∼ T0

TPlanck
(5.7.7)

At the present time we have T0 ∼ 1 K while at the Planckian time the radiation
temperature must have been the temperature equivalent of the Planck length, namely
kBTPlanck ∼ ��−1

Planck. This yields:

TPlanck ∼ 1032 K (5.7.8)
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so that:

�hom(tPlanck)

�hor(tPlanck)
= 1028 (5.7.9)

This means that according to the Standard Cosmological Model our Universe has
evolved from a completely homogeneous region that was 103×28 bigger than a
causally connected region. How could it be homogeneous if there was no possibility
of communication among the various causally disconnected cells and of establishing
thermal equilibrium?

This paradox is named the horizon problem. Another conceptual problem is
named the flatness problem. It appears from all our present cosmological data that
our Universe is spatially flat, namely that the cosmological parameter Ω is nearly
equal to 1. Why is that so? Who prepared once again the initial conditions in such a
precise way as to make Ω exactly equal to one?

The answer to both problems can be provided by the scenario of a primeval cos-
mic inflation.

As we observed in Sect. 5.6.1, during a phase of exponential expansion of the
scale factor the horizon scale remains constant so that, assuming the existence of
such a phase in our remote past, explains how a single causally connected region
could split into many apparently disconnected ones. Similarly as we will see in the
sequel we can argue that the Universe always exits flat from an exponential expan-
sion phase irrespectively of the spatial curvature it had when it entered such a phase.

Hence an exponential inflation provides a generic mechanism able to solve the
conceptual problems of cosmology. The question is: which kind of matter can pro-
vide the means of realizing such an inflationary phase. The answer is simple enough.
It suffices to have a microscopic dynamical theory that besides other fields includes
also scalar ones, self-interacting through the presence of some potential. In the next
section we will see that the requirements on the structure of the potential in order to
realize a reasonable inflationary phase are rather mild and generic. This implies that
the inflationary universe scenario is robust.

5.8 Cosmic Evolution with a Scalar Field: The Basis for Inflation

The dynamical basis of inflation is fairly simple. The paradigm is provided by the
simple model of a scalar field ϕ(x) interacting with gravity and with itself by means
of some potential V (ϕ).

Let us write the following action:

A =
∫

d4x (Lgrav + Lscalar)

Lgrav =√−DetgR[g] (5.8.1)

Lscalar =√−Detg

[
1

2
∂μϕ∂νϕg

μν − V (ϕ)

]
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Varying it respectively in the metric g and in the scalar field ϕ we obtain the follow-
ing coupled equations:

Gμν ≡ Rμν − 1

2
gμνR[g] = 4πGTμν[ϕ] (5.8.2)

1√−Detg
∂μ
(√−Detggμν∂νϕ

)+ d

dϕ
V (ϕ) = 0 (5.8.3)

where the stress energy tensor of the scalar field is given by:

Tμν[ϕ] = 1

2
∂μϕ∂νϕ − 1

2
gμν

[
1

2
gρσ ∂ρϕ∂σϕ − V (ϕ)

]
(5.8.4)

If we introduce the homogeneous, isotropic ansatz (5.4.4) for the metric g and if we
assume that the scalar field ϕ = ϕ(t) depends only on the cosmic time t , then the
two equations (5.8.2) and (5.8.3) are easily worked out and reduce to a very simple
form. It suffices to observe that, under the above conditions, the stress energy tensor
of the scalar field has the canonical form (5.3.49) of a fluid, with the following
identification of the energy density and of the pressure:

ρ = 1

4
ϕ̇2 + 1

2
V (ϕ) (5.8.5)

p = 1

4
ϕ̇2 − 1

2
V (ϕ) (5.8.6)

Inserting this result into the Friedman equations (5.4.12) and choosing a vanishing
cosmological constant (Λ= 0)4 we obtain:

H 2 + κ

a2
= 8πG

3

(
1

4
ϕ̇2 + 1

2
V (ϕ)

)
(5.8.7)

ä

a
= −8πG

3

1

2

(
ϕ̇2 − V (ϕ)

)
(5.8.8)

where:

H(t)≡ ȧ(t)

a(t)
(5.8.9)

is the Hubble function. The differential system is completed by the explicit form of
the propagation equation (5.8.3) of the scalar field which, in the chosen metric, is
the following one:

ϕ̈ + 3Hϕ̇ + V ′ = 0; V ′ ≡ dV

dϕ
(5.8.10)

4This choice has the following motivation. In presence of a generic potential for the scalar field,
the cosmological constant is redundant. Indeed any constant contribution to V (ϕ) just plays the
role of a cosmological constant.
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Equations (5.8.7), (5.8.8), (5.8.10) encode the inflationary Universe paradigm.
To explain this let us explore some possible solutions of this differential system.

5.8.1 de Sitter Solution

Consider a value ϕ0 of the scalar field corresponding to an extremum of the scalar
potential where this latter attains a finite positive value:

V ′
0 ≡ dV (ϕ)

dϕ

∣∣∣∣
ϕ=ϕ0

= 0; V0 = V (φ0) > 0 (5.8.11)

In this case we can solve (5.8.7), (5.8.8), (5.8.10) by setting:

ϕ(t)= ϕ0 (5.8.12)

and

a(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a+(t)≡ coshH0t
H0

for κ = 1

a−(t)≡ sinhH0t
H0

for κ = −1

a0(t)≡ expH0t
H0

for κ = 0

(5.8.13)

where in all cases:

H0 =
√

4πG

3
V0 (5.8.14)

Recalling the results of Sect. 5.5.3 it follows that, for a constant scalar field sitting at
an extremal point of the potential, Einstein equations are solved by de Sitter space,
which can be represented in the three versions of a closed, open or spatially flat
Universe, in any case exponentially expanding. Indeed, differently from the case of
all other fluids, characterized by a pressure p >− 1

3ρ, the equation of state p = −ρ,
satisfied when ϕ̇ = 0, implies, irrespectively of the sign κ of the spatial curvature,
a constant positive acceleration of the Universe expansion, which proceeds indefi-
nitely with an exponential asymptotic behavior. For large t the three scale factors
a±(t) and a0(t) have the same form and tend to merge. This is quite clear from
Friedman equations. The curvature term κ/a2(t) becomes negligible for large val-
ues of a(t), which are always attained in an expanding Universe.

Considering the three metrics ds2
dS+ , ds2

dS− and ds2
dS0

, we see that, not only they
describe the same intrinsic geometry, but they also approximately coincide in an
open region Olate of de Sitter space, corresponding to late times and relatively small
distances:

MdS ⊃ Olate = {t & 1, r ' 1, θ,φ︸︷︷︸
all range

} (5.8.15)
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This observation is the corner-stones of the inflationary scenario.
Imagine that, at some very ancient instant of time ti , a small region of the space-

time manifold, containing matter and energy of various types, begins to inflate since,
over that region, the scalar field ϕ is approximately constant and equal to the critical
value ϕ0. The approximate behavior of this expanding space-time bubble will be the
same as that of a region of de Sitter space. At the beginning ti , the spatial curva-
ture of the bubble might have been positive, negative or null, yet at a sufficiently
later time tend , the effective metric of the bubble will be that of a spatially flat de-
Sitter manifold ds2

dS0
. Suppose now that at t = tend the scalar field, which was so

far approximately constant, begins to evolve more rapidly and the kinetic energy
ϕ̇2 starts dominating over the potential energy V (ϕ) which has in the meantime de-
creased. According to Friedman equations the acceleration parameter changes sign,
the expansion rate decreases and, in a finite time, the behavior of the scale factor ap-
proaches that of a Universe filled with ordinary baryonic matter and radiation. Yet,
the considered space-time bubble is spatially-flat as a result of the inflation which
has occurred in the previous phase. This fundamental property of an inflationary
phase in the history of the Universe is the most relevant feature of the inflationary
scenario. It explains in a natural way and without ad hoc fine tuning why our Uni-
verse is spatially flat as it happens to reveal itself through experimental observations.

As we plan to analyze more explicitly in the sequel, the inflationary phase ex-
plains also why the observable Universe is homogeneous to very high accuracy over
regions that are causally disconnected at the present time.

5.8.2 Slow-Rolling Approximate Solutions

In view of the qualitative considerations discussed above, let us now consider ap-
proximate solutions of (5.8.7), (5.8.8), (5.8.10) corresponding to a slow-roll phase.
This latter is defined by the following two conditions:

1

2
ϕ̇2 ' V (ϕ) (5.8.16)

ϕ̈ ' 3Hϕ̇ + V ′(ϕ)∼ 0 (5.8.17)

whose physical interpretation is quite transparent, the former requiring that the ki-
netic energy of the scalar field should be negligible with respect to the potential
energy, the latter requiring that the acceleration in the evolution of ϕ should also be
small with respect to the velocity.

In order to discuss the existence and the properties of such a regime, it is con-
venient to manipulate a little bit the evolution equations (5.8.7), (5.8.8), (5.8.10)
casting them in a more manageable form. First of all it is convenient to introduce
rescaled variables so as to get rid of all the constants. Introducing the Planck mass:

mP = 1√
2πG

(5.8.18)
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we set:

ϕ =mPφ; V (ϕ)=m2
PW

(
ϕ

mP

)
=mPW(φ) (5.8.19)

Substituting in (5.8.7), (5.8.8), (5.8.10) and using the identity ä
a

= Ḣ +H 2 we ob-
tain:

H 2 = 1

3
φ̇2 + 2

3
W (5.8.20)

Ḣ +H 2 = −2

3
φ̇2 + 2

3
W (5.8.21)

0 = φ̈ + 3Hφ̇ +W ′ (5.8.22)

where we have already set κ = 0 in view of the discussion of the previous section.
This shows that our system of equations is actually a (redundant5) differential sys-
tem for the scalar field φ(t) and the Hubble function H(t). The de Sitter solution
is nothing else but the constant solution φ = φ0, H = H0, which requires that φ0
should sit at an extremum of the potential V ′(φ0) = 0. The main idea of the slow
rolling consists of considering the evolution of the two functions H(t) and φ(t)

starting from an initial configuration which is very close to de Sitter one. At t = ti
the scalar field does not sit at an extremum of the potential, yet not too far from
it (V ′(φi) ≈ small), its initial velocity is small φ̇i ≈ small and small is the initial
derivative of the Hubble function Ḣ (ti) ≈ small. The latter condition is not inde-
pendent rather it is just a consequence of the smallness of φ̇i . Indeed from (5.8.22),
it follows:

Ḣ = −φ̇2 (5.8.23)

Obviously such initial conditions can always be postulated, yet the question is
whether they can be maintained throughout evolution at least for a certain non-
negligible period of time during which the Universe will experience an almost ex-
ponential expansion like if it were a true de Sitter space. The answer to such a ques-
tion depends on the properties of the scalar potential. Several types of potentials
have been used in the explicit modeling of Inflation, trying also to relate them with
the fundamental theories of Particle Interactions, in particular with the scenario of
symmetry breaking and with the Higgs mechanism. Indeed it has been conjectured
that the inflaton, i.e. the scalar field responsible for the primeval exponential growth
of the Universe should be a condensate of the scalar degrees of freedom available
in the fundamental unified theory of all interactions which describes Physics at the
Planck scale and hence at the Big Bang. Inspired by this natural point of view, in
more recent time attentive consideration has been given to the many field potentials
V (φ1 . . . φn) which arise in supergravity theory, induced by the brane-superstring

5Any one of the three equations is actually a consequence of the other two as a legacy of the
Bianchi identities which constrain Einstein equations.
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scenarios. We shall not enter the fine structure of inflation modeling, which is still
in lively evolution, since the most relevant and appealing feature of the inflationary
scenario is precisely its robustness. The main physical mechanism and the essence
of its predictions are largely independent from the detailed structure of the utilized
potential, provided it is sufficiently smooth and reasonable. What this concretely
means we shall presently show. Therefore, for the sake of simplicity we focus on
the most widely utilized type of potentials that are the polynomial ones, in particu-
lar the following one

W(φ)= −μφα + λφ2α + ν

4λ
(5.8.24)

which for various values of the parameters λ, μ, ν captures the main features of
three distinct well-known modelings of inflation.

(a) For μ = ν = 0 we have the so named large field modeling of inflation. The
potential has just a minimum at φ = 0 and slow roll, as we shall prove below is
obtained by starting at some sufficiently high value of φi .

(b) For μ= 0 we have the so named small field modeling. The potential has just a
maximum at φ = 0 and a minimum at φ = ( ν

4λ2 )
1/2α . Slow rolling is obtained

by starting at small values φi of the field near the unstable maximum.
(c) For ν = μ2 the potential becomes:

W(φ)=
(√

λφ − μ

2
√
λ

)2

(5.8.25)

which again has a maximum and a minimum and corresponds to the sort of
potentials appearing in the symmetry breaking scenarios. In this case, as in the
previous ones, slow rolling is obtained by starting at small values φi of the field,
near the maximum.

Independently from the explicit form of the potential let us consider the con-
sistency conditions imposed on it by the assuming the existence of a slow rolling
phase. From the exact result (5.8.23) we know that if the scalar field has a slow roll,
even slower will be the change of the Hubble function. Consider next the slow-roll
condition (5.8.17) from which we work out

φ̇ ∼ −W ′

3H
(5.8.26)

and insert this result into the first condition (5.8.16). We obtain:

1

6

(W ′)2

W
'W ⇒ εW (φ)≡ 1

6

(
W ′

W

)2

' 1 (5.8.27)

We see that a necessary condition for slow roll corresponds to the smallness of a
certain function εW (φ) of the scalar field, defined in (5.8.27) and completely deter-
mined by the potential. This condition is not the only one. Taking a further derivative
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of condition (5.8.16) we get:

3φ̈H + 3φ̇Ḣ +W ′′φ̇ ∼ 0 ⇒ φ̈ ∼ − W ′′

9H 2
W ′ + W ′

3H 2
Ḣ (5.8.28)

where φ̇ has been eliminated by means of the slow-roll condition (5.8.26). From the
condition φ̈ 'W ′, using (5.8.28) and eliminating H 2 by means of (5.8.16) and H

first by means of the exact result (5.8.23) then by means of (5.8.16) we get:

1

6

W ′′

W
+ 1

3H
εW ' 1 (5.8.29)

Since we already know that εW ' 1 and 3H > 1, it follows that:

ηW (φ)≡ 1

6

W ′′

W
' 1 (5.8.30)

Hence we conclude that the smallness of the two functions εW (φ) and ηW (φ) is a
necessary condition for slow-rolling.

In the case of the potential (5.8.25), the explicit form of the two slow roll index
functions is:

εW (φ) = 8α2λ2φ2α−2(μ− 2λφα)2

3(4λ(λφα −μ)φα + ν)2
(5.8.31)

ηW (φ) = 2αλφα−2(2(2α − 1)λφα − αμ+μ)

3(4λ(λφα −μ)φα + ν)
(5.8.32)

which, in the two particular subcases that we respectively named large field and
symmetry breaking, reduces to:

large field

⎧⎨
⎩
εW = 2α2

3φ2

ηW = α(2α−1)
3φ2

symm. break.

⎧⎨
⎩
εW = 8α2λ2φ2α−2

3(μ−2λφα)2

ηW = 2αλφα−2(2(2α−1)λφα−αμ+μ)

3(μ−2λφα)2

(5.8.33)

The rationale for the given names becomes now clear. In the large field case the
conditions εV ' 1 and ηV ' 1 translate into:

√
1

3
α(2α − 1) <

√
1

3
2α2 ' φ (5.8.34)

while in the symmetry breaking case the same conditions have two solutions, either

φ &
(
μ

2λ

) 1
α

(5.8.35)
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Fig. 5.25 Picture of the potential (5.8.24) for an explicit choice of the parameters that cor-
responds to the symmetry breaking case: λ = 1, μ = 16, ν = 256. In this case we obtain:
W(φ) = (−8 + φ2)2. Such a function has a maximum at φ = 0 and a minimum at φ = 2

√
2.

On both sides of the maximum we have values named φend , whose precise definition is explained
in the text, at which inflation ends for a slow rolling starting on the left or on the right of the
minimum

or

φ '
(
μ

2λ

) 1
α

(5.8.36)

Hence in the large field case the slow-roll conditions are realized when the field
is sufficiently large, while in the symmetry breaking case they are realized when
it is either sufficiently large or sufficiently small as to be reasonably distant from
the minimum of the potential where both indices εW (φ) and ηW (φ) develop a pole
(see Fig. 5.26). This means that in the cosmic evolution which starts from initial
conditions corresponding to slow-roll we will have slow-rolling and inflation while
the field φ remains in the region where the two indices are small. Inflation will end
as soon as these indices become of finite size and conventionally we can fix the end
of inflation at:

φend : εW (φend)= 1 (5.8.37)

For the large field case we can give the general formula:

large field scenario : φend =
√

2

3
α (5.8.38)

while in the symmetry breaking case a general solution of the implicit equation
(5.8.37) cannot be written for all values of the power α and they have to be worked
out case by case. Relying on these general observations we can now illustrate the
mechanism of inflation by considering a specific case of the symmetry breaking
scenario whose corresponding differential equations we will solve numerically. The
qualitative picture is presented in Fig. 5.27.

We have an attractive mechanical analogy with a ball that is rolling down a hill
towards the bottom of a valley that corresponds to the minimal of the potential. At
the beginning the ball rolls slowly and its kinetic energy is negligible with respect



182 5 Cosmology and General Relativity

Fig. 5.26 In this picture we
present the plot of the slow
roll indices εW (φ) and ηW (φ)

for the example of symmetry
breaking potential presented
in Fig. 5.25 corresponding to
(5.8.24) with parameters:
λ= 1, μ= 16, ν = 256. In
this case we obtain:
εW (φ)= 8φ2

3(φ2−8)2
and

ηW (φ)= 2(3φ2−8)
3(φ2−8)2

.
Correspondingly we have two
solutions for the end of
inflation field value, namely

φend = 2
√

1
3 (7 − √

13) and

φend = 2
√

1
3 (7 + √

13) which
respectively sit before and
after the minimum of the
potential where the indices
develop a pole

to the potential energy that drives an exponential growth of the scale factor. This
is the inflation phase during which, dominated by vacuum energy, the Universe is
very cold. Notwithstanding the slow rolling the ball goes down and it reaches the
point where the slow rolling conditions cease to be valid. This is the end of inflation.
After that the ball continues its descent, accelerating its motion while the growth of
the scale factor experiences a rapid change of gear from an exponential to a power
law one. Reaching the minimum the scalar field oscillates around it rapidly but with
damped amplitude until it definitely sits down in the stable position. In order to
verify the above qualitative description numerically it is convenient to rewrite the
evolution equations (5.8.22) as a pair of second order coupled differential equations
which we achieve as follows:

1

2

ä(t)

a(t)
+
(
ȧ(t)

a(t)

)
−W

(
φ(t)

) = 0 (5.8.39)

φ̈(t)+ 3

(
ȧ(t)

a(t)

)
φ̇(t)+W ′(φ(t)) = 0 (5.8.40)

Starting from (5.8.25), if we choose the power α = 2 and the parameters λ = 1,
μ= 16, ν = 256, which is the choice graphically displayed in Fig. 5.25 and already
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Fig. 5.27 The initial condition for cosmic evolution corresponds to a situation where the scalar
field is at some value not too far from a maximum of the potential. Then the scalar starts rolling
down from the hill towards the minimum. At the beginning the condition of slow rolling are sat-
isfied. The scalar changes slowly while the scale factor increases almost exponentially. Going
downhill the scalar reaches such a value where the slow-roll parameter εW becomes of order unity.
There inflation ends since the kinetic energy of φ becomes comparable to its potential energy.
The exponential growth of the scalar field ceases while the field φ accelerates towards the mini-
mum. Around the minimum the scalar oscillates rapidly and its energy is dispersed by reheating
the Universe

used also in the other plots, then the potential becomes:

W(φ)= (φ2 − 8
)2; W ′(φ)= 4φ

(
φ2 − 8

)
(5.8.41)

Replacing such explicit functions in (5.8.40), we can solve them numerically if we
provide initial conditions at the initial time ti which we can conventionally fix at
zero ti = 0. This means that we have to give the following data:

a(0)= a0; ȧ(0)= ȧ0; φ(0)= φ0; φ̇(0)= φ̇0 (5.8.42)

It is important to stress that inflation will take place if and only if such initial con-
ditions are given in such a way as to be consistent with the slow roll. This means
first of all that φ0 must be chosen in the region where εW (φ0)' 1 and ηW (φ0)' 1.
Furthermore, once φ0 has been chosen, ȧ0 and φ̇0 must be chosen in such a way
that:

∥∥∥∥3
ȧ0

a0
φ0 +W ′(φ0)

∥∥∥∥' 1

(5.8.43)∥∥∥∥
(
ȧ0

a0

)2

− 2

3
W(φ0)

∥∥∥∥' 1

In this way we begin with slow roll and the slow roll phase hopefully will last for
a sufficiently long interval of time as to allow the expansion of the scale factor
by several order of magnitudes. In Fig. 5.28 we present the numerical solution of
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Fig. 5.28 Overall plot of the
solution of the coupled
differential equations (5.8.40)
for the scale factor a(t) and
the scalar field φ(t) clearly
displaying an early phase of
slow rolling. The potential is
that given in (5.8.41) and the
initial conditions are those
displayed in (5.8.44). In the
inflation phase, lasting
approximately in the interval
of time from t = 0 to t = 2.5,
the scale factor increases of
almost 14 orders of
magnitudes. As discussed in
the text, this is not yet the
sufficient amount of inflation
to solve the horizon problem
of cosmology. For that we
need about 60 order of
magnitudes (e-foldings)

(5.8.40) with the potential (5.8.41) and the following initial conditions:

φ0 = 0.1; φ̇0 = φ̇�0 ≡ − 1

a0

√
2
3W(φ0)

W ′(φ0)= 0.133333

a0 = 1; ȧ0 = ȧ�0 ≡ a0

√
2

3
W(φ0)= 7.99

(5.8.44)

which saturate the bounds (5.8.43). Clearly we have an inflation phase which lasts
up to φend and inflates the Universe by about 14 orders of magnitudes. In Fig. 5.29
we present an enlargement of the same plot for later times, namely for t > 3. It
is evident that the exponential expansion of the scale factor is now replaced by a
power law growth which is weaker than linear as in a matter dominated Universe
where a ∼ t2/3. At the same time the scalar field displays a damped rapid oscillation
around the value corresponding to a minimum of the potential.

The existence of a good bona-fide slow roll phase in the numerical solution cor-
responding to the chosen initial conditions is best certified by the plot of the function

f (t)≡ −3H(t)φ̇(t)

W ′(φ(t))
(5.8.45)
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Fig. 5.29 After the end of
inflation the growth of the
scalar factor becomes of
power type a ∼ tp with
p < 1. At the same time the
scalar field undergoes rapid
damped oscillations around
the value φmin corresponding
to a minimum of the potential

evaluated on the solution. This plot is presented in the first picture of Fig. 5.30. As
we see, f (t) is essentially constant and equal to one in the whole interval of time
from t = 0 to t = 2.3. This is the epoch of inflation. After that f (t) rapidly diverges
signaling the end of the slow roll.

The important question which so far has no analytic answer is the following one.
How large is the domain of initial conditions around the critical values ȧ�0 and φ̇�0 for
which there is a slow roll phase? The relevance of this question can be appreciated
a posteriori considering numerical solutions with initial conditions:

φ̇(0)= φ̇�0 +Δφ̇; ȧ(0)= ȧ�0 +Δȧ (5.8.46)

Experimentally for Δφ̇ and Δȧ not too large we find solutions that are very sim-
ilar to the solution in Fig. 5.28. Yet for somewhat larger deviations in the initial
conditions the qualitative picture of slow roll and inflation is completely destroyed.

For instance if we choose Δȧ = 100 and Δφ̇ = 1500 we obtain a solution where
there is essentially no period of exponential growth of the scale factor (the Hubble
function is never approximately constant) and the scalar field almost immediately
oscillates. The essential absence of a slow rolling phase is certified by the plot of
the function f (t) which for such a solution is displayed in the second picture of
Fig. 5.30.

It is evident that a decisive progress in the mathematical foundations of the infla-
tionary scenario and on its robustness will come only from a proper definition of the
domain of attraction of the slow rolling regime. Indeed it is important to establish
how generic are the initial conditions that lead to inflation and therefore produce a
flat, homogeneous universe like ours.
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Fig. 5.30 In this picture the plot of the function f (t) defined in (5.8.45) is presented for two
different solutions of the same equations (5.8.40) corresponding to different boundary conditions.
In the first plot where the initial conditions saturate the bound (5.8.43) we clearly see the slow role
phase characterized by f (t) ∼ 1. The second plot where the initial conditions violate in a severe
way the bound (5.8.43), f (t) is never approximately constant and equal to one. No slow roll phase
is therefore present

5.8.2.1 Number of e-Folds

The primary motivation to consider the inflationary scenario is the solution of the
paradox provided by (5.7.6). If in that equation we regard t0 not as our present
time rather as the time at which inflation ended, then the paradox can be solved in
case the exponential increase of the scale factor is of order 1060. The success of an
inflationary model can be measured by estimating the so called number of e-folds:

Ne = log
aend

ainit.
(5.8.47)

where aend is the scale factor at the end of inflation and ainit is the scale factor
at its beginning. The number of e-folds necessary to solve the horizon problem is
Ne ∼ 60–70.



5.9 Primordial Perturbations of the Cosmological Metric and of the Inflaton 187

Assuming the slow-roll we can estimate the number of e-folds purely in terms of
the potential. Indeed we can write:

dN = −d log =Hdt − H

φ̇
dφ

� 2
W(φ)

W ′(φ)
(5.8.48)

⇓

Ne = 2
∫ φend

φinit

W(φ)

W ′(φ)
dφ

The above integral formula is very useful in order to assess the validity of proposed
potentials and as an a priori constraint on their parameters.

5.9 Primordial Perturbations of the Cosmological Metric
and of the Inflaton

The most significant success of the inflationary paradigm is its ability to interpret the
observed anisotropies of the Cosmic Background Radiation in terms of primordial
perturbations of the cosmological metric and of the scalar fields.

In this and in the next section we present an introduction to this very challenging
field which is presently under very rapid development. For simplicity we focus on
the simplest model of one scalar inflation, aiming at illustrating the basic ideas. The
reader, however, should be conscious that the most promising scenarios, developed
within the framework of supergravity, correspond to many scalar inflation with a lot
of extra complicacies.

In order to study the small perturbations of the cosmological metric it turns out
to be more convenient to utilize the so called conformal frame described in the
following subsection.

5.9.1 The Conformal Frame

Starting from the general isotropic and homogeneous ansatz (5.4.4), for the reasons
discussed above, we choose the flat universe case κ = 0 and we introduce the con-
formal time η by setting:

dt = a(t) dη≡ a(η)dη (5.9.1)

At the same time we set

dr2 + r2(dθ2 + sin2(θ) dφ2)=
3∑

i=1

dx2
i (5.9.2)
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which is the standard conversion formula from polar coordinates to a set of orthog-
onal Cartesian coordinates in the standard Euclidian space R

3.
In terms of the coordinates {η,xi} the background cosmological metric takes the

form:

ds2
0 = a(η)2

(
dη2 −

3∑
i=1

dx2
i

)
(5.9.3)

Using the same coordinates also for the scalar field, the coupled system of Einstein
and Klein-Gordon equations, displayed in (5.8.7), (5.8.8) and (5.8.10), is turned into
the following one:

H 2 = 2

3
πG

((
ϕ′)2 + 2a2V

)
(5.9.4)

a′′

a
= 2

3
πG

(−(ϕ′)2 + 4a2V
)

(5.9.5)

0 = ϕ′′ + 2H ϕ′ + a2 dV

dϕ
(5.9.6)

where the prime denotes the derivative with respect to η, and where we have intro-
duced the conformal Hubble function:

H = a′

a
(5.9.7)

From these background equations we can also derive the following identity:

H ′ − H 2 = −2πG
(
ϕ′)2 (5.9.8)

which is quite useful in further manipulations.
It is also convenient to inspect the form taken by the de Sitter solution in the

conformal frame. This latter is characterized by a constant scalar field ϕ = ϕ0 sitting
at an extremum of the potential, as described in (5.8.11). Under these conditions the
solution of the differential system is:

a(η) = − 2

H0η
(5.9.9)

H = −1

η

where H0 was defined in (5.8.14).

5.9.2 Deriving the Equations for the Perturbation

As a next step we parameterize the perturbations of the metric and of the scalar field
around a homogeneous isotropic solution, namely around a solution of the differen-
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tial system (5.9.4), (5.9.5), (5.9.6). Since the scalar field has spin zero it follows that
the relevant perturbations of the metric which are driven by scalar perturbations have
also spin zero. Modulo redefinitions induced by linearized diffeomorphisms, the
scalar perturbations of the metric can be encoded in two scalar functions Φ(η,xi)

and Ψ (η,xi) that deform the line-element (5.9.3) in the following way:

ds2 = a(η)2

[(
1 + 2Φ(η,xi)

)
dη2 − (1 − 2Ψ (η,xi)

) 3∑
i=1

dx2
i

]
(5.9.10)

where:

1 &Φ(η,xi); 1 & Ψ (η,xi) (5.9.11)

Similarly the perturbation of the scalar field is parameterized as follows:

ϕ(η, xi)= ϕ(η)+ δϕ(η, xi) (5.9.12)

where we have:

ϕ(η)& δϕ(η, xi) (5.9.13)

We are interested in expanding the Klein-Gordon and Einstein equations to first
order in the perturbations in order to derive the linearized equations for these latter
in the background of the considered isotropic homogeneous solution. It turns out to
be convenient to write Einstein equations in the following way:

Gμ
ν = 4πGT μ

ν (5.9.14)

where the first index of both the Einstein tensor and of the stress-energy tensor have
been raised by means of the inverse metric gμν . Relying on this form of the equation
we write:

Gμ
ν = G

μ

(0)ν + δGμ
ν (5.9.15)

T μ
ν = T

μ

(0)ν + δT μ
ν (5.9.16)

and we obtain the linearized Einstein equations in the form:

δGμ
ν = 4πGδT μ

ν (5.9.17)

In a similar way we have to expand to first order in the perturbation fields the Klein-
Gordon equation. The results are obtained by means of a straightforward, although
lengthy calculation. Let us spell it. For the perturbation of the Einstein tensor we
obtain

δG0
0 = 1

a2

[∇2Ψ − 3H Ψ ′ − 3H 2Φ
]

(5.9.18)

δG0
i = 1

a2

[
∂i
(
Ψ ′ + H Φ

)]
(5.9.19)
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δGi
j = 1

a2

[
1

2
∂i∂j (Φ −Ψ )

× δij

(
−1

2
∇2(Φ −Ψ )−Ψ ′′ + H

(
2Ψ ′ +Φ ′)+Φ

(
H 2 + 2H ′))]

(5.9.20)

where:

∇2 ≡
3∑

i=1

∂2

∂x2
i

(5.9.21)

denotes the standard Laplacian operator in flat three-space.
On the other hand, the first order perturbation of the scalar field stress-energy

tensor is the following one:

δT 0
0 = 1

2a2

[
ϕ′δϕ′ − (ϕ′)2 + a2 dV

dϕ

]
(5.9.22)

δT 0
i = 1

2a2
ϕ′∂iδϕ (5.9.23)

δT i
j = δij

1

2a2

[
dV

dϕ
δϕ′ + (ϕ′)2Φ − ϕ′δϕ′

]
(5.9.24)

Finally the first order perturbation of the Klein-Gordon equation takes the following
form:

δϕ′′ − ∇2δϕ − ϕ′(3Ψ +Φ)′ + 2H ϕ′ + 2a2 d
2V

dϕ2
ϕδϕ = 0 (5.9.25)

The unknown functions are three Φ , Ψ , δϕ, but the field equations are much
more, although not all independent, since Einstein equations are constrained by
the Bianchi identities, as we extensively discussed in Volume 1. The net balance
of these arguments is that in the perturbed Einstein-Klein-Gordon system there is
just one independent scalar degree of freedom u(η, xi), which obeys the following
propagation equation:

u′′ − ∇2u− θ ′′

θ
u= 0 (5.9.26)

where:

θ(η)≡ H (η)

a(η)ϕ′(η)
≡ 1

z(η)
(5.9.27)

All the other functions Φ , Ψ , δϕ can be expressed in terms of u(η, xi).
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5.9.2.1 Meaning of the Propagation Equation

Before deriving it, let us briefly discuss the interpretation of (5.9.26). Consider a
free scalar field ξ living in a conformally flat Minkowskian manifold with a metric
of the following form:

ds2
λ = λ2(η)

(
dη2 −

2∑
i=1

dx2
i

)
(5.9.28)

in such a background, the action of the free field ξ , takes the following explicit form:

Aξ =
∫ √−Detg

1

2
∂μξ∂νξg

μν d4x

=
∫

dη d3x
1

λ2

[(
ξ ′)2 − ∇ξ · ∇ξ] (5.9.29)

By means of the field redefinition:

u(η, xi)= λ(η)ξ(η, xi) (5.9.30)

after an integration by parts, the action (5.9.29) becomes:

A [u,λ] = 1

2

∫
dη d3x

[(
u′)2 − ∇u · ∇u+ λ′′

λ
u2
]

(5.9.31)

and its variation yields the general field equation:

�λu≡ u′′ − ∇2u− λ′′

λ
u= 0 (5.9.32)

which is formally the same as the field equation of a free scalar field in a Minkowski
space with an effective time-dependent mass:

m2(η)≡ λ′′

λ
(η) (5.9.33)

In particular a free scalar field propagating in the background cosmological metric
corresponds to this class of actions with λ(η) = a(η), which, for de Sitter space
is given by (5.9.9). Hence the effective degree of freedom encoding the combined
gravitational and scalar field perturbation is just a free field propagating in an effec-
tive background manifold which has just the same structure as the physical universe
but with an effective scale factor θ(η), as defined in (5.9.27), which replaces the
actual scale factor a(η).

For the pure de Sitter case the time evolving effective mass is:

m2
dS = a′′

a
(η)= 2

η2
(5.9.34)
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5.9.2.2 Evaluation of the Effective Mass Term in the Slow Roll Approximation

Let us now evaluate the effective η-dependent mass term

m2
eff (η)=

θ ′′

θ
(η) (5.9.35)

in the slow roll approximation.
Starting from its definition in (5.9.27), the function θ(η) can be rewritten as:

θ = H

aϕ′ = ȧ dt
da

1
a

a dt
da
ϕ̇

= H

aϕ̇
(5.9.36)

Calculating the first derivative of θ we obtain:

θ ′ = a
d

dt

(
H

aϕ̇

)
= a

(
Ḣ

aϕ̇
− H

a2ϕ̇2
ȧϕ̇ − Ha

a2ϕ̇2
ϕ̈

)

= ϕ̇ − H 2

ϕ̇
− H

ϕ̇2
ϕ̈ ≈ ϕ̇ − H 2

ϕ̇
(5.9.37)

where we used the exact result (5.8.23) and where the last approximate equality
follows from the slow-rolling condition ϕ̈ ≈ 0. Using this approximate result in the
calculation of the second derivative we obtain:

θ ′′ = a
d

dt

(
ϕ̇ − H 2

ϕ̇

)
� −a

d

dt

H 2

ϕ̇
= −a

(
2HḢ

ϕ̇
− H 2

ϕ̇2
ϕ̈

)

≈ −2
HḢ

ϕ̇
(5.9.38)

Consequently we obtain:

m2
eff (η)≡

θ ′′

θ
(η)

slow roll� −2a2Ḣ (5.9.39)

During an almost exponential expansion the scale factor behaves as:

a ∼ − 1

Hη
(5.9.40)

Hence we conclude that in the slow roll approximation we have

m2
slow-roll ≈

2

η2
×μ; μ≡

(
− Ḣ

H 2

)
(5.9.41)

In other words the effective scalar degree of freedom propagates as if it were in de
Sitter space yet with an effective η-dependent mass term depressed by the almost
constant factor μ which is very small since Ḣ ' H 2 in the slow roll phase. Note
also that μ is positive since Ḣ is negative. Indeed in the slow rolling phase the
expansion is slowly decelerating.
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5.9.2.3 Derivation of the Propagation Equation

Having discussed its meaning, let us derive the propagation equation (5.9.26) of the
scalar perturbation.

Combining the result (5.9.18)–(5.9.20) for the Einstein tensor with the result
(5.9.22)–(5.9.24) for the stress-energy tensor we obtain a set of equations which im-
mediately yield the following constraints. Since the perturbation δTij of the stress-
energy tensor is diagonal and proportional to the Kronecker δij , the same must be
true of the corresponding Einstein tensor. This occurs if and only if:

Φ = Ψ (5.9.42)

which therefore has to be imposed. Next let us consider the implication of the equa-
tion δG0

i = 4πGδT 0
i . This latter can be rewritten as follows:

1

a2
∂i
[
Ψ ′ + H Φ − 2πGϕ′δϕ

]= 0 (5.9.43)

Using (5.9.42) and fixing the boundary condition at some reference time, (5.9.43)
implies:

Ψ ′ + H Ψ − 2πGϕ′δϕ = 0 (5.9.44)

By means of identities following from the equations satisfied by the background
fields, the constraint (5.9.44) can be rewritten in the following way:

d

∂η

(
a2Ψ

H

)
= 2πG

(
aϕ′

H

)2(
H

δϕ

ϕ′ +Ψ

)
(5.9.45)

To prove such a result we just compare the following elaborations of the l.h.s. and
r.h.s. of (5.9.45).

l.h.s. = d

∂η

(
a2Ψ

H

)

= 2aa′

H
Ψ + a2

H
Ψ ′ − a2

H
H ′Ψ

= 2a2Ψ + a2

H
Ψ ′ − a2

H
H ′Ψ (5.9.46)

r.h.s. = 2πG

(
aϕ′

H

)2(
H

δϕ

ϕ′ +Ψ

)

= a2
[

2πG(ϕ′)2

H 2

(
H

δϕ

ϕ′

)
+ 2πG(ϕ′)2

H 2
Ψ

]

= a2
[

2πGϕ′δϕ
H

+ −H ′ + H 2

H 2
Ψ

]

= a2
[
Ψ ′

H
− H ′

H 2
+ 2Ψ

]
(5.9.47)
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showing that they are indeed equal. In going from the second to the third line of
(5.9.47) we used the background field equation (5.9.8), while in going from the
third to the fourth we used the constraint equation (5.9.44).

Let us next consider the equation δG0
0 = 4πGδT 0

0. In view of (5.9.18) and
(5.9.22) we can write:

∇2Ψ − 3H
(
Ψ ′ + H Φ

) = 2πG

[
ϕ′δϕ′ − (ϕ′)2Φ + a2 dV

dϕ
δϕ

]

= 2πG
[
ϕ′δϕ′ − (ϕ′)2Φ − (ϕ′′ + 2H ϕ′)δϕ]

= 2πG
(
ϕ′)2[(δϕ

ϕ′

)′
− 2H

δϕ

ϕ′ −Φ

]
(5.9.48)

where, in stepping from the first to the second line we have used the back-ground
equation (5.9.6). Using the constraint equations (5.9.42) and (5.9.44) we can further
rewrite (5.9.48) as follows:

∇2Ψ = 2πG
(
ϕ′)2[(δϕ

ϕ′

)′
+ H

δϕ

ϕ′ −Ψ

]

= 2πG(ϕ′)2

H

d

dη

[
H

δϕ

ϕ′ +Ψ

]
(5.9.49)

In stepping from the first to the second line of the above equation one makes once
again use of (5.9.8) and (5.9.44).

Consider now the following redefined fields:

u = a

ϕ′Ψ (5.9.50)

v = 2πGa

(
δϕ + ϕ′

H
Ψ

)
(5.9.51)

in terms of them and of the function z(η) of the conformal time η defined in (5.9.27),
(5.9.49) and (5.9.45) can be rewritten as:

∇2u = z
d

dη

(
v

z

)
(5.9.52)

v = 1

z

d

dη
(zu) (5.9.53)

By taking the Laplacian ∇2 of the latter equation and the derivative d
dη

of the former
one obtains a system from which we can eliminate v obtaining the second order
equation (5.9.26) satisfied by the field u(η, xi). Alternatively we can eliminate u

obtaining the following field equation for the v(η, xi) field:

v′′ − ∇2v − z′′

z
v = 0 (5.9.54)
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This concludes the proof of what we stated above, namely that there is only one
independent scalar degrees of freedom, corresponding to the free field v which
propagates in the effective conformally flat space-time (5.9.28) with scale factor
λ(η)= θ(η). Indeed the relevant point is that the fields u and v are not independent
being related by a first order differential equation in η that can always be integrated
yielding u in terms of v. Hence the effective field u can be quantized and the modes
of both δϕ and Ψ can be uniquely expressed in terms of the modes of u.

5.9.3 Quantization of the Scalar Degree of Freedom

As a next step we can proceed to the canonical quantization of the scalar degree
of freedom we have singled out in the previous sections. Following standard proce-
dures we turn the classical field u(η,x) into an operator-valued distribution û(η,x)
and we introduce the expansion of the latter into Fourier modes:

u(η,x)= 1

(2π)3/2

∫
d3k

(
âkuk(η) exp[ik · x] + â

†
kuk(η) exp[−ik · x]) (5.9.55)

Inserting (5.9.55) into (5.9.54) we find that for each momentum vector k the corre-
sponding wave function uk(η) satisfies the following equation:

u′′
k +

(
κ2 − θ ′′

θ

)
uk = 0

(5.9.56)
κ2 = k · k

We consider the case where the mass term θ ′′
θ

takes the slow-rolling approximate
form derived in (5.9.41) and we obtain the following equation:

u′′
k +

(
κ2 − 2

η2
μ

)
uk = 0 (5.9.57)

where the parameter μ allows to interpolate between various notable cases. If μ= 0
we are actually discussing propagation in Minkowski space. For μ= 1 we retrieve
the propagation equation in de Sitter space (see (5.9.34)). For all the intermediate
values 0 <μ< 1 we describe propagation in the background of a slow-rolling uni-
verse and the almost constant small parameter μ is given in (5.9.41).

Equation (5.9.57) is actually the Bessel equation in slightly modified variables
and its solutions can be constructed by means of Bessel functions for all values
of μ. Introducing the index

ν = 1

2

√
1 + 8μ (5.9.58)

we can easily verify that the following two functions

ψ±(η, κ, ν)= −
√
π

2κ
√
η
(
Jν(ηκ)± iYν(ηκ)

)
(5.9.59)
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form a complete basis of solutions of the second order equation (5.9.57), namely we
have:

uk(η)= c+ψ+(η, κ, ν)+ c−ψ−(η, κ, ν) (5.9.60)

where c± are the two integration constants to be fixed by means of boundary condi-
tions.

In view of the remarks put forward few lines above, we expect that the lower
and upper extremes of the μ interval, namely μ = 0 ⇔ ν = 1

2 and μ = 1 ⇔ ν =
3
2 should present distinguished features corresponding to Minkowski and de Sitter
space, respectively. Indeed we find:

ψ±
(
η, κ,

1

2

)
= ±i

e±iηκ

κ
√

2κ
(5.9.61)

ψ±
(
η, κ,

3

2

)
= e±iηκ(1 ± i

ηκ
)

κ
√

2κ
(5.9.62)

In Minkowski space the wave function is a pure phase, its modulus being constant
and equal to 1√

2κ
. In de Sitter space there are two regimes. For κη & 1 the wave

function behaves as in Minkowski space with an oscillating phase and a constant
modulus. For small values of κη, instead, the modulus of the wave function diverges
as 1

κη
.

As we are going to see shortly below, these two regimes have a profound cos-
mological significance, being related with the distinction between frozen modes that
have exited the event-horizon and active modes which, being within the horizon, are
subject to modification by means of interactions with the other modes. This two-
regime structure of the de Sitter solution is actually generic for all values of μ and
follows from the asymptotic expansions of Bessel functions at low and large values
of their arguments. Indeed we have:

ψ±(η, κ, ν)
κη→0≈ 2−ν−1√η(±i4ν( 1

ηκ
)νΓ (ν)Γ (ν + 1)− π(ηκ)ν)

κ
√
πΓ (ν + 1)

(5.9.63)

ψ±(η, κ, ν)
κη→∞≈ (−1)3/4e±i(ηκ− πν

2 )

κ
√
πκ

(5.9.64)

Let us now implement the canonical quantization of the free-field system by im-
posing the standard canonical commutation relations on the creation-annihilation
operators:

[
âk, â

†
k′
]= δ3(k − k′) (5.9.65)

This corresponds to the standard canonical equal time commutation relations:

[
û(η,x), π̂u(η,y)

]= i�δ3(x − y′) (5.9.66)
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where π̂u(η,y)= ∂ηû(η,x), if the wave-function (5.9.60) is properly normalized in
such a way that:

uk(η)∂ηuk(η)− uk(η)∂ηuk(η)= i� (5.9.67)

There are many choices of the wave function (coefficients c±) consistent with the
normalization condition (5.9.67). Every such choice is associated with a different
decomposition into creation and annihilation modes and therefore with a different
vacuum |0〉 which, as usual, is defined by the condition:

âk|0〉 = 0 (5.9.68)

A proper normalization of the wave function is provided by the observation that for
late times η → ∞, or, equivalently, for very short wave-lengths κ → ∞, we ap-
proach an effective Minkowski scenario, where the effects of space-time curvature
are negligible. Hence we can just choose the normalization of the wave-function
which corresponds to the association with the creation operator of a standard outgo-
ing wave in the late time regime, namely:

c+ = 0; c− = 1 (5.9.69)

Having so done we are in a position to calculate the two-point correlation function
of the field û(η,x) or better of the gravitational potential Φ̂(η,x), which is related
to û(η,x) by (5.9.50).

Setting:

σk = ϕ′

a
uk (5.9.70)

by means of a standard calculation we find:

〈0|Φ̂(η,x)Φ̂(η,y)|0〉 = 1

(2π)3

∫
d3k

∫
d3k′ δ(3)

(
k+k′)×|σk|2 exp

[
i
(
k ·x+k′ ·y

)]

= 1

(2π)3

∫
d3k exp

[
ik · (x − y)

]|σk|2

= 1

2π2

∫
κ2 dκ d cos θ dφ exp

[
iκ|x − y| cos θ

]|σκ |2

= 1

2π2

∫
PΦ(κ)

sin(κr)

κr

dκ

κ
(5.9.71)

where, in the last line, we have used the definitions:

r ≡√(x − y) · (x − y) (5.9.72)

PΦ(κ) ≡ ∣∣σk(η)
∣∣2κ3 =

(
ϕ′

a

)2∣∣uκ(η)∣∣2κ3 (5.9.73)

The function PΦ(κ) is named the power spectrum and it is the main target of all
calculations since, supposedly, it is an experimentally accessible datum through the
observation of anisotropies in the cosmic background radiation.
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5.9.4 Calculation of the Power Spectrum in the Two Regimes

Let us now consider the power spectrum for short and long wave-lengths respec-
tively.

5.9.4.1 Short Wave-Lengths

According to our previous discussion in the short wave-length regime, which can be
defined as

κη& 1 (5.9.74)

we just have |uκ(η)|2 � 1
πκ3 so that we find:

PΦ(κ)
κη&1� (

ϕ′)2(1

a

)2

= −m2
P

π
Ḣ (5.9.75)

The last line of the above equation follows from use of the exact result (5.9.8) and
further transformation of the η-derivatives into t-derivatives.

5.9.4.2 Long Wave-Lengths

The method to obtain information on the wave-function and hence on the power
spectrum for long wave-lengths:

κη' 1 (5.9.76)

relies on solving once again the propagation equation in the approximation κ2 → 0.
This means that in (5.9.56) we forget the term in κ2 and we are left with the equation:

u′′
k − θ ′′

θ
uk = 0 (5.9.77)

A basis of two independent solutions of the above ordinary differential equation of
the second order is immediately found as follows:

u1 = θ (5.9.78)

u2 = θ

∫ η

η0

dη

θ2
(5.9.79)

Indeed one can easily verify that the Wronskian of these two solutions is:

u1u
′
2 − u2u

′
1 = 1 (5.9.80)
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Correspondingly we can write the generic solution of (5.9.77) as follows:

uk(η) = c1θ + c2θ

∫ η

η0

dη

θ2

= Akθ

∫ η

η0

dη

θ2
(5.9.81)

Indeed the integral
∫ η0
η0

dη

θ2 is just some number so that the contribution from the
first solution can always be reabsorbed into a redefinition of the initial point of inte-
gration. The integration constant Ak has instead to be fixed by means of boundary
conditions. Using the exact result (5.9.8) in the definition (5.9.27) of the function θ

we can rewrite it as it follows:

θ = 1√
2πG

1

a

(
1 − H ′

H 2

)−1/2

(5.9.82)

Using this expression and the definition of the conformal Hubble function H we
get:

∫
dη

θ2
= 2πG

∫
dη a2

(
1 − H ′

H 2

)

= 2πG

[
a2

H
−
∫

a2 dη

]
(5.9.83)

Using this result and multiplying by θ = H
aϕ′ and by the factor ϕ′

a
necessary to con-

vert a u-mode into a mode of the gravitational potential we obtain the following
long wave-length result:

σk � A k

[
1 − H

a2

∫
a2 dη

]

= A k

[
1 − H

a

∫
a dt

]
= d

dt

[
1

a

∫
a dt

]
(5.9.84)

The last line follows from conversion of the η-derivatives into t-ones; furthermore
we have reabsorbed the factor 2πG into the integration constant A k

Apart from the initial approximation consisting in neglecting the κ2 term for
large wave-lengths the above result is exact. No approximation about cosmic evolu-
tion has been introduced so far. When the propagation of perturbations takes place
in a slow-rolling universe we are in an approximately exponential phase where:

a(t)� exp[Ht] ⇒
∫

a dt � 1

H
a(t) (5.9.85)

In this regime from (5.9.84) we obtain:

σk
slow-roll� A k

d

dt

1

H
= −A k

Ḣ

H 2
(5.9.86)
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On the other hand if we consider the same Fourier component σk during the post-
inflationary radiation-dominated era we are in an approximately square root phase
where:

a(t)�m
√
t ⇒

∫
a dt � 2

3
mt

3
2

(5.9.87)
d

dt

[
1

a

∫
a dt

]
= 2

3

and we get:

σk
radiation era� 2

3
A k (5.9.88)

We conclude that, as observed, in the post-inflationary age, the power spectrum of
the gravitational potential has the following form:

PΦ(κ)=
{

m2
P

π
Ḣ for κ|η| & 1 ⇒ κ > aH

4
9 |A k|2κ3 for κ|η| ' 1 ⇒ κ < aH

(5.9.89)

The last column yielding the separating condition between the short and long
wave-length regimes, follows from the approximate behavior of the scale factor
in the almost exponential phase of inflation. There, in conformal time, we have:
a ∼ −1/(Hη) and therefore η ∼ (aH)−1. The physical interpretation of (5.9.89) is
quite clear. At every cosmic time t ,

λκ(t)≡ a(t)

κ
(5.9.90)

is the effective wave-length of the Fourier mode κ , which is constantly stretched by
the expansion of the Universe. Short wave-lengths are those that are shorter than the
Hubble radius at the same time:

λκ(t) < H(t)−1 (5.9.91)

Long wave lengths are those larger than the Hubble radius. In an exponential phase
of expansion the Hubble radius is also the event horizon (see (5.6.38)) which re-
mains approximately constant while the scale factor and hence all the wave-lengths
rapidly grow. Hence if the exponential phase lasts long enough the wave-lengths of
almost all modes κ exit the Hubble radius and becomes frozen. Indeed no physi-
cal process can influence a mode whose characteristic scale is larger than the event
horizon.

Quite different is the evolution of wave-lengths in radiation and matter dominated
universes. In both these cases the Hubble radius grows linearly in time:

H(t)−1 ∼ t (5.9.92)

while the wave-lengths grow either as t
1
2 or as t

2
3 . Hence no mode which is inside

the Hubble radius (particle horizon in these cases) at some time t will exit it in the
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future. On the contrary modes which were out of the Hubble horizon at the end of in-
flation can reenter it in the subsequent radiation dominated or matter dominated era.

5.9.4.3 Gluing the Long and Short Wave-Length Solutions Together

In view of these considerations the formula (5.9.89) for the power spectrum is quite
exhaustive provided we can fix the integration constant A k which encodes all the
information. This step can be achieved by equating the long and short wave-length
form of the mode σk at the transition time κ|η| = 1, namely by setting:

ϕ′

a

(−1)3/4e±i(ηκ− iπν
2 )

κ
√
πκ

� −A k
Ḣ

H 2
at κ|η| = 1 (5.9.93)

From (5.9.93) we obtain:

A k = eiψ m2
P

κ3
√
π

H 2

ϕ̇
(5.9.94)

where we used the exact result (5.8.23) and where eiψ is an η dependent phase fac-
tor whose explicit form is irrelevant since we are interested in the square modulus
of A k.

In this way the long wave-length form of the power spectrum becomes:

PΦ(κ)= −4

9

m2
P

π

(
H 4

Ḣ

)
κ=aH

(5.9.95)

The value of the above expression resides in the following. In the post inflation-
ary age we can use (5.9.95) for all those modes whose wave-length was inside the
Hubble radius at the beginning of inflation but exited it before the end of inflation.
This condition gives the range:

(Ha)f > κ > (Ha)i (5.9.96)

where the suffix i/f means that we have to evaluate the specified quantity at the
beginning and at the end of inflation, respectively. If inflation lasts long enough and
produces 60 or 70 e-foldings the range described in (5.9.96) goes over as many
order of magnitudes and encompasses the whole observable universe.

The power spectrum is observed today but the Hubble function and its derivative
appearing in it refer to the inflation-age, when they were almost constant.

5.9.4.4 The Spectral Index

It is customary to characterize the behavior of the power spectrum by means of a so
called spectral index, defined as follows:

nS = 1 + d lnPΦ(κ)

d lnκ
= 1 + 1

PΦ

κ
d

dκ
PΦ (5.9.97)
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Imagine that the power spectrum has a power-like behavior:

PΦ(κ)∼ κα (5.9.98)

then the spectral index would just be:

nS = 1 + α (5.9.99)

In case of scale invariant spectra, namely PΦ(λκ) = PΦ(κ), the spectral index is
exactly nS = 1. It is very interesting that, by implementing the slow-roll approxi-
mation, the spectral index can be calculated and related to the slow-roll parameters
of the potential. To this effect let us observe that, by definition, we have d lnκ =
d ln(aH). On the other hand in the slow roll approximation d ln(aH) � d lna and
we have:

d lna

dφ
= d lna

dt

dt

dφ
= H

φ̇
� −3H 2

W ′ � −2W

W ′ (5.9.100)

In the above equations φ and W are the dimensionless scalar field and the dimen-
sionless potential, introduced in (5.8.19) and we have used the two slow-roll equa-
tions:

H 2 � 2

3
W(φ); φ̇ � −W ′

3H
(5.9.101)

Using these tools we can rewrite:

d lnPΦ(κ)

d lnκ
= −W ′(φ)

2W

d

dφ
PΦ(κ) (5.9.102)

Substituting in (5.9.102) the expression (5.9.95) of the power-spectrum and using
once again the slow-roll approximation (5.9.101) we finally obtain:

d lnPΦ(κ)

d lnκ
= −1

2

(
3

(
W ′

W

)2

− 2
W ′′

W

)
(5.9.103)

This result immediately yields:

nS = 1 + 6ηW − 9εW (5.9.104)

where we used the slow-roll parameters of the potential defined in (5.8.27)
and (5.8.30).

Thus the shape of the primeval inflationary potential defines the behavior of the
power spectrum occurring in the two-point function of the quantized scalar field.
The power spectrum, on its turn, is an experimentally accessible datum since it is
directly related to the anisotropies of the Cosmic Microwave Background. How this
can happen is outlined in the next section.
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5.10 The Anisotropies of the Cosmic Microwave Background

Let us consider a spatially flat Universe described, in the conformal frame, by the
following metric:

ds2 = a2(η)
(
dη2 − dx · dx

)
(5.10.1)

Small perturbations of the above metric can be organized according to their spin
(s = 0,1,2). Dominant contributions to physically observable phenomena are the
lowest spin ones, namely the scalar fluctuations. As we have seen in Sect. 5.9, mod-
ulo gauge-transformations corresponding to diffeomorphisms, such scalar perturba-
tions can be encoded into a potential function Φ(η,x) that deforms the homoge-
neous isotropic metric (5.10.1) in the following way:

ds2
pert = a2(η)

[
(1 + 2Φ)dη2 − (1 − 2Φ)dx · dx

]
(5.10.2)

Perturbation means that Φ(η,x)' 1. The relativistic potential Φ plays a role very
similar to that of the Newtonian potential and it describes local variations of the av-
erage gravitational field that can be somewhat stronger here and somewhat weaker
there. In Sect. 5.9 we discussed the relation between Φ and the single quantized
scalar degree of freedom of the Einstein-Klein-Gordon system. It is an incredibly
interesting fact that such inhomogeneities of the average gravitational field can be
directly observed as fluctuations in the temperature of the cosmic background radi-
ation. Not only that: the relation between temperature fluctuations and fluctuations
of the gravitational field is preserved during cosmic evolution so that, by observing
present day inhomogeneities of the CMB, we directly measure the inhomogeneities
of the gravitational field at the time of recombination or last scattering, namely
when electromagnetic radiation fell off thermal equilibrium with respect to baryon
matter. According to the thermal history of the Universe, this happened about 400
thousand years after the Big Bang, namely about 14 billion years ago. This crucial
link between Φ and the temperature fluctuations is named the Sachs-Wolfe effect
whose derivation is the issue addressed in the following subsection.

5.10.1 The Sachs-Wolfe Effect

Let us define the distribution function f (xi,pi, η) which informs us about the num-
ber of photons dN at time η, which have three-momentum pi at place xi :

dN = f
(
xi,pi, η

)
d3xd3p (5.10.3)

When we deal with a black-body radiation, like the cosmic background one, the
distribution function is Planckian and we have:

f = f
(
ω,T (x,n)

)≡ 2

exp[ ω
T (x,n) ] − 1

(5.10.4)
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where T (x,n) is the temperature, which can depend both on the place x and on the
direction n in which we observe the thermal spectrum, and ω is the energy of the
considered photon. Calling uα the four-velocity of the observer and pα the four-
momentum of the photon the energy measured by the observer is given by:

ω= pαu
α (5.10.5)

Naming p = pi the spatial part of the momentum and calling:

p ≡
√√√√ 3∑

i=1

p2
i = √

p · p (5.10.6)

we can easily calculate ω in the reference frame where the observer is at rest, namely
uα = {√g00,0,0,0}. Since the photon is a massless particle we have pαpβgαβ = 0
which in the metric (5.10.2) implies

p0 =
√

1 + 2Φ

1 − 2Φ
p (5.10.7)

so we get:

ω= p0√
g00

= p

a
√

1 − 2Φ
� 1 +Φ

a
p︸ ︷︷ ︸

Φ'1

(5.10.8)

the last identity corresponding to the first order contribution in the perturbation Φ .
For any metric, the distribution function must obey the Boltzmann transport

equation:

0 = ∂f

∂η
+ dxi

dη

∂f

∂xi
+ dpi

dη

∂f

∂pi
= d

dη
f
(
x(η),p(η), η

)
(5.10.9)

which, as specified by the last equality in (5.10.9), is the statement that the total time
derivative of f should vanish so that the total number of photons in the Universe is
conserved.

Equation (5.10.9) can be simplified using the explicit form of the metric and the
equation for null geodesics that are those traveled by the photons. Naming λ an
affine parameter along the geodesics, the four-momentum vector of the photon can
be identified as:

pα = dxα

dλ
; pα = gαβ

dxβ

dλ
(5.10.10)

and, relying on the explicit form of the Christoffel symbols, the geodesic equation
takes the following form:

d

dλ
pα = 1

2
∂αgβγ p

βpγ (5.10.11)



5.10 The Anisotropies of the Cosmic Microwave Background 205

Then (5.10.9) is rewritten as:

0 = ∂f

∂η
+ dλ

dη

[
pi

∂f

∂xi
+ 1

2
∂igβγ p

βpγ
∂f

∂pi

]
(5.10.12)

In the metric (5.10.2), from the null-like condition pαpβg
αβ = 0 we derive the re-

sult:

dλ

dη
= a2

√
1 − 4Φ2

p
(5.10.13)

and:

1

2
∂igβγ p

βpγ = 2p2

a2(1 + 2Φ)(1 − 2Φ)2
∂iΦ (5.10.14)

so that (5.10.12) becomes:

0 = ∂f

∂η
+
√

1 + 2Φ

1 − 2Φ
ni

∂f

∂xi
+ 2p

(1 + 2Φ)
1
2 (1 − 2Φ)

3
2

∂iΦ
∂f

∂pi
(5.10.15)

where we have introduced the directional unit vector:

ni = −pi

p
(5.10.16)

Developing (5.10.15) to first order in the small perturbation Φ we obtain the ap-
proximate transport equation:

0 = ∂f

∂η
+ (1 + 2Φ)ni

∂f

∂xi
+ 2p∂iΦ

∂f

∂pi
(5.10.17)

Let us apply the above transport equation to the Planckian distribution function
(5.10.4). It reads as follows:

0 = ∂Q

∂η
+ (1 + 2Φ)ni

∂Q

∂xi
+ 2p∂iΦ

∂Q

∂pi
(5.10.18)

where we have defined:

Q= ω

T
(5.10.19)

The quantity Q can be developed in power series of the perturbations. As for the
photon energy ω we have already derived such a development in (5.10.8) that can
be restated as follows:

ω� ω0(η)+ δω(η,x)= p

a(η)
+ p

a(η)
Φ(η,x) (5.10.20)

where the 0th order term ω0 depends only on time being homogeneous and isotropic,
while the perturbation δω(η,x) varies from place to place. We can introduce a sim-
ilar development for the CMB temperature:

T � T0(η)+ δT (η,x) (5.10.21)
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Combining (5.10.20) and (5.10.21) we obtain:

Q�Q0 + δQ= p

aT0
+ p

aT0

(
Φ − δT

T0

)
(5.10.22)

Inserting the above development of Q into the transport equation (5.10.18), at 0th
order we obtain:

∂

∂η

[
a(η)T0(η)

]−1 = 0 (5.10.23)

while at first order in the perturbations we get:

0 =
(
∂

∂η
+ ni

∂

∂xi

)(
Φ + δT

T0

)
= 2

∂Φ

∂η
(5.10.24)

Equation (5.10.23) implies that the average temperature of the cosmic background
radiation is a monotonic function of the cosmic time and decreases inversely to the
scale factor while the Universe expands. In other words the temperature T0 is a very
precise cosmological clock. On the other hand (5.10.24) for the perturbation has a
very simple and most profound interpretation. It suffices to note that the operator

(
∂

∂η
+ ni

∂

∂xi

)
= d

dη
(5.10.25)

is just a total time derivative. Hence if the relativistic potential Φ(x) depends only
on space and not on time, then the combination

(
Φ + δT

T0

)
= const (5.10.26)

is constant not only in time but also in space, as a consequence of (5.10.24). There-
fore, measuring the inhomogeneities of the CMB temperature δT

T0
at our time is the

same thing as measuring the inhomogeneities of the gravitational potential Φ at the
last scattering time 14 billions of years ago. The spectrum of such perturbations is
predicted by the theory of inflation which therefore becomes, to a certain extent,
experimentally verifiable.

5.10.2 The Two-Point Temperature Correlation Function

What is actually observed by CMB experiments is the spatial distribution of the
temperature fluctuations, namely δT

T0
(n), having denoted by n a unit vector on the

three-sphere, just as we did in the previous section. Using these data, that are visu-
alized in sky-maps like that of Fig. 4.24, one can construct the correlation function:

C(θ)≡
〈
δT

T0
(n1)

δT

T0
(n2)

〉
(5.10.27)
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Fig. 5.31 Dependence of the
CMB anisotropy multipole
moments on �, as measured
by the WMAP satellite

where the bracket 〈 〉 denotes averaging over all directions of the sky n1 and n2
satisfying:

n1 · n2 = cos θ (5.10.28)

Next the correlation function is expanded in multipoles by setting:

C(θ)= 1

4π

∞∑
�=2

(2�+ 1)C�P�(cos θ) (5.10.29)

and the experimental data are encoded in the angular momentum dependence � of
the multipole moment C�, producing a graph such as that displayed in Fig. 5.31
(see [10–14]). Note that the multipole expansion excludes the first two moments,
the monopole � = 0 and the dipole � = 1, which are sensitive to the position of
the Sun in the Galaxy and to its motion around the Galaxy center. All the other
moments automatically exclude these effects and provide therefore a clean informa-
tion on primeval perturbations. The existence of the Sachs Wolfe effect allows to
write down an analytic formula which predicts the multipole coefficients in terms of
power spectrum we discussed in the previous section. Explicitly one finds:

C� = 2

π

∫ ∣∣∣∣
(
σκ(ηr)+ δκ(ηr)

4

)
j�(κη0)− 3δ′κ(ηr)

4κ

dj�(κη0)

d(κη0)

∣∣∣∣
2

κ2 dκ (5.10.30)

The ingredients entering the above formula are:

1. By ηr we denote the conformal time of recombination, after which the back-
ground radiation fell off equilibrium with matter.

2. By η0r we denote the present conformal time at which we observe CMB.
3. By σκ(η) we denote the Fourier component of the scalar potential Φ defined in

(5.9.70), from which the power spectrum is calculated according to (5.9.73).
4. By j�(r) we denote the spherical Bessel functions.
5. The two functions δκ(ηr) and δ′κ(ηr ) encode a description of the CMB tempera-

ture fluctuations at the time of recombination.
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The interested reader can find a detailed derivation of the above formula and a full-
fledged discussion of its consequences and applications in Chap. 8 of the recent
book [9] on the Physical Foundations of Cosmology by Mukhanov, who is one of the
main actors in the new season of Theoretical Cosmology opened by the observation
of the CMB anisotropies. Here we confine ourselves to sketch the logical connection
between the power spectrum of primordial fluctuations and the correlation function
of observed anisotropies.

As we already stressed, the main point is the Sachs Wolfe effect (5.10.26) which
implies:

δT

T0
(η0,x0,n)

︸ ︷︷ ︸
fluc. today

= δT

T0

(
ηr,x(ηr),n

)
︸ ︷︷ ︸

fluc. at ricom

+ Φ
(
ηr,x(ηr)

)
︸ ︷︷ ︸

grav. pot. at recom

−Φ
(
ηr,x(ηr)

)
(5.10.31)

Here x(η) denotes the geodesic followed by a photon that arrives today into our
measuring instrument from a direction n and was emitted at conformal time ηr from
the Last scattering Surface. Such a geodesic is the straight line:

x(η)= x0 + n(η− η0) (5.10.32)

An elaboration of formula (5.10.31), which we skip, allows to encode into two func-
tions δ and δ′ the contribution of the primordial temperature fluctuations

δT

T0

(
ηr ,x(ηr),n

)

leading to the following Fourier decomposition of the temperature fluctuations at
the present time:

δT

T0
(η0,x0,n) =

∫
d3k

(2π)3/2

[(
Φ + δ

4

)
k
− 3δ′k

4κ2

∂

∂η0

]
ηr

exp
[
ik · (x0 + n(ηr − η0)

)]

(5.10.33)

where the suffix k means that of the corresponding expression one has taken the
kth Fourier component. Inserted into the correlation function (5.10.27), the above
decomposition of the temperature fluctuation field yields the result (5.10.30) upon
use of the standard multipole expansion formula:

sin(κ|n1η1 − n2η2|)
κ|n1η1 − n2η2| =

∞∑
�=0

(2�+ 1)j�(κη1)j�(κη2)P�(cos θ) (5.10.34)

5.10.3 Conclusive Remarks on CMB Anisotropies

Without the ambition of presenting too much detailed derivations, which would be
out of the scope of the present Course in General Relativity, we have tried to outline
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the logical path which connects the spectrum of primordial quantum fluctuations to
the observed data on CMB anisotropies.

One very important feature of the so far obtained experimental data is that they
are consistent with a nearly flat power spectrum, namely the best fit of the spectral
index on WMAP data is the following:

nS = 0.963 ± 0.012 (5.10.35)

Another important general result of the CMB data concerns the possibilities of de-
termining the cosmological parameters, quite unambiguously confirming the main
information Ω0 = 1, namely that our Universe is spatially flat.
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Chapter 6
Supergravity: The Principles

Tiger, tiger, burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful (super) symmetry?
William Blake

6.1 Historical Outline and Introduction

The year 1968 was a crucial one for the political history of the world: the Prague
Spring, which had started in January, was ruthlessly suppressed by soviet tanks in
August, once for all destroying the dream of communism with a human face. The
student revolt, that had started in American Universities as a protest against Vietnam
war, migrated to Europe and from West Berlin diffused to all European capitals,
culminating in the Paris upraising of May. The events of 1968 heavily marked the
history of Western Countries since nothing after that year was the same as before.
Also in Physics 1968 constitutes a hallmark since in those months a seed was planted
from which a robust tree developed presently going under the name of Superstring
Theory.

In 1968 Gabriele Veneziano (see Fig. 6.2) was 26 of age and was temporarily at
the Theoretical Division of CERN, on leave of absence from the Weizman Institute,
where he had obtained his Ph.D. just the year before. At that time the theory of
strong interactions was still very vague: Quantum Chromodynamics had still to be
invented and the minds of physicists were fascinated by the richness of the hadronic
spectrum revealed by high energy experiments. The interpretation of all those par-
ticles as stable or unstable states created by the dynamics of quarks and gluons was
not yet available. On the other hand, many scientists pursued the idea of describing
the scattering amplitude of all hadrons by means of a universal formula such that in
each reaction channel the dominant contribution should come from the sum over the
intermediate states, provided by a unique infinite spectrum of particles of increasing
mass.

The idea, as it usually happens with the fundamentals ones, is quite simple, at
least in nuce. Two particles A and C collide and from the collision two new par-
ticles emerge B and D. We have to calculate the probability amplitude of such an
event AABCD as a function of the momenta of the incoming and outgoing particles.

P.G. Frè, Gravity, a Geometrical Course, DOI 10.1007/978-94-007-5443-0_6,
© Springer Science+Business Media Dordrecht 2013
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Fig. 6.1 A schematic view of
Veneziano duality in hadron
scattering

The process can be thought first as the fusion of A with C into an intermediate state,
that successively decays into B and D. The probability of the process is essentially
provided by a weighted sum over all possible intermediate states. Alternatively one
could interpret the same process as the fusion of A with the antiparticle of B into
an intermediate state that decays into D and the antiparticle of C. Also in this inter-
pretation the probability is given by a weighted sum over all possible intermediate
states. These two interpretations of the same process are respectively named the s

and the t channel of the considered reaction (see Fig. 6.1).
The idea that fascinated the physicists of that time was the following one. Might

it exist a scattering amplitude AABCD such the first and the second interpretation
are simultaneously valid and the sum over the intermediate states in the s channel
is exactly equal to the same sum in the t channel? Such a property was christened
duality and preserves such a name to the present day.

The posed question was of a complete mathematical nature. If such a function
AABCD existed, the next necessary step was to invent a theory capable of yielding it
as scattering amplitude for the considered process.

In a paper sent to the Rivista del Nuovo Cimento in that dense 1968 year, Gabriele
Veneziano singled out a function that realizes the desired duality in a mathematical
exact way: it is the Euler beta-function introduced two hundred years before by the
great swiss mathematician. The same Veneziano contributed a couple of years later,
together with Sergio Fubini from Torino University and the MIT, to open the way
for the identification of the physical system capable of producing dual scattering
amplitudes. Just in a couple of years, by means of the contributions of many scien-
tists throughout the world, Veneziano’s formula for the dual scattering amplitude of
four particles was generalized to processes with an arbitrary number N of external
legs: in 1970, in another fundamental paper published on Nuovo Cimento, Fubini
and Veneziano organized the construction of such amplitudes within a new algo-
rithm defined operatorial formalism which involved the use of an infinite number
of harmonic oscillators with frequencies that are integer multiples of a fundamental
one.

This infinite spectrum of harmonic oscillators induced an intuition in the brilliant
mind of Yoichiro Nambu (see Fig. 6.2), the same Nippon-American physicist who
in 1965 had proposed the color charge for the quarks. Nambu observed that anyone
who is familiar with string musical instruments perfectly knows a very simple phys-
ical system endowed with the spectrum used by Fubini and Veneziano: the vibrating
string. A very short and tiny string that besides traveling through space-time can also
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Fig. 6.2 The fathers of string theory. From the left Gabriele Veneziano, in the middle Sergio Fu-
bini, on the right Yoichiro Nambu. Gabriele Veneziano was born in Florence, where he studied
before transferring to the Weizman Institute in Israel, where he got his Ph.D. Later on, for many
years he was permanent staff member of the Theoretical Division of CERN, which he left at re-
tirement age to fill a highly prestigious position at the French Academy in Paris. Sergio Fubini
was born in Torino, where he studied and became quite early full professor of Theoretical Physics.
Appointed professor of Physics at the Massachusetts Institute of Technology, he lived several years
in Boston, until he left it to become permanent staff member of the Theoretical Division of CERN.
After retirement he continued to live in Geneva where he died in 2005. Yoichiro Nambu, born in
Japan, studied in the United States of America and up to the present day has been full professor of
Physics at the University of Chicago. In 2008, professor Nambu was awarded the Nobel prize in
Physics for his early contributions to the theory of symmetry breaking

Fig. 6.3 An idealized view of an open string that propagates through space-time, tracing a
world-sheet with the topology of a strip

vibrate! This had to be the typical hadron! The infinite spectrum of hadronic states
and resonances was thus explained with the infinite number of vibrational modes of
the microscopic string. Once started, the string concert rapidly grew and developed.
In a series of papers produced by several authors from all countries of the world, the
physical system of the quantum-relativistic string was analyzed from all viewpoints.
The string can be closed or open, namely its end points can coincide, or not. In the
first case the string has the topology of a circle, in the second that of a segment. In
both cases propagating through an ambient space-time the strings sweeps a world-
sheet that in the closed case has the topology of a cylinder, in the second case that
of a strip with boundary (see Figs. 6.3, 6.4). The interpretation of Veneziano ampli-
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Fig. 6.4 An idealized view of a closed string that propagates through space-time, tracing a
world-sheet with the topology of a tube

Fig. 6.5 The closed string interpretation of a scattering amplitude of seven particles

tudes as the result of the propagation of tiny strings that can join and split became
standard and it is schematically illustrated in Fig. 6.5. In the quantization of the sys-
tem two problems were met, whose solution led the theory very far in the direction
of unexpected scenarios of incredible mathematical depth and unparalleled wealth
of physical implications. The first problem related with the number of space-time
dimensions. The usual four-dimensional space-time was too narrow for the strings
to propagate freely without developing deadly anomalies capable of destroying the
quantum consistency of the two-dimensional world-sheet theory. In quantum field
theory anomalies are obstructions that forbid the extension to the quantum level of
global or local symmetries present at the classical level. In the case of local sym-
metries, anomalies are deadly blows since the quantum theory acquires spurious
degrees of freedom and becomes both meaningless and inconsistent. In the case of
the strings the anomalous symmetry is the conformal one, namely the invariance
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against transformations that rescale lengths and shapes preserving only angles. It
was discovered that the quantum string is free from conformal anomalies only if it
propagates in a space-time with 26 dimensions, precisely one time and twenty-five
space directions.

The second problem met in the stringy interpretation of Veneziano amplitudes re-
lated with the absence of fermions. So far the harmonic oscillators associated with
the string vibrational modes were just bosonic and no state corresponding to parti-
cles with half-integer spin could be constructed. Yet the hadronic spectrum contains
both bosons and fermions. Where were the latter hidden? The answer to both ques-
tions came soon and it opened new broad horizons.

6.1.1 Fermionic Strings and the Birth of Supersymmetry

To the question where in the theory of tiny strings the fermions were hidden, Neveu
and Schwarz on one side and Pierre Ramond on the other (see Fig. 6.6) gave two
answers which, although different, are not alternative, rather complementary. The
followed approach was algebraic in both cases.

In 1971 while traveling back from Europe to the US on board of a big ship, John
Schwarz met André Neveu1 and during the Atlantic crossing they found a gener-
alization of the infinite dimensional symmetry algebra of Nambu string that goes
under the name of Virasoro algebra.2 In its original approach Virasoro found that
the physical string states constructed with the harmonic oscillators of the Fubini
Veneziano approach should be annihilated by the action of an infinite number of op-
erators Ln, that are in one-to-one correspondence with the integer numbers: n ∈ Z:

∀n ∈ Z : Ln|phys.〉 = 0 (6.1.1)

and satisfy the following infinite dimensional Lie algebra:

[Lm,Ln] = (m− n)Lm+n + c

12

(
m3 −m

)
δm+n,0

[c,Ln] = 0
(6.1.2)

The operator c commutes with all other generators of the algebra and for this reason
is called the central charge. Therefore in every irreducible representation, c takes a
fixed numerical value which, as Virasoro showed [3], equals the number of space-
time dimensions D in which the string is propagating. The cancellation of anomalies

1This episode is known to the author by private conversations with Prof. Schwarz who told him
this story while visiting him at his place Torino in 1981.
2The name of the algebra refers to his discoverer, the brilliant Italo-Argentinian physicist Miguel
Virasoro born in Buenos Aires in 1940, who is presently full professor of Theoretical Physics at La
Sapienza of Rome and from 1995 to 2002 was Director of the International Centre of Theoretical
Physics of Trieste, founded by Abdus Salam.
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Fig. 6.6 The three founders of fermionic strings: on the left André Neveu, in the middle John
Schwarz, on the right Pierre Ramond. Born in Paris in 1946, Neveu studied at the Ecole normale
superériure (ENS). In the early seventies he was for some time at Princeton where he collabo-
rated with John Schwarz and David Gross. These collaborations resulted in two very important
results: the Neveu-Schwarz algebra on one side and the Gross-Neveu toy model of quantum chro-
modynamics on the other. Later Neveu worked at the Laboratory of Theoretical Physics of ENS in
Paris, at the CERN Theory Division in Geneve and from 1989 he has been director of the Labo-
ratory of Theoretical Physics of the University of Montpellier II. Born in Massachusetts in 1941,
John Schwarz studied as an undergraduate at Harvard and as a graduate at Berkeley University.
Assistant professor in Princeton from 1966 to 1972 he moved next to the California Institute of
Technology where he is currently the Harold Brown Professor of Theoretical Physics. For several
years one of the very few believers in superstring theory, John Schwarz was responsible for the first
string revolution in 1984 when, together with Michael Green he found the mechanism of anomaly
cancellation establishing the set of five consistent perturbative string theories. John Schwarz was
awarded the Dirac Medal in 1989 and the Dannie Heineman Prize for Mathematical Physics in
2002. Born in France in 1943, Pierre Ramond studied in the United States where he graduated in
1969 from Syracuse University. Assistant Professor at Yale University and at the California Insti-
tute of Technology, Ramond joined the University of Florida at Gainesville in 1980. There he is
currently Distinguished Professor of Physics. His contribution to the development of superstring
theory has been a fundamental one, the Ramond sector being an essential part of the superstring
spectrum where all the fermionic particles are located

and the quantum consistency of the theory required a value c = 26 which explains
the unexpected result quoted above.

During their boat trip André and John derived an extension of Virasoro algebra by
means of another infinite set of operators G

m+ 1
2
, in one to one correspondence with

the half integer numbers (n+ 1
2 ∈ Z + 1

2 ), that satisfy the following commutation,
anti-commutation relations:

[Lm,Gn+ 1
2
] =

(
1

2
m− n− 1

2

)
G
m+n+ 1

2

{G
m+ 1

2
,G

n+ 1
2
} = 2Ln+m+1 + c

3

(
m2 +m

)
δm+n+1,0 (6.1.3)

[c,G
n+ 1

2
] = 0
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The union of (6.1.2) with (6.1.3) constitutes the Neveu Schwarz algebra [7] which
is a first example of a super Lie Algebra. The novelty that entitles it to the new
qualifier “super” is the presence of a grading that splits the set of all generators in
two classes, the even ones (in our case the Ln) and the odd ones (in our case the
G
n+ 1

2
). The algebra is specified by providing the commutators of the even operators

with the even ones that necessarily produces another even operator, of the evens
with the odds that produces an odd and finally the anti-commutator of two odds that
necessarily produces an even.

Chronologically the Neveu Schwarz superalgebra was not really the very first,
since a few months before, also in 1971, Pierre Ramond had found another very
similar extension of the Virasoro algebra adding to it a set of odd generators Gn

that are in correspondence with the integer numbers. Ramond superalgebra [4] is
obtained by adjoining to (6.1.2) the following commutation, anti-commutation rela-
tions:

[Lm,Gn] =
(

1

2
m− n

)
Gm+n

{Gm,Gn} = 2Ln+m + c

3

(
m2 − 1

4

)
δm+n,0 (6.1.4)

[c,Gn] = 0

Which algebra was the right one for superstrings? Both were right since they have a
common origin in an extension of Nambu string theory by means of a new fermionic
field that lives on the world-sheet traced by the string while propagating through
space-time. The evolution history of the string, for instance that drawn in Fig. 6.3
or in Fig. 6.4 is described by giving the coordinate Xμ of the ambient space as
functions Xμ(σ, τ) of the two Gaussian coordinates {σ, τ } that label the world-sheet
points. So doing we can regard the world-sheet itself as a two-dimensional space-
time and the functions Xμ(σ, τ) as a set of scalar fields living on it. Adopting this
point of view why not consider, besides spin 0 fields also new fermionic fields of
spin 1

2 living in the same space-time? Let us do it and let us introduce as many new
fields of this type as there were scalar fields: let us name such newcomers Ψμ(σ, τ).
What has it happened at the end of such a procedure? A surprising miracle! The
little field theory that we have constructed on the world-sheet has the following
marvelous properties:

• It is supersymmetric since it is invariant under a set of appropriate transformations
that exchange the bosonic fields Xμ(σ, τ) with the fermionic ones Ψμ(σ, τ).

• It is anomaly free and quantum consistent no longer in a D = 26 space-time,
rather in a significantly smaller one D = 10.

• The states encompassed in the spectrum of this quantum theory divide in two
sectors, one named NS realizes the Neveu Schwarz algebra (6.1.2)+(6.1.3), the
second named R realizes the Ramond algebra (6.1.2)+(6.1.4). Both sectors are
necessary to construct Veneziano amplitudes for bosonic and fermionic particles.
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6.1.2 Supersymmetry

While trying to insert fermions into the structure of Veneziano amplitudes, a new al-
gebraic structure had been discovered, supersymmetry, which was destined to mark
heavily the development of Theoretical Physics in the subsequent years. Actually
in the same 1971 year, the supersymmetry algebra had been constructed in a com-
pletely different context by two Russian scientists, Golfand and Likhtman [1, 2],
whose almost tragic personal story is a sort of emblem of the incredible contradic-
tions of Soviet times, also in relation with pure science.3 Results similar to those of
Golfand and Likhtman were obtained also in Kharkov, by other two Soviet scien-
tists, Volkov and Akulov [5] who constructed a non-linear field theoretical realiza-
tion of the same super Poincaré Lie algebra discovered in Moscow.

If we analyse the meaning of the operators in the Virasoro algebra and in its
extensions we understand the following: the operators Ln correspond to a mode-
expansion of the stress-energy tensor, namely of the Noether current of transla-
tions Pμ, while the fermionic operators Gn correspond to the mode-expansion of
a spinor-vector current Jα

μ . Which symmetry is such a Noether current associated
with? The answer is unique: to some new symmetry generator Qα which transforms
as a spinor under the Lorentz group and whose anti-commutator with itself must be
proportional to the translation generator Pμ.

In D = 4 the super Lie Algebra corresponding to such a symmetry, contains
N of such spinor generators, named supercharges, and has the following general
structure:

[Jμν, Jρσ ] = −ημρJνσ + ηνρJμσ − ηνσ Jμρ + ημσ Jνρ

[Jμν,Pρ] = −ημρPν + ηνρPμ

[Jμν,QAβ ] = −1

4
QAα(γμν)

α
β (6.1.5)

{QAα,QBβ} = i
(
C γ μ

)
αβ
PμδAB − CαβZAB; (A,B = 1, . . . ,N )

[ZAB, anything] = 0

3Born in Kharkov in 1922, Yuri Abramovich Golfand got his mathematical-physical education in
that Ukrainian city. Later, since 1951, he joined the Tamm group at the Lebedev Physical Institute
of the Soviet Academy of Sciences in Moscow (FIAN), an institution that collected seven Nobel
Prizes in Physics in the course of sixty years. Golfand and his student Likhtman conducted there,
at the end of the 1960s, the studies that led them to discover the super Poincaré Lie algebra and to
construct its first field theoretical realizations, published in 1971 after a long procedure of checks
and inspections by the Soviet censorship authorities (see [10] for a detailed account of these facts).
The next year, in the course of a routine campaign of personnel cuts, Yuri Golfand was fired from
FIAN and decided to apply for an exit visa to Israel. This put him in a very bad light in front
of Soviet authorities who refused the visa and treated him as a renegate. For 7 years he lived
unemployed and was readmitted to FIAN only in 1980. Golfand obtained permission to emigrate
to Israel only in 1990 and there he lived his last four years in Haifa, where he died in 1994. Because
of his association with the renegate Golfand, also Likhtman had very difficult times with Soviet
authorities and could never get a proper academic position.
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Fig. 6.7 The two western founders of supersymmetric field theories. On the left Bruno Zumino,
born in 1923 in Rome, graduated from the University La Sapienza in 1945. He is currently emeritus
professor of Berkeley University in California. For many years he was permanent member of the
Theoretical Division at CERN. Julius Wess born in 1934 in Oberwölz Stadt in Austria died in 2007
in Hamburg. Austrian by nationality, Wess graduated from Vienna University and was professor
first in Karlsruhe University and then in the Ludwig Maximilians University of Munich. Zumino
and Wess have given many important contributions to Theoretical Physics in several directions.
Jointly they introduced the first example of a supersymmetric field theory that bears their name

Equations (6.1.5) define the N -extended super Poincaré Lie algebra; the antisym-
metric generators ZAB = −ZBA which are present only for N ≥ 2 are named the
central charges. The case N = 1 is the algebra introduced by Golfand and Likhtman
who also tried to construct examples of field theories invariant against transforma-
tions closing such an algebra.

In the western world the date of birth supersymmetry is 1974. In that year Bruno
Zumino and Julius Wess (see Fig. 6.7) published a paper [6] where they constructed
the following very simple example of a field theory with supersymmetry invariance.
Let A(x), F(x) be two scalar fields, B(x), G(x) two pseudo-scalar fields and let
λ(x) be a Majorana spinor field.4 Consider the following very simple Lagrangian:

Ltot = Lkin + Lmass

Lkin = −1

2

(
∂μA∂

μA+ ∂μB∂
μB
)+ i

2
λγ μ∂μλ+ 1

2

(
F 2 +G2) (6.1.6)

Lmass = −m(FA−GB)+ m

2
λλ

The action:

A=
∫

Ltot d
4x (6.1.7)

is easily verified to be invariant under the following infinitesimal transformations:

δεA = 1

2
ε λ

4For the definition of Majorana spinors see (A.4.3) in Appendix A.4.



220 6 Supergravity: The Principles

δεB = −1

2
i ε γ5λ

δελ = 1

2
i∂μAγ

με+ 1

2
∂μBγ

μγ5ε+ 1

2
(F + iγ5G)ε (6.1.8)

δεF = ε λ

δεG = i ε γ5λ

where εα is a constant anti-commuting spinor parameter (εαεβ = −εβεα). The
above equations provide the explicit form of the supersymmetry transformations
that for each field Φ of the theory can be thought as the result of acting on it with
Qε, namely:

δεΦ = [Qε,Φ] (6.1.9)

the operator Qα being the spinorial supercharge. The N = 1 case of the super Lie
algebra (6.1.5) is realized, since it is immediately verified that for any field Φ we
have:

δε1δε2Φ − δε1δε2Φ = ε1γ
με2∂μΦ

) (6.1.10)[[Qε1,Qε2],Φ
] = [

ε1γ
με2Pμ,Φ

]
and the anticommutativity of the spinor parameters implies:

[Qε1,Qε2] = εα1 ε
β

2 {Qα,Qβ} (6.1.11)

The Wess-Zumino model encoded in (6.1.6) has a very simple physical content. It
contains two spin zero degrees of freedom and one spin one-half degree of free-
dom, which constitute the simplest supersymmetric multiplet: {0+,0−, 1

2 }. Indeed
the fields F and G, named auxiliary, can be eliminated through their own equations
of motion which yield:

F = −mA; G=mB (6.1.12)

After substitution of these equations into the original Lagrangian we obtain the stan-
dard action for a system composed by a free scalar A of mass m, a free pseudo-scalar
B with the same mass and finally by a free spinor λ also with mass m. The inter-
esting point is that the partial actions

∫
Lkin d

4x and
∫

Lmass d
4x are separately

invariant under the transformations (6.1.8). These means that the mass term Lmass

can be substituted by other more complicated but invariant functions of the four
fields {F,G,A,B,λ} leading, after substitution of the new field equations for F
and G, to more complicated dynamics.

In the years after 1974 a lot of work was devoted to constructing supersymmetric
field theories with several multiplets that extend up to spin one and to exploring the
general form of the interactions allowed by this new powerful symmetry. In parallel,
representation theory of the supersymmetry algebra was worked out for all numbers
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Table 6.1 Structure of the massless multiplets in D = 4 space-time. In each column we write the
multiplicity of fields of spin J contained in the considered multiplet

N Mult. J = 2 J = 3
2 J = 1 J = 1

2 J = 0

1 WZ mult. 1 2

vect mult. 1 1

gravitino mult. 1 1

graviton mult. 1 1

2 hyper. 2 4

vect mult. 1 2 2

gravitino mult. 1 2 1

graviton mult. 1 2 1

3 vect mult. 1 4 6

gravitino mult. 1 3 3 2

graviton mult. 1 3 3 1

4 vect mult. 1 4 6

gravitino mult. 1 4 7 8

graviton mult. 1 4 6 4 2

5 gravitino mult. 1 6 15 10

graviton mult. 1 5 10 11 10

6 gravitino mult. 1 6 15 20

graviton mult. 1 6 16 26 30

7, 8 graviton mult. 1 8 28 56 70

1 ≤ N ≤ 8 of the supercharges and the available irreducible field representations,
named supermultiplets were established. For instance all the massless multiplets in
space-time dimensions d = 4 are displayed in Table 6.1.

6.1.3 Supergravity

One point was immediately clear to every one after 1974. Supersymmetry may be
global, as in the proposed Wess-Zumino model, but it might also be a candidate
local symmetry. In that case all generators of the algebra should generate local sym-
metries, in particular the translations Pμ. Yet local translations is another word for
general coordinate transformations and that means General Relativity. Hence it ap-
peared that a local supersymmetric field theory is necessarily an extension of gravity
including also a gauge field for each supercharge Qα . Such a gauge field ψα

μ ap-

peared to be a spin 3
2 field. Thus the hunt was open for supergravity, an interacting
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Fig. 6.8 The three founders
of supergravity in a picture
taken in Rome in 2007 at
Villa Mondragone on the
occasion of the Laurea
Honoris Causa to Sergio
Ferrara

theory of spin 2 gravitons and spin 3
2 gravitinos that should be invariant under ap-

propriate local supersymmetry transformations and should reduce to pure Einstein
gravity when the gravitinos ψμ are frozen.

For N = 1 the algebraic analysis showed that {2, 3
2 } corresponds indeed to a

massless multiplet in D = 4: hence the conjectured interacting theory was likely to
exist and be consistent. In the case of extended supersymmetry, the supergravity La-
grangian had to include all the fields contained in the appropriate graviton multiplet
as displayed in Table 6.1. Several researchers addressed the question in different
approaches. In 1976 the race was won at the Ecole Normale Superieure of Paris by
Daniel Freedman, Sergio Ferrara and Peter van Nieuwenhuizen (see Fig. 6.8), who
constructed the Lagrangian of N = 1 supergravity, using a second order formalism
[8] and who were later awarded the Dirac Medal for such an achievement. A few
week later appeared also a paper [9] by Stanley Deser and Bruno Zumino who ob-
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tained the same result in a more compact way using a first order formalism for the
spin connection ωab

μ .
In this way 1976 opened a new important season in the theory of gravitation.

General Relativity was found to admit a class of natural extensions dictated by a
new powerful local symmetry that mixed fermions and bosons. Such supergravity
theories, that can be constructed in various dimensions, are nothing else but Ein-
stein gravity coupled to matter fields, both fermionic and bosonic, with very special
choices of the spectrum, of the interactions and of the couplings.

In a few year time the complete park of all possible supergravities was con-
structed showing that they are all codified by a rich set of special geometric struc-
tures that can appear in the scalar sector (see Chap. 8).

At the beginning supergravity was developed independently from string theory,
but in 1978, on the basis of a fundamental paper [11, 12] also written in Paris at the
Ecole Normale by Gliozzi, Olive and Scherck, it became clear that the finite number
of supergravities one can construct in D = 10 space-time dimensions, are in associ-
ation with the corresponding consistent superstring models in that they just describe
the low energy interaction of the massless modes of the superstring spectrum.

In 1978 in another fundamental paper [13] written by Cremmer and Julia in the
same Paris location, there appeared the Lagrangian of the unique supergravity in
D = 11 space-time dimensions which is the highest possible for such theories. In-
deed, starting from D = 12, any closed supersymmetry multiplet includes spins
higher than two and General Relativity is overcome. To the present moment, no one
has been able to construct interacting theories with a finite number of spins higher
than two and the unanswered question is whether they exist.

By dimensional reduction, compactification or direct construction a gigantic bes-
tiary of pure and matter coupled supergravity theories has been derived in diverse
dimensions and several type of classical solutions thereof have been found that have
enormously enriched the landscape of General Relativity and Gravity providing new
insights in the relation of gravity with strings, branes and gauge theories. A quick
bird-eye survey of these topics will follow in Chaps. 7, 8, 9. In the present chapter
we are interested in analyzing in depth the mathematical structure of supergravity
theory developing further, in presence of supersymmetry, the principles that yield
Einstein Theory as we presented it in Volume 1. This algebro-geometric approach
leads us to single out in free differential algebras the appropriate environment for
the construction of supergravities by means of the general principle of rheonomy
which works as a sort of generalized analiticity.

6.2 Algebro-Geometric Structure of Supergravity

Let us now consider the generic structure of a candidate locally supersymmetric the-
ory. This means that, in some appropriate way to be established, its field equations
and eventually its action are invariant against infinitesimal transformations that are
elements of the super-Poincaré Lie algebra. Hence the structure of this latter must
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be our primary concern. Looking at

{Qα,Qβ} = i
(
CΓ a

)
αβ
Pa + (CΓ a1a2

)
αβ
Za1a2

+ i
(
CΓ a1...a5

)
αβ
Za1...a5 (6.2.1)

that describes the supersymmetry algebra in D = 11, or at (6.1.5) which displays
extended supersymmetry in D = 4, we see that the essential new ingredient is pro-
vided by the supercharges Qα . These generators transform as Lorentz spinors:

[Jab,Qβ ] = −1

4
Qα(Γab)

α
β (6.2.2)

and are fermionic, in the sense that the associated transformation parameter εα is
not a real commuting number, rather an anticommuting Grassmann number:

εαεβ = −εβεα (6.2.3)

A would-be connection on a would-be supersymmetric principal bundle must be
supersymmetry Lie algebra valued and therefore must contain a fermionic one-form
ψ which couples to the supercharges Qα . In full analogy with (5.2.27) of the first
volume we can introduce a one-form:

Ω̂ = T̂I Ω̂
I ≡ PaE

a + Jabω
ab +Qαψ

α (6.2.4)

which is Poincaré super Lie algebra valued and whose supercurvature takes a form
analogous to (5.2.28) of the first volume:

Θ̂ = dΩ̂ + Ω̂ ∧ Ω̂

=
(
dΩ̂K + 1

2
f K
IJ dΩ̂I ∧ dΩ̂J

)
T̂K

= PaT
A + JabR

ab +Qαρ
α (6.2.5)

By explicit calculations we find:

T
a = DV a − i

1

2
ψ ∧ Γ aψ

R
ab = dωab −ωac ∧ωcb (6.2.6)

ρ = Dψ ≡ dψ − 1

4
ωab ∧ Γabψ

In relation with the above equations we must remember that p-forms have now
a double grading with respect to their degree and with respect to their bosonic /
fermionic character. Let us convene that the fermion number f is 0 for bosons and
1 for fermions. Then, for a pair of forms, respectively of degrees p1,2 and fermion
numbers f1,2, we have the following commutation relations under exterior product:

ω{p1,f1} ∧ω{p2,f2} = (−1)(p1p2+f1f2)ω{p2,f2} ∧ω{p1,f1} (6.2.7)
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In particular this implies that the gravitino one-forms ψα commute among them-
selves:

ψα ∧ψβ =ψβ ∧ψα (6.2.8)

while they anti-commute with the vielbein and the spin connection:

ψα ∧Eb = −Eb ∧ψα; ψα ∧ωab = −ωab ∧ψα (6.2.9)

Why did we name ψα gravitino one-forms? This will become clear in the sequel.
Just as the vielbein one-forms Ea encode the spin-two particle named the graviton,
in the same way the ψα one-forms encode its supersymmetric partner of spin s =
3/2, whose name has been agreed to be the gravitino, as we already stressed.

Independently from the number D of space-time dimensions, by setting Ta =
Rab = ρ = 0 we obtain the dual description of the super Poincaré Lie algebra in
terms of Maurer Cartan equations.

In the case of General Relativity the dynamical theory was constructed first by
considering a principal Poincaré bundle admitting D-dimensional space-time MD

as its base manifold and the D-dimensional Poincaré group as structural group:

P(D-Poincaré,MD)
π=⇒ MD (6.2.10)

secondly by imposing the soldering condition:

T
a = 0 (6.2.11)

which identifies the Lorentz sub-bundle of P(D-Poincaré,MD) with the tangent
bundle TMD . In this way the spin connection could be solved in terms of the viel-
bein and its derivatives and local translations could be identified with diffeomor-
phisms of MD , the physical degrees of freedom being represented by the symmet-
ric part of the square matrix Ea

μ(x). This could work because the Lorentz algebra is
a closed subalgebra of the Poincaré Lie algebra, so that, at the end of the day, the
spin connection behaves as a true principal connection on a Lorentz bundle. Rather
than being an independent dynamical field, such a connection is a composite one
in terms of the graviton degrees of freedom, yet mathematically it is a bona-fide
principal connection.

In the case of supersymmetry, the generators {Qα,Jab} do not close a subalge-
bra, since the anti-commutator of two Qs produces a translation. Hence we cannot
interpret local supersymmetry transformations as gauge-transformations in a prin-
cipal bundle having the space-time manifold MD as its base-manifold and a group
generated by {Qα,Jab} as structural group.

The alternative is that of enlarging the base-manifold by means of as many
fermionic coordinates θα as there are supercharges. This imitates the structure of
General Relativity where the space-time manifold MD is a curved deformation of
Minkowski space which, on its turn, can be viewed as the coset manifold:

M (Mink)
D ≡ PoincaréD

LorentzD
= ISO(1,D − 1)

SO(1,D − 1)
(6.2.12)
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In a similar way one can introduce flat superspace

M̂ (flat)
(D|q) ≡

super-PoincaréD
LorentzD

= super-PoincaréD
SO(1,D − 1)

(6.2.13)

that is a supermanifold with D bosonic coordinates, named xμ, and q fermionic
ones named θα .5 One might conclude that the degrees of freedom of supergravity
are those encoded in the supervielbein of superspace:

ÊA = {Ea,ψα
}; A=

{
a

α
(6.2.14)

namely those described by the supermatrix ÊA
M(x, θ) defined by the expansion of

ÊA in differentials of the supercoordinates:

ÊA = ÊA
M(x, θ) dzM

dzM ≡ {
dxμ, dθα

} (6.2.15)

yet this turns out to be naive and leads to a wrong track. Differently from the pure
bosonic case, the number of components contained in the graded symmetric part6

of ÊA
M(x, θ) is too big. It does not correspond to the physical off-shell degrees

of freedom of a spin 2 and a spin 3/2 particle, as it should. This means that super-
gravity is not the theory of supermetrics in superspace. A new constructive principle
should be added which should be simple, economic, universal and should introduce
those appropriate constraints, that reduce the number of components parameteriz-
ing superspace geometry to that of the physical degrees of freedom of the relevant
fermionic and bosonic particles.

Such a principle was found in the early years of supergravity theory and it is
named the rheonomy principle. We explain it in Sect. 6.5. Before addressing this
issue we have to dwell on another point of equal fundamental relevance. Not only
supergravity theories are characterized by local supersymmetry transformations that
are midway between gauge-transformations in a principle bundle and diffeomor-
phisms requiring the principle of rheonomy to obtain an adequate geometrical in-
terpretation; they also involve, in all higher space-time dimensions, a new type of
gauge fields, namely (p + 1)-forms. From the physical view-point this fact is re-
lated to the existence of the so named p-branes, since such (p+ 1)-forms naturally
couple to the world-volumes of p-extended objects, just as standard gauge fields
couple to the world-lines of charged particles; from the mathematical side the pres-
ence of higher degree gauge forms is a clear indication that the algebraic structure

5In this discussion the index α incorporates both the spinor index running on the dimension of
the relevant spinor representation of SO(1,D − 1) and the replica index related with extended
supersymmetry.
6By graded symmetric we mean ÊA

M(x, θ)= (−)fAfB ÊM
A(x, θ).
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underlying supergravities goes beyond that of Lie (super-)algebras. What is it that
substitutes the notion of Lie algebra of the structural group in a principle bundle?
The answer is Free Differential Algebras, whose notion is discussed in the following
section.

6.3 Free Differential Algebras

All higher dimensional supergravities and in particular the maximal one in D = 11
are based on the gauging of a new type of algebraic structure named Free Differ-
ential Algebras. What goes under this name was independently discovered at the
beginning of the eighties in Mathematics by Sullivan [14] and in Physics by the
author of this book in collaboration with R. D’Auria [15]. Indeed, Free Differen-
tial Algebras (FDA) are a categorical extension of the notion of Lie algebra and
constitute the natural mathematical environment for the description of the algebraic
structure of higher dimensional supergravity theory, hence also of string theory. The
reason was anticipated few lines above: it is the ubiquitous presence in the spec-
trum of string/supergravity theories of antisymmetric gauge fields (p-forms) of rank
greater than one. The very existence of FDAs is a consequence of the Chevalley co-
homology of ordinary Lie algebras and Sullivan has provided us with a very elegant
classification scheme of these algebras based on two structural theorems rooted in
the set up of such an elliptic complex.

Another question which is of utmost relevance in physical applications is that
of gauging of the FDAs. Just in the same way as physics gauges standard Lie al-
gebras by means of Yang Mills theory, through the notion of gauge connections
and curvatures, one expects to gauge FDAs by introducing their curvatures. A sur-
prising feature of the FDA setup, which was noticed and explained by the author
of this book in a paper of 1985 [16], is that, differently from Lie algebras, the al-
gebraic structure of FDA already encompasses both the notion of connection and
the notion of curvature and there is a well defined mathematical way of separating
the two, which relies on the two structural theorems by Sullivan. Indeed the first of
Sullivan’s theorems, which is in some sense analogous to Levi’s theorem for Lie
algebras, states that the most general FDA is a semidirect sum of a so called min-
imal algebra M with a contractible one C. The generators of the minimal algebra
are physically interpreted as the connections or potentials, while the contractible
generators are physically interpreted as the curvatures. The real hard-core of the
FDA is the minimal algebra and it is obtained by setting the contractible genera-
tors (the curvatures) to zero. The structure of the minimal algebra M, on its turn,
is beautifully determined by the Chevalley cohomology of a standard Lie subalge-
bra G ⊂ M. This happens to be the content of Sullivan’s second structural theo-
rem.
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6.3.1 Chevalley Cohomology

As a necessary preparatory step for our discussion of FDAs let us shortly recall the
setup of the Chevalley elliptic complex leading to Lie algebra cohomology. This
will also fix our notations and conventions.

Let us consider a (super) Lie algebra G identified through its structure constants
τ IJK which are alternatively introduced through the commutation relation of the
generators7

[TI , TK ] = τ IJKTI (6.3.1)

or the Cartan Maurer equations:

∂eI = 1

2
τ IJK eJ ∧ eK (6.3.2)

where eI is an abstract set of left-invariant 1-forms. The isomorphism between the
two descriptions (6.3.1) and (6.3.2) of the Lie algebra is provided by the duality
relations:

eI (TJ )= δIJ (6.3.3)

A p-cochain Ω [p] of the Chevalley complex is just an exterior p-form on the Lie
algebra with constant coefficients, namely:

Ω [p] =ΩI1...Ip e
I1 ∧ · · · ∧ eIp (6.3.4)

where the antisymmetric tensor ΩI1...Ip ∈∧p adjG, which belongs to the pth an-
tisymmetric power of the adjoint representation of G, has constant components.
Using the Maurer Cartan equations (6.3.2) the coboundary operator ∂ has a pure
algebraic action on the Chevalley cochains:

∂Ω [p] = ∂ΩI1...Ip+1e
I1 ∧ · · · ∧ eIp+1

∂ΩI1...Ip+1 = (−)p−1p

2
τR[I1I2

ΩI1...Ip+1]R
(6.3.5)

and Jacobi identities guarantee the nilpotency of this operation ∂2 = 0. The coho-
mology groups H [p](G) are constructed in standard way. The p-cocycles Ω [p] are
the closed forms ∂Ω [p] = 0 while the exact p-forms, or p-coboundaries, are those
Λ[p] such that they can be written as Λ[p] = ∂Φ[p−1] for some suitable (p − 1)-
forms Φ[p−1]. The pth cohomology groups is spanned by the p-cocycles modulo

7For simplicity in this section we adopt a pure Lie algebra notation. Yet every definition presented
here has a straightforward extension to superalgebras and indeed when we recall the discussion
of how the FDA of M-theory or type II supergravity emerges from the application of Sullivan
structural theorems it is within the scope of super Lie algebra cohomology.
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the p-coboundaries. Calling Cp(G) the linear space of p-chains the operator ∂ de-
fined in (6.3.5) induces a sequence of linear maps ∂p:

C0(G)
∂0=⇒ C1(G)

∂1=⇒ C2(G)
∂2=⇒ C3(G)

∂3=⇒ C4(G)
∂4=⇒ · · · (6.3.6)

and we can summarize the definition of the Chevalley cohomology groups in the
standard form used for all elliptic complexes:

H(p)(G)≡ ker ∂p
Im ∂p−1

(6.3.7)

Contraction and Lie Derivative On the Chevalley complex it is also conve-
nient to introduce the operation of contraction with a tangent vector and then of
Lie derivative that are the algebraic counterparts of the corresponding operations
introduced in (5.2.75)–(5.2.80) for generic differentiable manifolds.

The contraction operator iX associates to every tangent vector, namely to every
element of the Lie algebra X ∈ G a linear map from the space Cp(G) of the p-
cochains to the space Cp−1(G) of the (p− 1)-cochains:

∀X ∈G; iX : Cp(G) �→ Cp−1(G) (6.3.8)

Explicitly we set:

∀X =XMTM ∈G; iXΩ
[p] = pXMΩMI1...Ip−1e

I1 ∧ · · · ∧ eIp−1 (6.3.9)

Next we introduce the Lie derivative � which to every element of the Lie algebra
X ∈G associates a map from the space of p-cochains into itself:

∀X =XMTM ∈G; �X : Cp(G) �→ Cp(G) (6.3.10)

In full analogy with (5.2.80) the map �X is defined as follows:

�X ≡ iX ◦ ∂ + ∂ ◦ iX (6.3.11)

and satisfies the necessary property in order to be a representation of the Lie algebra:

[�X, �Y ] = �[X,Y ] (6.3.12)

By explicit calculation we find that in components the Lie derivative is realized as
follows:

�XΩ
[p] = (−)p−1pXMτRM[I1

ΩI2I3...Ip]ReI1 ∧ · · · ∧ eIp (6.3.13)

Furthermore if X and Y are any two G Lie algebra-valued space-time forms, re-
spectively of degree x and y, by direct use of the above definitions, one can easily
verify the following identity which holds true on any p-cochain C [p]:

(
iX ◦ �Y + (−)xy+1�Y · iX

)
C [p] = −i[X,Y ]C [p] (6.3.14)

which is of great help in many calculations.
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6.3.2 General Structure of FDAs and Sullivan’s Theorems

As we just recalled, Free Differential Algebras are a natural categorical extension of
the notion of Lie algebra and constitute the natural mathematical environment for the
description of the algebraic structure of higher dimensional supergravity theories,
hence also of string theory.

Definition of FDA The starting point for FDAs is the generalization of Maurer
Cartan equations. As we already emphasized in Sect. 6.3.1 a standard Lie algebra
is defined by its structure constants which can be alternatively introduced, either
through the commutators of the generators, as in (6.3.1), or through the Maurer
Cartan equations obeyed by the dual 1-forms, as in (6.3.2). The relation between
the two descriptions is provided by the duality relation in (6.3.3). Adopting the
Maurer Cartan viewpoint, FDAs can now be defined as follows. Consider a formal
set of exterior forms {θA(p)} labeled by the index A and by the degree p, which
may be different for different values of A. Given this set of p-forms we can write
the corresponding set of generalized Maurer Cartan equations as follows:

dθA(p) +
N∑
n=1

C
A(p)

B1(p1)...Bn(pn)
θB1(p1) ∧ · · · ∧ θBn(pn) = 0 (6.3.15)

where CA(p)

B1(p1)...Bn(pn)
are generalized structure constants with the same symme-

try as induced by permuting the θs in the wedge product. They can be non-zero only
if:

p+ 1 =
n∑

i=1

pi (6.3.16)

Equations (6.3.15) are self-consistent and define an FDA if and only if d dθA(p) = 0,
upon substitution of (6.3.15) into its own derivative. This procedure yields the gen-
eralized Jacobi identities of FDAs.

Classification of FDA and the Analogue of Levi Theorem: Minimal Versus Con-
tractible Algebras A basic theorem of Lie algebra theory states that the most
general Lie algebra A is the semidirect product of a semisimple Lie algebra L, called
the Levi subalgebra, with Rad(A), namely with the radical of A. By definition this
latter is the maximal solvable ideal of A. Sullivan [14] has provided an analogous
structural theorem for FDAs. To this effect one needs the notions of minimal FDA
and contractible FDA. A minimal FDA is one for which:

C
A(p)

B(p+1) = 0 (6.3.17)

This excludes the case where a (p + 1)-form appears in the generalized Maurer
Cartan equations as a contribution to the derivative of a p-form. In a minimal algebra
all non-differential terms are products of at least two elements of the algebra, so that
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all forms appearing in the expansion of dθA(p) have at most degree p, the degree
p+ 1 being ruled out.

On the other hand a contractible FDA is one where the only form appearing in
the expansion of dθA(p) has degree p+ 1, namely:

dθA(p) = θA(p+1) ⇒ dθA(p+1) = 0 (6.3.18)

A contractible algebra has a trivial structure. The basis {θA(p)} can be subdivided in
two subsets {ΛA(p)} and {ΩB(p+1)} where A spans a subset of the values taken by
B , so that:

dΩB(p+1) = 0 (6.3.19)

for all values of B and

dΛA(p) =ΩA(p+1) (6.3.20)

Denoting by M
k the vector space generated by all forms of degree p ≤ k and Ck

the vector space of forms of degree k, a minimal algebra is shortly defined by the
property:

dMk ⊂M
k ∧M

k (6.3.21)

while a contractible algebra is defined by the property

dCk ⊂ Ck+1 (6.3.22)

In analogy to Levi’s theorem, the first theorem by Sullivan states that: The most
general FDA is the semidirect sum of a contractible algebra with a minimal algebra.

Sullivan’s First Theorem and the Gauging of FDAs Twenty five years ago in
[16] the present author observed that the above mathematical theorem has a deep
physical meaning relative to the gauging of algebras. Indeed he proposed the fol-
lowing identifications:

1. The contractible generators ΩA(p+1) + · · · of any given FDA A are to be phys-
ically identified with the curvatures.

2. The Maurer Cartan equations that begin with dΩA(p+1) are the Bianchi identi-
ties.

3. The algebra which is gauged is the minimal subalgebra M⊂A.
4. The Maurer Cartan equations of the minimal subalgebra M are consistently ob-

tained by those of A by setting all contractible generators to zero.

Sullivan’s Second Structural Theorem and Chevalley Cohomology The sec-
ond structural theorem proved by Sullivan8 deals with the structure of minimal al-
gebras and it is constructive. Indeed it states that the most general minimal FDA M

8The reader interested in very much detailed explanations on this point can find them both in the
original article [14] and in the book [17]. Yet the present book is logically self-contained and the
presented view-point is upgraded to a contemporary perspective.



232 6 Supergravity: The Principles

necessarily contains an ordinary Lie subalgebra G ⊂ M whose associated 1-form
generators we can call eI , as in (6.3.2). Additional p-form generators A[p] of M
are necessarily, according to Sullivan’s theorem, in one-to-one correspondence with
Chevalley p + 1 cohomology classes Γ [p+1](e) of G ⊂ M. Indeed, given such a
class, which is a polynomial in the eI generators, we can consistently write the new
higher degree Maurer Cartan equation:

∂A[p] + Γ [p+1](e)= 0 (6.3.23)

where A[p] is a new object that cannot be written as a polynomial in the old objects
eI . Considering now the FDA generated by the inclusion of the available A[p], one
can inspect its Chevalley cohomology: the cochains are the polynomials in the ex-
tended set of forms {A,eI } and the boundary operator is defined by the enlarged
set of Maurer Cartan equations. If there are new cohomology classes Γ [p+1](e,A),
then one can further extend the FDA by including new p-generators B[p] obeying
the Maurer Cartan equation:

∂B[p] + Γ [p+1](e,A)= 0 (6.3.24)

The iterative procedure can now be continued by inspecting the cohomology classes
of type Γ [p+1](e,A,B) which lead to new generators C[p] and so on. Sullivan’s
theorem states that those constructed in this way are, up to isomorphisms, the most
general minimal FDAs.

To be precise, this is not the whole story. There is actually one generalization that
should be taken into account. Instead of absolute Chevalley cohomology one can
rather consider relative Chevalley cohomology. This means that rather then being
G- singlets, the Chevalley p-cochains can be assigned to some linear representation
of the Lie algebra G. In this case (6.3.4) is replaced by:

Ωα[p] =Ωα
I1...Ip

eI1 ∧ · · · ∧ eIp (6.3.25)

where the index α runs in some representation D:

D : TI → [
D(TI )

]α
β

(6.3.26)

and the boundary operator is now the covariant ∇:

∇Ωα[p] ≡ ∂Ωα[p] + eI ∧ [D(TI )
]α

β
Ωβ[p] (6.3.27)

Since ∇2 = 0, we can repeat all previously explained steps and compute cohomol-
ogy groups. Each non-trivial cohomology class Γ α[p+1](e) leads to new p-form
generators Aα[p] which are assigned to the same G-representation as Γ α[p+1](e).
All successive steps go through in the same way as before and Sullivan’s theorem
actually states that all minimal FDAs are obtained in this way for suitable choices
of the representation D, in particular the singlet.
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6.4 The Super FDA of M Theory and Its Cohomological
Structure

We discussed Sullivan’s theorems for Lie algebras and their corresponding FDA
extensions but, as we stressed, they hold true, with obvious modifications, also for
superalgebras Gs and for their FDA extensions. Actually, in view of superstring and
supergravity, it is precisely in the supersymmetric context that FDAs have found
their most relevant applications. As an illustration of the general set up and also for
its intrinsic interest, by recalling the results of [15] and [16], we present here the
structure of the M-theory FDA, namely the algebraic basis of maximal supergravity
in eleven space-time dimensions. Indeed M-theory is the name frequently given in
contemporary literature to D = 11 supergravity. This results from the so called sec-
ond string revolution that showed that all consistent ten-dimensional string theories
can be related to each other by non-perturbative dualities and can be regarded as
special limits of a unified non-perturbative mother-theory (this is the meaning of M)
whose exact microscopic definition has not yet been given, yet is somehow defined
by its own low energy limit that is precisely D = 11 supergravity.

Within this context we are also able to illustrate the bearing of a quite relevant
question: is an FDA M always equivalent to a normal Lie algebra Ĝ ⊃ G larger
than the Lie algebra of which M is a cohomological extension? How we can math-
ematically formulate and answer such a question we will show below by recalling
results of [15] and also more recent literature [18–20].

Let us begin by writing the complete set of curvatures, plus their Bianchi identi-
ties. This will define the complete FDA:

A=M

⊎
C (6.4.1)

the curvatures being the contractible generators C. By setting them to zero we re-
trieve, according to Sullivan’s first theorem, the minimal algebra M. This latter,
according to Sullivan’s second theorem, has to be explained in terms of cohomol-
ogy of the normal subalgebra G⊂M, spanned by the 1-forms. In this case G is just
the D = 11 superalgebra spanned by the following 1-forms:

1. the vielbein V a ,
2. the spin connection ωab ,
3. the gravitino ψ .

The higher degree generators of the minimal FDA M are:

1. the bosonic 3-form A[3],
2. the bosonic 6-form A[6].

The complete set of curvatures is given below [15, 16]:

T
a = DV a − i

1

2
ψ ∧ Γ aψ

R
ab = dωab −ωac ∧ωcb
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ρ = Dψ ≡ dψ − 1

4
ωab ∧ Γabψ (6.4.2)

F[4] = dA[3] − 1

2
ψ ∧ Γabψ ∧ V a ∧ V b

F[7] = dA[6] − 15F[4] ∧ A[3] − 15

2
V a ∧ V b ∧ψ ∧ Γabψ ∧ A[3]

− i
1

2
ψ ∧ Γa1...a5ψ ∧ V a1 ∧ · · · ∧ V a5

From their very definition, by taking a further exterior derivative one obtains the
Bianchi identities which play an even more fundamental role in constructing super-
gravity theories then they played in constructing General Relativity:

DR
ab = 0 (6.4.3)

DT
a +R

ab ∧ Vb − iψ ∧ Γ aρ = 0 (6.4.4)

Dρ + 1

4
Γ abψ ∧R

ab = 0 (6.4.5)

dF[4] −ψ ∧ Γabρ ∧ V a ∧ V b +ψΓabψ ∧T
a ∧ V b = 0 (6.4.6)

dF[7] − iψ ∧ Γa1···a5ρ ∧ V a1 ∧ · · · ∧ V a5

− 5

3
iψ ∧ Γa1···a5ψ ∧T

a1 ∧ V a2 ∧ · · · ∧ V a5

− 15ψ ∧ Γabρ ∧ V a ∧ V b ∧ F[4] − 15F[4] ∧ F[4] = 0 (6.4.7)

The dynamical theory is defined, according to a general constructive scheme of su-
persymmetric theories which we explain in Sect. 6.5, by the principle of rheonomy,
implemented into Bianchi identities. Indeed, as we discuss in that section, there
is a unique rheonomic parameterization of the curvatures (6.4.2) which solves the
Bianchi identities and it is the following one:

T
a = 0

F[4] = Fa1...a4V
a1 ∧ · · · ∧ V a4

F[7] = 1

84
Fa1...a4V b1 ∧ · · · ∧ V b7εa1...a4b1...b7 (6.4.8)

ρ = ρa1a2V
a1 ∧ V a2 − i

1

2

(
Γ a1a2a3ψ ∧ V a4 + 1

8
Γ a1...a4mψ ∧ Vm

)
Fa1...a4

R
ab = Rab

cdV
c ∧ V d + iρmn

(
1

2
Γ abmn − 2

9
Γ mn[aδb]c + 2Γ ab[mδn]c

)
ψ ∧ V c

+ψ ∧ Γ mnψFmnab + 1

24
ψ ∧ Γ abc1...c4ψFc1...c4
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The expressions (6.4.8) satisfy the Bianchi provided the space-time components of
the curvatures satisfy the following constraints

0 = DmF
mc1c2c3 + 1

96
εc1c2c3a1a8Fa1...a4Fa5...a8

0 = Γ abcρbc (6.4.9)

Ram
cm = 6Fac1c2c3Fbc1c2c3 − 1

2
δabF

c1...c4Fc1...c4

which are the space-time field equations. We will come back to these equations and
study some of their solutions. We postpone this to the sequel. Here we concentrate
on the structure of the FDA.

6.4.1 The Minimal FDA of M-Theory and Cohomology

Setting Ta = Rab = ρ = F[4] = F[7] = 0 in (6.4.2) we obtain the Maurer Cartan
equations of the minimal algebra M. In particular we have:

dA[3] = Γ [4](V ,ψ)≡ 1

2
ψ ∧ Γabψ ∧ V a ∧ V b

dA[6] = Γ [7](V,ψ,A[3])
(6.4.10)

≡ 15

2
V a ∧ V b ∧ψ ∧ Γabψ ∧ A[3]

+ i
1

2
ψ ∧ Γa1...a5ψ ∧ V a1 ∧ · · · ∧ V a5

The reason why the three-form generator A[3] does exist and also why the six-form
generator A[6] can be included is, in this set up, a direct consequence of the co-
homology of the super Poncaré algebra in D = 11, via Sullivan’s second theorem.
Indeed the 4-form Γ [4](V ,ψ) defined in the first line of (6.4.10) is a cohomology
class of the super Poincaré Lie algebra whose Maurer Cartan equations are the first
three of (6.4.2) upon setting Ta =Rab = ρ = 0. We have:

dΓ [4](V ,ψ)= 0 (6.4.11)

and there is no Φ[3](V ,ψ) such that Γ [4](V ,ψ)= dΦ[3](V ,ψ).
An important issue to be stressed at this point is the following one. As we will

emphasize in Chap. 7, the main new idea underlying superstring/supergravity the-
ories is the interplay between gravitational-like bulk-theories and world-volume
gauge-like brane-theories. In bulk-theories there are p-forms. These latter couple
to the degrees of freedom corresponding to (p− 1)-extended objects spanning a p-
dimensional world-volume in the same way as the electromagnetic field (a 1-form)
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couples to charged particles (0-branes) spanning a world-line. The quantum theory
living on the world-volume provides a spectrum of states whose light-ones fill-up
the multiplet of fields contained in the gravitational theory. Strings appear because
there is a 2-form in D = 10 gravitational super-theories. In D = 11 we have M2-
branes and M5-branes since D = 11 supergravity contains a 3-form and a 6-form.
On the other hand the existence of such forms is an yield of the cohomology of the
super-Poincaré Lie algebra in D = 11. Hence we can conclude that the entire setup
of the brane-world (including superstrings) is a logical algebraic consequence of the
supersymmetric extension of Lorentz symmetry.

The black holes of General Relativity that can be seen as new particles provided
by exact localized solutions of the bulk theory are the first instance of branes, actu-
ally 0-branes.

The algebraic reason why Γ [4](V ,ψ) is a closed form is also rooted in Lie alge-
bra theory and can be expressed in intrinsic group-theoretical terms. It follows from
the following Fierz identity:

ψ ∧ Γ abψ ∧ψ ∧ Γaψ = 0 (6.4.12)

Let us analyze the meaning of the above equation. The object constructed in the left
hand side of (6.4.12) transforms as an 11-dimensional vector under the Lorentz
group SO(1,10). The building blocks of the construction are the gravitino one-
forms ψα that transform under SO(1,10) according to the 32-dimensional spinor
representation. Since ψ is a fermionic one-form its components are commutative in
wedge products. This implies that we can interpret (6.4.12) in the following way.
The left hand side is a projection operator on the 11 irrep9 out of the symmetric
product of four irreps 32. The reason why the result is zero is that in the Clebsch
Gordan expansion of such a four product the irrep 11 is not contained. Indeed we
have:

(32 ⊗ 32 ⊗ 32 ⊗ 32)symm = 1 ⊕ 165 ⊕ 330 ⊕ 462 ⊕ 65 ⊕ 429

⊕ 4290 ⊕ 1144 ⊕ 17160 ⊕ 32604 (6.4.13)

6.4.2 FDA Equivalence with Larger (Super) Lie Algebras

Before proceeding with supergravity constructions we consider a natural question
that arises, which is of fundamental interest in view of the central role played by the
FDA algebraic structure. The question was alluded to above and it is the following
one: are FDAs eventually equivalent to normal (super) Lie algebras? For minimal
algebras the question can be nicely rephrased in the following way: can a non-trivial
cohomology class of a Lie algebra G be trivialized by immersing G into a larger

9According to standard nomenclature irrep means irreducible representation.
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algebra Ĝ? Indeed by adding new 1-form generators φp which, together with the
generators eI of G satisfy the Maurer Cartan equations of the larger algebra Ĝ⊃G,
it may happen that we are able to construct a polynomial Φ[p−1](e,φ) such that:

dΦ[p−1](e,φ)= Γ [p](e) (6.4.14)

In this case the generator A[p−1] of the FDA associated with the cohomology class
Γ [p](e) can be simply deleted by the list of independent generators and simply
identified with the polynomial Φ[p−1](e,φ).

In these terms the question was already posed twenty three years ago by D’Auria
and the author of this book in [15] obtaining a positive answer [15] which was
revisited in [18, 19].

The enlarged algebra Ĝ contains, besides the generators of G a bosonic 1-form
Ba1a2 which is in the rank two antisymmetric representation of the Lorentz group,
a bosonic 1-form Ba1a2,...a5 which is in the rank five antisymmetric representation
and finally a fermionic 1-form η which is in the spinor representation just as the
generator ψ .

The Maurer Cartan equations of Ĝ are:

0 = R
ab ≡ dωab −ωac ∧ωcb (6.4.15)

0 = T
a ≡ DV a − i

1

2
ψ ∧ Γ aψ (6.4.16)

0 = T
a1a2 ≡ DBa1a2 − 1

2
ψ ∧ Γ a1a2ψ (6.4.17)

0 = T
a1...a5 ≡ DBa1...a5 − i

1

2
ψ ∧ Γ a1...a5ψ (6.4.18)

0 = ρ ≡ Dψ ≡ dψ − 1

4
ωab ∧ Γ abψ (6.4.19)

0 = σ ≡ Dη− iδΓ aψ ∧ V a − γ1Γ
abψ ∧Bab

− γ2Γ
a1...a5ψ ∧Ba1...a5 (6.4.20)

These Maurer Cartan equations are consistent, namely closed, provided the follow-
ing equation is satisfied by the coefficients:

δ + 10γ1 − 720γ2 = 0 (6.4.21)

Using all the generators of Ĝ one can construct a cubic polynomial

Φ[3](V,ψ,B(2),B(5))
= λBa1a2 ∧ V a1 ∧ V a2 + α1B

a1a2 ∧Ba2a3 ∧Ba3a1

+ α2B
b1a1...a4 ∧Bb1b2 ∧Bb2a1...a4 + α3ε

a1...a5b1...b4mBa1...a5 ∧Bb1...b5 ∧ Vm

+ α4ε
m1...m6n1...n5Bm1m2m3p1p2 ∧Bm4m5m6p1p2 ∧Bn1...n5 iβ1ψ ∧ Γ aη ∧ V a
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+ β2ψ ∧ Γ a1a2η ∧Ba1a2 + iβ3ψ ∧ Γ a1...a5η ∧Ba1...a5 (6.4.22)

such that:

dΦ[3](V,ψ,B(2),B(5))= Γ [4](V ,ψ)≡ 1

2
ψ ∧ Γabψ ∧ V a ∧ V b (6.4.23)

The coefficients appearing in (6.4.22) are completely fixed by (6.4.23) for any of the
1-parameter family of algebras described by (6.4.15)–(6.4.20). Indeed the closure
condition (6.4.21) is one equation on three parameters which are therefore reduced
to two. One of them, say γ1 can be reabsorbed into the normalization of the extra
fermionic generator η, but the other remains essential and its value selects one alge-
bra within a family of non-isomorphic ones. Following [18] it is convenient to set:

δ = 2γ1(s + 1); γ2 = 2γ1

(
s

6! + 1

5!
)

(6.4.24)

and s is the parameter which parameterizes the inequivalent algebras Ĝs . For each
of them we have a solution of (6.4.23) realized by

α1 = 2(3 + s)

15s2
; α4 = −(6 + s)2

259200s2

α2 = −(6 + s)2

720s2
; α3 = (6 + s)2

432000s2

λ = 6 + 2s + s2

5s2
; β1 = 3 − 2s

10s2γ1

β2 = 3 + s

20s2γ1
; β3 = 6 + s

2400s2γ1

(6.4.25)

In the original paper [15] only two of this infinite class of solutions were found,
namely those corresponding to the values:

s = −1; s = 3

2
(6.4.26)

which are the roots of the equation λ = 1. Indeed in [15] the additional condition
λ = 1 was imposed, which is unnecessary as it has been shown in [18, 19] where
the more general solution (6.4.24), (6.4.25) was found.

It remains to be seen whether the equivalence between the minimal FDA M and
the Lie algebra Ĝ can be promoted to a dynamical equivalence between their gaug-
ings. In other words whether one can consistently parameterize the curvatures of
Ĝ in such a way that identifying the three form A[3] with the polynomial Φ[3], the
rheonomic parameterizations (6.4.8) are automatically reproduced? This is a rather
formidable algebraic problem and to the present time no one has been able to an-
swer it in the positive way. Actually although this has not been established like a
theorem it appears from all undertaken attempts that the correct answer is the nega-
tive one. Hence the dynamical theory of supergravity is nicely and necessarily based
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on the categorical extension of (super) Lie Algebras provided by Free Differential
Algebras.10

6.5 The Principle of Rheonomy

The principle of rheonomy was introduced by D’Auria and the present author in a
paper of 1979 [22], formalizing a previous idea of Ne’eman and Regge [23] (see
Fig. 6.9). The basic motivation to introduce such a concept was the geometrical in-
terpretation of local supersymmetry transformations at the basis of the newly found
theory of supergravity, which, at that time, was less than two year old. In this re-
spect the key problem is that supersymmetry transformations, as they were case
by case found in the early construction of supersymmetric theories, look similar to
gauge-transformations, yet their gauge-field ψμ, which ultimately encodes the spin
3
2 particles, has not a horizontal field-strength and therefore is not a proper con-
nection on a principal fibre-bundle. To explain this point let us remind the reader
of the basic structure of the supersymmetry algebras. Consider for instance the su-
persymmetry algebra in the maximal D = 11 dimensions (6.2.1). The supercharges
Qα anticommute to the translation generators Pa and this is the key feature in all
cases. It follows that horizontality of the curvatures in the directions associated with
the supercharges would imply horizontality also in the directions associated with
the translations. This is absurd. Indeed, as we explained at length in the first vol-
ume, translations are eventually identified, through the soldering condition, with the
diffeomorphisms on the base manifold; hence they are horizontal by definition and
cannot become vertical. By means of the above argument neither the supersymmetry
directions can be vertical. Yet, as already observed, considering the fermionic direc-
tions of the manifold just on the same footing as the bosonic ones is equally mis-
leading. Indeed a metric, or vielbein, theory in superspace leads to no good physics:
one has too many degrees of freedom deprived of physical meaning that have to be
got rid of. What is the outcome from this dilemma? It is a revision of the concept of
horizontality and, hence, of principal connections on fibre-bundles. In its strong for-
mulation, used so far, horizontality requires that the components of the curvatures
should be zero in the vertical directions. A weaker formulation of the same idea is
easily deemed of: one could just require that the vertical components should just
be dependent on the horizontal ones, in particular linear combinations of the latter.
This very simple idea is the principle of rheonomy.

Recalling that curvatures are essentially “derivatives” of the connections, the
principle of rheonomy, which “equates” vertical derivatives to horizontal ones, is
reminiscent of a very classical set of equations of mathematical analysis, namely
Cauchy-Riemann equations satisfied by the real and imaginary parts of an analytic

10It must also be noted that the algebras defined by (6.4.15)–(6.4.20) and by some authors named
D’Auria-Frè algebras have been discussed as a possible basis for a Chern-Simons formulation of
fundamental M-theory [20]. They have also been retrieved as part of a wider set of gauge algebras
by Castellani [21], using his method of extended Lie derivatives.
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Fig. 6.9 Born in 1931 in Torino, Tullio Regge is probably the most famous Italian physicist of the
second half of the XXth century. His first achievement, that gave him world-wide fame, dates 1957
when he was only twenty-six of age. It consists of the discovery of a subtle mathematical property
of potential scattering in non-relativistic quantum mechanics, namely that the scattering amplitude
can be thought of as an analytic function of the angular momentum which admits an extension
to the complex plane, and that the positions of the poles determine power-law growth rates for
the amplitude. Easily extended to the relativistic case, Regge poles opened a new era in scattering
theory and provided the framework in which, ten years later, Veneziano introduced dual amplitudes
and gave birth to String Theory. In the early 1960s, Regge introduced Regge Calculus, a simplicial
formulation of General Relativity where space-time is approximated by gluing together polyhedra.
Regge calculus was the first instance of discretization of a gauge theory suitable for numerical
simulation, and an early relative of lattice gauge theory. Very important contributions were given
by him, in collaboration with Wheeler, also to the early theory of Black-Hole perturbations. Tullio
Regge received the Dannie Heineman Prize for Mathematical Physics in 1964, the Città di Como
prize in 1968, the Albert Einstein Award in 1979, and the Cecil Powell Medal in 1987. In 1996
he was awarded the Dirac Medal. Full Professor of Relativity of Torino University since 1961, he
was member of the Institute of Advanced Studies in Princeton from the early sixties to 1979, when
he resumed his chair in Torino. Elected to the European Parliament in 1989, when he finished his
term in 1995, he was called on a special chair by the Politecnico di Torino, where he taught until
his retirement. Tullio Regge is also full member of the Accademia dei Lincei and a public figure in
Italy for his frequent participation to TV debates on a variety of problems ranging from Energetics
to Bioethics. He is also an appreciated writer of quite original popularizing books and articles

function on the complex plane:

f (x + iy) = u(x, y)+ iv(x, y)

∂

∂y
u(x, y) = ∂

∂x
v(x, y) (6.5.1)

∂

∂x
v(x, y) = − ∂

∂x
u(x, y)
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Fig. 6.10 The principle of rheonomy is reminiscent of the Cauchy-Riemann equations satisfied by
the real and imaginary parts of analytic functions. Hence it encodes a sort of analyticity condition
for the superconnections that constitute the field content of supergravity theories

In the suggested analogy, horizontal directions correspond to the real axis x, while
the role of vertical ones is played by the imaginary axis y. Furthermore the real part
u(x, y) corresponds to the bosonic fields, while the imaginary part v(x, y) corre-
sponds to the fermionic ones. Indeed in order to respect the Bose/Fermi grading,
vertical components of the curvatures can be restricted to be linear functions of the
horizontal ones only by relating the vertical legs of bosonic curvatures to the hori-
zontal ones of fermionic curvatures and vice-versa. The idea of rheonomy is graph-
ically summarized in Fig. 6.10. The analogy with Cauchy-Riemann equations and
analyticity immediately suggests one important consequence of rheonomy. As it is
well known, the functions u and v are not arbitrary, rather, as a consequence of the
integrability of Cauchy-Riemann equations, they are harmonic functions, namely
each of them satisfies Laplace equation Δu=Δv = 0. In the same way we expect
that the bosonic and fermionic connections, whose curvatures are rheonomic, should
obey some differential equations of the second order in the horizontal variables as
a consequence of integrability of the rheonomy conditions. This is indeed the case.
What are the appropriate integrability conditions in this context? The answer is sim-
ple: they are the Bianchi identities of the considered Free Differential algebra with
which the rheonomic conditions must be consistent. Writing the most general rheo-
nomic parameterization of the curvatures with arbitrary coefficients and inserting it
into the Bianchi identities, one finds that all such coefficients are uniquely deter-
mined: furthermore some algebraic constraints have to be satisfied by the horizontal
curvature components. These constraints are differential equations in the space-time
coordinates imposed on the connection components and, in our analogy, correspond
to the Laplace equation satisfied by u and v. The physical interpretation of these
constraints is fascinating: they are nothing else but the appropriate field equations
of supergravity theory!
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Fig. 6.11 A schematic graphical description of the steps involved in the construction of a super-
gravity theory

6.5.1 The Flow Chart for the Construction of a Supergravity
Theory

From the considerations reviewed in the previous section a well-defined schema
underlying the construction of a supergravity theory emerges quite clearly. Its logic
is summarized in Fig. 6.11.

There are two preliminary steps.
The first is the construction of the relevant supermultiplets, namely of the ir-

reducible unitary representations (UIR) of the supersymmetry algebra that will be
included in the theory under consideration. By definition a supermultiplet is a finite
collection of unitary irreducible representations of the Poincaré Lie algebra, in other
words a stack of particles labeled by their mass and their spin, which, in higher di-
mensions D, means the representation of the little group, SO(D − 1) for massive
particles and SO(D − 2) for massless ones, to which all the available states can be
assigned. This step is purely algebraic and is based on a straightforward extension to
the supersymmetry algebra of the method of induced representations utilized in con-
structing UIR of the Poincaré Lie algebra. Knowing the supermultiplets one obtains
the field content of the considered supergravity theory.

The second step consists of determining the Free Differential Algebra in which
the previously fixed field content will be accommodated. According to Sullivan’s
second theorem we have to consider the cohomology classes of the relevant D-
dimensional super-Poincaré algebra and from that study determine the appropriate
p-forms that have to be included in the list of minimal FDA generators.
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Once the minimal FDA has been constructed the third step consists in its gauging.
This is done by relaxing the condition that all curvatures should be zero. In this
way we are able to write all the Bianchi identities and the fourth step, which is
the most laborious, yet it is straightforward, consists in working out the rheonomic
solution of the Bianchi identities together with its consistency conditions, coinciding
with the classical field equations satisfied by the supergravity space-time fields. In
the next subsection we illustrate such procedure by considering in some detail the
master example of D = 11 supergravity. This is the largest possible supergravity
and is thought to be the low energy effective field theory of M-theory, the so far
mysterious non-perturbative theory that unifies in one more space-time dimensions
all perturbative ten-dimensional superstrings.

6.5.2 Construction of D = 11 Supergravity, Alias M-Theory

In (6.4.2) we already introduced the Free Differential Algebra of M-theory and we
justified its structure on the basis of Sullivan’s second theorem and of the coho-
mology groups of the D = 11 super-Poincaré algebra. We found that in addition to
the vielbein V a , encoding the graviton degrees of freedom, the fermionic one-form
ψα , encoding the degrees of freedom of a spin 3

2 particle, and the spin-connection
ωab providing, through soldering, the propagation mechanism of the graviton, we
have a three-form A[3] and a six-form A[6]. Going one step back we show here that
this structure of the FDA perfectly matches with the field content of the massless
multiplet of the D = 11 supersymmetry algebra which contains the spin two gravi-
ton. The structure of such a multiplet is summarized in Table 6.2 which anticipates
the result. To derive such a result we argue as follows. First we construct a basis
of gamma matrices well adapted to the case of massless particles propagating in
a given direction, say along the 10th axis. In this case the transverse little group
is SO(9) and a look at Table A.1 shows that we can represent the SO(9) Clifford

Table 6.2 Structure of the graviton multiplet in D = 11 supergravity

SO(1,10) rep. # of states Name

(2,0,0,0,0) 44 graviton

( 3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 128 gravitino

(1,1,1,0,0) 84 3-form

The five numbers given in brackets in column one are the Young labels of the corresponding ir-
reducible representation of SO(1,10). According to a well-established rule, for bosonic represen-
tations these labels denote the number of boxes in each row of a Young tableau which gives the
symmetry of an irreducible tensor, ta1,...,an , having named n the sum of the five Young labels. For
fermionic representations the Young labels are ni + 1

2 where once again ni give, as in the bosonic
case, the description of a Young tableau. The irreducible SO(1,10) representation is provided by
an irreducible spinor tensor T α

a1,...,an
whose bosonic indices have the symmetry specified by the

Youn tableau. All traces and gamma-traces of the irreducible spinor tensor vanish.
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algebra by means of 16 × 16 symmetric matrices γ i , fulfilling the relations:

{
γ i, γ j

}= −δij (6.5.2)

Indeed from Table A.1 we obtain the information that in d = 9 there exists only a
C+ charge conjugation matrix that is symmetric and squares to the identity. When
C+ is chosen to be the unit matrix, which is always possible by means of a change
of basis, the gamma matrices become symmetric. Relying on this we can construct
the following basis of 32 × 32 gamma matrices fulfilling the D = 11 Minkowskian
Clifford algebra with the standard mostly minus metric:

ηab = diag{+,−, . . . ,−︸ ︷︷ ︸
10 times

} (6.5.3)

We set:

Γ 0 = σ1 ⊗ 1

Γ i = σ3 ⊗ γ i (i = 1, . . . ,9) (6.5.4)

Γ 10 = iσ2 ⊗ 1

With this choice the D = 11 antisymmetric charge conjugation matrix can be chosen
as follows

C− = iσ2 ⊗ 1 = Γ 10 (6.5.5)

Consider next the supersymmetry algebra as given in (6.2.1) and specialize it to the
case where the momentum vector Pμ is null-like and oriented along the 10th-axis:
Pμ = p0(1,0,0, . . . ,0,1). We obtain:

{Qα,Qβ} = iσ2(σ1 − iσ2)p
0 = ip0

(
0 0
0 −1

)
(6.5.6)

Imposing the Majorana condition Q = CQ
T

on the supercharges, in the present
gamma matrix basis we find the following result:

Q=
(
qα

iwβ

)
(6.5.7)

where both q and w are real operators. Hence the anticommutation relations (6.5.6)
representing the supersymmetry algebra reduce to the following form:

{
wα,wβ

} = 0{
wα,qβ

} = 0 (6.5.8){
qα, qβ

} = −ip0δαβ
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We conclude that in a UIR massless representation of the algebra we can consis-
tently put to zero all the operators wα and we are left with the sixteen qα which
close the standard algebra of eight fermionic harmonic oscillators. Indeed we can
organize the qα in two subsets of eight elements each, the former containing eight
independent destruction operators, the latter containing their conjugate creation op-
erators.

Since the sixteen operators qα transform in the spinor representation of the trans-
verse group SO(9), we can associate them with the sixteen weights of that represen-
tation which are 4-component vectors of the following form:

Wspin 9 =
(
±1

2
,±1

2
,±1

2
,±1

2

)
(6.5.9)

all possible choices of the signs being allowed. Furthermore we can arrange matters
in such a way that the creation operators are associated with the positive weights,
while the destruction operators are associated with the negative ones. The positive
weights can be identified with:

W
>
spin 9 =

(
+1

2
,±1

2
,±1

2
,±1

2

)
(6.5.10)

while the negative ones are:

W
<
spin 9 =

(
−1

2
,±1

2
,±1

2
,±1

2

)
(6.5.11)

Let us now consider the three SO(9) representations that admit the following vectors
as highest weights:

W
graviton
max = (+2,0,0,0) (6.5.12)

W
gravitino
max =

(
+3

2
,+1

2
,+1

2
,+1

2

)
(6.5.13)

W
3 form
max = (+1,+1,+1,0) (6.5.14)

As anticipated by their names, the UIR representations of SO(1,10) induced by
the above SO(9) irreducible representations correspond to the massless graviton, to
the massless gravitino and to a massless gauge particle with three antisymmetric
indices, respectively. These are the particles forming the D = 11 supermultiplet as
described in Table 6.2 and the number of degrees of freedom of each them is just the
dimension of the corresponding SO(9) representation, in other words the number
of its weights. These weights can be regarded as the possible polarizations of the
corresponding massless particle propagating at the speed of light in the 10th space
direction. Remains the question why precisely these representations are the content
of the supermultiplet, namely why they build up an irreducible representation of the
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supersymmetry algebra. The answer is easily obtained arguing in terms of highest
vectors. Consider the highest helicity state of the graviton:

|Ω〉 = |2,0,0,0〉 (6.5.15)

and let us assume that it is the highest state of the entire supermultiplet. This means
that it is annihilated by all supercharges that are creation operators, namely:

q(
1
2 ,± 1

2 ,± 1
2 ,± 1

2 )|2,0,0,0〉 = 0 (6.5.16)

A non-vanishing result is obtained applying to |2,0,0,0〉 products of the operators

q(− 1
2 ,± 1

2 ,± 1
2 ,± 1

2 ), where all factors in the product are different. So we find:

|2,0,0,0〉∣∣∣∣32 ,
1

2
,

1

2
,

1

2

〉
= q(−

1
2 ,

1
2 ,

1
2 ,

1
2 )|2,0,0,0〉

|1,1,1,0〉 = q(−
1
2 ,

1
2 ,

1
2 ,

1
2 )q(−

1
2 ,

1
2 ,

1
2 ,− 1

2 )|2,0,0,0〉 (6.5.17)

· · · = · · ·
· · · = · · ·
| − 2,0,0,0〉 =

( ∏
8 sign choices

q− 1
2 ,± 1

2 ,± 1
2 ,± 1

2

)
|2,0,0,0〉

Applying the destruction operators to all other positive weights of the spin two rep-
resentation we find that the set of weights we can construct is just the union of
the weights belonging to the three mentioned irreducible representations. Hence the
D = 11 supermultiplet is indeed constituted by the fields mentioned in Table 6.2.

6.6 Summary of Supergravities

Having clarified the construction principles of supergravities and their fundamental
algebraic basis, rooted in the Free Differential Algebra structure we pass to a scan
of the available theories.

In D = 11 there is just a unique supergravity, M-theory, whose structure we have
thoroughly discussed.

In D = 10 we have just five different supergravities, displayed in Fig. 6.12 which
are in one-to-one correspondence with the available consistent superstring theories.
Actually, from the supergravity viewpoint there are only three possible theories in
D = 10. The type II theories that have two Majorana-Weyl supercharges (A and
B , according to the choice of their chirality, as we explain below) and the type I
theory that has only one Majorana-Weyl supercharge and can be coupled to a vector
multiplet. The different choice of the gauge group is the only distinction among type
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Fig. 6.12 The field content of the five D = 10 supergravities. The fields of each of these theories
are the massless modes of the corresponding superstring theory. The bosonic fields are organized
according to their string origin in the NS-NS or R-R sector, while the fermionic fields are organized
according to their chirality

I theories. However a very complex mechanism displayed by these latter resides in
the possibility of introducing their coupling to gauge and Lorentz Chern-Simons
three-forms: this provides the cancellation of anomalies and selects the three models
that complete the list of consistent superstring theories. In this book we do not dwell
on D = 10, N = 1 supergravities and on their Lorentz Chern-Simons coupling for
which we refer the reader to the book [28]. We rather focus on type II theories of
which we give a complete account.

The key point in D = 10 is the existence of Majorana-Weyl spinors satisfying
the double condition:

ψL/R = Cψ
T

L/R; Γ11ψL/R = ±ψL/R (6.6.1)

where C is the charge conjugation matrix and Γ11 is the chirality matrix (see Ap-
pendix A.4 for details). The type IIA theory is based on the super-Poincaré Lie alge-
bra containing two Majorana-Weyl supercharges, one QL which is left-handed, the
other QR which is right-handed. The type IIB theory is instead based on the super-
Poincaré Lie algebra that contains two Majorana-Weyl supercharges, QA

L (A= 1,2)
of the same chirality, say left-handed. The presence of this doublet of chiral super-
charges introduces an SL(2,R) symmetry which is an essential item in the construc-
tion of the whole theory.

In dimensions D < 10 the number of available supergravity theories starts grow-
ing because we can reduce the number of supercharges and introduce an increasing
available choice of matter supermultiplets. As soon as scalar fields appear in the
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spectrum they introduce a new quality: the scalars can be regarded as the coordi-
nates of a differentiable target manifold for whose geometry supersymmetry selects
a variety of special structures. Chapter 8 presents a bird-eye review of supergravity
geometries and couplings.

Chapter 7 is instead devoted to enlighten the vital dualism between the bulk and
the brane world-volume perspectives. For that we shall need the explicit structure of
the type II theories which we present in the next two sections.

6.7 Type IIA Supergravity in D = 10

The full-fledged rheonomic construction of type IIA supergravity was obtained only
recently in [29] which we follow in the present section. The field content of the
theory is given in Table 6.3.

This field content corresponds to the basic forms of a specific Free Differential
Algebra including the 0-form items entering the rheonomic parameterizations of its
curvatures.

The starting point is, as usual, the super-Poincaré algebra. In D = 10 we have two
super-Poincaré algebras with 32 supercharges, the type IIA and the type IIB. If we
also include the dilaton, as we will do, there are various equivalent definitions of cur-
vatures that are named frames and differ by dilaton pre-factors. The Einstein frame
is that which leads to an action where the Einstein kinetic term is canonical without
any dilaton pre-factors. The string frame, which has distinguished advantages when
writing the string action in its background, corresponds instead to non-canonical
Einstein terms in the action. The two frames are just related by a suitable Weyl
transformation depending on the dilaton. For type IIA supergravity we use the string
frames for two reasons. The first is that in this frame the FDA has a simpler and more
elegant form. The second is pedagogical. We want to emphasize the freedom of us-
ing different but equivalent frames. For type IIB supergravity we will rather use the
Einstein frame in which the SL(2,R) symmetry of that theory is manifest.

The Maurer Cartan description of the type IIA superalgebra is obtained by setting
to zero the following curvatures:

Table 6.3 Structure of the
graviton multiplet in Type IIA
supergravity

SO(1,9) rep. # of states Name

(2,0,0,0,0) 35 graviton

( 3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 )L 56 left gravitino

( 3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 )R 56 right gravitino

(1,1,0,0,0) 28 NS B-field

(1,0,0,0,0) 8 RR 1-form

(1,1,1,0,0) 56 RR 3-form

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 )L 8 left dilatino

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 )R 8 right dilatino

(0,0,0,0,0) 1 dilaton
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Type IIA Super-Poicaré Algebra in the String Frame

R
ab ≡ dωab −ωac ∧ωcb (6.7.1)

T
a ≡ DV a − i

1

2

(
ψL ∧ Γ aψL +ψR ∧ Γ aψR

)
(6.7.2)

ρL,R ≡ DψL,R ≡ dψL,R − 1

4
ωab ∧ ΓabψL,R (6.7.3)

G[2] ≡ dC[1] + exp[−ϕ]ψR ∧ψL (6.7.4)

f[1] ≡ dϕ (6.7.5)

∇χL/R ≡ dχL,R − 1

4
ωab ∧ ΓabχL,R (6.7.6)

where the 0-form dilaton ϕ appearing in (6.7.4) introduces a mobile coupling con-
stant. Furthermore, V a , ωab denote the vielbein and the spin connection 1-forms,
respectively, while the two fermionic 1-forms ψL/R are Majorana-Weyl spinors of
opposite chirality:

Γ11ψL/R = ±ψL/R (6.7.7)

The flat metric ηab = diag(+,−, . . . ,−) is the mostly minus one and Γ11 is Hermi-
tian and squares to the identity Γ 2

11 = 1.
Setting Rab = T a = G[2] = f[1] = 0 one obtains the Maurer Cartan equations of

a superalgebra where the spinor charges, QL,R dual to the spinor 1-forms ψL,R not
only anticommute to the translations Pa but also to a central charge Z dual to the
(Ramond Ramond) 1-form C[1].

According to Sullivan’s second theorem the FDA extension of the above super-
algebra is dictated by its cohomology. In a first step one finds that there exists a
cohomology class of degree three which motivates the introduction of a new 2-form
generator B[2] which in the superstring interpretation is just the Kalb-Ramond field.
Considering then the cohomology of the FDA-extended algebra one finds a degree
four cohomology class which motivates the introduction of a 3-form generator C[3].
In the superstring interpretation, this is just the second R-R field, the first being the
gauge field C[1]. Altogether the complete type IIA FDA is obtained by adjoining the
following curvatures to those already introduced:

The FDA Extension of the Type IIA Superalgebra in the String Frame

H[3] = dB[2] + i(ψL ∧ ΓaψL −ψR ∧ ΓaψR)∧ V a (6.7.8)

G[4] = dC[3] + B[2] ∧ dC[1]

− 1

2
exp[−ϕ](ψL ∧ ΓabψR +ψR ∧ ΓabψL)∧ V a ∧ V b (6.7.9)

Equations (6.7.1)–(6.7.5) together with (6.7.8)–(6.7.9) provide the complete defini-
tion of the type IIA Free Differential Algebra.
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The next task is that of writing the Bianchi identities and construct their rheo-
nomic solution.

The Bianchi Identities The curvature definitions listed above lead immediately
to the following Bianchi identities which we write, already under the assumption
that the torsion is zero Ta = 0:

0 = DR
ab (6.7.10)

0 = R
ab ∧ Vb − i

(
ψL ∧ Γ aρL +ψR ∧ Γ aρR

)
(6.7.11)

0 = DρL/R + 1

4
R
ab ∧ ΓabψL/R (6.7.12)

0 = dG[2] + f[1] ∧ exp[−ϕ]ψR ∧ψL + exp[−ϕ](ψR ∧ ρL −ψL ∧ ρR) (6.7.13)

0 = df[1] (6.7.14)

0 = dH[3] + 2i(ψL ∧ ΓaρL −ψR ∧ ΓaρR)∧ V a (6.7.15)

0 = dG[4] − H[3] ∧ G[2] + i(ψL ∧ ΓaψL −ψR ∧ ΓaψR)∧ V a ∧ G[2]

+ H[3] ∧ exp[−ϕ]ψR ∧ψL

− 1

2
f[1] ∧ exp[−ϕ](ψL ∧ ΓabψR +ψR ∧ ΓabψL)∧ V a ∧ V b

− exp[−ϕ](ψL ∧ ΓabρR +ψR ∧ ΓabρL)∧ V a ∧ V b (6.7.16)

0 = D2χL/R + 1

4
Rab ∧ ΓabχL/R (6.7.17)

As it is the case for all supergravities and for all FDAs the above Bianchi identities
admit a unique rheonomic solution up to field redefinitions. The rheonomic solu-
tion of the Bianchis implies also the field equations of the theory given as a set of
constraints to be satisfied by the space-time curvature components. The choice of a
frame is performed by imposing an additional condition which fixes the field redef-
initions. In particular we define the string frame by requiring both the vanishing of
the torsion

T
a = 0 (6.7.18)

and the vanishing of all of the fermionic sectors of the 3-form curvature H[3]. This
amounts to setting:

H[3] = HabcV
a ∧ V b ∧ V c (6.7.19)

One can verify that the fulfillment of the above conditions requires a Weyl rescaling
of the fields which yields the pre-factor e−2ϕ in front of the NS-NS part and the
fermionic sector of the action.
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6.7.1 Rheonomic Parameterizations of the Type IIA Curvatures
in the String Frame

In order to present the result in its most compact form it is convenient to introduce
a set of tensors, which involve both the field strengths Gab , GABCD of the Ramond-
Ramond p-forms and also bilinear currents in the dilatino field χL/R . The needed
tensors are those listed below:

Mab =
(1

8
exp[ϕ]Gab + 9

64
χRΓabχL

)

Mabcd = − 1

16
exp[ϕ]Gabcd − 3i

256
χLΓabcdχR

N0 = 3

4
χLχR (6.7.20)

Nab = 1

4
exp[ϕ]Gab + 9

32
χRΓabχL = 2Mab

Nabcd = 1

24
exp[ϕ]Gabcd + 1

128
χRΓabcdχL = −2

3
Mabcd

The above tensors are conveniently assembled into the following spinor matrices

Z = NabΓ
ab + 3NabcdΓ

abcd (6.7.21)

M± = i
(∓MabΓ

ab + MabcdΓ
abcd

)
(6.7.22)

N (even)
± = ∓N01 + NabΓ

ab ∓ NabcdΓ
abcd (6.7.23)

N (odd)
± = ± i

3
faΓ

a ± 1

64
χR/LΓabcχR/LΓ

abc − i

12
HabcΓ

abc (6.7.24)

L (odd)
a± = M∓Γa; L (even)

a± = ∓3

8
HabcΓ

bc (6.7.25)

In terms of these objects the rheonomic parameterizations of the curvatures, solv-
ing the Bianchi identities can be written as follows:

Bosonic Curvatures

T
a = 0 (6.7.26)

R
ab = Rab

mnV
m ∧ V n +ψRΘ

ab
m|L ∧ Vm +ψLΘ

ab
m|R ∧ Vm

+ i
3

4
(ψL ∧ ΓcψL −ψR ∧ ΓcψR)H

abc

+ψL ∧ Γ [aZ Γ b]ψR (6.7.27)

H[3] = HabcV
a ∧ V b ∧ V c (6.7.28)
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G[2] = GabV
a ∧ V b + i

3

2
exp[−ϕ](χLΓaψL + χRΓaψR)∧ V a (6.7.29)

f[1] = faV
a + 3

2
(χRψL − χLψR) (6.7.30)

G[4] = GabcdV
a ∧ V b ∧ V c ∧ V d

− i
1

2
exp[−ϕ](χLΓabcψL − χRΓabcψR)∧ V a ∧ V b ∧ V c (6.7.31)

Fermionic Curvatures

ρL/R = ρ
L/R
ab V a ∧ V b + L (even)

a± ψL/R + L (odd)
a∓ ψR/L + ρ

(0,2)
L/R (6.7.32)

∇χL/R = DaχL/RV
a + N (even)

± ψL/R + N (odd)
∓ ψR/L (6.7.33)

Note that the components of the generalized curvatures along the bosonic vielbeins
do not coincide with their spacetime components, but rather with their superco-
variant extension. Indeed expanding for example the four-form along the spacetime
differentials one finds that

G̃μνρσ ≡ GabcdV
a
μ ∧ V b

ν ∧ V c
ρ ∧ V d

σ

= ∂[μC[4]
νρσ ] +B

[2]
[μν∂ρC

[1]
σ ] − 1

2
e−ϕ(ψL[μΓνρψRσ ] +ψR[μΓνρψLσ ])

+ i
1

2
exp[−ϕ](χLΓ[μνρψLσ ] − χRΓ[μνρψRσ ]) (6.7.34)

where G̃ is the supercovariant field strength. In the parameterization (6.7.27) of the
Riemann tensor we have used the following definition:

Θab|cL/R = −i(ΓaρbcR/L + ΓbρcaR/L − ΓcρabR/L) (6.7.35)

Finally by ρ
(0,2)
L/R we have denoted the fermion-fermion part of the gravitino curva-

ture whose explicit expression can be written in two different forms, equivalent by
Fierz rearrangement:

ρ
(0,2)
L/R = ±21

32
ΓaχR/LψL/R ∧ Γ aψL/R

∓ 1

2560
Γa1a2a3a4a5χR/L

(
ψL/RΓ

a1a2a3a4a5ψL/R

)
(6.7.36)

or

ρ
(0,2)
L/R = ±3

8
iψL/R ∧ χR/LψL/R ± 3

16
iΓabψL/R ∧ χR/LΓ

abψL/R (6.7.37)
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6.7.2 Field Equations of Type IIA Supergravity in the String
Frame

As usual the rheonomic parameterizations of the supercurvatures imply, via Bianchi
identities, a certain number of constraints on the inner components of the same
curvatures which can be recognized as the field equations of type IIA supergravity.
In [29] the authors derived the bosonic part of these field equations in two steps:
first they performed the Einstein frame dimensional reduction on a circle of the field
equations of D = 11 supergravity. Then they applied the Weyl transformation which
relates the Einstein frame to the string frame:

V a
(E) = V a

(S)e
−ϕ/4 (6.7.38)

Obviously they could have obtained the same result directly from the Bianchi iden-
tities in the string frame, yet this would have been much more laborious.

In any case the result is the following one. There is an Einstein equation of the
following form:

Rab = T̂ab(f )+ T̂ab(G2)+ T̂ab(H )+ T̂ab(G4) (6.7.39)

where the stress-energy tensor on the right hand side are defined as

T̂ab(f ) = −DaDbϕ + 8

9
DaϕDbϕ − ηab

(
1

6
�ϕ + 5

9
DmϕDmϕ

)
(6.7.40)

T̂ab(G2) = exp[2ϕ]GaxGbyη
ab (6.7.41)

T̂ab(H ) = − exp

[
1

3
ϕ

](
9

8
HaxyHbwtη

xwηyt − 1

8
ηabHxyzH

xyz

)
(6.7.42)

T̂ab(G4) = exp[2ϕ]
(

6Gax1x2x3Gby1y2y3η
x1y1ηx2y2ηx3y3 − 1

2
ηabGx1...x4G

x1...x4

)

(6.7.43)

Next we have the equations for the dilaton and the Ramond 1-form:

0 = �ϕ − 2faf
a + 3

2
exp[2ϕ]G x1x2Gx1x2

+ 3

2
exp[2ϕ]G x1x2x3x4Gx1x2x3x4 + 3

4
exp

[
4

3
ϕ

]
H x1x2x3Hx1x2x3 (6.7.44)

0 = DmGma − 5

3
f mGma + 3G ax1x2x3Hx1x2x3 (6.7.45)

and the equations for the NS 2-form and for the RR 3-form:

0 = DmH mab − 2

3
fmHmab
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− exp

[
4

3
ϕ

](
4G x1x2abGx1x2 − 1

24
εabx1...x8Gx1x2x3x4Gx5x6x7x8

)
(6.7.46)

0 = DmGma1a2a3 + 1

3
fmGma1a2a3

+ exp

[
2

3
ϕ

](
3

2
Gm[a1Ha2a3]nηmn + 1

48
εa1a2a3x1...x7Gx1x2x3x4Hx5x6x7

)

(6.7.47)

Any solution of these bosonic set of equations can be uniquely extended to a full
superspace solution involving 32 theta variables by means of the rheonomic condi-
tions. The implementation of such a fermionic integration is the supergauge com-
pletion.

6.8 Type IIB Supergravity

The formulation of type IIB supergravity as it appears in string theory textbooks
[30–33] is tailored for the comparison with superstring amplitudes and is quite ap-
propriate to this goal. Yet, from the viewpoint of the general geometrical set up of
supergravity theories this formulation is somewhat unwieldy. Specifically it neither
makes the SU(1,1)/U(1) coset structure of the theory manifest, nor it relates the
supersymmetry transformation rules to the underlying algebraic structure which, as
in all other instances of supergravities, is a simple and well defined Free Differential
algebra.

The Free Differential Algebra of type IIB supergravity was singled out many
years ago by Castellani in [35] and the geometric manifestly SU(1,1) covariant for-
mulation of the theory was constructed by Castellani and Pesando in [34]. In this
section we summarize their formulae giving also their transcription from a com-
plex SU(1,1) basis to a real SL(2,R) basis. Furthermore we provide the transla-
tion vocabulary between these intrinsic notations and those of Polchinski’s textbook
[32, 33] frequently used in current superstring literature.

6.8.1 The SU(1,1)/U(1) ∼ SL(2,R)/O(2) Coset

As it is later emphasized in Chap. 8, a basic ingredient in all supergravity con-
structions is the parameterization of the scalar manifold geometry that, with few
exceptions, corresponds to a homogeneous scalar manifold. In all these cases the
essential building block appearing in the Lagrangian and supersymmetry transfor-
mation rules is the coset representative L(φi) that provides a parameterization of
the coset manifold G/H in terms of some chosen patch of coordinates. A very use-
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ful choice is given by the so called solvable Lie algebra parameterization.11 This
is true also in the present case where the solvable parameterization of the coset
SU(1,1)/U(1)∼ SL(2,R)/O(2) is precisely that which allows for the identification
of the massless superstring fields inside the covariant formulation of supergravity.

Our notations are as follows.

SL(2, R) Lie Algebra

[L0,L±] = ±L±; [L+,L−] = 2L0 (6.8.1)

with the following explicit 2-dimensional representation:

L0 = 1

2

(
1 0
0 −1

)
; L+ =

(
0 1
0 0

)
; L− =

(
0 0
1 0

)
(6.8.2)

Coset Representative of SL(2, R)/O(2) in the Solvable Parameterization

L(ϕ,C[0])= exp[ϕL0] exp
[
C[0]eϕL−

]=
(

exp[ϕ/2] 0
C[0]eϕ/2 exp[−ϕ/2]

)
(6.8.3)

where ϕ(x) and C[0] are respectively identified with the dilaton and with the
Ramond-Ramond 0-form of the superstring massless spectrum. The isomorphism
of SL(2,R) with SU(1,1) is realized by conjugation with the Cayley matrix:

C = 1√
2

(
1 −i
1 i

)
(6.8.4)

Introducing the SU(1,1) coset representative

SU(1,1) #Λ= CLC −1 (6.8.5)

from the left invariant 1-form Λ−1 dΛ we can extract the 1-forms corresponding to
the scalar vielbein P and the U(1) connection Q

The SU(1, 1)/U(1) Vielbein and Connection

Λ−1 dΛ=
(−iQ P

P� iQ

)
(6.8.6)

Explicitly

P = 1

2

(
dϕ − ieϕ dC[0]

)
scalar vielbein

Q = 1

2
exp[ϕ]dC[0] U(1)-connection

(6.8.7)

11For a review see either [25] or [24] and all references therein.
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Table 6.4 Field content of type IIB supergravity

Field in SU(1,1) basis SU(1,1) repres. U(1) charge Superstring zero modes

V a
μ J = 0 0 graviton hμν

ψμ J = 0 1
2 gravitinos ψAμ

Aα
μν J = 1

2 0 B[2], C[2]
Cμνρσ J = 0 0 C[4]
λ J = 0 3

2 dilatinos λA
L
α
β J = 1

2 ±1 ϕ, C[0]
The early Greek indices α,β, . . . = 1,2 run in the fundamental representation of SU(1,1), while
the early capital Latin indices A,B, . . . = 1,2 run in the fundamental representation of SL(2,R).
The p-gauge forms of the Ramond Ramond sector are denoted by C[p].

6.8.2 The Free Differential Algebra, the Supergravity Fields
and the Curvatures

Following Castellani and Pesando the field content of type IIB supergravity is or-
ganized into representations of SU(1,1) as displayed in Table 6.4. In order to write
down the free differential algebra the critical issue is the correct identification of the
fermionic terms contributing to the curvature of the complex 2-form doublet Aα

μν .
These latter transform in the 2-dimensional representation of SU(1,1) and are re-
lated by the Cayley matrix of (6.8.4) to a doublet of real 2-forms AΛ

μν that transform
in the 2-dimensional representation of SL(2,R):

(
A1
μν

A2
μν

)
= C

(
A1
μν

A2
μν

)
(6.8.8)

We introduce a doublet of Majorana-Weyl spinor 1-forms (the gravitinos) having
the same chirality:

Γ11ψA = −ψA; CψA =ψA, A= 1,2 (6.8.9)

In terms of these we define the complex doublet of gravitinos:

(
ψ�

ψ

)
= C

(
ψ1
ψ2

)
(6.8.10)

and we introduce the following doublet made by a complex 3-form current and its
complex conjugate:

J
x
SU =

(
iψ

� ∧ Γaψ ∧ V a

iψ ∧ Γaψ
� ∧ V a

)
; (x = ±) (6.8.11)
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By means of an inverse Cayley transformation we get a doublet of real currents:

J
A
SL = [C −1]A

x
J
x
SU =

(
i(ψ1 ∧ Γaψ1 −ψ2 ∧ Γaψ2)∧ V a

−2iψ1 ∧ Γaψ2 ∧ V a

)

≡ dA|BC iψBΓaψC ∧ V a (6.8.12)

The formula (6.8.12) is understood as follows. Recall that the fermions transform
only with respect to the isotropy subgroup H = U(1)∼ O(2) of the scalar coset (are
neutral under G) and that all irreducible representations of O(2) are 2-dimensional.
The coefficients dA|BC defined by (6.8.12) are the Clebsch Gordon coefficients that
extract the doublet of helicity s = 2 from the tensor product of two representations
of helicity s = 1. Relying on these notations we can write the type IIB curvature
definitions in two equivalent bases related by a Cayley transformation:

1. the complex SU(1,1) basis originally used by Castellani and Pesando [34],
2. the real SL(2,R), introduced here and best suited for comparison with string

theory massless modes.

The Curvatures of the Free Differential Algebra in the Complex Basis Using
the complex basis the curvatures are as follows12

T
a = DV a − iψ ∧ Γ aψ (6.8.13)

R
ab = dωab −ωac ∧ωdbηcd

ρ = Dψ ≡ dψ − 1

4
ωab ∧ Γabψ − 1

2
iQ∧ψ (6.8.14)

H α
[3] = √

2dAα
[2] + 2iΛα+ψ ∧ Γaψ

∗ ∧ V a + 2iΛα−ψ
∗ ∧ Γaψ ∧ V a (6.8.15)

F[5] = dC[4] + 1

16
iεαβ

√
2Aα

[2] ∧ H
β

[3] +
1

6
ψ ∧ Γabcψ ∧ V a ∧ V b ∧ V c

+ 1

8
εαβ

√
2Aα

[2] ∧
(
Λ
β
+ψΓaψ� +Λ

β
−ψ

�
Γaψ

)∧ V a (6.8.16)

Dλ = dλ− 1

4
ωabΓabλ− i

3

2
Qλ (6.8.17)

DΛα± = dΛα± ∓ iQΛα±. (6.8.18)

alternatively using the real SL(2,R) basis we can write:

The Curvatures of the Free Differential Algebra in the Real Basis

T
a = DV a − iψA ∧ Γ aψA (6.8.19)

12Comparing with the original paper by Castellani and Pesando, note that we have changed the nor-

malization: Aα → √
2Aα and Bλμνρ = 6Cλμνρ so that eventually the 4-form C[4] will be identified

with that used in Polchinski’s book [32, 33].
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R
ab = dωab −ωac ∧ωdbηcd

ρA = DψA ≡ dψA − 1

4
ωab ∧ ΓabψA + 1

2
Q∧ εABψB (6.8.20)

HΛ[3] = dAΛ[3] + iLΛ
Ad

A|BCψB ∧ ΓaψC ∧ V a (6.8.21)

F[5] = dC[4] − 1

16
εΛΣAΛ[3] ∧ HΣ[3] + i

1

6
ψA ∧ ΓabcψBε

ABV a ∧ V b ∧ V c

+ i
1

4
εΛΣAΛ[2]LΣ

A d
A|BCψB ∧ ΓaψC ∧ V a (6.8.22)

Dλ = dλ− 1

4
ωabΓabλ− 3

2
iQλ (6.8.23)

DL
Λ± = dLΛ

A + εABQL
Λ
B . (6.8.24)

In the above formulae, (6.8.18) and (6.8.24) define the covariant derivative of the
coset representative of the scalar coset in the SU(1,1) and SL(2,R) basis respec-
tively. They follow from the Maurer Cartan equations of G/H.

Next, using the results of Castellani and Pesando [34], we can write the rheo-
nomic parameterizations of the curvatures (6.8.13)–(6.8.18) (alternatively (6.8.19)–
(6.8.24)) that determine the supersymmetry transformation rules of all the fields.
Prior to that, in order to make contact with superstring massless modes as normal-
ized in Polchinski’s book, it is convenient to introduce the following identifications:

A1[2] = 2
√

2B[2]; A2[2] = 2
√

2C[2] (6.8.25)

where B[2] is the 2-form gauge field of the Neveu-Schwarz sector that couples to or-
dinary fundamental strings, while C[2] is the 2-form of the Ramond-Ramond sector
that couples to D1-branes. For simplicity we write the rheonomic parameterizations
only in the complex basis and we disregard the bilinear fermionic terms calculated
by Castellani and Pesando. We have:

T
a = 0 (6.8.26)

ρ = ρabV
a ∧ V b + 5

16
iΓ a1−a4ψV a5

(
Fa1−a5 + 1

5!εa1−a10Fa6−a10

)

+ 1

32

(−Γ a1−a4ψ∗Va1 + 9Γ a2a3ψ∗V a4
)
Λα+H

β
a2−a4

εαβ

+ fermion bilinears (6.8.27)

H α
[3] = H α

abcV
a ∧ V b ∧ V c +Λα+ψ

∗
Γabλ

∗V a ∧ V b

+Λα−ψΓabλV a ∧ V b (6.8.28)

F[5] = Fa1−a5V
a1 ∧ · · · ∧ V a5 (6.8.29)

Dλ = DaλV
a + iPaΓ

aψ∗ − 1

8
iΓ a1−a3ψεαβΛ

α+H
β
a1−a3

(6.8.30)
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DΛα+ = Λα−PaV a +Λα−ψ
∗
λ (6.8.31)

DΛα− = Λα+P ∗
a V

a +Λα+ψλ∗ (6.8.32)

R
ab = Rab

cdV
c ∧ V d + fermionic terms (6.8.33)

6.8.3 The Bosonic Field Equations and the Standard Form
of the Bosonic Action

Following Castellani and Pesando we write next the general form of the bosonic
field equations and using the identifications of (6.8.25), (6.8.3), (6.8.7) we reduce
them to those following from a standard supergravity action for p-branes. As dis-
cussed in the literature [24, 26, 27], the standard form of a supergravity action trun-
cated to the graviton, the dilaton and the ni = pi + 2 field strengths that can couple
to the world-volume actions of pi -branes is as follows:

Astandard =
∫

dDx detV

[
−2R

[
ω(V )

]− 1

2
∂μϕ∂μϕ

]

−
∫ ∑

i

1

2
exp[−aiϕ]F[ni ] ∧ �F[ni ]

+ Chern Simons couplings (6.8.34)

where R = Rab
ab is the scalar curvature in the geometric normalizations always

adopted in the rheonomic framework [17],13 and ai are characteristic exponents
dictated by the structure of supergravity and playing an essential role in dictating
the properties of p-brane solutions.14 Furthermore in (6.8.34) we have defined:

|F[n]|2 ≡ gμ1ν1 · · ·gμnνnFμ1...μnFν1...νn (6.8.35)

F[n] = Fμ1...μn dx
μ1 ∧ · · · ∧ dxμn (6.8.36)

and we have not made explicit the Chern Simons couplings between field strengths
that are on the other hand essential in the derivation of the exact field equations.

Introducing the definition of the dressed 3-form field strengths:

Ĥ±|a1a2a3 = εαβΛ
α±Ha1a2a3; ĤA|a1a2a3 = εΛΣL

Λ
AHΣ

a1a2a3
(6.8.37)

13Note that our R is equal to − 1
2 Rold , Rold being the normalization of the scalar curvature usually

adopted in General Relativity textbooks. The difference arises because in the traditional literature
the Riemann tensor is not defined as the components of the curvature 2-form Rab rather as −2
times such components.
14In the next Chap. 7 we will emphasize the role of the dilaton factors exp[−aϕ] in front of the
p-form kinetic terms.
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it was shown by Castellani and Pesando [34] that the exact bosonic field equations
implied by the closure of the supersymmetry algebra have the following form:

R
pr
qr − 1

2
δ
p
q Rab

ab = −75

(
Fqa1−a4F

pa1−a4 − 1

10
δ
p
q Fa1−a5F

a1−a5

)

− 9

16

(
Ĥ

pa1a2+ Ĥ−|qa1a2 + Ĥ
pa1a2− Ĥ+|qa1a2

− 1

3
δ
p
q Ĥ a1a2a3+ Ĥ−|a1a2a3

)

− 1

2

(
PpP ∗

q + PqP
∗p − δ

p
q P

aP ∗
a

)
(6.8.38)

DaPa = −3

8
Ĥ a1a2a3+ Ĥ+|a1a2a3 (6.8.39)

DbĤ+|a1a2b = −i20Fa1a2b1b2b3Ĥ
b1b2b3+ − PbĤ−|a1a2b (6.8.40)

DbFa1a2a3a4b = i
1

960
εa1a2a3a4b1...b6Ĥ

b1b2b3+ Ĥ b4b5b6− (6.8.41)

At the purely bosonic level (i.e. disregarding all fermionic contributions), using the
solvable parameterization (6.8.3) of the SL(2,R)/O(2) coset and inserting the iden-
tifications (6.8.25) we obtain the following expression for the dressed 3-forms in
terms of string massless fields denoted NS or RR according to their origin in the
Neveu Schwarz or Ramond Ramond sector:

Ĥ± = ±2e−ϕ/2FNS
[3] + i2eϕ/2F RR[3]

P = 1

2
dϕ − i

1

2
eϕF RR[1]

FNS
[3] = dB[2] (6.8.42)

F RR[1] = dC[0]

F RR[3] = (dC[2] −C[0]dB[2])

F RR[5] = F[5] = dC[4] − 1

2
(B[2] ∧ dC[2] −C[2] ∧ dB[2])

Using the Hodge dual of �-forms in space-time dimensions D, the field equations
(6.8.39)–(6.8.41) can be written in a more compact form. Let us begin with the
scalar equation (6.8.39), it becomes:

d(�P )− 2iQ∧ �P + 1

16
Ĥ+ ∧ �Ĥ+ = 0 (6.8.43)
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and separating its real from imaginary part we obtain the two equations:

d � dϕ − e2ϕF RR[1] ∧ F RR[1] = −1

2

(
e−ϕFNS

[3] ∧ �FNS
[3] − eϕF RR[3] ∧ �F RR[3]

)
(6.8.44)

d
(
e2ϕ ∗ F RR[1]

) = −eϕFNS
[3] ∧ �F RR[3] (6.8.45)

Considering next the 3-form (6.8.40) it can be rewritten as:

d � Ĥ+ − iQ∧ ∗Ĥ+ = iF[5] ∧ Ĥ+ − P ∧ �Ĥ− (6.8.46)

Separating the real and imaginary parts of (6.8.46) we obtain:

d
(
e−ϕ � FNS

[3]
)+ eϕF RR[1] ∧ �F RR[3] = −F RR[3] ∧ F RR[5]

d
(
eϕ � FRR[3]

) = −F RR[5] ∧ FNS
[3] (6.8.47)

Finally the equation for the Ramond-Ramond 5-form, namely (6.8.41) is rewritten
as follows:

d � F RR[5] = i
1

8
Ĥ+ ∧ Ĥ− = −FNS

[3] ∧ F RR[3] (6.8.48)

6.9 About Solutions

The main interest in the perspective of the present book focus on the wealth of
new gravitational backgrounds that higher dimensional supergravities do introduce.
Some type of solutions of both type IIA, type IIB and M-theory are presented in
Chap. 9.
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Chapter 7
The Branes: Three Viewpoints

Tu se’ certo il cantor del trino regno,
Tu lo spirto magnanimo e sovrano
Cui, quasi cervo a puro fonte, io vegno.
Giovanni Marchetti

7.1 Introduction and Conceptual Outline

Supergravity developed originally as the supersymmetric generalization of Einstein
Gravity and, for several years, the construction of its various formulations in diverse
dimensions, with diverse number of supercharges, went on independently from the
theory of superstrings, whose origin was instead within the framework of the dual
models of hadronic scattering amplitudes, namely within tentative theories of strong
interactions. In the course of time, however, and as a result of the two string revolu-
tions,1 the subjects of supergravity and of superstring theory merged completely, as
soon as it became clear that the D = 10 theories described in the previous chapter
are just effective low energy Lagrangians that encode the interactions of the mass-
less modes of the corresponding perturbative string models.

Since the mid nineties the relation between supergravity and superstrings un-
derwent a further substantial upgrading which is the essence of the second string
revolution.

On one hand it became clear that each superstring theory, besides the elemen-
tary string states, includes also additional non-perturbative excitations, similar to

1By first string revolution it is meant the discovery by Green and Schwarz of the mechanism of
anomaly cancellation which singled out five perturbatively consistent superstring models, namely:

1. Type II A
2. Type II B
3. Type I with SO(32) gauge group
4. Heterotic E8 × E8
5. Heterotic SO(32).

By second string revolution it is meant the series of discoveries around 1995–1996 that demon-
strated that all the perturbatively consistent string models are related to each other by non-
perturbative dualities pointing out to the fact that there is just one non-perturbative superstring
theory.

P.G. Frè, Gravity, a Geometrical Course, DOI 10.1007/978-94-007-5443-0_7,
© Springer Science+Business Media Dordrecht 2013
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the solitons of non-linear field theories, that can be associated with the propagation
of extended objects of higher dimensions, the p-branes. Among them, particularly
relevant are the Dp-branes that can be alternatively regarded as the loci where open
strings have their end-points, or as space-time boundaries that can absorb or emit
closed strings. On the other hand the p-branes could be identified with classical
solutions of the relevant low energy supergravity and it was discovered that the
symmetries of supergravity realize those non-perturbative duality transformations
that can map string states into solitonic ones and vice-versa, demonstrating that all
string theories are just different perturbative limits of a single theory, usually named
M-theory.

From these considerations a new more profound understanding of (super-)gravity
and (super-)branes emerged that is the goal of the present chapter to outline, empha-
sizing that superstrings are just a particularly relevant instance in a broader land-
scape.

Our starting point is the action of a charged particle in the background of an elec-
tromagnetic field. Naming xμ(τ) the coordinates of the charged particle at proper
time τ , we can write the following action:

Apart =
∫ √

gμν(x)ẋμẋν dτ︸ ︷︷ ︸∫
ds

+q

∫
Aμ(x)ẋ

μ dτ

︸ ︷︷ ︸∫
A

(7.1.1)

where Aμ is the electromagnetic field, gμν the metric of the ambient space-time
manifold, q the electric charge of the particle and ẋμ = d

dτ
xμ. Varying the action

(7.1.1) with respect to the trajectory function δxμ(τ) we obtain the equation of
motion of the charged particle subject to the Lorentz force and to the gravitational
field encoded in the metric. On the other hand we can add the action Apart, which is
a one-dimensional integral, to the action

AMax = −1

4

∫
FμνFμν d

4x (7.1.2)

which is a 4-dimensional integral and we can vary AMax + Apart in the electromag-
netic field δAμ. What we obtain are Maxwell equations with a source term provided
by the electric current localized on the world-line swept by the charged particle:

Jμ(x)= q

∫
δ(4)
(
x − x(τ)

)
dτ (7.1.3)

Similarly we can vary the action Apart with respect to the metric δgμν and this
yields a stress-energy tensor, also localized on the particle world-line, that provides
a source for the gravitational field in Einstein equation.

This short discussion puts into evidence the following two facts:

(A) If a field theory contains a gauge field that is a d-form A[d] then, setting p =
d−1, we can introduce a p-dimensional object which, by evolving through the
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Fig. 7.1 In the above two pictures we present an intuitive image of the world-volume traced by
p-branes in the ambient space-time. Since we cannot draw in higher dimensions we show the
world volumes traced by 1-branes, namely strings. In the string case these world-volumes are
actually world-sheets, namely 2-dimensional surfaces. Furthermore the string can be open, namely
can admit end-points, or close. In the first case the world-sheet is of the type depicted on the left.
In the second case the world-sheet is a sort of tube like that depicted on the right

ambient D-dimensional space-time MD , traces in this latter a d-dimensional
world-volume (see Fig. 7.1):

Wd ⊂ MD (7.1.4)

The dynamics of such an extended object, which we name a p-brane, is de-
scribed by an action given by a d-dimensional integral localized on the world-
volume Wd . Such a p-brane action is typically made of two terms

Abrane = AArea + q

∫
Wd

A[d] (7.1.5)

the first term being the area of the world-volume or generalization thereof, the
second, often named the Wess-Zumino term, being the integral of the form A[d]
on the world-volume.

(B) The extended objects described above provide sources for the bulk field-theory.
These sources are localized on singular boundaries of space-time.

When p > 0, namely when the object tracing the world-volume is really extended
and not simply a point-particle, on top of moving it can deform its own shape, vi-
brate, split and join with other similar entities. In other words there are dynamical
processes occurring on the world-volume and besides the bulk field theory, that we
name macroscopic, we have also a world-volume field theory that we name mi-
croscopic. The microscopic field theory can be quantized for its own sake and its
elementary excitations are paired in a precise way to the classical fields of the
macroscopic theory. This is what we do in the case of superstrings. In this case
the microscopic field theory lives in two-dimensions and has distinctive miraculous
properties: it is typically conformal, which means invariant with respect to a very
specific infinite Lie group, its spectrum can be derived by means of algebraic tech-
niques and its Green functions can be calculated exactly in a large variety of cases.
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Fig. 7.2 The three intertwined aspects of brane theory

We do not dwell on the microscopic aspects of string theory that form the topics of
large specialized text books. We just emphasize that the relation of supergravity to
strings is the same as the relation of the former with other p-branes allowed by the
existence of suitable (p+ 1)-forms. The difference is that the quantum microscopic
theory of p > 1 branes usually cannot be solved exactly: the spectrum is mostly
unknown and the Green functions are out of reach of exact calculations.

It must be stressed that introducing p-brane boundary actions gives rise to so-
lutions of the bulk field theory that are determined by such sources and have sin-
gularities on the world-volume of the source. This is just a generalization of the
electric and magnetic fields generated by point-like charged particles. It follows
that p-branes can also be identified with appropriate classical solutions of super-
gravity. Hence the new theory of strings and branes that emerged from the second
string revolution has a challenging triadic structure which we have tried to sum-
marize in Fig. 7.2. On one hand the superstring massless modes perfectly match
the field content of that supergravity which is necessary to write the considered su-
perstring microscopic action. On the other hand the field spectrum of supergravity
determines which additional p > 1 branes can be coupled to it. The microscopic
action of such p-branes can be constructed according to a procedure which we
outline in the following section issuing a generalized gauge theory living on the
world-volume. Finally for each allowed p-brane we have a corresponding classical
solution of supergravity. Therefore there are three complementary aspects and as
many complementary approaches to the study of p-branes that can be alternatively
viewed as:
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(a) classical solutions of the low energy supergravity field equations in the bulk,
(b) world-volume gauge theories described by suitable world-volume actions char-

acterized by κ-supersymmetry,
(c) boundary states in the superconformal field theory description (SCFT) of super-

string vacua.

As we explained the three descriptions are intertwined. The relation between (a)
and (b) was already illustrated. To the constructive principle of κ-supersymmetry
we dedicate the next sections. The viewpoint (c) is explained as follows. When we
adopt the abstract language of superconformal field theories (SCFT), classical string
backgrounds are identified with a specific SCFT and the brane is identified with
a suitable composite state constructed in the framework of the same. The world-
volume action encodes the interactions within the chosen boundary conformal field
theory.

The above discussions can be summarized in the following list of statements:

1. There is just one non-perturbative ten dimensional string theory that can also
be identified as the mysterious M-theory having D = 11 supergravity as its low
energy limit.

2. All p-branes, whether electric or magnetic, whether coupled to Neveu Schwarz
or to Ramond (p+ 1)-forms encode noteworthy aspects of the unique M-theory.

3. Microscopically the p-brane degrees of freedom are described by a suitable
gauge theory G T p+1 living on the p + 1 dimensional world volume W V p+1

that can be either conformal or not.
4. Macroscopically each p-brane is a generalized soliton in the following sense. It

is a classical solution of D = 10 or D = 11 supergravity interpolating between
two asymptotic geometries that, with some abuse of language, we respectively
name the the geometry at infinity geo∞ and the the near horizon geometry geoH .
The latter which only occasionally corresponds to a true event horizon is instead
universally characterized by the following property. It can be interpreted as a
solution of some suitable p + 2 dimensional supergravity S G p+2 times an ap-
propriate internal space ΩD−p−2.

5. Because of the statement above, all space-time dimensions 11 ≥ D ≥ 3 are rel-
evant and supergravities in these diverse dimensions describe various perturba-
tive and non-perturbative aspects of superstring theory. In particular we have a
most intriguing gauge/gravity correspondence implying that classical supergrav-
ity S G p+2 expanded around the vacuum solution geoH is dual to the quantum
gauge theory G T p+1 in one lower dimension.

In line with our previous choices, we do not address the superconformal aspects of
p-branes which relate with the microscopic theory of superstrings. We just focus on
the following two aspects that complete the landscape of far reaching consequences
of General Relativity when enlarged by supersymmetry:

(A) Construction of the world-volume actions with κ-supersymmetry,
(B) p-brane solutions of bulk supergravity as classical solitons.
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7.2 p-Branes as World Volume Gauge-Theories

From this discussion it is evident that a full command on the world-volume actions
of p-branes is a most essential weapon in the arsenal of the modern string theorist.
The distinctive feature of these actions, which guides their construction, is the so
called κ-supersymmetry [1, 2]. This corresponds to the fermionic local symmetry
that allows to halve the number of Fermi fields, originally equal to the number of
θ -coordinates for the relevant superspace, and obtain, on-shell, an equal number of
bosonic and fermionic degrees of freedom as required by the general brane-scan [3]
where it was investigated which p-form actions can be supersymmetrized with the
help of which gauge fields. As it is well understood in the literature since many
years [4–8] the κ-supersymmetries are nothing else but suitable chiral projections
of the original supersymmetry transformation rules defined by supergravity. This
was made particularly evident and handy by the construction of world-volume ac-
tions within the framework of the rheonomy approach to supergravity [7–11]. In
this geometric approach all Fermi fields are implicitly hidden in the definition of the
geometric p-form potentials of supergravity and formally the action is the same as
it would be in a purely bosonic theory. Yet it is supersymmetric and this supersym-
metry, which fixes the relative coefficients of the kinetic terms with respect to the
Wess-Zumino terms,2 can be shown through a simple calculation starting from the
rheonomic parameterizations of the supergravity curvatures. In order to apply such
a powerful method, the world-volume action must be presented in first-order rather
than in second order formalism, namely á la Polyakov [12] rather than á la Nambu-
Goto [13, 14]. As a consequence, the rheonomic method was successfully applied to
those instances of p-brane actions where the Polyakov formulation (further general-
ized with the introduction of an additional auxiliary field representing the derivative
of scalar fields) did exist: in particular the string or 1-brane [7], the M2-brane [8]
and the particle or 0-brane [9]. More general Dp-branes were out of reach because
of the following reason: their second order action is of the Born-Infeld type and a
suitable first order formalism for the Born-Infeld Lagrangian was not known.

In a paper [27] of the present author with one of his students this gap was filled
by constructing a new first order formalism that is able of generating second order
actions of the Born-Infeld type. This formulation which turns out to be particularly
compact and elegant is based on the introduction of an additional auxiliary field,
besides the world volume vielbein, and on the enlargement of the local symmetry
from the Lorentz group to the general linear group:

SO(1, d − 1)
enlarged=⇒ GL(d,R) (7.2.1)

Within this formalism one can easily apply the rheonomic method. As an example
we present here the κ-supersymmetric action of a D3-brane, that has many applica-

2As already mentioned in the main text, by Wess-Zumino terms it is generally understood terms of
the form

∫
Wp+1

A
[p+1] where Wp+1 denotes the world volume spanned by a p-brane and A

[p+1]
denotes a suitable (p+ 1)-form present in the considered background supergravity.
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tions in the context of the gauge gravity correspondence (see, for instance, [15] and
the more complicated examples in [16–19]).

In Sect. 7.3 we review the rheonomic formulation of κ-supersymmetry based on
an essential use of the old 1st-order formalism. In Sect. 7.4 we present the new
first order formalism and we show how, within this framework, we can recover the
Born-Infeld action by eliminating the auxiliary fields through their own equation of
motion. In Sect. 7.5 we apply this machinery to the case of the D3-brane and we
explicitly show its κ-supersymmetry.

7.3 From 2nd to 1st Order and the Rheonomy Setup
for to κ Supersymmetry

In this section we summarize the 1st order formulation of world-volume actions and
we recall their essential role in setting up a simple, compact, rheonomic approach to
κ-supersymmetry. Then we point out the problem arising with Dp-branes, related
to the presence of the gauge-field Aμ. In this way we establish the need for the new
first order formalism which is explained in the next section.

7.3.1 Nambu-Goto, Born-Infeld and Polyakov Kinetic Actions
for p-Branes

The prototype of p-branes is furnished by the bosonic string (1-brane), whose 2nd
order action was proposed by Nambu and Goto [13, 14] many years ago at the very
beginning of the history of dual models. The string is a one-dimensional object, that
moving through a D-dimensional space-time endowed with a metric gμν , sweeps a
two-dimensional world sheet. The action functional governing the dynamics of the
string is simply given by the area of such a world-sheet. Namely we have:

A Nambu-Goto
string =

∫
d2ξ

√−detGμν (7.3.1)

where:

Gμν ≡ ∂μX
μ ∂νX

ν gμν (7.3.2)

denotes the pull-back of the bulk metric gμν(X) onto the world-sheet.3 Such an
action admits a straightforward generalization to the case of a p-brane, the area of
the world-sheet being replaced by the value of the d = p + 1-dimensional world-
volume:

A Nambu-Goto
p-brane =

∫
ddξ

√−detGμν (7.3.3)

3In this section we use the notations and conventions described in Appendix B.1.
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As it is well known from the literature and thoroughly discussed in many string
theory textbooks [24, 25], the kinetic part of Dp-brane actions is provided by a
further generalization of the Nambu-Goto action (7.3.3) where the symmetric matrix
Gμν is modified by the addition of an antisymmetric part Fμν that represents the
field strength of a world volume gauge field Aμ:

for D-branes Gμν �→ Gμν + Fμν

where Fμν = 1

2
(∂μAν − ∂νAμ) (7.3.4)

Seen from a different perspective the resulting second order action:

A kinetic
D-brane =

∫
ddξ

√−det(Gμν + Fμν) (7.3.5)

is a generalization of the Born-Infeld [26] action of non-linear electromagnetism.
Indeed the latter was early shown to be the effective action for the zero mode gauge
field of an open string theory [28, 29].

In the context of superstrings and in the analysis of Dp-brane systems the im-
portant issue is to write world-volume actions that possess both reparameterization
invariance and κ-supersymmetry [1, 2]. The former is needed to remove the unphys-
ical degrees of freedom of the bosonic sector, while the latter removes the unphys-
ical fermions. In this way we end up with an equal number of physical bosons and
physical fermions as it is required by supersymmetry [4, 7, 8, 10, 11]. The appropri-
ate κ-supersymmetry transformation rules are nothing else but the supersymmetry
transformation rules of the bulk supergravity background fields with a special super-
symmetry parameter ε that is projected onto the brane. For those κ-supersymmetric
branes where the gauge field strength Fμν is not required (for example the string
itself or the M2-brane) such a projection is realized by imposing that the spinor ε
satisfies the following condition:

ε = 1

2

(
1 + (i)d+1 1

d!Γa1...ad V
a1

i1
. . . V

ad

id
εi1...id

)
ε (7.3.6)

where Γa are the gamma matrices in D-dimensions and V
a
m are the components of

the bulk vielbein V a onto a basis of world-volume vielbein em. Explicitly we write

V
b
me

m = ϕ∗[V b
]

(7.3.7)

where ϕ∗[V b] denotes the pull-back of the bulk vielbein on the world volume,

ϕ : Wd ↪→ MD (7.3.8)

being the injection map of the latter into the former. For all other branes with a full-
fledged Born-Infeld type of action the projection (7.3.6) becomes more complicated
and involves also Fμν .
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Certainly one can address the problem of κ-supersymmetrizing the 2nd-order ac-
tion (7.3.5) and this programme was carried through in the literature to some extent
[30, 32, 35, 36]. Yet due to the highly non-linear structure of such a bosonic action
its supersymmetrization turns out to be quite involved. Furthermore the geometric
structure is not transparent and any modification is very difficult and obscure in such
an approach.

On the contrary it was shown in [7] and illustrated with the case of the M2-brane
in [8] and with the case of the 0-brane in four-dimensions in [9] that, by using a
first order formalism on the world volume, the implementation of κ-supersymmetry
is reduced to an almost trivial matter once the rheonomic parameterizations, con-
sistent with superspace Bianchi identities, are given for all the curvatures of the
bulk background fields. It follows that an appropriate first order formulation of the
Born-Infeld action (7.3.5) is an essential step for an easy and elegant approach to κ-
supersymmetric Dp-brane world volume actions that are also sufficiently versatile
to adapt to all type of bulk backgrounds.

The first order formulation of the Nambu-Goto action (7.3.3) is the Polyakov
action for p-branes:

L
Polyakov
p-brane = 1

2(d − 1)

∫
ddξ

√−dethμν
{
hρσ ∂ρX

μ ∂σX
ν gμν + (d − 2)

}
(7.3.9)

where the auxiliary field hρσ denotes the world-volume metric. Varying the action
(7.3.9) with respect to δhρσ we obtain the equation:

hρσ =Gρσ (7.3.10)

and substituting (7.3.10) back into (7.3.9) we retrieve the second order ac-
tion (7.3.3).

The Polyakov action (7.3.9) is not yet in a suitable form for a simple rheonomic
implementation of κ-supersymmetry but can be easily converted to such a form. The
required steps are:

1. replacing the world-volume metric hμν(ξ) with a world-volume vielbein ei =
eiρ dξ

ρ ,
2. using a first order formalism also for the derivatives of target space coordinates

Xμ with respect to the world volume coordinates ξρ ,
3. write everything only in terms of flat components both on the world volume and

in the target space.

This programme is achieved by introducing an auxiliary 0-form field Π
a

i (ξ) with
an index a running in the vector representation of SO(1,D− 1) and a second index
i running in the vector representation of SO(1, d − 1) and writing the action:4

4The need of a cosmological term for p-brane actions with p �= 1 was first noted by Tucker and
Howe in [20]. We also would like to attract the attention of the reader on the Sect. 5.3 of Volume 1
where the auxiliary fields needed to realize a systematic first order formalism in geometrical gravity
were first discussed in anticipation of their essential role in supergravity.
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A kin[d] =
∫
Wd

[
Π

a

j V
b ηab ∧ ηji1ei2 ∧ · · · ∧ eid εi1...id

− 1

2d

(
Π

a

i Π
b

j η
ij ηab + d − 2

)
ei1 ∧ · · · ∧ eid εi1...id

]
(7.3.11)

The variation of (7.3.11) with respect to δΠ
a

j yields an equation that admits the
unique algebraic solution:

V a|Wd
=Π

a

i e
i (7.3.12)

Hence the 0-form Πa
i is identified with the intrinsic components along the world-

volume vielbein ei of the bulk vielbein V a pulled-back onto the world volume. In
other words the field Πa

i is identified by its own field equation with the field V
a

i

defined in (7.3.7). On the other hand with the chosen numerical coefficients the
variation of (7.3.11) with respect to the world-volume vielbein δei yields another
equation with the unique algebraic solution:

Πa
i Π

b
j ηab = ηij (7.3.13)

which is the flat index transcription of (7.3.10) identifying the world-volume metric
with the pull-back of the bulk metric. Hence eliminating all the auxiliary fields via
their own equation of motion the first order action (7.3.11) becomes proportional to
the 2nd order Nambu-Goto action (7.3.3). The first order form (7.3.11) of the kinetic
action is the best suited one to discuss κ-supersymmetry. To illustrate this point we
briefly consider the case of the M2-brane

7.3.2 κ-Supersymmetry and the Example of the M2-Brane

In the case of the M2-brane in eleven dimensions the world-volume is three-
dimensional and the complete action is simply given by the kinetic action (7.3.11)
with d = 3 plus the Wess-Zumino term, namely the integral of the 3-form gauge
field A[3]. Explicitly we have:

AM2 = A kin[d = 3] − q
∫
W3

A[3] (7.3.14)

where q = ±1 is the charge of the M2-brane. As explained in [8], the background
fields, namely the bulk elfbein V a an the bulk three-form A[3] are superspace differ-
ential forms which are assumed to satisfy the Bianchi consistent rheonomic param-
eterizations of D = 11 supergravity as given in (6.4.8). Hence, although implicitly,
the action functional (7.3.14) depends both on 11 bosonic fields, namely the Xμ(ξ)

coordinates of bulk space-time, and on 32 fermionic fields θα(ξ), forming an 11-
dimensional Majorana spinor. A supersymmetry variation of the background fields
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is determined by the rheonomic parameterization of the curvatures and has the fol-
lowing explicit form:

δV a = iε Γ a Ψ,

δΨ = Dε− i

3

(
Γ b1b2b3Fab1b2b3

− 1

8
Γab1...b4

Fb1...b4

)
εV a, (7.3.15)

δA[3] = −iε Γ abΨ ∧ Va ∧ Vb (7.3.16)

where Ψ is the gravitino 1-form, Fa1,...,a4 are the intrinsic components of the A[3]
curvature and ε is a 32-component spinor parameter. Essentially a supersymme-
try transformation is a translation of the fermionic coordinates θ �→ θ + ε, namely
at lowest order in θ it is just such a translation. With such an information the κ-
supersymmetry invariance of the action (7.3.14) can be established through a two-
line computation, using the so called 1.5-order formalism. Technically this consists
of the following. In the action (7.3.14) we vary only the background fields V a,A[3]
with respect to the supersymmetry transformations (7.3.16) and, after variation, we
use the first order field equations (7.3.12), (7.3.13). The action is supersymmetric if
all the generated terms, proportional to the gravitino 1-form Ψ cancel against each
other. This does not happen for a generic 32-component spinor ε but it does if the
latter is of the form:

ε = 1

2
(1 − qiΓ )κ,

(7.3.17)

Γ ≡ εijk

3! Γijk = εijk

3! Πi
aΠj

bΠk
cΓabc,

where κ is another spinor. Equation (7.3.17) corresponds to the anticipated projec-
tion (7.3.6) which halves the spinor components. It follows that of the 32 fermionic
degrees of freedom 16 can be gauged away by κ-supersymmetry. The remaining 16
are further reduced to 8 by their field equation which is implicitly determined by
the action (7.3.14). As one sees, once the M2-action is cast into the first order form
(7.3.14), κ-supersymmetry invariance can be implemented in an extremely simple
and elegant way that requires only a couple of algebraic manipulations with gamma
matrices.

The example of the M2-brane is generalized to all other instances of p-branes
where the world volume spectrum includes just the scalars (= target space coordi-
nates) and their fermionic partners.

7.3.3 With Dp-Branes We Have a Problem: The World-Volume
Gauge Field A[1]

It is clear from what we explained above that to deal with κ-supersymmetry in an
easy way we need a first order formulation of the action. Yet in the case of Dp-
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branes there is a new problem intrinsically related to the new structure of the Born-
Infeld action (7.3.5) which, differently from the pure Nambu-Goto action (7.3.3)
cannot be recast into a first order form of type (7.3.11).5 The solution of this prob-
lem is found through a procedure which is very frequent and traditional in Physics.
Indeed, when a certain formulation of a theory cannot be generalized to a wider
scenario including additional fields it usually means that there is a second formu-
lation of the same theory which is equivalent to the former in the absence of the
new fields, but which, differently from the former, can incorporate them in a natural
way. A typical example of this is provided by the relation of Cartan’s formulation of
General Relativity in terms of vielbein and spin connection with the standard metric
formulation. Although the two formulations are fully equivalent in the absence of
fermions, yet the former allows the coupling to spinors while the latter does not,
as we extensively discussed in Volume 1. The present case is similar. It turns out
that there is a new, so far unknown, first order formulation of world-volume actions
which, in the absence of world-volume gauge fields is fully equivalent to the formu-
lation of (7.3.11). Yet world-volume 1-forms can be naturally included in the new
formalism while they have no place in the old. In full analogy with other examples
of the same logical process the new formalism relies on the addition of a new aux-
iliary field and a new symmetry. The new field is a 0-form rank 2 tensor hij that
is identified with the intrinsic components of the pulled-back bulk metric along a
reference world-volume vielbein ei . The new symmetry is the independence of the
action from the choice of the reference vielbein. Explicitly this means the following.
Let Ki

j (x) be a generic d × d matrix depending on the world-volume point. The
new action we shall construct will be invariant against the local transformation:

ei �→ Ki
j e

j

hij �→ (
K−1)i

i′
(
K−1)j

j ′ h
i′j ′

(detK) (7.3.18)

accompanied by suitable transformation of the other fields. The above symmetry
generalizes the local Lorentz invariance of the previously known first order p-
brane actions. Indeed, being generic, the matrix K can in particular be an element
of the Lorentz group K ∈ SO(1, d − 1). In this case there is no novelty. How-
ever K can also be a representative of a non-trivial equivalence class of the coset
GL(d,R)/SO(1, d − 1). This latter is precisely parameterized by arbitrary sym-
metric matrices. Hence the additional degrees of freedom introduced by the new
auxiliary field hij are taken away by the enlargement of the local symmetry from
SO(1, d − 1) to GL(d,R).

5A partial first order formalism was already introduced in the literature for Dp-branes [31, 32]
in the context of the superembedding approach initiated by the Kharkov group and extensively
developed also in collaborations with the Padua group and other groups [21–23]. In particular in
[33, 34] an action with a partial first order formalism was introduced in the sense that there is an
auxiliary Fij field for the gauge degrees of freedom but the action is “second order” in the brane
coordinates x and θ , which enter through the pullback of the target space supervielbein Ea .
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7.4 The New First Order Formalism

In Sect. 7.4.1 we describe the new formalism as an alternative to the action (7.3.11).
Then in Sect. 7.4.2 we show how it allows the inclusion of world volume gauge
fields and provides a first order formulation of the Born-Infeld action (7.3.5).

7.4.1 An Alternative to the Polyakov Action for p-Branes

To begin with we consider a world-volume Lagrangian of the following form:

L = Π
a

i V
b ηab η

i�1 ∧ e�2 ∧ · · · ∧ e�d ε�1...�d +a1Π
a

i Π
b

j ηab h
ij e�1 ∧ · · ·∧ e�d ε�1...�d

+ a2(deth)−αe�1 ∧ · · · ∧ e�d ε�1...�d (7.4.1)

where a1, a2, α are real parameters to be determined and the other notations are
recalled in (B.1.1) of Appendix B.1.

Performing the δΠa

i variation of the Lagrangian (7.4.1) we obtain:

ηab V
b
m η

i�1εm�2...�d ε�1...�d + 2(d!)a1ηab Π
b

j h
ij = 0 (7.4.2)

If we choose:

a1 = − 1

2d
(7.4.3)

then (7.4.2) is solved by:

Π
b
m = V

b

i η
ip
(
h−1)

pm
(7.4.4)

Let us then introduce the following three d × d matrices:

γij =Πa
i Π

b
j ηab; Gij = V

a

i V
b

j ηab; Ĝ= ηGη (7.4.5)

The solution (7.4.4) of the field equation (7.4.2) implies that:

γ = (h−1)T ηGηh−1 = (h−1)T Ĝh−1 (7.4.6)

Next let us consider the variation of the action (7.4.1) with respect to the symmetric
matrix hij . In matrix form such a variational equation reads as follows:

a1γ − a2αh
−1(deth)−α = 0 (7.4.7)

Setting:

a2 = a1

α
= − 1

2dα
(7.4.8)
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(7.4.7) reduces to

γ = h−1(deth)−α (7.4.9)

which can be solved by the ansatz:

h= γ−1(detγ )β (7.4.10)

provided:

β = α

dα + 1
(7.4.11)

On the other hand from (7.4.6) we get:

detγ = detG(deth)−2 (7.4.12)

so that:

h= hĜ−1h(detG)β(deth)−2β (7.4.13)

Equation (7.4.13) can be solved by the ansatz:

h= Ĝ(detG)p (7.4.14)

provided:

p = − α

dα − 1
(7.4.15)

Combining the last two results we have the final solution for the two auxiliary fields
h and γ :

h= Ĝ(detG)p; γ = Ĝ−1(detG)−2p (7.4.16)

in terms of G which is just the pull-back of the bulk metric onto the world volume,
expressed in flat components with respect to an arbitrary reference vielbein e� that
lives on W .

Using (7.4.16) we can rewrite the action (7.4.1) in second order formalism. The
basic observation is that after implementation of the first order field equations the
three terms appearing in (7.4.1) become all proportional to the same term, namely
(detG)−p det e ddξ , having named ξ the world volume coordinates. Indeed we have:

(deth)−αe�1 ∧ · · · ∧ e�d ε�1...�d = d!(detG)−p det e ddξ

ηab Π
a

i Π
b

j h
ij e�1 ∧ · · · ∧ e�d ε�1...�d = d d!(detG)−p det e ddξ (7.4.17)

Π
a

i V
b ηab η

i�1 ∧ e�2 ∧ · · · ∧ e�d ε�1...�d = d!(detG)−p det e ddξ

Hence the Lagrangian (7.4.1) becomes:

L = (d − 1)!(detG)−p det e ddξ = (d − 1)! 1

2p
(detGμν)

−p(det e)2p+1 ddξ

(7.4.18)
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the second identity following from:

Gij = V
a
μ V

b
ν ηab ∂μX

μ ∂νX
ν e

μ
i e

ν
j = gμν ∂μX

μ ∂νX
ν

︸ ︷︷ ︸
Gμν

e
μ
i e

ν
j

⇓ (7.4.19)

detGij = (detGμν)(det e)−2

where Gμν denotes the pull-back of the bulk space-time metric gμν onto the world-
volume of the brane.

If we choose:

p = −1

2
⇒ α = 1

d − 2
(7.4.20)

then the original world-volume Lagrangian (7.4.1), already transformed to the sec-
ond order form (7.4.18) becomes proportional to the Nambu-Goto Lagrangian:

L = (d − 1)!√detGμν d
dξ (7.4.21)

In this way the reference vielbein eiμ has disappeared from the Lagrangian. This
result is supported by the calculation of the variation in δek of the first order action
(7.4.1). After variation and substitution of the result for the first order equations
δΠ

a

i and δhij all terms are already Kronecker deltas proportional to detG. With the
choice p = −1/2 all terms in this stress energy tensor cancel identically.

Note also that if the transformation (7.3.18) is completed by setting:

Π
a

i �→Ki
k η

k�Π
a

� (detK)−1 (7.4.22)

it becomes an exact local symmetry of the action (7.4.1).
In this way we have shown how the standard first order formalism for the Nambu-

Goto action can be replaced by a new first order formalism involving the additional
field hij . So far the matrix h was chosen to be symmetric. Including world-sheet
vector fields corresponds to the generalization of the above construction to the case
where h has also an antisymmetric part.

7.4.2 Inclusion of a World-Volume Gauge Field
and the Born-Infeld Action in First Order Formalism

We consider a modification of the first order action (7.4.1) of the following form

L = Π
a

i V
b ηab η

i�1 ∧ e�2 ∧ · · · ∧ e�d ε�1...�d +a1Π
a

i Π
b

j ηab h
ij e�1 ∧ · · ·∧ e�d ε�1...�d

+ a2
[
det
(
h−1 +μF

)]α
e�1 ∧ · · · ∧ e�d ε�1...�d

+ a3F
ijF[2] ∧ e�3 ∧ · · · ∧ e�d εij�3...�d + WZT︸︷︷︸

Wess-Zumino terms

(7.4.23)
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where

F[2] ≡ dA[1] (7.4.24)

is the field strength of a world-volume 1-form gauge field, Fij = −Fji is an an-
tisymmetric 0-form auxiliary field and a3 is a further numerical coefficient to be
determined. Furthermore WZT denotes the Wess-Zumino terms, i.e. the integrals on
the world volume of various combinations of the Ramond-Ramond p-forms. These
terms depend on the type of Dp-brane considered and will be discussed later in the
case of the D3-brane.

Performing the δΠa

i variation we obtain:

(d − 1)![ηab V a

l η
il + 2a1dηab Π

a

j h
ij
]= 0 (7.4.25)

that is solved by:

Π
a

j = − 1

2da1
V
a
m

(
h−1)m

j (7.4.26)

and:

γ = 1

(2da1)2
h−1Ĝh−1 (7.4.27)

Varying in δhij we also obtain a result similar to what we had before, namely:

a1γ − a2αh
−1(h−1 +μF

)−1
S
h−1[det

(
h−1 +μF

)]α = 0 (7.4.28)

where the suffix S denotes the symmetric part of the matrix to which it is applied.
From the variation in δFij we obtain instead:

−d!a2αμ
(
h−1 +μF

)−1
A

[
det
(
h−1 +μF

)]α + 2(d − 2)!a3F = 0 (7.4.29)

where the suffix A denotes the antisymmetric part of the matrix to which it is applied
and where F is the antisymmetric matrix Fij of flat components of the field strength
2-form:

F[2] = Fij e
i ∧ ej (7.4.30)

Hence from δhij and δFij we get:

2(d − 2)!a3

d!a2αμ
F = (h−1 +μF

)−1
A

[
det
(
h−1 +μF

)]α
(7.4.31)

1

4d2a1a2α
Ĝ = (h−1 +μF

)−1
S

[
det
(
h−1 +μF

)]α

Summing the two equations (7.4.31) together we obtain:

2(d − 2)!a3

d!a2αμ
F + 1

4d2a1a2α
Ĝ= (h−1 +μF

)−1[
det
(
h−1 +μF

)]α
(7.4.32)
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which can be uniquely solved by:

h−1 +μF = (aĜ+ bF)−1[det(aĜ+ bF)
]β; β = α

α d − 1
(7.4.33)

where:

a = 1

4d2a1a2α
; b= 2(d − 2)!a3

d!a2αμ
(7.4.34)

The coefficients a1, a2, a3 are redundant since they can be reabsorbed into the defi-
nition of Πa

j , h and F ; so we fix them by imposing:

a1 = − 1

2d
; a = 1; b= − 1

μ
(7.4.35)

Hence using (7.4.34) and (7.4.35) we obtain:

a2 = − 1

2dα
; a3 = − d!a2α

2(d − 2)! = d − 1

4
(7.4.36)

At this point everything proceeds just as in the previous case. Indeed inserting
(7.4.27), (7.4.26) back into the action (7.4.23) we obtain:

[(
− (d − 1)!

2da1
+ a1 d!

)
1

(2da1)2
Tr
(
h−1Ĝ

)+ 2a3(d − 2)!F ijFij

+ a2d!
[
det
(
h−1 +μF

)]α]det e ddξ (7.4.37)

Using (7.4.35) and (7.4.36), (7.4.37) becomes:

{
(d − 1)!

2

[
Tr
(
h−1Ĝ

)− Tr(FF)
]− (d − 1)!

2α

[
det
(
h−1 +μF

)]α}det e ddξ

(7.4.38)
Now we consider the variation δe:

[
− (d − 1)!

4da1
Tr
(
Gh−1)− 2(d − 2)!a3 Tr(FF)

]
δtp

− 2

[
− (d − 1)!

4da1

(
Gh−1)

p
t − 2(d − 2)!a3

(
F t iFip

)]

+ a2d!
[
det
(
h−1 +μF

)]α
δtp = 0 (7.4.39)

the solution is:
[
− (d − 1)!

4da1

(
Gh−1)

p
t − 2(d − 2)!a3

(
F t iFip

)]= − a2d!
d − 2

[
det
(
h−1 +μF

)]α
δtp

(7.4.40)
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Using (7.4.35) and (7.4.36) in matrix form (7.4.40) becomes:

h−1Ĝ− FF = 1

α(d − 2)

[
det
(
h−1 +μF

)]α1 (7.4.41)

Using the result:

[
det(aĜij + bFij )

]= [det(aĜμν + bFμν)
]
(det e)−2 (7.4.42)

and implementing (7.4.41) for δe, we see that (7.4.38) becomes:

(det e) ddξ
(d − 1)!
α(d − 2)

[
det
(
h−1 +μF

)]α

= (det e) ddξ
(d − 1)!
α(d − 2)

[
det(aĜij + bFij )

]β

= (det e)1−2β ddξ
(d − 1)!
α(d − 2)

[
det(aĜμν + bFμν)

]β (7.4.43)

Now we take β = 1/2 and so α = 1/(d − 2). The action becomes:

SBI = (d − 1)!
∫
M4

ddξ

[
det

(
Ĝμν − 1

μ
Fμν

)]1/2

(7.4.44)

For d = 4, which is the interesting case of the D3-brane we obtain:

a1 = −1

8
; a2 = −1

4
; a3 = 3

4
; α = β = 1

2
(7.4.45)

In this way we have shown how the kinetic part of a Dp-brane action, namely
the Born-Infeld type of Lagrangian can be written in first order formalism. The new
formalism can be applied to all cases except d = 2 where the formulae become
singular. This is just welcome since for d = 2 we have ordinary strings for which
the Polyakov formalism is sufficient and no world-volume cosmological term is
necessary. For d = 3, we are instead in the case of the M2 brane or of its descendant,
the D2 brane, for which no Born-Infeld action is necessary either.

7.4.3 Explicit Solution of the Equations for the Auxiliary Fields
for F and h−1

In the transition to second order formalism and in the discussion of κ-supersymmetry
through the use of 1.5 order formalism we need the explicit solution of the first order
equations and the expression of the auxiliary fields F , h−1 in terms of the physical
degrees of freedom. This is what we can do most conveniently by fixing the gauge
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related to the local symmetry (7.3.18) and (7.4.22). Our gauge choice is provided
by setting:

Ĝ= η (7.4.46)

which is identical with the yield (7.3.13) of the δei variation in the old first order
formalism. This gauge can certainly be reached by using the degrees of freedom of
GL(d,R)/SO(1, d − 1). Taking (7.4.46) into account let us rewrite our constraint
equations into matrix form. Equation (7.4.41) for the δe variation is:

h−1Ĝ− FF = [det
(
h−1 +μF

)]α1 (7.4.47)

and the other equation that we must solve is (7.4.33):

(
h−1 +μF

)(
Ĝ− 1

μ
F

)
=
[

det

(
Ĝ− 1

μ
F

)]1/2

1 (7.4.48)

Using our previous result for [det(h−1 +μF )]α we conclude that we have the fol-
lowing linear system of matrix equations:

{
(h−1 +μF )(Ĝ− 1

μ
F)= [det(Ĝ− 1

μ
F)]1/21

h−1Ĝ− FF = [det(Ĝ− 1
μ
F)]1/21

(7.4.49)

the solution in the gauge (7.4.46) is:

⎧⎪⎨
⎪⎩
Ĝ= η

F = 1
μ2 h

−1Fη

hη = (1 − 1
μ2FηFη)[det(η− 1

μ
F)]−1/2

(7.4.50)

Since the η metric just raises and lowers the indices we can just ignore it and write,
in more compact form:

h=
(
η− 1

μ2
F 2
)[

det

(
η− 1

μ
F

)]−1/2

(7.4.51)

7.5 The D3-Brane Example and κ-Supersymmetry

In this section we focus on the case d = 4 and we apply the new first order formal-
ism to the description of the κ-supersymmetric action of a D3-brane. As empha-
sized above, κ-supersymmetry just follows, via a suitable projection, from the bulk
supersymmetries as derived from supergravity, the type II B theory, in this case.
The latter has a duality symmetry with respect to an SL(2,R) group of transfor-
mations that acts non-linearly on the two scalars of massless spectrum, the dilaton
φ and the Ramond scalar C0. Indeed these two parameterize the coset manifold
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SL(2,R)/O(2) and actually correspond to its solvable parameterization (see (6.8.3)
in Sect. 6.8). Hence the D3-brane action we want to write, not only should be cast
into first order formalism, but should also display manifest covariance with respect
to SL(2,R). This covariance relies on introducing a two component charge vector
qα that transforms in the fundamental representation of SU(1,1) and expresses the
charges carried by the D3 brane with respect to the 2-forms Aα

[2] of bulk super-

gravity (both the Neveu Schwarz B[2] and Ramond-Ramond C[2]). According to the
geometrical formulation of type IIB supergravity presented in Sect. 6.8 we set:

AΛ = (
B[2],C[2]); Aα = C α

ΛAΛ

Aα=1 = 1√
2

(
B[2] − iC[2]); Aα=2 = 1√

2

(
B[2] + iC[2]) (7.5.1)

and by definition we call εαβqβ the orthogonal complement of qα :

qαq
α = 1; qαqβε

αβ = 0 (7.5.2)

In terms of these objects we write down the complete action of the D3-brane as
follows:

L = Π
a

i V
b ηab η

i�1 ∧ e�2 ∧ · · · ∧ e�4ε�1...�4 +a1Π
a

i Π
b

j ηab h
ij e�1 ∧ · · · ∧ e�4ε�1...�4

+ a2
[
det
(
h−1 +μF

)]α
e�1 ∧ · · · ∧ e�4ε�1...�4

+ a3F
ijF[2] ∧ e�3 ∧ e�4εij�3�4

+ νF ∧ F − ia5q
αεαβAβ ∧ F + a6C[4] (7.5.3)

where C[4] is the 4-form potential, the coefficients

α = 1

2
; a1 = −1

8
; a2 = −1

4
; a3 = 3

4
(7.5.4)

have already been determined, while a5, a6, ν are new coefficients to be fixed by
κ-supersymmetry. The first two are numerical, while ν will also depend on the bulk
scalars. In the action (7.5.3)

F[2] ≡ dA[1] + qαAα (7.5.5)

is the field strength of the world-volume gauge field and depends on the charge
vector qα . The physical interpretation of F[2] is as follows. By definition a Dp-brane
is a locus in space-time where open strings can end or, in the dual picture, boundaries
for closed string world-volumes can be located. The type IIB theory contains two
kind of strings, the fundamental strings and the D-strings which are rotated one
into the other by the SL(2,Z)⊂ SL(2,R) group. Correspondingly a D3 brane can
be a boundary either for fundamental or for D-strings or for a mixture of the two.
The charge vector qα just expresses this fact and characterizes the D3-brane as a
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boundary for strings of q-type. Furthermore the definition (7.5.5) of F[2] encodes
the following idea: the world-volume gauge 1-form A[1] is just the parameter of a
gauge transformation for the 2-form qαAα , which in a space-time with boundaries
can be reabsorbed everywhere except on the boundary itself. Note that if we take
qα = 1√

2
(1,1) we obtain:

qαAα = B[2]; −iqαεαβAβ = C[2] (7.5.6)

7.5.1 κ-Supersymmetry

Next we want to prove that with an appropriate choice of ν, a5 and a6 the action
(7.5.3) is invariant against bulk supersymmetries characterized by a projected spinor
parameter. For simplicity we do this in the case of the choice qα = 1√

2
(1,1). For

other choices of the charge type the modifications needed in the prove will be obvi-
ous from its details.

To accomplish our goal we begin by writing the supersymmetry transformations
of the bulk differential forms V a , B[2], C[2] and C[4] which appear in the action.
From the rheonomic parameterizations (6.8.13), (6.8.14), (6.8.15), (6.8.16) we im-
mediately obtain:

δV a = i
1

2

(
ε Γ a ψ + ε∗Γ a ψ∗)

δB[2] = −2i
[(
Λ1+ +Λ2+

)
ε Γ a ψ∗ ∧ V a + (Λ1− +Λ2−

)
ε∗Γ a ψ ∧ V a

]
δC[2] = 2

[(
Λ1+ −Λ2+

)
ε Γ a ψ∗ ∧ V a + (Λ1− −Λ2−

)
ε∗Γ a ψ ∧ V a

]
(7.5.7)

δC[4] = −1

6

(
ε Γ abc ψ − ε∗Γ abc ψ∗)∧ V a ∧ V b ∧ V c

︸ ︷︷ ︸
δC[4]′

+ 1

8

[
B[2] ∧ δC[2] − C[2] ∧ δB[2]]

Note that in writing the above transformations we have neglected all terms involving
the dilatino field. This is appropriate since the background value of all fermion fields
is zero. The gravitino 1-form ψ is instead what we need to keep track of. Proving κ-
supersymmetry is identical with showing that all ψ terms cancel against each other
in the variation of the action. Relying on (7.5.7) the variation of the Wess-Zumino
term is as follows:

δ
(
νF[2] ∧ F[2] + a5C[2] ∧ F[2] + α6C[4])
= 2νB[2] ∧ δB[2] + a5B[2] ∧ δC[2]

+ 1

8
a6B[2] ∧ δC[2] + a5C ∧ δB[2] − 1

8
a6C[2] ∧ δB[2] + a6δC[4]′ (7.5.8)
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if we set a6 = 8a5 the variation (7.5.8) simplifies to:

δ(WZT)= 2B[2] ∧ (νδB[2] + a5δC[2])+ 8a5δC[4]′ (7.5.9)

and with such a choice the complete variation of the Lagrangian under a supersym-
metry transformation of arbitrary parameter is:

δL = δLψ + δLψ∗

δLψ =
[
−3!iΠa,p

(
ε Γ b ψ

)
ηab + (μ1F

ip +μ2F̃
ip
)
V
a

i

(
ε∗Γa ψ

)

− 4

3
a5(ε Γabc ψ)V

a

i V
b

j V
c

k ε
ijkp

]
Ω [3]
p (7.5.10)

δLψ∗ =
[
−3!iΠa,p

(
ε∗Γ b ψ∗)ηab + (μ3F

ip +μ4F̃
ip
)
V
a

i

(
ε Γa ψ

∗)

+ 4

3
a5
(
ε∗Γabc ψ∗)V a

i V
b

j V
c

k ε
ijkp

]
Ω [3]
p

where:

μ1 = −8ia3
(
Λ1− +Λ2−

); μ2 = 8
[−iν

(
Λ1− +Λ2−

)+ a5
(
Λ1− −Λ2−

)]
μ3 = −8ia3

(
Λ1+ +Λ2+

); μ4 = 8
[−iν

(
Λ1+ +Λ2+

)+ a5
(
Λ1+ −Λ2+

)]
(7.5.11)

Recalling (6.8.5) and (6.8.3) of Sect. 6.8 the above (7.5.11) become:

μ1 = −6ieφ/2; μ2 = 8a5e
− φ

2

μ3 = −6ieφ/2; μ4 = −8a5e
− φ

2

(7.5.12)

where we have chosen:

ν = −a5C[0 = a5 ReN (7.5.13)

In the above equation we have introduced the complex kinetic matrix which would
appear in a gauge theory with scalars sitting in SU(1,1)/U(1) and determined by
the classical Gaillard-Zumino general formula6 applied to the specific coset:

N = i
Λ1− −Λ2−
Λ1− +Λ2−

⇒
{

ReN = −C0

ImN = e−φ
(7.5.14)

6For a general discussion of the Gaillard-Zumino formula see Chap. 8, Sects. 8.3.1–8.3.2.
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It is convenient to rewrite the full variation (7.5.10) of the Lagrangian in matrix form
in the 2-dimensional space spanned by the fermion parameters (ε, ε∗):

δL = δLψ + δLψ∗ = (ε, ε∗)A
(
ψ

ψ∗
)

(7.5.15)

Ak =
(−6iγk − 4

3a5γijlε
ij lmhmk (μ3F lm +μ4F̃

lm)hmkγl

(μ1F lm +μ2F̃
lm)hmkγl −6iγk + 4

3a5γijlε
ij lmhmk

)
(7.5.16)

where A=AkΩ
k
[3], and Ωk

[3] ≡ ηk�ε�ijke
i ∧ ej ∧ ek denotes the quadruplet of three-

volume forms.
The matrix Ak is a tensor product of a matrices in spinor space and 2×2 matrices

in the space spanned by (ε, ε∗). It is convenient to spell out this tensor product
structure which is achieved by the following rewriting:

Ak = f1γk ⊗ 1 + f2γ̃
mhmk ⊗ σ3 + f3Π

m
1 hmk ⊗ σ1 + f4Π

m
2 hmk ⊗ σ2 (7.5.17)

where:

f1 = −6i; f3 = −6i; f2 = −4

3
a5; f4 = −8ia5 (7.5.18)

and:

γ̃ m ≡ γijlε
ij lm; Πm

1 ≡ eφ/2F lmγl; Πm
2 ≡ e−φ/2F̃ lmγl (7.5.19)

now using (7.4.50), (7.4.51) we set

1

μ
= e−φ/2 = √

ImN

(7.5.20)
F̂ ≡ √

ImN F

and we obtain:

Πm
1 hmk = eφ/2F lmγlhmk = eφ/2e−φ

(
Fh−1)lmhmkγl ≡ F̂lkγ

l ≡Πk

(7.5.21)
Πm

2 ≡ e−φ/2F̃ lmγl ≡ ˜̂F lmγl ≡ Π̃m

This observation further simplifies the expression of Ak which can be rewritten as:

Ak = f1γk ⊗ 1 + f2γ̃
mhmk ⊗ σ3 + f3Π

k ⊗ σ1 + f4Π̃
mhmk ⊗ σ2 (7.5.22)

The proof of κ-supersymmetry can now be reduced to the following simple compu-
tation. Assume we have a matrix operator Γ with the following properties:

[a] Γ 2 = 1
(7.5.23)

[b] ΓAk =Ak
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It follows that

P = 1

2
(1 − Γ ) (7.5.24)

is a projector since P 2 = 1 and that

PAk = 1

N
(1 − Γ )Ak = 0 (7.5.25)

Therefore if we use supersymmetry parameters (κ, κ∗) = (ε, ε∗)P projected with
this P , then the action is invariant and this is just the proof of κ-supersymmetry.

The appropriate Γ is the following [37]:7

Γ = 1

N

[
(ω[4] +ω[0])⊗ σ3 +ω[2] ⊗ σ2

]
(7.5.26)

where:

ω[4] = α4ε
ijklγijkl

ω[0] = α0ε
ijklF̂ij F̂kl

(7.5.27)
ω[2] = α2ε

ijklF̂ij γkl

N = [det(η± F̂ )
]1/2

and the coefficients are fixed to:

α4 = 1

24
; α0 = 1

8
; α2 = i

4
(7.5.28)

This choice suffices to guarantee property [a] in the above list. Property [b] is also
verified if one chooses:

a5 = 3

4
(7.5.29)

The proof of the two properties is given in Appendix B.2. Essential ingredients in
the proof are the following identities holding true for any antisymmetric tensor F̂ :

det(η± F̂ )= −1 + 1

2
Tr
(
F̂ 2)+

(
1

8
εijklF̂ij F̂kl

)2

(7.5.30)

7In the paper quoted above the κ-supersymmetry projector presented here was originally intro-
duced within a 2nd order formulation of the theory. It is particularly significant and rewarding that
the same projector is valid also in first order formulation. As shown in the appendix the mecha-
nism by means of which it works are very subtle and take advantage of the explicit solutions for
the auxiliary fields in terms of the physical ones. In this way one finds an overall non-trivial check
of all the algebraic machinery of our new first order formalism.
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and

F̂ ˜̂F = −1

8

(
FijFklε

ijkl
)
1 = −ω[0]1

(7.5.31)

F̂ 2 + ˜̂F 2 = 1

2
Tr
(
F 2)1

7.6 The D3-Brane: Summary

In the previous sections we have explained how to construct p-brane world volume
actions that allow to reproduce the Born-Infeld second order action via the elimina-
tion of a set composed by three auxiliary fields:

• Π
a

i ,
• hij (symmetric),
• F ij (antisymmetric).

Distinctive properties of this formulation are:

1. All fermion fields are implicitly hidden inside the definition of the p-form po-
tentials of supergravity.

2. κ-supersymmetry is easily proven from supergravity rheonomic parameteriza-
tion.

3. The action is manifestly covariant with respect to the duality group SL(2,R) of
type IIB supergravity.

4. The action functional can be computed on any background which is an exact
solution of the supergravity bulk equations.

Of specific interest in applications are precisely the last two properties. Putting to-
gether all the partial results we can summarize the D3 brane action as it follows:

L = Π
a

i V
b ηab η

i�1 ∧ e�2 ∧ · · · ∧ e�4ε�1...�4

− 1

8
Π

a

i Π
b

j ηab h
ij e�1 ∧ · · · ∧ e�4ε�1...�4

− 1

4

[
det
(
h−1 + √

ImN F
)]1/2

e�1 ∧ · · · ∧ e�4ε�1...�4

+ 3

4
F ijF[2] ∧ e�3 ∧ e�4εij�3�4 (7.6.1)

+ 3

4
ReN F[2] ∧ F[2] + i

3

4
qαεαβAβ ∧ F[2] + 6C[4]

F[2] ≡ dA[1] + qαAα

N = i
Λ1− −Λ2−
Λ1− +Λ2−
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7.7 Supergravity p-Branes as Classical Solitons: General
Aspects

We turn next to consider p-branes as classical solitonic solutions of supergravity.
Such solutions have the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A
[D]
p-brane = ∫

dDx
√−g[2R[g] + 1

2∂
μφ∂μφ + (−1)p+1

2(p+2)! e
−aφ |F[p+2]|2] elec.

A
[D]
p̃-brane = ∫

dDx
√−g[2R[g] + 1

2∂
μφ∂μφ

+ (−1)D−p̃−3

2(D−p̃−2)!e
−aφ |F[D−p̃−2]|2] magn.

(7.7.1)

where in both cases F[n] ≡ dA[n−1] is the field strength of an (n− 1)-form gauge
potential and a is some real number whose profound meaning will become clear in
the later discussion of the solutions. As the reader can notice the two formulae we
have written for the p-brane action are actually the same formula since A[D]

p-brane and

A
[D]
p̃-brane are mapped into each other by the replacement:

p̃ =D − 4 − p; p =D − 4 − p̃ (7.7.2)

The reason why we doubled our writing is that the essentially unique action (7.7.1)
admits two classical solutions each of which is interpreted as describing a p-
extended and a p̃-extended object respectively. The first solution is driven by an
electric F[p+2] form, while the second is driven by a magnetic F[D−p+2] form. The
role of electric and magnetic solutions of the action A[D]

p-brane are interchanged as

solutions of the dual action A[D]
p̃-brane For various values of

n= p+ 2 and a (7.7.3)

the functional A[D]
p-brane (or its dual) corresponds to a consistent truncation of some

supergravity bosonic action SSUGRA
D in dimension D. This is the reason why the

classical configurations we are going to describe are generically named supergrav-
ity p-branes. Given that supergravity is the low energy limit of superstring theory,
supergravity p-branes are also solutions of superstring theory. They can be approx-
imate or exact solutions, depending whether they do or do not receive quantum
corrections. The second case is clearly the most interesting one and occurs, in par-
ticular, when the supergravity p-brane is a BPS-state that preserves some amount
of supersymmetry. This implies that it is part of a short supersymmetry multiplet
and for this reason cannot be renormalized. By consistent truncation we mean that
a subset of the bosonic fields have been put equal to zero but in such a way that all
solutions of the truncated action are also solutions of the complete one. For instance
if we choose:

a = 1; n=
{

3

7
(7.7.4)
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(7.7.1) corresponds to the bosonic low energy action of D = 10 heterotic superstring
(N = 1, supergravity) where the E8 × E8 gauge fields have been deleted. The two
choices 3 or 7 in (7.7.4) correspond to the two formulations (electric/magnetic) of
the theory. Other choices correspond to truncations of the type IIA or type IIB action
in the various intermediate dimensions 4 ≤D ≤ 10. Since the (n− 1)-form A[n−1]
couples to the world volume of an extended object of dimension:

p = n− 2 (7.7.5)

namely a p-brane, the choice of the truncated action (7.7.1) is precisely motivated by
the search for p-brane solutions of supergravity. According with the interpretation
(7.7.5) we set:

n= p+ 2; d = p+ 1; d̃ =D − p− 3 (7.7.6)

where d is the world-volume dimension of an electrically charged elementary p-
brane solution, while d̃ is the world-volume dimension of a magnetically charged
solitonic p̃-brane with p̃ =D−p−4. The distinction between elementary and soli-
tonic is the following. In the elementary case the field configuration we shall discuss
is a true vacuum solution of the field equations following from the action (7.7.1) ev-
erywhere in D-dimensional space-time except for a singular locus of dimension d .
This locus can be interpreted as the location of an elementary p-brane source that is
coupled to supergravity via an electric charge spread over its own world volume. In
the solitonic case, the field configuration we shall consider is instead a bona-fide so-
lution of the supergravity field equations everywhere in space-time without the need
to postulate external elementary sources. The field energy is however concentrated
around a locus of dimension p̃. These solutions have been derived and discussed
thoroughly in the literature [41]. Good reviews of such results are [41, 42]. Defin-
ing:

Δ= a2 + 2
dd̃

D − 2
(7.7.7)

it was shown in [41] that the action (7.7.1) admits the following elementary p-brane
solution

ds2 = H(y)
− 4d̃

Δ(D−2) dxμ ⊗ dxν ημν −H(y)
4d

Δ(D−2) dym ⊗ dyn δmn

F[p+2] = 2√
Δ
(−)p+1εμ1...μp+1 dx

μ1 ∧ · · · ∧ dxμp+1 ∧ d
[
H(y)−1] (7.7.8)

eφ(r) = H(y)−
2a
Δ

where the coordinates XM (M = 0,1 . . . ,D − 1) have been split into two subsets:

• xμ, (μ= 0, . . . , p) are the coordinates on the p-brane world-volume,
• ym, (m=D − d + 1, . . . ,D) are the coordinates transverse to the brane
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and

H(y)=
(

1 + k

rd̃

)
(7.7.9)

is a harmonic function ∂
∂ym

∂
∂ym

H(y)= 0 in the transverse space to the brane-world

volume. By r ≡ √
ymym we have denoted the radial distance from the brane and

by k the value of its electric charge. The same authors of [41] show that the action
(7.7.1) admits also the following solitonic p̃-brane solution:

ds2 = H(y)
− 4d

Δ(D−2) dxμ ⊗ dxν ημν −H(y)
4 d̃

Δ(D−2) dym ⊗ dyn δmn

F̃ [D−p−2] = λεμ1...μd̃
p dx

μ1 ∧ · · · ∧ dxμd̃
yp

rd+2
(7.7.10)

eφ(r) = H(y)
2a
Δ

where the (D−p− 2)-form F̃ [D−p−2] is the dual of F[p+2], k is now the magnetic
charge and:

λ= −2
dk√
Δ

(7.7.11)

The identification (7.7.11) of the constant λ allows to write the expression of the
form F̃ [D−p−2] in the solitonic solution in the following more compact and inspiring
way:

F̃ [D−p−2] = 2√
Δ

� dH(y) (7.7.12)

These p-brane configurations are solutions of the second order field equations ob-
tained by varying the action (7.7.1). However, when (7.7.1) is the truncation of a
supergravity action it generically happens that both (7.7.8) and (7.7.10) are also
the solutions of a first order differential system of equations ensuring that they are
BPS-extremal p-branes preserving a fraction of the original supersymmetries. The
parameter (7.7.7) plays a particularly important role as an intrinsic characterization
of the brane solutions since it has the very important property of being invariant
under toroidal compactifications. When we step down in dimensions compactifying
on a Tx torus each p-brane solution of the D-dimensional supergravity ends up in
a p′ brane of the D − x supergravity that has the same value of Δ its parent brane
had in higher dimension. It also happens that all elementary BPS branes of string
or M-theory as the various Dp-branes of the type II A or type II B theory, the M2
and M5 branes, the Neveu Schwarz 5-brane and the elementary type II or heterotic
strings are characterized by the property that Δ= 4. Namely we have:

Δ= 4 ⇔ elementary p-brane in D = 10 or toroidal reduction thereof
(7.7.13)
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7.8 The Near Brane Geometry, the Dual Frame
and the AdS/CFT Correspondence

For the string theory community, the most exciting new development in the last
decade of the XXth century was the discovery of the AdS/CFT correspondence [44–
46], between the superconformal quantum field theory describing the microscopic
degrees of freedom of certain p-branes and classical supergravity compactified on
AdSp+2 ×XD−p−2. The origin of this correspondence is two-fold. On one side we
have the algebraic truth that the AdSp+2 isometry group, namely SO(2,p + 1) is
also the conformal group in p + 1 dimensions and, as firstly noticed by the authors
of [45, 46], this extends also to the corresponding supersymmetric extensions ap-
propriate to the field theories living on the relevant brane volumes. On the other
hand we have the special behavior of those p-branes that are characterized by the
conditions:

Δ= 4; a = 0 ⇒ dd̃

D − 2
= 2 (7.8.1)

In this case the p-brane metric takes the form:

ds2 = [H(r)
]− d̃

D−2 dxμ ⊗ dxνημν + [H(r)
] d
D−2
(
dr2 + r2ds2

SD−p−2

)
(7.8.2)

where the flat metric dm ⊗ dym in the D − p − 1 dimensions has been written in
polar coordinates using the metric ds2

SD−p−2 on an SD−p−2 sphere and where the
harmonic function is

H(r)=
(

1 + k

rd̃

)
(7.8.3)

For large r → ∞ the metric (7.8.2) is asymptotically flat, but for small values of the
radial distance from the brane r �→ 0 the metric becomes a direct product metric:

ds2 r→0=⇒ ds2
H = (k)−

d̃
D−2 r

d̃2
D−2 dxμ ⊗ dxν ημν + (k)

d
D−2

dr2

r2︸ ︷︷ ︸
AdSp+2 metric

+(k)
d

D−2 ds2
SD−p−2

(7.8.4)
We will see shortly from now why the underbraced metric is indeed that of an anti
de Sitter space. To this effect it suffices to set:

r = (k)d̃/2(D−2) exp
[−(k)−d/2(D−2)r

]
(7.8.5)

and in the new variable r the underbraced metric of (7.8.4) becomes identical to the
metric (7.9.14) with

λ= (k)−d/2(D−2) d̃2

2(D − 2)
(7.8.6)

The metric (7.9.14) is indeed the AdS metric in horospherical coordinates. Hence
the near brane geometry of the special p-branes satisfying condition (7.8.1) is
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AdSp+2 × SD−p−2 and this is the very origin of the AdS/CFT correspondence. As
it was shown in [43] this mechanism can be extended to the case where the sphere
metric is replaced by the metric of other coset manifolds G/H of the same dimen-
sions D − p − 2 or even more generically by the metric of some Einstein space
XD−p−2. This leads to the study of many more non-trivial examples of AdS/CFT
correspondence, typically characterized by a reduced non-maximal supersymmetry.
[47–55]. The wealth of results obtained in this field is impressive but its review
goes much beyond the scope of the present book and we refer the interested reader
to the original literature. We just stress that by this token the calculation of exact
correlators of certain quantum field theories is reduced to calculations in a classical
gravitational theory like supergravity.

7.9 Domain Walls in Diverse Space-Time Dimensions

The generic coupling of a single scalar field to Einstein gravity is described, in
space-time dimensions D by the following action

A
[D]
grav+scal =

∫
dDx

√−g

[
2R[g] + 1

2
∂μφ∂μφ − V (φ)

]
(7.9.1)

where V (φ) is the scalar potential. If for this latter we choose the very particular
form:

V (φ)= 2Λe−aφ;
{

0 <Λ ∈R

a ∈R
(7.9.2)

then we have a limiting case of the general p-brane action (7.7.1) we have consid-
ered above. Indeed if in the general formulae (7.7.6) we put

p =D − 2 ⇒ d̃ = −1; d =D − 1 (7.9.3)

we obtain that the electric (D − 2)-brane couples to a field strength which is a top
D-form F[D], while the magnetic solitonic brane couples to a 0-form F[0], namely
to a cosmological constant. Indeed, we can formally set:

F[0] = 2
√
Λ ⇒ F̃ [D] = Volume form on space-time (7.9.4)

and the action (7.9.1) with the potential (7.9.2) is reduced to the general form for
an electric (D − 2)-brane (7.7.1). That F[0] should be constant and hence could be
identified as in (7.9.4) follows from the Bianchi identity that it is supposed to satisfy
dF[0] = 0.

Hence we can conclude that the action:

A
[D]
D-Wall =

∫
dDx

√−g

[
2R[g] + 1

2
∂μφ∂μφ − 2Λe−aφ

]
(7.9.5)
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admits a distinguished class of solutions describing (D − 2)-branes that we name
domain walls since at each instant of time a brane of this type separates the space
manifold into two adjacent non-overlapping regions.

Specializing the general formulae (7.7.8) and (7.7.9) to our particular case we
obtain the domain wall solution of (7.9.5) in the following form:

ds2
DW = H(y)2α

(
dxμ ⊗ dxνημν

)+H(y)2β dy2 (7.9.6)

eφ = H(y)−
2a
Δ (7.9.7)

H(y) = c±Qy (7.9.8)

where y is the single coordinate transverse to the wall, c is an arbitrary integration
constant and the other parameters appearing in the above formulae have the follow-
ing values:

α = 2

Δ(D − 2)
; β = 2

D − 1

Δ(D − 2)
; Q= √

ΛΔ (7.9.9)

in terms of Δ whose expression (7.7.7) becomes:

Δ= a2 − 2
D − 1

D − 2
(7.9.10)

The form (7.9.8) of the function H is easy to understand because in one-dimension
a harmonic function is just a linear function. The arbitrariness of the sign in H

arises because the equations of motion involve m only quadratically [56]. Since a2

is a positive quantity, Δ is bounded from below by the special value ΔAdS that
corresponds to the very simple case of pure gravity with a negative cosmological
constant (case a = 0 in (7.9.5)):

Δ≥ΔAdS ≡ −2
D − 1

D − 2
(7.9.11)

The name given to ΔAdS has an obvious explanation. As it was originally shown by
Lü, Pope and Townsend in [56], for a = 0 the domain wall solution (7.9.6) describes
a region of the anti de Sitter space AdSD . To verify this statement it suffices to insert
the value (7.9.11) into (7.9.9) and (7.9.6) to obtain:

ds2
DW =H−2/(D−1)(y)

(
dxμ ⊗ dxνημν

)+H(y)−2 dy2 (7.9.12)

Performing the coordinate transformation:

r = 1

Q
ln(c±Qy) (7.9.13)

the metric becomes:

ds2
DW = e−2λrημν dx

μ dxν + dr2 (7.9.14)
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where

λ=
√

2Λ

(D − 1)(D − 2)
= (D − 1)Q (7.9.15)

In the same coordinates the solution for the dilaton field is:

eφ = exp

[
− 2aλ

Δ(D − 1)
r

]
(7.9.16)

Equation (7.9.14) is the metric of AdS spacetime, in horospherical coordinates. Fol-
lowing [56] we can verify this statement by introducing the (D + 1) coordinates
(X,Y,Zμ) defined by

X = 1

λ
coshλr + 1

2
λημνx

μxνe−λr

Y = −1

λ
sinhλr − 1

2
λημνx

μxνe−λr (7.9.17)

Zμ = xμe−λr

They satisfy

ημνZ
μZν + Y 2 −X2 = −1/λ2 (7.9.18)

ημν dZ
μ dZν + dY 2 − dX2 = e−2λrημν dx

μ dxν + dr2 (7.9.19)

which shows that (7.9.14) is the induced metric on the algebraic locus (7.9.18) which
is the standard hyperboloid corresponding to the AdS space-time manifold. The
signature of embedding flat space is (−,+,+, . . . ,+,−) and therefore the metric
(7.9.14) has the right SO(2,D − 1) isometry of the AdSD metric.

Still following the discussion in [56] we note that in horospherical coordinates
X+Y = λ−1e−λr is non-negative if r is real. Hence the region X+Y < 0 of the full
AdS spacetime is not accessible in horospherical coordinates. Indeed this coordinate
patch covers one half of the complete AdS space, and the metric describes AdSD/Z2
where Z2 is the antipodal involution (X,Y,Zμ) → (−X,−Y,−Zμ). If D is even,
we can extend the metric (7.9.12) to cover the whole anti de Sitter spacetime by
setting the integration constant c = 0 which implies H = Qy. So doing the region
with y < 0 corresponds to the previously inaccessible region X + Y < 0. In odd
dimensions, we must restrict H in (7.9.12) to be non-negative in order to have a real
metric and thus in this case we have to choose H = c + Q|y|, with c ≥ 0. If the
constant c is zero, the metric describes AdSD/Z2, while if c is positive, the metric
describes a smaller portion of the complete AdS spacetime. In any dimension, if we
set:

H = c+Q|y| (7.9.20)

the solution can be interpreted as a domain wall at y = 0 that separates two regions
of the anti de Sitter spacetime, with a delta function curvature singularity at y = 0
if the constant c is positive.
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7.9.1 The Randall Sundrum Mechanism

What we have just described is the anti de Sitter domain wall that corresponds to
Δ=ΔAdS. The magic of this solution is that, as shown by Randall and Sundrum in
[61, 62], it leads to the challenging phenomenon of gravity trapping. These authors
have found that because of the exponentially rapid decrease of the factor

exp
[−λ|r|] with λ > 0 (7.9.21)

away from the thin domain wall that separates the two asymptotic anti de Sitter
regions it happens that gravity in a certain sense is localized near the brane wall.
Instead of the D-dimensional Newton’s law that gives:

force ∼ 1

RD−2
(7.9.22)

one finds the (D − 1)-dimensional Newton’s law

force ∼ 1

RD−3
+ small corrections O

(
1

RD−2

)
(7.9.23)

This can be seen by linearizing the Einstein equations for the metric fluctuations
around any domain wall background of the form:

ds2 =W(r)ημν dx
μ dxν + dr2 (7.9.24)

that includes in particular the AdS case (7.9.14). In a very sketchy way if one sets:

hμν(x, y)= exp[ip · x]ψμν(y) (7.9.25)

one finds that the linearized Einstein equations translate into an analog Schrödinger
equation for the wave-function ψ(y). This problem has a potential that is determined
by the warp factor W(y). If in the spectrum of this quantum mechanical problem
there is a normalizable zero mode then this is the wave function of a D − 1 dimen-
sional graviton. This state is indeed a bound state and falls off rapidly when leaving
the brane. Since the extra dimension is non-compact the Kaluza Klein states form
a continuous spectrum without a gap. Yet D − 1 dimensional physics is extremely
well approximated because the bound state mode reproduces conventional gravity
in D − 1 dimensions while the massive states simply contribute a small correction.

It is clearly of utmost interest to establish which domain walls have this magic
trapping property besides the anti de Sitter one. This has been recently done by
Cvetič, Lü and Pope in [60] In order to summarize this and other related results we
need first to emphasize another aspect of domain walls that puts them into distin-
guished special class among p-branes.
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7.9.2 The Conformal Gauge for Domain Walls

Going back to the general domain wall solution (7.9.6), (7.9.7), (7.9.8), (7.9.9),
classified by the value of Δ (7.9.10) we observe that there is still an ambiguity
in the powers of the harmonic function (7.9.8) that appear as metric coefficients.
This ambiguity is due to coordinate transformations and it is a specific property of
(D−2)-branes not present in other p-branes, where the harmonic function H is not
a linear function. Following a discussion by Bergshoeff and van der Schaar [57] we
observe that in the range y > 0 we can make the following linear transformation:
y = − c

Q
+y′ ⇒H(y)=Qy′ that eliminates the integration constant c. Furthermore

we can redefine y′ as some other fractional power of a third coordinate y, namely

y′ = −Q− 1+ε
ε y− 1

ε , then shifting it once again by a constant y = z+ c
Q

. Altogether
this means that we introduce the coordinate transformation:

y = − c

Q
−Q− 1+ε

ε

(
z+ c

Q

)− 1
ε

(7.9.26)

Under this transformation we have (for positive y):

H(y)= −[H(z)
]−1/ε (7.9.27)

and the domain wall metric (7.9.6) becomes:

ds2
DW =H(z)−

2α
ε
(
dxμ ⊗ dxνημν

)+H(z)−
2β+ε
ε

−2 dz
2

ε2
(7.9.28)

This transformation allows for the remarkable possibility of choosing a conformal
gauge, namely a coordinate system where it becomes manifest that the domain wall
metric is conformally flat. Indeed it suffices to impose that the two powers of the
harmonic function appearing in (7.9.28) be equal:

−2α

ε
= −2β + ε

ε
− 2 (7.9.29)

Using (7.9.9) the solution of (7.9.29) for ε is unique in all cases with the exception
of Δ= −2:

ε = −Δ+ 2

Δ
(7.9.30)

Hence for Δ �= −2, redefining z �→ εz, Q �→ k|ε| the domain wall solution (7.9.6)
can always be rewritten in the following conformally flat way:

ds2
DW/conf = [

H(z)
] 4
(D−2)(Δ+2)

(
ημν dx

μ ⊗ dxν + dz2)
eφ(z) = H(z)−

2a
Δ+2

(7.9.31)
H(z) = 1 + k|z|

k = (Δ+ 2)

√
Λ

Δ+ 2
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Obviously the solution (7.9.31) could have been obtained by directly solving the
Einstein equations associated with the action (7.9.5) starting from a conformal
ansatz of the type:

ds2
DW/conf = exp

[
A(z)

](
ημν dx

μ dxν + dz2) (7.9.32)

Yet we preferred to obtain it from the general solution (7.7.8) for supergravity p-
branes in order to emphasize its interpretation as a domain wall, namely a (D − 2)-
brane. The direct method of solution can be used to find the conformal representa-
tion of the domain wall metric in the exceptional case Δ = −2. As shown in [60]
one obtains:

ds2 = e−
2k
d−2 |z|(ημν dxμ dxν + dz2)

φ =
√

2k√
d − 2

|z| (7.9.33)

where k is now given by

k2 = −2Λ(d − 2) (7.9.34)

which is real for negative Λ. There is another important point that we should note.
Our starting point, prior to all the subsequent manipulations, has been the form
(7.9.6), (7.9.9) which is that of an electric p-brane and not that of a solitonic one
(see 7.7.10)). This implies that our domain wall solutions are not exactly bona fide
solutions of the action (7.9.5) but require also the coupling to a source term that is
the world-volume action of the domain wall, localized at z= 0 in the last coordinate
frame we have used. Namely the true action is

A=
∫
MD

dDx
√−g

[
2R[g] + 1

2
∂μφ∂μφ − 2Λe−aφ

]
+ T

∫
WVD−1

dD−1ξ Lsource

(7.9.35)
where Lsource is world-volume Lagrangian of the (D − 2)-brane and the parameter
T denotes its tension. An important issue is to relate the wall-tension to the parame-
ters appearing in the classical domain wall solution. This was done in [60] following
a standard analysis developed in previous papers [58, 59]. The matching conditions
across the singular domain wall source imply that the energy density (tension) of
the wall is related to the values of the cosmological constant parameters on either
side of the wall, namely the authors of [60] found:

σ = T = 2
(
A′
z=0− −A′

z=0+
)

(7.9.36)

where the prime denotes a derivative with respect to z. This leads to

Δ �= −2 : T = −8 sign
[
k(Δ+ 2)

]√Λ

Δ (7.9.37)
Δ= −2 : T = 8k

d − 2
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Fig. 7.3 The volcano
potential

Thus positive-tension domain-wall solutions exist for Δ ≤ −2 with k > 0 and for
Δ > −2 with k < 0. Conversely, negative-tension domain walls arise for Δ ≤ −2
with k < 0 and for Δ>−2 with k > 0. So for our domain walls with Δ≤ −2, we
assume the lower bound (7.9.11). To avoid naked singularities we also need k > 0.

Using the simple conformal gauge (7.9.31) the authors of [60] have analyzed the
fluctuations of the metric around such a background and have found that the gravi-
ton wave function obeys, as predicted by Randall-Sundrum [61–63] a Schrödinger
equation with a potential that is completely fixed by the value of Δ. More precisely
one finds that in the conformal gauge the fluctuations of the D-dimensional graviton
satisfy the Klein-Gordon equation of a scalar field in the gravitational background
namely ∂M(

√−ggMN∂NΦ)= 0. Parameterizing:

Φ = φ(z)eip·x = e−kzψ(z)eip·x (7.9.38)

where p is the (D − 1)-dimensional momentum the Klein-Gordon equation be-
comes the following Schrödinger-type equation,

−1

2
ψ ′′ +Uψ = −1

2
p2ψ (7.9.39)

where the potential, calculated in [60] is given by

Δ �= −2 : U = − (Δ+ 1)k2

2(Δ+ 2)2H(z)2
+ k

Δ+ 2
δ(z)

(7.9.40)

Δ= −2 : U = 1

8
k2 − 1

2
kδ(z)

Such an equation has a normalizable zero-mode wave function if the following
condition is satisfied Δ ≤ −2. Indeed it is evident from these expressions that for
Δ ≤ −2, U has a volcano shape as in Fig. 7.3 since the delta function has a nega-
tive coefficient, and the “bulk” term is non-negative for all z. Hence the trapping of
gravity occurs for positive tension (D − 2)-branes in the following window:

ΔAdS ≤Δ≤ −2 (7.9.41)
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7.10 Conclusion on This Brane Bestiary

The snapshot survey of the p-brane bestiary we have presented in this chapter was
meant to illustrate the wealth of classical solutions of supergravity and their pro-
found interpretration in connection with gauge-theories and many other aspects of
quantum field theory. The main message we would like to convey to the student is
that supergravity is just a natural extension of General Relativity (the main topic of
this book) which stands on its feet independently from string theory. Furthermore
the rich park of solutions and mechanisms contributed by supergravity requires at-
tentive consideration and certainly is part of the general theory of gravity.
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Chapter 8
Supergravity: A Bestiary in Diverse Dimensions

Incipit liber de natura quorundam animalium, et lapidum
et quid significetur per eam
from a Medieval Latin Bestiary

8.1 Introduction

In the previous chapter we discussed p-branes as classical solutions of supergravity
theories in diverse dimensions, while in Chap. 5 w appreciated the relevance of
scalar fields in cosmology. From this viewpoint the basic information one would
like to master is the following:

• The scalar field dependence of the kinetic terms of p-forms NΛΣ(φ)F
Λ ∧ �FΣ

since this latter eventually decides the values of the coefficients a in the exponen-
tial factors of the p-brane actions (7.7.1).

• The scalar field potential V (φ) which eventually decides the form of the cosmo-
logical term in the domain wall actions (7.9.5) and plays a fundamental role in
the inflationary scenarios.

• The metric gij (φ) appearing in the kinetic term gij (φ)∂μφ
i∂μφj of the scalar

fields since it is needed as much as the matrix NΛΣ(φ) to determine the values
of a and eventually of Δ.

It turns out that each of the above items involves a wealth of surprisingly sophisti-
cated geometric structures that are skillfully utilized by supergravity, first to stand
on its feet at the ungauged level and, secondly, to be gauged producing non-Abelian
symmetries and the scalar potential. In the present chapter we survey all these struc-
tures and we try to illustrate their meaning in relation with the parent string theory.
Obviously the cause that imposes on the theory all such structures is supersymmetry
and the presence of the fermions. Yet since the fermions are ugly objects to deal with
while their yield, namely the geometric structure of the theory is beautiful, we will
only stick to the latter and mention the fermions as seldom as possible. In Chap. 6
we illustrated the general principles that underlie the construction of supergravity
theories and we hope that our reader got enough information to understand its logic.
In the rest of the present chapter we confine ourselves to a mostly descriptive pre-
sentation. Nowhere we pretend to give the proof that the various supergravities are
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as they are, but we do our best to illustrate their miraculous geometric functioning
that eventually governs the p-brane classical physics we are interested in. In view of
the advocated correspondences such classical physics is also the quantum physics of
the underlying world volume theories. Furthermore the wealth of special geometries
involved by supergravity Lagrangians has a value, independently from its super-
symmetric origin. The mechanisms unveiled by supergravity concerning dualities,
black-hole solutions and the like have a more general range of applications beyond
supersymmetric theories.

8.2 Supergravity and Homogeneous Scalar Manifolds G/H

If we consider the whole set of supergravity theories in diverse dimensions we dis-
cover an important general property. With the caveat of three noteworthy exceptions
in all the other cases the constraints imposed by supersymmetry imply that the scalar
manifold Mscalar is necessarily a homogeneous coset manifold G/H of the non-
compact type, namely a suitable non-compact Lie group G modded by the action of
a maximal compact subgroup H ⊂ G. By Mscalar we mean the manifold parame-
terized by the scalar fields φI present in the theory. The metric gIJ (φ) defining the
Riemannian structure of the scalar manifold appears in the supergravity Lagrangian
through the scalar kinetic term which is of the σ -model type:

L kin
scalar = 1

2
gIJ (φ)∂μφ

I ∂μφJ (8.2.1)

The three noteworthy exceptions where the scalar manifold is allowed to be some-
thing more general than a coset G/H are the following:

1. N = 1 supergravity in D = 4 where Mscalar is simply requested to be a Hodge
Kähler manifold.

2. N = 2 supergravity in D = 4 where Mscalar is simply requested to be the prod-
uct of a special Kähler manifold S K n

1 containing the n complex scalars of the
n vector multiplets with a quaternionic manifold QMm containing the 4m real
scalars of the m hypermultiplets.2

1Special Kähler geometry was introduced in a coordinate dependent way in the first papers on the
vector multiplet coupling to supergravity in the middle eighties [2, 14]. Then it was formulated in
a coordinate-free way at the beginning of the nineties from a Calabi-Yau standpoint by Strominger
[5] and from a supergravity standpoint by Castellani, D’Auria and Ferrara [3, 4]. The properties
of holomorphic isometries of special Kähler manifolds, namely the geometric structures of special
geometry involved in the gauging were clarified by D’Auria, Frè and Ferrara in [20]. For a review
of special Kähler geometry in the setup and notations of the book see [21] and Sect. 8.5 of the
present chapter.
2The notion of quaternionic geometry, as it enters the formulation of hypermultiplet coupling was
introduced by Bagger and Witten in [15] and formalized by Galicki in [17] who also explored
the relation with the notion of HyperKähler quotient, whose use in the construction of supersym-
metric N = 2 Lagrangians had already been emphasized in [16]. The general problem of clas-
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3. N = 2 supergravity in D = 5 where Mscalar is simply requested to be the prod-
uct of a very special manifold V S n

3 containing the n real scalars of the n vector
multiplets with a quaternionic manifold QMm containing the 4m real scalars of
the m hypermultiplets.

We shall come back to the case of N = 2 supergravity in five dimensions because
of its relevance in the quest of domain walls and supersymmetric realizations of
the Randall Sundrum scenario and there we shall briefly discuss both very special
geometry and quaternionic geometry. Special Kähler geometry and the structure of
N = 2 supergravity in four dimensions will also be briefly reviewed. Probably the
most relevant aspect of special Kähler manifolds is their interpretation as moduli
spaces of Calabi-Yau three-folds which connects the structures of N = 2 super-
gravity to superstring theory via the algebraic geometry of compactifications on such
three-folds. Here we do not address these topics and we rather focus on the case of
homogeneous scalar manifolds which covers all the other types of supergravity La-
grangians and also specific instances of N = 2 theories since there exist subclasses
of special Kähler and very special manifolds that are homogeneous spaces G/H.

By means of this choice we aim at illustrating some of the very ample collection
of supergravity features that encode quite non-trivial aspects of superstring theory
and that can be understood in terms of Lie algebra theory and differential geometry
of homogeneous coset spaces.

8.2.1 How to Determine the Scalar Cosets G/H of Supergravities
from Supersymmetry

The best starting point of our discussion is provided by presenting the table of coset
structures in four-dimensional supergravities. This is done in the next subsection
in Table 8.1 where supergravities are classified according to the number N of the
preserved supersymmetries. Recalling that a Majorana spinor in D = 4 has four real
components the total number of supercharges preserved by each theory is

# of supercharges = 4N (8.2.2)

and becomes maximal for the N = 8 theory where it is 32.
Here we present a short general discussion that applies to all the diverse dimen-

sions.
There are two ways to determine the scalar manifold structure of a supergravity

theory:

sifying quaternionic homogeneous spaces had been addressed in the mathematical literature by
Alekseevski [6].
3The notion of very special geometry is essentially due to the work of Günaydin Sierra and
Townsend who discovered it in their work on the coupling of D = 5 supergravity to vector multi-
plets [9, 10]. The notion was subsequently refined and properly related to special Kähler geometry
in four dimensions through the work by de Wit and Van Proeyen [11–13].
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• By compactification from higher dimensions. In this case the scalar manifold is
identified as the moduli space of the internal compact space.

• By direct construction of each supergravity theory in the chosen space-time di-
mension. In this case one uses all the a priori constraints provided by supersym-
metry, namely the field content of the various multiplets, the global and local
symmetries that the action must have and, most prominently, as we are going to
explain, the duality symmetries.

The first method makes direct contact with important aspects of superstring theory
but provides answers that are specific to the chosen compact internal space Ω10-D
and not fully general. The second method gives instead fully general answers. Ob-
viously the specific answers obtained by compactification must fit into the general
scheme provided by the second method. In the next section we highlight the ba-
sic arguments that lead to the construction of Table 8.1. Obviously the table relies
on the fact that each of the listed Lagrangians has been explicitly constructed and
shown to be supersymmetric4 but it is quite instructive to see how the scalar mani-
fold, which is the very hard core of the theory determining its interaction structure,
can be predicted a priori with simple group theoretical arguments.

The first thing to clarify is this: what is classified in Table 8.1 are the ungauged
supergravity theories where all vector fields are Abelian and the isometry group of
the scalar manifold is a global symmetry. Gauged supergravities are constructed
only in a second time starting from the ungauged ones and by means of a gauging
procedure which goes beyond the scope of the present book. The interested reader
is referred to [28]. We just remark that each ungauged supergravity admits a finite
number of different gaugings where suitable subgroups of the isometry group of the
scalar manifold are promoted to local symmetries using some or all of the available
vector fields of the theory. It is clear that which gaugings are possible is once again
determined by the structure of the scalar manifold plus additional constraints that
we explain later.

In every space-time dimension D the reasoning that leads to single out the scalar
coset manifolds G/H is based on the following elements:

(A) Knowledge of the field content of the various supermultiplets μi that constitute
irreducible representations of the N -extended supersymmetry algebra in D-
dimensions. In particular this means that we know the total number of scalar
fields. The scalars pertaining to the various types of multiplets must fill separate
submanifolds Mi of the total scalar manifold which is the direct product of all
such subspaces: Mscalar =⊗i Mi .

(B) Knowledge of the automorphism group HAut of the relevant supersymmetry
algebra. This latter acts on the gravitinos and on the other fermion fields as a
local symmetry group. The gauge connection for this gauge symmetry is not
elementary, rather it is a composite connection derived from the σ -model of
the scalar fields:

4For a review of supergravity theories both in D = 4 and in diverse dimensions the reader is
referred to the book [7]. Furthermore for a review of the geometric structure of all supergravity
theories in a modern perspective we refer to [1].
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ΩAut
μ = PAut

[
g−1(φ)

∂

∂φI
g(φ)

]
∂μφ

I (8.2.3)

where PAut denotes the projection onto the automorphism subalgebra Aut ⊂H

of the isotropy algebra H of the scalar coset manifold G/H. This is consistent
only if the isotropy group has the following direct product structure:

H = Aut
⊗

H′ (8.2.4)

H′ being some other closed Lie group.
(C) Existence of appropriate irreducible representations of G in which we can ac-

commodate each type of (p+1)-forms A[p+1]Λ appearing in the various super-
multiplets. Indeed each (p+ 1)-form sits in some supermultiplet together with
fermion fields and with scalars. The transformations of G commute with super-
symmetry and must rotate an entire supermultiplet into another one of the same
sort. Since the action of G is well defined on scalars we must be able to lift it
also to the (p+ 1)-form partners of the scalars. Here we have a bifurcation:

• When the magnetic dual of the (pi + 1)-forms, that are (D − pi − 3)-forms
have a different degree, namely D−pi − 3 �= pi + 1, then the group G must
have irreducible representations Di of dimensions:

dim(Di)= ni (8.2.5)

where ni is the number of (pi + 1)-forms present in the theory
• When there are (p+ 1)-forms, whose magnetic duals have the same degree,

namely D − p − 3 = p + 1, then the group G must have, in addition to the
irreducible representations Di that accommodate the other (pi + 1)-forms as
in (8.2.5) also a representation D of dimension

dim(D)= 2n (8.2.6)

which accommodates the n forms of degree p and has the following addi-
tional property. In D = 6,10 it is realized by pseudo-orthogonal matrices in
the fundamental of SO(n,n) while in D = 4,8 it is realized by symplectic
matrices in the fundamental of Sp(2n,R). The reason for this apparently ex-
travagant request is that in the case of (p+ 1)-forms the lifting of the action
of the group G is realized by means of electric/magnetic duality rotations as
we explain in Sect. 8.3. Furthermore the reason why, in this discussion, we
consider only the even dimensional cases is that self-dual (p+ 1)-forms can
exist only when D = 2r is even.

8.2.2 The Scalar Cosets of D = 4 Supergravities

In four dimensions the only relevant (p+ 1)-forms are the 1-forms that correspond
to ordinary gauge vector fields. Indeed 3-forms do not have degrees of freedom
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and 2-forms can be dualized to scalars. On the contrary D = 4 is an even number
and 1-forms are self-dual in the sense described in Sect. 8.3 and alluded above in
Sect. 8.2.1. Furthermore the automorphism group of the N extended supersymme-
try algebra in D = 4 is:5

HAut = SU(N )× U(1); N = 1,2,3,4,5,6

HAut = SU(8); N = 7,8
(8.2.7)

Hence applying the strategy outlined in Sect. 8.2.1 the requests to be imposed on
the coset G/H in four-dimensional supergravities are:

1. The total number of spin zero fields must be equal to the dimension of the coset:

# of spin zero fields ≡m= dim G − dim H (8.2.8)

2. The total number of vector fields in the theory n must be equal to one half the
dimension of a symplectic irreducible representation DSp of the group G:

# of spin 1 fields ≡ n= 1

2
dimDSp(G) (8.2.9)

3. The isotropy group H must be of the form:6

H = SU(N )× U(1)× H′; N = 3,4

H = SU(N )× U(1); N = 5,6

H = SU(8); N = 7,8

(8.2.10)

The distinction between the cases N = 3,4 and the cases N = 5,6 comes from
the fact that in the former we have both the graviton multiplet plus vector multi-
plets, while in the latter there is only the graviton multiplet. The vector multiplets
can transform non-trivially under the additional group H′ for which there is no
room in the latter cases. Finally the N = 7,8 supergravities that contain only

5The role of the SU(N ) symmetry in N -extended supergravity was firstly emphasized in [26, 27].
6The difference between the N = 7,8 cases and the others is properly explained in the following
way. As far as superalgebras are concerned the automorphism group is always U(N ) for all N ,
which can extend, at this level also beyond N = 8. Yet for the N = 8 graviton multiplet, which is
identical to the N = 7 multiplet, it happens that the U(1) factor in U(8) has vanishing action on all
physical states since the multiplet is self-conjugate under CPT-symmetries. From here it follows
that the isotropy group of the scalar manifold must be SU(8) rather than U(8). A similar situation
occurs for the N = 4 vector multiplets that are also CPT self-conjugate. From this fact follows
that the isotropy group of the scalar submanifold associated with the vector multiplet scalars is
SU(4)× H′ rather than U(4)× H′. In N = 4 supergravity, however, the U(1) factor of the auto-
morphism group appears in the scalar manifold as isotropy group of the submanifold associated
with the graviton multiplet scalars. This is so because the N = 4 graviton multiplet is not CPT
self conjugate.
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Table 8.1 Scalar manifolds of extended supergravities in D = 4

N # scal.
in
scal. m.

# scal.
in
vec. m.

# scal.
in
grav. m.

# vect.
in
vec. m.

# vect.
in
grav. m.

Γcont Mscalar

1 2 m n I ⊂Sp(2n,R) Kähler

2 4 m 2 n n 1 I ⊂Sp(2n+ 2,R) Quaternionic
⊗ Special Kähler

3 6 n n 3 SU(3, n)
⊂ Sp(2n+ 6,R)

SU(3,n)
S(U(3)×U(n))

4 6 n 2 n 6 SU(1,1)⊗ SO(6, n)
⊂ Sp(2n+ 12,R)

SU(1,1)
U(1)

⊗ SO(6,n)
SO(6)×SO(n)

5 10 10 SU(1,5)⊂Sp(20,R) SU(1,5)
S(U(1)×U(5))

6 30 16 SO�(12)⊂Sp(32,R) SO�(12)
U(1)×SU(6)

7,8 70 56 E7(−7) ⊂Sp(128,R) E7(−7)
SU(8)

the graviton multiplet are indistinguishable theories since their field content and
interactions are the same.

Using the above rules and the known list of Lie groups one arrives at the
unique solution provided in Table 8.1.

8.2.3 Scalar Manifolds of Maximal Supergravities in Diverse
Dimensions

In Table 8.1 we have classified supergravities at fixed space-time dimension accord-
ing to the number of supersymmetries. Another possible classification is according
to space time dimensions D at fixed number of supercharges NQ. In particular one
can consider maximal supergravities where NQ = 32 and discuss their structure in
the diverse dimensions 3 ≤D ≤ 10. Such a study is very much rewarding since we
can relate it to the alternative way of deriving the scalar manifold of supergravity,
namely via compactification. There is indeed a class of hierarchical compactifica-
tions that have the distinguished property of preserving the number of supersymme-
tries at each step of the hierarchy. These are the toroidal compactifications where
D-dimensional space-time MD is replaced by:

MD �→ MD−x × T x (8.2.11)

T x denoting an x-dimensional torus and MD−x being a new space-time in (D−x)-
dimensions. By means of sequential toroidal compactifications we can reach all
maximally extended supergravities in lower dimensions starting from either type
IIA or type IIB supergravity in D = 10. The result is always the same since su-
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Table 8.2 Scalar geometries in maximal supergravities

D = 9 E2(2) ≡ SL(2,R)⊗ O(1,1) H = O(2) dimR(G/H)= 3

D = 8 E3(3) ≡ SL(3,R)⊗ SL(2,R) H = O(2)⊗ O(3) dimR(G/H)= 7

D = 7 E4(4) ≡ SL(5,R) H = O(5) dimR(G/H)= 14

D = 6 E5(5) ≡ O(5,5) H = O(5)⊗ O(5) dimR(G/H)= 25

D = 5 E6(6) H = Usp(8) dimR(G/H)= 42

D = 4 E7(7) H = SU(8) dimR(G/H)= 70

D = 3 E8(8) H = O(16) dimR(G/H)= 128

persymmetry allows for unique maximal theories in D ≤ 9 and there is just one
scalar coset manifold, that listed in Table 8.2. Yet this result can be interpreted in
two ways depending on whether we look at it from the type IIA or from the type
IIB viewpoint. There is indeed a challenging problem that corresponds to retrieving
the steps of the two possible chains of sequential toroidal compactifications within
the algebraic structure of the isometry groups Gx and identifying which scalar field
appears at which step of the sequential chain. Such a problem has a very elegant
and instructive solution in terms of a rather simple and classical mathematical the-
ory, namely the solvable Lie algebra parameterization of non-compact cosets. This
mathematical theory that makes a perfect match with the string theory origin of su-
pergravities plays an important role in the discussion of p-brane solutions. In the
Solvable Lie algebra parameterizations the scalar fields are divided into two groups,
those that are associated with Cartan generators of the solvable algebra and those
that are associated with nilpotent generators. The Cartan scalars are those that play
the role of generalized dilatons and couple to the field strength (p + 2)-forms as in
(7.7.1). Within the algebraic approach, the a parameters appearing in the couplings
of type exp[−aφ]|F [p+2]|2 have an interpretation in terms of roots and weights of
the Gx Lie algebras which provides a very important insight into the whole matter.
The solvable Lie algebra approach, that in maximal supergravities helps so clearly
to master the string theory origin of the cosets G/H, can be extended also to the
scalar manifolds of theories with a lesser number of supercharges. Indeed, from a
mathematical point of view it works for all non-compact cosets.

8.3 Duality Symmetries in Even Dimensions

Generically a p-brane in D-dimensions either carries an electric charge with respect
to a (p + 1)-form gauge field A[p+1] or a magnetic charge with respect to the dual
(D−p− 3)-form A

[D−p−3]
dual . In the general case it cannot be dyonic with respect to

the same gauge field since

p+ 1 �=D − p− 3 (8.3.1)

However, in even dimension D = 2r , the Diophantine equation (8.3.1) admits one
solution p = D−4

2 , so that we always have, in this case, a special instance of branes
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which can be dyonic: they are particles or 0-branes in D = 4, strings or 1-branes
in D = 6 and 2-branes in D = 8. The possible presence of such dyonic objects has
profound implications on the structure of the even dimensional supergravity La-
grangians. Indeed most of the dualities, T , S and U that relate the five perturbative
superstrings have a non-trivial action on p-branes and generically transform them as
electric-magnetic duality rotations. Hence, when self-dual (r − 1)-forms are avail-
able, string dualities reflect into duality symmetries of the supergravity Lagrangians
which constitute an essential ingredient in their construction. By duality symmetry
we mean the following: a certain group of transformations Gdual acts on the set of
field equations of supergravity plus the Bianchi identities of the (r − 1)-forms map-
ping this set into itself. Clearly Gdual acts also on the scalar fields φI and in order
to be a symmetry it must respect their kinetic term gIJ (φ)∂μφ

I ∂μφJ . This happens
if and only if Gdual is a group of isometries for the scalar metric gIJ (φ). In other
words string dualities are encoded in the isometry group of the scalar manifold of
supergravity which is lifted to act as a group of electric-magnetic duality rotations
on the (r − 1)-forms.

The request that these duality symmetries do exist determines the general form
of the supergravity Lagrangian and is a key ingredient in its construction. For this
reason in the present section we consider the case of even dimensions D = 2r and
we review the general structure of an Abelian theory containing n differential (r −
1)-forms:

AΛ ≡ AΛ
μ1...μr−1

dxμ1 ∧ · · · ∧ dxμr−1; (Λ= 1, . . . , n) (8.3.2)

and m real scalar fields φI . The field strengths of the (r − 1)-forms and their Hodge
duals are defined as follows:

FΛ ≡ dAΛ ≡ 1

r!F
Λ
μ1...μr

dxμ1 ∧ · · · ∧ dxμr

FΛ� ≡ 1

r!F̃
Λ
μ1...μr

dxμ1 ∧ · · · ∧ dxμr

FΛ
μ1...μr

≡ ∂μ1A
Λ
μ2...μr

+ r − 2 terms

F̃Λ
μ1...μr

≡ 1

r!εμ1...μrν1...νrF
Λ|ν1...νr

(8.3.3)

Defining the space-time integration volume as:

dDx ≡ 1

D!εμ1...μD
dxμ1 ∧ · · · ∧ dxμD (8.3.4)

we obtain:

FΛ ∧ FΣ = 1

(r!)2 ε
μ1...μrν1...νrFΛ

μ1...μr
FΣ

ν1...νr

(8.3.5)

FΛ ∧ FΣ� = (−)r
1

(r!)F
Λ
μ1...μr

FΣ |μ1...μr
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The real scalar fields φI span an m-dimensional manifold Mscalar
7 endowed with a

metric gIJ (φ). Utilizing the above field content we can write the following action
functional:

S = Stens + Sscal

Stens =
∫ [

(−)r

2
γΛΣ(φ)F

Λ ∧ FΣ� + 1

2
θΛΣ(φ)F

Λ ∧ FΣ

]

Sscal =
∫ [

1

2
gIJ (φ)∂μφ

I ∂μφJ
]
dDx (8.3.6)

where the scalar field dependent n×n matrix γΛΣ(φ) generalizes the inverse of the
squared coupling constant 1

g2 appearing in ordinary 4D-gauge theories. The field
dependent matrix θΛΣ(φ) is instead a generalization of the θ -angle of quantum
chromodynamics. The matrix γ is symmetric in every space-time dimension, while
θ is symmetric or antisymmetric depending on whether r =D/2 is an even or odd
number. In view of this fact it is convenient to distinguish the two cases, setting:

D =
{

4ν ν ∈ Z | r = 2ν

4ν + 2 ν ∈ Z | r = 2ν + 1
(8.3.7)

Introducing a formal operator j that maps a field strength into its Hodge dual:

(
jFΛ

)
μ1...μr

≡ 1

(r!)εμ1...μrν1...νrF
Λ|ν1...νr (8.3.8)

and a formal scalar product:

(G,K)≡GTK ≡ 1

(r!)
n∑

Λ=1

GΛ
μ1...μr

KΛ|μ1...μr (8.3.9)

the total Lagrangian of (8.3.6) can be rewritten as

L (tot) = F T (γ ⊗ 1 + θ ⊗ j)F + 1

2
gIJ (φ)∂μφ

I ∂μφJ (8.3.10)

and the essential distinction between the two cases of (8.3.7) is given, besides the
symmetry of θ , by the involutive property of j , namely we have:

D = 4ν | θ = θT j2 = −1

D = 4ν + 2 | θ = −θT j2 = 1
(8.3.11)

7Whether the φI can be arranged into complex fields is not relevant at this level of the discussion.
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Introducing dual and antiself-dual combinations:

D = 4ν

{
F± = F ∓ ijF

jF± = ±iF±

D = 4ν + 2

{
F± = F ± jF

jF± = ±F±

(8.3.12)

and the field-dependent matrices:

D = 4ν

{
N = θ − iγ

N = θ + iγ

D = 4ν + 2

{
N = θ + γ

−N T = θ − γ

(8.3.13)

the tensor part of the Lagrangian (8.3.10) can be rewritten in the following way in
the two cases:

D = 4ν : Ltens = i

8

[
F+T N F+ − F−T N F−]

(8.3.14)

D = 4ν + 2 : Ltens = 1

8

[
F+T N F+ + F−T N T F−]

Introducing the new tensor:

G̃Λ
μ1...μr

≡ −(r!) ∂L

∂FΛ
μ1...μr

D = 4ν

(8.3.15)

G̃Λ
μ1...μr

≡ (r!) ∂L

∂FΛ
μ1...μr

D = 4ν + 2

which, in matrix notation, corresponds to:

jG ≡ a
∂L

∂F T
= a

r! (γ ⊗ 1 + θ ⊗ j)F (8.3.16)

where a = ∓ depending on whether D = 4ν or D = 4ν + 2, the Bianchi identities
and field equations associated with the Lagrangian (8.3.6) can be written as follows:

∂μ1F̃Λ
μ1...μr

= 0; ∂μ1 G̃Λ
μ1...μr

= 0 (8.3.17)

This suggests that we introduce the 2n column vector:

V ≡
(
jF
jG

)
(8.3.18)
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and that we consider general linear transformations on such a vector:

(
jF
jG

)′
=
(
A B

C D

)(
jF
jG

)
(8.3.19)

For any matrix
(
A B
C D

) ∈ GL(2n,R) the new vector V′ of magnetic and electric field-
strengths satisfies the same equations (8.3.17) as the old one. In a condensed nota-
tion we can write:

∂V = 0 ⇐⇒ ∂V′ = 0 (8.3.20)

Separating the self-dual and antiself-dual parts

F = 1

2

(
F+ + F−); G = 1

2

(
G + + G −) (8.3.21)

and taking into account that for D = 4ν we have:

G + = N F+; G − = N F− (8.3.22)

while for D = 4ν + 2 the same equation reads:

G + = N F+; G − = −N T F− (8.3.23)

the duality rotation of (8.3.19) can be rewritten as:

D = 4ν :
(

F+
G +

)′
=
(
A B

C D

)(
F+

N F+
)

(
F−
G −

)′
=
(
A B

C D

)(
F−

N F−
)

D = 4ν + 2 :
(

F+
G +

)′
=
(
A B

C D

)(
F+

N F+
)

(
F−
G −

)′
=
(
A B

C D

)(
F−

−N T F−
)

(8.3.24)

In both cases the problem is that the transformation rule of G ± must be consistent
with the definition of the latter as variation of the Lagrangian with respect to F±
(see (8.3.15)). This request restricts the form of the matrix Λ = (A B

C D

)
. As we are

just going to show, in the D = 4ν case Λ must belong to the symplectic subgroup
Sp(2n,R) of the special linear group, while in the D = 4ν+ 2 case it must be in the
pseudo-orthogonal subgroup SO(n,n):

D = 4ν :
(
A B

C D

)
∈ Sp(2n,R)⊂ GL(2n,R)

D = 4ν + 2 :
(
A B

C D

)
∈ SO(n,n)⊂ GL(2n,R)

(8.3.25)
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the above subgroups being defined as the set of 2n× 2n matrices satisfying, respec-
tively, the following conditions:

Λ ∈ Sp(2n,R) → ΛT

(
0 1

−1 0

)
Λ=

(
0 1

−1 0

)

Λ ∈ SO(n,n) → ΛT

(
0 1
1 0

)
Λ=

(
0 1
1 0

) (8.3.26)

To prove the statement we just made, we calculate the transformed Lagrangian L ′
and then we compare its variation ∂L ′

∂F ′T with G ±′ as it follows from the postulated
transformation rule (8.3.24). To perform such a calculation we rely on the following
basic idea. While the duality rotation (8.3.24) is performed on the field strengths and
on their duals, also the scalar fields are transformed by the action of some diffeo-
morphism ξ ∈ Diff(Mscalar) of the scalar manifold and, as a consequence of that,
also the matrix N changes. In other words given the scalar manifold Mscalar we
assume that in the two cases of interest there exists a surjective homomorphism of
the following form:

ιδ : Diff(Mscalar)−→ GL(2n,R) (8.3.27)

so that:

∀ξ ∈ Diff(Mscalar) : φI ξ−→ φI ′
(8.3.28)

∃ιδ(ξ) =
(
Aξ Bξ

Cξ Dξ

)
∈ GL(2n,R)

Using such a homomorphism we can define the simultaneous action of ξ on all the
fields of our theory by setting:

ξ :

⎧⎪⎨
⎪⎩
φ −→ ξ(φ)

V −→ ιδ(ξ)V
N (φ)−→ N (ξ(φ))

(8.3.29)

where the notation (8.3.18) has been utilized. In the tensor sector the transformed
Lagrangian, is

L ′
tens = i

8

[
F+T (A+BN )T N ′(A+BN )F+

− F−T (A+BN )T N
′
(A+BN )F−] (8.3.30)

for the D = 4ν case and

L ′
tens = i

8

[
F+T (A+BN )T N ′(A+BN )F+

− F−T
(
A−BN T

)T
N T ′(

A−BN T
)
F−] (8.3.31)

for the D = 4ν + 2 case.
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In both cases consistency with the definition of G + requires, that

N ′ ≡ N
(
ξ(φ)

) = (Cξ +DξN )(Aξ +BξN )−1 (8.3.32)

while consistency with the definition of G − imposes, in the D = 4ν case the trans-
formation rule:

N
′ ≡ N

(
ξ(φ)

) = (Cξ +DξN )(Aξ +BξN )−1 (8.3.33)

and in the case D = 4ν + 2 the other transformation rule:

−N T ′ ≡ −N T
(
ξ(φ)

) = (Cξ −DξN
T
)(
Aξ −BξN

T
)−1 (8.3.34)

It is from the transformation rules (8.3.32), (8.3.33) and (8.3.34) that we derive a re-
striction on the form of the duality rotation matrix Λξ ≡ ιδ(ξ). Indeed, in the D = 4ν
case we have that by means of the fractional linear transformation (8.3.32) Λξ must
map an arbitrary complex symmetric matrix into another matrix of the same sort. It
is straightforward to verify that this condition is the same as the first of conditions
(8.3.26), namely the definition of the symplectic group Sp(2n,R). Similarly in the
D = 4ν + 2 case the matrix Λξ must obey the property that taking the negative
of the transpose of an arbitrary real matrix N before or after the fractional linear
transformation induced by Λξ is immaterial. Once again, it is easy to verify that this
condition is the same as the second property in (C.1.3), namely the definition of the
pseudo-orthogonal group SO(n,n). Consequently the surjective homomorphism of
(8.3.27) specializes as follows in the two relevant cases

ιδ :
{

Diff(Mscalar)−→ Sp(2n,R)

Diff(Mscalar)−→ SO(n,n)
(8.3.35)

Clearly, since both Sp(2n,R) and SO(n,n) are finite dimensional Lie groups, while
Diff(Mscalar) is infinite-dimensional, the homomorphism ιδ can never be an iso-
morphism and actually we always have:

dim ker ιδ = ∞ (8.3.36)

What should be clear from the above discussion is that a family of Lagrangians as in
(8.3.6) will admit a group of duality-rotations/field-redefinitions that will map one
into the other member of the family, as long as a kinetic matrix NΛΣ can be con-
structed that transforms as in (8.3.32). A way to obtain such an object is to identify
it with the period matrix occurring in problems of algebraic geometry. At the level
of the present discussion, however, this identification is by no means essential: any
construction of NΛΣ with the appropriate transformation properties is acceptable.

Note also that so far we have used the words duality-rotations/field-redefinitions
and not the word duality symmetry. Indeed the diffeomorphisms of the scalar man-
ifold we have considered were quite general and, as such had no claim to be sym-
metries of the action, or of the theory. Indeed the question we have answered is the
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following: what are the appropriate transformation properties of the tensor gauge
fields and of the generalized coupling constants under diffeomorphisms of the scalar
manifold? The next question is obviously that of duality symmetries. Suppose that a
certain diffeomorphism ξ ∈ Diff(Mscalar) is actually an isometry of the scalar metric
gIJ . Naming ξ� : TMscalar → TMscalar the push-forward of ξ , this means that

∀X,Y ∈ TMscalar
(8.3.37)

g(X,Y )= g
(
ξ�X, ξ�Y

)

and ξ is an exact global symmetry of the scalar part of the Lagrangian in (8.3.6). The
obvious question is: “can this symmetry be extended to a symmetry of the complete
action?” Clearly the answer is that, in general, this is not possible. The best we can
do is to extend it to a symmetry of the field equations plus Bianchi identities letting
it act as a duality rotation on the field-strengths plus their duals. This requires that
the group of isometries of the scalar metric Giso(Mscalar) be suitably embedded into
the duality group (either Sp(2n,R) or SO(n,n) depending on the case) and that the
kinetic matrix NΛΣ satisfies the covariance law:

N
(
ξ(φ)

)= (Cξ +DξN (φ)
)(
Aξ +BξN (φ)

)
(8.3.38)

A general class of solutions to this programme can be derived in the case where the
scalar manifold is taken to be a homogeneous space G/H. This is the subject of next
section.

8.3.1 The Kinetic Matrix N and Symplectic Embeddings

In our survey of the geometric features of bosonic supergravity Lagrangians that
are specifically relevant for p-brane solutions the next important item we have to
consider is the kinetic term of the (p+ 1)-form gauge fields. Generically it is of the
form:

L Kin
forms = NΛΣ(φ)F

Λ
μ1...μp+2

FΣ |μ1...μp+2 (8.3.39)

where NΛΣ is a suitable scalar field dependent symmetric matrix. In the case of
self-dual (p+ 1)-forms, that occurs only in even dimensions, the matrix N is com-
pletely fixed by the requirement that the ungauged supergravity theory should admit
duality symmetries. Furthermore as remarked in the previous section, the problem
of constructing duality-symmetric Lagrangians of the type (8.3.6) admits general
solutions when the scalar manifold is a homogeneous space G/H. Hence we devote
the present section to review the construction of the kinetic period matrix N in the
case of homogeneous spaces. The case of odd space dimensions where there are no
dualities will be addressed in a subsequent section.
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The relevant cases of even dimensional supergravities are:

1. In D = 4 the self-dual forms are ordinary gauge vectors and the duality rotations
are symplectic. There are several theories depending on the number of super-
symmetries. They are summarized in Table 8.1. Each theory involves a different
number n of vectorsAΛ and different cosets G

H but the relevant homomorphism ιδ
(see (8.3.35)) is always of the same type:

ιδ : Diff

(
G

H

)
−→ Sp(2n,R) (8.3.40)

having denoted by n the total number of vector fields that is displayed in Ta-
ble 8.1.

2. In D = 6 we have self-dual 2-forms. Also here we have a few different possibil-
ities depending on the number (N+,N−) of left and right handed supersymme-
tries with a variable number n of 2-forms. In particular for the (2,2) theory that
originates from type IIA compactifications the scalar manifold is:

G/H = O(4, n)

O(4)× O(n)
× O(1,1) (8.3.41)

while for the (4,0) theory that originates from type IIB compactifications the
scalar manifold is the following:

G/H = O(5, n)

O(5)× O(n)
(8.3.42)

Finally in the case of (N+ = 2,N− = 0) supergravity, the scalar manifold is

Mscalar = O(1, n)

O(n)
× QM (8.3.43)

the first homogeneous factor O(1,n)
O(n) containing the scalars of the tensor multi-

plets, while the second factor denotes a generic quaternionic manifold that con-
tains the scalars of the hypermultiplets. In all cases the relevant embedding is

ιδ : Diff

(
G

H

)
−→ SO(n,n) (8.3.44)

where n is the total number of 2-forms, namely:

⎧⎪⎨
⎪⎩
n= 4 + n for the (2,2) theory

n= 5 + n for the (4,0) theory

n= 1 + n for the (2,0) theory

(8.3.45)

3. In D = 8 we have self-dual three-forms. There are two theories. The first is max-
imally extended N = 2 supergravity where the number of three-forms is n= 3
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and the scalar coset manifold is:

G/H = SL(3,R)

O(3)
× SL(2,R)

O(2)
(8.3.46)

The second theory is N = 1 supergravity that contains n = 1 three-forms and
where the scalar coset is:

G/H = SO(2, n)

SO(2)× SO(n)
× O(1,1) (8.3.47)

having denoted n= # of vector multiplets. In the two cases the relevant embed-
ding is symplectic and specifically it is:

ιδ : Diff

(
G

H

)
−→

{
Sp(6,R) maximal supergravity

Sp(2,R) N = 1 supergravity
(8.3.48)

8.3.2 Symplectic Embeddings in General

Let us begin with the case of symplectic embeddings relevant to D = 4 and D = 8
theories.

Focusing on the isometry group of the canonical metric8 defined on G
H :

Giso

(
G

H

)
= G (8.3.49)

we must consider the embedding:

ιδ : G −→ Sp(2n,R) (8.3.50)

That in (8.3.40) is a homomorphism of finite dimensional Lie groups and as such
it constitutes a problem that can be solved in explicit form. What we just need to
know is the dimension of the symplectic group, namely the number n of D−4

2 -forms
appearing in the theory. Without supersymmetry the dimension m of the scalar man-
ifold (namely the possible choices of G

H ) and the number of vectors n are unrelated
so that the possibilities covered by (8.3.50) are infinitely many. In supersymmetric
theories, instead, the two numbers m and n are related, so that there are finitely
many cases to be studied corresponding to the possible embeddings of given groups
G into a symplectic group Sp(2n,R) of fixed dimension n. Actually taking into
account further conditions on the holonomy of the scalar manifold that are also
imposed by supersymmetry, the solution for the symplectic embedding problem is

8Actually, in order to be true, (8.3.49) requires that the normalizer of H in G be the identity group,
a condition that is verified in all the relevant examples.
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unique for all extended supergravities as we have already remarked. In D = 4 this
yields the unique scalar manifold choice displayed in Table 8.1, while in the other
dimensions gives the results recalled above.

Apart from the details of the specific case considered once a symplectic embed-
ding is given there is a general formula one can write down for the period matrix
N that guarantees symmetry (N T = N ) and the required transformation property
(8.3.38). This is the first result we want to present.

The real symplectic group Sp(2n,R) is defined as the set of all real 2n × 2n
matrices

Λ=
(
A B

C D

)
(8.3.51)

satisfying the first of (C.1.3), namely

ΛT
CΛ=C (8.3.52)

where

C≡
(

0 1
−1 0

)
(8.3.53)

If we relax the condition that the matrix should be real but we still impose (8.3.52)
we obtain the definition of the complex symplectic group Sp(2n,C). It is a well
known fact that the following isomorphism is true:9

Sp(2n,R)∼ USp(n,n)≡ Sp(2n,C)∩ U(n,n) (8.3.54)

By definition an element S ∈ USp(n,n) is a complex matrix that satisfies simulta-
neously (8.3.52) and a pseudounitarity condition, that is:

S T
CS = C; S †

HS =H; H≡
(

1 0
0 −1

)
(8.3.55)

The general block form of the matrix S is:

S =
(
T V �

V T �

)
(8.3.56)

and (8.3.55) are equivalent to:

T †T − V †V = 1; T †V � − V †T † = 0 (8.3.57)

9From the point of view of Lie algebra theory, there are no other independent real sections of the
Cn Lie algebra except the non-compact Sp(2n,R) and the compact USp(2n). So in mathematical
books the Lie group USp(n,n) does not exist being simply Sp(2n,R). In our present discussion we
find it useful to denote by this symbol the realization of Sp(2n,R) elements by means of complex
symplectic and pseudounitary matrices as described in the main text.
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The isomorphism of (8.3.54) is explicitly realized by the so called Cayley matrix:

C ≡ 1√
2

(
1 i1
1 −i1

)
(8.3.58)

via the relation:

S = CΛC −1 (8.3.59)

which yields:

T = 1

2
(A− iB)+ 1

2
(D + iC); V = 1

2
(A− iB)− 1

2
(D + iC) (8.3.60)

When we set V = 0 we obtain the subgroup U(n)⊂ USp(n,n), that in the real basis
is given by the subset of symplectic matrices of the form

(
A B

−B A

)
. The basic idea, to

obtain the general formula for the period matrix, is that the symplectic embedding of
the isometry group G will be such that the isotropy subgroup H ⊂ G gets embedded
into the maximal compact subgroup U(n), namely:

G
ιδ−→ USp(n,n); G ⊃ H

ιδ−→U(n)⊂ USp(n,n) (8.3.61)

If this condition is realized let L(φ) be a parameterization of the coset G/H by
means of coset representatives. By this we mean the following. Let φI be local
coordinates on the manifold G/H: to each point φ ∈ G/H we assign an element
L(φ) ∈ G in such a way that if φ′ �= φ, then no h ∈ H can exist such that L(φ′) =
L(φ) · h. In other words for each equivalence class of the coset (labeled by the
coordinate φ) we choose one representative element L(φ) of the class. Relying on
the symplectic embedding of (8.3.61) we obtain a map:

L(φ)−→ O(φ)=
(
U0(φ) U�

1 (φ)

U1(φ) U�
0 (φ)

)
∈ USp(n,n) (8.3.62)

that associates to L(φ) a coset representative of USp(n,n)/U(n). By construction if
φ′ �= φ no unitary n× n matrix W can exist such that:

O
(
φ′)= O(φ)

(
W 0
0 W�

)
(8.3.63)

On the other hand let ξ ∈ G be an element of the isometry group of G/H. Via the
symplectic embedding of (8.3.61) we obtain a USp(n,n) matrix

Sξ =
(
Tξ V �

ξ

Vξ T �
ξ

)
(8.3.64)

such that

SξO(φ)= O
(
ξ(φ)

)(W(ξ,φ) 0
0 W�(ξ,φ)

)
(8.3.65)
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where ξ(φ) denotes the image of the point φ ∈ G/H through ξ and W(ξ,φ) is a suit-
able U(n) compensator depending both on ξ and φ. Combining (8.3.65), (8.3.62),
with (8.3.60) we immediately obtain:

U
†
0

(
ξ(φ)

)+U
†
1

(
ξ(φ)

) = W †[U†
0 (φ)

(
AT + iBT

)+U
†
1 (φ)

(
AT − iBT

)]
(8.3.66)

U
†
0

(
ξ(φ)

)−U
†
1

(
ξ(φ)

) = W †[U†
0 (φ)

(
DT − iCT

)−U
†
1 (φ)

(
DT + iCT

)]

Setting:

N ≡ i
[
U

†
0 +U

†
1

]−1[
U

†
0 −U

†
1

]
(8.3.67)

and using the result of (8.3.66) one verifies that the transformation rule (8.3.38) is
verified. It is also an immediate consequence of the analogue of (8.3.57) satisfied by
U0 and U1 that the matrix in (8.3.67) is symmetric:

N T = N (8.3.68)

Equation (8.3.67) is the master formula derived in 1981 by Gaillard and Zumino
[25]. It explains the structure of the gauge field kinetic terms in all N ≥ 3 extended
supergravity theories and also in those N = 2 theories where, the special Kähler
manifold S K is a homogeneous manifold G/H. Similarly it applies to the kinetic
terms of the three-forms in D = 8. Furthermore, using (8.3.67) we can easily re-
trieve the structure of N = 4 supergravity.

8.4 General Form of D = 4 (Ungauged) Supergravity

What we discussed so far allows us to write the general form of the bosonic La-
grangian of D = 4 supergravity without gaugings. It is as follows:

L (4) =√|detg|
[
R[g]

2
− 1

4
∂μφ

a∂μφbhab(φ)+ ImNΛΣF
Λ
μνF

Σ |μν
]

+ 1

2
ReNΛΣF

Λ
μνF

Σ
ρσ ε

μνρσ (8.4.1)

where FΛ
μν ≡ (∂μA

Λ
ν − ∂νA

Λ
μ)/2. In principle the effective theory described by the

Lagrangian (8.4.1) can be obtained by compactification on suitable internal man-
ifolds from D = 10 supergravity or 11-dimensional M-theory, however, how we
stepped down from D = 10,11 to D = 4 is not necessary to specify at this level. It
is implicitly encoded in the number of residual supersymmetries that we consider.
If NQ = 32 is maximal it means that we used toroidal compactification. Lower val-
ues of NQ correspond to compactifications on manifolds of restricted holonomy,
Calabi-Yau three-folds, for instance, or orbifolds.
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In (8.4.1) φa denotes the whole set of nS scalar fields parameterizing the scalar
manifold MD=4

scalar which, for NQ ≥ 8, is necessarily a coset manifold:

MD=4
scalar = G

H
(8.4.2)

For NQ ≤ 8 (8.4.2) is not obligatory but it is possible. Particularly in the N = 2
case, i.e. for NQ = 8, a large variety of homogeneous special Kähler or quaternionic
manifolds fall into the set up of the present general discussion. The fields φa have
σ -model interactions dictated by the metric hab(φ) of MD=4

scalar . The theory includes
also n vector fields AΛ

μ̂
for which

F±|Λ
μν ≡ 1

2

[
FΛ
μν ∓ i

√|detg|
2

εμνρσF
ρσ

]
(8.4.3)

denote the self-dual (respectively antiself-dual) parts of the field-strengths. As dis-
played in (8.4.1) they are non-minimally coupled to the scalars via the symmetric
complex matrix

NΛΣ(φ)= i ImNΛΣ + ReNΛΣ (8.4.4)

which transforms projectively under G. Indeed the field strengths FΛ
μν plus their

magnetic duals fill up a 2n-dimensional symplectic representation of G which we
call by the name of W.

The kinetic matrix is constructed by means of the Gaillard Zumino master for-
mula in all cases where the scalar manifolds is a homogeneous space G/H. In the
next section, while discussing special Kähler geometry, we show how to construct
NΛΣ also for those S K manifolds that are not homogeneous. Indeed, as we al-
ready explained, when supersymmetry is larger than N = 2 the scalar manifold is
always a symmetric coset space. For N = 2, on the other hand, the prediction of
supersymmetry is that MD=4

scalar should be a special Kähler manifold S K n, n being
the number of considered vector multiplets.10 Special Kähler manifolds are a vast
category of spaces that typically are not cosets and may admit no continuous group
of isometries, as it happens, for instance, in the case of moduli spaces of Kähler
structure or complex structure deformations of Calabi-Yau three-folds. Nevertheless
there exists a subclass of special Kähler manifolds that are also symmetric spaces.
For those manifolds the special Kähler structure and the group structure coexist and
are tight together in a specific way.

8.5 Summary of Special Kähler Geometry

As recalled in Table 8.1, special Kähler geometry is that pertaining to the scalars
of N = 2 vector multiplets in D = 4 supergravity. Its first formulation in spe-

10For simplicity we do not envisage the inclusion of hypermultiplets which would span additional
quaternionic manifolds.
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cial coordinates was introduced in 1984–85 by B. de Wit et al. and E. Cremmer
et al. (see pioneering paper [2]), where the coupling of N = 2 vector multiplets
to N = 2 supergravity was fully determined. The more intrinsic definition of spe-
cial Kähler geometry in terms of symplectic bundles is due to Strominger [5], who
obtained it in connection with the moduli spaces of Calabi-Yau compactifications.
The coordinate-independent description and derivation of special Kähler geometry
in the context of N = 2 supergravity is due to Castellani, D’Auria, Ferrara and to
D’Auria, Ferrara, Frè (1991) (see Refs. [3, 4, 20]).

Let us summarize the relevant concepts and definitions.

8.5.1 Hodge-Kähler Manifolds

Consider a line bundle L
π−→M over a Kähler manifold. By definition this is a

holomorphic vector bundle of rank r = 1. For such bundles the only available Chern
class is the first:

c1(L )= i

2π
∂
(
h−1∂h

)= i

2π
∂∂ logh (8.5.1)

where the 1-component real function h(z, z) is some Hermitian fibre metric on L .
Let f (z) be a holomorphic section of the line bundle L : noting that under the
action of the operator ∂∂ the term log(ξ(z)ξ(z)) yields a vanishing contribution, we
conclude that the formula in (8.5.1) for the first Chern class can be re-expressed as
follows:

c1(L )= i

2π
∂∂ log

∥∥ξ(z)∥∥2 (8.5.2)

where ‖ξ(z)‖2 = h(z, z)ξ(z)ξ(z) denotes the norm of the holomorphic section ξ(z).
Equation (8.5.2) is the starting point for the definition of Hodge Kähler mani-

folds. A Kähler manifold M is a Hodge manifold if and only if there exists a line
bundle L −→ M such that its first Chern class equals the cohomology class of the
Kähler two-form K:

c1(L )= [K] (8.5.3)

In local terms this means that there is a holomorphic section W(z) such that we
can write

K = i

2π
gij� dz

i ∧ dzj
� = i

2π
∂∂ log

∥∥W(z)
∥∥2 (8.5.4)

Recalling the local expression of the Kähler metric in terms of the Kähler potential
gij� = ∂i∂j�K (z, z), it follows from (8.5.4) that if the manifold M is a Hodge man-
ifold, then the exponential of the Kähler potential can be interpreted as the metric
h(z, z)= exp(K (z, z)) on an appropriate line bundle L .
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8.5.2 Connection on the Line Bundle

On any complex line bundle L there is a canonical Hermitian connection defined
as:

θ ≡ h−1∂h= 1

h
∂ihdz

i; θ ≡ h−1∂h= 1

h
∂i�hdz

i� (8.5.5)

For the line-bundle advocated by the Hodge-Kähler structure we have

[∂θ ] = c1(L )= [K] (8.5.6)

and since the fibre metric h can be identified with the exponential of the Kähler
potential we obtain:

θ = ∂K = ∂iK dzi; θ = ∂K = ∂i�K dzi
�

(8.5.7)

To define special Kähler geometry, in addition to the afore-mentioned line-bundle
L we need a flat holomorphic vector bundle S V −→ M whose sections play
an important role in the construction of the supergravity Lagrangians. For reasons
intrinsic to such constructions the rank of the vector bundle S V must be 2nV where
nV is the total number of vector fields in the theory. If we have n-vector multiplets
the total number of vectors is nV = n + 1 since, in addition to the vectors of the
vector multiplets, we always have the graviphoton sitting in the graviton multiplet.
On the other hand the total number of scalars is 2n. Suitably paired into n-complex
fields zi , these scalars span the n complex dimensions of the base manifold M of
the rank 2n+ 2 bundle S V −→ M .

In the sequel we make extensive use of covariant derivatives with respect to the
canonical connection of the line-bundle L . Let us review its normalization. As it is
well known there exists a correspondence between line-bundles and U(1)-bundles.
If exp[fαβ(z)] is the transition function between two local trivializations of the
line-bundle L −→ M , the transition function in the corresponding principal U(1)-
bundle U −→ M is just exp[i Imfαβ(z)] and the Kähler potentials in two different
charts are related by: Kβ = Kα + fαβ + f αβ . At the level of connections this cor-

respondence is formulated by setting: U(1)-connection ≡ Q = Im θ = − i
2 (θ − θ).

If we apply this formula to the case of the U(1)-bundle U −→ M associated with
the line-bundle L whose first Chern class equals the Kähler class, we get:

Q = − i

2

(
∂iK dzi − ∂i�K dzi

�)
(8.5.8)

Let now Φ(z, z) be a section of U p . By definition its covariant derivative is ∇Φ =
(d + ipQ)Φ or, in components,

∇iΦ =
(
∂i + 1

2
p∂iK

)
Φ; ∇i∗Φ =

(
∂i∗ − 1

2
p∂i∗K

)
Φ (8.5.9)
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A covariantly holomorphic section of U is defined by the equation: ∇i∗Φ = 0. We
can easily map each section Φ(z, z) of U p into a section of the line-bundle L by
setting:

Φ̃ = e−pK /2Φ (8.5.10)

With this position we obtain:

∇i Φ̃ = (∂i + p∂iK )Φ̃; ∇i∗Φ̃ = ∂i∗Φ̃ (8.5.11)

Under the map of (8.5.10) covariantly holomorphic sections of U flow into holo-
morphic sections of L and vice-versa.

8.5.3 Special Kähler Manifolds

We are now ready to give the first of two equivalent definitions of special Kähler
manifolds:

Definition 8.5.1 A Hodge Kähler manifold is Special Kähler (of the local type)
if there exists a completely symmetric holomorphic 3-index section Wijk of
(T �M )3 ⊗L 2 (and its antiholomorphic conjugate Wi∗j∗k∗ ) such that the following
identity is satisfied by the Riemann tensor of the Levi-Civita connection:

∂m∗Wijk = 0; ∂mWi∗j∗k∗ = 0

∇[mWi]jk = 0; ∇[mWi∗]j∗k∗ = 0 (8.5.12)

Ri∗j�∗k = g�∗j gki∗ + g�∗kgji∗ − e2K Wi∗�∗s∗Wtkjg
s∗t

In the above equations ∇ denotes the covariant derivative with respect to both the
Levi-Civita and the U(1) holomorphic connection of (8.5.8). In the case of Wijk , the
U(1) weight is p = 2.

Out of the Wijk we can construct covariantly holomorphic sections of weight 2
and −2 by setting:

Cijk =Wijke
K ; Ci�j�k� =Wi�j�k�e

K (8.5.13)

The flat bundle mentioned in the previous subsection apparently does not appear in
this definition of special geometry. Yet it is there. It is indeed the essential ingredient
in the second definition whose equivalence to the first we shall shortly provide.

Let L −→ M denote the complex line bundle whose first Chern class equals the
Kähler form K of an n-dimensional Hodge-Kähler manifold M . Let S V −→ M
denote a holomorphic flat vector bundle of rank 2n + 2 with structural group
Sp(2n+2,R). Consider tensor bundles of the type H = S V ⊗L . A typical holo-
morphic section of such a bundle will be denoted by Ω and will have the following
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structure:

Ω =
(
XΛ

FΣ

)
Λ,Σ = 0,1, . . . , n (8.5.14)

By definition the transition functions between two local trivializations Ui ⊂ M and
Uj ⊂ M of the bundle H have the following form:

(
X

F

)
i

= efijMij

(
X

F

)
j

(8.5.15)

where fij are holomorphic maps Ui ∩ Uj → C while Mij is a constant Sp(2n +
2,R) matrix. For a consistent definition of the bundle the transition functions are
obviously subject to the cocycle condition on a triple overlap: efij+fjk+fki = 1 and
MijMjkMki = 1.

Let i〈 | 〉 be the compatible Hermitian metric on H

i〈Ω |Ω〉 ≡ −iΩT

(
0 1

−1 0

)
Ω (8.5.16)

Definition 8.5.2 We say that a Hodge-Kähler manifold M is special Kähler if there
exists a bundle H of the type described above such that for some section Ω ∈
Γ (H ,M ) the Kähler two form is given by:

K = i

2π
∂∂ log

(
i〈Ω |Ω〉) (8.5.17)

From the point of view of local properties, (8.5.17) implies that we have an ex-
pression for the Kähler potential in terms of the holomorphic section Ω :

K = − log
(
i〈Ω |Ω〉)= − log

[
i
(
X
Λ
FΛ − FΣX

Σ
)]

(8.5.18)

The relation between the two definitions of special manifolds is obtained by intro-
ducing a non-holomorphic section of the bundle H according to:

V =
(
LΛ

MΣ

)
≡ eK /2Ω = eK /2

(
XΛ

FΣ

)
(8.5.19)

so that (8.5.18) becomes:

1 = i〈V |V 〉 = i
(
L
Λ
MΛ −MΣL

Σ
)

(8.5.20)

Since V is related to a holomorphic section by (8.5.19) it immediately follows that:

∇i�V =
(
∂i� − 1

2
∂i�K

)
V = 0 (8.5.21)
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On the other hand, from (8.5.20), defining:

Ui = ∇iV =
(
∂i + 1

2
∂iK

)
V ≡

(
fΛ
i

hΣ |i

)
(8.5.22)

Ui� = ∇i�V =
(
∂i� + 1

2
∂i�K

)
V ≡

(
f
Λ

i�

hΣ |i�

)

it follows that:

∇iUj = iCijkg
k��U�� (8.5.23)

where ∇i denotes the covariant derivative containing both the Levi-Civita connec-
tion on the bundle T M and the canonical connection θ on the line bundle L . In
(8.5.23) the symbol Cijk denotes a covariantly holomorphic (∇��Cijk = 0) section
of the bundle T M 3 ⊗ L 2 that is totally symmetric in its indices. This tensor can
be identified with the tensor of (8.5.13) appearing in (8.5.12). Alternatively, the set
of differential equations:

∇iV =Ui (8.5.24)

∇iUj = iCijkg
k��U�� (8.5.25)

∇i�Uj = gi�jV (8.5.26)

∇i�V = 0 (8.5.27)

with V satisfying (8.5.19), (8.5.20) give yet another definition of special geometry.
In particular it is easy to find (8.5.12) as integrability conditions of (8.5.27).

8.5.4 The Vector Kinetic Matrix NΛΣ in Special Geometry

In the bosonic supergravity action (8.4.1) we do not see sections of any symplectic
bundle over the scalar manifold but we see the real and imaginary parts of the ma-
trix NΛΣ necessary in order to write the kinetic terms of the vector fields. Special
geometry enters precisely at this level, since it is utilized to define such a matrix.
Explicitly NΛΣ which, in relation with its interpretation in the case of Calabi-Yau
three-folds, is named the period matrix, is defined by means of the following rela-
tions:

MΛ = N ΛΣL
Σ ; hΣ |i = N ΛΣf

Σ
i (8.5.28)

which can be solved introducing the two (n+ 1)× (n+ 1) vectors

fΛ
I =

(
fΛ
i

L
Λ

)
; hΛ|I =

(
hΛ|i
MΛ

)
(8.5.29)
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and setting:

N ΛΣ = hΛ|I ◦ (f−1)I
Σ

(8.5.30)

As a consequence of its definition the matrix N transforms, under diffeomorphisms
of the base Kähler manifold, exactly as it is requested by the rule in (8.3.32). Indeed
this is the very reason why the structure of special geometry has been introduced.
The existence of the symplectic bundle H −→ M is required in order to be able to
pull-back the action of the diffeomorphisms on the field strengths and to construct
the kinetic matrix N .

8.6 Supergravities in Five Dimension and More Scalar
Geometries

The renewed interest in five-dimensional gauged supergravities stems from two de-
velopments. On one hand we have the AdS5/CFT4 correspondence11 between

(a) superconformal gauge theories in D = 4, viewed as the world volume descrip-
tion of a stack of D3-branes,

(b) type IIB supergravity compactified on AdS5 times a five-dimensional internal
manifold X5 which yields a gauged supergravity model in D = 5.

On the other hand we have the quest for supersymmetric realizations of the Randall-
Sundrum scenarios which also correspond to domain wall solutions of appropriate
D = 5 gauged supergravities. It is, however, noteworthy that five dimensional super-
gravity has a long and interesting history. The minimal theory (N = 2), whose field
content is given by the metric gμν , a doublet of pseudo Majorana gravitinos ψAμ

(A = 1,2) and a vector boson Aμ was constructed thirty years ago [8] as the first
non-trivial example of a rheonomic construction.12 This simple model remains to
the present day the unique example of a perfectly geometric theory where, notwith-
standing the presence of a gauge boson Aμ, the action can be written solely in
terms of differential forms and wedge products without introducing Hodge duals.
This feature puts pure D = 5 supergravity into a selective club of few ideal theories
whose other members are just pure gravity in arbitrary dimension and pure N = 1
supergravity in four dimensions. The miracle that allows the boson Aμ to propagate

11Since 1998 a rich stream of literature has been devoted to the so called AdS/CFT correspon-
dence. In a nut-shell such a correspondence is rooted in the double interpretation of the groups
SO(2, d − 1) as anti de Sitter groups in d-dimensions and as conformal groups in (d − 1)-
dimensions. Such double interpretation has very far reaching consequences. At the end of a long
chain of arguments it enables to evaluate exactly certain Green functions of appropriate quan-
tum gauge-theories in d − 1 dimensions by means of classical gravitational calculations in d-
dimensions. In more general terms this correspondence is a kind of holography where boundary
and bulk calculations can be interchanged.
12We leave aside pure N = 1, D = 4 supergravity that from the rheonomic viewpoint is a com-
pletely trivial case.
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without introducing its kinetic term is due to the conspiracy of first order formalism
for the spin connection ωab together with the presence of two Chern-Simons terms.
The first Chern Simons is the standard gauge one:

CSgauge = F ∧ F ∧A (8.6.1)

while the second is a mixed, gravitational-gauge Chern Simons that reads as follows

CSmixed = T a ∧ F ∧ Va (8.6.2)

where V a is the vielbein and T a = DV a is its curvature, namely the torsion.
The possible matter multiplets for N = 2, D = 5 are the vector/tensor multi-

plets and the hypermultiplets. The field content of the first type of multiplets is the
following one:

⎧⎪⎪⎨
⎪⎪⎩

AI
μ (I = 1, . . . , nV ) vectors

λiA φi (i = 1, . . . , nV + nT ≡ n) (A= 1,2)

BM
μν (M = 1, . . . , nT ) tensors

⎫⎪⎪⎬
⎪⎪⎭

(8.6.3)

where by nV we have denoted the number of vectors or gauge 1-forms AI
μ, nT

being instead the number of tensors or gauge 2-forms BM
μν = −BM

νμ . In ungauged
supergravity, where everything is Abelian, vectors and tensors are equivalent since
they can be dualized into each other by means of the transformation:

∂[μAν] = ε λρσ
μν ∂λBρσ (8.6.4)

but in gauged supergravity it is only the 1-forms that can be promoted to non-
Abelian gauge vectors while the 2-forms describe massive degrees of freedom. The
other members of each vector/tensor multiplet are a doublet of pseudo Majorana
spin 1/2 fields:

λiA = εABC
(
λ
iB)T ; λ

iB = (λiB)†γ0; A,B = 1, . . . ,2 (8.6.5)

and a real scalar φi . The field content of hypermultiplets is the following:

hypermultiplets = {qu(u= 1, . . . ,4m), ζα(α = 1, . . .2m)
}

(8.6.6)

where, having denoted m the number of hypermultiplets, qu are m quadruplets of
real scalar fields and ζ α are m doublets of pseudo Majorana spin 1/2 fields:

ζ α =C
αβC (ζ β)

T ; ζ β = (ζ β)†γ0; α,β = 1, . . . ,2m (8.6.7)

the matrix C
T = −C, C2 = −1 being the symplectic invariant metric of Sp(2m,R).

In the middle of the eighties Gunaydin, Sierra and Townsend [9, 10] considered
the general structure of N = 2, D = 5 supergravity coupled to an arbitrary num-
ber n= nV + nT of vector/tensor multiplets and discovered that this is dictated by
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a peculiar geometric structure imposed by supersymmetry on the scalar manifold
S V n that contains the φi scalars. In modern nomenclature this peculiar geometry
is named very special geometry and S V n are referred to as real very special mani-
folds. The characterizing property of very special geometry arises from the need to
reconcile the transformations of the scalar members of each multiplet with those of
the vectors in presence of the Chern-Simons term (8.6.1) which generalizes to:

L CS = 1

8
dΛΣΓ F

Λ
μνF

Σ
ρσA

Γ
τ ε

μνρστ (8.6.8)

the symbol dΛΣΓ denoting some appropriate constant symmetric tensor and, having
dualized all 2-forms to vectors, the range of the indices Λ,Σ,Γ being:

Λ= 1, . . . , n+ 1 = {0, I︸︷︷︸
I

,M } (8.6.9)

Indeed the total number of vector fields, including the graviphoton that belongs to
the graviton multiplet, is always n+ 1, n being the number of vector multiplets. It
turns out that very special geometry is completely defined in terms of the constant
tensors dΛΣΓ that are further restricted by a condition ensuring positivity of the
energy. At the beginning of the nineties special manifolds were classified and thor-
oughly studied by de Wit, Van Proeyen and some other collaborators [11–13] who
also explored the dimensional reduction from D = 5 to D = 4, clarifying the way
real very special geometry is mapped into the special Kähler geometry featured by
vector multiplets in D = 4 and generically related to Calabi-Yau moduli spaces.

The 4m scalars of the hypermultiplet sector have instead exactly the same ge-
ometry in D = 4 as in D = 5 dimensions, namely they fill a quaternionic manifold
QM . These scalar geometries are a crucial ingredient in the construction of both
the ungauged and the gauged supergravity Lagrangians. Indeed the basic operations
involved by the gauging procedure are based on the specific geometric structures
of very special and quaternionic manifolds, in particular the crucial existence of
a moment-map. For this reason the present section is devoted to a summary of
these geometries and to an illustration of the general form of the bosonic D = 5
Lagrangians. Yet, before entering these mathematical topics, we want to recall the
structure of maximally extended (N = 8) supergravity in the same dimensions.

As explained above (see in particular Table 8.2) the scalar manifold of maximal
supergravity in five-dimensions is the 42-dimensional homogeneous space:

Mmax
scalar = E6(6)

USp(8)
(8.6.10)

The holonomy subgroup H = USp(8) is the largest invariance group of complex lin-
ear transformations that respects the pseudo-Majorana condition on the 8 gravitino
1-forms:

ψA =ΩABC (ψA)
T ; A= 1, . . . ,8 (8.6.11)
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where ΩAB = −ΩBA is an antisymmetric 8 × 8 matrix such that Ω2 = −1. Us-
ing these notations where the capital Latin indices transform in the fundamental 8-
representation of USp(8) we can summarize the field content of the N = 8 graviton
multiplet as:

1. the graviton field, namely the fünfbein 1-form V a ,
2. eight gravitinos ψA ≡ψA

μ dxμ in the 8 representation of USp(8),
3. 27 vector fields AΛ ≡AΛ

μ dxμ in the 27 of E6(6)
13,

4. 48 dilatinos χABC in the 48 of USp(8),
5. 42 scalars φ that parameterize the coset manifold E(6)6/USp(8). They appear

in the theory through the coset representative L
AB
Λ (φ), which is regarded as co-

variant in the (27,27) of USp(8) × E6(6). This means the following. Since the
fundamental 27 (real) representation of E6(6) remains irreducible under reduction
to the subgroup USp(8)⊂ E6(6) it follows that there exists a constant intertwin-
ing 27 × 27 matrix I AB

Σ that transforms the index Σ running in the fundamental
of E6(6) into an antisymmetric pair of indices AB with the additional property
that CABΩAB = 0 which is the definition of the 27 of USp(8). The coset repre-
sentative we use is to be interpreted as LAB

Λ (φ)= L
Σ
ΛI AB

Σ .

The construction of the ungauged theory proceeds then through well established
general steps and the basic ingredients, namely the USp(8) connection in the 36
adjoint representation Q B

A and the scalar vielbein PABCD (fully antisymmetric in
ABCD) are extracted from the left-invariant 1-form on the scalar coset according
to:

L
−1 Λ
AB dL CD

Λ = Q CD
AB + P CD

AB

Q CD
AB = 2δ[C[AQ D]

B] (8.6.12)

P CD
AB = ΩAEΩBFPEFCD

Independently from the number of supersymmetries we can write a general form
for the bosonic action of any D = 5 ungauged supergravity, namely the following
one:

L
(ungauged)
(D=5) = √−g

(
1

2
R − 1

4
NΛΣF

Λ
μνF

Σ |μν + 1

2
gij ∂μφ

i∂μφj
)

+ 1

8
dΛΣΓ ε

μνρστFΛ
μνF

Σ
ρσA

Γ
τ (8.6.13)

where gij is the metric of the scalar manifold Mscalar , NΛΣ(φ) is a positive defi-
nite symmetric function of the scalars that under the isometry group Giso of Mscalar

transforms in
⊗2

sym R, having denoted by R a linear representation of Giso to which

the vector fields AΓ are assigned. Finally dΛΣΓ is a three-index symmetric tensor

13In the ungauged theory all two-forms have been dualized to vectors.
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invariant with respect to the representation R. At this point we invite the reader to
compare the above statements with the general discussion of Sect. 8.2.1, in partic-
ular points B and C. As stated in (8.2.4) the automorphism group of N -extended
supersymmetry (which in D = 5 is USp(N ) due to pseudo Majorana fermions)
must be contained as a factor in the holonomy group of the scalar manifold. On
the other hand the (pi + 1)-forms must be assigned to linear representations Di of
the isometry group for Mscalar . In our case having dualized the two forms we just
have vectors, namely (p+ 1 = 1)-forms and the representation R is the only Di we
need to discuss. In the four-dimensional case the construction of the Lagrangian was
mainly dictated by the symplectic embedding of (8.3.50). Indeed, since the 1-forms
are self-dual in D = 4, then the isometries of the scalar manifolds must be realized
on the vectors as symplectic duality symmetries, according to the general discussion
of Sect. 8.3. In five dimensions, where no such duality symmetry can be realized,
the isometry of the scalar manifold has to be linearly realized on the vectors in such
a way as to make it an exact symmetry of the Lagrangian (8.6.13). This explains
why the kinetic matrix N must transform in the representation

⊗2
sym R.

In maximal N = 8 supergravity the items involved in the construction of the
bosonic Lagrangian have the following values:

1. The scalar metric is the E6(6) invariant metric on the coset (8.6.10), namely:

gij = 1

6
P ABCD
i PABCD|j (8.6.14)

2. The vector kinetic metric is given by the following quadratic form in terms of the
coset representative:

NΛΣ = 4
(
L

AB
Λ L

CD
Σ ΩACΩBD

)
(8.6.15)

3. The representation R is the fundamental 27 of E6(6).
4. The tensor dΛΣΓ is the coefficient of the cubic invariant of E6(6) in the 27 rep-

resentation.

To see how the same items are realized in the case of an N = 2 theory we have
to introduce very special and quaternionic geometry. Just before entering this it is
worth nothing that also the supersymmetry transformation rule of the gravitino field
admits a general form (once restricted to the purely bosonic terms), namely:

δψAμ = DμεA − 1

3
T ρσ
AB

(
gμργσ − 1

8
εμρσλνγ

λν

)
εB (8.6.16)

where the indices A,B run in the fundamental representation of the automorphism
(R-symmetry) group USp(N ) and the tensor T ρσ

AB , antisymmetric both in AB and
in ρσ and named the graviphoton field strength, is given by:

T ρσ
AB =ΦΛ

AB(φ)NΛΣF
Σ |ρσ (8.6.17)
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the scalar field dependent tensor ΦΛ
AB(φ) being intrinsically defined as the coeffi-

cient of the term εAψB
μ in the supersymmetry transformation rule of the vector field

AΛ
μ , namely:

δAΛ
μ = · · · + 2iΦΛ

AB(φ)ε
AψB

μ (8.6.18)

From its own definition it follows that under isometries of the scalar manifold
ΦΛ
AB(φ) must transform in the representation R of Giso times

∧2 N of the R-
symmetry USp(N ). In the case of N = 8 supergravity the tensor ΦΛ

AB(φ) is simply
the inverse coset representative:

ΦΛ
AB(φ)=

(
L

−1) Λ

AB
(8.6.19)

We see in the next subsection how the same object is generally realized in an N = 2
theory via very special geometry.

8.6.1 Very Special Geometry

Very special geometry is the peculiar metric and associated Riemannian structure
that can be constructed on a very special manifold. By definition a very special
manifold V S n is a real manifold of dimension n that can be represented as the
following algebraic locus in R

n+1:

1 = N(X)≡
√
dΛΣΔXΛXΣXΔ (8.6.20)

where XΛ (Λ= 1, . . . , n+ 1) are the coordinates of Rn+1 while

dΛΣΔ (8.6.21)

is a constant symmetric tensor fulfilling some additional defining properties that we
will recall later on.

A coordinate system φi on V S n is provided by any parametric solution of
(8.6.20) such that:

XΛ =XΛ(φ); φi = free; i = 1, . . . , n (8.6.22)

The very special metric on the very special manifold is nothing else but the pull-
back on the algebraic surface (8.6.20) of the following R

n+1 metric:

ds2
Rn+1 = NΛΣ dXΛ ⊗ dXΣ (8.6.23)

NΛΣ ≡ −∂Λ∂Σ ln N(X) (8.6.24)

In other words in any coordinate frame the coefficients of the very special metric
are the following ones:

gij (φ)= NΛΣf
Λ
i f Σ

j (8.6.25)
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where we have introduced the new objects:

fΛ
i ≡ ∂iX

Λ = ∂

∂φi
XΛ (8.6.26)

If we also define

FΛ = ∂

∂XΛ
ln N(X); hΛi ≡ ∂iFΛ (8.6.27)

and introduce the 2(n+ 1)-vectors:

U =
(
XΛ

FΣ

)
; Ui = ∂iU =

(
fΛ
i

hΣi

)
(8.6.28)

taking a second covariant derivative it can be shown that the following identity is
true:

∇iUj = 2

3
gijU +

√
2

3
Tijkg

k�U� (8.6.29)

where the world-index symmetric coordinate dependent tensor Tijk is related to the
constant tensor dΛΓΣ by:

dΛΓΣ = 20

27
FΛFΓ FΣ − 2

3
N(ΛΓ FΣ) + 8

27
Tijkg

ipgjqgkrhΛphΓ qhΣr (8.6.30)

The identity (8.6.29) is the real counterpart of a completely similar identity that
holds true in special Kähler geometry and also defines a symmetric 3-index tensor.
In the use of very special geometry to construct a supersymmetric field theory the
essential property is the existence of the section XΛ(φ). Indeed it is this object that
allows the writing of the tensor ΦΛ

AB(φ) appearing in the vector transformation rule
(8.6.18). It suffice to set:

ΦΛ
AB(φ)=XΛ(φ)εAB (8.6.31)

Why do we call it a section? Since it is just a section of a flat vector bundle of rank
n+ 1

FB
π→ S V n (8.6.32)

with base manifold the very special manifold and structural group some subgroup of
the n+ 1 dimensional linear group: Giso ⊂ GL(n+ 1,R). The bundle is flat because
the transition functions from one local trivialization to another one are constant
matrices:

∀g ∈ Giso : XΛ(gφ)= (M[g])Λ
Σ
XΣ(φ); M[g] = constant matrix (8.6.33)

The structural group Giso is implicitly defined as the set of matrices M that leave
the dΛΓΣ tensor invariant:

M ∈ Giso ⇔ M
Σ1

Λ1
M

Σ2
Λ2

M
Σ3

Λ3
dΛ1Λ2Λ3 = dΣ1Σ2Σ3 (8.6.34)
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Since the very special metric is defined by (8.6.25) it immediately follows that Giso

is also the isometry group of such a metric, its action in any coordinate patch (8.6.22)
being defined by the action (8.6.33) on the section XΛ. This fact explains the name
given to this group.

By means of this reasoning we have shown that the classification of very special
manifolds is fully reduced to the classification of the constant tensors dΛΓΣ such
that their group of invariances acts transitively on the manifold S V n defined by
(8.6.20) and that the special metric (8.6.25) is positive definite. This is the algebraic
problem that was completely solved by de Wit and Van Proeyen in [11]. They found
all such tensors and the corresponding manifolds. There is a large subclass of very
special manifolds that are homogeneous spaces but there are also infinite families
of manifolds that are not G/H cosets.

8.6.2 The Very Special Geometry
of the SO(1,1) × SO(1,n)/SO(n) Manifold

As an example of very special manifold we consider the following class of homo-
geneous spaces:

RT [n] ≡ SO(1,1)× SO(1, n)

SO(n)
(8.6.35)

This example is particularly simple and relevant to string theory since reducing it on
a circle S1 from five to four dimensions one finds a supergravity model where the
special Kähler geometry is that of

ST [2, n] = SU(1,1)

U(1)
× SO(2, n)

SO(2)× SO(n)
(8.6.36)

which constitutes a primary example with very large applications.
To see that the RT [n] are indeed very special manifolds we consider the follow-

ing instance of cubic norm:

N(X) =√
C(X) (8.6.37)

C(X) = X0(X+X− − X2); X2 =
r∑

�=1

(
X�
)2 (8.6.38)

It is immediately verified that the infinitesimal linear transformations XΛ →XΛ +
δXΛ that leave the cubic polynomial C(X) invariant are the following ones:

δΔ

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ (8.6.39)
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δL

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 −4 0
0 4 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ (8.6.40)

δv

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 vT

0 0 0 0
0 0 v 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ (8.6.41)

δu

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 vT

0 v 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ (8.6.42)

δA

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 A

⎞
⎟⎟⎠

⎛
⎜⎜⎝
X0

X+
X−
X

⎞
⎟⎟⎠ ; AT = −A ∈ SO(r) (8.6.43)

The transformation δΔ generates an SO(1,1) group that commutes with the
SO(1, r + 1) group generated by the transformations δL, δu, δv and δA, hence the
symmetry group of the symmetric tensor:

dΛΣΓ =

⎧⎪⎨
⎪⎩
d0+− = 1

d0�m = −δ�m

0 otherwise

(8.6.44)

defined by the cubic polynomial C(X) is indeed the group SO(1,1) × SO(1, n).
This is quite simple and evident. What is important is that the same group has also
a transitive action on the manifold defined by the equation C(X) = 1 that can be
identified with the product SO(1,1)× SO(1, n)/SO(2). To verify this statement it
suffices to consider that the quadratic equation

H+H− − H2 = 1 (8.6.45)

defines the homogeneous manifold SO(1, n)/SO(2) on which SO(1, n) has a transi-
tive action. For instance we can use as independent r + 1 coordinates the following
ones:

φ0 =H+; φ� =H� (�= 1, . . . , r) ⇒ H− = 1 + φ2

φ0
(8.6.46)

and then it suffices to set:

X0[σ,φ] = e−2σ ; (
X+,X−,X

)= eσ
(
H+[φ],H−[φ],H[φ]) (8.6.47)
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to obtain a parameterization of the section X in terms of coordinates σ,φ of the man-
ifold SO(1,1)× SO(1, n)/SO(2)× SO(n). This achieves the desired proof that the
group Giso has a transitive action on the special manifold and consequently that the
cubic norm (8.6.37), (8.6.38) is admissible as a definition of a very special manifold.

8.6.3 Quaternionic Geometry

Next we turn our attention to the hypermultiplet sector of an N = 2 supergravity.
For these multiplets no distinction arises between the D = 4 and D = 5. Each hyper-
multiplet contains 4 real scalar fields and, at least locally, they can be regarded as the
four components of a quaternion. The locality caveat is, in this case, very substantial
because global quaternionic coordinates can be constructed only occasionally even
on those manifolds that are denominated quaternionic in the mathematical literature
[6, 17]. Anyhow, what is important is that, in the hypermultiplet sector, the scalar
manifold QM has dimension multiple of four:

dimR QM = 4m≡ 4 # of hypermultiplets (8.6.48)

and, in some appropriate sense, it has a quaternionic structure.
We name Hypergeometry that pertaining to the hypermultiplet sector, irrespec-

tively whether we deal with global or local N = 2 theories. Yet there are two kinds
of hypergeometries. Supersymmetry requires the existence of a principal SU(2)-
bundle

S U −→ QM (8.6.49)

The bundle S U is flat in the rigid supersymmetry case while its curvature is pro-
portional to the Kähler forms in the local case.

These two versions of hypergeometry were already known in mathematics prior
to their use [14, 18–20, 22, 23] in the context of N = 2 supersymmetry and are
identified as:

rigid hypergeometry ≡ HyperKähler geometry
(8.6.50)

local hypergeometry ≡ quaternionic geometry

8.6.4 Quaternionic, Versus HyperKähler Manifolds

Both a quaternionic or a HyperKähler manifold QM is a 4m-dimensional real man-
ifold endowed with a metric h:

ds2 = huv(q) dq
u ⊗ dqv; u,v = 1, . . . ,4m (8.6.51)

and three complex structures
(
J x
) : T (QM )−→ T (QM ) (x = 1,2,3) (8.6.52)
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that satisfy the quaternionic algebra

J xJ y = −δxy1 + εxyzJ z (8.6.53)

and respect to which the metric is Hermitian:

∀X,Y ∈ TQM : h
(
J xX, J xY

)= h(X,Y) (x = 1,2,3) (8.6.54)

From (8.6.54) it follows that one can introduce a triplet of 2-forms

Kx =Kx
uv dq

u ∧ dqv; Kx
uv = huw(J

x)wv (8.6.55)

that provides the generalization of the concept of Kähler form occurring in the com-
plex case. The triplet Kx is named the HyperKähler form. It is an SU(2) Lie-algebra
valued 2-form in the same way as the Kähler form is a U(1) Lie-algebra valued 2-
form. In the complex case the definition of Kähler manifold involves the statement
that the Kähler 2-form is closed. At the same time in Hodge-Kähler manifolds (those
appropriate to local supersymmetry in D = 4) the Kähler 2-form can be identified
with the curvature of a line-bundle which in the case of rigid supersymmetry is flat.
Similar steps can be taken also here and lead to two possibilities: either HyperKähler
or quaternionic manifolds.

Let us introduce a principal SU(2)-bundle S U as defined in (8.6.49). Let ωx de-
note a connection on such a bundle. To obtain either a HyperKähler or a quaternionic
manifold we must impose the condition that the HyperKähler 2-form is covariantly
closed with respect to the connection ωx :

∇Kx ≡ dKx + εxyzωy ∧Kz = 0 (8.6.56)

The only difference between the two kinds of geometries resides in the structure of
the S U -bundle.

Definition 8.6.1 A HyperKähler manifold is a 4m-dimensional manifold with the
structure described above and such that the S U -bundle is flat.

Defining the S U -curvature by:

Ωx ≡ dωx + 1

2
εxyzωy ∧ωz (8.6.57)

in the HyperKähler case we have:

Ωx = 0 (8.6.58)

Vice-versa

Definition 8.6.2 A quaternionic manifold is a 4m-dimensional manifold with the
structure described above and such that the curvature of the S U -bundle is propor-
tional to the HyperKähler 2-form.
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Hence, in the quaternionic case we can write:

Ωx = λKx (8.6.59)

where λ is a non-vanishing real number.
As a consequence of the above structure the manifold QM has a holonomy

group of the following type:

Hol(QM ) = SU(2)⊗ H (quaternionic)

Hol(QM ) = 1 ⊗ H (HyperKähler)

H ⊂ Sp(2m,R) (8.6.60)

In both cases, introducing flat indices {A,B,C = 1,2}{α,β, γ = 1, . . . ,2m} that
run, respectively, in the fundamental representation of SU(2) and of Sp(2m,R), we
can find a vielbein 1-form

U Aα = U Aα
u (q) dqu (8.6.61)

such that

huv = U Aα
u U Bβ

v CαβεAB (8.6.62)

where Cαβ = −Cβα and εAB = −εBA are, respectively, the flat Sp(2m) and Sp(2)∼
SU(2) invariant metrics. The vielbein U Aα is covariantly closed with respect to
the SU(2)-connection ωz and to some Sp(2m,R)-Lie Algebra valued connection
Δαβ =Δβα :

∇U Aα ≡ dU Aα + i

2
ωx
(
εσxε

−1)A
B

∧ U Bα +Δαβ ∧ U Aγ
Cβγ = 0 (8.6.63)

where (σ x) B
A are the standard Pauli matrices. Furthermore U Aα satisfies the reality

condition:

UAα ≡ (U Aα
)∗ = εABCαβU Bβ (8.6.64)

Equation (8.6.64) defines the rule to lower the symplectic indices by means of the
flat symplectic metrics εAB and Cαβ . More specifically we can write a stronger
version of (8.6.62) [24]:

(
U Aα
u U Bβ

v + U Aα
v U Bβ

u

)
Cαβ = huvε

AB (8.6.65)

We have also the inverse vielbein U u
Aα defined by the equation

U u
AαU

Aα
v = δuv (8.6.66)

Flattening a pair of indices of the Riemann tensor Ruv
ts we obtain

Ruv
ts U αA

u U βB
v = − i

2
Ωx
tsε

AC(σx)
B

C C
αβ +R

αβ
ts ε

AB (8.6.67)
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Table 8.3 Homogeneous
symmetric quaternionic
manifolds

m G/H m G/H

m
Sp(2m+2)

Sp(2)×Sp(2m) 2 G2
SO(4)

m
SU(m,2)

SU(m)×SU(2)×U(1) 7 F4
Sp(6)×Sp(2)

m
SO(4,m)

SO(4)×SO(m) 10 E6
SU(6)×U(1)

16 E7
SO(12)×SU(2)

28 E8
E7×SU(2)

where R
αβ
ts is the field strength of the Sp(2m) connection:

dΔαβ +Δαγ ∧Δδβ
Cγ δ ≡R

αβ =R
αβ
ts dqt ∧ dqs (8.6.68)

Equation (8.6.67) is the explicit statement that the Levi Civita connection associated
with the metric h has a holonomy group contained in SU(2) ⊗ Sp(2m). Consider
now (8.6.53), (8.6.55) and (8.6.59). We easily deduce the following relation:

hstKx
usK

y
tw = −δxyhuw + εxyzKz

uw (8.6.69)

that holds true both in the HyperKähler and in the quaternionic case. In the latter
case, using (8.6.59), (8.6.69) can be rewritten as follows:

hstΩx
usΩ

y
tw = −λ2δxyhuw + λεxyzΩz

uw (8.6.70)

Equation (8.6.70) implies that the intrinsic components of the curvature 2-form Ωx

yield a representation of the quaternion algebra. In the HyperKähler case such a
representation is provided only by the HyperKähler form. In the quaternionic case
we can write:

Ωx
Aα,Bβ ≡Ωx

uvU
u
AαU

v
Bβ = −iλCαβ(σx)

C
A εCB (8.6.71)

Alternatively (8.6.71) can be rewritten in an intrinsic form as

Ωx = −iλCαβ(σx)
C

A εCBU αA ∧ U βB (8.6.72)

whence we also get:

i

2
Ωx(σx)

B
A = λUAα ∧ U Bα (8.6.73)

The quaternionic manifolds are not requested to be homogeneous spaces, how-
ever there exists a subclass of quaternionic homogeneous spaces that are displayed
in Table 8.3.
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8.7 N = 2, D = 5 Supergravity Before Gauging

Relying on the geometric lore developed in the previous sections it is now easy to
state what is the bosonic Lagrangian of a general N = 2 theory in five-dimensions.
We just have to choose an n-dimensional very special manifold and some quater-
nionic manifold QM of quaternionic dimension m. Then recalling (8.6.13) we can
specialize it to:

L
(ungauged)
(D=5,N =2) = √−g

(
1

2
R − 1

4
NΛΣ(φ)F

Λ
μνF

Σ |μν

+ 1

2
gij (φ)∂μφ

i∂μφj + 1

2
huv(q)∂μq

u∂μqv
)

+ 1

8
dΛΣΓ ε

μνρστFΛ
μνF

Σ
ρσA

Γ
τ (8.7.1)

where huv(q) is the quaternionic metric on the quaternionic manifold QM , while
gij (φ) is the very special metric on the very special manifold. At the same time
the constant tensor dΛΣΓ is that defining the cubic norm (8.6.20) while the kinetic
metric N is that defined in (8.6.24). The transformation rule of the gravitino field
takes the general form (8.6.16) with the graviphoton defined as in (8.6.17) and the
tensor ΦΛ

AB given by (8.6.31). In this respect it is noteworthy that gravitino super-
symmetry transformation rule does depend only on the vector multiplet scalars and
it is independent from the hypermultiplets.
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Chapter 9
Supergravity: An Anthology of Solutions

O tiger’s heart wrapped in a woman’s hide
William Shakespeare

9.1 Introduction

As we have seen, supergravity theories are just ordinary field theories providing
the coupling to Einstein Gravity of a collection of lower spin fields in diverse di-
mensions, with a variety of self-couplings that are controlled by a web of special
geometric structures springing from the scalar sector of the Lagrangian. Ultimately,
responsible for the specific choice of these special geometries and for the geomet-
ric organization of the field-theory are the constraints imposed by supersymmetry,
yet the general pattern that, through a historically process, has been unveiled in
supergravity, might have a more general validity. There are probably, in the same
pattern, further cases of interest that violate supersymmetry but which, without the
lesson taught by it, might not have been dreamed of. For instance the class of D = 4
theories of the form (8.4.1) is larger than the set obtained as bosonic sectors of su-
pergravity Lagrangians. In supergravity there are special choices for the scalar man-
ifolds that, as recalled in (8.4.2), are symmetric coset manifolds in a large number
of cases, yet the list of symmetric cosets is not exhausted by supergravity. As long
as the numerator group G can be symplectically embedded in Sp(2nv,R) accord-
ing to (8.3.50), the Gaillard-Zumino master formula (8.3.67) for the kinetic matrix
NΛΣ(φ) holds true and all physical consequences encoded in the duality symme-
tries follow as well.

Supergravity theories form also an interrelated web. The main connection be-
tween Lagrangians in diverse dimensions is provided by compactification and di-
mensional reduction. A D-dimensional gravitational theory containing p-forms
that, as we know, are related to (p + 1)-branes, can admit vacuum-solutions of the
form:

M (0)
D = M (0)

d × MD−d (9.1.1)

where M (0)
d is a maximally symmetric manifold in d-dimensions and MD−d is

some suitable compact Einstein manifold in the complementary dimensions. Typi-
cally the splitting D ⇒ d ⊕ (D − d) and the very existence of the vacuum solution

P.G. Frè, Gravity, a Geometrical Course, DOI 10.1007/978-94-007-5443-0_9,
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is induced by giving a vacuum expectation value

〈Fa1...ad 〉0 �= 0 (9.1.2)

to the field strength of a (d − 1)-form A(d−1) of the higher dimensional theory. Ex-
panding the higher dimensional theory in modes around such a vacuum and keeping
only the lightest ones, one obtains a new gravitational theory in d-dimensions in-
cluding a variety of new fields, whose interactions are dictated by the geometry of
MD−d . In particular the geometry of the scalar manifold Mscalar of the lower di-
mensional theory which, as we know, controls the entire form of the d-dimensional
Lagrangian, is related to MD−d in the following general way: Mscalar encodes the
moduli-space of the structure-deformations of MD−d . Let us explain this deep and
general concept. For instance MD−d is an Einstein manifold. This means that we
have a metric gij (y) defined on it, whose Ricci tensor is proportional to the same
metric. That metric can be smoothly deformed by means of parameters that we name
moduli and fill a subspace of Mscalar . The compact manifold MD−d can have a
more refined geometrical structure, a complex structure for instance, a Kähler struc-
ture or in any case a restricted holonomy structure. The deformations of all such
structures fill moduli space which are included in Mscalar . The special geometry
structure of Mscalar follows mathematically from deformation theory.

This scheme, that goes under the name of flux compactification, has been un-
veiled in supergravity but has a more general validity. The key ingredients are:

(a) The existence of p-forms in higher dimensional theories whose fluxes can drive
the compactification.

(b) The choice of restricted holonomy manifolds MD−d for the compact dimen-
sions.

In supersymmetric theories the spectrum of p-forms available in D-dimensions
is dictated by the appropriate Free Differential Algebra which, as we learnt in
Chap. 6, is ultimately a yield of the super Poincaré Lie algebra cohomology. Without
supersymmetry, Free Differential Algebras do exist nonetheless and a more general
variety of possibilities is available for the p-form gauge fields.

Similarly, in supersymmetric theories the constraint on the holonomy of the in-
ternal manifold MD−d follows from the request that some of the supersymmetries
should be preserved by the compactification. This requires the existence of so named
Killing spinors, namely of covariantly constant sections of an appropriate spinor
bundle on MD−d , whose existence restricts the holonomy. In a more general math-
ematical set up this is just an instance of the constraints imposed by the existence
of some G-structure. Adopting such a language in the context of the more general
class of higher dimensional theories postulated above opens a wider spectrum of
possibilities.

In such a broader landscape the main mathematical frameworks governing both
the construction of the relevant Lagrangians and the search and classification of
their solutions will still be the same as in supergravity, namely deformation theory
of special geometrical structures, restricted holonomy and G-structures, σ -model
reduction of duality symmetric Lagrangians (8.4.1).
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The recipe to insert almost all of the most advanced aspects of modern differ-
ential geometry into Gravity Theory has been discovered by supergravity but cer-
tainly will last as an integral part of it even if our own world should turn out to be
non-supersymmetric. The same is probably true of the branes whose existence and
duality with the bulk theories is more general and holds true beyond superstrings
and supergravity.

For this reason the last chapter of this book is devoted to glances at the clas-
sical solutions of supergravity. These form an incredibly rich park with many al-
leys, islands and ponds. There are vacua solutions, brane-solutions, that were al-
ready touched upon, monopole-solutions, instanton solutions, cosmological solu-
tions, black-hole and black-brane solutions and still several other type of geomet-
rical backgrounds. Each of these categories plays a distinctive important role in
superstring/supergravity theory and requires appropriate mathematical techniques
to be studied and worked out. Even a simple review of the main features of each cat-
egory would build up a bestiary too long and too much complicated to be presented
within the scope of the present book. Hence we necessarily restricted ourselves to
an anthology chosen according to the formative criteria that inspire our writing. In-
deed we aim at conveying to the reader some general ideas and some paradigms
that, according to the writer’s opinion, encapsulate an intrinsically new quality in
the understanding of Gravity Theory and introduce new important mathematical
structures in its development. Notwithstanding these restrictive conditions, the list
of candidate topics and examples came out quite long so that, a little bit arbitrarily,
a final short list of three items was drawn, far from being exhaustive, yet providing
a very dense conceptual impact.

1. The first addressed topic is that of spherical black solutions in D = 4 supergrav-
ity. The interest in this class of solutions, whose classification and construction
constitutes an active field of current research, is two-fold. From the technical
point of view, the most effective approach to the derivation of these solutions,
that depend only on one radial coordinate, is provided by the reduction of the
supergravity field equations to those of an effective σ -model which, in the case
that the scalar manifold Mscalar is equal to a symmetric coset G

H , were proved
to be completely integrable. The same σ -model reduction can be applied also
to the case of other few parameter solutions, like the cosmological ones, yield-
ing the very interesting phenomenon of cosmic billiards, mentioned in Chap. 5.
From the conceptual point of view the main new quality encapsulated in these
studies is given by the attraction mechanism1 and by the identification of the ex-
tremal black hole entropy with the square root of a quartic symplectic invariant
constructed with the electromagnetic charges of the hole. This phenomenon goes
beyond supersymmetry and is just related with the symplectic structure of the

1As we illustrate below the attraction mechanism corresponds to the following notable property
of supergravity black holes which was discovered by Ferrara and Kallosh in 1995 [1, 2]: indepen-
dently from their values at spatial infinity, the scalar fields flow to universal fixed values at the
event horizon, dictated solely by the electromagnetic charges of the hole.
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duality symmetric theories of type (8.4.1). In a wider contest the charges of the
hole can be interpreted in terms of branes and brane-wrappings, thus opening
an important window on the statistical interpretation of black-holes. In the next
pages we just try to introduce the reader to these fundamental ideas, providing
some glimpses of this challenging research field.

2. The second topic addressed is that of flux vacuum solutions of M-theory. Su-
pergravity and superstrings impose higher space-time dimensions and D = 11 is
the maximal one where supergravity takes its simplest and most elegant form.
Yet our world is effectively four-dimensional so that any contact with reality can
be established only if seven of the extra dimensions are compactified and made
observable only at energy scales of the order of the Planck mass. A challenging
mechanism is provided by flux compactifications encoded in (9.1.2). Just be-
cause M-theory contains a three-form and a six-form, giving a vacuum expecta-
tion value to their field strengths splits eleven dimensional space-time into 4 + 7.
At the beginning of the eighties this raised a lot of expectations that produced a
large literature going under the name of Kaluza-Klein Supergravity. Although the
hope that the standard model of non-gravitational interactions might be retrieved
in this way proved too naive, yet the (flux) compactifications of M-theory provide
to the present day a very important theoretical laboratory in connection with the
gauge/gravity correspondence and with several other aspects of brane physics.
From the conceptual and mathematical point of view, the problem of construct-
ing these vacua and classifying their residual supersymmetry brings in the theory
of Killing spinors, G-structures and restricted holonomy. Introducing the reader
to these concepts and to their use is the main reason of considering this exam-
ple. An additional reason resides in the opportunity offered by these examples
of deepening our understanding of rheonomy. According to what we explained
in Chap. 6, every classical solution of the space-time field equations can be ex-
tended to a full superspace solution by integrating the rheonomic conditions. The
result is guaranteed but how to do it in practice is a different question. We will
show that the integration is immediate and leads to the Maurer Cartan forms of
a supercoset manifold in all those θ -directions that correspond to preserved su-
persymmetries. The θ -integration in the direction of broken supersymmetries is
instead more involved and corresponds to some non-trivial fiberings. Our goal is
to illustrate this mechanism locating the obstruction both to θ -integration and to
supersymmetry preservation, which is the same thing, in a well-defined geomet-
rical datum that is the holonomy tensor.

3. The third addressed topic is similar to the second, dealing with a particular in-
stance of flux vacuum solution of type IIA supergravity, namely that on the prod-
uct manifold AdS4 × P

3. This is done purposely in order to emphasize both the
similarities and the essential new features one encounters while solving the same
problem in D = 10 rather than in D = 11. The novelty is provided by a neces-
sary internal flux of the G[2] Ramond form which pairs with the external flux
of the G[4] Ramond form and which is possible only due to the Kähler struc-
ture of the internal manifold P

3. The example of this compactification has an
intrinsic value since it corresponds to a situation where we end up with N = 6
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gauged-supergravity in D = 4 from the bulk point of view and we have instead
D2-branes and Ramond strings from the boundary point of view. Recent work on
the AdS/CFT duality with N = 6 conformal field theories in three dimensions
was indeed centered on this solution of type IIA supergravity.

9.2 Black Holes Once Again

As announced in the introduction the first type of supergravity solutions we consider
are the spherical symmetric black holes in D = 4. The motivations and perspective
of this choice were explained above. The technique to obtain such solutions con-
sists in the mapping of the supergravity field equations into those of a σ -model on
an appropriate target manifold. This technique allowed to establish a complete in-
tegration algorithm that provides all solutions and their full-fledged classification
[15–18]. We will not dwell on such integration algorithm and confine ourselves to
present the oxidation rules from the σ -model to the actual supergravity configura-
tions. We will also present, without derivation, some examples of exact solutions,
our goal being the illustration of the attraction mechanism and the emergence of the
quartic invariant as codifier of the black hole entropy.

9.2.1 The σ -Model Approach to Spherical Black Holes

A very powerful token in deriving solutions of supergravity that depend only on one
effective parameter, like spherical symmetric black-holes depending only on a radial
coordinate r or cosmological configurations depending only on time t , is provided
by the reduction of the four-dimensional field equations to those of an effective one-
dimensional σ -model. In this section we shortly review such a procedure for the
spherical black hole case.

Let us consider the generic form of the bosonic Lagrangian of an ungauged
D = 4 supergravity as given in (8.4.1). Besides the metric field gμν(x), the the-
ory contains ns scalar fields and nv vector fields. The geometric data specifying the
Lagrangian and hence all interactions are the metric hrs(φ) of the ns -dimensional
scalar manifold Mscalar which, for N > 2 is necessarily a symmetric coset mani-
fold, while for N = 2 is any special Kähler manifold S K n, and the kinetic nv ×nv
matrix NΛΣ(φ) which, for all coset manifold cases is given by the Gaillard-Zumino
master formula (8.3.67), while for the generic special Kähler case admits the def-
inition given in (8.5.30). In all N = 2 cases the number of vector fields in the
theory is nv = n + 1 where n is the complex dimension of the scalar manifold
(ns = 2n), while in the case of other theories the relation between nv and ns is
different. Notwithstanding this difference, we can always introduce a 2nv × 2nv
field dependent matrix M4 defined as follows:

M4 =
(

ImN −1 ImN −1 ReN

ReN ImN −1 ImN + ReN ImN −1 ReN

)
(9.2.1)
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M −1
4 =

(
ImN + ReN ImN −1 ReN −ReN ImN −1

− ImN −1 ReN ImN −1

)
(9.2.2)

and we can introduce the following set of 2+ns +2nv fields depending on a param-
eter τ which later will be interpreted as the inverse of the radial coordinate τ ∝ 1/r :

Generic N = 2

Warp factor U(τ) 1 1
Taub-Nut field a(τ) 1 1
D = 4 scalars φi ns 2n
Scalars from vectors ZM(τ)= (ZΛ(τ),ZΣ(τ)) 2nv 2n+ 2

Total 2 + ns + 2nv 4n+ 4

the fields {U,a,φ,Z} are interpreted as the coordinates of a new (2 + ns + 2nv)-
dimensional manifold Q, whose metric we declare to be the following:

ds2
Q = 1

4

[
dU2 + hrs dφ

r dφs + e−2U (da + ZT
CdZ

)2 + 2e−U dZT M4 dZ
]

(9.2.3)

having denoted by C the constant symplectic invariant metric in 2nv dimensions
that underlies the construction of the matrix NΛΣ .

Solutions of the one-dimensional σ -model are just geodesics of the above metric
which has the following indefinite signature

sign
[
ds2

Q

]= (+, . . . ,+︸ ︷︷ ︸
2+2ns

,−, . . . ,−︸ ︷︷ ︸
2nv+2

) (9.2.4)

since the matrix M4 is negative definite. Hence the geodesics can be time-like, null-
like or space-like depending on the three possible cases:

L = U̇2 + hrsφ̇
r φ̇s + e−2U (ȧ + ZT

CŻ
)2 + 2e−U ŻT M4Ż =

⎧⎨
⎩
v2 > 0
v2 = 0
−v2 < 0

(9.2.5)

where the dot denotes derivative with respect to the affine parameter τ .
Every solution of the Euler Lagrangian equations:

d

dτ

dL

dΦ̇
= dL

dΦ
(9.2.6)

Φ(τ) ≡ {
U,a,φr ,ZM

}
defines a geodesic and provides a solution of the original supergravity field equa-
tions according to an oxidation rule that we will specify few lines below. Space-
like geodesics correspond to unphysical supergravity solutions with naked singular-
ities and are excluded. Time-like geodesics correspond to non-extremal black-holes
while null-like geodesics yield extremal black-holes.
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9.2.2 The Oxidation Rules

The D = 4 solution of supergravity is parameterized in the following way in terms
of the σ -model fields. For the metric we have:

ds2
(4) = −eU(τ)(dt +AKK)

2 + e−U(τ)
[
e4A(τ) dτ 2 + e2A(τ)(dθ2 + sin2 θ dφ2)]

(9.2.7)
where e2A(τ) is a shorthand notation for the following function:

e2A(τ) =
⎧⎨
⎩

v2

sinh2(vτ)
if v2 > 0

1
τ 2 if v2 = 0

(9.2.8)

The parameter v2 mentioned in the above formula is one of the conserved charges
of the dynamical model and it is named the extremality parameter. Its geometrical
interpretation within the framework of the σ -model is very simple and clear.

To complete the illustration of the metric (9.2.7) we still have to explain the
meaning of the one-form AKK . This latter is the Kaluza-Klein vector, whose field
strength FKK = dAKK has just one non-vanishing component FKK = FKK|θϕ dθ ∧
dϕ given by the following expression:

FKK|θϕ = gθθgϕϕF
θϕ
KK = − sin θ

[
e−2U (ȧ +ZΛŻΛ −ZΣŻ

Σ
)]

︸ ︷︷ ︸
n=Taub-NUT charge

(9.2.9)

Actually one can verify that the combination of derivatives under-braced in equation
(9.2.9) is a constant of motion of the system defined by the Lagrangian (9.2.5) and is
named n, the Taub-NUT charge. The fact that n is a constant is very important and
obligatory in order for the dualization formulae to make sense. Indeed the Kaluza-
Klein field strength FKK satisfies the Bianchi identity only in force of the constancy
of n. In view of this the Kaluza-Klein vector is easily determined and reads:

AKK = 2n cos θ dϕ (9.2.10)

The field-strength two-form is instead:

FKK = −2n sin θ dθ ∧ dϕ (9.2.11)

This concludes the illustration of the metric.
We still have to describe the parameterization of the gauge fields by means of the

σ -model scalar fields. This is done in complete analogy to the case of the Kaluza-
Klein vector. The D = 4 field-strength two-forms are the following ones:

(
F̂ Λ
)θϕ = sin θ

[
e−2U (ImN −1)ΛΣ(ŻΣ + ReNΣΓ Ż

Γ
)]

︸ ︷︷ ︸
pΛ =magnetic charges

(9.2.12)
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Similarly to the case of the Kaluza-Klein vector, the combinations of derivatives and
fields under-braced in the above formula are constants of motion of the dynamical
system defined by the Lagrangian (9.2.5) and have the interpretation of magnetic
charges. Indeed the magnetic charges are just the upper nv components of the full
2nv vector of magnetic and electric charges. This latter is defined as follows:

QM = √
2
[
e−UM4Ż − nCZ

]M =
(
pΛ

eΣ

)
(9.2.13)

and all of its components are constants of motion.
In view of this the final form of the D = 4 field-strengths is the following one:

FΛ = 2pΛ sin θ dθ ∧ dϕ + ŻΛdτ ∧ (dt + 2n cos θ dϕ) (9.2.14)

This concludes the review of the oxidation formulae that allow to write all the fields
of D = 4 supergravity corresponding to a black-hole solution in terms of the fields
parameterizing the σ -model defined by (9.2.5).

One very important point to be stressed is that the metric (9.2.3) admits a typi-
cally large group of isometries. Certainly it admits all the isometries of the original
scalar manifold Mscalar enlarged with additional ones related to the new fields that
have been introduced {U,a,ZM}. In the case when the D = 4 scalar manifold is a
homogeneous symmetric space:

Mscalar = UD=4

HD=4
(9.2.15)

One can show [4, 5, 15], that the manifold Q with the metric (9.2.3) is a new ho-
mogeneous symmetric space

Q = Uσ

H�
(9.2.16)

whose structure is universal and can be described in general terms.

General Structure of the Uσ Lie Algebra The Lie algebra Uσ of the numera-
tor group always contains, as subalgebra, the duality algebra UD=4 of the parent
supergravity theory in D = 4 and a universal sl(2,R)E algebra which is associated
with the gravitational degrees of freedom {U,a}. Furthermore, with respect to this
subalgebra Uσ admits the following universal decomposition, holding for all N -
extended supergravities:

adj(Uσ )= adj(UD=4)⊕ adj
(
SL(2,R)E

)⊕W(2,W) (9.2.17)

where W is the symplectic representation of UD=4 to which the electric and mag-
netic field strengths are assigned. Indeed the scalar fields associated with the gen-
erators of W(2,W) are just those coming from the vectors in D = 4. Denoting the
generators of UD=4 by T a , the generators of SL(2,R)E by Lx and denoting by
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WiM the generators in W(2,W), the commutation relations that correspond to the
decomposition (9.2.17) have the following general form:

[
T a,T b

]= f ab
c T

c

[
Lx,Ly

]= f
xy
z L

z

[
T a,WiM

]= (Λa
)M
N
WiN (9.2.18)

[
Lx,WiM

]= (λx)i
j
WjM

[
WiM,WjN

]= εij (Ka)
MNT a +C

MNk
ij
x L

x

where the 2 × 2 matrices (λx)ij , are the canonical generators of SL(2,R) in the
fundamental, defining representation:

λ3 =
(

1
2 0

0 − 1
2

)
; λ1 =

(
0 1

2
1
2 0

)
; λ2 =

(
0 1

2

− 1
2 0

)
(9.2.19)

while Λa are the generators of UD=4 in the symplectic representation W. By

C
MN ≡

(
0n×n 1n×n

−1n×n 0n×n

)
(9.2.20)

we denote the antisymmetric symplectic metric in 2n dimensions, n = nv being
the number of vector fields in D = 4, as we have already stressed. The symplectic
character of the representation W is asserted by the identity:

Λa
C+C

(
Λa
)T = 0 (9.2.21)

The fundamental doublet representation of SL(2,R) is also symplectic and by εij =( 0 1
−1 0

)
we have denoted the 2-dimensional symplectic metric, so that:

λxε+ ε
(
λx
)T = 0 (9.2.22)

In (9.2.18) we have used the standard convention according to which symplectic
indices are raised and lowered with the appropriate symplectic metric, while adjoint
representation indices are raised and lowered with the Cartan-Killing metric.

Orbit of Solutions Using the transformations of the isometry group Uσ every
solution of the σ -model generates an entire Uσ orbit of solutions which reflects in
a similar Uσ orbit of supergravity solutions. Consequently the black-hole solutions
are conveniently organized into Uσ orbits.
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9.2.3 General Properties of the d = 4 Metric

It is convenient to summarize some general properties of the d = 4 metric in (9.2.7).
First we consider the case of non-extremal black-holes v2 > 0 and in particular the
Schwarzschild solution which, as it was shown in [3, 18] is the unique representative
of the whole Uσ orbit of regular black-hole solutions.

The Schwarzschild Case Consider the case where the function exp[−U(τ)] and
the extremality parameter are the following ones:

exp
[−U(τ)

]= exp[−ατ ]; v2 = α2

4
(9.2.23)

Introducing the following position:

τ = log[1 − 2m
r

]
2m

; α = 2m (9.2.24)

the reader can immediately verify that the metric (9.2.7) at AKK = 0 is turned into
the standard Schwarzschild metric:

ds2
Schw = −

(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) (9.2.25)

The Extremal Reissner Nordström Case Consider now the following choices:

exp
[−U(τ)

]= (1 + qτ); v2 = 0 (9.2.26)

Introducing the following position:

τ = 1

r − q
(9.2.27)

by means of elementary algebra the reader can verify that the metric (9.2.7) at
AKK = 0 is turned into the extremal Reissner Nordström metric:

ds2
RNext = −

(
1 − q

r

)2

dt2 +
(

1 − q

r

)−2

dr2 + r2(dθ2 + sin2 θ dφ2) (9.2.28)

which follows from the non-extremal one:

ds2
RN = −

(
1 − 2m

r
+ q2

r2

)
dt2 +

(
1 − 2m

r
+ q2

r2

)−1

dr2 + r2(dθ2 + sin2 θ dφ2)
(9.2.29)

when the mass is equal to the charge: m= q .
It follows from the discussion of this simple example that the extremal black-

hole metrics (9.2.7) are all suitable deformations of the extremal Reissner Nord-
ström metric, just as the regular black-hole metrics are suitable deformations of the
Schwarzschild one.
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Curvature of the Extremal Spaces In order to facilitate the discussion of the
various solutions found by means of the σ -model method, it is useful to consider
the general form of the Riemann tensor associated with the metrics (9.2.7) in the
extremal case. To this effect we introduce the vielbein 1-forms:

E0 = exp

[
U

2

]
dt

E1 = exp

[
−U

2

]
dτ

τ 2

(9.2.30)

E2 = exp

[
−U

2

]
1

τ
dθ

E3 = exp

[
−U

2

]
1

τ
sin[θ ]dφ

and the corresponding spin connection:

dEa +ωab ∧Ecηbc = 0 (9.2.31)

Defining the curvature 2-form in the standard way:

R
ab = dωab +ωac ∧ωdbηcd (9.2.32)

we find that it is diagonal:

R
01 = C1E

0 ∧E1

R
02 = C2E

0 ∧E2

R
03 = C2E

0 ∧E3

(9.2.33)
R

12 = C3E
1 ∧E2

R
13 = C3E

1 ∧E3

R
23 = C4E

3 ∧E4

and involves four independent differential expressions in the function U(τ), namely

C1(τ ) = −1

4
eU(τ)τ 3(τU ′(τ )2 + 2U ′(τ )+ τU ′′(τ )

)

C2(τ ) = 1

8
eU(τ)τ 3U ′(τ )

(
τU ′(τ )+ 2

)
(9.2.34)

C3(τ ) = 1

4
eU(τ)τ 3(U ′(τ )+ τU ′′(τ )

)

C4(τ ) = −1

8
eU(τ)τ 3U ′(τ )

(
τU ′(τ )+ 4

)

We will consider the behavior of these four independent component of the Riemann
tensor in various solutions that we present some pages later.
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9.2.4 Attractor Mechanism, the Entropy and Other Special
Geometry Invariants

One of the most important features of supergravity black-holes is the attractor mech-
anism discovered in the nineties by Ferrara and Kallosh for the case of BPS2 solu-
tions [1, 2] and in recent time extended to non-BPS cases [7–14]. According to this
mechanism the evolving scalar fields φi(τ ) flow to fixed values at the horizon of
the black-hole (τ = −∞), which do not depend from their initial values at infinity
radius (τ = 0) but only on the electromagnetic charges p, q .

In order to review the attractor mechanism, we must briefly recall the essential
items of black hole field equations in the geodesic potential approach [6]. In this
framework we do not consider all the fields listed in the table after (9.2.2). We intro-
duce only the warp factor U(τ) and the original scalar fields of D = 4 supergravity.
The information about vector gauge fields is encoded solely in the set of electric
and magnetic charges Q defined by (9.2.13). Furthermore for the sake of simplicity
we focus on the case of an N = 2 theory where the 2n scalar fields span a special
Kähler manifold and can be organized into n complex combinations zi . Under these
conditions the correct field equations for an N = 2 black-hole are derived from the
geodesic one dimensional field-theory described by the following Lagrangian:

Seff ≡
∫

Leff (τ ) dτ

(9.2.35)

Leff (τ ) = 1

4

(
dU

dτ

)2

+ gij�
dzi

dτ

dzj
�

dτ
+ eUVBH(z, z,Q)

where the geodesic potential V (z, z,Q) is defined by the following formula in terms
of the matrix M4 introduced in (9.2.3):

VBH(z, z,Q)= 1

4
QtM −1

4 (N )Q (9.2.36)

The effective Lagrangian (9.2.35) is derived from the σ -model Lagrangian (9.2.1)
upon substitution of the first integrals of motion corresponding to the electromag-
netic charges (9.2.13) under the condition that the Taub-NUT charge, defined in
(9.2.9), vanishes3 (n = 0). Indeed, when the Taub-NUT charge n vanishes, which

2In the supergravity framework BPS solutions are those that preserve a certain amount of super-
symmetry, namely that admit a certain number of so named Killing spinors, i.e. of supersymmetry
parameters such that supersymmetry transformations along them leave the chosen solution invari-
ant.
3In [18] it was shown that every orbit of solutions contains a representative where the Taub-NUT
charge is zero. Alternatively from a dynamical system point of view the Taub-NUT charge can be
annihilated by setting a constraint which is consistent with the Hamiltonian and which reduces the
dimension of the system by one unit. The problem of black hole physics is therefore equivalent to
the sigma model based on an appropriate codimension one hypersurface in the Q manifold.



9.2 Black Holes Once Again 357

will be our systematic choice, we can invert the above mentioned relations, express-
ing the derivatives of the ZM fields in terms of the charge vector QM and the inverse
of the matrix M4. Upon substitution in the σ -model Lagrangian (9.2.3), we obtain
the effective Lagrangian for the D = 4 scalar fields zi and the warping factor U
given by (9.2.35)–(9.2.37).

The important thing is that, thanks to various identities of special geometry, the
effective geodesic potential admits the following alternative representation:

VBH(z, z,Q) = −1

2

(|Z|2 + |Zi |2
)≡ −1

2

(
ZZ +Zig

ij�Zj�
)

(9.2.37)

where the symbol Z denotes the complex scalar field valued central charge of the
supersymmetry algebra:

Z ≡ V T
CQ =MΣp

Σ −LΛqΛ (9.2.38)

and Zi denote its covariant derivatives:

Zi = ∇iZ =UiCQ; Zj� = gj
�iZi

(9.2.39)
Zj� = ∇j�Z =Uj�CQ; Z

i = gij
�

Zj�

Equation (9.2.37) is a result in special geometry whose proof can be found in several
articles and reviews of the late nineties.4

9.2.5 Critical Points of the Geodesic Potential and Attractors

The structure of the geodesic potential illustrated above allows for a detailed dis-
cussion of its critical points, which are relevant for the asymptotic behavior of the
scalar fields.

By definition, critical points correspond to those values of zi for which the first
derivative of the potential vanishes: ∂iVBH = 0. Utilizing the fundamental identities
of special geometry and (9.2.37), the vanishing derivative condition of the potential
can be reformulated as follows:

0 = 2ZiZ + iCijkZ
j
Z
k

(9.2.40)

From this equation it follows that there are three possible types of critical points:

Zi = 0; Z �= 0; BPS attractor

Zi �= 0; Z = 0; iCijkZ
j
Z
k = 0 non-BPS attractor I

Zi �= 0; Z �= 0; iCijkZ
j
Z
k = −2ZiZ non-BPS attractor II

(9.2.41)

4See for instance the lecture notes [19].
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It should be noted that in the case of one-dimensional special geometries, only BPS
attractors and non-BPS attractors of type II are possible. Indeed non-BPS attractors
of type I are forbidden unless Czzz vanishes identically.

In order to characterize the various type of attractors, the authors of [20] and
[21] introduced a certain number of special geometry invariants that obey different
and characterizing relations at attractor points of different type. They are defined as
follows. Let us introduce the symbols:

N3 ≡ CijkZ
i
Z
j
Z
k; N3 ≡ Ci�j�k�Z

i�Zj�Zk� (9.2.42)

and let us set:

i1 = ZZ; i2 = ZiZj�g
ij�

i3 = 1

6
(ZN3 +ZN3); i4 = i

1

6
(ZN3 −ZN3)

i5 = CijkC��m�n�Z
j
Z
k
Zm�

Zn�gi�
�;

(9.2.43)

An important identity satisfied by the above invariants, that depend both on the
scalar fields zi and the charges (p, q), is the following one:

I4(p, q)= 1

4
(i1 − i2)

2 + i4 − 1

4
i5 (9.2.44)

where:

I4(p, q)= IMNPRQMQNQPQR (9.2.45)

is a quartic polynomial in the electromagnetic charges defined by a symmetric tensor
IMNPR which is invariant with respect to all transformations of the isometry group
UD=4 symplectically embedded in Sp(2nv,R). This means that in the combination
(9.2.44) the dependence on the fields zi cancels identically.

The generic existence in supergravity models of the quartic invariant (9.2.45) and
its relation with the Black-Hole area/entropy is one of the most profound and in-
triguing contributions of the supergravity/superstring studies to Gravity Theory. On
one hand it opens a window on the statistical interpretation of the black holes since,
in the underlying superstring microscopic interpretation of supergravity, charges are
related to branes and to the counting of their wrapping modes, on the other hand
it is quite possible that the group-theoretical structures related to the quartic invari-
ant might have a more general validity beyond purely supersymmetric theories. In
this book we will not enter the very rich classification of black-holes in the various
supergravity models. We will just confine ourselves to an ultra short illustration of
the main features of such black holes by means of the simplest N = 2 supergravity
model containing just one vector multiplet with non-trivial couplings. This is done
in the next subsection. After this anticipation we continue with the classification of
critical points.

Indeed in [20] it was proposed that the three types of critical points can be charac-
terized by the following relations among the above invariants holding at the attractor
point:
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At BPS Attractor Points We have:

i1 �= 0; i2 = i3 = i4 = i5 = 0 (9.2.46)

At Non-BPS Attractor Points of Type I We have:

i2 �= 0; i1 = i3 = i4 = i5 = 0 (9.2.47)

At Non-BPS Attractor Points of Type II We have:

i2 = 3i1; i3 = 0; i4 = −2i21 ; i5 = 12i21 (9.2.48)

9.2.6 The N = 2 Supergravity S3-Model

The pedagogical example we consider in this book is the simplest possible case
of vector multiplet coupling in N = 2 supergravity: we just introduce one vector
multiplet. This means that we have two vector fields in the theory and one complex
scalar field z. This scalar field parameterizes a one-dimensional special Kähler man-
ifold which, in our choice, will be the complex lower half-plane endowed with the
standard Poincaré metric. In other words:5

gzz∂
μz∂μz= 3

4

1

(Im z)2
∂μz∂μz (9.2.49)

is the σ -model part of the Lagrangian (8.4.1). From the point of view of ge-
ometry the lower half-plane is the symmetric coset manifold SL(2,R)/SO(2) ∼
SU(1,1)/U(1) which admits a standard solvable parameterization as it follows. Let:

L0 = 1

2

(
1 0
0 −1

)
; L+ = 1

2

(
0 1
0 0

)
; L− = 1

2

(
0 0
1 0

)
(9.2.50)

be the standard three generators of the sl(2,R) Lie algebra satisfying the commu-
tation relations [L0,L±] = ±L± and [L+,L−] = 2L0. The coset manifold SL(2,R)

SO(2)
is metrically equivalent with the solvable group manifold generated by L0 and L+.
Correspondingly we can introduce the coset representative:

L4(φ, y)= exp[yL1] exp[ϕL0] =
(
eϕ/2 e−ϕ/2y

0 e−ϕ/2

)
(9.2.51)

Generic group elements of SL(2,R) are just 2 × 2 real matrices with determinant
one:

SL(2,R) #A=
(
a b

c d

)
; ad − bc= 1 (9.2.52)

5The special overall normalization of the Poincaré metric is chosen in order to match the general
definitions of special geometry applied to the present case.
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and their action on the lower half-plane is defined by usual fractional linear trans-
formations:

A : z→ az+ b

cz+ d
(9.2.53)

The correspondence between the lower complex half-plane C− and the solvable-
parameterized coset (9.2.51) is easily established observing that the entire set of
Im z < 0 complex numbers is just the orbit of the number i under the action of
L(φ, y):

L4(φ, y) : i → −eϕ/2i + e−ϕ/2y

e−ϕ/2
= y − ieϕ (9.2.54)

This simple argument shows that we can rewrite the coset representative L(φ, y) in
terms of the complex scalar field z as follows:

L4(z)=
(√| Im z| Re z√| Im z|

0 1√| Im z|

)
(9.2.55)

The issue of special Kähler geometry becomes clear at this stage. If we did not have
vectors in the game, the choice of the coset metric would be sufficient and nothing
more would have to be said. The point is that we still have to define the kinetic
matrix of the vector and for that the symplectic bundle is necessary. On the same
base manifold SL(2,R)/SO(2) we have different special structures which lead to
different physical models and to different σ -model groups Uσ . The special structure
is determined by the choice of the symplectic embedding SL(2,R)→ Sp(4,R). The
symplectic embedding that defines our pedagogical model and which eventually
leads to the σ -model group Uσ = G2(2) is cubic and it is described in the following
subsection.

9.2.6.1 The Cubic Special Kähler Structure on SL(2,R)/SO(2)

The group SL(2,R) is also locally isomorphic to SO(1,2) and the fundamental
representation of the first corresponds to the spin J = 1

2 of the latter. The spin J =
3
2 representation is obviously four-dimensional and, in the SL(2,R) language, it
corresponds to a symmetric three-index tensor tabc . Let us explicitly construct the
4 × 4 matrices of such a representation. This is easily done by choosing an order for
the four independent components of the symmetric tensor tabc . For instance we can
identify the four axes of the representation with t111, t112, t122, t222. So doing, the
image of the group element A in the cubic symmetric tensor product representation
is the following 4 × 4 matrix:

D3(A)=

⎛
⎜⎜⎜⎝

a3 3a2b 3ab2 b3

a2c da2 + 2bca cb2 + 2adb b2d

ac2 bc2 + 2adc ad2 + 2bcd bd2

c3 3c2 d 3cd2 d3

⎞
⎟⎟⎟⎠ (9.2.56)
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By explicit evaluation we can easily check that:

DT
3 (A)Ĉ4D3(A)= Ĉ4 where Ĉ4 =

⎛
⎜⎜⎝

0 0 0 1
0 0 −3 0
0 3 0 0

−1 0 0 0

⎞
⎟⎟⎠ (9.2.57)

Since Ĉ4 is antisymmetric, (9.2.57) is already a clear indication that the triple sym-
metric representation defines a symplectic embedding. To make this manifest it suf-
fices to change basis. Consider the matrix:

S =

⎛
⎜⎜⎜⎝

0 1 0 0
− 1√

3
0 0 0

0 0 1√
3

0

0 0 0 1

⎞
⎟⎟⎟⎠ (9.2.58)

and define:

Λ(A)= S−1D3(A)S (9.2.59)

We can easily check that:

ΛT (A)C4Λ(A)=C4 where C4 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ (9.2.60)

So we have indeed constructed a standard symplectic embedding SL(2,R) �→
Sp(4,R) whose explicit form is the following:

A=
(
a b

c d

)
�→

⎛
⎜⎜⎜⎝

da2+2bca −√
3a2c −cb2−2adb −√

3b2d

−√
3a2b a3

√
3ab2 b3

− bc2−2adc
√

3ac2 ad2+2bcd
√

3bd2

−√
3c2d c3

√
3cd2 d3

⎞
⎟⎟⎟⎠≡Λ(A)

(9.2.61)

The 2×2 blocks A, B , C, D of the 4×4 symplectic matrix Λ(A) are easily readable
from (9.2.61) so that, assuming now that the matrix A(z) is the coset representative
of the manifold SU(1,1)/U(1), we can apply the Gaillard-Zumino formula (8.3.67)
and obtain the explicit form of the kinetic matrix NΛΣ :

N =
⎛
⎝− 2ac−ibc+iad+2bd

a2+b2 −
√

3(c+id)(ac+bd)

(a−ib)(a+ib)2

−
√

3(c+id)(ac+bd)

(a−ib)(a+ib)2
− (c+id)2(2ac+ibc−iad+2bd)

(a−ib)(a+ib)3

⎞
⎠ (9.2.62)

Inserting the specific values of the entries a, b, c, d corresponding to the coset
representative (9.2.55), we get the explicit dependence of the kinetic period matrix
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on the complex scalar field z:

N ΛΣ(z)=
⎛
⎝ − 3z+z

2zz −
√

3(z+z)

2zz2

−
√

3(z+z)

2zz2 − z+3z
2zz3

⎞
⎠ (9.2.63)

This might conclude the determination of the Lagrangian of our master example, yet
we have not yet seen the special Kähler structure induced by the cubic embedding.
Let us present it.

The key point is the construction of the required holomorphic symplectic section
Ω(z). As usual the transformation properties of a geometrical object indicate the
way to build it explicitly. For consistency we should have that:

Ω

(
az+ b

cz+ d

)
= f (z)Λ(A)Ω(z) (9.2.64)

where Λ(A) is the symplectic representation (9.2.61) of the considered SL(2,R)
matrix

(
a b
c d

)
and f (z) is the associated transition function for that line-bundle

whose Chern-class is the Kähler class of the base-manifold. The identification of the
symplectic fibres with the cubic symmetric representation provide the construction
mechanism of Ω . Consider a vector

( v1
v2

)
that transforms in the fundamental doublet

representation of SL(2,R). On one hand we can identify the complex coordinate z
on the lower half-plane as z = v1/v2, on the other we can construct a symmetric
three-index tensor taking the tensor products of three vi , namely: tijk = vivj vk . Di-
viding the resulting tensor by (v2)

3 we obtain a four vector:

Ω̂(z)= 1

v3
2

⎛
⎜⎜⎜⎝

v3
1

v2
1v2

v1v
2
2

v3
2

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎝
z3

z2

z

1

⎞
⎟⎟⎠ (9.2.65)

Next, recalling the change of basis (9.2.58), (9.2.59) required to put the cubic rep-
resentation into a standard symplectic form we set:

Ω(z)= SΩ̂(z)=

⎛
⎜⎜⎝

−√
3z2

z3√
3z
1

⎞
⎟⎟⎠ (9.2.66)

and we can easily verify that this object transforms in the appropriate way. Indeed
we obtain:

Ω

(
az+ b

cz+ d

)
= (cz+ d)−3Λ(A)Ω(z) (9.2.67)

The pre-factor (cz + d)−3 is the correct one for the prescribed line-bundle. To see
this let us first calculate the Kähler potential and the Kähler form. Inserting (9.2.66)
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into (8.5.18) we get:

K = − log
(
i〈Ω |Ω〉)= − log

(−i(z− z)3
)

(9.2.68)

K = i

2π
∂∂K = i

2π

3

(Im z)2
dz∧ dz

This shows that the constructed symplectic bundle leads indeed to the standard
Poincaré metric and the exponential of the Kähler potential transforms with the
prefactor (cz+ d)3 whose inverse appears in (9.2.67).

To conclude let us show that the special geometry definition of the period matrix
N agrees with the Gaillard-Zumino definition holding true for all symplectically
embedded cosets. To this effect we calculate the necessary ingredients:

∇zV (z)= exp

[
K

2

](
∂zΩ(z)+ ∂zK Ω(z)

)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3z(z+2z)

(z−z)
√

−i(z−z)3

− 3z2z

(z−z)
√

−i(z−z)3

−
√

3(2z+z)

(z−z)
√

−i(z−z)3

− 3

(z−z)
√

−i(z−z)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(
fΛ
z

hΣz

)

(9.2.69)
Then according to (8.5.29) we obtain:

fΛ
I =

⎛
⎜⎝

√
3z(z+2z)

(z−z)
√

−i(z−z)3
− 2

√
6z2

(−i(z−z))3/2

− 3z2z

(z−z)
√

−i(z−z)3
2
√

2z3

(−i(z−z))3/2

⎞
⎟⎠

(9.2.70)

hΛ|I =
⎛
⎜⎝

−
√

3(2z+z)

(z−z)
√

−i(z−z)3
2
√

6z
(−i(z−z))3/2

− 3

(z−z)
√

−i(z−z)3
2
√

2
(−i(z−z))3/2

⎞
⎟⎠

and applying definition (8.5.30) we exactly retrieve the same form of NΛΣ as given
in (9.2.63).

For completeness and also for later use we calculate the remaining items per-
taining to special geometry, in particular the symmetric C-tensor. From the general
definition (8.5.23) applied to the present one-dimensional case we get:

∇zUz = iCzzzh
zz�Uz� ⇒ Czzz = − 6i

(z− z�)3
(9.2.71)

As for the standard Levi-Civita connection we have:

Γ z
zz = 2

z− z�
; Γ z�

z�z� = − 2

z− z�
; all other components vanish (9.2.72)

This concludes our illustration of the cubic special Kähler structure on SL(2,R)
SO(2) .
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9.2.6.2 The Quartic Invariant

In the cubic spin j = 3
2 of SL(2,R) there is a quartic invariant which plays an

important role in the discussion of black-holes. As it happens for all the other su-
pergravity models, the quartic invariant of the symplectic vector of magnetic and
electric charges:

Q =
(
pΛ

qΣ

)
(9.2.73)

is related to the entropy of the extremal black-holes, the latter being its square root.
The origin of the quartic invariant is easily understood in terms of the symmetric
tensor tijk . Using the SL(2,R)-invariant antisymmetric symbol εij we can construct
an invariant order four polynomial in the tensor tijk by writing:

I4 ∝ εaiεbj εplεqmεkrεcntabctijktpqr tlmn (9.2.74)

If we use the standard basis t111, t112, t122, t222, we rotate it with the matrix (9.2.58)
and we identify the components of the resultant vector with those of the charge
vector Q the explicit form of the invariant quartic polynomial is the following one:

I4 = 1

3
√

3
q2p

3
1 + 1

12
q2

1p
2
1 − 1

2
p2q1q2p1 − 1

3
√

3
p2q

3
1 − 1

4
p2

2q
2
2 (9.2.75)

9.2.7 Fixed Scalars at BPS Attractor Points: The S3 Explicit
Example

In the case of BPS attractors we can find the explicit expression in terms of the
(p, q)-charges for the scalar field fixed values at the critical point.

By means of standard special geometry manipulations the BPS critical point
equation

∇jZ = 0; ∇j�Z = 0 (9.2.76)

can be rewritten in the following celebrated form which, in the late nineties, ap-
peared in numerous research and review papers (see for instance [19]):

pΛ = i
(
ZfixL

Λ

fix −ZfixL
Λ
fix

)
(9.2.77)

qΣ = i
(
ZfixM

fix
Σ −ZfixM

fix
Σ

)
(9.2.78)

In all cases where the special Kähler manifold is a homogeneous symmetric space
the above formula can be explicitly inverted yielding the fixed values of the scalar
fields in terms of the charges. We present such a solution for the S3-model.
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Using the explicit form of the symplectic section Ω(z) given in (9.2.66),
(9.2.78) are solved by the following expressions for the fixed scalars:

zfixed = −p1q1 + 3p2q2 + i6
√
I4(p, q)

2(q2
1 + √

3p1q2)
(9.2.79)

where I4(p, q) is the quartic invariant defined in (9.2.75).
By replacing the fixed values (9.2.79) into the expression (9.2.37) for the poten-

tial we find:

VBH(zfixed, zfixed,Q)= −√I4(p, q) (9.2.80)

The above result implies that the horizon area in the case of an extremal BPS black-
hole is proportional to the square root of I4(p, q) and, as such, depends only on the
charges. The argument goes as follows.

Consider the behavior of the warp factor exp[−U ] in the vicinity of the horizon,
when τ → −∞. For regular black-holes the near horizon metric must factorize as
follows:

ds2
near hor. ≈ − 1

r2
Hτ

2
dt2 + r2

H

(
dτ

τ

)2

︸ ︷︷ ︸
AdS2 metric

+ r2
H

(
dθ2 sin2 θ dφ2)︸ ︷︷ ︸

S2 metric

(9.2.81)

where rH is the Schwarzschild radius defining the horizon. This implies that the
asymptotic behavior of the warp factor, for τ → −∞ is the following one:

exp[−U ] ∼ r2
Hτ

2 (9.2.82)

In the same limit the scalar fields go to their fixed values and their derivatives be-
come essentially zero. Hence near the horizon we have:

(U̇ )2 ≈ 4

τ 2
; gij�

dzi

dτ

dzj
�

dτ
≈ 0

(9.2.83)

eUVBH(z, z,Q)≈ 1

r2
Hτ

2
V (zfixed, zfixed,Q)

Since for extremal black-holes the sum of the above three terms vanishes (see
(9.2.5)), we conclude that:

r2
H = −VBH(zfixed, zfixed,Q) (9.2.84)

which yields

AreaH = 4πr2
H = 4π

√
I4(p, q) (9.2.85)
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9.2.7.1 An Explicit Example of Exact Regular BPS Solution

This general mechanism can be illustrated with an explicit example of exact regular
solution of the S3 model. The key identifier of the solution is its vector of electro-
magnetic charges that in our chosen example is the following one:

⎛
⎜⎜⎝
p1
p2
q1
q2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
p

−√
3q

0

⎞
⎟⎟⎠ ; p,q > 0 or p,q < 0 (9.2.86)

The corresponding explicit solution is given below and depends on three parameters
p, q and κ which yields the value of the imaginary part of the scalar field at radial
infinity, namely at τ = 0.

The Metric

exp
[
U(τ)

] = κ3/4√−(κ3/2 − pτ)(q
√
κτ − 1)3

(9.2.87)

The Scalar Field

Im z(τ ) = −
4
√
κ
√
(pτ − κ3/2)(q

√
κτ − 1)3

(q
√
κτ − 1)2

(9.2.88)

Re z(τ ) = 0 (9.2.89)

The Electromagnetic Fields

Z1(τ ) = 0 (9.2.90)

Z2(τ ) = − pτ√
2κ3/2(κ3/2 − pτ)

(9.2.91)

Z1(τ ) = −
√

3
2qκτ

q
√
κτ − 1

(9.2.92)

Z2(τ ) = 0 (9.2.93)

The interested reader can verify that the expressions displayed above for all the
fields fulfill the variational equations (9.2.6) of the σ -model and hence are bona-
fide solutions of the supergravity field theory.

The Fixed Scalars at Horizon and the Entropy Calculating the area of the
horizon we find:

1

4π
AreaH ≡ r2

H = lim
τ→−∞

1

τ 2
exp
[−U(τ)

]=
√
pq3 (9.2.94)
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which makes sense only as long as pq3 > 0. Inserting (9.2.86) into (9.2.75) we see
that pq3 = I4. Hence we conclude that this solution is indeed BPS as expected. The
horizon area is:

1

4π
AreaH ≡ r2

H =
√
I4 (9.2.95)

9.2.8 The Attraction Mechanism Illustrated with an Exact
Non-BPS Solution

Next we illustrate the attraction mechanism with an explicit example of exact regular
non-BPS solution of the S3 model. The vector of electromagnetic charges of the
considered solution differs from that of the above BPS-example only by means of a
sign, namely it is:

⎛
⎜⎜⎝
p1
p2
q1
q2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
p√
3q
0

⎞
⎟⎟⎠ ; p,q > 0 or p,q < 0 (9.2.96)

The corresponding explicit solution which is given below depends on four parame-
ters p, q and κ , ξ which yield the values of both the imaginary and the real parts of
the scalar field at radial infinity, namely at τ = 0.

The Metric The metric is defined by the function U for which the integration
techniques of the σ -model yield the following expression:

exp
[
U(τ)

]= κ3/4/
(−q3κ3τ 3 − q3κξ2τ 3 + 3q2κ5/2τ 2 + 3q2√κξ2τ 2

+ p(q
√
κτ − 1)3τ − 3qκ2τ − 3qξ2τ + κ3/2)1/2 (9.2.97)

The Scalar Field The complex scalar field z(τ ) has the following form:

Im z(τ )= − 4
√
κ
(−q3κ3τ 3 −q2κ

(
qξ2 +3p

)
τ 3 +3q2κ5/2τ 2 +3q

√
κ
(
qξ2 +p

)
τ 2

− 3qκ2τ − (3qξ2 + p
)
τ + κ3/2(pq3τ 4 + 1

))1/2
/(q

√
κτ − 1)2

(9.2.98)

Re z(τ )= ξ

(q
√
κτ − 1)2

(9.2.99)

The Electromagnetic Fields The explicit form of the two field strengths appear-
ing in the S3 model is completely determined by (9.2.14). It suffices to know the
magnetic charges (p1,p2)= (0,p), the Taub-NUT charge n = 0 and the derivatives
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Fig. 9.1 Trajectories of
scalar fields from infinity to
the horizon in the case of the
regular non-BPS black-hole
discussed in the main text.
The chosen numerical values
of the charges are (p = 2,
q = 4)

of the ZΛ(τ) functions. We have

Ż1(τ )=
√

3

2
ξ
(
q
(
2q3τ 3κ7/2 − 6q2τ 2κ3 + 6qτκ5/2 − 2κ2 + 2q3ξ2τ 3κ3/2

− 6q2ξ2τ 2κ + 6qξ2τ
√
κ − 3ξ2)− p(q

√
κτ − 1)3(3q

√
κτ − 1)

)
/
(
q3κ3τ 3 + q2κ

(
qξ2 + 3p

)
τ 3 − 3q2κ5/2τ 2 − 3q

√
κ
(
qξ2 + p

)
τ 2

+ 3qκ2τ + (3qξ2 + p
)
τ − κ3/2(pq3τ 4 + 1

))2 (9.2.100)

Ż2(τ )= − (q
√
κτ − 1)2

(
p(q

√
κτ − 1)4 + 3qξ2)

/
(√

2
(
q3κ3τ 3 + q2κ

(
qξ2 + 3p

)
τ 3 − 3q2κ5/2τ 2 − 3q

√
κ
(
qξ2 + p

)
τ 2

+ 3qκ2τ + (3qξ2 + p
)
τ − κ3/2(pq3τ 4 + 1

))2) (9.2.101)

The Fixed Scalars at Horizon and the Entropy Calculating the area of the
horizon we find:

1

4π
AreaH ≡ r2

H = lim
τ→−∞

1

τ 2
exp
[−U(τ)

]=
√
pq3 (9.2.102)

which makes sense only as long pq3 > 0 namely as long the p, q-charges are both
positive or both negative. When this condition, which defines the physical branch
of the solution, is fulfilled, (9.2.102) provides the correct expected result for anti-
BPS black-holes. Indeed, comparing with the definition of the quartic symplectic
invariant in (9.2.75) and with the form of the electromagnetic charges of the present
solution we see that:

pq3 = −I4 if p, q have the same sign (9.2.103)

A graphical illustration of the attractor mechanism is given in Fig. 9.1.

9.2.9 Resuming the Discussion of Critical Points

In view of the above examples, let us resume the general discussion of critical points
of the Black Hole potential applying it to the S3 model and moreover to a charge
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vector of the following type:⎧⎪⎪⎨
⎪⎪⎩

p1
p2
q1
q2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0
p√
3q
0

⎫⎪⎪⎬
⎪⎪⎭

⇐
{
p > 0, q < 0 or p < 0, q > 0 BPS

p > 0, q > 0 or p < 0, q < 0 non-BPS

(9.2.104)
and let us consider the solution of the attractor equations (9.2.40) with the above
charge vector.

Non-BPS Case For p and q having the same sign it is easily verified that there is
no solution of the equation Zz = 0 and hence no BPS attractor point. On the other
hand there is a solution of the critical point equation (9.2.40) with both Zz �= 0 and
Z �= 0. It corresponds to the following simple fixed value:

zfixed = −i
√
p

q
(9.2.105)

With such fixed value the i-invariant take the following values:

{i1, i2, i3, i4, i5} =
{

1

2

√
p

q
q2,

3

2

√
p

q
q2,0,−pq3

2
,3pq3

}
(9.2.106)

which satisfy the relations (9.2.48) characterizing a non-BPS attractor point of
type II. Furthermore the quartic invariant I4(p, q) = −pq3 < 0 is negative in this
case and we expect that the horizon area will be proportional to

√−I4. This is
indeed the case as we verified few lines above. Furthermore if we calculate the lim-
iting value of the scalar field (9.2.98), (9.2.99) at τ → −∞ we precisely find the
fixed value (9.2.105).

BPS Case If p and q have opposite signs there is just one solution of the equation
Zz = 0 with Z �= 0. Hence we a have a BPS attractor. The fixed point is:

zfixed = −i
√

−p

q
(9.2.107)

which perfectly fits the general formula (9.2.79). Moreover calculating the i-
invariants at the fixed point we obtain:

{i1, i2, i3, i4, i5} = {2
√

−pq3,0,0,0,0
}

(9.2.108)

which fulfills the relations (9.2.47) proper of the BPS attractors.

9.2.10 An Example of a Small Black Hole

Let us consider the exact solution of the σ -model variational equations encoded in
the functions displayed below that depend on four parameters y, σ , ξ , κ :
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The Metric

U(τ)= −1

2
log
(
2στ

(
y2 + 1

)3 + 1
)

(9.2.109)

The Complex Scalar Field

z(τ ) = ξ(2(y2 + 1)στ(y2 − 1)2 + 1)− 4y(y4 − 1)κστ

2(y2 + 1)στ(y2 − 1)2 + 1

− i
κ
√

2στ(y2 + 1)3 + 1

2(y2 + 1)στ(y2 − 1)2 + 1
(9.2.110)

The Electromagnetic Fields

Ż1(τ ) = 4
√

6y2((y2 − 1)κ + 2yξ)σ

κ3/2(2στ(y2 + 1)3 + 1)2
(9.2.111)

Ż2(τ ) = 8
√

2y3σ

κ3/2(2στ(y2 + 1)3 + 1)2

The Charges Using the general formulae discussed in previous pages we find
that the Taub-Nut charge is zero:

n = 0 (9.2.112)

while for the electromagnetic charges we get:

⎛
⎜⎜⎝
p1
p2
q1
q2

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

− 2
√

3(y2−1)(−ξy2+2κy+ξ)2σ

κ3/2

− 2(−ξy2+2κy+ξ)3σ

κ3/2

2
√

3(y2−1)2(ξy2−2κy−ξ)σ

κ3/2

2(y2−1)3σ
κ3/2

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.2.113)

Structure of the Charges and Attractor Mechanism Observing the right hand
side of (9.2.113), we realize that in this solution the electromagnetic charges satisfy
the following two algebraic constraints:

q2
1 + √

3p1q2 = 0 (9.2.114)

p3
1 + 3

√
3p2

2q2 = 0 (9.2.115)

which can be solved for qΛ in terms of pΣ . Explicitly we have:

{q1, q2} =
{
∓ p2

1√
3p2

,− p3
1

3
√

3p2
2

}
(9.2.116)
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Only the second branch of the above solution is consistent with (9.2.113) from
which the constraints (9.2.115) were derived. Restricting our attention to such a
branch, the two magnetic charges pΣ are identified by (9.2.113) as it follows:

{p1,p2} =
{
−2

√
3(y2 − 1)(−ξy2 + 2κy + ξ)2σ

κ3/2
,−2(−ξy2 + 2κy + ξ)3σ

κ3/2

}

(9.2.117)

Equation (9.2.117) can now be inverted expressing the parameters y and σ in terms
of the charges pΛ and of the value of the scalar field at infinity κ, ξ . The explicit
inversion of the above formulae is quite involved and not relevant for our discussion,
so we omit it.

If we calculate the limiting value taken by complex scalar field when τ → −∞
we find that it is always real and equal to:

lim
τ→−∞ z(τ )= zfix =

{−ξy2 + 2κy + ξ

1 − y2

}
(9.2.118)

With a little bit of algebraic work one can verify that this value is actually the same
as:

zfix = −
√

3p2

p1
(9.2.119)

This is just the attractor mechanism. Independently from their values at infinity the
scalar fields go to a fixed value at the horizon which depends only on the charges.
The novelty, however, is that this horizon has a vanishing area. Indeed from the
explicit form of the U(τ) function we obtain:

1

4π
AreaH = lim

τ→−∞
1

τ 2
exp
[−U(τ)

]= 0 (9.2.120)

This is consistent with the fact that the quartic invariant with such charges as those

pertaining to this solution, namely {p1,p2,
p2

1√
3p2

,− p3
1

3
√

3p2
2
}, vanishes identically:

I4 = 0.

9.2.11 Behavior of the Riemann Tensor in Regular Solutions

In order to better appreciate the approach to horizon in regular solutions it is con-
venient to study more in depth the solution based on the metric (9.2.87) and the
scalar field (9.2.88), (9.2.89). As long as we do not mention the accompanying vec-
tor functions ZΛ(τ) we do not know whether (9.2.87), (9.2.88), (9.2.89) describe
the non-BPS or the BPS solution. Yet in both cases p, q are restricted to have the
same sign which means equal sign for p2, q1 in the non-BPS case and opposite sign
for the same charges in the BPS one. If we insert the explicit form of the warp factor
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.

Fig. 9.2 Evolution of the four independent component of the curvature for the non-BPS and BPS
solutions with ξ = 0, κ = 1, q = 2,p = 1

8 . In the picture on the left we see the behavior of the
curvature near τ = 0 namely at asymptotic infinity where they go all to zero. In the picture on
the right we see the asymptotic behavior for large negative τ , namely near the horizon where the
curvatures go to their constant values and the space degenerates into the direct product AdS2 × S2

(9.2.87) in the expression (9.2.34) for the independent component of the Riemann
tensor we can verify the following asymptotic behavior:

lim
τ→0

{
C1(τ ),C2(τ ),C3(τ ),C4(τ )

} = {0,0,0,0} (9.2.121)

lim
τ→−∞

{
C1(τ ),C2(τ ),C3(τ ),C4(τ )

} = 1√
pq3

{
−1

2
,−1

2
,1,1

}
(9.2.122)

This has a profound meaning. The vanishing of all curvature components at radial
infinity corresponds to the condition of asymptotic flatness which is a necessary
boundary condition for physically meaningful black-holes. On the other hand the
characteristic integer values of the Riemann tensor components obtained at the hori-
zon correspond to the factorization of the four-dimensional geometry into the direct
product AdS2 × S2. The interpretation of the regular black-holes as an interpolating
soliton between two different vacua of supergravity is thus manifest. At τ = 0 we
have the vacuum Mink4. At the horizon we have the vacuum AdS2 × S2 which re-
quires an appropriate form of the electromagnetic fields. In Fig. 9.2 we present the
behavior of the four functions in a numerical case-study where the approach to the
asymptotic constant values at the horizon can be clearly seen.

9.3 Flux Vacua of M-Theory and Manifolds of Restricted
Holonomy

The next instance of supergravity solutions that we consider has been announced
in the introduction. We will focus on compactified vacua solutions of M-theory. By
vacuum it is meant that four of the eleven dimensions of M-theory correspond to
those of a maximally symmetric manifold, (Minkowski, de Sitter or anti de Sitter
space). Compactification instead occurs if the remaining seven dimensions are rolled
up into a compact 7-manifold whose size is fixed by its average curvature radius.
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The compactification is flux driven if (9.1.2) holds true for the unique four-index
field strength of M-theory.

The construction and classification of such solutions involves the notion of
Killing spinors and of manifolds of weak G2-holonomy that we will explain in the
following pages. Furthermore at the heart of the mechanism of symmetry breaking
we find the holonomy tensor which is a geometrical datum of the full space-time
manifold. Its role is encoded in the Bianchi identities of the Free Differential Alge-
bra and our first mission is to single it out in that general context. This is our starting
point.

9.3.1 The Holonomy Tensor from D = 11 Bianchi Identities

To fulfill our mission it is convenient to rewrite the rheonomic parameterization of
M-theory FDA curvatures, that were given in (6.4.8), in a slightly more compact
form, namely as follows:

T
a ≡ 0

R
ab ≡ Rab

mn V
m ∧ V n +Θ

c |ab
Ψ ∧ Vc +Ψ ∧ SabΨ

(9.3.1)
ρ ≡ ρabV

a ∧ V b + FaΨ ∧ V a

F[4] ≡ Fb1...b4V
b1 ∧ · · · ∧ V b4

In the above equations we have introduced the following spinor and the following
matrices:

Θ
c |ab = iρmn

(
1

2
Γ abmnc − 2

9
Γ mn[aδb]c + 2Γ ab[mδn]c

)

= −iρabΓc + 2iρc[aΓb] (9.3.2)

Fa = Ta
b1b2b3b4Fb1b2b3b4 (9.3.3)

Sab = FabcdΓcd + 1

24
Fc1...c4Γ

abc1...c4 (9.3.4)

furthermore we have used the following abbreviation:

Ta
b1b2b3b4 = − i

24

(
Γ b1b2b3b4

a + 8δa
[b1Γ b2b3b4]) (9.3.5)

In (9.3.2) the equality of the first with the second line follows from the gravitino field
equation, namely the second of (6.4.9). This latter implies that the spinor tensor ρab
is an irreducible representation ( 3

2 ,
3
2 ,

1
2 ,

1
2 ,

1
2 ) of SO(1,10), i.e:

Γ mρam = 0 (9.3.6)

As we demonstrate below the most important relations to be extracted from Bianchi
identities, besides the rheonomic parameterization, concern the spinor derivatives of
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the curvature superfield. This latter is determined from the expansion of the inner
components of the 4-form field strength Fa1...a4 . From the (6.4.6) we obtain:

DαFabcd = (Γ[abρcd])α (9.3.7)

where the spinor derivative is normalized according to the definition:

DFabcd ≡ Ψ
α
DαFabcd + VmDmFabcd (9.3.8)

This shows that the gravitino field strength appears at first order in the θ -expansion
of the curvature superfield. Next we consider the spinor derivative of the gravitino
field strength itself. Using the normalization which streams from the following def-
inition:

Dρab = DcρabV
c +KabΨ (9.3.9)

we obtain:

Kab = −1

4
Rmn

ab Γmn + D[aFb] + 1

2
[Fa,Fb] (9.3.10)

The tensor-matrix Kab is of key importance in the discussion of compactifications.
If it vanishes on a given background it means that the gravitino field strength can
be consistently put to zero to all orders in θs and on its turn this implies that the 4-
field strength can be chosen constant to all orders in θs. This is the case of maximal
unbroken supersymmetry. In this case all curvature components of the Free Differ-
ential Algebra can be chosen constant and we have a superspace whose geometry is
purely described by Maurer Cartan forms of some super coset.

On the other hand if Kab , that we name the holonomy tensor does not vanish this
implies that both ρab and Fabcd have some non-trivial θ -dependence and cannot be
chosen constant. In this case the geometry of superspace is not described by simple
Maurer Cartan forms of some supercoset, since the curvatures of the FDA are not
pure constants. This is the case of fully or partially broken SUSY and it is the case
we explore. In the AdS4 × (G /H )7 compactifications it turns out that the matrix
Kab is related to the holonomy tensor of the internal manifold (G /H )7.

Let us finally work out the spinor derivative of the Riemann tensor. Defining:

DRab
mn = DpR

ab
mn V

p +ΨΛab
mn (9.3.11)

from (6.4.3) we obtain:

Λab
mn = (D[m − F [m)Θ |ab

n] + 2Sabρmn (9.3.12)

where we have introduced the notation:

Θn |ab = C
(
Θ

n |ab)T = iΓcρab − 2iΓ[aρb]c
(9.3.13)

Fa = C(Fa)
T C−1 = i

24

(
Γ b1b2b3b4

a − 8δa
[b1Γ b2b3b4])Fb1b2b3b4
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The matrix Kab and the spinor Λab
mn are the crucial objects we are supposed to

compute in each compactification background.

9.3.2 Flux Compactifications of M-Theory on AdS4 × M7
Backgrounds

We are interested in compactified backgrounds where the 11-dimensional bosonic
manifold is of the form:

M11 = M4 × M7 (9.3.14)

M4 denoting a four-dimensional maximally symmetric manifold whose coordinates
we denote xμ and M7 a 7-dimensional compact manifold whose parameters we
denote yI . Furthermore we assume that in any configuration of the compactified
theory the eleven dimensional vielbein is split as follows:

V a =
{
V r =Er(x); r = 0,1,2,3

V α =Φα
β(x)(e

β +Wβ(x)); α,β = 4,5,6,7,8,9,10
(9.3.15)

where Er(x) is a purely x-dependent 4-dimensional vielbein, Wα(x) is an x-
dependent 1-form on x-space describing the Kaluza Klein vectors and the purely
x-dependent 7 × 7 matrix Φα

β(x) encodes part of the scalar fields of the compact-
ified theory, namely the internal metric moduli. From these assumptions it follows
that the bosonic field strength is expanded as follows:

F[4]
(Bosonic) ≡ F [4](x)+ F [3]

α (x)∧ V α + F
[2]
αβ (x)∧ V α ∧ V β

+ F
[1]
αβγ (x)∧ V α ∧ V β ∧ V γ + F

[0]
αβγ δ(x)∧ V α ∧ V β ∧ V γ ∧ V δ

(9.3.16)

where F [p]
α1...α4−p

(x) are x-space p-forms depending only on x.
In bosonic backgrounds with a space-time geometry of the form (9.3.14), the

family of configurations (9.3.15) must satisfy the condition that by choosing:

Er = vielbein of a maximally symmetric 4D space-time (9.3.17)

ΦI
J (x) = δIJ (9.3.18)

WI = 0 (9.3.19)

F
[3]
I (x) = F

[2]
IJ (x)= F

[1]
IJK(x)= 0 (9.3.20)

F [4](x) = eεrstuE
r ∧Es ∧Et ∧Eu; (e = const) (9.3.21)

F
[0]
αβγ δ(x) = gαβγ δ = constant tensor (9.3.22)
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we obtain an exact bona fide solution of the eleven-dimensional field equations of
M-theory.

There are three possible 4-dimensional maximally symmetric Lorentzian mani-
folds

M4 =
⎧⎨
⎩

Mink4 Minkowski space
dS4 de Sitter space
AdS4 anti de Sitter space

(9.3.23)

In any case Lorentz invariance imposes (9.3.18), (9.3.19), (9.3.20) while translation
invariance imposes that the vacuum expectation value of the scalar fields Φα

β(x)

should be a constant matrix 〈
Φα

β(x)
〉= A α

β (9.3.24)

We are interested in 7-manifolds that preserve some residual supersymmetry in
D = 4. This relates to the holonomy of M7 which has to be restricted in order to
allow for the existence of Killing spinors. In the next subsection we summarize the
basic results from the literature on this topic.

9.3.3 M-Theory Field Equations and 7-Manifolds of Weak G2
Holonomy i.e. Englert 7-Manifolds

In order to admit at least one Killing spinor or more, the 7-manifold M7 necessar-
ily must have a (weak) holonomy smaller than SO(7): at most G2. The qualifica-
tion weak refers to the definition of holonomy appropriate to compactifications on
AdS4 × M7 while the standard definition of holonomy is appropriate to compacti-
fications on Ricci flat backgrounds Mink4 × M7. To explain in contemporary lan-
guage these concepts that were discovered in the eighties we have to recall the notion
of G-structures. Indeed in the recent literature about flux compactifications the key
geometrical notion exploited by most authors is precisely that of G-structures [22].

Following, for instance, the presentation of [22], if Mn is a differentiable man-
ifold of dimension n, TMn

π→ Mn its tangent bundle and FMn
π→ Mn its frame

bundle, we say that Mn admits a G-structure when the structural group of FMn

is reduced from the generic GL(n,R) to a proper subgroup G ⊂ GL(n,R). Generi-
cally, tensors on Mn transform in representations of the structural group GL(n,R).
If a G-structure reduces this latter to G ⊂ GL(n,R), then the decomposition of an ir-
reducible representation of GL(n,R), pertaining to a certain tensor tp , with respect
to the subgroup G may contain singlets. This means that on such a manifold Mn

there may exist a certain tensor tp which is G-invariant, and therefore globally de-
fined. As recalled in [22] existence of a Riemannian metric g on Mn is equivalent to
a reduction of the structural group GL(n,R) to O(n), namely to an O(n)-structure.
Indeed, one can reduce the frame bundle by introducing orthonormal frames, the
vielbein eI , and, written in these frames, the metric is the O(n) invariant tensor
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δIJ . Similarly orientability corresponds to an SO(n)-structure and the existence of
spinors on spin manifolds corresponds to a Spin(n)-structure.

In the case of seven dimensions, an orientable Riemannian manifold M7, whose
frame bundle has generically an SO(7) structural group, admits a G2-structure if
and only if, in the basis provided by the orthonormal frames Bα , there exists an
antisymmetric 3-tensor φαβγ δ satisfying the algebra of the octonionic structure con-
stants:

φαβκφγ δκ = 1

18
δ
γ δ
αβ − 2

3
φ�αβγ δ

(9.3.25)

−1

6
εκρσαβγ δφ

�
αβγ δ = φκρσ

which is invariant, namely it is the same in all local trivializations of the SO(7) frame
bundle. This corresponds to the algebraic definition of G2 as that subgroup of SO(7)
which acts as an automorphism group of the octonion algebra. Alternatively G2 can
be defined as the stability subgroup of the 8-dimensional spinor representation of
SO(7). Hence we can equivalently state that a manifold M7 has a G2-structure if
there exists at least an invariant spinor η, which is the same in all local trivializations
of the Spin(7) spinor bundle.

In terms of this invariant spinor the invariant 3-tensor φρσκ has the form:6

φρσκ = 1

6
ηT τρσκη (9.3.26)

and (9.3.26) provides the relation between the two definitions of the G2-structure.
On the other hand the manifold has not only a G2-structure, but also G2-

holonomy if the invariant three-tensor φαβκ is covariantly constant, namely:

0 = ∇φαβγ ≡ dφαβγ + 3Bκ[αφβγ ]κ (9.3.27)

where the 1-form Bαβ is the spin connection of M7. Alternatively the manifold has
G2-holonomy if the invariant spinor η is covariantly constant, namely if:

∃η ∈ Γ (SpinM7,M7)\0 = ∇η≡ dη− 1

4
Bαβταβη (9.3.28)

where τα (α = 1, . . . ,7) are the 8×8 gamma matrices of the SO(7) Clifford algebra
(see footnote). The relation between the two definitions (9.3.27) and (9.3.28) of G2-
holonomy is the same as for the two definitions of the G2-structure, namely it is
given by (9.3.26). As a consequence of its own definition a Riemannian 7-manifold
with G2 holonomy is Ricci flat. Indeed the integrability condition of (9.3.28) yields:

R
αβ
γ δταβη = 0 (9.3.29)

6By τα we denote the gamma matrices in 7-dimensions, satisfying the Clifford algebra {τα, τβ } =
−δαβ . With the symbol τα1...αn we denote, as usual, the antisymmetrized product of n such matri-
ces.
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where R
αβ
γ δ is the Riemann tensor of M7. From (9.3.29), by means of a few simple

algebraic manipulations one obtains two results:

• The curvature 2-form

Rαβ ≡ R
αβ
γ δB

γ ∧ Bδ (9.3.30)

is G2 Lie algebra valued, namely it satisfies the condition:

φκαβRαβ = 0 (9.3.31)

which projects out the 7 of G2 from the 21 of SO(7) and leaves with the ad-
joint 14.

• The internal Ricci tensor is zero:

Rακ
βκ = 0 (9.3.32)

Next we consider the bosonic field equations of M-theory, namely the first and the
last of (6.4.9). We make the compactification ansatz (9.3.14) where M4 is one of
the three possibilities mentioned in (9.3.23) and all of (9.3.18)–(9.3.22) hold true.
Then we split the rigid index range as follows:

a, b, c, . . .=
{
α,β, γ, . . .= 4,5,6,7,8,9,10 = M7 indices

r, s, t, . . .= 0,1,2,3 = M4 indices
(9.3.33)

and by following the conventions employed in [23] and using the results obtained in
the same paper, we conclude that the compactification ansatz reduces the system of
the first and last of (6.4.9) to the following one:

Rrs
tu = λδrstu (9.3.34)

Rακ
βκ = 3νδαβ (9.3.35)

Frstu = eεrstu (9.3.36)

gαβγ δ = fFαβγ δ (9.3.37)

F ακρσFβκρσ = μδαβ (9.3.38)

DμFμκρσ = 1

2
eεκρσαβγ δF

αβγ δ (9.3.39)

Equation (9.3.35) states that the internal manifold M7 must be an Einstein space.
Equations (9.3.36) and (9.3.37) state that there is a flux of the four-form both on
4-dimensional space-time M4 and on the internal manifold M7. The parameter e,
which fixes the size of the flux on the four-dimensional space and was already in-
troduced in (9.3.21), is called the Freund-Rubin parameter [24]. As we are going
to show, in the case that a non-vanishing F αβγ δ is required to exist, (9.3.38) and
(9.3.39), are equivalent to the assertion that the manifold M7 has weak G2 holon-
omy rather than G2-holonomy, to state it in modern parlance [25]. In paper [26],
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manifolds admitting such a structure were instead named Englert spaces and the
underlying notion of weak G2 holonomy was already introduced there with the dif-
ferent name of de Sitter SO(7)+ holonomy.

Indeed (9.3.39) which, in the language of the early eighties was named Englert
equation [27] and which is nothing else but the first equation of (6.4.9), upon sub-
stitution of the Freund Rubin ansatz (9.3.36) for the external flux, can be recast in
the following more revealing form: Let

Φ� ≡ Fαβγ δB
α ∧ Bβ ∧ Bγ ∧ Bδ (9.3.40)

be a the constant 4-form on M7 defined by our non-vanishing flux, and let

Φ ≡ 1

24
εαβγ κρστFκρστB

α ∧ Bβ ∧ Bγ (9.3.41)

be its dual. Englert equation (9.3.39) is just the same as writing:

dΦ = 12eΦ�

(9.3.42)
dΦ� = 0

When the Freund Rubin parameter vanishes e= 0 we recognize in (9.3.42) the state-
ment that our internal manifold M7 has G2-holonomy and hence it is Ricci flat.
Indeed Φ is the G2 invariant and covariantly constant form defining G2-structure
and G2-holonomy. On the other hand the case e �= 0 corresponds to the weak G2
holonomy. Just as we reduced the existence of a closed three-form Φ to the exis-
tence of a G2 covariantly constant spinor satisfying (9.3.28) which allows to set the
identification (9.3.26), in the same way (9.3.42) can be solved if and only if on M7
there exist a weak Killing spinor η satisfying the following defining condition:

Dαη = meταη (9.3.43)

)

Dη≡
(
d − 1

4
Bαβταβ

)
η = meBαταη (9.3.44)

where m is a numerical constant and e is the Freund-Rubin parameter, namely the
only scale which at the end of the day will occur in the solution.

The integrability of the above equation implies that the Ricci tensor be propor-
tional to the identity, namely that the manifold is an Einstein manifold and further-
more fixes the proportionality constant:

Rακ
βκ = 12m2e2δαβ −→ ν = 12m2e2 (9.3.45)

In case such a spinor exists, by setting:

gαβγ δ = Fαβγ δ = ηT ταβγ δη= 24φ�αβγ δ (9.3.46)
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we find that Englert equation (9.3.39) is satisfied, provided we have:

m= −3

2
(9.3.47)

In this way Maxwell equation, namely the first of (6.4.9) is solved. Let us also note,
as the authors of [26] did many years ago, that the condition (9.3.43) can also be
interpreted in the following way. The spin-connection Bαβ plus the vielbein Bγ

define on any non-Ricci flat 7-manifold M7 a connection which is actually SO(8)
rather than SO(7) Lie algebra valued. In other words we have a principal SO(8)
bundle which leads to an SO(8) spin bundle of which η is a covariantly constant
section:

0 = ∇SO(8)η= (∇SO(7) −meBατα
)
η (9.3.48)

The existence of η implies a reduction of the SO(8)-bundle. Indeed the stability sub-
group of an SO(8) spinor is a well known subgroup SO(7)+ different from the stan-
dard SO(7) which, instead, stabilizes the vector representation. Hence the so named
weak G2 holonomy of the SO(7) spin connection Bαβ is the same thing as the
SO(7)+ holonomy of the SO(8) Lie algebra valued de Sitter connection {Bαβ,Bγ }
introduced in [26] and normally discussed in the old literature on Kaluza Klein Su-
pergravity.

We have solved Maxwell equation, but we still have to solve Einstein equation,
namely the last of (6.4.9). To this effect we note that:

FβκρσF ακρσ = 24δαβ =⇒ μ= 24 (9.3.49)

and we observe that Einstein equation reduces to the following two conditions on
the parameters (see [23] for details):

3

2
λ = −

(
24e2 + 7

2
μf 2

)
(9.3.50)

3ν = 12e2 + 5

2
μf 2

From (9.3.50) we conclude that there are only three possible kind of solutions.

(a) The flat solutions of type

M11 = Mink4 ⊗ M7︸︷︷︸
Ricci flat

(9.3.51)

where both D = 4 space-time and the internal 7-space are Ricci flat. These
compactifications correspond to e= 0 and Fαβγ δ = 0 ⇒ gαβγ δ = 0.

(b) The Freund Rubin solutions of type

M11 = AdS4 ⊗ M7︸︷︷︸
Einst. manif.

(9.3.52)
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These correspond to anti de Sitter space in 4-dimensions, whose radius is
fixed by the Freund Rubin parameter e �= 0 times any Einstein manifold in 7-
dimensions with no internal flux, namely gαβγ δ = 0. In this case from (9.3.50)
we uniquely obtain:

Rrs
tu = −16e2δrstu (9.3.53)

Rακ
βκ = 12e2δαβ (9.3.54)

Frstu = eεrstu (9.3.55)

Fαβγ δ = 0 (9.3.56)

(c) The Englert type solutions

M11 = AdS4 ⊗ M7︸︷︷︸
Einst. manif.
weak G2 hol

(9.3.57)

These correspond to anti de Sitter space in 4-dimensions (e �= 0) times a 7-
dimensional Einstein manifold which is necessarily of weak G2 holonomy in
order to support a consistent non-vanishing internal flux gαβγ δ . In this case com-
bining (9.3.50) with the previous ones we uniquely obtain:

λ= −30e2; f = ±1

2
e (9.3.58)

As we already mentioned in the introduction there exist several compact man-
ifolds of weak G2 holonomy. In particular all the coset manifolds G /H of weak
G2 holonomy were classified and studied in the Kaluza Klein supergravity age
[23, 26, 28–35] and they were extensively reconsidered in the context of the
AdS/CFT correspondence [36–40].

In the present section we present the supergauge completion, namely the exten-
sion to a convenient superspace containing all or a subset of the 32 fermionic co-
ordinates θs of the compactifications of the Freund Rubin type, namely on eleven-
manifolds of the form:

M11 = AdS4 × G

H
(9.3.59)

with no internal flux gαβγ δ switched on. As it was extensively explained in [41] and
further developed in [36–40], if the compact coset G /H admits N ≤ 8 Killing
spinors ηA, namely N ≤ 8 independent solutions of (9.3.43) with m= 1, then the
isometry group G is necessarily of the form:

G = SO(N )× Gflavor (9.3.60)

where Gflavor is some appropriate Lie group. In this case the isometry supergroup of
the considered M-theory background is:

Osp(N |4)× Gflavor (9.3.61)
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and the spectrum of fluctuations of the background arranges into Osp(N |4) su-
permultiplets furthermore assigned to suitable representations of the bosonic flavor
group.

9.3.4 The SO(8) Spinor Bundle and the Holonomy Tensor

We come next to discuss a very important property of 7-manifolds with a spin struc-
ture which plays a crucial role in understanding the supergauge completion. This is
the existence of an SO(8) vector bundle whose non-trivial connection is defined by
the Riemannian structure of the manifold. To introduce this point and in order to
illustrate its relevance to our problem we begin by considering a basis of D = 11
gamma matrices well adapted to the compactification on AdS4 × M7.

9.3.5 The Well Adapted Basis of Gamma Matrices

According to the tensor product representation well adapted to the compactification,
the D = 11 gamma matrices can be written as follows:

Γa = γa ⊗ 18×8 (a = 0,1,2,3)
(9.3.62)

Γ3+α = γ5 ⊗ τα (α = 1, . . . ,7)

where, following the old Kaluza Klein supergravity literature [26, 30, 41] the ma-
trices τα are the real antisymmetric realization of the SO(7) Clifford algebra with
negative metric:

{τα, τβ} = −2δαβ; τα = −(τα)
T (9.3.63)

In this basis the charge conjugation matrix is given by:

C = C ⊗ 18×8 (9.3.64)

where C is the charge conjugation matrix in d = 4:

C γaC
−1 = −γ T

a ; C T = −C (9.3.65)

9.3.6 The so(8)-Connection and the Holonomy Tensor

Next we observe that using these matrices the covariant derivative introduced in
(9.3.48) defines a universal so(8)-connection on the spinor bundle which is given
once the Riemannian structure is given, namely once the vielbein and the spin con-
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nection {Bα,Bαβ} are given:

Uso(8) ≡ −1

4
Bαβ ταβ − eBα τα (9.3.66)

More precisely, let ζÂ be an orthonormal basis:

ζ Â ζB̂ = δÂB̂ (9.3.67)

of sections of the spinor bundle over the Einstein manifold M7. Any spinor can be
written as a linear combination of these sections that are real. Furthermore the bar
operation in this case is simply the transposition. Hence, if we consider the so(8)
covariant derivative of any of these sections, this is a spinor and, as such, it can be
expressed as a linear combinations of the same:

∇so(8) ζÂ ≡ (d + Uso(8))ζÂ = UÂB̂ ζB̂ (9.3.68)

According to standard lore the one-form valued, antisymmetric 8 × 8 matrix UÂB̂

defined by (9.3.68) is the so(8)-connection in the chosen basis of sections. If the
manifold M7 admits N Killing spinors, then it follows that we can choose an or-
thonormal basis where the first N sections are Killing spinors:

ζA = ηA; ∇so(8) ηA = 0, A= 1, . . . ,N (9.3.69)

and the remaining 8−N elements of the basis, whose covariant derivative does not
vanish are orthogonal to the Killing spinors:

ζA = ξA; ∇so(8) ξA �= 0, A= 1, . . . , 8 − N

ξB ηA = 0 (9.3.70)

ξB ξC = δBC

It is then evident from (9.3.69) and (9.3.70) that the so(8)-connection UÂB̂ takes
values only in a subalgebra so(8−N )⊂ so(8) and has the following block diagonal
form:

UÂB̂ =
(

0 0
0 UAB

)
(9.3.71)

Squaring the SO(8)-covariant derivative, we find

∇2ζÂ = (dUÂB̂ − UÂĈ ∧ UĈB̂ )︸ ︷︷ ︸
FÂB̂ [U]

ζB̂

= −1

4

(
Rγ δ

αβ − 4e2δγ δαβ
)

︸ ︷︷ ︸
C γ δ

αβ

τγ δζÂ (9.3.72)

where C γ δ
αβ is the so called holonomy tensor, essentially identical with the Weyl

tensor of the considered Einstein 7-manifold.
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9.3.7 The Holonomy Tensor and Superspace

As a further preparation to our subsequent discussion of the gauge completion let us
now consider the form taken on the AdS4 ×G /H backgrounds by the operator Kab

introduced in (9.3.9) and governing the mechanism of supersymmetry breaking. We
will see that it is just simply related to the holonomy tensor discussed in the previous
section, namely to the field strength of the SO(8)-connection on the spinor bundle.
To begin with, we calculate the operator Fa introduced in (9.3.3), (9.3.5). Explicitly
using the well adapted basis (9.3.62) for gamma matrices we find:

Fa =
{
Fa = −2eγaγ5 ⊗ 18

Fα = −e14 ⊗ τα
(9.3.73)

Using this input we obtain:

Kab =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kab = 0

Kaβ = 0

Kαβ = − 1
4 (R

γ δ
αβ − 4e2δγ δαβ)︸ ︷︷ ︸

Cγδ
αβ

τγ δ
(9.3.74)

Where the tensor Cγδ
αβ defined by the above equation is named the holonomy ten-

sor and it is an intrinsic geometric property of the compact internal manifold M7.
As we see the holonomy tensor vanishes only in the case of M7 = S

7 when the Rie-
mann tensor is proportional to an antisymmetrized Kronecker delta, namely, when
the internal Einstein 7-manifold is maximally symmetric. The holonomy tensor is a
21 × 21 matrix which projects the SO(7) Lie algebra to a subalgebra:

Hhol ⊂ SO(7) (9.3.75)

with respect to which the 8-component spinor representation should contain singlets
in order for unbroken supersymmetries to survive. Indeed the holonomy tensor ap-
pears in the integrability condition for Killing spinors. Indeed squaring the defining
equation of Killing spinors with m= 1 we get the consistency condition:

Cγδ
αβ τγ δη= 0 (9.3.76)

which states that the Killing spinor directions are in the kernel of the operators
Cγδ

αβ τγ δ , namely are singlets of the subalgebra Hhol generated by them.
In view of this we conclude that the gravitino field strength has the following

structure:

ρab =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρab = 0

ρaβ = 0

ραβ �= 0;
{

zero at θ = 0

depends only on the broken θs

(9.3.77)
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Table 9.1 The homogeneous 7-manifolds that admit at least 2 Killing spinors are all Sasakian or
tri-Sasakian. This is evident from the fibration structure of the 7-manifold, which is either a fibra-
tion in circles S1 for the N = 2 cases or a fibration in S

3 for the unique N = 3 case corresponding
to the N010 manifold

N Name Coset Holon. so(8)
bundle

Fibration

8 S
7 SO(8)

SO(7) 1

{
S

7 π=⇒ P
3

∀p ∈ P
3; π−1(p)∼ S

1

2 M111 SU(3)×SU(2)×U(1)
SU(2)×U(1)×U(1) SU(3)

{
M111 π=⇒ P

2 × P
1

∀p ∈ P
2 × P

1; π−1(p)∼ S
1

2 Q111 SU(2)×SU(2)×SU(2)×U(1)
U(1)×U(1)×U(1) SU(3)

{
Q111 π=⇒ P

1 × P
1 × P

1

∀p ∈ P
1 × P

1 × P
1; π−1(p)∼ S

1

2 V 5,2 SO(5)
SO(2) SU(3)

{
V 5,2 π=⇒Ma ∼ quadric in P

4

∀p ∈Ma; π−1(p)∼ S
1

3 N010 SU(3)×SU(2)
SU(2)×U(1) SU(2)

{
N010 π=⇒ P

2

∀p ∈ P
2; π−1(p)∼ S

3

Table 9.2 The homogeneous
7-manifolds that admit just
one Killing spinors are the
squashed 7-sphere and the
infinite family of Npqr

manifolds for pqr �= 010.

N Name Coset Holon. so(8)
bundle

1 S
7
squashed

SO(5)×SO(3)
SO(3)×SO(3) SO(7)+

1 Npqr SU(3)×U(1)
U(1)×U(1) SO(7)+

As a preparation for our next coming discussion it is now useful to remind the reader
that the list of homogeneous 7-manifolds G /H of Englert type which preserve at
least two supersymmetries (N ≥ 2) is extremely short. It consists of the Sasakian
or tri-Sasakian homogeneous manifolds7 which are displayed in Table 9.1. For these
cases our strategy in order to obtain the supergauge completion will be based on a
superextension of the Sasakian fibration. The cases with N = 1 are somewhat more
involved since such a weapon is not in our stoke. These cases are also ultra-few and
they are displayed in Table 9.2.

7The theory of Sasakian manifolds, as applied to supergravity compactifications was discussed
in [39]. In short an odd dimensional manifold is named Sasakian if the even dimensional cone
constructed over it has vanishing first Chern class. After several manipulations this implies that the
Sasakian manifold is an S1-fibre bundle over a suitable complex base manifold.
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9.3.8 Gauged Maurer Cartan 1-Forms of OSp(8|4)

A fundamental ingredient in the construction of gauged supergravities is constituted
by the gauging of Maurer Cartan forms of the scalar coset manifold G /H (see for
instance [42] for a survey of the subject). The vector fields present in the super-
multiplet, which are 1-forms defined over the space-time manifold M4, are used to
deform the Maurer Cartan 1-forms of the scalar manifold G /H that are instead sec-
tions of T �(G /H ). Mutatis mutandis, a similar construction turns out to be quite
essential in the problem of gauge completion under consideration. In our case what
will be gauged are the Maurer Cartan 1-forms of the supercoset

M 0|4N
osp = Osp(N |4)

SO(N )× Sp(4,R)
(9.3.78)

which contains the fermionic coordinates of the final superspace we desire to con-
struct (for a thorough discussion of the orthosymplectic supergroups and of their
cosets we refer the reader to Appendix C). The role of the space-time gauge fields is
instead played by the U-connection (9.3.66) of the so(8) spinor bundle constructed
over the internal 7-manifold (G /H )7.

Accordingly we define:

Λ̂≡ L
−1∇L= L

−1(dL+ [Û,L]) (9.3.79)

where Û is the supermatrix defined by the canonical immersion of the so(8) Lie
algebra into the orthosymplectic superalgebra:

Û =
(

0 0
0 U

)
= I (U)

(9.3.80)
I : so(8) �→ osp(8|4)

As a result of their definition, the gauged Maurer Cartan forms satisfy the following
deformed Maurer Cartan equations:

∇Λ̂+ Λ̂∧ Λ̂ = L
−1(Θ)

[
F̂ [U],L(Θ)

]
(9.3.81)

where

F̂ [U] =
(

0 0
0 F [U]

)
(9.3.82)

By explicit evaluation, from (9.3.81) we obtain the following deformation of the
Maurer Cartan equations (9.4.3):

dΔ̂xy + Δ̂xz ∧ Δ̂ tyεzt + 4ieΦ̂x
A ∧ Φ̂

y
A, = −iΘx

AFAB [U]Θy
B

∇ÂAB − eÂAC ∧ ÂCB − 4iΦ̂x
A ∧ Φ̂

y
Bεxy = OAP (Θ)FPQ[U]OQB(Θ)

(9.3.83)− FAB [U]
dΦ̂x

A + Δ̂xy ∧ εyzΦ̂
z
A − eÂAB ∧ Φ̂x

B = Θx
PFPQ[U]OQA(Θ)
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The above equations are our main starting point to construct a supergauge comple-
tion for compactifications with less preserved supersymmetry.

9.3.9 Killing Spinors of the AdS4 Manifold

The next main item for the construction of the supergauge completion is given by
the Killing spinors of anti de Sitter space. Indeed, in analogy with the Killing spinors
of the internal 7-manifold, defined by (9.3.43) with m = 1, we can now introduce
the notion of Killing spinors of the AdS4 space and recognize how they can be
constructed in terms of the coset representative, namely in terms of the fundamental
harmonic of the coset.

The analogue of (9.3.43) is given by:

∇Sp(4)χx ≡
(
d − 1

4
Babγab − 2eγaγ5B

a

)
χx = 0 (9.3.84)

and states that the Killing spinor is a covariantly constant section of the sp(4,R)
bundle defined over AdS4. This bundle is flat since the vanishing of the sp(4,R)
curvature is nothing else but the Maurer Cartan equation of sp(4,R) and hence cor-
responds to the structural equations of the AdS4 manifold. We are therefore guaran-
teed that there exists a basis of four linearly independent sections of such a bundle,
namely four linearly independent solutions of (9.3.84) which we can normalize as
follows:

χxγ5χy = i(C γ5)xy = εxy (9.3.85)

Let LB the coset representative mentioned in (C.2.6) and satisfying:

−1

4
Babγab − 2eγaγ5B

a =ΔB = L−1
B dLB (9.3.86)

It follows that the inverse matrix L−1
B satisfies the equation:

(d +ΔB)L
−1
B = 0 (9.3.87)

Regarding the first index y of the matrix (L−1
B )yx as the spinor index acted on by

the connection ΔB and the second index x as the labeling enumerating the Killing
spinors, (9.3.87) is identical with (9.3.84) and hence we have explicitly constructed
its four independent solutions. In order to achieve the desired normalization (9.3.85)
it suffices to multiply by a phase factor exp[−i 1

4π], namely it suffices to set:

χ
y

(x) = exp

[
−i

1

4
π

](
L−1

B

)y
x (9.3.88)
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In this way the four Killing spinors fulfill the Majorana condition. Furthermore since
L−1

B is symplectic it satisfies the defining relation

L−1
B C γ5LB = C γ5 (9.3.89)

which implies (9.3.85).

9.3.10 Supergauge Completion in Mini Superspace

As it was observed many years ago in [26, 41] and it is reviewed at length in the
book [44], given a bosonic Freund Rubin compactification of M-theory on an in-
ternal coset manifold M7 = G

H which admits N Killing spinors it is fairly easy

to extend it consistently to a mini-superspace M 11|4×N which contains all of the
eleven bosonic coordinates but only 4 × N θs, namely those which are associated
with unbroken supersymmetries. We review this extension reformulating it in a more
inspiring way that treats the two bosonic manifolds in a symmetric way.

In the original formulation, the mini superspace is viewed as the following tensor
product

M 11|4×N ≡ M 4|4N
osp × G

H
(9.3.90)

and in order to construct the FDA p-forms, in addition to the Maurer Cartan forms
of the above coset, we just need to introduce the Killing spinors of the bosonic
internal manifold. Let ηA be an orthonormal basis of N eight component Killing
spinors satisfying the Killing spinor condition (9.3.44) and the normalization:

(
ηA
)T
ηB = δAB (9.3.91)

Next, following [44] and [60], we can now write the complete solution for the back-
ground fields in the case of AdS4 × G

H Freund-Rubin backgrounds:

V̂ a =
{
V̂ a =Ea

V̂ α = Bα − 1
8ηAτ

αηBAAB

ω̂ab =
⎧⎨
⎩
ω̂ab = ωab

ω̂αb = 0
ω̂αβ = Bαβ + e

4ηAτ
αβηBAAB

Ψ̂ = ηA ⊗ψA

(9.3.92)

where {Bαβ,Bα} are the spin connection and the vielbein, respectively, of the
bosonic seven dimensional coset manifold G

H .
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Let us now observe that in this formulation of the superextension, the fermionic
coordinates are actually attached to the space-time manifold AdS4, which is su-
perextended to a supercoset manifold:

AdS4
superextension=⇒ Osp(N |4)

SO(N )× SO(1,3)
≡ M 4|4×N (9.3.93)

At the same time the internal manifold M7 = G
H is regarded as purely bosonic and

it is twisted into the fabric of the Free Differential Algebra through the notion of
the Killing spinors ηA, defined as covariantly constant sections of the SO(8) spinor
bundle over M7.

Yet whether supersymmetries are preserved or broken precisely depends on the
structure of the SO(8) spinor bundle on M7. Henceforth it is suggestive to think
that the fermionic coordinates should not be attached to either the internal or to
external manifold, rather they should live as a fibre over the bosonic manifolds. The
first step in order to realize such a programme consists of a reformulation of the
superextension in minisuperspace that treats the space-time manifold AdS4 and the
internal manifold M7 in a symmetric way and in both instances relies on the notion
of Killing spinors of the bosonic submanifold as a way of including the fermionic
one. This can be easily done in view of (C.2.2) whose precise meaning we have
explained in Sect. C.2. Indeed in view of (C.2.2) we can look at (9.3.90) in the
following equivalent, but more challenging fashion:

M 11|4×N = AdS4 × M 0|4×N × M7

≡ Sp(4,R)

SO(1,3)︸ ︷︷ ︸
AdS4

× Osp(N |4)

SO(N )× Sp(4,R)︸ ︷︷ ︸
4×N fermionic manifold

× G

H︸︷︷︸
M7

(9.3.94)

The above equation simply corresponds to the rewriting of (9.3.92) in the following
way

V̂ a =
{
V̂ a = Ba − 1

8eχxγ
aχyΔ

xy
F

V̂ α = Bα − 1
8ηAτ

αηBAAB

ω̂ab =

⎧⎪⎨
⎪⎩
ω̂ab = Bab + 1

2χxγ5γ
abχyΔ

xy
F

ω̂αb = 0

ω̂αβ = Bαβ + e
4ηAτ

αβηBAAB

Ψ̂ = ηA ⊗ χxΦ
x|A

(9.3.95)

The next step is that of replacing the Maurer Cartan forms of the fermionic man-
ifold with their gauged counterparts. This should be the order zero solution of the
supergauge completion involving also the broken θs. Next order contributions in
the broken θs however are necessary. For M-theory this problem was not yet solved
while it was solved in the case of the type IIA compactification that we discuss next.
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9.3.11 The 3-Form

We have found an explicit expression for the supervielbein V a , the gravitino 1-form
Ψ and an the spin-connection ωab. In order to complete the description of the su-
perextension we need also to provide an expression for the 3-form A[3]. According
to the general definitions of the FDA curvatures (6.4.2) and the rheonomic parame-
terization we find that:

dA[3] = F[4] − 1

2
Ψ ∧ ΓabΨ ∧ V a ∧ V b (9.3.96)

⇓
dA[3] = eεabcdE

a ∧Eb ∧Ec ∧Ed + 1

2
χxγabχyΦ

x
A ∧Φy ∧Ea ∧Eb

+ 1

2
χxχyζAταβζBΦ

x
A ∧Φ

y
B ∧ Bα ∧ Bβ

+ χxγaγ5χyζAτβζBΦ
x
A ∧Φ

y
B ∧Ea ∧ Bβ (9.3.97)

The expression of dA[3] as a 4-form is completely explicit in (9.3.97) and by con-
struction it is integrable in the sense that d2A[3] = 0. One might desire to solve
this equation by finding a suitable expression for A[3] such that (9.3.97) is satisfied.
This is not possible in general terms, namely by using only invariant constraints. In
order to find explicit solutions, one needs to use some explicit coordinate system
and some explicit solution of the constraints. This analysis is not in the spirit we
have adopted. Here it is just the constraints what matters, not their explicit solu-
tions.

In the main application one might consider, namely while localizing the action
of the supermembrane M2 on such backgrounds, we can easily avoid all such prob-
lems. We simply substitute the world volume integral of A[3] with:

∫
WV3

A[3] �→
∫
WV4

dA[3] (9.3.98)

where the 4-dimensional integration volume WV4 is such that its boundary is the
original supermembrane world-volume:

∂WV4 =WV3 (9.3.99)

and we circumvent the problem of solving (9.3.97).
With this observation we have concluded our proof that any AdS4 × G /H

bosonic solution of M-theory field equations can be gauge completed to a solution
in the mini-superspace containing all the theta variables associated with unbroken
supersymmetries.
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9.4 Flux Compactifications of Type IIA Supergravity
on AdS4 × P

3

As a further example of supergravity exact solution we consider the compactifica-
tion of type IIA supergravity on the following direct product manifold:

M10 = AdS4 × P
3 (9.4.1)

which was constructed in [45].
In this case not only we are able to write an exact solution of the bosonic field

equations but we are also able to construct an explicit expression for all the bosonic
and fermionic p-forms that close the type IIA differential algebra in such a way
that the rheonomic solution of the Bianchi identities is matched. In other words,
for this background we possess an explicit and simple integration of the rheonomic
conditions just as it is the case for the compactification of M-theory on AdS4 × S

7.
This is the main pedagogical reason to present the solution we are going to consider.
From the string theory point of view the interest in such backgrounds streams from
the recently discovered duality between N = 6 superconformal Chern-Simons
theory in three dimensions and superstrings moving on AdS4 × P

3 backgrounds
[46–49, 51–55] which has prompted the study of superstrings on Osp(N |4) back-
grounds [43, 56–58]. Indeed the explicit integration of the rheonomic conditions is
obtained through an appropriate use of the isometry supergroup of the background
(9.4.1) which is identified with the following supergroup OSp(6|4). The Maurer
Cartan forms of this supergroup on the following super-coset manifold

M 10|24 = OSp(6|4)
SO(1,3)× U(3)

(9.4.2)

allow for an explicit supergauge completion of the solution of the bosonic field
equations provided by the geometry of the Riemannian space AdS4 × P

3 in a very
similar way to the M-theory cases discussed in the previous section.

To be precise what we will present is not a full gauge completion involving 10
bosonic coordinates and 32 fermionic ones, but only a partial gauge-completion in
the mini-superspace given by the coset (9.4.2) which contains all the 10 bosonic
coordinates but only 24 of the fermionic ones, those associated with the supersym-
metries preserved by the background. The gauge completion in the remaining eight
θs associated with the broken supersymmetries is a rather difficult problem that,
however, has been solved by the authors of [59].

9.4.1 Maurer Cartan Forms of OSp(6|4)

The bosonic subgroup of OSp(6|4) is Sp(4,R)× SO(6). The Maurer-Cartan one-
forms of sp(4,R) are denoted by Δxy (x, y = 1, . . . ,4), the so(6) one-forms are
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denoted by AAB (A,B = 1, . . . ,6) while the (real) fermionic one-forms are de-
noted by Φx

A and transform in the fundamental representation of Sp(4,R) and in the
fundamental representation of SO(6). These forms satisfy the following OSp(6|4)
Maurer-Cartan equations:

dΔxy +Δxz ∧Δtyεzt = −4ieΦx
A ∧Φ

y
A

dAAB − eAAC ∧ ACB = 4iΦx
A ∧Φ

y
Bεxy (9.4.3)

dΦx
A +Δxy ∧ εyzΦ

z
A − eAAB ∧Φx

B = 0

where

εxy = −εyx =

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ (9.4.4)

The Maurer-Cartan equations are solved in terms of the super-coset representative
of (9.4.2). We rely for this analysis on the general discussion in Appendix C. It is
convenient to express this solution in terms of the one-forms describing the bosonic
submanifolds AdS4 ≡ Sp(4,R)

SO(1,3) , P
3 ≡ SO(6)

U(3) of (9.4.2) and of the one-forms on the

fermionic subspace of (9.4.2). Let us denote by Bab,Ba and by Bαβ,Bα the con-
nections and vielbein on the two bosonic subspaces respectively. The supergauge
completion is accomplished by expressing the p-forms satisfying the rheonomic
parameterization of the type IIA Free Differential Algebra in terms of the mini-
superspace one-forms. The final expression of the D = 10 fields will involve not
only the bosonic one-forms Bab,Ba,Bαβ,Bα , but also the Killing spinors on the
background. The latter play indeed a special role in this analysis since they can
be identified with the fundamental harmonics of the cosets SO(2,3)/SO(1,3) and
SO(6)/U(3), respectively. The Killing spinors on the AdS4 were already discussed.
We wills study those on P

3.

9.4.2 Explicit Construction of the P
3 Geometry

The complex three-fold P
3 is Kähler. Indeed the existence of the Kähler 2-form is

one of the essential items in constructing the solution ansatz.
Let us begin by discussing all the relevant geometric structures of P3. We have

to construct the explicit form of the internal manifold geometry, in particular the
spin connection, the vielbein and the Kähler 2-form. This is fairly easy, since P

3 is
a coset manifold:

P
3 = SU(4)

SU(3)× U(1)
(9.4.5)

so that everything is defined in terms of the structure constants of the su(4) Lie
algebra. The quickest way to introduce these structure constants and their chosen
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normalization is by writing the Maurer-Cartan equations. We do this introducing
already the splitting:

su(4)=H⊕K (9.4.6)

between the subalgebra H ≡ su(3)× u(1) and the complementary orthogonal sub-
space K which is tangent to the coset manifold. Hence we name Hi (i = 1, . . . ,9) a
basis of one-form generators of H and Kα (α = 1, . . . ,6) a basis of one-form gen-
erators of K. With these notation the Maurer-Cartan equations defining the structure
constants of su(4) have the following form:

dKα + Bαβ ∧Kγ δβγ = 0
(9.4.7)

dBαβ + Bαγ ∧ Bδβδγ δ − X
αβ
γ δK

γ ∧Kδ = 0

where:

1. the antisymmetric one-form valued matrix Bαβ is parameterized by the 9 gener-
ators of the u(3) subalgebra of so(6) in the following way:

Bαβ=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 H 9 −H 8 H 1 +H 2 H 6 −H 5

−H 9 0 H 7 H 6 H 1 +H 3 H 4

H 8 −H 7 0 −H 5 H 4 H 2 +H 3

−H 1 −H 2 −H 6 H 5 0 H 9 −H 8

−H 6 −H 1 −H 3 −H 4 −H 9 0 H 7

H 5 −H 4 −H 2 −H 3 H 8 −H 7 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.4.8)
2. the symbol X

αβ
γ δ denotes the following constant, 4-index tensor:

X
αβ
γ δ ≡ (δαβγ δ + K αβK γ δ + K α

γK
β
δ

)
(9.4.9)

3. the symbol K αβ denotes the entries of the following antisymmetric matrix:

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.4.10)

The Maurer Cartan equations (9.4.7) can be reinterpreted as the structural equations
of the P3 6-dimensional manifold. It suffices to identify the antisymmetric one-form
valued matrix Bαβ with the spin connection and identify the vielbein Bα with the
coset generators Kα , modulo a scale factor λ

Bα = 1

λ
Kα (9.4.11)
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With these identifications the first of (9.4.7) becomes the vanishing torsion equation,
while the second singles out the Riemann tensor as proportional to the tensor X

αβ
γ δ

of (9.4.9). Indeed we can write:

Rαβ = dBαβ + Bαγ ∧ Bδβδγ δ

= R
αβ
γ δB

γ ∧ Bδ (9.4.12)

where:

R
αβ
γ δ = λ2X

αβ
γ δ (9.4.13)

Using the above Riemann tensor we immediately retrieve the explicit form of the
Ricci tensor:

Ricαβ = 4λ2ηαβ (9.4.14)

For later convenience in discussing the compactification ansatz it is convenient to
rename the scale factor as follows:

λ= 2e (9.4.15)

In this way we obtain:

Ricαβ = 16e2ηαβ (9.4.16)

which will be recognized as one of the field equations of type IIA supergravity.
Let us now come to the interpretation of the matrix K . This matrix is im-

mediately identified as encoding the intrinsic components of the Kähler 2-form.
Indeed K is the unique antisymmetric matrix which, within the fundamental 6-
dimensional representation of the so(6) ∼ su(4) Lie algebra, commutes with the
entire subalgebra u(3)⊂ su(4). Hence K generates the U(1) subgroup of U(3) and
this guarantees that the Kähler 2-form will be closed and coclosed as it should be.
Indeed it is sufficient to set:

K̂ = KαβBα ∧ Bβ (9.4.17)

namely:

K̂ = −2
(
B1 ∧ B4 + B2 ∧ B5 + B3 ∧ B6) (9.4.18)

and we obtain that the 2-form K̂ is closed and coclosed:

dK̂ = 0, d�K̂ = 0 (9.4.19)

Let us also note that the antisymmetric matrix K satisfies the following identities:

K 2 = −16×6
(9.4.20)

8Kαβ = εαβγ δτσK γ δK τσ
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Using the so(6) Clifford Algebra defined in Appendix C.3.1 we define the following
spinorial operators:

W = Kαβτ
αβ; P = W τ7 (9.4.21)

and we can verify that the matrix P satisfies the following algebraic equations:

P2 + 4P − 12 × 1 = 0 (9.4.22)

whose roots are 2 and −6. Indeed in the chosen τ -matrix basis the matrix P is
diagonal with the following explicit form:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 −6 0
0 0 0 0 0 0 0 −6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.4.23)

Let us also introduce the following matrix valued one-form:

Q ≡
(

3

2
1 + 1

4
P

)
ταB

α (9.4.24)

whose explicit form in the chosen basis is the following one:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2B3 −2B2 0 −2B6 2B5 −2B4 2B1

−2B3 0 2B1 2B6 0 −2B4 −2B5 2B2

2B2 −2B1 0 −2B5 2B4 0 −2B6 2B3

0 −2B6 2B5 0 −2B3 2B2 2B1 2B4

2B6 0 −2B4 2B3 0 −2B1 2B2 2B5

−2B5 2B4 0 −2B2 2B1 0 2B3 2B6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.4.25)
and let us consider the following Killing spinor equation:

Dη+ eQη= 0 (9.4.26)

where, by definition:

D = d − 1

4
Bαβταβ (9.4.27)

denotes the so(6) covariant differential of spinors defined over the P3 manifold. The
connection Q is closed with respect to the spin connection

Ω = −1

4
Bαβταβ (9.4.28)
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since we have:

DQ ≡ dQ + e2Ω ∧ Q + Q ∧Ω = 0 (9.4.29)

as it can be explicitly checked. The above result follows because the matrix Kαβ

commutes with all the generators of u(3). In view of (9.4.29) the integrability of the
Killing spinor equation (9.4.26) becomes the following one:

Holη= 0 (9.4.30)

where we have defined the holonomy 2-form:

Hol ≡ (D2 + e2Q ∧ Q
)=

(
−1

4
Rαβταβ + e2Q ∧ Q

)
(9.4.31)

and Rαβ denotes the curvature 2-form (9.4.12). Explicit evaluation of the holonomy
2-form yields the following result.

Hol = e2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 8[B2 ∧ B6 − B3 ∧ B5] 8B5 ∧ B6 − 8B2 ∧ B3

0 0 0 0 0 0 8B3 ∧ B4 − 8B1 ∧ B6 8[B1 ∧ B3 − B4 ∧ B6]
0 0 0 0 0 0 8[B1 ∧ B5 − B2 ∧ B4] 8B4 ∧ B5 − 8B1 ∧ B2

0 0 0 0 0 0 8[B2 ∧ B3 − B5 ∧ B6] 8[B2 ∧ B6 − B3 ∧ B5]
0 0 0 0 0 0 8B4 ∧ B6 − 8B1 ∧ B3 8B3 ∧ B4 − 8B1 ∧ B6

0 0 0 0 0 0 8[B1 ∧ B2 − B4 ∧ B5] 8[B1 ∧ B5 − B2 ∧ B4]
0 0 0 0 0 0 0 −8K̂

0 0 0 0 0 0 8K̂ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.4.32)
It is evident by inspection that the holonomy 2-form vanishes on the subspace of
spinors that belong to the eigenspace of eigenvalue 2 of the operator P . In the cho-
sen basis this eigenspace is spanned by all those spinors whose last two components
are zero and on such spinors the operator Hol vanishes.

Let us now connect these geometric structures to the compactification ansatz.

9.4.3 The Compactification Ansatz

As usual we denote with Latin indices those in the direction of 4-space and with
Greek indices those in the direction of the internal 6-space. Let us also adopt the
notation: Ba for the AdS4 vielbein just as Bα is the vielbein of the Kähler three-
fold described in the previous section. With these notations the Kaluza-Klein ansatz
is the following one:

Gab =
{

2e exp[−ϕ0]Kαβ

0 otherwise



9.4 Flux Compactifications of Type IIA Supergravity on AdS4 × P
3 397

Ga1a2a3a4 =
{−e exp[−ϕ0]εa1a2a3a4

0 otherwise

Ha1a2a3 = 0

ϕ = ϕ0 = const

V a = Ba (9.4.33)

V α = Bα

ωab = Bab

ωαβ = Bαβ

where Ba , Bab respectively denote the vielbein and the spin connection of AdS4,
satisfying the following structural equations:

0 = dBa −Bab ∧Bcηbc

dBab −Bac ∧Bdbηcd = −16e2Ba ∧Bb

(9.4.34)
⇓

Ricab = −24e2ηab

while Bα and Bαβ are the analogous data for the internal P3 manifold:

0 = dBα − Bαβ ∧ Bγ ηβγ

dBαβ − Bαγ ∧ Bδβηγ δ = −R
αβ
γ δB

γ ∧ Bδ

(9.4.35)
⇓

Ricαβ = 16e2ηαβ

whose geometry we described in the previous section.
With these normalizations we can check that the dilaton equation (6.7.44) and the

Einstein equation (6.7.39), are satisfied upon insertion of the above Kaluza Klein
ansatz. All the other equations are satisfied thanks to the fact that the Kähler form
K̂ is closed and coclosed.

9.4.4 Killing Spinors on P
3

The next task we are faced with is to determine the equation for the Killing spinors
on the chosen background, which by construction is a solution of supergravity equa-
tions.

Following a standard procedure we recall that the vacuum has been defined by
choosing certain values for the bosonic fields and setting all the fermionic ones equal
to zero:
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ψL/R|μ = 0

χL/R = 0 (9.4.36)

ρL/R|ab = 0

The equation for the Killing spinors will be obtained by imposing that the parameter
of supersymmetry preserves the vanishing values of the fermionic fields once the
specific values of the bosonic ones is substituted into the expression for the susy
rules, namely into the rheonomic parameterizations.

To implement these conditions we begin by choosing a well adapted basis for the
d = 11 gamma matrices. This is done by setting:

Γ a =
⎧⎨
⎩
Γ a = γ a ⊗ 1
Γ α = γ 5 ⊗ τα

Γ 11 = iγ 5 ⊗ τ 7
(9.4.37)

Next we consider the tensors and the matrices introduced in (6.7.20), (6.7.22) and
(6.7.23), (6.7.24). In the chosen background we find:

Mαβ = 1

4
eKαβ; Mabcd = 1

16
eεabcd

(9.4.38)

N0 = 0; Nαβ = 1

2
eKαβ; Nabcd = − 1

24
eεabcd

all the other components of the above matrices being zero. Hence in terms of the
operators introduced in the previous section we find:

M± = ie

(
∓1

4
1 ⊗ W − 3

2
iγ5 ⊗ 1

)

N (even)
± = e

(
1

2
1 ⊗ W ∓ iγ5 ⊗ 1

)
(9.4.39)

N (odd)
± = 0

It is now convenient to rewrite the Killing spinor condition in a non-chiral basis
introducing a supersymmetry parameter of the following form:

ε = εL + εR (9.4.40)

In this basis the matrices M and N (even) read

M = M+
1

2

(
1 + Γ 11)+ M−

1

2

(
1 − Γ 11)

= − i

8
eϕGabΓ

abΓ 11 − i

16
eϕGabcdΓ

abcd =

= e

4
γ5 ⊗ (W τ7 + 61) (9.4.41)



9.4 Flux Compactifications of Type IIA Supergravity on AdS4 × P
3 399

N (even) = N (even)
+

1

2

(
1 + Γ 11)+ N (even)

−
1

2

(
1 − Γ 11)

= 1

4
eϕGabΓ

ab + 1

24
eϕGabcdΓ

abcd

= e

2
1 ⊗ (W + 2τ7) (9.4.42)

Upon use of this parameter the Killing spinor equation coming from the gravitino
rheonomic parameterization (6.7.32) takes the following form:

Dε = −MΓaV
aε (9.4.43)

while the Killing spinor equation coming from the dilatino rheonomic parameteri-
zation is as follows:

0 = N (even)ε (9.4.44)

Let us now insert these results into the Killing spinor equations and let us take a
tensor product representation for the Killing spinor:

ε = ε⊗ η (9.4.45)

where ε is a 4-component d = 4 spinor and η is an 8-component d = 6 spinor.
With these inputs (9.4.43) becomes:

0 = D[4]ε⊗ η− eγaγ5B
aε⊗

(
3

2
+ 1

4
P

)
η

+ε⊗
[
D[6] + e

(
3

2
+ 1

4
P

)
ταB

α

]
η (9.4.46)

while (9.4.44) takes the form:

0 = ε⊗
(

1

2
W + τ7

)
η (9.4.47)

Let us now recall that (9.4.26) is integrable on the eigenspace of eigenvalue 2 of the
P-operator. Then (9.4.46) is satisfied if:

(
D[4] − 2eγaγ5B

a
)
ε = 0

Pη = 2η (9.4.48)

(D[6] + eQ)η = 0

The first of the above equation is the correct equation for Killing spinors in AdS4. It
emerges if the eigenvalue of P is 2. The second and the third are the already studied
integrable equation for six Killing spinors out of eight. It should now be checked that
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the dilatino equation (9.4.47) is satisfied on the eigenspace of eigenvalue 2, which
is indeed the case:

Pη = 2η ⇒
(

1

2
W + τ7

)
η= 0 (9.4.49)

9.4.5 Gauge Completion in Mini Superspace

As a necessary ingredient of our construction let ηA (A = 1, . . . ,6) denote a com-
plete and orthonormal basis of solutions of the internal Killing spinor equation,
namely:

PηA = 2ηA

(D[6] + eQ)ηA = 0 (9.4.50)

ηTAηB = δAB; A,B =A= 1, . . . ,6

On the other hand let χx denote a basis of solutions of the Killing spinor equation
on AdS4-space, namely (9.3.84), normalized as in (9.3.85). Furthermore let us recall
the matrix K defining the intrinsic components of the Kähler 2-form.

In terms of these objects we can satisfy the rheonomic parameterizations of the
one-forms spanning the d = 10 super-Poincaré subalgebra of the FDA with the fol-
lowing position:8

Ψ = χx ⊗ ηAΦ
x|A (9.4.51)

V a = Ba − 1

8e
χxγ

aχyΔ
xy (9.4.52)

V α = Bα − 1

8
ηTAτ

αηBA AB (9.4.53)

ωab = Bab + 1

2
χxγ

abγ5χyΔ
xy (9.4.54)

ωαβ = Bαβ + e

4
ηTAτ

αβηBA AB − e

4
K αβKABA AB (9.4.55)

The proof that the above ansatz satisfies the rheonomic parameterizations is by
direct evaluation upon use of the following crucial spinor identities.

Let us define

U =
(

3

2
1 + 1

4
P

)
(9.4.56)

8With respect to the results obtained for the mini superspace extension of M-theory configura-
tion everything is identical in (9.4.51)–(9.4.54) except the obvious reduction of the index range
of (α,β, . . . ) from 7 to 6-values. The only difference is in (9.4.55) where the last contribution
proportional to the Kähler form is an essential novelty of this new type of compactification.
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We can verify that:

(
ηAτ

αU ταηB − ηAτ
αβηB

)
A AB = K αβKABA AB (9.4.57)

Furthermore, naming:

ΔBα = −1

8
ηTAτ

αηBA AB (9.4.58)

Δωαβ = e

4
ηTAτ

αβηBA AB − e

4
K αβKABA AB (9.4.59)

we obtain:

−Δωαβ ∧ΔBβ = e

8
ηTAτ

αηBA AC ∧ A CB (9.4.60)

These identities together with the d = 4 spinor identities (C.3.11), (C.3.12) suffice
to verify that the above ansatz satisfies the required equations.

9.4.6 Gauge Completion of the B[2] Form

The next task is the derivation of the explicit expression for the B[2] form. Differ-
ently from the case of the 3-form this is possible and has a great value since it allows
an explicit expression for the Green Schwarz σ -model describing string propagation
in this background.

There is an ansatz for B[2] which is the following one:

B[2] = αχxχyηAτ7ηBΦ
x
A ∧Φ

y
B (9.4.61)

By explicit evaluation we verify that with

α = 1

4e
(9.4.62)

The rheonomic parameterization of the H-field strength is satisfied, namely:

dB[2] = −iψ ∧ ΓaΓ11ψ ∧ V a (9.4.63)

9.4.7 Rewriting the Mini-Superspace Gauge Completion
as Maurer Cartan Forms on the Complete Supercoset

Next we can rewrite the mini-superspace extension of the bosonic solution solely
in terms of Maurer Cartan forms on the supercoset (9.4.2). Let the graded matrix
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L ∈ Osp(6|4) be the coset representative of the coset M 10|24, such that the Maurer
Cartan form Σ can be identified as:

Σ = L
−1 dL (9.4.64)

Let us now factorize L as follows:

L= LFLB (9.4.65)

where LF is a coset representative for the coset:

Osp(6|4)
SO(6)× Sp(4,R)

# LF (9.4.66)

while LB rather than being the Osp(6|4) embedding of a coset representative of just
AdS4, is the embedding of a coset representative of AdS4 × P

3, namely:

LB =
(

LAdS4 0
0 LP3

)
; Sp(4,R)

SO(1,3)
# LAdS4;

SO(6)

U(3)
# LP3 (9.4.67)

In this way we find:

Σ = L
−1
B ΣFLB +L

−1
B dLB (9.4.68)

Let us now write the explicit form of ΣF :

ΣF =
(

ΔF ΦA

4ieΦAγ5 −eÃAB

)
(9.4.69)

where ΦA is a Majorana-spinor valued fermionic one-form and where ΔF is an
sp(4,R) Lie algebra valued one-form presented as a 4 × 4 matrix. Both ΦA as ΔF

and ÃAB depend only on the fermionic θ coordinates and differentials.
On the other hand we have:

L
−1
B dLB =

(
ΔAdS4 0

0 AP3

)
(9.4.70)

where the ΔAdS4 is also an sp(4,R) Lie algebra valued one-form presented as a 4×4
matrix, but it depends only on the bosonic coordinates xμ of the anti de Sitter space
AdS4. In the same way AP3 is an su(4) Lie algebra element presented as an so(6)
antisymmetric matrix in 6-dimensions. It depends only on the bosonic coordinates
yα of the internal P3 manifold. According to (C.1.5) we can write:

ΔAdS4 = −1

4
Babγab − 2eγaγ5B

a (9.4.71)

where {Bab,Ba} are respectively the spin-connection and the vielbein of AdS4.
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Similarly, using the inversion formula (C.4.3) presented in appendix we can
write:

AP3 =
(
−2Bατα + 1

4e
Bαβταβ − 1

4e
BαβKαβK

)
(9.4.72)

where {Bαβ,Bα} are the connection and vielbein of the internal coset manifold P
3.

Relying once again on the inversion formulae discussed in Appendix C.4 we
conclude that we can rewrite (9.4.51)–(9.4.55) as follows:

Ψ x|A = Φx|A (9.4.73)

V a = Ea (9.4.74)

V α = Eα (9.4.75)

ωab = Eab (9.4.76)

ωαβ = Eαβ (9.4.77)

where the objects introduced above are the Maurer Cartan forms on the supercoset
(9.4.2) according to:

Σ = L
−1 dL

=
( − 1

4E
abγab − 2eγaγ5E

a Φ

4ieΦγ5 2eEατα − 1
4Bαβταβ + 1

4E
αβKαβK

)

(9.4.78)

Consequently the gauge completion of the B[2] form becomes:

B[2] = 1

4e
Φ(1 ⊗ τ 7)∧Φ (9.4.79)

9.5 Conclusions

As we stressed in the introduction to the present very long chapter, the topics we
might still address in this context are both numerous, relevant and challenging. We
might discuss instanton solutions, compactifications on Calabi-Yau manifolds, the
generic strategy of harmonic analysis to derive the spectra of given compactifica-
tions, toroidal compactifications with brane wrapping, D-brane solutions with coni-
folds sitting in the transverse dimensions to the brane and much more. Obviously
there is neither room nor enough mathematical background in order to develop such
topics and therefore it is time to stop.

We just hope that our reader has been able to follow our arguments up to this
point. If this has happened, starting from the first intuitions about Lorentz symmetry
in the first chapter of the first volume he has made a long and adventurous trip to
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the frontiers of current research in gravitational theories, little by little absorbing
a remarkable wealth of geometrical lore and of consciousness about its physical
meaning.

Hopefully our reader should by now be convinced that the geometrical seeds first
implanted in the XIXth century by Gauss and Riemann, not only inspired Einstein
and, through his mind, produced a beautiful and so far fully verified theory, but
have still a lot to say about Gravity. Whether supersymmetric or not, Gravitation is
certainly the most fundamental interaction among the fundamental ones, it governs
the structure of the Universe and it is a manifestation of Geometry. Which geometry
the humans will still debate for a long time.
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Chapter 10
Conclusion of Volume 2

10.1 The Legacy of Volume 1

In the first volume we have presented the theory of General Relativity comparing it
at all times with the other gauge theories that describe non-gravitational interactions.
We have also followed the complicated historical development of the ideas and of
the concepts underlying both of them. In particular we have traced back the origin
of our present understanding of all fundamental interactions as mediated by connec-
tions on principal fibre-bundles and emphasized the special status of gravity within
this general scheme. While recalling the historical development we have provided
a, hopefully rigorous, exposition of all the mathematical foundations of gravity and
gauge theories in a contemporary geometrical approach. In the last two chapters of
Volume 1 we also considered relevant astrophysical applications of General Rela-
tivity that provide some of the most accurate tests of its predictions.

10.2 The Story Told in Volume 2

Volume 2’s mission was the historical and mathematical analysis of the further con-
ceptual developments in the Theory of Gravity up to contemporary times. The first
part of the Volume concentrated on two main issues:

1. Black Holes,
2. Cosmology.

Black Holes are probably the most profound implication of General Relativity.
They occupy a distinguished and outstanding position both in Mathematics and
in Physics, being an endless source of inspiring views and of challenging prob-
lems, like that of the information loss and the thermodynamical formulation of
their dynamical laws which leads to the question of the statistical interpretation
of their entropy. The historical/conceptual path going from the interpretation of the
Schwarzschild radius as an event horizon to the proper definitions of causal struc-
tures and Penrose diagrams was carefully described and the necessary mathematics

P.G. Frè, Gravity, a Geometrical Course, DOI 10.1007/978-94-007-5443-0_10,
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was step by step developed. With rotating black holes and the area-entropy law we
opened the first window on a more profound level of gravitational theory that leads
to superstring and supergravity.

Cosmology is equally important in the development of gravitational theory since
gravity is the only relevant interaction at very large scales. Einstein theory leads
necessarily to the view of an expanding universe, notwithstanding the original philo-
sophical enmity of Einstein himself to this very idea. The mathematical formulation
of the Cosmological Principle requires the notion of homogeneous coset manifolds
and that was the occasion to develop this important chapter of Differential Geom-
etry whose uses are ubiquitous in Theoretical Physics and in particular in Super-
gravity. The resolution of the conceptual problems raised by the Standard Cosmo-
logical Model leads to the paradigm of the inflationary universe whose predictions
seem to be generically in agreement with the observations of the anisotropies in the
Cosmic Microwave Background radiation. The simplest mechanism of inflation re-
quires scalar fields that are abundant in all versions of the supergravity/superstring
modeling of the fundamental laws of physics. Scalar fields are anyhow required by
symmetry breaking and their experimental revelation is by now overdue.1

The second part of the Volume was conceived as an introduction to Supergravity,
Branes and Strings. Once again our approach was conceptual and historical. The
goal was explicitly that of continuing the logical development initiated in Volume 1
introducing supergravity as the dynamical theory of the super-Poincaré connection,
in the same way as General Relativity is the dynamical theory of the Poincaré con-
nection. From the mathematical point of view, new concepts enter the stage: the
extension of (super-)Lie algebras to Free Differential Algebras and the generalized
principle of analyticity named rheonomy. On one hand Free Differential Algebras
are canonically induced by their normal Lie subalgebra, by means of its cohomol-
ogy, on the other hand the new generators of Free Differential Algebras are p-forms
that naturally couple to the world volume of (p − 1)-branes. This is the core of
the Bulk-Brane dualism which we tried to illustrate in some detail in a dedicated
chapter. The other important legacy of the supersymmetric extension of General
Relativity is the incredible wealth of new geometrical structures that are contributed
by the scalar sector of the various supergravities. Without any claim to complete-
ness we tried to provide the reader with an overview of this richness and with and
an introduction to the Supergravity Bestiary.

From the point of view of Gravity Theory, which is that adopted in this book, the
main interest of supergravity, namely of the Beyond GR World, is its contribution
of an impressive variety of new classical solutions of quite different type and with
quite different interesting properties. A taste of that variety is provided to the reader
in Chap. 9 through the presentation of a series of examples.

Repeating what was already stressed at the end of that chapter, the author consid-
ers his mission fulfilled if the reader could follow his arguments from the first intu-
itions about Lorentz symmetry at the end of XIXth century to some of the frontiers

1By the publication date of this book the Higgs boson, that is a scalar particle, has already been
discovered at CERN with very high likehood.
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of current research in Gravitational Theory at the beginning of the XXIst century.
The author will also be satisfied of his own work if, while traveling along this path
which was rich in conceptual developments, inclusion of complex mathematical
structures and discovery of new physical phenomena, the reader has strengthened
his belief in that the Universe is Gravitation, Gravitation is Geometry but Geometry
is enormously variegated and full of yet undiscovered surprises.

Appendix A: Spinors and Gamma Matrix Algebra2

A.1 Introduction to the Spinor Representations of SO(1,D − 1)

The spinor representations of the orthogonal and pseudo-orthogonal groups have
different structure in various dimensions. Starting from the representation of the
Dirac gamma matrices one begins with a complex representation whose dimension
is equal to the dimension of the gammas. A vector in this complex linear space is
named a Dirac spinor. Typically Dirac spinors do not form irreducible representa-
tions. Depending on the dimensions, one can still impose SO(1,D − 1) invariant
conditions on the Dirac spinor that separate it into irreducible parts. These con-
straints can be of two types:

(a) A reality condition which maintains the number of components of the spinor
but relates them to their complex conjugates by means of linear relations. This
reality condition is constructed with an invariant matrix C , named the charge
conjugation matrix whose properties depend on the dimensions D.

(b) A chirality condition constructed with a chirality matrix ΓD+1 that halves the
number of components of the spinor. The chirality matrix exists only in even
dimensions.

Depending on which conditions can be imposed, besides Dirac spinors, in various
dimensions D, one has Majorana spinors, Weyl spinors and, in certain dimensions,
also Majorana-Weyl spinors. In this appendix we discuss the properties of gamma
matrices and we present the various types of irreducible spinor representations in all
relevant dimensions from D = 4 to D = 11. The upper bound D = 11 is dictated
by supersymmetry since supergravity, i.e. the supersymmetric extension of Einstein
gravity, can be constructed in all dimensions up to D = 11, which is maximal in this
respect.

A.2 The Clifford Algebra

In order to describe spinors one needs the Dirac gamma matrices. These form the
Clifford algebra:

{Γa,Γb} = 2ηab (A.2.1)

2This appendix is present also in Volume 1. It is repeated in Volume 2 for reader’s convenience.
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where ηab is the invariant metric of SO(1,D− 1), that we always choose according
to the mostly minus conventions, namely:

ηab = diag(+,−,−, . . . ,−) (A.2.2)

To study the general properties of the Clifford algebra (A.2.1) we use a direct con-
struction method.

We begin by fixing the following conventions. Γ 0 = Γ0 corresponding to the
time direction is Hermitian:

Γ
†

0 = Γ0 (A.2.3)

while the matrices Γi = −Γ i corresponding to space directions are anti-Hermitian:

Γ
†
i = −Γi (A.2.4)

In the study of Clifford algebras it is necessary to distinguish the case of even and
odd dimensions.

A.2.1 Even Dimensions

When D = 2ν is an even number the representation of the Clifford algebra (A.2.1)
has dimension:

dimΓa = 2
D
2 = 2ν (A.2.5)

In other words the gamma matrices are 2ν × 2ν . The proof of such a statement is
easily obtained by iteration. Suppose that we have the gamma matrices γa corre-
sponding to the case ν′ = ν − 1, satisfying the Clifford algebra (A.2.1) in D − 2
dimensions and that they are 2ν

′
-dimensional. We can write down the following

representation for the gamma matrices in D-dimension by means of the following
2ν × 2ν matrices:

Γa′ =
(

0 γa′
γa′ 0

)
; ΓD−2 =

(
i 0
0 −i

)

ΓD−1 =
(

0 1
−1 0

)
; a′ = 0,1, . . . ,D − 3

(A.2.6)

which satisfy the correct anticommutation relations and have the correct hermiticity
properties specified above. This representation admits the following interpretation
in terms of matrix tensor products:

Γa′ = γa′ ⊗ σ1; ΓD−2 = 1 ⊗ iσ3; ΓD−1 = 1 ⊗ iσ2 (A.2.7)

where σ1,2,3 denote the Pauli matrices:

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
(A.2.8)
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To complete the proof of our statement we just have to show that for ν = 2, corre-
sponding to D = 4 we have a 4-dimensional representation of the gamma matrices.
This is well established. For instance we have the representation:

γ0 =
(

0 1
1 0

)
; γ1,2,3 =

(
0 σ1,2,3

−σ1,2,3 0

)
(A.2.9)

In D = 2ν one can construct the chirality matrix defined as follows:

ΓD+1 = αDΓ0Γ1Γ2 . . . ΓD−1; |αD|2 = 1 (A.2.10)

where αD is a phase-factor to be fixed in such a way that:

Γ 2
D+1 = 1 (A.2.11)

By direct evaluation one can verify that:

{Γa,ΓD+1} = 0 a = 0,1,2, . . . ,D − 1 (A.2.12)

The normalization αD is easily derived. We have:

Γ0Γ1 . . . ΓD−1 = (−)
1
2D(D−1)ΓD−1ΓD−2ΓD−1 (A.2.13)

so that imposing (A.2.11) results into the following equation for αD :

α2
D(−)

1
2D(D−1)(−)(D−1) = 1 (A.2.14)

which has solution:

αD = 1 if ν = 2μ+ 1 ∼ odd

αD = i if ν = 2μ∼ even
(A.2.15)

With the same token we can show that the chirality matrix is Hermitian:

Γ
†
D+1 = α�(−)

1
2D(D−1)(−)(D−1)Γ0Γ1Γ2 . . . ΓD−1 = ΓD+1 (A.2.16)

A.2.2 Odd Dimensions

When D = 2ν+1 is an odd number, the Clifford algebra (A.2.1) can be represented
by 2ν × 2ν matrices. It suffices to take the matrices Γa′ corresponding to the even
case D′ =D− 1 and add to them the matrix ΓD = iΓD′+1, which is anti-Hermitian
and anti-commutes with all the other ones.
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A.3 The Charge Conjugation Matrix

Since Γa and their transposed Γ T
a satisfy the same Clifford algebras it follows that

there must be a similarity transformation connecting these two representations of
the same algebra on the same carrier space. Such statement relies on Schur’s lemma
and it is proved in the following way. We introduce the notation:

Γa1...an ≡ Γ[a1Γa2 . . . Γan] =
1

n!
∑
P

(−)δP ΓaP(a1)
. . . ΓaP(an) (A.3.1)

where
∑

P denotes the sum over the n! permutations of the indices and δP the parity
of permutation P , i.e. the number of elementary transpositions of which it is com-
posed. The set of all matrices 1,Γa,Γa1a2 , . . . ,Γa1...aD constitutes a finite group
of 2[D/2]-dimensional matrices. Furthermore the groups generated in this way by
Γa , −Γa or Γ T

a are isomorphic. Hence by Schur’s lemma two irreducible repre-
sentations of the same group, with the same dimension and defined over the same
vector space, must be equivalent, that is there must be a similarity transformation
that connects the two. The matrix realizing such a similarity is called the charge
conjugation matrix. Instructed by this discussion we define the charge conjugation
matrix by means of the following equations:

C−ΓaC −1− = −Γ T
a

(A.3.2)
C+ΓaC −1+ = Γ T

a

By definition C± connects the representation generated by Γa to that generated
by ±Γ T

a . In even dimensions both C− and C+ exist, while in odd dimensions
only one of the two is possible. Indeed in odd dimensions ΓD−1 is proportional
to Γ0Γ1 . . . ΓD−2 so that the C− and C+ of D − 1 dimensions yield the same result
on ΓD−1. This decides which C exists in a given odd dimension.

Another important property of the charge conjugation matrix follows from iter-
ating (A.3.2). Using Schur’s lemma one concludes that C± = αC T± so that iterating

Table A.1 Structure of
charge conjugation matrices
in various space-time
dimensions

Charge conjugation matrices

D C �+ = C+ (real) C �− = C− (real)

4 C T+ = −C+; C 2+ = −1 C T− = −C−; C 2− = −1

5 C T+ = −C+; C 2+ = −1

6 C T+ = −C+; C 2+ = −1 C T− = C−; C 2− = 1

7 C T− = C−; C 2− = 1

8 C T+ = C+; C 2+ = 1 C T− = C−; C 2− = 1

9 C T+ = C+; C 2+ = 1

10 C T+ = C+; C 2+ = 1 C T− = −C−; C 2− = −1

11 C T− = −C−; C 2− = −1
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again we obtain α2 = 1. In other words C+ and C− are either symmetric or anti-
symmetric. We do not dwell on the derivation which can be obtained by explicit
iterative construction of the gamma matrices in all dimensions and we simply col-
lect below the results for the properties of C± in the various relevant dimensions
(see Table A.1).

A.4 Majorana, Weyl and Majorana-Weyl Spinors

The Dirac conjugate of a spinor ψ is defined by the following operation:

ψ ≡ψ†Γ0 (A.4.1)

and the charge conjugate of ψ is defined as:

ψc = Cψ
T

(A.4.2)

where C is the charge conjugation matrix. When we have such an option we can
either choose C+ or C−. By definition a Majorana spinor λ satisfies the following
condition:

λ= λc = CΓ T
0 λ� (A.4.3)

Equation (A.4.3) is not always self-consistent. By iterating it a second time we get
the consistency condition:

CΓ T
0 C = Γ0 (A.4.4)

There are two possible solutions to this constraint. Either C− is antisymmetric or
C+ is symmetric. Hence, in view of the results displayed above, Majorana spinors
exist only in

D = 4,8,9,10,11 (A.4.5)

In D = 4,10,11 they are defined using the C− charge conjugation matrix while in
D = 8,9 they are defined using C+.

Weyl spinors, on the contrary, exist in every even dimension; by definition they
are the eigenstates of the ΓD+1 matrix, corresponding to the +1 or −1 eigenvalue.
Conventionally the former eigenstates are named left-handed, while the latter are
named right-handed spinors:

ΓD+1ψ
(
L
R

) = ±ψ(L
R

) (A.4.6)

In some special dimensions we can define Majorana-Weyl spinors which are both
eigenstates of ΓD+1 and satisfy the Majorana condition (A.4.3). In order for this to
be possible we must have:

CΓ T
0 Γ �

D+1ψ
� = ΓD+1ψ (A.4.7)
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which implies:

CΓ T
0 Γ �

D+1Γ
T

0 C −1 = ΓD+1 (A.4.8)

With some manipulations the above condition becomes:

CΓD+1C
−1 = −Γ T

D+1 (A.4.9)

which can be checked case by case, using the definition of ΓD+1 as product of all the
other gamma matrices. In the range 4 ≤D ≤ 11 the only dimension where (A.4.9)
is satisfied is D = 10 which is the critical dimensions for superstrings. This is not a
pure coincidence.

Summarizing we have:

Spinors in 4 ≤D ≤ 11

D Dirac Majorana Weyl Majora-Weyl

4 Yes Yes Yes No

5 Yes No No No

6 Yes No Yes No

7 Yes No No No

8 Yes Yes Yes No

9 Yes Yes No No

10 Yes Yes Yes Yes

11 Yes Yes No No

A.5 A Particularly Useful Basis for D = 4 γ -Matrices

In this section we construct a D = 4 gamma matrix basis which is convenient for
various purposes. Let us first specify the basis and then discuss its convenient prop-
erties.

In terms of the standard matrices (A.2.8) we realize the so(1,3) Clifford alge-
bra:

{γa, γb} = 2ηab; ηab = diag(+,−,−,−) (A.5.1)

by setting:

γ0 = σ1 ⊗ σ3; γ1 = iσ2 ⊗ σ3

γ2 = i1 ⊗ σ2; γ3 = iσ3 ⊗ σ3

γ5 = 1 ⊗ σ1; C = iσ2 ⊗ 1

(A.5.2)

where γ5 is the chirality matrix and C is the charge conjugation matrix. In this basis
the generators of the Lorentz algebra so(1,3), namely γab are particularly simple
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and nice 4 × 4 matrices. Explicitly we get:

γ01 =

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ; γ02 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

γ03 =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 −i

i 0 0 0
0 i 0 0

⎞
⎟⎟⎠ ; γ12 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠

γ13 =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 −i

−i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ ; γ23 =

⎛
⎜⎜⎝

0 −i 0 0
−i 0 0 0
0 0 0 i

0 0 i 0

⎞
⎟⎟⎠

(A.5.3)

Let us mention some relevant formulae that are easily verified in the above ba-
sis:

γ0γ1γ2γ3 = iγ5 (A.5.4)

and if we fix the convention:

ε0123 = +1 (A.5.5)

we obtain:
1

24
εabcdγaγbγcγd = −iγ5 (A.5.6)

Appendix B: Auxiliary Tools for p-Brane Actions

In this appendix we collect some auxiliary calculations and algebraic tools relevant
to the discussion of p-brane world volume actions presented in Chap. 7.

B.1 Notations and Conventions

General adopted notations for first order world volume actions are the following
ones:

d = dimension of the world-volume Wd

D = dimension of the bulk space-time MD

V a = vielbein 1-form of bulk space-time
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Π
a

i = D × d matrix. 0-form auxiliary field (B.1.1)

hij = d × dsymmetric matrix. 0-form auxiliary field

e� = vielbein 1-form of the world-volume

ηab = diag{+,−, . . . ,−︸ ︷︷ ︸
D−1 times

} = flat metric on the bulk

ηij = diag{+,−, . . . ,−︸ ︷︷ ︸
d−1 times

} = flat metric on the world-volume

B.2 The κ-Supersymmetry Projector for D3-Branes

In this appendix we present the derivation of the κ-supersymmetry projector utilized
in Sect. 7.5 to establish the κ-susy invariance of the D3-brane action. In particular
we refer to (7.5.23).

Let us begin with property (a) and consider the ansatz in (7.5.26). By direct
calculation we find:

ω2[4] = α2
4(4!)2

ω2[2] = (α2)
2ω[0]ω[4]

3!α0α4
+ 8(α2)

2 Tr
(
F̂ 2
) (B.2.1)

so that we get:

Γ 2 = 1

N2

[
(4!α4)

2 +ω[0]ω[4]
(

(α2)
2

3!α0α4
+ 2

)
+ 8(α2)

2 Tr
(
F̂ 2)] (B.2.2)

so we obtain Γ 2 = 1 if the normalization factor N is chosen as in (7.5.27) and if
the coefficients are chosen as in (7.5.28). This conclusion is easily reached using the
identity (7.5.30) of the main text.

Let us now turn to property (b), namely to the condition

ΓAk =Ak (B.2.3)

To implement it we need to calculate some γ matrix products:

ω[4]γk = 1

6
γ̃k

ω[4]γ̃k = 6γk

ω[4]Πk = −1

2
˜̂F ij γijk ≡ −1

2
Δ̃k

ω[4]Π̃k = −1

2
F̂ ij γijk ≡ −1

2
Δk

(B.2.4)
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ω[2]γk = i

2
Δ̃k + iΠ̃k

ω[2]γ̃k = −3iΔk − 6iΠk

ω[2]Πk = − i

6

(
F̂ 2
)
kl
γ̃ l − iω[0]γk

ω[2]Π̃k = i
(˜̂F 2

)
kl
γ l + i

6
ω[0]γ̃k

(B.2.5)

Now we impose (B.2.3) and we obtain the following equations.

• The contributions from Δk and Δ̃k are:

Δmhmk

(
i

2
f4 + 3f2

)
⊗ σ1 = 0

Δ̃k

(
− i

2
f3 + i

2
f1

)
⊗ σ2 = 0

(B.2.6)

• For the contributions with γk we have two equations, one proportional to σ3 and
one proportional to 1, namely:

γkω[0](f1 − f3)⊗ σ3 = 0 (B.2.7)

and

1

N

(
6f214×4 + if4

˜̂F 2)h⊗ 12×2 = if114×4 ⊗ 12×2 (B.2.8)

For:

6f2 = if1

if1 = −if4
(B.2.9)

and using the property (7.5.31) we obtain:

N−1(1 − ˜̂F 2)h = 1

N−1(1 − ˜̂F 2)N−1(1 − F̂ 2) = 1 (B.2.10)(
1 − F̂ 2 − ˜̂F 2 + ˜̂F 2F̂ 2) = N2

[
1 − 1

2
Tr
(
F̂ 2)+

(
1

8
FijFklε

ijkl

)
1
]

= N2

• For the contributions with γ̃k we get the following equations:

γ̃mh
m
kω[0]

(
f2 + i

6
f4

)
⊗ 12×2 = 0

N−1γ̃m

[
1

6
f1δ

m
k − 1

6
f3
(
F̂ 2
)m

k

]
⊗ σ3 = f2γ̃mh

m
k ⊗ σ3

(B.2.11)
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Then if:

f2 = − i

6
f4

f1 = f3 (B.2.12)

f1 = 6f2

we obtain that the second of equations (B.2.11) as a matrix equation becomes:

N−1[1 − (F̂ 2)]= h (B.2.13)

and just coincides with the solution (7.4.51) for the auxiliary field h in terms of
the physical ones.

• Now we consider Π and Π̃ .
The equation proportional to σ1 is:

αω[0]Π̃mhmk + βΠmhmk = NγΠk

αω[0]˜̂F lmhmkγl + βF̂ lmhmkγl = γNF̂ l
k γl

(B.2.14)

in matrix form we have:

αω[0](˜̂Fh)+ β(F̂h) = γNF̂

αω[0]˜̂F [1 − (F̂ 2)]N−1 + βF̂ 2[1 − (F̂ 2)]N−1 = γNF̂

αω[0]˜̂F [1 − (F̂ 2)]+ βF̂ 2[1 − (F̂ 2)] = γN2F̂ (B.2.15)

αω[0]˜̂F [1 − (F̂ 2)]+ βF̂ 2[1 − (F̂ 2)] = γ

[
1 − 1

2
Tr
(
F̂ 2)+ω2[0]

]
F̂

αω[0]˜̂F − αω[0](˜̂FF̂ )F̂ + βF̂ − βF̂ 2F̂ = γ F̂ − γ

2
Tr
(
F̂ 2)F̂ + γω2[0]F̂

if:

β = γ (B.2.16)

and using (7.5.31), than (B.2.15) become:

αω[0]˜̂F + αω2[0]F̂ − βF̂ 2F̂ = −γ

2
Tr
(
F̂ 2)F̂ + γω2[0]F̂ (B.2.17)

if:

α = γ (B.2.18)
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αω[0]˜̂F − βF̂ 2F̂ = −γ

2
Tr
(
F̂ 2)F̂

αω[0]˜̂F − αF̂ 2F̂ = −α
(
F̂ 2 + ˜̂F 2)

F̂ (B.2.19)

αω[0]˜̂F = −α˜̂F 2F̂

and it is correct by (7.5.31).
The equation proportional to σ2 is:

μω[0]Πk + νΠ̃k = NρΠ̃mhmk

μω[0]F̂lkγ l + ν˜̂F lkγ
l = Nρ˜̂Fm

l hmkγ
l (B.2.20)

μω[0]F̂lk + ν˜̂F lk = Nρ˜̂F lm

[
δmk − (F̂ 2)m

k

]
N−1

for:

ν = ρ

μ = ρ
(B.2.21)

we obtain the first of the relations (7.5.31).
Where:

α = −if4 β = 6if2 γ = f3

μ = if3 ν = if1 ρ = f4
(B.2.22)

Using the fact that a5 = 3
4 and (7.5.18) we have that (B.2.6), (B.2.7), (B.2.9),

(B.2.12), and (B.2.16), (B.2.18), (B.2.21) are automatically satisfied. This con-
cludes the proof of property (b) and hence of κ supersymmetry.

Appendix C: Auxiliary Information About Some Superalgebras

C.1 The OSp(N |4) Supergroup, Its Superalgebra and Its
Supercosets

In this appendix we provide some explicit information and a collection of very use-
ful formulae relative to the very important class of supergroups OSp(N |4) which
appears in the compactification of superstrings and of M-theory on anti de Sitter
backgrounds. The presented material closely follows two sections of paper [1].

C.1.1 The Superalgebra

The real form osp(N |4) of the complex osp(N |4,C) Lie superalgebra which is
relevant for the study of AdS4 × G /H compactifications is that one where the
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ordinary Lie subalgebra is the following:

sp(4,R)× so(N )⊂ osp(N |4) (C.1.1)

This is quite obvious because of the isomorphism sp(4,R)� so(2,3) which identi-
fies sp(4,R) with the isometry algebra of anti de Sitter space. The compact algebra
so(N ) is instead the R-symmetry algebra acting on the supersymmetry charges.

The superalgebra osp(N |4) can be introduced as follows: consider the two
graded (4 + N )× (4 + N ) matrices:

Ĉ =
(
Cγ5 0

0 − i
4e1N ×N

)
; Ĥ =

(
iγ0γ5 0

0 − 1
4e1N ×N

)
(C.1.2)

where C is the charge conjugation matrix in D = 4. The matrix Ĉ has the property
that its upper block is antisymmetric while its lower one is symmetric. On the other
hand, the matrix Ĥ has the property that both its upper and lower blocks are Her-
mitian. The osp(N |4) Lie algebra is then defined as the set of graded matrices Λ
satisfying the two conditions:

ΛT Ĉ + ĈΛ = 0 (C.1.3)

Λ†Ĥ + ĤΛ = 0 (C.1.4)

Equation (C.1.3) defines the complex osp(N |4) superalgebra while (C.1.4) restricts
it to the appropriate real section where the ordinary Lie subalgebra is (C.1.1). The
specific form of the matrices Ĉ and Ĥ is chosen in such a way that the complete
solution of the constraints (C.1.3), (C.1.4) takes the following form:

Λ=
(− 1

4ω
abγab − 2eγaγ5E

a ψA

4ieψBγ5 −eAAB

)
(C.1.5)

and the Maurer-Cartan equations

dΛ+Λ∧Λ= 0 (C.1.6)

read as follows:

dωab −ωac ∧ωdbηcd + 16e2Ea ∧Eb = −i2eψA ∧ γ abγ 5ψA

dEa −ωa
c ∧Ec = i

1

2
ψA ∧ γ aψA

dψA − 1

4
ωab ∧ γabψA − eAAB ∧ψB = 2eEa ∧ γaγ5ψA

dAAB − eAAC ∧ ACB = 4iψA ∧ γ5ψB

(C.1.7)

Interpreting Ea as the vielbein, ωab as the spin connection, and ψa as the grav-
itino 1-form, (C.1.7) can be viewed as the structural equations of a supermanifold
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AdS4|N ×4 extending anti de Sitter space with N Majorana supersymmetries. In-
deed the gravitino 1-form is a Majorana spinor since, by construction, it satisfies the
reality condition

Cψ
T

A =ψA, ψA ≡ψ
†
Aγ0 (C.1.8)

The supermanifold AdS4|N ×4 can be identified with the following supercoset:

M 4|4N
osp ≡ Osp(N |4)

SO(N )× SO(1,3)
(C.1.9)

Alternatively, the Maurer Cartan equations can be written in the following more
compact form:

dΔxy +Δxz ∧Δtyεzt = −4ieΦx
A ∧Φ

y
A,

dAAB − eAAC ∧ ACB = 4iΦx
A ∧Φ

y
Bεxy (C.1.10)

dΦx
A +Δxy ∧ εyzΦ

z
A − eAAB ∧Φx

B = 0

where all 1-forms are real and, according to our conventions, the indices x, y, z, t
are symplectic and take four values. The real symmetric bosonic 1-form Ωxy =Ωyx

encodes the generators of the Lie subalgebra sp(4,R), while the antisymmetric real
bosonic 1-form AAB = −ABA encodes the generators of the Lie subalgebra so(N ).
The fermionic 1-forms Φx

A are real and, as indicated by their indices, they transform
in the fundamental 4-dim representation of sp(4,R) and in the fundamental N -dim
representation of so(N ). Finally,

εxy = −εyx =

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ (C.1.11)

is the symplectic invariant metric.
The relation between the formulation (C.1.7) and (C.1.10) of the same Maurer

Cartan equations is provided by the Majorana basis of d = 4 gamma matrices dis-
cussed in Appendix C.3.2. Using (A.5.2), the generators γab and γaγ5 of the anti
de Sitter group SO(2,3) turn out to be all given by real symplectic matrices, as is
explicitly shown in (A.5.3) and the matrix C γ5 turns out to be proportional to εxy as
shown in (C.3.7). On the other hand a Majorana spinor in this basis is proportional
to a real object times a phase factor exp[−π i/4].

Hence (C.1.7) and (C.1.10) are turned ones into the others upon the identifica-
tions:

Ωxyεyz ≡Ωx
z ↔ −1

4
ωabγab − 2eγaγ5E

a

AAB ↔ AAB

ψx
A ↔ exp

[−π i

4

]
Φx
A

(C.1.12)
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As it is always the case, the Maurer Cartan equations are just a property of the
(super) Lie algebra and hold true independently of the (super) manifold on which
the 1-forms are realized: on the supergroup manifold or on different supercosets of
the same supergroup.

C.2 The Relevant Supercosets and Their Relation

Let us also consider the following pure fermionic coset:

M 0|4N
osp = Osp(N |4)

SO(N )× Sp(4,R)
(C.2.1)

There is an obvious relation between these two supercosets that can be formulated
in the following way:

M 4|4N
osp ∼ AdS4 × M 0|4N

osp (C.2.2)

In order to explain the actual meaning of (C.2.2) we proceed as follows. Let the
graded matrix L ∈ Osp(N |4) be the coset representative of the coset M 4|4N

osp , such
that the Maurer Cartan form Λ of (C.1.5) can be identified as:

Λ= L
−1 dL (C.2.3)

Let us now factorize L as follows:

L= LFLB (C.2.4)

where LF is a coset representative for the coset:

Osp(N |4)
SO(N )× Sp(4,R)

# LF (C.2.5)

and LB is the Osp(N |4) embedding of a coset representative of AdS4, namely:

LB =
(

LB 0
0 1N

)
; Sp(4,R)

SO(1,3)
# LB (C.2.6)

In this way we find:

Λ= L
−1
B ΛFLB +L

−1
B dLB (C.2.7)

Let us now write the explicit form of ΛF in analogy to (C.1.5):

ΛF =
(

ΔF ΘA

4ieΘAγ5 −eÃAB

)
(C.2.8)
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where ΘA is a Majorana-spinor valued fermionic 1-form and where ΔF is an
sp(4,R) Lie algebra valued 1-form presented as a 4 × 4 matrix. Both ΘA as ΔF

and ÃAB depend only on the fermionic θ coordinates and differentials.
On the other hand we have:

L
−1
B dLB =

(
ΔB 0
0 0

)
(C.2.9)

where the ΩB is also an sp(4,R) Lie algebra valued 1-form presented as a 4 × 4
matrix, but it depends only on the bosonic coordinates xμ of the anti de Sitter space
AdS4. Indeed, according to (C.1.5) we can write:

ΔB = −1

4
Babγab − 2eγaγ5B

a (C.2.10)

where {Bab,Ba} are respectively the spin-connection and the vielbein of AdS4, just
as {Bαβ,Bα} are the connection and vielbein of the internal coset manifold M7.

Inserting now these results into (C.2.7) and comparing with (C.1.5) we obtain:

ψA = L−1
B ΘA

AAB = ÃAB (C.2.11)

−1

4
ωabγab − 2eγaγ5E

a = −1

4
Babγab − 2eγaγ5B

a + L−1
B ΔFLB

The above formulae encode an important information. They show how the super-
vielbein and the superconnection of the supermanifold (C.1.9) can be constructed
starting from the vielbein and connection of AdS4 space plus the Maurer Cartan
forms of the purely fermionic supercoset (C.2.1). In other words formulae (C.2.11)
provide the concrete interpretation of the direct product (C.2.2). This will also be
our starting point for the actual construction of the supergauge completion in the
case of maximal supersymmetry and for its generalization to the cases of less super-
symmetry.

C.2.1 Finite Supergroup Elements

We studied the osp(N |4) superalgebra but for our purposes we cannot confine our-
selves to the superalgebra, we need also to consider finite elements of the corre-
sponding supergroup. In particular the supercoset representative. Elements of the
supergroup are described by graded matrices of the form:

M =
(
A Θ

Π D

)
(C.2.12)

where A,D are submatrices made out of even elements of a Grassmann algebra
while Θ,Π are submatrices made out of odd elements of the same Grassmann al-
gebra. It is important to recall, that the operations of transposition and Hermitian
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conjugation are defined as follows on graded matrices:

MT =
(

AT ΠT

−ΘT DT

)
(C.2.13)

M† =
(
A† Π†

Θ† D†

)

This is done in order that the supertrace should preserve the same formal properties
enjoyed by the trace of ordinary matrices:

Str(M) = Tr(A)− Tr(D)

Str(M1M2) = Str(M2M1)
(C.2.14)

Equations (C.2.13) and (C.2.14) have an important consequence. The consistency
of the equation:

M† = (MT
)� (C.2.15)

implies that the complex conjugate operation on a super matrix must be defined as
follows:

M� =
(
A� −Θ�

Π� D�

)
(C.2.16)

Let us now observe that in the Majorana basis which we have adopted we have:

Ĉ = i

(
ε 0

0 − 1
4e1N ×N

)
= iε̂

(C.2.17)

Ĥ =
(

iε 0

0 − 1
4e1N ×N

)

where the 4 × 4 matrix ε is given by (C.3.7). Therefore in this basis an orthosym-
plectic group element L ∈ OSp(N |4) which satisfies:

L
T ĈL = Ĉ (C.2.18)

L
†ĤL = Ĥ (C.2.19)

has the following structure:

L=
(

S exp[−iπ4 ]Θ
exp[−iπ4 ]Π O

)
(C.2.20)

where the bosonic sub-blocks S ,O are respectively 4 × 4 and N × N and real,
while the fermionic ones Θ , Π are respectively 4 × N and N × 4 and also real.

The orthosymplectic conditions (C.2.18) translate into the following conditions
on the sub-blocks:
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S T εS = ε− i
1

4e
ΠTΠ

OT O = 1 + i4eΘT εΘ (C.2.21)

S T εΘ = − 1

4e
ΠT O

As we see, when the fermionic off-diagonal sub-blocks are zero the diagonal ones
are respectively a symplectic and an orthogonal matrix.

If the graded matrix L is regarded as the coset representative of either one of
the two supercosets (C.1.9), (C.2.1), we can evaluate the explicit structure of the
left-invariant one form Λ. Using the M 0|4×N style of the Maurer Cartan equations
(C.1.10) we obtain:

Λ≡ L
−1 dL=

(
Δ exp[−iπ4 ]Φ

−4e exp[−iπ4 ]ΦT ε −eA

)
(C.2.22)

where the 1-forms Δ, A and Φ can be explicitly calculated, using the explicit form
of the inverse coset representative:

L
−1 =

(
−εS T ε exp[−iπ4 ] 1

4e εΠ
T

− exp[−iπ4 ]4eΘT ε OT

)
(C.2.23)

eA = −OT dO − i4eΘT ε dΘ

Ω = −εS T ε dS − i
1

4e
ΠT dΠ (C.2.24)

Φ = −εST ε dΘ + 1

4e
εΠT dO

C.2.2 The Coset Representative of OSp(N |4)/SO(N ) × Sp(4)

It is fairly simple to write an explicit form for the coset representative of the
fermionic supermanifold

M 0|4×N = OSp(N |4)
Sp(4,R)× SO(N )

(C.2.25)

by adopting the upper left block components Θ of the supermatrix (C.2.20) as co-
ordinates. It suffices to solve (C.2.21) for the sub blocks S , O , Π . Such an explicit
solution is provided by setting:

O(Θ) = (1 + 4ieΘT εΘ
)1/2

S (Θ) = (1 + 4ieΘΘT ε
)1/2

Π = 4e
(
1 + 4ieΘT εΘ

)−1/2
ΘT ε

(
1 + 4ieΘΘT ε

)1/2

= 4eΘT ε

(C.2.26)
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In this way we conclude that the coset representative of the fermionic supermanifold
(C.2.25) can be chosen to be the following supermatrix:

L(Θ)=
(
(1 + 4ieΘΘT ε)1/2 exp[−iπ4 ]Θ
− exp[−iπ4 ]4eΘT ε (1 + 4ieΘT εΘ)1/2

)
(C.2.27)

By straightforward steps from (C.2.23) we obtain the inverse of the supercoset ele-
ment (C.2.27) in the form:

L
−1(Θ)= L(−Θ)=

(
(1 + 4ieΘΘT ε)1/2 − exp[−iπ4 ]Θ
− exp[−iπ4 ]4eΘT ε (1 + 4ieΘT εΘ)1/2

)
(C.2.28)

Correspondingly we work out the explicit expression of the Maurer Cartan forms:

eA = (
1 + 4ieΘT εΘ

)1/2
d
(
1 + 4ieΘT εΘ

)1/2 − i4eΘT ε dΘ

Φ = (
1 + 4ieΘΘT ε

)1/2
dΘ +Θ d

(
1 + 4ieΘT εΘ

)1/2 (C.2.29)

Δ = (
1 + 4ieΘΘT ε

)1/2
d
(
1 + 4ieΘΘT ε

)1/2 − i4eΘ dΘT ε

C.3 D = 6 and D = 4 Gamma Matrix Bases

In the discussion of the AdS4 ×P
3 compactification we need to consider the decom-

position of the D = 10 gamma matrix algebra into the tensor product of the so(6)
Clifford algebra times that of so(1,3). In this section we discuss an explicit basis
for the so(6) gamma matrix algebra using that of so(7). Conventionally we identify
the 7-matrix τ7 with the chirality matrix in d = 6.

C.3.1 D = 6 Clifford Algebra

In this section, the indices α,β, . . . run on six values and denote the vector indices
of so(6). In order to discuss the gamma matrix basis we introduce so(7) indices

α = α,7 (C.3.1)

which run on seven values and we define the Clifford algebra with negative metric:

{τα, τβ} = −δαβ (C.3.2)
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This algebra is satisfied by the following, real, antisymmetric matrices:

τ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; τ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; τ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.3.3)

τ5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; τ6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C.3.2 D = 4 γ -Matrix Basis and Spinor Identities

In this section we construct a basis of so(1,3) gamma matrices such that it explicitly
realizes the isomorphism so(2,3)∼ sp(4,R) with the conventions used in the main
text. Naming σi the standard Pauli matrices:

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
(C.3.4)
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we realize the so(1,3) Clifford algebra:

{γa, γb} = 2ηab; ηab = diag(+,−,−,−) (C.3.5)

by setting:

γ0 = σ2 ⊗ 1; γ1 = iσ3 ⊗ σ1

γ2 = iσ1 ⊗ 1; γ3 = iσ3 ⊗ σ3

γ5 = σ3 ⊗ σ2; C = iσ2 ⊗ 1

(C.3.6)

where γ5 is the chirality matrix and C is the charge conjugation matrix. Making
now reference to (C.1.2) and (C.1.3) of the main text we see that the antisymmetric
matrix entering the definition of the orthosymplectic algebra, namely C γ5 is the
following one:

C = i

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , C γ5 = ε = i

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ (C.3.7)

namely it is proportional, through an overall i-factor, to a real completely off-
diagonal matrix. On the other hand all the generators of the so(2,3) Lie algebra,
i.e. γab and γaγ5 are real, symplectic 4 × 4 matrices. Indeed we have

γ01 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ; γ02 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

γ12 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 1

−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ; γ13 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠

γ23 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ ; γ34 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ (C.3.8)

γ0γ5 =

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ; γ1γ5 =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠

γ2γ5 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ; γ3γ5 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠
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On the other hand we find that C γ0 = i1. Hence the Majorana condition becomes:

iψ =ψ� (C.3.9)

so that a Majorana spinor is just a real spinor multiplied by an overall phase
exp[−i π4 ].

These conventions being fixed let χx (x = 1, . . . ,4) be a set of (commuting)
Majorana spinors normalized in the following way:

χx = CχT
x ; Majorana condition

χxγ5χy = i(C γ5)xy; symplectic normal basis
(C.3.10)

Then by explicit evaluation we can verify the following Fierz identity:

1

2
γ abχzχxγ5γabχy − γaγ5χzχxγaχy = −2i

[
(Cγ5)zxχy + (Cγ5)zyχx

]
(C.3.11)

Another identity which we can prove by direct evaluation is the following one:

χxγ5γabχyχzγ
bχt − χzγ5γabχtχxγ

bχy

= i
(
χxγaχt (C γ5)yz + χyγaχt (C γ5)xz + χxγaχz(C γ5)yt + χyγaχz(C γ5)xt

)
(C.3.12)

Finally let us mention some relevant formulae for the derivation of the AdS4 ×P
3

compactification. With the above conventions we find:

γ0γ1γ2γ3 = iγ5 (C.3.13)

and if we fix the convention:

ε0123 = +1 (C.3.14)

we obtain:
1

24
εabcdγaγbγcγd = −iγ5 (C.3.15)

C.4 An so(6) Inversion Formula

In order to discuss the conversion of supergravity forms into MC forms of the super-
coset a key role is played by an inversion formula which we utilize in the main text
and we discuss in this appendix. Let us define the following set of 6 × 6 matrices:

ταAB ≡ ηTAτ
αηB

τ
αβ
AB = ηTAτ

αβηB (C.4.1)
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KAB = KAB = 1

2
Kαβτ

αβ
AB.

where ηA are the 6 internal Killing spinors and τ denote the 1-index and 2-index
so(6) gamma-matrices. By construction the barred τ s are antisymmetric 6 × 6 ma-
trices, hence so(6) generators in the fundamental representation just as the Kähler
form K . Counting these matrices we find that they are 6+15+1, namely 22, which
is too much as a set of independent generators of so(6). This means that there must
be linear dependences. By calculating traces of these matrices we find that the 6
matrices τα are linear independent and orthogonal to the 15, ταβ , and to the unique
K while among these latter 16 matrices only 9 are linear independent.

This observation is important for the following reason. When we write the fol-
lowing formulae:

ΔBα = −1

8
ταABA AB

ΔBαβ = e

4
τ
αβ
ABA AB − e

4
K αβKABA AB

(C.4.2)

we are actually decomposing the so(6) connection A AB along an over-complete
basis of 15 + 6 = 21 generators of so(6), which is obviously a well defined opera-
tion.

It is interesting to establish the inverse formula, namely to express the original
connection A AB in terms of the over complete set of objects ΔBα and ΔBαβ . The
inverse formula can be established by means of direct calculation in the explicit
τ -matrix basis we have chosen and we find what follows:

AAB =
(
−2ΔBατα + 1

4e
ΔBαβταβ − 1

4e
ΔBαβKαβK

)
AB

(C.4.3)

Appendix D: MATHEMATICA Package NOVAMANIFOLDA

In this section we describe the MATHEMATICA Package NOVAMANIFOLDA that
can be downloaded as supplementary material form the Springer distribution site.

This notebook contains various packages for the calculation of the spin connec-
tion and the curvatures of various manifolds, both homogeneous (= cosets) and also
non-homogeneous. It is divided in various sections.

Coset Manifolds (Euclidian Signature)

Instructions for the Use

This notebook has the following purpose, that of calculating the Riemann tensor and
the connection of the several coset manifolds. In particular:
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(1) The manifold:
SU(3)

SU(2)×U(1) = CP2

(2) The spheres:
SO(m+1)

SO(m) =Sm

(3) The manifold:
SU(3)
U(1) =N010

The calculation is done using the RUNCOSET package constructed by Prof.
Leonardo Castellani. The input are the structure constants of the corresponding
group that are calculated by suitable routines inserted in this package.
First read the two sections of PROGRAMME
and then start by the command
startstartstart
If you want to calculate the structure constants for CP2, spheres or N010 you just
type:
cp2stru, spheres or n010strucp2stru, spheres or n010strucp2stru, spheres or n010stru
and then initialize the RUNCOSET programme by the command
initialinitialinitial
then supply the file cc=fff
and you can calculate with the commands of RUNCOSET
that are described in the section below

Description of the Main Commands of RUNCOSET

The available commands one can use at this point are the following ones
1.
doriemann2doriemann2doriemann2
This command generates as an output a tensor Rie[[a,b,c,d]]Rie[[a,b,c,d]]Rie[[a,b,c,d]] = (Rab)cd where
(Rab)cd is the Riemann tensor in the conventions of the old Kaluza-Klein litera-
ture, namely Universal mass relations Ann. of Phys. 162, (1985) 372 by D’Auria
and Frè.
2.
doconnectiondoconnectiondoconnection
This command generates as an output a tensor connten[[a,b]]connten[[a,b]]connten[[a,b]] = Bab where Bab is
the spin connection 1-form in the conventions of the old Kaluza-Klein literature,
namely Universal mass relations Ann. of Phys. 162, (1985) 372 by D’Auria and
Frè.
3.
doconcompdoconcompdoconcomp
This command generates as an output a tensor contor[[c,a,b]]contor[[c,a,b]]contor[[c,a,b]] = (Bab)c where (Bab)c
is the torsion part of the spin connection 1-form in the conventions of the old Kaluza-
Klein literature, namely Universal mass relations Ann. of Phys. 162, (1985) 372 by
D’Auria and Frè.
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4.
doriccidoriccidoricci
This command generates as an output a tensor ricten[[a,b]]ricten[[a,b]]ricten[[a,b]] =Rca

cb where Rca
cb is the

Ricci tensor in the conventions of the old Kaluza-Klein literature, namely Universal
mass relations Ann. of Phys. 162, (1985) 372 by D’Auria and Frè.
5.
docurvaformdocurvaformdocurvaform
This command generates the curvature 2-form once the Riemann tensor has been
generated
Index ordering
The index ordering is as follows:
A=(a,i); a=1,.....,dim G/H; i=dim G/H+1,........,dim G
The index a enumerates the coset directions, while the index i enumerates the H
subalgebra directions.

Structure Constants for CP2

This programme calculates the generators and the structure constants of SU(3) in
such a way that the first 4 generators are those of the coset:

SU(3)
SU(2)×U(1)

Spheres

This programme calculates the generators and the structure constants of the group
SO(n+ 1) and orders them in such a way that the first n generators are those of the
coset:
SO(n+1)

SO(n)

N010 Coset

This programme generates the structure constants of SU(3) but in such an order that
the first 7 generators are those of the coset
SU(3)
U(1)

U(1) being generated by the 8th Gell Mann matrix

RUNCOSET Package (Euclidian Signature)

This is a new package based on the package “Cosets” that was written by Leonardo
Castellani and which computes the Riemann tensor, Weyl tensor and the spin con-
nection for G/H manifolds. The package has been modified and adapted to the way
we want to perform our calculations.
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Geometry of Quasi-Homogeneous Manifolds (Euclidian,
or Lorentzian) and of General Manifolds (General Signature)

This routine is devised to calculate the geometry in the following very common
situation where the vielbein of a space in dimension
n=1+r
is given in the following form:
e1=dμ
ei=fi(μ)iσ i

where fi (μ) are functions of the coordinate μ and σ i are vielbeins of an r-
dimensional space for which the contorsion is already known:
dσ i= - t ijk σ

j ∧ σk

We name such manifolds quasi-homogeneous

Main

You start this programme by typing mainspinmainspinmainspin

Spin Connection and Curvature Routines

This routine is devised to calculate the intrinsic components of the spin connection
once the contorsion tensor as already been calculated
dei= cijk e

i∧ ek

There are two versions of the programme one for quasi-homogeneous manifolds
called spinpackspinpackspinpack and one for general manifolds called spinpackgenspinpackgenspinpackgen in the second
case you will be prompted to supply also the signature of space-time a n vector of
plus or minus 1s = signatsignatsignat

Routine Curvapack

This routine is devised to calculate the curvature of a manifold when the intrinsic
components of the spin connection depend only on one coordinate μ and the first
vielbein is
e1= A(μ)*dμ

Routine Curvapackgen

This routine is devised to calculate the curvature two form and the Riemann tensor
in a general situation for an arbitrary dimensional manifold and with the vielbein
depending on all the coordinates. You can start this programme only after having
computed the spin connection via the package spinpackspinpackspinpack
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Contorsion Routine for Mixed Vielbeins

This routine is devised to calculate the contorsion tensor in the following very com-
mon situation where the vielbein of a space in dimension
n=1+r
is given in the following form:
e1=A(μ)dμ
ei=fi (μ) σ i

where fi (μ) are functions of the coordinate μ and σ i are vielbeins of an r-
dimensional space for which the contorsion is already known:
dσ i= - t ijk σ

j ∧ σk

So that we find:
c1

AB=0
ci1i=

1
2

1
A(μ)

∂μ Log[fi (μ)]

cijk= - fi(μ)
fj (μ)fk(μ)

t ijk
TO START THE ROUTINE TYPE contorscontorscontors

Calculation of the Contorsion for General Manifolds

This routine is devised to calculate the contorsion for general manifolds. The inputs
are
1) the dimension n
2) the set of coordinates a n vector = coordicoordicoordi
3) the set of differentials, a nnn vector = diffediffediffe
4) the set of vielbein 1-forms a nnn vector = fformfformfform
TO START this programme you type contorgencontorgencontorgen and then you follow instructions

Calculation for Cartan Maurer Equations and Vielbein
Differentials (Euclidian Signature)

This package is devised to calculate the exterior differential of a set of 1-forms, for
instance vielbeins or Cartan Maurer 1-forms.
This part is initialized by typing extdiffextdiffextdiff then you follow the computer instructions.

SO(3), SO(4) t’ Hooft Matrices and Euler Angles

This programme is devised to calculate the differential 1 forms on the 3 sphere in
terms of the Euler angles, introducing the self-dual and antiself-dual generators of
the SO(4) group, namely the ’t Hooft matrices. This calculation relies on the routine
spheresspheresspheres belonging to another section of this notebook.
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YOU START THIS PROGRAMME by TYPING euleruseuleruseulerus. When you will prompted
for the sphere dimension you have to type 3.
The output 1-forms are encoded in two 3-vectors named sigmapsigmapsigmap and sigmamsigmamsigmam, re-
spectively.

Routine Thoft

Running thoftthoftthoft one generates the ’t Hooft matrices. The self-dual ones are named
Jp1, Jp2, Jp3, the antiself-dual ones are named Jm1, Jm2, Jm3.

AdS Space in Four Dimensions (Minkowski Signature)

The routines of this section are deviced to calculate the algebra of SO(2, 3) the
solvable parameterization of anti de Sitter space in four dimensions, to construct its
Killing vectors and make various other checks. If you want to run the entire package
and see what it does you can just type: mainads4mainads4mainads4

Lie Algebra of SO(2, 3) and Killing Metric

In this section one defines the 10 generators of the SO(2, 3) Lie algebra
K0, K1, K2, K3, N1, N2, N3, J1, J2, J3
where J are the SO(3) rotations, N the three Lorentz boosts and K0, K1, K2, K3 the
4 translations generators.
The routine is activated by typing: algso23algso23algso23

Solvable Subalgebra Generating the Coset and Construction of the Vielbein

This routine constructs the coset representative in solvable parameterization, the
vierbein and the structure constants of the full Lie algebra.
The routine is activated by typing: cosettocosettocosetto.
To run this routine you need first to run algso23

Killing Vectors

This programme verifies the Killing vectors in the solvable parameterization and
then exhibits them explicitly.
The routine is initialized by typing: verkillingverkillingverkilling
To run this routine you need to run first also23 and cosetto
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Trigonometric Coordinates

In this section we turn to trigonometric coordinates in which the metric of AdS
space has the following form:
ds2= - dτ 2 +Cos[τ ]2[dλ2+Sinh[λ]2(dα2+Sin[α]2dβ2)]

Test of Killing Vectors

This routine is devised to test whether a set of vector fields are Killing vectors for a
given metric.
The inputs to be given before running the routine are:
ggmunuggmunuggmunu = metric as n x n matrix;
xmuxmuxmu = set of coordinates as an n-vector;
dxmudxmudxmu = set of coordinate differentials as an n-vector;
derdxmuderdxmuderdxmu = set of coordinate derivatives as an n-vector;
killuskilluskillus = set of Killing vectors to be tested
dimdimdim = dimension of manifold
kilnukilnukilnu = number of Killing vectors;
the routine is than activated by typing testkillustestkillustestkillus

Appendix E: Examples of the Use of the Package
NOVAMANIFOLDA

In this appendix we describe some applications of the package Novamanifolda. The
MATHEMATICA notebook file with these examples can be downloaded as supple-
mentary material from the Springer distribution site.

MANIFOLDPROVA

In this Notebook we display some examples of the use of the package NOVAMAN-
IFOLDA. Obviously you have to evaluate first the NoteBook Novamanifolda.

The 4-Dimensional Coset CP2

We initialize the programme

startstartstart
{Null}
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We calculate the structure constant of the SU(3) Lie algebra

cp2strucp2strucp2stru
{Null}

The result of this calculation is a tensor named fffffffff and stored in the computer
memory (if you wanted another group, you had to calculate the structure constants
of its Lie algebra and store them in a tri-tensor named also fffffffff. It is important that in
ordering the generators the first dim G/H should correspond to the coset generators,
while the late dim H should correspond to the stability subgroup H generators)

Next we initial the RUNCOSET programme

initialinitialinitial
=======================================
Welcome to RUNCOSET, a new package built by Petrus
on Leonardus technology
It computes various geometric quantities of G/H cosets
Please insert the dimensions of the group G and
of the coset G/H
———————————————–
Now you need to provide the structure constants of the group
and the rescalings
The structure constants must be given as a tensor cc[[A,B,C]];
The rescalings must be given as r[1]=?, r[2]=?...
———————————————–
{Null}

We supply the calculated SU(3) structure constants
cc = fff;cc = fff;cc = fff;

we calculate the spin connection one-form for this coset.

doconnectiondoconnectiondoconnection
12 non-zero
13 non-zero
14 non-zero
21 non-zero
23 non-zero
24 non-zero
31 non-zero
32 non-zero
34 non-zero
41 non-zero
42 non-zero
43 non-zero
I have finished the calculation
The tensor connten[[a,b]] giving the formal expression
of the spin connection B[a,b] as a 1-form
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is ready for storing on hard disk
Store it in your preferred directory with the name you choose
—————————-
{Null}

We display the result of this calculation. In the formula below om[i], (i=1,. . . ,8)
denote the Maurer Cartan one-forms of the SU(3) group ordered and normalized
according to the conventions used for the structure constants.
MatrixForm[connten]MatrixForm[connten]MatrixForm[connten]
⎛
⎜⎜⎝

0 ω7
2

1
2 (

√
3ω5 +ω6)

ω8
2

−ω7
2 0 ω8

2
1
2 (

√
3ω5 −ω6)

1
2 (−

√
3ω5 −ω6) −ω8

2 0 ω7
2

−ω8
2

1
2 (−

√
3ω5 +ω6) −ω7

2 0

⎞
⎟⎟⎠

Let us now insert the rescaling factors r[i]. These are as many as there are irre-
ducible representations of H in the complementary subspace in the decomposition
G=H⊕K. For CP2 the 4 coset generators span just one irreducible representation of
the su(2)×u(1) Lie algebra, hence there is only one scaling factor.
r[1] = λ; r[2] = λ; r[3] = λ; r[4] = λr[1] = λ; r[2] = λ; r[3] = λ; r[4] = λr[1] = λ; r[2] = λ; r[3] = λ; r[4] = λ

Next we compute the torsion of the coset

doconncompdoconncompdoconncomp
————————————-
Now I calculate the torsion part of the spin connection
I have finished the calculation
The tensor contor[a,b]] giving the torsion part B[c,a,b]
of the spin connection B[a,b]
is ready for storing on hard disk
Store it in your preferred directory with the name you choose
—————————-
{Null}

The CP2 coset is symmetric and torsionless and this is indeed verified by the
computer

contorcontorcontor
{{{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}},
{{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}},
{{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}},
{{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}}}

Then we calculate the Riemann tensor
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doriemann2doriemann2doriemann2
————————————-
Now I calculate the Riemann tensor Rie(a,b,c,d)
121 2 non-zero
122 1 non-zero
123 4 non-zero
124 3 non-zero
131 3 non-zero
132 4 non-zero
133 1 non-zero
134 2 non-zero
141 4 non-zero
142 3 non-zero
143 2 non-zero
144 1 non-zero
211 2 non-zero
212 1 non-zero
213 4 non-zero
214 3 non-zero
231 4 non-zero
232 3 non-zero
233 2 non-zero
234 1 non-zero
241 3 non-zero
242 4 non-zero
243 1 non-zero
244 2 non-zero
311 3 non-zero
312 4 non-zero
313 1 non-zero
314 2 non-zero
321 4 non-zero
322 3 non-zero
323 2 non-zero
324 1 non-zero
341 2 non-zero
342 1 non-zero
343 4 non-zero
344 3 non-zero
411 4 non-zero
412 3 non-zero
413 2 non-zero
414 1 non-zero
421 3 non-zero
422 4 non-zero
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423 1 non-zero
424 2 non-zero
431 2 non-zero
432 1 non-zero
433 4 non-zero
434 3 non-zero
I have finished the calculation
The tensor Rie(a,b,c,d) is ready for storing on hard disk
Store it in your preferred directory with the name you choose
—————————–
————————————
Now I evaluate the curvature 2-form of your space
I find the following answer

R[12] = 2( 1
8λ

2e1**e2 + 1
8λ

2e3**e4)

R[13] = 2( 1
2λ

2e1**e3 + 1
4λ

2e2**e4)

R[14] = 2( 1
8λ

2e1**e4 + 1
8λ

2e2**e3)

R[23] = 2( 1
8λ

2e1**e4 + 1
8λ

2e2**e3)

R[24] = 2( 1
4λ

2e1**e3 + 1
2λ

2e2**e4)

R[34] = 2( 1
8λ

2e1**e2 + 1
8λ

2e3**e4)

The result is encoded in a tensor RR[i,j]
Its components are encoded in a tensor Rie[i,j,a,b]
{Null}

and we calculate the explicit form of the curvature two-form

docurvaformdocurvaformdocurvaform
————————————
I evaluate the curvature 2-form of your coset
I find the following answer

R[12] = 1
8λ

2V1**V2 − 1
8λ

2V2**V1 + 1
8λ

2V3**V4 − 1
8λ

2V4**V3

R[13] = 1
2λ

2V1**V3 + 1
4λ

2V2**V4 − 1
2λ

2V3**V1 − 1
4λ

2V4**V2

R[14] = 1
8λ

2V1**V4 + 1
8λ

2V2**V3 − 1
8λ

2V3**V2 − 1
8λ

2V4**V1

R[23] = 1
8λ

2V1**V4 + 1
8λ

2V2**V3 − 1
8λ

2V3**V2 − 1
8λ

2V4**V1

R[24] = 1
4λ

2V1**V3 + 1
2λ

2V2**V4 − 1
4λ

2V3**V1 − 1
2λ

2V4**V2

R[34] = 1
8λ

2V1**V2 − 1
8λ

2V2**V1 + 1
8λ

2V3**V4 − 1
8λ

2V4**V3

Now choose a value for the rescaling parameters
writing rullina = {....}
Then type redisplay
{Null}

Finally we calculate the Ricci tensor
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doriccidoriccidoricci
————————————
Now I calculate the Ricci tensor
11 non-zero
22 non-zero
33 non-zero
44 non-zero
I have finished the calculation
The tensor ricten[[a,b]] giving the Ricci tensor
is ready for storing on hard disk
Store it in your preferred directory with the name you choose
—————————
{Null}
MatrixForm[ricten]MatrixForm[ricten]MatrixForm[ricten]
⎛
⎜⎜⎜⎝

3λ2

4 0 0 0

0 3λ2

4 0 0

0 0 3λ2

4 0

0 0 0 3λ2

4

⎞
⎟⎟⎟⎠

The above expression of the Ricci tensor is provided in the flat indices. Indeed
the Ricci tensor is the trace of the Riemann tensor calculated in the flat basis as
components of the curvature two-form along the vielbein basis.

Calculation of the (Pseudo-)Riemannian Geometry of a Kasner
Metric in Vielbein Formalism

As an example of calculation of the pseudo-Riemannian geometry in vielbein for-
malism we consider in this section the case of a Kasner cosmological metric

We initialize this general package by typing contorgen

contorgencontorgencontorgen
Give me the dimension of your space
Your space has dimension n = 4
Now I stop and you give me three vectors of dimension 4
vector fform = vector of 1-form vielbeins
vector coordi = vector of coordinates
vector diffe = vector of differentials
Then resume the calculation typing: contorgenresume
If you already have the contorsion type
spinpackgen
{Null}

Next we supply the information required by the computer, namely, vielbein, co-
ordinates and coordinate differentials
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fform = {dt, s1[t]dx1, s2[t]dx2, s3[t]dx3};fform = {dt, s1[t]dx1, s2[t]dx2, s3[t]dx3};fform = {dt, s1[t]dx1, s2[t]dx2, s3[t]dx3};
coordi = {t, x1, x2, x3};coordi = {t, x1, x2, x3};coordi = {t, x1, x2, x3};
diffe = {dt,dx1,dx2,dx3};diffe = {dt,dx1,dx2,dx3};diffe = {dt,dx1,dx2,dx3};

We proceed the calculation evaluating the external differential of the vielbein

contorgenresumecontorgenresumecontorgenresume
I calculate the exterior differentials of the vielbeins
——————–
I finished!
Next I calculate the inverse vielbein
Done!
I resume the calculation of the contorsion
I calculate the contorsion c[i,j,k] for
i = 1
i = 2
i = 3
i = 4
I have finished!
The result, encoded in a vector dE[i] is the following:
dE[1] = 0

dE[2] =
e1**e2s

′
1[t]

s1[t]
dE[3] =

e1**e3s
′
2[t]

s2[t]
dE[4] =

e1**e4s
′
3[t]

s3[t]
—————————–
The contorsion is encoded in tensor named contens
——————————
Now you can begin the calculation of the spin connection by typing spinpackgen
{Null}

We initialize the calculation of the spin connection

spinpackgenspinpackgenspinpackgen
I start
now give me the contorsion tensor
by writing cont = ?
and give me the signature a vector of +/- 1
by writing signat = ?
then resume the calculation by typing spinresumegen
{Null}

Requested by the computer we indicate the file containing the contorsion and we
specify the signature

cont = contens;cont = contens;cont = contens;
signat = {−1,1,1,1};signat = {−1,1,1,1};signat = {−1,1,1,1};

We conclude the calculation of the spin connection
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spinresumegenspinresumegenspinresumegen
I resume the calculation of the spin connection
—————–
the result is
ω[12] =

e2s
′
1[t]

s1[t]
ω[13] =

e3s
′
2[t]

s2[t]
ω[14] =

e4s
′
3[t]

s3[t]
ω[23] = 0
ω[24] = 0
ω[34] = 0
Task finished
The result is encoded in a tensor omega[i,j]
Its components are encoded in a tensor ometen[i,j,m]
If you want the curvature, type curvapack for quasi-homogeneous manifolds
Otherwise, type curvapackgen for general manifolds
{Null}

Next we calculate the curvature two form and the Ricci tensor

curvapackgencurvapackgencurvapackgen
—————–
I calculate the Riemann tensor
I tell you my steps:
a = 1
b = 1
b = 2
b = 3
b = 4
a = 2
b = 1
b = 2
b = 3
b = 4
a = 3
b = 1
b = 2
b = 3
b = 4
a = 4
b = 1
b = 2
b = 3
b = 4
Finished
————————————
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Now I evaluate the curvature 2-form of your space
I find the following answer

R[12] =
e1**e2s

′′
1 [t]

s1[t]
R[13] =

e1**e3s
′′
2 [t]

s2[t]
R[14] =

e1**e4s
′′
3 [t]

s3[t]
R[23] =

e2**e3s
′
1[t]s′2[t]

s1[t]s2[t]
R[24] =

e2**e4s
′
1[t]s′3[t]

s1[t]s3[t]
R[34] =

e3**e4s
′
2[t]s′3[t]

s2[t]s3[t]
The result is encoded in a tensor RR[i,j]
Its components are encoded in a tensor Rie[i,j,a,b]
————————————-
Now I calculate the Ricci tensor
11 non-zero
22 non-zero
33 non-zero
44 non-zero
I have finished the calculation
The tensor ricten[a,b]] giving the Ricci tensor
is ready for storing on hard disk

We display the Ricci tensor

rictenrictenricten{{ 1
2

( s′′1 [t]
s1[t] + s′′2 [t]

s2[t] + s′′3 [t]
s3[t]

)
,0,0,0

}
,{

0,
s2[t]s′1[t]s′3[t]+s3[t](s′1[t]s′2[t]+s2[t]s′′1 [t])

2s1[t]s2[t]s3[t] ,0,0
}
,{

0,0,
s1[t]s′2[t]s′3[t]+s3[t](s′1[t]s′2[t]+s1[t]s′′2 [t])

2s1[t]s2[t]s3[t] ,0
}
,{

0,0,0,
s1[t]s′2[t]s′3[t]+s2[t](s′1[t]s′3[t]+s1[t]s′′3 [t])

2s1[t]s2[t]s3[t]
}}

The above result presents the Ricci tensor for a Kasner like metric with three
independent scale factors for each of the three Euclidian axes.
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