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Preface

Knowledge without theory is blind
and without practice is void.

— I. Kant

The Newtonian program, well known by every student, is conceptually sim-
ple and attractive: given a mass distribution and the forces acting on it,
write the differential equations arising from the fundamental law of dy-
namics and solve them in order to obtain the motion. Unfortunately, things
are not so simple, and in the course of the program one encounters at least
two essential and unavoidable obstacles.
First, we are not able in general to solve (technically, to integrate) a sys-

tem of differential equations. Yes, every young student has learned how
to tackle the harmonic oscillator, the two-body problem, or the free rigid
body. But it is discouraging that these systems, along with a few others
discovered mainly in the second half of the past century, exhaust the small
list of integrable systems.
But even if one possessed magically an analytical formula giving exactly

the time evolution, it would still be scarcely useful for various reasons. For
example, the motion is in general very complicated, and following the solu-
tion in its wandering does not give valuable information about the nature of
the phenomenon. What is more, a possible regularity in the motion is diffi-
cult to detect by simply inspecting the dynamical evolution of the physical
coordinates. Another frequent difficulty is the extreme sensitivity to the
initial conditions (“butterfly effect”), which in practice makes the concept
of solution itself meaningless. But this should not come as a surprise: after
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viii Preface

all, everybody has felt a sense of frustration looking at the numerical solu-
tion of some three-dimensional systems, being unable to extract a meaning
from the entangled trajectory appearing on the monitor.
The aim of this book is to show how to overcome these difficulties and

grasp the essence of the dynamics in the particular but very important and
significant case of quasi-integrable systems, i.e., integrable systems slightly
perturbed by other forces. A paradigmatic case is the solar system, where
the perturbations are the interactions among the planets. Besides their
practical importance, these systems are also extremely interesting from a
mathematical point of view, exhibiting an intricate and fascinating structure
known as the “Arnold web.”
In the book these systems will be studied both from the analytical and

the numerical point of view. With regard to the first point, I think that it is
impossible to overestimate the importance of the role played by the sym-
plectic structure of the phase space or, in more traditional language, by the
Hamiltonian form of the equations of motion. This structure is the natural
one of the phase space, exactly as the Euclidean structure is the funda-
mental one of our physical space. It is the symplectic structure that forces
the solutions of the integrable systems to evolve linearly on tori (products
of circles) with some fundamental frequencies, providing the framework
without which the two main theorems of perturbation theory, i.e., KAM and
Nekhoroshev, could not even be enunciated. It is thus not surprising that,
as already devised by the great founders of the analytical mechanics in the
nineteenth century, one should constantly utilize the symplectic (canonical)
coordinates adapted to the foliation in tori, the action-angle variables, which
deeply reveal the hidden properties of the perturbed motions. Exploiting
the advanced techniques of perturbation theory, many examples of reduc-
tion to normal form will be given, i.e., to an integrable, hence approximate
form that however reproduces the true dynamics well.
In order to compare the approximate with the true dynamics one needs

numerical methods. In the book I present some tools recently introduced:
the Frequency Modified Fourier Transform (a refinement of the Discrete
Fourier Transform), the Wavelets (which allow one to find the instanta-
neous frequency) and the Frequency Modulation Indicator (which detects
the distribution of the resonances among the fundamental frequencies).
The reader may also find many figures that well illustrate the effectiveness
of the methods and, above all, the relative software. This is surely the main
feature of the book: the reader himself can and is encouraged to repro-
duce the various figures of the book and experiment with other situations,
exploring the details of various quasi-integrable systems. I am convinced
that the union of theory and practice is the main route to try to master an
argument that is considered difficult.
But a more profound motivation in resorting to numerical computations

arises from some lack of reliability that to a certain extent every mathemati-
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cian experiences when facing a theorem proof that is particularly lengthy
and intricate, and that looks more like a rhetoric speech to persuade the
reader than the granitic statement of an unquestionable truth. The numeri-
cal experiments become so an essential completion of the traditional proof,
reversing Truesdell’s thesis of “the computer: ruin of science and threat to
mankind.”
I’d like to make it clear that no knowledge on computer programming

is needed in order to use the software: you only have to access directly to
a MATLAB installation or, subordinately, to install a free reader. Indeed,
the programs support a graphical user interface and require one only to
click on buttons and menu having a hopefully clear meaning: see the final
appendices to the book. The supplied programs in the accompanying CD
can be downloaded as an iso image from the publisher’s website by entering
the book’s ISBN (978-0-8176-8369-6) into http://extras.springer.com/
and are the following.

(i) POINCARE program analyzes symplectic maps with the aid of the Fre-
quency Modulation Indicator.

(ii) HAMILTONprogram analyzes Hamiltonian systemswith the Frequency
Modulation Indicator.

(iii) LAGRANGE program regards the Lagrange points in the three-body
problem.

(iv) KEPLER program studies the perturbations of the Kepler problem.

(v) LAPLACE program concerns the dynamics of a solar system.

I used part of the material presented here in some courses on Celestial
Mechanics, Hamiltonian Systems, and Perturbation Theory, addressed to
advanced undergraduate students. I think that the book may serve as an
introduction to specialistic literature and to a serious study of perturbation
theory, with particular emphasis on the KAM and Nekhoroshev theorems.
The two theorems are proved in the book skipping some details, like the
technical proof of bounding inequalities, which in a first approach (and
also in a second) are more distracting than illuminating, and trying instead
to stress the conceptual points. But I hope that professional researchers
may also find this book useful, thanks to its enclosed software.
Briefly, the plan of the work is the following. In Chapter 1 a somewhat

detailed account of the whole book is given, which should also help the
reader to not lose the thread of the argument. Chapter 2 contains the ba-
sic concepts of differential geometry, Lie groups, and analytical mechanics,
which Chapter 3 applies to perturbation theory. Chapter 4 deals with nu-
merical integration of ordinary differential equations and Chapter 5 with
some tools useful to numerically detect order and chaos. The final four

http://extras.springer.com/
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chapters are devoted to the applications, i.e., to the perturbations of the Ke-
pler problem, as the hydrogen atom in an electric and magnetic field, and to
the planetary problem. These concrete applications are not only physically
interesting but are also significant examples of how to investigate in gen-
eral quasi-integrable Hamiltonian systems, combining the techniques of the
reduction to normal form with the numerical analysis of how order, chaos,
and resonances are distributed in phase space.
It is always useful to listen to several different voices on the same argu-

ment. Three books in particular are highly recommendable: Celletti (2010),
Morbidelli (2002), and Ferraz-Mello (2007). More or less they cover the same
topics of the present book, with a major emphasis on the applications but
without including any software. A good introduction to this book is Tabor
(1989).
I thank very much the two anonymous referees for all the useful com-

ments and suggestions, which I’ve (almost) fully included.
Finally, I’d like to express my sincerest thanks to Tom Grasso and Ben

Cronin at Birkhäuser for their highly professional and efficient handling of
this project.

Milano, June 2012 B. Cordani
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CHAPTER 1

Introductory Survey

Excuse me if I alone introduce myself:
I am the Prologue.

— R. Leoncavallo, Pagliacci

Order and chaos, invariant tori, KAM theory, resonances, Arnold web, dif-
fusion …, these are “keywords” in the theory of dynamical systems. But for
mathematicians who are not directly involved in this area they may sound
a bit vague. To grasp what they are about, consider the following question:
Given a conservative mechanical system, thus without dissipative forces,
what is its ultimate fate? Without further information the answer probably
cannot be given in general. However, if we restrict ourselves to the special,
but very important, case of a slightly perturbed integrable system, we can
claim that crucial progresses have been achieved. An example is our solar
system, in which the perturbations are the interactions between planets. In
this book we will suggest how to guess an answer, and on the way all these
keywords will come into play.
The motion of an integrable system is totally ordered, in a sense that will

be specified below. The central question is: Does a very small perturbation
destroy this order completely? Before the fundamental work of Kolmogorov
(1954), two completely opposite answers were given. For the astronomers,
interested in the computation of perturbed orbits, the answer was (more or
less tacitly) negative: for them the affirmative answer seemed to be a disas-
ter, making meaningless their series expansions. On the contrary, for the
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statistical physicists, interested in the possibility of applying the ergodic
theorem, the answer was decisively affirmative. That of Kolmogorov was,
in some sense, a Solomon’s verdict: the ultimate fate of a slightly perturbed
orbit depends on the initial conditions, so that for the same perturbed sys-
tem there coexist, in general, orbits that stay forever in the neighborhood
of an unperturbed one, and other orbits that depart indefinitely.
What is the distinguishing feature thatmakes an orbit ordered or chaotic?

The answer is given by the celebrated Kolmogorov–Arnold–Moser (KAM) the-
orem stated first in Kolmogorov (1954). Its proof is rather complicated and
also the statement itself cannot be given without anticipating some con-
cepts of symplectic geometry and analytical mechanics.

1.1 Configuration Space and Lagrangian

Dynamics

Consider a mechanical system with n degrees of freedom, let q1, q2, . . . , qn

be the configuration coordinates, and denote with a dot their time deriva-
tive. The n Lagrange equations

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= 0, q = (q1, q2, . . . , qn)

are derived from the variational principle

δ

∫ t2
t1
L(q, q̇)dt = 0,

where the variations keep fixed the initial and final points. For natural
systems, the Lagrangian L is usually given by the difference between the
kinetic and potential energy.
The Lagrange equations admit a geometrical interpretation, which is the

reason for their practical usefulness. In fact, in the particular case of a point
constrained on a smooth surface, they are the projection of the fundamental
law of dynamics onto the tangent plane, thus avoiding the introduction of
reaction forces. For a mechanical system the surface is replaced by its natu-
ral generalization, an n-dimensional manifold Q, namely the configuration

space. The kinetic energy is positive definite, homogeneous, and bilinear
in the components q̇k of the generalized velocity, thus defining a double
symmetric tensor that equips Q with a metric (or Riemannian) structure
and establishing an isomorphism between the tangent space and its dual,
the cotangent space. This is referred to as the ability to raise or lower the
indices. The manifoldQ is flat or Euclidean if and only if a certain differen-
tial condition is satisfied (i.e., when the Riemann tensor, constructed with
the first and second derivatives of the metric tensor, vanishes identically).



1.2 Symplectic Manifolds 3

In this case it is possible to choose Cartesian coordinates, reducing the rep-
resentation of the metric tensor to the identity matrix. However, in general
Q is not flat.
In this context, the Lagrange equations represent a real cornerstone, like

all the great intellectual achievements. They bring the Newtonian perspec-
tive to a natural conclusion and, having forces and accelerations as basic
ingredients, convey the information in n equations of second order. At the
same time, they are the starting point of a far-reaching path: the apparently
unpretentious wish to express them as a set of 2n equations of the first or-
der, also reveals that the tangent bundle TQ (i.e., the union of Q and its
tangent spaces) has a sort of metric, namely the symplectic structure. The
next section is a brief digression to state some definitions.

1.2 Symplectic Manifolds

A 2n-dimensional manifold is said to be symplectic if it is equipped with a
field of closed and regular 2-forms (i.e., double antisymmetric tensors). As
in the Riemannian case, with the 2-form one can evaluate in any point the
“scalar product” of two tangent vectors; moreover, the regularity property
yields the isomorphism between the tangent and cotangent space and in
turn the ability to raise or lower indices. The closure property is, in some
sense, similar to the vanishing of the Riemann tensor: the Darboux theorem
states that in an open neighborhood of a symplectic manifold the 2-form Ω
takes a canonical expression in a suitable canonical coordinate system, its
representation matrix being

Ω =
(
0n −1n
1n 0n

)
.

The canonical coordinates are therefore similar to the Cartesian coordinates
of a Euclidean space. Usually, the first n canonical coordinates are named
qk, the remaining pk, so that the canonical 2-form takes the expression
Ω = ∑n

k=1 dpk ∧ dqk; the wedge symbol ∧ means exterior product, i.e., the
antisymmetric part of the tensor product. Due to the closure property, a
potential 1-form Θ = ∑n

k=1 pkdqk does exist at least locally and Ω = dΘ is
its exterior derivative.
The analogy between Cartesian and canonical coordinates can be taken

further. The rigid transformations of a Euclidean space are rotations and
translations and have the property to leave themetric invariant. Their coun-
terparts, which leave the symplectic structure invariant, are the symplectic

transformations that, in the canonical case, send the old q,p into the new
Q(q,p), P(q,p) through the relations

pk = ∂W(q,Q)

∂qk
, Pk = −∂W(q,Q)

∂Qk
,
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where W(q,Q) is a generating function satisfying the two relations

n∑
k=1

pkdq
k − PkdQk = dW(q,Q), det

(
∂2W

∂qh∂Qk

)
≠ 0.

Indeed, by exterior differentiating the first relation, one may check that the
old canonical 2-form is still transformed into a canonical one, since dd ≡ 0;
the latter relation simply ensures that the transformation is invertible.
A continuous one-parameter group of symplectic transformations can be

generated as follows. Define theHamiltonian vector fields as those obtained,
first by differentiating a scalar function f(q,p), called theHamiltonian, and
then by raising the indices with the symplectic structure; sometimes they
are called the symplectic gradient of the Hamiltonian f(q,p). In the class
of generic vector fields defined on a symplectic manifold, the Hamiltonian
ones occupy a privileged position, since a vector field generates a symplec-
tic flow (i.e., leaving the symplectic structure invariant) if and only if it is
Hamiltonian.
Lastly, let us define the Poisson bracket {f ,g} between two functions on

a symplectic manifold as the scalar product of their gradients. Equivalently,
it can be seen as the Lie (or directional) derivative of one of the two functions
with respect to the vector field generated by the symplectic gradient of the
other. In the canonical case we recover the well-known definition:

{f ,g} =
n∑
k=1

∂f

∂qk
∂g

∂pk
− ∂g

∂qk
∂f

∂pk
.

It is easy to see that the flows generated by the symplectic gradients of the
two functions commute if and only if {f ,g} = 0.

1.3 Phase Space and Hamiltonian Dynamics

In order to pass from the n equations of second order of the Lagrangian
dynamics to 2n equivalent equations of first order, the most natural choice
is to promote the components of the generalized velocity to independent
variables by setting q̇k = vk. Now we make a discovery. On TQ define the
1-form ΘL =

∑n
k=1

∂L
∂vk
dqk (this means that the coefficients of the dvk terms

are all null), so that the 2-formΩL = dΘL is closed and, due to the regularity
of the Riemannian structure, also regular: therefore the tangent bundle TQ
becomes a symplectic manifold. Moreover, define the Hamiltonian function
H(q,v) = ∑n

k=1
∂L
∂vk
vk − L(q,v). It is a simple matter of calculations to

show that the symplectic flow generated by the symplectic gradient of the
Hamiltonian H(q,v) is equivalent to the Lagrange equations.
The definition of ΘL and ΩL shows that the symplectic structure of TQ

is not in canonical form. In general, finding the canonical coordinates is not
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an easy task, but, fortunately, in the present case it is readily seen that the
Legendre transformation

(q, v)→ (q,p) where pk(q,v) = ∂L(q,v)

∂vk

achieves our aim, sending ΘL into the canonical Θ =
∑n
k=1 pkdqk. In other

words, by the Legendre transformationwe pass from the tangent bundle TQ
to the cotangent bundle T∗Q (the union of Q and all the dual spaces of the
tangent spaces); this, in order to use the natural, or canonical, coordinates of
the symplectic structure. Thepk terms are named (canonical) momenta, and
the regularity of the Riemannian metric ensures that the relation pk(q,v)
can be inverted, thus giving the velocities as functions of coordinates and
momenta. T∗Q is usually referred as the phase space of the system.
With a little abuse of notation, we write H(q,p) = H(q,v(q,p)). Recall-

ing that the Lagrange equations are expressed in terms of the symplectic
flow generated by the symplectic gradient of the Hamiltonian, and that now
the symplectic structure is the canonical one, we have that the celebrated
Hamilton equations

q̇k = ∂H(q,p)

∂pk
, ṗk = −∂H(q,p)

∂qk

are equivalent to the Lagrange equations. Hereafter we will work in canon-
ical coordinates.

1.4 The Liouville and Arnold Theorems

Given a Hamiltonian, finding explicit solutions of the related, usually non-
linear, equations is in general a hopeless task. The very few cases in which
this is possible share the property that the problem can be reduced to the
quadrature, i.e., to invert functions and perform integrations. This is the
case of complete integrability.

Theorem 1.1 (Liouville) A sufficient condition for the complete integrability

of an n-dimensional Hamiltonian system is that there exist n first integrals

Φk(q,p) that are independent and in involution, that is {Φi,H} = 0 and

{Φi,Φk) = 0, ∀i, k.

For the proof, one basically seeks a canonical transformation sending the
first integrals into the new momenta, so that the equations of the trans-
formed Hamiltonian, which will depend only on the momenta, are trivially
integrable. Clearly, the transformation exists if and only if the first inte-
grals are in involution, since this holds true for any n-tuple of canonical
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momenta. For every n-tuple α1, . . . , αn of constants, the generating func-
tion appears as the potential of a vector field inQ that comes from inverting
the relations Φk(q,p) = αk with respect to the momenta. This vector field
is therefore known and finding its potential leads to performing n integra-
tions.
Varying the constants, the n relations Φk(q,p) = αk determine a folia-

tion of the 2n-dimensional phase space T∗Q in n-dimensional level hyper-
surfaces. What is the topology of these hypersurfaces? At first glance one
can say nothing on this topology, which depends on the analytical expres-
sion of the first integrals. But here the involutivity condition, which in turn
is a direct consequence of the canonical structure, plays a key role.

Theorem 1.2 (Arnold) Given a completely integrable n-dimensional Hamil-

tonian system, the compact and connected components of the level surfaces

of the first integrals are diffeomorphic to an n-dimensional torus. More-

over, there exist (locally) canonical coordinates called action-angle coordi-

nates, such that the action variables parametrize the set of the tori whereas

the angles parametrize the points on a torus. The Hamiltonian, expressed

as a function of these coordinates, depends only on the actions, so that the

dynamical evolution is a uniform rotation on an invariant torus.

The key point in the proof consists of viewing the functions Φk(q,p) as
Hamiltonians generating flows that, by involutivity, respect the foliation
and commute with one another. It is natural to think (though this is the cen-
tral point of the proof) that the sole n-dimensional compact hypersurface
carrying n independent and commuting flows is the product of n circles,
i.e., the torus Tn. To find the action-angle variables Ij,ϕk, j, k = 1, . . . , n,
let γi be the cycles on the torus generated by Ii and ϕi the corresponding
angles. In order that Ij,ϕk are canonical coordinates, we require that the
two 1-forms

∑n
k=1 pkdqk and

∑n
k=1 Ikdϕk differ by an exact 1-form, whose

integral along a cycle is consequently zero. Hence

n∑
k=1

∮
γi
Ikdϕ

k =
n∑
k=1

∮
γi
pkdq

k.

On the left-hand side dϕk = 0, ∀k ≠ i, and Ii is constant along the cycle
since, by definition, it is just the Hamiltonian generating γi. Therefore we
define

Ii = 1

2π

n∑
k=1

∮
γi
pk(q,α)dq

k.

The action variables are therefore invertible functions of the first integrals
Φ’s only, thus arranged in a system of n independent first integrals in invo-
lution. We have therefore found a canonical transformation that sends the
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old Hamiltonian H(p,q) into a new Hamiltonian K(I), which now depends
only on the actions. The Hamilton equations are

İk = −∂K(I)
∂ϕk

= 0, ϕ̇k = ∂K(I)

∂Ik
,

i.e., the actions are first integrals (as already known) and the angles evolve
linearly in time.
Notice that all the completely integrable systems with the same dimen-

sions are locally isomorphic, being described by a foliation in tori, but differ
for the singularity distribution. As an elementary example, let us consider a
pendulum: the phase space is a cylinder and exhibits two equilibrium posi-
tions, the first is stable, the second unstable; this latter is a homoclinic point
and is joined to itself by two separatrices, which are dynamically covered in
infinite time (see Figure 3.3 on page 117). Cutting out these singularities, we
are left with three disconnected components, each of them diffeomorphic
to the product of a circle with an open interval of the real line: the inside of
the two separatrices is the oscillatory or libration1 zone, whereas the other
two are the circulation zones. Comparing the harmonic oscillator with the
pendulum, one sees that now the phase space is the plane minus the origin,
and the system is isomorphic only to the libration zone of the pendulum.

1.5 Quasi-Integrable Hamiltonian Systems and

KAM Theorem

Let us consider a completely integrable system to which we add a “small”
nonintegrable perturbation or, in brief, a quasi-integrable system. The Ha-
miltonian will be of the type

H(I,ϕ) = H0(I)+ εHp(I,ϕ), ε << 1. (1.5.1)

As said previously, the central question is: Does this very small perturbation
destroy the foliation in tori completely? Before proceeding, we consider a
numerical experiment encompassing the essence of the problem, as will be
clear later in the course of the book. Let us consider the standard map,
introduced by Chirikov (1979) and regarding a symplectic transformation
S : x → x′ of the plane into itself:

x′1 = x1 + ε sinx2, x′2 = x2 + x′1.

For ε = 0 the evolution of the two variables is very simple: x1, which is
of the action type, stays unchanged while x2, an angular variable, grows

1From the Latin libra, i.e., balance.
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Figure 1.1: Rise of chaos in the standard map.

linearly: see Figure 1.1. Turning on the perturbation with ε = 0.22, the
topology of the foliatiation changes abruptly, strongly resembling that of
the pendulum, and what are called the resonant tori appear. Increasing the
perturbation to ε = 0.80, some tori of the circulation zone are destroyed
and replaced by a chain of adjacent resonant tori, even though the overall
regularity of the motion seems preserved. However, increasing further to
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ε = 0.873, 1.1, and 1.5 one sees that the foliation is progressively replaced
by more and more wide zones of chaotic evolution, with the survival of
some small islands of order. Notice, moreover, that also some tori of the
libration zone break down and are replaced by a chain of resonant tori of
second level, which in turn generate their own chaos.
Going back to the generic perturbed Hamiltonian (1.5.1), we see that

the problem is no longer solvable through quadratures. Then, we proceed
looking for a canonical transformation I,ϕ → I′,ϕ′, that differs from the
identity by a quantity of order ε, such that the transformed Hamiltonian is
integrable up to the second order terms. One may iterate this procedure,
pushing the perturbation to the third order, and so on. If the process con-
verges (but this is the key point), by increasing the order one obtains better
and better approximations.
Let the canonical transformation ϕ, I 	→ ϕ′, I′ be generated by W =

ϕ · I′ + εS(ϕ, I′), that is

I = I′ + ε ∂S
∂ϕ

, ϕ′ =ϕ + ε ∂S
∂I′
,

where S is, for the moment, unknown. Define the averaged perturbation
Hamiltonian

Hp(I) = 1

(2π)n

∫ 2π
0
· · ·

∫ 2π
0
Hp(ϕ, I)dϕ

1 . . . dϕn

and the frequency vector

ω =ω(I′) =
(
∂H0
∂I

)
I=I′

.

As one easily verifies, if we are able to find a function S that solves the
homological equation

ω · ∂S
∂ϕ

+Hp(ϕ, I′)−Hp(I′) = 0,

we succeed in pushing the perturbation to the second order. Iterating this
procedure, we hope to end upwith a canonical transformation Can∞ : I,ϕ →
I∞,ϕ∞ and a completely integrable Hamiltonian H∞0 (I

∞). Therefore (but,
we stress again, provided the procedure converges) the phase space of the
perturbed Hamiltonian system would be foliated by n-dimensional hyper-
surfaces diffeomorphic to tori. The perturbation would simply cause a de-
formation of the original tori, i.e., those related to the unperturbed Hamil-
tonian, without destroying the well-ordered pattern.
The critical points in pursuing the outlined program are the following

two: the solution of the homological equation and the convergence of the
sequence of canonical transformations leading to Can∞ : I,ϕ 	→ I∞,ϕ∞.
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Let us consider the first point. In order to solve the homological equa-
tion, we resort to Fourier series

Hp(ϕ, I
′)−Hp(I′) =

∑
k≠0

Hk(I
′)eik·ϕ, S(ϕ, I′) =

∑
k≠0

Sk(I
′)eik·ϕ,

where k = k1, . . . , kn is a vector with integer components. We drop the
term k = 0, . . . ,0 since the mean value of S would be annihilated by the
differentiation operator; this also imposes that the remaining part in the
homological equation have null average. The formal solution of the homo-
logical equation is

Sk(I
′) = iHk(I′)

ω · k ,

which, however, shows that we are facing a serious convergence problem:
clearly, there exist frequency vectors such that ω · k = 0 for some k, and
this makes the formal solution meaningless. Such a frequency vector is
called resonant, and it is characterized by the reciprocal rationality of its
components. We must thus exclude such resonant terms and, moreover,
those terms for which ω · k is much smaller than the corresponding Hk in
the numerator. This is the celebrated problem of the “small divisors” or
“small denominators.”
The situation may appear hopeless, but, fortunately, a classical result

in Diophantine theory guarantees that ω · k can be bounded from below,
without yielding an empty set. More precisely, the inequality

|ω · k| ≥ γ

|k|n ∀k ∈ Z
n − {0}, |k| def=

∑
j

∣∣∣kj∣∣∣ ,
for some positive γ is satisfied by a set of real vectors ω of large relative
measure, the complement of this set having Lebesgue measure O(γ). This
inequality is referred to as the Diophantine condition. This is a key point.
In fact, if Hp is analytic, it is easy to prove that its Fourier coefficients Hk
decay exponentially with |k| , while 1

|ω·k| grows at most as a power, thanks
to the Diophantine condition. This enables us to prove the convergence of
the formal expansion.
The first point is thus overcome but at a price: the frequency vectors

that do not satisfy the Diophantine condition, hence the corresponding tori,
must be excluded, and the foliation of the phase space by invariant tori
is lost: conserved and destroyed tori are mixed together, the first ones
forming a complicated Cantor set.
The second point is technically more difficult. Basically, one fixes a torus

to which there corresponds a frequency vector satisfying the Diophantine
condition, then proves that, if the perturbation parameter is sufficiently
small, the procedure converges to Can∞. The proof, however, requires a
further condition: in order to keep the frequency vector fixed when higher
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order terms of the perturbation come into play (a necessary condition, since
in its, no matter how small, neighborhood there are other vectors not satis-
fying the Diophantine condition), one must slightly change the torus; hence,
it is necessary that the frequency map I →ω(I) be at least locally invertible,

thus det
(
∂ωi

∂Ik

)
= det

(
∂2H0
∂Ii∂Ik

)
≠ 0.

The above discussion is summarized by the famous KAM theorem.

Theorem 1.3 (KAM) Given the perturbed Hamiltonian

H(ϕ, I) = H0(I)+ εHp(ϕ, I),

with det
(
∂2H0
∂Ih∂Ij

)
≠ 0, for every set I∗ of the actions such that the unperturbed

frequenciesω(I∗) = ∂H0
∂I (I

∗) satisfy the Diophantine condition, the tori I∗ =
constant survive, though slightly deformed, with respect to sufficiently small

perturbations.

Notice that the destroyed tori are not completely replaced by chaotic orbits.
Indeed, inside a resonance we can find an adapted Hamiltonian (called nor-

mal resonant ), which turns out to be the one corresponding to a slightly
perturbed pendulum. Again, from the KAM theorem one expects the ex-
istence of regular resonant tori, which are obtained by deforming those of
the unperturbed, thus integrable, pendulum; these, in turn, can develop sec-
ondary resonances with their related normal resonant Hamiltonians, then
the pattern repeats itself endlessly. The chaos is restricted to the orbits
starting in the thin stochastic layer surrounding the separatrices of the pen-
dulum created by the resonances. These orbits “hesitate” among libration
and clockwise or counterclockwise circulation, giving rise to chaotic dynam-
ics through the mechanism of the homoclinic tangle.

1.6 Geography of the Phase Space

At this point, we are able to sketch the overall structure of the phase space
of a quasi-integrable system, taking into account that the KAM theorem
changes our point of view: from now on, our attention will be focused not
on the single orbits but on the tori, since all the orbits on the same torus
share the same destiny. Among other things, this drastically simplifies the
work, reducing from 2n to n the number of the classifying parameters, for
which we may use indifferently the actions or the relative frequency vector.
When the perturbative parameter grows, the nature of the phase space

changes, covering, in ascending order, three different situations.

(i) KAM : essentially all points are regular, almost all unperturbed tori are
conserved, and the dynamics is basically controlled by the KAM the-
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orem. The system is in practice indistinguishable from a completely
integrable one.

(ii) Nekhoroshev : the measure of the destroyed tori is small but not negli-
gible. They form an Arnold web, which in the frequency space is given
by frequencies satisfying the resonance relationsω·k = 0, along with
a neighborhood decreasing exponentially with the order

∑n
j=1

∣∣∣kj∣∣∣ of
the resonance itself. The Arnold web is therefore the union of the
neighborhoods of all the hyperplanes of codimension one through the
origin and with rational slope. Assume for simplicity n = 3. In Figure
3.2 on page 116 a section with the plane ω3 = 1 in the 3-dimensional
frequency space is shown, thus with equation k1ω1 + k2ω2 + k3 = 0 :
the “skeleton” is formed by the lines whose slope and intersection with
the axes take rational values, “fleshed out” by the resonance strips.
The Arnold web is connected, open, and dense in the action space with,
however, a relative small measure vanishing with the square root of
the perturbative parameter. On a 2-dimensional energy surface of the
action space an image of figure 3.2 appears, distorted under the diffeo-
morphism given by the local inverse of the frequency map I → ω(I).
The dynamics is still controlled almost everywhere by the KAM theo-
rem except for the Arnold web, where it is controlled by the Nekhoro-
shev theorem. A point of a stochastic layer orbit (i.e., exactly on the
border of a resonance) can in principle travel along the whole Arnold
web, reaching the neighborhood of every point in action space but in
a very long time, which grows exponentially with the inverse of the
perturbative parameter. This phenomenon, whose existence is not in
general proven, is known as Arnold diffusion.

(iii) Chirikov : the global measure of the resonances does not leave any
place for invariant tori, and the dynamics is no longer controlled by
the KAM and Nekhoroshev theorems but by the Chirikov overlapping
criterion. When the resonances overlap, the motion can jump from
one resonance to another, giving rise to large-scale diffusion with a
time scale much shorter with respect to the Arnold diffusion. The
system is fully chaotic.

1.7 Numerical Tools

To better understand the KAM theorem, it is useful to proceed with some
numerical examples regarding case (ii), which is surely the most interesting.
Several tools can be used.
The Poincaré section is a long-standing method, very effective for sys-

tems with two degrees of freedom, thus with a 4-dimensional phase space
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and a 3-dimensional hypersurface of constant energy. Sectioning with a
plane and recording the points where it is crossed by an orbit, one can
visualize the trace of the torus, if any, around which the orbit winds; a non-
structured dust will denote instead a chaotic orbit. Two examples are given
in figure 3.5 on page 121 and in Figure 5.1 on page 149.
As already pointed out, the usefulness of the method is clearly restricted

to systems with just two degrees of freedom; moreover, if the perturbation
is very small, the resonances are extremely thin and may escape from the
visualization. In fact, the method is not in the spirit of the KAM theorem,
since it focuses attention on the orbits, instead of on the tori. In contrast,
the following methods are based on frequency analysis, and as such are
tori-oriented.
The Fast Fourier Transform (FFT) is the implementation of the elemen-

tary Fourier transform and is applicable to the output of a numerical in-
tegration. If all the computed frequencies are a linear combination with
integer coefficients of some n fundamental ones, the spectrum is regular
and the motion winds around a KAM torus.
The Frequency Modified Fourier Transform (FMFT) allows one to find the

spectrum of a “signal” Z(t), but seeking numerically the maximum of the
function

φ(ω) = 1

2π

∫ T
−T
Z(t)e−iωtdt.

The output is decisively more accurate, but nothing is perfect, and trying
to resolve two very close frequencies yields a slightly imprecise result.
The Frequency Modulation Indicator (FMI) exploits just this imprecision

to detect the resonances. It associates to each n-tuple of action values,
hence to each torus, a number that measures how much the fundamental
frequencies are frequency modulated. Indeed, for a KAM torus the n fun-
damental frequencies (i.e., those coming from the first component in the
Fourier analysis) are time-constant; on the contrary, inside a resonance the
superimposed pendulum causes a frequency modulation. Without going
into detail on how this frequency modulation is numerically detected, we
can reach the conclusion that a picture plotting the FMI values as a function
of the actions will be able to represent the distribution of the resonances.
In Figure 8.11 on page 249 an example is given for a system with three

degrees of freedom. The Arnold web in the action space shows up clearly,
and distortions of the pattern in Figure 3.2 appear. The dark blue indicates
negligible values of the FMI corresponding to KAM tori, whereas light blue,
yellow, and red indicate intermediate and high values, i.e., resonances and
chaos. Zooming into a resonance shows that the structure repeats over
and over. The outcome of these numerical experiments is the concrete
possibility of detecting more and more resonances, as long as we can afford
to pay the price of computational complexity and time costs.
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With regard to the Arnold diffusion, its existence has been proven to be
possible, while its practical relevance is an open question; in particular it
is unknown if the phenomenon is generic for every quasi-integrable Hamil-
tonian system. With the same software used for the computation of the
FMI, one can numerically measure the possible drift of the values of the
fundamental frequencies in a long-time orbit, thus recognizing a transition
through different tori. Some preliminary results (very expensive in CPU
time terms) seem to suggest that actually the phenomenon is generic: as
expected, the points starting on the edge of a resonance, thus in the thin
stochastic layer surrounding the separatrices, travel but very slowly along
the resonance strips.
Equipped with such analytical and numerical tools, we can tackle some

concrete examples regarding the perturbed Kepler (i.e., two-body) problem
and the multi-body gravitational problem.

1.8 The Perturbed Kepler Problem

The starting point is the isomorphism between the regularized Kepler prob-
lem and the geodesic flow on the sphere. To get a geometrical insight, con-
sider for simplicity the 2-dimensional Kepler problem and a geodesic circle
on a 2-dimensional sphere which can be safely rotated into the position

X1 = sin s, X2 = − cosβ cos s, X3 = sinβ cos s.
The vector (X1, X2, X3) is orthogonal to the vector (0, sinβ, cosβ); β mea-
sures the angle between the equator X3 = 0 and the circle in question,
whereas s is the angle along the circle itself. The definition Yk = dXk

ds yields

Y1 = cos s, Y2 = cosβ sin s, Y3 = − sinβ sin s.
Since the explicit form of the extended stereographic mapping (see figure
2.1 on page 19) is

xk = Xk
1−Xn+1

, yk = Yk (1−Xn+1)+XkYn+1,

the image of the circle and its tangent vector under the extended stereo-
graphic projection is

x1 = sin s

1− sinβ cos s , x2 = − cosβ cos s

1− sinβ cos s ,

y1 = cos s − sinβ, y2 = cosβ sin s.
With qk = yk and E = sinβ, this takes the form

q1 = cos s − E, q2 =
√
1− E2 sin s,
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which is the representation of an ellipse of eccentricity E = sinβ in terms
of the eccentric anomaly s. Moreover, with pk = −xk we get

p21 +
(
p2 − tanβ

)2 = 1+ tan2 β,
which is the representation of a circle in the Cartesian plane p1p2, which
is the hodograph curve. Therefore, the trajectory of the moving point of
the Kepler problem is the direct projection, followed by a translation, of a
geodesic circle onto the equatorial plane, while the trajectory of the velocity
is the stereographic projection.
Generalizing to the 3-dimensional case, some facts appear relevant. First,

the group SO(4), which acts isometrically on the 3-dimansional sphere, is
the symmetry group of the Kepler problem; then, the SO(2) group generates
themotion on the geodesic circle; lastly, the dynamical evolution of position
and velocity can be parametrized with two orthogonal vectors spanning the
circle itself. Roughly speaking, the two groups and the couple of vectors fit
together to form the dynamical group SO(2,4).
Taking the two orthogonal vectors as dynamical variables also turns out

to be suited for studying the perturbed case, for example the hydrogen atom
in electric and magnetic fields. The cotangent bundle to the 3-dimensional
sphere, i.e., the phase space of the regularized Kepler problem, is twofold
reduced. Thus we arrive to a 2-dimensional spheroid, on which the intersec-
tions of the level surfaces of the perturbation Hamiltonian describe globally
the essence of the dynamics, obviously up to fast oscillations. See, e.g., Fig-
ures 8.1–8.4 on pages 240 and 241.

1.9 The Multi-Body Gravitational Problem

Deducing the motion of bodies interacting gravitationally is probably the
most important mechanical problem but also themost difficult. Already the
three-body problem is not integrable, even if the masses are very small but
of comparable size, and this fact generally prevents the use of perturbative
methods.
Some important exceptions are: the planar three-body problem, which

admits a global treatment in its two limit, i.e., lunar and planetary cases;
then the classical 3-dimensional planetary problem. By the planetary prob-

lem one means the mechanical system consisting of a body of large mass,
the “Sun,” and other bodiesmuch smaller, the “planets,” interacting through
gravitational forces. By the lunar problem one means the system consisting
of a small body, the “Moon,” rotating around the “Earth,” with a third body,
the “Sun,” much more distant.
Let us consider the planar case. The planar system is first reduced to

four degrees of freedom thanks to its translational invariance; then, aver-
aging along the unperturbed motion, it is further reduced to two degrees of



16 Introductory Survey

freedom. The averaged Hamiltonian inherits, from the original one, the ro-
tational plane invariance, and this symmetry results in a further reduction
to a system with one degree of freedom, hence integrable.
In the 3-dimensional case, let us consider the three-body planetary prob-

lem, the extension to the generic case being straightforward. The system is
easily reduced to two uncoupled Kepler problems plus a perturbative term
proportional to the inverse of the distance
 between the two planets. The
secular Hamiltonian is obtained by averaging 
−1 along the unperturbed
motion, i.e., along the Keplerian ellipses. Unfortunately, this is a nontrivial
task, which cannot be carried out in a closed form and requires two prelim-
inary steps. With the first step the expression of the two position vectors is
put in a suitable form, i.e., as a function of an evolutional parameter, closely
related to the time, and of five constant parameters characterizing the el-
lipse. The second step consists in a series expansion of 
−1 with respect
to eccentricity and inclination.
To accomplish the first step, one could use the Keplerian elements of

the orbit, but they suffer from the drawback of being singular for orbits
that are circular and/or lying on the reference (ecliptic) plane. In contrast,
the Poincaré variables are regular for orbits with small eccentricities and
inclinations, and are thus well suited for studying the planetary problem.
The Keplerian elements of the orbit have a clear geometrical interpreta-

tion: semimajor axis and numerical eccentricity fix size and shape of the
ellipse, while inclination, longitude of the ascending node, and argument of
the pericenter are the three Euler angles fixing the spatial orientation of the
ellipse. In contrast, the Poincaré variables are usually defined in a purely
algebraic manner and lack a geometrical interpretation. This makes finding
the expansion of the two position vectors somewhat involved and awkward,
which surely does not simplify the subsequent series development and av-
eraging process. It can be shown that exploiting the geometry of the SO(3)
group allows one to write the expression of the Keplerian motion in a very
suitable form. Then the development is performed in such a way that it is
immediate, by direct inspection, to detect the terms that vanish under the
averaging process. This produces a drastic simplification and allows us to
smartly group the surviving terms in a reasonable and adequatemanner, the
final result being an even, real-valued polynomial in the Poincaré canonical
variables. Taking into account only the first quadratic terms, one gets the
classical Lagrange–Laplace planetary theory, whose dynamics is compared
with the true one: see Figures 9.10 on page 298, 9.11 on page 299, 9.13 on
page 301, and 9.14 on page 302.
Lastly, two numerical examples of the distribution of the resonances in

our solar system are computed with the FMI method: see Figure 9.15 on
page 303.



CHAPTER 2

Analytical Mechanics and Integrable

Systems

We are in the rarefied atmosphere of theories
of excessive beauty and we are nearing a high plateau

on which geometry, optics, mechanics, and wave
mechanics meet on common ground.

— C. Lanczos

Analytical mechanics is the basic tool we will utilize through the whole
book. The aim of this chapter is to succinctly introduce and define some ba-
sic concepts, such as Hamilton equations, symplectic (i.e., canonical) trans-
formations, symmetry and reduction, integrable systems, and action-angle
variables. This will be done in the third section of the chapter. In the
first two sections we recall the main ideas of differential geometry and Lie
groups, which are the natural language of analytical mechanics.

2.1 Differential Geometry

The natural arena of Lagrangian dynamics is a Riemannian manifold, while
that of Hamiltonian dynamics is a symplectic or Poisson manifold. In or-
der to deal with these structures, we must state some definitions in ad-
vance: differentiable manifolds, the tangent and cotangent spaces, pull-
back and push-forward, tensors, and forms. For amore serious study, many
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books have been written, for example Kobayashi & Nomizu (1963–1968),
Auslander & MacKenzie (1977), Helgason (1978), Choquet-Bruhat (1968),
Von Westenholz (1978), Sternberg (1983), Dubrovin, Novikov & Fomenko
(1982–1987), and the very readable Crampin & Pirani (1986) or Nash & Sen
(1983). For topology, see Croom (1989).

2.1.1 Differentiable Manifolds

The concept of differentiable manifold generalizes the intuitive idea of sur-
face, getting rid of the restriction to two dimensions and of the immersion
in some ambient space. The central idea is that every surface can be con-
structed by assembling together some patches that are homeomorphic (i.e
topologically equivalent) to open connected sets of Rn.

Definition 2.1 A topological spaceM is a differentiable manifold of dimen-

sion n if

(i) M is provided with a family of pairs {(Uα,φα)}, where the Uα are a

family of open connected sets that cover M, while the φα are homeo-

morphisms from Uα to an open set of Rn;

(ii) given Uα and Uβ such that Uα∩Uβ ≠ empty set, the mapφβ◦φ−1α from

the subset φα(Uα ∩ Uβ) ⊂ Rn to the subset φβ(Uα ∩ Uβ) ⊂ Rn is C∞,
thus infinitely differentiable (or smooth).

Item (i) asserts that M is a space that is locally like Rn; that is, M can be
covered with patches Uα, which assign coordinates in Rn by theφα. Within
one of these patches M looks like a subset of Rn, but in general we do not
expect M to be globally homeomorphic to Rn, since this depends on how
the patches fit together to form the whole M. Item (ii) asserts that, if two
patches overlap, then in the overlap region Uα ∩ Uβ we have two sets of
coordinates in Rn, given by φα and φβ, and that if we decide to change
from one set of coordinates to the other, i.e., to use the function φβ ◦φ−1α ,
this can be done in a smooth manner.

Example 2.1 Let us consider the sphere Sn = {X ∈ Rn+1 : X21 +X22 + · · · +
X2n+1 = 1}, which is in a natural way a space whose topology is induced
from the usual topology of Rn+1. The sphere can be covered with the two
charts obtained by stereographic projection, one from the North pole N ≡
(0,0, . . . ,1) and the other from the South pole S ≡ (0,0, . . . ,−1); see figure
2.1. The same point of the sphere is labeled by the two different coordinate
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sets {xNk } and {xSk}, k = 1, . . . , n, that is,

φN : UN = Sn − {N} → R
n, in coordinates xNk =

Xk
1−Xn+1

,

φS : US = Sn − {S} → R
n, in coordinates xSk =

Xk
1+Xn+1

.

In the overlap region UN ∩US = Sn − {N} − {S} the transition functions

φS ◦ (φN)−1, in coordinates xSk =
xNk

(xN1 )
2 + · · · + (xNn)2

,

φN ◦ (φS)−1, in coordinates xNk =
xSk

(xS1)
2 + · · · + (xSn)2

,

are clearly C∞.
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Figure 2.1: Stereographic projection.

Example 2.2 Let us consider the 2-dimensional1 real projective space

P2R = (R3 − {0})/ ∼,
−→
X ∼ −→

X ′ = λ −→X, −→X ∈ R
3 − {0}, λ ∈ R− {0}.

It is thus a space whose “points” are the straight lines through the origin
of R3. A model is the sphere S2 but with the diametrically opposed points

1We limit ourselves to two dimensions for simplicity, but the generalization to any dimen-
sion is straghtforward.
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identified; it is obvious that it cannot be immersed homeomorphically into
R3. We make P2R a topological space with the quotient topology. P

2
R may be

covered with three charts:

φx : Ux = P2R − {X1 = 0} → R
2, in coordinates x1 = X2

X1
, x2 = X3

X1
,

φy : Uy = P2R − {X2 = 0} → R
2, in coordinates y1 = X1

X2
, y2 = X3

X2
,

φz : Uz = P2R − {X3 = 0} → R
2, in coordinates z1 = X1

X3
, z2 = X2

X3
,

where X1, X2, X3 are Cartesian coordinates in R3. Consider for example the
overlap region Ux ∩Uy ; here the transition functions

φx ◦φ−1y , in coordinates x1 = 1

y1
, x2 = y2

y1
,

φy ◦φ−1x , in coordinates y1 = 1

x1
, y2 = x2

x1
,

are C∞, and analogously for the other two overlap regions Ux ∩ Uz and
Uy ∩Uz.
The pair (Uα,φα) for a fixed α is a chart . Two charts (Uα,φα) and (Uβ,φβ)
are compatible if φα ◦φ−1β : Rn → Rn and its inverse are smooth. A family
of compatible charts {(Uα,φα)} such that

⋃
α Uα ⊇ M is an atlas for the

differentiable manifold M.
Consider two differentiable manifolds M and N, respectively m and n-

dimensional and let f : M → N be a map. Choosing local charts, φ for M
and ψ for N say, the map f induces the map ψ ◦ f ◦φ−1 : Rm → Rn, called
the coordinate presentation of f . A coordinate presentation of a map f is
therefore a map of open subsets of real number spaces, given explicitly by
n functions of m variables. The map f : M → N is called smooth if its
coordinate presentation is given by smooth functions for all charts of an
atlas of both its domain and codomain. For the differentiability of M and
N, this smoothness definition does not clearly depend on the choice of the
particular local chart.
An important special case of a map of manifolds is a smooth bijective

map with a smooth inverse. Such a map is called a diffeomorphism, and
two manifolds connected by a diffeomorphism are said to be diffeomor-

phic. From the point of view of differential geometry, two diffeomorphic
manifolds are the “same” manifold.

Tangent and Cotangent Spaces

A particular but very important case of a map between manifolds is that
defining a curve. A curve in an n-dimensional manifold is a map σ : R → M,
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that is in local coordinates

φ ◦ σ : xk = xk(t), k = 1.2. . . . , n a < t < b, a, b ∈ R.

Given a smooth function f : M → R, we define the derivative vf of the
function along the curve σ :

vf = d

dt
(f ◦ σ) = ∂kf dx

k

dt
, ∂k = ∂

∂xk
.

We can view v as an operator that maps functions into functions; it has the
two properties (g is another function and λ,μ ∈ R)

(i) v(λf + νg) = λvf + μvg,
(ii) v(fg) = (vf)g + f(vg),

showing that v is a linear operator satisfying the Leibniz rule of the deriva-
tive of a product.
We define the tangent vector at a point p of a smooth manifold M as an

operator on smooth functions that satisfies properties (i) and (ii). Denote
the set of all tangent vectors to M at p by TpM. We make this set a vector
space defining the linear combination

(λv + μw)f = λvf + μwf , v,w ∈ TpM, λ, μ ∈ R.

The linear space TpM is called the tangent space toM at p. The definition of
tangent space generalizes the intuitive idea of a plane tangent to a surface,
but without resorting to the immersion of M into an ambient space.
A tangent vector v is written in coordinates as vk∂k and {∂k} is a basis

(more exactly, the natural basis) for the vector space TpM. vk are said to
be the contravariant components. This shows, as is intuitively clear, that
the dimension of the tangent space is equal to that of M. The adjective
“contravariant” reminds us that if TpM is submitted to a linear change of
basis and if we pretend (as is sensible) that the tangent vector, which is
intrinsically defined, does not change, the components vkmust change with
the inverse transformation of the basis.2

As known from linear algebra, the set of the linear maps from a vector
space V toR is again a vector space of the same dimension, which we denote
V∗ and call a dual space. In other words, if v ∈ V andω ∈ V∗ thenω(v) ∈
R. One often writes this pairing as 〈ω,v〉 instead ofω(v) to emphasize the
linearity. If {ek} is a basis of V, the dual basis {eh} of V∗ is by definition
that satisfying 〈eh, ek〉 = δhk.Moreover, as is easily shown, the dual of a dual
space V∗∗ is canonically, i.e., independently of the basis, isomorphic to V.
2As says one of the chief characters of the Italian novel Il Gattopardo by Tomasi di Lampe-

dusa: “If we want things to stay as they are, things will have to change”.
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The dual space T∗p M of the tangent space TpM is called the cotangent space

to M at p.
For fixed f and p, let us define a map df : TpM → R such that v 	→

(df)(v) = vf . We call df the differential of f , where it is understood that
every quantity is calculated at point p. It is immediate to verify that the
linearity of the operator v entails that of df :

df(λv + μw) = (λv + μw)f = λ(df)(v)+ μ(df)(w).

The linearity ensures that df ∈ T∗p M.
Take f = xk, k = 1,2, . . . , n, where, as usual, {xk} are local coordinates

on M, and let us examine the linear action of dxk on the basis vectors ∂h

dxk : ∂h 	→ (dxk)(∂h) = ∂xk

∂xh
= δkh,

which may be written as
〈dxk, ∂h〉 = δkh.

Thus, {dxk} is the dual basis of {∂h}.
An element ω ∈ T∗p M is called a covector and is written in coordinates

ω =ωk dxk. Theωk are called covariant components, because they change
like the natural basis.

Push-forward and Pull-back

Given two vector spaces V and W, not necessarily of the same dimension,
and a linear map T : V → W, one defines the dual map T∗ : W∗ → V∗ as
that satisfying〈

T∗ω,v
〉 = 〈ω,Tv〉 , ∀v ∈ V and ∀ω ∈ W∗.

Notice that the two pairings refer to two different couples of vector spaces,
i.e., to V∗, V and W∗,W , respectively.
A map φ : M → N, where M and N are two differentiable manifolds,

induces in a natural way a linear map Tφ : TpM → Tφ(p)N, which is defined
as that satisfying the intrinsic relation

(Tφv)f = v(f ◦φ), ∀v ∈ TpM and ∀f : N → R.

Let us find the expression of the linear map Tφ in local coordinates. Let
x = (x1, . . . , xm) be the coordinates on M and y = (y1, . . . , yn) those on
N; the map φ has coordinate presentation y = φ(x). From elementary
calculus,

v(f ◦φ) = vk ∂

∂xk
f(φ(x)) = vk ∂

∂yh
f(y)

∂φh

∂xk
= (Tφv)f , (2.1.1)
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from which

(Tφ)
h
k =

∂φh

∂xk
,

and thus the matrix representing Tφ with respect to the standard basis is
the Jacobian matrix of the map φ. We call Tφ the derivative map of φ.

p ∈ M

v

φ

Tφ

φ(p) ∈ N

�

�

�
�

φ∗v

TpM Tφ(p)N
�

�

�
�

p ∈ M
φ

φ(p) ∈ N

ω φ∗ω

T∗p M T∗φ(p)N
T∗φ−1

Push-forward of a vector Push-forward of a covector

p ∈ M

φ∗v

φ

Tφ−1

φ(p) ∈ N

�

�

�
�

v

TpM Tφ(p)N
�

�

�
�

p ∈ M
φ

φ(p) ∈ N

φ∗ω ω

T∗p M T∗φ(p)N
T∗φ

Pull-back of a vector Pull-back of a covector

Figure 2.2: Push-forward and pull-back of vectors and covectors.

We can now define the image φ∗v, or push-forward , of a vector v on
M under a diffeomorphism φ as the vector on N that makes the relative
diagram in Figure 2.2 commutative; then

φ∗v = Tφv ◦φ−1,
which requires the inversion of the map φ. This explains our request that
φ be a diffeomorphism.
Analogously, we define the inverse image, or pull-back, φ∗ω of a cov-

ector on N. We start with a covector on N, instead of on M, because T∗

reverses the direction of the map arrow with respect to T. We have

φ∗ω = T∗φω ◦φ.
Notice that the pull-back of a covector can also be defined ifφ is not invert-
ible. For example, ifω is a covector defined on N, it can be safely restricted
to a covector on a submanifold M ⊂ N.
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The definitions of the push-forward φ∗ω of a covector and of the pull-
back φ∗v of a vector are obvious;3 see Figure 2.2, where Tφ−1 =T−1φ . Also
in these two cases it is required that φ is invertible. If φ is not invertible,
we may say, however, that two vectors v and w are φ-related if

w ◦φ = Tφv, (2.1.2)

which, in some sense, replaces the definition of pull-back and push-forward
of a vector. The relation is natural with respect to the Lie bracket, i.e.,

[v1, v2]
def= v1v2 − v2v1, as elucidated in the following

Proposition 2.2 If v1, v2 areφ-related tow1,w2, respectively, then the Lie

bracket [v1, v2] is φ-related to [w1,w2].

A vector field on M is defined as the assignment to every point p ∈ M of
an element belonging to TpM. Analogously, the same is true for a covector

field, or 1-form. The definition of pull-back and push-forward is straight-
forwardly extended to fields.

2.1.2 Tensors and Forms

An element of a dual space is a linear map from a vector space to the real
numbers: the tensor definition is a natural generalization of this definition.
First of all notice that the dual of the dual of a vector space V is canonically
isomorphic to V itself; thus, we can define an element of V as a linear map
from V∗ to the real numbers. Despite the notation, there is therefore a
perfect symmetry between V and V∗.

Definition 2.3 A tensor of (r , s)-type, or an r -fold contravariant and s-
fold covariant tensor, is a multilinear (i.e., linear in every argument) map T
of the type

T :

r times︷ ︸︸ ︷
V∗ × · · · × V∗ ×

s times︷ ︸︸ ︷
V × · · · × V → R.

The set of all these maps is a vector space in a natural way, and is called
T r
s . In particular, T 10 = V and T 01 = V∗.

Definition 2.4 We define the tensor product of two tensors T1 ∈ T r
s and

T2 ∈ T p
q the tensor T1 ⊗ T2 ∈ T r+p

s+q such that

T1⊗T2(ω1, . . . ,ωr+p, v1, . . . , vs+q)
= T1(ω1, . . . ,ωr , v1, . . . , vs)T2(ωr+1, . . . ,ωr+p, vs+1, . . . , vs+q),

∀ωk ∈ V∗ and ∀vh ∈ V.
3Admittedly, the use of the asterisk in the various definitions is at this point somewhat

inflated, but unfortunately this is the custom.
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Tensor multiplication is associative and distributive with respect to addi-
tion, but not commutative.
It is easy to prove that, if {eh} is a basis of V and {ek} the dual basis of

V∗, then {
eh1 ⊗ · · · ⊗ ehr ⊗ ek1 ⊗ · · · ⊗ eks

}
is a basis of T r

s , which has thus dimension n
r+s , where dimV = n. For

linearity, we can write for the generic tensor T ∈ T r
s

T = Th1...hrk1...ks
eh1 ⊗ · · · ⊗ ehr ⊗ ek1 ⊗ · · · ⊗ eks

where
T
h1...hr
k1...ks

= T(eh1 , . . . , ehr , ek1 , . . . , eks )
are the components of T in the chosen basis.
Let us consider a linear and invertible change of basis in V, that is, eh 	→

e′k = Ahkeh. If we require that the transformed basis of V∗ be still the dual
basis, it induces the transformation eh 	→ e

′k = (A−1)khe
h. Therefore the

expression (which is at first sight terrifying)

e′i1 ⊗ · · · ⊗ e′ir ⊗ e′j1 ⊗ · · · ⊗ e′js

=Ah1i1 . . . A
hr
ir
(A−1)j1k1 . . . (A

−1)jsks eh1 ⊗ · · · ⊗ ehr ⊗ ek1 ⊗ · · · ⊗ eks

holds for the change of basis of T r
s , and

T
′i1...ir
j1...js

= (A−1)i1h1 . . . (A−1)
ir
hr
A
k1
j1
. . . A

ks
js
T
h1...hr
k1...ks

for the corresponding change of the components. The basic point to keep in
mind is that contravariant components (indices above) and covariant com-
ponents (indices below) change with inverse law, so that contracting (or
saturating, i.e., summing over) a pair of such indices leads to a quantity
invariant under change of basis.
Sometimes, with a slight abuse of language, one calls for brevity Ti1...irj1...js

“a tensor,” instead of “the components of a tensor.”
A tensor field is the assignment to every point p ∈ M of a tensor whose

underlying vector space is TpM ; thus eh = ∂h and ek = dxk. The definition
of push-forward and pull-back is naturally extended to the tensor fields,
with Ahk = (Tφ)hk .

Forms and Exterior Derivative

Let us define the symmetry properties of a tensor. We say that a tensor is
symmetric or skew symmetric in a pair of indices (of the same type) if

T···ir ···is··· = T···is···ir ··· symmetric,

T···ir ···is··· = −T···is···ir ··· skew symmetric,
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and completely symmetric or skew symmetric if the property holds for every
pair of indices. Analogously, we have the same for contravariant indices.
Given a generic tensor, we can extract from it the symmetric or skew

symmetric part. Let Pr be the group of permutations of the r integers
1, . . . , r and let π ∈ Pr . Define

(πT)i1...ir = Tπ(i1)...π(ir ).

A symmetrization operator Sym and a skew symmetrization operator Sk
can be defined as

Sym(T) = 1
r !

∑
Pr

πT , Sk(T) = 1
r !

∑
Pr

signππT,

where signπ = ±1 according to whether the permutation π is even or odd.
Sym(T) is a completely symmetric and Sk(T) a completely skew symmetric
tensor, and analogously for contravariant indices.

Definition 2.5 The covariant completely skew symmetric tensors of order

r are called r -covectors. The set of all r -covectors in ann-dimensional vector

space Vn forms a vector space called
∧rVn, r ≤ n.

Definition 2.6 The exterior product ∧ (or wedge product, or Grassmann
product) of an r -covector with an s-covector is a map

∧ :
( r∧

Vn,
s∧
Vn

)
→

r+s∧
Vn

defined by

α∧ β = (r + s)!
r !s!

Sk(α⊗ β), α ∈
r∧
Vn, β ∈

s∧
Vn.

The exterior product is associative and distributive with respect to the sum,
but in general not commutative

α∧ β = (−1)rs β∧α.

As one easily checks, a basis for
∧rVn is given by the set

{ei1 ∧ · · · ∧ eir , i1 < i2 < · · · < ir},

and dim
∧rVn = (nr).

Definition 2.7 The contravariant completely skew symmetric tensors of

order r are called r -vectors; they form a vector space denoted
∧
rVn, and

the exterior product is defined in an analogous way.
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The definition of field is naturally extended to r -vectors and r -covectors.
In the latter case, we speak of r -forms or simply of forms.

Definition 2.8 The exterior derivative is a map from the space of the r -

forms to the space of the (r + 1)-forms, given in local coordinates by

dω = ∂ωi1...ir

∂xj
dxj∧dxi1∧· · ·∧dxir , ∀j and i1 < i2 < · · · < ir , (2.1.3)

where

ω =ωi1...ir dx
i1 ∧ · · · ∧ dxir , with i1 < i2 < · · · < ir ,

is the expression of an r -form.

One checks that this definition is independent of the choice of coordinates.
This is basically due to the fact that the skew symmetrization among j and
the other indices kills the symmetric terms containing the second partial
derivatives.
The exterior derivative satisfies the following properties:

(i) if f is a 0-form, the 1-form df is the differential already defined;

(ii) if ω =ω1 +ω2, then dω = dω1 + dω2;
(iii) ddω = 0, ∀ω;
(iv) d(ω1 ∧ω2) = dω1 ∧ω2 + (−1)rω1 ∧ dω2, ω1 being an r -form and

ω2 any form.

The check of (i) and (ii) is immediate, that of (iii) is due to the symmetry of

the second derivatives ∂2

∂xi∂xk
= ∂2

∂xk∂xi
, and that of (iv) to the skew symmetry

of the exterior product of two 1-forms.
Vice versa, one can take the properties (i) – (iv) as defining the exterior

derivative, and then show that the coordinate expression (2.1.3) follows
uniquely.
Another useful property is given by the following

Proposition 2.9 The pull-back and the exterior derivative commute:

φ∗(dω) = d(φ∗ω).

Let σ be a r -dimensional domain and ∂σ its (r −1)-dimensional boundary;
then we have the following

Theorem 2.10 (Generalized Stokes) For every (r −1)-formω and r -di-

mensional domain σ the following beautiful formula holds:∫
σ
dω =

∫
∂σ
ω.
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Lie Derivative

Let Φτ be the flow generated by the vector field v : in some sense, v is the
“velocity” field of the “motion” Φτ. We define the Lie derivative of a tensor
field T with respect to v as

LvT = lim
τ→0
1

τ
(Φ∗τ T − T).

In other words, we compare the value taken by the tensor at the point Φτ(p)
(which is the image of the point p under the diffeomorphism Φτ ) with that
taken at the point p itself (i.e., at the position corresponding to τ = 0).
Obviously we are not allowed to directly compare the components of T at p
and at Φτ(p), because they belong to different tangent or cotangent spaces,
but we must “pull-back” the tensor before.
From the definition one can immediately find the relation

d

dτ
(Φ∗τ T) = lim


τ→0
1


τ (Φ
∗
τ+
τT − Φ∗τ T)

= lim

τ→0

1


τ [Φ
∗
τ (Φ

∗

τT − T)] = Φ∗τ (LvT), (2.1.4)

which is sometimes taken as a definition of the Lie derivative.
In order to express the Lie derivative of a tensor field in local coordinates,

we first prove the following two propositions.

Proposition 2.11 The Lie derivative is a derivation on the algebra of the

differentiable tensor fields:

Lv(T1 + T2) = LvT1 +LvT2, (linearity),

Lv(T1 ⊗ T2) = LvT1 ⊗ T2 + T1 ⊗LvT2, (Leibniz rule).

Proof. The additive property can be readily verified. The Leibniz rule rests
on the obvious fact that the transform of a tensor product is the tensor
product of the transforms of its factors. Therefore,

Lv(T1 ⊗ T2) = lim
τ→0
1

τ
(Φ∗τ T1 ⊗ Φ∗τ T2 − T1 ⊗ T2 + Φ∗τ T1 ⊗ T2 − Φ∗τ T1 ⊗ T2)

= lim
τ→0
1

τ

[
Φ
∗
τ T1 ⊗ (Φ∗τ T2 − T2)+ (Φ∗τ T1 − T1)⊗ T2

]
,

and the proposition follows. QED

Proposition 2.12 The Lie and exterior derivatives commute:

Lv(dω) = d(Lvω).
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Proof. This is an immediate consequence of Proposition 2.9 and of the
definition of Lv. QED

An arbitrary tensor is a finite sum of tensor products of functions and of
elements of the basis and the dual basis; hence we have to find the Lie
derivative of dxh and ∂

∂xk
. Firstly,

Lv(dxh) = d(Lvxh) = d
(
vk
∂xh

∂xk

)
= ∂vh

∂xi
dxi. (2.1.5)

Then, to find Lv ∂
∂xk
we require that the transforms of ∂

∂xk
and dxh still be

elements of the dual bases:〈
dxh + τLvdxh +O(τ2), ∂

∂xk
+ τLv ∂

∂xk
+O(τ2)

�
= δhk +O(τ2),

which entails〈
Lvdxh, ∂

∂xk

�
+
〈
dxh,Lv ∂

∂xk

�
= Lv

〈
dxh,

∂

∂xk

�
= 0.

Substituting the calculated expression of Lvdxh and writing Lv ∂
∂xk
as a

linear combination λik
∂
∂xi
of the basis vectors, we find

Lv ∂

∂xk
= −∂v

h

∂xk
∂

∂xh
.

At this point we can calculate the Lie derivative of a generic tensor.

Example 2.3 The Lie derivative of a vector u:

Lv
(
uh

∂

∂xh

)
=
(
vk

∂

∂xk
uh −uk ∂

∂xk
vh
)

∂

∂xh
= [v,u],

equals the Lie bracket of the two vectors.

Finally, let us view a formula connecting the Lie and the exterior derivative.
Let us denote with the symbol ivω the contraction of a vector v with the
first index of an r -form ω, which yields an (r − 1)-form. Then

Lvω = iv dω+ d(ivω) (2.1.6)

holds.
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2.1.3 Riemannian, Symplectic, and Poisson Manifolds

Up to now, both the tangent and cotangent spaces have looked like sep-
arate worlds: a vector cannot be transformed into a covector, and vice
versa. However, if a manifold is endowed with an additional, Riemannian
or symplectic, structure, this becomes possible. These two structures dif-
fer for their symmetry properties. The Riemannian manifolds are typically
the configuration spaces while the symplectic manifolds, with their Poisson
generalization, are the phase spaces of mechanical systems.

Riemannian Manifolds

A Riemannian manifold is a smooth manifold M together with a covariant
tensor field g = ghkdxh ⊗ dxk of order two, called a metric tensor, such
that

(i) g is symmetric,

(ii) for every point p ∈ M, the bilinear expression g|p is nondegenerate,
that is, g|p(u,v) = 0 for all v ∈ TpM if and only if u = 0.

A Riemannian manifold is called proper if

g|p(u,u) > 0, ∀u ∈ TpM, u ≠ 0.

Otherwise, the manifold is called pseudo-Riemannian or is said to have an
indefinite metric. The tensor g endows every vector space TpM with an
inner, or scalar product,

u · v def= g|p(u,v) ∀u,v ∈ TpM.

For the linearity of the definition of the tensor map it follows that, in com-
ponents,

u · v = ghkuhvk, ghk
def= g(eh, ek).

If we take a point p′ ∈ M “infinitesimally close” to p, the vector join-
ing the two points belongs to TpM, and the scalar product allows one to
compute the distance between p and p′. One usually writes

ds2 = ghkdxhdxk,

without ⊗, for the symmetry of the tensor.
Given a curve

γ : R → M by τ 	→ xk = γk(τ), a ≤ τ ≤ b,
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its length is given by ∫
γ
ds

def=
∫ b
a

√
γ∗(ds2).

The curve ofminimal length joining two fixed points ofM is called a geodesic.
An inner product on any vector space defines a canonical isomorphism

between the space and its dual. For a fixed u the mapping

g|p(u, ·) : TpM → R by v 	→ u · v

is by definition an element of T∗p M. The canonical isomorphism is the map-
ping

TpM → T∗p M by u 	→ g|p(u, ·).

The same vector can be written as u = uheh or u = ukek, the relation
between contravariant uh and covariant uk components being given by

uk = gkhuh, uh = ghkuk, where ghkgki = δhi .

The gij are the contravariant components of the metric tensor. One says
that the indices of a generic tensor are raised or lowered by means of the
metric tensor.

Example 2.4 The most obvious example of Riemannian structure is the
ordinary Euclidean space. Taking Cartesian coordinates, the metric tensor
is represented by the unit matrix

(ghk) =

⎛⎜⎜⎝
1
. . .

1

⎞⎟⎟⎠ .

Example 2.5 A less trivial example is that of the induced metric. Let f :
M → N, dimM = m < dimN = n, be an immersion of rank m. When N
(the ambient space) is endowed with a Riemannian metric g, the immersed
manifold M acquires an induced metric f∗g, the pull-back of the ambient
metric. If, for example, N = R3 with Euclidean metric and M is the sphere
S2 of radius R, then the induced metric is

(ghk) =
(
R2 0
0 R2 sin2 ϑ

)
,

where the local coordinates q1 = ϑ, q2 = ϕ on the sphere are respectively
colatitude and longitude.
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Let M and M′ be two smooth manifolds with Riemannian structures g and
g′, respectively. The mapping f : M → M′ is called an isometry if f is a
diffeomorphism and f∗g′ = g. Two manifolds are said to be isometric if
there exists an isometry of one onto the other. A manifold is said to be flat

or (pseudo)-Euclidean if it is locally isometric to a manifold with a metric
of the type (ghk) = diag(−1, . . . ,−1,1, . . . ,1). A theorem, fundamental in
Riemannian geometry and general relativity, states that a manifold is flat if
and only if its curvature (or Riemann) tensor is identically zero; this tensor
is constructed with the components of the metric tensor, along with the
first and second derivatives.
A vector field v on M generates a one-parameter group of local isome-

tries if and only if Lvg = 0. For example, if M is the usual 3-dimensional
Euclidean space, a family of continuous isometries is a composition of trans-
lations and rotations. If, on the contrary, the symmetric tensorLvg of order
two is different from zero, it is a measure of the deformation of the contin-
uum, and is called the strain tensor in the theory of elasticity.

Symplectic Manifolds

A symplectic manifold is a 2n-dimensional smooth manifold P endowed
with a 2-form Ω = Ωμνdxμ ∧ dxν, called the symplectic form, such that

(i) Ω is closed: dΩ = 0,
(ii) for every point x ∈ P the symplectic form is nondegenerate, i.e.

Ω ∧ . . .∧Ω︸ ︷︷ ︸
n times

≠ 0.

Notice the differences and similarities with the Riemannian case: skew sym-
metry of the tensor Ωμν versus symmetry of the tensor ghk, but nondegen-
eracy in both cases. This last property ensures that a bivector Ωαβ, called a

Poisson bivector , exists such that ΩμνΩνβ = δβμ. As in the Riemannian case,
the bilinear nondegenerate form Ω defines an inner product in TxP, and
thus a canonical isomorphism between TxP and its dual T∗x P. This isomor-
phism is sometimes denoted with the symbols4 � and �

� : T∗x P → TxP by ω 	→ω� = v or vμ = Ωμνων,

� : TxP → T∗x P by v 	→ v� =ω or ωμ = Ωμνvν.

The symplectomorphisms correspond to the isometries of the Rieman-
nian case. Let P and P ′ be two 2n-dimensional manifolds with symplectic
4The use of these symbols, exhibiting the great learning of the mathematicians, is inher-

ited from music notation, where � (diesis or sharp) raises while � (bemolle or flat) lowers a
note by onehalf tone.
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forms Ω and Ω′, respectively. A map f : P → P ′ is called a symplectomor-
phism if f is a diffeomorphism and f∗Ω′ = Ω. Two manifolds are said to
be symplectomorphic if there exists a symplectomorphism of one onto the
other.
Let v be a vector field on M. Clearly, the vector field v generates a one-

parameter group of local symplectomorphisms if and only if LvΩ = 0.
The closure property corresponds to the flatness of the Riemannian case,

as will be clear in a moment by the Darboux theorem. In coordinates, the
closure property reads as

∂λΩμν + ∂μΩνλ + ∂νΩλμ = 0,
Ω
λα∂αΩ

μν +Ωμα∂αΩνλ +Ωνα∂αΩλμ = 0.
(2.1.7)

Theorem 2.13 (Darboux) For any p ∈ U ⊂ P there is a chart such that, if

(x1, . . . , x2n) are local coordinates (called canonical coordinates) in U with

p = (0, . . . ,0), the symplectic form acquires the canonical form

Ω|U =
n∑
i=1
dxn+i ∧ dxi, (2.1.8)

or, equivalently,

(Ωμν) =
(
0n −1n
1n 0n

)
.

The Darboux theorem is a basic result, showing that all the symplectic man-
ifolds are locally the “same” manifold, and look like R2n endowed with the
canonical form. They thus differ only for global, topological properties.
The canonical form (2.1.8) is natural for the phase space of mechanical

systems, as the following example shows.

Example 2.6 Let Q be an n-dimensional manifold, which will be the con-
figuration space of a mechanical system in the applications. Define the
tangent and cotangent bundles, respectively, as

TQ =
⋃
q∈Q

TqQ, T∗Q =
⋃
q∈Q

T∗q Q.

They are 2n-dimensional manifolds with local coordinates5

(q, v) = (q1, . . . , qn, v1, . . . , vn) and (q,p) = (q1, . . . , qn,p1, . . . , pn),

respectively; the first n’s are local coordinates on Q, the other n’s are the

components, with respect to the natural bases
{

∂
∂qk

}
and {dqh}, of a tangent

5Hereafter p will denote a covector of T∗Q, no longer a generic point on a manifold.
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and a cotangent vector, respectively. Tangent and cotangent bundles are
instances of fiber bundles, i.e., manifolds that are locally the topological
product of a base (here Q) and a fiber (here a tangent or cotangent space).
Any cotangent bundle carries a canonical 1-form Θ defined as follows.

Let π : T∗Q → Q, x = (q,p) 	→ q be the canonical projection and let
w ∈ Tx(T∗Q), Θ|x ∈ T∗x (T∗Q); then, taking advantage of the fact that a
point x ∈ T∗Q identifies a cotangent vector p = pkdqk to Q, we define

〈Θ,w〉|x =
〈
p,π∗w

〉∣∣
q , ∀w ∈ Tx(T∗Q).

Note that the pairing is between T∗x (T∗Q) and Tx(T∗Q) on the left-hand
side while that on the right-hand side is between T∗q Q and TqQ. In terms of
local coordinates 〈

Θ,
∂

∂qk

〉
= pk,

〈
Θ,

∂

∂pk

〉
= 0,

and thereforeΘ = pkdqk, fromwhichΩ = dΘ = dpk∧dqk.Wehave reached
the fundamental result that the cotangent bundle of a configuration space
is endowed in a natural way with the canonical symplectic structure.

Obviously, not all the symplectic manifolds are cotangent bundles, as the
following example shows.

Example 2.7 Let us consider the sphere S2 = { −→x ∈ R3 :
∥∥∥ −→x∥∥∥ = R}. We can

make the sphere a symplectic manifold, defining on it the area 2-form

Ω| −→x ( −→u, −→v) = −→
x · −→u × −→

v ,
−→
u,
−→
v ∈ T −→xS2.

This form is closed, because an (n+ 1)-form on an n-dimensional man-
ifold vanishes identically. This definition is clearly global, and no point on
the sphere plays a privileged role. Now pick a polar axis and choose local
coordinates ϑ andϕ as in Example 2.5. Thus Ω = R2 sinϑdϕ∧dϑ, and the
symplectic form is undefined at the poles. Put

p = R cosϑ, q = Rϕ ⇒ Ω = dp ∧ dq,

i.e., q,p are local canonical coordinates.

Poisson Manifolds

The Poisson manifolds are a generalization of the symplectic manifolds in
the following sense. On a symplectic manifold P let us define the Poisson

bracket {f ,g} between two functions f ,g : P → R by

{f ,g} =
〈
dg,df�

〉
= ∂g

∂xμ
Ω
μν ∂f

∂xν
. (2.1.9)
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In canonical coordinates,

{f ,g} = ∂f

∂ph

∂g

∂qh
− ∂g

∂ph

∂f

∂qh
.

The closure property (2.1.7) of Ω entails (h is another function)

{{f ,g}, h} + {{h, f}, g} + {{g,h}, f} = 0,
which is known as the Jacobi identity.
From this basic identity a useful property follows, relating the Lie and

Poisson bracket. Let us indicate the vector (df)� with Xf ; then, recalling
that a vector is a derivation operator, we can write

{f ,g} = Xfg = −Xgf .
Taking a third generic function h, one obtains

[Xf ,Xg]h = XfXgh−XgXfh = {f , {g,h}} − {g, {f ,h}}
(for Jacobi identity) = {{f ,g}, h} = X{f ,g}h,

therefore
[Xf ,Xg] = X{f ,g}. (2.1.10)

A Poisson manifold is a manifold on which a Poisson bracket is defined,
or, equivalently, on which a bivector Ω� = Ωμν∂μ∂ν satisfying the closure
property is defined. It is obvious that any symplectic manifold is also a
Poissonmanifold. However, if thematrix (Ωμν) is not invertible, there exists
only the Poisson structure, without the corresponding symplectic structure.
Notice that a Poissonmanifold can be of odd dimension. Hereafter, “Poisson
manifold” will denote in general a “true” one, which is not derived from a
symplectic one.
At any point x ∈ P only the map � still exists, and it is no longer sur-

jective. The dimension r of its image is called the rank. The image of �
is a subspace Δx of TxP of dimension r , and thus defines a distribution
Δ = ⋃Δx. Thanks to the closure property (2.1.7), the distribution Δ turns
out to be integrable; in other words, there exists an r -dimensional (called
integral) submanifold N ⊂ P such that TxN = Δx, ∀x ∈ N.
We would like to restrict the bivector Ω� from the ambient space P to

the submanifold N, but in general the pull-back of a k-vector is not defined.
In the present case, however, we exploit the fact that the tangent space to
N coincides with the image of Ω�, and so we define the 2-form

Ω(Xf ,Xg)
def= {f ,g}, ∀f ,g : P → R.

This 2-form is well defined on N (the vectors Xf and Xg are tangent to N)
where it is obviously nondegenerate. Moreover, it is closed for the Jacobi
identity; therefore, it endows N with a symplectic structure.
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The integral manifolds of the distribution Δ are called symplectic leaves

and are described by (n− r) equations Ca(x) = constant (n is the dimen-
sion of P ). The functions Ca(x) are called Casimir functions and have zero
Poisson bracket with any functions, because

{Ca(x),xh} = 0, a = 1, . . . , n− r , h = 1, . . . , n,

as is clear bearing in mind that dCa belongs, by definition, to the kernel of
�.

Example 2.8 Take P = R3 − {0} with the Poisson structure

{x1, x2} = x3, {x2, x3} = x1, {x3, x1} = x2,

or equivalently,

(Ωμν) =

⎛⎜⎝ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎞⎟⎠ .
The kernel of � is (x1 x2 x3), the rank is 2, the Casimir function is

C(x) = (x1)2 + (x2)2 + (x3)2 and the symplectic leaves are the concentric
spheres. Put p = x3, q = arctan x1x2 , from which {p,q} = 1, so that q,p are
local canonical coordinates on a sphere. This symplectic structure on the
sphere clearly coincides with that of example 2.7.

2.2 Lie Groups and Lie Algebras

A Lie group is a group whose elements are labeled by one or more param-
eters; taking these parameters as coordinates, a Lie group can be seen as
a manifold, and the tangent space at the identity, once equipped with a
natural composition law, as the corresponding Lie algebra. Lie groups are
the fundamental tool when investigating the symmetries of mechanical sys-
tems.
For a deeper study the classical reference text is Chevalley (1946), while

for a high readability, with applications to physics, see for example Cornwell
(1989) or Gilmore (1974).

2.2.1 Definition and Properties

Definition 2.14 A Lie group G is a manifold on which an analytic compo-

sition law G×G→ G is defined, satisfying the group multiplication law.
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This means that there exist in a neighborhood of the identity the composi-

tion functions

F : G×G→ G, (x,y) 	→ F(x,y) = xy,

where xy is the group product, which are analytic and satisfy

(i) F(x,1) = F(1, x) = x, where 1x = x;

(ii) F(x,x−1) = F(x−1, x) = 1, where x−1x = 1;

(iii) F(x, F(y, z)) = F(F(x,y), z), i.e., the associative law.

These properties, in particular the third, endow the group manifold with
a rich structure, which we want to study. We remark that, once given the
composition functions in a neighborhood of the identity, the group is de-
termined only locally, since the group manifold has in general a nontrivial
topology; in general it cannot be covered with a single chart.
Let xh,yk, zi, with h,k, i = 1, . . . , N, be local coordinates of the points

x,y, z ∈ G, and let the group multiplication have coordinate presentation
zi = Fi(x,y). The most important actors on the scene are the N+N vector
fields defined by

Rka =
∂Fk(x,y)

∂xa

∣∣∣∣∣
x=1

, Lka =
∂Fk(y,x)

∂xa

∣∣∣∣∣
x=1

. (2.2.1)

As is clear from the definition, the vectors Ra, a = 1, . . . , N are the genera-
tors of the N flows of the left translations:

λx : G→ G by λxy = xy,

while the vectors La are the generators of the N flows of the right transla-

tions:
ρx : G→ G by ρxy = yx.

The maps λx and ρx, which are by assumption analytic, satisfy

λxλy = λxy, ρxρy = ρyx,

and these relations may be taken as a definition of left and right action,
respectively.

Proposition 2.15 The vectors Ra are invariant with respect to the right

translations (or simply right invariant), while the vectors La are invariant

with respect to the left translations (or simply left invariant).
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Proof. Differentiating the associative law with respect to x and z, we obtain

∂Fh(x,yz)

∂xk
= ∂Fh(xy, z)

∂(xy)i
∂Fi(x,y)

∂xk
,

∂Fh(x,yz)

∂(yz)i
∂Fi(y, z)

∂zk
= ∂Fh(xy, z)

∂zk
.

Putting x = 1 in the first equation and z = 1 in the latter, we obtain

Rha(yz) =
∂Fh(y, z)

∂yi
Ria(y),

∂Fh(x,y)

∂yi
Lia(y) = Lha(xy),

(2.2.2)

which may be rewritten as

Ra ◦ ρz = TρzRa, that is, ρz∗Ra = Ra,
TλxLa = La ◦ λx, that is, λx∗La = La.

This is just the definition of invariance: the vector fields Ra and La are
transformed into themselves by any right or left translation. QED

The set of left (right) invariant vector fields constitutes a vector space, be-
cause of the linearity of λx∗(ρx∗). Moreover, a left (right) invariant vector
field can be constructed by taking some vector at the point 1 and left (right)
translating it at the generic point of the group manifold. The vector space
of left (right) invariant vector fields may thus be identified with T1G, the
tangent space to the group manifold at the identity, and denoted by g.

Proposition 2.16 The Lie bracket [·, ·] of two left (right) invariant vector

fields is still a left (right) invariant vector field.

The claim is a straightforward consequence of the following general prop-
erty of the push-forward of vectors:

φ∗[v,w] = [φ∗v,φ∗w]

(an analogous property holds for the pull-back). In turn, this simply derives
from the naturalness of the φ-relation with respect to the Lie bracket.
As a basis for the vector space of the left (right) invariant vector fields

we may take the N vectors {La}({Ra}) previously defined. For the last
proposition, the Lie bracket is still a left (right) invariant vector field and
can thus be decomposed on the respective bases:

[La, Lb] = ccabLc, [Ra,Rb] = dcabRc, a, b, c = 1, . . . , N, (2.2.3)



2.2 Lie Groups and Lie Algebras 39

where ccab and d
c
ab are constants. To find their value, substitute the defini-

tion (2.2.1) into the Lie brackets (2.2.3) and put x = 1. Taking into account
that, for item (i) of the properties of the composition functions, the relations
Rka(1) = Lka(1) = δka hold, we obtain

ccab =
(

∂2Fc

∂xa∂yb
− ∂2Fc

∂xb∂ya

)
x=y=1

, (2.2.4)

dcab = −ccab.

Therefore, the two structures essentially coincide.
To complete the list of the Lie brackets among left and right invariant

vector fields, we notice that left and right translations commute, so that

[La,Rb] = 0, ∀a,b.

Therefore, some constants ccab, a, b, c = 1, . . . , N, called structure con-

stants, are associated to any local Lie group. They cannot be completely
arbitrary, but must satisfy

(i) skew symmetry: [La, Lb]+ [Lb, La] = 0 ⇒ ccab + ccba = 0.

(ii) Jacobi identity:

[[La, Lb], Lc]+ [[Lb, Lc], La]+ [[Lc, La], Lb] = 0
⇒ cecdc

d
ab + ceadcdbc + cebdcdca = 0.

We have reached the fundamental result that the N-dimensional vector
space of the left (right) invariant vector fields on the group manifold G

is naturally endowed with the composition laws (2.2.3). This vector space is
identified with g = T1G, which is thus equipped with the same composition
laws.

Definition 2.17 A vector space g with a bilinear composition law

g× g→ g : (u,v) 	→ [u,v]

satisfying the two properties

(i) [u,v] = −[v,u],

(ii) [[u,v],w]+ [[v,w],u]+ [[w,u], v] = 0

is said to be a Lie algebra.
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We can rephrase the content of this section in terms of left (right) invariant
dual forms. Consider the vector space g∗, the dual space of g, and let {ωa}
be the dual basis of {Lb}, that is, 〈ωa,Lb〉 = δab ; then one can show that

dωa + cabcωbωc = 0, a, b, c = 1, . . . , N.

These equations are called the Maurer–Cartan equations for G. Theωa are
left invariant forms, as one easily deduces by applying the general relation〈
α,φ∗v

〉 = 〈φ∗α,v〉:
〈ωa,Lb〉 = 〈ωa,λx∗Lb〉 =

〈
λ∗xω

a, Lb
〉 ⇒ λ∗xω

a =ωa.

Analogously, one could introduce the right invariant forms πa, the dual
forms of Rb, which satisfy

dπa − cabcπbπc = 0, a, b, c = 1, . . . , N.

2.2.2 Adjoint and Coadjoint Representation

Besides left and right translations, we may define a third action of a Lie
group on itself: the conjugation or inner automorphism

γx : G→ G by y 	→ γxy = xyx−1.

Since γzγx = γzx, the conjugation is a left action. The derivative map Tγx
at the identity is a linear transformation of T1G = g into itself, denoted
Adx, which satisfies AdzAdx = Adzx. It is a linear representation of the
group, called adjoint representation. Let us find its explicit expression in
coordinates. By definition,

(Adx)
a
b =

∂Fa(xy,x−1)
∂yb

∣∣∣∣∣
y=1

= ∂Fa(xy,x−1)
∂(xy)i

∂Fi(x,y)

∂yb

∣∣∣∣∣
y=1

.

Putting z = y−1 in the first of (2.2.2), we find ∂Fa(y,y−1)
∂yi

= πai (y), the right
invariant forms. Hence

(Adx)
a
b = πai (x)Lib(x), and (Ad−1x )

a
b =ωa

i (x)R
i
b(x).

Besides the adjoint representation Adx : g→ g we can define by duality
the coadjoint representation Ad∗x : g∗→ g∗ by

〈
Ad∗xα,v

〉 = 〈α,Ad−1x v〉 , ∀α ∈ g∗, ∀v ∈ g, (2.2.5)

which satisfies Ad∗xAd∗y = Ad∗xy.
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Remark 2.9 When we do not need to stress the particular group element x,
we write AdG and Ad

∗
G, or even Ad and Ad

∗, if there is no risk of confusion.

The derivative map ad of the adjoint representation at the identity is strictly
related to the structure constants. Indeed, differentiating at the identity

the relation πak (x)R
k
b(x) = δab, one finds

∂πab
∂xc

∣∣∣
x=1 +

∂Rab
∂xc

∣∣∣
x=1 = 0. Then,

differentiate Adx at the identity and substitute. Remembering (2.2.4), one
finds

∂

∂xc
(Adx)

a
b

∣∣∣∣
x=1

= cacb. (2.2.6)

The derivative map of Adx at the identity is therefore(
adLc

)a
b = cacb,

which may be intrinsically written as

aduv = [u,v], ∀u,v ∈ g.

adu is a linear operator g→ g,∀u ∈ g, called the adjoint map.
In the linear space g∗ the submanifolds generated by the coadjoint action

of G over an element μ ∈ g∗ are called coadjoint orbits,

Oμ def= {μ′ ∈ g∗ : μ′ = Ad∗Gμ},

and are symplectic manifolds in a natural way. The symplectic structure
descends by the restriction to the symplectic leaves of a Poisson structure
on g∗. Let us view it in detail.
We endow g∗ with a Poisson structure assigning a Poisson bivector, that

is, for every μ ∈ g∗, a linear map Ω�(μ) : T
∗
μ g∗ × T∗μ g∗ → R satisfying the

properties of skew symmetry and closure. For the linearity of the mani-
fold g∗, we can identify T∗μ g∗ with (g∗)∗ = g, and then define the Poisson
structure

Ω
�
(μ)(u,v)

def= −〈μ, [u,v]〉 , u, v ∈ g

(the minus sign is not essential and it is inserted only for convenience). Its
skew symmetry is obvious, bearing in mind the skew symmetry of the Lie
bracket. The closure property is checked by writing explicitly the Poisson
bivector in components

(Ω�(μ))ab = −μcccab,
then the latter of (2.1.7) follows from the Jacobi identity on the structure
constants. Assigning the Poisson structure Ω�(μ) makes g∗ a Poisson mani-
fold, endowed with the Poisson bracket

{νa, νb} = ccabνc, ν ∈ g∗, νa = 〈ν, La〉 .
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The rank of the Poisson structure is not constant on g∗, but only on each
coadjoint orbit. We show indeed that the image ofΩ�(μ), considered for each
fixed μ as a linear operator g→ g∗, coincides with TμOμ, the tangent space
in μ to the coadjoint orbit through μ. To this end, let us consider, in the
definition of coadjoint orbit, elements of G very close to the identity. Then,
remembering that the derivative map at the identity of Ad is ad, we may
write

Ad∗Gμ = μ −
〈
μ,adg·

〉+ · · ·
while, by the definition of a Poisson bivector,

Ω
�
(μ)(u, ·) = −〈μ,adu·〉 , u ∈ g.

This proves the above statement. We know that the image of a Poisson
bivector is an integrable distribution; therefore, we can conclude that the
symplectic integral manifold through μ coincides with Oμ. The coadjoint
orbits are therefore symplectic manifolds: in some sense, the symplectic
form is the inverse of the restriction, to the orbit, of the Poisson bivector
and is called the Kirillov form, or the Kirillov–Kostant–Souriau form.

Example 2.10 Take G = SO(3) and identify its Lie algebra so∗(3), i.e., the
linear space of the skew symmetric 3× 3 matrices, with R3. Then the coad-
joint action coincides with the similarity action on the matrices and induces
a rotation on R3. The coadjoint orbits are therefore the concentric spheres
S2 equipped with the symplectic structure of Example 2.7.

2.2.3 Action of a Lie Group on a Manifold

For what concerns us, Lie groups arise as transformation groups of mani-
folds and describe the symmetries of mechanical systems, whose configu-
ration or phase space is just the manifold on which the group acts. On this
manifold some vector fields are naturally defined, which are, in some sense,
the velocity fields of the incipient motion caused by the group action. Not
surprisingly, the Lie algebra of the group turns out to be homomorphic to
the Lie algebra of these fields.
Indeed, let us consider an n-dimensional manifold M with local coordi-

nates q = {qμ} and let

Φx : M → M by q 	→ Φxq, in coordinates qμ 	→ Φ
μ(x, q),

be a left action of the N-dimensional Lie group G :

(i) Φ1q = q, i.e., Φμ(1, q) = qμ,

(ii) ΦxΦyq = Φxyq, i.e., Φμ(x,Φ(y, q)) = Φμ(F(x,y), q).
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We define N vector fields on M by Xμa(q) = ∂Φμ

∂xa

∣∣∣∣
x=1

. They are called

infinitesimal generators of the action.

Proposition 2.18 The map La 	→ −Xa is a Lie algebra homomorphism:

[Xb,Xc] = −cabcXa.

If none of the vectors Xa is identically zero (thus if the action of G is effective;

see below), the map is an isomorphism.

Starting instead with a right action: ΦxΦyq = Φyxq, one finds that the
homomorphism is given by La 	→ Xa.
Let us view some general features of a group action. The set of the

elements of G leaving fixed a chosen point q ∈ M is a subgroup of G,
called the isotropy (sub)group of q and is denoted by Gq. Thus Gq = {x ∈
G : Φxq = q}. If the isotropy group of every point of M is the identity, then
G is said to act freely on M ; in this case no element except the identity
leaves some point fixed, i.e., all points are moved by the nontrivial group
action. Less strongly, G is said to act effectively on M if no element, except
the identity, leaves every point fixed, i.e., not all but surely some points are
moved by the group action. The orbit Oq is defined as the set of points of
M that can be reached, starting from q, by the action of the whole group G;
thus Oq = {Φxq, x ∈ G}. If Oq = M, the group G is said to act transitively,
and M is called a homogeneous manifold of G.

Example 2.11 Let us consider the action of the rotation and translation
group on the 3-dimensional Euclidean space. The group of translations
acts freely and transitively. The group of rotations, around a given point O,
acts effectively but neither freely nor transitively. The orbit for a point P,
different from O, is the sphere with center O and radius OP; the restriction
of the action of the rotation group to this sphere is a homogeneous non-
free action, the isotropy subgroup for a point P being the subgroup of the
rotations around the axis OP.

An action Φ of G on a manifold M defines an equivalence relation among
the points of M belonging to the same orbit. Explicitly, for q, q′ ∈ M, we
write q ∼ q′ if there exists an x ∈ G such that Φxq = q′, that is, if q′ ∈ Oq.
We letM/G be the set of these equivalence classes, that is, the set of orbits,
sometimes called the orbit space. We give to M/G the quotient topology.
However, to guarantee that the orbit space also has a smooth manifold
structure, further conditions on the action are required. An action Φ is
called proper if the mapping Φ̃ : G × M → M × M defined by Φ̃(x, q) =
(q,Φxq) is proper; that is, for K ⊂ M × M compact, then Φ̃−1(K) also is
compact. We notice that if G is compact, the property is automatically
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satisfied. The next proposition gives a useful sufficient condition for M/G
to be a smooth manifold.

Proposition 2.19 If Φ : G×M → M is a free and proper action, then M/G
is a smooth manifold and π : M → M/G a smooth submersion.

For the proof see Abraham & Marsden (1978, proposition 4.1.23).

Example 2.12 LetM be the punctured plane andG the rotation group about
the puncture point. The action ofG is proper (the rotation group is compact)
and free (the point fixed under rotations has been removed). The orbits are
concentric circles, and the value of the radius R > 0 parametrizes the set
of the orbits. Then M/G = R+.

An important particular case is the following. Consider the action on G of
a closed Lie subgroup H of G itself, given by restriction of the left action.
The orbits of G under this action are called right cosets of H in G; they are
the sets Hx = {hx, h ∈ H, x ∈ G} (unfortunately, some authors call them
left cosets). One verifies that this action is proper and free, see Abraham &
Marsden (1978, proposition 4.1.23). Therefore, G/H is a smooth manifold,
M say.
One may reverse the argument. Let us consider a transitive non-free

action of a Lie groupG on amanifoldM, and letGq be the isotropy subgroup
relative to any point q ∈ M (notice that all Gq, ∀q ∈ M, are isomorphic
for the homogeneity of M); thus M = G/Gq. The closure of any isotropy
subgroup is always assured, since it is the preimage of a point q (which is
a closed set) of the smooth map Φq : G→ M, given by Φq(x) = Φ(x, q).

Example 2.13 The 3-dimensional rotation group SO(3) acts transitively on
the sphere S2. Choose a point of S2: its isotropy subgroup is the group of
the rotations about the axis through this point. Thus S2 = SO(3)/SO(2).
As seen, some structure constants satisfying the two properties of skew
symmetry and Jacobi identity are associated to any local Lie group. Vice
versa, it is possible to prove that, given some constants satisfying the two
properties, or, in other words, given an abstract Lie algebra g, there is a local
Lie group G whose Lie algebra is isomorphic to g. The group is determined
by g up to a local isomorphism. This is the content of the converse of the
third Lie theorem.
In general there are homomorphic Lie groups with isomorphic Lie al-

gebras. We remember that a subgroup D of G is discrete if every d ∈ D

has a neighborhood in G that contains no element of D, apart from d. D is
normal if xdx−1 ∈ D, ∀d ∈ D, ∀x ∈ G. It is thus possible to prove that
the general situation is the following: if G is a simply connected Lie group
(that is, every closed curve on the group manifold can be smoothly shrunk
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to a point), then any other Lie group G′, such that g′ = g, is covered with
G, that is, G′ = G/D. A typical example (see the following section for the
definitions) is the simply connected Lie group SU(2), which is the twofold
covering of SO(3), thus D = Z2.

2.2.4 Classification of Lie Groups and Lie Algebras

We recall some definitions.
Let G1 and G2 be any two Lie groups. Consider the set of pairs (x1, x2),

where x1 ∈ G1 and x2 ∈ G2, and define the product of two such pairs
(x1, x2) and (y1, y2) by (x1, x2)(y1, y2) = (x1y1, x2y2). Then the set of
pairs (x1, x2) forms a group, as one easily checks, called the direct product

and denoted by G1 ×G2. The corresponding Lie algebras satisfy

[g1, g1] ⊆ g1, [g2, g2] ⊆ g2, [g1, g2] = 0.

A group G is said to be a semidirect product group if it possesses two
subgroups G1 and G2 such that

(i) G1 is an invariant subgroup of G, i.e., g−1g1g ⊆ G1;

(ii) G1 and G2 have only the identity element in common;

(iii) any element of G can be written as the product of an element of G1
and an element of G2.

In this case, we will write G = G2 ×S G1. The corresponding Lie algebras
satisfy

[g1, g1] ⊆ g1, [g2, g2] ⊆ g2, [g1, g2] ⊆ g1.

One says that g1 is an invariant subalgebra of g = g1 ⊕ g2, or that it is an
ideal.

Example 2.14 The Euclidean group of the continuous isometries of the 3-
dimensional Euclidean space is the semidirect product of G1 = translations
and G2 = rotations.
A nonabelian (that is noncommutative) Lie algebra is said to be simple if it
does not posses an invariant subalgebra. Hence [g, g] = g; that is, the Lie
brackets among all the elements generate the whole algebra. A Lie group
is said to be simple if its Lie algebra is simple. A Lie group is said to be
semisimple if it is the direct product of simple groups.
A Lie algebra is said to be solvable if the k-derived algebra g(k) is zero

for some k ≥ 0, where the k-derived algebra is defined recursively as

g(1) = [g, g], g(i+1) = [g(i), g(i)].
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A Lie group is solvable if its algebra is solvable.
Simple and solvable Lie algebras are the two basic constituents of any

Lie algebra. Indeed, any Lie algebra g can be decomposed into the sum of
a semisimple s and a solvable h Lie algebra: g = s⊕ h (this is known as the
Levi–Malcev decomposition), satisfying the relations

[s, s] = s, [s, h] ⊆ h, [h, h] = h(1) ⊂ h.

Clearly, the classification of all Lie groups is a fundamental problem.
Unfortunately, an exhaustive classification of the solvable groups does not
exist, while, fortunately, that of the simple groups does: it has been per-
formed by Killing and Cartan. Without entering the beautiful but lengthy
analysis (which is however easily understandable, requiring only linear al-
gebra), we proceed to the conclusions.
The result of this classification is that a compact simple Lie group is

necessarily one of the “classical groups.”

(i) The orthogonal or rotation groups SO(n) with n = 3,5,6,7 . . . , which
are the groups of the n×n matrices R such that

RtR = 1n, detR = 1 (Rt = transposed matrix).

To find the corresponding Lie algebras so(n), we write

R = 1n + r +O(r2),

then
(1n + rt)(1n + r) = 1n + r+ rt +O(r2) = 1n,

showing that r∈ so(n) ⇒ r is skew symmetric. The case n = 2 is
excluded since SO(2) is abelian, as well as the casen = 4 since SO(4) =
SO(3)× SO(3).

(ii) The special unitary groups SU(n) with n = 2,3,4,5 . . . , which are the
groups of the n×n matrices U such that

U†U = 1n, detU = 1 (U† = Hermitian conjugate).

To find the corresponding Lie algebras su(n), we write

U = 1n + u+O(u2),

then detU= 1⇒ Tru = 0, and

(1n + u†)(1n + u) = 1n + u+ u† + O(u2) = 1n,

showing that u ∈ su(n)⇒ u is skew Hermitian.
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(iii) The symplectic groups Sp(n), which are the groups of the 2n × 2n
matrices S such that

StEnS = En, En =
(

0n 1n
−1n 0n

)
.

A matrix s belongs to the Lie algebra sp(n) if stE + Es =02n.

To the groups of these three series one must add the five “exceptional
groups,” which are isolated.
Besides the above compact simple groups, there exist some other non-

compact forms. They are obtained by complexifying the compact forms
(that is, allowing the assumption of complex values to the group coor-
dinates), then finding all the possible real structures. For example, one
finds the noncompact simple Lie groups SO(p, q), which are the isometry
groups of pseudo-Euclidean metric, or the special (that is with det = 1) lin-
ear groups SL(n): their corresponding compact forms are SO(p + q) and
SU(n), respectively.
The simple groups obtained in this way are all distinct, but the same

statement does not hold for the corresponding algebras. For example, we
will show now that SO(3) = SU(2)

Z2
, Z2 = {1,−1}, from which so(3) = su(2).

Let

ψ =
(
ψ1
ψ2

)
∈ C

2, ψ†ψ = ψ1ψ1 +ψ2ψ2 = 1

be, by definition, a spinor. ψψ† is a 2× 2 Hermitian matrix with Trψψ† =
ψ†ψ = 1 and det ψψ† = 0; hence we may write

ψψ† = 1
2

(
1−X3 X1 + iX2
X1 − iX2 1+X3

)
, det ψψ† = 0⇒ X21 +X22 +X23 = 1.

We see that if ψ′ = gψ, g ∈ SU(2), then ψ′ψ′† is still a Hermitian matrix
with trace 1 and null determinant; thus SU(2) induces an action on R3 that
leaves the Euclideanmetric invariant. A homomorphism between SU(2) and
SO(3) is so established, whose kernel is discrete because the dimension of
the two groups is equal. Let us investigate the topology of the two group
manifolds. Any matrix g ∈ SU(2) can be written as

g =
(

α β

−β α

)
, det g = αα+ ββ = 1, α, β ∈ C,

thus SU(2) � S3, the 3-dimensional sphere. On the other hand, all the
elements of SO(3) are rotations. There is a correspondence between rota-

tions and vectors −→x ∈ R3,
∥∥∥ −→x∥∥∥ ≤ π, which is 1-1 when

∥∥∥ −→x∥∥∥ < π, while
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one must make the identification −→
x = − −→x when

∥∥∥ −→x∥∥∥ = π. Therefore,

SO(3) � P3R � S3

Z2
.

A very important property of the semisimple Lie groups is that the cor-
responding groupmanifold is endowed with a natural (pseudo-)Riemannian
metric, invariant under right and left translation. Indeed it is possible to
prove that the symmetric matrix �ab = −ccadcdbc is nonsingular if and only
if the group is semisimple, and positive definite if it is compact. Then one
defines

�hk(x) = �abω
a
hω

b
k = �abπ

a
hπ

b
k , (2.2.7)

bringing the metric defined at the identity around on the group manifold.
One obtains the same metric using either left or right invariant forms, be-
cause the structure constants are invariant under the action of the adjoint
representation, and one passes from right to left invariant forms (and vice
versa) just with the action of the adjoint representation. The metric defined
in (2.2.7) is called the Cartan–Killing metric.

2.3 Lagrangian and Hamiltonian Mechanics

By Lagrange equations we mean the equations of dynamics derived from a
function L, the Lagrangian, which is a function of generalized coordinates
qμ and generalized velocities q̇μ (and in general an explicit function of time).
We shall interpret qμ as local coordinates on a manifold Q, called configu-
ration space of the mechanical system, and q̇μ as the corresponding fiber
coordinates on TQ. A Lagrangian is then a function on TQ, the tangent
bundle of the configuration space.
Analogously, Hamilton equations are the equations of dynamics derived

from a functionH, the Hamiltonian, which is a function of generalized coor-
dinates qμ and generalized momenta pμ (and in general an explicit function
of time). We interpret qμ as local coordinates on a manifoldQ and pμ as the
corresponding fiber coordinates on T∗Q. A Hamiltonian is then a function
on T∗Q, the cotangent bundle of the configuration space.
Many books have been written on analytical mechanics. We quote Whit-

taker (1917), Goldstein (1980), Sommerfeld (1964), and Landau & Lifchitz
(1960) or, for those who like the conceptual aspects, the beautiful Lanczos
(1970), all written in traditional language. But in the last decades the matter
has changed its language, employingmore andmore the tools of differential
geometry; see Arnold (1989), Abraham & Marsden (1978), Souriau (1997),
Libermann & Marle (1987), Cushman & Bates (1997), and Marsden & Ratiu
(1994).
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2.3.1 Lagrange Equations

The Lagrange equations are a powerful tool that allows one to write, in an
automatic way, as many pure (i.e., without forces of reaction) equations of
the second order as degrees of freedom.
Let −→r 1, . . . , −→r N be the position vectors of the N particles of our system6

of mass m1, . . . ,mN . Let
−→
vk = d

−→
r k
dt and

−→
ak = d2

−→
r k

dt2 be velocity and accel-
eration vectors of the generic kth particle. The total force acting on this

particle is divided into the sum of two forces:
−→
F k, the active force, and

−→
Φk,

the reaction force due to the constraints. The fundamental law of dynamics
gives −→

F k +
−→
Φk =mk

−→
ak.

We state the following basic postulate concerning
−→
Φk: the virtual work

of the forces of reaction is always zero for any virtual displacement that is
in harmony with the given kinematic constraints. We recall that a virtual
displacement is infinitesimal and that we suppose the constraints frozen at
the time when the virtual displacement is imposed. Plainly, the postulate
generalizes the idea that the forces of reaction are orthogonal to the con-
straints. Let δ −→r k be the virtual displacement of the generic point; for the
above postulate we can write

N∑
k=1

−→
F k · δ −→r k =

N∑
k=1

mk
−→
ak · δ −→r k,

which is an equation from which the forces of reaction have disappeared. If
the constraints are holonomic, we can obtain as many equations as degrees
of freedom by projecting the above equation along all the independent vir-
tual displacements.
Let q1, . . . , qn be local coordinates on the configuration manifold Q of

the mechanical system; hence the position vector of any point can be ex-
pressed as a function −→r k(q, t). If the time t does not appear explicitly, the
constraints are said to be fixed. Any virtual displacement impresses to the
generic point the displacement

δ
−→
r k = ∂

−→
r k
∂qμ

δqμ, μ, ν . . . = 1, . . . , n.

Notice that instead for a real displacement: d −→r k = δ −→r k+ ∂
−→
r k
∂t dt. While the

vectors δ −→r k are not in general independent (they take the constraints of
6We suppose the material system to be discrete. Otherwise, it is understood that the sums

over the particles are replaced by integrals.
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the system into account), the δqμ are independent, if the constraints are
holonomic as we suppose. We can thus write the n independent equations

N∑
k=1

−→
F k · ∂

−→
r k
∂qμ

=
N∑
k=1

mk
−→
ak · ∂

−→
r k
∂qμ

.

The left-hand side is the sum of the projections of all the active forces
onto the vectors of the natural basis and is denoted byQμ, or (the covariant
components of the) generalized force. The right-hand side is rearranged as
follows. Write

mk
−→
ak · ∂

−→
r k
∂qμ

= d

dt

(
mk

−→
vk · ∂

−→
r k
∂qμ

)
−mk

−→
vk · d

dt

∂
−→
r k
∂qμ

.

Then, from the definition of real velocity

−→
vk = ∂

−→
r k
∂qμ

q̇μ + ∂
−→
r k
∂t

,

we derive the two identities

∂
−→
r k
∂qμ

= ∂
−→
vk
∂q̇μ

and
d

dt

∂
−→
r k
∂qμ

= ∂2
−→
r k

∂qν∂qμ
q̇ν + ∂2

−→
r k

∂t∂qμ
= ∂

−→
vk
∂qμ

.

Defining the total kinetic energy T =∑k
1
2mk

−→
vk · −→vk, we can write

N∑
k=1

mk
−→
ak · ∂

−→
r k
∂qμ

= d

dt

∂T

∂q̇μ
− ∂T

∂qμ
,

from which the Lagrange equations follow:

d

dt

∂T

∂q̇μ
− ∂T

∂qμ
= Qμ.

If the active forces admit a potential energy V, that is, ifQμ = − ∂V
∂qμ , then

the Lagrange equations may be written as

d

dt

∂L

∂q̇μ
− ∂L

∂qμ
= 0,

where L = T − V is the Lagrangian of the mechanical system.
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The general expression of the kinetic energy is

T = 1
2
gμνq̇

μq̇ν +Aμq̇μ + V,

gμν(q, t) =
N∑
k=1

mk
∂
−→
r k
∂qμ

· ∂
−→
r k
∂qν

,

Aμ(q, t) =
N∑
k=1

mk
∂
−→
r k
∂qμ

· ∂
−→
r k
∂t

,

V(q, t) = 1
2

N∑
k=1

mk
∂
−→
r k
∂t

· ∂
−→
r k
∂t

.

If the constraints are fixed, the kinetic energy is a quadratic homogeneous
function of the velocities

T = 1
2
gμν(q)q̇

μq̇ν ,

and endows the configuration manifold Q with a Riemannian metric gμν.

2.3.2 Hamilton Principle

Before discussing the very important fact that the Lagrange equations can
be derived from a variational principle,7 we state a basic analytic identity.
Let us consider a generic smooth function F : TQ×R → R by (q, v, t) 	→

F(q,v, t). Define the action integral

S =
∫ t2
t1
F(q(t), q̇(t), t)dt,

which is a functional; i.e., it yields a number in correspondence to every
curve q(t), t1 ≤ t ≤ t2 of the configuration space. We want to calculate the
“infinitesimal” variation of this action integral when passing from a curve
γ0 to other curves γα “infinitesimally close.” These curves are labeled with
a real parameter α:

γα : t 	→ q(t,α).

Substituting into the action integral, this becomes a function of the parame-
terα. The usualmethods of elementary calculus, in particular the derivation
under the integral sign, give

δS[α]
def= ∂S[α]

∂α
δα =

∫ t2
t1

(
∂F

∂qμ
∂qμ

∂α
+ ∂F

∂q̇μ
∂q̇μ

∂α

)
δαdt. (2.3.1)

7In this context, they are sometimes called Euler–Lagrange equations.
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We invert the order of the differentiations with respect to the two parame-
ters t and α, then perform an integration by parts on the second term:

∫ t2
t1

∂F

∂q̇μ
∂q̇μ

∂α
δαdt = ∂F

∂q̇μ
∂qμ

∂α
δα

∣∣∣∣∣
t2

t1

−
∫ t2
t1

d

dt

∂F

∂q̇μ
∂qμ

∂α
δαdt.

Nowputα = 0, so that δSmeasures the variation of the integral action when
passing from γ0 to γα, as required. Put, for brevity, δqμ = ∂qμ

∂α
δα

∣∣∣∣
α=0

. The

final formula we seek is

δS =
∫ t2
t1

(
∂F

∂qμ
− d

dt

∂F

∂q̇μ

)
δqμ dt + ∂F

∂q̇μ
δqμ

∣∣∣∣∣
t2

t1

, (2.3.2)

which, as we stress again, is a pure analytical identity, i.e., not involving any
physical principle.
We can now state the Hamilton principle. Let us restrict ourselves to the

class of curves γα that start from a point P1 at time t1 and reach another
point P2 at time t2. Because δqμ = 0 at time t1 and t2, the last term in (2.3.2)
vanishes. Therefore, the fundamental identity (2.3.2) shows that

(i) if we choose γ0 to be the real trajectory of the mechanical system
satisfying the physical laws, then the Lagrange equations hold, and
we can infer that δS = 0. In other words, the natural motion of a
mechanical system makes stationary the action integral;

(ii) if we assume as a primitive physical law that the action integral is
stationary and suppose the constraints holonomic, then the Lagrange
equations follow.

The Hamilton principle may be summarized as

Stationary action integral �Lagrange equations.

2.3.3 Noether Theorem

Several conservation laws of mechanics (for example of the linear or angu-
lar momentum and of the energy) are particular cases of the same general
theorem, due to Noether: to each one-parameter group of diffeomorphisms
of the configuration space, leaving invariant the Lagrangian, corresponds a
first integral of the equations of motion. We recall that a first integral is a
function I : TQ 	→ R, whose total time derivative vanishes when calculated
along a solution of the Lagrange equations. In this section we consider a
time-independent Lagrangian.
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Before proving the theorem, we must define exactly what the invariance
condition of the Lagrangian means. Let us consider a one-parameter group
of diffeomorphisms acting on the configuration space: Φα : q 	→ Φαq, and
let Φα∗v be the induced push-forward of a tangent vector field. We say that
a Lagrangian L(q, q̇) is invariant under the action of the group if

L(Φαq,Φα∗v) = L(q,v), ∀α.

We also say that the Lagrangian has a symmetry.
To prove the theorem, we start from the fundamental identity (2.3.2),

where we put F = L. Let γ0 be the real curve satisfying the Lagrange equa-
tions and γα be the curve transformed under the action of the symmetry

group. Therefore, δqμ = ∂Φ
μ
α

∂α
δα

∣∣∣∣∣
α=0

= Xμ(q)δα,whereXμ is the infinites-
imal generator of the action of the group. In (2.3.2), δS = 0 holds, for the
assumption on the invariance of the Lagrangian, while the integral is zero,
because only curves satisfying Lagrange equations are considered. There-

fore, the difference
∂L

∂q̇μ
Xμ
∣∣∣∣∣
t2

− ∂L

∂q̇μ
Xμ
∣∣∣∣∣
t1

also vanishes. Since t2 and t1

are generic, we infer that

I(q.q̇)
def= ∂L

∂q̇μ
Xμ

is a first integral.

Example 2.15 If the Lagrangian does not depend on some coordinate, say
qn, it is invariant under the group of translations along this coordinate,
which is called ignorable. Then X = (0, . . . ,0,1) and I = ∂L

∂q̇n .

Example 2.16 Let Q be the 2-dimensional Euclidean plane, with Cartesian
coordinates x and y, and let the Lagrangian be invariant under rotations
around the origin. Thus

Φα

(
x
y

)
=
(

cosα sinα
− sinα cosα

)(
x
y

)
⇒ X =

(
y
−x

)
.

If L = T − V with T = 1
2m(ẋ

2 + ẏ2), then I = m(ẋy − ẏx), which is the
angular momentum with respect to the origin.

It is possible to completely eliminate the ignorable coordinate qn from the
Lagrangian, reducing the problem ton−1 degrees of freedom. This is a first
elementary example of reduction by symmetry. Later, the idea of reducing
the number of the degrees of freedom by exploiting the symmetries of the
system will be generalized. Let us indeed consider the differential (2.3.1) of
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the action integral and, before performing the integration by parts, take into
account that now ∂L

∂qn = 0 and ∂L
∂q̇n = cn hold. Obviously, cnδq̇n = δ(cnq̇n),

and wemay write, after an integration by parts on the firstn−1 coordinates
only,

δ

∫ t2
t1
(L− cnq̇n)dt =

∫ t2
t1

(
∂L

∂qμ
− d

dt

∂L

∂q̇μ

)
δqμ dt + ∂L

∂q̇μ
δqμ

∣∣∣∣∣
t2

t1

,

μ = 1, . . . , n− 1.
We can now argue as in the previous section, and deduce that the equa-
tions of motion for the first n−1 coordinates are derived from the reduced
Lagrangian LR = L− cnq̇n.

Example 2.17 Let L = 1
2m(ṙ

2+r 2θ̇2)−V(r) be the Lagrangian of a central
motion on the plane with polar coordinates r , θ. The angle θ is ignorable,
∂L
∂θ̇
=mr 2θ̇ is a constant c and θ̇ = c

mr2 , then LR = 1
2mṙ

2−V(r)− c2

2mr2 . The

motion is now 1-dimensional, but a new force with potential energy c2

2mr2

appears.

2.3.4 From Lagrange to Hamilton

Hereafter, Lagrangian functions are assumed to nonexplicitly depend on the
time. It is tempting to write the n Lagrange equations of the second order
as 2n equations of the first order on the tangent bundle TQ. The natural
local coordinates on TQ are {qμ, vν}, so that we may write

d

dt
qμ = vμ, d

dt

∂L(q,v)

∂vν
= ∂L(q,v)

∂qν
, μ, ν = 1, . . . , n. (2.3.3)

It is a very remarkable fact that TQ is naturally endowed with a symplectic
structure and that a Hamiltonian form can be given to the system (2.3.3).

Definition 2.20 A vector field on a symplectic manifold P is said to be

Hamiltonian if it is the symplectic gradient of a Hamiltonian function H :
P → R; that is, has the form Ω�(dH), where Ω is the symplectic 2-form of

P. A dynamical system is said to be Hamiltonian if the relative vector field is

Hamiltonian.

Let uα, α,β, γ = 1, . . . ,2n be local coordinates on P and
Ω = Ωαβ duα ∧ duβ

the symplectic form; a Hamiltonian system can therefore be written as

u̇α = Ωαβ ∂H
∂uβ

, Ω
αβ
Ωβγ = δαγ .
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To show that (2.3.3) is a Hamiltonian system, first we endow TQ with

the symplectic form ΩL = dΘL, where ΘL = ∂L

∂vμ
dqμ. This ensures that

dΩL = 0. Then, we suppose that det
(

∂2L

∂vμ∂vν

)
≠ 0, which ensures the

invertibility of the matrix (ΩαβL ): a Lagrangian satisfying this property is
said to be regular. Explicitly

ΩL = ∂2L

∂qμ∂vν
dqμ ∧ dqν + ∂2L

∂vμ∂vν
dvμ ∧ dqν.

Finally, putting (u1, . . . , u2n) = (q1, . . . , qn, v1, . . . , vn), define the Ham-
iltonian

H(u)
def= ∂L

∂vμ
vμ − L(q,v).

Then, it is a simple matter of calculation to check that the equations (2.3.3)
are equivalent to

ΩL(u̇) = dH,
which, for the invertibility of the matrix of ΩL, proves the statement.
From the Darboux theorem we know that there exists a chart in which

a symplectic structure is put in canonical form. In the Lagrangian case it is
immediate to find it by simply inspecting ΘL; it is indeed natural to define

the map Leg : TQ → T∗Q by (q, v) 	→ (q,p) where pμ = ∂L

∂vμ
, so that T∗Q

becomes equipped with the canonical 1-form Θ = pμdqμ.
The Leg map, called the Legendre transformation, is therefore a sym-

plectomorphism between TQ, equipped with the symplectic structure ΘL,
and T∗Q, equipped with the canonical structure Ω = dpμ ∧ dqμ :

Leg∗Ω = ΩL.
Let us sum up, in the traditional language, how to pass from Lagrangian

to Hamiltonian formulation.

(i) Invert the definition of the momenta pμ = ∂L

∂q̇μ
, finding the gener-

alized velocities as functions of the momenta; this is possible if the
Lagrangian is regular.

(ii) Define the Hamiltonian H(q,p) = pμq̇μ − L(q, q̇); then the equations
of motion are the Hamilton equations in canonical form

q̇μ = ∂H(q,p)

∂pμ
, ṗν = −∂H(q,p)

∂qν
.

A particular but important case is that of the natural systems: the momenta
pμ = gμνq̇ν are the covariant components of the velocity, and the Hamilto-
nian H = 1

2g
μνpμpν + V is the total energy.
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2.3.5 Canonical Transformations

A chart in T∗Q,with coordinatesu = (u1, . . . , u2n), is said to be canonical if
the symplectic 2-form has the expressionΩ =∑μ du

n+μ∧duμ. A change of
chart is said to be canonical if it preserves the canonical form. A canonical
transformation is thus a (in general local) symplectomorphism of T∗Q into
itself. Making the identifications8 uμ = qμ, un+μ = pμ, the change of chart
is given by assigning the 2n functions

Qμ = Qμ(q,p), Pν = Pν(q,p).
These functions are not completely arbitrary. Take the definition (2.1.9) of
the Poisson bracket into account, then Ωαβ = −{uα,uβ}, α, β = 1, . . . ,2n
holds, so that the change of chart defines a canonical transformation Γ :
(q,p) 	→ (Q, P) if and only if

{Qμ,Qν} = 0, {Pμ, Pν} = 0, {Pμ,Qν} = δνμ. (2.3.4)

Given a Hamiltonian H(q,p), put K = Γ∗H; then, for the canonicity of Γ ,
the Hamilton equations in the new variables are

Q̇μ = ∂K(Q, P)

∂Pμ
, Ṗν = −∂K(Q, P)

∂Qν
.

Sometimes this property, i.e., to leave invariant in form any Hamiltonian
system, is taken as the definition of a canonical transformation.
The conditions (2.3.4) allow us to check if a given transformation is

canonical, but they do not tell us how to construct one. To this end, we
notice that a transformation (q,p) 	→ (Q, P) such that

pμdq
μ − PμdQμ = dF(q,Q) (2.3.5)

is surely canonical, since ddF = 0 implies that dpμ ∧ dqμ = dPμ ∧ dQμ. In
particular, F may be identically zero, then pμ = ∂Qν

∂qμ Pν, which is the trans-
formation rule of a covector under a coordinate transformation q 	→ Q. Such
transformations are called punctual, and exhaust the class of transforma-
tions allowed in the Lagrangian formalism.

A function F(q,Q), satisfying det
(

∂2F
∂qμ∂Qν

)
≠ 0, defines, at least locally,

an invertible canonical transformation, and is called a generating function.
Indeed, expanding its differential, one finds

pμ = ∂F(q,Q)

∂qμ
, Pμ = −∂F(q,Q)

∂Qμ
.

8Unfortunately, there is a certain problem with the position of the indices. We put them
above, like for the u’s coordinates, looking at the symplectic structure, while we put them
below, like for the p’s, looking at the momenta as the components of the 1-form Θ but
defined on the configuration space.
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Due to the condition on the Hessian, these two relations can be inverted,
expressing the new as functions of the old canonical coordinates and vice
versa.
The most simple canonical transformation of this type is generated by

F =∑μ q
μQμ :

pμ = Qμ, Pμ = −qμ,
that is, the exchange between coordinates andmomenta. However, the iden-
tity transformation cannot be generated by F(q,Q).
We may consider other classes of generating functions; for example

pμdq
μ − PμdQμ = dF(q, P)− d(PμQμ)

gives surely a canonical transformation

pμ = ∂F(q, P)

∂qμ
, Qμ = ∂F(q, P)

∂Pμ
, (2.3.6)

if the condition det
(

∂2F
∂qμ∂Pν

)
≠ 0 is satisfied. The identity is generated by

F = Pμqμ. The punctual, or extended point transformation, can be generated
by F(q, P) = fμ(q)Pμ, with fμ arbitrary functions:

Qμ = fμ(q), pμ = ∂fν

∂qμ
Pν.

Moreover, onemay also consider generating functions of the type F(p, P)
or F(p,Q), although they are never used.

2.3.6 Hamilton–Jacobi Equation

The basic idea of the integration method of Hamilton–Jacobi is to find a
canonical transformation Γ such that, in the new coordinates, the trans-
formed Hamiltonian K = Γ∗H is easily integrable.
As a typical example, let us seek a Γ such that K(Q,P) ≡ P1, so that

Ṗμ = − ∂K

∂Qμ
= 0 ⇒ Pμ = αμ, μ = 1, . . . , n,

Q̇1 = ∂K

∂P1
= 1 ⇒ Q1 = t + β1,

Q̇ν = ∂K

∂Pν
= 0 ⇒ Qν = βν, ν = 2, . . . , n,

where αμ,βμ are 2n integration constants; in particular α1 = E, the total
energy. After inversion of Γ , the general integral can be written as

qμ = qμ(t,α,β), pμ = pμ(t,α,β),
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and the dynamical problem is solved.
Of course, there is nothing magical in all that, the problem now being

deferred to find such a canonical transformation. LetW(q, P) (but one could
take any of the other three types) be the unknown generating function of
Γ . Taking the first of (2.3.6) into account, consider the partial differential
equation

H

(
q1, . . . , qn,

∂W

∂q1
, . . . ,

∂W

∂qn

)
= α1. (2.3.7)

The meaning of (2.3.7) should be clear: it imposes that the canonical trans-
formation Γ we seek be such that the transformed Hamiltonian K = Γ∗H
coincides with the first of the newmomenta. If one is able to find a complete

integral of this equation, that is, a solutionW(q,α) such that det
(

∂2W
∂qμ∂αν

)
≠

0, μ, ν = 1, . . . , n, then the dynamical problem is solved. The partial dif-
ferential equation of first order (2.3.7) is called a (reduced) Hamilton–Jacobi

equation.
The full name (without “reduction”) is reserved for the time-dependent

Hamiltonian, whose Hamilton–Jacobi equation

H

(
q1, . . . , qn,

∂W

∂q1
, . . . ,

∂W

∂qn
, t

)
+ ∂W
∂t

= 0,

imposes that the transformed Hamiltonian will vanish identically.

2.3.7 Symmetries and Reduction

In this section we will generalize the Noether theorem to the case of an
N-dimensional Lie group G of symmetries.
Let Φ : M → M be a symplectomorphism of a 2n-dimensional symplectic

manifold (M,Ω). Obviously, Φ leaves invariant the Poisson brackets:

Φ
∗
Ω = Ω � {Φ∗f ,Φ∗g} = Φ∗{f ,g}. (2.3.8)

Let us now consider the left action u 	→ Φxu, u ∈ M, x ∈ G of G on M.
Let

Xa = ∂Φx
∂xa

∣∣∣∣
x=1

, a = 1, . . . , N

be a basis for the vector space of the infinitesimal generators of the action.
We know from Proposition 2.18 that they form a Lie algebra that is homo-
morphic to the Lie algebra g. In other words, if ξ = ξaLa, η = ηaLa are two
elements of g, and Xξ = ξaXa, Xη = ηaXa the corresponding vector fields
on M, we have

[Xξ,Xη] = −X[ξ,η], ξ, η ∈ g. (2.3.9)
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Now suppose that the G-action on M is a symplectomorphism for every
x ∈ G. Recalling the relation (2.1.6), we can write

LXξΩ = iXξ dΩ + d(iXξΩ).
But LXξΩ = 0 holds, which is the “infinitesimal version” of (2.3.8); more-
over, dΩ = 0, by the definition of symplectic manifold. Therefore, the
1-form iXξΩ is closed, hence locally exact: for a fixed ξ, there exists locally
a function Jξ : M → R such that

iXξΩ = −dJξ, or Xξ = dJ�ξ .
Thus, the infinitesimal generators of the action are local Hamiltonian vec-
tors, with Hamiltonian Jξ. If, as we will suppose hereafter, the vector fields
Xξ are globally Hamiltonian, the action Φ is said to be Hamiltonian.
For a fixed point u ∈ M, the dependence of Jξ(u) from the element

of the Lie algebra is linear. Indeed, since the basis vector fields Xa on M
are Hamiltonian, Xa = dJ�a holds for some functions Ja, a = 1, . . . , N. If
ξ = ξaLa, then Xξ is Hamiltonian, with Hamiltonian Jξ = ξaJa. Since the
dual of a vector space is the space of the linear functions, we can define a
function J : M → g∗ such that

Jξ(u) =
〈
J(u), ξ

〉
.

J is called a moment map.
Let us find the basic property of the moment map. In expression (2.1.10)

take f = Jξ and g = Jη; since Xξ = XJξ and Xη = XJη we obtain, by compar-
ison with (2.3.9), that

X{Jξ,Jη} = −XJ[ξ,η] .
The operator � is an isomorphism, and the above relation implies that the
two functions −J[ξ,η] and {Jξ, Jη} have the same gradient, and thus differ
in a quantity constant on M

{Jξ, Jη} = −J[ξ,η] + C(ξ, η).
Projecting this relation on the basis {La}, we can write

{Ja, Jb} = −ccabJc + Cab, a, b, c = 1, . . . , N.
The skew symmetric bilinear function C(ξ1, ξ2) is called a 2-cocycle of

the Lie algebra, and must satisfy the relation

C([ξ1, ξ2], ξ3)+ C([ξ2, ξ3], ξ1)+ C([ξ3, ξ1], ξ2) = 0,
due to the Jacobi identity. When the cocycle is zero (which happens, for
example, when the Lie group is semisimple), there is an isomorphism be-
tween the Lie algebra of the infinitesimal generators Xa and the Lie alge-
bra of the Hamiltonians Ja with respect to the Poisson brackets: the mo-
ment map is said to be Ad*-equivariant . This name is due to the fact that
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{Ja, Jb} = −ccabJc is the “infinitesimal” version of the statement that the
following diagram is commutative:

M

J

Φx

Ad∗x

M

�

�

�
�

J

g∗ g∗

i.e., J(Φxu) = Ad∗xJ(u).

Indeed, projecting this commutativity relation on the basis {La}, we obtain

Ja(Φxu) = (Ad−1x )caJc(u) (2.3.10)

by definition (2.2.5) of coadjoint representation. Differentiating with re-
spect to xb and putting x = 1, then taking into account (2.2.6), along with
the skew symmetry of the Poisson bracket and of the structure constants,
we find

{Ja, Jb} = −ccabJc. (2.3.11)

This shows that (2.3.11) holds if the diagram is commutative.
For the connected component of the identity ofG, also the reverse holds.

Equation (2.3.11) asserts that bothmembers of (2.3.10) have the same deriva-
tive at the identity. Moreover, the twomembers of (2.3.10) agree at the iden-
tity: for the homogeneity of the group, the statement follows. Hereafter,
we will consider only Ad*-equivariant maps.

Example 2.18 An important example is that arising when a group acts on
the configuration space Q and the symplectomorphism Φ is an extended
point transformation. The infinitesimal generator Xξ is a vector field on

Q and the relative Ad∗-equivariant moment map is Jξ =
〈
Θ, Xξ

〉
; in coor-

dinates Jξ(q,p) = pμX
μ
ξ (q). Indeed, a straightforward calculation shows

that
{Jξ, Jη} = [Xξ,Xη]μpμ,

which ensures that (2.3.11) holds. See the following two examples.

Example 2.19 Take G = SO(3) acting on Q = R3; thus the moment map

T∗R3 → so∗(3) is given by the angular momentum −→
G = −→

q × −→
p of a point in

R3. It is easy to check that

{G1, G2} = −G3, {G2, G3} = −G1, {G3, G1} = −G2, (2.3.12)

according to (2.3.11).
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Example 2.20 TakeG = SO(3) acting on itself through left and right trans-
lations; thus the two relativemomentmaps concern a rigid body with a fixed
point, and they are given by the projection of the angular momentum on
the axes fixed in the space and with the moving body, respectively. The
three components of each one of the projections satisfy (2.3.12), while the
mutual Poisson brackets are zero. See Marsden & Ratiu (1994, Chapter XV).

If the Φ action on M is transitive, then for the Ad∗-equivariance the coad-
joint action of G on J(M) also is transitive, and M can be identified with (a
cover of) a coadjoint orbit of G on g∗. This is the content of the Kirillov–
Kostant–Souriau theorem (Guillemin & Sternberg 1990).

Example 2.21 Consider the action of SO(3) on the sphere S2 equipped with
the symplectic structure of Example 2.7. The action is clearly symplectic
and transitive, and in effect S2 is a coadjoint orbit on so∗(3); see Example
2.10.

Let us now suppose that on the symplectic manifoldM a dynamics is given,
which is invariant with respect to the groupG. In other words, a Hamiltonian
H : M → R is assigned such that

H ◦ Φx = H, ∀x ∈ G.

Differentiating with respect to the elements ofG at the identity, and noticing
that the right-hand side does not depend on G, we find

∂

∂xa
H(Φxu)

∣∣∣∣
x=1

=
〈
dH,dJ�a

〉
= {Ja,H} = 0 a = 1, . . . , N.

The components of the moment map relative to the symmetry group G are
therefore first integrals. The expression

{Ja,H} = LdJ�aH = −LdH�Ja = 0

can be interpreted in two “complementary” ways. In the first one, the
Hamiltonian is invariant along the flows generated by theG-action; thus the
Hamiltonian is invariant with respect to the group action. In the latter, the
components of themomentmap are invariant along the time flow generated
by the Hamiltonian; thus the Ja’s are first integrals. The relation between
symmetries and conservation laws constitutes the generalized Noether the-

orem and frequently allows us to guess the first integrals of a mechanical
system without calculations.

Example 2.22 The Hamiltonianp2/2+V(r) in T∗R3 is manifestly invariant
under the extended action of the rotation group; hence, from Example 2.19
it follows that the angular momentum is a first integral.
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But we can go even further. In the Lagrangian environment a one-para-
meter group of symmetry allows us to reduce the number of degrees of
freedom of a mechanical system by one. Also, in the Hamiltonian environ-
ment an N-dimensional Lie group of symmetries allows us to proceed to a
reduction. This is the content of the Marsden–Weinstein theorem (Marsden
& Weinstein 1974), concerning the reduction in the symplectic case. The
theorem can be generalized to the Poisson case (Marsden & Ratiu 1986).
In fact, let us define

J−1(μ) = {u ∈ M : J(u) = μ, μ ∈ g∗}.
We say that μ is a regular value if dJ|u is surjective for every u ∈ J−1(μ);
in such a case J−1(μ) is a differentiable submanifold of M. The action of G

on M in general moves this submanifold, while the action of the isotropy
subgroup

Gμ
def= {x ∈ G : Ad∗xμ = μ},

leaves it invariant. Indeed, if J(u) = μ and x ∈ Gμ, for the Ad*-equivari-
ance we have J(Φxu) =Ad∗xJ(u) =Ad∗xμ = μ. If the action of Gμ on J−1(μ)
is free and proper, then the space of the orbits Mμ = J−1(μ)/Gμ is a dif-
ferentiable manifold. The restriction of the symplectic 2-form Ω to J−1(μ)
is still a closed 2-form, which is, however, in general degenerate: the in-
duced linear map � : TM → T∗M has a nontrivial kernel. The content of the
Marsden–Weinstein theorem is essentially that this kernel is spanned by the
tangent vectors to the orbit of the Gμ-action on J−1(μ), so that, passing to
the quotient, we obtain that Mμ is symplectic. Mμ is said to be the symplec-

tic reduced manifold of M. Moreover, if the Hamiltonian on M is invariant
with respect to G-action, the dynamics projects down to Mμ.

Theorem 2.21 (Marsden–Weinstein) Let (M,Ω) be a symplectic mani-

fold on which the Lie group G acts symplectically and let J : M → g∗ be

an Ad*-equivariant moment map for this action. Assume μ ∈ g∗ is a regular

value of J and that the action of the isotropy subgroup Gμ on J−1(μ) is free

and proper. Then Mμ = J−1(μ)/Gμ has a unique symplectic form Ωμ with

the property

π∗μ Ωμ = i∗μΩ, (2.3.13)

where πμ : J−1(μ)→ Mμ is the canonical projection and iμ : J−1(μ)→ M the

inclusion.

The restriction of a G-invariant HamiltonianH to J−1(μ) induces a Hamil-

tonian Hμ on the reduced manifold Mμ, called the reduced Hamiltonian, de-

fined by

π∗μ Hμ = i∗μH.
Then, the vector field XH on J−1(μ) is πμ-related to the reduced vector field

XHμ on Mμ, that is,

TπμXH = XHμ ◦πμ.
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As for the dimension of the reduced manifold, dimMμ = dimM − dimG −
dimGμ.

In practice the theorem does not provide an explicit recipe, ready-made
for concrete applications. Rather, it unifies and clarifies several different
procedures that emerged historically, orienting the wayfarer in the calcula-
tion desert.

Example 2.23 Consider again the Hamiltonian p2/2+V(r) in T∗(R3−{0}).
In this case, the reduced manifold concides with the cotangent bundle of
(R3 − {0})/SO(3) = R+, the positive half-line. The reduced Hamiltonian is

H = 1
2

(
p2r +

G2

r 2

)
+ V(r), G =

∥∥∥ −→G∥∥∥ = const.
The system has been reduced to one degree of freedom, but the new poten-
tial G2/r 2 appears.

Example 2.24 The configurationmanifold of an asymmetric free rigid body
with a fixed point is SO(3), which is also the symmetry group. A general
construction shows that reducing T∗G under the action of the group G it-
self gives a coadjoint orbit in g∗; see Arnold (1989, appendix 5). Therefore,
in the present case we expect Mμ = S2. The angular momentum of the free
rigid body is a first integral; taking its projections on the orthogonal princi-
pal axes of inertia, fixed with the body, the Hamiltonian isH =∑3k=1G2k/2Ik,
where Ik are the principal momenta of inertia. Taking into account (2.3.12),
the Euler equations result:

d
−→
G

dt
= {H, −→G} = −→

ω× −→
G, whereωk = Gk

Ik
.

The vector
−→
G moves with respect to the axes fixed with the body and spans

a sphere S2, which is just the reduced symplectic manifold.

Example 2.25 The completely integrable systems of the next section are a
particular case, with G = Gμ = Rn, while the moment map is given by the
first integrals in involution and dimMμ = 0.

2.3.8 Liouville Theorem

Given a Hamiltonian, finding explicit solutions of the related, usually non-
linear, equations is in general a hopeless task. The very few cases in which
this is possible share the property that the problem can be reduced to the
quadrature, i.e., to invert functions and to perform integrations: this is the
case of complete integrability.
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Theorem 2.22 (Liouville) A sufficient condition for the complete integrabil-

ity of an n-dimensional Hamiltonian system is that

(i) it admits n first integrals Φk(q,p) = αk, k = 1, . . . , n,

(ii) that are in involution, i.e., {Φh,Φk} = 0, ∀h,k

(iii) and independent, i.e., det
(
∂Φh
∂pk

)
≠ 0.

Proof. One basically seeks for a canonical transformation sending the first
integrals into the new momenta, so that the transformed Hamiltonian de-
pends only on the momenta and is trivially integrable. Clearly, the trans-
formation does exist if and only if the first integrals are in involution, since
this holds true for any n-tuple of canonical momenta. In order to find such
a canonical transformation, notice that the n relations Φk(q,p) = αk can
be inverted, thanks to (iii), giving pk = Pk(q,α) from which

Φk(q,P(q,α)) ≡ αk ⇒ ∂Φk
∂qi

+ ∂Φk
∂pj

∂Pj
∂qi

≡ 0.

Replacing inside the Poisson brackets, a simple calculation gives

{Φh,Φk} = ∂Φh
∂pj

∂Φk
∂pi

(
∂Pi
∂qj

− ∂Pj
∂qi

)
.

Involutivity condition (ii) and independence condition (iii) implies that

∂Pi
∂qj

− ∂Pj
∂qi

= 0 ⇒ ∃ W(q,α) : Pk = ∂W

∂qk
.

Therefore,W(q,α) is the generating function of the sought canonical trans-
formation p,q → α,β and can be found through n integrations. The trans-
formed Hamiltonian K will depend on the variables α only, since

∂K

∂β
= −dα

dt
= 0,

and the Hamilton equations are trivially integrable. QED

The given proof is purely computational but can be rephrased in more ge-
ometric terms. The key idea is that of Lagrangian submanifold.

Definition 2.23 A Lagrangian submanifold of a 2n-dimensional symplec-

tic manifold, with Ω the symplectic 2-form, is an n-dimensional submanifold

Λ such that Ω|Λ = 0.
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With Ω|Λ we mean the evaluation of Ω on all the pairs of tangent vectors to
Λ or, in other words, the pull-back of Ω to Λ. Notice that n is the maximal
dimension of a submanifold for which the defining property can hold.
Consider the cotangent bundle T∗Q (the generalization to a generic

symplectic manifold is immediate owing to the Darboux theorem) and let
π : T∗Q → Q, u 	→ q be the canonical projection. LetΛ be a section of T∗Q;
it is an n-dimensional submanifold of T∗Q with a one-to-one projection on
the base manifold Q. But, by definition, a section of T∗Q is also a 1-form
(i.e., a covector field) λ on Q, so that Λ and λ are two different symbols
for the same object, according to whether we consider it as a submanifold
of T∗Q or as a 1-form on Q. Moreover, λ may also be regarded as a map
Q → Λ.
We need the following basic property of the canonical 1-form Θ of T∗Q :

λ∗Θ = λ, ∀λ.

On the left-hand side, λ : Q → Λ ⊂ T∗Q is viewed as a map, while on the
right-hand side λ is viewed as a 1-form on Q. In canonical coordinates, if
λ = λμ(q)dqμ and Θ = pμdqμ, then λ∗Θ is obtained by simply replacing
pμ = λμ(q) into Θ, which gives back λ, so λ∗Θ = λ. To prove the property
intrinsically, we recall (Example 2.6) that the canonical 1-form Θ is defined
by

〈Θ,w〉|u = 〈λ,π∗w〉|q , Θ|u ∈ T∗u (T∗Q), ∀w ∈ Tu(T∗Q).

Therefore, ∀v ∈ TqQ, and taking into account that π ◦ λ = identity in Q,〈
λ∗Θ, v

〉∣∣
q = 〈Θ, λ∗v〉|u = 〈λ,π∗λ∗v〉|q
= 〈λ, (π ◦ λ)∗v〉|q = 〈λ,v〉|q ,

holds, from which λ∗Θ = λ.
We can now prove the following

Theorem 2.24 A section Λ of T∗Q is Lagrangian if and only if the corre-

sponding 1-form λ is closed.

Proof. From the above property, and bearing in mind that the pull-back and
the exterior derivative commute, one finds

dλ = d(λ∗Θ) = λ∗dΘ = λ∗Ω = Ω|Λ ,

from which the theorem follows. QED

An immediate consequence is that Λ is Lagrangian if and only if there ex-
ists a scalar function W : Q → R, called the generating function of the
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Lagrangian section Λ, such that, at least locally, λ = dW. But we may argue
in another way: since Ω|Λ = dΘ|Λ = 0, thus, at least locally, Θ|Λ = dWΛ,
where WΛ : Λ → R is a scalar function defined on the Lagrangian submani-
foldΛ. The relation between the two functions is, up to an additive constant,

W = λ∗WΛ = WΛ ◦ λ,

indeed
d(λ∗WΛ) = λ∗dWΛ = λ∗Θ = λ = dW.

Therefore, W is the projection of WΛ on the base Q: even if WΛ is a well-
defined function on Λ, W fails to be so on the critical points of the projec-
tion.
Let us consider a Lagrangian foliation of a symplectic manifold,9 that is,

by definition, a family λα of 1-forms continuously depending on n parame-
tersα = α1, . . . , αn.. There is another way to describe a Lagrangian foliation.
Consider n functions Φk : T∗Q → R, k = 1, . . . , n; if their differentials dΦk
are independent, i.e., if the matrix ∂(Φ1,...,Φn)

∂(q1,...,pn)
has rank n (the condition (iii)

of the Liouville theorem is a particular case), then the n equations

Φ1(q,p) = α1, . . . ,Φn(q,p) = αn (2.3.14)

describe an n-dimensional foliation Λα of T∗Q when varying the parame-
ters α.

Theorem 2.25 The foliation Λα is Lagrangian if and only if the functions

Φk are in involution, that is, {Φh,Φk} = 0, h, k = 1, . . . , n.

Proof. From definition (2.1.9) of the Poisson bracket, one immediately de-
duces

{f ,g} = Ω(df�,dg�).
If the two functions are in involution, then the vector df� is tangent to the
manifold g = constant and dg� to f = constant, since

{f ,g} = Ldf�g = −Ldg�f = 0.

Therefore, the theorem follows from

{Φh,Φk} = Ω(dΦ�h, dΦ�k)

and from the independence of dΦ�1 , . . . , dΦ
�
n, which span the tangent space

to the level manifold Λα of (2.3.14). QED

9A foliation of a manifold M is a decompositiion of M into disjoint connected immersed
submanifolds of constant dimension less than that of M.
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The relation between the functions Φk, the 1-forms λα, and the generating

function W(q,α) should now be clear. If det
(
∂Φk
∂ph

)
≠ 0, one can invert, at

least locally, the n Equations (2.3.14) to find pk = Pk(q,α), with which one
constructs the 1-forms λα = Pk(q,α)dqk.Varying the parametersαk, these
1-forms describe a foliationΛα of sections of T∗Q that are Lagrangian, since
by hypothesis the functions Φk are in involution. Thus λα is closed and a
generating function Wα ≡ W(q,α) exists such that λα = dWα.
Let us look at some examples of integrable Hamiltonians, bearing in

mind, however, that a general analytical method able to detect such systems
is not known.

Example 2.26 Every one-dimensional time-independent Hamiltonian is in-
tegrable. The solutions are given by the level lines of H(q,p) = constant in
the two-dimensional phase space.

Example 2.27 The two systems of Examples 2.23 and 2.24 admit the an-
gular momentum as first integral, but its three Cartesian components are
not in involution; however, {G,G3} = 0 holds, since the norm of a vector
is invariant under the rotations generated by a component of the angular
momentum. Thus G,G3 and the Hamiltonian itself are three independent
first integrals in involution. In Example 2.24, the dynamical solutions are
given by the intersection lines between the reduced phase space S2 and the
ellipsoid H = const.

Example 2.28 The (Lagrange) spinning top is a heavy rigid body with rota-
tional symmetry, suspended at a point of the symmetry axis different from
the barycenter. The system is invariant for rotations about the vertical axis

and about the axis of material symmetry; therefore, Gspace3 and Gbody3 are
first integrals, which moreover are in involution: see Example 2.20.

Example 2.29 The variable separation in the Hamilton–Jacobi equation is
historically the richest source of integrable systems. A Hamiltonian is said
to be separable if, when one attemps a solution of the type

S(q1, . . . , qn,α1, . . . , αn) = S1(q1, α1, . . . , αn)+ · · · + Sn(qn,α1, . . . , αn),

the Hamilton–Jacobi equation splits inton ordinary differential equations of
first order, thus integrable through quadrature: see Cordani (2003, Chapter
VIII) for a summary and bibliography. In the Appendix to this chapter we
briefly study the Euler problem of the two fixed centers. Another celebrated
system is the Stark problem, a constant electric field acting on the hydrogen
atom. The Stark problem can be seen as the limit of the Euler problem when
one of the two fixed points goes to infinity.
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2.3.9 Arnold Theorem

A natural question is: What is the topology of the hypersurfaces generated
by the foliation Λα? At first glance one can say nothing about this topology,
which depends on the analytical expression of the first integrals Φ. But
here the involutivity condition, which in turn is a direct consequence of the
canonical structure, plays a key role.

Theorem 2.26 (Arnold) Given a completely integrable n-dimensional Ha-

miltonian system, the compact and connected components of the level sur-

faces of the first integrals are diffeomorphic to an n-dimensional torus, i.e.,

the product of n circles. Moreover, there exist canonical coordinates called

action-angle coordinates, such that the action variables parametrize the set

of the tori whereas the angles parametrize the points on a torus. The Hamil-

tonian, expressed as a function of these coordinates, depends only on the

actions, so that the dynamical evolution is a uniform rotation on an invari-

ant torus.

The key point in the proof consists of viewing the functions Φk(q,p) as
Hamiltonians generating flows that, by the involutivity, respect the folia-
tion and commute with one another. It is natural to think (though this is
the central point of the proof) that the sole n-dimensional compact hyper-
surface carrying n independent and commuting flows is the product of n
circles, i.e., the torus Tn.
The Arnold theorem will be proved through a series of lemmas, follow-

ing Arnold (1989) and Fasano & Marmi (1994). Let Λα be one of the n-
dimensional differentiable compact manifolds of the foliation (2.3.14) of
the 2n-dimensional symplectic manifoldM. On Λα act n commuting vector
fields XΦk = dΦ�k, inducing n commuting flows φ

t1
1 , . . . ,φ

tn
n . The commu-

tativity of the vector fields XΦk is with respect to the Lie brackets and is
inherited from the Poisson involutivity of the first integrals. We can there-
fore define an action on Λα of the n-dimensional abelian group Rn by

R
n ×Λα → Λα : (t1, . . . , tn,u) 	→ φ

t1
1 ◦ . . . ◦φtnn u,

which will be simply denoted by u 	→ φtu, t ∈ Rn.

Lemma 2.27 For any fixedu0 ∈ Λα the mapφ : Rn → Λα given byφUu0 = V
is a local diffeomorphism; here U is a neighborhood of 0 ∈ Rn and V a

neighborhood of u0.

Proof. For the independence of the differentials dφk and the invertibility of
�, the n commuting vectors XΦk = dΦ�k are independent. Integrating along
their directions, it is possible to parametrize all points of V through an el-
ement of U (note that φ0u0 = u0). Thus the transformation t 	→ u(t) is
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defined, and the rows of the Jacobian matrix of this transformation, eval-
uated at t = 0, are just the n vectors generating the flows. Therefore, the
Jacobian matrix is nonsingular, and the transformation is invertible for U
and V sufficiently small. QED

Remark 2.30 The map φ : Rn → Λα cannot be bijective since Λα is com-
pact, contrary to Rn.

Lemma 2.28 The action φ of Rn over Λα is transitive, that is

∀u0, u ∈ Λα, ∃t ∈ R
n : φtu0 = u.

Proof. Connect u to u0 with a curve on Λα. For the compactness of Λα the
curve can be covered with a finite number of neighborhoods of the previous
lemma, then define t as the sum of the various translations corresponding
to the neighborhoods of the covering. QED

The preceding lemma says that Λα is a homogeneous manifold under the
action of the Lie group Rn. But, in general, if a Lie group G acts transitively
on a manifold M, the isotropy subgroups Gu, relative to any point u ∈ M,
are all isomorphic (owing to the homogeneity of the G-action) andM can be
identified with G/Gu. We are therefore led to study the isotropy subgroup,
say Γ , of the Rn-action on Λα, that is, the set of inverse images of u ∈ Λα
under the map φt : Rn → Λα.

Lemma 2.29 The isotropy subgroup Γ of Rn is a discrete group.

Proof. Since φt is a local diffeomorphism, the origin 0 ∈ Rn is an isolated
point of Γ , so that there is a neighborhood U ⊂ Rn of the origin such that
Γ ∩ U = {0}. This imposes that any other point of Γ is isolated. Indeed, let
us suppose on the contrary that t ≠ 0 is an accumulation point of Γ . Then

t +U = {t +u : u ∈ U}
is a neighborhood of t; therefore, an element s ∈ (t + U) ∩ Γ , with s ≠ t,
should exist. But s − t ≠ 0 and s − t ∈ Γ ∩ U, since s, t ∈ Γ , and this is a
contradiction. QED

All the discrete subgroups of Rn are generated by k linearly independent
vectors e1, . . . , ek ∈ Rn, 0 ≤ k ≤ n; that is, every subgroup Γ is the set of all
their linear combinations with integer coefficients:

Γ : {m1e1 + · · · +mkek, (m1, . . . ,mk) ∈ Z
k}.

A basis {e1, . . . , ek} of Γ is not unique; indeed we have the following
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Lemma 2.30 Let M be a unimodular matrix, i.e., a square matrix with integer

entries and detM = ±1. Then any other set {e′1, . . . , e′k} ⊂ Γ of k independent

vectors is a basis of Γ if and only if there exists a k × k unimodular matrix

(Mij) such that

e′i =
k∑
j=1

Mijej, i = 1, . . . , k. (2.3.15)

Proof. Let us suppose that the condition (2.3.15) is satisfied. Then the
set {e′i} generates a subgroup Γ ′ ⊆ Γ , since its vectors are independent
and generated with integer coefficients by a basis of Γ . Inverting (2.3.15)
and noticing that the inverse of a unimodular matrix is still a unimodular
matrix, we can also infer, with the same argument, that Γ ⊆ Γ ′. Therefore
Γ ′ = Γ . Let us now suppose that {e′1, . . . , e′k} is a basis of Γ . Then there
exists an invertible matrix M transforming the basis {e1, . . . , ek} to the basis
{e′1, . . . , e′k}. Since e′j ∈ Γ , the matrix M must have integer entries. On the
other hand, since {e′1, . . . , e′k} is a basis of Γ , the inverse matrix also must
have integer entries. That implies that both M and M−1 have an integer
determinant, and by detM·detM−1 = 1 we get detM = ±1. QED

Remark 2.31 If detM = −1, one can recover the case detM = 1 by simply
exchanging two basis vectors. Hereafter, we will always take M ∈ SL(n,Z).
We notice that k independent vectors of Γ do not form in general a basis,
since they do not generate the whole Γ but only a subgroup. In order to find
such a basis, let us associate the k-dimensional parallelogramD(e1, . . . , ek),
defined as

D(e1, . . . , ek) = {μ1e1 + · · · + μkek, 0 ≤ μj < 1, j = 1, . . . , k},
to a set {e1, . . . , ek} ⊂ Γ of independent vectors. We claim that this set is a
basis of Γ if and only if

D(e1, . . . , ek)∩ Γ = {0}. (2.3.16)

Indeed, if the condition is not satisfied, the vectors belonging toD∩Γ cannot
be generated (with integer coefficients) by the set, which therefore is not a
basis of Γ . Vice versa, if the condition is satisfied, all the elements of Γ are
generated, since any element of Γ is external to D and by assumption the
set {e1, . . . , ek} is a basis of the vector space Rk containing Γ . Giving to Rk a
Euclidean metric, we can speak of the area (or volume) ofD. If the condition
(2.3.16) is not satisfied, one can substitute an element of {e1, . . . , ek} with
an element belonging to D, in such a way that the new set is still a basis
of Rk and, moreover, the area of the new parallelogram is strictly smaller.
With a finite number of steps we can construct a set satisfying the condition
(2.3.16), which therefore forms a basis of Γ .
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From the previous lemmas we deduce that Λα � Rn/Γ � Rn−k × Tk. If
Λα is compact, k = n and we reach the basic conclusion that Λα is dif-
feomorphic to the n-dimensional torus Tn. Moreover, we can now make a
semiglobal statement about the topology of the symplectic manifold M.

Σ Σ′ = φej(Σ)
u u′

u0 u′0
Λα

Λα

Figure 2.3: Construction of the coordinates α,ψ. The shaded area is the neigh-
borhood V ⊂ M of Λα.

Lemma 2.31 There exists an open neighborhood V ⊂ M of any Λα that is

diffeomorphic to the product of an open neighborhood U ⊂ Rn and a torus,

i.e., V � U × Tn, and can be covered with coordinates α1, . . . , αn on U and

angular coordinates ψ1, . . . ,ψn on Tn.

Proof. See Figure 2.3. For a fixed α take any point u0 ∈ Λα and construct a
differentiable manifold Σ transversal to Λα in u0: by definition this implies
that the tangent space to Σ is complementary in Tu0M to that of Λα, thus
dimΣ = n. Consider the basis vectors ej of the isotropy subgroup of u0,
i.e., φeju0 = u0, j = 1, . . . , n. We can write, for any u′0 ∈ Λα, that u

′
0 =

φtu0, t ∈ Rn and give to this point angular coordinates ψ, by putting t =∑n
i=1

ψi

2π ei. Let the surface Σ evolve under the action ofφ
ej . Another surface

Σ′ = φej(Σ) is obtained, different in general from Σ but surely containing
u0. If U is sufficiently small, Σ′ is transversal to Λα, ∀α ⊂ U ; therefore, for
everyu′ ∈ Σ′, uniquely determined by a valueα, there exists a differentiable
function τj(α) such that τj(α) = 0 and, if u ∈ Σ∩Λα, such thatφτj(α)u′ =
u. Hence, φej+τj(α)u = u. For every α = (α1, . . . , αn) in U, the periods
ej(α) = ej + τj(α) that determine the isotropy subgroup of u on any Λα,
and allow us to give angular coordinates ψ to any point of Λα (as above to
u′0), can thus be defined. QED
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The previous lemma is global with regard to the parametrization of points
on a torus, but only local with regard to the parametrization of the tori
themselves. The lemma says thatM is a fiber bundle whose base is covered
with a family of open sets like U and the fiber is an n-dimensional torus.
In this sense we say that it is a semiglobal statement, since nothing is said
about the global topology of the bundle, which in general may be nontrivial.
The coordinatesα1, . . . , αn,ψ1, . . . ,ψn are not in general canonical coor-

dinates. However, it is possible to construct a set of canonical coordinates
as follows. Let γi be a cycle on the torus, parametrized by the angle ϕi. In
order to impose that Ij,ϕk, j, k = 1, . . . , n are canonical coordinates, we
require, as in (2.3.5), that the two 1-forms pkdqk and Ikdϕk differ for an
exact 1-form, whose integral along a cycle is therefore zero. Thus∮

γi
Ikdϕ

k =
∮
γi
pkdq

k.

On the left-hand side dϕk = 0, ∀k ≠ i, and Ii is constant along the cycle
since, by definition, it is just the Hamiltonian generating γi. Therefore,

Ii = 1

2π

∮
γi
Pk(q,α)dqk. (2.3.17)

The action variables are therefore functions of the first integrals Φ’s only.
For any foliation these functions are invertible, so that the action variables
are a system of n independent first integrals in involution.
We remark that this definition does not depend, to some extent, on the

particular cycle γ. If we take, indeed, any other cycle γ′ = γ + ∂σ, σ ⊂ Λα,
homologous to γ, the value of the integral does not change, owing to the
Stokes theorem and to the fact that Ω|Λα = dΘ|Λα = 0:∮

γ′
Θ =

∮
γ
Θ+

∮
∂σ
Θ =

∮
γ
Θ+

∮
σ
dΘ =

∮
γ
Θ.

This definition, however, must be taken with some care when (in practice:
always) the first integrals are generated by separation of variables, so that
the cycle γk is assumed to be the closed curve described by Φk(qk,pk) =
constant on the phase plane qkpk. Varying the value of the first integrals,
γk also varies: the subtle point is that, coming back to the starting value
of the first integrals, the cycle γk does not in general agree with the initial
one. Rather, if the torus bundle is not trivial,

γk 	→ γ′k =
∑
h

Mkhγh, Identity ≠ (Mkh) ∈ SL(n,Z).

This implies that the definition (2.3.17) is only local; i.e., it is meaningful as
long as the value of the first integrals varies in a simply connected open set
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of the base space. Globally, the action variables can be in general multival-
ued functions of the first integrals: in this case, the system is said to have a
nontrivial monodromy. See Cushman & Sadovskií (2000) or Cordani (2003,
pages 312 and 417–422) for a concrete example.
The canonical transformation (p, q) 	→ (I,ϕ) transforms a completely

integrable HamiltonianH(p,q) into a newHamiltonianK(I),which depends
only on the actions. The Hamilton equations are

İk = −∂K(I)
∂ϕk

= 0, ϕ̇k = ∂K(I)

∂Ik
;

i.e., the actions are first integrals (as already known) and the angles evolve
linearly with the time.
The action-angle variables are not defined univocally. New coordinates

on the same torus can be generated by the following canonical transforma-
tions.

(i) Translations of the action variables:

I′k = Ik + ck, ϕ′h =ϕh, (c1, . . . , cn) ∈ R
n;

the actions appear indeed in the formulae only through their gradi-
ents.

(ii) Translations of the origin of the angles by quantities depending on
the torus:

I′k = Ik, ϕ′h =ϕh + ∂f(I)
∂Ih

,

where f is an arbitrary scalar function; this reflects the arbitrariness
in the choice of the point u0 and of the surface Σ, see figure 2.3.

(iii) A linear transformation by a unimodular matrix:

ϕ′ = M−1ϕ, I′ = MtI,

which reflects the arbitrariness in the choice of the basis of the isotropy
subgroup Γ : see Lemma 2.30.

2.3.10 Action-Angle Variables: Examples

Let us study some examples of action-angle variables that will be relevant
in the sequel.

Example 2.32 Consider the 1-dimensional harmonic oscillator, with Ha-
miltonian (in rescaled form)

H = 1
2
ω0(p

2 + q2).
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The action is given by dividing by 2π the area enclosed by the circles H =
const., thus with radius

√
p2 + q2:

I = 1

2π
·π(p2 + q2), ϕ = − arctan p

q
, H =ω0I.

Notice that {I,ϕ} = 1.

The extreme simplicity of this example is deceptive. Finding explicitly the
action-angle variables is equivalent to solving the equations of motion, and
in general requires the evaluation of nontrivial integrals, even involving
nonelementary transcendental functions, as the following examples show.

Example 2.33 The vibrational motion of diatomic molecules can be de-
scribed by the Morse oscillator

H = 1
2
p2 + 1

2
(e−q − 1)2.

The potential has a minimum for q = 0 and tends to infinity for q → −∞
and to 1/2 for q → +∞. To restrict to non equilibrium bounded orbits,
0 < H < 1/2 must hold. To calculate the action, one must evaluate the
integral

I(H) = 1
π

∫ q2
q1

√
2H − (e−q − 1)2dq, q1,2 = − log(1±

√
2H).

The final result is

I = 1−
√
1− 2H,

cosϕ = 1− e
q(1− 2H)√
2H

.

Example 2.34 The pendulum is described by the Hamiltonian

H = 1
2
p2 −ω20 cosq,

where ω0 is the frequency for the linearized oscillation about the stable
equilibrium point. Define the elliptic integral of first and second kind

F(ϕ,k) =
∫ϕ
0

dϕ′√
1− k2 sin2ϕ′

, E(ϕ,k) =
∫ϕ
0

√
1− k2 sin2ϕ′ dϕ′

respectively; define also

k =
√√√√1
2

(
1+ H

ω20

)
, sinη = 1

k
sin

q

2
.



2.3 Lagrangian and Hamiltonian Mechanics 75

Clearly, for k < 1 the motion is libratory and for k > 1 it is oscillatory. Then
one finds

I = 8ω0
π

{
E(π/2, k)− (1− k2)F(π/2, k)

kE(π/2,1/k)
k < 1
k > 1

ϕ = π

2

{
F(η, k)/F(π/2, k)

2F(q/2,1/k)/F(π/2,1/k)
k < 1
k > 1

.

The following last example is a nontrivial generalization of the harmonic
oscillator. It regards a Hamiltonian quadratic in 2n canonical coordinates,
which gives rise to linear equations of motion.
Before we consider the example, we recall that trying a solution of the

type x(t) = c eλt for the linear equation ẋ =Ax, one finds that λ and c
must be an eigenvalue and an n-dimensional eigenvector, respectively, of
the n × n matrix A. If, as we always suppose, the eigenvalues are distinct,
hence the eigenvectors independent, the general integral is⎛⎜⎜⎝

x1(t)
...

xn(t)

⎞⎟⎟⎠ =
⎛⎜⎝ T11 · · · T1n
· · · · · · · · ·
Tn1 · · · Tnn

⎞⎟⎠
⎛⎜⎜⎝
eλ1t

...
eλnt

⎞⎟⎟⎠ ,
where the columns of the n × n invertible matrix T are the eigenvectors,
each one multiplied by an arbitrary integration constant. Define the diago-
nal matrix Λ= diag(λ1, . . . , λn); thus AT = TΛ and the matrix T diagonal-
izes A. From ẋ =TΛT−1x, it follows that x′ def= T−1x satisfies the equation
ẋ′ =Λx′. The origin x = 0 is an equilibrium position that is (not asymptot-
ically) stable if the eigenvalues are imaginary numbers: in such a case, the
equilibrium point is called elliptic.

Example 2.35 Let xt = (q1, p1, . . . , qn,pn) be the transpose of a 2n dimen-
sional column vector x and H a 2n × 2n symmetric matrix. Define the
Hamiltonian H = 1

2x
tHx. Let10

Ω = diag
[(

0 1
−1 0

)
, . . . ,

(
0 1

−1 0

)]

be the inverse of the 2n× 2n canonical matrix, then A = ΩH.

Proposition 2.32 If λ is an eigenvalue of ΩH, then also −λ,λ∗,−λ∗ are

eigenvalues and requiring the stability of the equilibrium point x = 0 forces

the λ’s to be imaginary numbers.

10In order to simplify some formulae in the subsequent proof, we assume an order of the
canonical coordinates such that the canonical matrix is slightly different from the usual.
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Proof. The complex conjugate of an eigenvalue is itself an eigenvalue for
the reality of ΩH. Moreover,

(ΩH− λ12n)t = (−HΩ− λ12n) = ΩΩ(HΩ+ λ12n) = Ω(ΩH+ λ12n)Ω,
from which

det(ΩH− λ12n) = det(ΩH− λ12n)t = det(ΩH+ λ12n),
which proves that the opposite of an eigenvalue is again an eigenvalue. In
order to have stability, no eigenvalue must have positive real part, and in
the present case this forces the λ’s to be imaginary numbers. QED

We can now prove the following theorem.

Theorem 2.33 If the origin is an elliptic point of the quadratic Hamiltonian

H = 1
2x

tHx, then there exists a linear invertible transformation S

x = SX, Xt = (Q1, P1, . . . ,Qn, Pn)
which is real, canonical and reduces the Hamiltonian to the sum of n har-

monic oscillators with positive or negative frequency.

Proof. After the transformation the Hamilton equations becomes

Ẋ = Ω′H′X, Ω
′ = S−1Ω(S−1)t, H′ = St HS.

If S is symplectic, i.e., by definition StΩ S= Ω, also S−1 and St are symplectic
and Ω′ = Ω. In order to construct such a matrix S, solve the eigenvalue
problem

ΩHw = λw, w ∈ C
2n, λ = iω with ω ∈ R, (2.3.18)

and form the 2n × 2n matrix T= (w1,w∗
1 ,w2,w

∗
2 , . . . ,wn,w

∗
n) which im-

plies

T−1ΩHT = diag(iω1,−iω1, iω2,−iω2, . . . , iωn,−iωn), ωk > 0. (2.3.19)

Notice that also TD, where D is an arbitrary diagonal matrix, satisfies the
same relation (2.3.19) since diagonal matrices commute; this agrees with
the fact that every eigenvector is defined up to an arbitrary multiplicative
constant. In order to pass to real form, put

wk
def= uk + ivk, uk, vk ∈ R

2n,

and define the real matrix R = (u1, v1, u2, v2, . . . , un, vn), which satisfies

R−1ΩHR = diag
[(

0 ω1
−ω1 0

)
, . . . ,

(
0 ωn

−ωn 0

)]
(2.3.20)
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as a consequence of (2.3.18).
Let us find how R differs from being symplectic. To this end we calculate

the generic entry of thematrix TtΩT, i.e., the skewproductwtΩw′ between
two generic eigenvectors. From the relations

wtHw′ = −wt
ΩΩHw′ = −λ′wt

Ωw′,

wtHw′ = wtHΩtΩw′ = (ΩHw)tΩw′ = λwt
Ωw′,

we get (λ + λ′)wtΩw′ = 0. Therefore, wtΩw′ = 0 for λ + λ′ ≠ 0, from
which wtΩw′

≠ 0 for λ + λ′ = 0 must hold for the independence of the
eigenvectors. Taking into account that the eigenvalues are distinct imagi-
nary numbers, we get that the sole non vanishing case is

wt
kΩw

∗
k = (utk + ivtk)Ω(uk − ivk) = −2iutkΩvk ≠ 0, ∀k.

Then, in order to get a symplectic matrix, all we have to do is normalize the
eigenvectors. Defining

dk = 1√
utkΩvk

, D = diag
[(

d1 0
0 d1

)
, . . . ,

(
dn 0
0 dn

)]
,

the matrix RD results symplectic,

DtRtΩRD = Ω,
but in general not real. To make it real, preserving at the same time the
symplectic property, define the matrix

I = diag (a1,a2, . . . ,an) with

ak =
(
1 0
0 1

)
if utkΩvk > 0,

ak =
(
i 0
0 −i

)
if utkΩvk < 0,

so that the matrix S = RDI results real and symplectic. With regard to the
equations of motion and recalling (2.3.20), we see that

Ẋ = S−1ΩHSX with

S−1ΩHS = diag
[(

0 ±ω1
∓ω1 0

)
, . . . ,

(
0 ±ωn

∓ωn 0

)]

holds, where one must take the upper or lower sign whenutkΩvk is positive
or negative, respectively. Therefore, the new form of the Hamiltonian is

H = 1
2

n∑
k=1

±ωk(P
2
k +Q2k) =

n∑
k=1

±ωkIk,
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showing that the Hamiltonian is the sum of n harmonic oscillators with
positive or negative frequency. QED

It is important to stress that the signs in the Hamiltonian expression are far
from being innocuous when the problem is perturbed. If the Hamiltonian
is a positive or negative definite function, a small perturbation does not
destroy the stability of the equilibrium; however, if the signs are different,
the hypersurface H = const is not compact, and a small perturbation can
push the point to infinity.

2.A Appendix: The Problem of two Fixed Centers

An interesting example of an integrable system is the Euler problem, regard-
ing the motion of a point under the Newtonian action of two fixed masses.
The relative Hamiltonian result separable using the elliptic coordinates in
the plane:

x =
√
(ξ2 − 1)(1− η2), y = ξη+ 1,
ξ ≥ 1, −1 ≤η ≤ 1.

The lines ξ = constant are ellipses with foci at F1 ≡ (0,0) and F2 ≡ (0,2),
and the lines η = constant are confocal hyperbolas.
Taking a unitary mass in F1 and a massm < 1 in F2, the Hamiltonian of

the Euler problem is

H = 1
2

(
ξ2 − 1
ξ2 − η2p

2
ξ +

1− η2
ξ2 − η2p

2
η

)
− 1

ξ + η −
m

ξ − η.

To separate the variables, let us multiply by ξ2 −η2 and, after a reordering
of the terms, we find the second first integral γ besides the total energy

Hξ2 − 1
2
(ξ2 − 1)p2ξ + (1+m)ξ = −γ,

Hη2 + 1
2
(1− η2)p2η + (1−m)η = −γ.

A direct calculation shows that

γ = Ey − 1
2
G2 +my − 2

r2
−H.

We seek the complete integral of the Hamilton–Jacobi Equation in the form

S(ξ, η,H,γ, t) = Sξ(ξ,H, γ)+ Sη(η,H,γ)−Ht,



2.A Appendix: The Problem of two Fixed Centers 79

from which (
∂Sξ
∂ξ

)2
= 2Hξ

2 + (1+m)ξ + γ
ξ2 − 1 ,(

∂Sη
∂η

)2
= 2Hη

2 + (1−m)η+ γ
η2 − 1 ,

and the problem is reduced to the quadratures.
The function S generates the canonical transformation(

pξ pη
ξ η

)
	→
(
H γ
β1 β2

)
.

Since the transformed Hamiltonian vanishes identically, the new coordi-
nates β1, β2 are also first integrals. In particular, from

∂S
∂γ = constant we

find ∫
dξ√

(ξ2 − 1) [Hξ2 + (1+m)ξ + γ]

+
∫

dη√
(η2 − 1) [Hη2 + (1−m)η+ γ]

= constant,

from which

dτ = dξ√
(ξ2 − 1) [Hξ2 + (1+m)ξ + γ]

,

dτ = − dη√
(η2 − 1) [Hη2 + (1−m)η+ γ]

,

(2.A.1)

τ being a parameter. If we succeed in integrating the two right-hand sides,
we find, after inversion, the parametric expressions ξ(τ) and η(τ) of the
orbit. The properties of the orbits can be studied with an accurate qualita-
tive analysis of the position of the roots ξ1, ξ2 and η1, η2 of the polynomials
Hξ2+(1+m)+γ andHη2+(1−m)+γ with respect to the other two roots
−1 and+1 of the two denominators: see Cordani (2003) for details. See also
Mathúna (2008) for a complete treatment with explicit analytic solutions.
In the generic case of distinct roots, the program EULER, written in the

MAPLE language, performs the two integrations analytically, implementing
the general method described in Whittaker & Watson (1952, Section 22.7 of
Chapter XXII) and Bowman (1961, Chapter IX). Given the initial position and
velocity, the program displays the resulting orbit.
It turns out that for negative energy there exist four types of bound

orbits: see Figure 2.4.
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(vi) γ +H = −(1+m)

Figure 2.4: Orbit types for the Euler problem.

(i) When ξ1 ≤ ξ ≤ ξ2, with ξ1, ξ2 > 1, while −1 ≤ η ≤ 1, the point P turns
around F1 and F2, touching alternatively the two ellipses ξ = ξ1 and
ξ = ξ2 and filling an “elliptic channel.” We say that P is a planet of the
system.

(ii) When 1 ≤ ξ ≤ ξ2, where ξ2 is the only root > 1, while −1 ≤ η ≤ 1, the
point P moves inside the ellipse ξ = ξ2, crossing the y-axis between
F1 and F2. We say that P is a satellite of the system.

(iii) When ξ2 is the only root > 1, while −1 ≤ η ≤ η1, where η1 is the only
root strictly contained in (−1,1), the point P turns around F1 filling
the area delimited by the ellipse ξ = ξ2 and the hyperbola η = η1.We
say that P is a satellite of F1.

(iv) When 1 ≤ ξ ≤ ξ2, where ξ2 is the only root > 1, while −1 ≤ η ≤ η1
or η2 ≤ η ≤ 1, where η1 < η2 are the two roots strictly contained in
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(−1,1), the point P moves inside the area, delimited by the ellipse ξ =
ξ2 and the hyperbola η = η1,which contains F1.Alternatively, it moves
inside the area, delimited by the ellipse ξ = ξ2 and the hyperbola
η = η2, which contains F2. The two motions are selected by the initial
position. We say that P is a satellite of F1 or F2.

The reader can usefully compare the exact motion given by EULER with the
numerical output of KEPLER.



CHAPTER 3

Perturbation Theory

A torus is a large convex moulding,
usually at the base of a column.

Given the Hamiltonian H0 of a completely integrable system, the perturbed

problem is described by the Hamiltonian H = H0 + εHp, where Hp is a
function whose numerical value is of the same order of H0, and ε << 1.
The perturbed problem thus differs slightly from the unperturbed one, but
unfortunately the same is not true for the solution: a small perturbation
can give rise to secular effects, i.e., to a slow but progressive wandering
from the unperturbed, and known for infinite time, solution.
In this chapter we will describe the methods of perturbation theory. In

the first section of the chapter only formal series expansion are considered,
while in the second section the subtle problem of their convergence is con-
sidered, and the key points of the proof of the KAM theorem on perpetual
stability are given. In the third section Nekhoroshev theorem on stability
for an exponentially long time is stated, along with a sketch of the proof. In
the fourth section we sum up the geography of the phase space. In the fifth
section the results of the two theorems are extended to the case of elliptic
equilibrium points. In the two final appendices the Diophantine inequality
and the route to chaos through the homoclinic tangle mechanism are briefly
studied.
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3.1 Formal Expansions

The basic idea of perturbation theory, i.e., considering a perturbation in
some sense “small” and thus proceeding to series expansions, goes back
to the early ages of classical mechanics. Its actual form, however, is due
to Poincaré (1892–1893–1899), and may be summarized in this way: find
a canonical transformation, which differs from the identity in a quantity
of order ε, such that the transformed Hamiltonian is integrable up to the
second order terms. One may obviously iterate the procedure, pushing the
perturbation to third order, and so on. If the process converges (but this is
the key point), to higher orders one obtains better and better approxima-
tions.
In the sequel we adopt this point of view, but with a technical improve-

ment that simplifies some calculations: as suggested in Hori (1966) and
Deprit (1969), use of the Lie series is made, avoiding those inversion prob-
lems which occur typically for methods involving the generating function
of a canonical transformation.

3.1.1 Lie Series and Formal Canonical Transformations

Let us consider a one-parameter family of diffeomorphisms Φτ, τ ∈ R, de-
fined in some analytic manifold N. Such a family is said to be a flow when

(i) for τ = 0 one has Φ0 = identity,
(ii) Φτ′ ◦ Φτ′′ = Φτ′+τ′′ .

If the flow is defined for every τ, it is a one-parameter group of diffeomor-
phisms. Otherwise, Φτ represents a local flow. Let x = x1, . . . , xn be local
coordinates on N, and xτ = Φτx the coordinates of the transformed point.
To every flow Φτ corresponds the vector field (a sort of velocity field)

X(x) = d

dτ
(Φτx)

∣∣∣∣
τ=0

,

called the generator of the flow.
One may reverse the argument, starting from a vector field X and defin-

ing the corresponding flow Φτ as that which satisfies

d

dτ
(Φτx) = X(Φτx),

i.e., as the solution of the dynamical system

dx

dτ
= X(x). (3.1.1)
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Let f : N → R be any function of the state of the system, which we
shall also call a dynamical variable. Then the evolution of f under the flow
generated by the vector field X is naturally defined as the function f(Φτx).
If f is differentiable, then its derivative with respect to τ is

df

dτ
=
∑
i

Xi
∂f

∂xi
.

This suggests defining the operator

LXf =
∑
i

Xi
∂f

∂xi
,

which maps the space of the analytic functions on N into itself. LXf is
called the Lie derivative of f along the flow generated by X. It is plainly a
linear operator, which satisfies the Leibniz rule

LX(fg) = fLXg + gLXf . (3.1.2)

Given two vector fields X and Y , the commutator [LX,LY ] is again a
derivative with respect to a vector field, since

[LX,LY ] = L[X,Y],
where, by definition,

[X, Y]j =
n∑
h=1

(
Xh
∂Yj

∂xh
− Yh ∂X

j

∂xh

)
(3.1.3)

is the Lie bracket . In fact, the second derivatives cancel out.
As one can easily verify, the commutator between vector fields possesses

the following properties:

(i) it is linear, i.e., [X,αY + βZ] = α[X,Y]+ β[X,Z];
(ii) it is skew symmetric, i.e., [X, Y]+ [Y ,X] = 0;
(iii) it satisfies the Jacobi identity, i.e.,

[X, [Y ,Z]]+ [Y , [Z,X]]+ [Z, [X, Y]] = 0

for every vector field. This shows that the vector fields form a Lie algebra
with respect to the commutator.
The Lie derivative allows us to construct the general solution of the dy-

namical system (3.1.1) explicitly, though at a formal level. Let us look for a
solution which satisfies the initial conditions x(0) = x0 and of the form

x(τ) = x0 + τx(1) + τ2x(2) + · · · ,
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namely a power expansion with coefficients

x(s) = 1
s!

ds

dτs
(Φτx0)

∣∣∣∣
τ=o

.

On the other hand, since Φτ is the flow generated by the vector field X, it is
immediately seen that

d

dτ
(Φτx0)

∣∣∣∣
τ=o

= X|x=x0 , . . . ,
ds

dτs
(Φτx0)

∣∣∣∣
τ=o

= Ls−1X X
∣∣∣
x=x0

, . . . ,

where LXX = (LXX1, . . . ,LXXn). Remarking that LXx = X, the solution can
be given in the explicit form

x(τ) = x0 + τLXx|x=x0 +
τ2

2!
L2Xx

∣∣∣
x=x0

+ τ
3

3!
L3Xx

∣∣∣
x=x0

+ · · ·
def= exp(τLX)x0.

The exponential Lie operator exp(τLX) we have just defined is clearly
linear and provides us with a flow. In fact, for τ = 0 it is the identity, and
moreover

exp(tLX) ◦ exp(τLX) =
∑
r≥0

tr

r !
LrX

∑
s≥0

τs

s!
LsX

=
∑
k≥0

1

k!
LkX

k∑
j=0

(
k

j

)
tjτk−j =

∑
k≥0

(t + τ)k
k!

LkX = exp ((t + τ)LX) .

A basic feature of the exponential Lie operator is the exchange property,
which will be used in the reduction to normal form of a perturbed Hamil-
tonian. Put

xτ = exp(τLX)x = x + τX + · · · ,
and consider it as a coordinate change: x 	→ xτ. Given some f(x), define
fτ(x) = f(xτ). Then

dfτ(x)

dτ

∣∣∣∣
τ=0

= df(xτ)

dτ

∣∣∣∣
τ=0

=
n∑
k=1

∂f(xτ)

∂xkτ

dxkτ
dτ

∣∣∣∣∣
τ=0

=
n∑
k=1

Xk
∂f(x)

∂xk
= LXf(x),

from which

f(exp(τLX)x) = f(x)+ τ df(xτ)
dτ

∣∣∣∣
τ=0

+ 1
2!
τ2

d2f(xτ)

dτ2

∣∣∣∣∣
τ=0

+ · · ·

= f(x)+ τLXf(x)+ 1
2!
τ2L2Xf(x)+ · · · = exp(τLX)f(x),
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showing that the exponential Lie operator can be moved in front of the
function, so that the transformed function can be calculated without sub-
stitution of variables. In particular, by taking f : R → R and X = 1 one finds
the elementary Taylor series development.
Until now the manifold N has been supposed to be generic. From now

on N will be a 2n-dimensional symplectic manifold, and the vector field Xχ
the symplectic gradient of some Hamiltonian χ : N → R,

(Xχ)
k =

2n∑
h=1

Ω
kh ∂χ

∂xh
,

(Ωkh) being the inverse of the matrix associated to a symplectic 2-form. To
simplify the notation we put LXχ = Lχ. The Poisson bracket between two
dynamical variables F,G : N → R can thus be written

{F,G} def=
2n∑

h,k=1

∂G

∂xh
Ω
hk ∂F

∂xk
= LFG = −LGF,

for the skew symmetry of the symplectic 2-form.
The closure property of the 2-form ensures the validity of the classical

Jacobian formula

{H, {F,G}} + {F, {G,H}} + {G, {H,F}} = 0,

which can be written as

LH{F,G} = {F,LHG} + {LHF,G},

similar to the Leibniz formula (3.1.2).
As far as we are concerned, the key property is: the transformation

x 	→ xτ = exp(τLχ)x is canonical for every τ. It is an obvious consequence
of the fact that xτ is the solution at “time” τ of the Hamilton equations with
Hamiltonian χ.
With these tools at hand we can study the perturbations of Hamiltonian

systems.

3.1.2 Homological Equation and Its Formal Solution

Consider the perturbed Hamiltonian system

H(x) = H0(x)+ εHp(x), x ∈ N,

where N is a symplectic manifold. We want to find a canonical transforma-
tion

x 	→ x′ = exp(εLχ)x = x + εLχx +O(ε2)
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with generator χ, transforming H into a completely integrable Hamiltonian
up to second order terms. Even this somewhat “minimal” requirement can
be satisfied in general only under certain conditions.
Recalling the exchange property, we can write

H(x′) = exp(εLχ)H = H + εLχH + · · ·
= H0 + ε(Hp +LχH0)+O(ε2).

We must find the unknown generator χ in such a way that the first order
term Hp + LχH0 becomes integrable. To this end, let us assume that the
local coordinates x’s are action-angle variables

x = I1, . . . , In,ϕ1, . . . ,ϕn.

Hence the unperturbed HamiltonianH0 will be a function of the action vari-
ables only. Without loss of generality, we suppose that H0 = H0(I1, . . . , Id),
d ≤ n. In this case, H0 is said to be (n − d)-fold totally degenerate. Later
on, we will also consider the nondegenerate Hamiltonian H0, i.e., such that

det
(
∂2H0
∂Ih∂Ik

)
≠ 0. If d = n, the unperturbed Hamiltonian is said to be totally

nondegenerate. Notice that a Hamiltonian can be totally nondegenerate but
degenerate: for example, H0 = I1 + I22 .
Let us suppose first that the unperturbed system is totally nondegener-

ate, and put

ωi(I) = ∂H0
∂Ii

, i = 1, . . . , n.

The vector with componentsωi(I) is called the frequency vector. This name
is due to the following fact. The Hamilton equations of the unperturbed
system

İh = 0, ϕ̇h =ωh(I),

are easily integrated

Ih(t) = I0h, ϕh(t) =ωh(I
0)t +ϕ0h,

with I0h and ϕ
0
h integration constants. The unperturbed angles evolve with

constant angular velocity, whence the name.
Write the first order perturbing term as

Hp −LH0χ = Hp −ω · ∂χ.

Obviously Hp is also a function of the angles; otherwise, the perturbed
system would be integrable. It is tempting to try to find the unknown χ
such that the disturbing term goes to zero, but this is not possible: in fact
the termω · ∂χ has vanishing mean value with respect to the angles, while
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Hp is a generic function. Hereafter an overbar will denote the averaging of
a function over the angles:

f = 1

(2π)n

∫
Tn
f (ϕ1, . . . ,ϕn)dϕ1 . . . dϕn,

where Tn =
n times︷ ︸︸ ︷

S1 × · · · × S1 is the n-dimensional torus. Expanding into a
Fourier series, we get

χ(I,ϕ) = χ(I)+
∑

k∈Zn−{0}
χk(I)e

ik·ϕ,

Hp(I,ϕ) = Hp(I)+
∑

k∈Zn−{0}
Hpk(I)e

ik·ϕ,

where

χk(I) = 1

(2π)n

∫
Tn
χ(I,ϕ)e−ik·ϕ dϕ1 . . . dϕn,

Hpk(I) = 1

(2π)n

∫
Tn
Hp(I,ϕ)e

−ik·ϕ dϕ1 . . . dϕn,

and k ∈ Zn − {0} is an n-dimensional vector with integer components
(k1, . . . , kn) not all zero. Choosing

χk(I) =
Hpk(I)

ik ·ω ,

plainly annihilates the disturbing term except for its mean value part, leav-
ing us with the transformed Hamiltonian

H(I,ϕ) = H0(I)+ εHp(I)+O(ε2). (3.1.4)

We call resonant those frequency vectorsω for which there exists some
k ∈ Zn−{0} such that k ·ω = 0. Excluding the resonant frequency vectors,
we are thus able to solve the equation

Hp −Hp =ω · ∂χ (3.1.5)

and to push the unwanted dependence on the angles up to second order
terms. Equation (3.1.5) was called by Poincaré the homological equation.
The procedure can be obviously iterated. Applying to (3.1.4) the oper-

ator exp(ε2Lχ2) and solving a second homological equation, the unwanted
dependence on the angles is pushed to third order, and so forth. To give an
idea of how the iterative process works, we report explicitly the first four
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terms, putting, for simplicity, Lχj = Lj. Then

1∏
j=4
exp(εjLj)H = H0 + ε

(
L1H0 +Hp

)
+ ε2

(
L2H0 + 1

2
L21H0 +L1Hp

)
(3.1.6)

+ ε3
(
L3H0 + 1

2
L21Hp +L2Hp +L2L1H0 +

1

6
L31H0

)
+ ε4

(
L4H0 + 1

2L2L21H0 +L2L1Hp +L3L1H0
+L3Hp + 1

2L22H0 + 1
24L41H0 + 1

6L31Hp

)
+O(ε5).

As is easily seen, the term of order r is of the type

εr
(
Hr(χr−1, χr−2, . . . , χ1,H0,Hp)−ω · ∂χr

)
,

withHr some function. Having solved the homological equations of order≤
r−1, the respective generators are all known, and the homological equation
of order r

Hr −Hr =ω · ∂χr
can, at least formally, be solved, leaving us with the term εrHr (I). The
transformed Hamiltonian is said to be in normal form to order r , and the
process we have described is referred to as the normalization procedure.
We have proved that, at least for a totally nondegenerate H0 and exclud-

ing the resonant frequency vectors, a perturbed but truncated at some finite
order problem can be made completely integrable. Let us now consider an
(n − d)-fold totally degenerate system. In this case, only the first d com-
ponentsωa(I) of the frequency vector are different from zero, so that only
the first d angles (the fast angles) evolve for the unperturbed Hamiltonian.
If the perturbation is switched on, the other angles (called the slow angles)
evolve too, but very slowly due to the smallness of the perturbation:

İj = −ε
∂Hp
∂ϕj

, ϕ̇a =ωa + ε
∂Hp
∂Ia

, ϕ̇h = ε
∂Hp
∂Ih

,

j = 1, . . . , n, a = 1, . . . , d, h = d+ 1, . . . , n.

The normalization process can clearly be performed only for the fast angles.
These are eliminated from the perturbation up to some finite order, while
the slow angles survive in the normalized Hamiltonian; loosely speaking,
there is no fast angular evolution on which to average. This means that the
normalized Hamiltonian is not integrable, and one must devise a further
strategy if he wants to continue in an analytical way.
In every case, i.e., either total degeneracy of some order or total nonde-

generacy, a perturbed Hamiltonian is said to be in normal form at order r
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if

H = H0 +
r∑
j=1

εjHj +O(εr+1), {H0,Hj} = 0 ∀j ≤ r .

3.2 Perpetual Stability and KAM Theorem

In this section (where we consider nondegenerate analytical Hamiltonians,
i.e., det(∂2H0/∂Ih∂Ik) ≠ 0) we tackle the crucial question: Does the nor-
malization process converge when r → ∞? Clearly, the delicate points are
two:

(i) the convergence of the formal solution of the homological equation;

(ii) the convergence of the ε-development.

Untill the fundamental work of Kolmogorov (1954), two diametrically op-
posed answers had been given. For the astronomers, interested in the com-
putation of perturbed orbits, the answer was (more or less tacitly) affirma-
tive:1 the negative one seemed to be a disaster, making the series expan-
sions pointless. On the contrary, for the statistical physicists, interested in
the possibility of applying the ergodic theorem, the answer was decisively
negative. That of Kolmogorov was, in some sense, a Solomon’s verdict: the
ultimate fate of a slightly perturbed orbit depends on the initial conditions,
so that for the same perturbed Hamiltonian two different orbit types in
general coexist, i.e., orbits staying in the neighborhood of an unperturbed
one for infinite time (we speak of perpetual stability ) and others departing
indefinitely.
To make this statement more precise, let us consider the unperturbed

motions. For a completely integrable system, the phase space is foliated
with n-dimensional tori. If the normalization process converged, the trans-
formed Hamiltonian would still be integrable, and the tori, though slightly
deformed, would continuously fill the phase space. But complete integrabil-
ity is an exception, and even a very small perturbation would destroy it. The
point is that this destruction does not happen abruptly: for small pertur-
bations only a few tori disappear, their number growing with the intensity
of the perturbation. But what kind of tori are destroyed first? Since by
assumption H0 is nondegenerate, hence det (∂ωh/∂Ik) ≠ 0, the frequency
vectors can substitute the actions in order to label the tori. The frequency
vectors can be classified (with a Diophantine inequality) on the basis of the
more or less reciprocal irrationality of their components. The Kolmogorov
theorem then states that those tori whose frequency vectors have compo-
nents reciprocally close to rationality are the first ones, as ε grows, to be
destroyed, while those characterized by a sufficiently strong irrationality
are only slightly deformed, giving rise to perpetual stability.

1With obviously some notable exceptions, for example Poincaré.



92 Perturbation Theory

The Kolmogorov theorem was stated in Kolmogorov (1954) with just a
sketch of the proof. A complete and rigorous proof was subsequently given
in Arnold (1963), Moser (1955), Moser (1962), and Moser (1967), but follow-
ing different lines. The original idea of Kolmogorov was then reconsidered
in Benettin, Galgani, Giorgilli & Strelcyn (1984) and completed. The whole
argument is now referred to as KAM theory from the acronym of the author
names. In the next subsection we prove the Kolmogorov theorem, closely
following Benettin et al. (1984), to which we refer for the details omitted in
the proof. Then, we will briefly outline Arnold’s proof. The following two
steps are basic in both proofs (compare with points (i) and (ii) mentioned
above).

(i) Solve a truncated linearized problem that reduces the system into one
that is closer to being completely integrable. This comes down to
solving some homological equation(s), and it is in this step that small
denominators come into play.

(ii) Use a rapidly converging iteration scheme to get rid of the perturba-
tion term. This iteration scheme is nothing but an adaptation of New-
ton’s (or the quadratic) method. The need for such a rapidly decaying
iteration is forced by the requirement to beat the explosive growth
of the perturbative terms due to small denominators. The quadratic
method consists essentially, at every stage, in taking H0 plus all the

previous averaged terms as the new unperturbed Hamiltonian, so that
every perturbative term is the square of the preceding one and de-
creases as ε2

r
, instead of εr .2

Before presenting the various theorems, we must return to the Lie series
and to the solution of the homological equation through the Fourier series
in order to investigate their convergence: remember, that the “solution”
already found is only formal.
Let us fix some notation. For v ∈ Cn, we put ‖v‖ = max

i
|vi| . Analo-

gously, the norm of a matrix (Mij) is defined as for an n2-vector, namely

by ‖M‖ =max
ij

∣∣∣Mij∣∣∣ . Moreover we put
I = {I1, . . . , In} ∈ B ⊂ R

n, ϕ = {ϕ1, . . . ,ϕn} ∈ T
n,

B being an open ball in Rn. Being interested in the analytic case, we will
consider complex extensions of subsets ofR2n and of real analytic functions

2In effect the quadratic method is very useful in making the proof easier but it is not
strictly necessary. Direct proofs of the convergences of the perturbative series have been
produced on the basis of a suitable grouping of terms and consequent cancellation. See
Chierchia & Falcolini (1994), Chierchia & Falcolini (1996), and Giorgilli & Locatelli (1997).
Thesemethods are conceptually more natural, enlightening the deepmechanismwhich leads
to the convergence while, in some sense, the quadratic method resorts to brute force.
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Figure 3.1: The domain D� for n = 1.

defined there. Having fixed I∗ ∈ B and a positive � < 1 so small that the
real closed ball of radius � centered at I∗ is contained in B, a central role
will be played by the subset D� of C2n defined by

D� = {(I,ϕ) ∈ C
2n :

∥∥I − I∗∥∥ ≤ �, ‖Imϕ‖ ≤ �},
where Imϕ = (Imϕ1, . . . , Imϕn): see Figure 3.1. Clearly, the domain D�

is the complex extension of the real n-dimensional torus I = I∗. For what
concern functions, letA� be the set of all complex analytic functions in the
interior of D� that are real for real values of the variables. Their norm is
defined by ∥∥f∥∥� = sup∣∣f(z)∣∣ , z ∈ D�, f ∈A�.

In the case of vector-valued functions f = (f1, . . . , fn) with values in Cn, we
also write f ∈A� if fh ∈A�, h = 1, . . . , n and define∥∥f∥∥� =max

h

∥∥fh∥∥� .
Analogously, if D is an (n × n) matrix whose elements Dhk belong to A�,
we set

‖D‖� =max
hi

‖Dhi‖� .

3.2.1 Cauchy Inequality

Being interested in giving estimates, we will make use of the Cauchy inequal-
ity. Given f ∈ A�, a positive δ < �, and nonnegative integers ji, hi (i =
1, . . . , n), we prove that∥∥∥∥∥∥ ∂j1+···+jn+h1+···+hn

∂I
j1
1 . . . ∂I

jn
n ∂ϕ

h1
1 . . . ∂ϕ

hn
n

f(I,ϕ)

∥∥∥∥∥∥
�−δ

≤ j1! . . . jn!h1! . . . hn!

δ
j1+···+jn+h1+···+hn

∥∥f∥∥� . (3.2.1)
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Let us first comment on this formula. In order to check the convergence of
some series, we would like the right-hand side to be small, but δ is the only
parameter at our disposal: choosing it large we restrict the domain on the
left-hand side so that, iterating the application of the Cauchy inequality, the
domain measure risks to vanish. We are between the two fires of conflicting
requirements, and the delicate point is to prove convergence while keeping
at the same time the domain measure finite.
For the proof of the Cauchy inequality, consider an open disk Δ�(z0)

centered at the point z0 of the complex plane C. Consider a function f
analytic and bounded on the disk Δ�(z0). The supremum norm

∥∥f∥∥� of f
in the domain Δ�(z0) is defined as∥∥f∥∥� = sup

z∈Δ�(z0)

∣∣f(z)∣∣ .
First we prove the Cauchy inequality for the derivative f ′ at the origin:

∣∣f ′(z0)∣∣ ≤ 1
�

∥∥f∥∥� .
More generally, for the s-th derivative f (s) one has the estimate∣∣∣f (s)(z0)∣∣∣ ≤ s!

�s
∥∥f∥∥� .

Notice that this estimate cannot be improved in general. In fact, let z0 =
0, � = 1, and consider the function f(z) = zs : then ∥∥f∥∥1 = 1, so that the
Cauchy inequality gives

∣∣∣f (s)(0)∣∣∣ ≤ s!. The proof of the inequalities above
is an easy consequence of the Cauchy integral formula

f (s)(z) = s!

2πi

∮
f(ζ)

(ζ − z)s+1 dζ.

Indeed, let z = z0 and let the integration path be the circle of radius � with
center at z0. If ζ − z0 = �eiθ, then dζ = i(ζ − z0)dθ and∣∣∣f (s)(z0)∣∣∣ ≤ s!

2π

∮ ∣∣∣∣∣ f(ζ)

(ζ − z0)s+1
∣∣∣∣∣ �dθ,

so that the claim follows by replacing
∣∣ζ − z0∣∣ = � and ∣∣f(ζ)∣∣ ≤ ∥∥f∥∥� .

In the case of n variables the extension is straightforward. Let the do-
main Δ�(z0) be the polydisk of radius � centered at z0 ∈ Cn, namely

Δ�(z0) = {z ∈ C
n : |z − z0| ≤ �},

where |z| = maxj
∣∣∣zj∣∣∣ . This is nothing but the Cartesian product of com-

plex disks of radius � in the complex plane. Define the supremum norm of
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an analytic function f as above. Then∣∣∣∣∣ ∂f∂zj (z0)
∣∣∣∣∣ ≤ 1� ∥∥f∥∥� , 1 ≤ j ≤ n.

The estimates can be extended to more general domains. Indeed, let G
be a subset of Cn, and consider the domain

G� =
⋃
z∈G

Δ�(z),

that is, the domain G� is the union of closed polydisks of radius � around
every point of G.
The supremum norm of a complex function f : G� → C is defined in a

natural way as ∥∥f∥∥� = sup
z∈Gρ

∣∣f(z)∣∣ .
Proposition 3.1 Let f be analytic in the interior of G�, and let

∥∥f∥∥� be

finite. Then for any positive δ ≤ � one has∥∥∥∥∥ ∂f∂zj
∥∥∥∥∥
�−δ

≤ 1
δ

∥∥f∥∥� .
Proof. Let us consider a point z ∈ G�−δ, i.e., the union of polydisk of radius
� − δ centered at every point of G. Remark that the polydisk Δδ(z) is a
subset of G�, so that f is analytic and bounded on the polydisk; moreover,
we have the estimate

∣∣f(z′)∣∣ ≤ ∥∥f∥∥� for all z′ ∈ Δδ(z). By the Cauchy
estimate, we immediately get∣∣∣∣∣ ∂f∂zj (z)

∣∣∣∣∣ ≤ 1δ ∥∥f∥∥� , 1 ≤ j ≤ n.

Since this is true for every point z ∈ G�−δ, we obtain the result. QED

Taking for G the n-dimensional torus I = I∗ and consequently G� = D�,
the generalization (3.2.1) follows.

3.2.2 Convergence of Lie Series

First we note that, given two functions χ, f ∈A� with

‖∂χ‖ρ def= max
⎛⎝∥∥∥∥∂χ∂I

∥∥∥∥
�
,

∥∥∥∥∥ ∂χ∂ϕ
∥∥∥∥∥
�

⎞⎠ , (3.2.2)
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and any positive δ < �, the Cauchy inequality and a count of the terms in
Poisson brackets give

∥∥Lχf∥∥�−δ ≤ 2n‖∂χ‖ρδ

∥∥f∥∥� ,∥∥∥L2χf∥∥∥�−δ ≤ 4n(2n+ 1)
(‖∂χ‖ρ

δ

)2 ∥∥f∥∥� . (3.2.3)

Let χ be the generator of a (for a moment formal) canonical transforma-
tion

Q : J,ψ → I,ϕ.

The existence of such a canonical transformation Q with associated oper-
ator expLχ, and some relevant estimates are then given by the following
proposition.

Proposition 3.2 Assume ‖∂χ‖ρ < δ
2 . Then, for all initial data (J,ψ) ∈

D�−δ, the solution of the canonical system

dI

dτ
= − ∂χ

∂ϕ
,
dϕ

dτ
= ∂χ

∂I

at τ = 1 exists in D�, thus defining a canonical transformation Q : D�−δ →
D�, Q ∈ A�−δ. Then, the operator expLχ : A� → A�−δ, with expLχf =
f ◦Q, is well defined. Moreover, one has the estimates

‖Q− identity‖�−δ ≤ ‖∂χ‖ρ (3.2.4)

and ∥∥expLχf∥∥�−δ ≤ ∥∥f∥∥� ,∥∥expLχf − f∥∥�−δ ≤ 4n‖∂χ‖ρδ

∥∥f∥∥� , (3.2.5)

∥∥expLχf − f −Lχf∥∥�−δ ≤ 16n(2n+ 1)
(‖∂χ‖ρ

δ

)2 ∥∥f∥∥� .
Sketch of the proof. The standard existence and uniqueness theorem guar-
antees that the mapping

Qτ(J,ψ) = (I(τ),ϕ(τ))

and, in particular, the mapping Q1 is defined. This mapping is obviously
canonical, being the “time-one” solution of a canonical system. Estimate
(3.2.4) is an immediate consequence of the mean value theorem. The first
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of (3.2.5) is trivial. The second and the third inequalities follow from the
Taylor formulae for f of first and second order respectively, namely

expLχf − f = df

dτ

∣∣∣∣
τ′
= Lχf

∣∣
τ′ ,

expLχf − f − df
dτ

= 1
2

d2f

dτ2

∣∣∣∣∣
τ′′
= 1
2
L2χf

∣∣∣
τ′′
,

with 0 < τ′, τ′′ < 1, and from (3.2.3). QED

Having verified that the Lie series expansions are not only formal, we in-
vestigate the solution of the homological equation, which is an unavoidable
passage in every perturbative theory.

3.2.3 Homological Equation and Its Solution

In this subsection we only consider functions of the angles, so that the
actions will be considered as parameters, and thus disregarded.
We know that the homological equation

∑
i

λi
∂F(ϕ)

∂ϕi
= G(ϕ)

is formally solvable if G = 0. Here λ = (λ1, . . . , λn) ∈ Rn is a known fixed

arbitrary frequency vector that we suppose to be nonresonant. The formal
solution is

F(ϕ) =
∑

k∈Zn−{0}

gk
ik · λe

ik·ϕ, (3.2.6)

where gk are the Fourier coefficients of G. At first sight, it seems that
this sum cannot converge in general, i.e., for arbitrary frequency vectors
(λ1, . . . , λn), even if nonresonant. In fact, the set in Rn for which the de-
nominator vanishes is dense (since the rational numbers are dense on the
real line and every nonempty open set in R contains at least one rational
number), and for hope of convergence we must exclude from the sum not
only the resonant term, but also those for which k · λ is very small. This is
the celebrated problem of the “small denominators.” The situation may ap-
pear hopeless but, fortunately, a classical result in Diophantine theory (see
Appendix 3.A) guarantees that k · λ can be bounded from below without
being left with an empty set. In more precise terms, the inequality

|k · λ| ≥ γ

|k|n ∀k ∈ Z
n − {0}, |k| def=

∑
i

|ki| , (3.2.7)
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for some positive γ is satisfied by a set Ωγ of real vectors λ of large rela-
tive measure, the complement of this set having Lebesgue measure O(γ).
Inequality (3.2.7) is referred to as the Diophantine condition or inequality.
This is a key point. In fact, since G is by hypothesis analytic, we prove

that its Fourier coefficients gk decay exponentially with |k|, while 1
|k·λ| grows

at most as a power, owing to the Diophantine condition. This allows us to
prove the convergence of (3.2.6).
It is easy to estimate the exponential decay of the Fourier coefficients of

an analytical functionG(ϕ), ϕ ∈ S1. The set |Imϕ| < � can be represented
as a thin circular strip surrounding the unit circle in the complex plane of
the variable z = eiϕ. Then

gk = 1

2π

∫ 2π
0
G(ϕ)e−ikϕdϕ = 1

2π

∫ 2π
0
G(ϕ ± i�)e±k�e−ikϕdϕ, k ∈ Z

since, for the analyticity of G, it is possible to shift the integration path
from the unit to the inner or outer circle of the strip. Taking the minus sign
for k > 0 and the plus sign for k < 0, we obtain∣∣gk∣∣ ≤ ‖G‖� e−|k|�.
The argument is straightforwardly extended to then-dimensional case, with

k ∈ Zn and |k| def= ∑
i |ki| ,

We will also need this proposition, which is the inverse of the previous
statement.

Proposition 3.3 Suppose that for some positive constants C and � with

� ≤ 1 and for each k ∈ Zn one has the sequence of constants
∣∣fk∣∣ such

that
∣∣fk∣∣ ≤ Ce−|k|�. Define the function F(ϕ) = ∑k fke

ik·ϕ. Then, for any

positive δ < � one has F ∈ A�−δ and

‖F‖�−δ ≤ C
(
4

δ

)n
.

Proof. Let ‖Imϕ‖ ≤ �− δ. Then

‖F‖�−δ = sup
∣∣∣∣∣∣ ∑
k∈Zn

fke
ik·ϕ

∣∣∣∣∣∣ ≤ C ∑
k∈Zn

e−|k|�e|k|(�−δ)

= C
∑
k∈Zn

e−|k|δ = C
⎛⎝∑
k∈Z

e−|k|δ
⎞⎠n

< 2nC

⎛⎝ ∞∑
k=0

e−δk
⎞⎠n = 2nC 1(

1− e−δ)n < C
(
4

δ

)n
,
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because 1
1−e−δ <

2
δ for any positive δ < 1. QED

We can now prove the following

Proposition 3.4 Consider the homological equation

∑
i

λi
∂F(ϕ)

∂ϕi
= G(ϕ),

and assume λ ∈ Ωγ and G ∈A� for some positive γ and � with G = 0. Then,

for any positive δ < �, the homological equation admits a unique solution

F ∈A�−δ with F = 0. For this solution one has the basic estimates

‖F‖�−δ ≤
σn
γδ2n

‖G‖� ,
∥∥∥∥∥ ∂F∂ϕ

∥∥∥∥∥
�−δ

≤ σn
γδ2n+1

‖G‖� ,

where σn = 24n+1
(
n+1
e

)n+1
.

Proof. The formal solution of the homological equation is given by (3.2.6),
where now we assume that the frequency vector λ satisfies the Diophantine
condition (3.2.7). By G ∈ A� and exponential decaying of Fourier coeffi-
cients, one has ∣∣fk∣∣ ≤ |k|n

γ
‖G‖� e−|k|�. (3.2.8)

For any strictly positive K, s, δ, by putting Kδ
s = x one easily verifies that

Ks ≤
(
s

eδ

)s
eKδ,

from which, putting K = |k| and s = n, we get
∣∣fk∣∣ ≤ Ce−|k|(�−δ), with C = 1

γ

(
n

eδ

)n
‖G‖� .

For any δ < � and with �− δ in place of �, Proposition 3.3 ensures that

F(ϕ)
def=
∑
k≠0

fke
ik·ϕ ∈A�−2δ,

‖F‖�−2δ ≤
1

γ

(
4n

eδ2

)n
‖G‖� .

Taking δ2 instead ofδ, the statement of the proposition and the first estimate

are proved, because σn >
(
16n
e

)n
.
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Let us prove the latter estimate. From (3.2.6), the Fourier coefficients of
∂F
∂ϕj
result in the form hkj =

kjgk
λ·k , j = 1, . . . , n, so that from the Diophantine

inequality one gets ∣∣∣hkj∣∣∣ ≤ |k|n+1
γ

‖G‖� e−|k|�.

But, with K = |k| and s = n+ 1, this gives
∣∣∣hkj∣∣∣ ≤ Ce−|k|(�−δ), with C = 1γ

(
n+ 1
eδ

)n+1
‖G‖� ,

so that from Proposition 3.3, with �− δ in place of �, one obtains∥∥∥∥∥ ∂F∂ϕ
∥∥∥∥∥
�−2δ

≤ 4n

γδ2n+1

(
n+ 1
e

)n+1
‖G‖� .

By taking again δ
2 instead of δ, one therefore obtains also the second esti-

mate. QED

Remark 3.1 The above estimates are not optimal. With deeper arguments
optimal estimates can be given with δ2n and δ2n+1 replaced by δn and δn+1

respectively, and σn replaced by
24n+1n!
2n−1 . See Rüssmann (1975).

Let us comment on this result. The set Ωγ is a Cantor set (see Appendix
3.A) of large measure, which is both good and bad news: unfortunately,
the bad outweighs the good. Indeed, we can now push the perturbation
to second order almost everywhere but, because of the complete loss of
differentiability, this Pyrrhic victory on the small denominators prevents us
from taking the further steps, which would push the perturbation to higher
orders. In order to escape this essential difficulty, two different strategies
have been proposed by Kolmogorov and by Arnold, respectively.

3.2.4 KAM Theorem (According to Kolmogorov)

An important thing we have learned is that the goal of classical perturbation
theory to completely eliminate the angles in the transformed Hamiltonian
is hopeless. Even a very small perturbation destroys the foliation of the
phase space in invariant tori, and the n first integrals in involution of the
unperturbed problem no longer exist.
The basic idea of Kolmogorov is to focus attention on the conservation

problem of the tori, instead of on the existence problem of the first integrals
in involution, and to investigate if all tori are destroyed, or if some survive
for infinite times. To this end, he fixes the frequency vector, and states
that, if this vector satisfies the Diophantine condition and the perturbation

news:unfortunately
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is sufficiently small, the corresponding torus is only slightly deformed by the
perturbation, but not destroyed. Considering only one fixed torus allows us
clearly to avoid the difficulty of the lack of differentiability.
To state and prove the Kolmogorov theorem, we start with a rearrange-

ment of the perturbed Hamiltonian H(I,ϕ), which we suppose already ex-
pressed as a function of the action-angle variables. Having fixed the values
of the action variables, which we can safely put to zero, by a Taylor expan-
sion in I one can write the Hamiltonian H in the form

H(I,ϕ) = a+A(ϕ)+ [λ+ B(ϕ)] · I + 1
2
I ·D(ϕ) I + R(I,ϕ).

Here λ is the frequency vector of the unperturbed Hamiltonian, a ∈ R is
a constant that is uniquely defined by the condition A = 0, while A,Bi,Dij
and R ∈A�, with R of the order ‖I‖3 . One has clearly

a = H(0), A(ϕ) = H(0,ϕ)− a,

Bi = ∂H

∂Ii
(0,ϕ)− λi, Dij(ϕ) = ∂2H

∂Ii∂Ij
(0,ϕ).

Let us suppose for a moment that A(ϕ)+ B(ϕ) · I = 0. Then the Hamilton
equations would be

ϕ̇i = λi +
∑
j

DijIj + ∂R
∂Ii
,

İi = − ∂

∂ϕi

[
1

2
I ·D I + R

]
,

which admit the particular solution

Ii(t) = 0, ϕi(t) = λit +ϕ0i ,

as one sees using the fact that R is of order ‖I‖3 . In other words, if one is
not guaranteed to have a foliation of the whole phase space into invariant
tori, however, by a simple inspection one can still ascertains the invariance
of one torus supporting quasi-periodic motions with angular frequency λi.
The Kolmogorov theorem just states that the disturbing term A(ϕ) +

B(ϕ) · I can be removed with a canonical transformation Q : J,ψ → I,ϕ.
In the new canonical variables J,ψ the torus Ji = 0 is thus invariant for the
Hamiltonian flow induced by the transformed Hamiltonian H ◦Q. In terms
of the original variables I,ϕ this torus is described by the parametric equa-
tions (I,ϕ) = Q(0,ψ), and is invariant for the Hamiltonian flow induced by
H. This torus is a small perturbation of the torus Ii = 0,which is by assump-
tion invariant for the unperturbed Hamiltonian, supporting quasi-periodic
motions with the same angular frequencies λi.
We can now state the main theorem of this chapter.
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Theorem 3.5 (Kolmogorov) Consider the Hamiltonian

H(I,ϕ) = H0(I,ϕ)+Hp(I,ϕ)

defined in the domain D� by

H0(I,ϕ) = a+ λ · I + 1
2
I ·D(ϕ) I + R(I,ϕ),

Hp(I,ϕ) = A(ϕ)+ B(ϕ) · I

with ‖H‖� < 1 and R of order ‖I‖3 . Let us suppose that

(i) λ ∈ Ωγ : the unperturbed frequency vector satisfies the Diophantine

condition,

(ii) detD≠ 0,

then there exist positive numbers η and �′ with �′ < � such that, if Hp is

small enough to have

(iii) max
(
‖A‖� ,‖B‖�

)
≤ η,

one can construct a canonical analytical transformation

Q : D�′ → D�, Q ∈A�′ ,

which brings the Hamiltonian H into the form

H′(J,ψ) ≡ (H ◦Q)(J,ψ) = a′ + λ · J + R′(J,ψ),

where R′ ∈ A�′ is, as a function of J, of order ‖J‖2 . This canonical trans-

formation is near the identity, in the sense that ‖Q− identity‖�′ → 0 as

‖Hp‖� → 0.
Notice thatDij ∈A� and (ii) are equivalent to the existence of a positive

m such that

(ii’) ‖Dv‖� ≤ 1
m ‖v‖ , m‖v‖ ≤ ∥∥Dv∥∥ , ∀v ∈ Cn.

The scheme of the proof of the Kolmogorov theorem is as follows. One
performs a sequence of canonical analytical transformations such that the

disturbing term Hp at step r decreases with r , its norm
∥∥∥Hpr ∥∥∥

�r
being es-

sentially of the order of
∥∥∥Hpr−1∥∥∥2�r−1 (Newton’s quadratic method), while

the other parameters �r and mr are kept controlled and strictly positive.

The convergence of the scheme with
∥∥∥Hpr ∥∥∥

�r
→ 0, �r → �∞ > 0, and

mr →m∞ > 0 as r →∞ is then established.
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Let us now describe a step of the iterative process, which amounts to
implement the first of the two basic points on page 92. We stress that itera-
tive Lemma 3.6 below and in particular expression (3.2.17) are the mainstay

of the whole theorem.
If a canonical change of variables with generating function χ is per-

formed, one obtains in place of H the new Hamiltonian H′ which we can
decompose as H′ = H′0 +H′p, fully analogously to the previous decompo-
sition H = H0 +Hp. Precisely, one has

H′0 = a′ + λ · J + 1
2
J ·D′(ψ)J + R′(J,ψ),

H′p = A′(ψ)+ B′(ψ) · J

with R′(J,ψ) of order ‖J‖3 . In the spirit of the perturbation theory, one
thinks that both H′p and the generating function χ are of first order and
chooses χ in order to eliminate the unwanted terms of the same order in
the new Hamiltonian H′. To this end one first writes the identity

H′ = H0 +Hp +LχH0 +
[LχHp + expLχH −H −LχH] , (3.2.9)

where all terms which must to be considered of the second order have been
collected into the bracket [. . .], in agreement with the estimate given in the
third of (3.2.5). Then one tries to choose χ in such a way that the first order
terms in H′, namely Hp +LχH0, do not contribute to H′p. This is obtained
by imposing

Hp +LχH0 = c +O
(
‖I‖2

)
,

where c is a constant.
Following Kolmogorov (1954), we show that this condition is met by a

generating function χ of the form

χ = ξ ·ϕ +X(ϕ)+ Y(ϕ) · I,

where the constant ξ ∈ Rn and the functions X(ϕ), Yi(ϕ) are to be suit-
ably determined. The generating function is the sum of two terms: the
term Y(ϕ) · I acts in the “angle direction” and is needed to straighten out
the flow up to order O(ε2), while the other term ξ ·ϕ + X(ϕ) acts in the
“action direction” and is needed to keep the frequency of the torus fixed. A
straightforward calculation gives

Hp +LχH0 = −
∑
i

ξiλi +A(ϕ)−
∑
i

λi
∂X

∂ϕi

+
∑
h

⎡⎣Bh(ϕ)−∑
i

Dih(ϕ)

(
ξi + ∂X

∂ϕi

)
−
∑
i

λi
∂Yh
∂ϕi

⎤⎦ Ih +O (‖I‖2) .
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Then one must impose∑
i

λi
∂X

∂ϕi
= A(ϕ), (3.2.10a)

∑
i

λi
∂Yh
∂ϕi

= Bh(ϕ)−
∑
i

Dih(ϕ)

(
ξi + ∂X

∂ϕi

)
, (3.2.10b)

which are two homological equations. By Proposition 3.4, Equation (3.2.10a)
can be solved for the unknown X because A = 0. Then one has to determine
the unknown constants ξi in such a way that the mean value of the right-
hand side of (3.2.10b) vanishes. This leads to a linear system of equations
for ξi, which in matrix notation can be written as

Dξ = B −D
∂X

∂ϕ
. (3.2.11)

This equation can be solved since, by hypothesis, detD ≠ 0. Also Equation
(3.2.10b) in the unknown Y can therefore be solved.
The existence of the wanted generating function χ is thus guaranteed,

and onemust now prove the existence of the corresponding canonical trans-
formation Q. Therefore, in order to apply Proposition 3.2, we exhibit the
following basic estimate involving the generating function χ : Equations
(3.2.10a), (3.2.10b), and (3.2.11) in the unknown ξi,X(ϕ), and Yi(ϕ), which
define the generating function χ, can be solved with X,Yi ∈A�̃, �̃ = �−2δ
for any positive δ < �

2 , and, for the quantity ‖∂χ‖ρ̃ defined by (3.2.2), one
gets

‖∂χ‖ρ̃ ≤ (4n+ 1)σ 2n
η

γ2m3δ2(2n+1)
. (3.2.12)

This inequality, concerning a function of the solutions of the two homolog-
ical Equations (3.2.10a), (3.2.10b), can be verified with a twofold application
of Proposition 3.4.
Let us choose two real numbers �∗ andm∗ (bounding parameters) such

that 0 < �∗ < �, 0 < m∗ < m. Define moreover the constant Λn = 2(4n+
1)2σ 2n. Assume that η (which is a measure of the perturbing term) is so
small that

m−nΛn η

�2∗γ2m3δ4n+3
>m∗. (3.2.13)

Remarking that the inequality (3.2.12) can be written as

‖∂χ‖ρ̃
δ

<
1

2n(4n+ 1)(m−m∗)�2∗

owing to (3.2.13) and since �,m < 1, one sees that ‖∂χ‖ρ̃ < δ
2 holds, so that

Proposition 3.2 can be applied. Thusχ generates a canonical transformation
with domain D�′ , where �′ = �̃− δ = �− 3δ.
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In order to iterate the process, as described in point (ii) on page 92, we
also need to estimate the new η′ and m′ entering the decomposition of
the Hamiltonian in the Kolmogorov theorem. For what concerns A′, by its
definition, using expression (3.2.9) forH′ and recalling that, by virtue of the
choice of χ, only the last term contributes to A′, one gets∥∥A′∥∥�′ ≤ 2∥∥LχHp +H ◦Q−H −LχH∥∥�′ .
From this expression, after some calculations one obtains∥∥A′∥∥�′ ≤ Λ2n η2

γ4m6δ8n+6
,

and analogously ∥∥B′∥∥�′ ≤ 12Λ2n η2

�∗γ4m6δ8n+6
,

so that
max

(∥∥A′∥∥�′ ,∥∥B′∥∥�′) ≤ η′,
with �′ = � − 3δ and η′ = Λ2n η2

�∗γ4m6δ8n+6 . Let us come to the estimate for
m′. From the definition of D and D′, the Cauchy inequality, and (3.2.14),
one gets ∥∥(D′ −D)v

∥∥
�′ ≤ nΛn

η

�2∗γ2m3δ4n+3
‖v‖ ,

from which it is easy to obtain conditions (ii’) with D′ in place of D and
m′ =m−nΛn η

�2∗γ2m3δ4n+3
in place ofm.

We will also need the inequality∥∥f ◦Q− f∥∥�′ < 12
√
�∗η′

∥∥f∥∥� . (3.2.14)

From the second of (3.2.5), with �̃ in place of �, one has∥∥expLχf − f∥∥�̃−δ ≤ 4n‖∂χ‖ρ̃δ

∥∥f∥∥�̃ ,
from which (3.2.14) follows using (3.2.12) and∥∥f∥∥�̃ ≤ ∥∥f∥∥� , 2n

4n+ 1 <
1

2
.

Summing up, we can state the following

Lemma 3.6 (iterative) For given positive numbers γ,�,m,η < 1 and 0 <
�∗ < �, 0 < m∗ < m, consider the Hamiltonian H(I,ϕ) as in the Kol-

mogorov theorem and satisfying (i), (ii), (iii). For any positive δ, so small that

�− 3δ > �∗, let us assume that η is so small that

m−nΛn η

�2∗γ2m3δ4n+3
>m∗
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where

Λn = 2(4n+ 1)2σ 2n,
with σn defined in Proposition 3.4. Then one can find an analytical canonical

transformation Q : D�−3δ → D�, Q ∈ A�−3δ, such that the transformed

Hamiltonian H′ = H ◦Q can be decomposed in a way analogous to H with

corresponding primed quantities a′, A′, B′,D′, and R′, but with the same λ,
and satisfies analogous conditions with positive parameters �′,m′, η′ < 1
given by

�′ = �− 3δ > �∗, (3.2.15)

m′ =m−nΛn η

�2∗γ2m3δ4n+3
>m∗, (3.2.16)

η′ = η2 Λ2n

�∗γ4m6δ8n+6
, (3.2.17)

with ‖H′‖�′ ≤ 1. Moreover, for any f ∈A�, (3.2.14) holds.

Having proved the iterative lemma, we are in possession of all the tools
needed for the proof of the Kolmogorov theorem, and we can complete the
latter of the two basic steps mentioned on page 92. The crucial point is
the quadratic dependence on the old perturbing parameter η in the rela-
tion (3.2.17), and this quadratic dependence clearly implements Newton’s
method; the factor multiplying the quadratic term in the right-hand side
member takes into account the small denominators, as suggested by the
presence of γ.

Proof (Kolmogorov theorem). One has to repeatedly apply the iterative
lemma in order to eliminate the perturbation Hp(ϕ, I) = A(ϕ)+ B(ϕ) · I,
verifying that the parameters �r andmr do not vanish, as the iterative order
r → ∞: this is the consistency problem. We must therefore find numerical
sequences for δr ,mr , ηr which satisfy the relations (3.2.15)–(3.2.17) and
ensure that ηr → 0.
For this, let us start by choosing the sequence

ηr = η0
22τr

, τ = 4n+ 3, η0 > 0. (3.2.18)

Since ηr → 0 for r →∞, and

max
(
‖A‖�r ,‖B‖�r

)
≤ ηr ,

then H
p
r → 0. Let us fix arbitrarily the initial values �0,m0 > 0 and the

“bounding parameters” 0 < �∗ < �0, 0 < m∗ < m0, leaving η0 for the
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moment unspecified, whose value will be found accordingly with the con-
sistency problem. From (3.2.16), (3.2.17), and (3.2.15) we have

mr+1 =mr − n√
�3∗

√
ηr+1, (3.2.19)

δ2τr = Λ2n

γ4m6r�∗

η2r
ηr+1

, (3.2.20)

�r+1 = �r − 3δr . (3.2.21)

The relation (3.2.19) givesmr at the generic order r , (3.2.20) gives δr , and
(3.2.21) gives �r , all as some functions of η0. Clearly, the successions {mr}
and {�r} are decreasing: we want to show that for every �∗ and m∗ it is
possible to find η0 in a way that satisfies the consistency problem, i.e.,

�r > �∗, mr > m∗ ∀r .

From (3.2.19) we obtain

m∞ =m0 − n√
�3∗

∞∑
r=0

√
ηr+1.

Since
∑∞
r=0

1
2τ(r+1) =

1
2τ−1 , by imposing m∞ > m∗ we obtain that η0 must

satisfy the inequality

η0 <
�3∗(m0 −m∗)2

n2
(2τ − 1)2 . (3.2.22)

Relation (3.2.21) gives �∞ = �0 −
∑∞
r=0 3δr . Taking into account that, for

the chosen sequence (3.2.18), the relation

(
η2r
ηr+1

) 1
2τ

= η
1
2τ
0

2r−1

holds, we obtain
∞∑
r=0

(
η2r
ηr+1

) 1
2τ

= 4η
1
2τ
0 .

Let us impose �∞ > �∗. Since we have already guaranteed that mr > m∗,
taking (3.2.20) into account we obtain that η0 must satisfy the inequality

η0 <
1

Λ
2
n
�∗γ4m6∗

(
�0 − �∗
12

)2τ
. (3.2.23)

Clearly one must satisfy the more restrictive of the two conditions (3.2.22)
or (3.2.23).
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Finally, we come to the ultimate task: the convergence of the sequence of
canonical transformations. Starting from the initial perturbed Hamiltonian
H defined in D�0 with ‖H‖�0 ≤ 1, characterized by positive parameters
γ,�0,m0 < 1, consider the quantity η0, satisfying the more restrictive of
the two preceding conditions, and assume

max
(
‖A‖�0 ,‖B‖�0

)
< η0.

Then one can recursively apply the iterative lemma, defining at every step
r ≥ 1 a canonical transformationQr :D�r →D�r−1 , with the corresponding
operator expLχr : A�r−1 → A�r . Furthermore, from (3.2.14), one has the
estimate ∥∥expLχr f − f∥∥�r < √�∗ηr ∥∥f∥∥�r−1 . (3.2.24)

We can now define the composite canonical transformation Q̂r : D�r →D�0

by Q̂r = Q1◦· · ·◦Qr and the corresponding composite operator Ûr :A�0 →
A�r , defined by Ûr f = f ◦ Q̂r , or equivalently by Ûr = expLχr Ûr−1, with
Û0 = identity. Clearly, in order to prove the convergence of the sequence
{Q̂r} of canonical transformations restricted toD�∞ , it is sufficient to prove

the convergence of the corresponding sequence {Ûr} of operators for every
f ∈A�0 . This in turn is seen by remarking that, from (3.2.24) and the first
of (3.2.5), one has∥∥∥(Ûr+1 − Ûr

)
f
∥∥∥
�r+1

=
∥∥∥expLχr+1 (Ûr f

)
− Ûr f

∥∥∥
�r+1

≤ √�∗ηr+1 ∥∥∥Ûr f
∥∥∥
�r
≤ √�∗ηr+1 ∥∥f∥∥�0

and also, applying the triangular inequality, for any j ≥ 1∥∥∥(Ûr+j − Ûr

)
f
∥∥∥
�r+j

=
∥∥∥(Ûr+j − Ûr+j−1

)
f +

(
Ûr+j−1 − Ûr+j−2

)
f + . . .

∥∥∥
�r+j

≤ ∥∥f∥∥�0 r+j−1∑
s=r

√
�∗ηs+1.

Thus, as the series

∞∑
r=1

√
�∗ηr =

∞∑
r=1

√
�∗η0
2τr

=
√
�∗η0
2τ − 1

converges, one deduces that the sequence Ûr f converges uniformly for any
f ∈ A�0 . Therefore, by the Weierstrass theorem one then has

lim
r→∞Ûr f = Û∞f ∈A�∞ .
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In particular, for the Hamiltonian H∞ = lim
r→∞ÂrH, one has H∞ = H0∞ +Hp∞,

where, by construction, H
p
∞(I,ϕ) = A∞(ϕ) + B∞(ϕ) · I = 0. Finally, the

mapping Q̂∞ = lim
r→∞Q̂r turns out to be canonical again by virtue of the

Weierstrass theorem, as a uniform limit of canonical mappings. QED

Let us review and comment on the hypotheses of the Kolmogorov theorem,
and the role that they play in the proof.

(i) The unperturbed frequencies λ1, λ2, . . . , λn must satisfy the Diophan-
tine condition (3.2.7). This condition is necessary to ensure that the
two homological Equations (3.2.10a), (3.2.10b) are solvable owing to
Proposition 3.4, so that an iterative step can be performed. This con-
dition means that the corresponding unperturbed torus does not sup-
port periodic orbits or even those too close to periodicity; it is physi-
cally intuitive that otherwise the effects of the perturbation are cumu-
lative, and the torus will be destroyed sooner or later.

(ii) The unperturbed Hamiltonian must be nondegenerate. This condition
is necessary to ensure the invertibility of the relation between actions
and frequencies, so that at each iterative step one can tune the actions
to keep the frequencies fixed.

(iii) The perturbation must be sufficiently small, and the threshold η0 is
given by the most restrictive of the two conditions (3.2.22), (3.2.23),
usually the latter. In this case one sees that η0 = O(γ4), which is
a sensible result: lowering γ weakens the Diophantine condition, so
that more tori would be conserved, and this requires a smaller per-
turbation. The 2n-dimensional Lebesgue measure of the set of tori,
whose existence is guaranteed by the Kolmogorov theorem, is positive
and the measure of its complement tends to zero as the size of the
perturbation tends to zero. Thinking topologically, one would call the
invariant tori exceptional, as the complement of an open dense set:
see Appendix 3.A. However, since they have a large Lebesgue mea-
sure, they are more the rule than the exception, and a very slightly
perturbed Hamiltonian system behaves practically as integrable.

One can now immediately deduce from the above theorem the following
corollary, more suited for the applications and which is known as the Kol-
mogorov-Arnold-Moser (KAM) theorem.

Corollary 3.7 (KAM theorem) Given the total perturbed analytic Hamil-

tonian

H(I,ϕ) = H0(I)+ εHp(I,ϕ),
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with a nondegenerate unperturbed Hamiltonian, i.e., det
(
∂2H0
∂Ih∂Ij

)
≠ 0, for ev-

ery set I∗h of the actions such that the unperturbed frequencies ωh(I∗) =
∂H0
∂Ih
(I∗) satisfy the Diophantine condition, the tori I∗h =constant survive,

though slightly deformed, to sufficiently small perturbations.

Proof. We may safely suppose I∗ = 0, after a possible translation in the
actions. From the mere definitions one has that

λi =ωi(0), a = H0(0)+ εHp(0),

A(ϕ) = ε[Hp(0,ϕ)−Hp(0)], Bh(ϕ) = ε
∂Hp
∂Ih

(0,ϕ),

(D(0,ϕ))hi =
∂2H0
∂Ih∂Ii

(0)+ ε ∂
2Hp
∂Ih∂Ii

(0,ϕ).

From the expressions in the second line it is obvious that the condition
on the smallness of the perturbative parameter ε implies the condition (iii)
of the Kolmogorov theorem, hence that ε and η have basically the same
meaning. From the expression in the third line and the nondegeneracy of
H0, condition (ii) follows. Therefore, for the Kolmogorov theorem there
exists a canonical transformation sending the perturbed Hamiltonian to a
form for which the conservation of the torus I∗ = 0 is evident. QED

3.2.5 KAM Theorem (According to Arnold)

Completing the program dictated by the first of the two basic steps men-
tioned on page 92 and pushing the perturbation to second order entails
the disastrous consequence of a complete loss of differentiability, and thus
the impossibility to undertake any further perturbative step. In order to
escape the difficulty, Arnold (1963) proposed a strategy which is different
from that of Kolmogorov. Its starting point is the introduction of an ultra-

violet cut-off K ∈ R of an analytical function F, i.e., the splitting of F as the
sum of an infrared and an ultraviolet part:

F = F≤K + F>K

with
F≤K =

∑
|k|≤K

fke
ik·ϕ, F>K =

∑
|k|>K

fke
ik·ϕ.

Taking into account the exponential decay of the Fourier components of an
analytical function, it is easy to estimate the ultraviolet part.

Proposition 3.8 If F is analytical on D�, then for 0 < δ < � there exists a

constant C(n,δ) such that∥∥∥F>K∥∥∥
�−δ ≤ C(n,δ)‖F‖� e

− 12δK.
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Proof. Because of the analyticity of F in D�,∣∣fk∣∣ ≤ ‖F‖� e−|k|�
holds, from which

∥∥∥F>K∥∥∥
�−δ = sup

∣∣∣∣∣∣ ∑|k|>K fkeik·[ϕ+i(�−δ)]
∣∣∣∣∣∣

≤
∑
|k|>K

∣∣fk∣∣ e|k|(�−δ) ≤ ‖F‖� ∑
|k|>K

e−|k|δ

≤ ‖F‖� e−
1
2δK

⎛⎝∑
j∈Z

e−
1
2 |j|δ

⎞⎠n = ‖F‖� e− 12δK
(
1+ e−δ/2
1− e−δ/2

)n
,

which is the result. QED

This result can be exploited to make the ultraviolet part small. Taking for
example K = 2

δr log ε
−1 we get∥∥∥F>K∥∥∥

�−δ ≤ C ‖F‖� ε
r ,

while, with K = 1/ε, the ultraviolet part becomes exponentially small:∥∥∥F>K∥∥∥
�−δ ≤ C ‖F‖� e

− 12 δε .

Arnold’s idea is to work at every perturbative step considering only the
infrared part, which has a finite number of Fourier components, and to stay
far enough from the relative resonances, to avoid any problem of conver-
gence. At the first step, in order to push the perturbation at order ε2, one
takes K = 2

δ log ε
−1 and rules out the relative ultraviolet part, which has

a term ε in front and gives a contribution of second order. Adopting the
quadratic method and taking at the r step the ultraviolet cut-off 2rK, the
iteration leads to a sequence of Hamiltonians closer and closer to integrable
but in shrinking domains, which in the limit reduce to the points of a Cantor
set (see Figure 3.2 on page 116). One can therefore obtain the KAM theorem
for r →∞.
We remark that the Arnold strategy is more efficient compared with that

of Kolmogorov, leading to a relation of the type ε = O(γ2) instead of ε =
O(γ4). The difference is due to the double resort of Kolmogorov to the
homological equation; see (3.2.10a) and (3.2.10b).
An equivalent but probably more expressive version of the theorem has

been formulated by Chierchia & Gallavotti (1982) and Pöschel (1982): given
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a quasi-integrable Hamiltonian H(I,ϕ), there exists a canonical transfor-
mation C : I′,ϕ′ → I,ϕ, a Cantor subset D of the action space, and a
completely integrable Hamiltonian K(I) such that

H(C(I′,ϕ′)) def= H′(I′,ϕ′) D= K(I′);

the symbol
D=means that the equality holds only for I′ ∈ D, also extending

to all derivatives. Moreover, the frequency mapω(I′) = ∂K/∂I′ transforms
D into the set of Diophantine frequencies, with γ = O(√ε).

3.2.6 Isoenergetic KAM Theorem

Sometimes the nondegeneracy condition det(∂2H0/∂Ih∂Ik) ≠ 0 is violated,
but

det

⎛⎝ ∂2H0
∂Ih∂Ik

∂H0
∂Ih

∂H0
∂Ik

0

⎞⎠ ≠ 0 (3.2.25)

holds. As we shall prove, the condition guarantees that the (2n − 1)-di-
mensional manifold of constant energy is filled with conserved tori. The
inequality (3.2.25) is called the isoenergetic nondegeneracy condition and is
independent of the usual nondegeneracy condition. There exist Hamiltoni-
ans which satisfy only one of the two conditions; for example,H0 = I21+I2 is
degenerate but not isoenergetic degenerate, while H0 = log(I1/I2) is isoen-
ergetic degenerate but not degenerate.
The condition (3.2.25) for isoenergetic nondegeneracy means that on a

level surface of the energy the ratios of, e.g., the first n−1 frequencies with
the last one are functionally independent. In coordinate-free language, we
say that the map

Mh → (ω1 :ω2 : · · · :ωn) ∈ Pn−1R , with Mh : H0(I) = h, (3.2.26)

between a level surface of the energy on the action space and the (n − 1)-
dimensional projective space of the frequency ratio, is locally invertible.
The frequency ratios come into play in reducing a Hamiltonian system

with the energy integral, which amounts to dividing out the kernel of the
restriction to the surface of the energy of the canonical 2-form. Indeed, let
us solve H(q,p) = h with respect to, e.g., pn:

pn +P(Q, P, τ) = 0, Q = q1, . . . , qn−1, P = p1, . . . , pn−1, τ = qn.
The dynamics takes place on a (2n−1)-dimensional hypersurface. Let i be
the inclusion map. The pull–backs of the canonical 1-form and 2-form of
the phase space to this hypersurface are

i∗Θ = PdQ−P(Q, P, τ)dτ,
i∗Ω = dP ∧ dQ− dP(Q, P, τ)∧ dτ.
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The matrix of the 2-form i∗Ω is⎛⎜⎝ 0n−1 −1n−1 −∂QP
1n−1 0n−1 −∂PP
∂QP ∂PP 0

⎞⎟⎠
and has rank 2n−2, and thus has a 1-dimensional kernel. The lines tangent
to the kernel are called the characteristic lines of the 1-form, and, as is easy
to check, satisfy the equations

dQ

dτ
= ∂P
∂P
,
dP

dτ
= − ∂P

∂Q
.

One of the angles, i.e., qn = τ, is thus taken as the new “time,” at least
locally, and the n − 1 frequencies of the reduced system become just the
ratios of the map (3.2.26). The isoenegetic nondegeneracy condition arises
by imposing the usual nondegeneracy condition on the reduced system.
In order to prove condition (3.2.25), let us consider the composition of

the two maps

⎛⎜⎜⎜⎜⎝
I1
...
In
λ

⎞⎟⎟⎟⎟⎠ (i)	→

⎛⎜⎜⎜⎜⎜⎜⎝
x1(I)
...

xn−1(I)
h(I)
λ

⎞⎟⎟⎟⎟⎟⎟⎠
(ii)	→

⎛⎜⎜⎜⎜⎝
λω1(x,h)

...
λωn(x,h)
H0(h)

⎞⎟⎟⎟⎟⎠ ,

where x1, . . . , xn−1 are local coordinates on Mh and λ ≠ 0. Since H0(h) is
the identity, for every fixed value of h the map (ii) is equivalent to (3.2.26).
Taking into account that (i) is invertible by construction, we require that
the Jacobian matrix of the map composition (I, λ) 	→ (λω(I),H0(I)) have
maximal rank. A direct calculation shows that its determinant differs from
the determinant in the isoenergetic nondegeneracy condition for a multi-
plicative factor λn−1, hence condition (3.2.25) follows.
For the two-degrees-of-freedom system the isoenergetic condition en-

sures the perpetual stability for all the orbits, not only for those satis-
fying the Diophantine condition. Indeed, the 2-dimensional tori form an
insurmountable barrier which forbids the dynamics to invade the whole
3-dimensional manifold of constant energy.

3.3 Exponentially Long Stability and Nekhoroshev

Theorem

The KAM theorem is a mathematical result of paramount importance, clar-
ifying the equivocal and contradictory statements claimed by astronomers
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and statistical physicists. Nevertheless, it is almost useless in practical ap-
plications. The set of the stable tori is bizarre and counterintuitive, though
of large measure; as a consequence, it is impossible to say if some initial
conditions, never exactly known, give rise to a stable motion. Moreover,
KAM theory says nothing about what happens to the destroyed tori: this is
sometimes erroneously interpreted as dictating that all the destroyed tori
are replaced by chaotic motion.
Nekhoroshev observed that this unpleasant situation is basically due to

the fact that we are seeking results which are valid for an infinite lapse
of time. On the contrary, if we are content with finite times, but possibly
exceeding the lifetime of the universe, we can recover statements uniformly
valid on the whole action space. To this end, we must also study what
happens inside the resonances, introducing a resonant normal form. The
result is that if the unperturbed Hamiltonian satisfies a steepness (or, more
simply, a quasi-convexity) condition, the actions oscillate but require a time
exponentially long in the inverse of the perturbative parameter to evolve
away. The original proof is given in Nekhoroshev (1977) and Nekhoroshev
(1979).
The proof consists of two steps, an analytical and a geometrical part.

With the first step one brings the Hamiltonian to a normal form in a local
domain and up to some order r , in such a way that the non-normalized
remainder is exponentially small, as suggested by Proposition 3.8; from this,
a local stability result follows. The exponential dependence of time on the
inverse of the perturbative parameter follows from a suitable choice of the
order of normalization. The second step consists in constructing a covering
of the action space with local domains, or resonant blocks, characterized by
a given set of resonances of some order, where the Hamiltonian acquires a
local normal form as above. Then one proves that the dynamical evolution
is confined inside a block for an exponentially long time, from which the
final result follows.
The basic “elementary” idea of the first step consists in taking the order

r to be a suitable function of ε, growing to infinity when ε goes to zero. This
is in fact the heart of the exponential estimates in the analytic part of the
theorem. The essence of the proof is to show that the normalized term of
order r grows “only” as some power of rr ; surprisingly, such an apparently
terrible growth gives rise to the desired exponential estimates. Indeed, it is
clear from (3.1.6) that at every r perturbative step and working far enough
from all resonances up to order rK, the worst added small denominator
will be

min
0<|k|≤rK

(|k ·ω|) = γ

(rK)n
,

thanks to Diophantine inequality. The r perturbative term R(r) will not

exceed ∼ εr
(
rnKn

γ

)r
with γ � √ε. Take K = ε−1/4nr and seek the ropt value
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minimizing R(r). A straightforward computation gives

ropt = 1
e
ε−

1
4n , R(ropt) = e−

n
e

1
ε1/4n ,

showing that R can be made exponentially small in the perturbative param-
eter ε. Incidentally, we remark that the exponent 1/4n is not the optimal
one, because of the heuristic and non-rigorous procedure we followed: the
probable optimal value has been found by Lochak (1992).
We have thus reached a first result: in a sufficiently nonresonant domain,

W say, of the action space the motion is stable for an exponentially long
time.
To understand how this domain is structured, let us first define the

Arnold web : in the frequency space it is given by frequencies satisfying
the resonance relations ω · k = 0, along with a neighborhood decreasing
with the square root of the perturbation and exponentially with the order∑n
j=1

∣∣∣kj∣∣∣ of the resonance itself. The Arnold web is therefore the union
of the neighborhoods of all the hyperplanes of codimension one through
the origin and with rational slope. Assume for simplicity n = 3. In Figure
3.2 a section with the planeω3 = 1 in the 3-dimensional frequency space is
shown, thus with equation k1ω1+k2ω2+k3 = 0. The “skeleton” is formed
by the lines whose slope and intersection with the axes take rational values,
“fleshed out” with the resonance strips. The Arnold web is connected, open

and dense in the action space with, however, a relatively small measure van-
ishingwith the square root of the perturbative parameter; see also Appendix
3.A, where one shows that the Diophantine condition (3.2.7) is chosen just
in order to have a small measure of the Arnold web. On a 2-dimensional
energy surface of the action space an image of Figure 3.2 appears, distorted
under the diffeomorphism given by the local inverse of the frequency map.
The smallness property can also be verified directly, taking into account
that the width of a resonance strip is proportional to

√
ε exp(−σ |k|), as

will be made clear below with the pendulum model: arguing as in the proof
of Proposition 3.3, one sees that the sum over all the resonances converges
to a finite value � O(√ε).
The sufficiently nonresonant domainW of the action space is therefore

the complement of a “truncated” Arnold web, for which only the resonances
up to the order determined by ropt are considered. The domainW contains
infinitely many, but at the same time very tiny resonances, which prevents
the perpetual stability but also ensures the stability for exponentially long
times. Clearly, when the order increases, the domainW is more and more
fragmented and tends to the Cantor set of the conserved KAM tori. No-
tice that what can be displayed with the numerical computations (as for
example in Figure 8.11 on page 249) is just a truncated Arnold web, since
enlightening the entire web would require an infinite integration time.
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Figure 3.2: The Arnold web in frequency space, “truncated”at a low order corre-
sponding to an ultraviolet cut-off K (left) and at a larger order (right) with a cut-off
K′ > K. When the order K increases, the complement of the Arnold web is more
and more fragmented and tends to the Cantor set of the conserved KAM tori.

In order to describe the second step, let us first study what happens
inside the resonances of multiplicity 1, thus characterized by a single reso-
nance relation k(res)·ω = 0. Translate the actions so that the resonant torus
is parametrized by I = 0, then perform a linear canonical transformation
such that the first transformed angle is ϕr = k(res) ·ϕ, from whichωr = 0
follows; let Ir , I

′
2 . . . , I

′
n and ϕ

′
2, . . . ,ϕ

′
n be the other transformed action-

angle variables. Normalize the Hamiltonian to first order, eliminating all
angles but the resonantϕr , then develop the unperturbed Hamiltonian in a
Taylor series and the perturbative part in a Fourier series. Up to a constant,
we obtain a Hamiltonian of the type

H(I,ϕ) = 1
2
AI2r − εc cosϕr +O(ε2)+ . . . , (3.3.1)

where the dots indicate the sum of harmonics of higher order and c is the
first harmonic of the normalized perturbative part. Bearing in mind the
definition of ϕr , we get that c coincides with the k(res) harmonic of the
perturbation Hamiltonian:

c = 1

(2π)n

∫
Tn
Hp(Ir ,ϕr , I

′,ϕ′) e−iϕr dϕr dϕ
′
2 . . . dϕ

′
n

= 1

(2π)n

∫
Tn
Hp(I,ϕ) e

−ik(res)·ϕdϕ1 . . . dϕn = Hpk(res) .

If Hp is analytic, the Fourier coefficients are exponentially small; hence c is

exponentially small with
∣∣∣k(res)∣∣∣ . Clearly (3.3.1) describes the dynamics of
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Figure 3.3: Energy level lines and period of a pendulum.

a pendulum with a perturbation of order ε2, and the excluded harmonics
do not qualitatively change the motion.
The left panel of Figure 3.3 shows the well-known dynamics of the pen-

dulum. Ir = 0, ϕr = 0 is the stable equilibrium point, while Ir = 0, ϕr =
±π is unstable. The two curves connecting the unstable point to itself are
named separatrices, because they separate the plane in three regions with
different dynamical properties. Above and below the separatrices the angle
ϕr circulates clockwise and counterclockwise, while inside the separatri-
ces it librates. The frequency of libration is

√
Aεc for motions closest to the

stable equilibrium point, and thus small as the square root of the perturba-

tion and exponentially small with the order
∣∣∣k(res)∣∣∣ of the resonance. This

frequency decreases to zero when approaching the separatrices and on a
separatrix an infinite time occurs to travel from the unstable point to itself;
see the right panel of Figure 3.3, where the period of the librating and cir-
culating motion is drawn. The width of the resonant zone is 2Ir = 4

√
εc/A,

thus small as the square root of the perturbation and exponentially small

with the order
∣∣∣k(res)∣∣∣ of the resonance: this entails an increasing difficulty

in visualizing resonances of high order.
In (3.3.1), invoking the elliptic functions we can replace Ir and ϕr with

the action-angle variables of a pendulum, leaving I
′
2, . . . , I

′
n and ϕ

′
2, . . . ,ϕ

′
n

unchanged. These new action-angle variables are called resonant, and allow
us to again normalize theHamiltonian (3.3.1) to the optimal order, getting so
a remainder exponentially small. Neglecting this remainder, we are left with
an integrable Hamiltonian which, if the perturbation Hamiltonian satisfies
the quasi-convexity condition, does not move away the actions, as we shall
prove in a moment. Therefore, a progressive drift of the actions can be

caused only by the remainder, but requires an exponentially long time.
Let us show how the quasi-convexity condition comes into play. Con-

sider the generic case of a resonance of multiplicity d ≤ n−1, thus charac-
terized by d relations k(s) ·ω = 0, s = 1, . . . , d, with

∣∣∣k(s)∣∣∣ ≤ K (ultraviolet
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cut-off). Let L be a resonant lattice, that is, the subgroup of Zn of dimension
d ≤ n− 1 generated by the vectors k(s). The associated resonant manifold

ML, of dimension n− d, is defined as

ML = {I : v ·ω(I) = 0, ∀v ∈ L}.

As already remarked, when K grows the associated resonant manifolds be-
come thicker, while the complementary set is more and more fragmented.
In a

√
ε-neighborhood of ML, but far from other resonances, the best thing

one can do is to eliminate the nonresonant angles, giving to the Hamiltonian
the resonant normal form

H(I,ϕ) = H0(I)+ εg(r) + εr+1R(I,ϕ), g(r)(I,ϕ) =
∑
k∈L

g(r)k (I)eik·ϕ.

Let us neglect the remainderR(I,ϕ). The normal part is no longer integrable
for d ≥ 2, but we can still investigate how it moves the actions. From the
Hamilton equations it is clear that İ is a linear combination of vectors k ∈ L :

İ = ε
∑
k∈L

Ck(I,ϕ)k, Ck(I,ϕ) = ig(r)k (I)eik·ϕ,

so that the dynamics produced by the normal form is flattened on the plane
ΠL(I∗) parallel to L through the initial point I∗. This plane is called the
plane of fast drift, and a transverse motion can be produced only by the
remainder. Nevertheless, without further assumptions on the unperturbed
HamiltonianH0, the motion onΠL could be unbounded. In order to provide
a confinement on the plane of fast drift, we suppose H0 to be quasi-convex.
More precisely, H0 is said to be quasi-convex if

ω(I) · v = 0 and v ·H′′0 (I)v = 0 ∀I ⇒ v = 0, (3.3.2)

where H′′0 (I) = ∂2H0
∂I∂I . Quasi-convexity is clearly a generalization of the con-

vexity (concavity) property, i.e.,

v ·H′′0 (I)v > 0 (< 0) ∀v ≠ 0.

A convex function is, for example, H0 = I21+I22+I23 while a quasi-convex but
not convex function is H0 = I21 + I22 + I3. Quasi-convexity has two relevant
consequences (see Figure 3.4).

(i) The d-dimensional plane ΠL of fast drift and the (n−d)-dimensional
resonant manifoldML are transversal in the intersection point I∗, that
is, dim(TI∗ML ⊕ ΠL) = n. To prove it, take any vector v ∈ ΠL and
define the scalar function f(I) = ω(I) · v which clearly vanishes on
ML; thus the gradient ∇f(I) = H′′0 (I)v is orthogonal to TI∗ML for
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Figure 3.4: The plane ΠL of fast drift and the resonant manifold ML. If H0 is
(quasi-)convex, ΠL and ML are transversal and the dynamics produced by the
normal form is confined in a neighborhood of the intersection point I∗.

every v ∈ ΠL. If there is no transversality, by definition a vector u
which belongs at the same time to TI∗ML and ΠL does exist, that is,

∃u ≠ 0 : u ·H′′0 (I∗)u = 0 andω(I∗) ·u = 0, (3.3.3)

and this is against the quasi-convexity. Therefore, H0 quasi-convex
implies transversality.

(ii) For a small vector v ∈ ΠL, consider the series development

H0(I
∗ + v) = H0(I∗)+ω(I∗) · v + 1

2
v ·H′′0 (I∗)v + . . . ;

the linear term vanisheswhile the quadratic termhas a definite sign for
the quasi-convexity hypothesis Therefore, energy conservation pro-
vides the required confinement.

In the original proof of Nekhoroshev, instead of the quasi-convexity aweaker
property called steepness is considered, which does not imply full transver-
sality but only, in some sense, tangency of finite order. An example of a
nonsteep Hamiltonian is H0 = 1

2(I
2
1 − I22), since the lines I1 ± I2 = 0 are

simultaneously the “plane” of fast drift and the resonant manifold.
We can lastly enunciate the following

Theorem 3.9 (Nekhoroshev) Given the total perturbed analytic Hamilto-

nian

H(I,ϕ) = H0(I)+ εHp(I,ϕ),
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with H0(I) nondegenerate and quasi-convex (or, more generally, steep), if ε
is sufficiently small one has

‖I(t)− I(0)‖ ≤ Lεb for |t| ≤ T exp
(
1

εa

)
uniformly for all orbits.

L and T are some dimensional constants which can be estimated, while a
and b are stability exponents, whose optimal value in the convex case is
very likely a = b = 1

2n ; see Lochak (1992). This value can be improved

inside the resonances, where it becomes a = b = 1
2(n−d) : loosely speaking,

every resonance relation behaves like a first integral, and reduces of a unity
the number of freedom degrees. We come to the surprising conclusion that
resonances are not only a source of dynamical instability, through destruc-
tion of the KAM tori and their relative perpetual stability, but also a source
of stability for a finite but exponentially long time, whose length grows with
the multiplicity d of the resonance in which the orbit is “trapped.”

3.4 Geography of the Phase Space

We draw some final summarizing comments on the geography of the phase
space. The orbits of an n-dimensional perturbed Hamiltonian system are
basically of two types: regular and chaotic.
Their main characteristics are the following.

(i) Regular orbits. They in turn may be classified as orbits on:

a) KAM tori, i.e., those obtained by slightly deforming the unper-
turbed tori satisfying the Diophantine inequality, as dictated by
the KAM theorem. They are also called strongly nonresonant tori.
The dynamical evolution of the action-angle variables is quasi-
periodic and the trajectories densely fill the respective tori; see
Figure 3.5 (left).

b) Regular resonant tori. The unperturbed tori not satisfying the
Diophantine inequality break down under the perturbation, and
the adapted (or normal resonant ) Hamiltonian turns out to be
that of a perturbed pendulum for resonances of single multiplic-
ity. Again, from the KAM theorem one expects the existence of
motions on regular resonant tori, which are obtained by deform-
ing the tori of the unperturbed, thus integrable, pendulum. The
relative orbits wind around a series of nested “small tubes” which,
in turn, wind themselves around a KAM torus but without touch-
ing it: the chaotic orbits take place between KAM and regular
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Figure 3.5: Left: nested tori for a two-degree-of-freedom system. Right: a sec-
tion in the resonant case (any resemblance to extraterrestrial beings is entirely
coincidental).

resonant tori, which are nested around the resonant trajectory
of the unperturbed case. Moreover, the primary resonances can
develop secondary resonances (a tube around a tube around a
KAM torus) reproducing the same pattern, and so forth. To give
an idea of how KAM and regular resonant tori are arranged for
a two-degree-of-freedom system, see Figure 3.5 (right), where a
section is considered. The three smaller islands represent two
resonant tori, one nested into the other, and the three centers are
the traces of the resonant orbit. Notice the separatrices between
KAM and regular resonant tori; magnifying the picture, the chaos
around the separatrices and in particular the hyperbolic points
would be made visible. Further examples of the geography of
KAM and regular resonant tori can be generated by the reader
himself with the program KEPLER; see Chapter 7, item (i) on page
222. For three, or more, degrees of freedom, the tori cannot be
visualized any longer, so we resort to a tool (the Frequency Mod-

ulation Indicator, described later) which allows us to display the
resonance distribution; for an example, see Figure 3.6.

(ii) Chaotic orbits, whose dynamical evolution is very sensitive to the ini-
tial conditions. They may be further classified into three types.

a) Stochastic layer orbits, starting in the thin stochastic layer sur-
rounding the separatrices between KAM and regular resonant
tori. Loosely speaking, these orbits “hesitate” among clockwise or
counterclockwise circulation and libration, giving rise to chaotic
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Figure 3.6: The progressive destruction of the Arnold web when the perturbative
parameter increases. Left: ε = 0.01. Center: ε = 0.06. Right: ε = 0.1.

dynamics. A rigorous analysis of the chaotic motion requires us
to introduce some concepts which revolve around homoclinic tan-
gle, Smale horseshoe, and symbolic dynamics: see Appendix 3.B
for a very short introduction. Notice that stochastic layer orbits
can also be found inside the resonance zones, in the much thiner
stochastic layer surrounding the secondary resonances. One can
proceed further, considering the stochastic layer surrounding the
resonances of third level, et cetera.

b) Double (or multiple) resonant orbits, starting at the crossing be-
tween two, or more, single resonances. Here the normal averaged
Hamiltonian depends on two or more angles and therefore is not
integrable. These orbits, though chaotic, are trapped for very
long times in the zone of the crossing.

c) Chirikov orbits, starting in a zone where the resonances overlap.
This happens when the perturbative parameter is larger than a
threshold value; see Figure 1.1 or Figure 3.6, where the progres-
sive destruction of the Arnold web is shown. The enlargement of
the resonance strips entails their overlapping and consequently
a widespread chaos diffusion.

For a generic perturbed Hamiltonian system, when the perturbative param-
eter grows, the nature of the phase space changes, covering, in ascending
order, three different situations.

(i) KAM : practically all points are regular, all unperturbed tori are con-
served, and the dynamics is basically controlled by the KAM theorem.
More exactly, themeasure of the destroyed tori is negligible, so in prac-
tice all orbits appear regular and the Nekhoroshev theorem, though
applicable, is unimportant.

(ii) Nekhoroshev : the measure of the destroyed tori forming the Arnold
web is small but not negligible. In the Nekhoroshev case the dynamics
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is still controlled almost everywhere by the KAM theorem apart from
the Arnold web, where it is just controlled by the Nekhoroshev the-
orem. A point of a stochastic layer orbit (i.e., exactly on the border
of a resonance) can in principle travel along the whole Arnold web,
reaching the neighborhood of every point in phase space but in a very
long time, which grows exponentially with the inverse of the perturba-
tive parameter. This phenomenon, whose existence is not in general
proven, is known as Arnold diffusion (Arnold 1964).

(iii) Chirikov : the global measure of the resonances does not leave any
place for invariant tori, and the dynamics is no longer controlled by
the KAM and Nekhoroshev theorems but by the Chirikov (1979) over-
lapping criterion. The resonances overlap, and the motion can jump
from one resonance to another, giving rise to large-scale diffusion with
a time scale much shorter with respect to the Arnold diffusion, so that
the system is fully chaotic. We stress the difference: while the Arnold
diffusion is along the resonances, the Chirikov diffusion is across the
resonances.

3.5 Elliptic Equilibrium Points

Given an n-dimensional system admitting an elliptic equilibrium point, let
us develop its Hamiltonian in a Taylor series about this point, which we
safely suppose placed in the origin q = 0 = p. The first derivatives at the
origin are vanishing by definition of equilibrium, while the quadratic part
can be reduced to the Hamiltonian of n independent harmonic oscillators
by means of a canonical transformation (Theorem 2.33 on page 76). The
Hamiltonian is written as

H = 1
2

n∑
k=1

ωk(q
2
k + p2k)+H3(q,p)+H4(q,p)+ . . . , ω ∈ R

n, (3.5.1)

where Hs(q,p) is a homogeneous polynomial of degree s.
It is only natural to consider the completely integrable quadratic part

as the unperturbed Hamiltonian H0 and the sum of the other polynomials
as the perturbation, the distance from the origin playing the role of pertur-
bative parameter. However, passing to action-angle coordinates shows that
H0 =

∑
ωkIk is degenerate, so that KAM and Nekhoroshev theorems cannot

be applied directly. The idea to escape this difficulty consists in normaliz-
ing the first few terms of the perturbation, adding them to H0: in general,
this will “remove” the degeneration.
The normalization of the polynomial perturbation is accomplished by

the following theorem, whose name originates from historical reasons but
whose proof directly follows the general scheme of Subsection 3.1.2.
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Theorem 3.10 (Birkhoff) Suppose that the frequencies ω in the Hamilto-

nian (3.5.1) do not satisfy any resonance relation of order less than or equal

to K. Then there exists a canonical transformation in a neighborhood of the

equilibrium point such that the Hamiltonian is reduced to a Birkhoff normal

form, i.e., to a polynomial in the action variables of degree [K/2], up to terms

in q,p of degree K + 1.
Proof. Switch to action-angle variables. Writing the trigonometric functions
in exponential form:

qk = 1
2

√
2Ik(e

iϕk + e−iϕk), pk = 1
2i

√
2Ik(e

iϕk − e−iϕk),

shows that the angle average M of the generic monomial

M = qh11 ph21 . . . qh2n−1n p
h2n
n

is nonnull if and only if all the exponents h1, . . . , h2n are even; in this case

M = cI(h1+h2)/21 . . . I
(h2n−1+h2n)/2
n ,

with c a numerical factor. As in the general case, the nonresonance condi-
tion is necessary in order to solve the homological equation at every per-
turbative step. QED

For K = 4 the perturbed Hamiltonian can be written as

H =ωtI + 1
2
ItAI +H5(q,p)+ . . . ,

A being a symmetric n×n real matrix. If

detA ≠ 0 and/or det

(
A ω
ωt 0

)
≠ 0,

the system is nondegenerate and/or isoenergetically nondegenerate in a
small neighborhood of the equilibrium point, and the KAM theorem can be
applied.
Moreover, if the quasi-convexity or quasi-concavity property (3.3.2) holds

(in the present case, if the matrix A has nonnegative or nonpositive eigen-
values), the Nekhoroshev theorem can also be applied but not directly.
The technical difficulty comes from the singularity of the action-angle vari-
ables at the origin, which prevents the straightforward application of the
Nekhoroshev theorem. Working with action-angle coordinates as in Lochak
(1995), one has to exclude a small cusp-shaped region around each hyper-
plane q2k +p2k = 0. Hence, the “stability region” that one finds, although ar-
riving arbitrarily close to the equilibrium point, does not include any neigh-
borhood of it. One is thus forced to work in Cartesian q,p coordinates, as
in Fassò, Guzzo & Benettin (1998), to completely prove the claim.
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Notice that the problem had already been studied in the previous papers
of Giorgilli (1988) and Giorgilli, Delshams, Fontich, Galgani & Simó (1989),
but assuming the very strong (and difficult to check in practice) condition
that the frequencies of the linear term in the actions satisfy a Diophan-
tine condition; within this assumption, the proof can take as unperturbed
Hamiltonian only the linear term.

3.A Appendix: Results from Diophantine Theory

We will prove some results from Diophantine theory. A frequency vector
λ ∈ Rn is said to be resonant if there exists a k ∈ Zn, k ≠ 0 such that
λ · k = 0. A frequency vector is said to be strongly nonresonant if one can
find a positive function ψ such that

|k · λ| ≥ ψ(|k|) ∀k ∈ Z
n, k ≠ 0, |k| =

∑
i

|ki| .

Given an open bounded subset D ⊂ Rn, the question is whether one can
determine ψ in such a way that the subset of the strongly nonresonant
frequencies in D, namely the set

Ω = {λ ∈ D : |k · λ| ≥ ψ(|k|)} ∀k ∈ Z
n, k ≠ 0,

has a large measure in D.
A simple procedure to determine such a ψ is presented in Giorgilli

(1989). Pick a nonzero k ∈ Zn, and consider the set

Ω̃k = {λ ∈ D : |k · λ| < ψ(|k|)},
which is in fact the set of the λ’s that are close to resonance with k. Consider
the plane in Rn through the origin orthogonal to k, i.e., the plane which
contains all the resonant frequency vectors, and the set of points whose
distance from the plane is less than ψ(|k|)√

k21+...+k2n
: this set of points clearly

contains the set Ω̃k.

Lemma 3.11 Take x ∈ Rn, ‖x‖ =
√
x21 + x22 + . . .+ x2n the Euclidean norm

of x and |x| =∑j |x| . Then

|x| ≤ √n‖x‖ .
Proof. Given two positive numbers a and b, from (a − b)2 ≥ 0 it follows
that ab ≤ (a2 + b2)/2, hence

|x|2 =
∑
j,k

|xj||xk| ≤ 1
2

∑
j,k

(x2j + xkk) = n‖x‖2 ,
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from which the lemma follows. QED

The measure μ
(
Ω̃k

)
is bounded by

μ
(
Ω̃k

)
≤ √nCψ(|k|)|k| ,

whereC is a constant that depends only on the domainD. Then themeasure
of the complement Ω̃ of Ω in D cannot exceed

μ
(
Ω̃

)
= μ

⎛⎝⋃
k≠0

Ω̃k

⎞⎠ ≤ ∑
k≠0

μ
(
Ω̃k

)
≤ √nC

∑
k≠0

ψ(|k|)
|k| .

Writing now ∑
k≠0

ψ(|k|)
|k| =

∑
s>0

∑
|k|=s

ψ(s)

s
,

and using the fact that the number of vectors k ∈ Zn that satisfies |k| =
s does not exceed 2nsn−1, as one verifies with a recursive procedure, we
finally get

μ

⎛⎝⋃
k≠0

Ω̃k

⎞⎠ ≤ 2n√nC ∑
s>0

sn−2ψ(s).

Then it is enough to choose ψ(s) = γ
sτ with suitable constants γ > 0 and

τ > n−1 in order to get that the complement of Ω inD has a measure that
is small with γ. Such a result, although obtained with rough estimates, is
optimal with relation to the value of τ. Indeed, for τ < n − 1 the set Ω is
empty, while for τ = n − 1 the set Ω is nonempty, but has zero measure:
see for example Rüssmann (1975).
The set Ω is therefore the complement of the “strange” set Ω̃ which is of

a small measure, though open and dense.3 Still more strange appears the
set Ω itself, which, as a Cantor4 set of nonnull measure, is characterized by
the following properties:

(i) it is a closed set, as the complement of an open set;

(ii) it is nowhere dense, by property (i) and as the complement of a dense
set; hence, it has empty interior, i.e., it does not contain open subsets.
This prevents the complete integrability of the perturbed Hamiltonian;

3The set Ω̃ is open as the union of open sets; it is dense since the set of the resonant
frequencies is already dense in Rn, just as the rational numbers are dense in R.
4The prototype of a Cantor set is obtained by removing the open middle third (1/3,2/3)

from the closed interval [0,1], then removing the two open middle thirds (1/9,2/9) and
(7/9,8/9), and so on, iterating the process ad infinitum. This set however has null measure,
in contrast with Ω. The key to obtaining Cantor sets with positive measure is to remove less
and less as one proceeds.



3.B Appendix: Homoclinic Tangle and Chaos 127

(iii) none of its points is an isolated point; i.e., the neighborhood of any
point of the set contains at least another point of the set. In practice,
it is therefore impossible to tell if a given point, whose coordinates
are never exactly known, belongs to Ω, but the small measure of its
complement makes this probable for a randomly chosen point.

If n ≥ 3 the complement Ω̃ of Ω, i.e., the “bad set” where the tori are de-
stroyed by the perturbation, is not only open and dense but also connected.
It is usually called an Arnold web and is the image, under the map ω 	→ I,
of a small neighborhood of measure O(√ε) of the set of the hyperplanes
ω · k = 0, passing through the origin of the frequency space and having
rational slope.

3.B Appendix: Homoclinic Tangle and Chaos

Let us examine what happens when we slightly perturb an integrable Hamil-
tonian system possessing an unstable, or hyperbolic, equilibrium point.
To be concrete, we consider the standard map S of Figure 1.1, where the

hyperbolic point P is placed at 0 identified with 2π. In the 0 point two dis-
tinct lines intersect, each one characterized by being invariant under the ac-
tion of the map but exhibiting two contrasting behaviors: while every point
of the first line is pushed toward the equilibrium point, those of the latter
are moved away. The two lines are called the stable and unstable manifold ,
respectively. The situation is reminiscent of the pendulum, where however
the stable and unstable manifolds join smoothly together, forming a sep-
aratrix (see Figure 3.3). But this is just the characteristic of the integrable
systems, while in general we expect that the two lines intersect in a point,
different from the hyperbolic one, called homoclinic.5 Notice that the two
lines are forced to intersect from the fact that the map is symplectic, thus
area preserving, which forbids spiral trajectories. Moreover, a line cannot
intersect itself, since there would be a point without a unique inverse.
The fundamental feature of a homoclinic point is that if there exists

a single such point on a stable and an unstable invariant manifold corre-
sponding to a particular hyperbolic fixed point, then there exist an infinite
number of homoclinic points on the same invariant manifolds. We prove
the statement by induction. Our base case is the initial homoclinic point.
Thus, assume that there exist n homoclinic points for these invariant man-
ifolds. LetMs be the stable manifold andMu be the unstable manifold, and
let H be the homoclinic point farthest from the fixed point along the un-
stable manifold. Since Ms and Mu are invariant manifolds, S(H) ∈ Ms,Mu.
Since S(H) ∈ Ms,Mu, S(H) is either a homoclinic point or the fixed point.
5When the two stable and unstable manifolds start from two different hyperbolic points,

the intersection point is called heteroclinic.
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Figure 3.7: The homoclinic tangle, i.e., the web or trellis which Poincaré (1892–
1893–1899, Vol. 3, page 389) described but did not attempt to draw.

Since S takes a point on the unstable manifold away from the fixed point,
S(H) cannot be the fixed point. Thus, it is a homoclinic point. For the same
reason, it is not one of the n homoclinic points that we already have. Thus,
there exist n + 1 homoclinic points. Therefore, the number of homoclinic
points on the corresponding invariant manifolds is infinite.
The infinite number of homoclinic points entails that they crowd more

and more densely in the neighborhood of the fixed point on the stable and
unstable manifolds. Consequently, the lobes formed by the two orbits are
more and more stretched out in order to preserve the areas, and inevitably
they cross mutually, forming a very intricate pattern, called homoclinic tan-

gle (see Figure 3.7), where the hyperbolic point is in π and the intersection
point of the stable and unstable manifolds is in 0(2π).
The dynamics near the homoclinic tangle can be described as follows

(see Figure 3.8). Pick some distance d and a homoclinc point H. Since H is
on the stable manifold, it will map (along Ms ) within d of the fixed point P
after some number of iterations of S. Call this number ns. Since H is on the
unstable manifold, it will map (along Mu) within d of P after some number
of iterations of S−1. Call this numbernu. Consider a box D around the origin
that extends a distance d (small) along each manifold. If we iterate S−1 on
this box ns times, P will remain in the box, but the box will stretch along the
stable manifold to cover H. Thus, H∈ S−ns (D). If we iterate S on this box nu
times, P will remain in the box, but the box will stretch along the unstable
manifold to cover H. Thus, H ∈ Snu(D). Then consider the box S−ns (D). If
we let Sns+nu act on this box, we will end up with the box Snu(D). Since
the two boxes must cross over each other, we have just found a map whose
behavior is reproduced qualitatively by the Smale horseshoe map H .
This map takes a square Q, stretches it vertically by a factor > 2 and

contracts it horizontally by a factor < 1/2. Then it bends the resulting
rectangle in the shape of just a horseshoe, and superimposes it with the
initial square, leaving out a central vertical strip. The inverse map H−1

instead stretches horizontally and contracts vertically, leaving out a central
horizontal strip after the bend. As one easily verifies, H∞(Q) is exactly
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Figure 3.8: The horseshoe in the neighborhood of a hyperbolic fixed point.

the Cantor set of footnote 4 on page 126 formed by vertical lines, while
H−∞(Q) is formed similarly by horizontal lines. The invariant set Λ =
H∞(Q) ∩H−∞(Q) is evidently the set of points in the initial square that
never leave it under forward or backward iteration, so that we can consider
the “dynamics” generated by the action ofH on Λ.
To study this dynamics, it is convenient to introduce a third mathe-

matical object, the symbolic dynamics. To every point of Λ we associate
univocally a bi-infinite sequence of numbers

{. . . , a−3, a−2, a−1|a0, a1, a2, a3, . . .} with ak = 0 or 1,

a sort of address which instructs H on how to locate the point. It is also
possible to define a distance between two sequences, comparing the finite
subsequences centered around the vertical bar, thus generating a topology
on the set of the sequences. It turns out that the action of H on Λ corre-
sponds to shift of one place a sequence. In this way we reduce the study of
the horseshoe map to that of shifts on symbol sequences. In other words,
the horseshoe map, the map near a hyperbolic point, and the shift map are,
in essence, only different ways of describing the same phenomenon, i.e., the
chaos, and we have the possibility to choose the most suited method.
Using the symbolic dynamics, all in all it is simple to prove some basic

features of the chaotical dynamics, which can just be considered as the
“fingerprints” of the chaos:
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(i) Sensitive dependence on initial condition (butterfly effect);

(ii) Existence of at least one dense orbit;

(iii) Density of the set of periodic orbits.

We stress that these few lines give only an extremely shallow idea of the
argument. For example, we have not even touched on the dissipative sys-
tems, where the strange attractors, i.e., attractors of fractal type, arise. For
a serious study see Smale (1967), Guckenheimer & Holmes (1983), Wiggins
(1990), and Ott (1993).



CHAPTER 4

Numerical Tools I: ODE Integration

The high speed computing machines make it possible
to enjoy the advantage of intricate methods.

— P.C. Hammer & J.W. Hollingsworth (1955)

In the following chapters we will study some concrete quasi-integrable Ha-
miltonian systems. Their analytical approximate normal form will be de-
duced and compared with the “true” motion, obtained from numerical inte-
gration. Moreover, the geography of the resonances will be detected thanks
to the tools described in the next chapter, which again require a numerical
integration.
In the present chapter we give the rudiments of the numerical integration

of the Ordinary Differential Equations (ODE). The chapter must be viewed as
a didactical service; indeed no generality is claimed, rather only the meth-
ods which come into play in the attachedMATLAB programs are considered.
In particular, the integration of stiff problems1 will not be touched, while
the geometric methods, usually ignored in basic courses, will receive some
attention. For a more complete and serious study of the numerical integra-
tion of ODE, see Hairer, Norsett & Wanner (1993), Hairer & Wanner (1996),
Hairer, Lubich & Wanner (2002), Butcher (2003), Iserles (1996), Quarteroni,
Sacco & Saleri (2000), and Press, Teukolski, Wetterling & Flannery (1992).

1Stiffness occurs in a problem where there are two or more very different time scales on
which the dependent variable is changing.
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4.1 Cauchy Problem

In the present chapter we are concerned with the initial value problem or
Cauchy problem: ⎧⎨⎩

d

dt
x(t) = f(t, x), ∀t ∈ Δ ⊂ R,

x(t0) = x0 ∈ R.
(4.1.1)

Our problem has as input the function f : Δ × R → R and the initial value
x0, and must return as output a function x : Δ → R satisfying the initial
condition. In the applications, x and f will be in general Rn-valued, but
that is irrelevant for the discussion in the present chapter.
The following theorem is fundamental.

Theorem 4.1 Let f(t, x) be continuous in both the arguments and satisfy a

Lipschitz condition in x. Then the solution of the Cauchy problem exists and

is unique.

We recall that a function g(x) satisfies a Lipschitz condition in [a, b] if a
constant L exists such that∣∣g(x1)− g(x2)∣∣ ≤ L |x1 − x2| , ∀x ∈ [a, b].
Clearly, differentiability with bounded derivative is stronger than the Lips-
chitz condition and includes it.
With regard to numerical integration, we start by illustrating the Euler

method, which is very simple and well suited for introducing basic ideas
and definitions. Notice, however, that it is never used in practice because
of the large error that is accumulated as the process goes on, but it is still
important to study because the error analysis is easier to understand. Its
poor performance is due to the fact that it is a one-stage and a one-step

method.
In order to get better methods, two different strategies can be adopted.

The Runge–Kutta and the extrapolation methods maintain the structure of
the one-step method, thus the numerical result of every step depends only
on the previous one, but they increase their accuracy at the price of an
increase of functional evaluations at each time step. In contrast, the multi-
step methods require only one functional evaluation at each step, and their
accuracy can be increased at the expense of increasing the number of steps.
A further drawback of the Euler method is that it is neither symplectic

nor conservative: the various geometric methods try to satisfy just one of
the two properties.
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4.2 Euler Method

The intuitive idea behind the method is very simple. In the Cauchy problem,
consider x(t) as the coordinate of a particle moving with velocity f(t, x);
then, the simple principle is that, in a short period of time, so short that
there has not been time for the velocity to change significantly, the change
in position will be approximately equal to the change in time multiplied by
velocity. More formally, let us consider a succession of points, or nodes,
tk = t0+kh, k = 0,1,2, . . . where h is the stepsize. We want to approximate
the values of x in the nodes tk; therefore xk will denote the approximate
value of x(tk). To find these values, let us assume that we know the value
at tk and approximate the derivative with the incremental ratio. We get

tk+1 = tk + h, xk+1 = xk + hf(tk, xk), (4.2.1)

which is the (explicit or forward) Euler method. All the fancy Runge–Kutta
or multi-step methods that we shall discuss in the sequel are nothing but a
generalization of this basic scheme.
Let us define the local truncation error

τ(t, x(t);h) = x(t + h)− x(t)
h

− f(t, x),

which is a measure of how much the exact solution does not satisfy the
numerical scheme (4.2.1). In other words, hτ(t,x(t);h) is the residual aris-
ing when we pretend that the exact solution satisfies the numerical scheme.
Then

d

dt
x(t) = f(t, x)⇒ lim

h→0
τ(t, x(t);h) = 0,

which expresses the consistency of the numerical method (4.2.1) with re-
spect to the Cauchy problem (4.1.1). In general, a numerical method is said
to be consistent if its local truncation error is infinitesimal with respect to
h. Moreover, a method has order p if, ∀t ∈ Δ, the solution x(t) of the
Cauchy problem (4.1.1) fulfills the condition

τ(h) = O(hp) for h→ 0.
Using Taylor expansions, it is easy to prove that the forward Euler method
has order one.
However, the request that a numerical method be consistent is insuf-

ficient, since the errors could accumulate catastrophically at every step.
Rather, we require that a method be convergent of order p, i.e.,

|x(tk)− xk| = O(hp), ∀k.
It turns out that a numerical method is convergent of order p if it is con-
sistent of order p and, moreover, if it is stable.
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In order to define the notion of stability, let us consider the following
Cauchy model problem:⎧⎨⎩

d

dt
x(t) = λx(t), λ < 0,

x(0) = 1,
(4.2.2)

whose solution is x(t) = eλt, thus lim
t→∞

x(t) = 0. We say that a numerical
scheme is (absolutely) stable if it gives an approximation such that

xk → 0 for tk →∞.

Notice that the request that a numerical method be stable arises, before
anything else, from the need of keeping under control the (unavoidable)
errors introduced by the finite arithmetic of the computer. Indeed, if the
numerical method were not stable, the rounding errors would make the
computed solution completely useless.
It easy to check the conditions for the stability of the forward Euler

problem. The model problem (4.2.2) gives{
xk+1 − xk = λhxk,

x0 = 1,

whose solution is
xk = (1+ λh)kx0 = (1+ λh)k.

The stability condition is satisfied if and only if

|1+ λh| < 1� h <
2

|λ| ,

therefore the method is said to be conditionally stable, i.e., stable only if the
step is sufficiently small.
An important variant is the implicit or backward Euler method:

tk+1 = tk + h, xk+1 = xk + hf(tk+1, xk+1), (4.2.3)

where the slope of the curve is evaluated at the final point of the integra-
tion interval, instead of at the initial one as in the explicit methods. This
requires an additional computational effort, because one must also solve
an implicit algebraic equation in order to determine the xk+1 value, which
may be justified when a particularly stable method is required.2 Indeed, the
stability analysis leads to the condition

1

(1− λh)k < 1,

2For example, when the problem is stiff.
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which is satisfied for every value of h: the method is unconditionally stable.
To get an intuitive idea of the different behaviors of the two methods,

let us consider a system of two equations describing the planar motion
of a mass around a stable point. Energy conservation forces the mass to
move on a closed trajectory, for example, a circle. Applying the explicit
Euler method, one obtains a trajectory which moves the mass away from
the equilibrium point, while with the implicit method the mass “spirals”
toward it. Thus the first method adds energy and destabilizes the system,
while the latter subtracts energy and makes it more stable. Obviously, an
intermediate behavior would be preferable: this and other considerations
will lead us later to introduce the symplectic Euler method.

4.3 Runge–Kutta Methods

The Euler method (4.2.1) can be derived from the Taylor series expansion,
stopping at the second term. By retaining more terms, we can generate
higher order single-step methods. For example, retaining one additional
term in the Taylor series

x(t + h) = x(t)+ hdx(t)
dt

+ h
2

2

d2x(t)

dt2
+ h

3

6

d3x(t)

dt3
+ · · · ,

gives the second order method

xk+1 = xk + hẋk + h
2

2
ẍk. (4.3.1)

This approach requires the computation of higher derivatives ofx(t),which
can be obtained by differentiating the first equation of (4.1.1) using the chain
rule:

ẋk = f(tk, xk) def= fk,

ẍk = ft(tk, xk)+ fx(tk, xk)f (tk, xk) def= ft,k + fx,kfk,
(4.3.2)

where the subscripts indicate partial derivatives with respect to the given
variable. As the order increases, the expressions for the derivatives rapidly
become too complicated to be practical to compute; moreover, every single
Cauchy problem would require an explicit and dedicated treatment, while
one wants a code which works in the generic case. Runge–Kutta methods

are single-step methods similar in motivation to Taylor series methods, but
they do not require computation of higher derivatives. Instead, Runge–
Kutta methods simulate the effect of higher derivatives by evaluating f
several times between tk and tk+1.
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We provide an example of this technique for a second order method.
Then

xk+1 = xk + h(b1K1 + b2K2),
K1 = fk, K2 = f(tk + hc,xk + hcK1).

Expanding K2 in a Taylor series and truncating at the second order, we get

K2 = fk + hc(ft,k +K1fx,k)+O(h2),
from which

xk+1 = xk + hfk(b1 + b2)+ h2cb2(ft,k + fx,kfk)+O(h3).
Comparing with (4.3.1)–(4.3.2) and forcing the coefficients in the two ex-
pansions to agree up to higher order terms, we obtain that the coefficients
must satisfy b1 + b2 = 1 and cb2 = 1/2. Thus, there are infinitely many
Runge–Kutta methods of second order.
In its most general form, a Runge–Kutta method can be written as

xk+1 = xk + hF(tk, xk,h;f),
where F is the increment function defined as follows:

F(tk, xk,h;f) =
s∑
i=1
biKi,

Ki = f(tk + cih,xk + h
s∑
j=1

aijKj), i = 1,2, . . . , s

and s denotes the number of stages of the method. The coefficients {aij},
{ci} and {bi} fully characterize a Runge–Kutta method and are usually col-
lected in a Butcher array or Butcher table

c1 a11 a12 · · · a1s
c2 a21 a22 a2s
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

or
c A

bt
.

For example, the best known is the following fourth order and fourth
stage method:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6
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which is explicit, since aij = 0 for every j ≥ i.
In general, the method is consistent if and only if

∑s
i=1 bi = 1.As Butcher

proved, the order of an s-stage explicit Runge–Kutta method cannot be
greater than s. For the first stages, the relation is given by

order 1 2 3 4 5 6 7 8

smin 1 2 3 4 6 7 9 11
.

Up to now, we have considered only methods with a fixed stepsize, cho-
sen in advance before the integration process. In choosing the stepsize for
a numerical solution of an ODE, we want to take large steps to reduce the
computational cost but, at the same time, we must also take into account
both stability and accuracy, which require small steps. It is desirable to
have a method possessing a stepsize adaptivity, i.e., a method which is able
to modify the stepsize, taking it smaller when the integration error grows
and vice versa. It is thus necessary to have an efficient a posteriori estima-
tor of the local error available, since the a priori local error estimates are
too difficult to be used in practice.
At the present time, the best method not requiring extra functional eval-

uations consists of using simultaneously two different Runge–Kutta meth-
ods with s stages, of order p and q > p respectively, which share the same
values of the A and c Butcher parameters. These methods are synthetically
represented by the modified table

c A

bp
t

bq
t

where the method of order p is identified by the coefficients c, A, and
bp, while that of order q is identified by c, A, and bq. Taking the differ-
ence between the approximate solutions produced by the two methods pro-
vides an estimate of the local error for the scheme of lower order. On the
other hand, since the coefficients Ki coincide, this difference is given by
h
∑s
i=1(bi,q − bi,p)Ki and no extra functional evaluation is required. The

error is then compared with the tolerance value fixed by the user: the com-
putation relative to the higher order is consequently retained, lengthening
in case the stepsize, or is rejected and computed again with a smaller step-
size. Several pairs have been found, for example, that of Dormand–Prince:
see the already quoted books for their explicit description.

4.4 Gragg–Bulirsch–Stoer Method

This method exploits the powerful idea of Richardson extrapolation. Quot-
ing from Press et al. (1992): “The idea is to consider the final answer of a



138 Numerical Tools I: ODE Integration

numerical calculation as itself being an analytic function (if a complicated
one) of an adjustable parameter like the stepsize h. That analytic function
can be probed by performing the calculation with various values of h, none
of them being necessarily small enough to yield the accuracy that we desire.
When we know enough about the function, we fit it to some analytic form,
and then evaluate it at that mythical and golden point h = 0. Richardson
extrapolation is a method for turning straw into gold!” In practice, a large
interval H is spanned by different sequences of finer and finer substeps,

h =H
n
, with n = 2,4,6,8,12,16,24,32,48,64,96, . . . [nj = 2nj−2]

or n = 2,4,6,8,10, . . . [nj = 2j],
the latter probably being more efficient. The result is extrapolated to an
answer that is supposed to correspond to infinitely fine substeps.
The integrations are done by the modified midpoint method:

x1 = x0 + hf0,
...

xk = xk−2 + 2hfk−1, k = 2,3, . . . , n.
The final result is obtained by averaging xn and the estimate available from
Euler method, to obtain

x(t0 +H) = 1
2
[xn + (xn−1 + hfn)].

The modified midpoint method is a second order method, but with the
advantage of requiring (asymptotically for large n) only one evaluation per
step h instead of the two required by second order Runge–Kutta. But the
principal usefulness of the modified midpoint method derives from the fact
that the error, expressed as a power series in h, contains only even powers
of the stepsize, as discovered by Gragg, so we can gain two orders at a time.
With regard to the choice of fitting function, Bulirsch and Stoer first

recognized the strength of rational functions. Nevertheless, more recent
experience suggests that for smooth problems straightforward polynomial
extrapolation is slightly more efficient than rational function extrapolation.

4.5 Adams–Bashforth–Moulton Methods

Let us now consider multi-step schemes. Unlike to one-step schemes, here
the previously computed points come into play. In an s-step scheme ap-
proximation, xk+1 is computed from the data

(tk, xk), (tk−1, xk−1), . . . , (tk−s+1, xk−s+1). (4.5.1)
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The data are given by previous steps or by a start-up computation.
To derive multi-step schemes, apply the fundamental theorem of inte-

gral calculus to the Cauchy problem (4.1.1). Integrating between xk and
xk+1 we get

xk+1 = xk +
∫ xk+1
xk

f (t, x(t)) dt.

The integral cannot be calculated explicitly, since it depends on the un-
known function x(t) itself. However, we know the s values fk, fk−1, . . . ,
fk−s+1 of the integrand at the points (4.5.1), so it may be replaced by an
interpolation polynomial P(t). One distinguishes two cases.

(i) Adams–Bashforth explicit method. The polynomial P(t) interpolates

fk−s+j, j = 1, . . . , s.

As P does not depend on xk+1, the method is explicit. Using La-
grangian interpolation, we have for P the representation

P(t) =
s∑
j=1

fk−s+j lkj(t), where lkj(t) =
s∏
ν=1
ν≠j

t − tk−s+ν
tk−s+j − tk−s+ν

.

Inserting P(t) into the integral yields

xk+1 = xk + h
s∑
j=1

βkjfk−s+j, where βkj = 1
h

∫ xk+1
xk

lkj(t) dt.

For example, for the first few step numbers we get

s = 1 : xk+1 = xk + hfk
s = 2 : xk+1 = xk + h

(
3

2
fk − 1

2
fk−1

)
(4.5.2)

s = 3 : xk+1 = xk + h
(
23

12
fk − 4

3
fk−1 + 5

12
fk−2

)
.

(ii) Adams–Moulton implicit method. As before, P(t) interpolates fk−s+j
but now j = 1, . . . , s, s + 1. As P(t) depends on xk+1, the method is
implicit. For example, for the first few step numbers we get

s = 1 : xk+1 = xk + hfk+1
s = 2 : xk+1 = xk + h

(
1

2
fk+1 + 1

2
fk

)
(4.5.3)

s = 3 : xk+1 = xk + h
(
5

12
fk+1 + 2

3
fk − 1

12
fk−1

)
.
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The two schemes can be combined into a predictor-correctormethod, which
first uses a prediction step to approximate the value of the variable, then
uses this value to refine the guess: the xk+1 value obtained from the pre-
dictor method is inserted into the right member of the corrector method,
which thus becomes fully explicit. There are actually three separate pro-
cesses occurring in a predictor-corrector method: the predictor step, which
we call P, the evaluation of the derivative fk+1 from the latest value of x,
which we call E, and the corrector step, which we call C. For example, it-
erating m times with the corrector would be written P(EC)m. However, the
preferred strategy is PECE.
Notice that in (4.5.2) and (4.5.3) the sum of the numerical coefficients

in the round brackets is always 1: indeed, a computation using the Taylor
series shows that this is the necessary and sufficient condition to have a
consistent method. It is possible to show that the s-step Adams-Bashforth
method has order s, while the s-step Adams–Moulton method has order
s + 1.

4.6 Geometric Methods

Thus far we have reviewed numerical methods well suited to integrate a
generic ODE. Geometric numerical integration deals with numerical inte-
grators that preserve, if any, geometric properties of the ODE flow, and it
explains how structure preservation leads to an improved long-time behav-
ior. In particular, we are interested in the symplectic and the time-reversible
structures.
Let us suppose that the right-hand side of (4.1.1) is anR2-valued function

(the generalization to R2n is immediate) such that the Cauchy problem is a
Hamiltonian system:(

q̇
ṗ

)
= Ω

(
∂qH(q,p)
∂pH(q,p)

)
, where Ω =

(
0 1

−1 0

)
(4.6.1)

is the (inverse of the) symplectic or canonical matrix. With xk+1 = Φh(xk)
we will denote a numerical method with stepsize h. If the numerical method

Φh :

(
qk
pk

)
	→
(
qk+1
pk+1

)
leaves invariant the symplectic matrix

J tΩ J = Ω, where J = ∂(qk+1, pk+1)/∂(qk,pk),
it is said to be a symplectic method. It is intuitive that such a method pre-
serves the intrinsic geometric features of the exact flow of (4.6.1): compare
with the considerations at the end of the section.



4.6 Geometric Methods 141

Let us give some basic examples. The explicit Euler method (4.2.1) and
the implicit one (4.2.3) are not symplectic. But let us consider the method

pk+1 = pk − h∂qH(pk+1, qk),
qk+1 = qk + h∂pH(pk+1, qk),

which treats the p variable by the implicit Euler method and the q variable
by the explicit one. Similarly, we also consider

pk+1 = pk − h∂qH(pk, qk+1),
qk+1 = qk + h∂pH(pk, qk+1).

One easily proves that both methods are symplectic. To this end, consider
for example the former method, the proof for the latter being quite simi-
lar. The result of differentiation and implicit differentiation of the left- and
right-hand sides with respect to pk, qk can be expressed in matrix form as(

1+ h∂qpH 0
−h∂ppH 1

)(
∂(qk+1, pk+1)
∂(qk,pk)

)
=
(
1 −h∂qqH
0 1+ h∂qpH

)
,

where the partial derivatives are all evaluated at (pk+1, qk). Inversion of the
first matrix in this relation allows us to compute the Jacobian matrix J and
to check the symplecticity condition in a straightforward way.
Besides the symplecticity property, the method exhibits a good qualita-

tive behavior of the total energy of a harmonic oscillator.3 Notice that with
the explicit and the implicit Euler method we obtain, respectively,

q2k+1 + p2k+1 = (1+ h2)(q2k + p2k),

q2k+1 + p2k+1 =
1

1+ h2 (q
2
k + p2k),

so that the point in phase space gains or loses energy indefinitely. With,
e.g., the first symplectic Euler method we get instead

q2k+1 + p2k+1 = q2k + p2k + h2(p2k+1 − q2k),
so that, even though not exactly conserved, the energy oscillates about the
right value without drifting away.
Given a numerical method Φh, we define the adjoint method

Φ
∗
h
def= Φ

−1
−h,

which is clearly a numerical method of the same order. Whenever a method
satisfies

Φ
∗
h = Φh i.e, Φ−1h = Φ−h,

3A numerical method cannot be symplectic and at the same time conservative.
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it is called a symmetric method. It is sensible to think that a symmetric
method is well suited for the numerical integration of an ODE whose exact
flow is time-reversible.
Exchanging h with −h and xk+1 with xk shows that the adjoint of the

explicit Euler method is the implicit Euler method and vice versa. Similarly,
this is true for the two symplectic Euler methods. Obviously, none of these
methods is symmetric.
Given a method Ψh of order one, it is immediate to check that the two

compositions
Ψh/2 ◦ Ψ∗h/2 and Ψ

∗
h/2 ◦ Ψh/2 (4.6.2)

are symmetric of order two. The symmetry follows from the two properties

(Φh ◦ Ψh)∗ = Ψ∗h ◦ Φ∗h and (Φ∗h)
∗ = Φh.

The order two is a consequence of the fact that symmetric methods always
have an even order.
Take the first of the two symplectic Euler methods in the role of Ψh. For

the generic Hamiltonian system, the compositions (4.6.2) yield

qk+1/2 = qk + h
2
∂pH(pk, qk+1/2)

pk+1 = pk − h
2

(
∂qH(pk, qk+1/2)+ ∂qH(pk+1, qk+1/2)

)
qk+1 = qk+1/2 + h

2
∂pH(pk+1, qk+1/2)

and

pk+1/2 = pk − h
2
∂qH(pk+1/2, qk)

qk+1 = qk + h
2

(
∂pH(pk+1/2, qk)+ ∂pH(pk+1/2, qk+1)

)
pk+1 = pk+1/2 − h

2
∂qH(pk+1/2, qk+1)

respectively. These two schemes are called Störmer–Verlet methods. They
are therefore symplectic and symmetric methods of order two. Moreover,
one can prove that they exactly conserve quadratic first integrals, as the
angular momentum.
The question is: How can one construct in general symplectic and/or

symmetric methods, if possible of high order? A first answer is given by
the splitting method, which consists in the splitting of a Hamiltonian in the
sum

H = H[1] +H[2]
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such that the exact flowsϕ[1]
t andϕ[2]

t , generated byH[1] andH[2], respec-
tively, can be calculated. Then the numerical method

Φh =ϕ[1]
h ◦ϕ[2]

h

is of order one, as follows from a Taylor expansion. Similarly, one can check
that the method

Φh =ϕ[1]
h/2 ◦ϕ[2]

h ◦ϕ[1]
h/2

is of second order; moreover, it is symmetric.
In practice, the delicate point is the choice of a suitable splitting, since in

general it is an art to find it. However, in the particular but very important
case of a natural Hamiltonian H = T(p) + V(q), the sum of kinetic and
potential energy, the splitting is obvious, and the exact flows generated by

H[1](p) = T(p) and H[2](q) = V(q)

are given by

ϕ[1]
t =

(
p

q + t∂pT(p)

)
, ϕ[2]

t =
(
p − t∂qV(q)

q

)
.

The T(p) component is called the shift term, while V(q) is the kick term.
The resulting splitting methods of first and second order are then equiv-
alent to the symplectic Euler method and to the Störmer–Verlet method,
respectively.
The second order is in general too low for the long-time calculation of

celestial mechanics, where a high accuracy is required. To increase the or-
der, and hence the accuracy, while preserving symplecticity and symmetry,
one considers more general compositions of a given basic one-step method
Φh(x) with different stepsizes:

Ψh
def= Φγsh ◦ . . . ◦ Φγ2h ◦ Φγ1h,

where the sequence of real parameters γ1, γ2, . . . , γs must be conveniently
determined to get the wanted order. If the basic method Φh is symplec-
tic, the composition method Ψh is also symplectic. If the basic method is
symmetric and the parameters satisfy the relation γi = γs+1−i, then the
composition method is symmetric.
The splitting method requires to inspect directly the Hamiltonian and

cannot be “blindly” applied to a generic problem. In this sense, the sole
alternative is given by the implicit Runge–Kutta-Gauss (IRK–Gauss) method.
We know that a Runge–Kutta method is identified by two numerical vec-

tors b and c of dimension s and a numerical s×smatrix A. For the IRK–Gauss
method these coefficients are chosen as follows:
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(i) Choose c1, c2, . . . , cs as the zeros of Ps(2x − 1), where Pk(x) is the
Legendre polynomial of k degree:

Pk(x) = 1

2kk!

[
dk

dxk
(x2 − 1)k

]
.

(ii) Choose b1, b2, . . . , bs to satisfy the conditions

s∑
i=1
bic

j−1
i = 1

j
, j = 1,2, . . . , s.

(iii) Choose aij, i, j = 1,2, . . . s to satisfy the conditions
s∑
j=1

aijc
�−1
j = 1

�
c�i , i, � = 1,2, . . . , s.

(iv) The first three conditions ensure that the method has order 2s. If,
moreover,

biaij + bjaji − bibj = 0, i, j = 1,2, . . . , s
holds true, the method is symplectic.

Lastly, we mention that precise statements on the long-time behavior of
geometric integrators can be given thanks to the idea of backward error

analysis (Hairer et al. 2002, Chapter IX). In this approach the numerical
solution is the exact solution of a new Hamiltonian which is a perturbation
of the original one in which the stepsize appears as the small parameter.
Clearly, such an approach is closely related to the perturbation theory of
Hamiltonian systems, so one can benefit from the existing experience in
this field. For example, one proves that the numerical integration error for
a method of order p is small on exponentially long time intervals. Thus

H(pn, qn)−H(p0, q0) = O(hp) for nh ≤ T0eb/h,

with T0 and b some positive constants.

4.7 What Methods Are in the MATLAB Programs?

In the five programs POINCARE, HAMILTON, LAGRANGE, KEPLER, and LA-
PLACE, some numerical integrator are invoked.
The first two methods ode113 and ode45 come originally with MATLAB,

and the brief descriptions reported below are taken literally from the orig-
inal Help. The following three methods are a MATLAB implementation of
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FORTRAN programs originally due to Hairer and Wanner: see Hairer et al.

(1993) and Hairer & Wanner (1996); the implementation is due to C. von
Ludwig. Tom is due to F. Mazzia and R. Pavani: see Mazzia & Pavani (2007).
RungeKutta4 and RungeKutta5 are the classical fixed-step methods and
are added only for a didactical purpose.

ode113

Variable order Adams–Bashforth–Moulton solver. It may be more efficient
than ode45 at stringent tolerances and when the ODE function is particu-
larly expensive to evaluate (as happens very often with the perturbed Kepler
problem). ode113 is a multi-step solver: it normally needs the solutions at
several preceding time points to compute the current solution. For the KE-
PLER program, this solver is in general better than ode45 and is the best
function to apply as a “first try” for most problems.

ode45

Based on an explicit Runge–Kutta (4,5) formula, the Dormand–Prince pair,
which allows an adaptive step. It is a one-step solver: in computing the
solution at a point, it only needs the solution at the immediately preceding
time point.

IRK–Gauss

Implicit Runge–Kutta (Gauss) with fixed integration step. Symplecticmethod
of order 4, 6, 8, 12, selected by the user.

Dop853

Explicit Runge–Kutta method of order 8(5,3), based on the method of Dor-
mand–Prince, which allows an adaptive stepsize. For tolerance between
10−7 and 10−13.

Odex

Extrapolationmethod, with variable order at any step and adaptive stepsize,
based on Gragg–Bulirsch–Stoer algorithm.

Tom

Symmetric method of order 10 with fixed stepsize. In some situations it is
the most precise solver.
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RungeKutta4

The classical Runge–Kutta of the fourth order with fixed stepsize. For di-
dactical purpose only.

RungeKutta5

The classical Runge–Kutta of the fifth order with fixed stepsize. For didac-
tical purpose only.

The previous methods are all devoted to the integration of first order ODE,
while three other methods for ODE of second order, due to Hairer, are sup-
plied for the KEPLER program: see Hairer et al. (2002). Obviously, they can
be utilized only with the standard integration method.

gni_irk2

Implicit Runge–Kutta (Gauss) of order 12 with fixed integration stepsize.
Symplectic method.

gni_lmm2

Linear multi-step method of order 8, explicit and not symplectic, with fixed
integration stepsize.

gni_comp

Composition of a given basic one-step method. Here the Störmer–Verlet
method is used as basic integrator, but it may be changed by replacing the
file stverl.m and invoking eventually a first order integration method. It
is a symplectic method, with fixed integration stepsize.

The LAPLACE program utilizes the three numerical integrators which come
with the HNBODY program of Rauch & Hamilton (2004). The symplectic
method, which is the default and is strongly recommended, adopts a split-
ting of the type

H(p,q) = T(p)+ V(q)+D(p,q).
The first two terms are the kinetic and potential energy of the unperturbed
Kepler problems relative to every planet. The last term is called drift and
takes into account the interaction between the planets: its choice is clearly
the most critical, but the original documentation of the HNBODY program
does not give further information on it. The other two numerical methods
are of Bulirsch–Stoer and Runge–Kutta type.



CHAPTER 5

Numerical Tools II: Detecting Order,

Chaos, and Resonances

Frequency modulation (FM) conveys information
over a carrier wave by varying its frequency.

Detecting and studying how order and chaos are distributed in quasi-in-
tegrable Hamiltonian systems and, in particular, exploring the geography
of the resonances is surely a major task in the dynamical systems area.
We briefly recall the principal results of Chapter 3. The dynamics of an

n-dimensional quasi-integrable system is generated by a Hamiltonian of the
type

H(I,ϕ) = H0(I)+ εHp(I,ϕ),
where I = I1, . . . , In ∈ Rn, ϕ = ϕ1, . . . ,ϕn ∈ Tn (n-dimensional torus)
are the action-angle variables, and ε is a “small” perturbative parameter.
The unperturbed motion is the product of n uniform circular motions in
the n planes spanned by the couples of variables Ik,ϕk, k = 1, . . . , n with
frequencies ωk = ∂H0/∂Ik; if det(∂2H0/∂Ik∂Ih) ≠ 0, this relation defines
a locally invertible frequency map I → ω(I) between action space and fre-
quency space. For the perturbed motion a key role is played by the resonant

tori, which are defined by a relation of the type ω · k = 0, k ∈ Zn. Indeed,
from the KAM theorem one knows that only the tori sufficiently far from a
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resonance condition will survive, though slightly deformed, to a small per-
turbation. The set of destroyed tori forms the Arnold web, which in the
frequency space consists of a small neighborhood of the union of all the
hyperplanes through the origin and having a rational slope; in the action
space the inverse of the frequency map will give a distorted image of this
set. The Arnold web is connected, open, and dense with, however, a small
measure vanishing with the square root of the perturbative parameter.
Awell-knownmethod to detect the resonance distribution is the Poincaré

section. It is a time-honored tool in the study of dynamical systems and is
effective in showing where order and chaos are located. In particular, for
perturbed quasi-integrable Hamiltonian systems with two degrees of free-
dom, it is able to indicate where the neighborhood of a torus is simply
deformed by the perturbation, or is destroyed and replaced by a train of
resonance islands along with their surrounding chaos. Moreover, it can re-
veal resonances at various levels, i.e., resonances inside resonances inside
resonances …, et cetera. However, it suffers from two main limitations: it
is useless for systems with three or more degrees of freedom, and it is in-
effective in revealing the finest details, such as those very thin resonances
which can be detected in principle but only when one knows exactly where
to look.
In order to overcome these drawbacks several other methods are avail-

able, which can be divided into two groups. The first has its root in the
Lyapunov exponents and is characterized by the fact that all the relative
methods also require the numerical integration of the variational equation.
The latter utilizes the Fourier transform and its further refinements in or-
der to analyze the frequencies on KAM tori; it only requires the integration
of the equations of motion.

5.1 Poincaré Section

In the 4-dimensional phase space of a Hamiltonian system with two degrees
of freedom, let us fix the value of the energy and consider the 3-dimensional
hypersurface given by H(q,p) = const. If the system is quasi-integrable,
the generic orbit winds around a 2-dimensional torus. Recording the in-
tersection point of such an orbit with a 2-dimensional plane transverse to
the flow, one will see the various intersection points arranged on a closed
curve homeomorphic to a circle. Varying the value of the actions, different
tori are selected, and the resulting intersection plane is locally foliated by a
family of closed curves nested one into the other. If, instead, the initial con-
ditions belong to a (primary or first level) resonance, the relative orbit winds
around a “small tube” which, in turn, winds itself around a KAM torus but
without touching it: the chaotic orbits take place betweenKAMand resonant
tori. Moreover, the primary resonances can develop secondary resonances
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Figure 5.1: A resonant 5:2 regular torus.

(a tube around a tube around a KAM torus) reproducing the same pattern,
and so forth.
In Figure 5.1 an example is displayed, regarding a 5:2 resonance. The

square in the left picture, with the opposite sides identified, represents the
KAM torus broken up by the resonance and replaced by the resonant one.
A section along the horizontal or vertical side shows five or two islands,
respectively. In the right picture the five islands of the horizontal section
are shown. As results from the left picture, during the dynamical evolution
they are visited in the order 1-3-5-2-4-1.
With the aid of the program KEPLER, the reader can investigate how

the dynamical orbits are arranged in concrete physical cases; see items
(i) on page 219 and on page 222. In case of resonance what happens is
the following. The two initial frequencies ω1,ω2, relative to the two de-
grees of freedom, collapse into one alone, calculable with a unimodular
matrix which transforms the latter new frequency into the vanishing one:
ω1,ω2 → ω′

1,0. But a new frequency arises, ωr say, relative to the travel-
ing time necessary to cover the resonance isles, so that the system again
possesses two frequencies. Clearly, the two new frequencies ω′

1,ωr can
be in resonance again, more exactly in a resonance of second level, and the
reasoning starts again.

5.2 Variational Equation Methods

Once a suitable tangent vector to the orbit has been chosen, all the methods
of the present section will examine basically the dynamical evolution of this
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vector. We touch on the argument only briefly, because the methods will
not be further considered or implemented.

5.2.1 The Largest Lyapunov Exponents

Let us consider the system of differential equations

dx

dt
= f(x), x = x1, . . . , xm (5.2.1)

along with the associated variational equations

dv

dt
= ∂f

∂x
v, v = v1, . . . , vm. (5.2.2)

Starting from the fact that chaotic orbits diverge exponentially, the largest

Lyapunov exponent (LLE) is defined as the limit of log ‖v(t)‖ /t when t goes
to infinity. Suppose Equation (5.2.1) is Hamiltonian:

x = (q1, . . . , qn,p1, . . . , pn),

f (x) =
(
∂H(q,p)

∂p
,−∂H(q,p)

∂q

)
;

if the motion is regular, then the LLE is zero, otherwise it is positive.
So far as we are concerned, this tool is affected by two serious limita-

tions.

(i) It is able to discriminate between chaotic and ordered motion, but
among regular motions it does not distinguish between KAM tori, i.e.,
those coming from a slight deformation of the unperturbed ones, and
regular resonant tori, i.e., those replacing part of the tori destroyed in-
side the resonances, where the Hamiltonian can be approximated by a
perturbed pendulum. The LLE is thus unable to detect the resonances.

(ii) By definition, the exact computation of the LLE requires an infinite
time. In practice, by direct inspection one can reasonably judge after
a finite time if the limit is null. This “human” decision is not easily
implementable in a computer program, making the automatic analysis
of the phase space difficult

5.2.2 The Fast Lyapunov Indicator

In order to reveal the chaos and at the same time to directly detect the
resonances, the fast Lyapunov indicator (FLI) method has been proposed
in Guzzo, Lega & Froeschlé (2002) and Froeschlé, Guzzo & Lega (2000): for
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every orbit starting from a point of a grid covering the action space, one
computes the time occurring to the norm of a suitable tangent vector to
reach a threshold value; the computed value is then reported in a graphic
as a function of the actions.
The FLI method evidently overcomes point (ii) above. For the first point,

the detailed analysis in Guzzo et al. (2002) shows that the norm of a tangent
vector grows linearly with time for regular orbits, but with different slopes
in the two cases of KAM tori and regular resonant motions; clearly, the time
occurring to reach the fixed threshold will be different in the two cases. As
an example, consider the unperturbed Hamiltonian H0 = 1/2

∑
i I
2
i , whose

frequency map is the identity. In this case, the evolution of the norm
of the tangent vector on a KAM torus is approximated by ‖vI(0)‖ t, and
for a regular resonant motion by

∥∥ΠΛorthvI(0)∥∥ t. Here, ΠΛ is the Euclidean
projection onto the linear space spanned by Λ, which is in general a d-
dimensional integer lattice (d ≤ n − 1) defining a resonance through the
relation k·∂H0/∂I = 0, k ∈ Λ; Λorth is the linear space orthogonal to Λ. The
choice of the initial value of the tangent vector is therefore critical, since
if vI(0) ∈ Λorth the FLI is unable to discriminate between the two different
motions. It is unclear how much this choice is relevant in the general case.
Another critical point is the choice of threshold and integration time, as
clearly pointed out and discussed in Cincotta, Giordano & Simó (2003).

5.2.3 Other Methods

The helicity angles were introduced by Contopoulos & Voglis (1996): one
computes the mean value with respect to the time of the angles which de-
fine the orientation of the tangent vector to the orbits. In a chaotic region
this value is invariant, while for regular orbits it smoothly changes with the
initial conditions. Then the value is computed as usual on a grid of initial
conditions. The method is effective, requiring in practice very short time in-
terval of integration to reach a satisfying estimate. Also the twist angles, the
time derivative of the helicity angles, may be considered: they are invariant
for orbits in a chaotic zone, zero on KAM tori, and equal to the libration
frequencies for orbits on resonant regular tori.
The Mean Exponential Growth factor of Nearby Orbits (MEGNO) method

was introduced by Cincotta et al. (2003). The method makes use of an
integral formula for the computation of the LLE. It is therefore conceptually
equivalent but the numerical evaluation requires shorter times.
The Smaller ALignment Index (SALI) and the Generalized ALignment In-

dex (GALI) methods were introduced by Skokos (2007). One follows the
evolution in time of two different tangent vectors v1 and v2 and defines
SALI as

SALI(t) =min
{∥∥∥∥ v1
‖v1‖

+ v2
‖v2‖

∥∥∥∥ ,∥∥∥∥ v1
‖v1‖

− v2
‖v2‖

∥∥∥∥} .
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Clearly, when the two vectors become collinear, SALI(t) → 0. Then one
shows that SALI(t) → 0 for chaotic orbits and to a non-null constant for
regular orbits. GALI is a generalization whose definition involves k ≥ 2
vectors and is equivalent to SALI for k = 2.
Other methods are Average Power Law Exponent (APLE) (see Lukes-Gera-

kopoulos, Voglis & Efthymiopoulos (2008)) andRotation numbers (see Honjo
& Kaneko (2008)).
Note that in Lukes-Gerakopoulos et al. (2008) all these methods are

quoted as practically equivalent.

5.3 Fourier Transform Methods

While the methods of the previous section are generically applicable to ev-
ery dynamical system, the Fourier transform methods are specific to the
Hamiltonian quasi-integrable systems. This fact is obvious if we remember
that themotion of a quasi-integrable system ismultiperiodic for most initial
conditions.
To make this idea precise, recall that when the motion winds around

a KAM torus there exists a canonical transformation from the n original
action-angle variables I,ϕ to new I∞,ϕ∞, such that the new actions are
constant and the new angles vary linearly with frequencies ω. For every
pair Ih,ϕh let us form the complex variable

Z(h)(I∞,ϕ∞) def= Ih(I
∞,ϕ∞) eiϕh(I

∞,ϕ∞), h = 1, . . . , n (not summed),

which is defined on a n-dimensional torus parametrized by the angles ϕ∞

and can be developed in a Fourier series with the actions I∞ playing the role
of parameters. Its time evolution is therefore

Z(h)(t) =
∑
k

C(h)k eik·ωt, C(h)k ∈ C, k ∈ Z
n − {0}, ω ∈ R

n,

resembling the old description of the planetary motion through epicycles.
In general, given a function f(t) of the time, its Fourier transform f̂ is

defined as1

f̂ (Ω) = lim
T→∞

1

2T

∫ T
−T
f (t)e−iΩtdt, Ω ∈ R. (5.3.1)

Suppose for a moment that we know the analytical solution for an orbit of
the perturbed motion: the Fourier transform Ẑ(h)(Ω) is zero for all values
of Ω but Ω = k ·ω, so that Ẑ(h)(k ·ω) = C(h)k . In other words, the Fourier
transform returns the spectrum, i.e., a list of frequencies along with their

1Our definition is slightly different from the usual one, where the integration field is the
whole real axis and the normalizing factor 2T is missing.
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amplitudes and phases. If the motion is regular, these frequencies are all

linear combinations, with integer coefficients, of n fundamental ones. If the
computed frequencies show random values instead, the initially selected
orbit is chaotic.
In practice, we do not know any analytical solution but only its tabulated

values coming from a numerical integration. The subsequent numerical
tools of this section also try to recover the spectrum in this case, although
with some limitations due to the reduced information in our possession:
indeed, the solution is known only at discretized instants and for finite
lapses of time.

5.3.1 Fast Fourier Transform (FFT)

Let f(t) be the analytical solution of the equations of motion. With a nu-
merical integration we are able to find its values only at the discrete instants
tn, n = 0,1, . . . , N−1. Put f(tn) = fn and define the sequence ofN complex
numbers2

f̂k = 1
N

N−1∑
n=0

fn e
−i 2πN nk, k = 0,1, . . . , N − 1. (5.3.2)

Clearly, (5.3.2) is the numerical discretization of definition (5.3.1): the to-
tal number of points N corresponds to the time interval 2T , moreover
2πn/N = tn and k is the discrete index corresponding to Ω. Every complex
number f̂k gives the amplitude and phase of the “frequency” k, entering the
Fourier development of the original f(t).
Implementing (5.3.2) requires the numerical evaluation and sum of N

terms for every k, so that the time and complexity of the computation grow
as N2. A well-known factorization method (dating back probably to Gauss
and afterward discovered again many times) allows us to drastically reduce
this number to N logN: taking into account that typically N ≈ 104 or 105,
the gain is remarkable. In practice, (5.3.2) is always computed with this
algorithm, denoted as fast Fourier transform (FFT). For a better numerical
performance it requires N to be an integer power of 2.
Applying the FFT to the output of the numerical integration of some

equations of motion, we can play with two parameters: the integration step
Δt and the finite length 2T of the integration interval. The choice of Δt
restricts the maximal frequency ωmax ∼ 1/Δt entering the sampling, and
every ω > ωmax escapes the observation. This fact is not very important
as far as we are concerned; as it will be evident in the further applications,
the chosen integration step will always be widely sufficient and the higher
neglected frequencies will be uninteresting. The choice of T is much more

2Again our definition is slightly different from the usual because of the term 1/N, taken
in order to agree with (5.3.1).
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important. The integration in (5.3.1) with a finite window T ,

1

2T

∫ T
−T
eiωte−iΩtdt = sin [(ω−Ω)T]

(ω−Ω)T (5.3.3)

shows that the exact line centered onω−Ω is instead spread over the whole
real line and that the error goes to zero as 1/T . This is the weak point of
the FFT: to improve the result, one must enlarge T and, to get a satisfying
precision, one must often take excessively long integration times, during
which the instantaneous frequency may change.

5.3.2 Frequency Modified Fourier Transform (FMFT)

The numerical frequency analysis was introduced in Laskar (1990) to detect
the chaos in the secular motion of the solar system over 200 Myr. See also
Laskar, Froeschlé & Celletti (1992) for a clear exposition of the method. The
procedure can be implemented in a computer program: we will use the
version called the frequency modified Fourier transform (FMFT) presented
in Šidlichovský & Nesvorný (1997).
The scenario is the same as for the FFT. Let us assume that we know the

tabulated values of a multiperiodic complex function

Z(t) =
∑
k

Cke
ik·ωt, k ∈ Z

n − {0}, ω ∈ R
n,

over a time span interval [−T , T] and with such a small stepsize that we can
very accurately compute its integrals in the interval. The method allows
us to compute numerically, but with great precision, the frequencies and
complex amplitudes of the truncated approximation

Z(N) =
N∑
h=1

C′he
iω′

ht, N >> n.

In the KAM case, one expects that the computed values of the frequencies
ω′
1,ω

′
2, . . . ,ω

′
N are not random, but are all linear combinations, with integer

coefficients, of then fundamental frequenciesω =ω1, . . . ,ωn, establishing
a map h 	→ k,with C′h = Ck and k·ω =ω′

h.We call such a spectrum regular.
Let us briefly describe themethod. Frequencies and complex amplitudes

are computed through an iterative scheme. In order to determine the first
frequencyω′

1, one searches, with a quadratic interpolation routine, for the

maximum amplitude of φ(ω) =
〈
Z(t), eiωt

〉
, where the scalar product〈

f(t), g(t)
〉
is defined by

〈
f(t), g(t)

〉 = 1

2T

∫ T
−T
f (t)g(t)χ(t)dt,
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Figure 5.2: Left: the function sin(2πx)2πx . Right: the function sin(2πx)2πx
1

1−4x2 .

and where χ(t) is a weight function, that is, a positive and even function
with a mean unitary value in [−T , T]. Usually, the Hanning filter is used:
χ(t) = 1+ cos(πt/T). Once the first periodic term eiω

′
1t is found, its com-

plex amplitude C′1 is obtained by orthogonal projection of Z(t) onto e
iω′
1t ;

then the process is restarted on the remaining part of the function, i.e.,
Z1(t) = Z(t) − C′1eiω

′
1t. As the functions eiω

′
ht are usually not orthogonal,

a Gram–Schmidt orthogonalization is also necessary when projecting itera-
tively on these eiω

′
ht.

In principle, the introduction of the filter χ is not strictly necessary but
makes the computations more precise. To understand how, compare the
integral (5.3.3) with

1

2T

∫ T
−T
eiωte−iΩtχ(t)dt = sin [(ω−Ω)T]

(ω−Ω)T

⎡⎣ 1

1− (ω−Ω)2 T 2π2

⎤⎦ .
As one sees in Figure 5.2, the presence of the Hanning filter smooths out
the lobes external to the central bell.
The FMFT implementation provides two mechanisms for getting a more

precise output. These corrections attempt to remove systematic effects on
frequencies and amplitudes produced by interaction of different Fourier
terms.
The first mechanism is called linear correction. Assume that one has

two terms in the signal with similar frequencies, ω1 < ω2 say, and one
applies FMFT to it. One obtainsω∗

1 =ω1+δω1 andω∗
2 =ω2+δω2 where

the error terms δω1 and δω2 appear due to partial overlap of terms in the
frequency domain. Note that if δω1 and δω2 could be determined, the
obtained frequencies ω∗

1 and ω
∗
2 could be corrected to obtain ω1 and ω2.

For the linear correction, the FMFT is applied to the signal with frequencies
ω∗
1 and ω

∗
2 (which we have obtained by the first application of the FMFT).

We obtainω∗∗
1 =ω∗

1 +δω∗
1 andω

∗∗
2 =ω∗

2 +δω∗
2 . Becauseω

∗
1 was similar

toω1 andω
∗
2 was similar toω2, correction δω

∗
1 will be similar to δω1 and
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correction δω∗
2 will be similar to δω2. Thus, we have obtained an estimate

of δω1 and δω2 and can use those values to correct frequencies ω
∗
1 and

ω∗
2 and obtain better estimates of the original ω1 and ω1.
The latter method is called the nonlinear correction and uses an addi-

tional application of the FMFT on the signal with frequenciesω∗∗
1 andω∗∗

2 .
As in the previous case, one obtains corrections δω∗∗

1 and δω∗∗
2 . These will

not be exactly equal to δω∗
1 and δω

∗
2 determined previously because ω

∗∗
1

(orω∗∗
2 ) was not equal toω

∗
1 (orω

∗
2 ). In fact, δω

∗∗
1 −δω∗

1 can be thought
of as an estimate of δω∗

1 − δω1 and δω∗∗
2 − δω∗

2 can be thought as an
estimate of δω∗

2 − δω2. The idea of the nonlinear correction is then: use
approximateω1 byω

∗
1 −2δω∗

1 +δω∗∗
1 , and the same for second frequency.

In practice, this method works if δω1 and δω2 are small quantities and fails
if they are not.
For guidance, in most cases the FMFT method without corrections is

more robust but less precise. One has to test the given application to un-
derstand whether the use of the corrections is beneficial or not.

5.3.3 Wavelets and Time-Frequency Analysis

Wavelets are useful in the study of perturbed Hamiltonian systems, mainly
in connection with the numerical measure of the instantaneous frequency ;
for example, see Vela-Arevalo (2002), Vela-Arevalo & Marsden (2004), and
Chandre, Wiggins & Uzer (2003). Given a complex-valued function f(t),
which will also be called a signal, it seems natural to define its instanta-
neous frequency ω(t) as the time derivative of the phase; in other words,
by writing

f(t) = A(t)eiϕ(t), A(t),ϕ(t) real functions,

then

ω(t)
def= dϕ(t)

dt
. (5.3.4)

Unfortunately, this definition is ambiguous. For example, if

A(t) = a+ b cosω1t, ϕ(t) =ω2t, a, b,ω1,ω2 real const.,

one can take both ω(t) = ω2 and f(t) as the sum of three signals, with
frequenciesω2, ω2−ω1, ω2+ω1, respectively. However, if the amplitude
A(t) is almost constant, the definition does make sense. In the sequel we
will always consider this case.
In order to extract the instantaneous frequency from a signal f(t), one

may define the Gabor transform

Gf(t,ω)
def=
∫∞
−∞
f(t′)g(t′ − t) e−iωt′ dt′, (5.3.5)
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where g(t) is an envelope function that acts like a time window. We will
take the Gaussian

g(t) = e−
t2

2σ2 ,

where σ 2 is called the variance. The parameter t slides the envelope con-
tinuously, in that way localizing the signal, and the “ridge” of

∣∣Gf∣∣2 in the
plane t-ωwill describe the instantaneous frequency. Indeed, let us consider
an integration interval small enough to have A(t) and g(t) almost constant
but large enough to contain many oscillations of frequency ω; thus

∣∣Gf∣∣2
will be very small, except when the total phase ϕ(t) − ωt is stationary:
(5.3.4) follows.
The choice of the variance σ 2 is at our disposal. Taking small values the

window shrinks, improving the time localization but making the frequency
determination worse; the opposite occurs, obviously, for large values. This
is known as the Heisenberg uncertainty principle, with a clear reference to
quantum mechanics. Unfortunately, in (5.3.5) the choice is a priori, while
one would prefer an adaptive window: short for high and long for low fre-
quencies.
This requirement is just fulfilled by the wavelet transform, defined as

Wf(t, s) =
∫∞
−∞
f(t′)ψ

(
t′ − t
s

)
dt′, ψ = complex conjugate.

Here, ψ(t) is the called themother wavelet, for which we take in the sequel

ψ(t) = g(t)eiηt,

with η an arbitrary, user-defined, real parameter. Putting s = η/ω, ifA(t) ≈
const. = A, we have

Wf(t,ω) = Aeiωt
∫∞
−∞
e
− 1
2σ2

ω2

η2
(t′−t)2

ei[ϕ(t
′)−ωt′] dt′.

Up to an unessential phase factor, Wf equals Gf but with the substitution
σ 2 → σ 2η2/ω2: the variance, hence the window width, is rescaled as de-
sired by the frequency value. As for

∣∣Gf∣∣2 , the ridge of ∣∣Wf∣∣2 in the plane
t-ω describes the time evolution of the instantaneous frequency. Note that
the rescaling depends on the product σ 2η2: we will take η = 1, then, as
for the Gabor Transform, varying σ 2 improves the time localization to the
detriment of the frequency localization or vice versa.
Let us consider a signal of the type Zj(t) = Ij(t) eiϕj(t), where Ij and

ϕj (action and conjugate angle, respectively) are the numerical solution of
a perturbed Hamiltonian system. We know from the KAM theorem that,
for most of the initial conditions, the solution of the perturbed system
evolves on tori obtained by slightly deforming the unperturbed solution
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Figure 5.3: Some examples of the instantaneous frequency of a numerical signal.
Here and in the subsequent figures the irregularities on the left and right borders
are an artifact of the computation algorithm, and thus devoid of any meaning.

I = const., ϕ =ωt+const.We are therefore in the case of almost constant
amplitude, and the wavelet transform can be applied.
The numerical computation of the wavelet transformation, and thus of

the instantaneous frequency, has been implemented in a MATLAB program,
exploiting the “built-in” ability of MATLAB to compute the fast Fourier trans-
form and its inverse. Indeed, the wavelet transformationmay be viewed as a
convolution product, whose Fourier transform is the product of the Fourier
transform of the two factors. The computation is much faster with respect
to the implementation of the wavelet transformation obtained by a mere
implementation of the definition, i.e., by a double numerical integration on
a rectangular grid in the plane t-ω. The function

∣∣Wf∣∣2 is displayed by
plotting its level lines on the plane t-ω. Note that a judicious choice of the
product value σ 2η2 makes useless the “ridge extraction,” implemented in-
stead in the other quoted works, thus simplifying the program without loss
of information.
In Figure 5.3 some examples are shown which illustrate the effectiveness

of the program. In the first picture the signal f(t) is the sum of two expo-
nentials with constant frequencies: this is what happens in a KAM solution,
when Zj(t) = Ij(t)eiϕj(t) can be developed in a Fourier series as a sum of
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signals with constant frequency. In the second picture the phases of the
two signals are taken as quadratic functions of time, so that the frequen-
cies are linear, while in the third picture the phase is a quartic polynomial,
and so the frequency is cubic. Lastly, in the fourth picture we consider a
time evolution of the type

ϕ(t) =ω0t + a sinωrt, ω0 >> ωr ,

so that the instantaneous frequency is the sum of a constant term plus a
sinusoid; in this case we will speak of a sinusoidal frequency modulation,
and call ωr the modulating frequency. As we will now show, this last case
is particularly relevant when studying resonant orbits, or very close to a
resonance.
Inside a resonance it is possible, with a linear canonical transformation,

to take new action-angle variables such that one of the new angles is just the
resonant angle ϕr , librating with frequency ωr = 2π/Tr . Coming back to
the original action-angle variables, if Z(j)(t) = Ij(t) eiϕj(t) does not depend
on the resonant variables Ir ,ϕr , its dynamical evolution in the complex
plane will be the composition of rotations with constant frequency. If, in
contrast, the resonant motion is present, the instantaneous frequency will
oscillate with frequency ωr about some constant value ω0; we will thus
speak of frequency modulation. Note that the modulating frequency ωr is
in general much smaller than ω0, since it is as small as the square root of
the perturbation and exponentially small with the order of the resonance.
As in the pendulum model, the modulating frequency reaches a local

maximum at the center of the resonance, vanishes on the separatrices, and
tends quickly to infinity outside the resonance. At the same time, the am-
plitude of the modulation vanishes at the center of the resonance, reaches
the maximum on the separatrices, halves when crossing them, then van-
ishes going away. By inspecting the instantaneous frequency it is therefore
possible to discriminate between a KAM and a regular resonant torus. The
frequency of the first is constant or, at most, slightly modulated if in the
outer neighborhood of a resonance; that of the latter exhibits a marked
modulation bearing the described characteristics. Obviously, an instanta-
neous frequency behaving irregularly is not only an indication of chaotic
motion, but its irregularity degree is a measurement of the chaos itself.
Without entering the details of the underlying concrete physical system,3

let us consider an example which will test the wavelet method, comparing
it with the Poincaré map.
The top picture of Figure 5.4 shows the Poincaré map, G being the ac-

tion and ω the angle; below the wavelet analysis for two different orbits.

3The physical system is the quadratic Zeeman problem, which will be investigated in
Chapter 8. Bear in mind that here the angle ω is the argument of pericenter for the Kepler
problem, not a frequency.
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Figure 5.4: In the top picture the Poincaré map and below the instantaneous
frequency for two different orbits, starting from the point G = 0.7, ω = 0 (left)
and G = 0.95, ω = π/2 (right). Here ω is an angle variable (the argument of
pericenter).

Poincaré map and wavelet analysis agree very well in the diagnosis of where
order or chaos occur.
With Figure 5.5 we investigate the behavior of the instantaneous fre-

quency inside a resonance and in the outer neighborhood. Remember that
the irregularities on the left and right borders of every figure are an artifact
of the computation algorithm, and thus devoid of any meaning. The se-
quence clearly shows that the instantaneous frequency behaves as expected.
It is constant outside and slightly modulated approaching the resonance,
then the modulation amplitude suddenly increases crossing the separatrix,
and afterwards decreases until it vanishes at the center of the resonance;
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Figure 5.5: Top: a detail of the Poincaré map of Figure 5.4. Middle: the instan-
taneous frequency of the orbit relative to ω = 0 and G = 0.756 (left), G = 0.758
(center), G = 0.760 (right). Bottom: G = 0.762 (left), G = 0.764 (center), G = 0.766
(right). The irregularities on the left and right borders of every figure are an arti-
fact of the computation algorithm, thus devoid of any meaning.
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at the same time, the frequency ωr of the modulation grows.

5.3.4 Frequency Modulation Indicator (FMI)

The Frequency Modulation Indicator (FMI) is a sensitive tool that can de-
tect and localize very thin resonances in quasi-integrable Hamiltonian sys-
tems, giving, moreover, a comprehensive picture of the whole geography of
the phase space. In some sense it is complementary to other chaos indica-
tors, directly revealing the resonances while the chaotic zones are indirectly
marked by a blurring of the Arnold web. The FMI method has been intro-
duced in Cordani (2008).
As we have established, inside or very near a resonance but sufficiently

far from the separatrix, the frequencies are not constant but modulated
by an approximately sinusoidal signal. We will study what happens when
performing a numerical frequency analysis inside a resonance and conse-
quently show how to define the FMI. The following study will enable us to
explain why the FMI is such an effective tool and to understand the ap-
parence of some spurious phenomena in its graphical display.
The Fourier expansion of exp(ia sinϕ) is calculated, e.g., in Brouwer

& Clemence (1961, page 67) and shows that the spectrum of a frequency
modulated signal is

ei(ω0t+a sinωr t) = J0 eiω0t +
∞∑
k=1

Jk e
i(ω0+kωr )t +

∞∑
k=1
(−1)kJk ei(ω0−kωr )t,

(5.3.6)
where Jk(a) is the Bessel function of order k of the first kind. Figure 5.6 con-
firms this analytical development: the modulating frequency ωr becomes
very small in crossing the separatrix, so that the spectral lines becomemore
closely spaced approaching it. The characteristic multi-triangular shape of
the spectrum is a direct consequence of the approximately linear depen-
dence of the function f(k) = log Jk(a) for k sufficiently large, with a slope
in inverse relation to the modulating amplitude a.
For simplicity (this does not qualitatively change our final conclusions)

we retain only the first three, most significant terms of (5.3.6):

f(t) = J0 eiω0t + J1 ei(ω0+ωr)t − J1 ei(ω0−ωr )t.

Let us take a rectangular window, of width 2T and centered in t0 (again:
a different shape of the window, given for example by the Hanning filter,
does not affect our conclusions qualitatively, changing only the power of
the denominator in the fractions below). The numerical frequency analysis
algorithm FMFT consists in finding the ω value for which the function

F(ω) = 1

2T

∫ t0+T
t0−T

f (t) e−iωtdt
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Figure 5.6: The FFT graphical display relative to four orbits as in Figure 5.5: ω = 0
and G = 0.760 (left-top), G = 0.761 (right-top), G = 0.762 (left-bottom), G = 0.780
(right-bottom). As expected, the spectrum lines become more closely spaced ap-
proaching the separatrix, giving rise to a continuous spectrum inside the stochas-
tic layer. For the characteristic multi-triangular shape of the spectrum, see the
text.

takes its maximum amplitude. Taking into account that

1

2T

∫ t0+T
t0−T

eiωtdt = eiωt0 sin(ωT)
ωT

,

and putting (ω0 −ω)T = ε we find

F(ω) = J0 sin ε
ε

+ J1eiωr t0
sin(ωrT + ε)
ωrT + ε

− J1e−iωr t0
sin(−ωrT + ε)
−ωrT + ε

,

where we have dropped the phase factor ei(ω0−ω)t0 . Take the width of the
window much larger than the period of the modulating sinusoid, that is,
ωrT >> π, and seek an ω that satisfies ε = O(ω−1

r T
−1) (compare below).
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Developing in a Taylor series

sin(ωrT + ε)
ωrT + ε

= A+ Bε+O(ε3),

A = sin(ωrT)

ωrT
, B = cos(ωrT)

ωrT
A,B = O(ε),

we obtain

F(ω) = J0
(
1− 1
3!
ε2
)
+ J1 eiωr t0(A+ Bε)− J1 e−iωr t0(A− Bε)+O(ε3),

from which

|F(ω)|2 = const.− 1
3
J20ε

2 + 4J0J1Bε cos(ωr t0)+O(ε3).

Differentiate with respect to ε and equate to zero. Accordingly with the
assumption on ω, finally we find

ω0 −ω
ωr

� 6J1
J0

cos(ωrT)

(ωrT)2
cos(ωr t0), (5.3.7)

which is the relative “error” inherent to the algorithm FMFT. From expres-
sion (5.3.7) and applying the numerical frequency analysis to a supporting
ω0 which is ωr frequency modulated, we can conclude that the numerical
output oscillates about the “right” valueω0, and that this oscillation is trig-
gered by shifting the window, by changing its width 2T and by modifying
ωr ; moreover, the amplitude of the oscillation rapidly vanishes when the
width increases.
Let us fix T such that cos(ωrT) ≠ 0. Taking into account that

J1(x)
J0(x)

� x
2

for x ≥ 0 sufficiently small (say, x < 0.8), we obtain from (5.3.7)

ω �ω0 − ηa cos(ωr t0),

η = 3
T

cos(ωrT)

ωrT
,

with η much smaller than ωr and decreasing when ωrT grows.
The recipe for the computation of the FMI is therefore the following.

Perform several numerical frequency analyses, sayN, each time shifting the
window of some Δt0, and take theωmax and theωmin among the N output
values. For a suitable Δt0 (but the choice is not very critical) and N large
enough (for example, N = 7 is a good value) the N values will practically
span the whole oscillation range, so that the difference ωmax −ωmin will
result very close to 2ηa. Let us define the FMT as

σFMI
def= log

(
ωmax −ωmin
ωmax +ωmin

)
� log

(
a
η

ω0

)
.
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Clearly, σFMI = −∞ for orbits of KAM type starting sufficiently far away
from a resonance of low order (the high order resonances are practically not
detectable in numerical investigations). In the graphical representation we
fix a cut-off, i.e., we raise all the lower values to, for example, σFMI = −12,
in order to avoid the −∞ singularities. Instead, inside a resonance or in
a very small neighborhood, σFMI will generally be larger, growing with the
amplitude a of the frequency modulation. Note, however, that the exact
numerical value of σFMI is not very meaningful since it depends on ωr ,
which change with the orbit; moreover, the presence of the cos(ωrT) term
causes a sort of “ghost undulation” in the graphical display of a resonance
strip and especially of its neighborhood. Examples will be given in the next
section.
It should be clear that the FMI method cannot be considered a mere

variant of the frequency analysis, its central point being the recognition that
the characteristic feature of the resonances is the frequency modulation of
the fundamental frequencies. In principle, another, more effective, method
for computing the frequencymodulation amplitude could be found, without
resorting to the frequency analysis algorithm.

5.4 Some Examples

In the numerical study of a slightly perturbed Hamiltonian system one
would find a method which is implementable on a computer and is able
to detect the geography of the resonances in the action space, discriminat-
ing between ordered and chaotic zones. All the variational equation meth-
ods require further analytical and heavy integration work with respect to
the mere integration of the equation of motion, which makes the methods
practically inapplicable in some concrete and realistic case. The numerical
frequency analysis, instead, requires only the integration of the equation of
motion but, unfortunately, plotting the frequency values as a function of the
actions does not clearly reveal the location of the resonances. (The method
instead becomes effective when sectioning the energy hypersurface, dis-
playing, at least for the 3-dimensional systems, 1-dimensional plots.) We
are therefore in a disappointing situation: the effective methods are not
applicable in general, while the applicable method is not effective.
Exploiting instead an intrinsic imprecision inherent to the algorithm it-

self of the numerical frequency analysis, hence transforming a drawback
into an opportunity, we have implemented the FMI computation. We thus
obtain a very sensitive tool in detecting where the fundamental frequencies
are modulated, and one which localizes the resonances without resorting to
the integration of the variational equations. Therefore, with the applicable
method we reach the same result as that of the effective ones. Let us show
some examples.
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5.4.1 Symplectic Maps and the POINCARE Program

In the 6-dimensional phase space of a Hamiltonian system with three de-
grees of freedom, let us fix the value of the energy and consider the 5-
dimensional hypersurface given byH(q,p) = const. Recording the intersec-
tion points of an orbit generated by the Hamiltonian with a 4-dimensional
hyperplane transverse to the flow, one performs in practice a reduction
with the energy integral, thus obtainig a symplectic mapping of the hy-
perplane into itself. A suitably chosen 4-dimensional symplectic map can
therefore “simulate” the dynamical evolution of a quasi-integrable Hamil-
tonian system with three degrees of freedom. The absence of integration
errors ensures the objectivity of the result and that spurious artifacts do
not occur.
We have tested the FMI method on three different 4-dimensional sym-

plectic maps x → y. The first two variables are action-like while the other
two are angle-like variables. The results are reported in Figure 5.7, where
the Arnold map is well enlightened. The 4-dimensional symplectic maps
are a generalization of the well-known standard map, already considered in
the first chapter,

y1 = x1 + ε sinx2,
y2 = x2 +y1,

introduced by Chirikov (1979). The standard map describes the motion of
a simple mechanical system known as the kicked rotator . It consists of a
stick that is free of the gravitational force, which can rotate frictionlessly in
a plane around an axis located in one of its tips, and which is periodically
kicked on the other tip. The two variables determine the angular position of
the stick and its angular momentum, respectively. The constant εmeasures
the intensity of the kicks.

Figure 5.7: Three results of the FMI computation relative to 4-dimensional sym-
plectic maps: see the text. The grid resolution is 500 × 500 and the iteration
number is 104.

The left picture of Figure 5.7 regards the map of Guzzo et al. (2002, eq.
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21):

y1 = x1 + ε1 sin(x1 + x3)+ ε3 sin(x1 + x2 + x3 + x4)
y2 = x2 + ε2 sin(x2 + x4)+ ε3 sin(x1 + x2 + x3 + x4)
y3 = x1 + x3
y4 = x2 + x4

with ε1 = 0.4, ε2 = 0.3, and ε3 = 0.001. It should be compared with the
two pictures of Guzzo et al. (2002, fig. 10), which have been obtained with
the FLI method and perturbative parameter ε3 = 0.004 and ε3 = 0.006,
respectively.
The center picture regards the map of Lukes-Gerakopoulos et al. (2008,

eq. 39):

y1 = x1 − ε1 sin(x1 + x3)
(cos(x1 + x3)+ cos(x2 + x4)+ 4)2

y2 = x2 − ε1 sin(x2 + x4)
(cos(x1 + x3)+ cos(x2 + x4)+ 4)2

y3 = x1 + x3
y4 = x2 + x4

with ε1 = 0.05 and should be compared with that of Lukes-Gerakopoulos
et al. (2008, fig. 10(a)), which has been obtained with the APLE method.
Lastly, the right picture regards the map of Honjo & Kaneko (2008, eq. 1):

y1 = x1 + ε1 sinx3 + ε2 sin(x3 + x4)
y2 = x2 + ε1 sinx4 + ε2 sin(x3 + x4)
y3 = x3 + x1 + ε1 sinx3 + ε2 sin(x3 + x4)
y4 = x4 + x2 + ε1 sinx4 + ε2 sin(x3 + x4)

with ε1 = 0.2 and ε2 = 0.0005. It should be compared with that of Honjo &
Kaneko (2008, fig. 1(b)), which has been obtained with the rotation number
method and the much larger parameters ε1 = 0.5 and ε2 = 0.1.
The reader himself can get the pictures of Figure 5.7 by means of the

program POINCARE (without accent): the three maps above are named FGL,
APLE, and ROT. The value grid is chosen in the left part of the panel “Fre-
quency Modulation Indicator”, while N is fixed in “Step number for FMI”.
In order to obtain good results, the computations invoked in the FMI

procedure require very long times, which can be shortened if the computer
is a multicore machine. Indeed, all the five programs provided in the CD are
able to parallelize the computations in the following way. If you possess an
n-core machine, create a subfolder Master and n − 1 subfolders Slave1,
Slave2, . . . in an empty folder POINCARE, then copy the whole program
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POINCARE identically in every folder. Start MATLAB then POINCARE from
the Master folder, set the parameters and click on “Save setting/Save set-
ting now”. Without closing, start a new instance of MATLAB, then POINCARE
from a folder SlaveX: you will notice that all the buttons of the computa-
tions are disabled while the new button “Start Slave” appears. Click on this
button and POINCARE will wait for the start of the master. Redo for every
slave, and lastly go back to the master and click on “Calculate . . .”. The
whole work will be automatically shared out among the n cores. The final
result is displayed by the master.
The same procedure can be carried out for the other programs, i.e.,

HAMILTON, LAGRANGE, KEPLER, LAPLACE.

5.4.2 A Test Hamiltonian and the HAMILTON Program

In Guzzo et al. (2002) and Froeschlé et al. (2000) the FLI is tested on the
Hamiltonian

HFGL = 1
2
I21 +

1

2
I22 + I3 + ε

(
1

cosϕ1 + cosϕ2 + cosϕ3 + 4

)
(5.4.1)

for three values of the perturbative parameter: ε = 0.01,0.03,0.04, on a
grid of 500 × 500 initial conditions regularly spaced on the I1, I2 action
plane and with an integration time t = 1000 for every orbit. The result is
reported in Guzzo et al. (2002, fig. 5), where global pictures with relative
magnified details are shown. The Arnold web is very clearly enlightened
and appears as expected: the frequency map for (5.4.1) is

ω1 = I1, ω2 = I2, ω3 = 1,
and the resonance lines on the plane I1, I2 are given by the linear equation

k1I1 + k2I2 + k3 = 0, k1, k2, k3 ∈ Z,

i.e., by straight lines whose slopes and intersections with the axes take ratio-
nal values. Obviously, this set is dense on the plane but the finite integration
time allows us to visualize only those resonances whose order, defined as∑
i |ki| , is below a threshold value. The threshold grows with the integra-
tion time itself, so that in principle one is able to visualize all the resonances
at various orders.
With the perturbative value ε = 0.01 we have analyzed the Hamiltonian

(5.4.1) using the FMI method of the HAMILTON program. The first result is
reported in Figure 5.8, which should be compared with the top-left picture
of Guzzo et al. (2002, fig. 5). Our picture has been shifted in the plane in
order to avoid the neighborhood of the origin, where the presence of chaos
(not revealed by the FLI) and the resulting high values of the FMI would
make the visualization somewhat blurred.
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Figure 5.8 confirms the same resonance structure appearing in Guzzo
et al. (2002, fig. 5), and the Arnold web is enlightened in great detail. Figure
5.9 (left) should be compared with the top-right picture of Guzzo et al.

(2002, fig. 5); this small detail exhibits a curious structure at the crossing
of the various resonances, resembling the petals of a flower. In Figure 5.9
(right) the same detail is reported but with ε = 10−4; with a much smaller
perturbation the Arnold web is still very well enlightened, but the flower
structure disappears.
To complete the comparison with the FLI method one must also take

into account the CPU time. With the FMI method one integrates the motion
equations (5.2.1), then invokes the frequency analysis: the time it takes for
the latter step is about 20–30 % of that relative to the first step. The FLI does
not require the frequency analysis; however, one must also integrate the
variational Equations (5.2.2). For the test Hamiltonian (5.4.1) the variational
equations are very simple and the CPU times needed by the twomethods are
comparable. However, when the variational equations are very complicated,
the FMI is surely faster.
The HAMILTON program is able to analyze a Hamiltonian also with the

FFT, FMFT and wavelet tools.
To add a further Hamiltonian to the pop-up menu

i) Write a *.m file with the Hamiltonian equations of motion, taking one
of the supplied files as a template: note that the three first variables
are angles while the latters are actions.

ii) Open Hamilton.fig in GUIDE, double-click on the pop-up menu and
add the *.m file to the already present list in the “String” field.

iii) Look for the string DiffEquation in the Hamilton.m file and update.

5.4.3 The Lagrange Points L4 and L5 and the LAGRANGE

Program

The Lagrange points are two relative equilibrium points of the circular re-
stricted three-body problem, a special case of the general three-body prob-
lem: two bodies move in circular orbits at unitary distance about the com-
mon center of mass B, according to the laws of the two-body dynamics,
while a third body of negligible mass moves in their gravitational field. Let
μ and 1 − μ be their mass, with μ < 1. In the plane of the circular orbits,
rotating about the origin B of the axes xyz with unit angular speed, the
two massive bodies are motionless and can be placed on the x axis at the
points μ − 1 and μ, respectively.
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Figure 5.8: Analysis of the Hamiltonian (5.4.1) using the FMI method with ε =
10−2.

Figure 5.9: Left: detail of Figure 5.8. Right: as in the left picture but with ε = 10−4.
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The Hamiltonian describing the dynamics of the third body is

H = 1
2
(p2x+p2y + p2z)− xpy +ypx

− 1− μ√
(x − μ)2 +y2 + z2

− μ√
(x − μ + 1)2 +y2 + z2

, (5.4.2)

which encompasses centrifugal and Coriolis inertial forces, as well as kinetic
energy and gravitational potentials. There are five equilibrium points in the
rotating reference system, since the centrifugal force can balance the gravity
force. Three of them are placed on the x axis and are called L1, L2, L3: they
are always unstable. The other two are L4 and L5, and along with the two
fixed masses they form two equilateral triangles, the third vertex having
positive and negative y coordinate, respectively.
Let us consider L4, but similar considerations can be made for L5. Its

coordinates and momenta are

xeq = μ − 1/2, yeq =
√
3/2, zeq = 0,

p
eq
x = −

√
3/2, p

eq
y = μ − 1/2, p

eq
z = 0.

With a translation in coordinates and momenta the equilibrium point L4 is
sent to the origin, so that the Hamiltonian becomes

H = 1
2
(p21 + p22 + p23)− q1p2 + q2p1

−
(
μ − 1

2

)
q1 −

√
3

2
q2 − 1− μ

�−
− μ

�+
,

with �± =
√
q21 + q22 + q23 ± q1 +

√
3q2 + 1.

In order to investigate the nature of the equilibrium we must linearize
the problem, developing H in a Taylor series and retaining the quadratic
terms. Instead of a straightforward but lengthy calculation the following,
more elegant method is preferable, which also gives easily the terms of
higher order. We recall that, given two vectors −→r 0 and −→r , with r < r0 (but,
usually, r << r0), the development

1∥∥∥ −→r 0 − −→
r
∥∥∥ = 1r0

⎡⎣1+ ∞∑
k=1

(
r

r0

)k
Pk(cosϑ)

⎤⎦ , cosϑ =
−→
r 0 · −→r
r0r

,

holds, where ϑ is the angle between the two vectors, and

Pk(x) = 1

2kk!

[
dk

dxk
(x2 − 1)k

]
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is the Legendre polynomial of degree k. To get the development of 1/�−,
take −→r ≡ (q1 q2 q3) and −→r 0 ≡ (1/2 −

√
3/2 0), which connects the origin

with the mass 1− μ. Taking −→r 0 ≡ (−1/2 −√3/2 0), which connects the
origin with the mass μ, gives the development of 1/�+.
The Hamiltonian becomes

H = 1
2
(p21 + p22 + p23)− q1p2+q2p1 +

1

8
q21 −

5

8
q22 +

1

2
q23 (5.4.3)

+ 3
4

√
3(1− 2μ)q1q2 +H3 +H4 + · · · ,

where Hs is a polynomial of degree s in the variables q,p. The 6 × 6 sym-
metric matrix relative to the quadratic term is

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4

3
4

√
3(1− 2μ) 0 0 −1 0

3
4

√
3(1− 2μ) −54 0 1 0 0
0 0 1 0 0 0
0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the motion along the third axis is uncoupled from that on the
horizontal plane.
Following Example 2.35 and Theorem 2.33, we bring the Hamiltonian

(5.4.3) into the form

H =
3∑
h=1

ωhIh +H3 +H4 + . . . , with ω3 = 1 and

ω1 =
√
1

2
+ 1
2

√
1− 27μ(1− μ), ω2 = −

√
1

2
− 1
2

√
1− 27μ(1− μ).

Clearly, if 27μ(1 − μ) ≤ 1, i.e, μ ≤ 0.03852 . . . , then ω1 and ω2 are real
and L4 is an elliptic equilibrium point: the motion is stable in the linear
approximation. But the three frequencies do not have the same sign; the
truncated Hamiltonian is not a definite (positive or negative) function, so
the further terms can destroy the stability. One can therefore proceed as
in Section 3.5, invoking the Birkhoff Theorem 3.10 in order to reduce H3 +
H4 to a polynomial quadratic in the actions, then applying the KAM and
Nekhoroshev theorems; see Alfriend (1970), Alfriend (1971), Meyer & Hall
(1992), Meyer & Schmidt (1986), and Benettin, Fassò & Guzzo (1998).
With the program LAGRANGE the reader can investigate numerically the

motion about the point L4. The panel “Single orbit analysis” is devoted to the
numerical integration of the motion equations with consequent plotting of
the dynamical evolution of position, momenta, and action-angle variables.
Note that the q,p distance from the origin of the initial point plays the role
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Figure 5.10: The FMI distribution about the Lagrange point L4, where we have
taken I3 = 0.002. Notice the extremely low value ≈ 10−12 in the neighborhood of
the origin, denoting in practice a great stability of the Lagrange point.

of perturbative parameter: starting from a point very close to the origin
gives rise to actions almost constant and to an almost linear evolution of
the angles. With the panel “Frequency Modulation Indicator” one can study
the resonance distribution in the action space. In Figure 5.10 we report
an example. In the neighborhood of the origin the FMI value is extremely
low, i.e.,≈ 10−12, and below the thereshold of reliability of the computation,
which denotes in practice a great stability of the Lagrange point. The Arnold
web is almost absent, and the 3-dimensional system behaves in practice as
having two degrees of freedom only.



CHAPTER 6

The Kepler Problem

There is a force in the earth
which causes the moon to move.

— J. Kepler

In this chapter, we will study the group-geometrical structure of the Kepler
problem and point out how this structure also turns out to be useful in the
study of the perturbed case.

6.1 Basics on the Kepler Problem

The Kepler problem is the 3-dimensional system with Hamiltonian

H0(
−→
q ,
−→
p) = 1

2
p2 − 1

q
.

Here and in the sequel, in the 3-dimensional case a letter without arrow
denotes the norm of the relative vector.
It is a typical fact for the Hamiltonian systems that the integrals of mo-

tion play a fundamental role, so let us investigate their properties. With a
direct calculation one can easily verify that the integrals of motion are the
following:

(i) the Hamiltonian, due to the fact that it is time-independent;
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(ii) the angular momentum vector

−→
G = −→

q × −→
p,

due to the rotational symmetry (Kepler’s second law);

(iii) the eccentricity vector

−→
E = −→

p × −→
G −

−→
q

q
,

due to . . .? A simple and direct answer to this question does not
exist, and in fact this is the starting point for the geometrical analysis
of the Kepler problem.

We have seven integrals of motion, but, since the phase space is 6-dimen-
sional, only five can be independent. In other words, two relations must
exist among them. Indeed

−→
G · −→E = 0, E2 − 1 = 2H0G2.

The conservation of the angular momentum ensures that the motion
belongs to a plane. To find the equation of the orbit, take the scalar product
of the eccentricity and position vectors and define the true anomaly as the
angle formed by the two vectors. We obtain

q (f) = G2

E cosf + 1 , f = true anomaly, E =
∥∥∥ −→E ∥∥∥ = eccentricity.

This is the well-known generalization of the first Kepler law: the orbit is a
conic, in particular an ellipse if the eccentricity is smaller than 1.
To integrate the equations of motion, we consider a far-reaching change

in the independent variable, introducing the eccentric anomaly. Put

dt

ds
= q√−2H0 , s = eccentric anomaly; (6.1.1)

then it is easy to obtain, as a consequence of the unperturbed Hamilton
equations, that

d2
−→
q

ds2
+ −→
q =

−→
E

2H0
.

We have thus transformed the second order equation of motion into a linear

and regular one: the introduction of the eccentric anomaly allows us to
eliminate the singularity in the origin.



6.1 Basics on the Kepler Problem 177

The last equation is that of a harmonic oscillator with a constant forcing
term and can be easily integrated. The general solution is

−→
q(s) = 1

−2H0

−→
E

E
cos s + 1√−2H0 −→G ×

−→
E

E
sin s −

−→
E

−2H0
.

Due to regularization, the collision orbits, which are characterized by a null
angular momentum and a unit eccentricity, are no longer forbidden, and
the particle “bounces back” when it reaches the origin.
Equating the norm of both sides of this equation, we obtain

q (s) = a(1− E cos s) , a = 1

−2H0
, (6.1.2)

showing that a is the semimajor axis of the ellipse. From the definition we
obtain

dt

ds
= a 32 (1− E cos s),

then, integrating,

t − tp = a
3
2 (s − E sin s)

results, which is the celebratedKepler equation. To express the position vec-
tor as a function of the time (a natural wish) one should invert this equation
and substitute into the orbit equation. But the Kepler equation is a tran-
scendental one and cannot be inverted in a closed form. An immediate
consequence of this equation is Kepler’s third law:

T = 2πa 32 , T = period.

It is usual to define the mean anomaly

l = s − E sin s.

Instead of the components of the position and velocity vectors, one may
use six other, more expressive, coordinates. The most popular choice is the
following:

• the semimajor axis a;
• the eccentricity E;
• the longitude of ascending node Ω;
• the inclination i;
• the argument of pericenter ω;
• the true anomaly f .
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Figure 6.1: The elements of the orbit.

The first two parameters fix the size and shape of the orbit. The following
three parameters are the Euler angles of the orbit and thus fix its spatial
orientation. The last one fixes the position of the moving point on the
orbit. These six parameters are called Keplerian parameters. See Figure 6.1
These Keplerian elements cannot globally parametrize the whole phase

space for topological reasons, thus they are affected by some singularities:

(i) if the orbit lies in the ecliptic plane, the longitude of the ascending
node and the argument of pericenter are undefined;

(ii) if the orbit is circular, the argument of pericenter and the true anomaly
are undefined;

(iii) in the collision orbits, the motion is linear and the plane of the orbit
is undefined.
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6.1.1 Conformal Group and Geodesic Flow on the Sphere

Looking at the first integrals of the Kepler problem suggests that we face
a problem which is “more symmetric” than one possessing only rotational
invariance. But what about this larger symmetry? The beautiful answer
was first given at quantum level (hydrogen atom) in Pauli (1926) and Fock
(1935), then at the classical level in Souriau (1974), Souriau (1983), and
Moser (1970); see also Guillemin & Sternberg (1990), Englefield (1972), and
Cordani (2003). The point is that the Keplerian motion is equal, in some
sense, to the geodesic motion on a 3-dimensional sphere, so that the phase
space of the regularized Kepler problem is T+S3, the cotangent bundle with
the null section deleted. From that an SO(4) enlarged symmetry emerges
naturally. Let us review how to reach this conclusion: see Cordani (2003)
for the details.
Let ηAB = diag (−−++++) be the flat metric tensor of R2,4 and GAB =

−GBA be a basis of the Lie algebra g of G = SO(2,4). The range of the indices
is

A,B,C = −1,0, . . . ,4
λ,μ, ν = 0, . . . ,3
α,β, γ = 1, . . . ,4
i, j, k = 1,2,3.

Then, the Lie algebra brackets are

[GAB,GAC] = ηAAGBC (6.1.3)

or zero if all indices are different. Since the action of G on R2,4 is linear, it
induces an action on the projective manifold of the rays through the origin;
moreover, G sends the null cone into itself, and thus acts transitively on
the manifold M of null rays. This manifold is diffeomorphic to S1 × S3
and is endowed with a class of pseudo-Riemannian metrics g Γ obtained by
restriction of the SO(2,4) invariant metric η on any section Γ of the null
cone. The action of G on M is conformal. The metrics g Γ is conformally
flat, with signature (−+++), and the Lie algebra g of G is isomorphic to the
Lie algebra of conformal vector fields on Minkowski space. We can identify
the generators as follows:

Gμν = Lorentz group, Gμ4 +G−1μ = translations,
Gμ4 −G−1μ = conformal translations, G−14 = dilations.

Let H be the closed subgroup of G with Lie algebra

h = {Gμν,Gμ4 −G−1μ,G−14}.
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It is the isotropy group of the origin in R1,3. SinceM = G/H, we can identify
M with the “conformal compactification” of R1,3. In other words, one can
obtain M by adding to R1,3 a null cone at infinity.
Let us now consider the symplectic action of G on T∗(G/H). Since this

action is not transitive, we may decompose T∗(G/H) into orbits of G. They
are symplectic manifolds on which the group action is transitive, and so
they may be identified with (covering spaces of) orbits of G in g∗, the dual
Lie algebra. The point is that to obtain the Kepler manifold T+S3 we must
restrict ourselves to the subbundle of the null nonvanishing covectors.
Let XA = ηABXB be the coordinates of a point in R2,4 and YB the compo-

nents of a covector. We can nowproject the “natural”momentmap T∗R2,4 →
g∗ given by

GAB = YAXB − YBXA (6.1.4)

to the moment map T+S3 → g∗. Consider indeed a section Γ of the null
cone of R2,4, i.e., XA = XA(xμ), η(X,X) = 0, with xμ local coordinates on
the section. The metric η induces the metric

g Γμν = ∂XA

∂xμ
ηAB

∂XB

∂xν

on Γ . The moment map (6.1.4) is linear in the covector part, and this hap-
pens whenever the symplectic manifold is the cotangent bundle of a base
manifold on which a Lie group acts. If V(ξ) is the vector on this manifold
induced by the infinitesimal action of a 1-dimensional subgroup generated
by the element ξ of the Lie algebra, the corresponding element J(ξ) of the
moment map is 〈y,V(ξ)〉, where y belongs to the cotangent space. The
components of the moment map may therefore be identified with the vec-
tors on the base manifold generated by the infinitesimal group action. Since
the action of G on T∗R2,4 preserves the null cone, the relative vectors are
tangent to it, but not to the section Γ . Actually the group action is on the
rays of the null cone, and the vectors can thus be safely projected on the
tangent space to the section Γ . If VB is a vector of R2,4 tangent to the null
cone, this projection is given in coordinates by

Vμ = gμνΓ
∂XA

∂xν
ηABV

B.

Let us choose the section Γ as follows:

X−1 = cosx0
X0 = sinx0

Xk = 2xk

x2 + 1
X4 = x2 − 1

x2 + 1 ,
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where x2 = ∑
(xi)2. Clearly, x0 parametrizes S1 and x1, x2, x3 are local

coordinates on S3 ⊂ R4. The section Xα(x) is obtained through a stereo-
graphic projection from the North pole N of the unit sphere onto the hyper-
plane x1x2x3: a point (the North pole) is missing from this parametrization
and restoring this point is just equivalent to the regularization of the Kepler

problem. The metric on the section Γ is

g Γ = −y20 +
1

4
y2(x2 + 1)2,

where the y ’s are the momenta canonically conjugate to the x’s:

{xμ,xν} = {yμ,yν} = 0, {yμ,xν} = δνμ.
After constructing the moment map T∗Γ → so∗(2,4), we notice that the
constraint g Γ = 0 is preserved by the conformal action, and defines a 7-
dimensional presymplecticmanifold. Dividing out the kernel of the presym-
plectic 2-form by setting for example x0 = 0, then exchanging coordinates
and momenta, we finally obtain the moment map

T+(S3 − {N}) = T∗(R3 − {0})→ so∗(2,4)

given by

K0(
−→
x,
−→
y) = 1

2
x(y2 + 1),

−→
G(
−→
x,
−→
y) = −→

x × −→
y,

−→
R(
−→
x,
−→
y) = 1

2
(y2 − 1) −→x − ( −→x · −→y) −→y, (6.1.5)

u(
−→
x,
−→
y) =

( −→
u
u4

)
=
(
1
2(y

2 + 1) −→x − ( −→x · −→y) −→y
−( −→x · −→y)

)
,

v(
−→
x,
−→
y) =

( −→
v
v4

)
=
(

x
−→
y

−12x(y2 − 1)

)
.

We have defined

K0 = −G−10, Gi = −εihkGhk, Ri = Gi4, (6.1.6)

uα = G−1α, vβ = G0β.
If, at this point, the reader finds all that a bit confusing, well, no panic:

the above procedure leads to the following.

First conclusion. The above fifteen functions K0, Gh,Rk,uα,vβ, defined by

(6.1.5), satisfy the nine constraints

uαuα = vβvβ = K20 , uαvα = 0, (6.1.7)

Gi = 1

K0
εihk(uhvk −ukvh), Rk = 1

K0
(u4vk −ukv4), (6.1.8)
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from which

G2 + R2 = K20 ,
−→
G · −→R = 0, (6.1.9)

and have the following Poisson brackets:

{Gi,Gj} = −εijkGk, {Gi,Rj} = −εijkRk, {Ri,Rj} = −εijkGk, (6.1.10)
{Gαβ,uγ} = ηαγuβ, {Gαβ,vγ} = ηαγvβ, (6.1.11)

{uα,uβ} = {vα,vβ} = 1

K0
(uαvβ −uβvα), {uα,vβ} = −K0ηαβ, (6.1.12)

{K0, Gαβ} = 0, {K0, uα} = vα, {K0, vα} = −uα. (6.1.13)

We remark that the content of the first conclusion may also be checked with
direct, but somewhat lengthy, calculations.
Let us briefly comment on this first conclusion. From (6.1.7) and (6.1.8)

we infer that

(i) all fifteen functions are generated by two 4-vectors u and v which are
orthogonal and of equal norm; indeed

(ii) K0
−→
G and K0

−→
R together form a 4-dimensional simple bivector, equal

to the exterior product of u and v,
−→
G being the “magnetic” and

−→
R the

”electric” part of the bivector;

(iii) K0 is equal to the common norm of u and v.

Notice that relation (6.1.9) is an algebraic consequence of (6.1.7) and (6.1.8).
Taking definitions (6.1.6) and (6.1.5) into account, the last four relations
(6.1.10–6.1.13) are identical to (6.1.3), though more expressive. We infer

(i) from (6.1.10), that
−→
G and

−→
R are the generators of the SO(4) subgroup;

(ii) from (6.1.11), that u and v are 4-vectors under the action of the SO(4)
subgroup;

(iii) from (6.1.12), that the manifold R4 × R4, parametrized by u and v,
has a Poisson structure of rank 6;

(iv) from (6.1.13), that K0 may be viewed as a Hamiltonian whose phase
space is the Poisson manifold of the previous item and which gener-
ates the motion(

uα(x0)
vα(x0)

)
=
(

cosx0 sinx0

− sinx0 cosx0

)(
Uα
Vα

)
, (6.1.14)

with Uα,Vα initial values;

moreover, Gαβ is a first integral of the motion.
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The motion of item (iv) is clearly the geodesic flow on the sphere S3 (as
confirmed by the expression of K0 in the moment map), whose description
we have thus placed in a group-theoretical framework. But what is the
connection with the Kepler problem?

6.1.2 The Moser–Souriau Regularization

Now, a sort of miracle arises. Let us return, for a moment, to the 8-dimen-
sional cotangent bundle T∗Γ , with local canonical coordinates xμ,yν, and
before applying the conformally invariant constraint

y0 + 1
2
y(x2 + 1) = 0, (6.1.15)

deduced from g Γ = 0, perform the canonical transformation

(
−→
q ,
−→
p, t, pt) = C( −→x, −→y,x0, y0)

given by

−→
q = −y0 −→y, (6.1.16)

−→
p =

−→
x

y0
, (6.1.17)

t = −y30
[
x0 −

−→
x · −→y
y0

]
, (6.1.18)

pt = 1

2y20
, (6.1.19)

with inverse transformation

−→
y = −→

q
√
2pt,

−→
x = −

−→
p√
2pt

,

x0 = (
√
2pt)

3t −
√
2pt(

−→
q · −→p),

y0 = − 1√
2pt

.

C may be viewed as the composition of three canonical transformations:

(i) exchanging coordinates and momenta;

(ii) followed by (6.1.16) and (6.1.17), equivalent to an “energy rescaling”;

(iii) concluding with (6.1.19).
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Notice that (6.1.18) is enforced by the requirement of canonicity.
The substitution of C−1 into the constraint yields

−
√
1

2pt
+ 1
2
q
√
2pt

(
p2

2pt
+ 1

)
=
√
1

2pt

[
−1+ 1

2
2qpt

p2 + 2pt
2pt

]
= 0,

and hence,

pt + 1
2
p2 − 1

q
= 0;

i.e., −pt is equal to the Kepler unperturbed Hamiltonian H0( −→q , −→p). More-
over, it is easy to check that x0 coincides with the eccentric anomaly defined
in (6.1.1), showing that s arises as the canonical transform of the physical
time; see Cordani (2003, page 140).
Let us transform the whole moment map T∗Γ → so∗(2,4) by C, restrict

to the constraint, and divide out the kernel of the presymplectic 2-form, set-
ting t = 0. We get the transformed moment map T∗(R3 −{0})→ so∗(2,4):

L(
−→
q ,
−→
p) = 1√−2H0 ,

−→
G(
−→
q ,
−→
p) = −→

q × −→
p,

−→
R(
−→
q ,
−→
p) = 1√−2H0

(
−→
p × −→

G −
−→
q

q

)
, (6.1.20)

u(
−→
q ,
−→
p) = U cosΔ− V sinΔ,

v(
−→
q ,
−→
p) = U sinΔ+ V cosΔ,

where

U =
⎛⎝ 1√

−2H0

(
−( −→q · −→p) −→p +

−→
q
q

)
−( −→q · −→p)

⎞⎠ ,
V =

⎛⎝ q
−→
p

1√
−2H0

(
1− p2q)

⎞⎠ ,
Δ =

√
−2H0( −→q · −→p).

To stress that the moment map (6.1.20) is the canonical transform of
(6.1.5), we have retained the same symbols in the left members, with the sole
exception of K0 and L for traditional reasons and notational convenience.

Second conclusion. The fifteen functions of the moment map (6.1.20) satisfy

the same algebraic relations and, for the canonicity of the transformation,

the same Poisson brackets of the moment map (6.1.5). The symmetry prop-

erties of the Kepler problem are clearly evident: the Hamiltonian L has the
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generators of the SO(4) group as first integrals. Moreover, two 4-vectors

have been constructed: they are orthogonal and of equal norm, and their

dynamical evolution is an uniform rotation in a 2-plane fixed by the initial

conditions.

6.1.3 The Kustaanheimo–Stiefel Regularization

In the previous subsection the Kepler problem has been regularized with
the Moser–Souriau method. An alternative procedure is the Kustaanheimo–

Stiefel (KS) transformation, which basically transforms the Hamiltonian
K0(

−→
x,
−→
y) of (6.1.5) into the Hamiltonian of a 4-dimensional harmonic oscil-

lator whose motion is subject to a constraint. First, let us view how the KS
transformation works.

Definition 6.1 The Kustaanheimo-Stiefel (KS) transformation is the map

KS : R4 − {0} ×R
4 → R

3 − {0} ×R
3

given explicitly by

x1 = 2(z1z3 + z2z4),
x2 = 2(z2z3 − z1z4), (6.1.21)

x3 = −z21 − z22 + z23 + z24,

from which

x = ‖z‖2 ,
and by

y1 = −z1w3 + z2w4 + z3w1 + z4w2‖z‖2 ,

y2 = z1w4 − z2w3 − z3w2 + z4w1
‖z‖2 , (6.1.22)

y3 = z1w1 + z2w2 − z3w3 − z4w4
‖z‖2 .

The coordinates of the domain are subject to the constraint

z1w2 − z2w1 + z3w4 − z4w3 = 0. (6.1.23)

Because of this constraint the domain of theKS map is 7-dimensional, while
the target space is 6-dimensional; thus the map has a 1-dimensional kernel.
In fact, as one verifies, all pairs z′,w′ which are connected to z,w by the
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relations⎛⎜⎜⎜⎝
z′1
z′2
z′3
z′4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
cosβ − sinβ 0 0
sinβ cosβ 0 0
0 0 cosβ − sinβ
0 0 sinβ cosβ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
z1
z2
z3
z4

⎞⎟⎟⎟⎠ , (6.1.24)

⎛⎜⎜⎜⎝
w′
1

w′
2

w′
3

w′
4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
cosβ − sinβ 0 0
sinβ cosβ 0 0
0 0 cosβ − sinβ
0 0 sinβ cosβ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
w1
w2
w3
w4

⎞⎟⎟⎟⎠ , (6.1.25)

are sent by the map into the same pair x,y for every β.
Let us now suppose that the z’s are coordinates and thew’s canonically

conjugate momenta of an 8-dimensional phase space. After a canonical ex-
change between coordinates and momenta, let us compose the Hamiltonian
K0(

−→
x,
−→
y) with the KS map. A straightforward calculation shows that

K0
( −→
x(z),

−→
y(z,w)

)
= 1
2

(
‖z‖2 + ‖w‖2

)
,

which is the Hamiltonian of a 4-dimensional isotropic harmonic oscillator.
If the constraint (6.1.23) is satisfied by the initial conditions, it will be re-
spected by the dynamical evolution for all times.
All this machinery sounds somewhat mysterious, if we limit ourselves

to the mere computations. For a better insight see Cordani (2003, Chapter
VII), where it is shown that the KS transformation bases itself on the local
isomorphism between SU(2,2) and SO(2,4). Let us briefly summarize the
main points.
It is well known that SU(2) is the double covering of the SO(3) group.

This means that the homomorphism SU(2) → SO(3) is a local isomor-
phism and maps SU(2) onto SO(3) in an essentially (2-1) fashion. The
term “essentially” here refers to the fact that SU(2) is connected. There
exists a higher dimensional but less known analogue, namely the homomor-
phism SU(2,2)→ SO(2,4), which similarly maps SU(2,2) onto the identity-
connected component of SO(2,4) in an essentially (2-1) fashion. For details
see Guillemin & Sternberg (1990).
Let h be the 4 × 4 matrix of the quadratic form invariant under the

SU(2,2) action:
g†hg = h, g ∈ SU(2,2).

An element ψ ∈ C2,2 such that

ψ†hψ = 0, ψ ≠ 0 (6.1.26)

is called a null twistor (Penrose 1974) and (Penrose 1967). Let T0 be the
space of null twistors, and assume the equivalence relation ψ ∼ ψeiβ, with



6.1 Basics on the Kepler Problem 187

β a generic angle. The set T0/∼ of null twistors modulo a phase transforma-
tion is a 6-dimensional manifold, which may be equipped with the natural
symplectic structure dΘ, where

Θ = Im(ψ† hdψ). (6.1.27)

Since the natural linear action of SU(2,2) on T0/∼

ψ 	→ ψ′ = gψ, g ∈ SU(2,2)

is manifestly transitive and symplectic, T0/∼ is symplectomorphic to (a
covering of) a coadjoint orbit O of SU(2,2). The moment map

j : T0/∼→ O ⊂ su∗(2,2)

which connects the two manifolds is given by

j(ψ) = −iψψ†h with ψ†hψ = 0. (6.1.28)

We verify that (6.1.28) is just an injective Ad∗-equivariant moment map
T0/∼→ su∗(2,2). Indeed

(i) j(ψ) ∈ su∗(2,2) since

j†(ψ)h+ h j(ψ) = 0, Tr j(ψ) = −iψ†hψ = 0;

(ii) taking T0/∼ as the domain, we make j injective since ψ and ψ′ have
the same image if and only if ψ′ = ψeiβ;

(iii) the diagram

T0/∼

j

SU(2,2)

Ad∗

T0/∼

�

�

�
�

j

su∗(2,2) su∗(2,2)

is commutative: if g ∈ SU(2,2), by definition g†hg = h, so that g−1 =
h−1g†h, and the coadjoint action is given by

j 	→ j′ = g j g−1 = −igψψ†hh−1g†h = −i (gψ) (gψ)† h.
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Take

ψ =
(

z
iw

)
, z ∈ C

2 − {0}, w ∈ C
2, h =

(
0 1

1 0

)
;

then

j =
(

zw† izz†

iww† −wz†
)
. (6.1.29)

Let sk be the three Pauli matrices

s1 =
(
0 1
1 0

)
, s2 =

(
0 i
−i 0

)
, s3 =

(
−1 0
0 1

)
,

which satisfy

shsk + sksh = 2δhk1, s
†
h = sh, Trsh = 0.

The basis in su(2,2) is given by

ghk =
1

2

(
−shsk 0
0 −shsk

)
, g0k =

1

2

(
−sk 0
0 sk

)
,

g−1,4 =
1

2

(
1 0
0 −1

)
,

g0,4 =
1

2

(
0 i1
−i1 0

)
, gk4 =

1

2

(
0 isk
isk 0

)
,

g−1.0 =
1

2

(
0 i1
i1 0

)
, g−1,k =

1

2

(
0 isk

−isk 0

)
;

then it is simply a matter of calculation to check that

z =
(
z1 + iz2
z3 + iz4

)
, w =

(
w1 + iw2
w3 + iw4

)
, z1, . . . ,w4 ∈ R,

and (6.1.21), (6.1.22) exhibit the equivalence between the twomoment maps
(6.1.29) and (6.1.5). Notice that the constraint (6.1.23) is a rephrasing of
(6.1.26) and (6.1.25) of the equivalence relation ∼ . The canonicity of the
coordinates z1, . . . ,w4 is induced by the 1-form (6.1.27).

6.1.4 Action-Angle Variables

Let us consider an n-dimensional integrable system, and suppose that the
Hamiltonian is a function ofn−d action variables only. The dynamics takes
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place on (n−d)-dimensional tori, and the system is said to be d-fold totally

degenerate. If d = n − 1, then all the orbits are periodic, and the system
is completely totally degenerate: it is the case of the Kepler problem with
negative energy.
The geometry of the totally degenerate systems is richer than that of

the nondegenerate ones. As pointed out in Fassò (1996), the general sit-
uation is the following. The phase space of a d-fold totally degenerate
Hamiltonian system (minus, in case, a subset of zero measure, compris-
ing equilibrium points and separatrices) is fibered by (n − d)-dimensional
invariant tori, filled by quasi-periodic motions, while the base space is an
(n+d)-dimensional Poisson manifold of rank 2d. The point is that the 2d-
dimensional symplectic leaves of this Poisson manifold are not in general
homeomorphic to Rd × Td.
For example, in the 3-dimensional Kepler problem the fiber is the circle

S1 and the base, i.e., the space of the orbits, the 5-dimensional Poisson

manifold spanned by the two orthogonal vectors
−→
G and

−→
R. The symplectic

leaves, i.e., the spaces of the orbits for a fixed energy, have topology S2×S2,
as explained below after Equation (6.1.32).
It is clear that in the totally nondegenerate case the Lagrangian fibration

in n-dimensional tori is intrinsic, so that the action-angle variables are es-
sentially unique, up to the equivalence relations mentioned at the end of
Subsection 2.3.9. In contrast, in the totally degenerate case only the fibra-
tion in (n − d)-dimensional tori is intrinsic; to complete this last to a La-
grangian fibration, one selects a piece of the symplectic leaf, homeomorphic
to a cylinder Rd×Td, and attaches the factor Td to the (n−d)-dimensional
invariant tori. This operation is in general, i.e., when the symplectic leaves
are not homeomorphic to Rd×Td, neither global nor unique, and every such
choice of action-angle variables inevitably develops singularities.
In the case of the Kepler problem, one must add to L and l two other

pairs of action-angle variables parametrizing the symplectic leaf S2×S2, but
this parametrization is clearly only local. There are many possible choices,
which are in general difficult to work out explicitly. Here we will consider
the well-known Delaunay variables, and then the much less popular, but
equally significant, Pauli variables.
Incidentally, there is a strict relation between total degeneration and

over-integrability. We say that a Hamiltonian is over-integrable when it ad-
mits several systems ofn inequivalent first integrals in involution. The level
surfaces of these inequivalent systems are, by definition, different fami-
lies of n-dimensional tori, whose intersection is just the family of (n− d)-
dimensional tori on which the dynamics takes place. Whatever the n-tuple
of the first integrals in involution, they will, in general, lose their indepen-
dence in a subset of the phase space of zero measure; this is obviously due
to the fact that one is looking for an object, a Lagrangian fibration in tori,
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that does not exist globally.

Delaunay Variables

The Delaunay action-angle variables are

L and l, G and ω, G3 and Ω

with Θ = Ldl+Gdω+G3 dΩ.

They are so popular that sometimes they are improperly called “the”action-
angle variables of the Kepler problem, suggesting erroneously that they are
unique.
Their common derivation is reported in many books, for example, Gold-

stein (1980) and Cordani (2003), and follows basically the route traced when
defining the action-angle coordinates in Subsection 2.3.9. However, this
derivation is not trivial, and the involved integrations require some skill.
To get a geometric insight into this derivation, let us consider the geo-

desic flow on the 3-dimensional sphere S3,which is equivalent to the Kepler
problem. Notice that the following argument can be extended to a generic
dimension. The moment map T∗S3 → so∗(4), from the cotangent space to
the dual of the Lie algebra of the rotation group in 4 dimensions, is given
by the angular momentum x ∧ y, with x,y ∈ R4, ‖x‖ = 1 and 〈x,y〉 =
0. The norm K0 of this angular momentum has vanishing Poisson bracket
with all the generators of the rotation group, in particular with the norm of
the projection of this angular momentum into linear subspaces of R4: this
explains why K0, G,G3 are in involution. Moreover, K0, G,G3 generate three
distinct and commuting rotations in the three planes containing the total 4-
dimensional angular momentum and its 3-dimensional and 2-dimensional
projections, respectively: the angles parametrizing the three rotations are
just s,ω,Ω. Lastly C, the canonical transformation (6.1.16–6.1.19), sends
K0, s in L, l.
The Delaunay variables are not well suited when the eccentricity E and

the inclination i become very small, since they are plagued with the same
singularities of the Keplerian elements. This implies that the variables
L,G,G3 differ in quantities that are of the order of the square of E and
i. These three variables become identical if E and i vanish, and the an-
gles l,ω,Ω become undetermined. In order to escape from this difficulty,
Poincaré introduced the canonical variables

Λ = L, λ = l+ω+Ω,
χecc =

√
2(L−G) cos(ω+Ω), ηecc = −

√
2(L−G) sin(ω+Ω),

χinc =
√
2(G −G3) cosΩ, ηinc = −

√
2(G −G3) sinΩ.

(6.1.30)
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To pass from Delaunay to Poincaré variables, one composes two canonical
transformations. The first is⎛⎜⎝ Λ

ρ1
ρ2

⎞⎟⎠ =
⎛⎜⎝ 1 0 0
1 −1 0
0 1 −1

⎞⎟⎠
⎛⎜⎝ L
G
G3

⎞⎟⎠ ,
⎛⎜⎝ λ
ϕ1
ϕ2

⎞⎟⎠ =
⎛⎜⎝ 1 1 1
0 −1 −1
0 0 −1

⎞⎟⎠
⎛⎜⎝ l
ω
Ω

⎞⎟⎠ ,
which is canonical since each of the two unimodular matrices is the trans-
pose of the inverse of the other. The latter canonical transformation is of
the type

χ =
√
2ρ cosϕ,

η =
√
2ρ sinϕ,

analogous to the change in the plane from polar to Cartesian coordinates,
which explains why the singularity in the origin is removed.
We remark that the three new actions Λ, ρ1, ρ2 are functions of the old

ones, so that the Poincaré variables are different coordinates on the same

Delaunay tori: the foliation in tori is identical for the two coordinate sys-
tems.

Pauli Variables

In contrast, Pauli action-angle variables parametrize different sets of tori.
They were introduced in Cordani (2003), following the general method; here
we adopt a different approach which is surprisingly simple and suggests
that Pauli action-angle variables are, in some sense, the “natural” ones for
the 3-dimensional Kepler problem.
We will work in the SU(2,2) framework of the previous subsection but

with a more convenient basis, obtained with the linear transformation

T = 1√
2

(
1 1

1 −1

)
,

acting on C2,2, where 1 is the 2× 2 unit matrix. It induces the transforma-
tions

h 	→ H = (T†)−1hT−1 =
(

1 0
0 −1

)
,

gAB 	→ GAB = TgABT
−1.
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The explicit expression of the elements of this basis is

Ghk = 1
2

(
−shsk 0
0 −shsk

)
, Gk,4 = 1

2

(
isk 0
0 −isk

)
,

G−1,0 = 1
2

(
i1 0
0 −i1

)
,

G0h = 1
2

(
0 −sh
−sh 0

)
, G0,4 = 1

2

(
0 −i1
i1 0

)
,

G−1,h = 1
2

(
0 −ish
ish 0

)
, G−1,4 = 1

2

(
0 1

1 0

)
.

(6.1.31)

Write every element of ψ ∈ C2,2 in exponential form: ψk = �keiϕk with
k = 1, . . . ,4 not summed, so that Im(ψk dψk) = �2kdϕk. The 1-form (6.1.27)
becomes

Θ = Im(ψ†Hdψ) = �21dϕ1 + �22dϕ2 − �23dϕ3 − �24dϕ4.

Comparing the diagonal elements of the moment map J(ψ) = −iψψ†H
with the corresponding ones of the basis (6.1.31), we get

Θ = 1
2
(K0 +G3 + R3)dϕ1 + 1

2
(K0 −G3 − R3)dϕ2

+ 1
2
(−K0 +G3 − R3)dϕ3 + 1

2
(−K0 −G3 + R3)dϕ4

= 1
2
K0d(ϕ1 +ϕ2 −ϕ3 −ϕ4)+ S3d(ϕ1 −ϕ2)+D3d(ϕ3 −ϕ4).

We have defined

−→
S = 1

2

( −→
G + −→

R
)
,

−→
D = 1

2

( −→
G − −→

R
)
, (6.1.32)

which we call Pauli vectors since they were used by the homonymous physi-
cist to quantize the hydrogen atom. The Pauli vectors span two 2-dimen-
sional spheres of radius 12

1√
−2H0 and, as a direct consequence of the so(4)

Lie algebra generated by
−→
G and

−→
R, they satisfy the Lie algebra of SO(3):

{S1, S2} = −S3, {S2, S3} = −S1, {S3, S1} = −S2,
{D1,D2} = −D3, {D2,D3} = −D1, {D3,D1} = −D2, (6.1.33)

and { −→S , −→D} = 0.

These relations give to R3 × R3 the structure of a Poisson manifold, with
S2×S2 playing the role of symplectic leaves, and they are a consequence of
the fact that SO(4) is the direct product of two copies of SO(3).
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By a direct comparison with the moment map J(ψ) = −iψψ†H we get

sP
def= 1
2
(ϕ1 +ϕ2 −ϕ3 −ϕ4) = 1

2
arctan

(
2(u3v3 +u4v4)
v23 + v24 −u23 −u24

)
,

φS
def= ϕ1 −ϕ2 = arctan S2

S1
,

φD
def= ϕ3 −ϕ4 = arctan D2

D1
,

which allows us to write the symplectic 1-form as

Θ = K0 dsP + S3 dφS +D3 dφD,

while the canonical transformation C gives

Θ = LdlP + S3 dφS +D3 dφD.

We recall that one uses the two moment maps (6.1.5) and (6.1.20), respec-
tively, in order to make these last two expressions explicit.
We can therefore claim that L, S3,D3 are actions of the Kepler problem,

with lP ,φS,φD the corresponding conjugate angles.

6.2 The Perturbed Kepler Problem

Our basic idea in order to normalize the perturbed Hamiltonian of the Ke-
pler problem is to use the two 4-vectors u and v as global coordinates,
because of their simple unperturbed dynamical evolution. But they are com-
plicated functions of the position −→q and momentum −→

p, and it is generally
impossible to explicitly obtain the expression of a generic perturbation. In-
stead, it is immediate to find from (6.1.5):

−→
x = −→

u − −→
R,

−→
y =

−→
v

x
, x = K0 + v4. (6.2.1)

This suggests using (6.1.5), instead of (6.1.20). Let us view how.
Consider the two Hamiltonians

H(
−→
x,
−→
y) = 1

2
y2 − 1

x
+ εHp( −→x, −→y), (6.2.2)

K(
−→
x,
−→
y) = 1

2
x(y2 + 1)+ εxHp( −→x, −→y). (6.2.3)

The reader will recognize the Hamiltonian of the Kepler problem in the un-
perturbed part of the first expression and the component K0 of the moment
map (6.1.5) in that of the latter.
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Then consider the Hamilton equations generated by (6.2.2):

d
−→
x

dt
= −→
y + ε∂Hp

∂
−→
y
,
d
−→
y

dt
= −

−→
x

x3
− ε∂Hp

∂
−→
x
,

and those generated by (6.2.3), but with a new, for the moment unspecified,
“false time”

d
−→
x

dτ
= x

(
−→
y + ε∂Hp

∂
−→
y

)
,
d
−→
y

dτ
= −x

(
K(
−→
x,
−→
y)

−→
x

x3
+ ε∂Hp

∂
−→
x

)
.

The Hamiltonian (6.2.3), along with the Hamiltonian (6.2.2), is a first inte-
gral of the motion, so that, suitably rescaling coordinates and momenta (as
specified below), we can get

K(
−→
x,
−→
y) = 1. (6.2.4)

Now, defining
dt = xdτ, (6.2.5)

the two systems of Hamilton equations turn out to be identical. The nor-
malization condition (6.2.4) implies

H(
−→
x,
−→
y) = −1

2
, (6.2.6)

and the false time coincides with the eccentric anomaly to the vanishing
of the perturbation. This is not surprising: for the rescaled Hamiltonian
(6.2.4), the transformations (6.1.16), (6.1.17) reduce to an exchange between
coordinates and momenta, while the infinitesimal version of (6.1.18) is just
(6.2.5); lastly, (6.1.19) yields (6.2.6).
The abovely mentioned rescaling is easily found. Before exchanging co-

ordinates and momenta, apply the covector dilation

Rxy : x
μ → xμ, yν → yν

λ
, λ ∈ R,

which leaves the constraint (6.1.15) invariant. Imposing

C ◦Rxy = Rqp ◦ C,
this covector dilation induces the rescaling

Rqp :
−→
q ,

−→
p, t, pt →

−→
q

λ2
, λ
−→
p,

t

λ3
, λ2pt. (6.2.7)

Let us suppose (this hypothesis is not very restrictive in practice) that the
perturbation Hamiltonian is a homogeneous function of position and veloc-
ity:

Hp(μ
−→
q , ν

−→
p) = μdqνdpHp( −→q , −→p), μ, ν, dq, dp ∈ R,
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or, at most, a sum of homogeneous terms. The total Hamiltonian is a first
integral of the motion, whose numerical value h is fixed by the initial con-
dition:

1

2
p2 − 1

q
+ εHp( −→q , −→p) = h.

Remembering the rescaling described above, put

−→
q = λ2 −→x, −→

p =
−→
y

λ
, λ = 1√

−2h, (6.2.8)

to obtain

1

2
y2 − 1

x
+ εrHp( −→x, −→y) = −1

2
, εr = ελ2dq+2−dp . (6.2.9)

The total Hamiltonian has been rescaled to the required value, provided
that the perturbative parameter is also suitably rescaled, as we suppose
from now on. Therefore, integrating the flow of the Hamiltonian (6.2.3) is
equivalent to the integration of the original problem.
Let us consider the solutions of the perturbed problem. As finding an

exact analytical solution is generally out of the question, we can proceed
with

(i) a normalization (or averaging) method, truncated at some order, or

(ii) numerical integration.

6.3 Normal Form of the Perturbed Kepler Problem

Let us apply the machinery of the reduction to normal form. Multiply the
total Hamiltonian (6.2.3) from the left with the operator exp(εLχ1) where
χ1 is an unknown function, and retain the terms up to second order:

exp(εLχ1)(K0 + εKp)

= K0 + ε(Lχ1K0 +Kp)+ ε2
(
Lχ1Kp +

1

2
L2χ1K0

)
+O(ε3).

Since Lχ1K0 = −LK0χ1, we are led to solve the equation

LK0χ1 = Kp −K1, (6.3.1)

where K1 is the mean value of Kp:

K1 = 1

2π

∫ 2π
0
φ∗s Kp ds.
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With φs we denote the dynamical flow generated by K0 while φ∗s Kp is the
pull-back. The solution of (6.3.1) is given by

χ1 = 1

2π

∫ 2π
0
s φ∗s (Kp −K1)ds;

in fact,

LK0χ1 =
1

2π

∫ 2π
0
s
d

ds
φ∗s (Kp −K1)ds

= 1

2π

[
s φ∗s (Kp −K1)

∣∣∣2π
0
−
∫ 2π
0

φ∗s (Kp −K1)ds
]

= Kp −K1,

using the periodicity of Kp (u(s), v(s)) .
We have normalized the perturbed Hamiltonian to first order. Iterating

the procedure and dropping the terms O(εr+1), we obtain the truncated
normalized Hamiltonian K(r) to order r

K(r) = K0 +
r∑
i=1
εiKi, {K0, Ki} = 0 ∀i.

The normalized Hamiltonian K(r) is invariant under the dynamical flow
generated by K0, and hence must be a function of only the first integrals

K0,
−→
G,
−→
R.

The normalization method does not lead, in general, to an integrable
truncated Hamiltonian because of the complete total degeneration of the
Kepler problem, but it allows us to lower the dimensions of the phase space
from 6 to 4. For the complete integrability one needs another first integral:
this case, frequently met in practice, will be investigated later.
In the generic case, we will exploit the existence of critical points1 of the

averaged Hamiltonian. Let us consider the averaged truncated Hamiltonian
K(r) which induces a dynamical flow on the space of the orbits with topol-
ogy S2 × S2. Every point of the space of orbits is, by definition, an elliptic
orbit in the original physical space, while a trajectory in the orbit space de-
scribes a continuous variation and deformation of the physical ellipse. It is
obvious that a critical point of K(r) corresponds to a fixed ellipse, and thus
to a periodic orbit. Although all the orbits of the unperturbed system are
periodic, this need not be the case for the perturbed truncated case and a
periodic solution will branch off only from a, in general finite, number of
points, namely from the critical points. In Moser (1970) it is proved that, if

1Let us remember that a critical point of a vector field f is a point for which f = 0.
Analogously, a critical point for a Hamiltonian H is a point for which dH = 0, i.e., the
Hamiltonian vector field vanishes.
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the critical points are nondegenerate2 and if the neglected terms in the full
perturbed Hamiltonian are small, this fact continues to be true for the full,
not truncated motion. More exactly:

Theorem 6.2 Consider a perturbed Hamiltonian h = h0+ εh1+O(ε2). Let

M be the hypersurface h0 = constant and φt the flow on it generated by the

vector field Ω�(dh0), where Ω� is the inverse matrix of the symplectic form.

Suppose that the orbits of φt all have period 2π, and let M be the quotient

manifold with respect to the flow. Then, to every nondegenerate critical point

p∗ ∈ M of the averaged Hamiltonian

h1 = 1

2π

∫ 2π
0
φ∗t h1 dt,

there corresponds a periodic solution of the vector fieldΩ�(dh) that branches

off from the orbit representing p∗ and has period close to 2π.

The theorem can be applied to the normalized nontruncated Hamiltonian

K = K0 +
r∑
i=1
εiKi +O(εr+1)

noticing that K0 = 1
2x(y

2 + 1) is the square root of the Hamiltonian of the
geodesic motion on the sphere S3: it is clear that all the orbits have period
2π, with the “time” s denoting the angle of the point on the great circle.
Hence, we are led to find the critical points of the Hamiltonian

∑
εiKi,

defined on M = S2 × S2, or M = S2 in the plane case. This gives a lower
bound for the number of periodic orbits of the perturbed Kepler problem.
Indeed, the sum of the indices of the nondegenerate critical points of a
vector field on a manifold M is equal to the Euler–Poincaré characteristic3

of M ; see for example Milnor (1965) or Perko (1991). If the vector field is
Hamiltonian, the nondegenerate critical points can only be elliptic or hy-
perbolic. Since the Euler-Poincaré characteristic of M = S2 × S2 is four, on
M there exist at least four elliptic points. Therefore, the above topological
argument ensures that, for a generic perturbation of the Kepler problem,
at least four periodic orbits of the averaged truncated Hamiltonian exist,
while the Moser theorem states that these orbits continue to persist for the
full Hamiltonian.

2A critical point x∗ of a vector field with components fk(x1, . . . , xn), k = 1, . . . , n is said
to be nondegenerate if det

(
∂fk
∂xh

)
x=x∗

≠ 0.

3The Euler–Poincaré characteristic of a 2-dimensional compact manifold is given by F −
L + V, where, for a given triangulation, F is the number of triangles, L of edges and V of
vertices. It can be shown that it is a topological invariant. It is immediate to check that for
the sphere it is equal to 2.
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The existence of an elliptic equilibrium point for the averaged Hamilto-
nian allows one to respond to a basic question: What kind of action-angle
variables do we utilize? As one verifies, the tori related to the Delaunay
variables (the action-angle par excellence of the Kepler problem) are not

slightly deformed by a generic, even if very small, perturbation but may
be completely deformed. More exactly, while the trajectory in the complex
plane of the variable Leil (or Leis ) always resembles a circle, those in the
planes of Geiω and G3eiΩ are in general radically different. This is not
surprising, since only the first circle is intrinsically defined by the dynam-
ics. The reason is the degeneration of the unperturbed Hamiltonian, and to
escape the problem we must remove the cause.
We proceed as follows. Let us apply the first step of the general proce-

dure leading to the progressive elimination of the angles in the perturbation
Hamiltonian, but restrict ourselves to the elimination of the mean anomaly
l only. Dropping the prime, we have

H = H0 + εHp +O(ε2), with Hp = 1

2π

∫ 2π
0
Hpdl,

the integration being performed along the unperturbed motion. The aver-
aged Hamiltonian Hp is a function defined on the base of the fibration by
circles of the phase space, and thus on the 5-dimensional Poisson manifold
having S2 × S2 as symplectic leaves and L as Casimir invariant. A fam-
ily of Hamiltonian systems turns out to be so defined, all isomorphic and
parametrized by L. They have the symplectic manifold S2 × S2 as phase
space and Hp(L,

−→
S ,
−→
D) as Hamiltonian. We know that, for any Hp, these

Hamiltonian systems have at least four elliptic nondegenerate equilibrium
points.
Consider one of these stationary points, which we may safely rotate with

a canonical transformation at the two North poles. We can take local canon-
ical coordinates χ1, η1, χ2, η2 of the Poincaré type, centered on this point,
by putting

S1 = χ1
2

√
2L− (χ21 + η21), D1 = χ2

2

√
2L− (χ22 + η22),

S2 = η1
2

√
2L− (χ21 + η21), D2 = η2

2

√
2L− (χ22 + η22), (6.3.2)

S3 = 1
2
L− 1
2
(χ21 + η21), D3 = 1

2
L− 1
2
(χ22 + η22);

indeed, the Poisson brackets (6.1.33) result, assuming that

{χi, χj} = {ηi, ηj} = 0, {ηi, χj} = δij.

In order to deduce (6.3.2), recall that φS = arctan(S2/S1), hence {φS, S3} =
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1, and that
∥∥∥ −→S ∥∥∥ = ∥∥∥ −→D∥∥∥ = L/2; then define

χ1 =
√
L− 2S3 cosφS, η1 =

√
L− 2S3 sinφS, ⇒ {η1, χ1} = 1,

so that the left column of (6.3.2) follows. The right column follows analo-
gously.

Substitute (6.3.2) into Hp(L,
−→
S ,
−→
D); this Hamiltonian has at least four

elliptic stationary points and can be expanded into a Taylor series in the
neighborhood of one of these points. Consider the constant (which does not
generate any dynamics) and the quadratic terms only; the linear equations
of motion ẋ = ΩHx (Ω is the inverse of the canonical symplectic matrix)
generated by the quadratic Hamiltonian

H = 1
2
xt Hx, xt = (χ1, η1, χ2, η2), H = 4× 4 symmetric matrix,

can be reduced to those of two uncoupled harmonic oscillators by a linear
canonical transformation χ,η 	→ q,p: see Theorem 2.33. Define the action-
angle variables

Jk = 1
2
(q2k + q2k), ϕh = arctan ph

qh
, h, k = 1,2

and put L = J0. Going back to the Taylor expansion of the averaged Hamil-
tonian, in the new variables we get

Hp = a(J0)+ ν1(J0)J1 + ν2(J0)J2 + · · · ,

where the dots stand for a polynomial in q and p variables, whose first
terms are cubic. Provided ν1 and ν2 are rationally independent, the Birkhoff
Theorem 3.10 on page 124 guarantees the existence of a canonical trans-
formation that takes Hp into a power series in the variables J1, J2, with
coefficients depending on J0.
We are finally left with a total Hamiltonian of the type

H = − 1

2J20
+ ε

⎡⎣a(J0)+∑
h

νh(J0)Jh + 1
2

∑
hk

νhk(J0)JhJk + · · ·
⎤⎦+O(ε2),

which is the sum of an integrable “extended” Hamiltonian

Hext0 = − 1

2J20
+ ε

⎡⎣a(J0)+∑
h

νh(J0)Jh + 1
2

∑
hk

νhk(J0)JhJk

⎤⎦
plus perturbative terms. These last are the terms O(ε2) and those, linear
in ε, coming from the Taylor expansion of Hp, for which the role of pertur-
bation parameter is played by the size of the neighborhood of the origin.
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Moreover, if

det(νhk) ≠ 0 and/or det

(
νhk νh
νk 0

)
≠ 0

then the integrable Hamiltonian Hext0 satisfies the condition(s) required by
the KAM and/or isoenergetic KAM theorem in a small neighborhood of the
origin: cf Corollary 3.7 and (3.2.25), respectively. Besides, if the quasi-
convexity (quasi-concavity) property (3.3.2) holds,4 the Nekhoroshev theo-
rem can also be applied.
The fundamental frequencies are

ω0 = ∂Hext0
∂J0

= 1
J30
+O(ε),

ω1 = ∂Hext0
∂J1

= ε [ν1(J0)+ ν11(J0)J1 + ν12(J0)J2] ,

ω2 = ∂Hext0
∂J2

= ε [ν2(J0)+ ν21(J0)J1 + ν22(J0)J2] .

The first frequency ω0 is very close to that of the unperturbed case, while
the ratios ω1/ω0 and ω2/ω0 are small of order ε.
It is important to stress however that, in practice, i.e., implementing the

KEPLER program, we do not perform the Birkhoff normalization which is
surely fully legitimate but, as it will be made clear by considering concrete
examples in Chapter 8, gives poor results. The basic reason is that a com-
plete normalization bymeans of the Birkhoff theorem “kills” excessively the
features of the problem, giving rise to a dynamical evolution which is unable
to capture the essence of the perturbed motion. The alternative method we
will adopt consists in performing a double rotation in the S2 × S2 space,
so that one of the stationary points is moved to the two North poles; the
system thus acquires an axial symmetry and the method of Section 6.5 can
be applied. The method entails the elimination of only one angle, instead
of two: the normalized Hamiltonian will still depend on one remaining an-
gle, and thus will be integrable, and a global geometrical method can be
invoked.

6.4 Numerical Integration

The KEPLER program (which will be described in the next chapter) provides
two methods for the numerical integrations: perturbative, based on Moser–
Souriau regularization, and non-perturbative, based on the Kustaanheimo–
Stiefel regularization.

4In the present case: if the matrix (νhk) has nonnegative or nonpositive eigenvalues.
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6.4.1 Perturbative Method

Let us consider the dynamical system

dx

dt
= f0(x)+ εfp(x), x ∈ R

N, f0, fp : R
N→ R

N,

and assume that we know the general solution of the unperturbed part

x = x(t,X), (6.4.1)

where X ∈ RN are the integration constants. Suppose now that these in-
tegration constants are functions of time in such a way that (6.4.1) is a
solution of the perturbed equation. Thus

dX

dt
= ε∂X

∂x
fp(x(t,X)),

so that the numerical errors do not affect the integration of the known and
predominant part.
We put (6.2.1) into (6.2.3), obtaining

K(u,v) = K0(u,v)+ εKp(u,v), Kp = xHp.

The Hamilton equations are

duα
dτ

= {K,uα}, dvα
dτ

= {K,vα}. (6.4.2)

We stress that the constraints (6.1.7) are preserved by the solutions of these
Hamilton equations, whatever the explicit form of K(u,v) will be. Equa-
tions (6.4.2) are eight first order equations in normal form, but the right-
hand side member is the sum of a “large” vector field, whose integral flow
is exactly known, and a “small” one. Therefore,

dUα
dτ

= ε{Kp(u(τ), v(τ)),Uα}, dVα
dτ

= ε{Kp(u(τ), v(τ)), Vα}, (6.4.3)

where U,V satisfy the same Poisson brackets as do u,v, and u(τ), v(τ) is
the general unperturbed solution (6.1.14).
Let us summarize how to proceed in order to implement the perturbative

method.

• The starting point is the Hamiltonian H( −→q , −→p) and the initial condi-
tions. Compute its constant value h and the scale factor λ = 1/

√
−2h.

• Rescale the initial conditions with (6.2.8).
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• Define two 4-vectors u,v according to (6.1.5). They satisfy the con-
straints (6.1.7) and have the Poisson brackets described in the First
conclusion. Compute their initial values using the rescaled conditions
of the previous item.

• Integrate Equations (6.4.3) with the initial values computed in the pre-
vious item and the rescaled value (6.2.9) of the perturbative parameter.

• Insert the values of U(τ) and V(τ) computed in the previous item into
Equations (6.1.14), with x0 replaced by τ.

• Compute with (6.2.1) the physical rescaled coordinates as functions
of τ ; in case, integrate the rescaled (6.2.5)

t = λ3
∫
x(τ)dτ

to obtain the relation between τ and t.

• Finally, invert (6.2.8) and return to the physical, not rescaled coordi-
nates.

6.4.2 Non-Perturbative Method

Alternatively, we directly integrate the equations regularized with the KS
transformation, i.e., substituting (6.1.21) and (6.1.22) into (6.2.3). We get
eight equations in the variables zi,wk, i, k = 1, . . . ,4 satisfying the con-
straint (6.1.23). The unperturbed part is the Hamiltonian of a 4-dimensional
harmonic oscillator. The point is that there exist some ODE solvers which
integrate almost exactly the motion equations of the harmonic oscillator,
such as IRK–Gauss and Tom which come with the KEPLER program. The
non-perturbative method is well suited particularly when the perturbation
is not too small.

6.5 Reduction under Axial Symmetry

Unlike the general case of the previous section, the axisymmetric perturba-
tions lead, after normalization, to a Liouville integrable problem: besides K
and K0, the projection of the angular momentum on the symmetry axis is
also a first integral, clearly in involution with the other two. This allows us
to study the perturbed motion in a graphical and global way. The basic idea
is to exploit the axial symmetry in order to further reduce the manifold of
the orbits, which has S2 × S2 topology, thus obtaining a symplectic mani-
fold which turns out to be homeomorphic (but in general not diffeomorphic)
to S2. Then, the level surfaces of the twice reduced Hamiltonian intersect
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this symplectic manifold and give rise to a family of curves describing the
perturbed motion.

Our first task is therefore to obtain the symplectic reduction, M say,
of the manifold of the orbits M � S2 × S2 with respect to the circle or
S1-action of the axial symmetry. We may always assume the symmetry to
be about the third axis, thus generated by the action of G3. Following the
Marsden–Weinstein theorem, we should consider the moment map Γ : M →
so∗(2) given by G3, choose some value,5 with −K0 ≤ G3 ≤ K0, and, on
the 3-dimensional manifold Γ−1(G3), divide out the flow generated by the
action of G3. Unfortunately, for G3 = 0 this flow has fixed points, as is clear
from Figure 6.2, so that, in this case, the reduced space will no longer be a
differentiable manifold.

S3

D3

A

B

G3

G3

K0
2

K0
2−K02

−K02

Figure 6.2: Once the value of G3 is chosen, the admissible values of S3,D3 are
those lying on the straight line S3 + D3 = G3 and falling on and internally to
the square. The manifold Γ−1(G3) is empty for |G3| > K0 and trivial (one point)
for |G3| = K0. For −K0 < G3 < K0 and G3 ≠ 0, the rotational action has no

fixed points, while for G3 = 0 the two points A≡
(
0,0,−K02 ,0,0,

K0
2

)
and B≡(

0,0, K02 ,0,0,−
K0
2

)
are fixed points.

This fact has been pointed out by Cushman (1991), who uses the general

technique of “singular reduction” to construct M for every value of G3. To
achieve the same goal, we prefer an ad hoc but very simple procedure. We
do not directly reduce the symplectic manifold S2 × S2, but, rather, the 6-
dimensional Poisson manifold so∗(4), of which S2×S2 is a symplectic leaf.
5To lighten the notation and at the cost of a slight abuse of language, we denote with G3

(as for K0) both the function and its value, the context making clear the sense.
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In this way, the G3 = 0 value is no longer a “bad” one. The Poisson reduc-
tion yields a 4-dimensional Poisson manifold of rank 2. The two Casimir
invariants descend to the reducedmanifold, and the twofold reduced Kepler

manifold M appears as a symplectic 2-dimensional leaf.
Let us view the details. Under the S1-action on so∗(4) of G3, this last

and R3 stay unchanged, the action being effective only on G1, G2, R1, R2 not
all null, and thus on R4 −{0}. To reduce the S1-action, one implements the
Hopf fibration:

R4 − {0}
S1

� R+ × S3
S1

� R
+ × S2 � R

3 − {0}.

Explicitly, define the spinor, i.e., an element of C2 − {0},

ψ =
(
ψ1
ψ2

)
=
(
G1 + iG2
R1 + iR2

)
, ψ ≠ 0, (6.5.1)

on which the S1-action of G3 is given by ψ 	→ ψeiϕ. To reduce this action
we must first find the 3-dimensional manifold that parametrizes the orbits
of the action itself.

Proposition 6.3 The Hermitian matrices with null trace

ψψ† − 1
2
(ψ†ψ)12

def= 1
2

(
ξ3 ξ4 + iξ2

ξ4 − iξ2 −ξ3

)
, (6.5.2)

(ξ2, ξ3, ξ4) ∈ R
3 − {0},

are in 1-1 correspondence with the orbits of the S1-action on C2 − {0}.

Proof. Put ψ =
( √

�1eiθ1√
�2eiθ2

)
. The S1-action leaves invariant �1, �2 and θ1−

θ2, hence this triplet identifies the orbit univocally. Given this triplet, i.e.,
the orbit, the matrix is fixed unambiguously. Vice versa, given the matrix,
i.e., ξ2, ξ3, ξ4, by the definition of ψ we write

ξ3 = �1 − �2,
ξ4 + iξ2 = 2

√
�1�2e

i(θ1−θ2).

From the latter equation we get θ1 − θ2. Moreover,
�2 = �1 − ξ3,

�1�2 = 1
4
(ξ24 + ξ22),

so that a direct calculation allows us to find unambiguously the real non
negative values of �1 and �2. QED
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Insert (6.5.1) into (6.5.2); then, putting G3 = constant, we obtain the Poisson
reduction with respect to the S1-action:

so∗(4) � R
2 × (C2 − {0})→ R× (R3 − {0}) : ( −→G, −→R) 	→ (ξ1, ξ2, ξ3, ξ4),

where
ξ1 = R3, ξ2 = 2(G2R1 −G1R2),
ξ3 = G21 +G22 − R21 − R22 , ξ4 = 2(G1R1 +G2R2). (6.5.3)

The two Casimir invariants of so∗(4) are

G2 + R2 = G23 + ξ21 +
√
ξ22 + ξ23 + ξ24 ,

−→
G · −→R = G3ξ1 + 1

2
ξ4,

while the manifold M � S2 × S2 is characterized by

G2 + R2 = K20 ,
−→
G · −→R = 0.

The second relation allows us to eliminate ξ4 = −2G3ξ1 in the first relation,
so that the twofold reduced Kepler manifold turns out to be a 2-dimensional
algebraic manifold imbedded in R3 :(

K20 +G23 − ξ21
)2 − ξ22 − ξ23 = 4K20G23. (6.5.4)

We say that Equation (6.5.4) is of the “R-type,” since it is symmetric about
the ξ1 = R3 axis. See Figure 6.3.
From the definitions (6.5.3), and bearing the Poisson brackets (6.1.10) in

mind, one calculates

{ξ1, ξ2} = −2ξ3, {ξ1, ξ3} = 2ξ2, {ξ2, ξ3} = 4ξ1(ξ21 −K20 −G23). (6.5.5)

Putting

C(ξ) =
(
K20 +G23 − ξ21

)2 − ξ22 − ξ23 , (6.5.6)

we find that the Poisson brackets (6.5.5) can be written in the compact form

{ξi, ξj} = εijh ∂C(ξ)
∂ξh

.

Plainly, C(ξ) is a Casimir function:

{ξi, C(ξ)} = {ξi, ξh}∂C(ξ)
∂ξh

= εijh ∂C(ξ)
∂ξh

∂C(ξ)

∂ξj
= 0.

Summing up, we have proved the following proposition.
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A B ξ1

ξ3

Figure 6.3: Section on the plane ξ1ξ3 of the algebraicmanifoldM of theR-type, for
K0 = 1 and various values ofG3 = 0.8,0.6,0.4,0.25,0. Themanifold has rotational
symmetry around the axis ξ1. Notice, for G3 = 0, the two singular points A and
B on axis ξ1, which make the manifold homeomorphic, but nondiffeomorphic, to
the sphere.

Proposition 6.4 The symplectic reduction of the manifold S2 × S2 with

respect to the S1-action generated by G3 is the 2-dimensional algebraic man-

ifold (6.5.4), which is a symplectic leaf of R3 equipped with the Poisson struc-

ture (6.5.5). Varying G3, these symplectic leaves are diffeomorphic (for G3 ≠
0) but only homeomorphic (for G3 = 0) to the 2-dimensional sphere S2.

We will introduce now another parametrization of M called of G-type and
characterized by the symmetry about the third axis. Put

η1 = ξ1
√
1

2
(ξ3 − ξ21 +K20 +G23),

η2 = 1
2
ξ2,

η3 =
√
1

2
(ξ3 − ξ21 +K20 +G23),

whose (formal) inverse relations are

ξ1 = η1
η3
, ξ2 = 2η2, ξ3 = 2η23 +

η21
η23
− (K20 +G23).
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Clearly, this change of coordinates is a diffeomorphism for η3 ≠ 0. Recall-
ing the definitions (6.5.3), one easily verifies that η3 = G, the norm of the
total angular momentum: this explains the choice of the name “G-type.”
In particular, the condition η3 ≠ 0 holds if G3 ≠ 0, so that manifolds dif-
feomorphic to S2 are transformed into manifolds again diffeomorphic to
S2.
Let us examine how the algebraic manifold and the Poisson structure

change when passing from the R-type to the G-type. Substituting the above
transformation into the definition (6.5.6) we find

C(η) = −4
[
η21 + η22 + η43 − (K20 +G23)η23

]
,

and the equation of M is written as

η21 + η22 +
[
η23 −

1

2
(K20 +G23)

]2
= 1
4
(K20 −G23)2. (6.5.7)

See Figure 6.4.

η1

η3

Figure 6.4: Section on the plane η1η3 of the algebraicmanifoldM of theG-type for
K0 = 1 and various values of G3 = 0.8,0.6,0.4,0.2,0. The manifold has rotational
symmetry about the axis η3.

The Poisson structure is

{ηr , ηs} = ∂ηr
∂ξi

∂ηs
∂ξh

εihk
∂C(η)

∂ηt

∂ηt
ξk

= det
(
∂η

∂ξ

)
εrst

∂C(η)

∂ηt
,
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and since

det

(
∂ξ

∂η

)
= det

⎛⎜⎜⎜⎜⎜⎝
1

η3
0 −η1

η23
0 2 0

2
η1
η23

0 4η3 − 2η
2
1

η33

⎞⎟⎟⎟⎟⎟⎠ = 8,
we find

{ηr , ηs} = 1
8
εrst

∂C(η)

∂ηt
.

We write the transformed Poisson structure explicitly as

{η1, η2} = −2η3
[
η23 −

1

2
(K20 +G23)

]
,

{η3, η2} = η1, (6.5.8)

{η3, η1} = −η2.
Owing to the rotational symmetry about the ξ1 and the η3 axis, respec-

tively, we can immediately find action-angle coordinates in the two cases.
In fact, from (6.5.5) and (6.5.8) we deduce{

ξ1, − 1
2
arctan

ξ2
ξ3

}
= 1,

{
η3, − arctan η1

η2

}
= 1. (6.5.9)

In a slightly different form this result was already known. With regard to
the first bracket, we write

arctan
S2
S1
− arctan D2

D1
= arctan S2D1 − S1D2

S1D1 + S2D2
= arctan 2(G1R2 −G2R1)

G21 +G22 − R21 − R22
= − arctan ξ2

ξ3
;

we recall that ξ1 = R3 = S3−D3.With regard to the second bracket, we find

tanω = R3G

−G2R1 +G1R2
= −η1

η2
; (6.5.10)

we recall that η3 = G. We have thus found again the third pair of action-
angle variables for the Pauli and Delaunay parameters respectively.
Let us now consider the G-type parametrization, but what we will say

can be, with minor changes, repeated for the R-type. If the full Hamiltonian
is axisymmetric, the perturbing term turns out to be defined on the twofold

reduced Kepler manifoldM, once averaged with respect to the unperturbed
evolution. Therefore, the Hamiltonian can be written as

K = K0 +
r∑
i=1
εiKi(K0, G3, η1, η2, η3)+O(εr+1) = K(r) +O(εr+1)
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with {Ki,K0} = 0 = {Ki,G3}. Disregarding the term O(εr+1), we are left
with the truncated Hamiltonian K(r), which forms a system of three first
integrals in involution with K0 and G3: the system is Liouville integrable.
Considering K0 and G3 as parameters, the equation K(r) = constant de-

scribes a family of 2-dimensional surfaces which intersect the reduced Ke-

pler manifold M in a family of curves. A point on one of these intersec-
tion curves represents an elliptic orbit rotating around the x3 axis with

frequency ∂K(r)

∂G3
, while the motion on the intersection curve describes the

change in the eccentricity and the inclination of the elliptic orbit. The inter-
esting fact is that this description is global, and may reveal some features
hidden in a local description, as is usual in standard perturbation theory.
Anyway, the local description can be easily recovered. To this end, re-

membering (6.5.7) and (6.5.10), we put

η1 = − sinω
√
1

4
(K20 −G23)2 −

[
G2 − 1

2
(K20 +G23)

]2
,

η2 = cosω
√
1

4
(K20 −G23)2 −

[
G2 − 1

2
(K20 +G23)

]2
,

η3 = G,

and substitute in K(r). We recall that {G,ω} = 1.
Analogously,

ξ1 = R3,
ξ2 = − sin2ϕ

√
(K20 +G23 − R23)2 − 4K20G23,

ξ3 = cos2ϕ
√
(K20 +G23 − R23)2 − 4K20G23,

with {R3,ϕ} = 1.



CHAPTER 7

The KEPLER Program

What is to be done?

— Lenin

In this chapter we will describe how to use the KEPLER program, trying to be
self-contained and without referring excessively to the underlying mathe-
matical structure. The command statements are gathered in four windows,
which one selects in the pop-up menu in the left-top corner. See the Ap-
pendix A for snapshots of the MATLAB programs in the CD.

7.1 First Window: Single Orbit Analysis

The window of the program is formed by seven panels, to be read like a
printed page: from left to right and from top to bottom.

7.1.1 Perturbation Hamiltonian

In the left column of this panel, the user can choose the perturbation Hamil-
tonian Hp as a linear combination of five single Hamiltonians, i.e.,

Hp = ε1H1 + ε2H2 + ε3H3 + ε4H4 + ε5H5,

B. Cordani, Geography of Order and Chaos in Mechanics: Investigations of Quasi-Integrable

siness Media New York 2013 2_7, © Springer Science+Bu
Systems with Analytical, Numerical, and Graphical Tools, Progress in Mathematical Physics 64,
DOI 10.1007/978-0-8176-8370-
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the coefficients ε being the perturbative parameters to be fixed in the right
column. Every Hamiltonianmust be homogeneous in the components of the
position andmomentum vectors, with each homogeneity degree completely
arbitrary. When the integration process starts, the perturbative parameters
are suitably rescaled by the program, taking into account initial conditions
and homogeneity degrees: see (6.2.8) and (6.2.9). If these rescaled, i.e., ef-
fective, values exceed a threshold, the user is warned that the hypothesis of
small perturbation is no longer satisfied. In this case, proceed with caution,
looking at the integration errors calculated in the fifth panel and comparing
with the result of the non-perturbative method.
Below we will describe the perturbation Hamiltonians that come with

KEPLER. To add some other perturbation Hamiltonians, proceed as follows.

(i) Write a file containing the functionwhich describes the perturbation; it
is convenient to take one of the files in the directory H_perturbation
as a template.

(ii) Open Kepler.fig in Guide, right-click on the first pop-up menu of
the panel, and left-click on Property inspector.

(iii) Click on “String”, then add your file name.

(iv) Click on “UserData”, then add the total degree of the Hamiltonian,
which is defined as: position degree minus half of the momentum
degree.

(v) Repeat for the other four pop-up menus in the panel.

Zeeman Effect

The perturbing Hamiltonian

Hp = q1p2 − q2p1

is that of the Zeeman effect: a weak constant magnetic field directed along
the third axis and acting on the hydrogen atom. Alternatively, it describes
the inertial forces, i.e., centrifugal and Coriolis, in a rotating reference sys-
tem. This perturbation is Liouville integrable: the elliptic orbit rotates uni-
formly around the vertical axis and all the Kepler elements stay constant
except the longitude of the ascending node, which evolves uniformly with
time. This Hamiltonian, along with the other integrable ones, can be used
to test the precision of the program.
The file Zeeman3.m contains this Hamiltonian, while the similar files

Zeeman1.m and Zeeman2.m are relative to magnetic fields directed along
the first and the second axis, respectively.
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Stark Effect

The perturbing Hamiltonian
Hp = q3

is that of the Stark effect, a constant electric field directed along the third
axis and acting on the hydrogen atom. The perturbation is Liouville in-
tegrable: besides the Hamiltonian and the third component of the angular
momentum, also E3− 12ε(q21+q22) is a first integral, as onemay check by click-
ing on the “User Functions” button and choosing the file 1st_Integral_
Stark3.m. We recall that E3 is the third component of the eccentricity vec-
tor.
With initial conditions belonging to a vertical plane, the axial symme-

try ensures that the dynamical evolution belongs to this plane. As the
reader can verify, the orbit fills the area enclosed by the arcs of two confocal
parabolas.
The perturbing Hamiltonian is in the file Stark3.m. The similar files

Stark1.m and Stark2.m are relative to electric fields directed along the
first and the second axis, respectively.

Quadratic Zeeman Effect

The perturbing Hamiltonian

Hp = q21 + q22
describes the second order effect of a constantmagnetic field directed along
the third axis, when the observer is rotating about the same axis. See Cush-
man (1991) or Cordani (2003, page 311). The perturbation is not integrable.
This Hamiltonian is in the file QZ3.m, while the similar files QZ1.m and

QZ2.m are relative to magnetic fields directed along the first and the second
axis, respectively.

Euler Problem

The perturbing Hamiltonian

Hp = − 1√
q21 + q22 + (q3 − d)2

(see the file Euler3.m) is that of the Euler problem: a secondary small mass
ε is placed at the point P = (0,0, d). At the prompt, the user can choose
the numerical value of the distance d. The perturbation is Liouville inte-
grable and, besides the Hamiltonian and the third component of angular
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momentum, also

E3 − 1
d
G2 + ε q3 − d√

q21 + q22 + (q3 − d)2
is a first integral: check with the file 1st_Integral_Euler3.m. The nu-
merical output of KEPLER may be compared with that of EULER, a program
written in the MAPLE language, which integrates the problem analytically

with 0 < ε ≤ 1. See the appendix at the end of Chapter 2 and Cordani (2003,
page 179). Remark that the fixed point P is a nonregularized singularity and
that the regularization method fails when the moving point approaches P
too closely. In this case, try with the standard method.
With initial conditions belonging to a vertical plane, the axial symme-

try ensures that the dynamical evolution lies in this plane. As the reader
can verify, the orbit fills the area enclosed by the arcs of an ellipse and a
hyperbola which are confocal.
The file Euler1.m contains analogously the Hamiltonian of a point of

mass ε placed in P = (d,0,0). Along with the Hamiltonians in Zeeman3.m

and p_2.m, one can form the Hamiltonian of the restricted circular three-
body problem

H = 1
2
p2 − 1

q
−ε 1√

(q1 − d)2 + q22 + q23

+
√
1+ ε
d3

(q1p2 − q2p1)− ε√
d(1+ ε)p2.

Remark that only when the moving point stays much closer to the primary
in the origin than to the fixed point P are we in a perturbative situation. As
an example, put d = 5.2 with Euler1.m, then 3body_SJM.mat allows us to
load the numerical values of the Sun-Jupiter-Mercury system.
The Lagrange points L4 and L5 are placed in

q1 = d

2
, q2 = ±

√
3

2
d,

p1 = ±
√
3

2

√
1+ ε
d

, p2 = −1
2

√
1+ ε
d

+ ε√
d(1+ ε) .

Oscillator

The perturbing Hamiltonian

Hp = 1
2
(k1q

2
1 + k2q22 + k3q23)

is that of an anisotropic harmonic oscillator. In the file Oscillator.m the
user may change the anisotropy coefficients. The problem is Liouville inte-
grable.
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p_2

This Hamiltonian, when combined with Euler1.m and Zeeman3.m, provides
the perturbation Hamiltonian of the restricted circular three-body problem.

Satellite

The perturbing Hamiltonian

Hp =
q23 − 1

2(q
2
1 + q22)

(q21 + q22 + q23)5/2

is that of an artificial satellite about a nonspherical primary; only the sec-
ond harmonic is considered, but obviously other terms may be added. Only
the Hamiltonian and the third component of angular momentum are first
integrals, and the problem is not Liouville integrable. See Cushman (1983),
Deprit (1981), and Coffey, Deprit & Deprit (1994). The origin is a non-
regularized singularity.

Hill Potential

The Hill potential
Hp = −2q21 + q22 + q23

takes into account the perturbation of the Sun on the Moon, and it must
be combined with the Zeeman effect (rotating reference system) to describe
the motion of the Moon around the Earth. Only Hamiltonian and third com-
ponent of angular momentum are first integrals, and the problem is not
Liouville integrable. See Kummer (1983) and Cordani (2003, page 302).

Inverse Quadratic and Cubic Potentials

The potentials

Hp = 1

q2
and Hp = 1

q3

are clearly Liouville integrable. The origin is a non-regularized singularity.

Anisotropic

The perturbing Hamiltonian
Hp = p23

gives what is called the anisotropic Kepler problem.
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7.1.2 Initial Conditions

In the second panel, “Initial conditions”, the user can fix the initial con-
ditions, choosing between position and velocity or Keplerian parameters.
Once one of the two subpanels ”Position and velocity” or “Kepler parame-
ters” has been changed, the other must be updated before continuing, by
clicking on the corresponding button “Update”. Notice that Longitude of the
ascending node, Argument of pericenter, Inclination, and True anomaly are
expressed in degrees.
If the “Update” button in the seventh panel is enabled, the third but-

ton, “Update Pauli v. and Energy”, allows one to synchronize the values of

the two normalized Pauli vectors
−→
S ,
−→
D and of the energy with the initial

conditions. We recall that giving normalized Pauli vectors and energy is

equivalent to fixing
−→
G and

−→
R, and hence to fixing an elliptic orbit.

7.1.3 ODE Solver

In the third panel, “ODE solver”, the user can choose the method for the
numerical integration with relative options. Several methods are supplied
in the pop-up menu; see the last section of Chapter 4. Some methods inte-
grate with an adaptive, i.e., variable step, but the output can be obtained at
regularly spaced points by fixing the “Output Step” value; carrying out the
frequency analysis of the seventh panel of the window does require indeed
a fixed stepsize. The Output Step and the Stepsize for the fixed-step inte-
grators are defined as the ratio: total numbers of cycles over total number
of steps. The adaptive step, though useful, is not strictly necessary if a reg-
ularization method of the fifth panel is used, as is strongly recommended.
In the “Options” subpanel the user can choose the relative and absolute

tolerance in the integration process, and the initial, maximal, and output
step for ode113, ode45, Dop853, and Odex. These methods are adaptive;
thus the integration step is chosen automatically by the algorithm and is
not affected by the user-selected value of the output step. All the other
methods instead have a fixed integration step, which can be chosen by fixing
the corresponding “StepSize” value.
The field “Project on the constraints every n revolutions” allows one

to restore the constraints (6.1.7) for the perturbative method and the con-
straint (6.1.23), or equivalently (6.1.26), for the non-perturbative method. If
the field is left blank, the projection on the constraints is never performed.

7.1.4 Revolution Number

The fourth panel allows one to choose the total number of revolutions in
the first subpanel, and the revolution interval to display in the second sub-
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panel: this is useful in the case of long integration, when plotting the whole
solution would generate an overloaded figure. The third subpanel is useful
in the Long Frequency Analysis (LFA), or in general for very long orbits, to
avoid MATLAB going out of memory. Be aware that clearing the memory

entails a total loss of information. The LFA procedure is explained below, in
Subsection 7.5.2.

7.1.5 Regularization Method

The fifth panel, “Regularization method”, is the core of the program. The
button “Integrate” performs the integration of the chosen Hamiltonian with
the parameter values fixed in the previous panels. The user can choose
between two methods: Perturbative and Non-perturbative, as explained in
Section 6.4. Once the procedure is complete, several buttons are enabled,
allowing the display of the dynamical evolution of some variables.

Space and Momentum Trajectories

By clicking on this button, two figures are displayed relative to the trajec-
tories of the momentum and position vectors. If “Output Step” in the “ODE
solver” panel is large, the trajectories may appear broken. Choose a smaller
output step to fix the problem.

Kepler Parameters vs False Time

The dynamical evolution of Kepler parameters is displayed. We recall that
the false time is basically (i.e., to the vanishing of the perturbation) the
eccentric anomaly.

Kepler Parameters vs Time

As above, but with the true time as the independent variable.

Time vs False Time

The relation between true time and false time is shown, which gives an idea
of the regularity of the problem: the more linear the relation, the more
regular the problem. For example, compare the same perturbation but with
low and high eccentricity.

Integration Errors

Using the Perturbative method four figures are displayed. The first two
show how much the constraints (6.1.7) are violated, the third shows the
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error affecting the numerical value of the rescaled Hamiltonian (6.2.3), and
the fourth shows the error affecting the numerical value of the true Hamil-
tonian. We remark that possible peaks in the fourth figure (always in cor-
respondence of close encounters with the singularity in the origin) are not
worrisome, since they are not caused by the integration procedure (as they
would be, instead, for the third figure) and do not propagate.
When using the Non-perturbative method three figures are displayed.

The first shows how much the constraint 6.1.23 is violated; the other two
are similar to the third and fourth figures of the Perturbative method.

False Time vs Step Number

If the field “Output Step” of the ODE Solver panel is left blank and an adap-
tive integration method is used, the figure allows one to see how the reg-
ularization process is effective. Comparing with the corresponding “Time
vs Step Number” in the next panel “Standard method”, the user can ap-
preciate the advantage of the regularization methods, in particular when
dealing with high eccentricity orbits: besides the almost linearity of the re-
lation, the total step number, and consequently the total integration time,
are decisively smaller. The almost linearity shows that the adaptive step
mechanism does not need to be invoked in practice during the numerical
integration, since the regularization process alone is able to dilate the inde-
pendent variable in the neighborhood of the central singularity.

User Functions

This button allows one to display the evolution of a dynamical variable
chosen by the user. Selecting one of the files in the folder UserFunctions
\UserActionAngle, the result is stored inmemory and added to the further
computations. To clear the memory, click on “Clear Append” in the third
or fourth window.

7.1.6 Standard Method

The sixth panel, “Standard method”, directly integrates the six Hamilton
equations, without regularization and taking the time as an independent
variable. This is useful, in particular, for

(i) highly non-perturbative cases, when the perturbation parameter is
very large;

(ii) collision orbits, arising with nonregularizable singularities;

(iii) unbounded cases, when the actual motion is no longer a slightly de-
formed ellipse and the regularization method fails.
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If the perturbation does not depend on the momenta, the user can also
choose an ODE solver of the second order, clicking on the corresponding
radiobutton.

7.1.7 Action-Angle Variables and Time-Frequency Analysis

on KAM Tori

Lastly, the seventh panel allows us to analyze how the fundamental frequen-
cies of a quasi-integrable motion change, thus detecting the transition from
order to chaos. The two 3-dimensional Pauli vectors, defined in (6.1.32) on
page 192, are the basic tool. They span two spheres and, once energy value
is fixed, they are in a 1-1 correspondence with elliptic orbits, so that a sta-
tionary point for these two vectors (say, a relative equilibrium point) locates
a periodic elliptic orbit in the physical space. Remark that, since a periodic
orbit of the perturbed Kepler problem is in general a slightly deformed el-
lipse, it is described by a periodic motion of the Pauli vectors, covering a
closed curve with the same frequency of the physical motion. The “mean
diameter” of the closed curve is generally very small and gives an idea of
how much the physical trajectory differs from an ellipse. We will still call
this small deformed curve the “relative equilibrium point”.
Five types of action-angle variables can be calculated and plotted.

(i) The classical Delaunay variables L,G,G3, l,ω,Ω are traditionally con-
sidered the action-angle variables par excellence of the Kepler prob-
lem. However, because of the complete total degeneration of the prob-
lem, in general they are not slightly deformed by a generic small per-
turbation but completely distorted, and the description by tori is lost.
As shown in Section 6.5, the Delaunay and Pauli action-angle variables
are well suited for perturbations with axial symmetry about the third
axis, and thus with the relative equilibrium point placed at the two
North poles. In the case of axial symmetry, when G3 is a first integral,
the system has two degrees of freedom, and the tori can be visualized
by clicking on the button “Delaunay Action-Angle”.

(ii) The rotated Delaunay action-angle variables are defined as in the pre-
vious item, but after a rotation moving the relative equilibrium point
to the North poles of the two spheres spanned by the Pauli vectors.
When the perturbation does not possess any symmetry, we can reduce
it anyway to the symmetric case by means of this suitable rotation,
i.e., a symplectomorphism, in the S2×S2 space. The rotated Delaunay
action-angle variables are therefore used for any perturbation, when
the relative equilibrium point is placed in generic position.

(iii) The Pauli action-angle variables are defined as

L, S3,D3, lP ,ϕS = arctan S2
S1
,ϕD = arctan D2

D1
.
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The first three variables are the actions, and the other three are the
corresponding angles. The angle lP , canonically conjugate to L, dif-
fers from the mean anomaly l by a quantity commuting with L. The
precise definition requires an excursion into the relation between the
Lie group SO(2,4) and its double covering SU(2,2), as explained in Sub-
section 6.1.4.

(iv) The rotated Pauli action-angle variables are defined as in the previ-
ous item, but after a rotation moving the relative equilibrium point
to the North poles of the two spheres spanned by the Pauli vectors.
The rotated Pauli action-angle variables are therefore used for any
perturbation, when the relative equilibrium point is placed in generic
position.

(v) Action-angle variables defined by the user. Selecting one of the files in
the folder UserFunctions\UserActionAngle, the result is stored in
memory and added to the further computations. To clear thememory,
click on "Clear Append" in the third or fourth window.

Let us examine how to use the seventh panel. When the integration is com-
pleted, some new buttons in the panel are enabled. By clicking on “Pauli
vectors”, not only is the dynamical evolution of these vectors plotted but, if
not already present, another subpanel, entitled “Normalized Pauli vectors
of equilibrium point”, appears. It shows the mean value s1, s2, s3, d1, d2, d3
of the 3 + 3 components of the vectors, along with the energy value: the
idea is that the Pauli vectors rotate approximately about their equilibrium
point. By clicking on “Update”, the initial conditions are synchronized with
those corresponding to the mean values of the Pauli vectors and to the en-
ergy just now computed. If “Update” is disabled, select “no” in the subpanel
“Disable update?”, then redo “Pauli vectors”. Redoing the integration, the
Pauli vectors should now rotate closer to their equilibrium point so that,
by repeating the procedure three or four times, one should reach the very
neighborhood of a physical periodic orbit.
To check how close one is to the physical periodic orbit, inspect the

plot of space and momentum trajectories or, more effectively, look at the
motion of the rotated Pauli vectors. We recall that for periodic orbits the,
practically unattainable, optimum would be to get Pauli vectors describing
two very small closed curves. To this end, it is convenient to tune the
initial conditions delicately, then update the Pauli vectors and successively
proceed to a new integration. Note, however, that it is not mandatory to
find exactly the periodic orbit; but, for what follows, only the two centers
of the motion of the Pauli vectors are relevant.
Once these two centers are found, it is convenient to freeze the values

of the Pauli vectors by selecting “yes” in the “Disable update?” subpanel.
Then, you may explore the neighborhood of the physical periodic orbit by
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slightly changing the initial conditions, integrating again and clicking on
“Rotated Pauli vectors”: the projections of the rotated Pauli vectors on the
plane 1-2 will cover the neighborhood of the origin.
At this point, the user can analyze the spectrum of the three action

variables with three methods. As the frequency unit we take the frequency
of a circular unperturbed Keplerian orbit with unitary radius.

(i) The Fast Fourier Transform (FFT) gives an overall image of the whole
spectrum but with the shortcoming that for a better resolution one
should excessively lengthen the integration interval, thus calculating
in this manner only an averaged frequency.

(ii) The FrequencyModified Fourier Transform (FMFT) allows amuchmore
precise calculation of the frequencies in a narrow interval chosen by
the user, who has at his disposal three methods of increasing preci-
sion: see Subsection 5.3.2. The output frequencies are ordered start-
ing from the largest amplitude and are displayed in decreasing order.
The user can choose the number of frequencies to be displayed and
their range. Note that if one fixes a large number of frequencies and

a narrow range, the time needed for the computation may grow exces-

sively, which sometimes requires you to kill the FMFT process directly

from the operating system.

(iii) The Wavelet Transform (WT) allows the display of the time evolution
of the instantaneous frequency; see Subsection 5.3.3. The user can
choose the range of the frequency and the variance: in order to opti-
mize the look of the graphical output, it is advisable to take the value
of the variance about 30 times that of the frequency.

If all the calculated frequencies turn out to be a linear combination with
integer coefficients of three fundamental frequencies, the spectrum is said
to be regular and the motion is ordered, taking place on an invariant KAM
torus.
Selecting the corresponding radiobutton, the FFT, FMFT, or WT can be

applied to the four systems of action-angle variables of Delaunay and Pauli.
Moreover, the user may write and analyze custom functions.

7.2 Second Window: “Global Analysis: Poincaré

Section”

To open this window select “Global analysis: Poincaré section” in the popup
menu in the left-top corner. Some nonrelevant panels are closed and a new
specific panel appears.
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The second window is devoted to the study of the global structure of the
whole phase space, or of a portion of it, for systems with two degrees of
freedom: planar systems or with axial symmetry. In the latter case the third
component G3 of the angular momentum is a first integral, whose value is
fixed by the user. Once the user has chosen “2D system” or “3D with axial
symmetry”, two tools are offered.

(i) The classical Poincaré map in the plane G-ω with fixed energy chosen
by the user, which can fix, moreover, the initial value of the argument
of the pericenter ω, the min and max values of the angular momen-
tum G, and the number of sections (= step number + 1). If the check
box “Append” is selected, the sections under computation are kept
in memory and automatically added to the subsequent output. The
button “Clear” empties the memory.

(ii) The frequency analysis computed along a section G3 = constant with
fixed energy. The first output figure displays the values ofωL andωG

as a function of G. The second output figure displays the ratio
∣∣∣ωL

ωG

∣∣∣:
this is useful in detecting the resonances, which reveal themselves as
plateaus in correspondence of rational values. The range of displayed
values ofωL andωG can be chosen in the two subpanels “L-frequency”
and “G-frequency”. Choosing the null value for the step number, the
max G field is disabled; checking “Frequency map (or single orbit)”
and unchecking “Poincarè map”, then clicking on “Calculate and plot”
forces a jump to the first window (with initial values corresponding to
the selected values of min G, G3, Total energy, and ω, while Ω and f
are null by default) to compute the relative orbit. Afterwards one can
perform the numerical frequency or wavelet analysis and compare it
with the results of the Poincaré map.

7.3 Third Window: “Global Analysis: Rotated

Delaunay”

To open this window select “Global analysis: Rotated Delaunay” in the
popup menu in the left-top corner. Some nonrelevant panels are closed,
and a new specific panel appears.
The third window is devoted to the study of the global structure of the

whole phase space, or of a portion of it, for generic systems with three
degrees of freedom. The surface of constant total energy in the action space
is parametrized by G and G3 and covered with a rectangular grid. The
button “Calculate . . .” performs the numerical analysis of the frequencies
on the points of the grid, then the result is displayed by clicking on the four
buttons in the subpanel “. . . and plot”. In particular, for the button “FMI”
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(the meaning of the other three is evident) we recall the definition: once an
orbit is computed, perform several numerical frequency analyses, say N,
each time shifting the window of some Δt0, and take the largest ωmax and
smallest ωmin of the N output values. For a suitable Δt0 (but the choice is
not very critical) and N large enough, the differenceωmax−ωmin will result
proportional to the amplitude of the frequency modulation, which in turn
indicates the presence of a resonance. N may be chosen in the subpanel
“Step number for FMI”. Let us define the Frequency Modulation Indicator
(FMI) as

σFMI
def= log

(
ωmax −ωmin
ωmax +ωmin

)
.

Clearly, σFMI = −∞ for orbits of KAM type starting sufficiently far away
from a resonance. In the graphical representation we fix a cut-off, i.e., we
raise all the lower values to, for example, σFMI = −12. Instead, inside a
resonance or in its very neighborhood, σFMI will generally be larger, growing
with the amplitude of the frequency modulation. However, although the
FMI is very effective in showing where the resonances are, it requires much
longer integration times to give reliable informations of what happens inside

the resonances. To this end, it may be more advantageous to compute the
frequency values along suited sections: see below.
The frequencies are progressively numbered as 1,2,3. If the 3×3 matrix

on the subpanel “Unimodular transformation” is the identity, they coincide
with ωL,ωG,ωG3 , respectively. But the action-angle variables are defined
up to a unimodular transformation, represented by a matrix with integer

entries and unit determinant. Inside a resonance, characterized by
−→
k · −→ω =

0, one can thus define three new angles such that one of them coincides

with the resonant angle
−→
k · −→ϕ. We recall that a resonant angle performs

librations, i.e., oscillations, instead of rotations. The dynamical evolution
of the three new action-angle variables can be viewed by clicking on “User
Function” of the panel “Regularization method” of the first window, then
selecting a file of the type AADelaunayprime_x.m or AAPauliprime_x.m
in the UserActionAngle directory. Notice that in the thin stochastic layer
surrounding the separatrices between libration and circulation zones, the
point “hesitates,” choosing randomly between the two behaviors: this is the
source of the chaos.
For a more precise local analysis, the user can compute the frequencies

along a section G = constant or G3 = constant: to this end, select the null
value for the total step number of G or G3, respectively, then click on “Cal-
culate . . .”. The final output can be viewed with the buttons of the subpanel
“. . . and plot”. Selecting, instead, the null value for the total step number
of G and G3, one jumps to the first window, to start the computation of the
relative orbit.
In order to obtain good results, the computations invoked in the third



224 The KEPLER Program

and fourth windows require very long times, which can be shortened if the
computer is a multicore machine. KEPLER, along with the other four sup-
plied programs, is able to parallelize the computations in the following way.
If you possess an n-core machine, in an empty folder Kepler create a sub-
folder Master and n − 1 subfolders Slave1, Slave2, . . . , then copy the
whole program KEPLER identically in every folder. Start MATLAB then KE-
PLER from the Master folder, set the parameters, and click on “File/Save
setting now”.Without closing, start a new instance of MATLAB, then KEPLER
from a folder SlaveX: you will notice that all the buttons of the compu-
tations are disabled while the new button “Start Slave” appears. Click on
this button and KEPLER will wait for the start of the master. Redo for every
slave, and lastly go back to the master and click on “Calculate . . .”. The
whole work will be automatically shared among then cores. The final result
is displayed by the master.
We remark that once the single figures of the final result have been dis-

played (having checked “Show also single figures” in the menu “Window”),
by clicking inside a picture visualizes the G and G3 values of the selected
point; then “Calculate …” allows one to jump to the first window and calcu-
late the relative orbit. This ability is also preserved for the pictures saved
in the MATLAB format *.fig.

7.4 Fourth Window: “Global Analysis: Rotated

Pauli”

To open this window select “Global analysis: Rotated Pauli” in the popup
menu in the left-top corner. Some nonrelevant panels will be closed, and a
new specific panel will appear.
The fourth window is devoted to the study of the global structure of

the whole phase space, or of a portion of it, for generic systems with three
degrees of freedom but with the actions S and D replacing G and G3. The
use of the fourth window is very similar to that of the third one.

7.5 Menu

7.5.1 File

Clicking on “Load new initial data” the user may choose a file *.mat in the
folder Init and load some predefined perturbations and initial conditions.
With “Save current initial data” the current data can be saved in the same
format and folder.
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If “Save on exit” is checked (default), the current perturbation, initial
conditions, and other settings are saved into the Setting.mat file when
KEPLER is closed and automatically reloaded when it is opened.
“Save setting now” allows one to save in Setting.mat without closing

KEPLER: it forces all the further instances of KEPLER to share the same
setting in the parallel processes with a multicore machine.

7.5.2 Window

Clicking on “Close all figures” causes all the open pictures to be simultane-
ously closed.
If “Show also single figures” is checked (not default) and a displayed

figure is a collective one, the single figures are also displayed separately.
If “Show waitbars” is checked (default), a bar shows what percentage of

the integration procedure is complete, as the calculation proceeds. How-
ever, showing the bar slows down the calculation significantly (10 ÷ 20%).
In some cases, the program must do other work after the completion of the
integration process and the box is not closed immediately: be patient.
If “Show slow waitbars” is checked (not default), the waitbar is not up-

dated continuously but only after the number of revolutions selected in the
subpanel “Clear memory and in case update LFA” of the third panel is com-
pleted. The slow waitbar avoids the slowdown of the usual waitbar and is
suitable for very long calculations.
If “Show warning boxes” is checked (default), in some circumstances the

user is warned, for example, that the perturbation is too large. Unchecking
the item also entails that the question box on the distance from the origin
of the secondary mass for the Euler problem will no longer pop up.
If “Watch falling into singularities” is checked (default), the program

monitors continuously if the two constraints (6.1.7) are respected; if they
are not, it aborts the procedure. Surely this happens when the moving point
is falling into nonregularized singularities, avoiding a MATLAB crash, but,
sometimes, it also happens inopportunely (sorry!). If you are sure that the
problem is regular, uncheck the item.
If “Watch output reliability” is checked (not default), the program mon-

itors continuously if the Hamiltonian is conserved, if it is not, it aborts the
procedure. Typically, this last happens for the unbounded motion, a sit-
uation that the Regularization method is unable to treat. Unfortunately,
when the item is checked the integration time increases dramatically, so it
is preferable to leave it unchecked and to control the integration errors; try
also with the Standard method.
If “Performance registry” is checked (default), some information regard-

ing the integration procedure will be recorded in the file Perform.txt.
If “Longtime Frequency Analysis (LFA) for Delaunay” is checked (not de-
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fault), KEPLER analyzes how the frequencies of a very long orbit, typically
of millions of revolutions, change in time in order to eventually detect the
Arnold diffusion. The frequencies areωL,ωG,ωG3 , but the user can choose
a linear combination of them in the “Unimodular transformation” subpanel.
The total number of revolutions is divided into successive blocks, each one
containing the number of revolutions indicated in the subpanel “Clearmem-
ory and in case update LFA”. For every block, a numerical analysis of the
frequencies is performed on a number of revolutions indicated in the sec-
ond subpanel “Longtime Frequency Analysis (LFA)” of the panel “Revolution
number”. Then the relative figure (displayed automatically at the beginning
of the process) is updated by adding the new value. Clearly, the revolu-
tion number in the second subpanel cannot exceed the number in the third
subpanel of the “Revolution number” panel.
For “Longtime Frequency Analysis (LFA) for Pauli”, things run similarly.

7.5.3 Figure

This menu contains some graphical utilities. See also the respective *.m
files in the folder “Util” for more information.

No degree symbol

If this item is not checked (default), the small circle of the degree symbol
is displayed in the figures. Sometimes this gives errors in the axis labels
after using the zoom. Check the item if you intend to use the zoom or,
alternatively, enter the code and comment the rows Degree_x, Degree_y,

Degree_z.

Large marker size

If this item is checked (not default) the markers (in Poincaré section and
in the visualization of the tori for systems with two degrees of freedom)
appear larger than the default. This is useful, for example, when the user
wants to see only a few points.

Save figure as. . .

This is used to save an open figure in the formats EPS, PDF, PNG, JPEG.

Mouse track

Once it is active, the mouse position is constantly tracked and printed on
the figure title. Right-clicking deactivates the function.

Scroll plot

A scroll subwindow is added to an open picture.
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Magnifying glass

A magnification box is created under the mouse position when clicking.
Press +/− while the mouse button is pressed to increase/decrease magni-
fication and > / < to increase/decrease box size.

7.5.4 Normal Form

In the next chapter some examples of perturbations of the Kepler problem
will be considered. In particular, the normal form of the Stark–Quadratic–
Zeeman problem, the circular restricted three-body and themotion about an
oblate satellite will be calculated. Here the reader can generate the relative
graphic output; see the next chapter for more information.

7.5.5 Help

The menu contains the brief introduction to KEPLER “Help for the impa-
tient”, along with commands to enter and quit context-help mode, some
information on KEPLER, and various acknowledgments.



CHAPTER 8

Some Perturbed Keplerian Systems

First hang–gliding rule:
to take off, run against the wind.

We now possess all the necessary tools to study some interesting Keple-
rian perturbed systems: the Stark–Quadratic–Zeeman problem, the circu-
lar restricted three-body problem, and the motion of a satellite around an
oblate primary. In all three cases we will first find the normal integrable
form, comparing the relative motion with the “true” one obtained by nu-
merical integration. Several concrete examples will be given, showing in
general a very good agreement between the analytical and numerical re-
sults. What the normal integrable form is not able to show is the presence
of resonances, which are just the indicators of nonintegrability. Then, with
the Frequency Modulation Indicator (FMI) we will analyze how order, chaos,
and resonances are localized in action space, thus completing the study of
the three quasi-integrable systems.

8.1 The Stark–Quadratic–Zeeman (SQZ) Problem

Let us consider the classical (not quantum) model of the hydrogen atom
in a constant electric and magnetic field. We assume that the two fields
are sufficiently weak so that we can apply the perturbative methods. The
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spherical symmetry of the unperturbed problem allows us to take a mag-
netic field directed along the x3 axis and an electric field lying in the plane
x1x3. The Hamiltonian is

HSQZ = 1
2

[
(p1 −Bq2)2 + (p2 +Bq1)2 + p23

]
− 1
q
+ −→E · −→q

= 1
2
p2 − 1

q
+B(q1p2 − q2p1)+ 1

2
B2(q21 + q22)+E1q1 +E3q3, (8.1.1)

where B is the half of the value of the magnetic field and −→E = (E1 E2 E3)
is the electric field. We suppose B and

∥∥∥ −→E∥∥∥ small, but not so small that B 2
is negligible; the adjective “quadratic” refers to this fact.

8.1.1 First Order Normal Form

It is convenient to put

α1 = −3
2
E1, α3 = −3

2
E3, β = B with α1, α3, β = O(ε).

Following the method of Section 6.2, let us switch to the equivalent Hamil-
tonian:

K = K0 +K1 +K2,

K0 = 1
2
x(y2 + 1),

K1 = −2
3
α1xx1 − 2

3
α3xx3 + βx(x1y2 − x2y1),

K2 = 1
2
β2x(x21 + x22).

We first average the K1 Hamiltonian, for a moment neglecting K2, which is
of the second order. Recalling the moment map (6.1.5) we get

xx1 = (K0 + v4)(u1 − R1) = −K0R1 +u1v4 + n.a.t.,
xx3 = (K0 + v4)(u3 − R3) = −K0R3 +u3v4 + n.a.t.,

where “n.a.t.” (null averaged terms) denote terms whose dynamical mean
value is null: indeed, because of (6.1.14), the odd monomials in u and v are
annihilated by the averaging process. The terms containing only K0, Rk,Gh
are already constant. Taking into account the unperturbed solution (6.1.14),
let us consider the quadratic monomials:

uαuβ = UαUβ cos2s + VαVβ sin2s + (UαVβ +UβVα) sin s cos s,
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whose mean value is clearly

uαuβ = 1
2
(UαUβ + VαVβ);

analogously,

vαvβ = 1
2
(UαUβ + VαVβ),

so that, from the expression of the first integral Gαβ = 1
K0
(vαuβ − vβuα),

it results that

uαuβ = vαvβ = 1
2

∑
γ

GαγGβγ.

A similar procedure yields

uαvβ = −1
2
K0Gαβ.

The averaged value of the first order perturbed Hamiltonian is

K1 = K0(α1R1 +α3R3 + βG3)
= K0 [α1S1 + (α3 + β)S3 −α1D1 − (α3 − β)D3] ,

which is a linear expression in
−→
S and

−→
D

K1 =
−→
WS ·

−→
S + −→

WD ·
−→
D,

−→
WS = K0(α1 0 α3 + β),
−→
WD = K0(−α1 0 −α3 + β).

The motion, induced by the first order perturbed Hamiltonian on the re-

duced phase space M � S2× S2 spanned by −→S and −→D, is a uniform rotation
with angular velocity

−→
WS and

−→
WD:

d
−→
S

dt
= {K1,

−→
S } = −→

WS ×
−→
S ,

d
−→
D

dt
= {K1,

−→
D} = −→

WD ×
−→
D.

Four equilibrium positions are present, in correspondence with the four
intersection couples of the two rotation axes with the respective sphere.
They are all elliptic, but two angular velocities relative to two equilibrium
positions have the same sign, while those relative to the other two have
opposite sign. This implies that, when the further perturbative terms are
considered, the first two equilibrium positions will be surely stable, while
the other two may become unstable.
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Remark 8.1 The linear dependency on
−→
S and

−→
D of K1 is a peculiar charac-

teristic of the SQZ problem, while in general K1 and, consequently, the two

angular velocities
−→
WS and

−→
WD are nontrivial functions of the Pauli vectors.

8.1.2 Second Order Nonintegrable Normal Form

Let χ = O(ε) be an unknown function generating a canonical transformation
through exponentiation and consider the perturbative development

expLχK =
(
1+Lχ + 1

2
L2χ +O(ε3)

)
(K0 +K1 +K2)

= K0 +
(
K1 −LK0χ

)+ (K2 +LχK1 + 1
2
L2χK0

)
+O(ε3).

Choosing a generating function χ which satisfies the homological equation

LK0χ = K1 −K1,

we get

expLχK = K0 +K1 +
[
K2 + 1

2
{χ,K1 +K1}

]
+O(ε3).

The homological equation is easily solved; we obtain

χ =2
3
K0(α1v1 +α3v3)+

(
2

3
α1R1 + 2

3
α3R3 + βG3

)
u4

− 1
3
(α1u1 +α3u3)u4

K1 +K1 =− 2
3
α1K0u1 + 5

3
α1K0R1 − 2

3
α1u1v4 + 2

3
α1R1v4 − 2

3
α3K0u3

+ 5
3
α3K0R3 − 2

3
α3u3v4 + 2

3
α3R3v4 + 2βK0G3 + βG3v4.

A lengthy but straightforward calculation gives

{χ,K1 +K1} = 4
9
α21

[
−K0

(
2R21 +

1

2
R22 +

1

2
R23

)]
+ β2

[
−K0G23

]
− 4
9
α21

[
K0

(
2R21 +

1

2
R22 +

1

2
R23

)]
− 4
9
α23

[
K30 +K0(G21 +G22 + R23)

]
+ 4
9
α23

[
−K0

(
1

2
R21 +

1

2
R22 + 2R23

)]
− 4
9
α21

[
K30 +K0(G22 +G23 + R21)

]
+ 2
9
α23

[
−K0

(
1

2
G21 +

1

2
G22 + R23

)]
− 5
9
α23

[
1

2
K0(G

2
1 +G22 − R21 − R22)

]
− 5
9
α21

[
1

2
K0(G

2
2 +G23 − R22 − R23)

]
+ 2
9
α21

[
−K0

(
1

2
G22 +

1

2
G23 + R21

)]
+ 4
9
α23

[
−2K0R23

]
+ 4
9
α21

[
−2K0R21

]
− 4
9
α23

[
K0

(
1

2
R21 +

1

2
R22 + 2R23

)]
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− 4
9
α1α3 [K0(−G1G3 + R1R3)]+ 4

9
α1α3 [−2K0R1R3]

+ 2
3
α1β

[
K0

(
1

2
G1R3 − 2R1G3

)]
− 4
9
α1α3 [K0(−G1G3 + R1R3)]

+ 4
9
α1α3

[
−3
2
K0R1R3

]
+ 2
3
α3β

[
−3
2
K0G3R3

]
− 4
9
α1α3

[
3

2
K0R1R3

]
+ 4
9
α1α3 [−2K0R1R3]+ 2

3
α1β

[
−3
2
K0R1G3

]
− 4
9
α1α3

[
3

2
K0R1R3

]
+ 4
9
α1α3 [2K0R1R3]+ 2

3
α3β

[
−3
2
K0G3R3

]
− 2
3
α1β

[
2K0R1G3 − 1

2
K0G1R3

]
+ 2
3
α1β

[
−3
2
K0R1G3

]
− 2
3
α3β

[
3

2
K0R3G3

]
+ 2
3
α3β

[
−3
2
K0R3G3

]
− 5
9
α1α3

[
1

2
K0(−G1G3 + R1R3)

]
+ 2
9
α1α3

[
K0

(
1

2
G1G3 − R1R3

)]
− 2
3
α1β

[
1

2
K0(G1R3 − R1G3)

]
− 5
9
α1α3

[
1

2
K0(−G1G3 + R1R3)

]
+ 2
9
α1α3

[
K0

(
1

2
G1G3 − R1R3

)]
+ n.a.t.

Averaging over the unperturbed dynamical evolution we get

2

K0

[
K2 + 1

2
{χ,K1 +K1}

]
=(

1

2
β2 − 1

6
α23

)
G21 +

(
1

2
β2 − 5

6
α21 −

5

6
α23

)
G22 −

5

6
α21G

2
3

+
(
5

2
β2 − 10

3
α21 −

1

6
α23

)
R21 +

(
5

2
β2 − 1

6
α21 −

1

6
α23

)
R22

−
(
1

6
α21 +

10

3
α23

)
R3 + 5

3
α1α3G1G3 − 43

9
α1α3R1R3

+ 1
3
α1βG1R3 − 13

3
α1βG3R1 − 4α3βG3R3.

Instead of the old Hamiltonian K, we are thus led to consider the new
averaged Hamiltonian,

K(
−→
G,
−→
R) = K0 +K1 +

[
K2 + 1

2
{χ,K1 +K1}

]
(8.1.2)

(terms of third order have been neglected), whose 4-dimensional phase

space M � S2 × S2 is spanned by −→G, −→R or, equivalently, by −→S , −→D. Notice
that the first term K0 is an additive first integral which does not generate
any dynamics and may therefore be ignored. This new Hamiltonian system
admits only one first integral, the HamiltonianK itself, and is not integrable:
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recall that the nonintegrability of the averaged Hamiltonian results from the
complete total degeneration of the unperturbed Kepler problem.
The Hamiltonian K itself has the structure of a quasi-integrable system,

the first order K1 playing the role of integrable part, perturbed by the term
[. . .]which is of second order. Moreover, the unperturbedmotion, due toK1
alone, is known: it is a uniform rotation on the two 2-spheres ofM with an-

gular velocity
−→
WS and

−→
WD, respectively. Hence, the natural next step would

consist of two further distinct averaging processes over the perturbing term
[. . .], as already described in Section 6.3.
In effect, this is done in Von Milczewski & Uzer (1997a), but the out-

come is disappointing. Clearly, the procedure is fully legitimate and coher-
ent with the dictates of the perturbation theory, but the averaged system
turns out to be very poor and unable to reproduce the key features of the
true dynamics. Indeed, after the double averaging process, the perturbing
second order part [. . .] depends on the same terms appearing in K1, and
the resulting motion is not qualitatively different from that generated by
the first order Hamiltonian. In some sense, the double averaging smooths
out the perturbation excessively and “kills” the distinctive features of the
problem. This statement will be more clear below, after the introduction of
an alternative method which, in contrast, captures very well how the true
motion evolves, obviously up to the fast oscillations smoothed out by the
averaging processes.
This alternative method is a straightforward generalization of the tech-

nique in Cushman & Sadovskií (2000), regarding the crossed SQZ, i.e., with
orthogonal electric and magnetic fields. It basically consists in performing
only one averaging, so that the Hamiltonian will still depend on one angle,
yet will nevertheless be integrable. Invoking geometrical considerations, the
averaged evolution of the relevant pair of action-angle variables is therefore
found.

8.1.3 Second Order Integrable Normal Form

The starting point of the alternative method is a double rotation, one for
each of the two 2-spheres of M, in order to align the two angular velocities−→
WS and

−→
WD with the third axis. Clearly, rotations preserve the symplectic

structure of a sphere.

Remark 8.2 After the rotations, the Hamiltonian K1 is linear in S3 and D3,
thus diagonal quadratic in the Poincaré variables χ1, η1, χ2, η2. The two ro-
tations are sufficient to get the result claimed in Theorem 2.33, but this fact
is peculiar to the SQZ problem, as noticed in Remark 8.1. Therefore the
linearity implies that the projections of the two Pauli vectors on the plane
1-2 performs two (slightly deformed) circles. For a generic perturbation, the
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first order term also contains products of the type χη, and the projections
of the Pauli vectors will cover the neighborhood of the origin. Try adding
for example a potential 1/q2 to the SQZ Hamiltonian.

The unperturbed Hamiltonian K1 becomes axially symmetric so that, after a
further averaging of the perturbing term [. . .] with respect to the rotations
about the third axis, the whole Hamiltonian also acquires the rotational
symmetry. The third component G′3 of the rotated angular momentum be-
comes a first integral which, with the total Hamiltonian, makes the system
completely integrable. This averaged system is defined onM symplectically
reduced under the action of the rotation group generated by G′3. The point
is that we are able to perform this reduction explicitly, as already explained
in Section 6.5. Let us view the details.
Let ϑS,ϑD be the angles, respectively, between

−→
WS,

−→
WD and the third

axis. Then

sinϑS = α1√
α21 + (α3 + β)2

, cosϑS = α3 + β√
α21 + (α3 + β)2

,

sinϑD = − α1√
α21 + (α3 − β)2

, cosϑD = − α3 − β√
α21 + (α3 − β)2

.

Define

c+ = 1
2
(cosϑS + cosϑD), c− = 1

2
(cosϑS − cosϑD),

s+ = 1
2
(sinϑS + sinϑD), s− = 1

2
(sinϑS − sinϑD).

Denote for a moment with a prime the rotated variables; we get

G1 = c+G′1 + c−R′1 + s+G′3 + s−R′3,
G2 = G′2,
G3 = −s+G′1 − s−R′1 + c+G′3 + c−R′3,
R1 = c−G′1 + c+R′1 + s−G′3 + s+R′3,
R2 = R′2,
R3 = −s−G′1 − s+R′1 + c−G′3 + c+R′3.

Put these expressions into the perturbative term. Reordering and dropping

the primes, we find that the perturbative term is transformed as

2

K0

[
K2 + 1

2
{χ,K1 +K1}

]
=⇒

P1G
2
1 + P2G22 + P3R21 + P4R22 + P5R23 + P6G1R1 + P7G3R3
+ n.a.t.+ const.,
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where “n.a.t.” denotes terms which will be annihilated in the subsequent
averaging.
We have defined

P1 =
(
1

2
β2 − 1

6
α23

)
c2+ −

5

6
α21s

2
+ +

(
5

2
β2 − 10

3
α21 −

1

6
α23

)
c2−

−
(
1

6
α21 +

10

3
α23

)
s2− −

5

3
α1α3c+s+ + 43

9
α1α3c−s−

− 1
3
α1βc+s− + 13

3
α1βc−s+ − 4α3βs+s−,

P2 = 1
2
β2 − 5

6
α21 −

5

6
α23,

P3 =
(
1

2
β2 − 1

6
α23

)
c2− −

5

6
α21s

2
− +

(
5

2
β2 − 10

3
α21 −

1

6
α23

)
c2+

−
(
1

6
α21 +

10

3
α23

)
s2+ −

5

3
α1α3c−s− + 43

9
α1α3c+s+

− 1
3
α1βc−s+ + 13

3
α1βc+s− − 4α3βs+s−,

P4 = 5
2
β2 − 1

6
α21 −

1

6
α23,

P5 =
(
1

2
β2 − 1

6
α23

)
s2− −

5

6
α21c

2
− +

(
5

2
β2 − 10

3
α21 −

1

6
α23

)
s2+

−
(
1

6
α21 +

10

3
α23

)
c2+ +

5

3
α1α3c−s− − 43

9
α1α3c+s+

+ 1
3
α1βc+s− − 13

3
α1βc−s+ − 4α3βc+s+,

P6 =
(
β2 − 1

3
α23

)
c+c− − 5

3
α21s+s− +

(
5β2 − 20

3
α21 −

1

3
α23

)
c+c−

−
(
1

3
α21 +

20

3
α23

)
s+s− − 5

3
α1α3(c+s− + c−s+)

+ 43
9
α1α3(c−s+ + c+s−)− 14

3
α1β(c+s+ + c−s−)− 4α3β(s2+ + s2−),

P7 =
(
β2 − 1

3
α23

)
s+s− − 5

3
α21c+c− +

(
5β2 − 20

3
α21 −

1

3
α23

)
s+s−

−
(
1

3
α21 +

20

3
α23

)
c+c− + 5

3
α1α3(c+s− + c−s+)

− 43
9
α1α3(c−s+ + c+s−)− 4α1β(c+s+ + c−s−)− 4α3β(c2+ + c2−).

Averaging under the action of G3 we get

2

K0

[
K2 + 1

2
{χ,K1 +K1}

]
=⇒

1

2
(P1 + P2)(G21 +G22)+

1

2
(P3 + P4)(R21 + R22)+ P5R23 −

1

2
(P6 − 2P7)G3R3.
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The averaged Hamiltonian (8.1.2) is defined on M � S2 × S2, i.e., on the
space of the orbits of the Kepler problem with a fixed energy. After the
averaging under the G3-action, the Hamiltonian becomes a function on the

symplectic reductionM ofM with respect to the axial symmetry. The double

reduced Hamiltonian will be named K and, bearing Section 6.5 in mind, we
can express it as a function of the variables ξ1, ξ2, ξ3 or, alternatively, of
η1, η2, η3. We recall that

R3 = ξ1, G21 +G22 =
1

2
(K20 −G23 − ξ21 + ξ3), R21 +R22 =

1

2
(K20 −G23 − ξ21 − ξ3),

from which we obtain the final result:

K(ξ) = aξ3 + bξ21 + cξ1, where (8.1.3)

a = K0
8
(P1 + P2 − P3 − P4),

b = −K0
8
(P1 + P2 + P3 + P4 − 4P5),

c = K0
2

[√
α21 + (α3 + β)2 −

√
α21 + (α3 − β)2 −

1

2
(P6 − 2P7)G3

]
.

Considering K0 and G3 as parameters, the equation K(ξ) = constant (R-
type parametrization) describes a family of 2-dimensional surfaces which

intersect the reduced Kepler manifold M in a family of curves. We recall

that M is represented by Equation (6.5.4) on page 205. A point on one of
these intersection curves represents an elliptic orbit rotating around the
physical x3 axis, while the motion on the intersection curve describes vari-
ations of the parameters of the elliptic orbit. The interesting fact is that
this description is global, and may reveal some features which, as is usual
in the standard perturbation theory, are hidden in a local description.
Arguing in the same manner, but with the η-variables and the G-type

parametrization, we get

K(η) = 2aη23 + (a+ b)
η21
η23
+ c η1

η3
.

Lastly, recall that, from (6.5.9), we can deduce the evolution of the two
pairs of action-angle variables, R3,ϕR (R-type) and G,ω (G-type), respec-
tively, from these intersection curves. Notice that the other two action vari-
ables L and G3 stay unchanged in the approximate dynamics generated by

the double averaged Hamiltonian K.

Detecting the qualitative nature of the surfaces K(ξ) = constant from
(8.1.3) is immediate: the ξ2 coordinate is absent, the surfaces are cylin-
drical, and their intersections with the plane ξ1ξ3 are parabolas. What is
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muchmore annoying is finding the numerical value of the parametersa,b, c
“by hand,” because of their complicated expressions. The program KEPLER
therefore provides a tool which displays pictures of the surfaces and their
intersections with the reduced Kepler manifold, along with the dynamics of
the action-angle variables.
To this end, open KEPLER, then click on “Stark Quadratic Zeeman” in the

menu “Normal form”. A window opens where the user can fix the value of
G3, Zeeman3 = B, Stark1 = E1 and Stark3 = E3. Clicking on “<< Update”,
the numerical values of the two normalized Pauli vectors −→s = −→

WS/WS and−→
d = −→

WD/WD appear: they provide a good approximation of the relative
equilibrium point. Clicking repeatedly on “Alternate signs” allows one to
cycle over the four different equilibrium positions. Clicking on the just
enabled six buttons displays respectively: two 3-dimensional pictures of

M intersected by the surfaces K(ξ) = constant or K(η) = constant, then a
vertical section of these two pictures along with a family of intersecting sur-
faces, and lastly the dynamics of the corresponding action-angle variables.
Moreover, the window offers some other fields to fill in order to make the
graphical appearance better: try it and experiment.
Let us now study some particular cases and compare the approximate

dynamics generated by the normal form with the true motion given by nu-
merical integration. We will also show how to use the tools offered by KE-
PLER: the Poincaré section, the numerical frequency analysis and the Fre-
quency Modulation Indicator (FMI).

8.1.4 The Quadratic Zeeman (QZ) Problem

Taking a null electric field in (8.1.1), we get the quadratic Zeeman (QZ) prob-
lem. Often the linear term in B is neglected because it does not affect the
significant part of the dynamical evolution. The total Hamiltonian is re-
duced to

HQZ = 1
2
p2 − 1

q
+ 1
2
B2(q21 + q22).

Notice that, from the physical point of view, the linear term can be elimi-
nated by also passing to a reference system uniformly rotating around the
third axis. The two angles ϑS and ϑD are null, and the system has axial
symmetry.
The QZ problem was well studied in the 1980s, becoming very popular

for its several attractive features. It is not an abstract model but a real phys-
ical system that can and has been investigated in the laboratory; moreover,
the axial symmetry implies the conservation of G3, thus the reduction in
practice to two degrees of freedom and the possibility to use the Poincaré
section. Lastly, it exhibits a typical mixing of order and chaos, making it a
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paradigmatic example of a quasi-integrable Hamiltonian system. The quan-
tum features are also very interesting, but wewill not touch the non-classical
aspects. See Friedrich & Wintgen (1989), for a dated review, and Cushman
(1991).
Up to inessential additive constants, the double averaged integrable nor-

mal form (8.1.3) becomes simply

K(ξ) = −1
4
K0β

2(2ξ3 + 3ξ21),

showing that the intersection parabolas with the ξ1ξ3 plane have a fixed
shape, independent of the strength of the magnetic field. Despite the re-
markable simplification in the Hamiltonian expression, we see that the QZ
problem exhibits the essential features of the full problem.
In Figure 8.1 we consider1 the case G3 = 0.2, where G3 is normalized:

recall that 0 ≤ G3 ≤ K0. On the top, the intersection between the reduced
Kepler manifold M in the R-case and various levels of K(ξ) is shown, while
on the bottom the analytical result (left) is compared with the numerical
one (right): clearly, the averaged normal form reproduces the real behavior

of the system very well. We recall that M is rotationally symmetric around
the ξ1 axis, the action value R3 is given by ξ1, and the canonically conjugate
angle is given by the projection on the plane ξ2ξ3. Figure 8.2 differs from the
previous only in the choice G3 = 0.8: again, no relevant difference between
the analytical and numerical calculations is noticeable.
In Figures 8.3 and 8.4 the same analysis is pursued in the G-case. Now,

M is rotationally symmetric around the η3 axis, the action value is given by
η3 = G and the canonically conjugate angle, i.e., the argument of pericenter
ω, is given by the projection on the plane η1η2. The result of the averaged
normal form (bottom-left) is compared with the Poincaré section of the true
system (bottom-right), where we have chosen B2 = 0.04: in spite of the non
smallness of the perturbation, the two results agree very well.
Figures 8.1–8.4 are representative of the two typical topologies of the QZ

problem. We will consider the G-case, but a similar analysis can be carried
out in the R-case. When G3 lies below a critical value, the argument of peri-
centerω can librate or circulate depending on the initial conditions, and the
transition between the two regimes is marked by a hyperbolic equilibrium

point onM. Besides a hyperbolic point at the North pole and an elliptic one
at the South pole, two other elliptic equilibrium points exist in symmetric
position, which coalesce with the hyperbolic point when G3 tends to the

critical value. When G3 grows and crosses the critical value, M shrinks and
is reduced to a point for G3 = 1, so that ω can only circulate. Equating
the curvature at the North pole of M with that of the level surface of the

1In all the following examples we assume Total Energy = −0.5.
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R

φR (deg)

Figure 8.1: On the top, the twofold reduced Kepler manifold M (R-case) for G3 =
0.2 and its intersection with various levels of the averaged Hamiltonian of the QZ
problem; notice the hyperbolic point in the central picture. On the bottom, the
averaged result (left) is compared with the numerical output of the true system
(right).

R

φR (deg)

Figure 8.2: As in Figure 8.1 but with G3 = 0.8.
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G

ω (deg)

Figure 8.3: On the top, the twofold reduced Kepler manifold M (G-case) for G3 =
0.2 and its intersection with various levels of the averaged Hamiltonian of the QZ
problem. Notice the hyperbolic point in the central picture. On the bottom, the
averaged result (left) is compared with the Poincaré section of the true system
(right) with B2 = 0.04.

G

ω (deg)

Figure 8.4: As in Figure 8.3 but with G3 = 0.8.
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Hamiltonian passing through the same point, one finds the critical value
Gcrit3 = 1/√5 = 0.4472 . . ..
The averaged Hamiltonian gives reliable results only when the perturba-

tion is sufficiently small. Figure 5.4 on page 160 shows the Poincaré section
for the QZ problem with G3 = 0.2, thus as in Figure 8.3, but with B2 = 0.4.
A comparison between the two pictures shows, as expected, three main
differences: a shift of the elliptic points, the arising of chaos around the hy-
perbolic point and the separatrices, and the presence of resonance islands.
Clearly, by thickening the computed orbits one could also enlighten the
chaos which develops around hyperbolic points and separatrices created
by the resonances.
However, chaos and resonance islands are present for every non-null

value of the perturbation. What happens is that the width of a resonance
increases with the square root of the perturbation and is exponentially
small with the order |k| of the resonance k ·ω = 0 itself (we recall that
|k| =∑i |ki|). It follows that the Poincaré section is able to display only the
low order resonances, provided the perturbation is not too small. More-
over, even if a resonance and its surrounding chaos could in principle be
visualized, one has no guiding rule to sort out the right initial conditions,
while thickening the computed orbits quickly yields an overloaded and un-
readable drawing.
Much better results are obtained with the FMI method. In Figure 8.5

(top) the values σFMI of the FMI for the QZ problem are reported. Here the
value B2 = 0.4 has been chosen, as in Figure 5.4. The computation has been
performed on a fixed energy surface and on a grid of 400×400 points. Dark
blue corresponds to lower values of σFMI, thus to KAM tori, while light blue,
yellow, and red correspond to higher values, thus to resonances or chaos.
We have chosen ω = π/2 in order to also display the libration part, as
suggested by Figure 5.4. For the symmetry of the picture only the part with
G3 > 0 is shown.
Notice how the resonance lines are locally almost parallel and without

reciprocal crossing. It follows that there is no Arnold web. This is due to the
fact that the problem has in effect two degrees of freedom only, so that the
resonances in the 2-dimensional frequency space are straight lines through
the origin with rational slope.
Figure 8.5 (top) appears clearly divided into two zones by a line sur-

rounded by chaos, which starts from the origin and ends at the point G3 =
Gcrit3 ; the libration zone lies on the right and the circulation zone on the
left. The two zones are characterized by the fact that, moving on a vertical
straight line, one encounters the same resonance twice in the libration and
only once in the circulation zone, as one can ascertain by comparing Figures
8.3 and 8.4 and bearing in mind that we have chosen ω = π/2. Using the
Frequency Modified Fourier Transform, one determines the ratio between
the frequencies of the mean anomaly and the argument of pericenter; in
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G

G3

Figure 8.5: FMI for the QZ problem with B2 = 0.4 and ω = π/2. Dark blue
correspond to lower values of σFMI, thus to KAM tori, while light blue, yellow, and
red correspond to higher values, thus to resonances or chaos. There is no Arnold
web, because the problem has in effect two degrees of freedom only, so that the
resonances in the 2-dimensional frequency space are straight lines through the
origin with rational slope.

Figure 8.5 (top) we have labeled the resonances in the libration zone from
1:2 to 1:6. Notice that the resonances 1:2, 1:4, 1:6, have an enlarged upper
branch, because, referring to the pendulum model, they are crossed in the
elliptic equilibrium point, where their width is maximum. Instead, the reso-
nances 1:3, 1:5, are crossed in the hyperbolic equilibrium point where their
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width is minimum. In Figure 8.5 (bottom-left and bottom-right) further de-
tails of the large upper branch relative to the resonance 1:4 are magnified,
showing the auto-similarity of the structure, with resonances inside reso-
nances inside resonances, and so on. Here, the display is up to resonances
of the third/fourth level but, by increasing the resolution and lengthening
the integration time, in principle one can reach all the subsequent levels.
Producing these pictures is somewhat time expensive, but they allow us,

for example, to pick out the initial conditions to get the Poincarè section of
very inner resonances, or to check with a wavelet analysis that every sub-
sequent level of resonance adds a new modulating frequency. The reader
is therefore invited to also explore the phase space with Poincaré section,
tori visualization (“Delaunay Action-Angle” in the first KEPLER window), fre-
quency analysis, and wavelets, comparing the results. To this end, start
KEPLER, then Figure 8.5 in the CD; clicking on a picture will automatically
select the coordinates G and G3 of the point, copying them automatically
on the relative field of the second and third windows.

G
0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34

12

11

10

9

8
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3

2

3 : 5

7 : 12

4 : 7
5 : 9

9 : 16

Figure 8.6: FMI for a vertical section along G3 = 0.01 of Figure 8.5. Notice how
resonances scarcely visible in Figure 8.5 are now well englightened.

A less expensive procedure, which applies however only after one has
obtained a comprehensive view, is the computation of the FMI along a hor-
izontal or vertical straight line, as shown in Figure 8.6.
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8.1.5 The Parallel (SQZp) Problem

Taking the electric field directed as the magnetic field in (8.1.1), we get the
Stark–Quadratic–Zeeman-parallel (SQZp) problem:

HSQZp = 1
2
p2 − 1

q
+B(q1p2 − q2p1)+ 1

2
B2(q21 + q22)+E3q3.

Clearly, the two angles ϑS and ϑD are still null and the system has axial
symmetry.
The problem has been investigated in Deprit, Lanchares, Iñarrea, Salas &

Sierra (1996), Salas, Deprit, Ferrer, Lanchares & Palacián (1998), and Salas &
Lanchares (1998) but with an analytical method. The main difference with
respect to the previous QZ case is that the c coefficient in (8.1.3) is now
present, so the intersection parabolas with the plane ξ1ξ3 are shifted along
the ξ1 axis. In Figure 8.7 the G-case is shown.

G

ω (deg)

Figure 8.7: As in Figure 8.3, with G3 = 0.2 and B2 = 0.04, but with a non null
electric field E3 = 0.01.

In Figure 8.8 (left) we show the distribution of the FMI in the presence of
an electric field, with E = 0.06 and B2 = 0.04. The computation has been
performed for the full range, i.e., −1 ≤ G3 ≤ 1, for the asymmetry of the
problem. The rather small values of the perturbation show the power of
the FMI method. The resonances are clearly recognized, and magnifying
further details, as in Figure 8.8 (right), allows us to penetrate the structure
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very deeply. We stress that all the resonances enlightened in these pictures
would appear extremely thin in a Poincarè section, and in practice they can
be found only if one knows very well where to seek and at the cost of great
magnification.

G

G3

Figure 8.8: FMI in presence of parallel electric field, with E = 0.06 and B2 = 0.04.
Left: the whole system. Right: a detail. Compare with the Poincaré section in
Figure 8.7, where no resonance is visible.

Also in this case the system is in practice 2-dimensional and the reso-
nance lines tend to be parallel, without reciprocal crossing. It follows that
there is no Arnold web.

8.1.6 The Crossed (SQZc) Problem

When electric and magnetic fields are orthogonal to one another, the Stark–

Quadratic–Zeeman system is said to be crossed. The two vectors
−→
WS and−→

WD belong, as in the general case, to the plane of the two physical fields,
but in this case they also have the same norm and form the same angle,
with opposite sign, with respect to the magnetic field: ϑS = −ϑD. The first
order averaged Hamiltonian is reduced to a term proportional to the rotated
G3, so that the rotated Delaunay action-angle variables are recommended.
The corresponding frequencies will be denoted ωL,ωG,ωG3 , respectively.
Because α3, s+, c− are null, the coefficient c also vanishes, and the Hamilto-
nian (8.1.3) is similar to that of the QZ problem: the intersection parabolas
on the plane ξ1ξ3 are symmetric with respect to the ξ3 axis, whereas the
concavity value −b/a is no longer constant.
The SQZc problem was well studied in the 1990s, and even confining

ourselves to the classical (i.e., non-quantum) problem the number of articles
is huge. We quote Von Milczewski & Uzer (1997a), Von Milczewski & Uzer
(1997b), and Cushman & Sadovskií (2000) as a small sample and refer to
the bibliography in these articles. Here we follow closely Cordani (2008).
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R

φR (deg)

Figure 8.9: As in Figure 8.1 (R-case) but with B = 0.02, E1 = 0.004, and E3 = 0.
Notice that now the dynamical variables are rotated. To get the numerical output
of the bottom-right picture when the system has three degrees of freedom and
the Poincaré section cannot be used, see “User Functions” on page 218.

G

ω (deg)

Figure 8.10: As in Figure 8.3 (G-case) but with B = 0.02, E1 = 0.004, and E3 = 0.
Notice that now the dynamical variables are rotated.
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In Figures 8.9 and 8.10 we consider the case B = 0.02, E1 = 0.004, and
E3 = 0, with G3 = 0.2, where it is understood that

−→
R and

−→
G have been ro-

tated, as explained previously. The close resemblance with the correspond-
ing Figures 8.1 and 8.3 of the QZ case shows how the rotation of the two
2-spheres is able to “absorb” the presence of an orthogonal electric field.
The value of the electric and magnetic field has been taken somewhat small,
in order to restrict the amplitude of the fast oscillations in the numerical
output.
In the following numerical example, regarding the FMI distribution, we

choose B = 0.2 and E1 = 0.06. In Figure 8.11 (top) the whole phase space
is displayed, with the value of the total energy fixed to −0.5. Taking into
account that σFMI ≈ −5 is approximately the threshold below which the
corresponding motion is in practice regular, one clearly recognizes three
zones. The right-top corner always corresponds to the relative equilibrium
point (since we are considering rotated variables) and is filled by KAM tori;
the left-top corner displays a very sharply delimited Chirikov zone contain-
ing some small islands of stability; lastly, the central area is occupied by
the Arnold web, and some distorted images of Figure 3.2 appear. Figures
8.11 (middle and bottom) show some details with a better resolution. The
Arnold web is clearly visible, along with the chaotic area at the crossing of
the resonances. These pictures show how more and more resonances are
highlighted by improving the resolution and increasing the integration time.
Notice, in particular, the bottom-right picture which displays a detail inside

a resonance, showing the auto-similarity of the structure with an emerging
Arnold web made up of secondary resonances. Clearly, with an even better
resolution and a longer integration time, one would be able to display the
Arnold web made up of resonances of the third level, and so forth.
The FMI is therefore a very sensitive indicator of the regularity of the or-

bit and very efficient in showing the position of the resonances. In order to
investigate fine details and to get numerical information, it may be conve-
nient to compute the fundamental frequencies along horizontal or vertical
sections. See, for example, Figure 8.12 whereωL only is reported; the other
two frequencies carry basically the same information. The resonances are
clearly recognized in the top picture and exactly confirm the position given
by the computation of σFMI in the previous figures. The middle and bot-
tom pictures display further details, and a secondary resonance is clearly
enlightened.
Applying the frequency analysis to an orbit starting inside a resonance,

one is able to compute numerically the three fundamental frequencies, then
the resonance vector satisfying the relation k ·ω = 0. For example, k =
(0,3,1) for the resonance including the point G = 0.5, G3 = −0.34, and
k = (1,2,−4) for the resonance including G = 0.7, G3 = −0.30, with the
argument of pericenter equal to π/2. In the third window of KEPLER define
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G

G3

Figure 8.11: FMI for the SQZ crossed problem, with B = 0.2 and E1 = 0.06. We
have chosen ω = π/2. Top: the whole phase space. Middle and bottom: details.
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Figure 8.12: Top: frequency ωL calculated along the section G = 0.52 of Figure
8.11; the positions of the resonances agree with those found in Figure 8.11. Mid-
dle: a magnified detail, which shows the secondary resonances. Bottom: a further
magnified detail, displaying a secondary resonance.

the two unimodular transformations

M1 =

⎛⎜⎝1 0 0
0 3 1
0 2 1

⎞⎟⎠ , M2 =

⎛⎜⎝ 1 −1 0
1 2 −4
−1 −1 3

⎞⎟⎠
for the two points, respectively; then, by clicking at the end of the compu-
tation on “User Functions” and choosing AADelaunayprime_2.m, one can
see that the resonance angle librates with a low frequency. Notice that the
second row of M1 and M2 coincides with the resonance vectors k and, con-
sequently, the second of the files AADelaunayprime_x.m has been chosen;
the first and third rows complete the two unimodular matrices.



8.1 The Stark–Quadratic–Zeeman (SQZ) Problem 251

0.3319 0.3319 0.3319 0.3318 0.3318 0.3318 0.3318 0.3318 0.3317 0.3317 0.3317

1009

1009.5

1010

1010.5

1011

1011.5

1012

1012.5

1013

1013.5

G3

Frequencies ×1000 vs G
3

with G = 0.5

Figure 8.13: Frequency ωL, calculated along the section G = 0.50 of Figure 8.11.
Position and frequency range of the stochastic layer surrounding a resonance of
Figure 8.11 are shown.
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Figure 8.14: Resonant angle vs. revolution number for an orbit starting in the
stochastic layer of Figure 8.13. Librations alternate randomly with clockwise and
counterclockwise circulations: this is the source of chaos.

Another interesting detail is found in Figure 8.13, which shows a very
magnified section of the stochastic layer surrounding the (0,3,1) reso-
nance. The dynamical evolution of the resonant angle of an orbit starting
here is displayed in Figure 8.14, where circulating and librating motions
alternate with each other at random. This is the source of chaos.
In Figure 8.15 we show some typical examples of the different orbits
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Figure 8.15: FrequencyωL vs. revolution number for various types of orbits: see
the text.

occurring in quasi-integrable Hamiltonian systems. The values of the fre-
quency ωL are reported for long integration intervals; notice, however, the
different scales.
The top-left picture (2 · 106 revolutions) refers to a KAM orbit, starting

in the very neighborhood of the relative equilibrium point, with rotated and
normalized values G = 0.995 and G3 = 0.990. Notwithstanding the great
magnification, the frequency appears constant.
The top-middle picture (2 · 106 revolutions) refers to a motion starting

in a “dark blue zone” of Figure 8.11 (middle-right). The frequency evolution
shows a slight oscillation but is very regular, denoting a KAM orbit in the
outer neighborhood of a resonance.
The top-right picture (108 revolutions) refers to a regular resonant orbit,

the rotated and normalized values being G = 0.5 and G3 = −0.34. Compare
with Figure 8.11 (middle-right).
In the bottom-left picture (5 · 107 revolutions) the double resonant case

is reported. The starting point is G = 0.6 and G3 = −0.4, and comparing
with the values given by the frequency map (not given here) one sees that
the whole chaotic zone at the crossing of the resonance strips is in fact
explored.
In the bottom-middle picture (108 revolutions) an orbit in the stochastic

layer is plotted, starting from G = 0.5 and G3 = −0.3318. Looking at figure
8.13, one clearly ascertains that the computed evolution stays permanently
within the thin stochastic layer surrounding the resonance, but the most in-
teresting information is the slow and random drift of the whole pattern that
only this orbit exhibits, very likely a manifestation of the Arnold diffusion.
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Figure 8.16: Wavelet transform for the first few revolutions of the six orbits of
Figure 8.15.

Lastly, in the bottom-right picture (107 revolutions) an orbit of Chirikov
type is plotted. Notice the remarkable and random variation of the fre-
quency, indicating that the orbit visits a large zone of the phase space.
Figure 8.16 exhibits the wavelet transform of the six orbits of the previ-

ous figure, in the same order.
Since Figure 8.11 (top) covers the whole phase space and the equilibrium

point we have considered takes up the top-right corner, one may ask: But
what about the other three equilibrium points? In the rotated spheres the
equilibrium point we have considered lies in the North-North poles, then the
remaining three lie in the South-South, North-South, and South-North poles,
respectively. For these two last points the signs of the two frequencies are
different, thus they may be unstable. In fact, it seems impossible to find
a periodic orbit numerically, so their instability is very probable; in Figure
8.11 they are both placed at the vertex G = G3 = 0, which is a singular
point in the Delaunay parametrization, encompassing all collision orbits.
The point in the South-South poles is instead surely stable and takes up
the top-left corner in Figure 8.11 where, however, it appears at first sight
immersed in the chaos of the Chirikov zone. But a much more detailed
numerical analysis shows in effect a very small KAM zone around this point
to which there corresponds a periodic orbit in the physical space; see Figure
8.17. This physical orbit exhibits however two (somewhat surprising) sharp
corners, making it very different from an ellipse; the osculating parameters
undergo a marked variation, so that the corresponding periodic orbit on
S2 × S2 will be very large.
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Figure 8.17: Comparing the two stable periodic orbits (100 revolutions are drawn)
of the Stark–Quadratic–Zeeman–crossed problem. Top: the case of the equilib-
rium point in the North-North poles of the two rotated spheres is reported, i.e.,
the physical orbit (practically an ellipse) on the right and the corresponding very
small periodic trajectory of the Pauli vectors on the left. Middle: one sees what
happens at the other stable equilibrium point in the South-South poles. The phys-
ical trajectory, on the right, displays two surprising corners which make the tra-
jectory, on the left, of the corresponding Pauli vectors very large. Bottom: the FMI
at the South-South poles shows a very small ordered zone, with a sharp transition
to chaos.



8.2 The Non-Planar Circular Restricted Three-Body Problem 255

8.1.7 The Generic (SQZ) Problem

Lastly, we consider the full problem: the magnetic and electric fields are
both present and neither parallel nor orthogonal. The intersection parabo-
las with the ξ1ξ3 plane are generic: their symmetry axis is always vertical
but translated along ξ1, and the concavity can assume positive or negative
values.
In Figures 8.18–8.23 three different cases are considered, which show

that the analytical results (bottom-left subpictures) agreewith the numerical
ones (bottom-right subpictures) very well.
In Figure 8.24 we show how the FMI distribution changes when the angle

between the two fields varies from zero (top-left subpicture) to π (bottom-
right subpicture), with regular step π/8.

8.2 The Non-Planar Circular Restricted Three-Body

(CR3B) Problem

The CR3B problem is a special case of the general three-body problem: the
primary and secondary bodies move in circular orbits about the common
center of mass B according to the laws of the two-body dynamics, while a
third body of negligible mass moves in their gravitational field. Let 1 be the
mass of the primary,m < 1 that of the secondary, and d their distance. In
the plane of the circular orbits, rotating about B with angular speed ω =√
(1+m)/d3, the twomassive bodies aremotionless and are supposed to be
placed on the q1 axis at the points−md/(1+m) andd/(1+m), respectively.
The Hamiltonian describing the dynamics of the third body is given by

H = 1
2
p2 +

√
1+m
d3

(q1p2 − q2p1)− 1
rp
− m
rs
,

where the second term of the right-hand member encompasses centrifugal
and Coriolis inertial forces and rp and rs are the distances of the small body
from primary and secondary mass, respectively.
To reduce the problem to a perturbed Kepler problem, wemust suppose:

i) the distance d is very large with respect to the distance of the small body
from the primary; ii) the mass m << 1. After shifting the primary in the
origin, the Hamiltonian becomes

H = 1
2
p2 − 1

q
+
√
1+m
d3

(q1p2 − q2p1)

− m√
(q1 − d)2 + q22 + q23

− m√
d(1+m)p2.,
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Figure 8.18: Generic SQZ problem (R-case) with B = 0.02, E1 = 0.006, E3 =
0.0001, and G3 = 0.2.
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ω (deg)

Figure 8.19: As in Figure 8.18 but in the G-case.
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Figure 8.20: Generic SQZ problem (R-case) withB = 0.02, E1 = 0.01, E3 = 0.001,
and G3 = 0.2.
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Figure 8.21: As in Figure 8.20 but in the G-case.



258 Some Perturbed Keplerian Systems

R

φR (deg)

Figure 8.22: Generic SQZ problem (R-case) with B = 0.01, E1 = 0.02, E3 =
0.0002, and G3 = 0.2.

G

ω (deg)

Figure 8.23: As in Figure 8.22 but in the G-case.
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Figure 8.24: FMI for the generic SQZ problem, with B = 0.15 and E = 0.045.
The angle between the two fields varies from zero (top-left picture) to π (bottom-
right picture), with regular step π/8. In the first and last pictures the two fields
are parallel and the problem is axisymmetric; thus, the vertical component of the
angular momentum is a first integral and the Arnold web does not appear.

then, a truncated series development of the potential due to the secondary
mass gives

K = K0 +K1 +K2,

K0 = 1
2
x(y2 + 1),

K1 = −m
(
x

d
+ xx1
d2

)
+
√
1+m
d3

x(x1y2 − x2y1)− m√
d(1+m)xy2,

K2 = − m

2d3
x(3x21 − x2).

Proceeding as in the previous section, we find that the two perturbative
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terms, averaged with respect to the unperturbed motion, are

K1
K0

= 3
2

m

d2
R1 +

√
1+m
d3

G3,

K2
K0

= m

2d3

[
3

2
(R22 + R23 −G22 −G23)− 6R21

]
,

up to unessential additive constants ofmotion. The Poisson bracket {χ,K1+
K1} may be neglected because the terms surviving to the two subsequent
averaging procedures (with respect to the unperturbed motion and to ro-
tation about the vertical axis) are very small. Noticing that the first order
term is similar to that of the SQZc problem suggests defining the angle

tanα = 3
2

m

d2

/√
1+m
d3

,

from which

K1 = K0
√
9

4

m2

d4
+ 1+m

d3
(R1 sinα+G3 cosα).

Rotating the variables and dropping the primes, we get

K1 = K0
√
9

4

m2

d4
+ 1+m

d3
G3

K2 = K0 3m
4d3

[G21 sin
2α−G22 −G23(4sin2α+ cos2α)

− R21(sin2α+ 4cos2α)+ R22 + R23 cos2α
− (2G1R3 − 6G3R1) sinα cosα].

Because
3m

4d3
<<

√
9

4

m2

d4
+ 1+m

d3
,

we can take K1 as an unperturbed integrable Hamiltonian and K2 as a small
perturbation. Averaging with respect to the rotations about the vertical axis
generated by K1 and arranging the terms, we get the final result:

K(ξ) = 1
2
cos2α(ξ3 + 4ξ21).

The Hamiltonian differs from that of the QZ problem only for the concavity
value, while the multiplicative factor simply changes the time scale. The
critical value is easily calculated, giving Gcrit3 = √3/5 = 0.775 . . . .
The dynamics generated by the normal form reproduces the true one

very well, as the reader himself can check with the program KEPLER. To this
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G

G3

Figure 8.25: FMI for the CR3B problem with m = 0.05, d = 3 and Total Energy
= −0.5. The small values of G3 have not been considered, because in this case the
point may sometimes escape to infinity.

end, choose “Circular restricted 3-body” in the menu “Normal form”, pick
outmassm and distance d, and get the numerical values of the perturbative
parameters to insert in the “Perturbation Hamiltonian” panel, along with the

approximate values of the two normalized Pauli vectors −→s = −→
WS/WS and−→

d = −→
WD/WD at the equilibrium point.
Figure 8.25 shows the FMI for the CR3B problem with m = 0.05, d = 3
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Figure 8.26: Left: action-angle (normal form) for the satellite problem. Right:
action-angle (Poincaré section). The oblateness of the primary is 0.05.

and Total Energy = −0.5. The line from the origin to the point G = 1, G3 =
Gcrit3 , which divides the libration from the rotation zone, is clearly visible.
Notice that the “ghost undulations” in the top picture do not denote a real
phenomenon. They are clearly recognizable because of their “artificial” reg-
ularity and because they vary when one increases the integration time, fi-
nally disappearing for very long integration time.

8.3 Satellite about an Oblate Primary

For a satellite close to its primary, the principal perturbation arises from
the nonsphericity of the planet. We want to study what is called the main

problem, i.e., we will take only the second zonal harmonic into account; in
particular the problem will be axially symmetric around the polar axis.
The Hamiltonian is

H = H0 + εHp, with H0 = 1
2
p2 − 1

q
and Hp = 1

q3
P2(cosϑ),

where P2(x) = 3
2x
2 − 1

2 is the second Legendre polynomial and the pertur-
bative parameter ε takes the oblateness of the primary into account. The
angle ϑ is the colatitude.
Because of the third power singularity in Hp the problem is not reg-

ularizable in the standard manner, and this is basically the source of its
difficulties. It was not untill the work of Brouwer (1959) that the second
order normal form was calculated. Later Deprit (1981), with the method of
the elimination of the parallax, radically unraveled the problem. His idea
is to factorize the normalizing canonical transformation into the product
of two simpler transformations: the first eliminates the anomaly on the
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plane of the orbit, the latter completes the procedure averaging over the
mean anomaly. The normal form of Brouwer is thus recovered, and it turns
out that finding the two transformations is strikingly simpler than directly
finding the whole one. Moreover, the method can be implemented in a
computer program and the average of the perturbative terms can be calcu-
lated to higher orders (however, here we will treat only the first two terms);
see Deprit (1981) and Coffey et al. (1994). We do not enter the somewhat
technical details of the procedure but pass directly to the final result. Up to
constant multiplicative factors, the second order normal form in the G-case
is

Hp(η1, η3) = H1 + εH2,
with (G3 is a first integral and G = η3, with G and G3 normalized to L)

H1 = 1

η33

(
1

2
− 3
2

G23
η23

)
,
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(
1− 2G

2
3

η23
− 7G

4
3

η43

)

− 3
16

1

η73

[(
1− 15G

2
3

η23

)(
1− G

2
3

η23

)
(1− η23)− 2

(
1− 15G

2
3
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.

If we consider only the first order term of the averaged perturbation, we
find

ω̇ = ε∂H1
∂η3

= ε 3
2η43

(
5
G23
η23
− 1

)
. (8.3.1)

All the points belonging to the intersection between M and the plane

η3 =
√
5G3 are degenerate critical points. Since the North pole of M of

the G-type has coordinate η3 = 1 for every value of G3, the intersection is
nonempty for G3 ≤ 1√

5
. The inclination icrit = arccos 1√5 is called critical :

the pericenter of the orbits with i < icrit circulates in one sense, those with
i > icrit in the other. As G3 increases toward

1√
5
, the critical circle collapses

into the North pole of M. This very crude representation is broken up by
also taking the second order term H2 into account; the continuous critical
circle now disappears, leaving two hyperbolic and two elliptic points only,
provided it is not too close to the North pole, i.e., G3 <<

1√
5
. Obviously, to

these four critical points one must add the always-present critical points at
the poles. For G3 >>

1√
5
only these last two critical points are present.

In Figure 8.26 the evolution of G and ω is calculated with the normal
form (left) and compared with the true one of the Poincaré section (right),
with G3 = 0.4 and ε = 0.05. The two pictures result somewhat different,
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G

G3

Figure 8.27: Top: FMI for the satellite problem. Bottom-left: frequency map.
Bottom-center: FMI forG3 = 0.34. Bottom-right: FMI forG3 = 0.7. The oblateness
of the primary is 0.05 and Total Energy = −0.5.

though qualitatively the correspondence is passable: in both cases a strip
appears, centered about the critical inclination and containing two elliptic
and two hyperbolic points. Probably, the discrepancy is due to the neglected
higher order perturbative terms, which thus play a significant role.
Figure 8.27 (top) shows the general FMI distribution for G3 = 0.4. Notice

in particular the strip of the critical inclination which appears with the ex-
pected slope G/G3 =

√
5, as suggested by (8.3.1). Figure 8.27 (bottom-left)

confirms that the frequency of the pericenter motion changes sign when
crossing the critical inclination. The other two pictures show the FMI along
the vertical sections G3 = 0.34 and G3 = 0.7, respectively, revealing some
resonances which surely would escape with a Poincaré section analysis.



CHAPTER 9

The Multi-Body Gravitational Problem

Gravity explains the motions of the planets,
but it cannot explain who set the planets in motion.

God governs all things and knows all that is or can be done.

— I. Newton

God? I have no need for that hypothesis.

— P.S. de Laplace

Deducing the motion of bodies interacting gravitationally is probably the
most important mechanical problem but also the most difficult. The three-
body problem is not integrable, even if the masses are very small but of
comparable size, and this fact prevents in general the use of perturbative
methods.
In this chapter we will study some important exceptions: the planar

three-body problem in its two limit cases, lunar and planetary, which admits
a global treatment, and the classical 3-dimensional planetary problem, with
one body much more massive with respect to the others.
The reader will find all the software relative to this chapter in the pro-

gram LAPLACE, described in the third section. The program compares nor-
mal form and true motion, performs numerical frequency analysis, and
finds the phase space geography of the resonances with the aid of the FMI
tool.

B. Cordani, Geography of Order and Chaos in Mechanics: Investigations of Quasi-Integrable

siness Media New York 2013 2_9, © Springer Science+Bu
Systems with Analytical, Numerical, and Graphical Tools, Progress in Mathematical Physics 64,
DOI 10.1007/978-0-8176-8370-
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9.1 Global Planar Three-Body Problem

The three-body problem admits two well-known limit cases, the planetary

and the lunar problems, which are obtained when a suitable perturbative
parameter is very small.
By the planetary problem one means the mechanical system consisting

of a body of large mass, the “Sun,” and other bodies much smaller, the
“planets” (in this section we restrict ourselves to two planets) interacting
through gravitational forces. The classical approach to the study of its mo-
tion is based on series developments, where the quantities playing the role
of small parameters in the developments are eccentricities and inclinations
of the planets, while the ratio between the masses of the planets and the
mass of the Sun is the perturbative parameter. In other words, one studies
motions which differ only slightly from the circular coplanar one.
By the lunar problem one means the system consisting of a small body,

the “Moon,” rotating around the “Earth,” with a third body, the “Sun,” much
more distant. Here, the perturbative parameter is the ratio between the
distances Moon-Earth and Sun-Earth, but one still studies motions with
small eccentricities and inclinations. See, for example, Brouwer & Clemence
(1961).
The classical reference on the argument is Poincaré (1892–1893–1899),

who was the first to use the action-angle variables of the Kepler problem
for reduction of the three-body problem. Jefferys & Moser (1966), Lieber-
man (1971), and Lidov & Ziglin (1976) studied the problem(s) with finite
eccentricities and/or inclinations, but with some limitations. It is only with
Féjoz (2001), Féjoz (2002a), and Féjoz (2002b) that a detailed and complete
study has been done for the planar case, treating the problem in a global
framework. Here we will follow Cordani (2004), which reaches basically the
same results though with a different line of reasoning.
While retaining the assumption of smallness of the perturbative param-

eter, we would like to get rid of the other limitations. Unfortunately, the full
3-dimensional problem appears somewhat difficult to tackle (see the con-
cluding remarks of the section) and we consider here the plane case only,
thus with inclinations all vanishing. We will proceed as follows. The system
is first reduced to four degrees of freedom thanks to its translational invari-
ance, then, averaging along the unperturbed motion, it is further reduced
to two degrees; the averaged Hamiltonian inherits the rotational invariance
from the original one and this symmetry results in a further reduction to
a system with one degree of freedom, that is hence integrable. As for the
perturbed Kepler problem, global conclusions can be drawn by studying the
intersections between the reduced manifold and the level surfaces of the
perturbative Hamiltonian.
The present section is devoted to this reduction and to the geometric

study of the resulting motion, also in the case of large eccentricities. The
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main technical difficulty is the integration involved in the averaging pro-
cedure. Since it cannot be performed exactly, we will proceed with two
different approximate methods whose final results agree very well.

(i) Analytical method: since the expression of the averaged Hamiltonian
cannot be calculated explicitly, in Féjoz (2002a) the first three terms
of its series expansion are given, while further calculations by hand
are not practical. We have implemented a procedure on a symbolic
manipulator which makes the calculation to any order. The first ten
terms are retained and the level curves of the corresponding Hamilto-
nian are displayed, showing number and location of the critical points.
We remark however that the first three terms of the series expansion
are already sufficient to give a qualitatively satisfying description of
the dynamics, since the other terms do not add further critical points.

(ii) Numerical method: the integrations involved in the averaging process
are performed numerically and the level curves of this reduced aver-
aged Hamiltonian are also displayed, showing a very good agreement
with the previous case,

We recall some basic expressions on the planar Kepler problem taken di-
rectly from Chapter 6 but with various physical constants now made ex-
plicit. The 2-dimensional Kepler problem is the Hamiltonian system with
phase space T∗(R2 − {0}) and Hamiltonian

H0 = 1

2m
p2 − k

q
, k = GMm, p =

∥∥∥ −→p∥∥∥ , q = ∥∥∥ −→q∥∥∥
where M is the attractive mass and G the constant of gravitation. The orbit
is a conic, whose equation in polar coordinates q,θ is

q(θ) = G2/mk

1+ E cos(θ −�).

G and E are the norm of angular momentum and eccentricity vector, re-
spectively,

−→
G = −→

q × −→
p,

−→
E = 1

mk
−→
p × −→

G −
−→
q

q
,

while � is the longitude of pericenter and f = θ −� is the true anomaly.
Here and in the sequel we consider the case E < 1, which implies that the

conic is an ellipse and that H < 0.We recall that
−→
G and

−→
E are first integrals

of the motion.
Another useful parametrization of the orbit is

X = a cos s − aE,
Y = a

√
1− E2 sin s,

(9.1.1)
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where a = k/(−2H0) is the semimajor axis and s the eccentric anomaly,
whose relation with time is given by the Kepler equation

t =
√
ma3/k (s − E sin s).

Differentiating this last equation we find

dt

ds
= q

√
ma/k. (9.1.2)

The action-angle variables are

L =
√
mka and l = s − E sin s, G and �,

so the Hamiltonian

H0 = −mk
2

2L2

turns out to be a function of the action L only; i.e., the problem has only
one frequency (total degeneration). The angle l is the mean anomaly.

Define the Runge–Lenz–Laplace vector
−→
R = L −→E . It satisfies the following

properties:

(i) If {·, ·} is the Poisson bracket, with {qh, qk} = {ph,pk} = 0 and
{ph, qk} = δhk, then

{G,R1} = −R2, {G,R2} = R1, {R1, R2} = −G,
which is the Lie algebra of the group SO(3).

(ii) Once the energy is fixed, the 3-dimensional vectors with components
(R1, R2, G) span the sphere S2

R21 + R22 +G2 = L2,
which therefore appears as the space of the orbits.

The property (i) endows R3 with a Poisson structure, while (ii) states that
the space of the orbits S2 is a leaf of this Poisson structure and is therefore
endowed with a symplectic structure.

9.1.1 The 2-Dimensional Secular Problem

Let m0,m′,m′′ be the masses of three points undergoing gravitational at-
traction in the plane. In the standard notation the Hamiltonian is

H =
∥∥∥ −→p0∥∥∥2
2m0

+
∥∥∥ −→p ′∥∥∥2
2m′ +

∥∥∥ −→p ′′∥∥∥2
2m′′

− G
⎛⎝ m0m′∥∥∥ −→q0 − −→

q ′
∥∥∥ + m0m′′∥∥∥ −→q0 − −→

q ′′
∥∥∥ + m′m′′∥∥∥ −→q ′ − −→

q ′′
∥∥∥
⎞⎠ .
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We adopt the Jacobi coordinates⎛⎜⎜⎝
−→
Q0−→
Q′−→
Q′′

⎞⎟⎟⎠ =
⎛⎜⎝ 1 0 0

−1 1 0
−σ0 −σ1 1

⎞⎟⎠
⎛⎜⎝

−→
q0−→
q ′−→
q ′′

⎞⎟⎠ with inverse

⎛⎜⎝
−→
q0−→
q ′−→
q ′′

⎞⎟⎠ =
⎛⎜⎝ 1 0 0
1 1 0
1 σ1 1

⎞⎟⎠
⎛⎜⎜⎝

−→
Q0−→
Q′−→
Q′′

⎞⎟⎟⎠ ,
where

σ0 = m0
m0 +m′ , σ1 = m′

m0 +m′ , σ0 + σ1 = 1.

Clearly, the position vector
−→
Q′ connects m0 with m′, while

−→
Q′′ connects

the center of mass ofm0 andm′ withm′′, as required by the Jacobi coor-
dinates. To preserve canonicity, the momenta will change with the inverse
transposed matrices⎛⎜⎜⎝

−→
P0−→
P ′−→
P ′′

⎞⎟⎟⎠ =
⎛⎜⎝ 1 1 1
0 1 σ1
0 0 1

⎞⎟⎠
⎛⎜⎝

−→
p0−→
p ′−→
p ′′

⎞⎟⎠ with inverse

⎛⎜⎝
−→
p0−→
p ′−→
p ′′

⎞⎟⎠ =
⎛⎜⎝ 1 −1 −σ0
0 1 −σ1
0 0 1

⎞⎟⎠
⎛⎜⎜⎝

−→
P0−→
P ′−→
P ′′

⎞⎟⎟⎠ .
Choose the reference frame attached with the center of mass of the three

points; thus
−→
P0 = −→

p0 + −→
p ′ + −→

p ′′ = 0. The Hamiltonian becomes

H = P ′2

2μ′
− Gμ

′M′

Q′
+ P ′′2

2μ′′

− Gμ′m′′
⎛⎝ 1
σ1

1∥∥∥ −→Q′′ + σ1 −→Q′∥∥∥ +
1

σ0

1∥∥∥ −→Q′′ − σ0 −→Q′∥∥∥
⎞⎠ , (9.1.3)

where P ′ =
∥∥∥ −→P ′∥∥∥ , . . . , and (M′′ will be used very soon)

μ′ = m0m′

m0 +m′ , μ
′′ = M′m′′

M′ +m′′ , M
′ =m0 +m′, M′′ =m0 +m′ +m′′.

Recall the well-known expansion

1∥∥∥ −→y − −→
x
∥∥∥ = 1y

⎡⎣1+ ∞∑
l=1

(
x

y

)l
Pl(cosϑ)

⎤⎦ ,
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where −→x and −→
y are two vectors with x < y, ϑ the angle between the two

vectors, and Pk the kth Legendre polynomial. Take
−→
Q′′ = −→

y with −σ1
−→
Q′ =

−→
x and σ0

−→
Q′ = −→

x, respectively, then from (9.1.3) we get

H = P ′2

2μ′
−Gμ

′M′

Q′
+ P ′′2

2μ′′
− Gμ

′′M′′

Q′′
− Gμ

′m′′

Q′′

∞∑
k=2

σk

(
Q′

Q′′

)k
Pk(cosϑ),

(9.1.4)

σk = σk−10 + (−1)kσk−11 ,

which is the sum of the Hamiltonians of two independent Kepler systems
plus a perturbative Hamiltonian

Hp
def= −μ

′m′′

Q′′

∞∑
k=2

σk

(
Q′

Q′′

)k
Pk(cosϑ). (9.1.5)

Clearly, if m′,m′′ << m0 or Q′/Q′′ << 1 the perturbative Hamiltonian is
“small,” and the usual techniques of celestial mechanics can be applied.
The secular Hamiltonian is obtained by averaging Hp along the unper-

turbed motion, i.e., along the two Keplerian ellipses. Once this nontrivial
task is done, the averaged perturbative part Hp becomes a first integral of
the motion, so that it is a function of the first integrals of the two disjoint
Kepler problems. In other words, Hp becomes a function defined on the
space of the orbits, which is the product S2 × S2 of the space of the orbits
of the two disjoint Kepler problems. More explicitly, Hp is expressed as
a function of the six variables R′1, R

′
2, G

′ and R′′1 , R
′′
2 , G

′′ satisfying the two
relations

R′21 + R′22 +G′2 = L′2, R′′21 + R′′22 +G′′2 = L′′2. (9.1.6)

The two left-hand sidemembers define theCasimir invariants of the Poisson
structure of P = R3×R3, since they have vanishing Poisson bracket with all
six variables.
The Hamiltonian now reads as

H = −G2μ
′3M′2

2L′2
−G2μ

′′3M′′2

2L′′2
+GHp,

and the new phase space is the symplectic manifold S2 × S2 on which the
constant actions L′ and L′′ do not generate any dynamics: one can thus take
as Hamiltonian only the term Hp.
The new Hamiltonian system we have defined, with Hamiltonian Hp and

phase space S2 × S2, inherits from the original one the invariance under
the action of the group SO(2), which generates simultaneous rotations of
the two spheres by the same angle around the vertical axes G′ and G′′,
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respectively. Hp will therefore be a function of the six invariants:

G′, G′′,
∥∥∥ −→R ′∥∥∥ , ∥∥∥ −→R ′′∥∥∥ , −→

R ′ · −→R ′′ = R′1R′′1 + R′2R′′2
and

−→
R ′ × −→

R ′′
∣∣∣
3
= R′1R′′2 − R′′1 R′2,

which are indeed the only quantities having vanishing Poisson bracket with
Gtot = G′ + G′′, the generator of the rotations. The averaged problem is
therefore a Hamiltonian system with two degrees of freedom and with ro-
tational symmetry, and it is natural to try to reduce out this symmetry,
obtaining a one-degree-of-freedom, thus integrable, system.

9.1.2 Reduction of the Symplectic Manifold S2×S2 under the
SO(2)-action

We recall that a Hamiltonian system possesses a symmetry if there exists
a Lie group G which acts on the phase space M preserving its symplectic
form Ω and leaving the Hamiltonian H invariant. As a consequence, the
components of the moment map J : M → g∗ (where g∗ is the dual of the
Lie algebra of the group G) are first integrals of the motion. See subsection
2.3.7 on page 58.
In this situation one may try to reduce by this symmetry and obtain a

Hamiltonian systemwith fewer degrees of freedom in the followingmanner.
First, fix a regular value μ (not to be confused with the fictitious masses de-
fined above) of the moment map and consider the submanifold J−1(μ) ⊂ M,
which acquires, by restriction ofΩ, a presymplectic structure, i.e., such that
the corresponding skew symmetric matrix has a nontrivial kernel. Second,
since the isotropy subgroup Gμ, i.e., the subgroup of G whose coadjoint
action does not move μ, acts on J−1(μ), consider the space of the orbits
Mμ = J−1(μ)/Gμ : so we get rid of the kernel and Mμ acquires a symplectic
structure. If, moreover, the Gμ-action is free, i.e., without fixed points, Mμ
will also be a differentiablemanifold; otherwise there will exist some singu-
lar points. The HamiltonianH descends naturally toMμ, defining a reduced
Hamiltonian.
In the case we are discussing,H = Hp, M = S2×S2, andG = SO(2) so that

Gμ = G, since the group is abelian. The difficulty is that the group action has
fixed points: the situation is very similar to that already met in Section 6.5,
regarding the reduction of the orbit space of the Kepler problem under axial
symmetry. As in that case, instead of considering the symplectic manifold
S2 × S2 we first reduce the Poisson manifold P = R3 × R3, of which the
product of the two spheres is a symplectic leaf, and then restore the two
Casimir invariants. Let us view the details.
Consider the SO(2)-action on S2 × S2, generated by J = Gtot with −L′ −

L′′ < Gtot < L′ + L′′. The two extreme cases, corresponding to the points
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G′′

G′

−Gtot − 2L′′ −Gtot + 2L′′

Gtot − 2L′ Gtot + 2L′

R′′2 ≥ 0
R′2 ≥ 0

(i)
(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(ii)

(iii)

(v)

(vii)

(viii)

A ≡ (−L′, L′′) B ≡ (L′, L′′)

C ≡ (−L′,−L′′) D ≡ (L′,−L′′)

Figure 9.1: Reduction of the orbit space. Left: the admissible values of G′ and G′′
are those lying on the straight line G′ +G′′ = Gtot and falling on and internally to
the rectangle ABCD. WhenGtot = ±(L′−L′′), i.e., in cases (iii) and (vii) respectively,
the SO(2)-action has fixed points: the point D and the point A. Right: the shaded
areas show the intervals of the allowed values for ξ1, where both the inequalities
are satisfied at the same time.

B and C in Figure 9.1, are discarded, since the manifolds J−1(−L′ − L′′)
and J−1(L′ +L′′) degenerate into a point: in both the cases the space of the
orbits is made of only two circular orbits with radii a′ and a′′. In the generic
case, having fixed the value μ of Gtot, the admissible values of G′ and G′′

are those lying on the straight line G′ +G′′ = μ and falling on and internally
to the rectangle ABCD of Figure 9.1. The ordinate of the intersection of the
straight line with the vertical axis G′′ gives the corresponding value of Gtot.
When Gtot = ±(L′ − L′′), i.e., in cases (iii) and (vii), respectively, the SO(2)-
action has fixed points: the point D, to which correspond the South pole
of the first sphere and the North of the second, and the point A, to which
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correspond the North pole of the first sphere and the South of the second.
It is indeed evident that the poles are not moved by rotations around the
vertical axis.
Let us reduce P = R3 ×R3. Define ψ ∈ C2 − {0} as

ψ =
(
ψ1
ψ2

)
=
(
R′1 + iR′2
R′′1 + iR′′2

)
.

We have excluded the null element to which correspond circular orbits

(points B and C). P is parametrized by ψ,Gtot, and ξ1
def= G′′ − G′. A ro-

tation around the vertical axis leaves invariant Gtot and ξ1, while

SO(2)-action : ψ 	→ eiϕψ.

To reduce this action we must first find the 3-dimensional manifold that
parametrizes the space of the orbits of the action. To this end, we apply
Proposition 6.3 on page 204; then, putting Gtot = μ, we obtain the reduction

P → R× (R3 − {0}) : (R′1, R′2, G′, R′′1 , R′′2 , G′′) 	→ (ξ1, ξ2, ξ3, ξ4),

with

ξ1 = G′′ −G′, ξ2 = 2
−→
R ′ · −→R ′′,

ξ3 = 2
−→
R ′ × −→

R ′′
∣∣∣
3
, ξ4 = R′′2 − R′2,

(9.1.7)

where R′ =
∥∥∥ −→R ′∥∥∥ and R′′ = ∥∥∥ −→R ′′∥∥∥ .

By restoring the two Casimir invariants (9.1.6), we pass from the above
R × (R3 − {0}) to the 2-dimensional reduced manifold Mμ we are seeking.
To this end, write the two Casimir invariants as

R′2 = L′2 − 1
4
(Gtot − ξ1)2, R′′2 = L′′2 − 1

4
(Gtot + ξ1)2, (9.1.8)

from which ξ4 = L′′2 − L′2 −Gtotξ1, then substitute (9.1.8) into the obvious
relation

ξ22 + ξ23 = 4R′2R′′2,
thus obtaining

4
[
L′2 − 1

4
(Gtot − ξ1)2

][
L′′2 − 1

4
(Gtot + ξ1)2

]
= ξ22 + ξ23 . (9.1.9)

This is the equation of the reduced manifold Mμ : once L′ and L′′ are fixed,
(9.1.9) describes a family, parametrized by the value μ of Gtot, of 2-dimen-
sional manifolds having rotation symmetry about the ξ1 axis.
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In order that the right members of the two relations (9.1.8) be greater
than or equal to zero, the inequalities

Gtot − 2L′ ≤ ξ1 ≤ Gtot + 2L′, −Gtot − 2L′′ ≤ ξ1 ≤ −Gtot + 2L′′,

must hold simultaneously. In Figure 9.1 the shaded areas show the intervals
of the allowed values for ξ1. Notice that in cases (iii) and (vii) two of the four
roots coincide, exactly when the SO(2)-action has fixed points.
Figure 9.2 represents the sections of the reducedmanifoldMμ for L′′ = 1

and L′ = 0.14. In Figure 9.3 the values L′′ = 1 and L′ = 0.45, and in Figure
9.4 the values L′′ = 1 and L′ = 1/√2 are considered.

(i)
(ii)
(iii)

(iv)(v)
(vi)

(vii) (viii)
(ix) ξ1

ξ2, ξ3

-1 -0.5 0.5 1

-0.2

-0.1

0.1

0.2

Figure 9.2: The reduced manifold Mμ is a rotation surface around the ξ1 axis:
its sections are represented in the figure, with L′′ = 1 and L′ = 0.14. The Roman
numerals (i)–(ix) label the values of Gtot = μ, as in Figure 9.1.

As expected, Mμ is not smooth at a point in cases (iii) and (vii), due to
the fact that the SO(2)-action is not free.
It is interesting to note that, for each of the admissible values of Gtot,

the reduced manifold appears as a symplectic leaf of a Poisson structure.
Indeed, defining

C(ξ)
def= 4

[
L′2 − 1

4
(Gtot − ξ1)2

][
L′′2 − 1

4
(Gtot + ξ1)2

]
− ξ22 − ξ23 ,

one checks that the Poisson brackets between the variables ξ are given by

{ξi, ξh} = εihk ∂C(ξ)
∂ξk

, i, h, k = 1,2,3. (9.1.10)

It follows that C(ξ) is the Casimir invariant, since

{ξi, C(ξ)} = ∂C(ξ)

∂ξh
εihk

∂C(ξ)

∂ξk
= 0 ∀i

for the complete skew symmetry of the symbol εihk. Clearly, the equation
of Mμ reads as C(ξ) = 0.
We sum up the results of this section in the following theorem.
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(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix) ξ1

ξ2, ξ3
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Figure 9.3: As in Figure 9.2 but for L′′ = 1 and L′ = 0.45.

Theorem 9.1 The symplectic reduction under SO(2)-action of the manifold

of the orbits for a fixed energy of the 2-dimensional averaged three-body

problem is the symplectic 2-dimensional leaf C(ξ) = 0 of a 3-dimensional

linear Poisson manifold, with coordinates ξ1, ξ2, ξ3 and Poisson structure

(9.1.10). The reduced manifold is homeomorphic to the 2-dimensional sphere

and is smooth for all the allowed values of the total angular momentum, i.e.,

−L′ −L′′ < Gtot < L′ +L′′, except for Gtot = ±(L′ −L′′) where a pinched point

arises.

9.1.3 The Reduced Motion

Let us now consider the averaged Hamiltonian Hp: having fixed the three
masses, the two semimajor axes, and Gtot, it is, at first sight, a function of
ξ1, ξ2, ξ3 which we may represent by drawing its level surfaces, satisfying
the equation Hp(ξ1, ξ2, ξ3) = constant. Every solution point of the Hamil-
ton equations moves on one of these level surfaces, selected by the initial
conditions; moreover, it must stay on the reduced manifold Mμ. Hence, the
solution point must move on one of the curves determined by the intersec-
tion of the manifoldMμ with the family of surfaces given byHp(ξ1, ξ2, ξ3) =
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Figure 9.4: As in Figure 9.2 but for L′′ = 1 and L′ = 1/√2.

constant.
A closer inspection, however, reveals thatHp is a function of ξ1, ξ2 only.

Indeed, a point on the reduced manifold and relative to some Gtot, is char-
acterized by the values of ξ1 (which fixes the sizes of the ellipses along
with Gtot) and ϕ = arctan(ξ3/ξ2): as is clear by definitions (9.1.7), this is
the angle between

−→
R ′ and

−→
R ′′, and since the interaction energy between the

two ellipses is an even function of this angle, it cannot be a function of ξ3.
Notice that {ξ1/2,ϕ} = 1. The semidifference of the angular momenta and
the angle formed by the two ellipses are therefore a pair of action-angle
variables.
The fact thatHp is a function of ξ1, ξ2 only and that the reducedmanifold

has rotational symmetry around the ξ1 axis greatly simplifies the qualita-
tive discussion of the properties of the motion, in particular of the number
and position of the critical (or singular) points. We recall that the critical
points are the relative equilibrium points on the reduced manifold, which
implies that the corresponding physical elliptic trajectories stay unchanged
in shape and reciprocal position. The reduced manifold is homeomorphic
to a 2-dimensional sphere, so the number of elliptic critical pointsminus the
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number of the hyperbolic critical points is always equal to 2 for topological
reasons. The simplification arises from the fact that all the qualitative infor-
mation may be obtained by inspecting the intersection lines of the reduced
manifold and of the level surfaces of Hp with the plane ξ1ξ2.
It is therefore necessary to compute Hp explicitly. Unfortunately, the

integrations involved in the averaging procedure cannot be performed ex-
actly, so we must proceed with approximate methods. We now describe two
different methods, whose final results perfectly agree.

(i) Analytical integration of the approximate Hamiltonian

Our task is to calculate the double integral

Hp = 1

(2π)2

∫ 2π
0

∫ 2π
o
Hp dl

′ dl′′ (9.1.11)

along the unperturbed solution. Here Hp is the perturbative Hamiltonian

(9.1.5), with
−→
Q′ and

−→
Q′′ evolving along a Keplerian ellipse, while l′, l′′ are the

relative mean anomalies. The basic point consists in reducing the integrand
function to a trigonometric polynomial, which makes the integration much
easier. To this end, put∥∥∥ −→Q′∥∥∥ = a′ρ′ where ρ′ = 1− E′ cos s′,∥∥∥ −→Q′′∥∥∥ = a′′ (1− E′′2)�′′ where �′′ = 1

1+ E′′ cosf ′′ .

This suggests taking s′ and f ′′ as integration variables. We must therefore
eliminate f ′ from cosϑ = cos(f ′ −f ′′ +ϕ). Comparing the norm of the ra-
dius vector in the Keplerian motion expressed as a function of the eccentric
anomaly and of the true anomaly, respectively, one gets

cosf ′ = cos s
′ − E′
ρ′

, sinf ′ =
√
1− E′2 sin s′

ρ′
,

from which

cosϑ = cos s
′ − E′
ρ′

(cosϕ cosf ′′ + sinϕ sinf ′′)

−
√
1− E′2 sin s′

ρ′
(sinϕ cosf ′′ − cosϕ sinf ′′).

Moreover,

dl′ = ρ′ds′, dl′′ = (�′′)2 (1− E′′2)3/2 df ′′.
The integrand is so expressed as a trigonometric polynomial in s′ and

f ′′, and the Hamiltonian (9.1.5) can be calculated in principle to any or-
der; in practice, we stop at k = 10. We obtain Hp as a function of ξ1 and
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m0,−σ1
−→
Q′

m′, σ0
−→
Q′

m′′,
−→
Q′′

ϕ

Figure 9.5: The three ellipses described by the averaged motion ofm0, m′, m′′.

cosϕ, with the three masses m0,m′,m′′, the two semimajor axes a1, a2,
and the total angular momentum Gtot playing the role of parameters. Once
parameters are chosen, the program LAPLACE displays the level curves of
Hp(ξ1,ϕ) = constant, and from these curves one can infer the motion of
the two ellipses described by

−→
Q′ and

−→
Q′′: ξ1, with Gtot and a1, a2, fixes size

and eccentricity of the ellipses, while ϕ fixes the relative position. Then,
the averaged motion ofm0,m′,m′′ is easily deduced; see Figure 9.5. Take
into account that one must add an overall rotational motion to the relative
motion, as dictated by the conservation of the total angular momentum
Gtot.

From a direct inspection of Figures 9.6, 9.7, and 9.8 it is evident that
three different cases are possible and the system admits

(i) two elliptic points, or

(ii) one hyperbolic and three elliptic points, or
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Figure 9.6: The parameter values are: m0 = 1, m′ = 0.1, m′′ = 0.1, a′ =
1, a′′ = 5, and Gtot = 0.9 · (L′ + L′′). Two elliptic points are present. These
and the similar pictures of the subsequent two figures can be obtained with the
LAPLACE program. Top: traces of the reduced manifold and of the level surfaces
of Hp. Bottom-left: action-angle variables calculated with the analytical method.
Bottom-right: idem but with the numerical method.

(iii) two hyperbolic and four elliptic points.

See the left-bottom picture of Figure 9.6 for the first case, of Figure 9.7 for
the second case, and of Figure 9.8 for the third case.
A different visualization, however conveying the same information, is

the following. Making the substitution

cosϕ = − ξ2
2L′E′L′′E′′

,

we can express Hp as a function of ξ1, ξ2. Plotting the level curves of the
averaged Hamiltonian Hp(ξ1, ξ2) = constant (also for

∣∣ξ2∣∣ > 2L′E′L′′E′′),
one clearly sees that they are topologically equivalent to those of the hy-
perbolic quadratic form ξ21 − ξ22 = constant for all the admissible values of
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Figure 9.7: As in Figure 9.6, but the parameter values are: m0 = 1, m′ =
0.65, m′′ = 0.60, a′ = 1, a′′ = 5, and Gtot = 0.8 · (L′ + L′′). Three elliptic
points and one hyperbolic point are present.

the parameters. If the saddle point of the quadratic form falls inside the
intersection line of Mμ with the plane ξ1ξ2, we are in the third case of the
above list. If the saddle point is outside, we are in the second case if the
curvature radius of the level curves is smaller than that of the intersection
of Mμ, and in the first case otherwise. See the top picture of the Figure 9.6
for the first case, of the Figure 9.7 for the second case, and of the Figure 9.8
for the third case.
As one may ascertain with the program LAPLACE, considering also the

terms k ≥ 5 in (9.1.5) does not significantly change the level curves of
Hp(ξ1, ξ2). Let us restrict ourselves to the first three terms and calculate
analytically the approximate values of the coordinates ξcr1 , ξ

cr
2 of the saddle

point. Dropping an inessential multiplicative constant, we get

Hp = α(ξ1)ξ22 + β(ξ1)ξ2 + γ(ξ1),
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Figure 9.8: As in Figure 9.6, but the parameter values are: m0 = 1, m′ =
0.90, m′′ = 0.95, a′ = 1, a′′ = 5, and Gtot = 0.75 · (L′ + L′′). Four elliptic
and two hyperbolic points are present.

where we have defined

α(ξ1) = 315

1024

σ4
L′2L′′2

2+ E21
F72

(
a′

a′′

)2
,

β(ξ1) = 15
64

σ0 − σ1
2L′L′′

4+ 3E21
F52

(
a′

a′′

)
,

γ(ξ1) = 2+ 3E
2
1

8F32
,

+ 9σ4
1024

−25E41E22 + 30E41 − 20E21E22 + 80E21 + 24E22 + 16
F72

(
a′

a′′

)2
,

with

E1 = R′

L′
, E2 = R′′

L′′
, F2 = G′′

L′′
.
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One obtains immediately that

ξcr2 = −
β(ξ1)

2α(ξ1)
,

which shows that the sign of ξcr2 is that ofm0−m′. For the calculation of ξcr1 ,
notice that, if the eccentricity of the outer ellipse is small and a′/a′′ << 1,
the dominant term in Hp is

Hp ≈
2+ 3E21
8F32

= L′′3

8L′2
5L′2 − 3G′2

G′′3
;

then, remembering that

G′ = 1
2
(Gtot − ξ1), G′′ = 1

2
(Gtot + ξ1) (9.1.12)

and putting
d

dξ1
Hp = 0,

one finds that the admissible solution is

ξcr1 ≈
4

3

⎡⎣9
4
Gtot −

√
45

4
L′2 + 9

4
G2tot

⎤⎦
and thatHp(ξ

cr
1 ) is a maximum. Since α(ξ1) > 0, ξ

cr
2 is a minimum, then the

critical point is a saddle point. These approximate values of ξcr1 , ξ
cr
2 and the

already given description of the reduced manifold Mμ allow one to grasp
how the various parameters affect the existence and location of the critical
points on the reduced manifold.
The user can check and compare the approximate values with the exact

ones given by the LAPLACE program selecting “Normal Form”, then “Global
planar 3body” and “Vertical section”.

(ii) Numerical integration of the exact Hamiltonian

The second method consists in a numerical calculation of the average of
the perturbation Hamiltonian. We should thus perform the integrations in
(9.1.11), where however the integrand is a series. But, by comparing (9.1.3)
with (9.1.4), one immediately checks that

μ′m′′ 1

(2π)2

∫ 2π
0

∫ 2π
0

⎛⎝ 1
σ1

1∥∥∥ −→Q′′ + σ ′1 −→Q∥∥∥ +
1

σ0

1∥∥∥ −→Q′′ − σ0 −→Q′
∥∥∥
⎞⎠ dl′dl′′

+Hp = constant
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holds, so that we may replace the calculation of Hp with that of the double
integral in the above expression, at least for what regards the level lines.
Obviously, we will consider only those situations for which σ1Q′ and σ0Q′

are smaller thanQ′′, to ensure the convergence of the numerical integration.
For this calculation, we use the parametrization (9.1.1), with the eccen-

tric anomaly s replacing the mean anomaly l as evolutionary parameter.
Due to the rotational invariance of the problem, we may consider the first
ellipse in an arbitrary position, the interaction energy depending only on
the relative position of the two ellipses. Therefore, for the first ellipse we
write

−→
Q′ =

(
X′

Y ′

)
=

⎛⎜⎝ a′ cos s′ − a′
√
1− G′2

L′2

a′
√
G′2
L′2 sin s

′

⎞⎟⎠
and for the second ellipse

−→
Q′′ =

(
X′′

Y ′′

)
=
(
cosϕ − sinϕ
sinϕ cosϕ

)⎛⎜⎝ a′′ cos s′′ − a′′
√
1− G′′2

L′′2

a′′
√
G′′2
L′′2 sin s

′′

⎞⎟⎠ .
By (9.1.2), the integration variables in the averaging procedure may be

changed frommean anomaly l to eccentric anomaly s.Modulo an inessential
multiplicative and an additive constant, we have

Hp = 1

(2π)2

∫ 2π
0

∫ 2π
0
Q′Q′′

⎛⎝ 1

σ1

√
σ 21Q

′2 +Q′′2 + 2σ ′1
−→
Q′ · −→Q′′

+ 1

σ0

√
σ 20Q

′2 +Q′′2 − 2σ0
−→
Q′ · −→Q′′

⎞⎠ ds′ ds′′.
Substituting (9.1.12) and takingGtot, the three masses, and the two semima-
jor axes as fixed parameters, the integrand becomes a function of s′, s′′, ξ1,
and ϕ. It can be integrated numerically, obtaining a grid of values labeled
by ξ1 and ϕ. Then, we can draw the lines Hp(ϕ,ξ1) = constant, which de-
scribe geometrically the relative motion and the eccentricity change of the
two ellipses.
These last two tasks (numerical integration and drawing of the family

lines) can be achieved with LAPLACE. Some outputs may be viewed in the
right-bottom picture of Figures 9.6, 9.7, and 9.8. In all the displayed cases,
one notices the very good agreement with the pictures obtained via the
analytical, but approximate, method.
To conclude, let us consider the possibility of extending the above work

to the 3-dimensional case also. Unfortunately, this does not seem straight-
forward. In the 3-dimensional case the space of the orbits of the Kepler
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problem for a fixed energy is S2×S2; hence the manifold to be reduced un-
der the action of SO(3) is S2×S2×S2×S2. Once this reduction is performed,
which seems a nontrivial task, we are left with a 4-dimensional symplectic
manifold, thus with a two-degrees-of-freedom system. We do not know an-
other first integral, besides the reduced Hamiltonian; thus the system is,
very likely, not integrable.
Anyway, the problem surely deserves to be further investigated.

9.2 The 3-Dimensional Planetary Problem

The planetary problem is a particular, but very important, case of the (N+1)-
body problem: one body, the “Sun,” has a mass much larger than the other
N “planets” and the forces acting on the system are the gravitational ones.
First, let us consider the case N = 2, with m0 the mass of the Sun and

m′,m′′ << m0 those of the two planets; the extension to a generic N is
straightforward. We use heliocentric coordinates, thus a non-inertial refer-
ence system, with −→

q ′ and −→
q ′′ the radius vectors connecting the Sun with

the two planets, respectively. From Newton’s law, it is easy to derive the
relative equations of motion: see, for example, Brouwer & Clemence (1961,
ch. 10, pag. 251, eqs. (4a–4b)). To this end, write the N + 1 equations in an
inertial frame, then subtract the equation of the Sun from that of every
planet, obtaining

d2
−→
q ′

dt2
= ∇q′(U ′ + F ′), d2

−→
q ′′

dt2
= ∇q′′(U ′′ + F ′′),

U ′ = G m0 +m
′

q′
, U ′′ = G m0 +m

′′

q′′
,

F ′ = Gm′′
(
1


 −
−→
q ′ · −→q ′′
q′′3

)
, F ′′ = Gm′

(
1


 −
−→
q ′ · −→q ′′
q′3

)
,

where 
 =
∥∥∥ −→q ′ − −→

q ′′
∥∥∥ is the distance between the planets. The terms F ′

and F ′′ are perturbative potentials: if they vanish, we are left with two
disjoint Keplerian problems, thus with an integrable system. Moreover, if
the two planets do not come too close, the ratio between perturbation and
Keplerian forces is of the same order of the ratio between the mass of a
planet and the mass of the Sun.
In F ′ and F ′′ the indirect part appears: −→q ′ · −→q ′′/q′3 and −→

q ′ · −→q ′′/q′′3,
respectively, due to the non-inertiality of the reference system. The indirect
part, however, is eliminated in the subsequent averaging (see, for example,
Brouwer & Clemence (1961, pag. 508)) so that the equations of motion can
be put in Hamiltonian form, with Hamiltonian

H = p′2

2m′ −G
m′(m0 +m′)

q′
+ p′′2

2m′′ −G
m′′(m0 +m′′)

q′′
−G m

′m′′


 . (9.2.1)
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The secular Hamiltonian is obtained by averaging
−1 along the unper-
turbed motion, i.e., along the Keplerian ellipses. Unfortunately, this is a
nontrivial task, which cannot be carried out in a closed form. It requires
two preliminary steps. With the first step we will put the expression of the
two position vectors in a suitable form, i.e., as a function of an evolutional
parameter, closely related to the time, and of five constant parameters char-
acterizing the ellipse. The second step consists in a series expansion of
−1

with respect to eccentricity and inclination.
To accomplish the first step, one could use the Keplerian elements of

the orbit, but they suffer from the drawback of being singular for orbits
which are circular and/or lying on the reference (ecliptic) plane. In contrast,
the Poincaré variables are regular for orbits with small eccentricities and
inclinations, and are thus well suited for studying the planetary problem of
the solar system.
The Keplerian elements of the orbit have a clear geometrical interpre-

tation: semimajor axis and numerical eccentricity fix the size and shape
of the ellipse, while inclination, longitude of the ascending node, and argu-
ment of pericenter are the three Euler angles fixing the spatial orientation of
the ellipse. In contrast, the Poincaré variables are defined on page 190 in a
purely algebraic manner and lack a geometrical interpretation. This makes
finding the expansion of the two position vectors somewhat involved and
awkward, which does not simplify the subsequent series development and
averaging process.
We will show that exploiting the geometry of the group SO(3) allows us

to write the expression of the Keplerian motion in a very suitable form.
Then, we develop 
2γ, γ ∈ R in such a way that it is immediate, by direct
inspection, to detect the terms which vanish under the averaging process.
This produces a drastic simplification and allows us to smartly group the
surviving terms in a reasonable and very suitable manner, the final result
being an even, real-valued polynomial in the Poincaré canonical, heliocentric
variables.

9.2.1 SO(3) and Poincaré Variables

SO(3) is a compact simple Lie group: see item (i) on page 46. It is the group
of the orthogonal 3× 3 matrices with unitary determinant:

R ∈ SO(3) : RtR = 1, detR = 1, Rt = transposed matrix.

The linear transformation in R3 induced by R leaves the Euclidean scalar
product invariant, and describes a rotation.
To parametrize SO(3) we use the canonical exponentiation of its Lie al-

gebra, which is the algebra of the skew symmetric matrices with product
given by the commutator. We utilize this method to find the well-known
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Euler rotation formula. Let R(
−→
N,ϑ) represent the rotation of an angle ϑ

about a unit vector
−→
N. For example,

R(
−→
e 1, ϑ) =

⎛⎜⎝ 1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ

⎞⎟⎠ ,
where −→ek, k = 1,2,3, are the orthonormal vectors of the Cartesian axes.
Define

Gk = dR(
−→
ek,ϑ)

dϑ

∣∣∣∣∣
ϑ=0

.

Hence

G1 =

⎛⎜⎝ 0 0 0
0 0 1
0 −1 0

⎞⎟⎠ , G2 =

⎛⎜⎝ 0 0 −1
0 0 0
1 0 0

⎞⎟⎠ , G3 =

⎛⎜⎝ 0 1 0
−1 0 0
0 0 0

⎞⎟⎠
satisfy the commutation rules

[G1,G2] = −G3, [G2,G3] = −G1, [G3,G1] = −G2,

namely the commutation rules of the Lie algebra of SO(3).
We have described how to pass, through differentiation, from the group

to the algebra. The inverse procedure is achieved with what is called EXPo-

nentiation. Indeed, it is immediate to check that

R(
−→
ek,ϑ) = 1+ ϑGk + 1

2!
(ϑGk)

2 + . . . def= EXP(ϑGk).

More generally, define

G = N1G1 +N2G2 +N3G3 =

⎛⎜⎝ 0 N3 −N2
−N3 0 N1
N2 −N1 0

⎞⎟⎠ ,
where N1, N2, N3 are the Cartesian components of a generic unit vector

−→
N ,

then

R(
−→
N,ϑ) = EXP(ϑG) = 1+

∞∑
j=0

(ϑG)2j+1

(2j + 1)! +
∞∑
j=0

(ϑG)2j+2

(2j + 2)!

represents a rotation of an angle ϑ about
−→
N . To make the above expression

explicit, notice that

G2 =

⎛⎜⎝ N21 − 1 N1N2 N1N3
N1N2 N22 − 1 N2N3
N1N3 N2N3 N23 − 1

⎞⎟⎠ , G3 = −G,
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from which G4 = −G2, G5 = −G3 =G, and so forth, so that we obtain the
well-known Euler formula:

R(N, ϑ) = 1+ sinϑG+ (1− cosϑ)G2 (9.2.2)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosϑ
+N21(1− cosϑ)

N3 sinϑ
+N1N2(1− cosϑ)

−N2 sinϑ
+N1N3(1− cosϑ)

−N3 sinϑ
+N1N2(1− cosϑ)

cosϑ
+N22(1− cosϑ)

N1 sinϑ
+N2N3(1− cosϑ)

N2 sinϑ
+N1N3(1− cosϑ)

−N1 sinϑ
+N2N3(1− cosϑ)

cosϑ
+N23(1− cosϑ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We recall from (6.1.30) on page 190 the definition of the Poincaré vari-
ables for the Kepler motion:

Λ =
√
mka, λ = l+�,

χecc =
√
2(Λ−G) cos�, ηecc = −

√
2(Λ−G) sin�,

χinc =
√
2(G −G3) cosΩ, ηinc = −

√
2(G −G3) sinΩ.

where � = ω+Ω is the longitude of pericenter. The variables χ and η are
local canonical coordinates on the symplectic manifold S2×S2, which is the
manifold of the orbits with fixed energy. Clearly χecc = ηecc = 0 correspond
to circular orbits, while χinc = ηinc = 0 describe orbits in the ecliptic plane.
We immediately obtain

G = Λ− 1
2
(χ2ecc + η2ecc), G3 = G − 1

2
(χ2inc + η2inc). (9.2.3)

We would express the position vector of a point moving along a Keple-
rian ellipse as a function of the Poincaré variables, but this is not possible
in a closed form: the inversion of the modified Kepler equation is required
(see below). Fortunately, it is sufficient for what follows to use σ as pa-
rameter, instead of λ. To this end, we proceed with the following geometric
construction.
Let us start (see Figure 9.9) from a circular orbit of radius a contained

in the ecliptic plane q1q2 and let σ be the anomaly of the moving point P.
Accordingly,

−→
FP = (a cosσ, a sinσ, 0) and

∥∥∥ −→FP∥∥∥ = a.
Take an angle β, related to the numerical eccentricity E through sinβ = E,
0 ≤ β < π/2, and rotate about the unit vector −→u having the same direction
as

−→
E , then project on the ecliptic plane q1q2 and finally translate by the

vector −a −→E . Consequently, we are interested in −→E and in R( −→u,β), the 3×3



288 The Multi-Body Gravitational Problem

q1

q2

P

−→
n

−→
u

σ

Ω�F

O
a
−→
E

Figure 9.9: The Poincaré variables in the ecliptic plane.

real matrix corresponding to the above rotation. The unit vector −→u has
Cartesian components u1 = cos�, u2 = sin�, u3 = 0. Since E2 = 1 −
G2/Λ2, we have

cosβ =
√
1− E2 = G

Λ
.

The eccentricity vector
−→
E has Cartesian components (E1, E2,0), with

E1 = E cos� =
√
Λ2 −G2
Λ2

χecc√
2(Λ−G) =

√
Λ+G
2Λ2

χecc,

E2 = E sin� = −
√
Λ2 −G2
Λ2

ηecc√
2(Λ−G) = −

√
Λ+G
2Λ2

ηecc.

The mean longitude λ is therefore related to the eccentric longitude σ =
s +� by a modified Kepler equation,

λ = σ −
√
Λ+G
2Λ2

(χecc sinσ + ηecc cosσ) ,
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whose inversion is, in principle, always possible when E < 1, but not in a
closed form.
Let us now calculate the rotation matrix R( −→u,β). For example, bearing

in mind (9.2.3) and the general expression (9.2.2), the entry in the first row
and column is

cosβ+u21(1− cosβ) =
G

Λ
+
(
1− G

Λ

)
cos2� = 1− η

2
ecc

2Λ
.

The final expression for the rotation matrix is

R(
−→
u,β) = 1+ A1 − S1,

A1 =
√
Λ+G
2Λ2

⎛⎜⎝ 0 0 ηecc
0 0 χecc

−ηecc −χecc 0

⎞⎟⎠ ,

S1 = 1

2Λ

⎛⎜⎝ η2ecc χeccηecc 0
χeccηecc χ2ecc 0
0 0 χ2ecc + η2ecc

⎞⎟⎠ ,
where A1 and S1 are infinitesimal of first and second order, respectively,
for small eccentricities. In order to take into account the projection on the
ecliptic plane, we put equal to zero the third row of the rotation matrix.
Moreover, the choice of the third column is arbitrary, since the vector on
which the matrix acts belongs to the ecliptic plane. The final expression for
the position vector is

−→
q plane
a

= (1− S)

⎛⎜⎝ cosσsinσ
0

⎞⎟⎠− −→
E , (9.2.4)

S = 1

2Λ

⎛⎜⎝ η2ecc χeccηecc 0
χeccηecc χ2ecc 0
0 0 0

⎞⎟⎠, −→
E =

√
Λ+G
2Λ2

⎛⎜⎝ χecc
−ηecc
0

⎞⎟⎠ . (9.2.5)

To also take into account the inclination, let us rotate through an angle
i about the unit vector −→n of the node line. By definition,

cos i = G3
G

with 0 ≤ i < π.

To calculate the entries of the rotation matrix R( −→n, i),we simply notice that
it may be obtained from the expression of R( −→u,β) through the substitutions

Λ→ G, G → G3, χecc → χinc, ηecc → ηinc,
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as is evident from the definitions of the Poincaré variables and the expres-
sions of cosβ and cos i. We obtain

R(
−→
n, i) = 1+ A2 − S2,

A2 =
√
G +G3
2G2

⎛⎜⎝ 0 0 ηinc
0 0 χinc

−ηinc −χinc 0

⎞⎟⎠ ,

S2 = 1

2G

⎛⎜⎝ η2inc χincηinc 0
χincηinc χ2inc 0
0 0 χ2inc + η2inc

⎞⎟⎠ .
Obviously, in this and the previous formula, one must take into account the
expressions (9.2.3).
Finally, we obtain

−→
q = Rt(

−→
n, i)

−→
q plane,

where we have taken the transposed matrix, since the rotation matrices act
on the basis of the vector space R3 while we consider the action on the
components.

9.2.2 The Secular Planetary Problem

Before calculating 
2γ explicitly and proceeding to its averaging, we write
the position vector −→q in a mixed real-complex form. Let us define the two
adimensional complex variables

zecc = χecc + iηecc√
Λ

, zinc = χinc + iηinc√
Λ

,

and describe the position vector in the ecliptic plane with the complex num-
ber qplane. Then, bearing in mind (9.2.4–9.2.5), one can check that

qplane
a

= eiσ − 1
4
|zecc|2 eiσ + 1

4
z2ecce

−iσ −
√
Λ+G
2Λ

zecc.

In the 3-dimensional case, we determine the position of the moving point
with the pair (qc = q1 + iq2, q3). A direct calculation shows that

qc
a
= qplane

a
− Λ

4G

[
|zinc|2

qplane
a

− z2inc
qplane
a

]
= eiσ +X2eiσ + Y 2e−iσ + Z,
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having defined

X2 = −1
4
|zecc|2 − Λ

4G
|zinc|2 + Λ

16G
|zecc|2 |zinc|2 + Λ

16G
z2eccz

2
inc,

Y 2 = 1
4
z2ecc −

Λ

16G
z2ecc |zinc|2 +

Λ

4G
z2inc −

Λ

16G
|zecc|2 z2inc,

Z =
√
Λ+G
2Λ

[
−zecc + Λ

4G
zecc |zinc|2 − Λ

4G
zeccz

2
inc

]
.

The notation X2, Y 2, Z (with exponent 2 and 1) is to remember the infinites-
imal order of the expressions, when, in the case of small eccentricities and
inclinations, we must also consider zecc and zinc small.
For the vertical component we find

q3
a
= Veiσ + Ve−iσ +W 2 +W 2,

V = i

2

Λ

G

√
G +G3
2Λ

[
−zinc + 1

4
z2ecczinc +

1

4
|zecc|2 zinc

]
,

W 2 = − i
2

Λ

G

√
Λ+G
2Λ

√
G +G3
2Λ

zecczinc.

Lastly, we shall also need the expression (derived from (6.1.2) on page 177)

q

a
= 1− 1

2

√
Λ+G
2Λ

[
zecce

iσ + zecce−iσ
]
.

Notice that, in the above formulae, the coefficients of the monomials in
zecc and zinc can be developed in series of even powers of zecc and zinc, all
beginning with the unit term:

Λ

G
= 1

1− 1
2 |zecc|2

= 1+
∞∑
n=1

(
1

2
|zecc|2

)n
,

√
Λ+G
2Λ

=
√
1− 1
4
|zecc|2 = 1+

∞∑
n=1

∏n−1
k=0

(
k− 1

2

)
n!

(
1

4
|zecc|2

)n
,√

G +G3
2Λ

=
√
1− 1
4
|zecc|2 − 1

2
|zinc|2

= 1+
∞∑
n=1

∏n−1
k=0

(
k− 1

2

)
n!

(
1

2
|zecc|2 + 1

4
|zinc|2

)n
.

(9.2.6)

It is worthwhile to define

F(x)
def=x′′eiσ ′′ −αx′eiσ ′ , with α = a′

a′′
< 1,

F(1)F(1) = 1+α2 − 2α cos(σ ′′ − σ ′) def= K(σ ′′ − σ ′).
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Since

−→
q ′′ − −→

q ′ = a′′
( −→
q ′′

a′′
−α

−→
q ′

a′

)
⇒ 

a′′

=
∥∥∥∥∥ −→q ′′a′′ −α

−→
q ′

a′

∥∥∥∥∥ ,
we are led to calculate∥∥∥∥∥ −→q ′′a′′ −α

−→
q ′

a′

∥∥∥∥∥
2

=
(
q′′c
a′′

−αq
′
c

a′

)(
q′′c
a′′

−αq
′
c

a′

)
+
(
q′′3
a′′

−αq
′
3

a′

)2
=
[
F(1)+ F(X2)+ F(Y 2)+ Z′′ −αZ′

]
×
[
F(1)+ F(X2)+ F(Y 2)+ Z′′ −αZ′

]
+
[
F(V)+ F(V)+W ′′2 +W ′′2 −α

(
W ′2 +W ′2)]2

= K +F(2) +F(1) +F(0) +F (1) +F (2)

= K + ε,

where we have defined

ε = F(2) +F(1) +F(0) +F (1) +F (2), with

F(2) = F(1)F(Y 2)+ F(X2)F(Y 2)+ F(V)F(V),
F(1) =

(
F(1)+ F(X2)

)(
Z
′′ −αZ′

)
+ F(Y 2)(Z′′ −αZ′)

+ 2F(V)
(
W ′′2 +W ′′2 −α

(
W ′2 +W ′2))

, (9.2.7)

F(0) = F(1)F(X2)+ F(1)F(X2)+ F(X2)F(X2)
+ F(Y 2)F(Y 2)+ (Z′′ −αZ′) (Z′′ −αZ′)
+ 2F(V)F(V)+

(
W ′′2 +W ′′2 −α

(
W ′2 +W ′2))2

.

The reason for the particular grouping in these definitions will be clear in
a moment.
We now want to calculate the mean value of 
2γ (in the Keplerian case:

γ = −1/2) when the evolution is the unperturbed one; thus, differentiating
the Kepler equation,

dλ

dσ
= dl

ds
= q

a
,

we obtain (here the overbar denotes “average”)


2γ def= 1

(2π)2

∫ 2π
0

∫ 2π
0

2γ(σ ′′, σ ′)dλ′′ ∧ dλ′

= a′′2γ

(2π)2

∫ 2π
0

∫ 2π
0

(
(σ ′′, σ ′)
a′′

)2γ q′′(σ ′′)
a′′

q′(σ ′)
a′

dσ ′′ ∧ dσ ′, (9.2.8)
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into which we substitute the expressions( 

a′′

)2γ
= (K + ε)γ = Kγ + γKγ−1ε + 1

2
γ(γ − 1)Kγ−2ε2 + . . . ,

q′′(σ ′′)
a′′

q′(σ ′)
a′

=
⎡⎣1− 1

2

√
Λ′′ +G′′
2Λ′′

(
z′′ecce

iσ ′′ + z′′ecce−iσ
′′)⎤⎦ (9.2.9)

×
⎡⎣1− 1

2

√
Λ′ +G′
2Λ′

(
z′ecce

iσ ′ + z′ecce−iσ
′)⎤⎦ .

Again, as for (9.2.7), it is convenient to write this last expression as (here
the overbar denotes “complex conjugation”)

q′′

a′′
q′

a′
= 1+Q(2) +Q(1) +Q(0) +Q(1) +Q(2),

Q(2) = 1
4

√
Λ′′ +G′′
2Λ′′

√
Λ′ +G′
2Λ′

z′eccz
′′
ecc e

i(σ ′′+σ ′),

Q(1) = −1
2

√
Λ′′ +G′′
2Λ′′

z′′ecc e
iσ ′′ − 1

2

√
Λ′ +G′
2Λ′

z′ecc e
iσ ′ ,

Q(0) = 1
4

√
Λ′′ +G′′
2Λ′′

√
Λ′ +G′
2Λ′

(
z′′eccz

′
ecce

i(σ ′′−σ ′) + z′′eccz′ecce−i(σ
′′−σ ′)

)
.

(9.2.10)

Our task is therefore to calculate definite integrals of the type∫ 2π
0

∫ 2π
0
K−s(σ ′′ − σ ′) ei(r ′′σ ′′+r ′σ ′)dσ ′′ ∧ dσ ′, r ′, r ′′ ∈ Z.

It is immediate to prove that these integrals are different from zero if and
only if r ′′ + r ′ = 0 : indeed, the coordinate transformation(

σ ′′ − σ ′
σ ′

)
=
(
1 −1
0 1

)(
σ ′′

σ ′

)

is unimodular, thus σ ′′ − σ ′ and σ ′ are still angles on the 2-dimensional
torus, so that∫ 2π

0

∫ 2π
0
K−s(σ ′′ − σ ′) ei(r ′′σ ′′+r ′σ ′)dσ ′′ ∧ dσ ′

=
∫ 2π
0

∫ 2π
0
K−s(σ ′′ − σ ′) eir ′′(σ ′′−σ ′)ei(r ′′+r ′)σ ′d(σ ′′ − σ ′) ∧ dσ ′,

from which the claim follows. A function of the type

f(zecc, zinc) e
i(r ′′σ ′′+r ′σ ′)
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is said to have characteristic r ′′ + r ′.
The following proposition is therefore evident.

Proposition 9.2 The product of functions of characteristic k and h, re-

spectively, has characteristic k + h, and any such function, multiplied by

K−s(σ ′′ −σ ′), survives the averaging process if and only if it has vanishing

characteristic. The functions F(k),Q(k) and F (k),Q(k) in (9.2.7) and (9.2.10)

clearly have characteristic k and −k, respectively.

It is usual to define the so-called Laplace’s coefficients

1

2
b(r)s (α)

def= 1

2π

∫ 2π
0
K−s(φ) cos(rφ)dφ, (9.2.11)

whose properties are well knownwhen γ = −1/2: see, for example, Brouwer
& Clemence (1961, pp. 471-ff and pp. 495-ff). Laplace’s coefficients can be
easily computed with a numerical integration; see LaplaceCoeff.m in the
LAPLACE folder.
At this point, it should be evident what strategy we will follow in calcu-

lating the average 
2γ.

(i) Substitute (9.2.9) and (9.2.10) into (9.2.8);

(ii) expand the integrand function in (9.2.8), which results in the sum of
expressions of the type

1

h!
γ(γ − 1) . . . (γ − h+ 1)Kγ−h(F(2) +F(1) +F(0) +F (1) +F (2))

h

× (1+Q(2) +Q(1) +Q(0) +Q(1) +Q(2)),

from which it is immediate to pick out and consequently delete the
terms with nonvanishing characteristic, thanks to Proposition 9.2: we
obtain a drastic simplification, thus clarifying the reason for the par-
ticular grouping in the definitions (9.2.7) and (9.2.10);

(iii) substitute (9.2.6) and expand, retaining the terms up to some fixed
infinitesimal order;

(iv) substitute the numerical value of Laplace’s coefficients (9.2.11).

At the end of the process we obtain 
2γ as an even, real-valued polyno-
mial in z′ecc, z

′
inc, z

′′
ecc, and z

′′
inc, and thus in the canonical Poincaré variables,

whose coefficients are linear combinations of Laplace’s coefficients (with,
eventually, coefficients that are polynomial functions of the ratio of the
semimajor axes).
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9.2.3 Linear Approximation: Lagrange–Laplace Theory

The procedure is easily generalized when N ≥ 3 planets are present. The
Hamiltonian (9.2.1) is replaced by

H = 1
2

∑
1≤j≤N

⎡⎣ p2j
mj

−G mj(m0 +mj)

qj

⎤⎦−G ∑
1≤h<k≤N

mhmk


hk

def= H0 − Hp,

pj =
∥∥∥ −→pj∥∥∥ , qj =

∥∥∥ −→qj∥∥∥ , 
hk =
∥∥∥ −→qh − −→

qk
∥∥∥ ,

where the indices 1 ≤ j,h, k ≤ N label the planets. Define the variables

zhecc =
χhecc + iηhecc√

Λh
, zhinc =

χhinc + iηhinc√
Λh

, h = 1, . . . , N,

and calculate the averaged Hp, which results in an even, real-valued poly-

nomial in χhecc, η
h
ecc, χ

h
inc, and η

h
inc.

In order to find the normal form of the nonintegrable Hamiltonian Hp,
one may apply the Birkhoff Theorem 3.10 on page 124, reducing the Hamil-
tonian to a polynomial in the action variables. However, if we stop at the
first terms quadratic in the canonical variables χ and η, the truncated Hamil-
tonian gives rise to linear, hence integrable equations.
Before we find its explicit expression, we will apply some elementary

symmetry considerations, known as “D’Alembert’s rules,” to prove that the
averaged and truncated quadratic Hamiltonian takes the form

(Hp)quad = 1
2
χt
ecc
Heccχecc +

1

2
ηt
ecc
Heccηecc +

1

2
χt
inc
Hincχinc +

1

2
ηt
inc
Hincηinc,

χ
ecc
=

⎛⎜⎜⎝
χ1ecc
...
χNecc

⎞⎟⎟⎠ , . . . ; Hecc,Hinc quadratic symmetric N ×N matrices.

Consequently, the system evolves like two N-dimensional anisotropic har-
monic oscillators, whose frequencies are given by the eigenvalues of Hecc
and Hinc.
Let us assimilate the ecliptic plane with the complex plane of the 2N

complex variables z. The perturbative Hamiltonian Hp is clearly invariant
with respect to the following group of transformations.

(i) Rotations about the vertical axis, orthogonal to the ecliptic plane. All
the 2N vectors z rotate in the plane of the same angle, so that Hp
must be a function only of their norms and of the scalar and vector
products.
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(ii) Reflectionswith respect to the real axis. The anglesΩ,ω, and hence�,
change sign, the vectors z are reflected with respect to the real axis,
and the scalar products do not change sign, contrary to the vector
products: therefore, Hp does not depend on the vector products.

(iii) Reflections of the orbits of the planets with respect to the ecliptic
plane. Ascending and descending nodes swap roles, Ω → Ω+π, ω→
ω+π, so that� stay unchanged, the vectors zinc change sign, contrary
to the vectors zecc: the perturbative Hamiltonian splits into the sum
H1(zecc)+H2(zinc). Taking into account that inHp only norms (χk)2+
(ηk)2 and scalar products χhχk + ηhηk appear, we get the result.

The explicit expression of Hecc and Hinc for N = 2 is deduced from the
Equations (9.2.9) of the previous subsection. We can write (now the overbar
means “complex conjugate”)( 


a′′

)2γ q′
a′
q′′

a′′
= Kγ (1+Q(0))+ γKγ−1 (F(0) +F(1)Q(1) +F (1)Q(1)

)
+ 1
2
γ(γ − 1)Kγ−2 · 2F(1)F (1) + . . . ,

where we have omitted all the terms with nonvanishing characteristic or of
order greater than 2. Moreover,

F(0) = F(1)F(X2)+ F(1)F(X2)+ (Z′′ −αZ′)(Z′′ −αZ′)+ 2F(V)F(V),
F(1) = F(1)(Z′′ −αZ′),

Q(1) = −1
2

(
z′′ecce

iσ ′′ + z′ecceiσ
′)
,

Q(0) = 1
4

(
z′′eccz

′
ecce

i(σ ′′−σ ′) + z′′eccz′ecce−i(σ
′′−σ ′)

)
, with

X2 = −1
4
|zecc|2 − 1

4
|zinc|2 , Z = −zecc, V = − i

2
zinc.

Take γ = −1/2 and average over σ ′′ − σ ′. From the elementary identity

b
(j)
s = (1+α2)b(j)s+1 −α

(
b
(j+1)
s+1 + b|j−1|s+1

)
,

we find

Hecc = 1
4
Gm

′m′′

a′′
a′

a′′

⎛⎝ −b(1)3/2/Λ′ b(2)3/2/
√
Λ′Λ′′

b(2)3/2/
√
Λ′Λ′′ −b(1)3/2/Λ

′′

⎞⎠ ,
Hinc = 1

4
Gm

′m′′

a′′
a′

a′′

⎛⎝ b(1)3/2/Λ
′ −b(1)3/2/√Λ′Λ′′

−b(1)3/2/√Λ′Λ′′ b(1)3/2/Λ
′′

⎞⎠ ,
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whose generalization to a genericN is straightforward: compare with equa-
tion (4) of Brouwer & Clemence (1961, page 509) or, for N = 4, with the file
NormalForm\Jovians.m in the LAPLACE program, variables Hecc and Hinc.
The twoN×N matrices are formed by merging all the 2×2 matrices relative
to all pairs of planets, getting

αik
def= min(ai, ak)
max(ai, ak)

, aik
def= max(ai, ak) with k ≠ i,

Hecc(i, i) = −1
4
Gmi

Λi

N∑
k=1

mk
αik
aik

b(1)3/2(αik),

Hecc(i, k) = 1
4
Gmimk√

ΛiΛk

αik
aik

b(2)3/2(αik),

Hinc(i, i) = −Hecc(i, i),

Hinc(i, k) = −1
4
Gmimk√

ΛiΛk

αik
aik

b(1)3/2(αik).

In Figure 9.10 the eccentricity and in Figure 9.11 the inclination of the four
Jovian planets in the linear approximation are plotted.
The N × N matrices Hecc and Hinc satisfy two remarkable properties.

The first one is well known and states that detHinc = 0, thus one of the
eigenfrequencies is null, corresponding to the fact that the planar motion,
where all the inclinations are vanishing, is a possible solution. To prove
it, define the matrix D = diag(

√
Λ1,

√
Λ2, . . . ,

√
ΛN). Then it is immediate to

check that the sum of the rows of DHinc (equivalently, of the columns of
HincD) is zero, which implies detDHinc = 0; since detD ≠ 0, the statement
follows.
The latter property is less known and was noticed by M. Herman in some

unpublished notes, as reported in Abdullah & Albouy (2001). Consequently,
the property is called Herman’s resonance (perhaps a bit improperly). The
diagonal entries of Hecc and Hinc differ only in sign, which entails the intrin-

sic fact that TrHecc+TrHinc = 0 or, equivalently, that the sum of all the 2N
eigenfrequencies is zero. Moreover, as shown in the same reference, fully
expanding Hp gives an infinite number of such relations. Unlike the first
property, no clear reason is evident for the validity of Herman’s resonance,
which appears ultimately somewhat mysterious.

9.3 The LAPLACE Program

The LAPLACE program computes numerically the dynamics of a generic so-
lar system, with a central massive star and at most 10 planets. The comput-
ing kernel is that of HNBODY: see Rauch & Hamilton (2004). The program
is organized in one window with four panels and some menus.
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Figure 9.10: Lagrange–Laplace linear theory (blue color): eccentricity of the four
Jovian planets. Compare with Figure 9.13.

9.3.1 First Panel: Initial Conditions

By default, mass values and initial conditions are adjusted on our solar
system, with 8 planets plus Pluto and one asteroid, but the user can choose
other values and even eliminate some planets, leaving blank the relative
mass field. The units of measure are: the AU (radius of the Earth orbit),
the year = 365.25 days, and the Sun’s mass. All angles are expressed in
degrees, with 1 deg = π/180 rad.

9.3.2 Second Panel: Integration

Clicking on “Integrate” starts the numerical integration. The user can choose
among three different methods: symplectic (default and strongly recom-
mended), Bulirsch–Stoer, and Runge–Kutta. The first method has a fixed
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Figure 9.11: Lagrange–Laplace linear theory (blue color): inclination of the four
Jovian planets. Compare with Figure 9.14.

integration step, chosen by the user along with the output step. The latter
two instead have an adaptive step, which automatically ensures a relative
accuracy= 10−12,while the output step is still fixed and chosen by the user.

9.3.3 Third Panel: Plot and Frequency Analysis

When the numerical integration process is completed, various fields of the
panel are enabled. In the two pop-up menus on the left the user can choose
the parameters to plot and the relative planet. If the box “User function”
is checked, the user will be prompted to choose a personal script: the file
AA_two_planets.m is provided as a template (see also below). Until the
button “Clear append” is clicked, the results of subsequent computations
are kept in memory and automatically added to the new graphical output.
The right side of the panel is devoted to the frequency analysis of the
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same planet displayed in the second pop-up menu on the left, and it is very
similar to the corresponding part in the first window of the KEPLER pro-
gram: see items (i) and (ii) at the end of Subsection 7.1.7. The three output
frequencies are relative to: semimajor axis-mean longitude, eccentricity-
longitude of perihelion and inclination-longitude of ascending node.

9.3.4 Fourth Panel: Frequency Modulation Indicator

When N planets are present, the action space is 3N-dimensional so that
one must pick out a 2-dimensional section plane. The FMI will be computed
taking all the actions fixed, with the exception of those spanning the grid on
the section plane. The four pop-up menus of the panel allow one to choose
the two planets and the corresponding two actions with their range, while
all the other actions will keep the constant value displayed in the first panel
“Initial conditions”. The two planets can be the same; consequently the two
actions must be different. The “step number” fields fix the dimension of
the rectangular grid on which the FMI is computed. The right side of the
panel is equal to the corresponding part in the third/fourth window of the
KEPLER program; see Section 7.3.

ξ1
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Figure 9.12: Action-angle variables for the planar planetary three-body. Left:
normal form output. Right: numerical output. The parameter values are: m0 =
1, m′ = 0.001, m′′ = 0.0002, a′ = 1, a′′ = 3, and Gtot = 0.98 · (L′ + L′′).

9.3.5 Menu

The menu of LAPLACE is very similar to that of KEPLER except for the
“Normal form”, which displays two windows. In “Global planar three-body”
the user may perform the computations described in Section 9.1: the top,
the left-bottom and the right-bottom pictures of Figures 9.6, 9.7, and 9.8
have been plotted with the command “Plot” of the panels “Vertical section”,
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Figure 9.13: “True” eccentricity of the four Jovian planets, computed numerically
(red color) with LAPLACE. Compare with Figure 9.10.

“Action-Angle dynamics (analytical)” and “Action-Angle dynamics (numer-
ical)”, respectively. “Jovian planets” performs the computations of the La-
grange–Laplace linear theory when Jupiter, Saturn, Uranus, and Neptune are
present and displays the result; see Figures 9.10 and 9.11.

9.4 Some Examples

In Figure 9.12 we compare the output given by themenu “Normal Form/Glo-
bal planar three-body” with that given by the numerical integration of LA-
PLACE. In the right picture, we have exploited the ability of the program
to plot a user function (here: AA_two_planets.m) keeping in memory the
sequential outputs of several computations. Taking into account only two
planets (whose names make no difference), first choose the two masses
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Figure 9.14: “True” inclination of the four Jovian planets, computed numerically
(red color) with LAPLACE. Compare with Figure 9.11.

m′,m′′ and the two semimajor axes a′, a′′. Then, having fixed the total
angularmomentumGtot = G′+G′′, calculate the list of the two eccentricities

E′ =
√
1− 1

4L′2
(Gtot − ξ1)2, L′ =

√
Gm0m′2a′,

E′′ =
√
1− 1

4L′′2
(Gtot + ξ1)2, L′′ =

√
Gm0m′′2a′′,

with the file GtotXi2ecc.m, letting ξ1 = G′′ − G′ vary. Lastly, insert the
values of the two eccentricities in the window of LAPLACE and start the
corresponding computations.
Figures 9.13 and 9.14 show the dynamical evolution of eccentricity and

inclination of the four Jovian planets. The integration has been performed
with LAPLACE on 2× 106 years, in absence of the other terrestrial planets.
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The outputmay be compared with that of the linear and approximate theory
of Lagrange–Laplace, showing a good agreement.

Figure 9.15: Some resonances in solar system; see the text.

Lastly, in Figure 9.15 we show two examples of how resonances are dis-
tributed in our solar system. In the computation of both pictures only the
four Jovian planets have been taken into account.
In the left picture we let the semimajor axes of Jupiter and Saturn vary

in the neighborhood of the true physical values, whereas all the other or-
bital parameters are kept fixed: the celebrated 2:5 resonance between the
revolution frequencies of the two planets is clearly visible; however, many
other thin resonances appear whose “dechiphering” is not easy.
In the right picture the resonance distribution in the asteroid belt is

explored. We fix the inclination of the test body to 2◦ and vary semimajor
axis and eccentricity, highlighting all the main, well-known resonances with
Jupiter. The most prominent are the 7:2, 3:1, 2:1, 5:3 resonances, located at
the 2.3, 2.5, 3.3, 3.7 values of the semimajor axis. Notice that their location
is determined essentially by the semimajor axis value, while a high value
of the eccentricity cause an enlargement and even an overlapping of the
resonance strips: this fact suggests that circular or almost circular orbits
are more stable.
The reader may carry out some interesting numerical experiments, com-

paring the time evolution of the orbit parameters of asteroids starting inside
and outside a resonance. For example, with the initial resonant value 2.5 of
the semimajor axis, the eccentricity of the asteroid undergoes remarkable
oscillations, reaching high values, about 0.25÷0.40 after 5×104÷105 years
and 0.50 after a fewmillion years, while starting with a semimajor axis equal
to the nonresonant value 2.45, the eccentricity excursion is bounded by the
0.06 value. This mechanism is very probably responsible for the presence
of the so-called Kirkwood gaps, since the elongated orbits of the resonant
asteroids can lead to a close encounter with Mars. The conjecture is con-
firmed by considering the resonance 5:2, to which corresponds a semimajor
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axis equal to 2.82 and a remarkable gap in the asteroidal distributions: the
eccentricity reaches very high values, about 0.75. In contrast, consider a
semimajor axis equal to 2.685 with its 11 : 4 resonance: the eccentricity is
somewhat stable, and in fact it is known that correspondingly there are not
any gaps.



CHAPTER 10

Final Remarks and Perspectives

There is nothing more practical
than a good theory.

— K. Lewin

The focus of this book is on theoretical and numerical investigations of
quasi-integrable Hamiltonian systems. The goal is to understand the quali-
tative and quantitative features of the relative dynamics, even for systems
with three or more degrees of freedom. By combining analytical, numerical,
and geometrical methods, in effect one can also grasp the geography of the
resonances, and hence the distribution of order and chaos.
In spite of our efforts to be exhaustive, several topics have surely been

omitted, some problems left unresolved, and interesting subjects left un-
developed. We quote a few of them.

Numerical Detection of the Frequency Modulation

As reported in Subsection 5.3.4, the modulation of the fundamental fre-
quencies is an indicator for the presence of a resonance. While this is a
well-established fact, its efficient numerical detection might be considered
as an open problem. The method we have proposed exploits an intrinsic
imprecision of the algorithm that computes the frequencies on tori but, as
such, produces some spurious phenomena, in particular, the ghost undula-
tions. For that, it would be preferable to develop a program that is able to
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numerically and directly recognize the typical spectrum of the frequency
modulation, as in (5.3.6) on page 162.

Arnold Diffusion

In Arnold (1964) a mechanism is described which underlies an extremely
slow diffusion along the resonances, and in Figure 8.15 a numerical example
of a such slow motion is exhibited. It seems likely that the mechanism
generating this latter is just that proposed by Arnold, but an explicit check
or an alternative explanation is lacking. Moreover, it is not clear why there
is a preferred direction in the diffusion.

Leaving an Angle in the Normalized Hamiltonian

In constructing the normal form for the perturbed Kepler problem, very
satisfying results have been obtained by leaving a permanent angle in the
normalized Hamiltonian, thus without completing the normalization pro-
cedure which would require the total elimination of the angles. We recall
that this allows us to get exhaustive information on the partially normal-
ized dynamics through geometrical tools. It could be that this strategy is
also effective in other cases, typically with other totally degenerate Hamil-
tonians.

Herman’s Resonance

While the property detHinc = 0, regarding the linearized planetary theory of
Lagrange–Laplace, is ultimately due to the conservation of the total angular
momentum, and thus to the rotational symmetry of the Hamiltonian, Her-
man’s resonance, stating that the sum of all the eigenfrequencies is zero,
appears somewhat mysterious. Notice that this latter property is true only

in the Keplerian case γ = −1/2, unlike the first one, which is valid for any γ.
The situation is strongly reminiscent of the Kepler problem, which admits a
further conservation law besides that of the angular momentum. If the Her-
man’s resonance would entail a new first integral in involution with the total
angular momentum, the averaged two-planet problem would be integrable
and the geometrical method of Section 9.1 extendible to 3-dimensional case.

Transition State Theory

Transition state theory has its origins in early twentieth-century studies
of the dynamics of chemical reactions, where it plays a key role. The ba-
sic idea is that the phase space can be partitioned into two volumes, the
first corresponding to reactants and the second to products. Chemists call
the boundary between these two regions the transition state. The rate of a
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chemical reaction is then discussed in terms of the flow across the transi-
tion state. These ideas can also be applied to problems in celestial mechan-
ics: the orbits used to design space missions or to study asteroid escape
also determine the ionization rates of atoms and chemical-reaction rates of
molecules.
The paradigm is an n-degrees-of-freedom Hamiltonian system with an

equilibrium point, the linearization about which has eigenvalues±λ, ±iωk,
k = 2, . . . , n, where λ,ωk ∈ R. Thus we are considering equilibrium points
of type: saddle, center,…, center. One can then show that, in the neighbor-
hood of the saddle point, the normal form of the Hamiltonian is

H = λq1p1 + 1
2

n∑
k=2

ωk(p
2
k + q2k)+ F1(q1p1,q2, . . . , qn,p2, . . . , pn)

+ F2(q2, . . . , qn,p2, . . . , pn),

where the functions F1 and F2 are at least of third order and take into ac-
count all the nonlinear terms; moreover, F1 = 0 when q1p1 = 0. The first de-
gree of freedom gives the two “reaction coordinates” while the other 2(n−1)
are the “bath coordinates.” The simple expression acquired by the Hamilto-
nian in the normal form coordinates enables one to construct trajectories
showing any possible behavior near the transition state. These trajectories
can then be visualized in the original coordinates; see Uzer, Jaffé, Palacián,
Yanguas & Wiggins (2002).
Two examples are relevant. The first regards the SQZc system with

Hamiltonian (8.1.1) on page 230, where we take E3 = 0 and E1 > 0. Indeed,
the system admits the equilibrium point

q1 = − 1√E1 , q2 = 0, q3 = 0,
p1 = 0, p2 = B√E1 , p3 = 0,

which is just of the type center, saddle, center; one can so study the hydro-
gen ionization in crossed electric and magnetic fields.
The latter example concerns the circular restricted three-body problem:

see the Hamiltonian (5.4.2) on page 171. The system possesses five equilib-
rium positions. Two of them, named L4 and L5, are linearly stable and can
be investigated with the program LAGRANGE; the other three, named L1, L2
and L3, are unstable of type center, saddle, center and are collinear with
the two primary bodies. Consider the case Sun-Jupiter-asteroid: L1 and L2
are very close to Jupiter and in order to cross Jupiter’s orbit, the asteroid
can pass only through a narrow bottleneck centered about the planet, thus
being forced to “ride” the chaos. We reach the same conclusion for the
Earth-Moon-spacecraft system; see Marsden & Shane (2005).

Final Remarks and Perspectives
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Having very briefly illustrated the key ideas of transition state theory,
it is tempting to try to investigate the quoted systems with the aid of the
methods described in the course of the book. However, this does not seem
straighforward, since the invoked methods and computer programs are not
well suited for studying such unstable equilibrium points, which, in some
sense, lie on the borderline of the applicability field. Therefore, it may be
that one must proceed to some adjustments of the code.

* * *

Having arrived at the end of the book, we conclude by expressing the hope to
have convinced the reader of the strength and effectiveness of perturbation
methods, and of how true is the saying that nothing is more practical than
a good theory.



APPENDIX A

What is in the CD?

Let us look through the CD and see how to use the files and programs. We re-
call that the CD can be downloaded as iso image from the publisher’s web-
site by entering the book’s ISBN (978-0-8176-8369-6) into http://extras.
springer.com/.

1) PhSpGeo.zip

This zipped file is the most important of the CD, since it contains the
five MATLAB programs POINCARE, HAMILTON, LAGRANGE, KEPLER and
LAPLACE.
Copy the zipped file on your hard disk, unzip, and put the whole folder

PhSpGeo where you wish but preserving the tree structure of the files. Start
MATLAB, navigate to the folder, e.g., KEPLER/Master and type <Kepler> in
the MATLAB editor: the relative graphical user interface will open; for the
other four programs act similarly. In the following pages the snapshots of
the graphical user interface of the five programs are reported.
The code of the programs is written under Windows XP and Windows 7

but has also been tested in some distributions of Linux, where nevertheless
the fonts of the graphical user interfaces sometimes appear out of propor-
tion. Try to fix the problem adjusting the numerical value of font_def, in
the second row of the ColorFont.m file or by opening, e.g., Kepler.fig
in Guide. In Linux be sure that the files AddedODEsolver/bin/main_fmft
and Laplace/xxx/hnbody (where xxx is Master or SlaveX) are checked as
executable.
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For some esoteric reason, a few labels of the graphical user interface ap-
pear incorrectly placed with certain versions of MATLAB. To fix the problem,
close and open again the program without closing MATLAB.
The code of the three ODE solvers “IRK_Gauss”, “Dop853”, and “Odex”

is not MATLAB native but requires a compilation. We provide the compiled
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files which should run under Windows32 and some distributions of Linux
(both 32 and 64 bit), but the user can also recompile the source code in
AddedODEsolver/bin/Source.
Bear in mind that, in the usually very demanding computations of the

FMI, the user can exploit a multicore machine. Indeed KEPLER, along with
the other four supplied programs, is able to parallelize the computations in
the following way. If you possess an n-core machine, in the folder Kepler
and beside the subfolder Master create n− 1 subfolders Slave1, Slave2,
et cetera, then copy the whole program KEPLER identically in every folder:
the n folders must differ only in the name. Start MATLAB then KEPLER
from the Master folder, set the parameters, and click on “File/Save setting
now”. Without closing, start a new instance of MATLAB, then KEPLER from a
folder SlaveX: you will notice that all the buttons of the computations are
disabled while the new button “Start Slave” appears. Click on this button
and KEPLER will wait for the start of the master. Redo for every slave, and
lastly go back to the master and click on “Calculate . . .”. The whole work
will be automatically shared among then cores. The final result is displayed
by the master. Warning: do not close any waitbar during the computation.
Alternatively, inWindows you can createn shortcuts on the desktop, one

for the master and the others for the slaves. In the Portraits folder the
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corresponding icons are available, in color and in a gray scale for Master
and Slaves, respectively. In the “Target” field of “Property” you will type
something like:

<C:\MATLAB\bin\matlab.exe /r Kepler>
and in the “Start in” field you will type the path of the work folder, for
example,

<C:\PhSpGeo\KEPLER\Master> or <C:\PhSpGeo\KEPLER\Slave1>.

2) Visualize_3D.zip

This zipped file contains theMATLAB program sliceomatic by Eric Ludlam
which allows you to visualize sets of 3-dimensional data. We provide three
examples, regarding the resonance distribution in the action space of the
SQZcrossed system of Figure 8.11 on page 249.
Copy the zipped file on your hard disk, unzip, and put the whole folder

Visualize_3D where you wish. Then start MATLAB, navigate to this folder
and type <Visualize_3D> in the MATLAB editor: you will be prompted to
load data for 3D visualization. Enter the SQZcrossed folder and one of
the three subfolders LGG3_Total, LGG3_Detail, LSD_Total, then double
click on Volume.mat: the graphical user interface of sliceomaticwill open
(see the figure) and you can begin the exploration by clicking on the slice
controllers, then moving the relative arrows.

3) Matlab figures

In the Matlab figures folder the reader may find some pictures in the
MATLAB format *.fig. Many of them are the original ones reported in the
book, as attested by the name itself; others are unpublished and concern
some details. In general they regard FMI computations which require very

long times of the order of many days or weeks, even with a multicore ma-
chine, and may serve as a base to the reader for further explorations. In
particular, with the “Mouse track” tool in the “Figure” menu one can record
the values of the coordinates of some points in the picture and use them
for the computation of the relative orbit, to which a frequency analysis can
be applied.

4) Euler.mw

The program EULER, written in the MAPLE language, calculates analytically,
thus exactly, the motion of a point under the gravitational force of two fixed
points. For a detailed study of the Euler problem with some examples of
the graphic output, see Cordani (2003). The exact integration is useful for
a comparison with the numerical integration of KEPLER in order to verify
its accuracy.
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5) Portraits

This folder contains the portraits of the great mathematicians mentioned
in the titles of the programs and the respective icons, both in color and in
gray scale.
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If one has no access to MATLAB

In case the reader does not have access to a MATLAB installation, we pro-
vide the compiled version of the five programs POINCARE, HAMILTON, LA-
GRANGE, KEPLER, and LAPLACE. Four of them are fully working, the excep-
tion being KEPLER which, requiring the symbolic toolbox, cannot be inte-
grally compiled. The user is not able to choose the perturbation, as with
the interpreted version, but must be content with the two supplied exam-
ples, which contain two fixed “hard wired” Hamiltonians. But if one has
occasional access to MATLAB, it is possible to recompile KEPLER with a per-
turbation chosen by the user. Alternatively, one can get the executable from
a colleague.
The compiled files are XXX.exe, where XXX is one of the five program

names, and run under Windows 7 or Windows XP. In order to run the
compiled programs, the user must first install (once and for all) a sort of
“scrambled” but free of charge MATLAB, double clicking on the file MCRIn-
staller.exe, which can be downloaded from the publisher’s website by
entering the book’s ISBN (978-0-8176-8369-6) into http://extras.sprin-
ger.com/

The five programs can be started with a double click on the file or by
typing their name in a DOS window. This latter possibility allows you to get
some extra useful information about the progress of the computation and
on how it is shared among the various cores.
It is mandatory to also preserve the file structure for the compiled ver-

sions; in particular, do not move the executables. For the rest, follow the
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same instructions already given for the interpreted version. We stress that
also with the compiled version the user can parallelize the work, sharing
the computation among several cores.
Lastly, we call attention to the files XXX.prj, which allow one again to

compile the five programs, obtaining in particular the version for Linux.
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