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Supervisor’s Foreword

I am very pleased to introduce this Ph.D. Thesis by Dr. Tongcang Li. Tongcang
was a graduate student under my supervision, and completed his Ph.D. in May
2011. He was the senior student on an experiment to study the motion of micron-
sized beads of glass held in optical tweezers. This system has provided spectacular
experimental results, and I credit Tongcang with the vision and the ability to pull it
off. We were able to resolve, for the first time, the instantaneous velocity of a
Brownian particle in air. In 1907, Albert Einstein analyzed this problem and
showed that such a measurement could be used to test the energy equipartition
theorem, one of the basic tenets of statistical mechanics. However, Einstein
concluded in his paper that the time-scale was too short to be measured in practice!
This prediction held for over 100 years, but Tongcang Li was able to meet the
challenge of Albert Einstein, and to measure the instantaneous velocity of a
Brownian particle. We used the velocity data to verify directly the energy equi-
partition theorem for a Brownian particle. The work has attracted great interest and
press, partly due to the historical challenge by Einstein, and also because it
addresses fundamental questions on statistical mechanics of small systems.

Following that work, Tongcang led an experiment to cool the center-of-mass
motion of a bead in vacuum close to the absolute zero of temperature. This looks
like an ideal system to test quantum mechanics at the boundary between the
microscopic and macroscopic, and answer fundamental questions about the col-
lapse of the wave function due to the environment.

In parallel, Tongcang started our efforts to observe the instantaneous velocity of
a bead in water, and we expect to be able to complete this work in the near future.
I believe that this experiment will serve as a new testing ground for statistical
mechanics on short time scales. It will also be a new probe into the nature of
complex fluids, such as water, a topic of great interest to chemists and biologists.

In recognition of these accomplishments, Tongcang was awarded a Biedenharn
Graduate Fellowship in the physics department. He also won the Jean Bennett
Memorial Student Travel Grant from the Optical Society of America Foundation
(the only one out of 80 applicants), and the Chinese Government Award for
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Outstanding Self-financed Students Abroad. Tongcang was recognized by the UT
Physics Department outstanding Ph.D. award.

In summary, this Ph.D. Thesis by Tongcang Li is simply outstanding, and is a
worthy addition to the Springer Thesis Series.

Austin, August 2012 Prof. Dr. Mark Raizen
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Chapter 1
Introduction

1.1 Macroscopic Quantum Mechanics

It is well known that the dynamics of microscopic particles such as photons, electrons
and atoms follow quantum mechanics, while the dynamics of macroscopic objects
such as ping-pong balls follow classical mechanics. Why is there such a transition?

A simple explanation for the absence of quantum behavior of macroscopic objects
is that the de Broglie wavelength λ of an object is inversely proportional to the
momentum p of the object, i.e. λ = h/p, where h is the Planck constant. Macro-
scopic objects usually have large momenta, thus their de Broglie wavelengths and
quantum behaviors are too small to be observed.

Since p = Mv, where M is the mass of an object and v is the velocity of
the object, we can increase the de Broglie wavelength of an object by reducing its
velocity. Thus macroscopic objects should behave quantum mechanically if we can
reduce their kinetic energies to low enough values. An important characteristic of
quantum mechanics is the possibility of superposition of two spatially distinct states.
Creation of quantum superpositions of macroscopic objects (“Schrödinger cats”) will
provide opportunities to study untested regimes of quantum mechanics.

One additional motivation to study the macroscopic quantum mechanics is that
the apparent conflict between general relativity and quantum mechanics remains
one of the unresolved mysteries of the physical world [1, 2]. According to recent
theories [2–4], this conflict results in gravity-induced quantum state reduction of
“Schrödinger cats”. It is argued that the perturbing effect of the mass distribution on
the space-time structure leads to an essential uncertainty in the energy of a superposed
state. So a macroscopic quantum superposition of two different mass distributions is
intrinsically unstable.

The finite lifetime of a quantum superposition due to the gravity-induced state
reduction is on the order of τ = �/�E , where � is the Planck constant/2π. �E is
the gravitational self-energy of the difference between the mass distributions of the
two superposed states [2, 5, 6]:

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, 1
Springer Theses, DOI: 10.1007/978-1-4614-6031-2_1,
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�E = ξG
∫ ∫ [ρ(x) − ρ′(x)] · [ρ(y) − ρ′(y)]

|x − y| dxdy, (1.1)

where G is Newton’s gravitational constant, ρ and ρ′ are the mass densities of two
members of the superposed state. ξ is a dimensionless number that represents the
strength of the quantum state reduction process, which is expected to be on the
order of 1. The lifetime τ of a quantum superposition of two separated states of a
1-nm-radius particle is on the order of 1013 s, which is too long to be measured in
an experiment. It is on the order of 10−17 s for a 1 mm particle, which is too short
to be measured. For a 1 µm particle, the lifetime of a spatially separated quantum
superposition is on the order of 10−2 s, which seems realistic to be measured in an
experiment.

In order to observe quantum behaviors in a mechanical oscillator, we need to cool
the oscillator significantly. The energy of the quantum states of a mechanical oscilla-
tor is quantized in units of ��M , where �M is the angular frequency of the oscillator.
The mean thermal occupation number (phonon number) is 〈n〉 = kB T/��M , where
kB is the Boltzmann constant, and T is the temperature of the oscillator. At room
temperature, we have 〈n〉 � 1 for almost all mechanical oscillators. We need 〈n〉 < 1
for the oscillator to have a high probability to be in the quantum ground state and to
have its dynamics be dominated by quantum mechanics.

In recent years, great progress has been made in cooling mechanical oscillators
towards their quantum mechanical ground states [7–9]. The thermal occupation num-
ber of a 2.7 kg pendulum mode around 130 Hz was reduced from about 5 × 1010

at room temperature to about 234 at an effective temperature of 1.4µK by feedback
cooling [10]. Combining conventional cryogenic cooling and laser cavity cooling,
the thermal occupation number of a mechanical deformation mode of a deformed
microsphere around 100 MHz was reduced to about 40 [11], the thermal occupation
number of the fundamental mechanical mode of a micromirror (the end mirror of
a Fabry-Pérot cavity) at 945 kHz was reduced to about 30 [12]. Remarkably, quan-
tum ground-state cooling has been achieved for a dilatational resonant mode of a
membrane at 6.2 GHz by conventional cryogenic cooling [13], and for the funda-
mental mechanical mode of a superconducting aluminium membrane at 10.56 MHz
by microwave cavity cooling [14].

These results are important steps towards the creation of Schrödinger cats in the
laboratory, and the study of their destruction by decoherence. A direct test of the
gravity-induced state reduction scenario may therefore be within reach. However, a
recent analysis shows that for these mechanical oscillators, quantum superpositions
are destroyed by environmental decoherence long before gravitational state reduction
takes effect [6]. An alternate candidate may be a Bose-Einstein condensate (BEC)
of ultracold atoms in vacuum. It is well isolated from the thermal environment.
However, its mass density is too small. Even worse, the atoms in a Bose-Einstein
condensate are only weakly interacting. They do not move together. Thus only mass
fluctuation, not total mass, contributes to the �E . Theoretical calculation shows
that a Bose-Einstein condensate formed from 1029 atoms is required to study the



1.1 Macroscopic Quantum Mechanics 3

gravity-induced state reduction [6]. This number is too large to be achieved in the
foreseeable future.

Chapters 3 and 6 of this dissertation describe our experimental efforts on optical
trapping and cooling of glass microspheres in vacuum [15]. An optically trapped
microsphere in vacuum provides an ideal candidate for studying the interface between
quantum mechanics and general relativity, and for studying objective collapse models
of the wavefunction [16]. It is nearly perfectly isolated from the thermal environment,
and allows quantum ground state cooling from room temperature [17–19]. The mass
density of a glass microsphere is many orders larger than that of a BEC, and atoms
contained in the microsphere move together as a whole. We have been able to trap
glass microspheres in vacuum with high oscillation frequencies, and cool their center-
of-mass motion from room temperature to a minimum temperature of about 1.5 mK.

1.2 Instantaneous Velocity of Brownian Motion

Brownian motion is the apparently random movement of particles suspended in a
fluid (liquid or gas). It was discovered by Robert Brown (1773–1858) in 1827 when
he used a simple microscope (a double convex lens with a focal length of about
0.8 mm) to study the action of particles contained in the grains of pollens [20]. The
size of those particles was about 5µm. He “observed many of them very evidently in
motion”. He also observed the same motion with powders of many other materials,
such as wood and nickel, suspended in water.

Persistence and randomness are two key characteristics of Brownian motion. The
trajectories of a Brownian particle are classic examples of fractals. They are com-
monly thought to be continuous everywhere but not differentiable anywhere. Since
its trajectory is not differentiable, the velocity of a Brownian particle is undefined.

At short time scales, however, the dynamics of a Brownian particle is expected to
be dominated by its inertia and its trajectory cannot be self-similar. This is termed
“ballistic Brownian motion” to be distinguished from the common “diffusive Brown-
ian motion”. Figure 1.1 shows a 2D trajectory of a Brownian particle. The black curve
is assumed to be a true trajectory of the particle. Red dots are measured positions.
In Fig. 1.1a, the sampling rate is too small to measure the velocity of the Brownian
particle. The measured trajectory (red curve) is completely different from the true
trajectory, and appears chaotic. It is impossible to obtain the velocity of the particle
from the measured trajectory in Fig. 1.1a. In Fig. 1.1b, the sampling rate is much
larger. Now the measured trajectory is very close to the true trajectory of the parti-
cle. If the measured displacement of the particle is ��x(t) during time �t , then the
velocity of the particle is approximately �v = ��x(t)/�t .

In 1900, F. M. Exner made the first quantitative study of Brownian motion by mea-
suring the velocity of the Brownian motion of particles suspended in water [21, 22].
He found that the measured velocity decreased with increasing particle size and
increased with increasing water temperature. However, his measured velocities of
Brownian particles were almost 1000-fold smaller than those predicted by the energy
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(b)(a)

Fig. 1.1 A 2D trajectory of a Brownian particle. The black curve is assumed to be a true trajectory
of the particle. Red dots are measured positions, and red curves are measured trajectories. The
sampling rate of b is 10 times of that of a

equipartition theorem [21]. The reason of this discrepancy was not understood until
A. Einstein developed a kinetic theory about Brownian motion in 1905 [23].

In 1907, Einstein published a paper entitled “Theoretical observations on the
Brownian motion” in which he considered the instantaneous velocity of a Brownian
particle [24, 25]. Einstein showed that by measuring this quantity, one could prove
that “the kinetic energy of the motion of the centre of gravity of a particle is inde-
pendent of the size and nature of the particle and independent of the nature of its
environment”. This is one of the basic tenets of statistical mechanics, known as the
equipartition theorem. However, Einstein concluded that due to the very rapid ran-
domization of the motion, the instantaneous velocity of a Brownian particle would
be impossible to measure in practice [24, 25]:

“We must conclude that the velocity and direction of motion of the particle will
be already very greatly altered in the extraordinary short time θ,1 and, indeed, in
a totally irregular manner. It is therefore impossible—at least for ultramicroscopic

particles—to ascertain
√

v2 by observation.”
The resolution required to measure the instantaneous velocity is striking. For a

1µm diameter silica (SiO2) sphere in water at room temperature, the momentum
relaxation time is about 0.1µs and the root mean square (rms) velocity vrms =√

kB T/M is about 2 mm/s in one dimension. To measure the instantaneous velocity
with 10 % uncertainty, one would require 2 pm spatial resolution in 10 ns.

Recent experiments on Brownian motion in liquid [26–29] and gaseous environ-
ments [30–32] with fast detectors have observed nondiffusive motion of a Brownian
particle. However, no previous experiment has been able to observe the instantaneous
velocity of a Brownian particle and verify the energy equipartition theorem directly.

Chapter 4 of this dissertation describes our efforts to measure the instantaneous
velocity of a Brownian particle suspended in air [33]. Due to the lower viscosity of gas
as compared to liquid, the momentum relaxation time τp of a particle in air is much

1 In Einstein’s paper, θ was defined as the time in which the velocity falls to a tenth of its original
value. θ = 2.30 τp , where τp is the momentum relaxation time of the particle. Einstein mistakenly
obtained θ = 330 ns for a 50-nm-diameter platinum nanosphere in water. The correct value should
be θ = 6.8 ns for his example.

http://dx.doi.org/10.1007/978-1-4614-6031-2_4
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larger. This lowers the technical demand for both temporal and spatial resolution. The
main difficulty of performing high precision measurements of a Brownian particle in
air, however, is that the particle will fall under the influence of gravity. We overcome
this problem by using optical tweezers to simultaneously trap and monitor a silica
bead in air and vacuum, allowing long duration ultra-high-resolution measurements
of its motion.

We have successfully measured the instantaneous velocity of a Brownian particle
in air. We used the velocity data to directly verify the Maxwell-Boltzmann velocity
distribution, and the equipartition theorem for a Brownian particle. The ability to
measure instantaneous velocity enables new fundamental tests of statistical mechan-
ics of Brownian particles [34–37]. It is also a necessary step towards cooling of a
particle to the motional quantum ground state in vacuum.

We are currently building a new detection system to measure the instantaneous
velocity of a Brownian particle in water (Chap. 5). In contrast to air, the water has
significant inertia and hydrodynamic memory effects [26, 29], which may cause
deviations from the energy equipartition theorem.

1.3 Contents of this Dissertation

Chapter 2 introduces the basic principle of optical tweezers, and the differences
between trapping microspheres in air and in water. Chapter 3 provides the details of
launching glass microspheres to air, and trapping microspheres in air and vacuum
with a counter-propagating dual-beam optical tweezer. We also describe the vacuum
system and the first generation of our detection system. Chapter 4 covers the theory
of Brownian motion in air at short time scales, a home-built detection system with
ultrahigh resolution, and the results of our measurement of the instantaneous velocity
of a Brownian particle in air. Chapter 5 discusses the motivation and challenges of
measuring the instantaneous velocity of a Brownian particle in water. It also presents
some of our on-going efforts on developing a new detection system to meet the
challenges. Chapter 6 presents different approaches to cool the center-of-mass motion
of an optically trapped microsphere in vacuum, and the results of 3D optical feedback
cooling. We also discuss the trapping lifetime of optically trapped microspheres in
vacuum. Finally, Chap. 7 discusses a scheme to perform 3D ground-state cooling of
a optically trapped nanosphere with a single cavity, and the potential applications of
cooled microspheres in vacuum.
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Chapter 2
Physical Principle of Optical Tweezers

The radiation pressure of light was first deduced theoretically by James C. Maxwell
in 1873 based on his electromagnetic theory [1, 2], and measured experimentally by
Lebedev [3], and Nichols and Hull in 1901 [4]. The radiation pressure force exerted
on a totally reflecting mirror by an incident beam of light perpendicular to the mirror
is Fmirror = 2P/c, where P is the power of the light and c is the speed of light in
vacuum [5]. The factor of 2 in the formula is due to reflection. The force is about 7 nN
for 1 W of light, which is tiny and had almost no application before the invention of
the laser. In contrast to classical light sources, a laser beam can be strongly focused
onto a small particle with a diameter on the order of 1 µm. Due to the small mass
of the particle, the radiation force of a 1 W laser can be 105 times larger than the
gravitational force on the particle, and can therefore have huge effects on the motion
of the particle.

In 1970, Arthur Ashkin published a seminal paper [6] demonstrating that one could
use focused laser beams to accelerate and trap micrometer-sized transparent particles.
Optical levitation of oil droplets and glass microspheres in air [7] and vacuum was
demonstrated several years later [8]. The laser radiation pressure was soon used to
cool and trap atoms [9–12], leading to dramatic breakthroughs in atomic, molecular
and optical physics, including a new generation of atomic clocks, and realization of
Bose–Einstein condensation and degenerate Fermi gas. In 1986, Ashkin et al. [13]
observed stable trapping of dielectric particles with the gradient force of a strongly
focused laser beam. This technique was soon used to trap and manipulate viruses
and bacteria [14, 15], and became a standard tool in biophysics [5].

In this chapter, we will first explain the principle of optical trapping of microspheres
with ray optics, which is valid when the size of the microspheres is much larger than
the wavelength of the trapping laser. This will be followed by theoretical calculations
of the optical forces on a particle with the Rayleigh approximation, and numerical
results of Lorentz-Mie theory. The differences between trapping microspheres in air
and in water will be discussed.

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, 9
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2.1 Ray Optics Approximation

When the size of a microsphere is much larger than the wavelength of the trapping
laser (usually R > 10λ0, where R is the radius of the microsphere and λ0 is the
wavelength of the laser in vacuum), the optical forces on the microsphere can be
calculated by ray optics [16].

A qualitative view of optical trapping of microspheres in the ray optics regime is
shown in Fig. 2.1 [13, 16]. If we neglect surface reflection from the microsphere, then
the microsphere will be trapped at the focus of the laser beam as shown in Fig. 2.1b.
If the microsphere moves to the left of the focus (Fig. 2.1a), it will deflect the laser
beam to the left and thus increase the momentum of photons to the left. The counter
force from the deflected photons will push the microsphere to the right, i.e. back to
the focus of the laser beam. If the microsphere moves along the propagation direction
of the laser beam (Fig. 2.1c), it will focus the laser more strongly and thus increase
the momentum of photons along the propagation direction. The counter force from
the deflected photons will push the microsphere back to the focus of the laser beam.
The same thing will happen if the microsphere moves away from the focus in other
directions. Thus a focused laser beam forms a stable optical trap in 3D.

The above discussion neglected surface reflection from the microsphere. In reality,
we have to consider the effect of this surface reflection. The photons reflected back by
the surface of a microsphere will push the microsphere forward. If this force is larger
than the restoring force due to refraction (Fig. 2.1c), the microsphere will be pushed
away from the focus, and thus cannot be trapped. The surface reflection depends
on the relative refractive index of the microsphere and the medium m = n p/nmd ,
where n p is the refractive index of the microsphere and nmd is the refractive index
of the medium. Larger m implies more surface reflection, and thus greater difficulty
in trapping the microsphere with an optical tweezer [17]. m is about 1.10 for a silica
microsphere (nsilica = 1.46) in water (nwater = 1.33), and is about 1.46 for a silica
microsphere in air (nair = 1.00) (see Table A.1 for more information). Thus it is
more difficult to trap microspheres in air than in water.

To increase the restoring force, the laser beam should be strongly focused by a
high numerical aperture (NA) objective lens. The typical NA of objective lenses used
for creating optical tweezers is about 1.2 and 0.95 in water [13, 17] and air [18],
respectively.

(a) (b) (c)

Fig. 2.1 Qualitative view of optical trapping of dielectric spheres. a Displays the force on the
particle when the particle is displaced laterally from the focus. b Shows that there is no net force
on the particle when the particle is trapped at the focus. c Displays the force on the particle when
the particle is positioned above the focus
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2.2 Rayleigh Approximation

If the size of a nanosphere (microsphere) is much smaller than the wavelength of the
trapping laser (usually R < λ0/10), the nanosphere can be approximated as a dipole.
In this regime, the optical force on the nanosphere can be calculated analytically with
the Rayleigh scattering theory [13, 19]. Here we will calculate the optical forces in
the Rayleigh regime following the formulas of Ref. [19].

We consider a nanosphere with radius R and a refractive index n p being illumi-
nated by a laser beam propagating along the z axis in the positive direction, as shown
in Fig. 2.2. The power of the laser beam is P . The refractive index of the medium
in which the nanosphere is suspended is nmd . The laser beam is a linearly polarized
Gaussian beam (TEM00) with beam waist radius ω0 at the focus. The polarization
direction of the electric field of the laser is parallel to the x axis. The center of the
laser beam is located at the origin, and the center of the nanosphere is at �r = (x, y, z).

The wavefront of a Gaussian beam is flat at the focus, and its waist (1/e2 radius)
spreads in accordance with [20]:

ω(z) = ω0

⎡
⎣1 +

(
λmd z

πω2
0

)2
⎤
⎦

1/2

, (2.1)

where λmd = λ0/nmd is the wavelength of the laser in the medium.
The Rayleigh range (zR), defined as the distance over which the beam radius

spreads by a factor of
√

2, is given by

zR = πω2
0

λmd
. (2.2)

The intensity distribution of the Gaussian beam is

x

y

z

(propagation axis)rLaser beam

Fig. 2.2 Schematic of a nanosphere near the focus of a laser beam
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I (x, y) = I0e−2(x2+y2)/ω2 = 2P

πω2 e−2(x2+y2)/ω2
, (2.3)

where ω = ω(z) and P is the power of the laser beam.
The numerical aperture (1/e2 points in k-space) of a Gaussian beam is

N A = λ0

πω0
= nmd

λmd

πω0
. (2.4)

The optical force of the focused laser beam on the nanosphere can be separated into
two components: the scattering force �Fscat (�r) which is proportional to the intensity
of the laser, and the gradient force �Fgrad(�r) which is proportional to the gradient
of the intensity of the laser. The scattering force is a nonconservative force and the
gradient force is a conservative force. The gradient force forms a trapping potential
for the nanosphere, and the scattering force tends to push the nanosphere out of
the trap. In order to form a stable trap, the gradient force should be lager than the
scattering force.

The scattering force of the laser on a nanosphere is [19]:

�Fscat (�r) = ẑ(
nmd

c
)Cscat I (�r) = ẑ

128π5 R6

3cλ4
0

(
m2 − 1

m2 + 2

)2

n5
md I (�r), (2.5)

where c is the speed of light in vacuum and Cscat is the scattering cross section.
Because of the larger relative refractive index m, the scattering force on a nanosphere
in air is about 4.2 times greater than the scattering force on the same nanosphere in
water with the same laser intensity. The number of scattered photons per second is

Nscat = λmd

h
| �Fscat |, (2.6)

where h is the Planck constant.
The gradient force on the nanopshere is [19]:

�Fgrad(�r) = [ �p(�r , t) · �] �E(�r , t) = 2πnmd R3

c

(
m2 − 1

m2 + 2

)
� I (�r), (2.7)

where �p(�r , t) is the induced dipole of the nanosphere due to the instantaneous elec-
tric field ( �E(�r , t)) of the laser. The gradient force forms a trapping potential:

V (�r) = −2πnmd R3

c

(
m2 − 1

m2 + 2

)
I (�r). (2.8)

The total force on the nanosphere is �F(�r) = �Fscat (�r) + �Fgrad(�r). The minimum
force along the z axis Fmin

z = min (Fz(�r)) must be negative in order to form a stable
trap. Otherwise the force of the laser will always push the nanosphere forward and
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there will be no trap. Because the scattering force is proportional to R6 while the
gradient force is proportional to R3, the scattering force decreases much faster than
the gradient force when the size of the nanosphere decreases. Thus it is easier to
achieve a negative Fmin

z for a small nanosphere than a large particle.
In order to trap a nanosphere stably, the well depth should be at least 10 times

larger than the average kinetic energy of the nanosphere. This is due to the fact that
the kinetic energy of a nanosphere follows the Maxwell–Boltzmann distribution at
thermal equilibrium. The nanosphere has a significant probability for its instanta-
neous kinetic energy to be much larger than its average kinetic energy. According
to the energy equipartition theorem, the average kinetic energy of a nanosphere is
kB T/2 in each direction, where kB is the Boltzmann constant and T is the temper-
ature of the medium. While the average kinetic energy is independent of the size of
the nanosphere, the well depth of the trapping potential decreases as the size of the
particle decreases. Thus it is difficult to trap a nanosphere if its size is too small.

Fig. 2.3 shows the calculated potentials and forces on a silica nanosphere in air with
a focused laser beam. Since the refractive index of air is very close to the refractive
index of vacuum, the potential and force on a nanosphere in air is practically the same
as that in vacuum. For the calculations yielding Fig. 2.3, the wavelength of the laser
is 1064 nm, the power of the laser is 200 mW, and the waist of the laser at the focus
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is 1.5 µm, corresponding to NA = 0.22. The Rayleigh range of the laser is 6.6 µm.
The diameter (D = 2R) of the nanosphere is 50 nm. The calculated well depth of
the trap is 367 K. The laser will therefore only be able to trap a 50 nm nanosphere
at a temperature much lower than room temperature. The potential is approximately
harmonic near the bottom of the trap. The oscillation frequency is about 42 kHz in
the radial direction and 6.7 kHz in the axial direction for a 50 nm nanosphere trapped
near the bottom of the potential. The scattering force is zero in the radial direction
(Fig. 2.3c) and is positive along the axial direction (Fig. 2.3d). The gradient force
is negative at positive coordinates, and positive at negative coordinates. Thus it will
always pull back the nanosphere to the center of the trap.

Fig. 2.4 shows the calculated potentials and forces on a silica nanosphere in a
laser beam with a much smaller waist. The waist of the laser beam is 0.5 µm, which
corresponds to NA = 0.68. Other conditions are the same as in Fig. 2.3. Because
of the smaller waist, the well depth becomes large enough (3310 K) to trap a 50 nm
nanosphere at room temperature. The trapping frequency is about 376 kHz in the
radial direction and 180 kHz in the axial direction. The scattering force is negligible
compared to the gradient force. Comparing Figs. 2.4 and 2.3, it is clear that a laser
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beam focused by an objective lens with a larger NA is much better for trapping
nanospheres.

2.3 Generalized Lorentz-Mie Theory

In most experiments with optical tweezers, the sizes of the dielectric particles are
comparable with the wavelength of the trapping laser (R ∼ λ0). In this case, neither
ray optics nor the Rayleigh approximation is appropriate. Instead the electromagnetic
theory of light has to be used. For optical trapping of homogeneous and isotropic
microspheres, one can use the generalized Lorenz-Mie theory. The mathematical
calculation of the generalized Lorenz-Mie theory is quite complex. Here we will
only introduce this method briefly, and use the computational toolbox developed
by Nieminen et al. [21] to obtain some numerical results of the optical force on a
microsphere.
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The optical force on a microsphere comes from the momentum of photons (elec-
tromagnetic field) from a laser. It can be obtained by calculating the change of the
momentum of the electromagnetic field scattered by the microsphere. A natural
choice of coordinate system for calculating the light scattering by a micropshere is
spherical coordinates (r ,θ,φ) centered on the trapped microsphere. The incoming and
outgoing fields can be expanded in terms of incoming and outgoing vector spherical
wavefunctions [21]:

Ein =
∞∑

i=1

i∑
j=−i

ai j M
(2)
i j (kr) + bi j N

(2)
i j (kr), (2.9)

Eout =
∞∑

i=1

i∑
j=−i

pi j M
(1)
i j (kr) + qi j N

(1)
i j (kr), (2.10)
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where M(1)
i j and N(1)

i j are outward-propagating TE and TM multipole fields, and M(2)
i j

and N(2)
i j are the corresponding inward-propagating multipole fields.

The optical force on the microsphere along the axial direction is [21]:

Fz = 2nmd P

cS

∞∑
i=1

i∑
j=−i

j

i(i + 1)
Re(a∗

i j bi j − p∗
i j qi j )

− 1

i + 1

[
i(i + 2)(i − j + 1)(i + j + 1)

(2i + 1)(2i + 3)

]1/2

× Re(ai j a
∗
i+1, j + bi j b

∗
i+1, j − pi j p∗

i+1, j − qi j q
∗
i+1, j ), (2.11)
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where

S =
∞∑

i=1

i∑
j=−i

(|ai j |2 + |bi j |2). (2.12)

Figure 2.5 shows the calculated optical forces on a microsphere in water from a
laser beam focused by objective lenses with three different NA’s. The wavelength
of the laser is 1064 nm, the power of the laser is 100 mW, and the diameter of the
microsphere is 3 µm. The optical forces along the radial direction are similar for
all three NA’s (NA = 0.85, 1.0, 1.25) as shown in Fig. 2.5b. On the other hand, the
optical forces along the axial direction are very different for different NA’s. This is
because the scattering force is only along the axial direction. The microspheres will
be trapped at positions where the total optical force changes its sign. The scattering
force affects the trapping position (Fig. 2.5a).

Figure 2.6 shows the calculated optical forces on microspheres in air exerted by
a laser beam focused by an objective lens with NA = 0.95. The maximum value of
the NA for an objective lens in air is 1.0, while it is 1.33 for an objective lens in
water. Because of a larger relative refractive index in air than in water, the scattering
force on a microsphere in air is much larger than that in water. This makes Fig. 2.6
appear very different from Fig. 2.5. The optical forces along the axial direction are
asymmetric, because the scattering forces are in the forward direction.

Figure 2.7 shows more calculation results of optical forces on microspheres in air
along the axial direction. For a D = 3.0 µm microsphere (Fig. 2.7a), the minimum
axial force (Fmin

z ) is positive when NA = 0.85 or NA = 0.9, and is only slightly
negative when NA = 0.95. Thus a laser beam focused by an objective lens with
NA less than 0.95 can not trap a 3 µm silica microsphere. The situation becomes
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better for smaller microspheres. The minimum axial force is negative for a 0.5 µm
microsphere in a laser beam focused by objective lenses with all three different NA’s
(Fig. 2.7d).

The minimum axial forces on a microsphere in air as a function of the diameter of
the microsphere are shown in Fig. 2.8. The minimum forces oscillate as the diameter
of the microsphere changes. This is because of the interference between the scattered
light and un-scattered light. The oscillation period is about half the wavelength of the
laser inside of the microsphere, which is λ/(2n p) = 364 nm. A microsphere can not
be trapped if the minimum force is positive. For NA = 0.85, only microspheres with
certain diameters can be trapped. This serves as a selection process and can be used
for sorting microspheres. The size distribution of the trapped microspheres will be
different from the size distribution of the microspheres before trapping. For example,
if the microspheres prior trapping have a large diameter distribution ranging from 0.7
to 1.7 µm, the diameter of microspheres trapped by a NA = 0.85 laser will always
be about 1.4 µm.
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Chapter 3
Optical Trapping of Glass Microspheres
in Air and Vacuum

Optical levitation of dielectric particles in air by an upward-propagating laser beam
was first demonstrated by Ashkin and Dziedzic in 1971 [1]. A few years later, optical
levitation of microspheres in vacuum at pressures down to 10−6 torr was achieved
[2]. An optical levitation trap is formed by the balance between the scattering force
from an upward laser and the gravitational force on a particle. The trapping fre-
quency of an optical levitation trap is usually very small (about 20 Hz) [2]. Optical
trapping of a dielectric particle in air with the gradient force of a single laser beam
was first demonstrated in 1997 [3], 11 years after the invention of the single beam
gradient force optical trap in water [4]. There was no report on optical trapping of a
microsphere in vacuum by a single beam gradient force trap (without the help of the
gravitational force) before this thesis.

Optical trapping of a microsphere in air with the optical gradient force is much
more difficult than optical trapping of a microsphere in water [5]. First, the scattering
force on a microsphere from a laser beam is much larger in air than that in water,
because of the larger relative refractive index of a microsphere in air (m = 1.46)
than that in water (m = 1.1). There will be no stable optical trap if the scattering
force is larger than the gradient force, as discussed in detail in Chap. 2. Second,
microspheres in air will fall rapidly due to the influence of gravity. On the other
hand, microspheres in water can be suspended for a long time. In air, we have to
launch a lot of microspheres to air first and capture one of them by an optical trap
passively. In water however, we can move a microsphere to the focus of a laser beam
(by moving the water chamber with a translation stage) and trap it actively.

In this chapter we will first describe the method used to launch microspheres
into air; we will then show our results of trapping microspheres in air and vacuum.
Finally, we will describe the structure of our vacuum system.

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, 21
Springer Theses, DOI: 10.1007/978-1-4614-6031-2_3,
© Springer Science+Business Media New York 2013
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3.1 Launching Microspheres

The silica (SiO2) microspheres (bought from Bangs Laboratories, Inc.) are initially
stuck on a glass surface and with each each other by the van der Waals’ (attractive)
force. The minimum required force to pull a microsphere off from a surface is called
the “pull-off force”. The pull-off force between a glass microsphere and a flat glass
surface is predicted by the model of Derjaguin, Muller, and Toporov (DMT) to be
[6, 7]:

Fsphere− f lat = 4πRγ, (3.1)

where R is the radius of the microsphere and γ the effective solid surface energy.
The pull-off force between two identical glass microspheres is

Fsphere−sphere = 2πRγ, (3.2)

which is half of the pull-off force between a microsphere and a flat surface.
The pull-off force between two 1 µm-diameter silica microspheres is measured to

be about 88 nN [7], and the pull-off force between a 1 µm-diameter silica microsphere
and a flat silica surface is about 176 nN. The gravitational force on a 1 µm-diameter
silica microsphere is only about 10 fN, and the maximum force from a typical optical
tweezer is about 0.1 nN. Thus the gravitational force and a typical optical force are
too small to pull off a microsphere from a glass surface. In our experiment, we launch
microspheres to air by ultrasonic vibration. The required acceleration to break the
van der Waals’ bond between a microsphere and a flat surface is:

a = Fsphere− f lat

M
= 4πRγ

4
3πR3ρbead

∝ 1

R2 , (3.3)

where M is the mass of the microsphere and ρbead the density of the microsphere.
The smaller the microsphere, the larger acceleration is required to break the van der
Waals bond. For a 1 µm-diameter silica microsphere, the required acceleration is
about 1.8 × 108 m/s2!

Because the pull-off force between two microspheres is only half of the pull-off
force between a microsphere and a flat surface, the microspheres will be separated
from each other before being pulled off from a glass surface by ultrasonic vibration.
Thus, most of particles launched out by ultrasonic vibration are single microspheres,
even if the microspheres are not mono-dispersed initially. This is a very good property
for us, because we want to trap only a single microsphere at a time.

We launch single microspheres into air by a home-built ultrasonic transducer
(Fig. 3.1a, also see Fig. 3.7 for a schematic of the ultrasonic generator). The transducer
is a sandwich structure with a piezoelectric ring and a glass slide clamped together
by two copper plates. The main component of the transducer is the piezoelectric
ceramic ring with an outer diameter of 38 mm, an inner diameter of 13 mm and
a thickness of 6.35 mm. It is made of lead zirconate / lead titanate (PZT) ceramic
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microspheres

22 mm

piezoelectric ring
(a) (b)

Fig. 3.1 a A home-built ultrasonic transducer for launching glass microspheres into air. It has a
sandwich structure consisting of a piezoelectric ring and a glass slide between a pair of copper
plates. The microspheres are held on the surface of a coverslip by the van der Waals force. b Glass
microspheres distributed on the surface of a glass coverslip after ultrasonic vibration. The diameter
of the microspheres is 3.0 µm. The picture was taken under a 40× objective lens

Fig. 3.2 A much simpler,
but less efficient ultrasonic
transducer for launching glass
microspheres into air piezo

glass slide

No.2 coverslipmicrospheres

(APC International Ltd. ). The two flat surfaces of the piezoelectric ring are coated by
silver layers that serve as two electrodes. One flat surface is in direct contact with a
copper plate that is grounded. The other flat surface is isolated from the other copper
plate by the glass slide whose thickness is about 1 mm. A vacuum compatible kapton
coated copper wire is soldered to this flat surface for applying a high voltage to the
piezoelectric ring.

A No. 2 coverslip (thickness: 0.19–0.25 mm) is attached to one end of the glass
slide by an ultrahigh-vacuum compatible epoxy (Epoxy Technology, Inc. Model:
EPO-TEK H77). The two-component epoxy becomes a hard ceramic after mixing
and curing at 120 ◦C for 2 h. After curing, it can be used continuously at temperatures
as high as 250 ◦C without bond failure. The epoxy ceramic is as hard as the glass
slide so it will not reduce the mechanical quality of the transducer. The purpose of
using a coverslip attached to the glass slide is to increase the vibration amplitude.
The microspheres are distributed on the coverslip at the side that is facing the piezo.
We found that the two sides of the coverslip behave very differently for launching
microspheres. We have tested several different types of ultrasonic transducers and
find that this transducer is the best one among those we have tested.

A much simpler, but less efficient ultrasonic transducer for launching glass
microspheres into air is shown in Fig. 3.2. A glass slide and a glass coverslip
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Fig. 3.3 Glass microspheres distributed on the surface of a glass coverslip after ultrasonic vibration.
The mean diameter of the microspheres is 3.0 µm. The left photo was taken under a 4× objective
lens, and the right photo was taken under a 10x objective lens, of the region labeled ‘A’

are attached to the two sides of a piezoelectric ring with an epoxy ceramic. The
microspheres are applied on top of the coverslip. This ultrasonic transducer needs
2–4 times more ultrasonic power to launch microspheres than the transducer shown
in Fig. 3.1a. However, this is not a problem for launching microspheres that are larger
than 3 µm. This transducer is compatible with a commercial optical microscopes.
The whole transducer can be mounted on a microscope stage like a glass slide. The
piezoelectric ring has a hole at the center for optical access. We studied the launching
process with this ultrasonic transducer before switching to more complex transduc-
ers. Photos in Figs. 3.1b and 3.3 were taken with this transducer under a commercial
microscope.

We apply dry silica microspheres directly on the coverslip of an ultrasonic trans-
ducer. If the microspheres are supplied in aqueous solution, we pipet a few drops of
the aqueous solution onto a glass slide. The glass slide is heated up to about 70 ◦C
for several minutes to get rid of water. We then scratch some microspheres from the
dried glass slide and apply them to the coverslip of an ultrasonic transducer. The
microspheres should be dry when they are applied to the coverslip. We find that
microspheres deposited on a coverslip directly from a solution (water or acetone)
cannot be launched [8, 9].

The required ultrasonic power for launching particles depends strongly on the
size of the particles. We can first remove large clusters of microspheres by apply-
ing low ultrasonic power for a few seconds. When the ultrasonic power is large
enough, the bonds between different microspheres are broken and the microspheres
become mono-dispersed. During ultrasonic vibration, a standing wave is formed on
the coverslip. Some regions of the coverslip will have enough vibration to launch
microspheres while other regions of the coverslip do not have enough vibration to
break the van der Waals’ bonds.

Figure 3.3 shows glass microspheres distributed on the surface of a coverslip after
ultrasonic vibration. The mean diameter of the microspheres is 3.0 µm. In the left
photo of the figure, we can observe two distinct regions. In region ‘A’, microspheres



3.1 Launching Microspheres 25

Fig. 3.4 Impedance of a
piezoelectric ceramic ring.
The outer diameter of the
ring is 38 mm, the inner
diameter is 13 mm, and
the thickness is 6.35 mm.
The material is a specially
formulated, high purity lead
zirconate/lead titanate (PZT)
ceramic (APC 844) from APC
International Ltd. It is a hard
ceramic suitable for high
power applications
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are mono-dispersed because the ultrasonic vibration is large enough to break the van
der Waals’ bonds and redistribute the microspheres. In region ‘B’, microspheres are
not mono-dispersed because the vibration in this regime is too small.

Magnified photos of microspheres in region ‘A’ are shown in the right photo of
Figs. 3.1b and 3.3. They show that most microspheres are isolated from each other
after ultrasonic vibration, thus most of the launched particles are single microspheres.
The launched spheres fall under gravity, and eventually a sphere approaches the laser
focus and is trapped. A coverslip fully covered with a monolayer of microspheres
can be used to launch and trap single microspheres several hundred times before
there are too few beads left. Since a microsphere can be trapped for many hours, we
only need to reapply microspheres every few months.

Figure 3.4 is the measured impedance of a free piezoelectric ceramic ring driven
by a sine wave. We have also measured the impedance of piezoelectric rings mounted
in the ultrasonic generators (Figs. 3.1, 3.2). The measured impedances are almost the
same as the one shown in Fig. 3.4. As shown in Fig. 3.4, the impedance has many
resonance dips corresponding to different modes of ultrasonic vibrations [10]. The
circumference vibration mode (expansion of the ring circumference) has a resonant
frequency of 44 kHz and impedance of about 17.9 � at resonance. The mechanical
quality factor (Q) of this mode is 362. The thickness vibration mode has a resonant
frequency of about 340 kHz and impedance of about 12 � at resonance. The Q of
this mode is 402. We use this mode for launching microspheres to air.

In order to achieve high acceleration of the coverslip without breaking the ultra-
sonic transducer, we drive the transducer with a high power square wave at 340 kHz
for a short duration (about 10 ms). A square wave causes much larger acceleration
than a sine wave (the real shape of our driving wave is very complex because the
piezoelectric ring has a large capacitance and inductance). The ultrasonic power
required for launching 3.0 µm diameter microspheres is about 4 W, and it is about
130 W for 1.5 µm diameter microspheres (Table 3.1). These are nominal values. The
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Table 3.1 The masses of silica microspheres with different diameters and the required ultrasonic
powers for launching them

Diameter (µm) Mass (kg) Ultrasonic power (W)

4.7 1.1 × 10−13 1.3
3.0 2.8 × 10−14 4.2
1.9 7.2 × 10−15 80
1.5 3.5 × 10−15 133
1.0 1.0 × 10−15 Above 500 the piezo ring starts to break

The driving frequency is about 340 kHz. The ultrasonic powers shown here are nominal values.
The real required powers also depend on the air pressure and number of microspheres remaining
on the coverslip

Fig. 3.5 A simplified elec-
tronic circuit of our high-
power pulsed generator.
The power MOSFET is
IRFPS40N50L from Vishay
Siliconix

Fuse 5 Ω

15 Ω8 mF
(450V)

8 mF
(450V)

Piezo
Control

   DC
(0-300V)

MOSFET

required power also depends on air pressure and density of microspheres remaining
on the slide. The damage threshold of the piezoelectric ceramic ring and the coverslip
is several hundred watts. Thus we are only able to launch microspheres with diameter
larger than 1 µm in the present experiment.

We drive the ultrasonic transducer with a home-built high-power pulsed generator
(Fig. 3.5). Since the resonant impedance of the piezoelectric ring is only about 12 �,
we need to drive it with a large current to achieve high ultrasonic power. The main
components of the pulsed generator are two 8 mF capacitors (Digi-key, Model: 338-
1236-ND) to store energy, and a power MOSFET to generate pulses. The limit voltage
of the capacitors is 450 V. The capacitors are connected to an external power supply
which charges them. We change the output voltage of that external power supply to
regulate the charge on the capacitors.

The power MOSFET is IRFPS40N50L (Vishay Siliconix). The limit voltage and
current of the MOSFET are 500 V and 46 A, respectively. Its “on” gate-source voltage
is 10 V, and its “on” resistance is 0.087 �. This power MOSFET has a very large
input capacitance (8110 pF), so we cannot drive it directly by a signal generator.
We use a high-current high-speed MOSFET driver (Microchip: TC4422) to drive it
through the “Control” terminal in Fig. 3.5. The TC4422 has a peak output current of
9 A and can drive the power MOSFET at the required speed (340 kHz). The TC4422
itself is driven by a signal generator (Agilent 33250A) that can generate arbitrary
waveforms from DC to 80 MHz. The whole system is controlled by a digital output
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Fig. 3.6 A home-built high power pulsed generator. The two blue cylinders are capacitors (8 mF,
450 V) for storing energy to generate the high power electronic pulses. The diameter of each
capacitor is 7.6 cm, and the height is 22 cm

from a computer. Since the Q of the piezoelectric ring is about 402, it is enough
to drive the system with pulses at 340 kHz for 10 min (about 3,400 total pulses) to
achieve maximum acceleration.

A photo of our high-power pulse generator is shown in Fig. 3.6.

3.2 Trapping Microspheres

Once microspheres are launched into air, they will fall under the influence of gravity.
We can capture a microsphere with an optical trap when the microsphere passes near
the optical trap. Because of air damping, a microsphere that goes into an optical trap
will lose its kinetic energy and becomes trapped. After a microsphere is trapped, we
can reduce the air pressure and keep the microsphere trapped in vacuum.

Optical trapping of dielectric particles in air with a single beam gradient force trap
was first demonstrated in 1997 [3], requiring an objective lens with NA = 0.95. So
far it is still not feasible to trap a microsphere in vacuum with a single beam gradient
force trap, due to the lack of vacuum-compatible objective lenses with NA of about
0.95.

The simplest way to trap a microsphere in air and vacuum is using an optical
levitation trap, which utilizes the gravitational force to assist trapping [1]. However,
the optical levitation trap is not very stable and its trapping frequency is very small
(on the order of 10 Hz). Thus it is not suitable for quantum ground-state cooling.
We eventually decided to use a counter-propagating dual-beam gradient force trap
to trap microspheres in air and vacuum. In the following sections, we will describe
our experimental apparatus and results of trapping microspheres with an optical
levitation trap and a dual-beam trap.



28 3 Optical Trapping of Glass Microspheres in Air and Vacuum

Laser beam

copper

piezo

post

copper glass slide No.2 coverslip

microspheres

f = 35 mm

Vpulse

Fig. 3.7 A schematic of an optical levitation trap and an ultrasonic transducer for launching
microspheres. The trap is formed by the balance between the scattering force from an upward
laser beam and the gravitational force on the microsphere

3.2.1 Optical Levitation Trap

The first optical trap that we used to trap microspheres in air was an optical levitation
trap. We used a diode pumped solid-state CW laser (Coherent Inc. model: Verdi V10)
for trapping. Its wavelength is 532 nm, and its maximum power is 10 W. As shown
in Fig. 3.7, a 532 nm laser beam with size of about 1 cm is focused by an achromatic
lens whose focal length is 35 mm. The focal point of the laser beam is inside a glass
cell. The width of the glass cell is about 1.0 cm and the height is about 5 cm. The
thickness of the walls of the glass cell is about 1 mm. The silica microspheres are
initially stuck on a coverslip above the glass cell. The gap between the coverslip and
the glass cell is very small ( ∼0.5 mm). Thus the coverslip and the glass cell form
an almost sealed chamber to protect the optical trap from air flows.

We use the ultrasonic transducer to launch the microspheres to air. After launching,
the microspheres fall down due to the gravitational force. The air will exert a frictional
force on the microspheres, Fair = 6πηair R · v, where ηair is the viscosity of air (see
Table A.1 for the values) and v is the velocity of the microsphere. The terminal speed
of a microsphere is

v = Mg

6πηair R
(3.4)

where M is the mass of the microsphere, and g the gravitational acceleration on
the Earth. The settling speed is about 0.22 mm/s for a 1.9 µm diameter silica bead,
0.57 mm/s for a 3.0 µm diameter silica bead, and 1.4 mm/s for a 4.7 µm diameter
silica bead. So it takes about 3 min for a 1.9 µm microsphere to reach the optical trap
after launching. Once a microsphere is near the focus of the laser beam, it will be
captured by the laser beam. In the vertical direction, the trap is formed by the balance
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Fig. 3.8 A 4.7 µm diameter silica microsphere levitated in air inside a glass cell by an upward
laser beam. The bright dot near the center of the photo is the trapped microsphere. It appears much
larger than the real size of the microsphere because of the overexposure of the camera

between the scattering force from the upward laser beam and the gravitational force
on the microsphere; in the horizontal direction, the trap is formed by the gradient
force from the laser beam.

A photo of a 4.7 µm diameter microsphere levitated by a laser beam in air is
displayed in Fig. 3.8. We can change the laser power from 2 W to 0.4 W while keeping
the microsphere trapped. As expected, the vertical position of a trapped microsphere
changes when we change the laser power. When we increase the laser power, the
trapped microsphere moves up. Surprisingly, we found that we could also change the
vertical position of a trapped microsphere by driving the ultrasonic transducer. By
driving with different ultrasonic frequencies, we could drag the microsphere either
up or down. This suggests that the pressure force from the ultrasonic wave may be
enough to levitate the microsphere. We have not studied this phenomenon in detail.

The optical levitation trap is pretty simple. However, it has several drawbacks.
First, the laser beam must be upward. This is a problem because thousands of
microspheres must be launched into air for each microsphere which is trapped.
Those microspheres will fall to the bottom of the glass cell. They will be in the
path of the laser beam and make the optical trap unstable. We can only launch and
trap microspheres a few times before the bottom of the glass cell becomes too dirty.
Second, the optical levitation trap tends to trap several microspheres at one time
[11]. It is very difficult to trap only one microsphere at a time, or control the number
of the trapped microspheres. Third, the trapping frequency of the optical levitation
trap is too small. It is usually on the order of 10 Hz [2]. This is very close to the
mechanical vibration frequencies of experimental instruments, and can cause heating
of the motion of a trapped microsphere. It is important that the trapping frequency be
much higher than the frequencies of seismic vibration in order to achieve significant
cooling.
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3.2.2 Counter-Propagating Dual-Beam Optical Trap

The ideal optical trap for our experiment will be a single beam gradient force trap.
However, it requires an objective lens with a NA of about 0.95, which is currently
not available for use in vacuum. A high NA objective lens usually has a very short
working distance (usually about 200 µm), which is not good for us. We need the
working distance to be long enough to allow optical accesses for feedback cooling
and cavity cooling.

On the other hand, a low NA lens usually has a long working distance but can
not focus a laser beam strongly enough to create a gradient force trap. The scattering
force from a weakly focused laser will be larger than the gradient force. One way to
overcome this problem is using two counter-propagating laser beams (Fig. 3.9). The
scattering forces from the two beams cancel, and the gradient forces forms a stable
3D trap for the microsphere.

We built a simple dual-beam optical trap (Fig. 3.9) to test its suitability for using
in vacuum. As shown in Fig. 3.9, we use two achromatic lenes to focus two laser
beams that are propagating in the horizontal direction. The focal lengths of the two
lenses are 35 and 30 mm, respectively. Because the launched microspheres fall down
to the bottom of the glass cell and do not affect the light path, this dual-beam trap
is much more stable than the optical levitation trap. We can trap microspheres with
diameters of 1.9, 3.0, and 4.7 µm in air repeatedly. We have also filled the glass
cell with water and trapped microspheres in water with this dual-beam trap. This is
remarkable because the walls of the glass cell and the water distort the laser beam
significantly. Dual-beam optical tweezers are also suitable for trapping particles with
high-refractive index in water [12].

The major disadvantage of a counter-propagating dual-beam trap is that the two
laser beams must be aligned correctly. Ideally, the two beams should be exactly
counter-propagating and focused at the same point. If the two beams are misaligned
from each other, the resulting trap will not be a simple harmonic trap. The scattering
force from the laser beams is not conservative, and can do work on the microsphere
under certain conditions [13, 14]. When the two beams are misaligned (Fig. 3.10),

Fig. 3.9 A counter-propagating dual-beam optical trap in air
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Fig. 3.10 A possible motion of a microsphere trapped in a misaligned dual-beam optical tweezer

the scattering force from the left laser beam will push the microsphere to the right,
and the scattering force from the right beam will push the microsphere to the left.
This results in a cycled motion. In air (or water), the resulted complex motion can be
stable due to the air (or water) damping. We have observed this phenomenon in both
air and water. In vacuum, however, the mechanical energy of the microsphere will
keep increasing until the microsphere escapes from the trap eventually. This problem
can be minimized by aligning the two beams correctly.

As the dual-beam trap in air was much more stable than the optical levita-
tion trap in air, we decided to use the dual-beam trap for trapping microspheres
in vacuum. Fig. 3.11 shows a simplified schematic of the first generation of our

Vacuum
Chamber

s p

AOM AOM

Beam No. 1 Beam No. 2

532 nm

1064 nm 1064 nm

Quadrant
Detector

Camera
10x 

objective

scattered light

Fig. 3.11 A simplified schematic of the first generation of our counter-propagating dual-beam
optical trap for trapping microspheres in vacuum, and a detection system to monitor the position of
a trapped microsphere. The two 1,064 nm laser beams are orthogonally polarized and have different
frequencies to avoid interference
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counter-propagating dual-beam optical trap in vacuum. The two 1,064 nm laser
beams for trapping are from a fiber laser whose maximum output power is 10 W.
The two laser beams are orthogonally polarized to avoid interference. Their powers
are controlled by two 80 MHz acousto-optic modulators (AOM’s). The power of
beam No. 1 can be changed from 3 mW to 2 W, and the power of beam No. 2 can be
changed from 3 mW to 3 W. One beam is the +1 order of the output beams from the
AOM, and the other beam is the −1 order of the output beams from the AOM. Thus
the frequencies of the two laser beams differ by 160 MHz. The two laser beams are
focused by two identical aspheric lenses whose focal lengths are 3.1 mm. The two
lenses are inside a vacuum chamber.

We collect the scattered light from a trapped microsphere with a lens from the
side to monitor the microsphere by a camera. We also use a weak 532 nm laser beam
(about 2 mW) and a quadrant detector to monitor the motion of the microsphere with
high resolution. The quadrant detector splits the 532 nm beam into four parts. The
difference between the left (top) two parts and the right (bottom) two parts provides
the position information of the microsphere in the horizontal (vertical) direction, and
the summation of the four parts provides the position information of the microsphere
along the axial direction [15]. Thus the quadrant detector can monitor the position
of a trapped microsphere in 3D.

The setup inside our vacuum chamber is shown in Fig. 3.12. The ultrasonic trans-
ducer (Fig. 3.1a) is mounted vertically. The coverslip with microspheres is above the
optical trap by about 5 cm. A pair of aspheric lenses (Newport, model: KGA330-B)
with focal length of 3.1 mm are fixed on stainless steel structures with vacuum com-
patible epoxy. The stainless steel structures are mounted on an aluminum holder by
stainless steel screws. The separation between the front surfaces of the two lenses is
about 3.5 mm.

Fig. 3.12 Top view of the setup inside the vacuum chamber. A pair of aspheric lenses with focal
length of 3.1 mm, and a piezoelectric ultrasonic transducer are inside the vacuum chamber
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Fig. 3.13 Setup for aligning
a laser beam and measuring
its waist with a pinhole
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We align the laser beams in three steps. First, we send a parallel 1,064 nm laser
beam through the two lenses. One of the two lenses is fixed. We change the position
of the other lens to make sure that the output beam after the two lenses is still
parallel. Second, we align the directions and divergences of all three laser beams
(two 1,064 nm beams and one 532 nm beam) to make sure that all beams are on top
of each other. Third, we align all laser beams with a pinhole to make sure that the
foci of the three beams are at the same point (Fig. 3.13).

The setup for aligning a laser beam and measuring its waist with a pinhole is
shown in Fig. 3.13. This setup is good for aligning the trapping beam No. 1 and
the detection beam. We move the photodiode and the lens in front of it to the other
side of the vacuum chamber for aligning the trapping beam No. 2. The diameter
of the pinhole aperture is 1.0 ± 0.5 µm. The pinhole is mounted on a 3-axis
translation stage. The translation stage is controlled by 3 manual differential actuators
(Thorlabs: DM10) with graduation of 0.5 µm. In the vertical direction, we also have
a piezoelectric actuator to fine tune the pinhole. We first align the pinhole to the
focus of the trapping beam No. 1 (by aligning the pinhole to maximize the output
power of the beam from the pinhole). The pinhole from National Aperture is easier to
align than the high energy pinhole from Newport, because the pinhole from National
Aperture is located at the center of a small (about 200 µm) countersink, which can be
seen by the naked eye and acts as a guide for alignment. Once the pinhole is aligned
to the focus of the trapping beam No. 1, we fine tune the directions and divergences
of the detection beam and the trapping beam No. 2 to maximize their output powers
from the pinhole. With this method, we can align the focuses of all three laser beams
to the same point with an accuracy of about 0.5 µm.

After alignment, we can scan the pinhole to measure the profiles of the laser
beams. Fig. 3.14 shows an example of measured profiles of the beam No. 1 along the
horizontal and vertical directions. The measured beam profiles agree with Gaussian
functions very well. The measured waists of the beam are 2.01 µm in the horizontal
direction and 2.12 µm in the vertical direction. The real waists of the beam should
be smaller than these values because of the finite size of the pinhole aperture.

A 4.7 µm diameter microsphere trapped inside a vacuum chamber by a counter-
propagating dual-beam optical tweezer is displayed in Fig. 3.15. The trapping laser
is infrared. A weak green laser (about 2 mW) is used for illumination. The bright
spot near the center of the photos is the trapped microsphere. It usually take us about
10 min to trap one microsphere. Once a microsphere is trapped, the system is very
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Fig. 3.14 An example of measured beam profiles of the beam No. 1 in the horizontal and vertical
directions. The red curves are Gaussian functions

Fig. 3.15 A 4.7 µm diameter microsphere trapped inside a vacuum chamber by a counter-
propagating dual-beam optical tweezer. The wavelength of the trapping beams is 1064 nm. A
weak green (532 nm) laser is used for illumination
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Fig. 3.16 Left: A single optically trapped 3.0 µm diameter bead; Right: multiple (2 or maybe
3) optically trapped 3.0 µm beads. The air pressure is 752 torr. The powers of the two counter-
propagating beams are 119 and 100 mW

stable. We have tested it by trapping a 4.7 µm bead in air continuously for 46 h,
during which time the power of both laser beams was varied between 5 mW and
2.0 W to test the stability of the trap. The trap becomes less stable in vacuum. The
lowest pressure at which we have trapped a bead without requiring extra stabilization
is about 0.1 Pa.

We find that the waists of the two counter-propagating laser beams determine
how many microspheres will be trapped by the dual-beam optical tweezer at one
time. When the two beams have the same beam waist, we usually trap more than one
microsphere (usually two microspheres) at a time. This is because the two counter-
propagating laser beams form a double-well potential when their foci are not exactly
on top of each other. When the waist of one of the laser beams is larger than the other
(for example, 3.0 µm for one beam, and 2.0 µm for the other beam), we usually trap
only one microsphere at a time. The left photo in Fig. 3.16 shows a single 3.0 µm
diameter bead trapped by the dual-beam optical tweezer, and the right photo in Fig.
3.16 shows multiple (2 or maybe 3) 3.0 µm beads trapped at the same time.

3.3 Vacuum System

The science chamber (the vacuum chamber in which we trap microspheres) and
most of optic components are mounted on a 3 × 3 foot breadboard. The breadboard
is supported by elastomers (Newport, Model: NewDamp) on an air-floated optical
table to minimize the mechanical vibration. The peak-to-peak vibration amplitude
of the lab floor is about 30 µm due to seismic vibrations. The peak-to-peak relative
vibration amplitude of optical elements on an optical table is about 0.1 µm (in 10 s)
when the table is sitting on rigid legs directly. This is reduced to about 10 nm when
the optical table is supported by pneumatic isolators (air-floated). Thus it is essential
to use pneumatic isolators to reduce vibrations.



36 3 Optical Trapping of Glass Microspheres in Air and Vacuum

 science
chamber

sorption pumps

mechanical 
    pump

ion pump

TC gauge

air or 
nitrogen

cold cathode gaugecombination
gauge

bellow

bellow

bellow

Fig. 3.17 A schematic of the vacuum system

Figure 3.17 shows a schematic of our vacuum system. The science chamber on
the breadboard is connected to a small ion pump on the optical table by a flexible
stainless steel bellows to isolate mechanical vibrations. The ion pump is connected
to roughing pumps on the lab floor by a bellows. We initially use a sorption pump
for rough pumping to avoid mechanical vibrations. The sorption pump reduces air
pressure by absorbing molecules within a porous material (molecular sieve) which
is cooled by liquid nitrogen. There are no mechanical movable parts in the sorption
pump. Thus it has almost no mechanical vibration. The lowest pressure that we can
obtain with a single sorption pump is about 3 mtorr (1 mtorr = 0.133 Pa). Using
two sorption pumps to pump the vacuum chamber sequentially, we can reduce the
pressure from 760 torr to about 10−5 torr in 1 h.

The sorption pump needs to be heated up to about 200 ◦C to drive off absorbed
water before using and requires liquid nitrogen to cool it during use, thus it is not
convenient to use the sorption pump. We later switched to using a mechanical rough-
ing pump in place of the sorption pump. There are 4 bellows separated by 3 rigid
structures between the mechanical pump and the science chamber. They isolates the
mechanical vibration sufficiently. There is no observed effect on the motion of a
trapped microsphere when we turn on and off the mechanical roughing pump. The
mechanical roughing pump can reduce the air pressure from 760 torr (1 atm) to
1 mtorr in a few minutes.

The ion pump can reduce the air pressure from 1 mtorr to about 10−6 torr in 1 h
without bakeout. At first, the ion pump tended to kick out the trapped microsphere
immediately after the pump was turned on. This was caused by momentary electrical
arcing (accompanied by a sudden pressure burst) in the ion pump [16]. We later
moved the pump further away, and this problem disappeared after we used the ion
pump for a few months. With bakeout, one should be able to achieve pressures much
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lower than 10−6 torr with the ion pump. The ion pump is not ideal for using with
pressures above 10−6 torr. Since we are able to isolate the mechanical vibration, a
turbomolecular pump will be a better choice in future.

We have a cold cathode gauge and a combination gauge near the science chamber
to measure the air pressure inside the science chamber. The cold cathode gauge (Kurt
J. Lesker Company, model: KJLC 943 ) can measure the pressure between 10−10

and 10−2 torr. The combination gauge (Kurt J. Lesker Company, model: KJLC 910)
can measure the pressure between 10−5 and 1,500 torr. The combination gauge has a
Piezo sensor and a Pirani sensor. The Pirani sensor is gas-type sensitive as it measures
pressure based on the thermal conductivity of the gas. The Piezo sensor measures
the absolute pressure independent of the gas type. The gauge reads the Piezo sensor
when the pressure is above 15 torr, reads the Pirani sensor when the pressure is
below 5 torr, and reads both sensors when the pressure is in between. The accuracy
of the measurement is 1 % of the reading when the pressure is in the range of 10–
1,000 torr, and is about 10 % of the reading for lower pressures. We also have a
thermocouple gauge (TC gauge) near the sorption pump to monitor the pressure in
the rough pumping region.

There are several manual angle valves between the science chamber and the
roughing pumps that can be use to isolate different parts of the system. The vacuum
chamber is also connected to a pure nitrogen (or air) gas tube by a gas shut off
valve (Kurt J. Lesker Company, model: Nupro BK, SS-4BK). With these valves and
vacuum pumps, we can control the pressure in the science chamber from 10−6 to
1,500 torr easily. We can achieve much lower pressure with bakeout. The ability to
control air pressure allows us to study the Brownian motion of a trapped microsphere
at different pressures, and cool the motion of a trapped microsphere in vacuum.
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Chapter 4
Measuring the Instantaneous Velocity
of a Brownian Particle in Air

Brownian motion of particles affects many branches of science. The Brownian
motion was discovered by Brown in 1827 [1], and explained correctly by Einstein
in 1905 [2]. The trajectories of a Brownian particle are commonly considered to
be not differentiable. This is accompanied by the fact that the instantaneous veloc-
ity of a Brownian particle has not been measured successfully before. Here we
will present our measurement of the instantaneous velocity of a Brownian particle
in air.

In this chapter, we will first introduce some theories about the Brownian motion
of free particles and trapped microspheres. This will be followed by a description of
our home-built detection system that can study the Brownian motion of an optically
trapped microsphere in air with an ultrahigh resolution. We will show some mea-
sured power spectra of the motion of trapped microspheres at different air pressures.
Finally, we will show the results of our measurement of the instantaneous velocity of a
Brownian particle in air. Our results provide direct verification of the Maxwell-
Boltzmann velocity distribution, and the equipartition theorem for a Brownian
particle.

4.1 Theories of Brownian Motion

4.1.1 A Free Particle

Einstein’s theory of Brownian motion predicts that

〈[�x(t)]2〉 ≡ 〈(x(t)) − (x(0))2〉 = 2Dt, (4.1)

where 〈[�x(t)]2〉 is the mean-square displacement (MSD) of a free Brownian par-
ticle in one dimension during time t , and D is the diffusion constant [2]. The dif-
fusion constant can be calculated by D = kB T/γ, where T is the temperature,

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, 39
Springer Theses, DOI: 10.1007/978-1-4614-6031-2_4,
© Springer Science+Business Media New York 2013



40 4 Measuring the Instantaneous Velocity of a Brownian Particle in Air

and γ = 6πηR is the Stokes friction coefficient for a sphere with radius R. Here η
is the viscosity of the fluid. The mean velocity measured over an interval of time t
is v̄ ≡ √〈[�x(t)]2〉/t = √

2D/
√

t . This diverges as t approaches 0, and therefore
does not represent the real velocity of the particle [3, 4].

The equation 〈[�x(t)]2〉 = 2Dt , however, is only valid when t � τp, i.e., in the
diffusive regime. Here τp = M/γ is the momentum relaxation time of a particle with
mass M . At very short time scales (t � τp), the dynamics of a particle is dominated
by its inertia, and the motion is ballistic. The dynamics of a Brownian particle with
mass M over all time scales can be described by a Langevin equation [5–7]:

M
d2x

dt2 + γ
dx

dt
= Ftherm(t), (4.2)

where
Ftherm(t) = (2kB T γ)1/2ζ(t) (4.3)

is the Brownian stochastic force. ζ(t) is a normalized white-noise process. Hence
for all t and t ′,

〈ζ(t)〉 = 0, and 〈ζ(t)ζ(t ′)〉 = δ(t − t ′). (4.4)

Let v(t) = dx/dt , and divide the Eq. 4.2 by M , we obtain

dv(t)

dt
= −�0v(t) + A(t), (4.5)

where �0 = γ/M = 1/τp is the damping coefficient and A(t) = Ftherm(t)/M is
the fluctuating acceleration. The velocity and position of the particle at time t = 0
are v(0) = v0 and x(0) = x0, respectively. Then its velocity at time t is [7]:

v(t) = v0e−�0t + e−�0t
∫ t

0
e�0 s A(s)ds. (4.6)

Taking the mean over an ensemble of particles, which have started at t = 0 with the
same velocity v0, and using Eq. 4.4 we get:

〈v(t)〉v0 = v0e−�0t , (4.7)

〈v(t)v(0)〉v0 = v2
0e−�0t . (4.8)

Taking a second average over v0 and using the energy equipartition theorem
〈Mv2

0/2〉 = kB T/2, we obtain the velocity autocorrelation function:

〈v(t)v(0)〉 = kB T

M
e−�0t . (4.9)
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By integrating Eq. 4.6 again, we get the position of the particle [7]:

x(t) = x0 + v0

�0
(1 − e−�0 t ) +

∫ t

0
e−�0 s1 ds1

∫ s1

0
e�0 s2 A(s2)ds2. (4.10)

Taking the average, we get:

〈�x(t)〉x0 = 〈x(t) − x(0)〉x0 = v0

�0
(1 − e−�0 t ). (4.11)

The MSD for a Brownian particle at thermal equilibrium with the air is [7]:

〈[�x(t)]2〉 = 2kB T

M�2
0

(�0 t − 1 + e−�0 t ). (4.12)

At long time scales, the MSD is the same as the prediction of Einstein’s theory:

〈[�x(t)]2〉 = 2Dt for t � τp. (4.13)

At very short time scales, the MSD is

〈[�x(t)]2〉 = kB T

M
t2 for t � τp. (4.14)

Although the above equations are derived for an ensemble of identical particles, the
ergodic theorem dictates that they are also valid for measurements of a single particle
taken over a long time.

At very short time scales, the motion is ballistic and its instantaneous velocity can
be measured as v = �x(t)/t , when t � τp [7]. The ballistic Brownian motion is
different from a simple ballistic motion. For a simple ballistic motion with velocity
u, we have �x(t) = ut and [�x(t)]2 = u2t2. The velocity u can be any value and
usually has no relation with the temperature of the environment.

The 1D Maxwell-Boltzmann distribution of the velocity of a particle in thermal
equilibrium is

fv(vi ) =
√

M

2πkB T
exp

(
− Mv2

i

2kB T

)
, (4.15)

where vi is the velocity of the particle along any direction i .

4.1.2 A Trapped Microsphere

For small displacements, the effect of optical tweezers on the microsphere’s motion
can be approximated by that of a harmonic potential. The equation of the Brownian
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motion of a microsphere in a harmonic trap is:

d2x

dt2 + �0
dx

dt
+ �2x = �ζ(t), (4.16)

where � = √
κ/m is the natural angular frequency of the trapped microsphere

when there is no damping, and � = (2kB T �0/M)1/2. The cyclic frequency of the

damped oscillator is ω1 =
√

�2 − �2
0/4. The system is underdamped when ω1 is real

(� > �/2), critically damped when ω1 = 0, and overdamped when ω1 is imaginary
(� < �/2).

4.1.2.1 Displacement and Velocity

The MSD of a Brownian particle in an underdamped harmonic trap in air can be
obtained by solving Eq. 4.16 [8]:

〈[�x(t)]2〉 = 2kB T

M�2

[
1 − e−t/2τp

(
cos ω1t + sin ω1t

2ω1τp

)]
. (4.17)

The position autocorrelation function is related to the MSD by:

〈[�x(t)]2〉 = 2〈x2〉 − 2〈x(t)x(0)〉, (4.18)

where 〈x2〉 = kB T/(M�2). The rms amplitude is xrms = √
kB T/(M�2). The

normalized position autocorrelation function (PACF) of the particle is [8] (Fig. 4.1):

〈x(t)x(0)〉
〈x2〉 = e−t/2τp

(
cos ω1t + sin ω1t

2ω1τp

)
. (4.19)

The normalized velocity autocorrelation function (VACF) of the particle is [8]:

〈v(t)v(0)〉
〈v2〉 = e−t/2τp

(
cos ω1t − sin ω1t

2ω1τp

)
. (4.20)

Both the position autocorrelation function and the velocity autocorrelation function
oscillate for an underdamped system.

For an overdamped system, ω1 is imaginary. We can rewrite the above formula
for the normalized position and velocity autocorrelations as [9]:

〈x(t)x(0)〉
〈x2〉 = 1

2|ω1|τ+
e−t/τ− − 1

2|ω1|τ−
e−t/τ+ , (4.21)
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Fig. 4.1 The rms amplitude (xrms) of a microsphere in a harmonic trap with trapping frequency
�/(2π) at thermal equilibrium with the environment

〈v(t)v(0)〉
< v2 >

= − 1

2|ω1|τ−
e−t/τ− + 1

2|ω1|τ+
e−t/τ+ , (4.22)

where

τ± = 2τp

1 ± 2τp|ω1| . (4.23)

Thus the correlations in an overdamped system decrease as a double-exponential
with characteristic times τ±. A numerical simulation of the dynamics of harmonic
oscillator with different damping can be found in Ref. [9].

4.1.2.2 Power Spectrum Analysis

Similar to the optical spectrum of an atom, the power spectrum of the Brownian
motion of a trapped microsphere contains a lot of information about the system. The
power spectral density (PSD) of a variable is the squared modulus of its Fourier
transform [8–10].

The Fourier transformations of x(t) and ζ(t) are:

x̃k =
∫ Trec/2

−Trec/2
eiωk t x(t)dt, (4.24)

ζ̃k =
∫ Trec/2

−Trec/2
eiωk tζ(t)dt, (4.25)
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where ωk = 2πk/Trec, k is an integer, and Trec is the time duration of the recorded
positions of a trapped microsphere.

Fourier transforming Eq. 4.16 gives

− ω2
k x̃k − iωk�0 x̃k + �2 x̃k = �ζ̃k . (4.26)

Thus

x̃k = �ζ̃k

�2 − ω2
k − iωk�0

. (4.27)

From Eq. 4.4 we have < x̃k >= 0 and < ζ̃k ζ̃l >= Trecδkl . The PSD of an experimen-
tally recorded x(t) is

Srec
k ≡ |x̃k |2/Trec = |ζ̃k |2

Trec

2kB T

M�2

�2�0

(�2 − ω2
k )2 + ω2

k �2
0

. (4.28)

The expected values of the PSD is

S(ω) ≡< Srec
k >= 2kB T

M�2

�2�0

(�2 − ω2)2 + ω2�2
0

. (4.29)

The real measured PSD of a recorded x(t) is Srec
k . It has a |ζ̃k |2/Trec term, which

is a random number. Thus an experimental PSD will appear noisy. Averaging many
measured Srec

k will result in a spectrum close to the expected spectrum S(ω). Another
way to reduce the noise in a measured spectrum is “blocking” [10]. Here, a “block” of
consecutive data points (ωk1 ,Srec

k1
) . . . (ωk2 ,Srec

k2
) is replaced with a single new “data

point" (ωk ,Srec
k ) which are the block averages.

Let us define a new function to show the shape of the spectrum

fS(ω) ≡ �2�0

(�2 − ω2)2 + ω2�2
0

. (4.30)

We have
∫ ∞

0
fS(ω)dω = π

2
, (4.31)

thus
∫ ∞

0
S(ω)dω = π

kB T

M�2 = π < x2 > . (4.32)
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Fig. 4.2 Calculated spectra ( fS(ω)) for systems with different damping. The plot is displayed in
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Fig. 4.3 Calculated spectra ( fS(ω)) for systems with different damping. The plot is displayed in
log-log scales

So the integral of the PSD is proportional to the square of the rms amplitude. Some
calculated spectra fS(ω) for systems with different damping are shown in Fig. 4.2 (in
linear scales) and Fig. 4.3 (in log-log scales). As dramatically displayed in the linear
scale plot (Fig. 4.2), the spectra have large values at low frequencies for an over-
damped system, and have large values at the resonant frequency for an underdamped
systems.
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4.2 A Fast Detection System

In order to measure the instantaneous velocity of the Brownian motion of a trapped
microsphere in air, we implemented an ultrahigh resolution detection system.

Our first generation of the dual-beam optical trap in vacuum (Fig. 3.11) used a
10 W fiber laser at 1064 nm for trapping, and a weak 532 nm laser for detection.
We used a quadrant detector to monitor the position of a trapped microsphere in 3D.
That system was not ideal for our experiment. The peak-to-peak intensity noise (in
the range of 10 kHz–1 MHz) of the fiber laser is about 4 %, which is very big. The
532 nm laser has much less noise than the fiber laser. However, the quadrant detector
has significant electronic noise and its bandwidth is only about 1 MHz.

In the second-generation experiment with the dual-beam optical trap in vacuum,
we use an ultra-stable NPRO laser (Model: 126-1063-700, Lightwave Electronics
(now JDSU)) to replace the fiber laser. Its rms intensity noise is <0.05 % over the
range from 10 Hz to 2 MHz, and is shot noise limited above 10 MHz. It is a single
frequency laser with a linewidth <5 kHz/ms and a coherence length longer than
1000 m. A detailed characterization of this type of laser can be found in Ref. [11].
These values are much better than those of the 532 nm laser. So we use this laser
for both trapping and detection. This is achieved by using a polarizing beam splitter
cube to reflect one of the trapping beams for detection (Fig. 4.4).

Our lab has previously developed a fast position-sensitive laser beam detector
for studying the Brownian motion of particles in water at fast time scales [12]. The
previous detector used a fiber-optic bundle that spatially splits the incident beam, and
a fast balanced photodetector to measure the difference between the two halves of
the beam. Here we simplify the detection system by using a mirror with a sharp edge
(BBD05-E03, Thorlabs) to replace the fiber-optic bundle for splitting the beam. The
sharp edge of a mirror is much smoother than the boundary between the two halves

s -polarized

Vacuum
Chamber

p -polarized

s-polarized

Detector

Fig. 4.4 This simplified schematic shows our counter-propagating dual-beam optical tweezers,
and a novel detection system that has 75 MHz bandwidth and low noise. The s-polarized beam is
reflected by a polarizing beam splitter cube after it passes through a trapped bead inside a vacuum
chamber. Then, for detection, it is split by a mirror with a sharp edge. The p-polarized beam passes
through the cube

http://dx.doi.org/10.1007/978-1-4614-6031-2_3
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of a fiber-optic bundle. Thus a mirror with a sharp edge is not only much simpler,
but also has less noise than a fiber bundle for splitting the laser beam [12].

We use a balanced detector (PDB120C, photodiode diameter 0.3 mm, Thorlabs)
with a bandwidth of 75 MHz for detection. The detector is sensitive to light with
wavelengths in the range of 800–1700 nm. It has a high transimpedance gain of
1.8 × 105 V/A. The detector measures the difference between the two halves of the
beam, which is proportional to the particle excursion. The intensity noise of the laser
is contained in both halves and is thus canceled in the measurement. This detection
system enables us to monitor the real-time position of a trapped microsphere with
Ångstrom spatial resolution and microsecond temporal resolution.

The major optical circuit of our second generation dual-beam trap and the detec-
tion system is shown in Fig. 4.5. The powers of the two trapping beams and the probe
beam are controlled by AOM’s. We use photodiodes to monitor the powers of the
beams. With measured powers, we use analog proportional-integral-derivative (PID)
circuits to stabilize the laser powers. This eliminates the drifts of the laser powers.
The size of the beam No. 1 before entering the vacuum chamber is twice of the size
of the beam No. 2. This ensures that the optical tweezer traps only one microsphere
at a time. The green laser at 532 nm is helpful for aligning the laser beams and
monitoring microspheres before they are trapped. Once a microsphere is trapped, we
can see it on a VCR monitor connected to the CCD camera. The quadrant detector
and the balanced detector give high resolution signals of the motion of a trapped
microsphere. For studying the Brownian motion, we turned off the 532 nm laser, and
use only the balanced detector to monitor the position of a trapped microsphere with
ultrahigh precision.

4.3 Measured Power Spectra

Figure 4.6 shows a waveform and a spectrum of a 3.0 µm diameter bead trapped
by a dual-beam optical tweezer at 749 torr. The powers of the two trapping beams
are 10.7 and 14.1 mW. The data were taken by a DAQ card (PCI 6133, National
Instruments) controlled by a Labview program. The waveform and spectrum shown
here were saved from the Labview program directly. The sampling rate was 2 MHz,
and the time duration was 2 s. So the waveform has 4 million data points. As we can
see, the waveform appears as a white noise and has very little information.

The power spectrum of the waveform, on the other, is much more instructive.
The power spectrum in Fig. 4.6 is in log-log scales. Comparing it with the spectra
in Fig. 4.3, we can find that its trapping frequency (�/(2π)) is about 3 kHz, and
the linewidth (�0/(2π)) is close to the trapping frequency. At high frequencies near
1 MHz, the shape of the measured spectrum is very different from the shape of the
expected spectrum as shown in Fig. 4.3. This is because at frequencies near 1 MHz,
the real signal due to the Brownian motion of the trapped microsphere is smaller
than the spectrum of noise (laser noise, electronic noises of the detector and the
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Fig. 4.5 The optical circuit of the counter-propagating dual-beam optical trap and the detection
system

DAQ card). So the displayed spectrum near 1 MHz is the spectrum of noise rather
than the real signal.

Figure 4.7 shows a waveform and spectrum of a 3.0 µm diameter bead trapped
by a dual-beam optical tweezer at 20.6 torr. Other conditions are the same as those
in Fig. 4.6. Because of less damping, a peak appears at the trapping frequency. The
spectrum at high frequencies (around 100 kHz) is also smaller than those in Fig. 4.6,
in agreement of the theoretical predications (Fig. 4.3).
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Fig. 4.6 A waveform (top) and a spectrum (bottom) of a 3.0 µm bead trapped at 749 torr. The
powers of the two trapping beams are 10.7 and 14.1 mW

Sometimes we can trap more than one microsphere at the same time (Fig. 3.16).
Figure 4.8 shows a waveform and spectrum of multiple (2 or 3) microspheres trapped
at 752 torr. The powers of the two laser beams are 119 and 100 mW. The spectrum has
new peaks at frequencies around 300 kHz. These peaks are not presented when there
is only one microsphere. They are due to the relative motion between the trapped
microspheres. The frequencies of relative motion are much larger than the frequency
of the center-of-mass motion (about 1.5 kHz) in this example.

The spectra of the relative motion between multiple microspheres depend strongly
on the details of the optical trap, such as the alignment of the laser beams and the size
of the microspheres. Figure 4.9 shows the spectra of two 4.7 µm beads trapped at
9.78 torr with different laser power. The frequency of the highest peak is about 70 kHz
when the powers of the two trapping beams are 0.7 and 1.0 W, and is about 150 kHz
when the powers of the two trapping beams are 2.0 and 2.5 W. The data in Fig. 4.9

http://dx.doi.org/10.1007/978-1-4614-6031-2_3
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Fig. 4.7 A waveform (top) and a spectrum (bottom) of a 3.0 µm bead trapped at 20.6 torr. The
powers of the two trapping beams are 10.7 and 14.1 mW

were taken in our first generation dual-beam trap with a probe beam (Fig. 3.11). The
red curves are for the motion in the horizontal direction, and the blue curves are for
the motion in the vertical direction. Under certain conditions, we can even observe
such narrow peaks at 1 atm. It seams that the scattering forces from the trapping laser
pump energy to the motion and amplify the motion.

4.4 Measurement of the Instantaneous Velocity
of a Brownian Particle in Air

A simplified scheme of our setup for measuring the instantaneous velocity of
Brownian particle in air is shown in Fig. 4.4, and a more detailed optical circuit
is shown in Fig. 4.5. The trap is formed inside a vacuum chamber by two counter-

http://dx.doi.org/10.1007/978-1-4614-6031-2_3
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Fig. 4.8 A waveform and spectrum of multiple (2 or maybe 3) 3.0 µm beads trapped at 752 torr.
The powers of the two trapping beams are 119 and 100 mW

propagating laser beams focused to the same point by two identical aspheric lenses
with focal length of 3.1 mm and numerical aperture of 0.68. The two 1064 nm laser
beams are orthogonally polarized, and their frequencies differ by 160 MHz to avoid
interference.

The two laser beams are aligned with the help of a pinhole aperture whose diame-
ter is 1.0 ± 0.5 µm. Because the pinhole has a finite thickness (13 µm), it is difficult
to align the foci of the two beams to the same point in the axial direction. We
intentionally make the waist of one beam larger than the other to make this align-
ment less critical. The measured waists of the two beams are 2.2 and 3.0 µm in the
horizontal direction. The real waists should be smaller than these values due to the
finite size of the pinhole. Also note that the waists of the two beams are measured
at different axial positions separated by the thickness of the pinhole. Once a bead is
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Fig. 4.9 Spectra of two 4.7 µm beads trapped at 9.78 torr with different laser powers. The powers
of the two trapping beams are 0.7 and 1.0 W for the top figure, and 2.0 and 2.5 W for the bottom
figure

trapped, we keep the power of one beam constant, and tune the power of the other
beam to maximize the trapping frequency.

When the bead deviates from the center of the trap, it deflects both trapping beams.
We monitor the position of the bead by measuring the deflection of one of the beams,
which is split by a mirror with a sharp edge. The difference between the two halves
is measured by a fast balanced detector. This simple, yet novel, detection scheme has
a bandwidth of 75 MHz and ultra-low noise [12, 13].

For the data included in this section, unless otherwise stated, the powers of the two
laser beams are 10.7 and 14.1 mW, the diameter of the bead is 3µm, the temperature of
the system is 297 K, and the air pressure is 99.8 kPa (749 torr) or 2.75 kPa (20.6 torr).
The trapping is very stable, and the heating due to laser absorption is negligible at
these conditions. Examples of power spectra of a 3 µm microsphere trapped at these
conditions have been shown in Figs. 4.6 and 4.7.
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Fig. 4.10 One-dimensional trajectories of a 3 µm diameter silica bead trapped in air at 99.8 kPa
(a) and at 2.75 kPa (b). The instantaneous velocities of the bead corresponding to these trajectories
are shown in (c) and (d)

The position signal of a trapped bead is recorded at a sampling rate of 2 MHz.
Because of the limited spatial resolution, we are not able to obtain accurate instan-
taneous velocities of a bead at this rate. To reduce the noise, we average every
10 successive position measurements, and use these averages to calculate instanta-
neous velocities with time resolution of 5 µs. Although this method reduces the
temporal resolution by a factor of 10, it greatly increases the signal-to-noise ratio if
both the trapping period (2π/ω0) and momentum relaxation time are much larger
than 5 µs. These conditions are satisfied here since the trapping period is about
320 µs, τp = 48 µs at 99.8 kPa, and τp = 147 µs at 2.75 kPa.

Figure 4.10 shows typical samples of position and velocity traces of a trapped
bead. The position traces of the bead at these two pressures appear very similar. On
the other hand, the velocity traces are clearly different. The instantaneous velocity
of the bead at 99.8 kPa changes more frequently than that at 2.75 kPa, because the
momentum relaxation time is shorter at higher pressure.

Figure 4.11 shows the mean square displacements of a 3 µm silica bead as a
function of time. The measured MSD’s fit excellently with Eq. 4.17 over three decades
of time for both pressures. The calibration factor α = posi tion/voltage of the
detection system is the only fitting parameter of Eq. 4.17 for each pressure. M is
calculated from the size and density of the microsphere. τp and � are obtained
from the measured normalized velocity autocorrelation function (VACF). The two
α’s obtained for these two pressures differ by 10.8 %. This is because the vacuum
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Fig. 4.11 a The mean square displacements of a 3 µm silica bead trapped in air at 99.8 kPa (red
square) and 2.75 kPa (black circle). They are calculated from 40 million position measurements for
each pressure. The “noise” signal (blue triangle) is recorded when there is no particle in the optical
trap. The solid lines are the theoretical predictions of Eq. 4.17. They fit with the measurements
excellently. The prediction of Einstein’s theory of free Brownian motion in the diffusive regime
is shown in dashed lines for comparison. b MSD’s at short time scales are shown in detail. The
dash-dot line indicates ballistic Brownian motion of a free particle

chamber is distorted slightly when the pressure is decreased from 99.8 to 2.75 kPa.
One may avoid this problem in future by coupling the trapping laser into the vacuum
chamber with an optical fiber and a teflon feedthrough [14]. The measured MSD’s are
completely different from those predicted by Einstein’s theory of Brownian motion
in a diffusive regime. The slopes of measured MSD curves at short time scales are
double of those of the MSD curves of diffusive Brownian motion in the log-log plot
(Fig. 4.11a). This is because the MSD is proportional to t2 for ballistic Brownian
motion, and it is proportional to t for diffusive Brownian motion. Another important
feature is that the MSD curves are independent of air pressure at short time scales, as
is predicted by 〈[�x(t)]2〉 = (kB T/M) t2 for ballistic Brownian motion, whereas the
MSD in the diffusive regime does depend on the air pressure. At long time scales, the
MSD saturates at a constant value because of the optical trap. Figrue 4.11b displays
more detail of the Brownian motion at short time scales. It clearly demonstrates that
we have observed ballistic Brownian motion.
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The distributions of the measured instantaneous velocities are displayed in
Fig. 4.12. They agree very well with the Maxwell-Boltzmann distribution. The mea-
sured rms velocities are vrms = 0.422 mm/s at 99.8 kPa and vrms = 0.425 mm/s at
2.75 kPa. These are very close to the prediction of the energy equipartition theo-
rem, vrms = √

kB T/M , which is 0.429 mm/s. As expected, the velocity distribu-
tion is independent of pressure. The rms value of the noise signal is 0.021 mm/s,
which means we have 1.0 Å spatial resolution in 5µs. This measurement noise
is about 4.8 % of the rms velocity. Figure 4.12 represents direct verification of
the Maxwell-Boltzmann distribution of velocities and the equipartition theorem of
energy for Brownian motion. For a Brownian particle in liquid, the inertial effects
of the liquid become important. The measured rms velocity of the particle will be
vrms = √

kB T/M∗ in the ballistic regime, where the effective mass M∗ is the sum
of the mass of the particle and half the mass of the displaced fluid [15]. In order to
measure the true instantaneous velocity in liquid as predicted by the equipartition
theorem, the temporal resolution must be much shorter than the time scale of acoustic
damping, which is less than 1 ns for a 1µm particle in liquid [15].

Figure 4.13 shows the normalized VACF of the bead at two different pressures.
They fit with Eq. 4.20 nicely. At 2.75 kPa, one can clearly see the oscillations due
to the optical trap. Equation 4.20 is independent of the calibration factor α of the
detection system. The only independent variable is time t , which we can measure
with high precision. Thus the normalized VACF provides an accurate method to
measure τp and ω0. Fitting the normalized VACF with Eq. 4.20, we obtained τp =
48.5 ± 0.1 µs, ω0 = 2π · (3064 ± 4) Hz at 99.8 kPa, and τp = 147.3 ± 0.1 µs,
ω0 = 2π · (3168 ± 0.5) Hz at 2.75 kPa. The trapping frequency changed by 3 % due
to the distortion of the vacuum chamber at different pressures. We can also calculate
the diameter of the silica bead from the τp value at 99.8 kPa [16]. The obtained
diameter for this microsphere is 2.79 µm. This is within the uncertainty range given
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Fig. 4.13 The normalized
velocity autocorrelation func-
tions of the 3µm bead at
99.8 kPa (red square) and at
2.75 kPa (black circle) from
the measurements. The solid
lines are fittings with Eq. 4.20
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by the supplier of 3.0 µm silica beads. We use this value in the calculation of MSD
and normalized VACF.

For a particle at a certain pressure and temperature, τp should be independent
of the trapping frequency. We verified this by changing the total power of the two
laser beams from 25 to 220 mW. The measured τp of a microsphere trapped at 19.6
and 749 torr as a function of the total laser power is shown in Fig. 4.14. Each data
point has a few percent of uncertainty because we use a smaller data sets to calculate
the τp than those used in the previous figures. Although the data points for each
pressure are not perfectly on a line, it is clear that the τp’s are independent of the
laser power within the experimental uncertainty. Fitting the data for each pressure
with a straight line, we obtain τp = [151.3+0.00168 P/(1mW)] µs at 19.6 torr, and
τp = [53.74 + 0.00275 P/(1mW)] µs at 749 torr for this microsphere, where P is
the total power of the two trapping beams. Thus τp changed less than 1.3 % for both
pressures when the total laser power is changed from 0 to 200 mW. This proves that
the fitting method is very accurate, and the heating due to the laser beams (which
would change the viscosity and affect τp) is negligible at these pressures.

In conclusion, we have observed the Brownian motion of a single particle in the
ballistic regime, and measured its instantaneous velocity successfully for the first

Fig. 4.14 Measured momen-
tum relaxation times (τp) of
a microsphere trapped at 19.6
and 749 torr as a function of
the total power of the two
trapping beams
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time. The ability to measure the instantaneous velocity of a Brownian particle will
be invaluable in studying nonequilibrium statistical mechanics [17, 18] and can be
used to cool Brownian motion by applying a feedback force with a direction opposite
to the velocity [19, 20].

In vacuum, our optically trapped particle promises to be an ideal system for
investigating quantum effects in a mechanical system [13, 21], due to its near-
perfect isolation from the thermal environment. Combining feedback cooling and
cavity cooling, we expect to cool the Brownian motion of a bead starting from room
temperature to the quantum regime, as predicted by recent theoretical calculations
[22, 23]. We have directly verified the energy equipartition theorem of Brownian
motion. However, we also expect to observe deviation from this theorem when the
bead is cooled to the quantum regime. The kinetic energy of the bead will not approach
zero even at 0 K because of its zero-point energy. The rotational energy of the bead
should also become quantized.

An optically trapped microsphere can also be used to probe the properties of
superfluid helium. Liquid helium has many special properties. Its density is only
0.129 g/cm3, and its refractive index is only 1.024, which is close to that of air
(Table A.1). Thus optical trapping of microspheres in liquid helium is similar to
optical trapping of microspheres in air. A microsphere in superfluid helium will do
Brownian motion due to collisions between the microsphere and quasiparticles, such
as phonons and rotons [24–26]. Thus we can probe the properties of superfluid helium
by studying the Brownian motion of an optically trapped microsphere in it.
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Chapter 5
Towards Measurement of the Instantaneous
Velocity of a Brownian Particle in Water

5.1 Motivation

In the previous chapter, we presented our measurement of the instantaneous velocity
of a Brownian particle in air. A more interesting experiment would be to measure the
instantaneous velocity of a Brownian particle in water (or other liquid). Brownian
motion was first discovered in water, and it affects many aspects of the life of cells
in water. More importantly, Brownian motion in water may reveal new physics that
has not been explored before.

It is clear that the velocity distribution of a Brownian particle in air satisfies
the Maxwell–Boltzmann distribution. Since the Maxwell–Boltzmann distribution is
derived for an ideal gas (or a weakly interacting system), it is not clear whether it
holds equally well in water. In water, a moving microsphere drags water along with it
as it moves. If the moving microsphere is suddenly stopped, the water flow caused by
the previous motion of the microsphere will drag the microsphere to keep it moving.
Thus the presence of water adds a memory effect to the motion of the bead. The water
will also add an effective mass to the microsphere, since accelerating the microsphere
requires a force both on the microsphere and the water which it displaces as it moves.

5.2 Hydrodynamic Theories of Brownian Motion

5.2.1 A Free Particle in Water

The effective mass of the microsphere in water is the sum of the mass of the
microsphere and half of the mass of the displaced water [1, 2]:

M∗ = Mp + 1

2
M f , (5.1)

T. Li, Fundamental Tests of Physics with Optically Trapped Microspheres, 59
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where Mp = (4/3)πR3ρp is the mass of the microsphere, M f = (4/3)πR3ρ f is the
mass of displaced water, ρp is the density of the microsphere, and ρ f is the density
of water. The energy equipartition theorem needs to be modified to:

1

2
M∗〈v2〉 = 1

2
kB T (5.2)

where v is the velocity of the microsphere in one dimension. Thus the rms velocity
is vrms = √

kB T/M∗. Because of the memory effect of water, the velocity autocor-
relation function (VACF) of a free particle will not be 〈v(t)v(0)〉 = kB T

M e−t/τp as in
air, but [3–6]

〈v(t)v(0)〉
kB T/M∗ = α+eα2+t erfc(α+

√
t) − α−eα2−t erfc(α−

√
t)

α+ − α−
, (5.3)

where

α± = 3

2
· 3 ± (5 − 36τp/τ f )

1/2

τ
1/2
f (1 + 9τp/τ f )

. (5.4)

τp = Mp/(6πηR) = 2
9 R2ρp/η is the momentum relaxation time of the particle

due to its own inertia, τ f = R2ρ f /η characterizes the effect of water. Here η is the
viscosity of water and R is the radius of the microsphere.

At long time scales, Eq. 5.3 approaches

〈v(t)v(0)〉
kB T/M∗ ∝ 1

t3/2 for t → ∞. (5.5)

At short time scales, Eq. 5.3 approaches

〈v(t)v(0)〉
kB T/M∗ = exp

(−b
√

t/τ f
)

for t → 0, (5.6)

where

b = 18√
π(1 + 2ρp/ρ f )

.

For a silica microsphere in water, b = 2.03. The normalized VACF approaches 1 at
short time scales as

√
t , rather than t . This is very different from the case in air.

The mean square displacement of a free microsphere in water is [7, 8]:

〈[�x(t)]2〉free = 2Dt

[
1 − 2

√
1

π

τ f

t
+ 8

9

τ f

t
− τp

t
+ �

(
τp

τ f
,

t

τ f

)]
, (5.7)
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where D = kB T/(6πηR) is the diffusion coefficient. �(
τp
τ f

, t
τ f

) is a correction term:

�

(
τp

τ f
,

t

τ f

)
= 3

t (5τ f − 36τp)1/2

(
1

α3+
eα2+t erfc(α+

√
t) − 1

α3−
eα2−t erfc(α−

√
t)

)
.

(5.8)

The behavior of the MSD at the long time limit is:

〈[�x(t)]2〉 = 2Dt for t 	 τp. (5.9)

Recently, the velocity autocorrelation function of a Brownian particle in water
was measured successfully for 〈v(t)v(0)〉

〈v2〉 < 0.35 [6, 9]. However, the instantaneous
velocity of a Brownian particle in water will be much more difficult to measure
than the velocity autocorrelation function, and has not been measured to date. This
is because the velocity autocorrelation function is a statistical average, which is
insensitive to the high-frequency noise in the measurement. In our experiment, we
hope that we can measure the instantaneous velocity of a Brownian particle in water
for the first time, with particular interest to test the modified Maxwell–Boltzmann
velocity distribution:

fv(vi ) =
√

M∗
2πkB T

exp

(
− M∗v2

i

2kB T

)
. (5.10)

5.2.2 An Optically Trapped Microsphere in Water

The optical trap provides a harmonic force Ftrap = −kx on the microsphere when
the displacement of the microsphere is small. k = Mp�

2 where � is the natural
angular frequency of the trap. Clercx and Schram [5] gave analytical solutions for
the MSD and VACF of a trapped Brownian particle in a liquid, and Berg-Sørensen
and Flyvbjerg [10] gave a solution for the power spectrum density (PSD) of a trapped
Brownian particle in a liquid. This section introduces their analytical solutions and
provides some numerical results to visualize those solutions. These numerical results
will serve as a guide for our experiment.

Because the velocity of the Brownian motion of a microsphere in liquid is much
smaller than the speed of sound in the liquid, we can describe the fluid motion by the
linearized incompressible time-dependent Navier–Stokes equation. The Langevin
equation of the motion of a trapped microsphere in a liquid is [5]:

M∗ ẍ(t) = −kx(t) − 6πηRẋ(t)

−6R2√πρ f η

∫ t

−∞
(t − t ′)−1/2 ẍ(t ′)dt ′ + Ftherm(t). (5.11)
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The first term after the equal sign of Eq. 5.11 is the harmonic force, the second term
is the ordinary Stokes’s friction, the third term is a memory term associated with
the hydrodynamic retardation effects of the liquid, and the last term is the Brownian
stochastic force.

The mean-square displacement of a trapped microsphere in a liquid is [5, 8]

〈[�x(t)]2〉trap = 2kB T

k
+ 2kB T

M∗

[
ez2

1t erfc(z1
√

t)

z1(z1 − z2)(z1 − z3)(z1 − z4)

+ ez2
2t erfc(z2

√
t)

z2(z2 − z1)(z2 − z3)(z2 − z4)

+ ez2
3t erfc(z3

√
t)

z3(z3 − z1)(z3 − z2)(z3 − z4)

+ ez2
4t erfc(z4

√
t)

z4(z4 − z1)(z4 − z2)(z4 − z3)

]
(5.12)

The coefficients z1, z2, z3, and z4 are the four roots of the Eq. [8]

(
τp + 1

9
τ f

)
z4 − √

τ f z3 + z2 + 1

τk
= 0, (5.13)

where τk = 6πηR/k. For t → ∞, Eq. 5.12 approaches

〈[�x(∞)]2〉trap = 2kB T

k
.

The normalized VACF of a trapped microsphere in a liquid is [5, 8]

A(t) = 〈v(t)v(0)〉
kB T/M∗ = z3

1 ez2
1t erfc(z1

√
t)

(z1 − z2)(z1 − z3)(z1 − z4)

+ z3
2 ez2

2t erfc(z2
√

t)

(z2 − z1)(z2 − z3)(z2 − z4)

+ z3
3 ez2

3t erfc(z3
√

t)

(z3 − z1)(z3 − z2)(z3 − z4)

+ z3
4 ez2

4t erfc(z4
√

t)

(z4 − z1)(z4 − z2)(z4 − z3)
. (5.14)

The power spectral density is [8, 10]:

S( f ) = D

2π2 f 2

1 + √
f/2φ f

(φk/ f − √
f/2φ f − f/φp − f/9φ f )2 + (1 + √

f/2φ f )2
,

(5.15)
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where f is the observation frequency, φk = 1/(2πτk) is the corner frequency of
the power spectrum due to the trap, and φp, f = 1/(2πτp, f ). For f → 0, Eq. 5.15
approaches

S(0) = 2kB T γ

k2 ,

where γ = 6πηR.
At t → 0, Eq. 5.14 predicts 〈v(0)v(0)〉 = kB T/M∗, which is different from

the energy equipartition theorem 〈v(0)v(0)〉 = kB T/Mp. This conflict is caused by
the assumption in Eq. 5.11 that the liquid is incompressible. For t < tc, we need
to consider the liquid to be compressible. Here tc = R/c is the time required for a
sound wave to travel a sphere radius, where c is the speed of sound in the liquid. The
normalized velocity autocorrelation function at t ∼ tc is [1]:

A(t) = 〈v(t)v(0)〉
kB T/M∗ = 1 + M f

2Mp

[
1

2
− i M∗

(4M2
p − M2

f )
1/2

]
e−i x1t/tc

+ M f

2Mp

[
1

2
+ i M∗

(4M2
p − M2

f )
1/2

]
e−i x2t/tc , (5.16)

where

x1 = −i
M∗

Mp
+

[
1 − M2

f

4M2
p

]1/2

, (5.17)

x2 = −i
M∗

Mp
−

[
1 − M2

f

4M2
p

]1/2

. (5.18)

At very short time scales t � tc, Eq. 5.16 approaches A(0) = 1+ M f
2Mp

. The short time

limit A(0) = 1 because the normalization factor is kB T/M∗, rather than kB T/Mp.

Table 5.1 Characteristic time scales of an optically trapped silica microsphere in water at 20◦ C

Diameter k τp τ f τk τc
2
9 R2ρp/η R2ρ f /η 6πηR/k R/c

(µm) (µN/m) (µs) (µs) (µs) (ns)

1.0 100 0.11 0.25 94 0.34
3.0 33.3 1.0 2.2 851 1.01
4.7 21.3 2.45 5.51 2,083 1.58
10 10 11.1 25.0 9443 3.4

The second row shows the definitions of τp, f,k,c. The second column (k) is the spring constant of
the optical trap. It is assumed to be inversely proportional to the diameter of the microsphere when
the laser power is constant
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Fig. 5.1 Mean square displacement of an optically trapped silica microsphere in water at 20◦ C.
Parameters are the same as those in Table 5.1
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Fig. 5.2 Power spectra of an optically trapped silica microsphere in water at 20◦ C. Parameters are
the same as those in Table 5.1

The MSD’s of microspheres with different diameters in water are shown in
Fig. 5.1, and the corresponding power spectra are shown in Fig. 5.2. Figure 5.3 dis-
plays the normalized velocity autocorrelation function (A(t)) of an optically trapped
silica microsphere in water at 20◦ C. Figure 5.3a displays the VACF’s with a linear-
log scale to cover a large range of time scales, and Fig. 5.3b displays the VACF’s
in a log-linear scale to show the details at short time scales. The thin solid lines
at short time scales (t < 10−8 s) are calculated from Eq. 5.16, which includes the
compressibility effects of water. The thick solid lines are calculated from Eq. 5.14,
which treats the water as an incompressible fluid. The dashed lines are exponential
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Fig. 5.3 Normalized velocity autocorrelation function of an optically trapped silica microsphere
in water at 20◦ C. Parameters are the same as those in Table 5.1. a Covers large range of time scales,
and b shows the details at short time scales. The thin solid lines (t < 10−8 s) are calculated from
Eq. 5.16, and the thick solid lines are calculated from Eq. 5.14. The dashed lines are exponential
decays with τp = 1.0 µs, corresponding to a 3.0µm microsphere

decays with τp = 1.0 µs, corresponding to a 3.0 µm microsphere. As clearly shown
in Fig. 5.3, the VACF of a microsphere in water is very different from exponential
decay because of the hydrodynamic memory effects of water.

The thin solid lines are expected to be correct for t ∼ tc, and the thick sold lines
are expected to be correct for t 	 tc. The intermediate regime tc < t < 100tc
is still poorly understood. It is suspicious that the thick solid curves approaches 1
so slowly at the short time limit. The normalized VACF a 4.7 µm diameter silica
microsphere in water at 20 and 60◦ C is shown in linear–linear scales in Fig. 5.4.
The VACF follows exp(−b

√
t/τ f ) at the short time limit, rather than exp(−t/τp).
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Fig. 5.4 Normalized velocity autocorrelation function of a 4.7µm diameter silica microsphere in
water at 20 and 60◦ C. The solid lines are exact results of the hydrodynamic theory of Brownian
motion in a liquid (Eq. 5.14). The dashed lines are exp(−b

√
t/τ f ), which is the short time limit of

the hydrodynamic theory (Eq. 5.6). The dashed dot line is an exponential decay exp(−t/τp)

A recent experiment has measured the VACF of a Brownian particle in water at
VACF< 0.35 [9]. A measurement of the VACF between 1 and 0.35 is required in
order to better understand the hydrodynamic effects and compressibility effects of
water on Brownian motion [11].

5.3 Requirements for Measuring the Instantaneous
Velocity

In order to measure the instantaneous velocity of a Brownian particle in water, the
temporal resolution of the detection system must be much shorter than the momentum
relaxation time of the particle, and the spatial resolution of the detection system must
be much smaller than the displacement of the particle during the measurement time.

Because of the inertia of the particle and the water, the effective momentum
relaxation time is

τ∗
p = M∗

6πηR
. (5.19)

In order to resolve the instantaneous velocity with 10 % uncertainty, we need the
temporal resolution to be at least �t = τ∗

p/10. The average displacement of the
microsphere during �t is τ∗

pvrms/10. Thus the required spatial resolution is �x =
τ∗

pvrms/100. The sensitivity of a detector is usually characterized by its noise spectral
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Table 5.2 Minimum
required detection resolution
for measuring the
instantaneous velocity of a
Brownian particle in water at
20 and 60◦ C

20◦ C 60◦ C
Diameter �t �x sx �t �x sx

(µm) (µs) (pm) (fm/Hz1/2) (µs) (pm) (fm/Hz1/2)

1.0 0.014 2.4 0.28 0.029 5.5 0.94
1.9 0.049 3.3 0.74 0.10 7.6 2.5
3.0 0.12 4.2 1.5 0.26 9.6 4.9
4.7 0.30 5.2 2.9 0.65 12 9.6
10 1.4 7.6 8.9 2.9 17 30

density sx . The spectral density of the detector should satisfy sx < �x
√

�t at the
required frequency 1/�t in order to measure the instantaneous velocity.

Table 5.2 shows the minimum required resolution for measuring the instantaneous
velocity of a Brownian particle in water. To measure the instantaneous velocity of
a 1 µm diameter microsphere in water at 20◦ C, the noise spectral density of the
detection system should be smaller than 0.28 fm/Hz1/2 around 71 MHz. The require-
ment is relaxed to 0.94 fm/Hz1/2 around 34 MHz if the temperature of the water is
increased to 60◦ C. This is mainly because the viscosity of the water decreases when
the temperature increases (Table A.1). Thus it is easier to measure the instantaneous
velocity at 60◦ C than at 20◦ C. t∗p is bigger for a larger particle, so the requirements
for measuring the instantaneous velocity of a large microsphere is less demanding
than that of a small microsphere. However, the sensitivity of the detection system
varies for microspheres of different size. Thus there is an optimal size for measuring
the instantaneous velocity.

The resolution of particle tracking with an optical tweezer is fundamentally limited
by the shot noise of the laser. Because the size of the microsphere is on the same
order as the wavelength of the laser, an accurate calculation of the shot noise limited
sensitivity is very complex. Here we only discuss a simple estimation. The shot noise
limited noise spectral density is estimated to be [12]

sx ≈ 5 × 10−16G

(
R

1µm

) (
100mW

P

)1/2 (
1µm

λ

)1/2

m/
√

Hz, (5.20)

where G is a geometrical factor that depends on R/λ, R/w, and the precise details
of the Mie scattering by the sphere. λ is the wavelength of the laser, w is the waist
of the laser beam, and P is the power of the laser.

If the wavelength of the laser is 1µm and the power is 100 mW, we need G < 1.1
to measure the instantaneous velocity of a 1µm diameter microsphere at 20◦ C. We
need G < 2.5 to measure the velocity of a 4.7µm diameter microsphere at the same
conditions, and if the temperature is 60◦ C the requirement is relaxed to G < 8.2.
This means that our detection system must be very close to the shot noise limit in
order to measure the instantaneous velocity of a Brownian particle in water.

The discussions in the previous paragraphs assume that the normalized VACF
is exp(−t/τ∗

p) at short time scales. However, the normalized VACF is most likely
exp(−b

√
t/τ f ) at short time scales. This will require a temporal resolution of �t =
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τ f /(100 b2) in order to measure the instantaneous velocity. Our optical tweezer will
not be able to measure the instantaneous velocity of a Brownian particle in water if
the normalized VACF follows exp(−b

√
t/τ f ) even at such short time scales. On the

other hand, the normalized VACF is much easier to measure than the instantaneous
velocity. We should be able to measure the normalized VACF between 0.35 and 1
even if we are not able to measure the instantaneous velocity.

In the presence of detection noise, the measured position of the microsphere can
be expressed as

xmsr (t) = x p(t) + xn(t), (5.21)

where x p(t) is the real position of the microsphere, and xn(t) is the noise of the
detection system. The mean square displacement (MSD) of the measured positions
is [6]:

MSDmsr (t) = 〈[xmsr (t0 + t) − xmsr (t0)]2〉
= 〈[x p(t0 + t) − x p(t0)]2〉 + 〈[xn(t0 + t) − xn(t0)]2〉

+ 2〈[x p(t0 + t) − x p(t0)] · [xn(t0 + t) − xn(t0)]〉
= MSDp(t) + MSDn(t). (5.22)

The derivation assumes no correlation between the real position of the microsphere
and the detection noise. In this case, the real MSD of the microsphere (MSDp(t))
can be obtained by subtracting the noise MSDn(t) from the measured MSDmsr (t), as
is done in Ref. [9]. In reality, there may be a small correlation between the motion of
the bead and the detection noise. Thus it is important to minimize the noise MSDn(t)
in the measurement.

The measured velocity of the microsphere is

vmsr (t) = xmsr (t + δt
2 ) − xmsr (t − δt

2 )

δt

= x p(t + δt
2 ) − x p(t − δt

2 )

δt
+ xn(t + δt

2 ) − xn(t − δt
2 )

δt
= vp(t) + vn(t), (5.23)

where �t � τp. Because the measured velocity contains a noise signal vn(t), the
smallest possible δt is not the optimal value for measuring the velocity. The DAQ
card creates noise when it converts an analog signal to a digital signal due to the
finite number of bits. The minimum value of xn(t + δt

2 )− xn(t − δt
2 ) is limited by the

DAQ card, thus vn(t) may be larger than the real velocity of the microsphere vp(t)
if δt is too small.

The measured velocity represents the real instantaneous velocity of the microsphere
if vn(t) is negligible. This requires 〈v2

msr 〉 	 〈v2
n〉. One can check whether this

condition is satisfied by comparing the signal when a microsphere is trapped in the
optical tweezer and when there is not microsphere in the optical tweezer. The relation
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between 〈v2
msr 〉 and 〈v2

n〉 can also be obtained from the measured MSD:

〈v2
msr 〉 =

〈
[xmsr (t + δt

2 ) − xmsr (t − δt
2 )]2

δt2

〉
(5.24)

= MSDmsr (δt)

δt2

= MSDp(δt)

δt2 + MSDn(δt)

δt2

= 〈v2
p〉 + 〈v2

n〉.

Thus 〈v2
msr 〉 	 〈v2

n〉 is equivalent to MSDmsr (δt) 	 MSDn(δt).
The measured velocity autocorrelation function is

〈vmsr (t + t0)vmsr (t0)〉 = 〈vp(t + t0)vp(t0)〉 + 〈vn(t + t0)vn(t0)〉 (5.25)

Since the noise of the detection system has almost no correlation, the last term of
this equation can be neglected. Thus

〈vmsr (t + t0)vmsr (t0)〉 .= 〈vp(t + t0)vp(t0)〉. (5.26)

So the measurement of the velocity autocorrelation function is not sensitive to the
noise of the detection system. On the other hand, the measurement of the instanta-
neous velocity is very sensitive to the noise of the detection system.

If the detection system samples the position of the microsphere every dt that is
much shorter than the required temporal resolution �t , we can reduce the noise in the
measured velocity by using successively averaged positions to calculate the velocity.
Let δt = N dt (N � τp/dt), then

xavr (t) = 1

N

N∑
j=1

xmsr

(
t + jdt − (N + 1)

dt

2

)
. (5.27)

The measured velocity becomes

vmsr (t) = xavr (t + δt
2 ) − xavr (t − δt

2 )

δt
. (5.28)

Then the velocity noise is

vn(t) = 1

N 2dt

[ N∑
j=1

xn

(
t + jdt − (N + 1)

dt

2
+ δt

2

)

−
N∑

j=1

xn

(
t + jdt − (N + 1)

dt

2
− δt

2

)]
. (5.29)
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On average, the rms amplitude of vn(t) is N
√

N times smaller than that of [xn(t +
dt/2) − xn(t − dt/2)]/dt if the position noise xn(t) is white noise.

5.4 A Simple Optical Tweezer in Water

Figure 5.5 shows a simplified schematic of an optical tweezer for trapping a
microsphere in water and studying its Brownian motion with ultrahigh resolution.
The trapping laser passes through a λ/2 waveplate and a polarizing beam splitter
cube (PBS1), which control the power of the laser. The laser is then reflected by a
dichroic mirror (DM2) and enters an objective lens (OB2) to form an optical tweezer
inside a sample chamber at the focus of the objective lens. We use another objective
lens (OB1) to collect the laser for detection. The sample chamber and the objec-
tive OB1 are both mounted on 3-axis translation stages. The motion of a trapped
microsphere causes deflection of the trapping laser. Thus we can monitor the posi-
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DAQ
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Trapping
Laser

1064 nm

 Camera

PBS1/2

Filter

3-axis
stage

3-axis
stage  OB1

 OB2

DM2

DM1

PBS2/2

Beam
Dump

Beam
Dump
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Fig. 5.5 Simplified schematic of an optical setup for trapping microspheres in water. PBS1 and
PBS2 are polarizing beam splitter cubes, DM1 and DM2 are dichroic mirrors, OB1 and OB2 are
100× oil-immersion objective lenses, MX is a mirror with a sharp edge that splits the beam into
two parts horizontally, and DAQ is a data acquisition card that is installed in a computer
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tion of the microsphere by measuring the deflection of the laser beam. After passing
through another λ/2 waveplate and beam splitter (PBS2) to reduce its power, the
laser is split by a mirror with a sharp edge. The difference between the two halves
is measured by a fast balanced detector [13, 14]. The output signal of the detector is
proportional to the position of a trapped microsphere, and is collected by a fast data
acquisition card (DAQ). We use a white LED for illumination to take bright field
images by a camera for real-time imaging of the microspheres. The filter before the
camera blocks the scattered light from the trapping laser.

The trapping laser is an ultrastable NPRO laser (Model: 126-1063-700, Lightwave
Electronics (now JDSU)) with a wavelength of 1064 nm. The maximum power is
about 800 mW. Its rms intensity noise is < 0.05 % over the range from 10 Hz to
2 MHz, and is shot noise limited above 10 MHz. PBS1 is a high-energy laser-line
polarizing cube beamsplitter from CVI Melles Griot (PBSO-1064-50, CW damage
threshold: 1 MW/cm2). Both OB1 and OB2 are 100x oil-immersion objective lenses
with NA = 1.25. They are infinite-conjuncted objective lenses, and are designed for
working with cover glasses with thickness of 0.17 mm. OB1 and OB2 are bought
from the Microscope Store, LLC (www.microscope.com). Their working distance is
about 0.1 mm. Thus the total distance between the front surfaces of the two objective
lenses is about 0.54 mm. Two oil layers, two cover glasses, two epoxy layers and one
water layer must be made to fit within this gap. We later use an objective lens with
a longer working distance to make the alignment easier.

The sample chamber consists of three layers of coverslips bonded together by
epoxy. The two outer layers are No. 0 coverslips (thickness: 0.08–0.13 mm), the
center layer is a 1 cm2 square of water layer surrounded by four small pieces of No.
1 coverslips (thickness: 0.13–0.16 mm). The coverslips are bought from Ted Pella,
Inc. The microspheres are contained in the water layer. We use vacuum grease to seal
the sample chamber. The sealed sample can be used for several hours. Otherwise the
water will evaporate in about 10 min without sealing. The silica microspheres used
for trapping are bought from Bangs Laboratories, Inc.

The mirror with a sharp edge (MX) is a D-Shaped mirror bought from Thorlabs,
Inc. The detector is a balanced InGaAs photo detector. The two photodiodes are
matched to cancel the common noise of the laser. The bandwidth of the detector is
100 MHz, enabling us to study the Brownian motion of a trapped microsphere at fast
time scales. The DAQ card (Gage, Razor CompuScope 1622) has two channels with
sampling rate of 200 MS/s and vertical resolution of 16 bits. This is one of the fastest
high resolution digitizers currently available on the market. Our detection system can
monitor the position of a trapped microshpere with sub-Ångstrom spatial resolution
and sub-microsecond temporal resolution.

The maximum power of the LED is about 5 W. The camera is a USB color 3MP
CMOS camera bought from Mightex Systems (Model: MCE-C030-U). It allows us
to monitor the sample chamber in real time with spatial resolution of about 0.5 µm.

Figure 5.6 shows successful trapping of a 4.7µm diameter silica microsphere
in water with an optical tweezer. Initially some microspheres undergo Brownian
motion near the bottom of the sample chamber, while other microspheres are stuck
to the surface of the coverslip due to the van der Waals force. We can use the optical
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(a) (b)

(c) (d)

Fig. 5.6 A 4.7-µm diameter silica microsphere (marked by an arrow) is trapped in water with an
optical tweezer. The trapped microsphere does not move while other three microspheres are shifted
when we move the glass slide perpendicular to the laser beam (a and b) or along the propagation
direction of the laser beam (b, c and d). In c and d, the images of un-trapped microspheres become
blurred as they are moved out of focus, while the images of the trapped microsphere are always
sharp as it is trapped at the focus

tweezer to trap a microsphere that is not stuck on the surface. After trapping, the
position of the trapped microsphere is fixed by the optical tweezer. We can move
the glass slide in 3D while keeping the microsphere trapped, as shown in Fig. 5.6.
An optical tweezer thus provides a tool to manipulate a microscopic object in 3D
without physical contact.

Figure 5.7 shows the measured noise spectra of the digitizer and two balanced
detectors (Thorlabs PDB120C, and PDB110C-AC). When no detector is connected
to the DAQ card, the average noise spectral density is about −130 dB around 10
MHz. When a PDB120C detector is connected to the DAQ card, the average spectral
density increases to about −107 dB around 10 MHz. When a PDB110C-AC detec-
tor is connected to the DAQ card, the average spectral density increases to about
−115 dB around 10 MHz. Thus the PDB110C-AC detector has less noise than the
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Fig. 5.7 Noise spectra of the DAQ card and two different detectors

PDB120C detector. So we use the PDB110C-AC detector for studying the Brownian
motion in water.

Figure 5.8 shows a measured waveform and power spectrum of a 4.7µm diameter
microsphere trapped in water at room temperature. The waveform appears as a sine
wave at 120 Hz. We found that it was due to mechanical vibration of the objective
lens. The real signal of the Brownian motion of the microsphere is the high frequency
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Fig. 5.8 A waveform and spectrum of a 4.7-µm diameter microsphere trapped in water at room
temperature

fluctuations in the “sine” curve. As a result, the power spectrum is very small at
frequencies above 1MHz. The power spectrum at frequencies above 1 MHz basically
comes from the noise of the laser, which is a problem for studying the Brownian
motion of the microsphere.

Later we mounted a heavy copper block on the post of the top objective lens (OB1
in Fig. 5.5) to reduce the mechanical vibration. This improves the signal significantly.
Figure 5.9 shows a measured waveform and power spectrum of a 4.7µm diameter
microsphere trapped in water after we mounted a copper block on the post. It no
longer appears like a sine wave. The high frequency fluctuation due to the Brownian
motion of the microsphere dominates the signal. As a result, the power spectral
density increased by about 7 dB at 1 MHz. The signal is about 95 dB at 2 MHz, and
the noise of the detection system is about −103 dB. So the signal is only 8 dB above
the detection noise at 2 MHz. This is not enough for measuring the instantaneous
velocity of the Brownian motion. The signal needs to be increased by 10 dB or more
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Fig. 5.9 A waveform and spectrum of a 4.7µm diameter microsphere trapped in water at room
temperature. A copper block was mounted on the post of the objective lens to reduce mechanical
vibration

in order to measure the instantaneous velocity of the 4.7-µm diameter microsphere
in water.

Figure 5.10 show preliminary results of the MSD of a 4.7µm bead in water. The
measured MSDmsr (t) is dominated by the noise when the time is shorter than 0.1µs.
The MSDp(t) = MSDmsr (t) − MSDn(t) agrees with the prediction of slope 2 at
short time scales. However, this subtraction method is limited by the uncertainty on
determining MSDn(t).

5.5 Interferometer-Enhanced Optical Tweezers

In order to measure the instantaneous velocity of a 4.7µm microsphere in water, we
need to improve the signal-to-noise ratio of the detection system by a factor of 10 or
more at frequencies above 1 MHz.
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Fig. 5.10 Preliminary results of the MSD of a 4.7µm bead in water

We consider the detection of the position of a trapped microsphere along x axis
that is perpendicular to the propagating direction of the laser. Suppose the position
of the microsphere is x p, and the electric field of the optical tweezer without the
microsphere is E0(x)(1+εint+εpt (x)), where εint represents the intensity fluctuation
of the laser, and εpt (x) represents the pointing fluctuation of the laser. The electric
field with a trapped microsphere can be written as:

E p(x) = E0(x)(1 + εint + εpt (x))(1 + ξ(x p)) (5.30)

where ξ(x p) represents the effect of the microsphere. If we assume εint � 1, εpt � 1
and ξ(x p) � 1, the intensity of the laser beam after the microsphere is

Ip(x)
.= I0(x)(1 + 2εint + 2εpt (x) + 2ξ(x p)) (5.31)

where I0(x) = E2
0(x) is assumed to be a Gaussian function.

If we measure the position of the microsphere with a balanced detector (Fig. 5.5),
we are measuring the difference of the power of the two halves of the laser beam:

�P(x p, xmir ) =
∫ +∞

xmir

Ip(x)dx −
∫ xmir

−∞
Ip(x)dx (5.32)

where xmir is the position of the split mirror. Let us choose a xmir to satisfy

∫ +∞

xmir

I0(x)(1 + 2εint)dx −
∫ xmir

−∞
I0(x)(1 + 2εint)dx = 0, (5.33)

then the effect of the intensity fluctuation can be eliminated. The output signal
�P(x p, xmir ) contains the position signal of the microsphere and the pointing fluc-
tuation of the laser beam.
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If we use a beam splitter to split a laser to two beams, the profiles of the two beams
are the same. We can use one beam to trap the microsphere, and the other beam as a
reference. The electric field of the reference beam is

Eref (x) = E0(x)(1 + εint + εpt (x)) (5.34)

If we add a phase delay to this reference beam, we can change its sign. Then we
can combine the trapping beam and the reference beam together. The electric of the
combined beam is

Ecb(x) = E p(x) − Eref (x) = E0(x)(1 + εint + εpt (x))ξ(x p) (5.35)

Since εint � 1 and εpt � 1, we have

Ecb(x)
.= E0(x)ξ(x p). (5.36)

The effects of the intensity fluctuation and the pointing fluctuation of the laser beam
are almost eliminated from the combined beam. Thus the signal-to-noise ratio can be
increased significantly with an interferometer enhanced optical tweezer. The diffi-
culty of this method is that the reference laser must have the same pointing fluctuation
as the trapping beam at high frequencies (> 1 MHz).

Figure 5.11 shows a Mach-Zehnder interferometer enhanced optical tweezer and
detection system. The two objective lenses change the electric field from E(x, y)

Detector

Objective

Water

BS

Split Mirror

Dark Port

Objective

BS EOM

Bright Port

Fig. 5.11 A Mach-Zehnder interferometer enhanced optical tweezer and detection system
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Fig. 5.12 A Wollaston interferometer enhanced optical tweezer and detection system. The W1 and
W2 are two Wollaston prisms. Other components are the same as in Fig. 5.5

to E(−x,−y), so another pair of lenses is used to correct this. A mirror changes
the electric field in one direction, i.e. from E(x, y) to E(−x, y). The trapping beam
is reflected by three mirrors, and the reference beam is reflected by one mirror. So
both beams are changed from E(x, y) to E(−x, y). We also need an EOM to change
the phase of the reference beam. Because of low frequency mechanical vibration
of mirrors, the phase of the reference beam must be actively locked to the trapping
beam. A Sagnac interferometer enhanced optical tweezer may solve this problem
[15], but its optics seem much more difficult to align.

We eventually decided to use a Wollaston interferometer enhanced optical tweezer
to increase the signal-to-noise ratio. As shown in Fig. 5.12, its setup is very similar
to a simple optical tweezer (Fig. 5.5). The Wollaston prism W2 (Karl Lambrecht
Corp., Model: WQ-25-05-V 1064NM) separates the laser to two beams with different
polarizations. The angle between the two beams is about 0.5◦. These two beams form
two optical tweezers that are separated by about 15µm at the focus of the objective
lens. One optical tweezer traps a microsphere, and the other optical tweezer serves
as a reference. These two beams are combined together by another Wollaston prism
[16]. We tune the angle of the λ/2 waveplate before the PBS2 so that the two beams
interfere destructively at one port of the PBS2. The split detection system is at the dark
port. Compared with the Mach-Zehnder interferometer, the Wollaston interferometer
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is much easier to align. Both beams pass through the same optical path, so the
reference and trapping beams contain the same pointing fluctuation. Thus the effect
of the pointing fluctuation in detection can be eliminated.

We are currently working on this Wollaston interferometer enhanced optical
tweezer. It should provide enough signal-to-noise ratio for measuring the normalized
VACF of a Brownian particle in water between 0.35 and 1. It will also have many
applications in biophysics.
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Chapter 6
Millikelvin Cooling of an Optically Trapped
Microsphere in Vacuum

6.1 Background

Optical cooling and trapping of atoms [1–3] has led to dramatic breakthroughs in
atomic, molecular and optical physics, including a new generation of atomic clocks,
and realization of Bose–Einstein condensation and degenerate Fermi gas. Applying
similar techniques to cool the mechanical motion of macroscopic objects towards the
quantum ground state will benefit ultrahigh precision measurements and fundamental
tests of macroscopic quantum physics [4–6]. A major obstacle to achieving ground-
state cooling of most mechanical oscillators [7–13] is the thermal contact between
oscillators and their environment. Recently, it was proposed that optical trapping of
dielectric objects in vacuum would greatly reduce the thermal contact, and could
even allow ground-state cooling from room temperature [14–22]. Besides providing
ideal isolation from the environment, the optical trap can be switched off for time-
of-flight measurements to perform full tomography of the mechanical state [21, 23].
Here we report optical trapping of SiO2 microspheres in vacuum with high oscillation
frequencies, and cooling of the center-of-mass motion to millikelvin temperatures
with active feedback.

Feedback control has been used widely in industry and scientific experiments. The
most commonly used feedback controller is a proportional-integral-derivative (PID)
controller. A typical application of a PID controller is to stabilize the temperature
of a system. In our lab, we routinely use PID controllers to stabilize the intensity of
lasers.

A simple pendulum in air will oscillate if it is initially moved away from the
equilibrium position. After oscillating for some time, the pendulum will decay to
rest. In reality, however, the pendulum always vibrates with a small amplitude, due
to external forces from seismic motion, and more fundamentally, due to the thermal
Brownian stochastic force. Even at absolute zero temperature, the pendulum still
oscillates because of the quantum zero-point energy. We can use feedback control
to reduce the vibration amplitude. If the final vibration amplitude is smaller than the
Brownian motion amplitude at thermal equilibrium, the feedback control is called
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“feedback cooling” unless the reduction in amplitude corresponds to an increase in
frequency. In order to do feedback cooling, the detection system must at least be able
to resolve the Brownian motion of the system at thermal equilibrium.

According to the equipartition theorem, the root mean square (rms) amplitude of
the Brownian motion of a trapped microsphere at thermal equilibrium is xrms =√

kB T0/(Mω2), where T0 is the environmental (air) temperature, M is the mass of
the microsphere, and ω is the angular trapping frequency. The characteristic size of
the quantum ground-state wavefunction is xground = √

�/(Mω), where � is Planck’s
constant/2π.

Previous experiments have demonstrated optical levitation of a 20-µm diameter
sphere in vacuum with a trapping frequency of about 20 Hz [24], as well as feedback
control of a trapped sphere which was used to increase the trapping frequency to
several hundred hertz and stabilize its position to within a fraction of one micrometer
[25]. However, the resolution of its detection system [25] was not sufficient to enable
feedback cooling. For a 20-µm diameter sphere trapped at 100 Hz, the rms amplitude
is about 0.04µm at 300 K, and will be much smaller at lower temperature. The size of
the quantum ground-state wavefunction is xground = 0.14 pm. Both values are far
smaller than the resolution of the detection system of the previous experiment [25].
It is also important that the trapping frequency be much higher than the frequencies
of seismic vibration in order to achieve significant cooling.

This chapter describes our efforts on feedback cooling of an optically trapped
microsphere in vacuum. We use a dual-beam optical tweezer to trap a 3.0-µm diam-
eter sphere in vacuum with much higher oscillation frequencies (about 10 kHz) to
minimize the effects of instrumental vibration. We also demonstrate a detection
system to monitor the motion of a trapped microsphere with a sensitivity of about
39 fm/

√
Hz over a wide frequency range. Using active feedback, we simultaneously

cool the three center-of-mass (COM) vibration modes of a microsphere from room
temperature to a minimum mode temperature of 1.5 mK, which corresponds to the
reduction of the rms amplitude of the microsphere from 6.7 nm to 15 pm for that
mode.

6.2 Principle of Feedback Cooling

An optically trapped microsphere in non-perfect vacuum will exhibit Brownian
motion due to collisions between the microsphere and residual air molecules. When
there is no feedback cooling, the equation of the Brownian motion of an optically
trapped microsphere is:

d2x j

dt2 + �0
dx j

dt
+ �2

j x = Fth
j , (6.1)

where �0 is the viscous damping factor due to air molecules, � j/2π (j = 1, 2, 3)
are the resonant frequencies of the optical trap along the three fundamental axes (x,
y, and z axes), and Fth

j = ζ j (t)
√

2kB T �0/M is the Brownian stochastic force.
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The damping term �0
dx
dt tends to stop any vibration, while the Fth

j term drives the

motion. It is very interesting that �0 is also contained in Fth
j . When the mechanical

energy (sum of the kinetic energy and the potential energy) of the microsphere is
larger than kB T in one direction, the �0

dx
dt term will dominate and the mechanical

energy of the microsphere will be reduced. On the other hand, the Fth
j term will

dominate and increase the mechanical energy of the microsphere if its mechanical
energy is smaller than kB T . Thus the average mechanical energy of the microsphere
will be kB T in each direction at thermal equilibrium.

At thermal equilibrium, the power spectrum of COM motion of a trapped
microsphere along each of the three fundamental mode axes is [7, 12]:

S j (ω) = 2kB T0

M

�0

(�2
j − ω2)2 + ω2�2

0

, (6.2)

where ω/2π is the observation frequency.

6.2.1 Feedback Cooling

To implement feedback cooling, we apply an external force on the trapped
microsphere:

Fcool
j = −�cool

j
dx j

dt
. (6.3)

The force is proportional to the velocity of the microsphere but with opposite direc-
tion. Thus it will slow down the motion of the microsphere. With feedback cooling,
the equation of the Brownian motion of an optically trapped microsphere is:

d2x j

dt2 + (�0 + �cool
j )

dx j

dt
+ �2

j x = ζ j (t)

√
2kB T �0

M
. (6.4)

In contrast to the �0 due to air molecules, �cool
j is only contained in the damping term

but not in the heating term. So “feedback cooling” is also called “cold damping”.
With feedback cooling, the power spectrum of the COM motion of a trapped

microsphere along each of the three fundamental mode axes is:

Scool
j (ω) = 2kB T0

M

�0

(�2
j − ω2)2 + ω2(�0 + �cool

j )2
. (6.5)

Let �tot
j = �0 + �cool

j be the total damping factor, and T cool
j = T0�0/�tot

j be the
effective temperature of the motion with feedback cooling, the power spectrum can
be rewritten as:
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Scool
j (ω) = 2kB T cool

j

M

�tot
j

(�2
j − ω2)2 + ω2(�tot

j )2
, (6.6)

which has the same form as Eq. 6.2. The effective temperature along each axis may
be different because �cool

j can be different along different directions. The motion can

be cooled significantly by applying a feedback damping �cool
j � �0. The lowest

temperature will be limited by the noise in the detection system and feedback circuits,
as well as coupling between different directions.

6.2.2 Feedback Amplification

Besides cooling, feedback control can also be used to amplify the motion. We can
apply a force in the same direction as the velocity of the microsphere to amplify the
motion:

Famp
j = +�

amp
j

dx j

dt
. (6.7)

With feedback amplification, the equation of the Brownian motion of an optically
trapped microsphere is:

d2x j

dt2 + (�0 − �
amp
j )

dx j

dt
+ �2

j x = ζ j (t)

√
2kB T �0

M
. (6.8)

The power spectrum of COM motion of the microsphere is:

Samp
j (ω) = 2kB T0

M

�0

(�2
j − ω2)2 + ω2(�0 − �

amp
j )2

. (6.9)

When �
amp
j < �0, the system is stable. The effect of �

amp
j is to amplify the

motion and decrease the linewidth of the vibration from �0 to �0 − �
amp
j . When

�
amp
j > �0, the system is not stable and the microsphere will be lost. We have

observed both feedback cooling and feedback amplification in our experiment by
inverting the velocity signal.

6.2.3 Heating Due to Light Scattering

For a microsphere trapped by an optical tweezer, there are also heating effects due
to the light scattered by the microsphere. The heating effects of light scattering can
be separated to two parts. The first part is because of the shot noise of the laser. This
effect is very small and has been calculated in Refs. [14, 15].
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The second part is because the scattering force is not conservative. The scattering
force can do net work on the microsphere when the microsphere moves over a closed
loop under certain conditions [26]. If the two counter-propagating beams of our
dual-beam optical trap is slightly misaligned along x axis (Fig. 3.10), the scattering
force on the microsphere is along the axial direction (z axis), and is proportional
to the displacement of the microsphere along x axis. We have �Fscat ∝ x ẑ. For a
microsphere moving in a loop in the x − z plane, the net work done by the scattering
force over a loop is

W =
∮

�Fscat dl ∝
√

〈x2〉
√

〈z2〉. (6.10)

The period of a harmonic oscillator is independent of the energy of the oscillator.
The mechanical energy of the microsphere will increase due to the work done by the
scattering force at a rate:

d

dt
(Ex + Ez) ∝

√
〈x2〉

√
〈z2〉 ∝ √

Ex Ez, (6.11)

where Ex and Ez are mechanical energies of the microsphere. From this equation,
it is clear that the scattering force couples the motion along different directions and
can make the dynamics of the system very complex. Here we will try to obtain some
qualitative properties of this heating effect. For simplicity, we assume that Ex is
proportional to Ez , then d Ex/dt ∝ Ex . So the scattering force will cause a heating
that is proportional to the mechanical energy of the microsphere. This effect can be
minimized by better alignment of the two counter-propagating laser beams.

A phenomenological description of the feedback cooling process with this heating
effect can be written in an equation about the average mechanical energy of the
microsphere along each axis:

d E j

dt
= −�0 E j − �cool

j E j + �0(kB T ) + α j E j . (6.12)

The first term (−�0 E j ) describes the damping due to the air, the second term is due
to feedback cooling, the third term describes the heating effect due to the air, and the
last term describes the heating effect due to the scattering force. The final effective
temperature of motion of the microsphere in each direction is

T cool
j = E j/kB = �0T

�0 + �cool
j − α j

. (6.13)

The system will be stable when �0+�cool
j > α j and unstable when �0+�cool

j < α j .
This provides a method to estimate α j experimentally. To estimate the α j , we turn
off the feedback cooling forces to let �cool

j = 0. We first trap a microsphere at a
high pressure. At high pressures, we have �0 > α j , and the system is stable. We
then reduce the air pressure to reduce �0. At a certain pressure, the system becomes

http://dx.doi.org/10.1007/978-1-4614-6031-2_3
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unstable and microsphere is lost. Then we have α j ≈ �esc
0 , where �esc

0 is the air
damping factor at the moment when the microsphere is lost.

The heating rate due to the nonconservative force is proportional to the energy of
the microsphere. As the energy of the microsphere is reduced by cooling, this heating
effect becomes negligible and will not prevent ground state cooling. For cooling, we
usually have �cool

j � α j , thus the effect of α j on the final temperature is very
small (Eq. 6.13). The heating effect of the scattering force will be much smaller for
a single-beam optical tweezer.

The above discussions are based on classical mechanics, which is sufficient for
understanding our current experiment. Quantum mechanical description of feedback
cooling will be necessary if the motion of the microsphere is cooled to near the
quantum ground state [27–29].

6.2.4 Damping Due to the Residual Gas in Vacuum

The viscous damping factor due to air can be calculated by kinetic theory. Assuming
the reflection of air molecules from the surface of a microsphere is diffusive, and the
molecules thermalize with the surface during collisions, we have [30]

�0 = 6πηR

M

0.619

0.619 + K n
(1 + cK ), (6.14)

where η is the viscosity coefficient of the air, R is the radius of the microsphere, M is
the mass of the microsphere, and K n = l/R is the Knudsen number. Here l is the
mean free path of the air molecules. cK = (0.31K n)/(0.785 + 1.152K n + K n2) is
a small positive function of K n [30]. At low pressures where K n � 1, the viscous
damping factor is proportional to the pressure. At high pressures where K n 	 1,
the viscous damping factor is �0 = 6πηR/M , which is the same as the prediction
of Stoke’s law.

Figure 6.1 shows the measured linewidth, �0/2π, of the oscillation of a trapped 3-
µm microsphere at different pressures without feedback cooling. The powers of the
two trapping beams are 120 and 100 mW, respectively. The linewidths are obtained
by fitting the measured power spectra with Eq. 6.2. The measured linewidths agree
very well with the prediction of kinetic theory (Eq. 6.14) from 105 Pa down to 1
Pa. At pressures below 1 Pa, the measured linewidths are larger than the theoretical
prediction. This linewidth broadening is due to power fluctuations of the trapping
laser. The inset of Fig. 6.1 shows a power spectrum at 0.13 Pa. A more detailed power
spectrum at 0.13 Pa (1 mtorr) is shown in Fig. 6.2. The trapping frequency ω1/2π is
9756.4 ± 0.3 Hz, and the linewidth is 0.46 ± 0.06 Hz, giving a quality factor (Q j =
ω j/�0) of 2.1×104. This implies the power fluctuation of the trapping laser is smaller
than 0.01 % during the measurement. An optically trapped microsphere provides a
method to directly convert laser power to a frequency signal, which can be measured
precisely. Stabilization of laser power to a trapped bead can find applications in laser
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Fig. 6.1 Measured linewidths of the oscillation of an optically trapped 3-µm diameter microsphere
at different pressures. The blue curve is the prediction of a kinetic theory (Eq. 6.14). The inset is the
measured power spectrum at 0.13 Pa. By fitting the spectrum with Eq. 6.2 (red curve), we obtain
ω1 = 2π · (9756.4 ± 0.3)Hz and �0 = 2π · (0.46 ± 0.06)Hz for this example. The same method
is used to obtain linewidths for other pressures

physics, and can enable a more precise measurement of the Q for a second trapped
bead in vacuum.

Before feedback cooling, we observe a sharp transition in the trap lifetime as a
function of pressure. Above the transition pressure, the microsphere can be trapped
stably for many hours. Below the transition pressure, the microsphere is lost within
a few seconds. This is because of the heating effect due to the light scattering, which
has been discussed in the previous section. The transition pressure depends critically
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Fig. 6.2 The power spectrum of a trapped 3.0-µm diameter microsphere at 1 mtorr
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on the alignment of the two counter-propagating trapping beams. We can reduce it to
less than 0.1 Pa by aligning the two laser beams. Thus α j in Eq. 6.12 can be smaller
than 2π ×0.5 Hz. We also observed limit cycles (vortices) in the motion of a trapped
microsphere when the trapping beams are intentionally misaligned. A 3D simulation
of the system is required in order to fully understand these phenomena.

6.3 A 3D Split Detection System

In order to monitor the motion of a trapped microsphere with ultrahigh precision in all
three dimensions, we built a 3D split detection system. As shown in Fig. 6.3, the X, Y,
and Z detectors are fast balanced photo-detectors with bandwidth of 75 MHz. They
have two matched photodiodes to cancel the common mode noise in the laser beams,
allowing ultra-high precision measurements of the position of a trapped microsphere.
When a trapped microsphere moves in the horizontal (vertical) direction, it deflects
the trapping beam in the horizontal (vertical) direction. This changes the relative
power between the two beams after the MX (MY) mirror, which is measured by
the X (Y) detector. The motion of a trapped bead along the trap axis changes the
divergence angle of the output beam, which changes the waists of incident beams

PBS

BS1

BS2

BS3 ND

LZ

MX MY

Vacuum

X Detector Y Detector

Z 
Detector

Fig. 6.3 Simplified schematic showing the detection system that can monitor the real-time position
of a trapped microsphere with ultra-high precision in all three dimensions. One of the trapping beams
(the other trapping beam is not shown) passes through a trapped microsphere inside a vacuum
chamber and is reflected by a polarizing beam splitter cube (PBS). It is then split to three beams by
two beam splitters (BS1 and BS2) for 3D detection. MX is a mirror with a sharp edge that splits the
beam into two parts horizontally. MY is a mirror with a sharp edge that splits the beam into two
parts vertically. BS3 is a beam splitter, ND is a neutral density filter, and LZ is a lens. The X, Y,
and Z detectors are balanced detectors that have two matched photodiodes to cancel the common
mode noise in the laser beams
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on the Z detector. One photodiode of the Z detector is smaller than the waist of the
incident beam. It measures only part of the power of the incident beam. Thus its
output voltage depends on the waist of the incident beam, which is a function of
the position of the microsphere in Z axis. The other photodiode of the Z detector is
much larger than the waist of the incident beam. It measures the total power of the
incident beam. Thus its output voltage does not depend on the waist of the incident
beam, and can serve as a reference signal [31]. A photo of our 3D detection system
is shown in Fig. 6.4.

For small displacements of a trapped microsphere near the trap center, the volt-
age output (Ui ) of each detector is proportional to the displacement (x D

i ) of the
microsphere along the detection direction, i.e. Ui = βi x D

i , where i = 1, 2, 3 denotes
X, Y, and Z detectors, and βi is the calibration factor of the detector. We align the
detection system carefully to make the detection direction of each detector be parallel
to one of the trap’s fundamental mode axes. In reality, however, there is always slight
difference between the detection directions and the fundamental mode axes. Thus
the voltage output from each detector is a combination of signals from each mode,
i.e. Ui = βi (αi1x M

1 +αi2x M
2 +αi3x M

3 ), where x M
j ( j = 1, 2, 3) is the displacement

of the microsphere along the fundamental mode axis x̂ M
j , and αi j is the projection

coefficient of x̂ M
j to the detection direction x̂ D

i . Usually only one term dominates as
the detection directions are almost parallel to the mode axes.

The expected value of the power spectrum of the voltage output from each detector
is [32]:

SU
i (�) ≡ 〈|Ũi |2/Tmsr 〉 = β2

i 〈|αi1 x̃ M
1 + αi2 x̃ M

2 + αi3 x̃ M
3 |2/Tmsr 〉, (6.15)

where Tmsr is the measurement time, Ũi and x̃ M
j are Fourier transforms of Ui and

x M
j , respectively. The expansion of SU

i (�) has 9 terms, but the expected values of the

Fig. 6.4 A photo of our 3D detection system and a camera for imaging a trapped microsphere with
the scattered light. Red lines are drawn on the photo to show the light paths of the detection system
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cross correlation terms 〈̃x M
i x̃ M

j 〉 (i �= j) are 0 when there is no feedback, because the
three components of the motion of a microsphere in a harmonic trap are uncorrelated.
With active feedback, there can be small correlations between different directions if
the feedback loops are coupled. In real experiments, the coupling is small and the
trapping frequencies are different along different directions, thus we assume that the
average values of the cross correlations are negligible. Then

SU
i (ω) = β2

i [α2
i1S1(ω) + α2

i2S2(ω) + α2
i3S3(ω)], (6.16)

where S j (ω) is the power spectrum of COM motion along each fundamental mode
axis. S j (ω) is described by Eq.6.2 without feedback cooling, and by Eq. 6.5 with
feedback cooling.

The detection system can be calibrated by fitting the measured power spectra at
room temperature with the expected power spectra SU

i (ω) to obtain calibration factor
β2

i α2
i j for each mode that is distinguishable in the power spectra. We can also obtain

β2
i directly by the energy equipartition theorem, which says 〈Mv2

i/2〉 = kB T0/2,
where vi is the instantaneous velocity of the microsphere projected onto any axis.

Since Ui = βi x D
i , we have β2

i = M
kB T0

〈
(

dUi
dt

)2〉. With β2
i α2

i j and β2
i , we can easily

obtain α2
i j to check the alignment of our detection system. In the experiment, each

detector is used to monitor only one mode, so only three calibration factors (β2
1α2

11,
β2

2α2
22, and β2

3α2
33) are required for measuring the mode temperatures with feedback

cooling.
The mass of the microsphere is required to obtain the calibration factors. The pure

silica (SiO2) microspheres used in this experiment are from Bangs Laboratories, Inc.
Their mean diameter is 3.0µm, corresponding to a mean mass of 2.8×10−14 kg for
each microsphere. The standard deviation of the size given by the supplier is 14 %.
The exact diameter of the microsphere is not important for feedback cooling. The
temperatures of the feedback-cooled motion are obtained by comparing the power
spectra of the same microsphere with and without feedback cooling, a measurement
which is independent of the exact size of the microsphere. The viscous damping
factor (�0) of a microsphere in air, however, depends on the size of the microsphere.
Using the measured damping factor shown in Fig. 6.1, we obtain the diameter of a
microsphere by kinetic theory (Eq. 6.14) to be 2.7µm, which is within the uncertainty
range given by the supplier.

6.4 1D Optical Feedback Cooling

Figure 6.5 shows the first feedback cooling scheme that we used in our experiment.
The position signal of a trapped microsphere is sent through a preamplifier that has
a bandpass filter, and a derivative circuit (d/dt) to provide a signal proportional to
the velocity of the microsphere. This velocity signal is used to control the frequency
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Fig. 6.5 Diagram of a 1D feedback cooling scheme. The position of a trapped microsphere is
monitored by a home-built detection system. The position signal is sent through a preamplifier
which has a bandpass filter (typically 100 Hz to 300 kHz), and a derivative circuit (d/dt) to provide
a signal proportional to velocity. This velocity signal is used to control the frequency of a radio
frequency (RF) AOM driver which modulates the direction of the laser beam. The data is digitized
and stored on a computer by a data acquisition card (DAQ)

of the output signal of a radio frequency (RF) deflector driver (IntraAction, Model:
DE-802M26). The output of the driver is a single frequency signal in the range
of 60–100 MHz. The driver has an analog input to modulate the frequency of the
signal. An analog input signal from 0 to 1 V will change the frequency of the output
signal by 40 MHz. The RF signal drives an acousto-optic modulator (AOM) which
controls the p-polarized trapping beam. The frequency of the RF signal determines
the direction of the laser beam, and the power of the RF signal determines the power
of the laser beam. Here we do feedback cooling by changing the direction of one
of the trapping beams in the horizontal direction. The laser beam will exert a force
on the microsphere as a function of its velocity in the horizontal direction, which
cools the motion of the microsphere.

The preamplifier (SR560, Stanford Research Systems) has a very low input noise
(about 4 nV/

√
Hz), and a variable gain from 1 to 5×104. In this experiment, we only

need the gain to be about 2 or 5 because the output signal from the detector is pretty
big already. The preamplifier contains two first-order RC filters that can be set to
−3 dB cutoff frequencies chosen from a 1–3–10 sequence, from 0.03 Hz to 1 MHz.
We typically set the low cutoff frequency to be 100 Hz and the high cutoff frequency
to be 300 kHz. The preamplifier also has a function to invert the signal, which is
very useful. The derivative circuit is simply the ‘derivative’ branch of an analog PID
controller. We first used a commercial PID controller (SIM 960, Stanford Research
Systems). It has a lot of powerful functions, including digital control of the P, I, D,
and Offset. However, it picks up some external electronic noise through its power
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Fig. 6.6 A derivative circuit for calculating the real-time velocity of a microshpere from its position
signal

cord. We eventually decided to use our home-built derivative circuit for feedback
cooling.

A detailed description of our home-built PID controllers can be found in Appendix
C.1 of the Ph.D dissertation of Todd Meyrath [33]. The ‘derivative’ part of the circuit
is shown in Fig. 6.6. The main component of the circuit is the low-noise operational
amplifier, the capacitor C1 and the tunable resistor R2. The operational amplifier is
OPA227 from Texas Instruments. It has a low noise level of 3 nV/

√
Hz and a wide

bandwidth of 8 MHz. The differentiation time of the derivative circuit is C1×R2. It
is important that the OPA227 is unity-gain stable. We have tried to use an OPA228
amplifier which is faster than the OPA227, but the circuit is not as stable for low gain.
The resistor R1 is much smaller than R2, and the capacitor C2 is much smaller than
C1. R1 limits the differential gain, and C2 gives high frequency roll-off. R1 and C2
are necessary because the derivative circuit has a very large gain at high frequencies.
For a pure derivative circuit, if the input signal is Vin = sin(ωt), then the output will
be Vout = ω cos(ωt), which will be infinite if ω is infinite. Thus a derivative circuit
amplifies high frequency noise. So we use R1 to limit the gain, and C2 to serve as a
low-pass filter to reduce the gain of high frequency noise. R3 is used to isolate the
derivative circuit from other parts of the circuit so that they do not interfere with each
other. Typical values of the resistors and capacitors are R1 = 50 �, C1 = 2.2 nF,
R2 = 0–50 k�, C2 = 0.1 nF, and R3 = 1 k�.

Figure 6.7 shows some results of the 1D feedback cooling. In Fig. 6.7a, the rms
velocity of the microsphere is reduced from 0.43 mm/s to 0.090 mm/s by 1D feedback
cooling. The temperature of the Brownian motion is reduced from room temperature
(297 K) to 13 K. Figure 6.7b shows the power spectra of the microsphere with (blue
curve) and without (red curve) feedback cooling at 208 mtorr. With 1D feedback
cooling, the peak near 10 kHz is reduced by 2 orders, while the peaks near 800 Hz
and 3 kHz do not change very much. Thus the 1D feedback cooling only cools the
motion along one direction efficiently.

In the red curve of Fig. 6.7b, the peak at 10 kHz corresponds to the mode along
the X axis, the tiny peak at 9 kHz corresponds to the mode along the Y axis. These
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Fig. 6.7 a The normalized velocity distributions of a trapped 3.0-µm diameter microsphere without
feedback cooling at 26 torr (red curve), and with feedback cooling at 4 mtorr (blue curve). b The
power spectra of the microsphere with (blue curve) and without (red curve) feedback cooling at
208 mtorr

two modes have almost the same frequency because the laser beam is only slightly
elliptical. The peak at 3 kHz corresponds to the Z mode. We initially thought the peak
at 800 Hz corresponds to the Z mode. After an extensive study, we believe that the
800 Hz peak is because of the frequency difference between the X and Y mode. This
became clear when we do 3D feedback cooling. The Z cooling beam reduced the
3 kHz mode efficiently, but did not reduce the 800 Hz peak efficiently. The frequency
(800 Hz) equals the frequency difference between the X and Y mode. We are also
able to make the 800 Hz peak disappear by better alignment.
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Fig. 6.8 a Modulation of the direction of beam No. 2 (the p-polarized beam) with an AOM in
the horizontal direction. b Modulation of the direction of beam No. 2 with an AOM in the vertical
direction

We later installed another AOM to control the direction of beam No. 2 (the
p-polarized beam) in the vertical direction. Thus we can do 3D feedback cooling by
modulating the intensity of beam No. 2, and the directions of beam No. 2 in horizon-
tal and vertical directions. The beam No. 1 (the s-polarized beam) is not modulated
because it is used for detection. We have tried such 3D feedback cooling method,
but we were only able to cool the motion from 297 K to about 10 K.

We finally found out the problem after struggling for several months. In order to
find out the problem, we use a quadrant detector to monitor the motion of a laser
beam when we modulate its direction by an AOM. Figure 6.8 shows the motion of the
center of beam No. 2 when we modulate its directions with an AOM (IntraAction,
model: ATM-801A2) in the horizontal direction (a) and an AOM in the vertical
direction (b). We use a sine signal with peak-to-peak voltage of 2 mV at 10 kHz to
drive the analog input of the RF driver. This modulates the frequency of the RF
signal (centered at about 80 MHz) by 80 kHz. Thus the frequency of the RF signal is
80 MHz+40 kHz· sin(2π104 t), where t is time. Ideally, the data points should be a
straight horizontal line in Fig. 6.8a and a straight vertical line in Fig. 6.8b. However,
the experimental points are not in a straight line, especially in Fig. 6.8b. This means
that when we use an AOM to control the laser along the vertical direction, the laser
beam also moves along the horizontal direction in a very complex way. Thus when
we cool the motion vertically, we also heat the motion horizontally. This limits the
final temperature of the feedback cooling with this method.

Figure 6.9 shows the motion of the center of beam No. 1 (the s-polarized beam)
when we modulate its direction with an AOM (Isomet, model: 1205C-2-804) in
the horizontal direction. We want it to be a straight line in the horizontal direction.
However, the real motion of the laser beam is very complex.
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Fig. 6.9 Modulation of the
direction of beam No. 1 with
an AOM in the horizontal
direction
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6.5 Electrostatic Forces

After we found the problem of modulating the direction of a laser beam with an AOM,
we decided to try to perform feedback cooling using electrostatic forces. The natural
charge of a microsphere is negligible. It is necessary to charge the microsphere first
in order to apply sufficient electrostatic forces for feedback cooling.

Figure 6.10 shows our setup for air discharge and feedback cooling with an elec-
trostatic force. The stainless steel mounts of the two aspheric lenses and the whole
vacuum chamber are grounded. A thin stainless steel sheet is inserted half way
between the two lenses. It is connected to a high-voltage amplifier that can deliver a

Fig. 6.10 Setup for air discharge and feedback cooling with an electrostatic force. The stainless
steel holders of the two aspheric lenses and the whole vacuum chamber are grounded. The smallest
separation between the two holders is about 4 mm. A thin stainless steel sheet is inserted at the
center of the two lenses as an electrode. The edge of the steel sheet is about 1 mm away from where
the microsphere is trapped. The steel sheet is connected to a high-voltage amplifier that can deliver
0–1 kV voltage output
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0–1 kV voltage output. There will be a strong electric field between the steel sheet and
the steel holders when a high voltage is applied to the steel sheet. At high voltage, the
air breaks down and becomes conductive. This can damage the high-voltage ampli-
fier. We connect a 1 M� resister in series with the steel sheet and the high-voltage
amplifier to limit the peak current.

We first trapped a microsphere with the dual-beam optical trap at about 100 torr.
We then reduced the pressure to about 0.5 torr. With the microsphere trapped, we
applied an AC voltage in the form of V (t) = V0[sin(2π f t) + 1]/2 to the steel
sheet. The frequency of the AC voltage was typically about 1 kHz. We increased
the peak voltage slowly from a few volts to several hundred volts until air discharge
occured. A spectrum of the motion of a trapped microsphere at 461 mtorr driven by
a 1.5 kHz, V0 = 340 V signal is shown in Fig. 6.11a. The peak at 1.5 kHz due to
the AC signal is very small, because the natural charge of the microsphere is very
small. When the peak voltage was increased to 680 V, air discharge occurred. The
microsphere moved violently during the air discharge. Thus there are a lot of peaks
in Fig. 6.11b. It is surprising to us that the optical tweezer is stable enough to trap
a microsphere during air discharge. We reduced the peak voltage in a few seconds
after air discharge occured to avoid the loss of the microsphere. The microsphere
gained charge during air discharge. Figure 6.11c shows a spectrum of the motion of
the microsphere driven by a 1.5 kHz, V0 = 340 V signal after air discharge. The peak
at 1.5 kHz after discharge is about 4 orders higher than the peak before discharge.

After air discharge, the microsphere maintains its charge, even at high pressures.
Figure 6.12 shows a spectrum of the motion of a trapped microsphere at 205 torr
after air discharge. The microsphere is driven by a 400 Hz, V0 = 510 V AC voltage.
The hight of the peak at 400 Hz is proportional to the square of the charge of the
microsphere. By measuring the height of the peak, we can monitor the charge of the
microsphere as a function of time. Figure 6.13 displays the charge of the microsphere
as a function of time over a period of 2 h. The charge fluctuates because there is a
weak air discharge near the microsphere. So the microsphere gains and losses charges
over time. The shape of the curve depends on the driving voltage and the air pressure.
We have not been able to observe individual steps in the curve when the microsphere
gains or loses one electron.

According to Coulomb’s law, the force between two point charges q1 and q2 is:

F = ke
q1q2

r2 (6.17)

where ke = 8.99 × 109 N · m2 C−2 is the Coulomb constant, and r is the distance
between the two point charges. The force between two electrons separated by 1 mm
and 1µm is 2.3 × 10−22 N and 2.3 × 10−16 N, respectively.

When N electrons e are distributed homogeneously on the surface of a microsphere
with radius R, the energy required to add another electron is about:

E = ke
Ne2

R
(6.18)
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Fig. 6.11 Spectra of the motion of a trapped microsphere before (a), during (b) and after (c) air
discharge. The pressure is 461 mtorr. The frequency of the AC voltage is 1.5 kHz, and the air
discharge happens when the peak voltage is about 680 V. We reduce the peak voltage in several
seconds after air discharge occurs to avoid the loss of the microsphere
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Fig. 6.12 Spectrum of the motion of a trapped microsphere at 205 torr after air discharge. The
micropshere is driven by a 400 Hz, V0 = 510 V AC voltage. After air discharge, the microsphere
maintains its charge even at high pressure

For a R = 1.5 µm microsphere, the required energy is kB T/2 at room temperature
when N = 13. Thus the natural charge of a 3-µm diameter microsphere is in the
order of 13 e. We do not know the exact charge of the microsphere after air discharge,
but estimate it to be on the order of 1000 e from the power spectrum (Fig. 6.11),
which corresponds to E = 1 eV. The maximum electric field at the trap center is
about 10 V/mm. Thus the maximum electrostatic force on the microsphere is in the
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Fig. 6.13 Fluctuation of the charge of a 3-µm-diameter microsphere trapped at 205 torr, driven by
a 400 Hz, V0 = 680 V signal. a.u. arbitrary unit



6.5 Electrostatic Forces 99

order of 1.6 pN. This is consistent with the observed shift of the trap center when we
apply a DC voltage.

The air discharge is not very controllable. This makes the current setup (Fig. 6.10)
not suitable for feedback cooling. We have tried to implement feedback cooling with
electrostatic forces and were able to cool the motion from room temperature to about
10 K. The final temperature is limited by the fact that the charge of the microsphere
fluctuates, and we do not know the real direction of the electrostatic force. These
problems can be solved by a better design of the electrodes and a better charging
method. The electrodes of a quadrupole ion trap [34] should be ideal for 3D feedback
cooling with electrostatic forces. The microsphere can be charged by photoelectric
charging with a ultraviolet lamp [34, 35], by using electrospray [36] or an electron
gun. Combining an optical trap with an ion trap in the same location should be helpful
in trapping and studying particles at ultrahigh vacuum.

6.6 Millikelvin Cooling with 3D Optical Feedback

Since significant efforts were required to improve feedback cooling with electrostatic
forces, we decided to try feedback cooling with optical forces again. This time, we
used AOM’s to modulate the intensities of laser beams rather than the directions of
laser beams to do 3D feedback cooling. This method turned out to work very well.
It enables us to cool the center-of-mass motion of a trapped microsphere from room
temperature to millikelvin temperatures in all three dimensions, with a minimum
mode temperature of 1.5 mK [37].

6.6.1 Experimental Setup

A simplified scheme of our optical trap and cooling beams is shown in Fig. 6.14. The
dual-beam optical trap is the same as described before. It is created inside a vacuum
chamber by two counter-propagating laser beams focused to the same point by two
identical aspheric lenses with a focal length of 3.1 mm and numerical aperture of 0.68.
The wavelength of both trapping beams is 1064 nm. They are orthogonally polarized,
and are shifted in frequency to avoid interference. The beams are slightly elliptical
and approximately form a harmonic trap with three fundamental vibration modes
along the horizontal, vertical and axial directions, denoted X, Y, and Z in Fig. 6.14.
The motion of a trapped bead causes deflection of both trapping beams. We monitor
the position of the bead by measuring the deflection of one of the trapping beams
with ultrahigh spatial and temporal resolution in all three dimensions (Fig. 6.3).

Using the position signal, we can calculate the instantaneous velocity of the bead,
and implement feedback cooling by applying a force with a direction opposing the
velocity (Fig. 6.15). The feedback is generated by scattering forces from three orthog-
onal 532 nm laser beams along the axes as shown in Fig. 6.3. The average intensity
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Fig. 6.14 Simplified schematic showing a glass microsphere trapped at the focus of a counter-
propagating dual-beam optical tweezer, and three laser beams along the axes for cooling. The
wavelengths of the trapping beams and the cooling beams are 1064 and 532 nm, respectively
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Fig. 6.15 Diagram of the feedback mechanism for the X axis: The position of a trapped microsphere
is monitored by a home-built detecting system. The position signal is sent through a bandpass filter
(typically 100 Hz to 300 kHz) and a derivative circuit (d/dt) to provide a signal proportional to
velocity. This velocity signal is used to control the output power of a radio frequency (RF) AOM
driver which modulates the power of the X cooling beam. The data is digitized and stored on a
computer by a data acquisition card (DAQ)
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Fig. 6.16 A photo of the 3D optical feedback cooling system

of the cooling beams is about 1 % that of the trapping beams. The optical power of
each cooling beam is controlled by an acousto-optic modulator (AOM). Each beam
is modulated with a time-varying signal proportional to the instantaneous velocity
of the bead, added to an offset. The proportional component generates the required
cooling force, while the offset slightly shifts the trap center. A photo of the optics of
our 3D optical feedback cooling system is displayed in Fig. 6.16. The green color in
the photo is due to the scattered light from the cooling beams. The trapping beams
are infrared and cannot be seen in this photo.

Figure 6.17 shows the power of the first order of a laser beam exiting the AOM
as a function of the input voltage of the RF driver (IntraAction, model: ME-802)
and the reading of the manual offset knob of the RF AOM driver. In general, the
laser power is a nonlinear function of the input voltage. When the knob reading is
at 5, the laser power depends on the input voltage linearly around 0. This is good for
feedback cooling because we want the laser power to be proportional to the velocity
of the microsphere. Thus we set the knob reading at 5, and use the velocity signal as
the input voltage to control the laser power for feedback cooling.

The behavior of the system with three dimensional (3D) feedback cooling is
straightforward to understand if we assume that there is no coupling between feed-
back forces and velocities in different directions. In this case, the feedback force
in each direction adds an effective cold damping factor �

f b
j , and the total damp-

ing becomes �tot
j = �0 + �

f b
j . The power spectrum of the motion of a trapped

microsphere with feedback cooling can be described by Eq. 6.5. The temperature of
the motion with feedback cooling will be T f b

j = T0�0/�tot
j . Thus the motion can

be cooled significantly by applying feedback damping �
f b
j � �0. The lowest tem-

perature will be limited by the noise in the detection system and feedback circuits,
as well as coupling between different directions.
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Fig. 6.17 Control of the laser power with an AOM. The AOM is driven by a RF driver which uses
an analog input to control the RF power electronically and a knob to tune the RF power manually.
The analog input accepts a voltage from 0 to 1 V, and the knob has a reading (carrier level) from 0
to 10. For the black curve, the analog voltage input is zero, and the manual knob is tuned from 0 to
10. The other curves are the power of the laser as a function of the analog input when the knob is
set at different readings (red knob reading at 1; green knob reading at 2; blue knob reading at 5)

6.6.2 Results of 3D Optical Feedback Cooling

Figures 6.18, 6.19 and 6.20 show experimental results of feedback cooling. Before
feedback is turned on, the resonant frequencies (ω j/2π) are 8066 ± 5 Hz, 9095 ±
4 Hz, and 2072 ± 6 Hz for the fundamental modes at 637 Pa along the X, Y, and
Z axes, respectively. At this pressure, the peaks in the power spectrum due to the
three fundamental modes are distinguishable, and heating effects due to the laser are
negligible. We can therefore use the measured power spectra at 637 Pa to calibrate
the position detectors for the fundamental modes at room temperature. After we turn
on feedback cooling, the temperature of the Y mode changes from 297 to 24 K at
637 Pa. The mode temperature is obtained by fitting the measured power spectrum
with Eq. 6.6.

After switching on the feedback circuits, we reduce the air pressure while keeping
the feedback gain almost constant, thus the heating rate due to collisions from air
molecules decreases, while the cooling rate remains constant. As a result, the tem-
perature of the motion drops. At 5.2 mPa, the mode temperatures are 150 ± 8 mK,
1.5±0.2 mK, and 68±5 mK for the x, y and z modes. The mean thermal occupation
number 〈n〉 = kB T f b

j /�ω j of the y mode is reduced from about 6.8 × 108 at 297 K
to about 3400 at 1.5 mK. Figure 6.21 shows the temperature of the three fundamental
modes as a function of pressure. At low pressure and when the feedback gain is con-
stant, the mode temperature should be proportional to the pressure, which is shown
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Fig. 6.18 Power spectra of a trapped 3-µm diameter microsphere along the X axis as it is cooled.
The red curve is the intrinsic spectrum at 637 Pa without feedback cooling, the blue curve is the
spectrum at 637 Pa with feedback cooling, the green curve is the spectrum at 5.2 mPa with feedback
cooling, and the orange curve is the noise signal when there is no particle in the optical trap. The
black curve is the fit of a thermal model (see text for details). We obtain mode temperatures from
these fits

as a straight line with slope 1 in the figure. The temperature of the y mode agrees
with this prediction very well at pressures above 1 Pa.

At our lowest temperatures, the power spectra are still much larger than the noise
level, and the minimum temperature is achieved at pressures above the minimum
pressure we can obtain, thus the electronic noise (in detection and feedback circuits)
and the pressure are not the limiting factor of the current experiment. The dominant

Fig. 6.19 Power spectra of
a trapped 3-µm diameter
microsphere along the Y axis
as it is cooled. The meanings
of the curves are the same as
in Fig. 6.18
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Fig. 6.20 Power spectra of a trapped 3-µm diameter microsphere along the Z axis as it is cooled.
The meanings of the curves are the same as in Fig. 6.18

limiting factor is most likely residual coupling between the intensities and directions
of the cooling beams. When we change the intensity of a cooling beam using an AOM,
the direction and profile of the beam is also changed slightly. This causes heating
of the motion of a microsphere perpendicular to the beam while cooling it parallel.
This problem should be solved by replacing the AOM’s with electro-optic modulators
(EOM’s). The final temperature limited by the present detection system will be about
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Fig. 6.21 Temperatures of the three fundamental oscillation modes along X (black squares), Y
(blue circles), and Z (red triangles) axes as a function of the air pressure. The dashed line is a
straight line with slope 1 for comparison
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0.1 mK. Currently, the laser beam is attenuated before entering the detectors because
the laser power is larger than the damage threshold of the detectors. If we can utilize
all of the signal contained in the laser beam for feedback cooling, the final temperature
can be smaller than 0.01 mK, corresponding to a thermal occupation number in the
order of 10 or less.

Our result is an important step toward quantum ground-state cooling of a trapped
macroscopic object in vacuum by either cavity cooling [14, 15, 22] or feedback cool-
ing with an improved detection and feedback scheme [27, 29]. Our three-dimensional
cooling enables future work on quantum superposition and entanglement of the
motion between different directions. For cavity cooling of a trapped object in vac-
uum, it is also important to use feedback cooling to pre-cool and stabilize the object,
in order to have enough time to tune the cavity cooling laser to the correct frequency
for efficient cooling.

6.7 Loss of Microspheres in Vacuum

With feedback cooling, we have been able to trap a microsphere for more than
one hour at pressure below 10−4 torr at optimal conditions. Ashkin et al. [24] had
observed similar lifetimes when they levitated a 20-µm diameter sphere in vacuum
(The laser intensity of the levitation trap is much smaller than the laser intensity of our
dual-beam trap, and the size of the microsphere is much larger than ours). Table 6.1
shows some examples of measured lifetimes of a trapped microsphere in vacuum
under different conditions. These lifetimes should be long enough to perform cavity
cooling [14, 15, 22] and many other interesting experiments. Ideally, however, we
would like the lifetime of the optical trap to be infinite even in vacuum.

Several things can affect the lifetime of a trapped microsphere in vacuum. For
example, the alignment of the trapping beams and the gains of the feedback circuits
can significantly affect the lifetime. We usually turn on feedback circuits at about
20 torr. At this pressure, the damping due to air is still large enough to keep the optical
trap stable even if the feedback circuits are not tuned correctly. If the amplitude of
the bead’s motion increases when the feedback is turned on, the sign (polarity)
of the velocity signal is incorrect, and must be inverted for the feedback loop to
cool the motion. After tuning the feedback circuits correctly at 20 torr, we reduce the
pressure slowly. The motion of the trapped microsphere usually becomes unstable
when the pressure is reduced below 50 mtorr. We need to fine tune the horizontal and
vertical directions of beam No. 2 with the two AOM’s to restabilize the motion of the
microsphere. After this step, we can reduce the pressure to below 10−5 torr. Because
we need to fine tune the laser beams and the feedback circuits for each individual
microsphere, the process is not very reproducible. Thus the lifetimes can be very
different for different microspheres (Table 6.1).

We also found evidence that the ion pump intermittently undergoes electrical
arcing [38] which kicks out a trapped microsphere. We observed spikes in the motion
of trapped microspheres when we turned on the ion pump (an old ion pump that had
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Table 6.1 Examples of the lifetimes of a trapped 3.0-µm diameter microsphere in vacuum under
different conditions

No. Total power Total power Lifetime with Loss
of trapping of cooling ion pump ona pressure
beams (mW) beams+ (mW) (min) (torr)

1 160 ∼60 7 3.8 × 10−5

2 160 ∼60 21b 2.4 × 10−4

3 130 ∼60 5 3.9 × 10−5

4 130 ∼60 11b 2.6 × 10−4

5 130 3.6 26 9.4 × 10−6

6 130 6.5 22 7.7 × 10−6

7 113 39 88 2.4 × 10−6

8 82 19 69 2.5 × 10−6

+ The waists of the cooling beams are about 9µm, so only parts of cooling beams pass through
the trapped microsphere aThe ion pump was turned on at about 1 mtorr; and the pressure dropped
below 1.0 × 10−4 torr within about 1 min after the ion pump was on bThe ion pump was not turned
on; the lifetime was the trapping time at pressures below 1 mtorr

not been used for several years). Sometimes the microsphere was lost immediately
after we turned on the ion pump. We moved the ion pump further away from the
optical trap to alleviate this problem. This problem disappeared after the ion pump
was used for a few months. However, the lifetime of the optical trap in vacuum was
still only on the order of 10 min. Then we stopped using the ion pump for a while, and
used two sorption pumps in sequence to achieve lowest pressures of about 10−5 torr.
However, we still observed the loss of microspheres after trapping for about 15 min
at low pressures. Then we considered the possibility that the sudden loss of trapped
microspheres might be caused by floating dust in the air. A dust particle can cause
fluctuations in the laser power and profile when it passes though the focus of a laser
beam. So we used plastic sheets to seal the space between two lenses where a laser
was focused in between. This method did not notably increase the lifetime of the
trap in vacuum.

The final loss of a trapped microsphere is most likely caused by the heating due
to light absorption. It seems that there is some dependance of the trap lifetime on
the laser powers. The longest lifetime, 88 min, was observed when the total power
of the trapping beams (1064 nm) was 113 mW and the total power of the cooling
beams (532 nm) was 39 mW. Because the waists of cooling beams were much larger
than the size of the microsphere, only a part of cooling beams passed through the
microsphere. However, silica has much larger absorption at 532 than 1064 nm. So
the heating effect of the cooling beams may be comparable to that of the trapping
beams.

At pressures below 1 mtorr, the internal temperature of a trapped microsphere is
mostly cooled by blackbody radiation [14, 24]. The wavelength of a photon with
energy of kB T is 48µm (λ = hc

kB T , where h is the Planck constant) at room temper-
ature. This wavelength is much larger than the size of our microspheres. Thus we
can treat the microsphere as a dipole in calculating the blackbody radiation when
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the internal temperature of the microsphere is not much higher than room tempera-
ture. If we assume that the microsphere has a constant and temperature-independent
permittivity ε(ω) ≈ εbb across the blackbody radiation spectrum, the microsphere
radiates blackbody energy at a rate [14]:

d E

dt
 −75

π2

V

c3�4 Im
εbb − 1

εbb + 2
(kB Tint)

5 (6.19)

where V is the volume of the microsphere, and Tint is the internal temperature of
the microsphere. Similarly, the microsphere absorbs blackbody radiation from the
environment at a rate:

d E

dt
 75

π2

V

c3�4 Im
εbb − 1

εbb + 2
(kB Tenv)

5 (6.20)

where Tenv is the temperature of the environment.
In high vacuum, we can neglect the effect of background gas. The equilibrium

internal temperature will be established when the sum of Eqs. 6.19 and 6.20 is
equal to the heating rate due to light absorption of the laser beams. The absorbed
energy of the microsphere from the laser beams is proportional to the power of lasers
passing through the microsphere, and the optical absorption rate of the microsphere.
Figure 6.22 shows the calculated internal temperature of a trapped 3.0-µm diameter
microsphere as a function of the environmental temperature, power of laser beams
that pass through the microsphere, and the absorption rate of the microsphere.

Fig. 6.22 The equilibrium internal temperature of a trapped 3.0-µm diameter microsphere irradi-
ated by 10 and 100 mW of 1064 nm laser power in ultrahigh vacuum as a function of the absorption
coefficient of the microsphere
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When the environment is at room temperature and the power of the laser passing
through the microsphere is 100 mW, the internal temperature of the microsphere stays
almost constant when the absorption coefficient is smaller than 10 dB/km (Fig. 6.22).
However, the internal temperature increases significantly if the absorption coefficient
is 1000 dB/km or higher. The microsphere will be lost when the internal temperature is
above a certain threshold temperature. The silica microsphere is initially amorphous.
It may undergo phase transition and become crystalline at high temperatures. Silica
has many crystalline forms. The α-quartz converts to β-quartz at 846 K. At higher
temperatures in vacuum, the silica microsphere will sublimate or melt and evaporate.
The lifetime of the optical trap should be longer for a lower laser power.

Pure silica core optical fiber with loss of 0.148 dB/km at 1570 nm, 0.265 dB/km
at 1310 nm, and 0.6 dB/km at 1064 nm have been reported [39]. Whispering-gallery
modes in fused-silica microspheres with quality factor of Q = 0.8 × 1010 at 633 nm
have been demonstrated experimentally [40]. This is close to the ultimate level
determined by the fundamental material attenuation as measured in optical fibers
(0.7 dB/km at 633 nm). The loss increases significantly if the silica contains OH
[41]. Commercial monodisperse silica microspheres are produced by the chemical
reaction of tetraalkoxysilanes (TEOS, Si(OC2H5)4) in alcoholic solutions of water
and ammonia [42, 43]. Thus they are expected to contain OH, C, and N which will
increase their absorption coefficient.

In the future, we should directly measure the internal temperature of an optically
trapped microsphere using Raman spectroscopy [44]. This should give us a better
insight of the final loss mechanism of a trapped microsphere in vacuum. We may
also be able to purify a trapped microsphere in situ at high pressures by heating
it with a CO2 laser [45]. Heating a trapped microsphere by a CO2 laser can melt
the microsphere and reduce the size of the microsphere by evaporation. This also
provides a novel method to produce and trap a nanosphere in air and vacuum.
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Chapter 7
Towards Quantum Ground-State Cooling

Quantum ground-state cooling of an optically trapped microsphere in vacuum can
be achieved by feedback cooling with an optimal detection and feedback scheme
[1, 2]. However, it will be difficult to achieve this since the real detection system and
feedback circuits have electronic noise. Another method to achieve quantum-ground
state cooling is cavity cooling [3–7]. Cavity cooling has been implemented in many
different micromechanical systems [8–17], and has been used to successfully cool the
mechanical vibration of a 100 nm thick aluminum membrane with a diameter of 15
µm to the quantum ground state recently [18]. Recent theoretical calculations show
that cavity cooling can be used to cool the mechanical motion of an optically trapped
dielectric particle in vacuum to the quantum ground-state from room temperature
[19–26].

7.1 Principle of Cavity Cooling

As shown in Fig. 7.1a, we consider a microsphere trapped in a cavity by a dual-beam
optical tweezer. We use a dual-beam trap here because a single-beam trap requires a
NA ≈ 0.95 objective lens. The working distance of a common high NA objective
lens is too short (usually about 0.2 mm) to integrate the optical cavity and the optical
tweezer together. Thus we use two low NA lenses to create a dual-beam trap. In the
system with which we have carried out feedback cooling, the distance between the
two front surfaces of the two lenses is about 3.5 mm. This should be enough for
the cavity cooling laser to pass though.

Let the vibration frequency of the microsphere along the z axis be ωM , the fre-
quency of the cooling laser be ωL , the resonant frequency of the cavity be ωC , the
intrinsic cavity linewidth be κ, and the rate of a photon scattered by the microsphere
be γsc. For simplicity, we assume the linewidth of the cooling laser be much smaller
than the cavity linewidth.
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Fig. 7.1 a Scheme of 1D cavity cooling. A microsphere is trapped inside an optical cavity with a
dual-beam trap. b Principle of 1D cavity cooling. The frequency of the cooling laser (ωL) is slightly
smaller than the resonant frequency of the optical cavity (ωC). The mechanical vibration of the
trapped microsphere at frequency ωM induces two side bands of the laser at frequencies of ωL −ωM
and ωL + ωM .

When γsc � κ � ωM , the system is in the resolved-sideband limit. The mechan-
ical vibration of the trapped microsphere will induce two side bands of the laser at
frequencies of ωL − ωM and ωL + ωM (Fig. 7.1b). If the frequency of the cooling
laser is red-detuned from than the resonant frequency of the cavity by ωM , the blue
sideband ωL +ωM will be on resonance with the cavity and the red sideband ωL −ωM

will be further away from the resonance of the cavity. Photons in the blue sideband
leak out of the cavity because they are on resonance, while photons in the red side-
band are trapped in the cavity. Thus on average the photons which come out of the
cavity have larger frequency than the photons which come into the cavity. These
photons carry away energy that is from the kinetic energy of the microsphere. Thus
the photons cool the vibration of the trapped microsphere.

Let us consider a microsphere at position z moving with momentum p along the
z axis inside of a driven cavity. The microsphere causes the resonant frequency of a
cavity with intrinsic resonant frequency ωC

0 to shift by an amount [19]:

δωC = −1

2

∫
d3rδP(r) · E(r)∫

d3rε0E2(r)
· ωC

0 , (7.1)

where E(r) is the bare cavity mode profile, and δP(r) is the variation in permittiv-
ity introduced by the microsphere. Thus the resonant frequency of the cavity with
microsphere is ωC = ωC

0 + δωC . If the diameter of the microsphere is much smaller
than the wavelength of the laser, we can use Rayleigh approximation. In Rayleigh
approximation, we have P(r′) ≈ αindE(r)δ(r − r′), where r is the center-of-mass
position of the microsphere, αind = 3ε0V( ε−1

ε+2 ) is its polarizability, V is its volume,
and ε is the electric permittivity.
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The classical motion of the microsphere along the z axis can be described by the
following coupled equations for the cavity field E, the particle momentum and its
position [27]:

Ė = [−κ − γsc(z) + i�C − iδωC(z)]E − α, (7.2)

ṗ = −|E|2 d

dz
δωC(z) − Mω2

Mz, (7.3)

ż = p/M. (7.4)

Here �C = ωL −ωC
0 is the detuning of the laser relative to the resonant frequency of

the empty cavity, and α describes the external pump laser. Because the cavity mode
is a standing wave, the scattering rate γsc(z) and the frequency shift δωC(z) have
the shape of cos2(2πz/λ). This classical model predicts the microsphere will stop as
t → ∞.

Quantum mechanical calculations show that the microsphere will not stop com-
pletely. In the limit ωM � κ and taking the cooling rate �cool ≈ κ (can be achieved
by control the power and detuning of the cooling laser), the steady-state phonon
number of the vibration is [19]:

〈nf 〉 ≈ κ2

16ω2
M

+ γsc

κ
. (7.5)

Thus quantum ground-state cooling (〈nf 〉 < 1) can be achieved if ωM � κ and
κ � γsc. The value of γsc depends on the size of the microsphere, the waist of the
cavity mode and the length of the cavity. Calculations using Rayleigh approxima-
tion show that 〈nf 〉 < 1 can be achieved at reasonable conditions for microspheres
with diameter smaller than 400 nm when the wavelength of the cooling laser is
1064 nm [25]. However, the Rayleigh approximation is only valid when the size of
the microsphere is far smaller than the wavelength of the laser. It overestimates the
scattering rate by about 3 orders of magnitude when the diameter of the microsphere
is the same as the wavelength of the laser [28]. Thus we believe that ground-state
cooling with a cavity should be possible for microspheres with diameter of 1 µm or
slightly larger.

7.2 3D Ground-State Cooling with a Single Cavity

A microsphere will scatter the cooling laser to all three dimensions and cause 3D
heating. The heating effects of laser noise are also 3D. If only one-dimensional motion
is cooled efficiently, the others will be heated continuously and the microsphere will
eventually be kicked out of the trap. In order to achieve ground state cooling of an
optically trapped nanosphere, we must use a 3D cooling scheme. We can add two
more cavities for cooling the other two dimensions, but the system will become too
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Fig. 7.2 a A nanosphere is trapped by a dual-beam optical tweezer inside of a cavity. The cavity is
driven by three lasers in TEM00, TEM01 and TEM10 modes to cool the 3D motion of the trapped
nanosphere. b Three cooling modes TEM00, TEM01, and TEM10, and their radial distribution.
The black dot represents the position of the trapped nanosphere. Figure is courtesy of Z. Q. Yin.

complex to be realized experimentally. A better method to cool and measure the 3D
motion of a nanosphere is to use the TEM00, TEM01, and TEM10 modes of a single
cavity [26]. The TEM01 and TEM10 beams can be generated from a TEM00 beam
by two phase plates [29]. Each one of these three modes can be coupled to the motion
of a trapped microsphere along one orthogonal axis. Thus they can be used to cool
and detect the 3D motion of a microsphere.

Trapping single atoms in a high-finesse cavity driven by three lasers at TEM00,
TEM01, and TEM10 modes simultaneously has been demonstrated in an experiment
already [30]. A recent experiment also used a tilted cavity TEM10 mode to measure
the trajectories of single neutral atoms deterministically [31].

For simplicity, we consider a microsphere with size much smaller than the laser
wavelength. In this case, the microsphere is in fact a nanosphere. The nanosphere
is trapped in a cavity by an optical tweezer, as shown in Fig. 7.2. The trapping
frequencies are ω1, ω2, and ω3 along the z, x, and y axes, respectively. The cavity is
driven by three lasers in TEM00, TEM01 and TEM10 modes to cool the 3D motion
of the trapped nanosphere. The TEM01 laser is s-polarized, and the TEM00 and
TEM10 lasers are p-polarized. The TEM01 and TEM10 lasers have almost the same
frequency, and the TEM00 laser has a frequency different from those of the TEM01
and TEM10 lasers. Thus the TEM01 laser can be separated from the other two lasers
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by a polarizing beam splitter, and the TEM00 and TEM10 lasers can be separated
by a grating. The frequency differences between the TEM00 and TEM01 lasers can
be very large, and the TEM01 and TEM10 modes are orthogonal in polarizations.
Therefore the interference between the three cavity modes can be neglected.

The TEM00 mode laser is used to cool the motion of the nanosphere along the z
axis, the TEM01 mode laser is for cooling the motion along the y axis, and the TEM10
mode laser is for cooling the motion along the x axis. The resonant frequencies of
the cavity modes ac1, ac2, ac3 are ωc1, ωc2, ωc3, respectively. The detunings between
the lasers and the cavity modes are �cj = ω

j
c − ω

j
L (j = 1, 2, 3). Let us use aj to

characterize the phonon mode along qj direction with q1 = z, q2 = x, q3 = y, �j to
be the driving strength of the lasers and Uj to characterize the coupling between the
cavity mode acj and the nanosphere. In the limit that ε � 1, we have [26]

U1 = − 3V

2Vc1
exp

(
−2x2 + 2y2

w2

)
cos2(k1z + ϕ1)ωc1,

U2 = − 3V

2Vc2

x2

w2 exp

(
−2x2 + 2y2

w2

)
cos2(k2z + ϕ2)ωc2,

U3 = − 3V

2Vc3

y2

w2 exp

(
−2x2 + 2y2

w2

)
cos2(k3z + ϕ3)ωc3,

where Vc1 = (π/4)Lw2 and Vc2 = Vc3 = (π/16)Lw2.
Let us assume the trapping lasers to be much stronger than cooling lasers, and

neglect the effects of cooling lasers on trapping. If we carefully choose the location
of the trap, such as z0 = 0, x0 = y0 = 0.25w, ϕ1 = π/4, and ϕ2 = ϕ3 = 0, the
gradients of the three light fields lie approximately along the three axes. The effective
Hamiltonian is [26]

Heff =
3∑

j=1

[
�ωja

†
j aj − ��ja

†
cjacj + ��j

2
(acj + a†

cj)

+ �gja
†
cjacj(aj + a†

j )
]
, (7.6)

where gj = qzero
j ∂U(x, y, z)/∂j|x=x0,y=y0,z=z0 characterizes the coupling strength

between the cavity mode and the oscillation of the nanosphere, and qzero
j = √

�/2Mωj

is the zero-point fluctuation for the phonon mode aj. In general, g1 can be one to
two orders larger than g2 and g3. This effective Hamiltonian (7.6) is valid when the
vibration amplitude of a trapped nanosphere is much smaller than the wavelength of
the laser.

In the limit of resolved sideband cooling where ωj � κj, and when the driving
strength is small, the final phonon number is [26, 32]
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nmj = − (ωj + �′
cj)

2 + (κj/2)2

4ωj�
′
cj

, (7.7)

where �′
cj is the effective detuning between the driving laser and the cavity mode acj.

In the special case of �′
cj = −ωj, the final phonon number is nmj = (κj/4ωj)

2 �
1. Thus the motion of the microsphere can be cooled to ground state in all three
dimensions in the resolved sideband regime. The cooling rate is �j = g2

j |αj|2/[κj(1+
κ2

j

16ω2
j
)], where αj is the amplitude of the cavity mode acj.

7.3 Heating Effects of Laser Noise

In a real experiment, the noise of lasers may cause significant heating of the motion of
an optically trapped microsphere and may prevent ground-state cooling. The heating
effect due to the photon shot noise of a laser has been found to be negligible [19].
However, the experiment is most likely to be limited by classical noise sources in
the laser beams rather than the photon shot noise [26].

Let us first consider heating effects from the trapping laser [33]. In order to
achieve ground-state cooling, the total heating rate from laser intensity fluctuation
and laser pointing fluctuation should be much smaller than the cavity cooling rate.
The relative intensity fluctuation of a laser is defined as ε(t) = (I(t) − I0)/I0, where
I0 is the average laser intensity and I(t) is the laser intensity at time t. The heating
rate due to intensity fluctuation can be obtained by using a first-order time-dependent
perturbation theory [33]:

�ε ≡ 〈Ė〉
E

= π

2
ω2

j Sε(2ωj) (7.8)

where Sε(ω) = 2
π

∫ ∞
0 dτ cos(ωτ )〈ε(t)ε(t + τ )〉 is the one-sided power spectrum

density of the relative intensity noise. For a trap frequency on the order of MHz, �ε

approaches the order of 10−1 Hz when the Sε(ω) is on the order of 10−14 Hz−1.
The laser pointing fluctuation causes fluctuation of the position of the trap center.

The heating rate due to pointing fluctuation is [33]:

�
p
j ≡ 〈Ė〉

�ωj
= π

2
Mω4

j Sj(ωj)/(�ωj), (7.9)

where Sj(ω) is the power spectrum density of position fluctuation of the trap center.
Here the heating rate �

p
j denotes the increase of the phonon number per second. If

we want the �
p
j to be on the order of 10−1 Hz, we must have Sj(ωj) to be about

10−35 m2/Hz for ωj ∼ 1 MHz. Experimentally, Sj(ω) has been able to be controlled
to less than 10−34 m2/Hz for ω ∼ kHz [34]. For frequencies much larger than
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the resonant frequencies of an instrument, Sj(ωj) drops down quickly. Therefore, it
should be possible to control the laser pointing fluctuation to be small enough to have
�

p
j ∼ 0.1 Hz.

For the cavity cooling laser, the dominate heating source is the phase noise of
the laser [35–37]. The phase noise of the laser is related to the finite linewidth of
the laser. The field of a laser with finite linewidth can be written as ε(t) = εeiφ(t),
where the phase noise φ(t) is assumed to be Gaussian with zero mean value. For a
Lorentzian noise spectrum with Sφ̇(ω) = 2�Lγc/(γ

2
c +ω2), and correlation function

〈 ˙φ(s) ˙φ(s′)〉 = �Lγc exp(−γc|s − s′|), where �L is the linewidth of the laser and γ−1
c

is the correlation time of the phase noise, the minimum phonon number limited by
the phase noise is [36]

nph = nc
�L

κ

γ2
c

γ2
c + ω2

j

. (7.10)

If �L = 1 kHz, γc = 3 kHz, ωj = 106 Hz, and nc = 107, we have nph � 1. Thus
the heating due to the phase noise of a cooling laser with linewidth on the order of 1
kHz will not prevent ground-state cooling.

7.4 Applications of Cooled Microspheres in Vacuum

7.4.1 Measuring Weak Forces

Optically trapped microspheres in water are sensitive to forces on the order of 10−12

N [38], and have found extensive applications in biophysical research. For example,
optical tweezers have been used to measure the force exerted by single kinesin
molecules and the binding force between two individual stands of DNA molecules
[39, 40].

An optically trapped microsphere in vacuum provides an even more sensitive
force detector. The microsphere (just as a cantilever of an AFM) is subject to thermal
fluctuation forces from the environment. The minimum force that a microsphere (or
a cantilever of an AFM) can detect is linked to the friction that it experiences from
the environment. The minimum detectable force is [41]:

Fmin = √
4M�0kBT�b, (7.11)

where �0 is the viscous damping factor and �b is the bandwidth of the measurement.
From this equation, it is clear that a microsphere in vacuum is much more sensitive
to a weak force than a microsphere in water because of the smaller damping �0. A
microsphere is also more sensitive to a weak force than a normal AFM cantilever
because of its smaller mass M. Feedback cooling or cavity cooling do not affect
the force sensitivity [42], but they can localize the position of the microsphere and
benefit force measurements.
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Fig. 7.3 Minimum detectable force by a 3µm diameter microsphere trapped in vacuum. The
measurement bandwidth is 1 Hz

Figure 7.3 shows the calculated minimum detectable force by a 3µm microsphere
at different pressures with 1 Hz bandwidth. The force sensitivity increases when the
pressure decreases. Fmin = 2.9 × 10−15 N at 1000 torr, Fmin = 4.0 × 10−18 N at
10−4 torr, and Fmin = 1.3 × 10−21 N at 10−11 torr. The microsphere at 1000 torr
is already much more sensitive than a common AFM cantilever, which can measure
forces on the order of 1 nN.

This potential force sensitivity is remarkable. For comparison, the Newtonian
gravitational force between two point-like objects is

Fg = GN m1m2

r2 , (7.12)

where m1 and m2 are two masses separated by distance r. The gravitational force
between two 1 g masses separated by 1 m is 6.67 × 10−17 N.

It has been proposed that an optically trapped microsphere can be used to search
for non-Newtonian gravity forces via an enhanced sensitivity of 105–107 over current
experiments at the 1 µm length scale [43].

7.4.2 Measuring the Impact of Single Molecules

The 3D cavity cooling scheme (Fig. 7.2) can also be used to measure the 3D motion
of the nanosphere. In the limit of resolved sideband cooling where ωj � κj, and
when the driving strength is small (gjαj � κj), the output field from the cavity aout

cj
is related to the phonon mode of the motion of the nanosphere aj by [26]
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Fig. 7.4 Distribution of the average increase of the phonon number of the mechanical mode a3
after single elastic collisions between the nanosphere and molecules. The mass of the molecules is
assumed to be ma = 6.63 × 10−26 kg (blue curve) or mb = 2.18 × 10−25 kg (red curve). The mass
of the nanosphere is mb = 1.03 × 10−18 kg. The temperature of the gas is 300 K. Plot is courtesy
of Z. Q. Yin

aout
cj = −i

2gjαj√
κj

aj + ain
cj . (7.13)

Therefore the 3D motion of the nanosphere can be measured by detecting the
output fields. In the resolved sideband limit, the output field is nearly vacuum, and
will have a signal when there are collisions between the residual molecules in vacuum
and the nanosphere.

If the collisions between the molecules and the nanosphere are elastic, and the
nanosphere is in its ground state before the collisions, the average increase of the
photon number for vibration mode aj after single collisions is [26]

nj0 = 2kBTenvmmol

�ωjM
, (7.14)

where Tenv is the temperature of the residual molecules that is the same as the envi-
ronmental temperature, mmol is the mass the molecule, and M is the mass of the
nanosphere. Since nj0 is proportional to mmol, we can distinguish the molecules with
different masses in the measurement. The effective temperature Tj of mode aj after
single collisions can be obtained from

1

e�ωj/kBTj − 1
= nj0. (7.15)
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The distribution of the average increase of the phonon number after single collisions
is [26]

f (nj) = 2√
π

(
�ωj

kBTj

)3/2

exp

(
−nj

�ωj

kBTj

)
. (7.16)

Figure 7.4 shows the calculated distribution of mean phonon increase after sin-
gle collisions with two different molecules. The two curves for the two different
molecules are very different. Thus we can distinguish different molecules from the
measurement. In the calculation, the radius of the nanosphere is r = 50 nm and
the mass of the nanosphere is M = 1.03 × 10−18 kg (ρ = 1.96 g/cm3). The opti-
cal tweezer is formed by a laser with power of Pt = 25 mW and wavelength of
λ = 1500 nm, focused by a lens with numerical aperture N = 0.9. The trap fre-
quency is (ω1,ω2,ω3)/2π  (0.5, 0.5, 0.2) MHz [25]. The mass of the molecules
is assumed to be ma = 6.63 × 10−26 kg (blue curve) or mb = 2.18 × 10−25 kg (red
curve).

7.4.3 Searching for Gravity-Induced Quantum-State Reduction

A cooled microsphere in vacuum can also be used to study the gravity-induced
quantum state reduction [44]. After cooling and creation of a superposition state in
momentum, the optical trap can be switched off to let a microsphere undergo free-fall
in vacuum [25]. The wavefuction will expand during free-fall and become a super-
position state in space. The finite lifetime of a superposition due to gravity-induced
state reduction is predicted to be on the order of �r/(G M2) when the superposition
is composed of states separated by a distance larger than the size of the microsphere
[44, 45], where G is Newton’s gravitational constant. The predicted lifetime is about
3 ms for a 3µm diameter microsphere, which is shorter than the environmental
decoherence time in good vacuum and thus measurable.

Other sources of decoherence must be minimized in order to measure the gravity-
induced decoherence. The laser beams are switched off during the free fall of
the microsphere. So the decoherence due to laser scattering can be neglected
[46]. A dominate environmental decoherence source is the residual air molecules
in the vacuum chamber. The localization rate due to air molecules is �air =
8
√

2πmav̄Pr2/(3
√

3�
2), where P is the air pressure, ma is the mass of the air mole-

cules and v̄ is their thermal velocity [46]. �air can be reduced by reducing the air
pressure and the environmental temperature.

There are many other applications of an optically trapped dielectric particle near
the quantum ground state. Besides trapping glass microspheres, the dielectric particle
can even be a virus or other living organism, in which case it would be possible to
to produce Schrödinger cat states of living organisms [20].
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Appendix

Physical Properties of Some Common Materials

Table A.1 Physical properties of some common materials. The values are taken from reference
[1]

Material Refractive index
(at 589 nm)

Density
(g/cm3)

Dynamic
viscosity (lPa s)

Vacuum 1 0 0
Helium @ 0 �C, 1 atm 1.000036 0.000176 18.69
Air @ 0 �C, 1 atm 1.000292 0.00128 17.21
Air @ 27 �C, 1 atm 1.000265 0.00116 18.54
Liquid helium @ �269 �C 1:0245a 0.129 3.319
Liquid nitrogen @ �196 �C 1.199 0.8066 161.4
Water @ 20 �C 1:3337b 0.9982 1002

Water @ 40 �C 1.3310 0.9922 652.7
Water @ 60 �C 1.3276 0.9832 466.0
Ethanol @ 20 �C 1.361 0.7893 1074c

Acetone @ 20 �C 1.359 0:7845c 306c

Ethylene glycol @ 20 �C 1.432 1.114 16100c

Ice (Ih) @ -7 �C 1.31d 0:918d

Fused silica 1.458 2.21
a-Quartz 1.544(no),1.553(ne) 2.65
Silica microspherese 1.43–1.46 2.0
Polystyrene beadse 1.59 1.05
Sapphire 1.761(no), 1.769(ne) 3.97
Diamond 2.418 3.51

aAt 546 nm
bImaginary part of the refractive index of water and ice can be found at [2, 3]
cAt 25 �C
dValues from [4]
eMaterials and values from Bangs Laboratories, Inc. [5]
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