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Preface

The field of plasmonics is built on the resonant interaction of light with the free
electrons of a noble metal. The polarizability of the free electron cloud allows
particles much smaller than the incoming wavelength to couple efficiently with
incoming light. The first application of this wavelength-specific interaction dates
back to the Roman Empire with the use of metal particles in coloured glass.
Resonant light/matter interactions are however abundant in optical sciences with
dielectric spheres and cavities as well as atomic gases; so why has plasmonics
triggered so much interest in the last 30 years? If plasmon resonances do not
exhibit the highest oscillator strengths, they could exhibit quality factors in the
range of interest for many applications and arise in solid-state materials that offer
robust chemical and mechanical properties. Furthermore, the negative dielectric
permittivity of noble metals at optical frequencies induces a drastic increase of the
incoming electromagnetic field in the vicinity of the metal structure. This
enhanced light/matter interaction, which occurs at the nanometer scale, sparked a
growing interest in metallic nanostructures with the discoveries in 1976 of
full-light absorption and in 1977 of surface-enhanced Raman scattering. The
development, in the following decade, of surface-enhanced spectroscopy and
plasmon-based biosensing has attracted the attention of a broad scientific com-
munity ranging from physicists to biochemists. Technical breakthroughs in
nanofabrication, electromagnetic modelling and near-field optics added a new
momentum to the field of plasmonics at the end of the 1990s with groundbreaking
experiments in surface plasmon sub-wavelength optics; in particular, extraordinary
optical transmission, plasmon polariton waveguiding and near-field enhancement
imaging. During the last decade, the study of plasmon resonances has brought
together an electic array of research fields ranging from quantum electrodynamics
to electrical engineering for the understanding of light/matter interactions and
from solar energy to pharmacology as potential applications. The recent devel-
opment of metamaterials, optical antennas, nanosensing as well as photothermal
cancer therapy make plasmonics one of the most dynamic and exciting research
fields of this new millennium.

v



As the scientific community involved in plasmonics exponentially grows,
exhaustive reference textbooks become crucial. The objective of this book is to
thoroughly describe the physics of surface plasmons before addressing the most
important and promising applications. The number of chapters has been deliber-
ately restricted to offer authors the opportunity to develop their arguments and to
detail their subjects while preserving the didacticism of their chapter. It is divided
into three parts. Part I addresses surface plasmons polaritons propagating on
metallic surfaces. Part II is dedicated to surface plasmons localized on metallic
particles together with their applications in spectroscopy, energy production and
biophotonics. Part III is devoted to the imaging and nanofabrication of metallic
nanostructures.

Part I

The first two chapters are written by Daniel Maystre who discovered in 1976 with
Hutley the phenomenon of full-light absorption by a nanostructured metal. In
Chap. 1, Daniel Maystre describes the major advances of the twentieth century on
plasmon surface polaritons propagating on metal surfaces. Chapter 2 is devoted to
the Wood anomalies and the total absorption of light. These two discoveries made
at intervals of 74 years have strongly impacted the discipline in the twentieth
century. How can such a reflective metal absorb light when its surface is structured
at a scale around one-tenth of the illuminating wavelength? Daniel Maystre
explains in detail the phenomenon from an electromagnetic point of view. After
defining the surface plasmon polariton as the complex pole of the scattering
operator, he studies the trajectory of this pole in the complex plane as a function of
the grating depth.

The publication in 1998 of the unexpected light transmission through a metal
film perforated with nanoholes offered a new dynamism to the research on plas-
mon resonances. The need for convincing explanations of this so-called
‘extraordinary’ transmission has greatly advanced the knowledge of surface
plasmon properties on nanostructured metals. Theoretical works that were carried
out throughout the twentieth century by Rayleigh, Fano, Hessel and Oliner were
needed to explain the famous Wood’s anomalies. Philippe Lalanne and Haitao Liu
show in Chap. 3 the interest of these works in the more modern context of the
extraordinary light transmission. They discuss the concept of surface wave and
define in particular quasi-cylindrical waves. They detail the subtle differences
between these surface waves and surface plasmons, before presenting their
microscopic theory that was able in 2008 to predict the phenomenon.

Chapter 4 written by Jean-Jacques Greffet is devoted to the theory of surface
plasmons. The strength of this chapter is to describe the plasmon dispersion for-
mulas in solid-state physics and electromagnetism formalisms. In the first case, the
surface plasmon is described as a collective oscillation of free electrons while, in
the second case, the microscopic properties of the metal are ‘hidden’ in the
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permittivity of the metal. The surface plasmon is then defined as a pole of the
scattering operator and described as a surface wave propagating at a metal/dielectric
interface. Jean-Jacques Greffet explains the term ‘polariton’ that describes the
coupling between an electromagnetic wave and the free electrons. An analysis of the
dispersion curves shows the different regimes of propagation between the fre-
quencies ranging from microwave to optical frequencies. He explains the physical
content of the dispersion relations for lossy metals. In particular, the divergence of
the local density of states and the resolution limit are discussed.

Part II

In Chap. 5, Javier Aizpurua and Rainer Hillenbrand introduce surface plasmons
localized on metallic particles before presenting their interest in surface-enhanced
Raman spectroscopy. The interaction of light with nanoparticles much smaller
than the wavelength can be described in the quasistatic approximation. The authors
introduce the analytical expressions of the scattering and absorption cross-sections
of a dipolar nanoparticle. They describe the higher multipolar modes and the
impact of retardation effects before introducing the very important concept of
coupled dipoles. The last part of their chapter is devoted to the use of nanoparticles
to probe vibrational states of molecules (Surface-Enhanced Raman Spectroscopy
and Surface-Enhanced Infrared Absorption). The discovery of the surface-
enhanced Raman scattering dates back to 1977 and it initiated the creation of the
very active discipline of ‘molecular plasmonics’. The authors therefore present the
basics of Raman spectroscopy and show the importance of enhancing the optical
near field in the vicinity of metal nanoparticles for increasing the Raman signal.

The use of nanoparticles in dielectric materials has been known since antiquity,
but it recently experienced a renewed interest with the use of metallic particles in
solar cells. Predicting the optical properties of a large ensemble of nanoparticles in
a homogeneous medium can be performed by considering the material as homo-
geneous. The techniques of homogenization of Maxwell-Garnett and Bruggeman
are described in Chap. 6, written by Ross McPhedran. These methods were
developed in the late nineteenth and early twentieth centuries by renowned sci-
entists such as Clausius, Mossotti, Maxwell, Rayleigh, Lorenz, Lorentz and
Maxwell-Garnett. This chapter contains technical sections, but Ross McPhedran
carefully highlights the main results and unveils the physics behind the formulas.
He shows in particular the resonant character of the effective dielectric permittivity
calculated when the metal particles are considered as inclusions in a glass matrix,
which proves that the Maxwell-Garnett formulation is able to take into account
plasmonic resonances supported by metallic particles. The usefulness of the ho-
mogeneization technique is illustrated in the context of photovoltaic and photo-
thermal energy production. Ross McPhedran then discusses cloaking and spasers,
two very modern advances that should appear in this book.
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Medical diagnosis is the first industrial application of surface plasmons.
Chapter 7 written by Romain Quidant is devoted to the promising role of plas-
monics in health. He emphasizes the use of metallic particles for the development
of light and heat sources for light trapping, biosensing and photothermal cancer
therapy. Romain Quidant first shows the importance of the shape of the nano-
particle on the heat power emission spectra calculated numerically using the
dyadic Green’s function. The maps of heat density are interesting since they differ
largely from that of light intensities. He then describes a technique of microscopy
capable of measuring the temperature around the nanoparticles. Chapter 5
describes the ability of nanoparticles to focus incident light into tiny volumes,
while this chapter uses this property for the optical sensing of proteins or the light
trapping of cells and viruses. Combining biosensing and trapping techniques could
lead to the design of cost-effective biochips capable of quickly analysing liquid
samples. Romain Quidant concludes his chapter with a description of a new
therapy against certain cancers based on the heating of metal nanoparticles.

Part III

The first seven chapters of this book described the theory of surface plasmons and
showed their interest in the enhancement of light/matter interactions, with
important applications in nanophotonics and biophotonics. These breakthroughs
were made possible by advances in imaging techniques and nanofabrication.

The first direct observation of surface plasmons performed in the mid-1990s is
now considered as a key moment in plasmonics history. Alexandre Bouhelier,
Gérard Colas des Francs and Jonathan Grandidier write a very detailed chapter on
the different techniques of surface plasmon imaging. They distinguish three
techniques: near-field optical imaging, far-field optical imaging and electron
microscopies. The authors introduce in this chapter the fundamental concept of
spatial resolution, and explain the difference between near and far fields before
extending these concepts to the temporal resolution needed to observe the
dynamics of surface plasmons. Besides these three main techniques of microscopy,
the authors present fluorescence microscopy, dark-field microscopy and photo-
chemical imaging. This chapter contains many coloured surface plasmon images
which will help the reader understand the nature of surface plasmons.

Plasmonics is at the crossroads of optics and nanotechnology. Electromagne-
tism modelling and transformational optics lead to original designs of metallic
nanostructures that will push the boundaries of nanotechnology. The huge
industrial markets of microelectronics have led to massive investments in tech-
nological platforms in order to increase the precision of surface patterning. The
plasmonics community greatly benefits from the recent progress of nanotechnol-
ogy, and the last chapter of this book written by Gilles Lérondel, Sergei Kostcheev
and Jérôme Plain addresses the different techniques of nanofabrication. They
describe in detail the techniques of electron beam lithography, ion beam
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lithography as well as optical lithography. The authors nicely emphasize the
growing role that will be played by chemical self-assembly and surface func-
tionalization techniques.

We gratefully thank the authors for their participation in this book. We par-
ticularly appreciated the scientific discussions that emerged during this project.
Our careful editing of these comprehensive chapters has increased our knowledge
and understanding of plasmon resonances. We hope our readers will have the same
exciting journey in the field of plasmonics and that it will help them launch novel
research ventures.

Marseille, France Nicolas Bonod
Stefan Enoch
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Part I
Surface Plasmons Polaritons

on Metallic Surfaces



Chapter 1
Survey of Surface Plasmon Polariton History

Daniel Maystre

Abstract A huge interest in Surface Plasmon Polaritons (SPPs) was born at the
beginning of the twentieth century with the discovery of grating anomalies by Wood.
Subsequently, the excitation of SPPs by randomly rough surfaces has initiated fasci-
nating subjects of modern physics like enhanced backscattering or Anderson local-
ization of photons. More recently, this domain has attracted considerable attention
since plasmonics is involved in the main domains of nanophotonics: metamaterials,
near-field optics, extraordinary transmission through subwavelength holes, second
harmonic generation, and surface enhanced Raman scattering. This chapter outlines
the main steps in the development of these fields of research.

1.1 Introduction

This chapter deals with the domain of plasmonics that can be defined as the domain of
Optics in which the excitation and the propagation of surface plasmons play a key role.
Initiated in 1902 by Wood [1], the study of Surface Plasmon Polaritons (SPPs) has
been, for a long time, restricted to the study of the so-called Wood’s anomalies. These
anomalies are observed in the spectrum of light diffracted by diffraction gratings and
they manifest themselves by rapid variations in the intensity of the diffracted spectral
orders in narrow frequency bands. Wood’s anomalies have been considered for all
the twentieth century as one of the most fascinating phenomena in optics.

Almost one century after the Wood discovery, plasmonics has attracted a new and
considerable attention, in such a way that nowadays, it is considered as a vital part
of nanophotonics. Examples of this modern evolution of plasmonics can be found
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in the phenomenon of extraordinary transmission of light by subwavelength holes,
near-field microscopy, use of SPPs excitation for superlensing or fabrication of very
compact, high-speed, low-power and interference-free optical devices for telecom-
munications industry. Although many studies in plasmonics have been devoted to
periodic structures, it must be recalled that numerous studies have analyzed the effect
of the excitation of SPPs on non-periodic rough surfaces, especially on randomly
rough surfaces. Two phenomena generated by excitation of SPPs by randomly rough
surfaces have been particularly investigated both experimentally and theoretically:
the enhanced backscattering of light and the Anderson localization of photons. These
phenomena are not classified specifically in the frame of optics and must be con-
sidered as domains of modern physics, which have been studied by specialists of
theoretical physics, electromagnetics, optics, acoustics, and solid-state physics.

The second section will describe the long history of the experimental and theo-
retical analysis of grating anomalies. The third one will deal with some of the main
contributions of plasmonics in nanophotonics: extraordinary transmission through
subwavelength holes, metamaterials, and near-field microscopy. Finally, the fourth
section will be devoted to the phenomena generated by the propagation of SPPs on
randomly rough surfaces.

1.2 Plasmonics and Grating Anomalies

1.2.1 Discovery of Wood’s Anomalies

Although the notion of SPP appeared long afterwards, their generation in optics
was described at the very beginning of twentieth century. Indeed, the American
astronomer Wood observed in 1902 the spectra obtained using an optical grating
of a continuous light source produced by an incandescent lamp [1]. He noticed a
surprising phenomenon: “I was astounded to find that under certain conditions, the
drop from maximum illumination to minimum, a drop certainly of from 10 to 1,
occurred within a range of wavelengths not greater than the distance between the
sodium lines”.

Wood found narrow bright and dark lines in various spectra obtained for different
conditions of incidence and made a crucial remark: these lines were present only for
p-polarized light, i.e. when the magnetic field is parallel to the grating grooves. At
that time, the electromagnetic theory of gratings was at an embryonic stage and thus
was quite unable to provide any explanation to these phenomena, which explains that
Wood termed them “singular anomalies”, concluding that this problem was “one of
the most interesting that I have ever met with”.
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1.2.2 The Early Experimental and Theoretical Contributions

For a good while after the discovery of Wood’s anomalies, SPP studies remained
intimately related to relief diffraction gratings [2–45]. The interested reader can find
detailed descriptions of this early age of plasmonics in [45–50]. Other experimental
studies of Wood’s anomalies were published by Wood [4, 6] but pretty soon, the-
oreticians tried to provide interpretations to this surprising phenomenon. The first
explanation to the existence of the anomalies was given by Lord Rayleigh [2, 3].
He conjectured that an anomaly in a given spectrum occurs at a wavelength cor-
responding to the passing-off of a spectrum of higher order, or in other words at
the wavelength for which a scattered wave emerges tangentially to the grating sur-
face. Thus, he was inclined to think that the passing-off may be the determining
circumstance of any anomaly.

It is quite amazing to notice that this conjecture was not based on the experimental
data contained in the paper by Wood, since this paper did not mention the grating
period, a necessary parameter (with incidence angle) for calculating the passing-off
wavelength from the classical grating formula. Hearing from Wood the value of
the grating period, he noticed that his prediction allowed him to find the locations
of the anomalies, but with a significant discrepancy of about 5 %, which seemed
hardly good enough. Rayleigh expressed the hypothesis that this mismatch was the
consequence of an imprecise knowledge of the grating period.

For nearly a couple of decades, the interpretation proposed by Rayleigh was not
questioned. However, in 1936, Strong published crucial experimental measurements
[7]. Strong showed Wood’s anomalies for various metallic gratings having the same
period. The results implicitly evidenced the influence of the metal on the shape and,
much more important, on the location of the anomalies. Bearing in mind that the
grating formula is purely geometrical and thus that the metal has no effect on the
location of the passing-off, this result must be considered as the first reappraisal of
the Rayleigh interpretation.

1.2.3 The Explanations in Terms of Surface Waves

A few years later, U. Fano achieved the first theoretical breakthrough on Wood’s
anomalies [8]. Observing the published experimental data, Fano distinguished two
kinds of anomalies:

• A sharp anomaly, that is an edge of intensity, appears along the spectrum at sharply
defined wavelengths governed by the grating formula, using the Rayleigh conjec-
ture.

• A diffuse anomaly extends for a wavelength interval from the first one (the edge)
to the red (i.e. higher wavelengths) and “consists generally of a minimum and a
maximum of intensity (one dark band and one bright band)”.
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Obviously, the anomaly observed by Wood was not an edge of intensity but a drop
and it must be classified in the second kind of anomaly. This remark explains the
discrepancy between the predictions made by Rayleigh and the actual locations of the
anomalies: the diffuse anomaly does not occur exactly at the passing-off wavelength.
Fano explained the diffuse anomaly by “a forced resonance” related to the “leaky
waves supportable by the grating”. In other words, he explained the diffuse anomaly
by the excitation of surface waves propagating along the grating surface. In this
chapter, we will denote by “Rayleigh anomaly” the sharp anomaly at the passing-
off of a spectrum of higher order. We will see in the following that the remarkable
interpretation given by Fano can be considered as the starting point of the modern
analysis of Wood’s anomalies, even though the connection between the leaky waves
of Fano and SPPs was not stated.

Fano’s analysis was pursued by Hessel and Oliner which were led to the same
conclusions [12]. In addition, these two authors tried, for the first time, to use numer-
ical tools in order to calculate the location and shape of the anomalies. With this
aim, they used a model based on the knowledge of the impedance on a straight line
located above the grating grooves, assuming this impedance to take simple forms.
They were able to explain some properties experimentally known, such as the pos-
sibility of anomalies for s-polarized light with very deep gratings [9, 10], or the
reluctance of anomalies to merge [11].

The same year, Hagglund and Sellberg achieved a second attempt to analyze the
anomalies properties from numerical tools [13]. To this end, they used the electro-
magnetic theory of perfectly conducting gratings proposed by Rayleigh [51]. This
theory assumes that the electromagnetic field above the grating surface can be rep-
resented by a sum of plane waves, including inside the grooves. It is well known
that it leads to numerical instabilities, except for shallow gratings, for which it can
be shown that this theory gives accurate results on intensities scattered by gratings.
Unfortunately, in this region of convergence, the agreement with experimental data
was only qualitative.

1.2.4 The Experimental and Theoretical Revolutions

At the end of the 1960s and beginning of 1970s occurred two revolutions, which
deeply changed the experimental and theoretical tools used for the study of grating
anomalies. As regards the experimental means, the use of laser sources and pho-
toresist layers permitted the invention and production of holographic gratings for
scientific and industrial purpose [52]. For the first time, the holographic technology
provided a rapid and accurate tool for constructing gratings with submicronic periods.
As regards the theory, the opportunity of using the first powerful computers and the
strong development of the rigorous vector theory of gratings made it possible wide
numerical studies of Wood’s anomalies and allowed the first successful quantitative
comparisons between experimental data and numerical calculations.
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In 1972, Maystre elaborated and implemented on a computer a rigorous integral
theory of scattering from metallic diffraction gratings, including the possibility of
representing the metal by its complex permittivity [16, 17]. It is worth noting that, at
that time, this new theory was intended to provide a realistic tool for the optimization
of metallic gratings embarked in satellites for spectroscopy in the ultraviolet region,
where the conductivity of metals falls down. Indeed, it was widely acknowledged at
that time that metallic gratings in the visible and near-infrared regions behave nearly
like perfectly conducting surfaces. This hypothesis was based on a simple remark: the
reflectivity of metallic planes of aluminium, silver, or gold in these regions exceeds
90 % in general (98 % for silver). Thus it was accepted that the metal can be replaced
by a perfectly conducting (impenetrable) material, the intensities computed using this
hypothesis being finally multiplied by the reflectivity of the metal. Nevertheless, the
new theory was initially applied to metallic gratings in the visible and near-infrared
regions, in order to confirm the hypothesis of perfect conductivity of metallic gratings.

1.2.5 The Failure of Perfect Conductivity Model
in the Grating Theory

The first results were quite surprising. As expected, for s-polarized light, the numer-
ical results confirmed the usual hypothesis: the intensities scattered in various orders
can be deduced from those obtained assuming a perfect conductivity of the metals
through a simple multiplication factor close to reflectivity of the plane metallic sur-
face. On the other hand, for p-polarized light, strong discrepancies appeared. The
obvious and crucial consequence of this unexpected result was the failure in the visi-
ble and infrared regions of the perfect conductivity model of gratings for natural light,
where the intensities take the average value between both fundamental polarizations.

This result was presented in 1972 by Petit, Maystre, and Nevière in a communica-
tion at the International Congress of Optics (I.C.O. IX, Santa Monica, Ca) reported
in Ref. [21]. Most of the attendants in this congress expressed serious doubts about
the validity of this result: is the new theory valid and is the numerical implementation
accurate?. These criticisms can be easily understood: a new theory must be checked
not only through numerical tests (energy balance, reciprocity theorem [53, 54]) but
also, and above all, by comparison of the numerical results with experimental data.
This comparison arose very soon, as we will see.

Indeed, at the same time, at the National Physical Laboratory (Teddington, UK)
Hutley was able to make metallic holographic gratings and to measure their nearly
sinusoidal profiles using a profilometer (chisel-shaped stylus). He performed mea-
surements of their efficiencies (by definition, the efficiency of a grating in a given
order is the ratio of the light intensity in this order to the intensity of the incident
wave). He compared this data with theoretical predictions obtained from a rigor-
ous theory of scattering by perfectly conducting gratings elaborated in 1973 by
McPhedran and Waterworth [18]. He noticed for p-polarized light a significant
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silver

1205 nm

Fig. 1.1 Profile of the holographic grating made in the National Physical Laboratory (by courtesy
of Hutley). The height of the grating is equal to 170 nm

discrepancy between theory and experiment [19, 20] and proposed three possible
explanations to this mismatch:

• the finite conductivity of metals,
• an insufficient knowledge of the grating profile, specially of the distortion from a

perfectly sinusoidal shape.
• the reluctance of anomalies to merge, this hypothesis being presented by the author

as the “perhaps more likely explanation of the discrepancy”.

Obviously, the only way to solve the problem was to compare the experimental
measurements performed by Hutley with numerical results obtained from the new
rigorous theory of metallic gratings. This comparison, suggested by McPhedran,
was made in 1974 by Maystre and McPhedran [23, 24, 55]. The profile of the silver
holographic grating made by Hutley is shown in Fig. 1.1.

This grating was illuminated by a laser beam with a wavelength equal to 521 nm.
Hutley measured the efficiency in the −1 order as a function of incidence [20]. In
this chapter, the grating formula writes:

sin (θn) = sin (θ) + nλ/d, (1.1)

with θ and θn being, respectively, the angle of incidence (measured anti-clockwise)
and the angle of diffraction in the n order (measured clockwise), λ being the wave-
length in vacuum, and d being the period of the grating.

Figure 1.2 shows the experimental and theoretical results. The nearly symmetrical
shape of the curves of efficiency with respect to the Littrow angle θL = 12.5 ◦ is a
straightforward consequence of the reciprocity theorem [53, 54]. Let us recall that
in the Littrow configuration, the −n order (here, n = −1) and the incident wave
propagate in opposite directions.

• solid line: experimental data
• dashed lines: theoretical results for a silver grating,
• dashed-dotted line: theoretical results for total scattered efficiency (in all scattered

orders) of silver grating.
• dotted line: theoretical results for a perfectly conducting grating.

For s-polarized light, the agreement of both theories with experimental results
is excellent. One can notice two Rayleigh anomalies at the passing-off wavelengths
shown by arrows. The Rayleigh anomalies hold for p-polarized light, but spectacular
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Fig. 1.2 Comparison between experimental efficiencies (by courtesy of Hutley) and theoretical
efficiencies in the order −1 (taken from [55]) for a holographic silver grating for s-polarized light
(a) and p-polarized light (b). The passing-off incidences are shown by arrows and the Littrow
(Bragg) position by a vertical line

Wood’s anomalies accompanied by significant absorptions (up to 20 %) occur. Due to
these anomalies, the perfect conductivity model completely fails for this polarization.

1.2.6 The Quantitative Phenomenological Approach

This first successful comparison between experimental and numerical results for
metallic gratings in the visible region was followed by many other such comparisons,
using the same integral theory or another rigorous grating theory, the differential
theory of gratings [56], in such a way that the theoretical warning stated in 1972
about the non-validity of the perfect conductivity model was fully confirmed, at least
for wavelengths smaller that 10 µm [26].

The existence of powerful computer codes able to predict with a precision better
than 1 % the grating efficiency in the visible and near-infrared regions has permitted
wide numerical studies of Wood’s anomalies for various grating profiles, metals, and
mountings. However, numerical results do not provide simple rules or formulae able
to predict the shape and the position of the anomalies in a quantitative manner. This
remark explains why attempts were made in order to develop a quantitative phe-
nomenological theory [46, 47]. This theory starts from the basic origin of Wood’s
anomalies, i.e. the excitation of SPPs, and then uses the theory of analytic functions
of the complex variable. It shows that the behavior of the efficiency in the region
of anomaly can be quantitatively deduced from the knowledge of a couple of com-
plex parameters: the pole and the zero of the analytic continuation of the complex
amplitude of the scattered order (classically defined on the real axis of the incidence
angle) in the complex plane.

The pole represents the complex constant of propagation of the SPP on the
grating surface. From the knowledge of the pole and of the zero, a very simple
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phenomenological formula allows one to predict the efficiency in the region of anom-
aly with remarkable precision. This phenomenological theory has led to the predic-
tion of a very surprising phenomenon: the total absorption of a p-polarized incident
wave by a shallow grating [30], experimentally verified by Hutley and Maystre [31].
The same phenomenon has been generalized to s-polarized light for metallic grat-
ings covered by a thin dielectric layer [41, 42] and to unpolarized light for crossed
gratings [43]. The phenomenological theory also applies to perfectly conducting
gratings. Although the SPP of a metallic grating tends to a field which is not a sur-
face wave, it has been shown (see Fig. 1.8 of [47]) that this field is associated to a
pole and a zero (complex conjugate of the pole), and thus becomes a surface wave
again as soon as the perfectly conducting plane is corrugated. It is to be noticed that
other phenomenological studies were achieved by Andrewartha et al. for perfectly
conducting lamellar gratings [44, 45]. The phenomenological theory also applies to
corrugated waveguides.

1.2.7 Other Studies

Other computations have been achieved to study the dispersion of SPPs on a metallic
or a semiconductor grating.

An impressive variety of experimental measurements on phase velocity and damp-
ing of SPPs on metallic gratings can be found in the studies undertaken by Raether,
Pockrand, Kröger, and Kretschmann. These authors illuminated the grating from the
bulk side through a prism and used an approximate theory to interpret their results
[25, 27–29, 32–35].

It must be noticed that a group working in the Oak Ridge National Laboratory
(USA) tried to analyze the properties of SPPs using the microscopic laws of solid-
state physics. Such a study has an advantage on macroscopic studies described in
the present chapter: it starts directly from the basic origin of SPPs, i.e. a collective
electron resonance. It is to be noticed that the same group was at the origin of
the discovery of SPPs [57]. Unfortunately, the complexity of the problem led the
authors to use a perturbation treatment, in which the anomaly is studied in terms of
an interaction between the incoming photon and the collective electron resonance.
This analysis was not able accurately to describe the phenomenon, especially for
deep gratings, except by tuning the optical constants of metal to fit the measured
data [14, 15].

The excitation of SPPs by periodic relief surfaces has remained a key subject of
Plasmonics, due to the interest of practical and technological applications in biol-
ogy (virus detection), telecommunications (phone cards), photovoltaic or solar cells
(improvement of efficiency), and many other domains. The interested reader can find
the description of some of these studies in [58–85].
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1.2.8 Coherent Thermal Emission

Thermal emission of objects like the sun can be observed in current life. Even though
thermal emission is made of electromagnetic waves, the blackbody radiation is stud-
ied using radiometry. However, this very efficient theory cannot answer too many
questions like the coherence of thermal radiation or the electromagnetic properties
of the radiated near-field. The development of near-field optics and nanophotonics
has encouraged the analysis of these questions. Electromagnetic models of thermal
emission have been developed by Rytov [86, 87]. These models constitute efficient
tools to merge electromagnetics with thermodynamics and quantum theory and allow
one to study thermal emission in the near-field.

It turns out that at large distance (typically greater than 100µm) from a sur-
face of silicon carbide held at 300 K, the spectrum of energy density resembles the
Planck function of the blackbody spectrum, with a maximum at a wavelength close to
10 µm. However, when this distance approaches 1 µm, the spectrum strongly
changes. The energy density increases and the spectrum becomes more and more
dominated by a peak located at a wavelength close to 10 µm. As a consequence,
the near-field becomes nearly monochromatic. It is spatially and temporally strongly
coherent.

The explanation of this surprising result is that surface waves called “surface
phonons”, very similar to SPPs, can propagate at the surface of the metal at the
wavelength corresponding to the peak. For metals, the surface waves are SPPs and
the peak in the spectrum is located in the ultraviolet. Of course these surface waves
exponentially decrease and cannot be observed in the far field, at least if the surface
is planar. On the other hand, if the surface is periodically corrugated, the surface
waves can be radiated at infinity in given directions. In these directions, the thermal
emission is nearly monochromatic and strongly coherent [88–93]. This phenomenon
is called “coherent thermal emission”.

1.3 Plasmonics in Nanophotonics

Recently, plasmonics has attracted considerable attention on new fields of research.
This new interest is linked with the strong development of nanophotonics. This
domain of Optics is defined as the behavior and properties of light at the nanometer
scale, i.e. when the wavelength of light is significantly larger than the size of the
basic elements of the optical component (subwavelength scale). One of the major
objectives of nanophotonics is to achieve optical instruments that are able to focus the
light generated by a point source much tightly than the diffraction limit, also called
Rayleigh criterion, in order to obtain strongly subwavelength light localization, i.e.
light spots having sizes significantly smaller than the classical resolution of optical
instruments (about half a wavelength). Such subwavelength light spots can provide
very efficient tools, for example for characterization of surfaces or biological objects.
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The other purpose of nanophotonics is to develop very compact, high-speed,
low-power, and interference-free optical devices, with revolutionary applications
to telecommunications industry. In this chapter, we will mention three domains of
nanophotonics where plasmonics is deeply involved: the phenomenon of extraor-
dinary transmission of light through subwavelength holes, the fabrication of super-
lenses, and the near-field optical microscopy. These domains are described in detail
in other chapters of this book.

1.3.1 Extraordinary Transmission Through
Subwavelength Holes

At first glance, it is very easy to generate a subwavelength light source. It suffices to
drill a circular subwavelength hole in a thick metallic screen and to illuminate this
screen on one side. The other side of the hole should behave like a subwavelength
light source, thanks to the transmitted light. Unfortunately, the elementary laws of
electromagnetics show that this light source should be very weak in intensity. Indeed,
this hole in the screen is nothing else than a truncated metallic circular waveguide.
Assuming perfect conductivity of the metal, it can be shown very easily that the
guided field in an infinitely extended waveguide can be represented by modes, these
modes being mathematically described by Fourier–Bessel series. Analyzing these
series, it turns out that for a given diameter, it exists a cut-off wavelength λc above
which the light cannot be guided [94]. This wavelength, which corresponds to the
TE11 mode, is given by:

λc � 1.71D, (1.2)

with D diameter of the hole. Of course, the hole constitutes a truncated waveguide
and thus a part of light can be transmitted at wavelengths greater than λc by the
tunnelling effect (or in other words through transmission by evanescent modes which
are ignored in the current waveguide theory), but this part should be very small and
so, the light spot should be very weak in intensity.

Figure 1.3 shows the zero-order transmission of a two-dimensional, periodic,
square symmetry array (with period 900 nm) of cylindrical galleries of diameter
150 nm made in a silver thin film of width 200 nm deposited on a quartz
substrate [95].

From Eq. (1.2), it can be deduced that the cut-off wavelength λc is equal to
256 nm. Obviously, strong peaks of transmission are observed for larger wavelengths.
According to the authors of [95], the narrow peak at the left-hand side of the figure
is caused by the excitation of the bulk silver plasmon and disappears by increasing
the width of silver. The remarkable characteristic of the transmission is the set of
peaks which become gradually stronger as the wavelength is increased, each peak
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Fig. 1.3 Extraordinary transmission through an array of circular galleries in a silver film. Reprinted
by permission from Macmillan Publishers Ltd: T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio
and P. A. Wolff, Nature 391, pp. 667–669 (1998)

occurring just after a drop of transmission. The strongest peak arises at a wavelength
equal to 1,370 nm, i.e. more than five times the cut-off wavelength.

Another astounding feature of the figure is that the transmitted efficiency, i.e.
the fraction of the incident light which is transmitted, is more than two times larger
than the hole area/elementary cell area ratio. It is to be noticed that this surprising
property was demonstrated both theoretically and experimentally in a paper published
in 1980 [96]. In this paper, it is shown that a perfectly conducting metallic grid with
periodically spaced circular galleries can transmit 100% of the incident energy.

The link between the drops/peaks and the excitation of SPPs can be deduced from
their locations. For example, a drop/peak occurs in the wavelength range between
850 and 1,000 nm, close to the passing-off wavelength of the (0,1) and (1,0) reflected
order, which is equal to 900 nm. The drop-peak between 1,200 and 1,450 nm is close
to the passing-off wavelength of the (0,1) and (1,0) orders transmitted inside the
quartz.

The paper on extraordinary transmission [95] has been followed by numerous
other papers, with the purpose of providing an efficient coupling of an incident light
to a nanoconfined mode [97–138]. Experimental studies confirm the phenomenon but
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some controversies arose on the theoretical interpretation, especially on the role of
SPPs. It is to be noticed that the study of nanophotonic components utilizing channel
plasmon polaritons [139] is close to that of enhanced transmission: the ability of
SPPs to confine electromagnetic fields is used for the propagation and filtering of
optical signals on adequately structured metallic planes.

This phenomenon of extraordinary transmission through subwavelength holes
will be studied in detail in another chapter of this book, but let us notice the clear
analogy with Wood’s anomalies. In both cases, the “anomalies” are caused by the
excitation of SPPs on metallic surfaces.

1.3.2 Plasmonics and Metamaterials

One of the major achievements of nanophotonics is the ability to produce subwave-
length light sources. This vital result overcomes the classical limit of resolution in
optics, also called Rayleigh limit.

In order to outline the origin of this crucial limit, let us recall the expression of
the field scattered by a monochromatic light source at frequency ω. For the sake of
simplicity, we consider the two-dimensional case. The light source is a line current
parallel to the z-axis of a Cartesian coordinate system xyz, intersecting the xy plane
at point S of coordinates xS and yS (top of Fig. 1.4). Using a time dependency in
exp (−iωt), it can be shown that the field emitted by this light source is s-polarized,
does not depend on z, and is given at a point M of coordinates (x,y,0) by:

Es = H (1)
0 (kSM) , (1.3)

where k is the wavenumber in vacuum (k = 2π/λ = ω/c, c is the celerity of light
in vacuum) and H (1)

0 is the Hankel function of the first kind and zero order. Such a
source is considered as a 2D point source since, due to the singularity of the Hankel
function at the origin, the width at half height of the field intensity vanishes. Using
the Weyl formula [140], the Hankel function can be expressed in the form:

H (1)
0 {kSM} = 1

π

+∞∫

α=−∞

1

β(α)
exp{ik (α(x − xs) + β(α)|y − ys |)}dα, (1.4)

with

β(α) =
√

1 − α2 if |α| < 1 or i
√

α2 − 1 if |α| > 1. (1.5)

Below the line source, y − ys is negative and Eq. (1.4) takes the form:
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Fig. 1.4 The light emitted by a point source S is focused

H (1)
0 {kSM} = 1

π

+∞∫

α=−∞

1

β(α)
exp{ik (α(x − xs) − β(α)(y − ys))}dα. (1.6)

It can be deduced that below the light source, the field is described by a sum of plane

waves exp{ik (αx − β(α)y)} with amplitude
exp{−ikαxs + ikβ(α)ys}

πβ(α)
. These plane

waves can be decomposed into two categories, according to their propagation factor
k on the x-axis. From Eq. (1.5), it turns out that:

• if |α| < 1, the projection −kβ(α) of the wavevector on the y-axis is real and
negative. In the following, we call such a wave y-propagating wave,

• if |α| > 1, this projection is purely imaginary. The plane wave propagates in x
only and exponentially decreases in y. It is an evanescent wave.

Let us suppose that an instrument of optics (for example, a cylindrical lens par-
allel to the light source) is placed below this source in order to obtain an image.
After crossing the lens, and assuming that this lens is perfect (which is impossible
in practice since it requires an infinite width of the lens), it turns out that all the
y-propagating plane waves are deviated in order to be in phase and to form an image
at the point F conjugate of S with respect to the lens. On the other hand, the evanes-
cent waves will decrease exponentially from the source to the lens, then they will be
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scattered by the lens, in such a way that, in practice, they cannot reach the point F.
The consequence is that the field below the lens is given by the same expression as in
Eq. (1.6), replacing S by F, but now, the integral extends to the finite range |α| < 1.
In the plane y = yF , the field is thus given by:

E(M) = 1

π

+1∫

α=−1

1

β(α)
exp{ikα(x − xF )}dα. (1.7)

This integral is equal to a Bessel function of the first kind and zero order [141]:

E(M) = J0 (k(x − xF )) . (1.8)

Thus, the field in the image plane is a Bessel function of the first kind and zero
order. Since this Bessel function J0(u) is not singular and has its first zero for u = 2.4,
the crucial consequence is that the width Δx of the central light spot is given by
kΔx/2 = 2.4, i.e. Δx = 0.76λ, i.e. The image is not a point. An intuitive way to
explain the vital importance of evanescent waves in focusing devices is to notice that
the propagation constant kα along the x-axis of the evanescent waves generated by a
point source is unbounded. Consequently, the transverse wavelength λT = λ/α (viz.
the period on the x-axis) of such an evanescent wave can be very close to 0, thus can
be much smaller than the actual wavelength λ of the light emitted by the point source.
The existence of these waves of high frequencies in space is a necessary condition
to obtain a point source.

Overcoming the Rayleigh limit seems quite impossible since an instrument able
to realize this scope must restore at the point image the amplitudes of the evanescent
waves contained in the point source. Reconsidering a device initially described and
analyzed by Veselago in 1968 [142], Pendry proposed at the very beginning of the
twenty-first century a solution to this problem [143]. The perfect lens proposed by
Pendry is shown in Fig. 1.4. The 2D point source is placed on the y-axis (xs = 0)
at the ordinate ys and illuminates a slab of a so-called left-handed material, having
both relative permittivity and permeability ε and µ equal to −1. The top and bottom
of the slab are located respectively in the planes y = 0 and y = −e.

Using the elementary laws of Electromagnetics, it can be shown that any plane
wave exp{ik (α(x) − β(α)y)} generated by the point source is transmitted below a
slab having relative permittivity and permeability ε and μ with an amplitude t (α)

given by:

t (α) = 4p exp(ik (γ (α) − β(α))e)

D
, (1.9)

with

D = (1+ p)2−(1− p)2 exp(2ikγ e), p(α) = 1

μ

γ

β
, γ (α) =

√
εμ − α2. (1.10)
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When ε and µ are both equal to −1, γ is equal toβ, thus p = −1 and the transmission
factor is given by:

t (α) = exp (−2ikγ (α)e) . (1.11)

Using a new Cartesian coordinate system XY Z of origin F, deduced from xyz by
a translation −2e along the y-axis, it emerges that the transmission factor becomes
equal to 1. The astounding conclusion is that the amplitudes of both y-propagating
and evanescent waves are restored at point F, which is thus a perfect, stigmatic light
spot. It can be shown that the point S̃, symmetric of S with respect to the top of the
slab, constitutes a second point image, located inside the slab. It is worth noting that
for a p-polarized field (the electric current being replaced by a magnetic current),
Eqs. (1.9), (1.10) and (1.11) hold, except that p is now given by p(α) = 1

ε
γ
β

, but
since ε = μ, the final result remains unchanged.

The paper by Pendry has been followed by many controversies [144–152]. It is
worth noting that in 1994, it was shown in [153] that quasistatic (low frequency)
line sources could have arbitrary sharp images, even though the significance of this
discovery was not recognized at the time. Also, it should be noticed that it has been
shown that a non-harmonic solution to the problem of transmission by a left-handed
material illuminated at t = 0 by a sinusoidal field exists, with a linear increase of
the field with time [154]. It is possible to understand the physical meaning of this
crucial result by considering an equivalent result in electronics.

A sinusoidal tension v(t) on a RLC circuit generates a current j (t) which satisfies
the classical equation:

ν(t) = q

C
+ L

d j

dt
+ R j, (1.12)

with q charge of the capacitor. Taking the derivative of Eq. (1.12) yields:

L
d2 j

dt2 + R
d j

dt
+ j

C
= dv

dt
. (1.13)

For a harmonic tension, we can use the complex notation and the complex amplitude
j̃ of the current is given by j̃ = ṽ/Z , with ṽ being the complex amplitude of the
tension v, and the impedance Z of the RLC circuit being given by

Z = R + i

(
Lω − 1

Cω

)
. (1.14)

When R takes non-null values, j̃ remains bounded but if R tends to zero, Z tends
to zero at the resonance frequency ω1 defined by LCω2

1, thus for this resonance
frequency the current is infinite. Intuitively, this result is not surprising since the
energy provided by the generator cannot be dissipated. As a consequence, a harmonic
solution for the current does not exist at resonance.

Now, let us suppose that the tension starts at t = 0:
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v(t) = θ(t) sin(ωt). (1.15)

We deduce from Eq. (1.13) that:

L
d2 j

dt2 + j

C
= ωθ(t) cos(ωt). (1.16)

This linear differential equation of the second order with right-hand member and
initial conditions ( j (0) and d j/dt (0) = v(0)/L = 0) can be solved classically by
adding the general solution of the differential equation without right-hand member
and a particular solution of the differential equation with right-hand member. The
final result is given by:

j (t) = ω

L(ω2
1 − ω2)

(cos(ωt) − cos(ω1t))θ(t). (1.17)

Surprisingly, the solution for ω �= ω1 contains both frequencies ω and ω1, i.e. the
frequency of excitation and the resonance frequency. When ω is equal to ω1, the
right-hand member of Eq. (1.17) is undetermined but the limit of the expression as
ω tends to ω1 exists and is given by:

if ω → ω1, j (t) → 1

2L
t sin(ω1t)θ(t). (1.18)

This very simple result shows that the solution oscillates at frequency ω1 with a
modulus which linearly increases with time. From much more complicated calcula-
tions, the same results can be found for left-handed materials. First, the solution for
an arbitrary frequency ω includes both a term at frequency ω and a term at resonance
frequency ω1 for which ε = µ = −1. Second, the limit of the solution when ω tends
to ω1 oscillates at frequency ω1 with a modulus which linearly increases with time.
In fact, these results are general for resonance phenomena with lossless devices, and
many other examples could be found, for example in mechanics with the lossless
harmonic oscillator.

Coming back to the slab, it turns out that the transmitted field in the harmonic
problem diverges above F and even inside a part of the slab. It is not the purpose
of this chapter to give a detailed description of the state of the art in this domain,
but it appears that nowadays, the specialists acknowledge that there does not exist
a harmonic solution to the problem of transmission by a left-handed material but
that, nevertheless, the device shown in Fig. 1.4 can constitute a “superlens”, viz. an
instrument able to generate a subwavelength light spot, a fact confirmed by many
experimental studies [155–158]. A prerequisite for the fabrication of a superlens is to
get both electric and magnetic microresonators periodically spaced, the elementary
cell containing a couple of resonators having a strongly subwavelength size. As a
consequence, in the visible region, the period of the so-called “metamaterial” must
be nanometric, which in practice is very difficult to fabricate. This is the reason
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why another way to realize metamaterials and superlenses has been explored in
plasmonics.

The plasmonics device, called “poor man superlens” by Pendry, is also a slab, as
represented by Fig. 1.4, but now, the material inside the slab is a metal, for example
silver or gold. Of course, the width of this slab must be very small in order to avoid a
poor transmission factor. We suppose that the permittivity of the slab is close to −1,
but the material is not magnetic, thus its permeability is equal to +1. We recall that
a metal such as silver has a permittivity close to −1 in the near ultraviolet, around
340 nm. Let us show that such a slab is able to increase exponentially the amplitudes
of the evanescent waves for p-polarized light.

Defining the enhancement τ of the amplitude of an evanescent wave as the mod-
ulus of the ratio of the amplitude of the transmitted evanescent wave at the bottom
of the slab (at y = −e), to the amplitude of the incident evanescent wave at y = 0,
it can be deduced from Eq. (1.9) that:

τ (α) = 4p exp (ikγ (α) e)

D
. (1.19)

Let us consider an evanescent wave with a large constant of propagation kα on the
x-axis, in such a way that β (α) and γ (α) given by Eqs. (1.5) and (1.10) are very
close to each other:

β (α) � γ (α) � i |α| . (1.20)

We deduce from Eq. (1.10) (replacing µ by ε since the light is p-polarized) that
p (α) � −1. In these conditions, Eq. (1.19) becomes:

τ (α) � −4 exp (−k |α| e)

(1 + p)2 − 4 exp (−2k |α| e)
. (1.21)

Since (1 + p)2 is very small, the denominator behaves like −4 exp (−2k |α| e), at
least for small values of k |α| e, and thus:

τ (α) � exp (+k |α| e) if (1 + p)2 � exp (−2k |α| e) . (1.22)

If, for a given value of kα, e is equal to 0, the slab disappears and τ = 1. Now,
if the width e is increased, τ increases exponentially as long as the inequality in
Eq. (1.22) is satisfied: the amplitude of the transmitted evanescent wave below the
slab is greater than that of the incident evanescent wave on the top of the slab. We
have drawn in Fig. 1.5 the enhancement factor versus the normalized propagation
factor α for a non-magnetic slab of permittivity −1 and width 50 nm.

Obviously, a strong enhancement is obtained in a wide range of evanescent waves.
This enhancement has two poles at α = 1.8 and α = 3.2. Is it possible to obtain
subwavelength light spots with a device that enhances the evanescent waves in a given
range but does not focus the y-propagating waves? A simple demonstration can show
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Fig. 1.5 Enhancement factor
of a metallic slab of permit-
tivity −1 and width 50 nm.
The arrow shows the limit
between y-propagating waves
(left) and evanescent waves
(right)
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that the answer is positive: restricting the constants of propagation of evanescent
waves to the couple α/k0 = ±4, it is straightforward to show that the transmitted
field creates a system of interferences with a period λ/8 containing a bright and a
dark band. Thus, the width of a bright band is smaller than λ/8. Consequently, this
couple of propagation constants generates a series of subwavelength light lines.

The experimental demonstration of the ability to create a subwavelength imaging
process with a thin silver slab has been given by Fang et al. [159]. These authors
recorded the images of an array of nanowires and the word “NANO” onto an organic
polymer with a resolution close to 60 nm, i.e. one-sixth of the illumination wavelength
in the near ultraviolet. This breakthrough was followed by other papers on planar
metallic or metallo-dielectric structures [160–166], but most of the studies in this
field are now devoted to more complicated metal devices, for example periodic chains
of nanometric particles, for use as metamaterial devices or for the purpose of field
enhancement [167–174].

1.3.3 Plasmonics and Near-Field Microscopy

The Weyl formula shows that the field emitted by a point source includes evanescent
waves with transverse wavelengths λT very close to 0. A device like a superlens
is able to reproduce a part of these waves in order to generate a subwavelength
image. Moreover, it can be conjectured that these waves can be used to characterize
objects or surface asperities having sizes much smaller than the wavelength λ of
the light, but of the same order as λT . From that point of view, a superlens should
be an efficient tool for optical characterization. However, another way to generate
strong evanescent waves on a nanometric object is to use optical antennas placed
very close to this object. If this antenna can produce strong evanescent waves, the
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mismatch between the wavelength of light and the dimensions of nanostructures to
be characterized will be overcome. This is one of the basic principles of the near-field
microscopy [175–193].

It is quite impossible, in practice, to make antennas acting like intense point
sources in the visible region: the size of the source is hardly negligible with respect
to the wavelength. Indeed, the challenge to make strongly subwavelength antennas
generating intense radiated fields seems impossible to win. Plasmonics provides a
solution to this problem. SPPs can propagate at the surface of metallic planes or
metallic gratings, but they can propagate as well at the surface of metallic particles.
When a nanometric metallic particle is illuminated by a monochromatic optical
source like the extremity of an optical fiber, a SPP can propagate on its surface with
a given propagation constant. In general, the intensity of the field created by this
SPP is very small. However, the finite size of the particle plays the same role as
the periodicity for diffraction gratings: for a given wavelength of light, a resonance
can occur, determined by the particle size, shape, composition and by the local
dielectric environment. Due to this resonance, such a “resonant optical antenna”
enables the electromagnetic energy produced by the fiber to be concentrated into a
subwavelength region. In addition, it provides an optimal conversion of the localized
field into a radiated field, which can be used for characterization purpose.

Examples for these relevant field-confining optical probes are subwavelength
metallic spheres and sharp metal tips. It is to be noticed that the use of narrow
apertures for optical microscopy beyond the limit of diffraction was suggested as
early as 1928 by Synge [175]. However, this visionary proposal was far beyond the
technical capabilities of the time. In 1972, Ash and Nichols [176] demonstrated in
the microwaves region a subwavelength imaging capability and obtained a resolu-
tion of λ/60. Then, in the 1980s, two groups won the difficult challenge of extending
Synge’s concept to the visible region and gave the evidence of the feasibility of near-
field optical microscopy: a research group at IBM Corporation’s Zurich laboratory
[177–179] and an independent group working at Cornell University [180]. The reader
can find in [181–193] some reviews and articles on more recent achievements in that
field.

1.4 Plasmon Propagation on Randomly Rough Surfaces,
Weak and Strong Localization of Light

The study of phenomena generated by fields on random structures is one of the
major domains of analysis of modern physics. In the frame of optics and scattering,
phenomena such as enhanced backscattering (or weak localization) or Anderson
localization (or strong localization) of light by a set of particles, an inhomogeneous
material or randomly rough surfaces have drawn a considerable attention. The reason
for this interest lies not only on the attraction for random structures and underlying
physics, but also on the vital importance of these phenomena in many practical
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Fig. 1.6 A randomly rough metallic surface illuminated by an incident beam. Reprinted by per-
mission from OSA:D. Maystre and M. Saillard, Journal of the Optical Society of America A7,
p. 983 (1990)

applications of scattering phenomena like RADAR observation, biological tissues
characterization, observation of soil, vegetation and sea surfaces, or propagation of
laser beams through atmospheric turbulence [194–197].

1.4.1 Enhanced Backscattering (Weak Localization)

The experimental observation of enhanced backscattering from randomly rough sur-
faces has been first reported by Mendez and O’Donnell in 1987 [198]. This phe-
nomenon is manifested by a well-defined peak in the retro-reflection direction in
the angular dependence of the intensity of the incoherent light scattered by such a
surface. It is explained by the coherent addition of multiply scattered waves, which
add in phase in the backward direction only. Every photon scattered from the surface
in the backward direction has a time-reversed photon travelling along the same path
in the opposite direction. These photons have the same phase at the exit points and
thus interfere constructively with each other, resulting in enhanced backscattering.

In the case of metallic rough surfaces with weak corrugations, the propagation
of SPPs plays the key role in the interpretation of the phenomenon [199–203].
Figure 1.6 shows the device used for a numerical demonstration of enhanced
backscattering. We consider a randomly rough surface y = f (x), invariant with
respect to the z-axis of a Cartesian coordinate system xyz. This surface separates
the air from a metal of complex index ν. Such a non-periodic surface, assumed to
be centered (〈y(x)〉 = 0, the averaging process being made by varying x) is clas-
sically characterized by its rms σ (random mean square) defined by σ 2 = 〈

y (x)2〉,
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Fig. 1.7 Scattering intensity versus the scattering angle with a s-polarized (left) or p-polarized
(right) light beam with wavelength 3,392 nm, impinging on a gold randomly rough surface with
rms height = 1, 950 nm and correlation length 3,570 nm. From the top to the bottom, the incidence
angle is equal to 0 ◦ (a), 10 ◦ (b), and 30 ◦ (c). The arrows show the backscattering direction.
Reprinted by permission from Taylor & Francis Ltd (http://www.informaworld.com): D. Maystre
and M. Saillard, Waves in Random Media 4, 467–485 (1994)

which characterizes the mean height of the surface, and its correlation function C (τ )

defined by C(τ ) = 〈y(x)y(x + τ)〉. Assuming a symmetrical correlation function,
the correlation length T is defined by C (T ) = C (0) /e, with e being the Euler
constant. The correlation length characterizes the mean width of the asperities. This
metallic surface is illuminated by a light beam, invariant with respect to the z-axis,
with wavelength λ and angle of incidence θ .

Figure 1.7 represents the mean intensity scattered at infinity by the surface
[203]. The results have been obtained from a rigorous theory of scattering by ran-
domly rough surfaces [204, 205]. The mean intensity is defined as an averaging
process on a given window of scattering angles, which corresponds to the actual

http://www.informaworld.com
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Fig. 1.8 Heuristic explana-
tion of the enhanced backscat-
tering phenomenon for deep
surfaces
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measurement process. Indeed, the intensity scattered by a randomly rough surface
varies very rapidly with the diffraction angle, at least if the width of the incident
beam is large: it is a speckle noise. The averaging process allows one to smooth the
intensity pattern, which becomes much clearer. In Fig. 1.7, the width of the incident
beam is equal to 1,000 wavelengths and the mean intensity is achieved on a range of
scattering angles equal to 4 ◦. The backscattering peak appears for both polarizations,
its height decreasing as the angle of incidence is increased.

A heuristic explanation of this retro-reflection peak is given in Fig. 1.8.
First, it must be noticed that the rms height of the surface has the same order of

magnitude as the wavelength and the correlation length. This entails that the grooves
of the surface are deep. Thus, a ray I1striking the surface at a given point A can be
scattered toward another point B of the surface and scattered a second time before
going to infinity in a given direction (ray S1). The trajectory of this ray is shown by
a solid line in Fig. 1.8. A second incident ray I2, parallel to I1 and coherent with it,
represented by a dashed line, can strike the surface at point B, be scattered toward
the point A and can generate an emerging ray S2 parallel to S1. In general, S1 and
S2 do not have the same phase, except when the deviation δθ between the incident
and scattered rays vanishes. In that case, the emerging rays are in the backscattering
direction and the phases of these emerging rays are identical, due to the reciprocity
for reverse paths. As a consequence, the amplitudes of the couple of emerging rays
are greater in that direction and it can be shown that the intensity can be enhanced
by a factor of 2.

Of course, this explanation does not hold for shallow corrugation. However, a peak
of enhanced backscattering can be observed in that case, but only for p-polarized
light. Figure 1.9 shows the diffraction pattern of a silver randomly rough surface
illuminated by a light beam.

Obviously, a retro-reflection peak can be observed for this very shallow surface.
The reflection peak can be observed as well since the surface has properties close to
that of a mirror and the scattered field is very small with respect to the specularly
reflected one: the speckle is not completely developed, by contrast with what happens
in Fig. 1.7. Since the surface is shallow, the heuristic explanation of Fig. 1.8 does
not hold. However, the same interpretation can be given, provided that the rays
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Fig. 1.9 Scattering intensity versus the scattering angle with a p-polarized light beam with wave-
length 400 nm, impinging on a silver randomly rough surface with a rms height of 8 nm and a
correlation length of 100 nm. The incidence angle is equal to 10 ◦ at the left-hand side (a) and 30 ◦
at the right-hand side (b). The arrows show the backscattering direction. Reprinted by permission
from Taylor & Francis Ltd (http://www.informaworld.com): D. Maystre and M. Saillard, Waves in
Random Media 4, 467–485 (1994)

Fig. 1.10 Picture taken
through a window of an
airplane, of a glory around the
shadow of the airplane onto
a cloud layer (by courtesy of
Tayeb, Institut Fresnel)

propagating in opposite directions between the points A and B of Fig. 1.8 are replaced
by SPPs propagating in opposite directions along the surface. This explanation is
consistent with the fact that the phenomenon is not observed for s-polarized light.

The explanation of enhanced backscattering given in Fig. 1.8 can be generalized to
a large object (plane, boat. . .) on which multiple reflections of light occur on different
parts, or to a set of particles, the points A and B denoting now two different particles of
the set. This remark explains why this phenomenon has a vital importance in RADAR
observation, propagation of laser beams in turbulent media and meteorology. The
phenomenon of enhanced backscattering can be observed in everyday life. It explains
the bright halo (glory) around the shadow of an airplane onto a cloud layer (Fig. 1.10).

http://www.informaworld.com
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1.4.2 Anderson Localization (Strong Localization)

Anderson localization, also known as strong localization, is manifested by the
absence of diffusion of waves in a random structure. Anderson suggested for the
first time the possibility of electron localization inside a semiconductor, provided
that the degree of randomness of the impurities or defects is sufficiently large
[206, 207].

Anderson localization is a general wave phenomenon that applies to electromag-
netic waves as well [208–211]. Indeed, in analogy with electron localization, it has
been anticipated that in a random strongly scattering optical structure, photons can
be trapped in some regions by the constructive interference of waves. These severe
interferences can completely halt the waves inside the random medium. Strong local-
ization of light has been analyzed in the frame of plasmonics [212–215].

It can be observed that a SPP propagating on a flat metal surface and striking a
randomly corrugated region presents in some parts of this region hot spots generating
a strong radiation in the far field and a strong absorption in the metal. As a conse-
quence, the transmitted intensity can become very weak. Figure 1.11, obtained by
Saillard and Maystre using an extension of the theory described in [204], illustrates
this phenomenon. The silver rough surface (Fig. 1.11a), invariant with respect to the
direction of the z-axis (perpendicular to the figure), is composed of a grating and
a randomly rough surface, separated by a flat region. The grating is illuminated by
an incident beam, invariant with respect to the direction perpendicular to the figure,
with p-polarized light. The incidence has been chosen in order to excite at the surface
of the grating a SPP propagating to the right of the figure. This SPP is transmitted
to the flat region and generates a scattering phenomenon: a part of the incident wave
creates in the flat region a system of interferences generated by the reflections on
the grating and on the rough surface while another part is transmitted to the rough
surface and is shared between absorption inside the metal, scattering at infinity and
transmission in the semi-infinite flat region located to the right of the rough surface.

Figure 1.11b and c show the square modulus |Ex |2of the x component of the
electric field, calculated using an adaptation of our code devoted to scattering from
randomly rough surfaces in order to take into account the grating and the flat regions.
These two curves are obtained for two different realizations of the rough surface.
A randomly rough surface is defined from stochastic features like rms height or
correlation function. It is possible to generate a large number of rough surfaces
having quite different profiles but the same stochastic parameters. Each of these
deterministic rough surfaces is called realization of the rough surface. For example,
we can generate such a set of realizations by constructing first a very large rough
surface, then by selecting a large set of realizations by cutting the large surface into
many smaller parts. We have constructed 100 realizations of the rough surface and
selected a couple of them: that corresponding to the smallest (Fig. 1.11b) and largest
(Fig. 1.11c) values of SPP transmission T across the rough surface.

In Fig. 1.11b, the transmission is equal to 3 % while it reaches 62 % in Fig. 1.11c.
The explanation of this surprising difference can be found in the behavior of |Ex |2.
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Fig. 1.11 Transmission of an
incident SPP generated by a
grating across two randomly
rough surfaces (a). The trans-
mission in (b) (3 %) is much
smaller than in (c) (62 %), due
to the existence of a resonance
phenomenon, the strong local-
ization (localiton)

In Fig. 1.11b, in the region close to x = −2.5 µm the field is much larger than in
Fig. 1.11c. In this region, |Ex |2 reaches a value equal to 6, while it never exceeds
1.5 in Fig. 1.11c. Thus, the strong difference between the transmission factors is
caused by a resonance phenomenon which occurs for the realization of Fig. 1.11b.
This resonance phenomenon generates a large field on the surface, and thus a strong
absorption in the metal and a large scattered field in the far field, which entails a
small transmission.

Let us try to give a heuristic explanation to this resonance phenomenon. In
Fig. 1.12, we have, for simplicity, represented a randomly rough surface by a series
of diffraction gratings having different pitches and different heights. An incident
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Fig. 1.12 Heuristic explanation of strong localization by randomly rough surfaces

SPP coming from the left-hand side can propagate in the set of gratings but, of
course, phenomena of reflection and transmission occur at each transition between
two elementary gratings. Thus, the field inside the rough surface results from a
very complicated interference system. In some parts of the surface, the interference
process may be constructive, in such a way that a resonance arises: the field becomes
very strong and cannot escape from this region, except by absorption or radiation.
This is the explanation of the hot spot observed in Fig. 1.11b.

Of course, if the rough surface is very large, this resonance phenomenon can occur
on several parts of the surface, thus, the variations of T over the different realizations
of the surface are small. In Fig. 1.11, the rough surface has a small size, which
entails that resonance phenomena can exist or not, depending on the realization.
This phenomenon of resonance has been investigated theoretically and numerically
in [213, 214]. The field in the resonance region has been termed “localiton”, or
localized mode, viz. a homogeneous (without incident wave) solution of Maxwell
equations decreasing exponentially with time.

1.5 Conclusion

Widely developed in the twentieth century, SPP studies have been strongly linked
for a long time to the study of grating anomalies, even though the origin of the
anomalies from the excitation of SPPs was not discovered before the middle of this
century. A considerable number of articles have been published in that domain and
nowadays the phenomena of absorption, filtering, and field enhancement associated
with anomalies are used in many fields of science, technology, and medicine.

The study of excitation of SPPs from randomly rough surfaces has led to the study
of fascinating phenomena of modern physics, namely enhanced backscattering and
Anderson localization. These phenomena, which can be observed in the nature, play
a crucial role in many fields of technology like RADAR observation, propagation of
laser beams in the atmosphere and meteorology.
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Recently, plasmonics has raised a new and considerable interest. It is involved
in the main domains of nanophotonics like metamaterials, superlensing, near-field
optics, or extraordinary transmission through subwavelength holes. It can be conjec-
tured that in the future, the remarkable property of SPPs to concentrate and enhance
the electromagnetic field on the nanometer scale will open new fields of applications
in science and technology, especially in the domain of photonic circuits, even though
the realization of completely plasmonics circuits on subwavelength scale remains a
dream at present time.
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Chapter 2
Theory of Wood’s Anomalies

Daniel Maystre

Abstract Discovered by Wood in 1902, grating anomalies have fascinated
specialists of optics for more than one century. Long after the first interpretation given
by Rayleigh, Fano has suggested that the origin of anomalies could be found in the
excitation of surface waves. This chapter describes the quantitative phenomenolog-
ical theory of Wood’s anomalies developed in the 1970s, based on the interpretation
given by Fano and on the macroscopic laws of electromagnetics. This theory leads
to a formula giving the efficiency of gratings in the region of anomaly and predicts
the phenomenon of total absorption of light by a grating.

2.1 Introduction

In 1902, Wood, observing the spectrum of a continuous light source given by an opti-
cal metallic diffraction grating, noticed a surprising phenomenon: “I was astounded
to find that under certain conditions, the drop from maximum illumination to mini-
mum, a drop certainly of from 10 to 1, occurred within a range of wavelengths not
greater than the distance between the sodium lines” [1]. Wood made a crucial remark:
these lines were present only for p-polarized light, i.e. when the magnetic field is
parallel to the grating grooves. However, he was unable to provide any interpretation
to these phenomena and thus termed them “singular anomalies”, concluding that this
problem was “one of the most interesting that I have ever met with”. Even though
the notion of Surface Plasmon Polariton (SPP) appeared more than half a century
afterwards, let us give back to Caesar what is Caesar’s: Wood must be considered as
the initiator of plasmonics.
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As it will be seen in the following, Wood’s discovery immediately raised consid-
erable attention and the fascination of many specialists of optics for the so-called
Wood’s anomalies never died. Rayleigh proposed the first explanation for the exis-
tence of the anomalies [2, 3]: an anomaly in a given spectrum occurs at a wavelength
corresponding to the passing-off of a spectrum of higher order, in other words, at
the wavelength for which a scattered wave emerges tangentially to the grating sur-
face. The Rayleigh conjecture was considered as a valuable tool for the prediction
of Wood’s anomalies. Indeed, the famous grating formula:

sin (θn) = sin (θ) + nλ/d, (2.1)

where θ is the angle of incidence (measured anticlockwise from the normal to the
grating), θn is the angle of diffraction (measured clockwise), λ is the wavelength
in vacuum (which can also be considered as the wavelength in the air) and d is the
groove period, allows one to rigorously calculate the diffraction angle of any scattered
order n from the grating period, the angle of incidence and the wavelength of light.
The passing-off of the order n occurs when sin (θn) = ±1 and thus, from Eq. (2.1),
the wavelengths of a spectrum generating the passing-off of a diffracted order are
given by:

nλ/d = − sin (θ) ± 1, n = ±1,±2,±3... (2.2)

Figure 2.1 shows the spectra obtained by Wood for some values of the angle of
incidence.

Near-normal incidence (θ = 4◦12′, top of the figure), a bright narrow line
appeared in the yellow (about λ = 610 nm), while a larger dark line was observed
in the green (near 520 nm). Decreasing the angle of incidence to 2◦37′, these lines
approached one another and for angles of incidence of 0◦15′ and 0◦5′, they came
in contact. Finally, at normal incidence, the lines fused and a uniform illumination
was observed. With an incidence on the other side of the normal, two lines separated
again, corresponding to red and orange. These lines were extremely brilliant up to a
certain wavelength where the intensity very suddenly dropped to values close to zero,
this fall occurring within a range not greater than the distance between the sodium
lines. The paper by Wood did not mention the characteristics of the grating (period,
shape, metal) but subsequently, Wood communicated to Rayleigh the period, equal
to 1,760 nm. Using Eq. (2.2), Rayleigh was able to check the validity of his conjec-
ture. The calculation predicts that, for an angle of incidence of 4◦12′, the anomalies
should arise at wavelengths 543.7 nm (n = +3 in Eq. (2.2) with sign +) and 629.6 nm
(n = −3 in Eq. (2.2) with sign −). The discrepancy of about 5 % with the real loca-
tion of anomalies in Fig. 2.1 (517 and 609 nm) seems hardly good enough. Rayleigh
expressed the hypothesis that this mismatch was the consequence of an imprecise
knowledge of the grating period and for 30 years, the Rayleigh conjecture remained
unquestioned. The present chapter is devoted to the theory of Wood’s anomalies and it
is not our purpose to mention all the experimental contributions to this phenomenon.
The interested reader can find a survey of these contributions in Chap. 1. However,

http://dx.doi.org/10.1007/978-3-642-28079-5_1
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Fig. 2.1 Spectra of a continuous light source obtained by Wood. The wavelength
in nanometers is obtained by multiplying by a factor 10 the numbers shown at
the top of the figure. The angles of incidence are, from the top to the bottom:
4◦12′, 2◦37′, 0◦15′, 0◦5′, 0◦,−0◦5′,−1◦15′,−1◦53′,−2◦38′ and − 5◦45′. Reprinted by permis-
sion from Taylor & Francis Ltd (http://www.informaworld.com): [1] p. 397

at least one contribution must be cited here since it demonstrated that the Rayleigh
prediction is unable to explain some vital experimental results.

Strong [4] showed Wood’s anomalies for various metallic gratings having the
same period. The results implicitly evidenced the influence of the metal on the shape

http://www.informaworld.com
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of the anomalies and, much more important, on their location. Bearing in mind that
the grating formula is purely geometrical and thus that the metal has no effect on the
location of the passing-off, this result must be considered as the first reappraisal of
the Rayleigh interpretation.

Some years later, Fano achieved the first theoretical breakthrough on Wood’s
anomalies [5]. Observing the published experimental data, Fano distinguished two
kinds of anomalies:

• A sharp anomaly—that is, an edge of intensity—appears along the spectrum at
sharply defined wavelengths governed by the grating formula using the Rayleigh
conjecture.

• A diffuse anomaly extends for a wavelength interval from the first one (the edge)
to the red (i.e. higher wavelengths) and “consists generally of a minimum and a
maximum of intensity (one dark band and one bright band)”.

So, Fano explained the discrepancy between the theoretical predictions by
Rayleigh and the experimental data provided by Wood: the Rayleigh conjecture
predicts the location of the sharp anomaly, while obviously the anomaly observed
by Wood was the diffuse anomaly. Fano explained the diffuse anomaly by “a forced
resonance” related to the “leaky waves supportable by the grating”. In the following,
we will denote by “Rayleigh anomaly” the sharp anomaly at the passing-off of a
spectrum of higher order. We will see in the following that the remarkable analysis
by Fano must be considered as the starting point of the modern explanation of Wood’s
anomalies, even though the connection between the leaky waves mentioned by Fano
and SPPs was not stated in the paper. Hessel and Oliner were led to the same con-
clusions as those stated by Fano [6]. In addition, these two authors used numerical
tools in order to calculate the location and shape of the anomalies. Unfortunately, the
model used by Hessel and Oliner was based on the knowledge a priori of the elec-
tromagnetic impedance (ratio of the tangential components of the electric/magnetic
fields) on a straight line located above the grating grooves. Nevertheless, they were
able to explain some properties experimentally known, such as the possibility of
anomalies for p-polarized light with very deep gratings [7, 8], or the reluctance of
anomalies to merge [9].

The modern analysis of Wood’s anomalies began at the end of the 1960s and
at the beginning of 1970s thanks to two revolutions, which drastically changed the
experimental and theoretical tools in the study of gratings. The use of laser sources
and photoresist layers permitted the invention and the production of holographic
gratings for scientific and industrial purpose [10]. For the first time, the holographic
technology provided a rapid and accurate tool for constructing gratings with submi-
cronic periods. At the same time, the opportunity of using the first powerful com-
puters encouraged theoreticians to develop rigorous vector theories of gratings and
to implement them on computers. These new and powerful tools allowed for the
first time wide numerical studies of Wood’s anomalies and led to the first success-
ful quantitative comparisons between experimental data and numerical calculations.
As a consequence, the conditions were fulfilled for developing phenomenological
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theories of Wood’s anomalies and for checking their predictions with numerical and
experimental data.

The first rigorous vector theory of gratings able to predict with precision the
properties of relief metallic gratings for any shape of the profile in any range of
wavelength was achieved by Maystre in 1972 [11, 12]. This theory can be classi-
fied as an integral theory since it reduces the problem of scattering by a grating to
the solution of an integral equation. It is amazing to notice that, at that time, this
new theory was intended to provide a realistic tool for the optimization of metallic
gratings embarked in satellites for spectroscopy in the ultraviolet region, where the
conductivity of metals falls down. Indeed, it was considered that the grating problem
was already solved in the visible and near-infrared regions, using the theory of per-
fectly conducting gratings [13–17]. It was accepted that the metal can be replaced by
a perfectly conducting (impenetrable) material, the efficiencies in the various orders
computed using this hypothesis being finally multiplied by the reflectivity of the
metal. At first glance, this approximation seems to be justified as the reflectivity of
metallic planes of aluminium, silver or gold in these regions exceeds 90 % in gen-
eral. Nevertheless, the new theory was applied to metallic gratings in the visible and
near-infrared regions, in order to confirm the hypothesis of perfectly conductivity of
metallic gratings in these regions.

As expected, for s-polarized light, the numerical results confirmed the usual
hypothesis: the intensities scattered in the various orders can be deduced from those
obtained assuming a perfect conductivity of the metals through a simple multiplica-
tion factor close to the reflectivity of the plane metallic surface. On the other hand,
for p-polarized light, the first results were quite surprising since strong discrepancies
appeared. As a consequence of this unexpected result, a crucial conclusion must be
stated: for natural light where the intensities take the average value between both
fundamental polarizations, the perfect conductivity model for gratings fails. This
result was presented in 1972 by Petit et al. in a communication at the International
Congress of Optics (I.C.O. IX, Santa Monica, Ca) [18]. Surprisingly for the authors,
serious doubts about the validity of this result were expressed by attendants in this
Congress. The criticisms were based on two remarks: is the new theory valid? Is the
numerical implementation accurate? It must be recognized that these criticisms were
justified: numerical tests (energy balance, reciprocity theorem [19, 20]) are not suf-
ficient for checking the validity of the numerical results deduced from a new theory.
Above all, the validity of this theory must be checked by successful comparisons of
the numerical results with the experimental data.

The reader can find in Chap. 1 a detailed description of the first successful com-
parison between the experimental results published by Hutley and the calculations
performed by Maystre and McPhedran [21] using the new integral theory and the
profile of the holographic grating measured by Hutley. The agreement between the
experimental and numerical results for both polarizations was all the more remark-
able since on similar experimental data published by Hutley, the theory of perfectly
conducting gratings previously used by McPhedran and Waterworth led to significant
discrepancies for p-polarized light [22–24].

http://dx.doi.org/10.1007/978-3-642-28079-5_1
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Fig. 2.2 Profile of a metallic holographic grating with period 1,210 nm made by Hutley, measured
using a mechanical profilometer. Notice the nearly sinusoidal shape. Reprinted by permission from
Taylor & Francis Ltd (http://www.informaworld.com): [24] pp. 772–776

This first successful comparison between experimental and numerical results for
metallic gratings in the visible region was followed by many others, using the same
integral theory [25–27] or another rigorous grating theory, the differential theory of
gratings [28], in such a way that the theoretical warning stated in 1972 about the
non-validity of the perfect conductivity model has been fully confirmed, at least for
wavelengths smaller than 10 µm.

Figure 2.2 shows the profile of one of the holographic gratings made by Hutley and
Fig. 2.3 gives the experimental and theoretical efficiencies of the order −1 and of the
total efficiency (sum of all the scattered efficiencies) for one of these gratings, covered
with three different metals [27]. For all the three metals, significant absorption peaks
can be observed. Two of the three energy curves at a wavelength of 476 nm (silver and
aluminium) are rather similar in form, with the third (gold at 476 nm) having greatly
broadened absorption regions. It must be noticed that Fig. 2.3 constitutes another
indicator as to the accuracy of infinite conductivity model for metals in the visible
region. In regions where the energy absorption by gratings can be of the order of
50 %, models, which cannot take this absorption into account, must be suspect.

The existence of powerful computer codes that are able to predict with a rela-
tive precision better than 1 % the grating efficiencies in the visible and near-infrared
regions has permitted wide numerical studies of Wood’s anomalies. However, numer-
ical results do not provide simple rules or formulae that are able to predict the shape
and position of the anomalies in a quantitative manner. The specialist of optics likes
to understand the physical origin of the observed phenomena and to use simple
rules in order to select the best grating for a given application. As a consequence,
attempts were made at developing a quantitative phenomenological theory [29, 30].
The following sections give a detailed description of this theory. It starts from the
basic origin of Wood’s anomalies, the excitation of SPPs and then uses the theory
of analytic functions of the complex variable to express the efficiency of the grating
in the region of anomaly in a simple form using two complex parameters only. It
will be shown that this phenomenological formula provides a remarkable precision
on the efficiencies. Moreover, this formula will show that an incident wave can be
absorbed by a grating in totality, due to the excitation of a SPP.

http://www.informaworld.com
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Fig. 2.3 Efficiency curves for the order −1 and total energy curves for three holographic gratings
experimental measurements with period 1,210 nm and height 190 nm covered with three different
metals illuminated by p-polarized laser beams. a Experimental measurements by Hutley and Bird;
b results obtained from the new integral theory. a is reprinted by permission from Taylor & Francis
Ltd (http://www.informaworld.com): [24] pp. 772–776

The theory of Wood’s anomalies described in this chapter is based on electromag-
netics. In other words, it starts from the macroscopic properties of metals through
electromagnetic parameters like permittivity and permeability and never takes into
account their microscopic structure. On the other hand, a group working in the Oak
Ridge National Laboratory, which was at the origin of the discovery of SPPs [31],
tried to investigate the properties of SPPs using the microscopic laws of solid-state
physics. Such a study has an advantage on macroscopic studies: it starts directly
from the basic origin of SPPs, i.e. a collective electron resonance. Unfortunately, the
complexity of the problem led the authors to use a perturbation treatment, in which
the anomaly is studied in terms of an interaction between the incoming photon and
the collective electron resonance. This analysis was not able to accurately describe
the phenomenon, especially for deep gratings, except by tuning the optical constants
of metal to fit the measured data [32–34].

One can find an impressive amount of experimental measurements on phase veloc-
ity and damping of SPPs on metallic gratings in the studies published by Raether,
Pockrand, Kröger and Kretschmann. These authors illuminated the grating from

http://www.informaworld.com
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the bulk side through a prism, a device named “total attenuated reflection” by these
authors. They compared their experimental measurements with an approximate elec-
tromagnetic theory [35–43].

2.2 Propagation of Surface Plasmon Polaritons
on a Metallic Surface

2.2.1 Case of the Flat Surface

Problem of Scattering by a Flat Surface

In a problem of scattering, an object is illuminated by an incident electromagnetic
wave and one wants to determine the total field at any point of space. This total
field contains not only the incident field, which is known, but also the scattered field
which has been generated by the object, which is unknown. We present in Fig. 2.4
the problem of scattering by a flat metallic surface, in which the scattering object is
a metallic half-plane.

An incident plane wave propagating in a lossless dielectric material of optical
index ν1 = √

ε1 (with ε1 relative permittivity) illuminates a non-magnetic metallic
half-plane of complex index ν2 = √

ε2. The problem of scattering is solved as soon
as we know the amplitudes of the reflected and transmitted waves. Indeed, using the
complex notation with a time dependence exp (−iωt), an incident field Fi with unit
amplitude can be written in the form:

Fi = Fi ẑ = exp (ik1 (αx − βy)) ẑ, (2.3)

with ẑ being the unit vector of the z-axis (orthogonal to the xy plane), k1 = kν1 = 2πν1
λ

wavenumber in the dielectric material (k and λ being, respectively, the wavenumber
and the wavelength of light in vacuum), and (see Appendix 1):

Fi =
{

incident electric field Ei for s-polarized light,
incident magnetic field Hi for p-polarized light,

(2.4)

α = sin (θ) , β = cos (θ) , (2.5)

with θ being the angle of incidence measured clockwise from the normal to the plane,
α and β being called normalized propagation constants of the wave in the following.
It can be easily shown by using Helmholtz equations in both regions and boundary
conditions on the interface (Eqs. (2.77) and (2.78)) that the projections on the z-axis
of the reflected and transmitted fields Fr and Ft can be written as
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Fig. 2.4 The problem of
scattering by a flat metallic
plane
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Fr = r exp (ik1 (αx + iβy)) , (2.6)

Ft = t exp (ik1 (αx − iγy)) , (2.7)

γ =
√
ν2 − α2, ν = ν2/ν1 relative index of metal. (2.8)

It must be noticed that the relative index ν being complex, the definition of γ
is ambiguous. In order to choose the determination of γ for complex values of ν,
let us put forth two remarks. First, if the metal is replaced by a lossless dielectric
material, the choice of the determination of γ is quite clear. Indeed, the transmitted
wave expressed in Eq. (2.7) must propagate downwards in order to satisfy a radiation
condition, thus the real value of γ must be positive. Secondly, let us now assume that
ν is purely imaginary, thus ν = iν ′′. It should be noticed that this assumption is not
far from the actual values of indices of metals in the visible region (for example, the
index of aluminium at 647 nm is equal to 1.3+ i7.1). From this assumption, the value
of γ is given by γ = √−ν ′′2 − α2 = ±i

√
ν ′′2 + α2 and the choice of determination

is quite clear: since the field must decrease in modulus as y → −∞, the imaginary
part must be positive. Thus, in order to adopt a determination of γ which applies
to any material, the authorized region of the complex plane of γ must include both
half-lines defined by Im (γ) = 0, Re (γ) > 0 and Re (γ) = 0, Im (γ) > 0. In real
life, the index of metals is neither real nor purely imaginary, but its real and imaginary
parts are always positive. Thus, a natural way to adopt a general determination for γ
is to choose in the complex plane a half-plane containing both the positive real axis
(choice of ν for a lossless dielectric material) and the positive imaginary axis (choice
of ν for a purely imaginary index). In the following, we will determine γ from:

Re {γ} + Im {γ} > 0, (2.9)

or in other words by choosing the value of γ in the half-plane located above the second
bisector. Figure 2.5 shows the location of this half-plane in the complex plane.

From Eqs. (2.77) and (2.78), one obtains, using the expressions of the field given
by Eqs. (2.3), (2.6), and (2.7):
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Fig. 2.5 Determination of β
and γ
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1 + r = t for both polarizations, (2.10)

β (−1 + r) = −γt for s-polarized light, (2.11)
β

ε1
(−1 + r) = − γ

ε2
t for p-polarized light. (2.12)

Solving the linear system of equations expressed in Eqs. (2.10) and (2.11) provides
the Fresnel coefficients for s-polarized light:

r = β − γ

β + γ
, t = 2β

β + γ
, (2.13)

and Eqs. (2.10) and (2.12) yield, for p-polarized light:

r = β/ε1 − γ/ε2

β/ε1 + γ/ε2
, t = 2β/ε1

β/ε1 + γ/ε2
. (2.14)

These Fresnel coefficients allow one to solve the problem of scattering from a flat
interface.

Problem of Guiding by a Flat Surface: the SPP

Now, we consider a different, but closely related problem: the problem of guiding.
The question is to know whether a surface wave can propagate at the surface of
the metal. Of course, the answer to this question requires a precise definition of a
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guided wave. Classically, a guided wave is a wave propagating along the x-axis and
satisfying a radiation condition at infinity. In other words:

• if y → +∞, the field must propagate upwards or vanish,
• if y → −∞, the field must propagate downwards or vanish.

First, let us notice that the total field in the guided wave satisfies almost the
same conditions as the total field in the scattering problem: it must satisfy Maxwell
equations and boundary conditions on the interface. On the other hand, it must
satisfy radiation conditions at infinity on both sides of the interface. These radiation
conditions make a big difference with the total field in the problem of scattering: in the
problem of scattering, the field above the interface contains the incident wave, which
does not satisfy the radiation condition since it propagates towards the interface.
In other words, a guided wave corresponds to a problem of scattering in which the
incident field does not exist. At first glance, such a guided wave should not exist.
Indeed, in the scattering problem, the incident energy is shared between the scattered
field and the losses inside the metal. On the other hand, in the problem of guiding,
there is no incident energy at all, and of course the existence of a field generates losses
in the metal. Thus it seems that such a wave cannot satisfy the energy balance. This
remark is quite correct as far as the propagation constant of the guided wave is real.
If we consider the expressions of the reflected and transmitted waves in the problem
of scattering (Eqs. (2.6) and (2.7)), the propagation constant k1α is real since it is
imposed by the incident plane wave. This requirement does not hold in a problem of
guiding and, from a heuristic point of view, it can be conjectured that a surface wave
may propagate along the x-axis with an exponentially decreasing amplitude, due to
the losses inside the metal. The consequence is that the imaginary part of k1α must
be positive if its real part is positive.

In conclusion, the search for a surface wave leads to the search for a solution of
the field in a scattering problem, but without any incident wave, or in other words,
the so-called “homogeneous solution of Maxwell equations”. We know that such
a solution will have a complex (with positive imaginary part) propagation constant
k1α along the x-axis. A priori, many possibilities exist according to whether α, or
k1, or both have a non-null imaginary part. Here, we will consider that k1 is real
and α complex. This choice entails that the amplitude of the surface wave decreases
in x, but that the frequency ω = k1/

√
ε1μ0 remains real. Other choices could be

made. For example, introducing complex values for both α (with positive imaginary
part) and k1 (with negative imaginary part) leads, if their product k1α is real, to a
constant amplitude along the x-axis, but an exponential decrease in exp (−iωt) of
this amplitude with time. The heuristic meaning of such a wave is clear: the losses
in the metal generate a decrease in time of the amplitude.

The search for the solution of the guiding problem is straightforward from the
Fresnel formulae. In order to cancel the incident wave, it suffices to find a pole of
the reflection and transmission coefficients r and t in Eq. (2.13) for s-polarized light
or in Eq. (2.14) for p-polarized light. For the s-polarized light, this pole is the root
of the denominator of Eq. (2.13), i.e. the solution of β + γ = 0. However, since
α is complex, it is necessary to give a precise definition of the determinations of
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β and γ. The determination of γ was given yet in Eq. (2.9) but now, the definition of
β from the angle of incidence in the problem of scattering (Eq. (2.5)) does not hold.
Since the field above the interface must satisfy the Helmholtz equation (Eq. (2.73)),
we must impose that α2 + β2 = 1, thus:

β =
√

1 − α2. (2.15)

Moreover, the field above the interface must satisfy a radiation condition; it must
propagate upwards or decrease in amplitude if y → +∞. Consequently, we are led
to the same choice as that used for γ in Fig. 2.5, with

Re {β} + Im {β} > 0. (2.16)

Finally, the solution of the equation β + γ = 0 requires that β2 = γ2, thus from
Eqs. (2.8) and (2.15), ν2 = 1. The solution ν = +1 offers no interest since it means
that the metal is replaced by the same dielectric material as above the interface. The
solution ν = −1 is not realistic, at least for a non-magnetic material. The conclusion
to be drawn from this result is that for s-polarized light, the propagation on a flat
metal surface of a guided wave is impossible.

As regards p-polarized light, according to Eq. (2.14) we have to solve the equation:

β/ε1 = −γ/ε2. (2.17)

Taking the root of both members yields, after simplifications:

α = α̃plane = ±ν/
√

1 + ν2, (2.18)

which entails, according to Eqs. (2.8) and (2.15):

β̃plane = −1/
√

1 + ν2, γ̃plane = ν2/
√

1 + ν2. (2.19)

In the symbol α̃plane, the hat “tilde” means that it concerns a guided wave, while the
superscript “plane” indicates that the interface is a plane. It can be verified that the
values of β̃plane and γ̃plane obey the determination expressed by Eqs. (2.16) and (2.9)
for usual metals (Al, Au, Ag. . .) in the visible or infrared regions, as well as the initial
equation (we must recall that we have taken the square of both members of Eq. (2.17)
to find the solution), provided that the square root of an arbitrary complex number
ρ exp (iφ), with 0 ≤ φ < 2π, ρ > 0, is, by definition, equal to

√
ρ exp (iφ/2).

The two opposite values of α given by Eq. (2.18) represent the constants of prop-
agation of two waves propagating in opposite directions. This kind of wave is called
SPP or sometimes surface plasmon or sometimes surface plasmon oscillation. This
wave can be written in the normalized form:
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Fig. 2.6 Constants of propagation along the x-axis of a plane wave (k1 sin(θ)), of a SPP at the
interface between a metal of index ν2 and a dielectric of index ν1(k1ν/

√
1 + ν2, ν = ν2/ν1), and

of a SPP at the interface between a metal of index ν2 and vacuum (kν2/

√
1 + ν2

2 )

H =
{

exp
(

ik1

(
α̃planex + β̃plane y

))
in the dielectric,

exp
(
ik1

(
α̃planex − γ̃plane y

))
in the metal.

(2.20)

For aluminium at 647 nm, the optical index ν2 is equal to 1.3 + i7.1 and using
fused silica as a dielectric material (index 1.45), the relative index ν is equal to
0.89 + i4.9, then:

α̃plane = 1.019 + i 7.6 10−3. (2.21)

The real part of α̃plane is slightly greater than unity, while its imaginary part is very
small. This is a general result for metals in the visible and infrared regions and it
explains why SPPs cannot be excited by a plane wave. Indeed, as shown in Fig. 2.6,
the propagation constant on the x-axis of a plane wave is equal to k1 sin (θ) (circle),
thus it is always smaller than k1 in modulus, in contrast with the real part of k1α̃

plane.
Since the surface is flat, a plane wave cannot excite a field having a significantly
different propagation constant and then it cannot excite the SPP.

SPP and Brewster Effect

In this section, it is shown that the SPP propagating at a metal–dielectric interface may
be deduced by continuity from the well-known phenomenon of total transmission
of light between two dielectric materials (Brewster effect). Figure 2.7 shows the

trajectory of α̃plane = ν2/

√
1 + ν2

2 , normalized propagation constant of the SPP on
an air–metal interface, when the imaginary part of the optical index of the metal is
varied from zero to infinity, the real part being equal to 1.3, i.e. that of aluminium at
647 nm.

The trajectory, which starts at α̃plane = 0 for q = +∞ (perfectly conducting
metal), reaches the point corresponding to aluminium for q = 7.1. Its imaginary part
first increases as long as q remains greater than unity, then it decreases and for q = 0,
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Fig. 2.7 Trajectory of α̃plane = ν2/

√
1 + ν2

2 in the complex plane when ν2 = 1.3 + iq , q being

varied from +∞ to 0. The cross (point 2) represents the value of α̃plane corresponding to the index
of aluminium at λ = 647 nm (q = 7.1), points 1 and 6 correspond, respectively, to the cases of a
perfectly conducting metal (q = +∞) and a lossless dielectric (q = 0). Reprinted by permission
from Blackwell Publishing: [30]

α̃plane becomes real and equal to 0.793, while β̃plane = −1/

√
1 + ν2

2 = −0.61 and

γ̃plane = ν2
2/

√
1 + ν2

2 = 1.03. As a consequence, the plasmon waves propagating
in air and in dielectric are homogeneous plane waves propagating downwards,
according to Eq. (2.20). In conclusion, the wave propagating in air is incident and
generates a transmitted wave in the lossless dielectric, without any reflection in the
air. Obviously, this limit is nothing else than the field in the Brewster effect. Besides,
it should be noticed that in that case, since the fields are represented by plane waves,

α̃plane = ν2/

√
1 + ν2

2 is nothing else than sin (θ), the sine of the angle of incidence,

which entails that tan (θ) = sin(θ)√
1−sin(θ)2

= ν2, which is the Brewster formula. At

first glance, the strong link between SPP propagation and Brewster effect seems to
be surprising. Indeed, by definition, a SPP is a homogeneous solution of Maxwell
equations, i.e. a field scattered on both sides of the interface, without any incident
wave. By contrast, in the Brewster effect, the field in the air is an incident wave. The
explanation of this apparently paradoxical result is given in Fig. 2.8, where the cor-
responding trajectory of β̃plane is represented. It is worth noting that this trajectory,
which starts from 0 and ends at −0.61, crosses the second bisector of the complex
plane (dashed line). Bearing in mind that a scattered wave is defined as a wave sat-
isfying Eq. (2.16), it emerges that the plasmon wave in the air, which is a scattered
wave in the air, continuously becomes an incident wave when the trajectory of β̃plane

crosses the second bisector.
In order to show the continuous evolution of the wave from the SPP of a perfectly

conducting metal to the Brewster effect, we have expressed the field in air (top of
Fig. 2.9) and in metal (bottom of Fig. 2.9) in the form H = exp [ik (ur+iui) ρ]
with ρ = (x, y). In a lossless dielectric material, the two vectors are orthogonal, a
simple consequence of Maxwell equations. The first point corresponds to a perfectly
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Fig. 2.8 Trajectory of β̃plane = −1/

√
1 + ν2

2 in the complex plane when ν2 = 1.3 + iq, q being
varied from 0 to +∞. The dashed line shows the second bisector in the complex plane

Fig. 2.9 Graph representation in air (top) and metal (bottom) of the normalized complex wavevec-
tors ur+iui corresponding to the six points of Fig. 2.7. The real part ur and the imaginary part ui
are represented by solid and dashed arrows, respectively. The direction of propagation of the wave
is given by ur while ui indicates the direction of maximum decrease. Reprinted by permission from
Blackwell Publishing: [30]

conducting metal: the wave in air is a homogeneous plane wave propagating parallel
to the interface, while in the metal ui is infinite, as it will be shown in the following.
The evolution from point 1 to point 6 is essentially characterized in the metal by
the decrease of ‖ui‖ and in the air by the transformation of the surface wave into an
incident homogeneous plane wave.
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Excitation of a SPP

The question which arises is to know how the SPP can be excited. It has been shown
that it can be provoked by an electron beam on a metallic thin film [44]. Powell
and Swan illuminated an aluminium thin film in normal incidence and observed
peaks of absorption in the transmitted beam. One of these peaks was attributed
to an excitation of a SPP. Clearly, the explanation of this phenomenon should be
made in the frame of solid-state physics. However, electromagnetic theory can pro-
vide a heuristic interpretation of it. First, let us analyse the structure of the electric
field, of the charges and of the currents of the SPP. From Eqs. (2.63) and (2.68) of
Appendix 1,

in the metal, jt = iωε0 (1 − ε2) E, (2.22)

in the dielectric, jt = iωε0 (1 − ε1) E, (2.23)

where jt denotes the total current density, which includes both conduction current and
the bound current inside the metal. The charge balance can be written in harmonic
regime as:

∇ · jt = iωρt , (2.24)

with ρt being the volume density of total charges (including both free and bound
charges). In both dielectric and metal, � · E = 0, and since jt depend linearly on
E, ρt vanishes: charges are located on the surface but for simplicity we will retain
the same symbol ρt to denote the surface charge density (mathematically, ρt is the
coefficient of a delta distribution located on the surface). Finally, the volume current
density and the surface charge density can be derived from the electric field. Using
Eq. (2.67), we deduce that:

in the dielectric, E = ik1

ωε1ε0
∇ × H ẑ = k1

ωε1ε0

(−βx̂ + αŷ
)

exp (ik1 (αx + βy)) ,

(2.25)

in the metal, E = ik1

ωε2ε0
∇ × H ẑ = k1

ωε2ε0

(
γx̂ + αŷ

)
exp (ik1 (αx − γy)) .

(2.26)
Equation (2.80) gives the total surface density of charges:

ρt = ε0
(
Ey+ − Ey−

) = αk1

ω

(
1

ε1
− 1

ε2

)
exp (ik1αx) . (2.27)

In order to analyse the space distribution of the electric field, the volume current
density and the surface charge density, we simplify the expressions of these quantities
by assuming that ν 
 iν ′′, with ν ′′ real and ν ′′ � 1, ν. Thus the relative index of
metal is close to a purely imaginary number large in modulus, which is the case for
the actual values of optical indices in the visible and near-infrared regions. From
Eqs. (2.18) and (2.19), we find:
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Fig. 2.10 The electric field
and the total current density at
t = 0 are represented by solid
and dashed lines, respectively.
The signs represent the total
surface charge density

y
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+ + + +- - - -

ε2 
 −ν ′′2ε1, α̃plane 
 1, β̃plane 
 i/ν ′′, γ̃plane 
 iν ′′, (2.28)

and we can deduce that:

ρt 
 k1

ωε1

(
1 + 1

ν ′′2

)
exp (ik1x) , (2.29)

in the metal, E 
 −k1

ων ′′ε0

(
i x̂ + ŷ

ν ′′

)
exp (ik1x) exp

(+k1ν
′′y

)
, (2.30)

in the dielectric, E 
 −k1

ων ′′ε1ε0

(
i x̂ − ν ′′ŷ

)
exp (ik1x) exp

(
− k1

ν ′′ y

)
. (2.31)

The volume current densities can be deduced from Eqs. (2.22), (2.23), (2.30) and
(2.31).

Figure 2.10 shows the electric field lines (solid lines), the total current density
(dashed lines) and the total surface charge density at t = 0. Here, we abandon the
use of complex amplitudes and the electric field is the real part of the product of
its complex amplitude by exp (−iωt). It is worth noting from Eqs. (2.30) and (2.31)
that the modulus of the fields decreases exponentially on both sides of the interface,
the decrease being much larger in the metal than in the dielectric, while the phase
remains constant in the range −∞ < y < +∞ as x is fixed. The electric field lines
go from positive to negative surface charge densities. It can be noticed that the total
volume current densities in the metal and in the air have opposite contributions to the
total surface charge density, but the current density in the air is much smaller than
that in the metal and can be neglected.
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From Fig. 2.10, we can understand the mechanism of SPP propagation. Due to the
current lines, charges are shifted from the region close to x = −λ1/4 (or x = 3λ1/4)

towards the region close to x = +λ1/4 (or x = 5λ1/4). As a consequence, the charge
in the vicinity of x = −λ1/4 (or x = 3λ1/4) becomes negative and that located
around x = +λ1/4 (or x = 5λ1/4) becomes positive. The maximum charge density,
located at the origin (or x = λ1), is shifted towards x = λ1/4 (or x = 5λ1/4), while
the minimum charge density, located at x = −λ1/2 (or x = +λ1/2), is shifted to the
right as well. As a consequence, the positive and negative charge densities propagate
to the right, as well as the electric field and the volume charge density.

This result allows one to understand why an electron beam can excite a SPP. The
electron beam creates local charges and electric fields on the metal surface, these
charges and fields generate new charges and electric fields in the vicinity, and so
on: as a result, SPPs propagate on both sides of the beam. Furthermore, Fig. 2.10
shows that the field penetrates more deeply in the dielectric than in the metal. More
precisely, Eqs. (2.20) and (2.28) show that when the imaginary part of the index
is increased, the attenuation of the field in the dielectric decreases, while that in
the metal increases. At the limit, when this imaginary part goes to infinity (which
corresponds to a perfect conductivity according to Eq. (2.65)), the attenuation does
not exist anymore in the dielectric and the field does not penetrate at all in the metal.
In that case, α = 1 and the field in the dielectric is given by:

H = exp (ik1x) . (2.32)

This field satisfies the Helmholtz equation and the boundary condition on the perfectly
conducting metal since the electric field is parallel to the y-axis, thus its tangential
component on the metal vanishes. On the other hand, such a field obviously cannot
be classified as a surface wave. However, we will see that it becomes an actual
surface wave as soon as the metal interface is corrugated, in such a way that it is not
completely incorrect to claim that a SPP can propagate on a perfectly conducting
metallic surface, even though in that case, the model of electron resonance and the
name of SPP seem quite unrealistic.

Another way to excite a SPP on a flat metallic surface is to use a finite width of
metal separating the dielectric material from vacuum (Fig. 2.11).

According to Eq. (2.18), and noticing that the relative index of metal with respect
to vacuum is equal to ν2, the propagation constant kα̃plane at the metal–vacuum
interface is given by:

kα̃plane = kν2

/√
1 + ν2

2 , (2.33)

and in that case, for aluminium at 647 nm,

α̃plane = 1.009 + i 3.5 10−3. (2.34)

The real part of α̃plane is very close to unity, but k = k1/ν1 is smaller than k1, in
such a way that, if ν1 if significantly greater than unity, the propagation constant
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Fig. 2.11 Excitation of a SPP
at a metal–vacuum interface
with a plane wave propagating
in a dielectric
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of the SPP becomes smaller than k1 and, provided that the width of metal is small
(in practice, smaller than the skin depth) the SPP can be excited by a plane wave
illuminating the thin film of metal from the dielectric side (Fig. 2.11). Let us give
in Fig. 2.12 a numerical example of the consequences of this excitation using fused
silica (index = 1.45) as a dielectric material and aluminium at 647 nm.

The reflectivity shows a resonance phenomenon at θ = 44.55◦. This incidence
corresponds to a propagation constant of the incident field k1 sin (θ) = kν1 sin (θ) =
1.017k. Thus, assuming that the excitation occurs when the propagation constant of
the incident field is equal to the real part of the propagation constant of the SPP, it turns
out from Eq. (2.33) that Re

{
α̃plane

}
should be equal to 1.017, a value slightly different

from the value of 1.009 given by Eq. (2.34). This discrepancy is not surprising. In
our theoretical calculations, the propagation constant of the SPP has been calculated
assuming an infinite width of metal, which is not the case in Fig. 2.11. It is worth
noticing that the device shown in Fig. 2.11 is sometimes called “prism device” and
has been widely used for both plane and modulated surfaces [35–43]. Indeed, if the
light is generated by a light source located in vacuum, a plane air–dielectric interface
parallel to the metal–dielectric interface (as in Fig. 2.11) cannot generate inside the
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Fig. 2.13 A metallic diffrac-
tion grating
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dielectric a transmitted wave with propagation constant in x greater than k, which
entails that the SPP at the metal–air interface (bottom of Fig. 2.11) cannot be excited.

Other possibilities to excite SPPs on a flat surface could be envisaged, but in
fact, the most current way is to use a periodically modulated metal surface, i.e. a
diffraction grating. The next section will be devoted to a detailed analysis of this
possibility.

2.2.2 Case of the Diffraction Grating

Scattering from a Diffraction Grating

Figure 2.13 shows a metallic diffraction grating, i.e. a cylindrical periodic interface
of period d and height h separating a metallic and a dielectric materials, invariant by
translation with respect to the z-axis.

The grating is illuminated by a plane wave propagating in the xy plane at incidence
θ. Taking into account the results obtained for a flat interface, the study will be
restricted to p-polarization, thus the incident magnetic field is parallel to the z-axis. In
these conditions, it can be shown [29] from the elementary laws of electromagnetics
and from theorems of existence and uniqueness of the solution of boundary-value
problems that the total magnetic field H (x, y) = H (x, y) ẑ remains independent of
z, parallel to the z-axis and that it is pseudo-periodic:

H (x + d, y) = H (x, y) exp (ik1αd) , α = sin (θ) . (2.35)

It follows from Eq. (2.35) that H (x, y) exp (−ik1αx) is periodic. Expanding this
function in Fourier series and introducing it in the Helmholtz equations (Eq. (2.72)),
it can be easily shown that the magnetic field can be represented in the major part of
space in the form of Rayleigh expansions [29, 45]. Denoting by ymax and ymin the
ordinates of the top and of the bottom of the grooves, the Rayleigh expansions can
be written:
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if y > ymax, H = exp (ik1αx − ik1βy) +
+∞∑

n=−∞
bn exp (ik1αn x + ik1βn y) ,

(2.36)

if y < ymin, H =
+∞∑

n=−∞
cn exp (ik1αn x − ik1γn y) , (2.37)

β = cos (θ) , αn = α+ nλ1/d, βn =
√

1 − α2
n, γn =

√
ν2 − α2

n, (2.38)

with bn and cn being complex coefficients called amplitudes of the plane waves
scattered in the dielectric (y > ymax) and in the metal (y < ymin). The choice of
the determination of the square roots contained in Eq. (2.38) will be the same as that
given by Fig. 2.5 for β and γ. It is important to notice that in general, the Rayleigh
expansions given above cannot represent the field inside the grooves. For example,
the Rayleigh expansion given by Eq. (2.36) cannot in general represent the field in
the region located between the interface and y = ymax [29, 45]. It must be remarked
that the waves scattered in the dielectric region can be separated into two parts:

• a finite number of y-propagating waves corresponding to real values of βn ,
• an infinite number of evanescent waves corresponding to imaginary values of βn .

Whatever the value of λ/d may be, there exists at least one y-propagating wave,
corresponding to n = 0 (specularly reflected order).

Equations (2.36)–(2.38) permit us to understand why a plane wave illuminating
the grating surface can excite a SPP. In contrast with a flat surface, a grating scat-
ters waves having propagation constants in x equal to k1αn = k1α + k1nλ1/d =
k1 (α+ 2πn/d). Thus, the propagation constants of the scattered waves can take
values outside the range (−k1,+k1) and the propagation constant of one of them can
be close to the propagation constant in x of the SPP k1α̃

plane = k1ν/
√

1 + ν2 (see
Eq. (2.18)). It can be predicted that the maximum excitation of the SPP occurs when
one order ne satisfies the equation:

αne = ±Re
{
α̃plane

}
. (2.39)

Since Re
{
α̃plane

}
is slightly greater than unity in modulus, the order ne must be

evanescent, but close to the passing-off. It is worth noting that Eq. (2.39) assumes
that the propagation constant of the SPP on a grating is equal to that on a flat surface.
We will see that this is not correct and thus this equation must be considered as an
approximation. Let us illustrate the excitation of SPPs on the example given at the
bottom of Fig. 2.14, which shows the order −1 and total efficiencies of a holographic
silver grating with a period of 1,205 nm illuminated by a p-polarized plane wave at
a wavelength of 521 nm [21].

The use of Eq. (2.39) allows one to predict that a SPP is excited when
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Fig. 2.14 Comparison between experimental data on a holographic silver grating (by courtesy
of Hutley) and theoretical results for p-polarized light. The passing-off incidences are shown by
arrows and the Littrow (Bragg) position by a vertical line. Solid line experimental data, dashed line
theoretical results for the efficiency in the order −1 of a silver grating, dashed-dotted line theoretical
results for the sum of efficiencies of scattered orders, dotted line theoretical results for the efficiency
in the order −1 of a perfectly conducting grating

αne = sin (θ) + neλ1/d = ±Re
{
α̃plane

}
, (2.40)

which reduces, after tedious calculations, to sin (|θ|) = ∣∣Re
{
α̃plane

} − |ne|λ1/d
∣∣ ,

|sin (θ)| < 1. In that case, the index of silver is ν2 = ν = 0.052 + i3.05 and thus
α̃plane = 1.06 + i2.2 × 10−3. Consequently, the solutions are given by |θ| = 39◦
for |ne| = 1, |θ| = 11◦ for |ne| = 2, |θ| = 14◦ for |ne| = 3, |θ| = 42◦ for |ne| = 4.
If we consider the bottoms of the drops of total efficiency caused by absorption in
Fig. 2.14, we notice that the anomalies predicted for |θ| = 39◦ and |θ| = 42◦ cannot
be separated, as well as those predicted for |θ| = 11◦ and |θ| = 14◦, the values
measured in Fig. 2.14 being θ = ±14◦ and θ = 42◦, which are close to the values
predicted by theory in the range of incidence (−20◦, 43◦) represented in the figure.

Let us notice finally that a significant amount of energy (more than 20 %) can be
absorbed in the anomalous regions in Fig. 2.14. The interpretation of the absorption
phenomena is obvious: due to the resonant excitation of SPPs , the field inside the
metal presents local enhancements which generate strong Joule effects. A study of
absorption caused by SPPs can be found in [46].

SPP on a Grating

The study of SPPs on a grating can be achieved using the same lines as in the case of
a flat surface. A SPP is a solution of a homogeneous problem, in which a scattered
field exists without any incident field. From Eqs. (2.36) and (2.37), such a wave can
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Fig. 2.15 Normalized con-
stants of propagation of the
SPP on a grating in the com-
plex plane
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be written in the form:

if y > ymax, H =
+∞∑

n=−∞
bn exp (ik1αn x + ik1βn y) , (2.41)

if y < ymin, H =
+∞∑

n=−∞
cn exp (ik1αn x − ik1γn y) , (2.42)

αn = α+ nλ1/d, βn =
√

1 − α2
n, γn =

√
ν2 − α2

n, (2.43)

the choice of the determinations of βn and γn being fixed by Fig. 2.5. Of course,
the energy balance entails that the values of αn must be complex with a non-null
imaginary part.

Thus, it turns out that the SPP can be represented by an infinity of plane waves
having normalized propagation constants in x (constants of propagation divided by
k1) spaced by multiples of λ1/d. It must be noticed that the numbering of the para-
meters in Eqs. (2.41) and (2.42) is ambiguous since changing n into n + p (p constant
integer) does not modify the sum of the series. In order to fix this determination, we
can bear in mind that one of the terms of the series must tend to the SPP of the
plane when the height h of the grating tends to zero. For example, if the profile is
sinusoidal, we can go continuously from the grating y = h cos (2πx/d) to the plane
by decreasing h. By definition, the term of the series corresponding to the SPP of the
flat surface is numbered by 0. Thus, denoting by α̃grating

n the normalized constants of
propagation, it can be written that:

limh→0

{
α̃

grating
0

}
= α̃plane. (2.44)

Figure 2.15 shows the locations of the normalized constants of propagation α̃grating
n .

The different components of the SPP represented in Fig. 2.15 are very different in
nature. For n /∈ (−1,−2), α̃grating

n has a real part greater than unity in modulus, with
a small imaginary part. Figure 2.16 shows the real and imaginary parts β′ and β′′ of
β = √

1 − α2 versus the real part α′ of α = α′ + iα′′, for α′′ = 0 and α′′ = 5 ·10−2,
the determination of β being given by β′ + iβ′′ ≥ 0. Bearing in mind that the values
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Fig. 2.16 Real and imaginary parts ofβ = β′+iβ′′ = √
1 − α2 versus the real part ofα = α′+iα′′

with: a α′′ = 0, b α′′ = 5.10−2

of β̃grating
n deduce from those of α̃grating

n by β̃grating
n =

√
1 −

(
α̃

grating
n

)2
with the

same determination as for β, it turns out that β̃grating
n is close to the imaginary axis

and thus, in the dielectric, this kind of wave is very close to an evanescent wave. In
the following, this kind of wave will be called wave of evanescent type. Let us recall
that the SPP of the flat surface was of evanescent type in the dielectric. The same
remark applies to the metal of any order since the values of γ̃grating

n and γ̃plane are
close to the imaginary axis (see Fig. 2.17), thus the field decreases exponentially in
the metal. On the other hand, the waves corresponding to n ∈ (−1,−2) have a real
part smaller than unity in modulus. Since the imaginary part is very small, β̃grating

n is
close to the real axis (Fig. 2.16) and the corresponding wave in the dielectric is close
to a homogeneous plane wave propagating towards y = ∞. It will be called wave of
y-propagating type. In that case, γ̃grating

n remains close to the imaginary axis for any
value of n, thus the field decreases exponentially in the metal. These properties allow
us to predict that the imaginary part of α̃grating

0 is larger than that of α̃plane since the
waves of y-propagating type generate a supplementary loss of energy. Furthermore,
this remark explains why a surface wave can propagate on a perfectly conducting
grating. We have seen that the limit of the SPP of a flat perfectly conducting surface
when the permittivity tends to −∞ is a plane wave with wave vector parallel to
the x-axis. The field of such a wave does not decrease on the dielectric side and
thus, this wave cannot be considered as a surface wave. If a periodic modulation is
introduced and if there exists at least one y-propagating wave in the dielectric region,
this propagating wave will transfer the energy at infinity and so, a loss occurs in the
propagation. Due to this loss, the value of α̃grating

0 is no more real and unitary, like
α̃plane, but complex with a positive imaginary part.

Furthermore, it can be conjectured that the real part of α̃grating
0 is greater than

unity. A heuristic way to explain this property is to notice that a modulation entails
an increase of the interface length between two points of the surface, thus reduces
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Fig. 2.17 Real and imaginary parts ofγ = γ′+iγ′′ = √
ν2 − α2 versus the real part ofα = α′+iα′′

for ν = 1.019 + i7.1 (index of aluminium at 647 nm), with: a α′′ = 0, b α′′ = 5.10−2

the projection on the x-axis of the propagation speed of the SPP. So, the propagation
constant, which is inversely proportional to the speed, is increased. Let us notice
in addition that, in the opposite case, it would be possible to excite the SPP with a
plane wave. It is straightforward to show that the value of β̃grating

0 corresponding to

this value of α̃grating
0 has a positive imaginary part and thus the field decreases in the

dielectric.

2.3 Phenomenological Study of Wood Anomalies

Until now, we have analysed the scattering and guiding properties of gratings. The
aim of this section is to show from the theory of analytic functions of the complex
variable that the guiding properties, i.e. the possibility of SPP propagation, have
strong consequences on the scattering properties, i.e. on the amplitudes of the waves
generated by the grating when it is illuminated by a plane wave. These consequences
will be evaluated quantitatively.

2.3.1 Pole of the Reflection and Transmission Coefficients

The SPP of a grating is obtained by setting the scattering coefficients bn and cn equal
to infinity in Eqs. (2.36) and (2.37) in order to make the incident field negligible. Let
us show that all the coefficients bn and cn , considered as functions of the normalized
propagation constant α of the incident wave, have an infinity of poles located at
points given by:

α = α̃
grating
n . (2.45)
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If the incident wave satisfies this equation, the normalized propagation constants
αn of the field scattered by the grating identify with the normalized propagation
constants α̃grating

n of the SPP, thus the field expressed by Eqs. (2.41) and (2.42) is the
solution of the scattering problem, which shows that the amplitudes of the scattered
waves are infinite with respect to the amplitude of the incident wave. This remark
leads us to guess that the amplitudes of the scattered waves have a pole [47] when a
SPP can propagate.

It seems that this remark is useless since α = sin (θ) is real, while the α̃grating
n

are complex (Fig. 2.15). However, if the real part of α̃grating
n is less than unity in

modulus (like α̃grating
−1 and α̃grating

−2 in Fig. 2.15), α can be close to α̃grating
n , and it can

be conjectured that a resonance phenomenon will occur, provided that the imaginary
part of the α̃grating

n is not too large. In other words, it can be considered that in real
life, α is real and the amplitudes bn (α) and cn (α) are complex functions of the real
variable α. However, mathematical theorems [47] state that such a function has one
and only one analytic continuation in the complex plane of α. In conclusion, all the
α̃

grating
n are poles of this continuation but using an actual plane wave, only some of

them (α̃grating
−1 and α̃grating

−2 in Fig. 2.15) can be approached.

2.3.2 Zero of the Reflection Coefficient, Phenomenological
Formula

Although the phenomenological approach can be generalized to more complicated
cases, we now consider for simplicity that only one value of α̃grating

n has a real part less
than unity in modulus. Bearing in mind that α̃grating

0 is very close to unity for moderate
values of the height h of the grating, Fig. 2.15 shows that n must be equal to −1 and
that the real part of α̃grating

−1 must be negative. In these conditions, a resonance occurs

when α 
 Re
{
α̃

grating
−1

}
. In consequence, there exists only one non-evanescent

reflected order since α + nλ1/d 
 Re
{
α̃

grating
−1 + nλ1/d

}
= Re

{
α̃

grating
n

}
and by

hypothesis, all the values of Re
{
α̃

grating
n

}
are greater than unity in modulus, except

Re
{
α̃

grating
−1

}
. Thus we are led to the study of b0 (α), the amplitude of the reflected

order 0. Mathematically, since α̃grating
−1 is a pole of the analytical continuation of

b0 (α), it will be called αp in the following. Thus, it can be deduced that, when α
is close to Re {αp}, b0 (α) can be expanded in a Laurent series [48], which can be
written in the form:

b0 (α) 
 g−1

α− αp
+ g0 + (

α− αp) u (α) , (2.46)
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with g−1 and g0 being complex coefficients, and u (α) an entire series of α − αp.
Neglecting the last term in the right-hand member of Eq. (2.46) yields:

b0 (α) 
 g−1

α− αp
+ g0 
 g−1 + g0 (α− αp)

α− αp
. (2.47)

Setting

αz = αp − g−1

g0
, (2.48)

Eq. (2.47) can be written in the form:

b0 (α) 
 g0
α− αz

α− αp
. (2.49)

If the height of the grating tends to 0, there is no more resonance and then, g−1 tends
to 0, g0 tends to the reflection coefficient r of a flat metallic plane, and since α̃grating

0
tends to α̃plane:

limh→0
{
αz} = limh→0

{
αp} = α̃plane − λ1

d
. (2.50)

As a result, the effects of the pole and zero annihilate when h tends to zero, according
to Eq. (2.49).

2.3.3 Verification of the Phenomenological Formula
from Numerical Results

Now, let us show that the phenomenological formula allows one to predict with great
precision the efficiency of a metallic grating in the region of anomaly. We consider
a gold sinusoidal grating with period 555 nm and height 60 nm, illuminated by a
p-polarized plane wave of wavelength 647 nm propagating in vacuum. We compare
the efficiencies obtained from a computer code based on a rigorous integral theory of
gratings [21, 29] and from the phenomenological formula. This formula requires the
knowledge of the parameters g0,αz andαp contained in Eq. (2.49). We have given to
g0 its limit value as the height of the grating tends to 0, i.e. the reflection coefficient
of a gold plane. In order to calculate αz and αp, we have transformed the computer
code based on a rigorous integral theory of gratings [11, 12]. First, this code has been
extended to complex values of α = sin (θ) in order to calculate the output b0 from
the input α. Then, this code has been used as a subroutine of a software able to find
the zero of a complex function of a complex variable. This kind of software, based
on very simple formulae like Newton’s formula, requires an estimate of the location
of the zero in order to initiate the iterative process. This estimate has been deduced
from Eq. (2.50) . Thus we have searched for the zero of 1/b0 for αp and of b0 for
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Fig. 2.18 Comparison of
the results deduced from the
phenomenological formula
(dashed line) with those
deduced from the rigorous
integral theory of gratings
(solid line)
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αz . The results are αp = −0.1135 + i0.0149 and αz = −0.1126 − i0.00596. We
have introduced these parameters in a formula deduced from Eq. (2.49) by taking the
square modulus |b0|2 of the amplitude in the order 0 (i.e. the efficiency in the order
0), the coefficient |g0|2 being replaced by the reflectivity R = |r |2 of gold, equal to
0.953:

|b0 (α)|2 
 R

∣∣∣∣ α− αz

α− αp

∣∣∣∣
2

. (2.51)

Figure 2.18 shows a comparison between the efficiencies in the order 0 deduced
from this phenomenological formula and from the rigorous integral theory versus
the angle of incidence.

It must be noticed that from our data, the resonance should occur for negative
incidences, but of course, the symmetry of the grating profile entails that the same
resonance is obtained for positive incidences. The two curves are almost identical,
except in the left side of the curve where discrepancies of the order of 3 % appear.
This is not surprising since a second resonance occurs for negative angles and of
course, the effects of the corresponding pole and zero are not taken into account in
the phenomenological formula. The obvious conclusion is that the phenomenological
formula is a valuable tool for predicting the efficiency of gratings in the resonance
region. It reduces the resonance phenomenon to the knowledge of two complex
parameters.

Some elementary properties of the resonance curve can be easily deduced from
this formula. Assuming that the real parts of the pole and zero are very close (which
is in general the case), the minimum value em of the efficiency and the width w at
half-height of the drop of efficiency are given by:

em = R ×
∣∣∣∣ Im {αz}
Im {αp}

∣∣∣∣
2

, (2.52)

w = 2Im
{
αp} . (2.53)
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Furthermore, it can be noticed from the phenomenological formula that the phase
of b0 has violent variations at the vicinity of the resonance since the phase of both
terms α − αz and α − αp in Eq. (2.49) is rapidly varying. If the pole and the zero
are placed on the same side of the real axis, the total phase shift from one side of
the resonance process to the other one is equal to zero, while in the opposite case, it
reaches ±2π.

2.4 Total Absorption of Light by a Diffraction Grating

2.4.1 Theoretical Demonstration

The existence of a total absorption of light by a grating, which cannot scatter more
than a single y-propagating wave, can be demonstrated from many arguments. First,
it can be shown from numerical results. Indeed, we have seen that for a flat surface
the pole and the zero are located on the same side of the real axis, with a positive
imaginary part. We know that the sign of the imaginary part of the pole holds,
whatever the groove depth. Thus, if numerical calculations show that for a given
groove depth, the zero has a negative imaginary part, it can be deduced from a
topological argument that there exists a groove depth for which the zero crosses the
real axis. Since it is so given in Fig. 2.18 (drawn usingαz = −0.1126−i0.00596) for
a gold sinusoidal grating, the total absorption must occur for a groove depth smaller
than that of the grating of Fig. 2.18, as it will be seen in the following paragraph.

The existence of total absorption phenomenon can also be shown through a purely
theoretical demonstration. It has been shown in Sect. 2.3.2 that for a perfectly con-
ducting structure, the pole and zero at a given wavelength are complex conjugate,
whatever the groove depth may be. Thus the zero is located below the real axis. On
the other hand, for a flat, lossy metallic structure, the pole and zero are identical
and located above the real axis. The perfect conductivity corresponds to a permit-
tivity ε2 of the metal which is real, negative and infinite in modulus. Let us suppose
that for a given groove depth of a sinusoidal grating, the permittivity of the metal
is varied continuously from this negative and infinite value to the permittivity of an
actual metal like gold. Then, let us tend the groove depth of the grating to 0. Since
the zero goes from a point located below the real axis to a point located above the
real axis, it must cross the real axis, at least if we assume the continuity of its tra-
jectory. In fact, from several numerical analyses, it turns out that for a given shape
(sinusoidal, triangular. . .) and a given period of the grating profile, with given metal
and the angle of incidence, a phenomenon of total absorption occurs for p-polarized
light for given wavelengths and groove depths, these two parameters depending on
each other.

In Fig. 2.19, we have drawn the trajectory of the pole and zero of a sinusoidal gold
grating when the groove depth is varied. The zero crosses the real axis for α close to
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Fig. 2.19 Trajectory of the
pole αp and zero αz of b0 for
a gold sinusoidal grating with
period 555 nm, illuminated by
a p-polarized plane wave with
wavelength 647 nm, when
the height h is increased.
Reprinted from [50], with
permission from Elsevier
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 −6.6◦) for a groove depth equal to 40 nm, thus a total absorption must
occur for these parameters.

2.4.2 Experimental Verification

The experimental verification of the phenomenon of total absorption discovered in
[49] from theoretical results was given in [50]. It was performed on a holographic
sinusoidal gold grating having the same pitch as in Fig. 2.19 illuminated by a krypton
laser beam at the wavelength 647 nm. Due to a mishap during exposure, the groove
depth varied from 13 nm on one side to 75 nm on the other. In order to study the
reflectance as a function of the groove depth, it was necessary to simply select the
appropriate region of the grating surface. The groove depth was measured using a
profilometer fitted with a chisel-shaped stylus. The experimental results are shown
in Fig. 2.20b, as well as the corresponding theoretical predictions obtained from the
integral theory in Fig. 2.20a. The agreement between experimental and theoretical
results is excellent. The minimum recorded reflectance of 0.3 % was at an angle of
incidence of 6.6◦ and a groove depth of 37 nm, which are very close to the theoretical
predictions. In the same paper, the authors obtained a total absorption for other
wavelengths and were able, using a modified Mach-Zender interferometer, to show
the change of π in the phase of the reflected wave as the incident beam crossed the
region of the grating where αz becomes real.



2 Theory of Wood’s Anomalies 69

Fig. 2.20 Theoretical (a) and
experimental (b) reflectance
of a sinusoidal gold grating
versus the angle of incidence
for various groove depths h.
Reprinted from [50], with
permission from Elsevier

This result is quite remarkable and very surprising: a very gentle modulation in
the surface of a gold mirror causes the reflectance to fall dramatically from over
90 % to below 1 %. Figure 2.20 also shows that the width of the reflectance drop
is very small, of the order of 1◦. The resonance remains very selective when other
parameters (wavelength, groove depth) are changed. Similar results were published
by Le Perchec et al. [51] for nanometric silver lamellar gratings.
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Fig. 2.21 Spectrum of a white light beam after reflection from a gold grating of Fig. 2.20 with
groove height 37 nm with incidence 6.6◦. Reprinted [50], with permission from Elsevier

2.4.3 Some Applications

Figure 2.20 shows that the total absorption phenomenon can present a strong angular
selectivity, typically less than 1◦. The same selectivity can be found when, starting
from total absorption, the wavelength is varied. Figure 2.21, reprinted from [50],
shows the spectrum of the grating which corresponds to a total absorption in Fig. 2.20,
illuminated with a collimated beam of white light from a tungsten lamp. The spectrum
clearly shows a strong narrow absorption band in the red. Here, the grating absorbs
in totality at 647 nm, but it is interesting to know that a nearly total absorption
phenomenon holds for another wavelength when the angle of incidence is varied.
Obviously, such a grating can be used as a rejection filter for eliminating a wavelength
in a polychromatic light beam. A very selective absorption in incidence and frequency
ranges can be used in metrology or to make selective filters like biosensors. It could
prevent cross-talks between optical interconnects.

Let us describe the application to immunosensors. A direct immunosensor is an
immunologically sensitized transducer that possesses the ability to observe antibody–
antigen binding events in real time. An immunosensor can be made using the sensi-
tivity of SPPs to changes in the dielectric permittivity of a dielectric-coated metallic
grating [52]. It consisted of a gold or silver holographic diffraction grating on which
‘sensitizing’ immunological molecules were immobilized, realizing in some way
a dielectric coating. The subsequent binding of complementary components (con-
tained for example in human or animal serums) can be followed, in real time, by
measuring changes in the reflectivity of the grating resulting from alterations in the
conditions necessary for optimal SPP excitation.

Since Wood’s anomalies entail strong local enhancements of the field on the
grating surface, they are also used in Raman scattering [53] or second-harmonic
generation [54].

On the other hand, it is interesting to realize a strong absorption in the wide ranges
of angle of incidence or wavelength. Equation (2.53), deduced from the phenomeno-
logical formula, shows that the angular width of the absorption peak increases with
the imaginary part of the pole. Furthermore, Fig. 2.19 clearly shows that this imag-
inary part strongly increases with the groove depth. As a consequence, it can be
deduced that a wide-range strong absorption can be obtained with deep gratings.
The SPPs of such gratings are sometimes termed “localized SPPs” since they are
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very rapidly attenuated when they propagate. A nearly total absorption on a wide
range of angles of incidence or wavelengths could lead to many practical applica-
tions, for example the realization of solar absorbers [55] or, as suggested by Teperik
et al. [56], efficient photovoltaic cells, or light shielding of micro-photonic devices.
As suggested by the Kirchhoff law, this kind of grating should constitute omnidirec-
tional black-body emitters, possibly with the narrow a spectral range. The interested
reader can find other possibilities to use SPPs in [57–73].

2.5 Further Properties of Surface Plasmon Polaritons

2.5.1 Physical Interpretation and Fundamental Properties of the
Zero of the Reflection Coefficient

It is possible to give a physical interpretation of the existence of a zero close to the
pole. With this aim, let us consider the complex conjugate H∗ of the expression of the
SPP given by Eqs. (2.41) and (2.42). Such a field satisfies in the metal the Helmholtz
equation

∇2 H∗ + k2ε∗2 H∗ = 0, (2.54)

while in the dielectric, the permittivity is real and thus the Helmholtz equation
remains unchanged. In the following, we will call the structure so obtained as
the adjoint structure. It is straightforward to show that H∗ satisfies the boundary
conditions on the interface and thus H∗ is a solution of the elementary laws of
electromagnetics in a structure made of a dielectric of permittivity ε1 and a mate-
rial of permittivity ε∗2. This permittivity corresponds to a material with gain [74].
However, H∗ completely differs from a SPP since some waves included in H∗ do
not satisfy in the dielectric the radiation condition expressed by Eq. (2.16). Indeed,

the complex conjugation changes the expressionexp
(

ik1α̃
grating
n + ik1β̃

grating
n

)
into

exp
(
−ik1

(
α̃

grating
n

)∗ − ik1

(
β̃

grating
n

)∗)
, which shows that α̃

grating
n becomes

−
(
α̃

grating
n

)∗
and β̃grating

n becomes −
(
β̃

grating
n

)∗
. As a consequence, the real parts

of the propagation constants −
(
α̃

grating
n

)∗
of H∗ along the x-axis become the oppo-

site of those of α̃grating
n , while the imaginary part holds. This remark entails that the

direction of propagation of H∗ on the adjoint structure and of the SPP in the initial
structure is opposite and that the amplitude is increased in the direction of propaga-
tion, a fact which is not surprising since the metal has been replaced by a material
with gain. A simple way to restore a propagation towards x = +∞ is to change x

into −x in the expression of H∗, which is the equivalent of changing −
(
α̃

grating
n

)∗
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into +
(
α̃

grating
n

)∗
. After this symmetry, the propagation constant along x of H∗ and

of the SPP of the initial structure are complex conjugate.
As regards the radiation condition on the dielectric side, two cases must be dis-

tinguished. If the nth component of the SPP is of the evanescent type, β̃grating
n is very

close to the imaginary axis, with a positive imaginary part. This positive imaginary

part holds for −
(
β̃

grating
n

)∗
and thus the wave remains of the evanescent type and

satisfies the radiation condition. On the other hand, for the waves of y-propagating

type, β̃grating
n and −

(
β̃

grating
n

)∗
are very close to the real axis and their real parts are

opposite. Consequently, for the adjoint structure, the waves contained in H∗ do not
propagate towards y = +∞ anymore, but towards y = −∞. Such a wave corre-
sponds to an incident wave that propagates in the direction of the grating surface.
In the metal, since the values of γ̃grating

n are close to the imaginary axis, it is easy to
show that the series of waves inside H∗ still satisfy the radiation condition.

In conclusion, after a symmetry in x, H∗ has a propagation constant along x which
is the conjugate of that of the SPP on the initial structure. Moreover, all the waves
included in H∗ still satisfy the radiation condition, except those corresponding to
y-propagating waves in the dielectric, which become incident instead of scattered.
Assuming again that the only wave of propagating type in the dielectric is the order
n = −1, H∗ can be considered, after a symmetry along x, as the field scattered by an

incident plane wave with propagation constants
(
α̃

grating
−1

)∗
and −

(
β̃

grating
n

)∗
along

the x- and y-axes. Furthermore, there is no scattered wave corresponding to n = −1,

i.e. in the direction
(
α̃

grating
−1

)∗
, +

(
β̃

grating
−1

)∗
. It can be deduced that after symmetry

with respect to the x-axis, H∗ is the field corresponding to the zero of the adjoint
structure, which is thus the conjugate of the pole of the initial structure. Following the
same lines, it is easy to show that the zero of the initial structure is, after symmetry
along x, the conjugate of the pole of the adjoint structure, i.e. the conjugate of the
propagation constant of the SPP of the adjoint structure.

This property shows that there exists complete symmetry with respect to the real
axis between the pole and zero of the initial structure and the pole and zero of the
adjoint structure. Vital properties of the poles and zeros can be deduced. Let us
notice first that the zero is an actual theoretical zero. It was not possible to state this
important property from Eq. (2.47), which was obtained by neglecting the last term
in Eq. (2.46). Furthermore, we have seen that it can be conjectured that the imaginary
part of the pole of the initial structure should increase with the height of the grating,
due to losses through propagating waves in the dielectric. For the adjoint structure,
there is an exponential increase of the amplitude in the propagation. The propagating
waves of the SPP of the adjoint structure will provoke the opposite effect. Since they
entail losses of energy, the increase of the amplitude will be attenuated and may be
cancelled. In that case, the propagating wave in the dielectric is an actual plane wave
with real constants of propagation in x and y, which propagates towards y = +∞:
the grating, which is not illuminated by any incident wave, scatters this plane wave
to infinity. Conversely, the zero of the initial structure is real: the grating, illuminated
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Fig. 2.22 Propagation of a
guided wave in a dielectric
film deposited on a metallic
surface

air

metal

dielectric
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wave

by a plane wave, does not scatter any plane wave. This is another way to theoretically
predict the phenomenon of total absorption studied in the preceding section. Finally,
for a perfectly conducting structure, ε2 is real, negative and infinite in modulus. In
that case the initial and adjoint structures identify and so, the pole and zero of the
initial structure are complex conjugate, as well as those of the adjoint structure.

2.5.2 Analogy with Guided Waves in Dielectric Films Deposited
on Metallic Surfaces

It has been shown that the basic origin of the grating anomalies must be found in the
excitation of a surface wave: the SPP. The consequence is that this kind of anomaly
occurs only for p-polarized light. However, it should be noticed that other kinds of
surface waves can propagate on a flat metallic surface, provided that the metal is
covered by a plane dielectric coating, as shown in Fig. 2.22. The wave propagates
in the dielectric film following a zigzag path, with a lossy metallic reflection on
one side and a lossless total reflection on the other side, provided that the angle of
incidence on the air exceeds the critical angle of total reflection. In that case, the field
on the air side reduces to an evanescent wave and the propagation constant of the
guided wave is greater than the wavenumber of the light in vacuum, like for a SPP.
Thus this guided wave can play the same role as a SPP for generating a resonance
phenomenon as soon as one of the interfaces (or both) is periodically modulated.
The big difference with SPPs is that anomalies can occur for both polarizations.

Let us show an example of anomaly of a metallic, dielectric-coated grating for
s-polarized light, taken from [28]. Figure 2.23 shows a scanning electron micrograph
of the grating profile of a 1,264 lines/mm ruled aluminium grating (with triangular
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Fig. 2.23 Electron micro-
graph of the profile of a
ruled grating made in NPL.
Reprinted by permission from
IOP Publishing Ltd: [28] p. 90

groove) made in the NPL (National Physical Laboratory, Teddington, U.K.). The
blaze angle of the grating (angle between the large facet and the mean plane of the
profile) was equal to 23◦ and the included angle of the ruling diamond (angle between
the two facets) was 110◦. Two identical aluminium gratings were realized and one of
them was covered with silicon monoxide with a thickness close to 100 nm (measured
using multiple-beam interferometry). The efficiency in the order −1 was measured
in Littrow mounting for both gratings. Let us recall that in the Littrow mount, the
order −1 and the incident wave propagate in opposite directions. Using Eq. (2.1) with
n = −1, it turns out that since θ−1 = −θ, the angle of incidence and the wavelength
in vacuum satisfy the relation

λ/d = 2 sin (θ) . (2.55)

The efficiency curves are shown in Fig. 2.24. Experimental measurements were real-
ized in the NPL, while the theoretical results were obtained from the differential
theory [28, 29].

For the uncoated grating, experimental and theoretical curves show a relatively
featureless shape, the edge corresponding to a Rayleigh anomaly (passing-off of the
orders −2 and +1). Both theory and experiment show that the coating introduces
just after the Rayleigh anomaly a strong and sharp minimum, even though the theory
gives an anomaly somewhat weaker than was observed. This discrepancy has been
explained: the profile used in the calculations is perfectly triangular, which is not the
case in Fig. 2.23, and calculations have shown that the strength and the width of the
anomaly are very sensitive to small changes in profile form and coating thickness.
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Fig. 2.24 Efficiency curves in Littrow mount and for s-polarized light of the 1,264 lines/mm, alu-
minium ruled grating of Fig. 2.23, with an uncoated profile (top) and a 100 nm-coating of silicon
monoxide (bottom). Experimental values and theoretical ones are, respectively, given at left and at
right. The wavelength scale is marked in nm and the arrow shows the location of the passing-off of
orders +1 and −2. Reprinted by permission from IOP Publishing Ltd: [28] p. 91

A phenomenon of total absorption has been verified for s-polarized light with
a 2,400 lines/mm 10◦22′ blaze angle, aluminium grating covered with a 130 nm
magnesium fluoride coating [75]. Total absorption was predicted by theory for a
coating thickness of 152 nm, a wavelength of 492 nm and an angle of incidence
equal to 7.5◦. The measurements were performed with a 130 nm depth of magnesium
fluoride, for a wavelength equal to 492 nm and at an angle of incidence close to 7◦, the
efficiency was found to drop sharply to just 5.5 %. Other results on total absorption
for s-polarized light can be found in [76]. The total absorption can be generalized to
unpolarized light using crossed gratings [77, 78] or even using classical 2D gratings
in conical (off-plane) mountings [79].

These examples show that guided waves generated by dielectric coatings on top
of the metal can generate the same resonance phenomena as SPPs. This remark could
be generalized to other domains of plasmonics.
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2.6 Conclusion

The study of Wood’s anomalies and SPP resonances, initiated more than one century
ago, is a typical example of the interest of converging analyses of experimentalists,
theoreticians and specialists of phenomenology.

It is amazing to bear in mind that, initially, grating anomalies were considered as
strong defects of gratings. The reason is that the gratings were mainly used in spec-
troscopy, where efficiency drops caused by anomalies around certain wavelengths
considerably reduce the possibility of analysing a light spectrum in a wide range
of wavelengths with good precision. Nowadays, non-spectroscopic applications of
gratings have become a crucial field of optics and the practical applications of SPP
anomalies have taken a strong importance in many fields of science and technology.

These modern applications of Wood’s anomalies have been permitted by the
progress of process of fabrication and of numerical tools, which allow one to opti-
mize almost all kinds of diffraction gratings in all ranges of wavelength. It can be
conjectured that the extraordinary features of the resonant excitation of SPPs will
encourage the specialists of modern optics and nanophotonics to develop and to
extend the field of applications of grating anomalies in the future.

Appendix 1: Electromagnetic modelling in Two Dimensions

We consider an interface � separating two homogeneous regions R1 and R2. The
Maxwell equations write:

∇ × E = −∂B/∂t, (2.56)

∇ × H = jc + ∂D/∂t, (2.57)

where E and H are the electric and magnetic fields, D and B are the electric and
magnetic inductions, and jc is the conduction current density. In the harmonic regime,
the fields and currents have a sinusoidal behaviour in time. A function of space and
time f (r, t) with sinusoidal behaviour in time can be written as:

f (r, t) = a (r) cos (ωt − ϕ (r)) , (2.58)

with a and ϕ being real functions of space called amplitude and phase, ω being the
frequency. Such a function is classically represented by its complex amplitude f̃ (r)
independent of time, and Eq. (2.58) is re-written in the form:

f (r, t) = Re {a(r) exp (−iωt + iϕ(r))} = Re {a(r) exp (iϕ(r)) exp(−iωt)} .

(2.59)
The expression a (r) exp (iϕ (r)) being called complex amplitude of f and denoted
by f̃ , Eq. (2.59) can be written:
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f (r, t) = Re
{

f̃ (r) exp(−iωt)
}

. (2.60)

Thus the function f deduces from its complex amplitude f̃ by multiplying by
exp (−iωt) then by taking the real part of the product. It is straightforward to show
that the multiplication of f (r, t) by a real function u (r) results in a multiplication
of the complex amplitude by the same function and conversely, and that the complex
amplitude of ∂ f/∂t is equal to −iω f̃ . Thus, Maxwell’s equations can be written
using the complex amplitudes of the field and, for simplicity, the complex ampli-
tudes of the fields and current are denoted using the same names and symbols as the
fields and current themselves, in such a way that harmonic Maxwell equations can
be written:

∇ × E = iωB, (2.61)

∇ × H = jc − iωD. (2.62)

In addition to Maxwell equations, constitutive relations allow one to express the
electromagnetic properties of the materials. In contrast with Maxwell equations,
they are not rigorous (except in vacuum). Assuming that a material is non-magnetic,
homogeneous, isotropic and linear, these relations can be written:

B = μ0H, D = ε0ε
′E, jc = σE, (2.63)

with μ0 = 4 ·π ·10−7 being the permeability of vacuum and ε0 = 1/
(
36π109

)
being

the permittivity of vacuum. The parameters ε′ and σ denote the relative dielectric
permittivity and the conductivity of the material respectively. Using the relations
D = ε0E + P, P = ε0χE, with P electric polarization density and χ electric
susceptibility, it turns out that ε′ = 1 + χ.
Introducing the constitutive relations in Maxwell equations yields:

∇ × E = iωμ0H, (2.64)

∇ × H = (
σ − iωε0ε

′) E. (2.65)

Defining the complex permittivity:

ε = ε′ + iσ/ (ωε0) = 1 + χ+ iσ/ (ωε0) , (2.66)

Equation (2.65) takes a form symmetrical to Eq. (2.64):

∇ × H = −iωε0εE. (2.67)

This equation can be expressed in the form:

∇×H = −iωε0E+jt, with jt = σE−iωε0χE = iωε0 (1 − ε) E = jc+jb, (2.68)
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with jt total current density, including both the conduction current density jc and
the bound current density jb = −iωP = −iωε0χE resulting from the electric
polarization. The optical index of a material is given by ν = √

ε.
Let us notice that by taking the divergence of Eqs. (2.64) and (2.67) and using

∇ · (∇ × V) = 0, one can get the complementary couple of Maxwell equations in
harmonic regime:

∇ · H = 0, ∇ · (εE) = ∇ · (ε′E) = 0. (2.69)

By combining Eqs. (2.64) and (2.67), one can obtain partial derivative equations
for each field inside a homogeneous region. Introducing the value of H given by
Eq. (2.64) in Eq. (2.67), we obtain:

∇ × ∇ × E − k2E = 0, with k = ω
√
εε0μ0. (2.70)

In a homogeneous region, ∇ · (εE) = 0 entails that ∇ · E = 0 then using Eq. (2.69)
and the vector relationship ∇ × ∇ × E = ∇ (∇ · E) − ∇2E we get:

∇E + k2E = 0, (2.71)

and, following the same lines for the magnetic field:

∇H + k2H = 0. (2.72)

It is worth noting that Maxwell equations (Eqs. (2.64) and (2.67)) are valid in the
sense of distributions. In other words, they include the boundary conditions at the
limit between two homogeneous materials. In order to express them in an explicit
form, one can recall that the surface density of V included in � × V is equal to
n × (V+ − V−), with V+ − V− being the jump of V across the interface in the
direction of n [29]. It must be recalled that this surface term is the coefficient of
a Delta distribution located on the surface. In Eqs. (2.64) and (2.67), the right-hand
member contains the fields and thus they should not include distributive surface parts,
thus the left-hand member satisfies the same property. We deduce that the tangential
components of the electric and magnetic fields are continuous across an interface.

In the two-dimensional case, the interface is invariant by translation along the
z-axis. One can distinguish the two fundamental cases of polarization: s-polarization
with the electric field E = E ẑ and p-polarization with the magnetic field H = H ẑ. In
both cases, the boundary-value problem becomes scalar. Projecting Eqs. (2.71) and
(2.72) on the z-axis, we obtain:

∇2 E + k2 E = 0 for s-polarized light and ∇2 H + k2 H = 0 for p-polarized light.
(2.73)

Thus the electric and magnetic fields satisfy a scalar Helmholtz equation.
As regards the boundary conditions on the interface, the continuity of the tan-

gential component of the fields entails the continuity of E for s-polarization and
the continuity of H for p-polarization. Since the partial derivative equation is of
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the second order, a second boundary condition is needed. For s-polarization, one
can express the continuity of the tangential component of the magnetic field using
Eq. (2.64). Bearing in mind the vector relation ∇ × (

E ẑ
) = ∇E × ẑ, we obtain:

H = 1

iωμ0
∇E × ẑ. (2.74)

Furthermore, on each side of the interface with normal vector n, the continuity of
the tangential component of the magnetic field entails the continuity of n × H, and
from Eq. (2.74), it turns out that

n × H = 1

iωμ0
n × (∇E × ẑ

) = 1

iωμ0
∇E

(
n · ẑ

) − ẑ (n · ∇E) = −1

iωμ0
ẑ
∂E

∂n
.

(2.75)
It follows that the normal derivative of the electric field ∂E

∂n is continuous across the
interface.

For p-polarization, the electric field can be expressed from Eq. (2.67):

E = 1

−iωεε0
∇ × (

H ẑ
) = 1

−iωεε0
∇H × ẑ, (2.76)

and thus the continuity of n×E leads to the continuity of 1
ε
∂H
∂n . This second boundary

condition is slightly more complicated than that obtained for s-polarization, due to
the fact that, in contrast with the permeability, the permittivity is not the same on
the two sides of the interface. It can be noticed that this dissymmetry disappears for
magnetic materials, for which 1

μ
∂E
∂n is continuous across the interface.

In conclusion, the boundary conditions across the interface can be written in 2D
problems:

E and ∂E/∂n are continuous for s-polarized light, (2.77)

H and
1

ε

∂H

∂n
are continuous for p-polarized light. (2.78)

The surface charge densities can be derived by taking the divergence of Eqs. (2.62)
and (2.68). Bearing in mind that the surface density included in � · V is equal to
n · (V+ − V−), with V+ − V− being the jump of V in the direction of n across the
interface [29], it comes out that:

ρc = n · (D+ − D−) (2.79)

ρt = ε0n · (E+ − E−) , (2.80)

with ρc and ρt being the surface densities of free and total charges.
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Chapter 3
A New Look at Grating Theories Through
the Extraordinary Optical Transmission
Phenomenon

Philippe Lalanne and Haitao Liu

Abstract The electromagnetic properties of subwavelength metallic surfaces are
due to two kinds of elementary distinct waves: the famous surface plasmon
polariton and the quasi-cylindrical wave, which are both scattered by the
subwavelength indentations as they propagate on the metal. The ab initio microscopic
description of the electromagnetic properties starting from the sole knowledge of the
elementary waves launched in between the indentation has a long history in grating
theories. We review the evolution of the ideas and the fundamental principles that
govern these waves and their impacts. For the sake of illustration, the emblematic
case of a metal surface perforated by a subwavelength-hole array, which exhibits
remarkable transmission properties, is taken to illustrate our purpose.

3.1 Introduction

Squeezing light into small volumes is an important and long-standing challenge in
optics, with potential impact in many fields of nanosciences and nanotechnologies.
The phenomenon of extraordinary optical transmission (EOT), whose first observa-
tion was published 12 years ago, is an emblematic phenomenon of light confinement.

The EOT was first observed in the near-infrared in subwavelength-hole arrays
perforated in opaque gold and silver films [1]. Figure 3.1a presents a typical EOT
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transmission spectrum characterized by a Fano shape (red curve) with the presence
of a minimum (blue arrow) followed by a peak (green arrow) at longer wavelengths.
Although it corresponds to a transmission efficiency of a few percent, the peak
has been called extraordinary transmission, simply because conventional theory for
light transmission through a single subwavelength hole in a thin [2] or thick [3]
perfectly conducting film predicts a transmission normalized to the hole area that is
substantially less than unity.

Comparing experimental observations obtained with noble metals in the visible or
near-infrared with theoretical results valid for perfectly conducting screen is not legit-
imate (see for instance the related discussion on spectroscopic gratings in chapters
by Daniel Maystre), and rapidly experimentalists have compared the transmission of
the array to that of a single hole perforated in the same film with the same diameter
as that of the array. It is found that, on spectral averaging, the averaged transmis-
sions are almost identical. However, for the peak wavelength, the transmission of
the array is 40–100 [5] times larger than that of the isolated hole, depending on the
hole diameter. It is nowadays known that this ratio increases as the hole diameter
decreases.

Figure 3.1b shows computational results of the near-field, in the vicinity of the
irradiated interface, for the resonance peak wavelength. The background image
corresponds to the magnitude of the magnetic field component perpendicular to
the picture. The magnetic field of the normally incident plane wave is parallel to this
direction too. Superimposed on the image, we show the Poynting vector, represented
by white arrows that indicate the direction and magnitude of the energy flow.
At resonance, it appears that the surface acts as a light funnel that helps the holes
to efficiently capture the incident energy beyond their geometrical apertures. This
funneling effect alone is not new, as it was observed with frequency selective sur-
faces in microwave and millimeter-wave engineering for instance well before the
EOT was first observed. What is new is the fact that the funneling is accompanied by
an efficient transmission in a regime for which all the holes are much smaller than
the wavelength and support only evanescent modes. It appears possible to efficiently
confine light in a tiny volume, and apparently the surface waves excited around the
holes help a lot.

The discovery of the EOT phenomenon sparked a huge volume of research trying
to apply this phenomenon [6–8] and to unveil the underlying mechanisms.

How do we understand that for one specific wavelength, no light goes through,
while for some others a slightly different one, a surprisingly high amount of light is
transmitted through an aperture operating below cutoff? What are the surface waves
that are locally excited between the holes and that are responsible for the funneling
effect of Fig. 3.1b? Are they surface plasmon polaritons (SPPs) as suggested in [1]?
In 1998 when the EOT was discovered, the theory of diffraction by metallic gratings,
mainly developed for designing spectroscopic gratings, was mature and the research
activity in the domain was mostly dedicated to increasing the efficiency of numeri-
cal methods, rather than deriving new concepts or revisiting the fundamentals, see
Chaps. 1 and 2. Therefore one may wonder why the interpretation of the EOT has
motivated so much effort.

http://dx.doi.org/10.1007/978-3-642-28079-5_1
http://dx.doi.org/10.1007/978-3-642-28079-5_2
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Fig. 3.1 The EOT phenomenon. a Transmission data taken from [4] and obtained for a normally
incident plane wave illuminating a 200 nm thick gold (Au) film perforated with a 700 nm-period
square lattice of 70 nm radius holes (hole filling fraction 3%). The minimum and maximum transmis-
sions are indicated by the blue and green arrows, respectively. (b) Magnetic near-field distribution
(Hy) and Poynting vector (white arrows) calculated for the resonance wavelength [green arrow in
(a)] under illumination by a plane wave that is polarized along the x-axis and that is incident from
the bottom with its wave vector parallel to the z-axis

In this chapter, we provide a comprehensive review of theoretical works aimed
at providing a response to those questions. We are not exhaustive; we rather aim
at providing guidelines, starting from the initial interpretation in [1] that attributed
the EOT to the excitation of SPPs, and then analyzing the impact of grating the-
ories [9] on our understanding of the EOT. We further discuss their limitations,
before summarizing the main conclusions obtained by a microscopic model of the
EOT [10].

3.2 The Initial Microscopic Interpretation of Wood’s Anomaly

The EOT phenomenon, with its minima followed by a resonance peak, is essentially
a Wood’s anomaly. It is therefore important to start our discussion by considering the
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pioneer works that have contributed to explaining the polarization-dependent Wood’s
anomalies discovered at the beginning of the twentieth century. In particular, we will
consider Fano’s work. In his seminal article published in 1941 (40 years after Wood’s
observation) [11], Fano first revisits the initial explanation proposed by Rayleigh [12]
to explain Wood’s anomalies in terms of the vectorial Huygens principle, recalling
that the Rayleigh interpretation considers that (Fig. 3.2)

“each groove A of the grating acts as a center of diffusion of the incident light and hence
scatters a spherical (probably Fano intended to say cylindrical) wave” and that “the part of
the scattered wave travelling along the grating reaches the neighboring groove B in phase
with the incident light.”

This purely geometrical phase condition (Fig. 3.2) corresponds to the existence of a
diffracted wave at grazing emergence, and can be written as k0 = kx + kR(Rayleigh
condition), where the free-space wave number k0 is matched to the parallel wave
vector kx of the incident plane wave through a wave vector kR of the 1D reciprocal
lattice associated to the grating.

To further explain why the anomaly in Wood’s experiments is red-shifted from
the Rayleigh condition and why it depends on the grating geometry, Fano retains
a similar Huygens-type interpretation, but instead of considering a pure geo-
metrical representation, he rather suggests that a surface mode with a parallel
momentum greater than the free-space momentum be involved in the energy transport
between adjacent grooves. It is retrospectively interesting and amazing to see how
the SPP of the flat interface is intuitively introduced in Fano’s work by considering
Sommerfeld’s waves (SPPs were discovered later on by Ritchie [13]) to explain the
surface resonance of reflection gratings. Fano first considers the parallel propagation
constants (called proper values in [11]) of the modes of a glass plate sandwiched
between a metal and a vacuum and asks himself “Is there left any mode when the
thickness of the glass layer vanishes?”, before answering:

“One and only one proper value exists and this only if the wave is polarized with its magnetic
vector parallel to the interface” ... “The proper value χ is always slightly larger than the
modulus k0 = 1/λ of the momentum in vacuum” and “is no longer real and will be indicated
by χ+iγ where γ represents the damping”. “The damping is always small for metals with
large negative values of ε; although heat production is proportional to the “conductivity”
σ, increasing σ at constant ε has the effect of expelling the wave from the metal and of
increasing the fraction of the time spent by the radiation outside the metal.”

Fano’s conclusion is clear: Wood anomaly takes its essence from a phenomenon,
“which is analogous to the resonance of a mechanical oscillating system excited with
its proper frequency”, provided that the tangential parallel momentum of the incident
wave augmented by a multiple of the grating wave-vector modulus “approaches
the proper value”. Denoting by kSP (surprisingly Fano does not give any analytical
expression) the complex proper value and assuming that the grooves are infinitely
small and thus neglecting multiple scattering (Fig. 3.2), the microscopic interpretation
by Fano leads to the following phase-matching condition:

Re(kSP) = kx + kR . (3.1)
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Fig. 3.2 Geometrical representation of Rayleigh’s and Fano’s anomaly conditions (from [11]).
Rayleigh’s condition requires that the part of the wave (scattered by groove A) traveling
along the grating with the vacuum phase velocity reaches the neighboring groove B in
phase with the incident wave and with the waves scattered by the grooves A′, A′′. . . This
explains the so-called Rayleigh anomaly that occurs whenever a diffracted wave emerges at grazing
incidence. What Fano proposes to explain the red-shifted Wood anomaly is to replace the free-space
grazing wave of Rayleigh by a bounded mode (Fano calls this “superficial wave” in relation with
the work performed by Sommerfeld on radio waves progressing on the surface of the earth) with a
smaller phase velocity. This bounded mode is nothing else but the SPP of the flat metallic surface,
which will be discovered 16 years after by Richie

This condition is very close to the Rayleigh condition, the difference lying in the
fact that k0 is replaced by Re(ksp). The theoretical works that followed Fano’s one and
that contributed to establishing the electromagnetic theory of gratings have mainly
consisted in developing a theoretical and computational framework for quantitatively
predicting the exact location and shape of grating anomalies through a study of the
surface leaky mode of the interface dressed by periodic indentations. A pioneer
article by Hessel and Oliner [14] has been followed by an impressive series of works
summarized in [9, 15, 16] and in Chaps. 1 and 2 by Maystre, which contributed to the
systematic development of a phenomenological study of grating anomalies through
the poles (the surface leaky modes) and zeros of the scattering operator.

3.3 Why Question the Initial Plasmonic Interpretation?

An important observation of the initial report [1] of the EOT was the clear spectral
dependence of the transmission minima and maxima on lattice period. The positions
of the minima and maxima essentially exhibit a linear dependence on the lattice period
and follow the phase-matching condition of Eq. (3.1). This observation immediately
prompted the authors in [1] to suggest that SPPs are deeply involved in the EOT.
In view of the previous considerations, the SPP interpretation of the EOT seems so
convincing and so natural that it might even appear surprising that one may even
question it. Trying to explain why the interpretation has been questioned is difficult;
nevertheless, let us attempt to give some insights.

http://dx.doi.org/10.1007/978-3-642-28079-5_1
http://dx.doi.org/10.1007/978-3-642-28079-5_2
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3.3.1 Modern Grating Theory and Local Surface Waves

There is a large conceptual distance between our naïve (but intuitive) representation
mainly used by experimentalists of the EOT phenomenon and the conceptual tools
handled by the modern theory of the electromagnetic diffraction by gratings.

Immediately following the discovery, the EOT has sparked an intense activity
aiming at designing new devices exploiting the phenomenon. Most often, the design
relies on a microscopic model that is well suited and easy to handle in various situa-
tions. By microscopic model (the word was already employed in relation with Fano’s
interpretation of Wood’s anomaly in the previous section), we intend to mean a repre-
sentation in which the local elementary waves that are scattered by every individual
hole (or groove) are at the core of the conceptual representation, like in the pioneer
theoretical work by Lord Rayleigh for perfectly conducting gratings or in Fano’s for-
malism. These waves are assumed to be initially launched on the surface by illumi-
nated holes, to further interact with the adjacent holes before being eventually radiated
back into free space. A famous example is the Bull-eye [17], a structure consisting of a
through hole placed in the middle of a large array of blind holes. When designing the
Bull-eye, researchers essentially look at optimizing the structure such that all the
SPPs launched by the blind holes interfere constructively so that they maximally cou-
ple into the through hole. Elementary (microscopic) scattering coefficients such as
the coupling coefficients between SPPs and modes in the blind or through holes are
therefore at the heart of the conceptual representation. The latter are exactly those
used by Rayleigh and Fano, when considering that each groove of the grating acts as
a center of diffusion of the incident light and hence scatters a surface wave (a graz-
ing plane wave for Rayleigh and an SPP for Fano) travelling on the grating surface,
reaching the neighboring groove in phase with the incident light.

Unfortunately, with the exception of multiple scattering theories [18] developed
in the 1950s for certain specific classes of gratings with relatively shallow groove
depths, the microscopic representation has never been explicitly formalized in fol-
lowing works; the modern theory of grating diffraction [9, 14–16] mainly considers
“macroscopic quantities” attached to the full periodicity, in particular the plane-wave
(or Rayleigh) expansion in the uniform air half space below and above the grating.
We can see that there is a large conceptual distance between the microscopic ele-
mentary waves that are locally launched by every individual groove or hole and the
set of macroscopic plane waves that are scattered eventually at grazing incidence
and that are used to numerically expand the field in air, a representation especially
appropriate for analysing the far field waves.

3.3.2 Perfectly-Conducting Case

Initial theoretical works based on classical grating theories do not convincingly
provide a comprehensive overview of the EOT and in particular cannot discuss what
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is the actual nature of the elementary waves that are at work between the holes and
that are responsible for the EOT.

The conceptual distance has embarrassed theoreticians who intended to discuss
the role of SPPs in the EOT using classical grating theories in the early 2000s. Initial
works have all considered modal methods, and have either numerically or analyti-
cally with approximations calculated the transmission spectra (initially mainly for
slit arrays) for various geometrical parameters, such as the grating depth, the inci-
dent angle of the illuminating plane wave, the slit width... The results have shown
that the transmission is weakly dependent on the metal conductivity and have pre-
dicted the EOT for various spectral ranges (visible, near-infrared…) [19–23], and
even for perfectly conducting metals, a prediction that has been further confirmed by
experimental results obtained at THz and microwave frequencies where metals are
excellent conductors. At those low frequencies, there is strictly speaking no SPP but
there exists an SPP-like mode with a pronounced photonic character (see discussion
in Chaps. 2 and 3). This mode (it would be a plane wave for perfect metal) is highly
delocalized in the air cladding (the normalized penetration depth δ/λ in air scales as
the metal refractive index, δ/λ ∝ |εm |1/2εd , εm , and εd being the relative permittiv-
ities of the metal and of the air, respectively), and it is difficult to accept that such
nearly unbounded modes would be efficiently excited by subwavelength apertures.
The fact that similar responses are observed in the visible and in the far-infrared
is really puzzling and has been overlooked in the literature. For instance, trying to
connect his work on the existence of a surface mode with Rayleigh’s theoretical work
[12] assuming perfect conductors, even Fano overlooked the difficulty [11],

“Increasing the conductivity of the metal makes the resonance phenomenon sharper and
sharper because the damping γ vanishes; at the same time χ approaches k0. Rayleigh stud-
ied only the limiting case of a perfectly reflecting metal, in which the superficial wave is
completely expelled from the metal and becomes a regular plane wave in vacuum grazing
the surface of the metal.”

As shown below, the transmission in the long wavelength regime is no longer due
to the SPP-like mode, simply because this mode is expelled out of the metal far away
in the dielectric cladding and cannot be excited with a dipole source localized on the
surface [24].

In addition, other theoretical studies performed for composite (hypothetical)
gratings whose horizontal surface is composed of a conductor with a conductivity
(that may be changed at will) have reported that the phase-matching condition of
Eq. (3.1), instead of predicting the position of transmission maxima, accurately
predicts the exact location of the minima (blue arrow in Fig. 3.1a) and that the
presence of a minimum can completely annihilate a transmission peak [23], thus
concluding a negative role of SPP on the transmission through slit arrays. Since
Eq. (3.1) is only approximate, one should not be surprised that it does not accurately
predict the position of the maxima, but despite valuable efforts [25], why Eq. (3.1)
predicts the exact location of deep (10−5 theoretically) transmission minima remains
difficult to figure out.

http://dx.doi.org/10.1007/978-3-642-28079-5_2
http://dx.doi.org/10.1007/978-3-642-28079-5_3
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3.3.3 The Quasi-Cylindrical Wave

Experimental results obtained for slit-hole doublets have evidenced that the field
scattered on the surface in the vicinity of a subwavelength aperture is only partly
composed of SPPs, even at visible frequencies [26].

In order to provide a definitive answer to the question of the involvement of
SPP in the EOT, Lezec and his coworkers have performed a series of experiments,
all aiming at measuring the near-field launched by sub-λ indentations on a metallic
surface. Curiously, before Lezec’s works [26], this near-field, despite his importance,
has not been considered in the optical literature.

However, the field scattered by sub-λ antennas in the vicinity of metallic surfaces
has been of long-standing interest in classical electromagnetism, in particular for
long-distance radio transmission and for remote sensing. In 1907, Zenneck [27] was
the first to analyze a solution to Maxwell’s equations in the presence of a planar
boundary between free space and a half-space conductor with a finite conductivity
(the sea surface for instance) and to show that a bounded “surface mode”, the analog
of the SPP at optical frequencies in cylindrical coordinate, exists.

Always in the context of long-distance propagation, another more interesting
and difficult question arises when considering a point source, such as an oscillating
Hertzian vertical electric dipole, located over this conducting plane. Far from the
source on the surface, does the field from such a dipole behave like the cylindri-
cal Zenneck wave? This problem was analyzed in detail by Sommerfeld [28, 29],
Norton [30, 31], and others. The conclusions were that the radiated field can be
calculated as an integral along a contour in the complex plane and is composed of
two contributions, the Zenneck mode (corresponding to the pole) and a “direct” wave
(corresponding to branch integrals). In an intermediate region and near the surface,
the field is well approximated by that of the cylindrical Zenneck wave; but then,
as the distance increases further, the long-distance propagation is mainly due to a
direct wave that is often referred to as the Norton wave. The latter, whose amplitude
asymptotically decays as 1/r2, overcomes the exponentially-damped Zenneck mode
at large distances. These issues are discussed in great detail in the review article by
Collin [32] or in the book by Baños [33]. Although it shares many mathematical
aspects with the Hertzian problem, the optical problem is rather different since a
conductor like seawater does not reflect radio waves as a metal reflects light; its
dielectric constant is not negative and therefore there is no total reflection by the
conducting surface. More importantly, Lezec and his coworkers were not interested
in any long-distance field behavior far away from the “antenna”, but in short-distance
interactions between indentations. In sub-λ metallic surfaces, the distance between
two neighboring indentations is of the order of the wavelength, or even smaller, and
rarely exceeds ≈10λ. The conclusions are rather different from the long-distance
interaction regime.

The experimental data in [26], which were probably contaminated by an undesired
adlayer on the silver film [34], have been interpreted in a confusing manner as shown
in [34], but they had the merit to unambiguously reveal the existence and importance
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Fig. 3.3 Magnetic field radiated at λ = 1 µm on an air/gold interface by a line source polarized
vertically. The field is composed of an SPP (dashed curve) and of a quasi-CW contribution (solid
curve). The latter takes two asymptotic forms. It is very intense and behaves as a cylindrical wave
(dotted blue line) with a 1/x1/2 decay rate at very small-distance propagation. At very long-distance
propagation, it is very weak and decays as 1/x3/2. There the quasi-CW is the analog of the Norton
wave (shown with the dotted red line) at optical frequencies

of a direct wave (different from the SPP) that rapidly drops in amplitude within the
first few micrometers from the indentation. The properties of this wave have been
rapidly studied in further theoretical [24, 34] and experimental [35] works. It has
been shown that its amplitude is initially damping as x−1/2 (just as a cylindrical wave)
in the vicinity of the indentation, then is dropping at a faster rate for intermediate
distances λ < x < 10λ, before reaching an asymptotic regime behavior with a x−3/2

damping rate [24, 36, 37]) at large propagation distances.
Figure 3.3 illustrates the different contributions to the magnetic field radiated on

an air/gold interface by a line source polarized vertically. The results hold for gold
at λ = 1 µm (εm = −46.8 + 3.5i). The dashed line is the SPP contribution, with
an exponential damping exp[−Im(kSP)x], and the solid curve is the “direct” wave
contribution. The latter dominates for small propagation distances and behaves as
a cylindrical wave (dotted blue line); it can be shown that the initial crossing point
between the SPP and the direct wave is located at x/λ = |εm |/(2πε3/2

d ) and increases
with the metal conductivity [24]. At very large distance propagation, the direct-wave
decay rate asymptotically tends to 1/x3/2. It is not unexpected; we find again the
analog of the Norton wave for metals (shown with the dotted red line) at optical
frequencies.

For intermediate distances of interest for sub-λ metallic surfaces (x > 10λ),
the direct wave is very different from the Norton wave; it looks like a cylindrical
wave, but with a slightly larger decay rate, and has been consistently called a quasi-
cylindrical wave (quasi-CW) in the recent literature. The magnetic field (red curve)
of the quasi-CW is illustrated in Fig. 3.4. The results have been obtained for gold
at λ = 1 µm. Differently from the Norton wave, there is no asymptotic expansion
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Fig. 3.4 Magnetic field of the quasi-CW radiated at λ = 1 µm on an air/gold interface by a line
source polarized vertically and located on the surface at x = 0. The red curve is directly obtained
by solving Maxwell’s equations and the blue dots are obtained with an expression of the form
(x/λ)−mexp(ik0x), with m = 0.8 and with k0 the free-space wave number

that accurately describes the property of the wave, however as shown by the blue
dots, an expression of the form (x/λ)−mexp(ik0x), with m = 0.8, can be considered
as reasonably accurate. The fitted exponent m depends on the metal and dielectric
permittivities; the general trend for noble metals is a decrease of m from m ≈ 1 in
the visible part of the spectrum to 0.5 at thermal-infrared frequencies [24].

3.4 Explaining the EOT with Grating Theories

For a detailed review of theoretical works on the EOT, the interested reader may refer
to [38]. Hereafter, we briefly summarize a few selected contributions, which together
provide a satisfactory overview of the concepts involved. The analysis is performed
for a self-supported membrane in air for the sake of simplicity (the upper and lower
grating interfaces are identical, see Fig. 3.5a). It essentially aims at explaining what
is learnt from grating theories and what is not.

The first theoretical calculations [39] of the EOT were performed with the
Rigorous Coupled Wave Analysis (RCWA), a modal method often used for analyzing
the diffraction by gratings. The authors showed that the transmission is essentially
driven by a single Bloch mode of the 2D hole array (the supermode formed by the
coherent superposition of all the fundamental modes of every individual hole modes),
and computed data closely matched with the initial observations. That first analysis
was further refined by computing the poles and the zeros of the scattering operator
relating the incident and scattered plane waves of the perforated membrane [39], and
it was shown that the zero-order transmission coefficient t0 of the membrane can be
well fitted with a phenomenological Fano line shape,

t0 = c(λ− λZ )/(λ− λP ), (3.2)
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Fig. 3.5 Tunneling effect
interpretation (from [40]).
a Self-supported geometry in
air considered in this work
for the sake of simplicity.
The transmission coefficient
of the membrane (between
the incident plane wave and
the (0,0)th-order transmitted
plane wave) is denoted by t0.
Similarly we denote by tA
and rA the transmission and
reflection coefficients of the
fundamental Bloch mode sup-
ported by the 2D hole array.
The membrane thickness is
denoted by d. b Sketch of the
spectra of the scattering coef-
ficients, which resonate for a
wavelength that corresponds
to the transmission peak in
Fig. 3.1a (green arrow)

where c is a constant which does not depend on the wavelength, and λZ and λP are
two complex numbers that were calculated numerically using the RCWA. Such a
phenomenological expression (see Chaps. 1 and 2) is very accurate; the red curve in
Fig. 3.1a shows an example of a fit with a Fano line shape.

Immediately following that first analysis, and exploiting the fact that the trans-
mission is governed by a single Bloch mode of the 2D hole array, Martin-Moreno
et al. [40] proposed a simplified modal analysis. Assuming that the light transport
between the upper and lower interfaces is solely due to the fundamental evanes-
cent Bloch mode of the hole array, they derive a Fabry–Perot-like formula for the
transmission coefficient t0 of the membrane

t0 = t2
A exp (ik0nd)

1 − r2
A exp (i2k0nd)

, (3.3)

http://dx.doi.org/10.1007/978-3-642-28079-5_1
http://dx.doi.org/10.1007/978-3-642-28079-5_2
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where tA and rA (Fig. 3.5a) are the transmission and reflection coefficients associated
to the coupling of the incident plane wave with the fundamental hole-array Bloch
mode and to the refection of this mode on the bottom or top interface.

Because the holes are tiny, the fundamental Bloch mode of the 2D array is evanes-
cent and its normalized propagation constant n = kz/k0 is a complex number with
a large imaginary part. Thus the exponential terms in Eq. (3.3) are small quanti-
ties: The energy transfer is essentially a tunneling effect. One of the main merits of
the single-Bloch-mode approximation is to reveal that all the scattering coefficients
associated to a single isolated interface (between a homogenous half-space and
a metal substrate perforated by infinitely deep holes) have a Lorentzian shape
(Fig. 3.5b) and may take values much larger than unity for wavelengths slightly
larger than the period a. Mathematically, this implies that the scattering matrix asso-
ciated to a single interface admits a complex pole, the surface leaky mode of the
interface perforated by a 2D hole array. Note that this differs from the previous
analysis leading to Eq. (3.2), where the pole and the zero are attached to the whole
problem, composed of two interfaces.

What is happening mathematically is that for specific wavelengths and thickness d,
the product of r2

A exp(i2k0nd) may be close to unity, so that the real part of the denom-
inator in Eq. (3.3) vanishes. In other words, the tunneling (and therefore basically
inefficient) transmission that couples the fields at both sides of the membrane is
boosted by surface electromagnetic leaky modes that are resonantly excited at peak
transmission. This resonant tunneling mechanism is widely accepted nowadays as
playing a major role in the EOT. That physical picture was first derived by assuming
surface-impedance boundary conditions in [40]. It has been further corroborated by
more sophisticated calculations able to deal with the dielectric response of metals at
optical frequencies [41]. The calculations show that, for thick enough membranes,
the spectral locations of the transmission maxima are perfectly matched with the
leaky mode wave vector kLM through a wave vector of the 2D reciprocal lattice,

Re(kLM) = kx + kR . (3.4)

The parameters in Eqs. (3.2) or (3.3) all rely on physical quantities that are macro-
scopic, in the sense that they are defined for the entire periodic structure. For instance,
the pole in Eq. (3.2) corresponds to a leaky mode supported by the grating geom-
etry. Similarly the scattering coefficients in Eq. (3.3), the tA and rA, are related to
delocalized and pseudo-periodic quantities.

Although conceptually meaningful, the simplified Fabry–Perot model does not
provide a self-consistent description of the EOT. In particular, the Fabry–Perot for-
mula explains the resonance of the transmission t0 by the resonance of another
scattering coefficient rA. This is somewhat like shifting the problem: the real cause
for the resonance is not explicitly handled. In reality, nothing is known about the
actual waves that are launched in between the holes and that are responsible for
the EOT. One has to admit that the electromagnetic theory of diffraction by gratings,
although really mature by the end of the 1980s, does not allow a fine description of
the EOT phenomenon and in particular of the role of SPPs. This is simply because the
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theory is very general: only macroscopic or global quantities (such as plane waves
or Bloch modes) are considered.

3.5 Microscopic SPP Theory

Indeed what is missing is a microscopic analysis, which explicitly considers the local
excitation of surface waves in between the holes, their further scattering at nearby
holes, their coupling to free space and to the holes themselves. Thinking that way,
one would get a microscopic description of light scattered by metallic gratings, a sort
of structuring of the initial picture developed by Rayleigh [12] and Fano [11].

At a microscopic level, the basic mechanism enabling the EOT is a coherent
diffraction by all the individual holes acting as elementary scatterers. However, it is
more convenient to consider isolated 1D arrays of holes (a periodic hole chain with
periodicity a in the y-direction, see Fig. 3.5) perforated in a metal substrate as the
elementary scatterers.

In order to determine the actual contribution of SPPs to the funneling effect
of Fig. 3.1b, one may first build a microscopic pure-SPP model that relies on the
assumption that the electromagnetic interaction among the chains is only mediated
by the SPPs of the flat interfaces between the chains, other contributions due to the
quasi-CW being neglected. Then by comparing the predictions of the model with
fully vectorial computational results, one may directly determine the role of SPP in
the EOT. This is exactly the approach developed in [10].

The elementary scattering events used in the pure-SPP model are shown in Fig. 3.6
for classical diffraction geometries (the y-component ky of the in-plane wave-vector
momentum is zero). Upon interaction with the chain, the SPP modes are partly
excited, transmitted, reflected, or scattered into the chain mode and into a continuum
of outgoing plane waves. The interaction defines four elementary SPP scattering
coefficients. Two coefficients, see Fig. 3.6a, namely the SPP modal reflection and
transmission coefficients, ρSP and τSP, correspond to in-plane scattering. The other
two, αSP and βSP, correspond to the transformation of the SPPs into aperture modes
or radiation waves, and vice versa, and they link the local field on the surface to the
far field.

From these elementary SPP scattering coefficients, a coupled-mode model that
provides closed-form expressions for the transmittance and reflectance coefficients
of the fundamental Bloch mode, tA and rA, is readily derived [10]. For instance, the
reflection coefficient rA of the fundamental Bloch mode of the 2D hole array, a very
important physical quantity of the EOT phenomenon, can be written

rA = r + 2α2
SP

u−1 − (ρSP + τSP)
. (3.5)



98 P. Lalanne and H. Liu

Fig. 3.6 SPP elementary scattering processes involved in the EOT. They are all associated to a
single 1D hole chain under illumination by a the SPP mode, b the fundamental Bloch mode of
the hole chain, and c an incident TM-polarized (magnetic vector along the chain direction) plane
wave impinging at an oblique incidence defined by its in-plane wave-vector component kx . The red
and green arrows refer to the incident and scattered modes, respectively. The processes in (a), (b),
and (c) define six independent elementary scattering coefficients, ρSP reflection coefficient of the
SPP mode, τSP transmission coefficient of the SPP mode, αSP (scattering coefficient from the SPP
mode to the fundamental Bloch mode and vice versa according to the reciprocity theorem), β(kx )

(scattering coefficient from the SPP mode to the outgoing plane wave with an in-plane wave-vector
component kx and vice versa), t (kx ) (scattering coefficient from the fundamental Bloch mode to
the plane wave and vice versa), and r (reflection coefficient of the fundamental Bloch mode)

In Eq. (3.5) that holds for normal incidence (kx = 0), u = exp(ikSPa) is the phase
delay accumulated by the SPP over a grating period and r is the reflection coefficient
of the fundamental mode of the hole chain, see Fig. 3.6b.

It is crucial to realize that the SPP scattering coefficients involved in Eq. (3.5) are
not related to the periodicity of the structure. All those coefficients are non-resonant.
We are therefore at the heart of the EOT mechanism. Indeed, the essence of Eq. (3.5),
and in particular of the denominator that results from a geometric summation over
all chain contributions, is a multiple scattering process that involves the excitation
of SPP modes by the incident field and further scatterings of the excited SPPs onto
the infinite set of periodically spaced chains.

The pure SPP model (by the “pure-SPP model”, we intend to emphasize that
the electromagnetic interaction among the chains is only mediated by SPPs) shines
new light on the resonance-assisted tunneling effect, by proposing an explicit mech-
anism of the resonance at the upper and lower interfaces of the metal membrane.
From Eq. (3.5), the resonance originates from the presence of zeros in the multiple-
scattering denominator u−1 − (ρSP + τSP). The latter involves only the two elemen-
tary elastic scattering coefficients that are related to the scattering problem shown
in Fig. 3.6a. As shown in [10] for tiny holes, the SPP scattering process of Fig. 3.6a
is almost energy conservative. Actually |ρSP + τSP| ≈ |τSP| is very close to 1, and
thus to |u−1|, which is slightly larger than unity because of the small SPP damping
through propagation over the subwavelength period. Thus the denominators of rA

(and of tA [10]) can be made very close to zero, whenever the SPP scattering events
of the hole chains constructively interfere for
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Fig. 3.7 The role of SPPs in the EOT. The red-solid curves represent fully-vectorial RCWA data
and the blue-dashes are predictions obtained with the pure-SPP model. The black dash-dot curves
(almost superimposed with the RCWA results) are obtained with a refined microscopic model [42]
that takes into account SPPs and quasi-CWs. The data are collected for a gold membrane in air
perforated by a periodic array of square holes illuminated by a normally incident plane wave, with
the same parameters as in [10]: the hole side length is D = 0.28a (hole filling fraction 8%) and
the membrane thickness is d = 0.21a, a being the grating pitch. Three spectral bands are covered,
from visible to near-infrared frequencies: a a = 0.68 µm, b a = 0.94 µm, and c a = 2.92 µm

Re (kSP) + arg (τSP) /a = kx + kR . (3.6)

The phase-matching condition of Eq. (3.6) admits a very simple interpretation.
At resonance, the phase shift kx a between two plasmons generated by two adjacent
hole chains equals the delay Re(kSP)a experienced by the plasmon propagating
over a single period augmented by a weak retardation arg (τSP) acquired by the
plasmon when flying over a single chain. This interpretation is consistent with our
intuitive representation of a resonance surface Bloch mode built up from a coherent
superposition of many elementary SPPs scattered by individual hole chains that sum
up constructively (Fano’s argument). For slit arrays, the physics is radically different.
Even narrow slits support a propagative mode and SPPs efficiently scatter into this
mode. The scattering problem in Fig. 3.6a is no longer energy conservative as the
fundamental TEM0 mode of the slit carries some energy. The modulus of τSP becomes
significantly smaller than one and the upper and lower interfaces no longer resonate.

3.6 The Role of Surface Plasmons in the EOT

The question arises as how much the pure-SPP model may capture the EOT
phenomenon. The answer is provided in Fig. 3.7, by comparing the pure-SPP model
predictions with fully vectorial computational results obtained with the RCWA. The
comparison is performed for three spectral intervals, from the visible (a = 0.68 µm)

to the near-infrared (a = 2.92 µm).



100 P. Lalanne and H. Liu

The pure-SPP model quantitatively predicts all the salient features of the EOT,
and especially the Fano-type spectral profile with the antiresonance transmission dip
followed by the resonance peak. Importantly, there are also some discrepancies that
are due to the model assumption of a pure-SPP electromagnetic interaction between
the hole chains. As evidenced in Fig. 3.7, the SPPs account for only half of the total
transmitted energy at peak transmittance at visible frequencies, and only one-fifth at
longer wavelength in the near-infrared. The reason comes from the fact that the total
nearby field scattered on the interface by hole chains (or more generally by subwave-
length indentations) is not a pure-SPP mode; as discussed in Sect. 3.3, it additionally
incorporates the quasi-CW, which creeps along the interface over several wavelength
distances, with an initial amplitude damping approximately scaling as (1/x)1/2.
At visible frequencies, the quasi-CW-field decay rate is much faster than the SPP
one, but at subwavelength distances (x/λ ≈ 1) from the chain (like those encoun-
tered in the EOT), the two waves almost equally contribute to the total field. As the
wavelength increases, the SPP propagates further and further, but it is also less and
less efficiently excited. The quasi-CW excitation does not follow this scaling law;
in fact, it can be shown that the quasi-CWs are equally excited at all energies [24,
34]. This well explains the general trend shown in Fig. 3.7: the SPP enrolment in the
EOT becomes less and less important as the wavelength increases.

Recently, a refined microcopic model, which incorporates both the SPP and the
quasi-CW, has been derived. This has been achieved by defining scattering coef-
ficients for the quasi-CW, including cross-conversion from quasi-CW to SPP and
vice-versa. The refined model [42] preserves the intuitive surface-wave progression
picture of the pure-SPP model, but in addition it provides quantitative predictions,
as shown by the dotted-dashed black curves in Fig. 3.7. The conceptual similarity
between the pure-SPP model (aimed at evidencing the role of SPPs) and the improved
model (aimed at obtaining accurate predictions) is readily found in the mathemat-
ics of the improved model: for instance, the improved expression for the reflection
coefficient rA reads as

rA = r + 2α2
SP

(h−1 + 1) − (ρSP + τSP)
. (3.7)

Equation (3.7) is very similar to Eq. (3.5), the only difference being the replace-
ment of u−1 by a new term (h−1 + 1), which encompasses the SPP u−1 term and
an additional contribution corresponding to the interference of all the individual
quasi-CWs scattered by every hole chains of the array [42]. In addition to provide a
complete or accurate microscopic interpretation of EOT, the refined model may also
be used as a semi-analytical design tool that is more efficient than the fully-vectorial
numerical methods.
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3.7 Conclusion

The Wood resonance anomaly is at the heart of the EOT phenomenon, as nicely
explained by the resonance-assisted tunneling mechanism. Nevertheless, nearly
70 years after Fano’s interpretation, an apparently “simple” grating diffraction phe-
nomenon can surprisingly initiate intense research and a strong debate. The cause is
the large conceptual distance that separates the mature tools (such as the polology) of
classical grating theories and our intuition of the physics of subwavelength metallic
surfaces. When people ask themselves what is the role of SPP in the EOT, they are
back to the pioneer works by Rayleigh, Fano..., who established the foundation of
modern grating theories using a microscopic analysis.

Indeed, the analysis of subwavelength metallic surfaces should be done with fully
vectorial numerical tools. However, fully vectorial numerical methods, like those
used in the main text to calculate the zero-order diffraction efficiency and the SPP
scattering coefficients, are very limited. With the exception of periodic geometries
(such as gratings), they require tremendous computational resources as soon as the
number of indentations exceeds a few unities. And fully vectorial numerical methods
are not advantageous in achieving physical intuition.

In addition to apparently closing the debate on the role of SPPs in the EOT
(or more generally in metallic grating scattering problems), the microscopic model
may also be viewed as a numerical tool. In its generalized version that includes
the quasi-CWs, it offers highly accurate predictions (the deviation between the red
and black curves in Fig. 3.7 is almost imperceptible) over a broad spectral range
(below the plasma frequency of the metal). In addition, it is not restricted to the
analysis of gratings. It may apply as well to the general case of metallic surfaces
composed of an arbitrary set of N possibly different indentations located at arbitrary
positions on the surface, provided that the indentations are sub-λ. Since the numerical
efforts required to calculate the microscopic scattering coefficients, ρSP, τSP . . . , are
really affordable because single scatterers are easily modelized with fully vectorial
methods, the overall computational effort needed for the microscopic model remains
modest [43].

Finally and perhaps more importantly, by promoting a surface-wave-progression
picture, where SPPs and quasi-CWs are initially launched by some illuminated sub-λ
indentations, then propagate on the surface, before being further scattered by nearby
indentations, the model sticks to our physical intuition: the surface-wave progression
is the conceptual tool that one uses for designing plasmonic devices.
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Chapter 4
Introduction to Surface Plasmon Theory

Jean-Jacques Greffet

Abstract This chapter is an introduction to the surface plasmon theory. We start
with the solid-state point of view with emphasis on the concept of polariton and
the limits of the Drude model. The concept of electromagnetic surface wave is then
introduced in a general framework. Three particular cases are then discussed: the
surface plasmon, the surface phonon polariton and the Sommerfeld surface wave.
The key properties of surface plasmons for optics are discussed in general terms,
with special emphasis on the concepts of field confinment and local density of states.
The differences between the dispersion relations of surface waves in the presence of
losses are analysed and their significance is explained. Finally, an equivalent of the
Huygens–Fresnel principle is derived for the surface plasmon polaritons.

4.1 Introduction

This chapter is part of a book devoted to the optics of surface plasmons. The term
surface plasmon is used both for polarization oscillation of metallic nanoparticles
and for waves propagating along a plane interface and exponentially decaying away
from the interface. This chapter will mostly cover the latter case. From the point of
view of electrodynamics, surface plasmons are a particular case of a surface wave, a
topic that has been extensively covered in the early days of radiowave propagation
along the earth [1–4]. From the point of view of optics, surface plasmons are modes
of an interface. They have been extensively studied in the 1970s and 1980s. Several
excellent monographs are available from this point of view [5–7] and more recent
achievements are summarized in Refs. [8–10]. Finally, from the point of view of solid-
state physics, a plasmon is a collective excitation of electrons. Excellent introductions
can be found in well-known textbooks [11, 12] and in more advanced texts [13–15].
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The goal of this chapter is to provide an introduction to the three different points
of view and to serve as a lecture guide. In the first section, we will show how the
plasma frequency can be seen as the natural oscillation frequency of electrons in a
thin film. This (solid-state) point of view will be generalized to bulk plasmons in
an electron gas in the second section using a hydrodynamic model. This analysis
will serve the purpose of explaining the concept of polariton: an electromagnetic
wave coupled to a polarization excitation in the material. We will then adopt the
macroscopic electrodynamics point of view and derive the dispersion relation of a
surface wave. In this approach, the material properties are accounted for by using a
dielectric constant without any microscopic model. We will discuss the similarities
and differences between different types of surface waves (lateral waves, Zenneck
modes, Sommerfeld modes, quasicylindrical waves) without invoking any specific
model of the dielectric constant. Hence, this discussion will be equally valid for
radio waves or optical waves, for metals or dielectrics. We will then focus on the
case of surface plasmon polaritons. To this aim, it is often convenient to use the Drude
model but it is also critical to be aware of its limitations. This will be summarized in
Sect. 4.5. Surface phonon polaritons and radio surface waves will be introduced in the
following sections. In Sect. 4.8, we will outline the key properties that make surface
plasmons so unique. The aim of this section is to identify fundamental properties of
surface plasmons that may help us to decide when surface plasmons can be useful for
optics applications. The subtle issue of the dispersion relation of surface plasmons
on lossy materials will be analysed in Sect. 4.9. Finally, surface plasmon optics will
be the subject of the last section. It will be shown how the propagation of surface
plasmons along a flat interface can be modelled using a Fourier optics framework

4.2 Surface and Particle Electron Oscillation Modes:
Introductory Examples

To start, we consider a thin metallic film. The metal is described by a simple model:
we assume that there are n free and independent electrons per unit volume. The
crystal lattice is modelled by a uniform positively charged background. This is the
so-called jellium model. The purpose of this section is to illustrate the essence of a
plasmon: it is an oscillatory collective mode of the electrons. To proceed, we assume
that classical mechanics can be used.

Let us now assume that a positive static homogeneous electric field Eext x̂ is applied
normally to the film along the x-axis (see Fig. 4.1). A force −eEextx̂ is exerted on the
electrons so that they will be displaced by x (with x < 0). A negative static surface
charge nex will appear on the left interface and a positive surface charge on the right
side. These surface charges produce a static field that cancels the external field in
the metal. Let us now assume that the external electrostatic field is turned off at time
t = 0. The electrons in the film will be accelerated by the electric field generated by
the surface charges. When they return to their initial position, they have acquired a
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Fig. 4.1 Oscillation of the electron gas for a a thin film, b a metal–vacuum interface, and c a
nanosphere

momentum so that they keep moving along the positive x-axis and therefore generate
an electric field of opposite sign. This process will be repeated and will produce an
oscillation. It is easy to quantitatively describe this phenomenon by using Newton’s
law applied to a single electron:

m
d2x

dt2 = −eEx , (4.1)

where we have neglected the magnetic force. Using Gauss’s theorem, it can be shown
that the field generated by a sheet carrying a surface charge nex is (nex/2ε0)u where
u is an outward unit vector. It follows that the field generated by the surface charge nex
for a displacement x is found to be Ex = 2nex/2ε0 where the factor 2 accounts for
the presence of two interfaces. It follows from Newton’s equation that the movement
of one electron is given by:

d2x

dt2 + ne2

mε0
x = 0. (4.2)

This simple argument allows us to introduce in a simple way the plasma frequency
ωp:

ω2
p = ne2

mε0
(4.3)

that appears to be the frequency of the collective oscillation of the electrons in the
bulk of the film. To summarize, the oscillation is produced by an electric field due
to all the electrons. This is why it is called a collective oscillation. With this simple
argument, we have captured the essence of the plasmon: it is the natural collective
oscillation of the electrons characterized by the plasma frequency.

We now consider the case of a single interface. In other words, we consider that
the thickness of the film goes to infinity so that the force is only due to the charge
density of one interface. It follows that the electric field is due to only one interface
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instead of two and takes the value nex/2ε0. The oscillation frequency is therefore
ωp/

√
2.

We finally consider the case of a nanosphere. For a sphere much smaller than
the wavelength, retardation effects can be neglected so that we can use the electro-
static form of the field generated by a uniform polarization field Px of the particle
Ex = −Px/3ε0 [16]. Inserting this form of the electric field in Eq. (4.1) yields:

m
d2x

dt2 = −e
−Px

3ε0
. (4.4)

The polarization Px is due to the displacement of the electrons so that we have
Px = −nex . Upon inserting this expression in Eq. (4.4), we find:

d2x

dt2 + ne2

3mε0
x = 0. (4.5)

so that the resonance frequency of the plasmon in a nanosphere is given by ωp/
√

3.
The modes of a sphere will be further discussed in the chapter written by

J. Aizpurua and R. Hillenbrand . In this chapter, we will focus on surface modes
that can propagate along a flat interface while decaying exponentially on both sides
of the interface. Here, we simply make a comment on terminology. It turns out that
both nanosphere modes and modes propagating along an interface are called surface
modes although they are different.

4.3 Bulk Plasmon

4.3.1 Hydrodynamic Model: The Concept of Polariton

We now consider a more general analysis of the concept of plasmon. We do not
consider a specific geometry. Instead, we look for a general equation describing a
charge density wave in an infinite homogeneous electron gas. Our primary objective
in this section is to illustrate the concept of polariton in the particular case of a
plasmon. The key idea that will be introduced here is that when an electromagnetic
wave propagates in a material medium, the field polarizes the medium and therefore
excites a mechanical movement of the charges. It follows that field and charges are
coupled. This coupled excitation is called a polariton. In the case of a metal, the field
can couple to a longitudinal charge density wave that can be viewed as an acoustic
wave in the electron gas. The resulting polariton is called a plasmon polariton. In an
ionic crystal like NaCl for instance, an electromagnetic field can excite the mechanical
motion of the ions (a phonon) and therefore generate a polarization oscillation. This
is called a phonon polariton. Finally, the coupling between the field and an electron-
hole pair (an exciton) is called exciton polariton. The purpose of this section is to
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provide a simple explicit model of this coupling in the case of a metal within the
jellium model introduced above. We will use a hydrodynamic model to derive the
equation of the charge density wave. To begin, we write Euler’s equation, the mass
conservation and Gauss–Maxwell equation:

nm

[
∂v
∂t

+ v · ∇v
]

= −neE − ∇ Pe,

∇ · (nv) = −∂n

∂t

∇ · E = n − n0

ε0
(−e), (4.6)

where Pe is the electronic pressure and n(x, t) is the number of electrons per
unit volume. We finally introduce the compressibility of the electron gas ∂Pe/∂n
= mv2

F/3 where vF is the Fermi velocity [12]. When looking for a small amplitude
perturbation n1(x, t) = n(x, t) − n0 and Pe1 = Pe − Pe0 where x0 indicates the
equilibrium value of x, the non-linear term v · ∇v can be neglected. Let us comment
on this set of equations. For a neutral gas, the electric force −neE in Euler’s equa-
tion would be suppressed. One would then find the usual propagation equation for
acoustic waves. Here, after linearizing, we find a set of two coupled linear equations:

∇2n1 − 3

v2
F

∂2n1

∂t2 = −3n0e

mv2
F

∇ · E

∇ · E = n1

ε0
(−e). (4.7)

This system clearly exhibits the coupling between the acoustic wave and the
electric field. It is seen that the electron density satisfies a propagation equation with
a source term given by the divergence of the electric field. Similarly, the equation
describing the longitudinal component of the electric field is driven by the electron
density modulation n − n0. The resulting coupled oscillation is called a polariton.
The key idea here is that the acoustic and the electromagnetic fields are no longer
modes of the system. The mode of the system is a coupled mode called polariton.
It can be viewed as an object which is half a photon and half a phonon.

It is now a simple matter to eliminate the electric field and find the propagation
equation for the electron density wave that accounts for both the pressure force and
the electric force. When searching for a solution of the form exp(ikx − iωt), we find
the dispersion relation:

ω2 = ω2
p + v2

F

3
k2. (4.8)

It turns out that the electric force yields theω2
p contribution, which is much larger than

the pressure contribution v2
F k2 for wavevectors in the optical regime (i.e. k � ω/vF ).
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It follows that in the optical regime, the dependence of ω on the wavector can be
neglected.

To summarize this section, it has been shown that the plasmon appears to be an
acoustic wave in an electron gas. As the particles are charged, an additional electric
force has to be accounted for. It turns out that this electric force yields the dominant
contribution so that the waves are essentially spatially non-dispersive. Note also that
with this approach, it clearly appears that the electric field is parallel to the wavevector
as it is due to the charge density gradient.

4.3.2 Bulk Plasmon: Electromagnetic Model

When studying the propagation of waves in a vacuum, we always focus on transverse
waves as longitudinal solutions do not exist. This is no longer the case in a material
medium. Plasmons are longitudinal solutions of Maxwell equations. In the previous
section, we have studied the propagation of coupled mechanical and electromagnetic
waves using a hydrodynamic model of a metal. We have found that the electromag-
netic solution has an electric field, which is parallel to the wavevector. From a more
general perspective, this solution is a longitudinal solution, namely a solution that
satisfies ∇ × E = 0. Such a solution is therefore fully described by the equation
∇ · D = 0. In this section, we examine the existence of a longitudinal solution of
Maxwell equations without invoking a specific model of the medium. If we assume
that the medium is linear, homogeneous and isotropic, we can introduce a dielectric
constant. The most general linear form includes a dependence on the frequency and
the wavevector ε(k,ω):

D(k,ω) = ε(k,ω)E(k,ω). (4.9)

The dependence of ε(k,ω) on ω is called dispersion and the dependence on k is
called spatial dispersion. This dependence on the wavevector leads to a non-local
relation between the electric field and the vector D in direct space so that spatial
dispersion and non-local dielectric constant are two aspects of the same property:

D(r,ω) =
∫

dk
8π3 ε(k,ω)E(k,ω) exp(ik·r) =

∫
ε(r − r′,ω)E(r′,ω)dr′. (4.10)

The equation ∇ · D = 0 can be cast in the form:

∇ · D = ∇ ·
∫

dk
8π3

dω

2π
ε(k,ω)E(k,ω) exp(ik · r − iωt)

=
∫

dk
8π3

dω

2π
ε(k,ω)[ik · E(k,ω)] exp(ik · r − iωt) = 0. (4.11)
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If we seek a non-zero longitudinal electric field, then k · E(k,ω) �= 0 so that
ε(k,ω) = 0. A local medium has a dielectric constant that does not depend on
k so that the dispersion relation of the longitudinal solution is given by ε(ω) = 0.

For the particular case of a non-lossy Drude model, ε(ω) = ε0(1 − ω2
p/ω

2) so
that we find ω = ωp in agreement with the local approximation of Eq. (4.8). The
discrepancy with the previous section illustrates the fact that the Drude model is an
approximation that does not account for the k-dependence of the dielectric constant.
This is usually an excellent approximation as we have discussed above. Yet, it is
necessary to be aware that the Drude model is valid, provided that k � ωp/vF .
Models accounting for the k-dependence of the dielectric constant (i.e. non-local
models) are discussed in Refs. [12–14, 17].

4.4 Surface Electromagnetic Wave

So far, we have introduced the concept of polariton and the particular case of a
bulk plasmon polariton. Let us emphasize that we have only discussed waves prop-
agating in a bulk medium. Moreover, we have studied longitudinal electromagnetic
modes. We now consider waves propagating along an interface which are transverse.
The aim of this section is to search for a solution confined close to the interface. More
precisely, we look for a solution that decays exponentially away from the interface.
At this stage, we do not make any particular assumption regarding the specific prop-
erties of the medium. Hence, the surface wave dispersion relation that we will find
can be applied to any material (e.g. metals, dielectrics) and any frequency range
(e.g. radio waves, IR, visible). The only assumption made in what follows is that
the media are local and isotropic. Hence, they are characterized by a complex
frequency-dependent dielectric constant εr and a complex frequency-dependent
permeability μr . We denote the upper medium (z > 0) with the index 1 and the
lower medium (z < 0) with the index 2 as indicated in Fig. 4.2. We denote k the
wavevector and denote (α,β, γ) its Cartesian components and k its modulus.

4.4.1 Dispersion Relation for the Non-Magnetic Case

The electric field obeys the Helmholtz equation in both media:

∇2Ei + μi εi
ω2

c2 Ei = 0, (4.12)

with i = 1, 2. For a p-polarized solution (also called TM for transverse magnetic),
we seek a solution of the form:
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Fig. 4.2 Schematic repre-
sentation of the exponential
decay along z of the amplitude
in media 1 (dielectric) and
2 (metal) of a surface wave
propagating along the x-axis

x

z

1

2

z > 0 Ex1 = E0 exp[iαx + iγ1z]
z < 0 Ex2 = E0 exp[iαx − iγ2z] (4.13)

that satisfies the continuity condition along the interface. Here,

γ1 = [μ1ε1ω
2/c2 − α2]1/2 (4.14)

with I m(γ1) > 0 and

γ2 = [μ2ε2ω
2/c2 − α2]1/2 (4.15)

with I m(γ2) > 0 so that the waves decay exponentially far from the interface. We
look for transverse waves so that, by definition, ∇ · E = 0. In Fourier space, this
relation becomes k · E = 0 where k = (α, 0, γ). We stress that this equation does
not have the usual geometrical meaning of two perpendicular real vectors because k
is complex. In other words, transverse (i.e.∇ · E = 0) should not be confused with
perpendicular. It follows that:

z > 0 Ez1 = −k E0

γ1
exp[iαx + iγ1z]

z < 0 Ez2 = k E0

γ2
exp[iαx − iγ2z]. (4.16)

If we now enforce the continuity condition of the z-component of εE at the inter-
face, we obtain:

ε1γ2 = −ε2γ1. (4.17)
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Fig. 4.3 Polarization of the surface plasmon polariton. The figure illustrates the surface charge
density wave. It follows that the electric field has a normal component at the interface that oscillates.
The figure shows that the continuity of the field in the vacuum requires a curvature of the field lines.
The electric field is thus elliptically polarized in the plane (x, z)

These equations are the dispersion relations of the surface wave. To obtain a more
explicit form, we take the square of both terms. Note that we lose the sign at this
point so that we will need to check that the final solution satisfies the original disper-
sion relation. For TM-polarization, the solution for α is denoted as KS P (ω) and is
given by:

K 2
S P (ω) = ω2

c2

ε1ε2

ε1 + ε2
. (4.18)

A similar calculation for the magnetic case in s-polarization yields:

μ1γ2 = −μ2γ1. (4.19)

4.4.2 Polarization of the Surface Wave

We have seen that the electric field of a surface wave propagating along the x-axis
has two components along the x and the z axes. Moreover, the z-component of the
electric field is complex. Hence, the electric field has an elliptic polarization in the
(x, z) plane. This peculiar polarization can be understood from the following remark.
The existence of a z-component of the electric field entails the presence of a surface
charge Pz2 − Pz1 along the interface. Hence, the surface wave can be viewed as
a surface charge density wave propagating along the x-axis as depicted in Fig. 4.3.
Since in the vacuum above the interface the field lines must be continuous, there
must be an x-component of the field to close the line fields (see Fig. 4.3).

It is worth emphasizing a difference between the current density and the sur-
face charge associated with the surface plasmon. Although the current density
j = −iωP = −iωε0(ε2 − 1)E penetrates in the metal over the skin depth, the
surface charge does not penetrate in the metal as ∇ · P = ε0(ε2 −ε1)∇ · E = 0 below
the interface. The contribution to the surface charge is a pure surface term given by
Pz2 − Pz1. For a metal–vacuum interface, it is simply given by Pz2. From a physical
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Table 4.1 Decay length for a surface plasmon propagating along a gold/vacuum interface

λi (µm) 0.633 1 10 36

δx 9.8 91.6 38,880 504,243
δz1 0.165 0.51 57.3 702.67
δz2 0.014 0.012 0.011 0.013

Data taken from Etchegoin et al. at 633 nm and 1 µm [19], from Ordal et al. [20] for 10 and 34 µm

point of view, a surface charge must have some finite extension along the z-axis. One
has to account for non-local effects to introduce the relevant length scale. It is the
Thomas–Fermi length scale, which is of the order of tenths of nm.

4.4.3 Length Scales of a Surface Wave

There are three different lengths characteristic of a surface wave. It is seen from
Eq. (4.18) that the wavevector is complex if there are losses. The imaginary part
of KS P P accounts for the decay of the surface wave upon propagation along the
interface. A characteristic decay length can be defined by δx = 1/I m(KS P P ). As the
wave does not radiate, the decay is entirely due to losses in the media. In other words,
the surface wave energy is converted into heat. There are two other characteristic
lengths accounting for the exponential decay of the surface wave away from the
interface. They are given by δzi = 1/I m(γi ) in medium i . They are found by inserting
Eq. (4.18) into Eqs. (4.14, 4.15):

1

δzi
= I m[γi ] = ω

c
I m

[
ε2

i

ε1 + ε2

]1/2

(4.20)

Typical orders of magnitude for metals are given in Table 4.1. It is clearly seen
that the surface plasmon has a decay length along the x-axis of the order of a few
micrometers in the visible range, but considerably larger in the infrared. Regarding
the spatial extension of the wave in the metal (medium 2), it is seen that the decay
length is almost constant. It is mainly given by the skin depth in the metal and is of
the order of 12 nm. By contrast, the extension of the surface wave given by δz1 in
medium 1 changes dramatically. It varies between 165 nm in the visible and 700 µm
in the IR. Hence, it is seen that the surface wave is not confined close to the interface
in the IR. Since most of the energy of the mode is in the vacuum, Joule losses are
negligible so that the decay length upon propagation is drastically reduced.

We finally note that the confinment in a dielectric is due to the fact that
α2 > ε1ω

2/c2. We note in particular that for very large wavevectors α, δzi =
1/I m(γi ) ≈ 1/α, so that large vectors are strongly confined.
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4.4.4 Link with Resonances of the Reflection Factor

An alternative approach to find the dispersion relation consists in looking for the
poles of the Fresnel reflection factor. The reason for looking at the Fresnel factors is
simple. Since we can write Es,p

r = rs,p Es,p
inc , it is seen that the reflection factor rs,p

can be considered to be a linear response factor to the incident field Es,p
inc viewed as

an external excitation. As for any linear system, a resonant response is the signature
of the excitation of a mode of the system. Hence, writing that the denominator of
rs,p is zero yields the pole, which is the signature of a mode of the interface. It can be
checked that ε1γ2 + ε2γ1 is indeed the denominator of the Fresnel reflection factor
for p-polarization for a non-magnetic material. We can now generalize the approach
to a magnetic material for both polarizations. The Fresnel reflection factors can be
cast in the form:

rs = μ2γ1 − μ1γ2

μ2γ1 + μ1γ2
; rp = μ1ε2γ1 − μ2ε1γ2

μ1ε2γ1 + μ2ε1γ2
. (4.21)

It follows that the corresponding dispersion relation can be written as follows:

μ2γ1 + μ1γ2 = 0; μ1ε2γ1 + μ2ε1γ2. (4.22)

It is seen that a surface wave can be obtained in the case of a magnetic material
in s-polarization if the permeabilities μi have opposite signs. It is also of interest to
note that the zeros and the poles of the reflection factor are given by very similar
equations. We will come back to this point in the section on surface plasmons. This
approach is of particular interest when dealing with more complex systems such as
multilayers. It does account for guided modes, interface modes and the coupling
between these modes.

A technical remark might be useful here. The reader may be familiar with a
presentation of the Fresnel reflection factor using the incident angle θi as a variable
instead of the parallel component of the wavevector k. For the case of a propagating
incident wave in a lossless dielectric medium with refractive index n1, it is essentially
a matter of taste to use k or n1(ω/c) sin θi . If we seek the zero of the denominator,
we need to use a real value of k, which is larger than n1ω/c. A question then arises:
is such a large k physical? If yes, how can we generate a large surface wavevector?

4.4.5 Generation of a Surface Wave

When using the Fourier representation of a field, a real wavector k is used. It is known
that in a vacuum, the wavevector has a modulus ω/c so that it might seem that large
values of k are not possible. It might be useful at this point to write the Fourier
expansion of a scalar spherical wave propagating with phase velocity c known as
Weyl’s expansion:
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exp(ikr)

r
= 2iπ

∞∫

−∞

dα

2π

∞∫

−∞

dβ

2π

1

γ
exp[i(αx + βy + γ|z|)], (4.23)

where γ = [ω2/c2 −α2 −β2]1/2 and I m(γ) > 0. This mathematical identity clearly
exhibits the fact that a spherical scalar wave produced by a point-like source contains
arbitrarily large values of α and β. Due to the dispersion relation α2 + β2 + γ2

= ω2/c2, it is seen that γ is imaginary for α2 + β2 > ω2/c2. Hence, the field
produced by a point-like source contains evanescent waves that always decay away
from the source as indicated by the absolute value |z|. Placing a point-like source
above an interface amounts to illuminate this interface with decaying evanescent
waves. There are other techniques to generate evanescent waves, i.e. to generate large
wavevectors.

(1) One can use a metal film with a thickness smaller than the skin depth separating
two dielectric media with different dielectric constants n1 and n2 > n1. Here,
the key idea is to take advantage of a large refractive index to increase the
modulus of the wavevector. By illuminating from the side of the high refractive
index medium, it is possible to excite through the film with a plane wave with
wavevector α = n2ω/c sin(θi ) and excite the surface wave on the other side
by taking adavantage of the fact that the incidence angle can be chosen so that
α > n1ω/c.

(2) A grating with period d can be used so that the nth order of the grating has a
wavevector αn = n1ω/c sin θi + n2π/d that can be equal to ksp.

4.5 Surface Plasmon Polariton

In this section, we will consider the specific case of surface waves propagating at the
interface between a metal and a dielectric. These surface waves are called surface
plasmon polaritons. Some authors [6, 8] call surface plasmons the electrostatic limit
(or large wavevector limit) of the surface plasmon polariton as introduced in the
previous section. However, most authors use the term “surface plasmon” as a generic
term without making this distinction.

4.5.1 Dielectric Constant of a Metal

Drude model

We start the discussion by introducing the Drude model of the dielectric constant for
a metal described by an electron gas. The relative dielectric constant can be cast in
the form:
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εr (ω) = 1 − ω2
p

ω2 + iγ(ω)ω
. (4.24)

This relation clearly shows that there is a strong frequency dependence (i.e. disper-
sion) of the dielectric constant. Since the Fourier transform of a product is a con-
volution product, the relation D(r,ω) = ε0εr (ω)E(r,ω) becomes in time domain:

D(r, t) =
t∫

−∞
ε0εr (t − t ′)E(r, t ′)dt ′. (4.25)

Two time scales are included in the model. On the one hand, the plasma frequency
is the mode frequency of the charge density oscillation. The plasma frequency lies
in the near ultraviolet for most metals. A second time scale appears in this for-
mula, namely the relaxation time τ (ω) = 1/γ(ω). The relaxation time describes the
relaxation processes for excited electrons. A major source of confusion is that in
most references, the dependence of the relaxation coefficient on the frequency ω is
omitted. Care must be taken as the relaxation of an electron with an energy of a few
eV has little in common with the relaxation of an electron with an energy of few
meV. The decay processes are completely different. It follows that it is not correct to
insert in the model of optical properties the value of γ derived from the conductivity
at zero frequency. In particular, it is known that γ at zero frequency decays when
the temperature decays. However, this is not a valid conclusion in the optics regime.
Indeed, even at low temperature, the electron–electron interaction remains an effi-
cient relaxation channel and is almost not dependent on the electron temperature.
In addition, electrons can emit phonons. These two mechanisms are still possible
at low temperature. One of the practical conclusions of this paragraph is that metal
losses cannot be significantly reduced when reducing the temperature. The reader
will find more information on electron losses in Refs. [21–26]. Finally, we mention
that the relaxation time is typically of the order of 10 fs for noble metals and visible
excitations.

Beyond the Drude model

Although the Drude model can be a very useful tool, it is important to keep in mind
that its accuracy is much better in the IR than in the visible range. The reason is that
the Drude model accounts for the contribution of the free electrons in the conduction
band. When the frequency increases, photons can excite electrons in electronic bands
of lower energies (usually a d-band) so that new absorption channels are available.
This introduces serious deviations from the Drude model. This can be accounted
for by developing fits of the measured dielectric constant as reported in several
references [19, 27–29]. It is of course essential to use these realistic models when
studying plasmons using time-domain calculations. Figure 4.4 illustrates the large
difference in the optical part of the spectrum between a Drude model obtained by
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Fig. 4.4 Comparison of
experimental data and a Drude
fit of the dielectric constant for
gold a real part of the dielectric
constant b imaginary part
of the complex dielectric
constant

(b)

(a)

fitting experimental data and a more detailed fit of the data reported by Johnson
and Christy for gold [30]. The absorption band observed in the imaginary part of
the dielectric constant between 0.3 µm and 0.4 µm is due to absorption by d-band
electrons.

Another limitation of the Drude model is that it does not account for non-locality
also called spatial dispersion. Spatial dispersion means that the dielectric constant
depends on the wavector. In direct space, the polarization at point r depends not only
on the value of the electric field at this point but also in its vicinity, hence the name
non-locality [18]. The dielectric constant has two length scales corresponding to two
different phenomena. The first effect is the screening of the field at an interface. Clas-
sical local electromagnetism assumes that the normal component is divided by εr at
the interface between a vacuum and a metal. The microscopic phenomenon respon-
sible for this effect is the screening of the field by the electrons. It requires a certain
length to take place. This screening length is the so-called Thomas–Fermi length for
metals. For electrolytes, the corresponding screening length is called Debye–Huckel
length. This phenomenon corresponds to longitudinal fields. We now consider the
second length scale that appears in non-local models of the optical response of metals.
This length scale is the length travelled by an electron at velocity vF during an optical
cycle. When this length scale is much smaller than the wavelength, the optical prop-
erties are not affected. By contrast, for wavectors k > ωp/vF , non-local corrections
are expected. This can be understood from the hydrodynamic model introduced in
Sect. 4.3.1. It is seen from that model that the term v2

F k2 becomes dominant for large
values of k. This condition also corresponds to a threshold for energy absorption. It
can be understood in two different ways. The first picture is due to Landau and has
been introduced to explain the absorption in plasmas. When the electron velocity
vF is equal to the phase velocity ω/k of the field, the electron velocity and the field
are always in phase so that the energy transfer is very efficient. This is the so-called
Landau damping mechanism.
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Another point of view is to consider that the absorption of a plasmon allows
generating an electron hole-pair. There is a threshold value of k due to momen-
tum conservation. Let us consider an interaction between an electron with initial
momentum �q and initial energy �

2q2/2m with a surface plasmon with energy �ω
and momentum �k. The electron is close to the Fermi surface so that �q = mvF .
The interaction must conserve the energy and the momentum so that we have

�ω = �
2

2m

[
(q + dq)2 − q2

]
≈ �

2qdq

m
≈ �vF dq,

�k = � dq (4.26)

where we have given a rough estimate of �ω. Eliminating dq between the two equa-
tions, it is seen that for k ≈ ω/vF , the interaction satisfies energy and momentum
conservation. For usual electromagnetic excitations, this process is forbidden as the
electromagnetic wavevector k ≈ ω/c is too small. Yet, surface plasmons may have
large wavevectors and therefore this process can take place. We note here that this
process can also take place when a dipole is close to a metal interface at a distance
d smaller than vF/ω as its near-field contains large wavevectors. In summary, for
values of k larger than ω/vF , the plasmon is damped as it can relax by generating
an electron-hole pair. Clearly, this process introduces a cut-off spatial frequency for
the surface plasmons. More information on the non-local description of the optical
properties of solids can be found in Refs. [12–14, 17]. For noble metals, the typical
Thomas–Fermi screening length is of the order of 0.1 nm and the typical Landau
damping length scale is of the order of 1 nm.

4.5.2 Dispersion Relation of a SPP

Non-Lossy Drude Metal

In this section, we discuss the dispersion relation of a surface plasmon using the
discussion on the Drude model. As already stated, this is a crude model for noble
metals when the frequency approaches the plasma frequency. We nevertheless use
it for the sake of simplicity to discuss a few key issues. Although losses play a
very important role, we start by neglecting them in order to base our introductory
discussion on the simplest analytical formulas. However, we emphasize that the
results obtained are only a rough approximation of the actual properties. We consider
that the upper medium is a dielectric with a real dielectric constant ε1 and the lower
medium is a metal described by a non-lossy (γ = 0) Drude model.

Inserting the Drude form of the dielectric constant in the dispersion relation given
by Eq. (4.18), we obtain:
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Fig. 4.5 Dispersion relation
of a surface plasmon
propagating along an
interface separating a lossy
metal described by the Drude
model from a vacuum. The
implicit dispersion relation
can be solved searching for a
real frequency and a complex
wavevector or vice versa. Two
different dispersion relations
are obtained. a Frequency ver-
sus real part of the complex
value of ksp , b real part of the
complex frequency versus the
real wavevector α.
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c

[
ω2 − ω2

p

(1 + ε1)ω2 − ω2
p

]1/2

. (4.27)

It is seen in this formula that the dispersion relation has an asymptote for a frequency
ωp/

√
1 + ε1 (see Fig. 4.5). When plotting this equation, a second branch is obtained

for frequencies larger thanωp. This branch is not a surface wave. Indeed, forω > ωp,
the metal dielectric constant is a positive real number so that the metal is a dielectric
from the optical point of view. In this regime, the waves can propagate although the
refractive index is smaller than 1, indicating that the phase velocity is larger than
c. The meaning of this branch of the dispersion relation is clear if one remembers
that we did neglect the sign when solving the dispersion relation ε1γ2 + ε2γ1 = 0.
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As ω becomes larger than ωp, the sign of the dielectric constant changes. In this
range of frequency, the Eq. (4.18) is simply the solution of ε1γ2 − ε2γ1 = 0 or, in
other words, the zero of the reflection factor known as the Brewster angle.

Surface Wave on a Lossy Drude Metal. Is it a Surface Plasmon?

In this section, we do not neglect losses. From Eq. (4.18), it is seen that for a real
value of the frequency ω, we find a complex value of the wavevector. Alternatively,
it is possible to search for a solution of the equation with complex ω and real α. Both
possibilities are equally valid. When plotting the real part ofω as a function of the real
part of α, we find different dispersion relations as illustrated in Fig. 4.5 depending
on the choice. This raises the question of the interpretation of the physical content
of each dispersion relation. We shall come back to this subtle issue in Chap. 9.

We now compare the case of low frequencies with the case of optical frequen-
cies. The question that is raised here is the nature of the surface wave for different
frequencies. We start by analysing the Drude model in the low- and high-frequency
regimes. It is easily seen that we can approximate the dielectric constant by:

ω 	 γ(ω), ε(ω) ≈ 1 − ω2
p

ω2

ω � γ(ω), ε(ω) ≈ 1 + i
ω2

p

ωγ
= 1 + iσ

ωε0
, (4.28)

where σ = ne2/mγ is the DC conductivity. This form is enlightening as it shows
that the optical properties of the metal are dominated by the plasmon response in the
optical regime, whereas such properties are dominated by the drag force in the low-
frequency regime. In the former case, the dielectric constant is almost a negative real
number, whereas in the latter case, it is almost a pure imaginary number. It follows
that the plasmonic (oscillatory) character of the surface wave is only meaningful in
the regime ω 	 γ. Indeed, if we rewrite the equations of motion of the electrons
including the friction term as in Eq. (4.2), we find:

− ω2x = iωγx − ne2

mε0
x . (4.29)

For large frequencies or small frequencies, we have different approximate expres-
sions:

ω 	 γ(ω), − ω2x + ne2

mε0
x = 0

ω � γ(ω), − iωγx + ne2

mε0
x = 0. (4.30)

http://dx.doi.org/10.1007/978-3-642-28079-5_9
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It is clearly seen that the oscillation regime, which is the essence of a plasmon,
corresponds only to the case ω 	 γ. Instead, for small frequencies, the electronic
response of the medium is dominated by the viscous term. Since the typical value of
γ is 1014 Hz, we note that a surface wave is hardly a surface plasmon for frequencies
in the IR or smaller. On the other hand, the plasmonic behaviour (i.e. oscillatory
behaviour) dominates the metal response in the case of femtosecond pulses. In sum-
mary, whereas from a macroscopic point of view, there is only one well-defined
surface wave for any frequency, it turns out that from a microscopic point of view,
the underlying behaviour of the electrons is very different in the low- and large-
frequency regimes. Beyond this remark on semantics, this distinction is important as
the detailed form of the dispersion relation is different for low frequencies and large
frequencies as we examine in more detail below.

Dispersion Relation of Surface Waves
in the Radio-Frequency Range

Let us analyse in more detail the nature of the surface waves propagating along
a conductive surface at low frequencies. We can give a more explicit form of the
dispersion relation (4.18) in this regime. At radiofrequencies, the dielectric constant
of a metal can be cast in the form: ε = 1 + iσ

ωε0
≈ iσ

ωε0
so that the modulus of the

dielectric constant is much larger than 1. A Taylor expansion of the wavevector of
the surface wave can thus be written in the form:

kS P = ω

c

[
1

1 + 1
ε

]1/2

≈ ω

c

(
1 + iωε0

2σ

)
. (4.31)

It is seen that in the limit of the perfect conductor, σ becomes infinite so that the
wavevector becomes k = ω/c. This entails that the wave is almost not confined close
to the interface. Here, we recover the concept of surface wave used in the context of
radio waves propagating along perfectly conducting wires or impinging on perfectly
conducting structures. Note in particular that in this limit, there is no more damping
as the wavevector becomes real. Let us now check that (4.31) is a valid solution of
the equation ε1γ2 + ε2γ1. In the radio regime, the analysis is very different from
the case of the surface plasmon in the optical regime. We consider the case of an
interface separating a metal (medium 2) from a vacuum (medium 1) and we use the
notation ε = |ε| exp(iφε).

γ2 ≈ ω

c
[ε]1/2 ≈ ω

c
|ε|1/2 exp(iφε/2)

γ1 ≈ ω

c

[
1

ε

]1/2

≈ −ω

c

[
1

|ε|
]1/2

exp(−iφε/2). (4.32)
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The choice of determination of the square root is imposed by the condition I m(γ) > 0
so that we had to include a sign minus for γ1. It clearly appears then that the condition
εγ1 + γ2 = 0 is satisfied.

To summarize, inserting the Drude model in the dispersion relation of a surface
wave yields two limits: the surface plasmon for ω > γ(ω) and the surface wave with
k = ω/c for ω << γ. The latter is the so-called Sommerfeld or Zenneck mode. Note
that when dealing with THz waves, the nature of the wave is closer to a radio surface
wave than to a surface plasmon.

4.5.3 Electrostatic Limit

In this section, we extend the previous discussion to the non-retarded limit. Let
us consider a dipole source oscillating at a frequency ω = 2πc/λ at a distance
d above the interface such that d � λ. As the distance is much smaller than the
wavelength, the interaction between the source and the interface can be described
within the electrostatic approximation. Here, we mean that the spatial structure of the
field in the near-field of a small object can be computed by solving an electrostatic
problem. To justify this statement, it suffices to examine the structure of the field
radiated by an oscillating dipole. It is clearly seen that the leading terms are the
terms varying as 1/r3. These terms yield a time-dependent electric field, which
has the spatial structure of the field produced by an electrostatic dipole. In other
words, the short distance approximation of the Green tensor is the electrostatic Green
tensor. It follows that the interface can be modelled by introducing an image charge.
The standard electrostatic formalism [16] allows one to introduce an electrostatic
reflection factor given by ε−1

ε+1 . Using a non-lossy Drude model (see next section),

this yields a resonance for ε+ 1 = 0 and hence for ω = ωp/
√

2 in agreement with
the qualitative argument given in the first section. This frequency can also be derived
by searching a mode of Laplace equation for the scalar potential for a system with
one interface separating two homogeneous media [8].

4.6 Surface Phonon Polaritons

4.6.1 Lorentz Model

In the case of a metal and a frequency in the range [γ,ωp], we have seen that the
dielectric constant is negative. In this regime, the surface wave has the character of a
surface plasmon. There are other situations such that the dielectric constant becomes
negative. In agreement with the Kramers–Kronig relations, they always correspond
to frequencies close to resonant excitation of the medium. In the infrared, crystals
can absorb light due to the coupling to the optical phonons. There is a frequency
range called reststrahlen band where the dielectric constant is negative. A simple
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Fig. 4.6 Dispersion rela-
tion of a surface phonon
polariton propagating along a
GaAs/vacuum interface with
dielectric constant given by
a non-lossy Lorentz model

ε(ω) = ε∞
ω2

L −ω2

ω2
T −ω2 . The

wavevector axis has been
normalized by ωL/c and
the frequency axis by ωL .
ωL = 292.1 cm−1,ωT =
267.8 cm−1, ε∞ = 11

model allows to show that the dielectric constant can be cast in the form:

ε(ω) = ε∞
ω2

L − ω2 − iΓ ω

ω2
T − ω2 − iΓ ω

(4.33)

where ωL is the longitudinal frequency and ωT is the transverse optical frequency.
These frequencies are due to the presence of optical phonons. Like for electrons, a
longitudinal solution exists at ωL . It corresponds to a charge density wave. Here, it
is a polarization charge density. A detailed discussion can be found in the books by
Ziman [13] or Ashcroft and Mermin [12] for example.

There are some differences with the plasmon case. The dielectric constant is
negative only in the range [ωT ,ωL ]. This range corresponds to a wavelength range
of the order of 1µm typically. The central frequency is typically between 10 and
40 µm. Hence, the surface phonon polariton can exist only in the mid-infrared or
near THz. A very important similarity of the surface phonon polariton with the
surface plasmon is the existence of a horizontal asymptote in the dispersion relation.
This indicates the presence of a peak in the local density of states close to the interface
as will be discussed later [31, 32]. Figure 4.6 is an example of a dispersion relation
of a surface phonon polariton. It corresponds to the case of a wave propagating at
the interface between GaAs and a vacuum.

4.7 A Potpourri of Surfaces Waves: Sommerfeld or Zenneck
Modes, Quasicylindrical or Lateral Wave

In the previous sections, we have introduced the surface waves as solutions of
Maxwell equations in the presence of interfaces. We have seen that there are several
cases where a solution can be found for both s- and p-polarizations. Surface waves
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often receive different names depending on the frequency range (visible, radio waves)
or type of waves (electromagnetics, seismology, acoustics). It turns out that the topic
of surface waves is much broader than the topic of surface plasmons. Electromag-
netic surface waves have been studied in the context of radiowave propagation well
before surface plasmons were discovered. Surface waves have also been studied in
different contexts. The purpose of this section is not to give a detailed discussion,
but instead to introduce the terminology and to serve as a lecture guide.

4.7.1 Historical Perspective

The concept of surface wave has been introduced by Zenneck at the begining of
the nineteenth century. His motivation was to identify the mechanism of long-range
propagation of radio waves. The basic idea was that a surface wave decays as 1/r
instead of 1/r2 in 3D. It finally turned out that the correct explanation is the presence
of the ionosphere so that the space between the earth and the ionosphere acts as a
waveguide. The concept of surface wave was further studied by Sommerfeld when
he derived a rigorous solution of the field generated by a dipole above a flat interface
separating two homogeneous media. In Sommerfeld’s derivation, the surface mode
is defined as the contribution of the pole of the reflection factor to the field produced
by a dipole above an interface. This definition agrees with our remark on the previous
section linking the surface wave with the pole of the reflection factor. This surface
wave is often named after Zenneck or Sommerfeld. The much debated existence of
a surface wave in the radio literature is due to the fact that the field has a complex
structure. It should be stressed that there is perfect consensus on the integral form of
the field radiated by a dipole above an interface. Yet, such an integral is not useful for
practical applications. Several authors have therefore derived approximate analytical
expressions valid in different cases. It is only when it comes to the interpretation of the
different contributions that there is a debate. The reader will find a detailed account
of these works in the books by Brekhovskikh [1], Banos [2], Felsen [3], King [4] and
a recent review paper by Collin [34]. To make a long story short, let us summarize
the situation as follows. The field radiated by a dipole can be decomposed into a
sum of plane waves. In the presence of an interface, each plane wave is transmitted
and reflected. The total field is hence the field radiated by the source plus a sum of
plane waves weighted by the corresponding Fresnel factors. When performing the
integral over all reflected plane waves, one can extract the pole contribution due to
the pole of the reflection factors. This contribution yields the surface waves. There
is a second contribution that appears when using analytical techniques to evaluate
asymptotically the integral in the complex plane: it is the contribution along the
branch cuts in the complex plane. We give a very brief account of this wave in the
following section.
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Fig. 4.7 Illustration of the lateral wave. The wave propagates from the source to the interface at
the critical angle. After refraction, it propagates along the interface as a plane wave and reenters
the medium continuously. This contribution becomes dominant when the medium is lossy so that
direct propagation in the medium is rapidly damped

Lateral Wave

The second noteworthy contribution is called lateral wave in the radiowave and
seismology community. It has been investigated only recently [35] in the optics
community and was called quasicylindrical wave [36, 38] or Norton wave [39]. An
extensive discussion of this wave in the context of propagation of radio waves along
the earth was written by King [4]. In this section, we briefly describe a physical picture
of the origin of the lateral wave. Let us consider a source located at z = −d in a
material medium with refractive index n. The lateral wave is the wave corresponding
to propagation from the source to the interface at the critical angle followed by a
refraction at the interface and propagation by a plane wave parallel to the interface
in the medium z > 0 (see Fig. 4.7). When the medium at z < 0 is absorbing and the
medium z > 0 is not absorbing, this is the most efficient mechanism for propagation
over large distances as most of the energy is in the nonabsorbing medium. When
excited by a line, this two-dimensional wave decays as 1/L3/2 where L is the distance
of propagation along the interface. Instead, the surface wave has an exponential decay.

The lateral wave is very well known in seismology. An excellent account of surface
waves in elastic media can be found in the textbook by Aki and Richards [40]. In the
context of radiowaves, it has received a lot of attention in the 1960s and 1970s. The
reader will find a detailed account in the works quoted above [1–4, 34]. Of particular
interest in optics are Refs. [35, 36, 38, 39] where it has been shown that these waves
cannot be neglected in many cases when studying propagation and scattering along
metallic surfaces including the resonant transmission phenomenon [37].

In what follows, we focus on key properties of surface plasmons related to (i) the
local density of states, (ii) the spatial confinment and (iii) the fast temporal response.
Regarding these three aspects, surface plasmons are very different from lateral waves.
These properties are intimately linked to the underlying electronic character of the
surface plasmon polariton.
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4.8 Key Properties of SPP

Plasmonics has become a very active area of research due the large number of
applications. However, all these applications rely on a small number of key proper-
ties. The purpose of this chapter is to discuss these key properties of surface plasmons
in simple and general terms. We will first analyse the importance of having a disper-
sion relation with very large wavevectors. We will discuss the implications in terms
of field confinment and the implications in terms of local density of states. Finally,
we will discuss the spectral width of surface plasmon excitation and its significance
in terms of ultrafast response.

4.8.1 Confinment of the Field

A large number of applications of surface plasmons rely on the possibility of pro-
ducing highly confined fields and/or to produce or observe light at a length scale
smaller than the wavelength in a vacuum. The purpose of this section is to review
the basic properties of surface plasmons underlying these applications. Let us first
consider the case of surface plasmons propagating along flat interfaces. It is neces-
sary to distinguish between confinment of the field along the normal of the interface
and confinment in the plane of the interface. We have already given some orders
of magnitude of the field confinment away from the interface in Table 4.1. We now
discuss the potential of surface waves for in-plane confinment.

Lateral Confinment

The losses introduce a limitation to the extent of the surface waves along the in-
terface. The decay length is given by 1/I m(kSP). This value depends significantly
on the losses of the material. A typical order of magnitude for noble metals and
visible frequencies is a few micrometers. We note that this length is considerably
reduced for frequencies close to the asymptote of the dispersion relation. The main
reason is connected to our previous discussion. A photon-like surface plasmon is
poorly localized close to the interface and has most of its energy in the dielectric
above the metal where there are no losses. By contrast, a plasmon-like surface plas-
mon has a large part of its energy in the metal so that it is very sensitive to the
losses. It is a general rule that modes with most of the field energy in the dielectric
have a longer propagation length. In practice, another mechanism can reduce the
propagation length. It is due to radiative leakage of energy (often called radiative
losses) due either to scattering by random roughness or by diffraction by a periodic
structure such as a grating.

We have discussed the larger length scale of a surface plasmon along the interface.
We now address the issue of the smallest length scale. Let us remind what is the
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origin of the confinment limit in a vacuum when dealing with a monochromatic field
at frequency ω. Due to the dispersion relation in a vacuum, the wavector modulus
is given by k = ω/c. Let us assume that we consider an electromagnetic field in
the vacuum far from any boundary. The field can then be decomposed into a sum of
planes waves with real wavectors. A property of Fourier transform gives ΔxΔα ≥ 2π
where α is the x-component of the wavector. If we deal with a field in a vacuum far
from any surface or object, the modulus of the wavevector is given by ω/c so that the
smallest possible size of the field along the x-axis is given by 2π/αmax = λ. Hence,
the field cannot vary rapidly as it would, close to a tip for example.

By contrast, it was seen in Fig. 4.5b that the maximum wavector given by the
plasmon dispersion relation may be much larger than ω/c. This seems to pave the
way to a strong confinment of the field. There have been some attempts to take
advantage of this strong localization of the field. It has been proposed by Pendry
that this property can be used to realize a superlens [41] with a simple thin film
supporting surface plasmons. The experimental implementation has been reported
by two groups in the visible using silver [42] and in the infrared using SiC [43].
Another proposal for superresolution based on the use of surface plasmons was put
forward in Ref. [44]. The key idea was to take advantage of the large wavevectors
that are seen on the dispersion relation (with the choice of a real wavevector and a
complex frequency). A debate followed that proposal [45, 46]. However, in practice,
it is not possible to fully take advantage of this property of surface plasmons because
losses play an important role. We shall show in Sect. 4.9 that the relevant dispersion
relation that must be used for discussing confinment of the field is the dispersion
relation shown in Fig. 4.5a. It is seen that the wavector modulus is limited due to
the so-called backbending of the dispersion relation. This entails that the surface
plasmons always have an intrinsic limitation in terms of resolution. This is a rather
severe limitation as in many cases, the maximum value of the wavector is hardly larger
than 2ω/c. Let us stress that so far, the resolution obtained in different experimental
results [42, 43] appears to be indeed limited by the losses.

However, surface plasmons are often used to produce highly localized spots that
go well beyond these limitations. In all the practical examples, the origin of the
localization of the fields lies in the spatial structure of the material. In most cases,
one uses nanometric particles or nanostructures such as nanowires, nanoholes or in-
dentations in a metallic substrate. Examples include the first implementation of near-
field optical microscopes [47, 48], the strong confinment obtained using nanoholes
[49] and the use of tips as nanosources [50, 51]. One might then ask what is the
role of plasmons in that case? A simple answer can be obtained by analysing the
fields produced by a subwavelength spherical particle of dielectric constant ε and
radius a (see the chapter by J. Aizpurua). If a � λ, the non-retarded approximation
is valid so that the spatial structure of the field can be found using an electrostatic
approximation. The scattered field is given by the field of a dipole for a distance
r > a. The field decays as 1/r3 for r > a so that the confinment is only limited by
a. This confinment is due to the geometry and not to the plasmon, it is independent
of the material properties. Yet, the amplitude of the field depends on the material
properties at the particular frequency considered. For instance, when dealing with a
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spherical nanoparticle with radius a, its polarizability αp can be written as:

αp = 4πa3 ε(ω) − 1

ε(ω) + 2
. (4.34)

In the previous equation, it is clearly seen that the only limitation to the confinment
is the fact that the amplitude of the dipole tends to zero with a. However, if the
frequency is such that ε(ω) + 2 is almost zero, a resonance is excited as it will be
discussed in more detail in Sect. 4.8.3. Within the Drude model, this condition is
satisfied for ω = ωp/

√
3. Thus, it is seen that a surface plasmon resonance of a

particle is useful for light confinment indirectly: its role is to compensate for the
small value of the dipole moment of a small object.

In the above example, we have seen that the form of the electric field close to a
particle can be factorized in two terms. The dependence on space variables is the
electrostatic form of the dipolar field, the frequency dependence is given by the
polarizability. Only the latter has a resonant behaviour which is the signature of
the plasmon resonance.

This concept of confinment by geometry coupled to resonance enhancement has
been put forward by Li, Stockman and Bergman who proposed to use a chain of
nanoparticles to realize an efficient nanolens [52].

Finally, we mention another possibility for confining the field. Metal/dielectric/
metal (MDM) structures can support surface modes which are plasmonic even if the
dielectric is only a few nanometers thick so that these modes are highly localized in
the gap [53]. Remarkable guiding properties have been demonstrated using channel
surface polaritons which essentially rely on this type of structure [54]. Other appli-
cations of the confinment in MDM structures include applications for light emission
in the weak coupling regime [55] and achieving strong light-matter coupling [56].
These are intimately related to the concept of local density of states that we now
introduce.

4.8.2 Surface Plasmons Contribution to the Local Density
of States

The lifetime of an atom can typically be reduced by orders of magnitude when it
is located close to an interface. This has been first demonstrated experimentally by
Drexhage [57]. Excellent discussions can be found in Refs. [17, 58, 59]. Similarly,
the electromagnetic energy density at thermodynamic equilibrium can be increased
by orders of magnitude close to an interface [31, 60]. Both phenomena depend on the
density of electromagnetic states. The changes by orders of magnitude are the clear
signature of a change of the physical phenomena that determine the local density of
states. In both cases, the contribution of surface waves plays a key role. The purpose
of this section is to briefly review the concept of Local Density Of States (LDOS)
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and to show how the surface waves may drastically modify it. We will briefly discuss
applications to light emission assisted by surface waves. We will also show that the
influence of surface plasmons on the LDOS plays a key role in the Casimir force, a
pure quantum electrodynamics phenomenon.

Elementary Introduction to the Density
of Electromagnetic States

Before starting the discussion, we make a remark on semantics regarding the meaning
of state, mode and eigenfunction. The word “state” is usually used in the context
of quantum mechanics or statistical physics, whereas the word “mode” is often
used in the context of wave theory. Both words deal with eigenfunctions of linear
operators so that the terms are often interchanged. The term density of states is
used for g(ω) such that g(ω)dω is the number of states (modes) with frequency
in the interval [ω,ω + dω]. To begin, we briefly remind how to derive the density
of electromagnetic states or, in other words, how to count the number of different
solutions (plane waves) of Maxwell equations in a vacuum. We will then analyse how
the presence of surface waves modifies the situation. It is useful to introduce a virtual
cubic box of size L and to look for fields satisfying periodic boundary conditions.
Indeed, this allows one to discretize the solutions and therefore to count them. From
the periodic boundary condition, it follows that the wavevector components are of the
form α = n2π/L ,β = m2π/L , γ = l2π/L where n, m, l are integers. In k-space,
the volume occupied by a state is therefore (2π/L)3 so that the number of states in
the volume element dαdβdγ is 2L3dαdβdγ/(2π)3 where the factor 2 accounts for
the two possible polarizations of each state. The density of states in k-space per unit
volume is thus given by 1/4π3. We can now easily find the number of states with
a given frequency ω = ck. They occupy the volume 4πk2dk in k-space. Using the
dispersion relation k = ω/c, we find the number of states per unit volume in the
range ω,ω + dω:

gv(ω)dω = ω2

π2c3 dω, (4.35)

where we have introduced the density of states per unit volume gv(ω) in a vacuum.
We now illustrate the importance of this concept using three examples. Let us first
count how many states N (ω) are available between 0 and ω in a volume V:

N (ω) = V

ω∫

0

gv(ω
′)dω′ = V

ω3

3π2c3 = 8π

3

V

λ3 . (4.36)

The simple rule to remember is that the number of states with frequency smaller
than ω is roughly given by the volume divided by (λ/2)3. The second example
is the form of the energy of the blackbody radiation. Each mode has a quantum
of energy �ω and the mean excitation number is given by Bose–Einstein statistics
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nB E (ω) = 1/[exp(�ω/kB T ) − 1]. The product of these two terms by the density of
states yields the Blackbody density of energy at temperature T :

u(ω, T ) = �ω3

π2c3

1

exp(�ω/kB T ) − 1
. (4.37)

We now show how the local density of states plays a key role in the lifetime of a
two-level system. From the Fermi golden rule, it is known that the lifetime is propor-
tional to the number of final states. When studying the rate of radiative relaxation,
the radiative decay rate is therefore proportional to the number of electromagnetic
states at the corresponding frequency. This can be seen by comparing the stimulated
and spontaneous emission rates given by the Einstein coefficients. Their ratio is
given by:

A21

B21�ω
= ω2

π2c3 , (4.38)

which is nothing but the vacuum density of states. For stimulated emission, only the
mode of the incident photon has to be considered, whereas for spontaneous emission,
one has to sum over all possible electromagnetic states. Hence, the spontaneous
emission coefficient is proportional to the LDOS. Let us finally point out a slight
difference in the definition of local density of states depending on the application:
evaluating the equilibrium energy or evaluating spontaneous emission. A two-level
system that is coupled to the electromagnetic field through an electric dipole moment
can couple only to the component of the electric field parallel to the electric dipole.
The relevant form of the local density of states is thus called projected-LDOS as only
one component of the field matters. In a vacuum, this is simply a factor 3 difference
as the field is isotropic. In more complex situations, the LDOS can be different for
different polarizations. It is well known for instance that the lifetime of a molecule
close to an interface depends on the orientation of its dipole moment.

To summarize, the concept of density of states plays a key role when looking at
the radiative decay of a two-level system and when looking at the thermodynamic
properties of electromagnetic radiation. In what follows, we shall analyse how the
presence of surface plasmons drastically modifies the density of states. We will give
a hint of the physical reason behind this phenomenon and derive from it an upper
limit of the number of states.

Electron and Phonon Density of States

We have pointed out that surface plasmons are polaritons. In other words, they are
half photons, half electrons. Since electrons are also described by waves, the same
technique can be used to analyse the density of states. The density of states in k-space
is also given by 1/4π3 for electrons. Here, we have accounted for the degeneracy
due to the spin 1/2 of the electron. The total number of states in a crystal of volume
V with N atoms is given by 2N for a s band. Similarly, the total number of phonon
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states is given by 3N because this is simply the total number of degrees of freedom
of the atoms. Hence, the number of states per unit volume is roughly N/V , which
is the inverse of the volume a3 of a unit cell of the crystal. If we now compare the
number of states available for light in a vacuum ((2/λ)3 ≈ 10−19m−3) and for
condensed matter excitations (1/a3 ≈ 10−30m−3), we find a difference of 11 orders
of magnitude.

This crude estimate shows what is the key to the efficiency of plasmons or optical
phonons in increasing the energy density or in reducing the lifetime of quantum
emitters. The density of states of polaritons benefits from the large number of states
of condensed matter excitations (electrons or phonons). However, many of these
modes do not contribute to surface waves. A better estimate of the number of surface
plasmons can be obtained by working with the dispersion relation and introducing a
cut-off at ω/vF as we will discuss below.

Increasing the Density of States: Surface Waves, Slow Light
and Microcavities

Let us make a pause in the discussion of surface wave density of states and make a
comment regarding the increased density of states in a waveguide with slow velocity.
It is known that slow velocity systems can be used to increase the density of states.
The mechanism is depicted in Fig. 4.8. As the dispersion relation becomes flat close
to the band edge, the number of states (represented by dots) with a frequency in the
interval Δω increases. This behaviour is known as van Hove singularity. A major
advantage of photonic crystals is that there are almost no losses in dielectric media.
Since the density of states diverges (the group velocity becomes zero), these systems
seem to be the perfect solution to engineer the optical properties of quantum emitters.
Yet, it is important to emphasize that the number of states available when using a
waveguide is always finite. A plasmonic system can provide a local density of states
which is orders of magnitude larger than what can be achieved with a slow waveguide.
In order to understand this apparent paradox, let us first remind about the derivation of
the density of states for a one-dimensional system. We consider a waveguide branch
characterized by a dispersion relation kz(ω) for a mode propagating along the z-axis
in a periodic waveguide with period a. In order to count the number of modes, we
again consider that the system has a finite length L and we introduce the so-called
Born von Karman (or periodic) boundary conditions stipulating that the system is
periodic with period L along z. It follows that kz = p 2π/L . The number of modes
in the interval dω corresponding to an interval dkz is given by

g(ω)dω = L

2π
dkz = L

2π

dkz

dω
dω. (4.39)

It is seen that the density of states diverges as the group velocity goes to zero. However,
one should keep in mind that this divergence is integrable so that the number of states
in a finite interval [ω1,ω2] always remains finite.
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Fig. 4.8 Increasing the density of states. States are characterized by k and ω. They correspond to a
point located on the dispersion relation. In k-space, the density of states per unit length is constant
and takes the value 1/2π. a shows that in ω space, the density of states increases close to the gap
edge, b shows that the increase close to the asymptote is considerably larger as the asymptote is not
limited along the k-axis

This is clearly seen in Fig. 4.8 where we represent schematically the dispersion
relation of a guided wave close to a band edge and the dispersion relation of a surface
plasmon. It is seen that the modes are simply redistributed close to the band edge so
that this only concerns a finite number of modes although mathematically the density
of states diverges. An upper value of the number of modes involved is clearly the
size of the Brillouin zone 2π/a divided by the interval between two modes 2π/L .
We find L/a. The period of a photonic crystal is of the order of the wavelength so
that we obtain an estimate of an upper bound of the number of modes in a photonic
crystal given by L/λ. This is orders of magnitude less than the number of modes
available with surface waves at resonance.

We now discuss briefly another possibility for increasing the density of states
originally proposed by Purcell. The idea is to use a cavity with a single mode. The
number of states per unit volume is thus 1/V where V is the cavity volume. Taking
into account the finite value of the quality factor of the cavity, we obtain for a
Lorentzian resonance a density of states:

g(ω) = 1

V

γ

2π

1

(ω − ω0)2 + γ2/4
. (4.40)

At resonance, the density of states is thus given by:

g(ω0) = 2

πVγ
. (4.41)
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The Purcell factor is the local density of states in the cavity normalized by the density
of states in a vacuum1:

Fp = 2

πVγ

3π2c3

ω2 = 3

4π2 Q
λ3

V
, (4.42)

where Q = ω0/γ. This derivation is based on a poorly defined volume. A more
accurate description should account for the polarization of the mode field as well as
its space dependence. Indeed, the field in a cavity is not uniform so that the coupling
between a mode and an emitter will strongly depend on the exact location of the
emitter. A more detailed analysis can be found in Refs. [66–68].

Local Density of States Due to Surface Waves

We first start the discussion of the role of surface waves on the local density of states
with a qualitative discussion based on the dispersion relation. We then present a
more quantitative analysis. It is seen in Fig. 4.8 that the number of states provided
by a surface plasmon at resonance is infinite as the dispersion relation seems flat and
unbounded. This is not correct and is a consequence of the model of the dielectric
constant that does not account for the non-locality. A non-local dielectric constant
introduces a cut-off [17] in the dispersion relation given by vFωS P/

√
2 where vF is

the Fermi velocity as already discussed. We can now easily compare the density of
states due to surface plasmons to the vacuum density of states. A rough estimate of
the number of surface plasmons per unit area is given by dividing the area of a disk
with a radius πk2

S P,max by the area per state 1/4π2:

πk2
S P,max

4π2 ≈ ω2
S P

4πv2
F

, (4.43)

which is clearly much larger than what we found for dielectrics where the order of
magnitude is 1/λ2 ≈ ω2/c2. We remind that c/vF is typically on the order of 300.

We now turn to a quantitative analysis of the local density of states due to surface
waves. An explicit form can be derived from the imaginary part of the Green tensor.
The reader will find a detailed analysis in Ref. [32]. Of particular interest is the
asymptotic expression of the local density of states at a distance z from the interface
such that z � λ.

g(z,ω)

gv(ω)
= I m[ε]

|ε+ 1|2
1

4(k0z)3 , (4.44)

where gv(ω) stands for the vacuum density of states. The surface plasmon resonant
contribution is clearly given by the term 1/|ε+ 1|2. Figure 4.9 illustrates the contri-

1 In the context of Fermi golden rule, a factor 1/3 is introduced in order to account for the fact that
a given dipole can couple to only one component of the electric field.
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Fig. 4.9 Local density of
states at a distance of 10 nm
above an interface separating
a vacuum from gold or GaAs

bution of this term to the LDOS at a distance of 10 nm of a gold surface and a GaAs
surface.

In both cases, the presence of the surface wave results in a peak in the LDOS.
It clearly appears that the role of the surface phonon polariton is orders of magnitude
more important than the surface plasmon.

Local Density of States and Energy Transfer at Nanoscale

Another remarkable consequence of the increase of the density of states due to sur-
face waves is the increase of energy density at equilibrium. Since the modes are
thermally excited at equilibrium, there is a large energy density close to the inter-
face. Figure 4.10 illustrates the evolution of the energy spectral density at different
distances from an interface separating SiC from a vacuum. Two features appear
clearly in this figure: (i) the energy density normalized by the energy density of a
blackbody is increased by several orders of magnitude and (ii) the spectrum becomes
quasimonochromatic. The existence of surface waves thermally excited has been ob-
served experimentally by de Wilde et al. [61] who were able to obtain near-field
images of samples without external illumination. We note that in the near-field, the
spectrum becomes quasimonochromatic indicating that the field is partially tempo-
rally coherent. The coherence time is essentially the decay time of the surface phonon
polariton as discussed in Refs. [31, 33].

As a consequence of this increase of energy density close to the interface, the heat
transfer between two half-spaces separated by a distance smaller than the wavelength
increases. This heat transfer mechanism can be viewed as mediated by the surface
phonon polaritons. Since the number of surface waves increases dramatically at small
distance, the heat flux through a vacuum gap can be enhanced by orders of magnitude.
This effect due to surface waves was predicted in Refs. [62, 63] and measured recently
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Fig. 4.10 Electromagnetic
energy density at equilibrium
at 300 K as a function of
distance from an interface
vacuum/SiC. The energy
density is normalized by the
maximum blackbody value at
300 K
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[64, 60]. The heat transfer through the gap due to this surface phonon interaction
can be viewed as a phonon tunelling phenomenon. It can also be described in a form
similar to the Landauer conductance. It has been shown recently [65] that each mode
characterized by (α,β,ω) yields a contribution to the radiative heat conductance
proportional to the thermal quantum of conductance π2k2

B T/3h and a transmission
factor where kB is Boltzmann’s constant and h is Planck’s constant.

Local Density of States and Light Emission Assisted
by Surface Waves

In the introduction of this section, we have cited the pioneering experiment by
Drexhage showing that the lifetime of an emitter can be drastically reduced close to an
interface. When the distance is below 5 nm, the energy goes into heat in the substrate
and surface plasmons do not provide a significant contribution to this mechanism.
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However, if the distance is larger than approximately 10 nm, most of the energy goes
into the surface plasmon for appropriate frequencies. In the case of a flat surface,
this energy is then converted into heat. However, if e.g. a grating is ruled on the
surface, the energy can be radiated. In that case, the surface works as an antenna:
the energy of the source is efficiently coupled into the surface (due to the large
LDOS) and then efficiently radiated by the surface (due to the grating). This idea
has been put forward in the context of light-emitting diodes [69, 70]. The influence
of the surface plasmon resonance on the single molecule fluorescence assisted by a
resonant particle has been investigated theoretically [71, 72]. Quantum wells’ light
emission assisted by surface plasmons has been demonstrated more recently [73].
A remarkable demonstration of optical nanoantennas at the level of a single emitter
has been reported using metallic nanospheres. An emitter located at a distance of the
order of 10 nm excites efficiently the surface plasmon of the particle. By properly
choosing the radius of the particle, it is possible to increase the ratio of power emitted
versus the power absorbed in the particle so that the nanosphere becomes an efficient
nanoantenna. Two experiments have clearly demonstrated how metallic nanospheres
can be used as efficient nanoantennas to increase molecules’ fluorescence [74, 75].
More recently, several metallic structures have been proposed as antennas to control
the angular emission and also increase the emission rate [55, 76, 77].

Local Density of States and Casimir Force

Another consequence of the contribution of surface plasmon to the LDOS is the
Casimir force between two metallic parallel plates. Casimir force is a pure quantum
electrodynamics effect that manifests itself at macroscopic scale. Casimir predicted
[78] that there is an attractive force between two parallel perfectly conducting surfaces
at 0 K separated by a gap of width d. Since then, his remarkable prediction has been
measured experimentally with great accuracy [79–81]. However, when comparing
the measurements with the data, the assumption of a perfect conducor cannot be used
any longer [82]. A careful analysis shows that the surface plasmons are responsible
for the forces actually observed [83–85]. We give here a brief qualitative discussion
of this effect. We refer the reader to references [83] for a further discussion. The gap
behaves as a waveguide with a set of modes. From the quantum electrodynamics point
of view, each mode (k,ω) has a zero point energy at 0 K given by �ω. It follows that
the total energy is given by

∑
n �ωn where the sum is over all modes of the gap. Since

the number of modes in the gap decreases when the width d decreases, the energy
also decreases. Hence, the electromagnetic energy plays the role of an attractive
potential. In the original derivation of Casimir, modes of a planar waveguide with
perfectly conducting surfaces were used. When accounting properly for the optical
properties of metals, it turns out that the density of states is dominated by the surface
plasmon contribution.
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4.8.3 Broad Spectrum and Fast Response

When comparing plasmonic resonators with dielectric resonators, the presence of
losses in the metal is often put forward. The quality factor of the resonator depends
on the dielectric constant of the material. To illustrate this idea, we consider the
polarizability of a small sphere. Close to the sphere resonance, we can expand the
dielectric constant. We use the notation ε(ω) = εR(ω) + iεI (ω) and assume that
εR(ω0) = −2.

ε(ω) ≈ εR(ω0) + dεR

dω
(ω − ω0) + iεI (ω0)

≈ −2 +
(

dεR

dω

)
ω0

[ω − ω0 + iΓ ], (4.45)

where Γ = εI (ω0)/[dεR/dω]. The polarizability can be approximated by a
Lorentzian profile:

α(ω) = 4πa3 ε(ω) − 1

ε(ω) + 2
≈ 12πa3(

dεR
dω

) 1 − iεI (ω0)/3

ω0 − ω − iΓ
(4.46)

We have already seen that metallic losses in the optical frequency regime are due
to electron–electron interaction and to electron–phonon interaction. These processes
have a low dependence on temperature so that they cannot be suppressed. Hence,
these losses are a specific property of a plasmonic resonator. They result in two
properties of surface plasmons. The quality factor of the resonance depends on the
imaginary part of the dielectric constant at the resonance frequency. A typical quality
factor for plasmons is between 10 and 100. Accordingly, the relaxation time of the
system in the visible is of the order of a few femtoseconds. A small quality factor can
be viewed as a drawback in terms of Purcell effect for instance. On the other hand,
a resonator with a large bandwidth can be very interesting. In particular, it allows
one to perform a coherent control of pulses on extremely short time scales. This
particular property is the basis of a large number of recent contributions [86, 87].
Another important application is the possibility of designing a nanoantenna with a
broad bandwidth [55].

Finally, we should emphasize that the relaxation time of a plasmonic resonance
does also depend on the geometry of the structure. To illustrate this idea, we discuss
the example of the so-called long-range and short-range surface plasmons on sym-
metric thin metallic films in a dielectric first investigated by Sarid [88]. In order to
understand why the geometry influences the relaxation time of a plasmonic mode,
it is sufficient to realize that the field of the long-range surface plasmon energy is
mostly in the non-lossy dielectric, whereas the short-range surface plasmon is more
confined in the metal where losses take place. This has also been widely discussed in
the context of shell structures [89]. In both cases, the coupling between two modes
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depends on the thickness of the metal film and allows to control the resonance fre-
quencies.

4.9 Surface Plasmon Polaritons on Lossy Materials

As already mentionned, the dispersion relation given by (4.18) cannot be solved by
using a real frequency and a real wavevector when the dielectric constant is complex.
Yet, a solution can be found when using either a complex α and a real ω or vice
versa. These two choices lead to different shapes of the dispersion relation as seen in
Fig. 4.5. One dispersion relation has an asymptote for very large values of α, while
the other has limited values of α and presents a backbending. We have discussed
the key properties of surface plasmon with emphasis on the lateral confinment (e.g.
necessary for a super lens) and on the large LDOS (e.g. necessary for nanoantennas).
Since the existence of a horizontal asymptote plays a key role both for the transverse
confinment of the field (large k values of surface plasmons are needed) and for the
LDOS (flat dispersion curve), it is important to establish a prescription on which
choice should be made when looking for a dispersion relation. In this section, we
discuss the origin and physical content of these two dispersion relations summarizing
Ref. [90] where further details can be found.

4.9.1 First Interpretation

The existence of two different forms of the dispersion relation was first pointed out
by Alexander [91]. It was first thought that the dispersion relation with a backbending
was an unphysical mathematical curiosity. Yet, Arakawa [92] remarked that when
plotting the position of the dips in a reflectivity experiment where the angle of in-
cidence is varied at fixed frequency, the dispersion relation presents a backbending
branch. Instead, when plotting the points obtained from a spectrum at fixed angle,
one finds the dispersion relation without backbending. This approach gives a prac-
tical prescription for the analysis of attenuated total reflection (ATR) experiments.
We can go beyond this simple observation and note that when measuring a reflec-
tivity spectrum at fixed angle, the experiment contains the following ingredients:
a real incident wavevector, a reflectivity spectrum showing a resonance at a given
(real) frequency with a width that accounts for the imaginary part of the frequency.
Similarly, a reflectivity measurement done at fixed frequency for different angles
displays a resonance peak at a given (real) wavevector with a width that accounts for
the imaginary part of the wavevector.

Nevertheless, this discussion is not a general prescription that can be used to dis-
cuss all possible issues. To illustrate this point, we consider two questions regarding
important properties of surface plasmons: confinment of the fields and large density
of states. What can we learn from the dispersion relation regarding these questions?



140 J.-J. Greffet

The dispersion relation with a backbending predicts a cut-off spatial frequency kco:
it follows that the LDOS has an upper bound and that the maximum confinment of
the field is also limited by 1/kco. By contrast, the dispersion relation without back-
bending predicts a divergence of the LDOS at the frequency corresponding to the
asymptote of the dispersion relation. It also predicts no limit to the possible reso-
lution. It is thus clear that a general discussion on the applicability of the different
dispersion relations is needed.

4.9.2 Representation of the Fields

In order to analyse the meaning of the dispersion relation and to clarify this issue, it
is necessary to investigate the meaning of the choice of a real or complex wavector.
In what follows, we emphasize that the relevant quantity is not a field with real or
complex wavevector, but the field which depends on time and position. Introducing
complex or real wavevectors amounts to introduce a particular representation of the
field. A standard and convenient representation is the Fourier transform of the field
with respect to both time and position. The resulting modes have real frequencies
and real wavevectors. We note that a Fourier transform can always be introduced for
a square integrable function in time and space. Any field that carries a finite energy
is square integrable in time and space so that we can use a Fourier representation.

When looking at the field excited by any distribution of sources in the presence of
an interface, it is possible to extract the pole contribution to the integral. Following
Sommerfeld’s prescription, this contribution of the pole of the Fresnel reflection
or transmission factor to the integral is the surface wave. The contribution of the
pole can be evaluated analytically using the residue theorem. This first analytic
integration can be done either over frequencies or over the wavevector. Since the
pole is complex, the analytic integration yields either a complex wavevector or a
complex frequency depending on the choice. When following this program, we find
two different representations of the surface plasmon field equally valid since the final
value of the integral does not depend on the way chosen to perform the evaluation.
One representation uses surface modes with real frequency and complex wavevector,
whereas the other uses complex frequencies and real wavevectors. We skip all details
and give the result of the integration reported in Ref. [90] hereafter.

Field Representation with a Real Wavevector

The field can be cast in the form of a linear superposition of modes with real wavevec-
tor K and complex frequency ωS P . We denote K the projection of the wavevector
parallel to the interface K = (α,β, 0):

ES P = 2�
[∫

d2K
(2π)2 E(K, t)

(
K̂ − K

γm
nm

)
ei(K·r+γm |z|−ωS P t)

]
, (4.47)
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where nm = −ẑ if z < 0 and ẑ if z > 0, and K̂ = K/K . The surface plasmon field
takes a form that looks as a mode superposition, except that the amplitude E(K, t)
depends on the time t . Indeed, when describing a stationary field using modes that
have an exponential decay, the amplitude is necessarily time dependent. In order to
obtain a superposition of modes with fixed amplitudes, it is necessary to assume that
all sources are extinguished after time t = 0 so that we observe the field after it has
been excited. In that case, the decay of the mode is well described by the imaginary
part of ωS P . Equation (4.47) is thus well suited for fields excited by pulses. Note
that the polarization of each mode is specified by the complex vector K̂ − K

γm
nm ,

whose component along the z-axis depends on the medium from which the field is
evaluated.

Field Representation with a Real Frequency

A different representation of the field can be derived using modes characterized by
a real frequency ω and a real β. The x-component of the wavector is complex and is
given by

Kx,S P = [k2
S P − β2]1/2. (4.48)

The z-component of the wavector is given by the usual form γ = [εmω
2/c2−k2

S P ]1/2.
With these notations, the field can be cast in the form:

E =
∫

dω

2π

∫
dβ

2π

[
E>(β,ω, x)

(
K̂+ − KS P

γm
nm

)
ei(Kx,S P x+βy+γm |z|−ωt)

+E<(β,ω, x)

(
K̂− − KS P

γm
nm

)
ei(−Kx,S P x+βy+γm |z|−ωt)

]
(4.49)

where K̂+ = (Kx,S P x̂ +βŷ)/KS P and K̂− = (−Kx,S P x̂ +βŷ)/KS P . Note that the
modes amplitudes depend on x . A proper mode representation should use only fixed
amplitudes. This is possible if all the sources lie in the x < 0 region and the region
of interest is the x > 0 region. It can be shown in that case that the surface plasmon
field can be cast in the form:

E =
∫

dω

2π

∫
dβ

2π

(
K̂ − KS P

γm
nm

)
E>(β,ω)ei(K·r+γm |z|−ωt). (4.50)

where K = Kx,S P x̂ +βŷ is complex and K̂ = K/KS P . We conclude that stationary
monochromatic fields excited by sources confined in a bounded domain are well
described out of this domain by a representation that uses complex wavevectors and
real frequencies.
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Complex ω or Complex K? A Simple Prescription

To summarize, we have shown that the surface plasmon field can be represented using
modes that have either a complex frequency or a complex wavevector. However,
these modes amplitudes may still depend on either time or space in the more general
case. However, there are two cases where these modes with a complex wavevector
or complex frequency can be used with amplitudes which are constant. The first
case is the representation of a field excited by a pulse for times after the end of
the excitation. Then a representation with modes having a complex frequency is
possible. The second case is a field excited by a stationary but localized source. Then a
representation using complex wavevectors is possible. To each situation corresponds
a specific dispersion relation. This simple analysis yields a simple prescription to
choose the proper dispersion relation. Note that in the case of pulses limited in
space, both representations can be used.

4.9.3 Implications for LDOS

Let us now discuss the Local Density of States (LDOS). We have already pointed
out the connection between the dispersion relation and the LDOS in Sect. 4.8.2.
In particular, we have seen that the density of states diverges when the group velocity
goes to zero. A quick look at Fig. 4.5 shows that different dispersion relations seem
to predict different LDOS. While Fig. 4.5b predicts a very large peak at ωsp/

√
2 due

to the asymptote (zero group velocity) and no states above this frequency, Fig. 4.5a
predicts a smaller peak and a non-zero LDOS between ωS P/

√
2 and ωS P . There

must be a unique answer as the LDOS determines the energy density at equilibrium
and the lifetime of emitters which are well-defined physical quantities. Again, we
see that a prescription is needed to choose the right dispersion relation.

A standard procedure to derive the DOS in the reciprocal space is based on the
periodic boundary conditions. Assuming a surface of side L , the wavevector takes the
form K = nx

2π
L x̂+ny

2π
L ŷ. When performing this analysis, both Kx and Ky are real.

Thus the relevant representation uses real wavevectors and complex frequencies.
The corresponding dispersion relation has no backbending and therefore presents
a singularity. This is in agreement with another approach of the LDOS based on
the use of the Green’s tensor that predicts an asymptotic behaviour proportional to
1/(z3|ε + 1|2) [32, 33]. Of course, this divergence is nonphysical. It is related to
the modelling of the medium using a continuous description of the metal without
accounting for the non-locality.

4.9.4 Implications for Superresolution and Strong Confinment

Let us first discuss the issue of resolution when imaging with a surface plasmon
driven at frequency ω by an external source. If the dispersion curve with the asymp-
totic behaviour is chosen, there seems to be no diffraction limit (if we neglect the
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cut-off due to Landau damping) and only the amplitude decay of surface plasmon
due to Ohmic losses in the metal limits the resolution. The effect of the backbend-
ing of surface plasmon dispersion discussed in Ref. [46] limits the surface plasmon
wavelength 2π/�(kS P ) and therefore, the resolution. Clearly, both dispersion rela-
tions do not lead to the same conclusion and a prescription to choose one or the other
is needed. Let us consider a situation where a surface plasmon is excited locally by
a stationary monochromatic field. From Sect. 4.9.2, we know that it is valid to use
a representation with fixed amplitudes using modes with complex wavevectors and
real frequencies. This implies that the dispersion relation with real frequency (with
backbending) is relevant. Hence, there is a cut-off spatial frequency. Indeed, as Kx

may be complex, the propagation term exp(i Kx x) introduces damping. In the case
of a lossy medium, damping may be due to losses. However, even for a non-lossy
medium (kS P is real), Kx = (k2

S P − β2)1/2 can be imaginary. This occurs when β
exceeds the value KS P . This situation is the 2D analogue of the evanescent waves
with wavevector K larger than ω/c that cannot propagate in a vacuum. Clearly, kS P

is a cut-off frequency and the propagation term exp(i Kx x) works as a low-pass filter
that prevents the propagation of fields associated with spatial frequencies larger than
kS P . When dealing with lossy media, it is the real part of kS P that specifies the cut-off
spatial frequency. It is seen in Fig. 4.5 that this real part is limited by the backbending
of the dispersion relation.

In summary, when discussing imaging with stationary monochromatic surface
plasmons, the relevant representation is based on modes with a complex wavector
and a real frequency given by Eq. (4.50). This corresponds to a dispersion relation
with a backbending. It follows that the resolution is limited by the cut-off spatial
frequency given by the maximum value of �(kS P ).

4.10 Fourier Optics for SPP

In this section, we study the propagation of surface plasmon polaritons along a flat
interface. Several experiments demonstrating propagation, interferences and diffrac-
tion by surface plasmons have been reported in the literature [93–97]. In usual optics,
these phenomena are well described in the framework of optical physics, which is
based on the Huygens–Fresnel principle. In this section, we derive an analogue of this
principle for surface plasmons following Ref. [98]. We consider the propagation of
a monochromatic surface plasmon field along a planar surface z = 0 in the direction
of positive x. We assume that the field is known at x = 0 and we seek an expression
of the field for x > 0. If a Huygens–Fresnel-type approach can be used, we expect
to be able to assume that each point along the line x = 0 acts as a secondary source
that radiates a cylindrical wave.
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4.10.1 General Representation

The general representations of the field given in Sect. 4.9.2 provide the adequate
formalism to deal with these phenomena. In particular, Eq. (4.50) is a rigorous form
of the surface plasmon field valid in a region with no sources. Let us stress that this
representation is valid for a complex wavevector K and a real frequency ω so that this
representation is necessarily associated with a dispersion relation with backbending.
We emphasize that this representation is well suited to discuss propagation for x > x0
of a surface plasmon field known along a line x = x0. It is seen in Eq. (4.50) that
propagation over a distance d amounts to multiply the amplitude of each mode by
a factor exp(ikx,S P d). In general, this involves modifying both the phase and the
amplitude of the mode. Thus, it allows us to discuss any surface wave diffraction
problem. Hereafter, the time dependence exp(−iωt) will be omitted for brevity. From
Eq. (4.50), we have:

ES P (x, y) =
∫

dβ

2π
ES P (β)e

i
√

k2
S P−β2x+iβy

. (4.51)

This expansion is analogous to the angular plane wave representation of fields in a
vacuum. It is valid for x > 0 in a source free region. Note that we have omitted the

z-dependence of the field given by exp(i
√
ε1ω2/c2 − k2

S P z) in the upper medium

and by exp(−i
√
ε2ω2/c2 − k2

S P z) in the metal. Indeed, the decay along the z-axis
depends on the frequency but not on β.

A first simplification arises when reducing the problem to a scalar problem. Indeed,
it turns out that the x- and y-components of the electric field can be derived from the
form of the z-component of the electric field. This is a straightforward consequence
of div E = 0 so that K · E + kz Ez = 0. The electric field components are thus
given by:

Ex (β) =
√

k2
S P − β2 kz

k2
S P

E S P
z (β)

Ey(β) = ky
kz

k2
S P

E S P
z (β)

E S P
z (β), (4.52)

where kz =
√
ε1ω2/c2 − k2

S P is the z-component of the wavevector in dielectric
environment.
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4.10.2 Huygens–Fresnel Principle

We now proceed to derive a vectorial form of the Huygens principle with no approx-
imation. Note in particular that the result will account for polarization and near-field
effects. We observe that the integral in Eq. (4.51) is the Fourier transform of the
product of two functions of β. For example, for the z-component, we have:

E S P
z (x, y) =

∫
dβ

2π
[E S P

z (β)]
[

e
i
√

k2
S P−β2x

]
eiβy . (4.53)

The integral can thus be written as a convolution product of the Fourier transforms

of E S P
z (β) and exp(i

√
k2

S P − β2x). Making use of the integral representation of the
Hankel function, we obtain:

∫
dβ

[
e

i
√

k2
S P−β2x

]
eiβy = −iπ

∂

∂x
H (1)

0 (kS Pρ)

where ρ = √
x2 + y2. Equation (4.53) can thus be cast in the form:

E S P
z (x, y) = −i

2

∫
dy′ E S P

z (x = 0, y′)i ∂
∂x

H (1)
0 (kS Pρ). (4.54)

Similarly, we find:

E S P
x (x, y) = −1

2

∫
dy′ E S P

z (x = 0, y′) kz

k2
S P

∂2

∂x2 H (1)
0 (kS Pρ), (4.55)

and:

E S P
y (x, y) = −1

2

∫
dy′ E S P

z (x = 0, y′) kz

k2
S P

∂2

∂x∂y
H (1)

0 (kS Pρ). (4.56)

Equation (4.54) can be viewed as a vectorial Huygens–Fresnel principle for surface
plasmons. Indeed, the surface plasmon field at (x, y) appears to result from the
interferences of surface plasmons emitted by secondary sources located at (x =
0, y′) with an amplitude E S P

z (x = 0, y′). In order to see more clearly the link with
Huygens–Fresnel principle, we use the asymptotic form of the Hankel function, valid
for distances larger than the wavelength. We obtain:

E S P
z (x, y) = − i√

λS P

∫
dy′ cos θ E S P

z (x = 0, y′)eikS Pρ

√
ρ

eiπ/4, (4.57)

whereλS P = 2π/kS P is the surface plasmon wavelength and θ = arccos(x/ρ). Here,
the propagator is a damped cylindrical wave eikS Pρ/

√
ρ instead of the
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spherical wave eikr/r in the case of light propagation in a 3D vacuum. We
recover in this asymptotic regime a surface plasmon form that has been conjectured
previously [99, 96]. However, let us emphasize two differences between the scalar
approximation and the propagator given by Eq. (4.54). Firstly, Eq. (4.54) is valid for
any distance and includes near-field terms. Secondly, Eqs. (4.55) and (4.56) show that
the x- and y-components of the electric field can be derived from the z-component.
More specifically, the parallel components of the field are given by Ex = kz

k2
S P

∂Ez
∂x ,

Ey = kz

k2
S P

∂Ez
∂y .

4.11 Conclusion

After more than 50 years, surface plasmons are still a very active research area. There
has been a remarkable increase of novel results in the last ten years, mostly due to
the simultaneous progress in observation and fabrication techniques. Observation
techniques are reviewed in a separate chapter. They have made tremendous progress
since the first near-field microscopy image [100] of a surface plasmon. The progress
of nanofabrication makes possible the control of nanostructures that can take full
advantage of the potential of surface plasmons. It is the purpose of this introductory
chapter to highlight the polaritonic aspect of surface plasmons, or in other words, its
dual electronic and electromagnetic nature. Surface plasmons are becoming a very
important tool for the control of optical fields at the nanoscale. I believe that it is
important to be aware of the underlying microscopic nature of surface plasmons in
order to fully appreciate their potential and limitations.
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Chapter 5
Localized Surface Plasmons: Basics and
Applications in Field-Enhanced Spectroscopy

Javier Aizpurua and Rainer Hillenbrand

Abstract The oscillation of the surface charge density in metallic nanoparticles,
commonly named localized surface plasmons (LSPs), is a result of the collective
oscillation of the conduction electrons under the constraints imposed by the physi-
cal boundaries of the nanoparticle geometry. In this chapter, a review on the basic
properties of LSPs, acting as effective optical nanoantennas, is presented. The
optical response in the simplest nanoparticle, a metallic sphere, serves as a guide
to understand concepts such as dipolar approximation, multipolar modes, effects
of retardation, and shape-effects in the optical response of metallic nanoparticles.
Special emphasis is paid to the coupling of metallic nanostructures as a standard
approach to design optical nanoantennas, where aspects such as the tuning of the
spectral response and the magnitude of the field enhancement are described in sim-
ple terms. The role of metallic nanostructures as optical antennas assisting in field-
enhanced spectroscopy is also detailed in the context of surface-enhanced Raman
scattering and surface-enhanced infrared absorption (SEIRA). Other spectral and
sensing techniques are briefly discussed for completeness.

The optical properties of metallic nanoparticles are determined by the excitation of
electromagnetic surface modes, also called localized surface plasmons (LSPs) [1].
These modes belong to resonant oscillations of the surface charge density at the
boundaries of the metal nanoparticle. In contrast to the surface modes propagating

J. Aizpurua
Center for Materials Physics CSIC-UPV/EHU
and Donostia International Physics Center DIPC,
Paseo Manuel Lardizabal 5, 20018 Donostia-San Sebastián, Spain
e-mail: aizpurua@ehu.es

R. Hillenbrand
CIC nanoGUNE Consolider, Avda. Tolosa 76, 20018 Donostia-San Sebastián, Spain
e-mail: r.hillenbrand@nanogune.eu

R. Hillenbrand
IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

S. Enoch and N. Bonod (eds.), Plasmonics, Springer Series in Optical Sciences 167, 151
DOI: 10.1007/978-3-642-28079-5_5, © Springer-Verlag Berlin Heidelberg 2012



152 J. Aizpurua and R. Hillenbrand

along metal–dielectric interfaces, as those detailed in previous chapters, localized
plasmon modes are stationary oscillations of the surface charge density at optical
frequencies along the metal boundaries of a metallic particle. The optical prop-
erties of LSP modes have made these excitations very attractive from a scientific
and technological point of view. Localized surface plasmons are the basis to gen-
erate subwavelength-enhanced electromagnetic fields that can govern, control, and
improve physical processes such as molecular fluorescence [2], vibrational spec-
troscopy [3], photovoltaics [4], energy transfer [5], molecular sensing [6], nanoscale
optical signal interconnection [7], photoemission [8], nanoscale microscopy [9],
among others. We describe in the first section of this chapter the basic properties of
localized surface plasmon modes to understand the key factors governing the optical
response in finite metallic nanostructures. In the second sections we will focus on
the role of these surface plasmons to turn single metal nanostructures into effective
spectroscopic nanoantennas.

5.1 Localized Plasmons and Optical Antennas

5.1.1 Surface Plasmon Polaritons Versus Localized Surface
Plasmon Polaritons

In previous chapters, surface plasmon polaritons (SPPs) have been described in detail.
In brief, SPPs are surface charge density waves that propagate at a metal–dielectric
interface with a typical dispersion curve as the one presented by the dashed blue
line in Fig. 5.1a. Light cannot couple directly to plasmon excitations of a flat, semi-
infinite metal surface since energy and momentum cannot be conserved simultane-
ously. This momemtum mismatch can be observed in Fig. 5.1 where the light line
is plotted as a black-solid line. It is probably because of this intrinsic difficulty of
SPPs to be excited by light that surface plasmons were predicted in the context of
the interaction of charges with thin metallic films in 1957 by R. Ritchie [10]. In that
case, the excitation of plasmons by fast electrons is possible due to the momentum
transfer k from the electrons that involves their velocity v as k ≈ ω/v, with ω the
energy loss experienced by the electrons. Nevertheless, SPPs can also be excited by
light. There are several possibilities to provide the additional momentum, so that
the surface plasmon can couple to incident light. One of the options consists in
modifying the planar metal surface by means of indentations or gratings [11] that
can provide “lattice” momentum to ensure momentum conservation. Experimen-
tal implementations of this situation have been commonly used not only to launch
plasmons in surfaces but also to scatter SPPs from an interface in order to detect
them [12].

In a metallic nanoparticle, opposite to the propagating SPPs in a flat surface, the
closed geometrical boundaries can sustain a localized oscillation of the surface charge
density (see schematics to the right-hand side of Fig. 5.1). This localized excitation is
commonly referred to as LSP. The optical response of the LSP in a metallic particle
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Propagating Surface Plasmon

Localized Surface Plasmon

Fig. 5.1 Left Dispersion curve of the bulk plasmon (green-dashed line) and surface plasmon polari-
ton (blue-dashed line). The curve of light in vacuum is displayed as a solid black line. Red dots
and red-dashed lines denote schematically a certain momentum provision that allows for effective
coupling to light. Right Top, schematics of the surface charge density of a propagating surface plas-
mon polariton. Bottom, schematics of the surface charge density of a LSP. In the latter, the closure
of the boundaries due to the geometry produces a stationary surface charge density oscillation that
allows for intense coupling of LSP and light

can be described through the particle polarizabilityα that relates the incoming electric
field Eo with the electric dipole moment p = αEo. Generally, the polarizability of
a metallic object is a frequency-dependent magnitude that depends on the dielectric
function ε(ω) of the metal and on the surrounding medium, as well as on the particle
geometry. A localized surface plasmon resonance is associated with a pole of the
polarizability α of the metal nanoparticle as a function of frequency (wavelength).
The explicit form of this polarizability will be discussed in simple cases such as
spheres and spheroids in the next sections. For small nanoparticles made of noble
metals such as gold and silver, the LSP resonances fall typically in the visible range
of the spectrum.

The electromagnetic coupling of light to the LSP resonances can be understood
alternatively in the context of simultaneous conservation of energy and momentum,
as delineated above. In a metallic nanoparticle, the finite geometry acts as a source
of momentum, generating a stationary surface charge density wave that is localized
at the particle. For a particle of generic size a, the momentum provision Δk by the
geometrical boundaries can be roughly approximated as Δk = n 2π

a where n is an
integer. In this case, a discrete set of LSP modes of order n that couple effectively to
light are possible. In Fig. 5.1, the effect of this momentum provision allowing cou-
pling to light is schematically depicted by red-dashed lines. In analogy to other ranges
of the electromagnetic spectrum, these localized electromagnetic surface modes are
commonly referred to as optical antenna resonances. The finite geometry of the metal
nanoparticles essentially determines their optical properties. It does not only allow
for coupling to external light, but it also provides a means to tune the energies of the
plasmon excitations and to localize and enhance optical fields in the vicinity of the
particles. All these aspects of metal nanoparticles make them key building blocks in
nano-optics.
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5.1.2 The Simplest Optical Nanoantenna: A Metallic Nanoparticle

We define an optical antenna as a structure that converts effectively electromagnetic
radiation from the far-field into the near-field and vice versa [13]. A spherical metallic
nanoparticle can be considered to be the simplest optical antenna. We will therefore
focus on this geometry to understand the basic concepts in optical nanoantennas.

The description of the scattering and absorption by a nanoparticle is essentially
given by the scattering and absorption cross-sections that relate the energy that is
sent back to the far-field and the energy that is dissipated within the nanoparticle,
respectively. When we relate the scattered power Iscat and the absorbed power Iabs
to the incident power Iinc, we obtain the scattering cross-section Cscat = Iscat

Iinc
and the

absorption cross-section Cabs = Iabs
Iinc

. For spherical particles with radius a smaller
than the incoming wavelength λ, retardation does not play a role and we find [14]:

Cscat = 8π

3
k4a6

∣∣∣∣ εsph − εmed

εsph + 2εmed

∣∣∣∣ = k4

6π
|αsph|2 ⇒ Cscat ∝ a6

λ4 (5.1)

Cabs = 4πka3Im

{
εsph − εmed

εsph + 2εmed

}
= kIm{αsph} ⇒ Cabs ∝ a3

λ
, (5.2)

where αsph is the dipolar polarizability of a spherical particle of radius a in the
quasistatic approach:

αsph = 4πεoa3 εsph − εmed

εsph + 2εmed
, (5.3)

with εsph the dielectric function of the sphere and εmed the dielectric function of the
surrounding medium. k is the wavevector that is related to the frequency ω and the
speed of light in vacuum c as k = ω/c. If the dielectric value of εsph is constant
and with negligible imaginary part of the dielectric function ε", the scattering cross-
section shows a rather flat spectral response and almost zero absorption. When the
sphere is made of a metal characterized by a plasma frequency ωp, as introduced
previously in Chap. 2 (see, for example, Eq. (2.24)), a good approximate model to
describe the dielectric response εsph in the optical range is given by the Drude model:

εsph = εmetal = 1 − ω2
p

ω(ω + iγ)
, (5.4)

where γ describes the damping of the electrons, caused mainly by the electron-
phonon scattering in the metal.

The optical properties of the nanoparticle are given by the polarizability in
Eq. (5.3). As pointed out in the previous section, a pole in the polarizability determines
a maximum in scattering and absorption (when losses are small). In the particular
case of a small sphere, as derived from Eq. (5.3), the expression that determines the

http://dx.doi.org/10.1007/978-3-642-28079-5_2
http://dx.doi.org/10.1007/978-3-642-28079-5_2
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Fig. 5.2 a Real ε′ and imaginary ε′′ of a Drude-like dielectric function as a function of frequency
normalized to the plasma frequency ωp . The energy region with negative real-value response is the
ideal situation to sustain surface plasmons. b Modulus of the response function in a small spherical
metallic particle

εsph−εmed
εsph+2εmed

showing the spherical surface plasmon dipolar resonance for a Drude-
like sphere surrounded by vacuum. The scattering cross-section is proportional to the square of this
magnitude. c Imaginary part of the same response function as in b. The absorption cross-section is
proportional to this magnitude. A damping of 0.2ωp has been used in both cases. The resonances
are not maximum at the same frequency exactly, but for small damping, both are located close to
the dipolar surface plasmon frequency ωres = ωp/

√
3

optical properties of the nanoparticle is the so-called optical response
εsph−εmed
εsph+2εmed

.
When the Drude-like dielectric function (see Fig. 5.2a) is introduced in Eqs. (5.1)
and (5.2), the spherical nanoparticle shows resonant behavior for both cross-sections
(see Fig. 5.2b, c). The resonance position appears at the frequency ωres that ful-
fills εsph + 2εmed = 0. If we assume now that the surrounding medium is vaccum
(εmed = 1), the resonance frequency ωres is found at a frequency ωres = ωp√

3
. This is

the frequency of the spherical dipolar surface plasmon.
The interest in the dipolar surface plasmon of small particles is twofold: on the

one hand, the electromagnetic near-field associated with the plasmon excitation is
strongly localized on the scale of the nanoparticle size, typically on the nanometer
scale, allowing for an effective squeezing down of the oscillations of the electro-
magnetic field to subwavelength dimensions. On the other hand, the LSP resonances
produce a considerable increase of the local fields around the particles ranging from
5 to 500 times enhancement in amplitude. This is the basis of many field-enhanced
spectroscopy techniques, photovoltaics, medical applications, and optical antenna
effects.

It is convenient to distinguish two regions around the particles where we have
localized fields (near-field) and propagating fields (far-field). We can express the
electric field E(r) of a dipole characterized by its dipolar momentum p located at
the origin of coordinates, as a canonical example of an emitter:

E(r) = 1

4πεo

eikr

r

{
k2[(n × p) × n] + 1

r

(
1

r
− ik

)
[3n(n · p) − p]

}
e−iωt . (5.5)

If the dipolar momentum p is assumed to be the electric dipole given by the static
polarizability of a sphere αsph (related to the incident field Eo) as introduced above,
it is possible to obtain the field produced by the sphere as a response to the incident
field in both regions of interest.
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Fig. 5.3 a Modulus of the amplitude of the near-field around a plasmonic dipole (r � λ).
b Modulus of the far-field radiation pattern emitted from a plasmonic dipole (r � λ)

In the near-field zone, where kr � 1, the field in Eq. (5.5) can be asymptotically
expressed as:

E(r) = 1

4πεo

3n(n·p) − p
r3 e−iωt . (5.6)

This near-field distribution of a nanoscale metallic particle is represented in Fig. 5.3a
[15] normalized to the incident field. From this figure, it is straightforward to con-
clude that a metallic particle acts as an effective optical antenna, converting propa-
gating electromagnetic energy (far-field) into strongly localized near-fields. This is
possible due to the excitation of the LSPs, expressed through the polarizability of
the sphere involving the metallic response εsph. The nanoscale localization of the
electromagnetic fields by LSPs is a key factor for the impact of these excitations
in nano-optics. Due to this high degree of localization, nanoscale fields allow for
sensing [16], nanoscale imaging [9], controlling [17], and manipulating the optical
signal [18], for example. On the other hand, in the far-field or radiation zone, where
kr � 1, the field in Eq. (5.5) can be asymptotically expressed as:

E(r) = (n × p) × n
r

k2

4πεo
ei(kr−ωt). (5.7)

The far-field radiation scattered by the dipolar surface plasmon (see Fig. 5.3b)
exhibits the typical radiation pattern of the emission of a dipolar radioantenna. Notice
that the far-field produced by a small metallic particle can be described by a point
dipole located at the center of the particle, as observed in the figure. The optical
scattering of nanoscale antennas shows properties of gain, directionality, and emis-
sivity extensively studied in electrical engineering for other electromagnetic spectral
ranges. The properties of the LSPs will therefore govern the actual properties of the
nanoscale optical antenna.
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5.1.3 Higher-Order Modes

The dipolar LSP resonance is the simplest low-energy resonance that one can find in
a metallic nanoparticle. In a spherical particle, more complex surface charge density
oscillations can be supported by the particle. When the oscillations of the surface
charge density associated with the LSPs show several nodes, the resonances are
referred to as high-order resonance modes, or multipolar modes that can be under-
stood as stationary surface charge density waves over the surface. A l-order mode
is characterized by the presence of l nodes in the surface charge density oscillation
along the surface. In the quasistatic approximation, where the particles are consid-
erably smaller than the wavelength of the incoming light, the Helmholtz equation
is replaced by the Laplace equation where the incoming field can be considered
constant. By solving the Laplace equation with the use of an expansion in spherical
harmonics of order l, it is easily found that the l-polar modes of a spherical metallic
particle are given by [19]:

ωl =
√

l

2l + 1
ωp. (5.8)

Here, it is assumed that the dielectric response of the metal can be described by the
Drude model in Eq. (5.4), while the surrounding medium is vacuum.

An example of higher-order surface plasmon modes is illustrated in Fig. 5.4. We
discuss elongated nanoparticles (nanorods) exhibiting higher-order surface modes
more clearly. These modes are the solution of the Laplace equation for rotationally
invariant particle geometries such as rods or ellipsoids (we select m = 0 modes,
with m the index expressing the azymuthal symmetry following cos(m φ)). Cross-
sections of the time-oscillating, stationary surface charge densities of the first five
higher-order modes, l = 0 to l = 5, are displayed, as well as the l = 9 and l = 19
modes.

Very interesting aspects of LSPs can be derived by considering the symmetry of
the surface charge density. In the case of simple nanorods/elongated particles, for
example, it is possible to find modes with net dipole moment (l = 1, l = 3, l = 5,
l = 9, l = 19 in Fig. 5.4), as well as modes with a zero net dipole moment (l = 0,
l = 2, l = 4 in Fig. 5.4). A plane wave polarized along the long (symmetry) axis of
the particles can excite only modes with a net dipole moment. Modes with a zero net
dipole moment cannot be excited. We also see in Fig. 5.4 that the lowest energy mode
(l = 0) requires a finite net charge. Illumination with electromagnetic radiation thus
cannot excite this mode.

A very efficient way to excite higher-order modes in metallic nanoparticles can
be implemented with the use of the external electric field produced by a fast electron
beam traveling at relativistic velocity (≈100–200 keV energy) in the proximity of a
nanoparticle. When the electrons pass near the particle, the electrons excites LSPs
and therefore the electron beam loses the corresponding amount of energy. By mea-
suring the energy loss ΔE experienced by the electron beam in electron energy loss



158 J. Aizpurua and R. Hillenbrand

x(nm)

x(nm)

z(nm)

(x
,z

)

(x
,z

)

z(nm)

1st order modeZero order mode

2nd order 3rd order

4th order 5th order

9th order 19th order

Fig. 5.4 Cross-section of elongated particle nanorods in the (x, z) plane with the corresponding
surface charge density σ(x,z) of the higher l-order surface modes plotted along the elongated surface
of the particles. The surface modes are the eigenvalues of the Laplace equation for a particle
with azimuthal invariance (rotational invariance); therefore, these modes are characterized by the
azimuthal number m = 0

spectroscopy (EELS), it is possible to obtain spectral features of the LSPs excited in
the metal particle [21, 22].

The energy loss probability Pω of the electron beam when passing a spherical
nanoparticle can be expressed as [23]:

P(ω) = 4q2

πv2a2

∞∑
l=0

l∑
m=0

Alm

(ωa

v

)2l
K 2

m

(
ωb

v

)
I m[αl(ω)], (5.9)

where αl(ω) is the l-order polarizability of the nanoparticle associated with the

l-order mode, αl(ω) = ε(ω)sph−1
ε(ω)sph+(l+1)/ l a3. P(ω) depends basically on the radius of

the particle a, the impact parameter of the electron beam b (distance between the
particle center and the electron beam), and the velocity of the electrons v. Figure 5.5
shows the spectrum of energy losses Pω for an electron beam passing very close to
the particle surface (b roughly > a). In such a case, the electron beam excites very
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Fig. 5.5 Electron energy loss probability per unit energy for a 50 keV electron moving at grazing
incidence on an aluminum sphere of radius a = 10 nm. Adapted from Ref. [23] with permission
from APS

efficiently high-order multipolar modes, yielding several peaks in the energy loss
spectrum with modes labeled as l = 1, 2, . . .

Excitation of higher-order modes in extreme subwavelength scale spheres is nearly
impossible by conventional optical spectroscopy, because the plane wave illumina-
tion provides a homogeneous electric field across the particle, thus essentially excit-
ing the dipole mode. The excitation of higher multipoles such as the quadrupole or
octupole modes is negligible for small spheres with a � λ. Nevertheless, if the
particles are large enough, higher-order modes can be efficiently excited [24].

The example brought up in this section shows that alternative external probes
other than optical planewaves such as electrons can also couple and excite efficiently
non-standard surface plasmon modes. Other external sources of surface plasmon
excitation can be found in electrostatic fields [25] or in the field produced by tunneling
electrons in a cavity [26] where the properties of the plasmons excited depend on the
characteristics of the external fields and the environment.

5.1.4 Retardation

The quasistatic approximation can be well applied for nanoparticles that are much
smaller than the wavelength of light, as the incoming optical fields are nearly con-
stant across the particle (see schematics in Fig. 5.6a). When the size of the particles
increases, the quasistatic approach is no longer valid, and a full solution of Maxwell’s
equations (through solving Helmholtz equation) is necessary to correctly obtain the
spectral position and intensity of the resonances. The solution of the modes in a
spherical geometry can be traced back to Mie [27] where retardation in the electro-
magnetic interaction is considered. In the so-called Mie theory, solutions of scattering
and absorption are obtained by an expansion of the fields in spherical harmonics.
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Small sphere Large sphere

Radiation patterns

(a)

(b)

(c)

Fig. 5.6 a Schematics of the assumption made in the quasistatic approach in terms of the particle
size and incoming wavelength. The general case does not impose the constraint that the particle
size a needs to be smaller than the wavelength λ. b Frequency of the multipolar spherical surface
plasmon modes as a function of the particle radius a, as obtained from the scattering coefficients of
a metallic sphere in a full electrodynamical description within the Mie theory. c Radiation patterns
for the dipolar spherical plasmonic mode in the case of a gold particle of radius a = 10 nm (left-
hand side) and a particle of radius a = 200 nm (right-hand side). The distorted dipolar pattern is
observed for large particles

Both scattering and absorption show maxima at certain resonance frequencies whose
spectral positions depend on the size of the particles. The solutions of the electro-
magnetic modes for a metallic nanoparticle in vacuum characterized by a Drude-like
optical response are displayed in Fig. 5.6b. In the limit of very small particles (a → 0),
a set of l−modes appear consistent with the non-retarded solutions of Laplace equa-
tion presented in Eq. (5.8). As the radius of the particle a increases, each mode l
shifts to lower frequencies (red-shift). In addition to the redshift of the resonance
frequencies ωl , the scattering and absorption cross sections are broadened because of
radiation losses. Furthermore, the far-field radiation pattern changes with increasing
size. In Fig. 5.6c, radiation patterns at the lowest resonance frequency are displayed
for a small (left) and a large (right) particle. The small particle shows a perfectly
dipolar pattern radiating over all directions, whereas the large particle scatters more
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strongly in the forward direction [14]. All these effects show that a full electrody-
namical solution of the scattering of metallic nanoparticles is crucial for a correct
description of the LSP spectral position and the scattering properties.

5.1.5 Influence of Particle Shape in Plasmon Response

The resonance condition for the optical response of a metallic nanoparticle is given by
the maximum of its polarizability α, as detailed in the previous section. For shapes
differing from simple spheres, the polarizability becomes anisotropic, exhibiting
different optical responses along the different directions. In such a case, it is necessary
to define the polarizability as a tensor that addresses the optical response along several
directions. For the case of ellipsoidal particles elongated along one symmetry axis z,
we obtain within the electrostatic approximation the following polarizabilities along
the different symmetry axes x, y, z:

αx,y,z = 4

3
πLx L y Lz

εell − εmed

εmed + Px,y,z(εell − εmed)
. (5.10)

Here, Px,y,z are the depolarization factors in the direction of the x, y, and z axes,
Lx , L y , and Lz are the semilengths of the ellipsoid along the respective axis. εell is
the dielectric function of the material of the ellipsoid and εmed that of the surrounding
medium. If the short semi-axes are equal, Lx = L y , the particle is a spheroid rather
than an ellipsoid, yielding Px = Py .

The depolarization factors Px,y,z are determined by the ellipticity e of the ellipsoid:

Pz = 1 − e2

e2

[
1

2e
ln

(
1 + e

1 − e

)
− 1

]
(5.11)

Px = Py = 1 − Pz

2
. (5.12)

with

e =
√

1 − (Lx/Lz)2. (5.13)

For a spheroid, two different solutions of the dipolar LSP are possible: one associated
with the long axis polarizability and the other one with the short axis polarizability,
respectively.

The anisotropy of the optical response of a metallic spheroid is illustrated in
Fig. 5.7, showing far-field spectra (a) and near-field distribution (b, c) of a silver
spheroid when illuminated with polarization along and perpendicular to the long
axis, respectively. A long wavelength resonance is present in the spectrum when
light is polarized along the long axis. This LSP is commonly named as longitudinal
LSP. The resonance associated with the short axis appears at shorter wavelength
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(a) (b) (c)
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Fig. 5.7 a Extinction cross-section for longitudinally polarized light and transversally polarized
light illuminating a silver ellipsoid. Longitudinal and transverse LSPs are excited. b Near-field
distribution of the transverse LSP in the proximity of the ellipsoid at the resonant wavelength λ =
342 nm. c Near-field distribution of the longitudinal LSP at the resonant wavelength λ = 565 nm

and is commonly named as transversal LSP. The near-field distribution of both the
transverse and longitudinal LSPs can be observed in Fig. 5.7b, c. For the longitudinal
resonance, we find a large field concentration at the ellipsoid extremities because of
the large polarizability and sharp edges. A much weaker field enhancement is found
for the short axis resonance. The ellipticity, i.e. the aspect ratio (Lx/Lz), thus provides
a means to tune the frequency (wavelength) of both the longitudinal and transverse
LSPs [28]. We note that the longitudinal resonances of spheroids are commonly
referred to as linear optical antenna resonances.

A variety of metallic nanoparticle shapes together with their corresponding optical
properties can be found in the literature [29]. Chemical synthesis and lithographic
methods have made it possible to produce different metallic particle geometries and
configurations [30–33]. Besides the standard, canonical shapes such as spheres and
spheroids, it is possible to produce nanocubes, nanoshells, nanorings, nanocups,
nanorice, nanostars, among others. Obviously, an increase in the complexity of the
particle geometry requires to go beyond analytical models to calculate their optical
response. To that end, different computational methods have been implemented to
solve exactly Maxwell’s equations in arbitrarily shaped particles. Among the most
common methods are the dipole–dipole approximation (DDA) [34], finite difference
in time domain (FDTD) techniques [35], or boundary element methods (BEM) [36].
A major goal of numerical simulations is to understand and engineer the local field
enhancement, which is essential for spectroscopy and microscopy applications.

Current efforts concentrate on engineering the particle shape in order to optimize
the field enhancement for spectroscopy applications. Another aspect of interest is
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the tunability of the LSP response. The modification of the particle shape modifies
the spectral position of the plasmonic resonance, thus providing a tool to tune the
optical response at the nanoscale. Several effects, strongly dependent on the particle
shape, play a role in determining the actual LSP resonance frequency and the field
enhancement. We summarize some of these effects:

• Elongation. Elongated particles yield strong anisotropy in the optical response
and can be extremely valuable to localize the field at the ends of the elongation
and tune the response through the aspect ratio. This is the case in nanorods and
ellipsoids, as shown in Fig. 5.7.

• Curvature. Plasmons are also sensitive to the lightning rod effect produced by
rapid electric potential variations in the proximity of a curved surface. As the
radius of curvature of a surface becomes smaller, the strong localization of the
surface charge density provides a very intense field. Some of the particles that
present this feature are tappered rods, tips, or nanostars, for example.

• Asymmetry. The generation of nanoparticles that break symmetry has turned out
to be valuable to obtain sharper lineshapes in the optical spectrum (Fano-like
shapes) [37] and to manipulate the polarization of the incoming light. The use of
non-centrosymmetric particles, such as L- and U-shaped particles and spirals, are
among some examples.

• Intracoupling. The use of particles that present inner and outer walls, arms, or
edges that provide a source of Coulomb coupling is very effective for spectral
tuning of the optical response. Within this spirit, nanoshells or nanorings where
the interaction takes place between inner and outer walls of the nanoparticles
provide a direct source to tune the optical response.

In Table 5.1, a selection of nanostructures is itemized, outlining some particular
optical property that makes them interesting in the context of plasmon optics.

5.1.6 Field Enhancement by Plasmon Coupling

Another powerful tool to control LSPs relies on the near-field coupling between
nanoparticles. The localized modes of each single particle couple to each other via
Coulomb interaction, giving rise to new hybridized modes [56] that are shifted with
respect to the single particle resonance [57]. The simplest case of such a situation is
the coupling of two closely spaced spherical particles in the dipole approximation
(see schematics in Fig. 5.8a). In this case, we can assign to the coupled particles
an effective polarizability αeff , which is a function of the particles polarizabilities
α1 andα2, and the distance between the dipoles r . We distinguish two cases: longitu-
dinally aligned dipoles and transversally aligned dipoles. Their respective effective
polarizabilities αlong

eff and αtrans
eff are given by [58]:
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Table 5.1 Selected plasmonic nanostructures and their optical properties

Nanoparticle Material Reference Properties

Nanosphere Gold [38] Isotropic scattering, moderate enhancement.
Interesting for quantitative optical
characterization of single particle

Nanospheroid Gold [28] Anisotropic scattering and enhancement. Transverse
and longitudinal modes

Nanorod Gold [39, 40] Longitudinal and transverse resonances. Linear
behavior with rod length. Modification of
plasmon decaying rates

Nanodisk Gold [41] Substrates to optimize biosensing. Useful as
constituents for patch antennas

Nanoshell Gold [42] Tunability due to shell thickness
Nanoring Gold [43] Tunability due to ring thickness
Nanorice Gold [44] Intense resonances, large field enhancements.

Combines rod and shell properties
Nanocube Silver [45] Appropriate for plasmon sensing
Nanostar Gold [46] Intense hot spots at the nanostar tips
Nanoegg Gold [47] Tunability, asymmetric system, Fano spectral profiles
Nanocup Gold [48] Capability to bend light
Nanospiral Gold [49] Complex response
Nanocrescent Gold [50] Tunable narrow resonances in the mid-infrared with

good figures of merit for sensing
Nanotriangle Silver [51] Strong scattering in the red. Modes associated to the

triangle edges
Nanoprism Gold [52] Presence of sharp edges. Breaking of symmetry
Nanohole Gold [53, 54] Inverse symmetry. Babinet’s principle. Similar trends

for complementary electric and magnetic fields
L-shaped Gold [55] No center of inversion symmetry. Strong dependence

on polarization. Presence of bulk-like plasmons

Some relevant optical properties associated with the structures are pointed out. The references
selected are not necessarily the only ones nor the first ones to address the particular geometry. They
are pointed out here as a practical guide to obtain more information on a particular nanoparticle
geometry

α
long
eff = α1 + α2 + α1α2

πr3

1 − α1α2
4π2r6

(5.14)

and

αtrans
eff = α1 + α2 − α1α2

2πr3

1 − α1α2
16π2r6

. (5.15)

The basic trend of the longitudinal coupling can be observed in Fig. 5.8b. With
decreasing dipole separation r , the spectral response shifts to lower frequencies (red-
shift), accompanied by a slight increase in the magnitude of effective polarizability.
Contrary to longitudinally coupled dipoles, transversally coupled dipoles exhibit a
blueshift when the separation r is reduced.
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Fig. 5.8 a Schematics of the longitudinal coupling of two particles characterized by their dielectric
dipoles. b Modulus of the effective polarizability corresponding to the longitudinal coupling in a
as derived from Eq. (5.14). A Drude-like response has been considered and the dipoles are located
at a separation distance r . c Schematics of the hybridization of the l = 1 and l = 2 modes of
single metallic nanoparticles. As the particles come together, new “bonding” (lower energy) and
“antibonding” (higher energy) modes, which are solutions of the coupled system, are created

The spectral redshift of the resonance when the particles come closer together has
been experimentally addressed [59, 60]. In Fig. 5.9a, the resonance shift of metallic
dimers is shown as a function of the separation distance between the particles [61].
In close proximity, the particles form a gap where the surface charge densities of
each particle interact strongly. This near-field interaction across the gap sustains
a strongly localized symmetric surface plasmon mode, also called bonding dimer
plasmon (BDP) which presents lower energy and comes from the hybridization of
the single dipolar surface plasmons from each particle [62]. A schematic of the
energetics of these hybrydized modes can be observed in Fig. 5.8c. The formation
of the hybridized bonding surface plasmon produces large field enhancement at the
particles gap, commonly named as hot spot. A similar coupling can also be found
with other particle shapes such as triangles, forming a so-called bowtie antenna
[63, 64]. Figure 5.9b shows the field enhancement in the gap of a bowtie antenna
as a function of separation distance. As the two triangle particles come closer, a
dramatic increase of the field enhancement is produced, associated with the formation
of a bonding surface plasmon. The calculated near-field distribution is displayed in
Fig. 5.9c, showing that the local fields at the gap are enhanced by a factor of about 100
times compared to the incident field amplitude. Employing near-field microscopy, it
is possible to map the strongly localized fields [9, 65–67]. In Fig. 5.9d, an example
of such a near-field map is provided. It shows the topography, experimental, and
calculated near-field distribution of bowtie aperture, clearly visualizing the hot spot
generated by the nanogap in the center of the aperture. Hot spots in nanoscale gaps
can strongly enhance Raman and infrared spectroscopy, as we will detail in Sect. 5.2.

A very interesting regime occurs when metallic nanoparticles nearly touch each
other. When the particles are separated by a certain distance, the interaction estab-
lished between both particles leads to the formation of the BDP [62, 68], described
above. The physical situation at the gap can also be understood in terms of cir-
cuit theory [69] as a capacitive coupling between the metal particles. As the particles
come to close proximity and touch each other, a conductive connection between both
particles is achieved, establishing a charge transfer plasmon [17, 70] that sustains
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Fig. 5.9 a Spectral shift of the antenna gap resonance as a function of separation distance of the
gap. Adapted from Ref. [61] with permission from ACS. b Experimental field enhancement to the
fourth power in a bowtie antenna as a function of the separation distance of the antenna gap. Adapted
from Ref. [64] with permission from APS. c Calculation of the field amplitude enhancement in the
proximity of a gold bowtie conical antenna. The coupling of the two structures originates enhanced
fields at the gap. d Near-field at a metallic cavity for an inverse bowtie antenna. The measured signal
ES and the calculated in-plane local field Ex are shown. Adapted from Ref. [67] with permission
from ACS

a longer wavelength mode with net charge at each particle. This can be understood
within the circuit theory as an inductive coupling [69] between the two particles. The
manipulation of the dielectric properties of the cavity to control the response of a
nanoantenna (coupled metal nanoparticles) is the optical analog to the manipulation
of the gap impedance to tune radiowave antennas.

5.1.7 Optical Antennas: From Radiowaves to Visible Light

As we have described in the previous sections, the spectral position of the LSPs
depends on the material, the geometry, the environment, and the coupling with nearby
structures. All these factors determine both the near-field distribution as well as the
far-field scattering, including efficiency and directionality of the scattered light. Many
of these aspects are similar to conventional antennas operating in the radiowave
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Fig. 5.10 a Calculated near-field distribution of a gold nanorod at its resonance frequency. The
rod has a total length L tot = 400 nm and radius R = 25 nm. b Spectral position of the dipolar
resonance in gold nanorods as a function of total lenght L tot and radius R. In the optical range of
the spectrum, these antennas behave like linear dipole antennas of length λeff/2 where λeff is the
effective wavelength of the surface plasmon propagating on the rod λLSP. The resonance position
of a nanorod consisting of an ideal metal is displayed by a green line (L = λeff/2 = λ/2)

spectral range, where the wavelength is several orders of magnitude larger than
that of light, reaching several meters. It is thus of interest to apply radiofrequency
(RF) antenna concepts for the design of optical antennas. As we will see below,
RF concepts cannot be simply scaled to the visible spectral range because of the
excitation of surface plasmon polaritons, which are not present at RFs.

Considering the definition of an antenna as a device that converts propagating
electromagnetic energy into strongly localized and enhanced near-fields, metallic
particles are the counterpartner of radiowave antennas in the optical range of the
electromagnetic spectrum [71]. Both radiowave and optical antennas show resonant
frequencies (or wavelengths) that perform this conversion from the far-field to the
near-field with large efficiency. Nevertheless, a striking difference needs to be pointed
out. The resonance frequencies of a radiowave antenna rely purely on the geometry
of the supporting structure. Optical antenna resonances, however, occur due to the
excitation of surface plasmons, which present shorter wavelength than the free space
illumination wavelength and are strongly damped [72, 73]. Thus optical antennas
exhibit stronger damping than RF antennas and the antenna length needs to be sub-
stantially shorter than the illumination wavelength. This effect can be observed in
Fig. 5.10b where the spectral position of the dipolar antenna resonance is plotted as a
function of the antenna length for different widths of the metallic rods. A clear depar-
ture of an ideal RF antenna resonance (L ≈ λ/2) can be observed for all antenna
widths due to the excitation of the surface plasmons (near-field distribution shown
in Fig. 5.10a).
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Among the different optical antenna designs, we describe some examples suc-
cessfully implemented recently. Linear dipole antennas consist of a single metallic
nanowire of length L = λLSP/2 where λLSP is the surface plasmon polariton wave-
length. As λLSP < λ, the relative antenna length is significantly shorter than for a RF
antenna of length L = λ/2. Such an antenna yields a strong dipolar like emission. It
is one of the first examples where a RF antenna design has been scaled down to the
optical regime.λ/4 antennas or ground antennas have also been implemented produc-
ing omnidirectional emission of fluorescence molecules located in their proximity
[74]. Another standard design from radiowave frequencies is a Yagi–Uda antenna.
It consists of parallel linear dipole antennas of slightly different lengths, yielding
large directionality in the scattering properties of electromagnetic radiation. Optical
Yagi–Uda antennas have been also scaled down to optical frequencies [75]. One last
example of this analogy are parabolic antennas, with an optical analog implemented
recently as metallic nanocups [48] to bend light according to the direction of the
nanocup. In all these examples of design, the resonance position cannot be simply
scaled down. The penetration of the field associated with the surface plasmons can
modify the antenna resonance frequencies, thus the most straightforward way to cal-
culate the antenna resonances in complex designs and nanostructures as the ones
pointed out above relies on numerical calculations to solve Maxwell’s equations.
Nevertheless, scaling laws that consider the plasmonic response through effective
wavelengths have been found to successfully obtain the optical antenna modes [76].

5.2 Field-Enhanced Vibrational Spectroscopy

The vibrational energy of molecular groups is typically of a few tenths of meV
and thus falls in the infrared range of the electromagnetic spectrum. The energy
spectrum is highly specific to chemical bonds, thus a vibrational fingerprint of a
substance can be used for chemical identification. Two important techniques that
obtain spectral information on these vibrational fingerprints are Raman and infrared
spectroscopy. In Raman spectroscopy, visible light is typically used for sample illu-
mination. Due to the interaction between photons and molecular vibrations, inelas-
tic light scattering occurs, producing an energy shift (stokes and anti-stokes shifts)
between the incoming and outgoing radiation. An inherent problem to Raman spec-
troscopy is that the scattering cross-sections are very low (≈10−28 cm2/molecule),
thus preventing single molecule spectroscopy. Infrared spectroscopy, on the other
hand, relies on the direct excitation of molecular vibrations. In typical transmission
and reflection measurements, the extinction spectrum of a substance is measured.
Extinction cross-sections are of the order of ≈10−18 cm2/molecule. These weak
cross-sections can be enhanced when molecules are adsorbed on metal structures,
due to the local field enhancement produced in the proximity of metallic surfaces
[77–79]. The enhancement of the Raman scattering and IR absorption can thus be
related to the local field enhancement generated by surface plasmon polaritons or by
antenna resonances. When such enhancement mechanisms are employed, these spec-
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troscopy techniques are named surface-enhanced Raman spectroscopy (SERS) and
surface-enhanced infrared absorption (SEIRA). These techniques are also referred
to as field-enhanced spectroscopies.

5.2.1 Concept

The concept of surface- or field-enhanced spectroscopy relies on the enhancement of
optical fields in the proximity of metallic surfaces or nanoparticles which enhances
the Raman and IR absorption signals. The initial implementation of surface-enhanced
spectroscopy was based on rough metallic surfaces generating intense local fields at
gaps and protusions. Because of their high local field and strong localization, they
are typically called hot spots. This concept has been sophisticated in the last years
with the use of metallic nanostructures acting as optical antennas that support LSPs
and thus enhance significantly local fields at specific LSP resonance frequencies. The
field enhancement can be as high as about 100 times the incoming amplitude, thus
increasing the Raman scattering cross section by 6–10 orders of magnitude, which
enables one to detect Raman scattering from only a few or even single molecules
[80, 81]. The basic idea of both SERS and SEIRA is to locate the molecular groups
on top of the electromagnetic hot spots produced by the LSP or the antenna, as
schematically displayed in Fig. 5.11. By doing so, the visible (SERS) or IR radiation
(SEIRA) are enhanced, improving the spectroscopic signals.

5.2.2 SERS

In a typical Raman scattering process, an incoming photon of frequency ωvis suffers
inelastic scattering. It loses part of his energy due to the excitation of a molecular
vibration of frequency ωvib. The inelastically scattered Raman photon has a smaller
energy (�ωR = �ωvis − �ωvib), thus it is shifted to lower frequencies ωR (Stokes
shift). The Stokes and anti-Stokes shifts (gain of energy from a vibrational excitation)
are the spectral information that allows for identification of molecular bonds. Both
processes is depicted in the schematics of Fig. 5.12. The scattering cross-section
depends directly on the local field Eloc, which is the near-field EN F at the position
of the molecules. The local field acts on the molecules in a twofold manner. First,
the enhancement f of the incoming radiation yields a larger field illuminating the
molecules, f = |Eloc(ωvis)/Eo|. Second, the enhancement of the scattered radiation
yields another enhancement factor at the Raman frequency, f = |Eloc(ωR)/Eo|.
Both enhancements influence the final scattered signal (see Fig. 5.11), thus the Raman
scattering cross-section is elastically enhanced by a factor M which is given by [82]:

M = |Eloc(ωvis)/Eo|2|Eloc(ωR)/Eo|2. (5.16)
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Fig. 5.11 Schematics of the concept of field-enhanced spectroscopy in two of the most commonly
used spectroscopies: surface-enhanced Raman spectroscopy (SERS) and surface-enhanced infrared
absorption (SEIRA). Amounts of molecules are deposited near a metallic structure that acts as an
optical or infrared antenna thus enhancing the inelastic scattering, and the absorption signals from
the molecular groups. While SERS relies on the inelastic scattering of visible and near-infrared
light to obtain signal of the vibrational fingerprints from the frequency shifts between incoming
and outgoing radiation, SEIRA relies on the direct absorption of infrared light at the frequencies of
the molecular vibrations. Both techniques are complementary and present differences in the spectra
due to the different selection rules to excite vibrations

Fig. 5.12 Schematics of a Stokes process (left) and an anti-Stokes process (right). A photon of
energy �ωvis generates (Stokes) or loses (anti-Stokes) a vibrational mode of energy �ωvib, and the
outgoing photon results with a smaller or a larger energy �ωR respectively

The frequency of a vibration is typically much smaller than the frequency of vis-
ible light (ωvib � ωvis). Thus, the Raman enhancement factor can be expressed
approximately by the fourth power of the local field enhancement:

M ≈ |Eloc(ωvis)/Eo|4 ≈ f 4. (5.17)



5 Localized Surface Plasmons 171

Fig. 5.13 SERS enhancement
factor for two canonical metal-
lic nanoparticle structures at a
distance r = 2.75 nm from the
particles surface. a A single
silver sphere for different radii
of the particle ranging from
a = 10 to a = 70 nm. b A
silver dimer with a separation
d = 5 nm for the same sizes
of the particles as in a. The
polarization of light is marked
in the inset

The scaling of M with the fourth power of the local field enhancement f is one of
the reasons why SERS has become such a powerful tool in molecular spectroscopy.
The sensitivity is dramatically enhanced, enabling even single molecule studies.

In the previous sections, the capacity of LSPs to localize and enhance the fields
in the proximity of metallic nanoparticles has been described (see, for example, the
local field produced in a cavity in Fig. 5.9). Metallic nanoparticles and nanostructures
sustaining LSPs are therefore natural building blocks to act as optical nanoantennas
in SERS. Particularly, sharp edges and cavities in between particles generate elec-
tromagnetic “hot spots” that have been proven to be very effective to increase the
Raman signal, reporting single molecule detection [3].

Figure 5.13 shows an example of SERS employing LSPs in metal nanoparticles.
We compare the enhancement factor M obtained with a single silver sphere with
that in a silver particle dimer. We assume a molecule to be located at a distance
r = 2.75 nm to the particle. In the case of the dimer, this position corresponds to
the center of the gap formed between the two spheres. Figure 5.13a shows M for a
single sphere as a function of wavelength for different particle radii. A clear dipolar
plasmon resonance can be observed, showing a redshift as the particle size increases.
The Raman factor Log(M) reaches typical values of about 5 at resonance, and about
M = 2 off resonance where the field enhancement is due to the lightning rod effect
exclusively. This corresponds to local field amplitude enhancements of the order of
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f = 15 and f = 3 respectively. When a second particle is located close to the
first one, the plasmon coupling gives rise to a new even more localized bonding
surface plasmon that produces a much larger field enhancement (see Fig. 5.13b).
Even though the actual values vary with the ratio between separation distance and
size (larger particles produce a redshift) standard values of up to M = 8 can be easily
achieved for realistic separation distances. This means field amplitude enhancements
of up to 100 in the gap.

Additional enhancement factors needed for single spectroscopy are usually asso-
ciated with chemical enhancements due to charge transfer in the chemisorption of
the molecules to the surfaces. Chemical effects are complex and go beyond the
electromagnetic enhancement described in this chapter, but they usually provide
an additional enhancement factor of the order of 100. Insights into the chemical
enhancement in SERS can be found in Ref. [83] and unified treatments of both types
of enhancement mechanisms [84]. Other limitations of the simple fourth power model
presented here are connected with the influence of the actual frequency shift in the
evaluation of the enhancement of the incoming and outgoing radiation and with the
polarization of the incoming and outgoing light that can provide additional selection
rules driving the molecular vibrations [85]. All these additional effects need to be
considered in a proper description of SERS enhancement.

5.2.3 SEIRA

A complementary spectroscopic technique to SERS relies on the direct excitation
of molecular vibrations with use of infrared light [86]. This spectroscopic tech-
nique is commonly addressed as Surface-Enhanced Infrared Spectroscopy (SEIRA),
even though the spectral information is usually obtained in transmission mode, as
schematically displayed in Fig. 5.11, therefore the information obtained involves both
absorption and scattering processes.

The effective extinction cross-section in SEIRA configurations is sensitively
smaller than the effective scattering cross-section, even though single molecule
IR absorption cross-section is larger than single molecule Raman scattering cross-
section. This is because IR absorption scales with f 2 while Raman scattering scales
with f 4.

To obtain intense signal in SEIRA, a considerable field enhancement needs to be
achieved. One of the approaches uses antennas resonating directly at IR frequen-
cies. Thus, such antennas have dimensions of about half the wavelength, i.e. a few
micrometers. An example is a gold nanowire of length L = λ/2 acting as a lin-
ear dipole antenna [87] (Fig. 5.14b). Strong field enhancement (hot spots) occurs at
the wire extremities (Fig. 5.14a), yielding strongly enhanced IR spectra from a few
molecules adsorbed on the antenna surface. This effect can be observed in Fig. 5.14c
where a broadband IR antenna resonance is clearly visible when the polarization of
the incoming light is parallel to the antenna’s long axis (black solid line). Near the
resonance, two narrow spectral lines (marked by a red circle) are seen. They corre-
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Fig. 5.14 a Local field inten-
sity at a 1.341μm long infrared
antenna. b Single gold IR
antenna deposited on a CaF
substrate. c Absorption spec-
troscopy of octodecanothiol
groups deposited on top of a
single gold IR nanoantenna.
The signal of the molecular
groups is outlined in a red
circle. Adapted from Ref. [87]

spond to the vibrational fingerprints of a few thousand molecules deposited on the
antenna. Rotating the polarization of the incident line, no antenna resonance occurs
(red line) and no vibrational fingerprints can be observed. This experiment shows
the importance of the antenna resonance to overcome detection limits in IR spec-
troscopy. Notice that the spectral lines of the molecules appear as peaks rather than
dips due to the electromagnetic interference between the local field of the antenna
and the field of the molecular vibrations. This effect is analogous to the quantum
mechanical Fano effect. Antenna-assisted SEIRA can be optimized with the use of
more complex and advanced antenna structures [88–93].

5.2.4 Localized Plasmons in Other Applications

The potential for application of the field localization and enhancement of LSPs is
not limited to field-enhanced spectroscopies. A variety of physical, biological, and
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chemical processes can be enhanced or mediated by LSPs. Among others, we can
mention the action of plasmons to boost the performance in photovoltaics [4], or
the antenna effect that metallic structures can impose on the emission, directivity,
and decaying rates of molecular fluorescence [2, 18, 94]. Standard plasmon sens-
ing can also take advantage of plasmons localized in metallic particles that usually
show larger figures of merit. Energy transfer in biological environments is another
aspect where LSPs can play an important role. Metallic interconnections to deal with
polaritonic signals can be a practical interface in optoelectronic devices. In medi-
cine, LSPs have become more than a promise to diagnose and treat certain types of
cancer [6]. In all these fields, the nature and properties of localized surface plasmons
are the key factors governing the performance of the optical response. The reader
will find further details of this aspect in R. Quidant’s chapter.
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Chapter 6
Plasmons on Separated Particles:
Homogenization and Applications

Ross McPhedran

Abstract In this chapter, we discuss localized plasmons in optical systems
containing metallic particles, clusters of metallic particles, or periodic arrays of
metallic particles, separated in all cases by a background dielectric material or
matrix. We begin with a brief discussion of the equations governing electromag-
netic propagation in structured or composite systems containing metal particles in
a matrix. A full electromagnetic solution for a periodic array of particles or a finite
cluster of them is possible, but much can be learned from treatments in the quasistatic
approximation, where properties of the particles are subsumed in effective dielectric
permittivities and magnetic permeabilities, and these are used in Maxwells’ equa-
tions for a homogeneous material to calculate reflection and transmission properties.
The two most important equations used to calculate effective dielectric permittivi-
ties and magnetic permeabilities are the Maxwell-Garnett formula and Bruggeman’s
effective medium formulae. We compare these in Sect. 6.3, and look at applications
in Sect. 6.4 to the field of selective absorbers for photothermal and photovoltaic
energy applications. In the next section, we go on to consider collections of par-
ticles and their resonant properties, which can be exploited to deliver strong local
concentrations of electromagnetic fields. These are used in Sects. 6.6 and 6.7 to dis-
cuss cloaking using plasmonic resonance, and spasers, devices which can overcome
through amplification the propagation losses associated with plasmons.

6.1 Introduction

In this chapter, we will continue the discussion of localized plasmons in optical
systems containing metallic particles, clusters of metallic particles, or periodic arrays
of metallic particles, separated in all cases by a background dielectric material or
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matrix. We have already seen that structured systems containing metallic particles
can provide strongly enhanced local fields, useful in contemporary applications like
creating efficient nanoantennas and molecular sensing. However, this field has a long
history: loading a material like glass with metal particles has a profound effect on the
colour of the transmitted light, a fact which was known in Ancient Rome. Indeed, the
famous Lycurgus cup [1] of the fourth century AD was made of soda glass containing
at the 1 % level colloidal nanoparticles of around 50–100 nm in diameter, made of a
silver–gold alloy. These nanoparticles make the cup dichroic: in reflection it looks
like jade, with an opaque greenish-yellow tone, but in transmission it acquires a
translucent ruby colour. Thus, the power of metal particles to control the reflection,
transmission and absorption of light has been known for thousands of years, and,
as we shall see, continues to be exploited in a growing number of ways in today’s
technologies.

We begin with a brief discussion of the equations governing electromagnetic prop-
agation in structured or composite systems containing metal particles in a matrix.
A full electromagnetic solution for a periodic array of particles or a finite cluster of
them is possible (while often difficult), but we shall see that much can be learned
from treatments in the quasistatic approximation, where properties of the particles
are subsumed in effective dielectric permittivities and magnetic permeabilities, and
these are used in Maxwells’ equations for a homogeneous material to calculate
reflection and transmission properties. The quasistatic treatment is useful in regions
where fields change rapidly with distance, on the scale of the wavelength, and much is
known about particular solutions and general constraints on solutions. The two most
important equations used to calculate effective dielectric permittivities and magnetic
permeabilities are the Maxwell-Garnett formula and Bruggeman’s effective medium
formulae. We compare these in Sect. 6.3, and look at applications in Sect. 6.4 to the
field of selective absorbers for photothermal and photovoltaic energy applications.
In the next section, we go on to consider collections of particles and their resonant
properties, which can be exploited to deliver strong local concentrations of elec-
tromagnetic fields. These are used in Sects. 6.6 and 6.7 to discuss cloaking using
plasmonic resonance, and spasers, devices which can overcome through amplifica-
tion the propagation losses associated with plasmons.

6.2 Electromagnetic Waves in Structured Systems

We consider electromagnetic waves propagating in a medium where the dielectric
permittivity ε(x) and the magnetic permeability µ(x) are functions of the position
vector x. We will be interested primarily in cases where the functions change dis-
continuously as we move from one material to the other, and in particular in the
cermet topology, where there are isolated metallic particles in a continuous ceramic
or dielectric matrix. The particles may be spherical or distorted spheres in shape,
or cylinders, either circular or distorted circles in cross-section. In the former case,
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we need to consider full three-dimensional propagation equations, while in the latter
case it may be sufficient to use Maxwell’s equations in two dimensions.

The propagation of electromagnetic waves with angular frequency ω may be
described by the Helmholtz equation, say for the electric field E(x):

∇2E(x) + ε(x)μ(x)ω2

c2 E(x) = 0, (6.1)

with a similar equation applying to the magnetic field H(x). The boundary conditions
applying at interface boundaries are continuity of the tangential components of the
electric and magnetic fields, as discussed in Chaps. 1 and 2.

From the form of the Eq. (6.1), we can see that the solution is well approximated
by the solution of Laplace’s equation if the first term dominates the second. This
will occur if a length scale for the variation of the fields is much smaller than
the wavelength. For example, in the region close to a source, there is an inner or
inductive region governed by Laplace’s equation, where electric and magnetic fields
are decoupled. This gives way to a coupling region, and is surrounded by a radiation
zone, where electric and magnetic fields are coupled, with their cross product giving
the energy flow outwards. Similarly, near a tight focus, there will be a static region,
and in regions where electromagnetic fields are concentrated this may again occur.
In families of resonant modes, higher members with fields rapidly changing in space
again will be well approximated by static solutions.

There are then various approaches to calculating electromagnetic field distri-
butions in structured systems. Sophisticated numerical procedures based on the
finite element or finite difference time domain methods can be used in conjunction
with powerful computers to give field maps and important derived quantities. For
periodic geometries with scatterers of simple form, like spheres or circular cylinders,
semi-analytic methods may be used, where the known solution of the single-scatterer
problem is used as the building block of the periodic solution. For example, Stefanou,
Yannopapas and Modinos [2] have built a method based on Mie scattering from a
single sphere [3] and the well-known Korringa–Kohn–Rostoker method from solid-
state physics [4, 5], which can solve problems associated with layers or lattices of
spheres. Another approach is to use the quasistatic procedure, and rely on the exten-
sive literature on effective dielectric permittivities and similar transport properties in
structured media for equivalent properties which may be used to construct in simple
fashion the fields in a homogeneous material. This approach is described in Chap. 11
of the comprehensive survey by Milton [6], which is also an excellent source for the
literature on effective properties for composite materials.

One way of validating the quasistatic approach is to take a semi-analytic method,
and use it to study the waves existing in a periodic structure for wavelengths which
increase steadily in comparison with the structure spacing [7–9]. In this way, it has
been established that the quasistatic method can be applied in general when the
wavelength λ is sufficiently large compared with the typical scale size d, where the
criterion is often written

http://dx.doi.org/10.1007/978-3-642-28079-5_1
http://dx.doi.org/10.1007/978-3-642-28079-5_2
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λ

d
≥ 5. (6.2)

This criterion should be used with caution, since if the particles are metallic, the
wavelength inside them can be much smaller in magnitude than in free space, so that
the quasistatic treatment may only achieve accuracy at longer wavelengths than one
might expect from (6.2).

6.3 Effective Permittivities and Permeabilities

Brief histories of some of the important formulae, which give effective permeabilities
and permittivities of structured materials, are given in Chap. 10 of the book by Milton
[6] and in the seminal review article of Landauer [10]. The Maxwell-Garnett formula
is useful for composites with the cermet topology. Its history goes back as far as the
work of Faraday in 1837, and notable contributions are associated with the names
of Clausius and Mossotti, Maxwell, Lorentz, Lorenz and Maxwell-Garnett. The last
was in fact the son of Maxwell’s lecture demonstrator, and his first three names
stem from his father’s admired employer. The history of formulae of this type is
somewhat entangled, so the same equation may bear different names in different
accounts of this important topic. It should be noted that the same mathematical
framework applies without change to a number of different physical situations, so
that the formulae quoted here for effective permittivities and permeabilities also apply
to electrical conductivity, thermal conductivity, diffusivity, fluid permeability and the
shear matrix of anti-plane elasticity. It should also be understood that the derivations
of some of the useful results given below are long and quite technical. Thus, many
readers will be content to take the results as given, and use them in modelling to test
their effectiveness; those others who wish to understand full technical details can
refer to the original references, or to Milton’s book [6].

The generic version of such relations may be called the Clausius–Mossotti for-
mula, and applies to a dilute distribution of inclusions in a matrix. We suppose we
are in three dimensions, and there are N inclusions per unit volume, each occupying
a volume V . The most important parameter characterizing the distribution of inclu-
sions is the volume fraction f , which is the volume N V occupied by the particles per
unit volume of the system. We suppose the response of the inclusions to an applied
electric field to be given by the polarizability α, such that the dipole moment induced
by a unit applied field is α. If the dielectric permittivity of the matrix is ε1, then the
effective dielectric permittivity of the dilute composite system is

εeff � ε1I + f
α

V
. (6.3)

This could be the expression for the permittivity tensor if α were a tensor quantity
depending on the direction of the applied field, in which case I would be the diagonal
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tensor, or it could be the expression for a scalar quantity if α were independent
of applied field direction, in which case I would be unity. If we deal with a two-
dimensional problem, the formula applies with V replaced by an area A.

The Maxwell-Garnett, or Maxwell, or Lorentz–Lorenz formula, follows from the
Clausius–Mossotti formula (6.3) if the polarizability takes the value corresponding
to a particle of a particular shape, placed far enough from its neighbours so that it
interacts with them only though dipole terms. For example, in three dimensions, we
consider the most important case: that of an isolated sphere. Letting B1 denote the
dipole moment induced in the sphere by the local field of strength E0 oriented along
the Ox axis, from which the angle θ is measured, the electrostatic potential in the
external neighbourhood of the sphere is

Vext = E0r cos θ − B1 cos θ

4πε1r2 , (6.4)

where r denotes radial distance from the centre of the sphere. The potential distrib-
ution inside the sphere involves a dipole coefficient C1:

Vint = C1r cos θ. (6.5)

These potentials have to satisfy the following boundary conditions at r = a:

Vext = Vint, ε1
∂Vext

∂r
= ε2

∂Vint

∂r
. (6.6)

These boundary conditions give

E0 − B1

4πε1a3 = C1, ε1

[
E0 + 2

B1

4πε1a3

]
= ε2C1, (6.7)

which may be solved to yield

B1

E0
= α = 4πa3ε1

(
ε2 − ε1

ε2 + 2ε1

)
. (6.8)

Substituting (6.8) into the Clausius–Mossotti equation (6.3), we obtain

εeff = ε1

[
1 + 3 f

(
ε2 − ε1

ε2 + 2ε1

)]
. (6.9)

This expression is the dipole model correct to first order in the volume fraction f .
A slightly more elaborate treatment gives a result correct to order f 2, the Maxwell-
Garnett equation for spherical particles:

εeff = ε1

[
1 + 3 f (ε2 − ε1)

3ε1 + (1 − f )(ε2 − ε1)

]
. (6.10)
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It is worth emphasizing that the formula (6.10) is not symmetric in ε2 and ε1: the
assumption is made that the former corresponds to isolated particles with volume
fraction f placed in a continuous matrix with dielectric permittivity ε1.

We can find the value of the ratio ε2/ε1 at which the effective permittivity becomes
infinite from (6.10). This is

(
ε2

ε1

)
∞

= −
(

2 + f

1 − f

)
. (6.11)

This equation gives the permittivity ratio for the excitation of localized surface plas-
mons in dilute systems of spherical particles. It requires the ratio to be real, negative
and below −2. The corresponding ratio at which the effective permittivity goes to
zero is given by

(
ε2

ε1

)
0

= −
(

2 − 2 f

1 + 2 f

)
, (6.12)

a result which requires the effective permittivity to lie between −2 and 0.
We illustrate the resonant nature of the response given by the Maxwell-Garnett

formula in Fig. 6.1. This shows the effective permittivity as a function of wavelength
for a cermet containing a 10 % volume fraction of silver spheres in a silica matrix.
The complex refractive index data used for silver were taken from measured data of
Johnson and Christy [11]. The pole of εeff from (6.11) would occur at ε2/ε1 = −2.33,
and the zero at −1.5. In practice, of course, silver does not ever have this ratio which
is exactly negative and real, so εeff becomes large in magnitude near the pole and
small in magnitude near the zero. We also show in Fig. 6.1 the absorptance in TE and
TM polarizations of a 0.5 µm thick layer of this composite in air, for a 30 ◦ angle of
incidence. The absorptance is similar for the two polarizations, and is high at short
wavelengths where the film is optically thick. It varies rapidly in two regions: around
0.3 µm where the optical properties of silver change rapidly, and around 0.4 µm
where the Maxwell-Garnett resonance occurs.

If the volume fraction of the inclusions becomes large, the interactions between
them become more complicated, as higher and higher order multipoles become com-
parable in strength with dipoles. This means that, instead of having only the dipole
resonance available to enhance plasmonic optical responses, multiple resonances can
be exploited. This effect was investigated by Rayleigh [12], in a classic 1892 paper
discussing lattices of spheres in three dimensions, or of cylinders in two dimensions,
which was taken up and extended by Doyle [13] and by McPhedran, McKenzie and
Derrick [14, 15]. The Rayleigh treatment may be expressed in a generic form as a
matrix equation:

(M + S)B = Eappl. (6.13)

Here, electrostatic fields are written in terms of multipole expansions, with each
term specified by integers l and m. The multipole coefficients are placed in the
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Fig. 6.1 Left εeff as a function of wavelength (in µ) for a composite containing silver spheres with
a volume fraction of 10 % in a silica matrix. Right absorptance as a function of wavelength for a
0.50 µm thick layer of the composite in air, for an angle of incidence of 30 ◦. In both cases, the red
curve is for TE polarization, and the green curve for TM polarization

vector B, with those for the applied field in the vector Eappl. The matrix M re-
sults from the application of boundary conditions at the particle surface surface, as
is exemplified in Eqs. (6.16–6.18). The matrix S is filled with lattice sums, which
depend only on the geometry of the lattice, and whose evaluation is discussed in e.g.,
Refs. [12–15].

The dependence on radial distance for multipole terms with first index l is 1/r (l+1)

for multipoles with their source at r = 0, and rl for multipoles with their sources
inside spheres with centres not at the origin. The dependence on spherical polar
angles (θ,φ) is given by the same functions Ylm(θ,φ) which occur in the theory
of Mie scattering of electromagnetic waves by a sphere [16], and in the solution of
the Schrödinger equation for the hydrogen atom. The dipole term is given by Y1,0,
which is just a constant times cos θ, and so gives the terms included in the potential
expansions in Eqs. (6.4–6.5). The potential outside the inclusion is written in the
form

Vext =
∞∑

l=1

l∑
m=−l

(Almrl + Blmr−l−1)Ylm(θ,φ), (6.14)

while inside the inclusion it is

Vint =
∞∑

l=1

l∑
m=−l

ClmrlYlm(θ,φ). (6.15)

The periodicity of the problem means the coefficients Alm , Blm and Clm are the same
for each sphere in the lattice.

The boundary conditions at the surface of a sphere of radius a give the connection
between the Alm , Blm and Clm . The condition that the potential be continuous is:
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Almal + Blm

al+1 = Clmal , (6.16)

while the second condition gives the continuity of the normal component of the
displacement field:

ε1

[
Almal − Blm

al+1

]
= ε2Clmal . (6.17)

The two boundary conditions may be combined to eliminate Clm and express Alm

in terms of Blm :

Alm = Blm

a2l+1

ε2 + ε1(l + 1)/ l

ε1 − ε2
= Blm

Tla2l+1 . (6.18)

To complete the solution, we need extra equations from which the multipole
coefficients Blm may be obtained from the applied field. Those extra equations come
from the Rayleigh identity, which expresses the part of Vext which is not singular at
the origin, i.e., the terms involving the Alm , in terms of the contributions from sources
on all the other spheres in the lattice, together with a contribution from the applied
field. The terms coming from other spheres in the lattice are re-expressed in terms
of the coordinates (r, θ,φ) of the sphere at the origin using the addition theorem
for spherical harmonics (see, for example, [17]). The result is a matrix system of
equations which always takes the form (6.13), regardless of the lattice we deal with,
and for cylindrical as well as spherical inclusions.

The matrix M in (6.13) is diagonal, with the terms multiplying Blm in (6.18)
along the diagonal. The second matrix S is filled with lattice sums, which incorporate
information about the way inclusions are placed in the matrix. The right-hand side of
(6.13) contains the multipole coefficients representing the applied field. Note that the
matrix equation (6.13) could be used to treat inclusions of arbitrary shape, as long as
the boundary condition equation (6.18) was appropriately altered. The two matrices
M and S independently represent the two aspects of the problem: the properties of
the inclusions (“what’s there”) and the way they are arranged (“what’s where”).

Equation (6.13) may be solved numerically, or low-order truncations may be found
in analytic form. For the simple cubic lattice, the volume fraction for unit spacing
of spheres is f = 4πa3/3, and the volume fraction at which the spheres touch is
fc = π/6. An analytic expression taking into account the multipole coefficients B1,0,
B3,0, B5,0 and B7,0 is

εeff = 1 − 3 f

D
, (6.19)

where

D = T −1
1 + f − b1T5 f 14/3 − c1T7 f 6 − a1 f 10/3

[
1 − c2T5 f 11/3 + c3T 2

5 f 22/3
]

[
T −1

3 + b2 f 7/3 − c4T5 f 6
]

(6.20)
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Fig. 6.2 Absorptance as a function of wavelength for a 0.50 µm thick layer placed in air of a
composite containing 30 % of silver spheres in silica, for an angle of incidence of 30 ◦. In both
cases, the red curve is for TE polarization, and the green curve for TM polarization. At left, the
results of the Maxwell-Garnett formula, at right, those of the fourth-order Rayleigh formula

and a1 = 1.3045, b1 = 0.01479, b2 = 0.4054, c1 = 0.1259, c2 = 0.5289, c3 =
0.06993 and c4 = 6.1673. Of course, (6.19) reduces to the Maxwell-Garnett equation
(6.10) if a1, b1, b2, c1, c2, c3 and c4 are replaced by zero.

In Fig. 6.2, we compare the results given by the Maxwell-Garnett formula and
the fourth-order Rayleigh formula for the same situation as in Fig. 6.1, but with
the volume fraction of spheres increased from 10 to 30 %. This increase moves the
absorption peak towards longer wavelengths, while the Rayleigh formula can be
seen to give a more complex absorptance peak, due to the higher number of plasmon
resonances contained in (6.19, 6.20) than in (6.10).

The exact solution of the system of Eq. (6.13) would have an infinite set of res-
onances. Bergman [18] has shown that εeff can be determined if the electrostatic
resonances of the system are known.

A second major class of theories of effective properties is that of effective medium
models. These are widely encountered in solid-state physics, under the name of the
Coherent Potential Approximation. They are useful for optical systems involving two
or more materials, in which there is no well-identified continuous or matrix phase
in which the other materials occur as isolated particles (e.g., they could apply well
to alloy systems). An early influential example is the symmetric effective medium
theory of Bruggeman [19], which differs from the Maxwell-Garnett class of theories
in that the two media constituting the composite material are placed on an equal
footing, unlike the cermet model of inclusions in a matrix. The theory leads to the
following simple formula:

εeff = 1

4

[
γ ± (γ2 + 8ε1ε2)

1/2
]
, (6.21)

with
γ = (3 f1 − 1)ε1 + (3 f2 − 1)ε2, (6.22)
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Fig. 6.3 Absorptance as
a function of wavelength
according to the symmetric
Bruggeman formula for a
0.50µm thick layer placed in
air of a composite containing
40 % of silver spheres in silica,
for an angle of incidence of
30 ◦. The red curve is for TE
polarization, and the green
curve for TM polarization

where f1 and f2 are the volume fractions of components 1 and 2, and f1 + f2 = 1.
In (6.21), the plus or minus sign should be chosen to yield a positive imaginary part
for εeff.

In Fig. 6.3, we see that the symmetric effective medium model does not give
plasmonic resonances of the type evident in Fig. 6.2. Essentially, surface plasmons
cannot be formed since the geometry corresponds to an intimate mixture of the two
components, without the well-defined boundaries of the cermet geometry.

We turn now to the two-dimensional case, where the composite is composed of
cylinders aligned along the z axis, with area fraction f . For an applied electric field
aligned along the z axis, the effective dielectric permittivity is given by the linear
mixing formula, independent of the cylinder cross-sectional shape:

εeff,z = f ε2 + (1 − f )ε1. (6.23)

This choice of applied field then does not give plasmonic resonances.
For the applied field lying in the xy plane, the problem of calculating the effective

dielectric permittivity is linked with the theory of analytic functions of a complex
variable, since the electrostatic potential obeys Laplace’s equation, in keeping with
analytic functions. This correspondence allows one to prove a beautiful result con-
necting εeff in two different problems:

Applied electric field along the x axis, and media with dielectric permittivities ε1
and ε2 occupying a particular arrangement;
Applied electric field along the y axis, and media with dielectric permittivities
ε1 and ε2 interchanged spatially. The connection between the two situations is
Keller’s theorem [20]

εeff,x (ε1, ε2)εeff,y(ε2, ε1) = ε1ε2. (6.24)

The geometry underlying this result is illustrated for a particular case in Fig. 6.4.
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Fig. 6.4 At left and right, we show unit cells of two-phase composites with the red region having
permittivity ε1 and the green region having permittivity ε2, with the applied external electric field
across the page at left, and up the page at right. The effective dielectric permeabilities of the two
systems are connected by (6.24)

Dykhne [21] realized that if the geometry of the composite was unaffected by
the interchange of the two components, and εeff was unaltered by the rotation of the
applied field through 90 ◦, then (6.24) gives

εeff,x (ε1, ε2) = εeff,y(ε2, ε1) = √
ε1ε2. (6.25)

This result applies for example to a checkerboard made of materials with alternating
permittivities.

The Maxwell-Garnett equation for a square array of circular cylinders is

εeff = ε1

[
1 + 2 f (ε2 − ε1)

ε1(1 + f ) + ε2(1 − f )

]
. (6.26)

It will be noticed that this equation satisfies Keller’s theorem exactly. This property
also applies to the low-order Rayleigh formulae for arrays of cylinders [22]. In their
derivation, the relation between multipole coefficients (6.18) becomes

Al = Bl

a2l

ε2 + ε1

ε1 − ε2
= Bl

T a2l
. (6.27)

The fact that the quantity T now does not depend on the multipole order l means that
for cylinders the plasmonic resonances of arbitrary order occur simultaneously, as
distinct to the situation for spheres, where the values of ε2/ε1 at resonance depend
on the value of l. The higher-order Rayleigh formula we give for the square array of
circular cylinders takes into account the multipole coefficients B1, B3, B5 and B7,
and is
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εeff = ε1

⎧⎨
⎩1 − 2 f[

T + f − 0.305827 f 4T
T 2−1.402958 f 8 − 0.013362 f 8

T

]
⎫⎬
⎭ . (6.28)

The most general framework within which to evaluate effective properties of com-
posite systems is provided by the Bergman–Milton bounds [23, 24]. These depend
on the dimensionality of the composite (something which may not be entirely obvi-
ous in thin film systems) and can incorporate a wide variety of known information
about the composite. As more information is supplied, the bounds get tighter and
tighter. Conversely, as one approaches the region of the negative real axis in the
complex permittivity plane, the bounds get looser and looser; this is to be expected
since poles of the effective permittivity are located on the negative real axis, and
the effective permittivity becomes very sensitive to the composite structure in the
neighbourhoods of such poles. The bounds may be used in an inverse way to go from
measured permittivities of a composite back to knowledge of structural information
(such as the volume fraction) [25, 26].

6.4 Plasmon Resonances in Particle Clusters

We have so far discussed the plasmon resonances of single particles, infinite systems
of particles in the dipole or effective medium approximation, and of periodic systems
of particles. Intermediate between these cases is that of clusters containing a finite
number of particles. As we shall see, interesting effects arise in finite systems, and
in some cases analytic models can be constructed illustrating the coupling effects
on the plasmonic resonances. When these are strong, the plasmons become “not-
so-localized” entities, lying between the plasmons of isolated particles and those on
continuous metallic surfaces in their properties.

The simplest system to be discussed is that of a pair of particles. Keller [27]
analysed the current flowing between two perfectly conducting spheres with radius
r0 and separated by a gap h, in a medium of conductivity σ0. For r0/h large, Keller
estimated the effective resistance of the gap as

Rg � 1

πσ2r0 log(r0/h)
. (6.29)

For arrays of spheres, this translates into an effective dielectric permittivity formula
[15, 27]

εeff � ε1[α− β log( fc − f )], (6.30)

where α and β are constants depending on the geometry of the array, in particular the
number of nearest neighbours to any sphere, and fc is the critical volume fraction at
which the spheres touch. For the simple cubic lattice,α = 0, β = π/2 and fc = π/6.
For the body-centred cubic lattice, α = −0.55, β = 2.73 and fc = π

√
3/8. For the
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face-centred cubic lattice, β = 4.43 and fc = π
√

2/6. For the case of the random
packing of identical spheres under gravity studied by Bernal [28], the constants are
α = 0.054, β = 2.0 and fc = 0.63. For touching spheres, Batchelor and O’Brien
[29] and McKenzie et al. [14, 15] give the effective dielectric permittivity in the
asymptotic region as

εeff = γε1 log(ε2/ε1), (6.31)

where for the simple cubic lattice, γ = π, for the body-centred cubic lattice γ = 5.44
and for the face-centred cubic lattice, γ = 8.90. Formulae such as these are of use
in designing plasmonic metamaterials using metallic nanoparticles [30], and also
microstructures for enhancing local field strengths.

For a pair of circular cylinders, each of radius a and with unit centre–centre
separation, there exists an asymptotic expression for the resistance which applies
whether the cylinders have finite or infinite conductivity, or whether the gap between
them (h) is small or exactly zero [31]:

Rg = 2s log(c) + 1 − 2s[γ + ψ(s + 1)]
π(c − 1)

. (6.32)

Here ψ is the logarithmic gamma function, γ is Euler’s constant, while c becomes
large for small gaps:

c = 2a + h√
h(4a + h)

≈ √
a/h, (6.33)

and s becomes large for large conductivity ratios:

s = log[(σ1/σ2 − 1)(σ1/σ2 + 1)]
log[(c − 1)/(c + 1)] ≈ cσ2/σ1. (6.34)

An interesting structural variation on the pair of particles has been considered
by Alu and Engheta [32]: a spherical particle with its upper and lower halves com-
posed of two different materials and used in the quasistatic regime. The potential
distributions are given for the case where the two halves are in plasmonic resonance
and illustrate the extreme anisotropy delivered by this design. For the electric field
pointing up, the particle behaves as if it were made of a perfect electrical conductor,
with its surface being an equipotential. For the electric field rotated through 90 ◦, the
equipotential lines shown in Fig. 6.5 cut the sphere surface at right angles, just as if
the sphere were filled with a perfect magnetic conductor (its effective permittivity
being zero).

The examples quoted in this section illustrate just a few cases from a literature
which is already large and growing rapidly. However, they are sufficient to show the
reader that, with sophisticated techniques available to manufacture microstructures
and design tools to predict their properties, our ability to exploit plasmonic resonances
of particle systems will continue to deliver surprising and important results.
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Fig. 6.5 Left the sphere with hemispheres having two different permittivities, placed in an external
electric field E0. Right the electric potential distribution when relative permittivities of the upper
and lower hemispheres are 16 and -16, respectively, with E0 pointing up. Below as for the previous
case, but with E0 pointing right (From [32])

6.5 Application of Plasmonic Resonances in Solar Energy
Absorbers

There is currently a surge in interest in the development of renewable energy tech-
nologies. Among the most promising of these in terms of widespread availability and
prospective impact is the use of incoming solar energy to generate both heat and elec-
tricity. We will show here how the control of plasmonic effects is leading to efficiency
and utility gains for both photothermal and photovoltaic energy production.

The conversion of the incoming solar flux into heat is a mature technology, which
is widely commercialized in both developed and developing nations. In general, there
are two ways in which this conversion is carried out- using flat plate collectors to
heat water for home use and using large dishes, or mirror clusters to concentrate the
flux and to generate higher temperatures for industrial applications. However, evac-
uated tubular collectors [33] can provide solutions for both domestic heat delivery
(50–80 ◦C) and for the medium temperature industrial market (150–300 ◦C). They
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can also perform better in conditions of diffuse illumination or low ambient temper-
atures than flat plate collectors.

The requirements to be satisfied by collectors capable of delivering heat in the
medium temperature range are

• losses of energy from the collector by convection and conduction should be min-
imized;

• the collector should absorb incoming energy with high efficiency in the range of
appreciable solar terrestrial flux (0.4–1.5µm);

• the collector should lose as little heat as possible by radiation in the near infrared
(beyond 1.5µm);

• the collector should have a long lifetime (in excess of 20 years) at the operating
temperature.

• the collector should be capable of large-area production at an economic cost-level.

These requirements can be satisfied by evacuated tubular collectors of the type
shown in Fig. 6.6. Energy losses by convection and conduction are minimized by
placing the solar-absorbing surface inside a vacuum tube, and placing the absorbing
surface on a metal substrate which can deliver heat effectively by conduction to a
heat transfer medium in good thermal conduct with the surface. (The heat transfer
medium may be superheated steam, or a high-boiling-point liquid which flows in heat
extraction pipes.) Lifetime and production issues can be solved with an appropriate
choice of refractory materials and film deposition technologies.

The remaining issues of good solar absorptance and low infrared emissivity can
be solved using an appropriate design for the solar-selective surface. This is required
to have as low a reflectance as possible in the wavelength region up to 1.5 µm, and
as high a reflectance as possible in the region beyond 1.5 µm. (By Kirchoff’s law
of radiation, a high reflectance guarantees a low emissivity.) An appropriate design
for such a surface is to use graded cermet films: the cermet should have a dielectric-
rich structure on the vacuum side to ensure low reflectance of the incident radiation,
and then the volume fraction of metallic inclusions should gradually increase to
ensure wide-band absorption through a rich spectrum of plasmonic resonances, and
low reflectance at the interface with the substrate metal [34, 35]. The performance
reported by Zhang, Yin and Mills [35] for molybdenum–alumina cermet systems is an
absorptance of 0.955 and an emittance of 0.032 at room temperature, with a modelled
emittance at 350 ◦C of 0.08. The good combination of high absorptance and low
emittance is achieved by a design which can deliver a sharp transition between low
reflecting and high reflecting regions, as seen in Fig. 6.6. Such systems are certainly
capable of delivering energy over a good lifetime for industrial applications (such as
generating steam in a preheating capacity for power stations, and for sterilizing food
in processing plants).

Turning now to photovoltaic cells, this emerging technology is confronting the
challenge of substantially reducing the cost of modules. First-generation silicon PV
cells have been developed to the stage where they offer good efficiency and accept-
able lifetimes. To bring down cell cost, second-generation cells are being developed
which use the expensive material of highly purified silicon in thin film rather than
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Fig. 6.6 Left an evacuated tubular solar collector module. (From [33]) Right the calculated (C) and
experimental (Exp) reflectance curves of a Cu-SiO2 cermet (From [36])

wafer form. The challenge with the thin film cells is to deliver good absorption and
photocurrent generation in the much smaller thickness geometry. There is rapidly
growing interest in the exploitation of particle plasmonic effects as part of the an-
swer to this challenge [37]. The basic idea is to use scattering of incoming waves
by plasmonic particles to increase the optical path length within the cell, so as to
compensate for the reduced thickness. Of course, the design has to be optimized, to
ensure that the metallic particles do not overly absorb light, or scatter photo-induced
holes and electrons, so preventing them from contributing to the current generated
by the cell.

The tuning of the balance between scattering and absorption is governed by the
scattering and absorption cross-sections. For small particles in the quasistatic limit,
these are given by [38] (see also Eqs. (3.1) and (3.2) of Chap. 3)

Cabs = 2π

λ
	α, (6.35)

and

Csca = 1

6π

(
2π

λ

)4

|α|2, (6.36)

where α is the polarizability of the particles. For a small spherical particle of volume
V and relative permittivity ε in vacuum, it is given by the electrostatic expression (6.8)

α = 3V

(
ε− 1

ε+ 2

)
. (6.37)

The balance between scattering and absorption is quantified by the scattering effi-
ciency Qsca = Csca/(Csca + Cabs).

To increase the scattering efficiency, it is better to use larger rather than smaller
particles. The scattering resonance peak occurs at a wavelength determined by the
particle material and the matrix material in which it is embedded. Alloys can be used

http://dx.doi.org/10.1007/978-3-642-28079-5_3
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Fig. 6.7 Left two silicon cell designs- one silicon-on-insulator with 1.25µm active Si and the other
a wafer-based 300µm planar Si cell. Right photocurrent enhancement from the 1.25µm thick cell
for two different mass thicknesses of silver particles, relative to the cell without silver particles
(From [37])

(as in the Lycurgus cup) to shift the resonant wavelength, and the shape of the particle
is another factor.

The system designs shown in Fig. 6.7 feature silver particles on a thin oxide layer,
which serves as a waveguide to increase the photon propagation distance laterally.
Ideally, the scattering by the particles should be into the range of angles which will
couple to waveguide modes. The work of Pillai et al. [37] was aimed at enhancing
absorption of light and photocurrent generation near the band edge of silicon. One
can see how effective their design was in the right part of Fig. 6.7, where a 16-fold
increase in photocurrent is demonstrated at the wavelength of 1.050µm.

6.6 Coated Cylinders and Plasmonic Cloaking

We return to the discussion of Sect. 7.4, and in particular to the Rayleigh treatment of
solid cylinders. Suppose the cylinders are now coated and are placed in a matrix with
unit relative permittivity. We take the coated cylinder to be specified by radii rc and rs

of its core and shell regions, respectively, and take the relative permittivities of these
to be εc and εs . The analysis follows that of Sect. 7.3, except that potential expansions
in cylindrical harmonics are needed for the matrix, the shell and the core regions. The
electrostatic continuity conditions enable the cylindrical harmonic coefficients in the
core and shell regions to be eliminated. The result of some protracted algebra [39]
is that the multipole coefficients of the electrostatic potential in the external region
are connected by

Al = r2l
c (εs − εc)(1 − εs) + r2l

s (εs + εc)(1 + εs)

r2l
c (εs − εc)(1 + εs) + r2l

s (εs + εc)(1 − εs)

Bl

r2l
s

. (6.38)

We examine what the formula (6.38) gives when the plasmonic resonance con-
dition is satisfied on both boundaries of the shell. Firstly, if a shell-core resonance

http://dx.doi.org/10.1007/978-3-642-28079-5_7
http://dx.doi.org/10.1007/978-3-642-28079-5_7
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occurs, εs = −εc, and we find

Al = (1 + εc)

(1 − εc)

Bl

r2l
s

. (6.39)

This is exactly the relationship (6.27), but for a solid cylinder with radius rs

and relative permittivity εc: the shell-core resonance magnifies the core, making the
cylinder appear as if it had radius rs . Secondly, if a shell-matrix resonance occurs,
εs = −1, and (6.38) gives

Al = (1 + εc)

(1 − εc)

Bl

(r2
s /rc)2l

. (6.40)

The shell-matrix resonance makes the coated cylinder appear as if it were solid, with
relative permittivity εc and radius r2

s /rc.
Although it was not realized to be the case by the authors of [39], the curious

phenomena they termed partial resonance [40] implicit in the resonant equivalences
between coated cylinders and solid cylinders embody the seeds of two of the most
important discoveries of recent years in photonics: the perfect imaging by a flat slab of
negative index material of Pendry [41], and cloaking of objects from electromagnetic
waves [42, 43].

If it is desired to render an object undetectable by electromagnetic probes, one
strategy is to devise a shield to be placed round the object, so that the electromagnetic
waves pass round the shield like water sliding round a rock, and then reunite leaving
no trace of a disturbance, much as the stream quickly hides any traces of its encounter
with the rock. In order to achieve this, techniques from general relativity are applied
[42, 43] to design shields which incorporate spatially-varying, anisotropic materials,
designed to guide light round a central cavity.

A second strategy is based on plasmonic interactions between light and the particle
to be detected, either using designs of the particle to lower its detectability or placing
a coated cylinder nearby which reacts to the probe beam and cancels its effect on
polarizable particles within a cloaking zone.

Alu and Engheta [44] consider small spherical particles with a plasmonic or
metamaterial coating, and analyse the required properties of the coating to minimize
its scattering cross-section, using the Mie theory to describe the interaction [16].
The full formula for the scattering cross-section involves a sum over TE and TM
amplitudes cTE

n and cTM
n of spherical harmonics of order n:

Qs = 2π

k2
0

∞∑
n=1

(2n + 1)(|cTE
n |2 + |cTM

n |2). (6.41)

Alu and Engheta show that this cross-section may be minimized for a ratio of shell
to core radii γ lying close to critical lines in the complex plane, see Fig. 6.8. These
critical lines correspond to those identified in [39] for the case of coated cylinders,
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Fig. 6.8 Above the critical lines in the shell/core permittivity plane for is scattering by a coated
sphere. Darker regions give reduced scattering. Below the amplitude of the electric field distribution
at left for an uncoated sphere, and at right for a sphere with a coating which almost entirely eliminates
scattering. The core has a radius of 0.2 wavelengths, while the shell material has relative permittivity
of 0.1 and relative permeability of 5.1 (From [44] and [45])

with the difference that the order n of the spherical multipoles occurs in the three-
dimensional shell-core resonance condition εs = −nεc/(n + 1). Alu and Engheta
[44] give the interpretation that the reduced scattering occurs because the polarization
fields in the shell and core act in opposed directions. For an experimental verification
of this type of cloaking, see [46].

At the beginning of this section, we mentioned that quasistatic resonance could
also be used to achieve cloaking. This has been analysed in detail in [47] and
illustrated with figures and animations in [48]. The situation studied in the latter
paper consists of a set of polarizable dipoles placed in a uniform static field. They
approach a coated cylinder, whose core permittivity matches that of the region out-
side the shell, and whose shell has a relative permittivity close to −1. This means that
both shell-core and shell-matrix plasmonic resonances can occur, with the former
tending to occur first. If the radii of shell and core are, respectively, rs and rc, then
the coated cylinder creates a cloaking region of radius r# = √

r3
s /rc around itself.

Once the polarizable dipoles approach this region, the shell-core resonance begins,
and acts in such a way as to counteract the applied field near the polarizable dipoles.
As the dipoles enter the radius r#, the shell-matrix resonance also strengthens, and
the dipole moment of the polarizable dipoles rapidly falls to zero i.e., they become
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Fig. 6.9 A cluster of seven
polarizable dipoles is deep in
the cloaking region, bounded
by the dashed circle, created
by a coated cylinder with
εs = −1 + 10−12i . There
is a horizontally aligned
uniform applied field, and
equipotential lines of the total
field are shown (From [48])

cloaked. As the dipoles move in the cloaked region, the resonant field patterns on the
matrix-shell and shell-core boundaries move to keep themselves aligned with respect
to the cluster of dipoles they are cloaking. As the dipoles leave the cloaking region,
the resonances weaken and the cloaking effect disappears (Fig. 6.9).

Note that in this style of cloaking, both the cloaking body and the cloaked object
are hidden. This is a desirable feature in cloaking designs, but is not always achieved.

6.7 The Spaser: Cutting our Losses

As we have seen, plasmonic structures involving metals can deliver high electromag-
netic field concentrations, resonant effects which can be used to construct sensors
and cloak objects, compact waveguides, better absorbers for solar energy and many
other useful effects. However, a constraining factor in many potential applications
comes from the high losses which can accompany the concentrated fields. These
losses could be overcome if a “spaser device” could be developed, which could be
used to create high intensity surface plasmons, or pump them to overcome losses.
The spaser could transform plasmonics, in the same way the laser transformed optics
in the 1960s and thereafter. It would also be a crucial development in the field of
metamaterials, enabling low loss devices for the visible and near-infrared spectral
regions to be constructed incorporating metals.

Progress towards the development of a spaser commenced with a theoretical paper
by Bergman and Stockman [49]. These authors studied the eigenmodes of structures
consisting of V-shapes in silver, with embedded emitters such as quantum dots.
The emitters could add energy into the plasmon eigenmodes, whose strength would
grow with the field concentration effect produced by the tapering of the V-shape.
Stockman [50] further analysed the spaser, pointing out its potential as an ultrafast
nano-amplifier, with gain in excess of 50 and switching time below 100 fs.
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Fig. 6.10 Left a nanoparticle having a gold core and a silicate shell, impregnated with the dye
Oregon Green, which provides for gain. Right Normalized extinction (1), excitation (2), spontaneous
emission (3) and stimulated emission (4) of the nanoparticles (From [51])

Two recent papers have made the spaser concept into a reality. Noginov et al.
[51] demonstrated spaser action in a system containing gold nanoparticles with a
silicate shell, with the latter containing a dye facilitating pumping of the dipole plas-
monic mode of the nanoparticles (see Fig. 6.10). The pumping was at a wavelength
of 488 nm, with the emission at 521 nm. Spaser action is evident from the spectral
narrowing of the stimulated emission spectrum compared with the spontaneous emis-
sion spectrum, and an abrupt transition from dominance by the latter to the former
at the pumping threshold for the spaser.

The second experimental spaser design was developed by Oulton et al. [52]. This
used a CdS semiconductor nanowire separated from a silver substrate by a thin MgF2
spacer layer (see Fig. 6.11). The stimulated emission from the CdS is channelled and
tightly confined in a 5 nm waveguide lying between the nanowire and the substrate.
The mode is one hundred times smaller than the diffraction limit.

Progress in this exciting field is rapid. The initial devices just described succeeded
in demonstrating gain, i.e. reduction of plasmon losses by metallic absorption, but not
the entire elimination of loss. At the international conference Metamaterials 2010
held in Karlsruhe, Germany, Vladimir Shalaev reported that his group at Purdue
University had succeeded in reversing the sign of plasmonic loss (i.e. inducing gain
which exceeded metallic absorption loss) in a wavelength band from 720 to 740 nm.
The structure consisted of a two-layer fishnet metamaterial in silver, capable of
exhibiting a negative refractive index, but having substantial plasmonic absorption.
This was surrounded on each side by layers of epoxy impregnated with a laser dye,
which could be pumped. The optical design generated enhanced local fields in the
gain layers, and this was reported to be a key feature enabling the pumping to be
sufficiently effective to overcome loss.

While devices using laser dyes are useful in proving the principle of plasmonic
loss compensation, the dyes generally lose efficiency quickly due to photo-bleaching.
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Fig. 6.11 Left a CdS nanowire is pumped at 405 nm. Its emission is coupled into a 5 nm MgF2
waveguide between the particle and a silver substrate. Right the stimulated electric field intensity
|E(x, y)| at a wavelength of 489 nm (From [52])

This means that a gain element not suffering from photo-bleaching will have to be
developed for applications requiring long lifetimes. It seems that this will most likely
be achieved using quantum dot emitters, which are under development for this and
other applications in photonics.

6.8 Envoi

We have seen that the field of plasmonics has a long history, dating back to the time
when that which was Caesar’s may have been rendered unto him in a cup containing
gold nanoparticles. The field continued to be used through the age of medieval church
building, with the magnificent stained glass windows owing their colour to skilful use
of embedded metal particles. At the dawn of the atomic era, one of the first models of
atoms was the idea of Faraday that they could be viewed as tiny polarizable metallic
particles, and their properties probed with electromagnetic waves. The field has
continued to grow through the laser and microfabrication eras. Today, we can combine
nanofabrication tools with computer simulations and electromagnetic analysis, to
design exciting new devices. At the beginning of the spaser era, plasmonics has a
golden future!
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Chapter 7
Plasmon Nano-Optics: Designing Novel
Nano-Tools for Biology and Medicine

Romain Quidant

Abstract Light plays a growing role in health science especially with the recent
developments of new optical techniques that enable imaging biological processes
down to the molecular scale and monitor dynamically physiological mechanisms
in patients. In parallel, recent groundbreaking advances in nanotechnologies have
opened new perspectives in medicine, for instance in creating new therapies or design-
ing novel compact and highly sensitive diagnostic platforms. In this chapter, the aim
is to discuss recent research that sits at the convergence of photonics, nanotechnology,
and health. This research is based on the extraordinary optical properties of metallic
nanoparticles (MNP) supporting Localized Surface Plasmon (LSP) (see Chap. 4).
We discuss how plasmonic MNP can be used as nano-sources of either light or heat
for biological and medical applications.

7.1 Optical and Thermal Properties of Plasmonic Metallic
Nanoparticles

It was shown in Chap. 5 (Sect. 5.1.2) that LSP resonances in MNP are associated
with resonances of both the absorption and scattering cross-sections. In practice,
coupling light to the LSP resonance of a MNP leads to two combined effects. On
the one hand, the absorbed light concentrates at the particle surface and its scattering
to the far field is enhanced. On the other hand, the remaining part of the energy is
dissipated into heat, creating an increase of the metal temperature. While optical and
thermal properties of MNP are intrinsically correlated, the aim of this section is to
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show that MNP can be engineered to act specifically as efficient point-like sources
of either light or heat.

7.1.1 Nanoscale Light Concentration in MNP

While confinement and enhancement of light field is intrinsic to LSP modes in
MNP, it strongly depends on the particle geometry and illumination parameters.
For instance, geometries with sharp corners such as triangular [1], rice-like [2], or
star-like [3] can lead to a much stronger concentration of the electromagnetic field
at the apex of their tips as compared to spherical particles. Nevertheless, a more
accurate control of light confinement in plasmonic nanostructures can be achieved
in ensembles of electromagnetically coupled particles. In particular, a strong field
concentration is achieved in the so-called dimer geometry (also known as optical gap
antenna) consisting of two adjacent MNP separated by a nanometer-sized dielectric
gap. Upon illumination linearly polarized along the particle alignment, a strong
gradient of surface charges is created across the gap, leading to a concentration of
light in between the two particles [4–6]. For illustration, we show in Fig. 7.1 the
distribution of the electric field intensity in the equatorial plane of a dimer formed
by two gold cylinders lying upon a glass substrate and separated by a 10 nm air
gap. A direct comparison with an isolated cylinder (inset of Fig. 7.1) enables one to
appreciate the dramatic field intensity enhancement within the gap region. Both the
magnitude and confinement of the so-called hot spot increase as the gap becomes
smaller and the near-field coupling becomes stronger [7, 8].

Independently of the gap size, the geometry of the particles has a considerable
influence on the optical properties of the antenna, both on its spectroscopy and on the
distribution of the local field. For instance, using triangular particles or rods instead
of cylinders tends to broaden the resonance bandwidth and increase the ratio between
the field within the gap and at the outer edges [9].

The dimer geometry has been used in a wide range of experiments to enhance the
interaction of light with tiny amounts of matter, down to the single molecule level
[10, 11]. Further on in this chapter, we will show how its properties can be exploited
within the context of biosciences for molecular sensing and optical trapping.

7.1.2 Nanoscale Heat Generation in MNP

Generally speaking, the ability of a bulk material to heat up upon laser illumination
is mostly dictated by its structural properties and in particular by the imaginary
part of its dielectric function at the illumination wavelength. Conversely, heating in
plasmonic metallic nanoparticles is a process that, in addition, directly depends on
their optical response as reflected in the expression of the heat source density q(r):
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Fig. 7.1 Plasmonic dimer formed by two gold cylinders (50 nm diameter
and 20 nm height) separated by a 10-nm air gap. Normalized electric field
intensity distribution computed (in the equatorial plane of the particles) at the plas-
mon resonance (659 nm) upon a plane wave illumination (normal incidence) linearly
polarized across the particle alignment. The normalization is done with respect to the
incident intensity. For reference, the near-field distribution for a single gold disk at resonance is
shown in the inset

q(r) = n2ω/2�(ε(ω))|E(r)|2, (7.1)

where n and ε(ω) stand for the refractive index of the surrounding medium and the
dielectric function of the metal at the light frequency ω, respectively. One can clearly
see that the quantity of generated heat is governed by the electric field intensity
�(ε)|E(r)|2 within the metal. Consequently, the drastic influence of particle geom-
etry on the plasmon mode distribution offers some degree of control for designing
efficient nano heat-sources, remotely controllable by laser illumination.

Influence of the MNP Morphology

Recently, the Green Dyadic Method (GDM) [12, 13] has been used to quantify
the influence of the geometry of a gold MNP on its heating efficiency. The GDM
makes it possible to map the spatial distribution of the heat power density inside
the nanoparticles, providing further insight into the influence of the particle shape
and the illumination conditions on the origin of heat. Figure 7.2 displays calculations
of heating power (q(r) integrated over the particle volume) spectra for different
geometries of gold nanoparticles surrounded by water and illuminated by a plane
wave. We fix the intensity of the incoming light at 1 mW µm−2 = 105 W cm−2

according to the typical value found in the literature for biological applications.
To illustrate the influence of the particle geometry, the heat generation of a

sphere progressively elongating into a rod-like structure at a constant volume
(4πreff/3, where reff = 25 nm) is shown in Sect. 7.2. The successive nanorods
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Fig. 7.2 Calculated spec-
tra of the heat generated in
four different colloidal gold
nanoparticles of the same
volume

aspect ratios are 1:1 (sphere), 1.4:1, 2:1, and 3:1. Two major features arise from the
calculations. First, the LSP resonance markedly depends on the nanoparticle shape.
A redshift is indeed expected for nanorods compared with spheres. Beyond the
resonance redshift, a substantial increase in the heating efficiency, by a factor of
5 from the sphere to the 3:1 nanorod, is observed.

The GDM can be efficiently employed to understand this feature. Figure 7.3
represents the distribution of the heat power density q(r) around and across each
of the geometries. Interestingly, for a sphere excited at the LSP resonance, the heat
generation arises mainly from the outer part of the particles facing the incoming
light. Consequently, the major part of the nanoparticle sees a weak electric field
intensity and thus does not contribute to heating. However, for elongated nanorods,
the field can further penetrate the inner part of the particle thus making the whole
metal volume more efficiently involved in the heating process. It should be under-
lined that the heat generation mainly arises from the central part of the nanorods
because the extremities undergo charge accumulation that leads to a weaker electric
field inside the structure.

Depending on the foreseen application, efficient nano heat-sources can be
fabricated from the simulated design by using either colloid synthesis (bottom-up)
or e-beam lithography (top-down). While both approaches offer an accurate control
over the size and geometry, colloid synthesis enables obtaining nanoparticles in
solution featuring sharp crystalline edges, whereas e-beam lithography is well suited
to fabricate arranged ensembles of particles or complex architectures lying onto a
substrate. Beyond the fabrication of plasmonic heat nano-sources, a suitable thermal
microscopy technique is required to test their photothermal response.
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Fig. 7.3 3D mapping of the
heat power density computed
for the four nanoparticles of
Fig. 7.2 at their respective
plasmon resonance. The k and
E vectors give the illumination
conditions

Temperature Mapping of Plasmonic Heat Nano-Sources

Along with the need of understanding thermal processes at the micro-and nanoscale,
several techniques aiming at high-resolution temperature mapping have been
proposed. Scanning Thermal Microscopy (SThM) uses a composite sharp tip to
directly probe the temperature of the sample surface [14]. Although it allows a spatial
resolution higher than 100 nm, this technique is only suited for surface science
investigations and is known to remain slow and invasive. More recently, a collection
of optical-based temperature probing techniques have been proposed based on
the temperature dependence of either Raman spectra [15, 16], fluorescence inten-
sity/spectra/time correlation [17–19] or infrared spectra. However, none of these
techniques combines reliability, fast readout rate, and high-resolution making them
inadequate for temperature imaging in nanotechnology.

To address this need, a novel technique has recently been developed to locally
probe the stationary temperature Ta of the medium surrounding nano heat-sources
including those formed by plasmonic nanostructures [20]. It is based on the mea-
surement of the Fluorescence Polarization Anisotropy (FPA) of free fluorophores
in solution located at the vicinity of the plasmonic structures. A local temperature
increase makes the nearby fluorescent molecules rotate faster during their fluores-
cence lifetime, reducing the degree of polarization of the emitted fluorescence [21].
In other words, due to Brownian rotational dynamics, molecules tend to lose the
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Fig. 7.4 Description of the FPA-based thermal imaging setup. The dual illumination enables to
both excite the fluorescence of the fluorophores (blue laser) and heat up the plasmonic nanostructure
(NIR laser). The FPA is acquired by simultaneously measuring the fluorescence intensity along both
in-plane polarization directions

memory of the initial polarization during their fluorescence lifetime. Once the cali-
bration giving the relation between FPA and temperature is known, the temperature
map can be extracted in real time from the measurement of FPA.

Figure 7.4 shows the thermal microscope setup used for measuring the photother-
mal properties of plasmonic heat nano-sources. It includes two illumination paths: a
blue laser beam (473 nm) to excite the fluorescent molecules and an infrared (700–
950 nm) laser beam to heat up the plasmonic nanostructures. Using two fast steering
mirrors, both laser beams can be individually positioned and raster scanned. The
sample is mounted on a piezo-stage that can be raster scanned as well. All these
degrees of freedom allow one to assess different physical quantities by scanning
either the blue beam, the infrared beam or the sample.

In this experiment, the plasmonic nanostructures lie upon a glass substrate and are
embedded in a 30 µm thick layer of a glycerol–water mixture containing fluorescein
molecules (c = 1.4×10−4 M). A glass coverslip is placed on top of the solution layer
to avoid water exchange with the surrounding air, which could affect the glycerol–
water ratio and hence the fluid viscosity. The viscosity of glycerol decreases by more
than one order of magnitude from 20 to 50 ◦C, which makes FPA measurements in
glycerol highly temperature sensitive. Fluorescein is a xanthene-type chromophore,
characterized by a high photostability and a fluorescence quantum efficiency close to
100 %. Fluorescein in pure glycerol exhibits a rotational correlation time τR of around
150 ns at 20 ◦C, while its fluorescence lifetime τF is about 4 ns. Consequently, a (4:1)
glycerol–water mixture is used to reduce the viscosity from 1400 to 60 mPas and the
rotational correlation time to τR = 6 ns. This results in a much stronger variation of
the polarization anisotropy between 20 and 50 ◦C, our window of interest.

To obtain the steady-state temperature map Ta(r), the metal structure of interest
is illuminated by an extended (unfocused) IR light through the top objective, the
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Fig. 7.5 Temperature mapping near dispersed gold nanorods: a Optical image (30×30 µm) of dis-
persed and agglomerated nanorods (NRs). b Fluorescence polarization anisotropy of the fluorescein
molecules surrounding the gold nanorods and sensing the temperature variations. c Temperature
map calculated from image (b)

sample stage is fixed, and the bottom blue beam is raster scanned throughout the
sample. Figure 7.5a displays a CCD picture of the edge of a drop of a solution of
gold nanorods (50×12 nm) individually resonant at around 765 nm after evaporation.
For the FPA measurements, we chose an area showing large variations of the gold NR
concentration in a single image, from agglomerated (dark region) to more dispersed
(bottom-left region). The upper-right part of the picture corresponds to the region
outside of the drop. In Fig. 7.5b, both fluorescence polarization maps are overlapped
using a color convention in which green and red colors correspond to parallel and
orthogonal fluorescence polarizations, respectively. The associated temperature map
is displayed in Fig. 7.5c. No temperature variation is observed outside the drop edge
(upper right part) as expected since this region contains no NR. As expected, the
temperature increase is higher where the NRs are agglomerated. A deeper analysis
of the data shows a spatial resolution of about 250 nm and a typical temperature
accuracy of 0.1 ◦C. In a biological environment, the viscosity is likely to be much
lower than the glycerol–water mixture preventing the use of fluorescein because of
the too fast molecular Brownian dynamics. However, it remains possible to match
the fluorescence lifetime and the rotational correlation time in aqueous medium by
using larger fluorophores a few nanometers in size such as fluorescent proteins. This
should enable us to easily apply this thermal microscopy to a biological medium as
well.

Beyond measuring the steady-state temperature, one can extend the technique
to assess the heat source density q(r) inside the structures of interest [22]. In that
case, both the blue beam and the IR beams are focused and spatially overlapped
while the stage is scanned. In such a configuration, local heating and FPA prob-
ing are performed simultaneously at each scanned location. Figure 7.6 displays the
data from the two operational modes on a gold nanowire (2 µm long, 200 nm wide,
and 30 nm high) fabricated by e-beam lithography on a glass substrate. Figure 7.6a
shows the experimental measurement of the steady-state temperature distribution
Ta(r) around the gold structure, while Fig. 7.6b, c displays the associated distribu-
tion of the heat source density q(r) for both parallel and perpendicular polarizations.
These results reveal drastically different behaviors between heat generation (thermal
hot spots) and light concentration (optical hot spots) in plasmonic nanostructures:
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Fig. 7.6 Illustration of the two operation modes of the FPA-based thermal microscopy: a Steady-
state temperature profile measured around a gold nanowire lying upon a glass substrate (the wire is
2 µm long, 200 nm wide, and 35 nm thick). b, c Experimental measurements of the associated heat
source density for b an illumination linearly polarized parallel and c perpendicular to the nanowire
axis. The laser wavelength is 725 nm and the illuminance around 40 mW µm−2

for a transverse polarization of the incident light (perpendicular to the nanowire long
axis) (Fig. 7.6c), the heat arises mainly at the extremities, while the optical near-field
enhancement is expected at these locations precisely for the other polarization. An
intuitive way of understanding this difference relies on a simple model based on
surface charges. While optical hot spots are usually created at the metal surface due
to charge accumulation for instance at edges or gaps, thermal hot spots arise from
currents of charges into the metal.

7.2 MNP as Nano Light-Sources: Application to Biosensing
and Optical Trapping

This section aims at illustrating how the optical properties of plasmonic nanostruc-
tures can be exploited to implement different kinds of interesting functionalities
ranging from biosensing and trapping for bio-analysis and diagnostic to photother-
mal cancer therapy.

7.2.1 Enhanced Sensitivity LSP-Based Biosensing

Since surface plasmon modes are bound to the metal surface, their dispersion is
naturally strongly sensitive to any perturbation introduced at or nearby the interface
such as those caused by a local change of the refractive index. This dependence on
the shallow dielectric function that explicitly appears in formulas (18) of Chap. 3
and (3) of Chap. 4 for both extended and localized surface plasmon, respectively, is
the foundation of the use of surface plasmons for optical sensing. Plasmon sensors

http://dx.doi.org/10.1007/978-3-642-28079-5_3
http://dx.doi.org/10.1007/978-3-642-28079-5_4
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based on extended flat metal films have been widely studied [23] and have led to
several commercial devices that are broadly used as tabletop systems by chemists and
biologists in the detection of biomolecules and study of they specific binding. The
so-called SPR sensors usually monitor changes in the resonance condition associated
to the modification of the surrounding refractive index. They have been applied to
many different contexts including unraveling biological mechanism, drug design,
virology, etc. Like SPP at extended flat metal films, LSP supported by MNP can
be used for sensing [24–26]. In this case, the typical sensing experiment consists in
monitoring the frequency shift in the LSP resonance.

The three main attractive features of LSP sensors are:

• The possibility to directly couple free space light to LSP modes without needing
any bulk glass prism that strongly limits integration.

• A priori, each individual MNP can act as a sensor offering possibilities for inte-
grating a large number of sensing sites on a chip for parallel measurements.
In practice though, the use of a single MNP is not compatible with simple detec-
tion schemes. Nevertheless, substantial signal-to-noise ratio can be achieved with
a moderate number of MNP, maintaining an overall smaller size as compared to
typical SPR pads.

• As for the sensitivity to a given change of the surrounding refractive index, the pros
and cons of each configuration depend on the kind of application that is considered.
The SPR configuration is more sensitive to bulk changes, i.e. a homogeneous
change of refraction index over the whole dielectric superstrate in contact with the
metal film. This is typically the case for liquid and gas sensing. In counterpart, the
LSP sensors have the potential to be more sensitive to shallow changes of refractive
index as those induced by the binding of small molecules at the metal surface [27].
This can be easily understood when considering that the sensitivity of an optical
sensor is directly related to the spatial overlap between the optical mode and the
volume occupied by the target molecules. Indeed, MNP offer much more flexibility
than films to tailor the spatial distribution of the mode and therefore of the sensing
volume. In particular, exploiting the electromagnetic coupling between adjacent
MNP enables one to squeeze the plasmonic mode to a size that is commensurable
with the molecular target (cf Sect. 7.1.1).

The concept of engineering the plasmon mode of MNP for improved plasmonic
sensing was first suggested in 2004, in a theoretical proposal by Enoch and collabo-
rators [28]. The proposed configuration consists of a periodic ensemble of plasmonic
dimers formed by two adjacent gold cylinders separated by a nanometer-sized air
gap. Using the Fourier modal method (FMM) [29], the resonance shift induced by a
thin dielectric layer covering the metal, aiming at mimicking bound molecules, was
calculated as a function of the geometrical parameters of the plasmonic nanostruc-
tures. The results showed that an array of gold dimers is about five times more sen-
sitive as compared to an array of isolated particles. Similar calculations performed
more recently by using another numerical method have confirmed the enhanced
sensitivity of gold dimers [30].
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Fig. 7.7 Evolution with the gap size of the resonance shift resulting from the binding of BSA

Based on these numerical predictions, arrays of dimers with different gap sizes
were fabricated by e-beam lithography on a glass substrate [31]. In order to max-
imize the level of reproducibility in the gap size all over each of the arrays, the
conventional positive resist process combined with lift-off, usually used in plasmon-
ics, was substituted by an alternative process based on negative resist combined
with reactive ion etching. Using this process, arrays of gold cylinder dimers with
gaps as small as 10 nm were successfully fabricated (see this chapter). The sens-
ing properties of the fabricated structures were tested by measuring the extinction
resonance shifts after binding Bovine Serum Albumin (BSA) to a self-assembled
monolayer of mercaptoundecanoic acid (MUA). The experimental data are sum-
marized in Fig. 7.7 in which the resonance shift is plotted as a function of the gap
size. Two different regimes can be identified. For gap sizes greater than 60 nm,
the resonance shift is small (about 10 nm) and nearly constant. Under these con-
ditions, the weak near-field coupling between the adjacent particles forming the
gap makes the dimers behave similarly to isolated particles. A drastically different
regime is observed while decreasing the gap size from 60 nm to contact. The shift
increases exponentially until reaching a maximum at about 30 nm. For this gap size,
the sensitivity to the BSA binding is about five times larger than with isolated par-
ticles, in good agreement with the predictions of reference [28]. Further decrease
of the gap leads to a dramatic drop of the shift followed by a second maximum.
In order to understand this discrete evolution, one needs to consider the geometry
and the binding properties of the BSA molecule. BSA is an elongated 14 nm molecule
that tends to bind perpendicularly to the MUA layer. The maximum resonance shift
thus corresponds to a gap size for which two BSA molecules bound across the gap
fill in the whole sensing volume. For slightly shorter gaps (of about 25 nm), only one
molecule can fit across the gap decreasing the spatial overlap with the dimer mode
and subsequently leading to a large drop of the resonance shift. Further decreasing
the gap size leads to a second maximum corresponding to a single molecule filling
in the gap.
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Exploiting this same concept of plasmon mode engineering, several other
approaches have been considered to increase the sensitivity of LSP-based plas-
monic sensors [32–34]. References [32, 33] propose the use of coupled plasmonic
geometries with low symmetry to exploit the optical equivalent to Electromagnet-
ically Induced Transparency (EIT) in atom physics. Along the same strategy, Liu
and coworkers have recently used EIT in a planar metamaterial to achieve narrow
resonance linewidths featuring enhanced sensitivity to the surrounding refractive
index [33].

7.2.2 Plasmon-Based Optical Trapping

The ability of plasmonic nanostructures to concentrate optical fields in true nanome-
ter scale volumes is very attractive to enhance the interaction of light with small
quantities of matter down to the molecular level. Among the main use of plas-
mon field enhancement in biomedical applications, let us mention Surface-Enhanced
Raman Scattering (SERS) in which the very low efficiency of Raman emission can
be dramatically enhanced, making it possible to detect the signature from a few to
single molecules (see Chap. 5). In this section, we describe a different application in
which enhanced plasmonic fields are used to develop a novel generation of integrated
optical tweezers (OT) for optical trapping of tiny objects at a surface.

The momentum transfer of photons to matter is at the origin of optical forces
that are for instance known to be partially responsible for the tail of comets.
In first approximation, the total force experienced by a tiny object (much smaller
than the incident wavelength) illuminated by a focused laser beam can be split into
two different contributions. The scattering force (or radiation pressure) is a repul-
sive force pointing along the incident wave vector k0. Conversely, the gradient force,
arising from the gradient of the electromagnetic field intensity profile, is an attractive
force that tends to pull the object toward the regions with the highest light intensity.
Conventional three-dimensional (3D) OT are based on the competition between these
two forces. In practice, focusing a high-quality laser beam through a high numerical
aperture objective easily provides the conditions under which the restoring forces
along the longitudinal and transverse directions overcome radiation pressure and
Brownian motion respectively.

OT have become a powerful noninvasive manipulation technique that has found a
wide range of applications especially in biology. Exploiting the ultra-gentle grip
of OT has for instance allowed to study the interaction between molecules, as
between myosin and actin. In such an experiment, double tweezers are used to trap
two micrometer beads connected by an actin filament. The filament is brought in
proximity to a third bead with attached myosin molecules [35]. OT also enable one
to directly manipulate single cells and study intracellular mechanisms when com-
bined for instance with Raman spectroscopy [36].

Since the pioneer works by Ashkin [37], more than 30 years of very active research
have contributed in considerably increasing the performances of OT. Henceforth

http://dx.doi.org/10.1007/978-3-642-28079-5_5
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with this technique, it is possible to rotate and manipulate dynamically in 3D several
micrometer specimens [38]. Despite these performances, conventional OT face two
main limitations. First, tight focusing with a bulky high NA objective is incompatible
with the integration of optical trapping at the surface of a chip. Second, the trapping
efficiency of convention 3D OT decreases very quickly with the size of the trapped
object, due to the drop in the magnitude of the gradient forces (scaling with the third
power of its radius) combined with the increase of Brownian motion. In practice,
compensating the decrease in the trapped object size requires (i) to squeeze the
size of the optical trap down to dimensions commensurable with the object volume
and (ii) to increase the depth of the potential well by increasing the local intensity
experienced by the object. Extending optical trapping to the nanometer scale would
for instance enable one to directly manipulate single tiny biological specimens or
even molecules, without needing to bind them to micrometer beads.

At the end of the 1990s, several theoretical proposals suggested exploiting
concepts of nano-optics to create nanometer-sized optical traps. Novotny et al. [39]
on one side and Martin et al. [40] on the other side first proposed to use the strong field
enhancement and confinement created at the extremity of a sharp metallic tip. Nearly,
at the same time, Kawata et al. came up with the idea of using the light transmitted
through a nano-aperture in an opaque metallic film [41]. Inspired by these works, it
was proposed in 2005 to pattern the surface of a transparent substrate with micro- and
nanosized plasmonic structures with the aim of creating a near-field optical poten-
tial landscape able to trap small objects at predefined locations of the surface [42].
In this configuration, each plasmonic nanostructure acts as a nano-lens creating a
sub-λ concentration of the optical field from an extended unfocused illumination.
This is particularly attractive in terms of integration since it naturally leads to a 2D
trapping platform in which a large number of objects can be trapped in parallel from
a single laser beam. In counter part, the use of a fixed plasmonic pattern a priori
prevents moving the trapped objects over the surface.

Experimental research on SP-based trapping was triggered by two pioneer studies
of the enhanced force field at a flat gold/water interface supporting a SPP. Garcés-
Chávez and coworkers first reported on the SP-induced self-assembly of a large
number of micrometer dielectric beads at the metal surface [43]. The same year,
Volpe et al. used Photonic Force Microscopy to probe the SP force field and evaluate
the enhancement of the force magnitude to a factor of about 50 [44].

While a homogeneous metallic film illuminated upon an unfocused laser beam
features a homogeneous optical force field, stable trapping at a predefined loca-
tion of the surface requires patterning the metal to create a confined trapping well.
The first generation of SP traps consisted of micrometer gold disks illuminated
in the Kretschmann configuration. Efficient parallel trapping of polystyrene (PS)
microbeads was demonstrated with incident laser intensities about two orders of
magnitude smaller than those required by conventional 3D OT for trapping the same
beads [45] (see Fig. 7.8). Interestingly, it was also shown that, unlike 3D tweezers, SP
traps can be operated to be selective to the size of the specimen, opening new perspec-
tives in cell sorting [46]. More recent developments have shown the compatibility
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Fig. 7.8 a Sketch of the optical configuration. b–d Chronological frame sequence recorded for an
incidence angle θ = 68◦ and p-polarization showing the trapping of a 4.88 µm PS bead at a 4.8 µm
gold pad. (P1), (P2), and (P3) locate three different beads, while the vertical arrow points along the
incident in-plane k-vector. A close-up of the trapped bead (P1) is shown in the inset of (d)

of SP traps at gold pads for the trapping of living yeast cells within a microfluidic
environment [47].

As mentioned before, trapping a nanosized object requires: (i) first, increasing the
trap confinement in order to maintain the object into a volume commensurable with
its size; in the case of a nanometer object, this requires confining light down to the
nanoscale; (ii) second, increasing the depth of the potential to overcome Brownian
motion by boosting the local intensity within the trap.

Nano-Optical Trapping with Optical Antennas

A good candidate, to simultaneously fulfill both above-mentioned requirements, is
the optical gap antenna that enables efficiently concentrating light within the gap
region (see Sect. 7.1.1). In this direction, metal dimers have been recently shown to
assist conventional 3D OT in further confining Rayleigh objects near an interface [48].
As a step forward, one can fully exploit the hot spots generated around plasmonic
antennas to implement on-a-chip autonomous integrated optical nanotweezers. For
this purpose, gap antenna formed by two adjacent 500 nm gold bars (120 nm wide
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(b) (c) (d) (e)

(a)

Fig. 7.9 Optical antenna trapping: a Optical configuration, b–e time sequence of fluorescent images
showing a parallel trapping of 200 nm fluorescent polystyrene beads in an aqueous solution. Each
circle locates the position of individual antennas. The illumination is performed under total internal
reflection through a glass prism using an 800 nm laser line, linearly polarized along the antenna’s
long axis. The incident intensity is 107 W m−2

and 50 nm high) separated by a 30 nm gap was designed. For these dimensions, the
antenna features a 3λ/2 resonance at 730 nm, which shifts to 800 nm when cov-
ered with water. An array of such antennas was fabricated on a glass substrate and
illuminated under total internal reflection by a slightly focused laser beam, linearly
polarized along the antenna long axis. The average beam diameter and power were
fixed at 100 µm and 300 mW, respectively, corresponding to an incident intensity of
about 107 W m−2.

The trapping properties of the antennas were first studied by exposing them to a
diluted solution of 200 nm PS beads doped with fluorescent molecules. Figure 7.9
shows a time sequence of fluorescent images recorded over a portion of the
antenna array. Here, the pronounced Brownian motion of the beads is exploited
to load the trap and only one minute is necessary for most of the antennas to capture
a bead [49]. In order to evaluate the operation bandwidth of the nanotweezers, further
experiments in which the incident wavelength of the laser was scanned from 750 to
850 nm in steps of 10 nm were performed. The trapping efficiency η of the antennas
is defined as the fraction of antennas (out of 15) that simultaneously trap a bead.
Under longitudinal polarization, η features a resonant behavior with a maximum
centered around 800 nm in good correspondence with the antennas resonance when
immersed in water. Conversely, a rather constant low trapping ability is observed
under transversal polarization, because the antennas do not feature any transversal
resonance in this spectral window.

At this stage, in order to test the applicability of antenna trapping to biologi-
cal specimens, further experiments with E-coli bacteria were performed. E-coli are
rod-shaped cells typically 2 µm long (at the initial stage of their growth) and about
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half-a-micrometer in diameter with an effective refraction index of about 1.38. Sub-
stituting the aqueous solution PS bead by a solution of E-coli bacteria in LB broth
media, an efficient parallel trapping of single bacteria on adjacent antennas was
observed. Remarkably, beyond being trapped, the bacteria systematically aligned
along the antenna’s long axis. It is believed that their elongated geometry enables
them to exploit all trapping sites along the antenna bars as confirmed by the torque
calculation (Fig. 7.10g), thus making the aligned configuration the most stable one.
Beyond this demonstration of efficient trapping and in order to evaluate the actual
applicability of this method in true biological studies, one should be concerned about
any damage that could have been caused to the trapped bacteria. For this purpose,
additional measurements over several hours were performed. The results presented
in Fig. 7.10 illustrate how the bacteria exposed to the antennas local fields keep on
growing and dividing while being trapped. Their average division time, measured to
be about 1 h, does not differ from the division time of other bacteria located away
from the antennas and out of the illumination area. Moreover, since the actual optical
intensity experienced by the bacteria in the trapping sites (∼108 W m−2 accounting
for the local intensity enhancement) was found to be at least 10 times lower than the
noninvasive intensity reported in the literature using a more harmful wavelength, no
serious damage is expected to be inflicted by trapping. Further testing on the cell
activity would require more elaborated methods such as the one used in [50].

Self-Induced Back Action Trapping

While an approach based on antennas is satisfactory for dielectric objects down to
200 nm, going to objects with even smaller polarizabilities (smaller than 100 nm),
brings us to a practical limitation that is in fact intrinsic to the physics of opti-
cal trapping. Indeed, halving the object size requires about one order of magni-
tude increase in the local field intensity. Consequently, one is quickly faced to limit
the specimen size beyond which the increase of the local intensity exceeds its dam-
age threshold. This is even more critical when dealing with biological specimens that
are particularly sensitive to laser heating. In order to address this fundamental issue,
an alternative approach to conventional trapping in which the trapped object plays
an active role in the trapping mechanism has recently been proposed. The so-called
Self-Induced Back Action (SIBA) trapping configuration enables drastically reduc-
ing, as compared to conventional trapping, the minimum local intensity required for
trapping, thus opening new opportunities toward the noninvasive manipulation of
nanometer objects, including bio-specimens.

SIBA trapping has first been demonstrated using a tiny hole in a gold film [51].
The dimension of the aperture was chosen such that its transmission cut-off was blue
detuned with respect to the trapping wavelength at 1064 nm. Under these conditions,
the aperture acts as an efficient sensor whose transmission varies as a function of the
specimen position. Having a larger refractive index than water, a particle occupying
the aperture makes it appear larger, which allows for more transmission above the
usual cut-off wavelength. In order to illustrate the general concept of SIBA trapping,
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Fig. 7.10 a–f Successive frames showing simultaneous trapping of E-coli bacteria. The incident
laser (800 nm) has been switched off just before recording the frame (e). g Calculated torque acting
on the bacteria as a function of their angle relative to the rod axis. h–p Another sequence of trapping
recorded over two hours, showing how the trapped bacteria keep on growing and dividing

let us consider the equilibrium point for the particle at the opening of the aperture.
The transmission drops when the particle is moved away from the aperture, with a
corresponding drop in the rate of photon momentum traveling through the aperture.
This momentum change leads to a force in the opposite direction that will act on the
particle; the balancing force will be directed toward the aperture, thereby pulling the
particle back to the equilibrium position. Conversely, if the particle moves further
into the aperture the transmission will increase and the restoring force will push the
particle out. FDTD simulations show for instance that the active role of a PS 50 nm
particle in the trapping efficiency reduces the intensity requirement by an order of
magnitude as compared to conventional trapping.

Figure 7.11 shows the time evolution of the aperture transmission when exposed
to a diluted solution of 100-nm PS beads. The higher value of the transmission
corresponds to the time when a particle occupies the aperture. Stable trapping over
an acquisition time of 5 min is observed (see Fig. 7.11b) for a relatively small incident
power of 1 mW, corresponding to a maximum intensity in the focus center of about
1 mW µm−2. The experiment was repeated with 50 nm PS spheres showing stable
trapping during several seconds upon an incident laser power of only 1.9 mW (see
Fig. 7.11c).
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Fig. 7.11 Experimental trapping of 100- and 50-nm PS particles in a metallic nano-aperture:
a Sketch of the experimental configuration. b Experimental time evolution of the intensity trans-
mitted through a 310 nm aperture using different incident laser power when exposed to a solution of
100-nm PS particles. Abrupt increases are from a particle trapped in the aperture. c Experimental
time evolution of the transmitted intensity showing the trapping of a 50-nm particle upon 1.9 mW
laser illumination

While the SIBA trapping has been successfully demonstrated using a nanohole in
a metallic film, it is a very general concept that could be extended to other geometries
in which the trapped object significantly enhances the local field within the trap.

Toward an Integrated Plasmonic Platform for Bio-Analysis

SP-based molecular sensing and trapping are versatile nano-tools that could be of a
potentially strongly benefit to the so-called concept of lab-on-a-chip (LOC). LOCs
are devices that integrate one or several laboratory functions on a compact chip.
They operate with microfluidics that enables the handling of extremely small fluid
volumes down to less than picoliters.

The main advantages of LOCs are:

• Low fluid volumes, consumption (less waste, lower reagents costs, and less
required sample volumes for diagnostics)

• Faster analysis and response times due to short diffusion distances, fast heating,
high surface-to-volume ratios

• Massive parallelization due to compactness, which allows high-throughput
analysis
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• Lower fabrication costs, allowing cost-effective disposable chips, fabricated in
mass production

• Safer platform for chemical, radioactive, or biological studies because of integra-
tion of functionality, smaller fluid volumes, and stored energies

Although the application of LOCs is still in its infancy, there is a growing
interest of companies and applied research groups in using them in different fields
such as analysis (e.g. chemical analysis, environmental monitoring, medical diag-
nostics, and cytometry). To advance into further application developments, research
in LOC systems is expected to extend not only toward downscaling of fluid han-
dling structures but also through a marriage with nanotechnology. Here, nano-optics
and in particular plasmon nano-optics could be strongly beneficial by integrating
plasmonic nano-tools, such as sensors and tweezers, as a way to perform an optical
inspection of a biological sample from the molecular to the cell level. Within the
context of biomolecule detection for medical diagnosis, plasmonic sensors based
on gold MNP integrated into a microfluidic environment could play a decisive role
by combining compactness with ultra-high sensitivity, offering key advantages over
conventional SPR technology. Additionally, SP-based optical trapping opens new
opportunities within the frame of flow cytometry for circulating cancer cell tracking
through selectively trapping combined with optical inspection for instance by SERS.

7.3 MNP as Nano Heat-Sources for Photothermal
Cancer Therapy

We have seen in Sect. 7.1.2 how MNP can be engineered to become efficient
heat nanosources remotely controllable by laser illumination. In this section, we
discuss the application of plasmonic gold nanoparticles to photothermal cancer ther-
apy (PCT). The general idea behind PCT is to specifically bind photo-heaters to
cancer cells (not to healthy cells) and to use laser illumination to heat them up until
they get killed.

For most types of cancers, standard treatments consist of:

• Surgical removal that is limited to large, accessible tumors.
• Chemotherapy that suffers from dramatic side effects including depression of the

immune system and organ damage.
• Radiotherapy that is strongly invasive to healthy tissues along the radiation path.

Alternatively, laser hyperthermia (photothermal therapy) that uses light-induced
heating for tumor ablation is a much milder solution that overcomes all the drawbacks
of conventional approaches. In that case indeed, irreversible heating only occurs
where the particles are agglomerated (within cancer cells) without damaging sur-
rounding healthy tissues that are exposed to the laser. On the one hand, organic
photoabsorbers such as indocyanine green have been used for PCT, but they suffer
from a small absorption cross-section that limits their heating ability upon moderate
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laser illumination. On the other hand, inorganic absorbers like iron oxide require
concentrations that can become toxic. The main advantages of gold nanoparticles
over other absorbers are their potentially high ability to heat up upon reduced laser
irradiation, their low toxicity, and the relatively simple surface chemistry that enables
specific targeting of cancer cells.

7.3.1 Toxicity

Considering that nearly anything can be toxic beyond a certain dose, one should
wonder about the level of toxicity of gold nanoparticles at the concentrations at
which they might be used in PCT, typically of the order of 100 per cell. While under
these conditions, gold in itself can be considered as harmless, potential toxicity can
arise from the surface reagents used in the nanoparticle growth.

Depending on the growth recipe, particles can end up with different surface
modifiers including citrate, cysteine, glucose, biotin, and cetyltrimethylammonium
bromide (CTAB). CTAB is the structure-directing agent that is used to control gold
nanorod shape that forms a tightly bound cationic bilayer on gold nanoparticles.
It was found that free CTAB (which may result from an incomplete purification of
gold nanorods or desorption from the bound bilayer) was toxic for cells at ∼10 nM
concentrations [54]. Hence, a proper purification of gold nanorods is crucial for any
in vivo work. A more sophisticated and safer approach consists in using the ligand
exchange to substitute CTAB with a nontoxic molecule such as poly(ethylene glycol)
(PEG) [52, 53]. Readers interested in further details about toxicity can for instance
be directed to specific review articles [54, 55].

7.3.2 Cancer Cell Targeting and Latest Advances
in Hyperthermia

Another crucial aspect toward the use of metallic nanoparticles in PCT is to achieve
their specific binding to cancer cells (and not to healthy cells). This is usually achieved
by using antibody-conjugated nanoparticles that specifically bind to cancer markers
overexpressed at the surface and inside the cells.

Plasmon-based photothermal destruction of SK-BR-3 cancer cells was first
demonstrated in vitro and in vivo by Halas and colleagues using thiolated-PEG-
passivated gold nanoshells with a 110-nm-diameter core and a 10 nm-thick shell
resulting in a peak absorbance at 820 nm. The achieved temperature increase upon
820-nm laser diode irradiation was of 37.4 ± 6.6 ◦C at a depth of 2.5 mm beneath
the dermal surface, which is well above the temperature at which irreversible tissue
damage occurs (about 45 ◦C) [56]. Laser intensity used was one order of magnitude
weaker than those needed for the Indocyanine green dye. Maximal depth of treatment
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was 6 mm, but it could reach 1 cm or even more in related studies. Slightly later, the
same authors used gold nanoshells conjugated with antibodies to HER2, a protein
overexpressed in breast cancer cells, to destroy breast cancer cells in vitro [57]. Gold
nanorods conjugated to anti-EGFR antibody were used as a contrast agent to image
malignant HOC and HSC that overexpress EGFR proteins using simple dark field
imaging [58]. They also found that upon exposure to continuous red laser at 800nm,
malignant cells were killed with half the laser intensity needed for nonmalignant
cells.

Since these pioneer works, lots of efforts have been put worldwide into improving
the efficiency of hyperthermia. Researchers have been considering different geome-
tries of particles, illumination conditions as well as conjugation strategies to
increase the specificity of particle binding to cancer cells. In recent years, the
company Nanospectra [59] has been conducting some clinical tests on head and
neck cancers using gold nanoshells.

7.4 Conclusion

We have discussed how the optical and thermal properties of plasmonic nanostruc-
tures can be exploited to develop novel nano-tools with attractive applications to
healthcare, from diagnosis to treatment. We have first shown that there is room for
an accurate control of light and heat accumulated at the nanoparticle, upon laser
illumination. On the one hand, intense and confined plasmonic fields can be engi-
neered to detect the binding of low concentrations of small molecules or to trap in
a noninvasive way tiny objects at a predefined location of a surface. Plasmon-based
sensing and trapping are foreseen to become important ingredients in the devel-
opment of future lab-on-chip devices for advanced healthcare diagnosis, from the
molecular to the cell level. On the other hand, metallic nanoparticles can act as
efficient point-like heat-sources for lesser invasive cancer therapy.

Beyond the selected topics treated in this chapter, there are many other examples
in which plasmonic nanoparticles can be of benefit to biosciences and medicine.
One can for instance mention the use of gold nanoparticles as a contrast agent in
bioimaging [60–64] and thermal-assisted drug delivery [65, 66].
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Chapter 8
Imaging Surface Plasmons

Alexandre Bouhelier, Gérard Colas des Francs
and Jonathan Grandidier

Abstract Controlling surface plasmons is at the heart of plasmonics. Advances in
this field are to a large extent triggered by our ability to visualize surface plasmons in
their different forms. In this chapter, we provide a review of the different techniques
capable of imaging and visualizing surface plasmons. We have divided these tech-
niques in three distinct families: proximal probe techniques, far-field microscopies,
and electron imaging. We review here their principal characteristics, advantages, and
limitations and illustrate the discussion with images taken from the literature.

8.1 Introduction

Let us start by placing the context of this chapter from a historical perspective.
Without repeating D. Maystre in his account of the history of surface plasmon, it is
interesting to note that the middle of the 1990s corresponded to a decline of the sci-
entific interest concerning surface plasmons. A rapid survey of the literature shows
a steady decrease in the number of published papers until approximately 1995. This
decline is fairly well explained by the fact that the field was in a mature stage of
understanding and the applications were scarce. The famous references written by
Raether in 1980 and 1988 [1, 2] and the book of Kreibig and Vollmer in 1995 [3]
are attesting the degree of comprehension about surface plasmons at that time. An
important remark to make is that inside these books, nowhere will the reader see
a plasmon. Yet, after reading, the reader will have a profound knowledge of what
is a surface plasmon and what are its principal characteristics and properties. It is
remarkable to note that the majority of this understanding is essentially derived from
a limited series of indirect measurements revealing the peculiar nature of surface
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plasmons. These measurements are the attenuated total internal reflectivity curve
[4, 5], electron energy-loss and extinction spectroscopies [3, 6]. Without going
through an exhaustive list of surface plasmon characteristics deduced from these
experiments, let us mention the extreme sensitivity of the plasmon to interfaces, the
determination of the dispersion curve across a large range of wavevectors (µm−1

to Å−1) and interfaces, the estimation of the lifetime of the surface plasmon and
its different decaying channels, the spectral position of the plasmon resonances as a
function of shape, materials, polarization, dielectric environment. . .

So, what is the added value of actually seeing a surface plasmon? What are the new
physical properties revealed by imaging those waves that are not accessible by the
techniques exposed above? One word might provide a hint to answer these questions
and this word is control. It is because we visualized a plasmon on a bare gold film
that we started to develop planar structures to alter and modify its propagation [7–9].
It is because we probed the spatial extent of confined fields that we are able to control
near-field interactions [10–13], and it is because we imaged snapshot of the plasmon
temporal evolution that we managed to control local surface plasmon dynamics
[14–16]. These are a few examples of the new concepts triggered by recent advances
of surface plasmon imaging.

This chapter will review the different techniques implemented to image surface
plasmons supported by metal structures. We will cover the visualization of propagat-
ing surface plasmons in bare and decorated metal films as well as the microscopy of
localized surface plasmons, characteristic of confined geometries. We will introduce
essentially three families capable of imaging surface plasmons. Each family uses a
distinct intrinsic plasmon property introducing therefore a series of pro and contra
depending upon the system under observation and the type of information collected.
Despite this distinction, all these techniques comply with a mandatory requirement
to visualize a running plasmon: the excitation area must be smaller than the spatial
extension of surface plasmon.

Because surface plasmons are confined at an interface, techniques based upon
proximal probes are therefore a prime imaging tool to access the surface plasmon
intensity distribution. They are traditionally used to observe the propagation of sur-
face plasmons in a structured metal film. However, advanced near-field techniques
are nowadays being developed to also visualize surface plasmons on nanoparticles
with profusion of details. These near-field techniques constitute the first family of
imaging tools that will be described and illustrated with examples taken from the
literature.

To the difference with near-field techniques, the second family of tools does not
require a local probing to optically image surface plasmons. These approaches rely on
specific radiative properties of surface plasmons to either directly map the plasmon
distribution or to image a response modulated by the presence of the plasmon. Here
again, the discussion will be supported by a series of vivid examples.

In the first two imaging families, the observable is always the photon and for
the vast majority of cases, the plasmon is the result of an electromagnetic stimulus.
However, a surface plasmon is by definition a polariton, which is a photon coupled
to an electron. The last family of imaging tools that will be discussed uses this dual
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nature by spatially interrogating either the photon or the electron. We will conclude
this chapter by providing the reader a discussion about the advantages and drawbacks
of these methods compared to purely optical approaches.

8.2 Optical Near-Field Imaging

8.2.1 Near-Field Imaging of Propagative Surface Plasmons

In 1994, the American Physical Society published in its leading journal Physical
Review Letters, an article co-authored by Paul Dawson from Queen’s University
of Belfast, Fréderique de Fornel and Jean-Pierre Goudonnet from Université de
Bourgogne in Dijon, France [17]. The authors entitled their publication “Imaging
Surface Plasmon Propagation and Edge Interaction Using a Photon Scanning
Tunneling Microscope”. With this article, a surface plasmon became visible un-
der the tip of a scanning near-field optical microscope. The intensity distribution of
the plasmon, its propagation and interaction were directly imaged for the first time.

Scanning near-field optical microscopy [18, 19] belongs to the family of proximal
probe microscopes such as scanning tunneling microscopy (STM) and atomic force
microscopy (AFM). In these techniques, high resolution is achieved by minimizing
the sensing volume between a probe and an object. The probe usually takes the form
of a tip where only the very apex is responsible for the interaction. The angular
representation of the field in a plane z = zo near an arbitrary object can be written as:

E(x, y, zo) =
+∞∫

−∞

+∞∫

−∞
A(kx , ky) exp i

(
kx x + ky y + zo

√
k2

o − k2
x − k2

y

)
dkx dky,

(8.1)
where A(kx , ky) represents the complex amplitude of the field and ko = ω/c is
the vacuum wavevector. Equation (8.1) is the sum of plane waves and evanescent
waves propagating in different spatial directions. Wavevectors kx and ky smaller than
ko constitute homogeneous plane waves that propagate in free space. Wavevectors
satisfying this condition have low spatial frequencies. The integration in Eq. (8.1)
runs also over kx and ky values that are larger than ω/c. Consequently, the field
components become evanescent. The electric field of evanescent waves propagates
in the x, y plane, but is exponentially attenuated in the z-direction. These fields
are associated with high spatial frequencies (fine details of an object). In order to
achieve superresolution, the variations of the field in the immediate vicinity of the
object have to be collected. The collection of evanescent waves is the basis of scanning
near-field optical microscopy.

This technique is very well suited to collect surface plasmon field because of
its evanescent nature [20]. The dispersion relation for a metal/air interface writes:
kzi = √

εi (ω/c)2 − k2
x , where ε is the dielectric function of the medium i (metal or

air) [2]. For surface plasmon excitation, kx must be greater than ω/c. Consequently,
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(a) (b)

Fig. 8.1 Three-dimensional rendering of the intensity distribution at the silver/air interface of
focused laser beam undergoing total internal reflection. a TE-polarization. b TM-polarization. The
exponential tail in b is the signature of the propagating surface plasmon. Inset: two-dimensional
view of the image. Scan size is 40 × 40 µm. Reprinted with permission from [17]. Copyright 1994,
The American Physical Society

the wavevectors kzi in the metal and in the air are imaginary: the field amplitude of
the surface plasmon decreases exponentially from the interface.

The basic units forming a near-field microscope are very similar to other scanning
probe techniques. They consist of a near-field probe confining an optical interaction
to dimensions smaller than the wavelength, a scanning stage permitting to raster
scan the sample or the tip laterally, a photodetector to collect the response of the
optical probe-sample interactions, and finally an acquisition software to reconstruct
an optical image [21–23]. One of the requirements to achieve high-resolution imaging
is that the tip sample distance should be controlled with sub-nanometer precision
to warrant optimum near-field probing of the surface plasmon field. Shear-force
regulation based on quartz tuning fork is extensively used nowadays [24].

Figure 8.1 shows a three-dimensional rendering of the light intensity collected
by a near-field probe scanned above a focused laser spot undergoing total internal
reflection at a glass/Ag interface. The images are extracted from Dawson’s publi-
cation [17]. Figure 8.1a illustrates the light distribution for a TE-polarization. For
this excitation condition, no plasmons can be excited and the image displays the
Gaussian distribution of the laser beam. For a TM-polarization, however, the inten-
sity distribution of Fig. 8.1b reveals an exponentially decaying tail on the right-hand
side. This tail is the signature of a running surface plasmon at the silver/air interface
propagating several tens of micrometers.

Note that the extension of the surface plasmon is becoming visible in the image
because the excitation area is smaller than the lateral decay of the plasmon intensity
(focused laser beam). As already alluded to before, this is a prerequisite to visualize
running plasmons.
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(a) (b)

Fig. 8.2 a Scanning electron micrograph of a structured metal (Au) film comprising of a launching
plasmon pad, a surface plasmon waveguide, a grating beam-splitter, and two output ports. b Near-
field image of the plasmon intensity interaction with the different elements. The plasmon is diffracted
by the termination of the two output ports. Residual out-of-plane scattering is visible at the location
of the beam splitter. Reprinted with permission from [29]. Copyright 2005, The American Institute
of Physics

The image of Fig. 8.1b contains a wealth of information that are not easily
accessible by the “historical” measurements, in particular details on the surface plas-
mon propagation. The decaying length is readily accessible by this imaging technique
as well as the interaction of surface plasmons by edges and defects in the silver film
[7, 25]. This visualization of the plasmon decay definitively sparkles the idea that
by structuring the silver film, the surface plasmon propagation can be manipulated
in two-dimensions by micro-elements.

An example of such degree of manipulation through an engineering of the metal
film is illustrated in Fig. 8.2. Electron-beam lithography was used here to fabricate a
series of surface plasmon control elements including a launching pad, a waveguide
taking the form of a metal stripe, a beam splitter consisting of a Bragg-like structure,
and two additional orthogonal waveguides serving as output couplers (Fig. 8.2a).
Using near-field optical microscopy, the manner with which the surface plasmon
is developing through these elements is revealed. The near-field image of Fig. 8.2b
elucidates the role of the funnel element (taper) used to couple the plasmon inside the
stripe waveguide, emphasizes the existence of the different modes inside the stripe
[9, 26–28], and allows to measure the splitting ratio of the Bragg reflector [29].

Another example of the imaging benefits brought by near-field optical microscopy
is the ability of the technique to track in time and space surface plasmon field [30].
To do so, a heterodyne detection is employed by incorporating the signal path into an
interferometer to retrieve amplitude and phase information about the plasmon field
[31]. By combining this detection scheme with time-resolved femtosecond pulsed
excitation, the surface plasmon wavepacket was visualized at different positions in
time as it propagates inside a stripe waveguide [32]. The frames of Fig. 8.3 illustrate
the propagation of a surface plasmon pulse inside a gold stripe (Fig. 8.3e). The pulse
duration is 120 fs. The time difference between individual sequences, adjusted by an
optical delay line, is 48 fs. The series of images taken at different time stamps allows
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Fig. 8.3 a–e Near-field
images of the surface plas-
mon wavepacket (amplitude).
Each frame is delayed by
48 fs. f Topography of the
Au stripe serving as a plas-
mon waveguiding structure.
Reprinted with permission
from [32]. Copyright 2008,
American Institute of Physics

one to follow the surface plasmon as it leaves the launching site (Fig. 8.3a, bottom
part of the picture), how it evolves in the waveguide (Fig. 8.3c), and finally how it is
backscattered by the end of the structure (Fig. 8.3e, standing wave at the top of the
waveguide). This remarkable visualizing apparatus is not only capable of imaging
amplitude and phase of a surface plasmon field but also probes its ultrafast dynamics.

The examples shown above concerned the imaging of SPPs excited by total inter-
nal reflection that are leaky in the substrate by nature (see also Sect. 8.4). Obviously,
bound modes can also be imaged by near-field techniques [33]. In that case, prop-
agative bound SPPs are excited by momentum transfer on a defect or a grating. The
mode propagation can then be investigated in the near field by raster scanning a local
optical probe as above.

8.2.2 Near-Field Imaging of Localized Surface Plasmons

Near-field techniques described in the previous section are also a prime tool to image
surface plasmon in confined geometry, e.g. metal nanoparticles. Different approaches
were developed to reveal the localized nature of this excitation. They are all based
upon high-quality optical probe to achieve the lateral resolution needed (<50 nm).
For a complete account, the reader is referred to a comprehensive review written by
Wiederrecht [34].

Without going into a lengthy discussion about the experimental details characteriz-
ing all the possible variations of a near-field optical microscope [35], let us distinguish
two main stream techniques that are generally used for surface plasmon imaging.
The first approach relies on a near-field contrast obtained by transmission measure-
ments whereby the light emitted by a sub-wavelength aperture is scanned over the
sample of interest: the intensity transmitted through the sample, e.g. a nanoparticle, is
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(a) (b)

Fig. 8.4 a and b Near-field transmission images of gold nanorods taken at wavelengths of 532
and 780 nm, respectively. These two wavelengths approximately correspond to the transverse and
longitudinal resonances of the nanorod. Reprinted with permission from [36]. Copyright 2004,
American Chemical Society

recorded for each position of the tip. An example of near-field imaging of a plasmon
field is shown in the transmission images of Fig. 8.4. The images are extracted from
the work of Imura and coworkers [36]. The object is an isolated nanorod that was
chemically synthesized and deposited on a glass substrate. The images were obtained
by scanning a near-field aperture for two excitation wavelengths corresponding to
the transverse and longitudinal resonances, respectively. The contrast in the images
is understood in terms of local density of electromagnetic states [37]. Figure 8.4b,
for instance, shows the surface plasmon oscillations with a node at the center of the
rod and two maxima at the extremities when the nanorod is excited at its longitudinal
resonance. For longer nanorods, the number of oscillations gradually increases from
a dipole-like behavior to cavity-like resonators [10, 11, 36, 38, 39].

The second imaging approach is based on a local scattering of the electromagnetic
field by a sharp tip. Because the tip can be made of homogeneous material without any
aperture, e.g. gold, tungsten, or SiO2, this technique is commonly referred to as aper-
tureless near-field optical microscopy [41]. The tip acts as a scatterer by converting
an evanescent component from a plasmon bound at a surface into a propagative wave
that can be far-field detected [40, 42, 43]. To illustrate this conversion, Fig. 8.5 shows
two near-field images of the surface of a gold film at percolation obtained for excita-
tion wavelengths of 714 and 738 nm, respectively [40]. Semi-continuous metal films
are notorious for producing randomly distributed regions of large field enhancement,
generally used for surface-enhanced spectroscopies. The extreme localization of sur-
face plasmons at metal clusters is responsible for this effect. Wavelength-dependent
localizations are visible in Fig. 8.5 where the intensity of the near-field information
was collected and demodulated at the vibration frequency of a vertically oscillating
tip (tapping mode).

As discovered through the few examples illustrated above, near-field techniques
are a method of choice for imaging surface plasmons with high lateral resolution
because of their capability of accessing bound electromagnetic fields. It is also fully
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Fig. 8.5 Near-field images of the intensity distribution at the surface of a percolated semi-
continuous gold film. The localization of surface plasmons is responsible for the stochastic dis-
tribution of the intensity. The images were taken at two different wavelengths (lateral units are in
nm). Reprinted with permission from [40]. Copyright 1999, American Physical Society

suited to investigate time-resolved dynamic and spectroscopic properties of surface
plasmons. Because near-field techniques come in a variety of configurations, it is
flexible with sample requirements. However, and it is a long-standing issue, near-
field microscopy is strongly dependent on the quality of the near-field probe and
is therefore directly impacting the reproducibility of a measurement. Finally, the
approach can be considered as perturbative: the size of the probe is usually compara-
ble to the size of the plasmonic nanostructures being imaged forming thus a coupled
system.

8.3 Photochemical Mapping

Harnessing light-matter interaction occurring at length scale much smaller than the
wavelength has fostered advances in high-resolution optical lithography. The use
of evanescent waves allowed patterning with sub-diffraction-limited resolution with
ultrathin photoresists [44]. Inspired by these advances, it was soon realized that a
local photopolymerization could serve as a replica of the near-field intensity bound to
a nanostructure. This technique is not a direct imaging tool per se because the visual-
ization relies on a second-order effect: typically a measure of a surface deformation
by atomic force microscopy.

Several sensitive formulations were employed to mold or image confined fields,
notably on metallic surfaces. One approach uses azo-dye molecules grafted on the
backbone of a long polymer chain, typically poly(methyl methacrylate). This chro-
mophore is known to be responsible for polymer mass transport through multiple
cis-trans photo-induced isomerizations. Interestingly, the migration of the grafted
polymer was found to be dependent on the orientation of the local electric field.
For in-plane polarizations, the polymer moves laterally away from field maxima,
while for an out-of-plane polarization the mass transport produces nanoscale protru-
sions [45, 46]. This is an important characteristic as it permits a complete vectorial



8 Imaging Surface Plasmons 233

Fig. 8.6 Topographic
images of the photo-induced
surface deformation of 75 nm
thick DR1MA/MMA layer
deposited on silver nanorods.
The topography reveals the
location of localized surface
plasmons associated with
surface roughness. Reprinted
with permission from [49].
Copyright 2009, American
Chemical Society

description of the near-field that would be difficult to obtain with other techniques
[47]. Using photo-initiated diffusion of the dye and its associated topography, sur-
face plasmon dipolar responses and more complex field patterns were unambiguously
imaged [48]. An example of the potential of the technique is illustrated in Fig. 8.6
where a photosensitive solution was coated on top of long silver nanowires [49].
Because the wires were fabricated by electron-beam lithography, their polycrys-
talline nature and associated surface roughness generated localized surface plas-
mons similar to the ones discussed previously in Fig. 8.5. After laser irradiation, the
topography of the rods was imaged by atomic force microscopy. The white circles
emphasize the formation of a protrusion at the extremities of a series of nanorods. The
authors attributed this surface deformation to the presence of a longitudinally oriented
enhanced electrical field. One should also note that protrusions are also visible on the
length of the nanorods and are explained by roughness-induced plasmon localization
and subsequent molecular accumulation.

Other type of photosensitive formulations were developed to specifically reveal
the confined and enhanced surface plasmon field. This was demonstrated on strongly
interacting resonant antennas [50] using two-photon polymerization. An example is
shown in Fig. 8.7 [50]. Bowtie optical antennas with controlled gaps were fabricated
by electron-beam lithography. The authors coated their antennas with a 75-nm-thick
SU-8 resist layer. A 800-nm wavelength femto-second laser was chosen as the exci-
tation source to promote two-photon absorption of the resist and subsequent cross-
linking as well as a reasonable on-resonant excitation of the bowties. The frames were
measured after a development procedure revealing only the areas where significant
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Fig. 8.7 Topography of a series of bowtie antennas after non-linear photopolymerization and resist
developement. The exposure was a 225 µW, b 106 µW, c 54 µW, and d 27 µW. e is an unexposed
bowtie. Reprinted with permission from [50]. Copyright 2006, American Chemical Society

Fig. 8.8 AFM images of a series of silver nanoparticles recorded after illumination of a self-
developing photopolymer. The dipolar surface plasmon field triggered a local photopolymerization
taking the form of two-side polymer lobe oriented with the electric field. Reprinted with permission
from [51]. Copyright 2007, American Physical Society

non-linear absorption took place. The images demonstrate a polymerized area near
the gap of the bowties corresponding to the primary region of field enhancement.

Similar approaches were used by employing a polymerization mechanism char-
acterized by a threshold. In these systems, the polymerization is triggered by the
formation of free radicals above a given incident energy [51]. The enhanced elec-
tromagnetic field associated with surface plasmon excitation can therefore locally
initiate a nanoscale photopolymerization. A rinse-off procedure is then performed to
remove the regions exposed below the threshold energy. A subsequent AFM analysis
of the topography reveals the spatial extent of the polymerized areas corresponding
to the footprint of the surface plasmon field. This is illustrated in Fig. 8.8 where the
dipolar response of individual silver nanoparticles created side lobes of the polymer
oriented along the polarization [51].

In principle, photochemical mapping of surface plasmon may approach molecular
resolution. Another important aspect is that with specific molecules (Azo-dyes), the
method is sensitive to the orientation of the electric field. This permits not only to map
the region of high field intensity typical with surface plasmons, but also to control
molecular diffusion with these systems. The limit of photochemical imaging is the
restricted wavelength range that can be used. The conformational change and the
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photopolymerization occur at the absorption maximum of the photoresists that are
usually centered in the blue-red part of the visible spectrum. This imaging technique
is therefore best employed for small nanoparticles. Finally, because it is a second-
order measurement (topography), the interpretation of the results requires complex
numerical modeling taking into account diffusion effects [52] and the presence of
inhibitors.

8.4 Leakage Radiation Microscopy

In this section, we present a mechanism whereby surface plasmons are detected and
imaged. The technique uses the fact that surface plasmons traveling on a thin metal
film are not completely evanescent as they lose a significant portion of their energy
inside the substrate. This technique is referred to as leakage radiation microscopy.
Reference [54] presents a review devoted to this approach and its applications to SPP
imaging. Excitation of surface plasmon and detection of its leakage radiation were
described as soon as 1976 [55]. However, it only relied on the angular emission of the
leaky modes into the substrate giving access to the plasmon wavenumber, without
direct observation of the SPP propagation. To the best of our knowledge, this pio-
neering work was not followed until 1996. Indeed, profiting from the local excitation
of a near-field optical microscope, Hecht et al. investigated SPP propagation in both
direct (image) and reciprocal (Fourier) planes [53] as presented in Fig. 8.9. In this
example, the tiny aperture of a near-field probe acts as a local excitation source for
surface plasmon excitation due to the large momentum spread brought by the size of
the aperture. The energy lost by the plasmon in the substrate is collected via a high
numerical aperture objective. The mode propagation is directly observed in the im-

age plane and follows the expected 2D surface wave shape I (ρ,φ) ∝ e−ρ/LSPP

ρ cos2 φ
with a propagation length LSPP = 8 ± 2 µm. The excited plasmon decouples into
the substrate at angle θSPP = 44.3◦ as directly visualized in the Fourier plane of
Fig. 8.9c (corresponding to the SPP wavenumber kSPP = nk0 sin θSPP = 5.7 µm−1).

This has been followed by numerous works devoted to the direct imaging of SPP
in various configurations [8, 56–63]. Some examples will be given below, after a
brief introduction to leakage radiation microscopy. Particular attention will be given
to describe the signal recorded in the image and Fourier planes.

8.4.1 Leaky Mode Properties

Guided Modes

As an example, let us focus on plasmonic and photonic modes supported by
the four-layer system: glass-metal-dielectric-air, presented in Fig. 8.10a. The main
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(a) (b)

(c)

Fig. 8.9 a Scanning Near field Optical Microscope (SNOM) setup for imaging the surface plasmon
in the image plane (b) and Fourier plane (c). The SPP is locally excited using a near-field optical
probe. Reprinted with permission from [53]. Copyright 1996, American Physical Society

properties of propagative surface plasmon-polaritons can be deduced by this 1D
model. Moreover, 2D waveguide can be approximated by a combination of two 1D
planar waveguides by applying the effective index model so that the discussion below
is easily generalized to more complex configurations [64–67].

For simplicity, we fix the gold thickness to d = 50 nm, the wavelength in vacuum
is λ = 2πc

ω = 1.55 µm (telecom C band), and the polymer thickness (PMMA for
polymethylmethacrylate) to t = 300 nm. The influence of the gold thickness will
be discussed especially in relation with leakage radiation microscopy. The surface
plasmon-polariton mode is T M polarized. It writes E = E p(z)ei(kx x−ωt), where E p

is the component in the incident plane and kx is the propagation constant. Figure 8.10b
describes the considered system and defines the used notations.

In each layer m ∈ {1, 2, 3, 4}, the wavevector writes km = (kx , ky = 0,

wm =
√
εmk2

0 − k2
x ) and the electric field Em = E+

m + E−
m has the form (the

dependence on e−iωt is omitted):

Em = e+
mei(kx x+wm z) + e−

mei(kx x−wm z) (8.2)
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Fig. 8.10 a Representation of a multilayer system glass-gold-dielectric-air. The two extreme layers
are semi-infinite. The metal and dielectric layers have thicknesses d and t , respectively. The refrac-
tive indices at λ = 1.55 µm are n4 = 1.5, n3 = 0.55+ i11.5, n2 = 1.49 (corresponding to PMMA
resist), and n1 = 1. b Representative scheme and used notations. c Representation of the real and
imaginary parts of R+ R− as a function of kx when d = 50 nm, t = 300 nm, and λ = 1.55 µm.
d Mode electric field amplitude along the multilayer system. Adapted from [69]

with e+
m associated to an ascending wave and e−

m to a descending wave.
The resonance condition is easily assessed from the reflection coefficients

R+ = e−
2 /e+

2 at the PMMA-air and R− = e+
2 /e−

2 at the PMMA-gold interface
(see Fig. 8.10b). The medium (2) supports a non-zero electric field if and only if
[68]:

R+ R− = 1. (8.3)

Figure 8.10c shows the real part and the imaginary part of R+ R− as a function of kx .
The system supports a mode for kx = kSPP = 5.21 µm−1 because �(R+ R−) = 1
and �(R+ R−) = 0. kSPP is the propagation constant of the mode supported by this
system. We define equivalently the effective index of the mode �(N∗

eff) = kSPP/k0.
Here, �(N∗

eff) = 1.285.
Importantly, as 1 < N∗

eff < n4 with n4 = 1.5, this mode is radiative in the
substrate but evanescent in the superstrate (air), as it clearly appears in Fig. 8.10d.
It is a so called leaky mode.

Although this simple description gives access to the guided modes propaga-
tion constant, it does not allow one to estimate the mode propagation constant.
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Fig. 8.11 a Representation of the phase denominator derivative of the reflection coefficient dφ
dkx

as a function of kx (continuous line). The reflectivity is also represented (dashed line). b Mode
intensity profile

Parenthetically, this shows that the SPP propagation is fairly described by the
internal reflections of a ray [65]. More accurate description, including propagation
length, is achieved by the reflection pole method (RPM) [65, 70].

RPM relies on the location of singularities of the reflectivity R instead of the direct
calculation of R. This method is presented in detail in Ref. [70] and in the chapter by
D. Maystre of the present book. We simply indicate the essentials in the following.
The multilayer reflection coefficient is obtained using the transfer matrix formalism.
Since a guided mode corresponds to the reflection coefficient singularity, resonance
condition is precisely deduced from the pole of the coefficient. Indeed, it can be shown
that a pole is accurately located working on the phase φ of the denominator of that
reflection coefficient. Practically, the derivative dφ

dkx
, with respect to the wavenumber,

follows a Lorentzian profile centered at the mode propagation constant kSPP and
with a full width at half maximum (FWHM) Δk = 1/LSPP. In addition to precisely
locating the mode propagation constant, this method also provides an accurate value
for its propagation length. Finally, we recover the very general physical property that
a supported mode presents a Lorentzian profile [71]. We will recover this property in
different observables associated to the guided mode and will show that it is of great
interest to interpret leakage radiation micrographs [54]. Figure 8.11a represents dφ

dkx
.

A Lorentzian fit gives kSPP = 5.208 µm−1 and LSPP = 24.70 µm. In this figure,
we also traced the reflectivity R. It follows a similar behavior near the resonance as
discussed later on [2].

Loss Mechanisms

Two types of losses are responsible for the low plasmon propagation lengths
[2, 57] as schematically represented in Fig. 8.12: namely (i) intrinsic losses with
the rate per unit length Γi connected with the mode dissipation in the metal and
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Fig. 8.12 a Representation of a three-layer system metal-dielectric-air that does not support any
radiative losses. b Representation of a four-layer system glass-metal-dielectric-air that supports
radiative losses (Γrad) and intrinsic losses (Γi ). c Variation of the losses rates and propagation
length as a function of the gold thickness. d Variation of the effective index as a function of the
gold thickness. The wavelength is λ = 1.55 µm and the PMMA thickness is t = 300 nm

(ii) radiative losses, with the rate Γrad, connected with leakage into the substrate.
The mode propagation length is given by:

LSPP = 1

2(Γrad + Γi )
, (8.4)

where Γi can be estimated considering a semi-infinite gold film in Fig. 8.12a, and
using the RPM. This assumes that the intrinsic losses do not depend on the gold film
thickness [2]. Radiative losses rate is then obtained as Γrad(d) = 1/2LSPP(d) − Γi

(Fig. 8.12b). In Fig. 8.12c, we represent the evolution of these losses as well as the
propagation length as a function of the gold thickness. The radiative losses decrease
with the gold thickness and are almost null above 70 nm of gold. The critical thickness
for which Γi = Γrad(d ≈ 40 nm in Fig. 8.12c) will be discussed later.
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Fig. 8.13 Leakage radiation microscopes setup in left diascopic and right episcopic configuration.
In diascopic configurations (left column), the propagating SPP is excited by momentum transfer
via scattering on a defect (white circle in a). The mode propagation is analyzed in both the image
(b) and Fourier (c) planes. In episcopic configuration (right column), the SPP is directly excited
by total internal reflection and recorded in image (d) and Fourier (g) planes. f and h represent
the corresponding numerical simulations. SPPs propagate along plasmonic waveguide made of
dielectric ridge deposited on a gold film, in monomodal or multimodal conditions. Reprinted with
permission from [62]. Copyright 2008, American Physical Society

8.4.2 Leakage Radiation Microscopy

Various leakage radiation microscope setups exist that can be arbitrarily classified
depending on the illumination process. First experiments relied on plasmon excitation
by momentum transfer in the near field using scattering on a small defect (surface
rugosity [55] or lithographied nanostructures [60]) or the local probe of an optical
near field microscope (Fig. 8.9) [8, 53]. The top panel of Fig. 8.13 presents two
variants of leakage radiation microscope setup. In the diascopic configuration (left),
the SPP is excited from the top by scattering on a defect. The mode leaking into the
substrate (proportional to Γrad) is detected in the far field [8, 53, 54, 72].
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The advantage of leakage radiation microscopy technique is its simplicity and
versatility. However, it relies on the radiative losses of the mode, implying thus the
use of thin metallic films in order to increase the available signal at the expense of
propagation length.

Leakage radiation microscopy gives an information on the electromagnetic field
intensity of the surface plasmon and its associated wavevectors content by correctly
visualizing the image plane or the Fourier plane, respectively [54, 60, 73]. Exam-
ples of this combination are demonstrated in the lower panels of Fig. 8.13. Here,
plasmonic waveguides constituted of a polymer section fabricated on a gold layer
are considered (Fig. 8.13a). The TM-polarized magnetic field writes HSPP(x, y, z)
= HSPP(y, z)eikSPPx e−x/(2LSPP)ey. The intensity recorded in the direct plane is qual-
itatively:

I (x, y) ∝ |HSPP(x, y, z0)|2 = |HSPP(y, z0)|2e−x/LSPP , (8.5)

where z0 is the focus point of the detection objective. The mode propagation con-
stant is therefore directly measured from the intensity exponential decay. The leakage
image of Fig. 8.13b shows how the surface plasmon mode is guided by the polymer
waveguide. The bright spot at the bottom of the image is the location of excita-
tion (diascopic illumination) and the surface plasmon develops as an exponentially
attenuated streak from the bottom to the top of the image.

In the Fourier plane, the recorded signal is approximated to (tilde stands for the
Fourier transform):

I (kx , ky) ∝ |H̃SPP(kx , ky, z0)|2 = |H̃SPP(kx , z0)|2
(ky − kSPP)2 + (1/2LSPP)

2 . (8.6)

In Fig. 8.13c, the Fourier image presents a horizontal line, with a constant wavevector
component along the waveguide axis at ky = kSPP corresponding to the propagation
constant of the mode (effective index �(N∗

eff) = kSPP/k0 = 1.32). Note that the
mode profile in k space follows a Lorentzian profile as it will be shown in the next
paragraph. The semi-continuous circles at effective index �(N∗

eff ) = 1.02 correspond
to the film SPP mode propagating isotropically at the metal surface.

It is also possible to excite the plasmon in Kretschmann-like configuration as
schematically shown in the right panel of Fig. 8.13. Here a high numerical aperture
objective is used to provide the resonant wavevectors contained inside a weakly
focused beam and the optical support to detect plasmon’s leakage [57, 72]. Note
that in this case, the optimal contrast in the Fourier plane is obtained for metal
thickness such that Γrad = Γi . Indeed, the detected signal is nothing else than the
reflectivity R. R also follows a Lorentzian profile near the SPP excitation incident
angle [2]:

R = 1 − 4ΓiΓrad

(kx − kSPP)2 + (Γi + Γrad)2 , (8.7)

so that R = 0 for Γrad = Γi (see also Fig. 8.12). This null reflectivity originates
from destructive interference between the incident field and the mode leakage [2].
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For comparison purposes, Fig. 8.13d shows an image of a surface plasmon excited
with this scheme and propagating inside a multimodal waveguide confirmed by the
presence of a beating between several modes visible in the recorded image and in
agreement with numerical simulation (Fig. 8.13f). All the supported leaky modes are
discriminated in the Fourier plane of Fig. 8.13g and h since they appear at different
propagation constants. In addition, the Fourier signal presents negative contrast inside
the incident spot (according to reflectivity decreasing near the resonance), whereas
it presents positive contrast outside this spot since no interference with the excitation
beam occurs in this k space region [62].

LRM was subsequently applied to many in-plane plasmonic passive components
such as beam splitters, plasmonic lenses and dioptres [72], gratings, Bragg mirrors
[58, 60], and waveguides [62, 67, 74]. In particular, LRM images were compared to
near-field optical measurement and showed good agreement in the cases considered
[72, 74]. LRM appears thus in this context as a complementary far-field optical
method to near-field techniques.

Figure 8.14 shows another example of the versatility of this imaging tool applied
to SPP Bragg mirror [58, 60, 61]. The mode propagation is directly observed in the
image plane (Fig. 8.14a) and follows the expected intensity distribution I (ρ,φ) ∝
e−ρ/LSPP

ρ cos2 φ already observed in Fig. 8.9. The propagation constant is determined
in the Fourier plane (Fig. 8.14b) since the mode profile follows a Lorentzian shape,
centered on the propagation constant kSPP ≈ 8 µm−1 and with a full- width at half-
maximum FWHM Δk = 1/LSPP as expected. The SPP reflection on a Bragg mirror
is visible in both the image and Fourier planes. Finally, an extended grating, similar
to the Bragg mirror used in Fig. 8.14a–d,is investigated in Fig. 8.14e and f. The
opening of a gap is clearly visible in the Fourier plane. A plasmon propagating with
a wavevector within this forbidden gap will be reflected by the grating as observed
in the image [58, 61].

8.4.3 Leakage Radiation Microscopy of Surface
Plasmon Coupled Emission

Finally, we would like to mention surface plasmon coupled emission developed by
Lakowicz and coworkers recently [59, 75–78]. In this case, SPPs are excited by
fluorescent molecules dispersed on the metallic film or plasmonic wave guide. The
high momentum of the dipolar fluorescent emitters allows to excite all the supported
modes. It can then be profitably associated to leakage radiation microscopy to inves-
tigate mode propagation [63, 79] or can serve as an imaging contrast. We will briefly
come back to that point in Sect. 8.5. Since the excited emitters are non-radiatively
coupled to the SPP, this coupling can be regarded as spontaneous emission of sur-
face plasmon-polariton. An example is given in the inset of Fig. 8.15. A plasmonic
waveguide is doped with lead-sulfide (PbS) quantum dots (QDs) optically pumped
at λ = 532 nm and emitting in the near infrared. Signals are recorded around the
emission wavelength. The Fourier plane was taken for a global excitation of the doped



8 Imaging Surface Plasmons 243

Fig. 8.14 Leakage radiation micrograph in the image (a) and Fourier (b) planes. The SPP is
launched on a 50 nm gold film by focusing a laser beam (λ0 = 800 nm) on a lithographied defect
and developed symmetrically on both sides (L and T) of the defect. The plasmon is partially reflected
toward R by a mirror grating located in T. c, d Cross-cut in the image and Fourier planes, respectively.
Solid lines represent an exponential or Lorentzian fit. e, f Measured (e) and calculated (f) Fourier
images for SPP supported by an extended (100 ×100 µm) grating. Reprinted with permission from
[60, 61]. Copyright 2006, American Insitute of Physics. Copyright 2007, American Optical Society

waveguide and clearly reveals the T M00 SPP mode guided along the waveguide as
well as T M0 and T E0 planar film modes supported in the large tapered region [79].
The direct image was measured for a focused excitation of the QDs. The two traces
propagating away from the excitation zone are associated to the guided SPP mode.

Moreover, the excited emitters can act as a gain medium for a SPP signal
propagating in this medium, since then stimulated emission of SPP could occur.
Figure 8.15 displays a recent experiment that demonstrated gain assisted propaga-
tion characterized by leakage radiation microscopy. The propagation length presents
a typical threshold effect as a function of pump irradiance. The mode effective
index FWHM Δneff is narrowed. This narrowing reveals both (i) propagation length
increase since Δneff ∝ 1/LSPP and (ii) QDs emission narrowing due to stimulated
emission [79, 80].

The advantage of leakage radiation microscopy relies on its simplicity and easy
way to image either in the direct or in Fourier plane giving access to both mode
propagation constant and length of waveguided SPP modes. Multimodal systems
are also accurately investigated. To sum up, the main advantage of this technique is
its simplicity of implementation. It is adapted for a rapid investigation of plasmon
propagation in various devices, with direct measure of the complex mode effective
index. The drawbacks are the limited spatial resolution (diffraction) and the restriction
to leaky plasmons.
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Fig. 8.15 a and b Schematic description of gain-assisted propagation in plasmonic waveguide
investigated by leakage radiation microscopy of surface plasmon emission. The SPP signal is ex-
cited in the near-infrared (λ = 1.55 µm). QDs doping the waveguide are optically pumped at
λ = 532 nm and emit in the near infrared. Insets show the images recorded for an infrared emission
in the Fourier and image planes for QDs optically pumped at λ = 532 nm, in the absence of SPP
signal. c and d Propagation length without and with QDs optical pumping, respectively. e and f
Effective index FWHM without pump and as a function of incident pump irradiance, respectively.
Reprinted with permission from [79]. Copyright 2009, American Chemical Society

8.5 Fluorescent Probes

In this section, we describe how surface plasmon fields can be imaged in real time by
detecting the fluorescence of a molecular film close to the plasmon carrying metal
surface. This method was nicely demonstrated by Ditlbacher and coworkers [81]
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Fig. 8.16 a Schematic of the experimental setup used to image the surface plasmon distribution by
fluorescence emission. b Intensity distribution of the surface plasmon imaged by the fluorescence
signal emitted by a layer of reporter molecules. Reprinted with permission from [81]. Copyright
2002, American Institute of Physics

as illustrated in Fig. 8.16. The basic principle of this imaging technique resides on
the high coupling probability between a dipole placed close to an interface (e.g. a
fluorescent dye) and a surface plasmon. In the example shown, Rhodamine 6G mole-
cules were deposited by vacuum sublimation on a 10 nm thick SiO2 layer covering a
silver film to prevent quenching. A surface plasmon was excited by focusing a laser
matching the absorption of the molecule onto a man-made defect acting as a point
source. The fluorescence response of the molecular layer was then imaged by a
microscope objective and detected by a CCD camera. The intensity distribution fol-
lows again a cos2 φ characteristics of a point-like excitation. This type of distribution
has already been observed for a near-field excitation obtained by leakage radiation
microscopy (Figs. 8.9 and 8.14).

The advantages of fluorescent microscopy are the benefit of a local probe with
a large choice of chromophores or QDs (SPP matching wavelength). As already
mentioned in the previous section, this type of imaging is compatible with direct
space and reciprocal space investigations (Fourier plane). However, only qualitative
information can be extracted as the emission wavelength is usually quite broad and
the spatial resolution remains limited by the diffraction. The technique is also plagued
by the poor long-term stability of the fluorescent species (photo-bleaching, blinking,
etc.)

8.6 Dark-Field Microscopy

Dark-field optical microscopy refers to a technique that discriminates the contri-
bution of the light used to illuminate a specimen from the light scattered by the
specimen. Applied to the purpose of this chapter, dark-field optical microscopy is a
straightforward technique for imaging localized surface plasmon on nanoparticles.



246 A. Bouhelier et al.

Fig. 8.17 a Schematic of the setup used for dark-field transmission microscopy. Large-angle
illumination of the specimen (e.g. nanoparticles) results from a beam stop placed on the condenser.
The objective is collecting only the scattered rays. b True-color dark-field image of light scattered
by isolated metal nanoparticles dried on a glass substrate. The different colors result from the spec-
tral positions of the plasmon resonances. Reprinted with permission from the Ph.D. dissertation of
C. Sönnichsen, Münich (2001) [82]

Even at resonance, metallic nanoparticles are characterized by a relatively low
extinction cross-section, typically of the order of 1×10−15cm2. This is equivalent
to saying that one photon in every 1015 will be scattered or absorbed by a nanopar-
ticle. Dark-field microscopy is seeking after this weak interaction process buried
among an overwhelming background of unperturbed photons. The basic units form-
ing a dark-field microscope are depicted in Fig. 8.17a for a transparent sample [82].
The specimen is illuminated with a dark-field condenser. This type of condenser
differs from standard wide-field ones by the fact that the central region of the lens is
physically masked by an aperture. The specimen is therefore illuminated with annu-
lus of light with large incident angles (incoming green arrows). For oil-immersion
dark-field condenser, the useful numerical aperture (NA) lies above 1 (evanescent
illumination). For dry condenser, the N.A. is typically comprised between 0.85 and
0.95. The principle of the technique is to collect the scattered light with an objective
having a N.A. smaller than the dark-field condenser, typically N.A. = 0.65 (outgoing
red arrows). Without any sample to scatter incoming photons, the transmitted light is
not collected by the objective (outgoing green arrows) and the background remains
dark.

Figure 8.17b shows the imaging potential of dark-field microscopy [82]. In this
image, gold and silver nanoparticles were randomly deposited on a glass substrate.
Under dark-field illumination, the nanoparticles are scattering centers and become
visible. The color associated with each nanoparticle reflects the spectral position
of their surface plasmon resonance: blue for silver spheres, green to yellow for
gold, and red for small aggregates. This shape-induced color variation is perhaps
better illustrated by Fig. 8.18a and b. The top row shows a series of electron-beam
fabricated metal nanoparticles with controlled size and shape. The bottom row are
the corresponding dark-field images [83]. The short axis of the nanorods exhibits a
surface plasmon resonance located in the blue side of the visible spectrum,while the
largest triangular particle resonates in the red.
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Fig. 8.18 a and b Scanning electron micrograph of a series of gold nanoparticles and their respective
dark-field images. Scale bar: 300 nm. Reprinted with permission from [83]. Copyright 2007, John
Wiley and Sons. c–e Dark-field images of composite nanowires constituted of silver (blue), gold
(green), and nickel (brownish) segments. The nanowires are approximately 5 µm long. Reprinted
with permission from [84]. Copyright 2002, American Chemical Society

Another example of dark-field surface plasmon imaging is shown in Fig. 8.18c–e.
The frames are true-color images of composite nanowires [84] illuminated with a
white-light illumination polarized along their short axis. These wires are formed by
adding segments of different metals here gold, silver, and nickel. Even though the
wires have a very thin section (ca. 30 nm), the scattering strength associated with the
surface plasmon resonances allows to distinguish individual segments constituting a
single nanowire. For instance, in Fig. 8.18c, the blue portion corresponds to a silver
segment and the green one to a gold segment. The images of Fig. 8.18d and e depict
a wire where a silver section, respectively, a nickel section, is sandwiched between
two gold segments.

Through the few examples briefly illustrated above, dark-field microscopy is
a relatively simple approach that can be used to image localized surface plas-
mons. Because most spectrographs have imaging capabilities, spectral and spa-
tial characteristics of surface plasmons in confined geometries are accessible for
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ensemble measurements (arrays) as well as at a single particle level. However, this
type of microscopy lacks the spatial resolution that can be reached by near-field tech-
niques since it is plagued by the diffraction limit. The technique is also restricted to
large particles with dimensions typically larger than 50 nm. For smaller particles, the
extinction cross-section is dominated by absorption and scattering becomes
negligible. Another limitation of this type of microscopy is that the result obtained is
equivocal: a silver nanorod excited along its main axis may exhibit a similar response
than a small cluster or an irregular large gold particle or a triangular-shaped nanos-
tructure. Without prior knowledge of the sample investigated (electron microscopy,
AFM) [85], it is very difficult to provide a conclusive answer about the shape and
the type of plasmonic structure imaged with dark-field microscopy.

8.7 Confocal Laser Microscopy

The principle of confocal microscopy resides in the use of a diffraction-limited
point-like illumination and a pinhole placed at the conjugated image plane. To the
difference with dark-field microscopy described above where the complete field
of view is illuminated, a tightly focused laser beam, i.e. the point source, is raster
scanned in space and the specimen’s response is recorded for each pixel to reconstruct
a complete three-dimensional image of the specimen. Out-of-focus contribution is
spatially filtered out by the pinhole. In the context of surface plasmon imaging, a
three-dimensional map and the pinhole are usually not required since the height of the
plasmonic nanostructures is very well located axially (glass/air interface) and is much
smaller than the axial resolution of the microscope (∼λ). From the few particularities
highlighted above, it is clear that this imaging technique is better suited to investigate
localized surface plasmons than propagating surface waves.

Several confocal techniques were developed to access the plasmon response of
nanoparticles. The reader is referred to an article written by Van Dijk, Lippitz, and
Orrit [86] to find a comprehensive review describing far-field measurements at the
single particle level. Because plasmonic particles are usually smaller than the reso-
lution capability, the images obtained do not directly inform about the spatial extent
of the surface plasmon. However, at the surface plasmon resonance, scattering and
absorption efficiencies are modified and can be measured by confocal techniques.

The extinction of a tightly focused laser beam by a 20-nm gold particle approaches
10−3 [87]. By spatially modulating the position of the nanoparticle inside the laser
spot and detecting the differential transmission ΔT/T with a lock-in amplifier,
Arbouet and coworkers were able to quantify the absorption cross-sections of
particles as small as 5 nm [87, 88]. Small particles were also identified and their
plasmon resonances measured by combining a coherent white-light continuum ex-
citation with an interferometric detection of the backscattered signal [89]. The re-
flection of the continuum at the interface interferes with the component scattered
by a metal nanoparticle to render a size-dependent contrast of the confocal images:
large particles (>30 nm) appear brighter than the background because scattering
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dominates, while for smaller particles the response is purely absorptive and a dark
contrast is observed.

Because the process of absorption is dissipative, the energy accumulated by an
illuminated metal particle is converted into heat by thermalization of the hot electrons.
The particle then cools down by exchanging heat with its environment modifying
thus the local refractive index n. Photothermal imaging takes advantage of δn/δT by
detecting the resulting phase shift in a dual-beam interferometer [90]. The first beam,
resonant with the surface plasmon resonance, deposits energy on a nanoparticle,
while a second beam probes the temperature-dependent local refractive index. Using
photothermal imaging, the homogeneous linewidth of surface plasmon resonance
can be determined by probing the intrinsic response at the single particle level [91].

For particle size in which the scattering cross-section still dominates the extinction
cross-section, an efficient spatial filtering of the illumination wave-vector permits one
to measure the differential scattering cross-section of resonant metal nanoparticles
[92]. This can be achieved by detecting a portion of the frustrated evanescent spec-
trum scattered by the object in the so-called forbidden light angular region [93–95].
Figure 8.19a illustrates the contrast obtained with this method. In these images, the
bright spots correspond to the intensity scattered by coupled dimers for a polarization
aligned with the main axis of the dimer (top scan) and perpendicular to it (bottom
scan). The distance separating the dimers is decreasing from left to right down to
touching dimers (arrows). For a polarization along the dimer, the three-dimensional
rendering shows that the scattered intensity steadily increases to suddenly drop for
the contacted particles, whereas the intensity stays at the same level for the orthog-
onal polarization. The contrast is understood as follows. When the surface plasmon
wavelength matches that of the excitation, resonant scattering occurs. When it is
out of resonance (arrows in the top scan), the scattering cross-section is drastically
reduced and very weak signal is detected [92]. Figure 8.19b shows the angular distrib-
ution of the signal responsible for the contrast in Fig. 8.19a. The incident polarization
is marked by an arrow. The image was obtained by placing a CCD camera in the
Fourier plane of the microscope. The intensity is distributed with an annulus bound
by the N.A. of the detecting objective, here 1.45 and forms a two-lobe pattern. This
pattern is similar to the well-known dipolar pattern as illustrated in the calculation
of Fig. 8.19c.

Another contrast mechanism was recently developed relying on the non-linear re-
sponse of gold nanoparticles. Upon ultrafast near infrared excitation, a two-photon in-
terband absorption can be promoted between the electronic states of the nanoparticle
giving rise to a photo-induced luminescence [96]. The luminescence is assigned
to the radiative recombination of Fermi- level electrons and sp- or d-band holes
[97, 98] and is modulated by the excitation of surface plasmons [99, 100]. Because
of its non-linear character, two-photon induced photoluminescence strongly depends
on the field intensity at the surface of the nanoparticle and has been employed to
investigate the capabilities of nanoparticles to locally enhanced electromagnetic
fields [101]. An example of such imaging is shown in Fig. 8.20 for individual
nanorods and coupled dimers. Figure 8.20a and b shows the polarization dependence
of the photoluminescence signal of an isolated gold nanorod (insets) excited by a



250 A. Bouhelier et al.

(a) (b) (c)

Fig. 8.19 a and b Confocal maps of the partial differential scattering cross-sections of gold dimers
with different gaps for two orthogonal polarizations. Touching dimers (arrows) are off-resonance
with a 633 nm excitation for a polarization along their longitudinal axis and weakly on-resonant
for a crossed polarization. c Scattering diagram of a Au nanoparticle showing a dipolar response.
The polarization of the incoming field is marked by the arrow. d Calculated emission diagram of
in-plane dipole placed at a glass/air interface. Reprinted with permission from [92]. Copyright 2008,
American Physical Society

femtosecond pulsed Ti:Saph laser centered at 785 nm [100]. Because of the increased
confinement of the charges at the two extremities of a nanorod (electromagnetic sin-
gularities), the magnitude of the longitudinal surface plasmon is typically much
larger than its transverse counterpart and larger field enhancements are thus attained.
The consequence is that for a polarization aligned with the nanorod’s longitudinal
axis, the photoluminescence signal is strong, while for the orthogonal polarization
the image is dominated by a residual background. Figure 8.20c and d illustrates
another example where the photoluminescence provides a valuable imaging tool. As
mentioned above, photoluminescence is strong at the extremities of a nanorod, and
for rod lengths greater than the resolution limit of the confocal microscope, they
concentrate the response as shown in Fig. 8.20c. For interacting dimer constituted
of two bars, Fig. 8.20d, the largest photoluminescence signal occurs at the gap area
where an interstitial enhancement is generated [102].

Because of the different contrast mechanisms available, confocal microscopy
remains a prime imaging tool to investigate surface plasmon resonances. Since the
heart of the technique is a diffraction-limited focal spot, it is generally applied to
localized surface plasmons occurring in confined systems. Of course, the main limi-
tation is the spatial resolution and cannot compete with the proximal probe technique.
However, precisely because it does not require a local probe, it is generally consid-
ered as a non-perturbative measurement (at least for optical power below the damage
threshold [100]). Confocal imaging is also suited to extract spectroscopic response
of resonant metal nanoparticle [87, 89, 92, 102, 103] and can be very sensitive to
the field magnitude when using non-linear phenomenon.
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(a) (b)

(d)(c)

Fig. 8.20 a and b Confocal maps of the two-photon-induced luminescence (TPL) generated by a
single gold 30 × 100 nm nanorod for two polarizations. Because charge confinement is the largest
at the extremities, only the longitudinal polarization gives rise to a measurable signal. c and d TPL
confocal images obtained for a 500-nm gold bar and a dimer formed by two bars. Coupling between
the two bars leads to a strong TPL signal located at the interstice. Reprinted with permission from
[100] and [102]. Copyright 2005 and 2008, American Physical Society

8.8 SPP Imaging with Electrons

Surface plasmon-polaritons are associated to high momentum, leading to their
strong confinement. Since electron de Broglie wavelength can be extremely short,
electron-beam wavevector can be easily matched to SPP momentum [1]. Indeed, first
demonstration of SPP sustained by metallic film was done using electron excitation
[104, 105]. Obviously, the extremely small electron wavelength ensures high
resolution, so that electron microscopy is an important alternative to near-field
optical microscopy to image SPP. We briefly review here SPP imaging by elec-
tron microscopy. The interested reader would find extensive discussions on general
principles and applications of transmission electron microscopy (TEM) in the text-
book written by Williams and Carter [106], and electron energy loss spectroscopy
(EELS) in a recent review by Egerton [107]. We also advise to read the very recent
review by Garcia de Abajo on “Optical excitations in electron microscopy” closely
related to our subject, but more general [108].
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8.8.1 Electron-Matter Interaction

Quantitatively, let us consider an electron of mass me accelerated through a potential
difference V up to velocity v. Its classical kinetic energy obeys EK = mev

2/2
= eV so that the accelerated electron (non relativistic) momentum can be written as
p = mev = (2meeV)1/2. The de Broglie wavelength associated with this electron
is then expressed as:

λe = h

p
= h

(2meeV)1/2 . (8.8)

For instance, a 50-eV energetic electron beam is associated with a wavelength λe =
0.17 nm. This is of the same order of value as the interatomic distance in solid state.
Therefore, such an energetic electron beam will be diffracted by the atomic plane,
giving important information on the crystallographic structure of a sample. This
is the base of the so-called low energetic electron diffraction (LEED). Moreover,
these low-energy electrons have a low penetration depth (about 1 nm). Therefore, it
is of interest for characterizing low-dimensional plasmons (1D and 2D plasmons)
[109, 110]. Differently, we are interested here in surface plasmon-polaritons that
could expand on several tens of nanometers into the metal. We therefore consider
fast electrons that penetrate into the sample. In this case, relativistic effect cannot
be neglected anymore. The kinetic energy of the accelerated electron, initially at
rest, is then EK = E − mec2 = √

(mec2)2 + (pc)2 − mec2 =eV and the electron
wavelength obeys:

λe = h

p
= h

[2meeV + eV/(2mec2)]1/2 . (8.9)

An electron under 200 kV accelerating voltage has a wavelength of λe = 2.5
pm. These fast electrons can completely cross thin sample leading to transmission
electron microscopy (TEM) presenting high resolution.

In addition, as negatively charged particles, electrons strongly interact with
atomic nucleus and atomic electrons through electrostatic Coulomb forces. Since the
nuclear mass is largely higher than the electron mass, atomic nucleus-incident elec-
tron interaction involves almost no energy exchange so that it is practically described
by elastic collision. Oppositely, the electron-electron interactions between atomic
cloud and incident beam give rise to inelastic scattering. Importantly, these two
processes can be profitably considered to simultaneously image the sample (elastic
scattering) and excite quasi-particle in the sample thanks to energy transfer (inelastic
scattering).

Finally, the particle or wave description of electrons is a simple way to grasp the
ability of electron microscopy to simultaneously image sample with extremely high
resolution due to the electron small wavelength and bring some information on the
sample through measurement of energy transfer of inelastically scattered electron
particles [106]. We briefly summarize below the main properties of the electron-
sample interaction.
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Fig. 8.21 List of main
excitation processes involved
in a thin film excited by a
fast electron beam. Reprinted
with permission from [106].
Copyright 2009, Springer

Elastic Scattering

Elastic scattering mainly describes the incident electron interaction with the atomic
nucleus. The scattering angle of the electron therefore mainly depends on the prop-
erties of the atomic nucleus. The angular width of the elastic scattering distribution
is approximately θ0 ≈ Z1/3/(k0a0) where Z is the atomic number, ke = 2π/λe is
the electron wavenumber, and a0 = 0.05 nm is the first Bohr radius. θ0 is typically
of several tenths of mrads for 100-keV incident electrons. The probability that an
electron is scattered at large angles (θ � θ0) is proportional to Z4/3. This means
that chemical imaging can be done by detecting electrons scattered at high angles
(High Angular Dark-Field Microscopy, HADF).

Inelastic Scattering

We now consider energy exchange between the incident electrons and the electrons
of sample atoms. Figure 8.21 gathers the main excitations responsible for energy
loss of the incident electron beam. Depending on the process (volume and surface
plasmon, cathodoluminescence, electron-hole pair, secondary electron emission, ...),
energy loss ΔE from a few electron volts up to hundreds of electron-volts arises.
Importantly, inelastic scattering involves small angles. Indeed, the inelastic scattering
angular distribution half-width is typically a few tenths of mrad for 10 eV energy loss.
This scattering angle is due to momentum transfer p = �ks during the interaction and
opens the possibility to perform electron energy-loss spectroscopy (EELS). EELS
can be done at small angles, giving access to e.g. excited surface plasmon-polariton
properties (mode energy and momentum) simultaneously to precise localization of
the incident beam localization thanks to e.g. HADF [111, 112].
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Fig. 8.22 Electron energy-loss spectrum measured on a 10-nm aluminum foil
excited with a 2.02-keV electron beam. The zero loss peak (not shown) intensity was ad-
justed to 25. Volume and surface plasmon peak appear at �ωp = 15.3 eV and �ωs = 10.3 eV
losses, respectively. Secondary peaks correspond to multiple plasmon excitation. The ratio between
surface and volume plasmons energy agrees with �ωs/�ωp = 1/

√
2. Reprinted permission from

[105]. Copyright 1959, American Physical Society

Figure 8.22 presents a typical EELS spectra of a 10-nm aluminum film. This was
the first experimental observation of the surface plasmon [105] previously theoret-
ically proposed by Ritchie [104]. The surface plasmon peak is located between the
volume plasmon and zero loss peaks, so that it can be difficult to observe and could
require dedicated post-processing treatment.

Instrumentation

Figure 8.23 schematically represents the main types of electron microscopes of
interest for SPP imaging. The principal characteristics are listed below.

• The electron source is often a thermionic electron gun where electrons are emitted
from a heated tungsten filament and then accelerated under high voltage. Such
types of electron guns are relatively cheap and do not require high vacuum. How-
ever, they provide an energy width of about 1 eV. Cold-field emission gun (CFEG),
where electron emission is induced by a very strong electric field on the tung-
sten filament offers a better energy resolution; typically of 0.5 eV. The incident
electron beam is then shaped with magnetic lens (collimated beam or focused
beam for TEM and scanning TEM, respectively).

• Interaction with the sample. This point was briefly discussed above. TEM can
be applied to a thin sample only (about 100 nm). In case of scanning electron
microscopy (SEM), thick films can be investigated since secondary electrons emit-
ted above the sample can be used to image the object.
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Fig. 8.23 A brief overview of the electron microscopes of interest for SPP imaging. The main
specifications (incident electron energy, spatial and energy resolution) are indicated in the figure.
Reprinted with permission from [108]. Copyright 2010, American Physical Society

• Signal recording. Electron microscopy of SPPs relies on recording both spec-
troscopic and spatial information on the sample. The better spatial resolution is
achieved in a STEM configuration where it could be down to 0.1 nm. The energy
resolution is limited by the electron source width and the function of transfer of
the TEM. Optimized energy-loss resolution is around 0.1 eV that is at least 10 nm
and up to 100 nm in wavelength resolution in the visible range or near infra-red
domain of interest here. In case of cathodoluminescence, the spectroscopic width
is only limited by the emitted light so that it can be extremely reduced, keeping
excellent spatial resolution by imaging the secondary electrons (typically several
nms).

8.8.2 Spatially Resolved Electron Energy-Loss Spectroscopy

In his original paper of 1957, Ritchie theoretically discussed SPP excitation effects
on EELS spectra [104], in order to explain unexpected peaks observed in previous
experiments. He demonstrated that the plasma confinement leads to the apparition of
two types of losses peaks, in addition to the volume plasmon peak expected at �ωp

for a bulk plasma. In the presence of a metallic film, the additional peak arises at
�ωp/

√
2 corresponding to the now well-known single interface (quasi-static) surface



256 A. Bouhelier et al.

ΔΕ(θ)

(a) (b)

θ

Fig. 8.24 Dispersion relation measured by Pettit et al. for a 16-nm (oxidized) aluminum film.
a Schematic representation of the TEM-EELS principle method. b Aluminum dispersion curve built
from experimental data (points) or calculated (lines). Solid and dashed lines refer to α-allotropic
and amorphous forms of the aluminum oxide respectively. Reprinted with permission from [113].
Copyright 1975, American Physical Society

plasmon-polariton mode, whereas spherical particles should lead to an absorption
peak at �ωp/

√
3, corresponding to the dipolar plasmon mode resonance.

Delocalized Plasmon

Two years later, Powell and Swan achieved a direct experimental evidence of the
existence of SPP (see Fig. 8.22) [105]. These primary works were quickly followed
by systematic investigations of SPP by TEM-EELS. Figure 8.24a schematically
represents the TEM-EELS configuration used by Pettit and coworkers to experi-
mentally reproduce a thin aluminum film dispersion curve. A fast incident electron
beam excites surface plasmon mode. Energy losses measured as a function of the
scattering angle fully characterize the excited SPP (Fig. 8.24b). Due to the large elec-
tron wavenumber, an almost whole dispersion curve is described. Note also that both
the symmetric and antisymmetric branches are easily accessed by this method.

Localized Plasmon: STEM-EELS and EFTEM

For nanoparticles, the only parameter is the mode resonance energy. First
investigations were done in the so-called aloof configuration where the incident elec-
tron beam does not cross the nanoparticle but rather flies in close proximity, avoid-
ing to damage the sample. Moreover, this aloof configuration allows one to detect
surface mode without strong contribution from the volume plasmon [114]. Additional
information is however achieved by resolving electron energy losses as a function of
position. Then, the localized mode is directly imaged by recording the signal at given
energy loss as a function of the incident beam position. It is important here to be
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Fig. 8.25 a HADF image of a 30-nm length silver triangle. b Position-dependent electron energy-
loss spectra. c STEM images recorded at three resonant energies revealing the localized plasmon
profile (a Gaussian fitting has been applied). d Calculated mode profiles. Reprinted with permission
from [115]. Copyright 2007, Nature group

able to register simultaneously both the sample morphology and electron energy-loss
spectra so that losses are precisely correlated to the sample shape. Several strategies
were adopted there. First experimental maps of localized plasmon were acquired
by energy-filtered TEM (EFTEM) [114]. Colliex and coworkers recently improved
the resolution accuracy by registering the probe position using high angle dark-field
microscopy in a scanning TEM (STEM) [115] (see Fig. 8.25). STEM-EELS com-
bines high spatial resolution with the ability to excite high-order modes, poorly
coupled to light so that it gives access to the SPP mode unachievable by optical
excitation [116]. Unfortunately, this imposes to register a full spectrum for each
image pixel so that it requests heavy memory size and image post-processing. Thanks
to strong improvement on EFTEM equipment specifications (both on energy and
resolution accuracy), a renewal of interest recently appeared for this method instead
of STEM-EELS in order to gain in acquisition time and memory request [117, 118].
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Images Interpretation

Although EELS is a well-understood signal, we would like to mention here an orig-
inal interpretation recently proposed by García de Abajo and Kociak that makes the
links with near-field optical measurement [119]. Let us consider an incident fast
electron moving with velocity v = vez along the trajectory re(t) = (r//

e , z). The as-
sociated charge and current densities follow ρ(r, t) = −eδ(r − re(t)) and j(r, t)
= −evδ(r − re(t)), that induces an electromagnetic field (E, B) according to
Maxwell equations. This induced near field can be evaluated by well developed
numerical methods where the object is generally described by a classical dielectric
constant [120, 121]. Electron energy loss originates from the work exerted back on
the swift electron by the induced field [122]:

ΔE(re) = −
∫

dW = −
∞∫

−∞
dt

∫
drE(r, t) · j(r, t) (8.10)

= e

∞∫

−∞
dtE[re(t), t] · v = e

∞∫

0

dω�ωΓ (re,ω), (8.11)

with Γ (re,ω) = e

π�ω

∫
dt Re[e−iωt E(re(t),ω) · v]. (8.12)

Γ (re,ω) is the spectrally resolved energy loss [119]. This classically derived expres-
sion accurately reproduces the measured EELS data. Nevertheless, optical properties
of the object’s are hidden in the object dielectric constant. Recently, García de Abajo
and Kociak recast this expression in order to let the local density of electromag-
netic states (LDOS) appear. Optical LDOS ρ(r,ω) is the electromagnetic analog of
electronic local density of states and is a key quantity to interpret near-field optical
images [123–127]. Due to the vectorial nature of the electromagnetic field, partial
LDOS are generally defined such that ρ(r,ω) = ρx (r,ω)+ρy(r,ω)+ρz(r,ω) where
for instance ρz(r,ω) only retains the z-component of the electric field associated with
the supported mode [128].

In case of 2D systems with their invariant axis superimposed with the electron
trajectory, García de Abajo and Kociak obtained that loss probability per unit length
follows:

Γ (r//
e ,ω)

L
= 2πe2

�ω
ρ̃z(r

//
e , q = ω/v,ω), (8.13)

where the quantity ρ̃z(r
//
e , q,ω) is linked to optical LDOS by ρz(re,ω) = ∫

dqρ̃z

(r//
e , q,ω). Expression (8.13) shows that spatially and spectrally resolved electron

energy-loss spectroscopy probes optical LDOS at given energy �ω and momentum
q = ω/v. This expression has been generalized to arbitrary 3D geometry. Finally,
numerical simulations indicate that optical LDOS ρz(re,ω) (instead ρ̃z(r

//
e , q,ω))
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calculated in the near-field of the object gives a fair agreement with the measured
STEM-EELS images (see also Fig. 8.25) [119]. This makes an important bridge
between optical and electronic imaging of SPP. A detailed discussion of EELS signal
interpretation in terms of optical LDOS can be found in Refs. [108, 119, 129, 130].

8.8.3 Cathodoluminescence Microscopy

Cathodoluminescence results from light emission when matter is excited with a
high-energy electron beam. It was originally observed in the mid-nineteenth century,
in a cathode ray tube as the electron beam collides the glass tube walls giving its
name to this phenomenon. The most common applications were the cathodic screens
during the second half of the twentieth century. Additionally, as every luminescence
technique, it is extensively applied in material characterization. When used in combi-
nation with SEM, cathodoluminescence offers an unprecedented optical resolution.
Therefore, it is very well appropriate for SPP imaging. In that case, the electron
beam (1-50 keV) leads to a local excitation of the sample, followed by an extremely
localized light emission coupled to supported surface plasmons. As a swift electron
crosses the metallic structures, an effective dipole, resulting from the incident elec-
tron charge-image charge, is created. This elementary optical (dipolar) excitation
emits light (transition radiation) and couples to surface plasmon-polariton. Other
cathodoluminescence mechanisms, such as Cerenkov radiation, could occur in the
presence of a dielectric substrate but are not considered here as they do not concern
SPP [108, 131].

Localized Plasmon

In their original work, Yamamoto and coworkers imaged the sample thanks to sec-
ondary electron emission, whereas they registered the EELS spectra for each incident
position, revealing thereby nanoparticle dipolar and quadrupolar modes (Fig. 8.26)
[132].

Delocalized Plasmon

Apart from the important point of source localization, cathodoluminescence SPP
imaging is very similar to near-field optics imaging in illumination mode. The
surface plasmon is locally excited with an incident electron source (instead of a
localized optical source) and radiative signal is detected. This means that the non-
radiative plasmon has to be decoupled using e.g. a grating or a high index prism
to be detected. Figure 8.27 presents a recent experiment where a film plasmon is
locally excited with a fast electron and the emitted light is decoupled towards far-
field optics detector with a grating. The signal recorded as a function of the distance
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Fig. 8.26 a Cathodoluminescence spectra taken for various incident 200-keV electron-beam
positions on a 140-nm diameter silver sphere. b Secondary electron emission images (SEM) of the
sample. c and d Cathodoluminescence image along the indicated polarization filtered atλ = 420 nm
(dipolar mode) and λ = 360 nm (quadrupolar mode), respectively. Reprinted with permission from
[132]. Copyright 2001, American Physical Society

between the incident electron beam and the grating, presents interference oscillations
as well as an intensity envelop exponentially decaying giving a direct measurement
of the surface plasmon propagation constant, in strong equivalence with SNOM
measurement. Obviously, uncomparable resolution is achieved thanks to cathodo-
luminescence since the electron excitation perfectly models an optical point like
dipolar excitation (Fig. 8.27b).

However, the cathodoluminescence signal is also well modeled by the local density
of electromagnetic states [133] in direct analogy with SNOM imaging [134] since
both of them can be modeled with an optical dipolar excitation. For instance, LDOS
measurements done on metallic nanorods by either Scanning Near-Field Optical
Microscopy [36] (see Fig. 8.4) or cathodoluminescence microscopy (Fig. 8.28) [135]
are interestingly compared. Let us insist here again that the strong improvement on
the mode mapping resolution using electronic excitation instead of optical source is
a breakthrough toward accurate investigation of e.g. optical antennas [136].
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Fig. 8.27 Cathodoluminescence microscopy on a gold film. a 30 keV electron coupling to transi-
tion radiation and SPP. The red lobes represent the transition radiation angular emission. Dashed
green lobes represent a vertical dipole angular emission in the presence of the gold film. b SPP and
transition radiation emission probability calculated for a 30-keV incident electron or vertical dipole
excitation. This demonstrates the validity of the optical point-like dipole to model the cathodo-
luminescence signal. c Measured cathodoluminescence as a function of the distance between the
incident electron beam and the decoupler grating. The inset shows a fit using LDOS (blue line).
Reprinted with permission from [133]. Copyright 2009, American Physical Society

Fig. 8.28 a Cathodoluminescence images of a 725-nm gold nanowire recorded for three wave-
lengths. b Nanowire dispersion curve dispersion (red circles) deduced from the interference patterns
measured in a. The inset shows the scanning electron micrograph of the gold nanowire (scale bar
250 nm). Reprinted with permission from [135]. Copyright 2007, American Chemical Society

8.8.4 Photoemission Electron Microscopy

The work functions of gold and silver are in the range 4–5 eV (corresponding to
wavelengths 250–310 nm). Therefore, conventional mercury vapor lamp (UV line
emission at 253 nm) can be used to extract electrons from the metallic sample. Then,
the photoemitted electrons are locally resolved with an electron microscope revealing
the surface plasmon mode structure with the electron microscope resolution (see for
instance Figs. 8.29 and 8.30) [137]. Note that two-photon or three-photon induced
photoemission electron processes are also used in order to profit from the ultra-fast
laser technology in the visible or near infrared range. Then, photoemission electron
microscopy (PEEM) signal varies as the square or the cube of the incident light
intensity.
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Fig. 8.29 Left Schematic representation of the PEEM experimental setup. Right a SEM picture, b, c
PEEM map b and cross-section c of a 4 µm long gold nanowire. The interference pattern originates
from the beating between incident pump light and propagative plasmon along the nanowire, in
agreement with excitation of the guided nanowire plasmon mode of effective wavelength λSPP
= 335 nm and propagation length (3.3 ± 0.5) µm. Incident light is p-polarized, λ = 792 nm,
P = 110 MW.cm−2. The angle between the incident excitation light and the detected photoemitted
electrons is α = 75◦. Reprinted with permission from [138, 139]. Copyright 2007, American
Institute of Physics, Copyright 2008, American Chemical Society

Time-Resolved PEEM

By combining the time resolution of laser spectroscopy with the excellent resolution
of electron microscopy, time resolved photoemission electron microscopy offers
unprecedented tools for SPP investigation [14, 140]. To this aim, the incident pulse
light plays the role of both pump and probe. Indeed, the beating between the incident
pulse and the generated plasmon induces a stationary wave that can be imaged thanks
to the photoemitted electrons. By tuning the delay between the pump pulse launching
the plasmon and next pulse (probe), the plasmon propagation dynamic is imaged as
shown in Fig. 8.30.

8.8.5 Photon-Induced Electron Microscopy: Highly Resolved
Electron Energy-Loss/Gain Spectroscopy Imaging

As the last technique for imaging surface plasmons, we would like to mention the
very recent progress achieved with photon -induced electron microscopy (PINEM)
[141, 142]. Zewail and coworkers experimentally demonstrated that electron
energy spectroscopy on an optically excited nanoparticle (carbon nanotube or silver
nanowire) presents loss or gain at multiple energies of the excitation optical beam
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Fig. 8.30 a Artist’s view of time resolved PEEM investigation of SPP on a silver film. b Pulsed
light incident on a trench to launch a SPP. c Time-resolved PEEM profiles and their simulation (d).
Reprinted with permission from [14]. Copyright 2007, American Chemical Society

(Fig. 8.31). Particularly, the evanescent optical field created in the near-field of the
nanostructure brings gain to the incident electron by momentum transfer from light
to electron via the evanescent field. Additionally, Zewail et al. used optical (220 fs)
and electron pulses (achieved by exciting a photocathode source with a femtosec-
ond laser source) so that they were able to investigate the dynamic of the evanes-
cent field. Although both carbon nanotubes and silver nanowires have a metallic
behavior, the dynamic of the SPP was not imaged since their lifetimes were too short
[142, 143].

However, PINEM should find extremely useful applications to investigate SPP.
Noteworthy, continuous optical excitation is also of interest here. In that case, one
measures electron energy loss or gain spectra. Interestingly enough, electron-energy
gain spectroscopy (EEGS) gives similar information about cathodoluminescence,but
with strong improvement of the signal-to -noise ratio [144]. In addition, the energy
resolution is then only limited by the width of the optical pump, making a strong
breakthrough compared to electron microscopy energy resolution [144].

Electron microscopy of SPP gives access to unprecedented mode imaging
resolution. Technically, this imposes to work in vacuum. Also, one should keep
in mind that only conductive samples can be investigated with these techniques. The
use of a conductive layer (as ITO) qualitatively modifies the resonance property of
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Fig. 8.31 Top Schematic description of photon-induced near-field electron microscopy. t indicates
the delay between the incident electron and the optical pulse. Bottom a Electron-energy (loss or gain)
spectrum for a 200-keV incident electron packet arriving before (black curve) or in coincidence
with (red curve) the optical femtosecond pulse. Apart from the zero loss peak, only π and π + σ
volume plasmon peaks are visible at 6 and 25 eV, respectively, on the EELS spectrum (black curve).
For t = 0, electron energy loss and gain clearly appear at a multiple of incident optical pulse
energy (red curve, �ω = 2.4 eV). b Gain energy-filtered image (the optical pulse polarizations is
indicated). Reprinted with permission from [141]. Copyright 2009, Nature group

the investigated structure. Importantly, electron microscopy involves small electron
wavelength, allowing up to subnanometric resolution, and high electron momentum,
that could match SPP large wavevector. Consequently, non-radiative (e.g. bound
surface modes) or poorly radiative (e.g. multipolar particle modes) can be directly
imaged in an electron microscope. However, this is at the price of energy resolution
that is rather low. As we briefly discussed, this limitation could be overcome by
combining the electron microscopy spatial resolution with the optical spectroscopy
narrow linewidth. Finally, several works have recently demonstrated that SPP
dynamic imaging can be achieved by associating electron microscope resolution
with ultrafast optical pulse. This opens the door to dynamical control of surface
plasmon-polaritons and is a key for active plasmonic.
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Chapter 9
Nanofabrication for Plasmonics

Gilles Lérondel, Sergei Kostcheev and Jérôme Plain

Abstract Within the last 15 years, the scientific interest for individual or assembly
of metallic nanostructures of well-defined size, geometry, and distribution has
constantly increased. This paper aims at giving a comprehensive overview of the
different nanofabrication techniques used in plasmonics including focused electron-
and ion-beam lithography as well as the major associated challenges and issues.
Alternative techniques, such as interference lithography and self-assembly tech-
niques, are also discussed including material-related issues. The paper is divided
into four parts emphasizing on metallic structures fabrication on planar surface,
metallic structures fabrication on nonplanar surfaces, metallic structure surface func-
tionalization and hybrid nanostructures fabrication. Finally, alternative techniques
and forthcoming issues, such as material quality, nanostructuring on large scale, and
plasmonic integration, are also addressed.

9.1 Introduction

The development of microelectronics and associated fabrication techniques such as
electron-beam lithography (EBL) has allowed in recent years a tremendous progress
in the control of light interaction with metallic nanoparticles or nanostructured thin
film and the associated elementary excitation namely plasmon polaritons leading
to the field of plasmonics. As demonstrated first for electrons, then for photons in
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photonic crystals, and now for plasmon polaritons, nanostructuring is a key factor. As
far as nanostructuring is concerned, there currently exist two routes namely physical
and chemical approaches. A third one will consist in combining both of them. It is
interesting to note here that the chemical approach also includes biological species
or linkers.

Because integrated circuit (IC) techniques have become available only very
recently, alternative techniques were initially proposed to obtain nanostructured
metallic thin films in a controllable way. As for photon confinement, the first
structuring technique ever proposed was the rugosification. Figure 9.1 shows the
evolution of the nanostructuration techniques as far as metallic structured layers are
concerned. The initial works were actually driven by enhanced Raman spectroscopy
reported as early as in 1974 on electrochemically roughened electrodes [1]. As soon
as the effect was ascribed to the surface [2], numerous efforts became devoted to
the development of techniques allowing for surface engineering starting from the
nanosphere lithography in 1995 [3] and later, electron-beam lithography (EBL) [4].
While EBL allows for a full control of the shape, size, and distribution of the metal-
lic nanostructures, nanosphere lithography presents the advantage to be large-scale
compatible, cost effective and easy to implement which in the field of sensing are
definitely important aspects.

This paper aims at giving an overview of the various nanofabrication techniques
and approaches used in plasmonics. After introducing the various lithographic and
related techniques including surface functionalization, examples of metallic struc-
tures on planar and nonplanar surfaces will be presented. Alternative architectures
relying on surface chemistry and hybrid metallic structures will also be illustrated.
Finally, forthcoming issues, such as large-scale nanostructuring and plasmonic inte-
gration, will be discussed.

Since we concentrate on the integration of metallic nanostructures, the chemical
synthesis of metallic structures in colloidal solutions will not be addressed in this
paper. It is however important to mention here that the chemical route has given
rise to astonishing accomplishments and especially structures that are hardly realiz-
able using the top–down approach, e.g. core-shell nanorices, nanoboxes and cages,
nanotubes, decahedrons to only name a few. For a review on the topic, please see [6].

9.2 Methods of Nanofabrication and Related Techniques

Nanofabrication is usually associated to a lithographic process. By a lithographic
process, one means defining a pattern that can be either defined by using a
so-called writing tool or by self-assembly of particles. To some extent, a crystal
can be considered as the ultimate self-assembled structure in terms of size, preci-
sion, and regularity. The writing can be either indirect or direct depending on if a
mask is used for transferring the pattern or not.

Before presenting the various lithographic techniques used in plasmonics, we will
briefly discuss the resolution issue that has driven the development of lithographic
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Fig. 9.1 Evolution in time of the structuration techniques starting from a the rugosified sur-
face [1], b localized deposition of metallic nanostructures using nanosphere lithography [3], and
c more recently localized deposition using electron-beam lithography combined with the lift-off
technique. For comparison d an example of a state-of-the-art photonic crystal tapered microcavity is
shown [5]

processes over the year keeping in mind that with feature sizes below 100 nm,
plasmonic structures require state-of-the-art nanolithographic processes.

9.2.1 Lithography: Evolution and Resolution Issue

The main lithographic process is the mask-assisted photolithography that has been the
major tool in the development of microelectronics. The Very Large-Scale Integration
(VLSI) concept has forced one to constantly decrease the feature size in order to
increase the number of transistors on a chip. The principle of photolithography is
shown in Fig. 9.2. A photon source usually monochromatic is used to insolate a
photosensitive-coated film through a mask that is projected on the sample to expose.
The sample is moved stepwise in order to allow multi-exposures at the wafer scale.

Because photolithography is based on the projection of a mask via lenses, it is
diffraction limited. For a feature size smaller than the wavelength, λ, of the source,
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Fig. 9.2 Principle of mask-assisted photolithography and typical airy pattern illustrating minimum
feature achievable using a projection-type lithography

the illumination pattern will no longer be limited by the mask, but by the numerical
aperture and λ according to the famous Airy formula:

a = 1.22
λ

N A
, (9.1)

with NA being the numerical aperture of the lens (nsinθ with θ the projection
angle and n the refractive index of the surrounding medium). This very simple for-
mula can be used to illustrate the evolution in time of the lithographic techniques.

To decrease the feature size i.e. increase the resolution, there are three possibilities.
The first one is to reduce the wavelength. Firstly demonstrated in the visible, the

wavelength of light sources used in photolithography has been decreased over the
years to reach the deep UV; first 248 nm, then 193 nm, and more recently 157 nm (F2
laser).

The second possibility is to increase the numerical aperture by working in a
medium or through a material with a refractive index larger than 1. This led to the
immersion lithography.
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The third possibility is to overcome the diffraction limit by working in the near-
field leading to the so-called near field lithography, which includes the plasmon-
assisted lithography as recently proposed [7, 8].

Coming back to Eq. (9.1), one finds that the resolution limit assuming a numerical
aperture of 1 is given by λ/2 i.e. roughly 150 nm (UV source) which is larger than a
typical plasmonic particle resonant in the visible. Therefore, these techniques do not
seem to be appropriate for plasmonic structures. The limit in microelectronics is cur-
rently 45 nm. This is achieved using 193 nm lithography combined with immersion
lithography, double-patterning, and phase-shifting techniques. As a consequence, the
cost of the writing tool has exponentially increased these recent years to be of the
order of $10M.

Following the idea of reducing the wavelength, X-ray lithography is definitely the
most promising technique [9]. With a typical wavelength of 13.4 nm, it is perfectly
compatible with sub-100 nm lithography. There are however two major issues that
are currently limiting the use of X-ray lithography. The first one is the nature of the
X rays that prevent working in transmission. To obtain an efficient reflective surface,
a multilayered coating is necessary with typical periodicity smaller than 10 nm. Such
multilayered coatings are difficult to obtain on a large scale. The second limitation
is the source efficiency.

To summarize this part, while mask-assisted photolithography has been widely
used in microelectronics, it may not be considered as fully appropriate for plasmonics.
Standard equipment are diffraction limited leading to a resolution of half a micron.
The cost of deep UV equipments combined with immersion lithography prevents
their use at academic level. It is also worth mentioning that a mask is necessary.
Down to 1 micron, the masks for photolithography are fabricated using laser writing
while for a submicron scale, the EBL is used.

The next section will actually be devoted to EBL and we will explain why this
technique can be seen as a universal lithographic method and therefore suitable for
plasmonics.

9.2.2 Electron-Beam Lithography

Instead of photons, it was proposed in 1936 to use accelerated electrons to do
microscopy. Indeed, the wavelength associated with 100 keV electrons can be as
small as 3.9 pm (without relativistic correction), which is much smaller than the
atomic scale and therefore according to Eq. (9.1), the diffraction limit should no
longer be an issue and the atoms should become visible using electron microscopy.
It is nowadays common to observe at atomic scale in transmission microscopy using
very thin samples.

The same electron beam can be used to expose an electron-sensitive resist leading
to electron-beam lithography as first reported in 1960 with the writing of 50-nm
features into colloidon thin films [10]. If the accelerated electron wavelength can
be as small as 3.9 pm, the diffraction limit is usually larger because of the aperture
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angle, which is only of the order of a few degrees. This value is a trade-off between
the diffraction and spherical aberrations which, respectively, scale as θ3 and θ−1.
At the end, the typical size (full-width at half-maximum) of the beam will be of the
order of a few nanometers down to less than 1 nm for the very best equipment. The
beam size is fixed by the current probe (number of electrons per unit time) and the
aberrations, which give a resolution limit for the electron-beam lithography of about
1 nm.

Figure 9.3 illustrates the main steps of electron-beam lithography combined with
the lift-off technique. The first step Fig. 9.3a consists in exposing the positive resist
using the vector scan of the beam, which is deflected to allow for intermittent writing.
This exposure mode allows to “write” down any pattern shape. The pattern is usually
defined using a computer-aided design (CAD) software. While the beam is scanned
the electrons interact with the resist, usually a polymer, and release their energy that
is used to break polymeric chains as illustrated by the inset. After exposure Fig. 9.3b,
the resist is developed in a selective solvent. As an example the solution of methyl
isobutane ketone (MIBK) in IPA is used for the poly(methylmethacrylate) (PMMA)
resist. Smaller chains in the exposed area lead to a material of higher solubility and
therefore to a faster dissolution rate of the corresponding area.

At this stage, the pattern can be transferred using an etching process, although
the selectivity of PMMA, for example, compared to semiconductors or metals is
rather poor. Another possibility lies in using the lift-off process which consists in
metallizing the entire sample. This process will only be made possible if a so-called
inverted profile is obtained as shown in Fig. 9.3b). One needs a discontinuity between
the metal deposited onto the substrate and the resist (Fig. 9.3c). In addition to the
undercut or inverted profile, a minimum ratio of 1:3 for the metal:resist thickness is
used to prevent any contact. Finally, the unwanted metal areas are lifted up by dip-
ping the sample in a solvent in order to dissolve the remaining resist (Fig. 9.3d).
Another important aspect as far as the lift-off is concerned is the adhesion of
the metallic layer to the substrate. An ultrasonic bath can be used to further increase
the dissolution speed of the resist during lift-off. This is however, only possible if the
adhesion of the metallic layer to the substrate is sufficient. Noble metals deposited
on glass will actually require the deposition of a thin adhesion layer of Cr or Ti. The
lift-off process as well as the optical effect of adhesion will be discussed further in
the paper.

In case of nonconductive substrates however, like glass, an additional process will
be needed. It consists in metallizing the resist with typically, a 10-nm thick Al layer.
This layer prevents the charging of the resist. The very thin layer will be removed by
chemical etching before developing the resist. Alternatively one can use substrates
that are coated with a transparent conductive oxide layer, like ITO (indium tin oxide)
for example.

When starting with EBL, typical test patterns, lines, and dots are used. These test
patterns are essential to verify the instrument parameters (focus and stigmatism) and
the exposure conditions (acceleration voltage and dose). Figure 9.4 shows various
test pattern examples. Figure 9.4a shows a cross-section of PMMA lines after
development. The effect of overdose at the substrate–PMMA interface, due to both



9 Nanofabrication for Plasmonics 275

Fig. 9.3 Electron-beam litho-
graphy for the local deposition
of metals. a Electron-beam
(red in illustration) exposure
of the resist (yellow in illus-
tration) leading to polymeric
chain breaking. b Inverted
resist profile after develop-
ment. The profile shape is
due to overexposure at the
resist–substrate interface.
c Metal coating (white in illus-
tration) and d The remaining
structures after the stripping
of the resist in a solvent

forward and backward scattering, is evidenced at the bottom of the line where the gap
is slightly larger. Such a profile is enough to obtain a clear contour after the lift-off.
Examples of patterns locally deposited by the lift-off are shown in Fig. 9.4b. While
the edges are clear, a slight undulation can be observed, which is most probably
due to the electromagnetic noise during exposure. This effect is further evidenced
in Fig. 9.4c where elongated dots were obtained explosing lines with different spac-
ings. A size variation can be cleared observed. The observation has been done after
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Fig. 9.4 Test pattern 1: lines and dots. SEM pictures of lines obtained before (a) (cross-sectional
view) and after lift-off (b) and dots obtained by line crossing (c) or single dot exposures (d). Patterns
(a) to (c) have been obtained on Si, whereas pattern (d) has been obtained on glass (BSE image)

the metallization (Au) before the removal of the resist. Finally, the Fig. 9.4c shows
nanometric dots obtained on glass by a single shot exposure. This technique allows
for the minimum dot size. The use of backscattered electrons is here required to
observe the metallic dots deposited on glass. The resolution is however not enough
to observe the edge of the dots whose size can be estimated to be less than 30 nm. We
achieved here the resolution limits of both the instrument and lithographic process.
Exposure conditions include 30 kV of acceleration voltage and 10 pA of probe cur-
rent (tungsten filament) and a 150-nm-thick PMMA layer (950 K). Typical line and
dot exposure doses on glass are 1.3–2 nC/cm and 6 pC/dot, respectively.

An example of a third important pattern after dots and lines is shown in Fig. 9.5.
Segmented wheel patterns are very useful to check (a posteriori) the stigmatism
adjustment of the writing beam. Both figures show a wheel pattern obtained after
lift-off on silicon. In the top figure, one clearly sees that segments are missing at
45◦. This is due to an ellipsoidal shape of the beam with the longest axis at 45◦.
The surface dose is therefore lower at 45◦ and PMMA is not totally exposed. The
remaining PMMA will give rise to a complete lift-off of the metallic layer. The figure
below shows a pattern obtained after stigmatism correction. Individual segments as
evidenced by the white arrow can be observed in all directions.

In the field of plasmonics, we are also interested in nanometric features such
as metallic nanogaps or sharp nanostructures. This brings us to the resolution limit
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Fig. 9.5 a Segmented wheel as a test pattern for stigmatism adjustment. If the stigmatism is not
well adjusted the dose in the x and y directions is different, leading to partial exposure. b Example
of structures obtained after stigmatism correction. The segment as indicated by the arrow should
be visible in any direction

achievable through electron-beam lithography. A key parameter is the interaction
volume of the primary and backscattered electrons in the resist. As far as the inter-
action volume broadening is concerned, the effect of secondary electrons can be
considered as negligible for a distance over 10 nm [11]. In order to control the inter-
action area, two parameters are of importance: the energy of the primary electron
and the thickness of the resist. For an acceleration voltage larger than 50 kV and a
resist thickness below 100 nm, forward scattering in the resist can be neglected [12].
Figure 9.6 qualitatively illustrates the mechanism of electron scattering in a resist.
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The resist is exposed by both the forward and backscattered electrons. As a func-
tion of the acceleration voltage, the lateral scattering of the forward and backward
scattered electrons will, respectively, decrease and increase. In other words, larger
acceleration voltage allows for smaller and higher density features. Values are given
for 20 kV and a one-micron-thick PMMA layer. It is worth noting that for a thin film
of resist, the backscattered and secondary electrons’ density will strongly depend
on the substrate. As already mentioned, while secondary electrons will affect the
effective dose, the induced spreading is negligible for a feature size over typically
10 nm.

Electron-beam lithography resolution using PMMA has been thoroughly
addressed in a recent paper by Vieu et al. [13]. They show that the resolution can be
pushed below 10 nm for isolated structures and that the intrinsic resolution limit of
the writing process in the resist can be as small as 3–5 nm at high energy (200 kV).
The practical resolution is limited by the development of the resist and pattern trans-
fer. Figure 9.7 shows one of the most impressive results obtained by Vieu et al.
The SEM pictures show an array of 7-nm-width gold lines obtained by lift-off of
an extremely thin evaporated gold film (2 nm). The PMMA layer was 140-nm thick,
exposed with a line dose of 4 nC/cm. The lines appear uniform in size. The enlarged
view figure (b) reveals that the line width corresponds to the grain size of the thin film,
suggesting that atomic diffusion on the surface was triggered by the line width of the
PMMA pattern. These monogranular metallic lines can be seen as the smallest realiz-
able plasmonic chains reaching the granularity limit of the gold evaporated thin film.
These results show that sub-10-nm resolution can be achieved with PMMA and that
as far as plasmonics is concerned, there is room for reducing further the feature size.
It is worth mentioning here that by using alternative processes like direct sublimation
or radiation damage lithography, sub-1-nm resolution was already demonstrated in
1988 [11].

9.2.3 Complementary and Alternative Lithographic Techniques

In this section, we will resent alternative or complementary lithographic techniques
for plasmonics.

Ion-Beam Lithography

A technique related to electron lithography is the focused ion-beam lithography or
commonly called FIB. The FIB is based on the use of accelerated ions instead of
electrons. If the wavelength of accelerated ions can be similar to that of acceler-
ated electrons and therefore an atomic resolution is expected in the ideal case, the
major difference lies in the mass of the ions that allows very efficient momentum
transfer and therefore physical etching of a material (almost any kind of material).
As a consequence, when the accelerated ions are tightly focused, a material can be
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Fig. 9.6 Schematic view of the electron scattering process at the air/resist/substrate interface [11].
Because of backscattered electrons, the dose is higher at the resist/substrate interface

locally removed. It is worth noting that the ion physical etching has been known for
a long time. Let us cite, for example, the preparation of TEM slides by ion milling.
Ga+ ions are usually used. Since the mid-1980s, FIB has been developed to become
a major nanofabrication tool. Structures as small as 6 nm have been written using
50 kV Ga+ ions with a two-lens system (magnetic lenses) as in an electron micro-
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Fig. 9.7 Sub-10-nm metallic lines obtained by lift-off of a granular gold extremely thin film (2 nm)
from [13]

scope [14]. This technique has been intensively used in plasmonics especially to
fabricate perforated metallic thin films [15]. Indeed, FIB is a complementary tech-
nique with electron-beam lithography combined with lift-off. FIB is well adapted for
discontinuous patterns such as hole or gaps. Despite its own advantages, FIB is less
popular than electron beam lithography because it requires a dedicated equipment.
A related aspect is that while FIB can also be used for the observation at low energy,
besides relatively limited resolution, it may also contaminate the sample. Therefore,
dual-beam systems have been developed where the electron beam can be used for
observation and the ion beam for writing. This kind of dual system has made possible
the fabrication of nanoantenna at the extremity of scanning near-field microscope
(SNOM) tips. Fabrication of nanostructures on nonplanar substrates will be the sub-
ject of a dedicated subsection. Finally sub-5 nm resolution is achievable using FIB
and membranes. Sub-5 nm arrays of holes have been obtained in SiC membrane
[16]. While metallic membrane fabrication is an issue itself, the same technique
offers great potential for extremely tiny hole or gap arrays fabrication and related
applications like sensing.

Immersion Lithography

Following (9.1), another way to further decrease the diffraction limit of conventional
optical lithography is to use immersion lithography. This has been demonstrated in
imaging using immersion lenses. In microelectronics, immersion lithography has
been used to push further down the resolution of 193 nm lithography and achieve



9 Nanofabrication for Plasmonics 281

Fig. 9.8 Laser interference lithography. a Experimental setup. b Example of sub-100-nm pitch
grating. From [17]

the 45-nm node. As already mentioned, the cost of the equipment prevents its use by
the scientific community.

Laser Interference Lithography

Laser interference lithography is a rather simple technique. While only periodic or
quasiperiodic structures can be realized, the technique is of low cost, large-scale
compatible, and allows for sub-100-nm structures to be fabricated. Figure 9.8 shows
an example of 70-nm wide line pattern Fig. 9.8b in a photoresist obtained with the
Lloyd configuration as illustrated in Fig. 9.8a [17].

More recently, 50-nm period gratings have been obtained by the so-called multi-
level interference lithography where each grating level is patterned with a phase shift
with respect to a reference grating [18]. This process could be used for the fabrica-
tion of more complex periodic structures or commensurable metallic gratings [19].
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Despite its advantages and achievable feature size, this technique has merely been
applied to plasmonic structures (cf. Sect. 11).

Nanosphere Lithography

As an alternative technique, one should also mention the nanosphere lithography
(NSL) that was first proposed in 1995 [3] and has then been intensively used, espe-
cially for Surface-Enhanced Raman Scattering (SERS) studies [2]. Self-assembled
nanospheres on a surface can be used as templates in various ways such as corrugated
metallic layers after a uniform coating or template for lift-off after dissolution. In
the latter case, the spheres interstices have been found to form a perfect template for
sharp edges’ metallic structures. As already mentioned, NSL is a high-throughput
technique, cost effective and large-scale compatible. For highlights of representative
research accomplishments in the NSL-derived fabrication techniques, the reader may
refer to [20].

Scanning Near-Field-Based Lithography

A way to get rid of the diffraction limit is to go behind this limit using near-field optical
lithography. Near-field optical lithography has been first demonstrated using SNOM
(Scanning Near-field Optical Microscope) with an aperture probe and has then been
extended to the scattering tips, making this technique possible with a standard atomic
force microscope (see for a review [21]). Alternatively, near-field probes, such as
Scanning Tunneling Microscope (STM) or Atomic Force Microscope (AFM), can
also be used to induce a physical interaction. While metallic nanostructures have often
been used to demonstrate these techniques, none of them has been used to fabricate
metallic structures. One of the most promising techniques as far as plasmonics is
concerned, is the dip pen lithography [22], which could be combined with surface
chemistry to locally link metallic particles to a substrate. As shown in Fig. 9.9, the
dip pen lithography is based on molecular transport.

One of the advantages of AFM-based lithography is that it works in ambient
atmosphere. Recent progress in combining interferometric stages with near-field
microscopes such as AFM or SNOM may also help to achieve large-scale near-field
probe-based nanostructuring [23, 24]. A relative high throughput is also achievable
using parallel writing.

9.2.4 Lift-off

The lift-off technique combined with EBL is definitely well suited for metal local
deposition. It is easier to implement than the standard mask transfer technique using
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Fig. 9.9 Dip pen lithography

wet and especially dry etching. The mask transfer technique is used for semiconduc-
tors or more generally materials showing high crystallinity. Such materials are less
suitable for the lift-off process, as they are usually deposited at high temperature using
the nondirectional deposition technique. Indeed, two conditions must be fullfilled for
the lift-off process. One is to use a directional deposition technique and the second
one is an undercut profile as illustrated in Fig. 9.3b. Regarding the first aspect, metals,
which can be deposited by thermal or electron beam evaporation on low (ambient)
temperature surfaces, are well suited for the lift-off. As far as the undercut profile is
concerned, the method depends on the typical size. For microscopic features down to
100 nm, a bilayer of resist with a thin top layer of low sensitivity and an underlying
layer of high sensitivity is used. While the bilayer allows for the perfect “mushroom”
profile to be obtained, it requires rather thick resist layers and therefore the resolution
is limited. For thin structures such as plasmonic structures typically of the order of
50 nm, a monolayer is sufficient to obtain an undercut profile using electron-beam
lithography. For thin layers, the dose is higher at the substrate interface due to the
backscattered electrons as illustrated in Fig. 9.6. While this effect limits the density
of nanostructures, it allows for an undercut profile to be obtained. The shape of the
profile will however be very sensitive to the dose.

Figure 9.10 shows an unsuccessful example of lift-off with rough edges. Contrary
to the pattern shown in Fig. 9.1c where the nanoparticles have clear contours, rough
edges are the results of metal scratching occurring during the resist dissolution.
An additional interesting feature is the “O” and “l” letter patterns where the metal
has remained. The resist in these areas cannot be dissolved and this is because of
the thickness of the resist, which was too thin in this case (50 nm) compared with
the metallic layer thickness. Another example of well-defined contour structures is
the pattern obtained by nanosphere lithography. Allowing for the shadowing effect,
spherical particles are well adapted for the lift-off.
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Fig. 9.10 Unsuccessful
example of lift-off (elec-
tron beam evaporated Au
on Si through a 50-nm-thick
PMMA layer)

9.2.5 Direct Writing

Direct writing techniques allow for the fastest prototyping as they are compatible
with a one-step structuration. Such techniques are however strongly dependent on
the material to be nanostructured, unless the process is mainly physical as in the case
of ion-beam etching (IBE). Focused ion-beam etching is definitely one of the best
examples of a direct writing technique and has been extensively used in plasmonics
(see Sect. 9.2 for examples of structures). Alternatively again, electrons can be used
to locally deposit or etch materials leading to electron-beam-induced deposition
(EBID) or electron-beam-induced etching (EBIE). EBID or EBIE in SEM chambers
has been used for direct (carbon) nanowire fabrication [25] or photomask repair [26].
Figure 9.11 illustrates the EBID process.

Despite their very high-resolution potential [11], these techniques, apart from the
FIB technique, have almost not been used for plasmonics. One of the limitations
could lie in the available gas precursors and the partial pressure necessary as
recently discussed in a theoretical paper for the fabrication of high-resolution radi-
ally symmetric nanostructures [27]. Laser ablation (thermal or chemical) using either
intense IR lasers or UV lasers can also be classified as a direct writing technique.
Being diffraction limited, the use of this technique for plasmonics is again limited.
Subwavelength resolution has however been achieved for microstructures using a
nonlinear process like two-photon absorption (see for a review on the topics [28]).
Based on polymeric materials, two-photon photolithography cannot be considered
as a direct writing technique, unless charged resists are used as very recently demon-
strated with a gold-precursor-doped photoresist [29]. In this paper, a polymeric line
of 200 nm and periodic arrays of chiral elements have been reported. As shown
for photonic crystals, the ability of two-photon lithography for 3D direct writing is
of a great potential for metamaterials working in the IR or NIR. Self-organization
can also be considered as a direct writing technique for plasmonics when metallic
objects or materials are considered. Self-organization of metallic nanoparticles has
however been demonstrated only recently. One of the limitations lies in the small
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Fig. 9.11 Illustration of the EBID process. Absorbed molecules brought to the substrate by a
precusor gas are dissociated by the electron beam. From [25]

size of the particles that requires surface chemistry. This aspect will not be treated
in this subsection, but in the next one dealing with surface functionalization.

9.2.6 Surface Functionalization

Why Surface Functionalization?

The surface modification using self-assembled monolayer (SAM) or physisorption
of polymers is a very useful tool for numerous reasons. As claimed by nanotechnolo-
gists, the properties of numerous nanosystems are new and relevant for applications
because the number of atoms at the interface is higher than the number of atoms
in the bulk at the nanoscale [30]. Thus, by controlling the nature of the surface, it
is possible to tune the properties of the nanosystem, as for example, plasmon-based
nanosensors [31]. Moreover, even if the SAM (or an organic layer in general) induces
a change in the properties, it could also be seen as a brick in a more complex nanoar-
chitecture [32] or it could act as a stabilizer for the nanostructure [33]. In terms of
surface functionalization, two cases must be separated. First, the functionalization
of typical substrates used in nanooptics (glass or Si in case of integration) and sec-
ond, the functionalization of the plasmonic structures themselves (Au, Ag, or noble
metals in general).



286 G. Lérondel et al.

Fig. 9.12 Schematic representation of a thiol molecule. The sulfur group links the molecule to the
gold surface. The spacer group separates the sulfur group from the head group. The head group can
be designed to provide virtually any surface chemistry, binding capacity, or property

Table 9.1 Some head group examples useful for applications

Application Common head group

Non-fouling surfaces P EGn or mannose
Cell supports Peptides
Specific binding receptors Biotin, NTA, peptide, carbohydrates
Molecular electronics C H3, SH
Microarrays DNA, Peptides, P EGn

Surface reactions Azide, COOH, N H2, OH, SH

Self-Assembled Monolayer

Materials can spontaneously assemble on the surface under the effect of driving
forces. The molecules able to form a self-assembled monolayer (SAM) are generally
formed by three groups as shown in Fig. 9.12 in the case of a thiol molecule.

The first group is a reactive group, which will react with the substrate to form a
covalent bond. The second one is the spacer group (generally an alkane chain). This
group is used to separate the head group from the surface. Finally, the head group
allows giving to the surface the specific chemical function. For example, a CH3
(resp. OH) terminated molecule will show a contact angle with water of about
110◦ (resp. ≤ 20◦). The chemical nature of the head group will depend on the
final application, specific binding, or chemical reactions... Different head groups
are commercially available with different properties. Some examples are listed in
Table 9.1.

Organosilicon Molecules on Oxides

Surface functionalization of oxide layer (SiO2 for example) is principally obtained by
the grafting of organosilicon derivatives. The general structure of the organosilicon
(or silane) molecules is X3 − Si − R − F . The X groups are reactive groups like
hydroxy, chlorine, methoxy, and ethoxy. The R − F group is generally an alkyl chain
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(R) terminated by a specific function (F). This function will determine the substrate
properties. SAMs of organosilicon or silanes (alkylchlorosilane, alkylalkoxysilane,
or alkylaminosilane. . .) require a hydroxylated substrate to be formed. In this case, the
self-assembly is obtained through the formation of polysiloxane. This polysiloxane
is then connected to the substrate via the formation of Si − O − Si covalent bonds.
The well-admitted scenario for the covalent bonding is divided in two steps. The first
one relies on a hydrolysis of the silane molecule by H2 O molecules absorbed on the
substrate as shown by Eq. (9.2).

R − Si X3 + H2 O → R − Si X2OH + HX (9.2)

The second step is a condensation of the silanol group of the hydrolyzed molecule
with the silanol group onto the substrate as shown by Eq. (9.3).

R − Si X2OH + HO − Si → Si − O − Si X2 − R + H2 O (9.3)

The final structure of the SAM depends on numerous parameters like the length
of the spacer group, the head group nature and the temperature [34]. High-quality
SAMs of silanes are very challenging to obtain. The main issue is the difficulty to
control the amount of water present on the substrate [34].

Thiol Molecules on Gold (111)

Surface functionalization of noble metal (for example, gold or silver) is usually
obtained through the spontaneous binding of a thiol group (R-SH), also called the -
mercapto- group to the metal. Not only thiol but disulfide molecules (R1−S−S−R2)
are able to bind spontaneously onto gold (or silver). This results in a 2D crystalline
layer on the metal surface as shown in Fig. 9.13. The typical thiol molecule is schemat-
ically represented in Fig. 9.12. As shown in Fig. 9.12, three groups generally form a
thiol molecule. The first one is the terminal sulfur group (-SH), which links the mole-
cule to the metal surface (S-Au, for example). The S-Au bond is a quasi-covalent
bond characterized by a bonding energy of about 45 kcal/mol [33] (the binding energy
of C-C is about 80 kcal/mol), which induces a very stable layer.

Practically, the formation of a thiol (or disulfide) monolayer is very simple. If the
thiol molecules are volatile, they will bind spontaneously on any gold substrate in
a closed reactor. Note that heating can easily vaporize a liquid thiol. Alternatively,
by dissolving thiol in a suitable solvent (ethanol, for example) at a concentration of
about 1 mM, it will be possible to induce the formation of a SAM on a gold substrate
by immersion during 1 to 24 h. Finally, in both cases, i.e. gas-phase or liquid-phase
deposition, the substrate is rinsed with an adequate solvent to remove the physisorbed
molecules.
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Fig. 9.13 Scanning tunneling
microscopy image of a self-
assembled monolayer of
decanethiol on gold. Adapted
from [35]

Physisorption of Polymers

In contrast with the cases of chemisorptions presented above (SAM), macromole-
cules like polymer will physisorb irreversibly to the surface. The reason is directly
correlated with the number of bonds between the polymer chain and the surface.
Single bond energy is about kB T , but the sum of all the bonds together will represent
a strong binding energy.

Even if polymers are often used to give a particular function to a substrate (for
example, PMMA/QDs will allow the luminescence of a substrate [36]), we will
emphasize on polyelectrolytes, which are charged polymers that are particularly
well studied and understood [37]. Moreover, polyelectrolytes are used as a brick in
the nanofabrication to assemble different materials without specific chemical modifi-
cation. Polyelectrolytes are positively charged (polycations) polymers or negatively
charged (polyanions) polymers. The charges are linked to dissociation of a specific
group on the polymer chain (for example N H3Cl will dissociate to N H+

3 +Cl−). The
total charge will depend on the number of dissociated groups in the polymer chain.
The polyelectrolytes are generally deposited in solution in an aqueous medium. The
final morphology of the deposited film will depend on numerous parameters such
as pH and salt concentration (see [37] for more details). In nanofabrication, the
technique used with charged species is called layer-by-layer (lbl) deposition. The
deposition is obtained through a simple dip-coating process. First, the substrate is
immersed for a given time t (typically a few minutes) in a solution of polyanions
(resp. polycations), then the substrate is washed and immersed again during the same
time t in a solution of polycations (resp. polyanions) and washed [38]. The process is
then repeated until the number of desired bilayers (polyanion/polycation) has been
achieved. The complete process is schematized in Fig. 9.14.
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Fig. 9.14 a Schematic of the film deposition process using slides and beakers. Steps 1 and 3
represent the adsorption of a polyanion and polycation, respectively, and steps 2 and 4 are washing
steps. b Simplified molecular picture of the first two-adsorption steps, depicting film deposition
starting with a positively charged substrate. From [38]

9.3 Structures Fabrication

Two challenges are particularly relevant for nanotechnology and more precisely
for nanooptics and plasmonics. The first one is the fabrication of new structures
presenting unique features induced by the size reduction down to the nanoscale. For
example, a plasmonic antenna, which is composed of metal nanoparticles, allows
one to efficiently outcouple (direct) the emission of quantum dots as demonstrated
by the group of N. van Hulst [39].

The second one is the nanostructuration of large areas, typically from hundred
of µm2 to several cm2. For example, metamaterials are composed of nanostructures
replicated on wide areas and thus present new macroscopic optical properties as
negative refraction [40] or extraordinary transmission [15]. In this part, we will
present examples of plasmonic nanostructures obtained by the techniques presented
in the previous sections.
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Fig. 9.15 Illustration of a systematic study of particle resonance using a single sample with dose
and spacing gradual changes. Central and side images are, respectively, 30 and 1 µm wide

9.3.1 Metallic Nanostructuring on Planar Surfaces

Lithographic Structures

Lithographic techniques like electron-beam or ion-beam lithography allows the entire
control for designing metallic nanostructures. In addition, they allow for so-called
fast prototyping using patches leading to the concept of one sample–one study. We
aim in this section at illustrating through examples, the full potential of electron- and
ion-beam-based lithography for plasmonics starting with the lift-off technique.

Size and Spacing Control

A typical example of the interest of a lithographic sample for plasmonics is the study
of particles’ optical response as a function of the particle size and spacing.

Figure 9.15 shows the AFM images of a SERS substrate obtained with a single
shot exposure and constant increase of the dose, diameter, and spacing effects have
been probed. It is noteworthy to mention that a tip correction has been here applied
to deduce the size of the particles from the AFM profiles.
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Fig. 9.16 Illustration of plasmonic structures shape control: a ellipsoid, b dimers (spheres and
bow-ties), c trimers, and d multiscale concentric structures

Shape Control

As already mentioned besides the size and the spacing, resonances of plasmonic
particles are also shape and assembly dependent. Figure 9.16 shows various shapes
and assemblies achievable using electron-beam lithography. As long as structures
are isolated, the proximity effect will be negligible and reproducible structures can
be fabricated. For dense structuring like the asian-umbrella structure, a dose varia-
tion is necessary to compensate the proximity effect. The latter structure shows the
possibility to fabricate multiscale patterns. As far as dimers are concerned, the major
issue is the control of the gap between the two particles. In the case of spheres, this
could be achieved by the dose control as evidenced by the image. Together with
the shape, the sharpness of plasmonic structures is also an issue especially for “tip”
structures like bow-tie antenna. Figure 9.16d shows rounded edges which are due to
the beam size.
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Fig. 9.17 Silver–gold binary
array

Binary Array

Another interesting aspect, which has not been really explored yet, is the possibility
of mixing different materials. Figure 9.17 shows a double array of gold and silver
metallic nanoparticles obtained using a one-step alignment [41]. Such binary struc-
tures could be of interest to fabricate double-resonant SERS substrates or to widen
the absorption spectrum for efficient energy conversion.

Plasmonic Structures on Transparent Conductive Oxide

Glass coated with transparent conductive oxide like Indium Tin Oxide (ITO) is an
alternative substrate for plasmonics. As already mentioned, the presence of an ITO
layer will influence the optical response especially in the case of localized surface
plasmon modes. Therefore, a resist metallization is usually preferable (cf. section on
EBL). Figure 9.18a shows a 4 µm long single nanowire realized on ITO substrate on
purpose. This sample was actually fabricated to be probed by the recently introduced
PEEM technique. PEEM standing for photoemission electron microscopy requires
a conductive substrate. Photoelectrons emitted by the sample are accelerated and
imaged on a 2D sensor allowing subdiffraction imaging. Plasmon interferences are
clearly observed here, as evidenced by the PEEM image (cf. Fig. 9.18b) and the
associated intensity profile (Fig. 9.18c).

Corrugated Structures

As already proposed using nanosphere lithography or even earlier with rough surface
coating, the easiest way for obtaining a structured metallic thin film is to coat a
corrugated surface. Using electron-beam lithography, well-defined corrugations can
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Fig. 9.18 Single gold plasmonic nanowire as probed by PEEM: a SEM image, b PEEM image,
and c Intensity profile. Scale bars are 1 µm long. From [42]

be obtained. Figure 9.19 shows a Fabry–Perot plasmonic light concentrator fabricated
by combining electron- and ion-beam lithographies. The circular pattern has been
obtained by partially exposing a PMMA 150-nm thin film which after development
has been then coated with a 50-nm silver film. The nanoaperture has been drilled by
FIB using a dual-beam system. The major difficulty in fabricating such a structure
lies in the centering of the aperture for which SEM observation prior to the focused
ion milling is necessary. The layered structure can be guessed from the simulated
image 9.19a.

Dielectric Structuring on Metal

While plasmonic structures are usually obtained by the local deposition of metal
using the lift-off technique, an alternative technique can be used, which consists in
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Fig. 9.19 Fabry-Perot plasmonic light concentrator. a FEM simulation of the resonant optical
structure as compared with a single nanoaperture (30 nm) of equivalent size. b SEM image of the
structure realized by combining EBL for the concentric corrugation and FIB for the nanoaperture.
Adapted from [43]

depositing a dielectric material on top of a metal. Indeed, surface plasmon modes
are very sensitive to the metal/dielectric interface. Therefore, one could think of
controlling the polaritons’ propagation by locally modifying the interface condition.
This is evidenced in Fig. 9.20 extracted from [44]. Plasmonic prims or lenses can
be fabricated using dielectric elements. These elements have been fabricated using
electron-beam lithography combined with the lift-off technique, but using SiO2.

Alternatively one may think of fabricating structures supporting long-range
plasmon polaritons. The advantage of this structuration technique is that it allows
for symmetric (low loss) structures to be easily fabricated. These hybrid structures
are of special interest at telecommunication wavelengths.
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Fig. 9.20 Dielectric (SiO2) optical elements on a thin metallic film. a and d unaffected plasmon
polarition beams. b and e focused and refracted beams, respectively. c and f zoomed images of the
b and e images, respectively showing plasmon polaritions interferences. From [44]

Metallic Nanogaps

Metallic nanogaps are of great interest for amplifying signal (SERS or SEIRA) or
nonlinear interaction (see the chapter written by Aizpurua and Hillenbrandt). There-
fore, many efforts have been devoted to the fabrication of metallic nanogaps and
especially reproducible nanogaps. EBL or FIB will lead to gaps usually larger than
10 nm, unless high-resolution equipment is used (cf. section on “EBL”). Alternative
techniques have been proposed such as “gap filling” by electrochemical deposi-
tion [45]. Gaps as small as 9 nm have been obtained with this technique. Another
approach lies in using planar thin film technology which has led to a 3-nm-thick MIM
(Metal-Insulator-Metal) optical cavity with a squeezing of light of 82 % of the free-
space wavelength (970 nm) [46].

Finally, a completely different approach has been recently proposed, which
consists in using DNA strands to link nanoparticles and fabricate in solution metallic
nanolenses [47]. Extremely small gaps can be obtained (0.5–5 nm) by this technique.
Examples of such dimers are shown in Fig. 9.21. Current efforts focus on the inte-
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Fig. 9.21 Plasmon-based nanolenses obtained using DNA strands (scale bar is 100 nm). From [47]

gration of such DNA-linked dimers. This leads us to the next section devoted to the
self-assembly approach.

From Colloids to Nanostructures

The easiest way to organize metal nanoparticles onto a substrate is most probably to
involve the self-assembly process and corresponding driving force. Various driving
forces can be used. The most simple case is the use of solvent evaporation combined
with a repulsive force between nanoparticles (see Fig. 9.22a) [48]. This approach
allows organizing nanoparticles on large areas with a good control on the organization
(Fig. 9.22b). By comparison, extinction spectra from isolated particles (SEM image
in Fig. 9.22c) and arrays (SEM image in Fig. 9.22b) are presented on Fig. 9.22d. The
difference is the broad and intense plasmon band situated in the NIR for the arrays.
Finally, the authors take advantage of the structure fabricated and more particularly
of the sub-10 nm gaps between the particles to considerably enhance the Raman
signal of molecules onto their substrate. The enhancement factor obtained by SERS
is clearly shown in Fig. 9.22e for different Raman modes of p-mercaptoaniline and
different excitation wavelengths using these nanostructured substrates.

A second approach allows us to obtain a better control of the 2D arrangement of
the nanoparticles on the substrate as shown in Fig. 9.24g. This approach relies on the
chemical patterning of the surface [32, 49] using two different SAMs. Using a hybrid
approach combining top–down (lithography) and bottom–up (SAM) techniques, it
is possible to organize metal nanoparticles onto a substrate. The first step is to define
a pattern in a negative resist using a lithography technique: optical lithography [50],
electron-beam lithography [49], or nanosphere lithography [51]. The second step is
to functionalize the nanoholes created in the resist with a first SAM. The function
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Fig. 9.22 a Schematic illustration of the fabrication of sub-10-nm gap Au NP arrays. b SEM image
of the arrays. c SEM image of monolayer of isolated Au NPs on ITO glass. d Visible and near-
infrared (Vis-NIR) extinction spectrum of the monolayer of isolated Au NPs and arrays. e Empirical
SERS enhancement factors obtained on the basis of different Raman modes under different laser
excitations. Adapted from [48]
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Fig. 9.23 Nanopatterns prepared using 500-nm latex balls as a mask. a Interstitial areas between
spheres are covered with water when the mask is dried briefly; b topography of a porous OTS film
on mica (0001) formed by briefly drying latex masks; c zoomed image of B; and d corresponding
line profile. From [51]

carried by the SAM will allow a specific interaction with the metal nanoparticles.
For example, it could be a thiol function for a quasi-covalent binding on gold or an
amine group for an electrostatic interaction with the citrate groups stabilizing the
metal nanoparticles in most cases [52]. After removing the resist, a second step of
functionalization by SAM is fabricated. In that case, a function repelling the metal
nanoparticles is used in order to drive the nanoparticles at the desired positions. For
example, an alkane-terminated silane is used [51]. Finally, a rinsing step is used to
remove all the nonbonded nanoparticles. Such an approach has been demonstrated
for metal nanoparticles by the group of Prof. Garno [51]. Their approach is described
below. First, nanosphere lithography is used in order to define a pattern and the first
step of functionalization is made by gas-phase deposition as shown in Fig. 9.23 and
in Fig. 9.24a–c. A second step of functionalization is then used to finish the pattern
(see Fig. 9.24d–f) and the gold nanoparticles are deposited on the patterned substrate.
The result is presented in Fig. 9.24g–i. By means of UV-visible spectrophotometry,
clear differences are reported between the gold nanoparticle solution and the gold
nanoparticles organized onto the substrate [51].

Another simple approach reported in the literature is lithography free and relies
on employing the stick–slip motion of a water meniscus [53]. First, a monolayer of
metal colloid is deposited on water. This film is then transferred noncontinuously
onto a substrate in order to create lines of colloids as shown in Fig. 9.25. To fabricate
the transfer and to avoid the deposition of a continuous film, various criteria must
be met. First, the particle–substrate interaction must be favored over the interparticle
interaction at the contact line. Second, the wettability of the substrate must be care-
fully controlled to avoid the deposition of a continuous film. Finally, a discontinuous
deposition technique must be employed to avoid the continuous deposition of the
lines.

The authors present an application of those lines of colloids to create a 3D
(isolated) plasmonic array as shown in Fig. 9.26. They use the colloid particles as
the local catalyst to grow silicon nanowires thus creating a silicon array with gold
nanoparticles at the top of the wires.

Another way to create a 3D plasmonic nanostructure is to use polymers between
the substrate and nanoparticles. Such an approach will be described below. For this
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Fig. 9.24 Sequence of chemical steps for selective attachment of gold nanoparticles on nanopat-
terns of organosilanes produced on a polished silicon wafer. a Nanopatterns of OTS produced by
nanosphere lithography; b and c topography and corresponding lateral force image of an OTS film
with pore structures produced with 300-nm latex balls; d after depositing MPTMS onto uncovered
pore areas within OTS; e and f topography and corresponding lateral force image of a surface
nanopatterned with OTS and MPTMS; g gold nanoparticles attached selectively to areas with
MPTMS; h and i topography and corresponding lateral force image of arrays of gold nanoparticle
clusters. From [51]

example, monolayers of charged metal colloids are stacked between layers of an
amphiphilic copolymer schematically shown in Fig. 9.27a. In that case, the copolymer
layer is deposited by the Langmuir–Blodgett (LB) technique [54]. An
amphiphilic copolymer is deposited at the water/air interface. The hydrophilic part
of the copolymer will be in contact with water and the hydrophobic part will be
in contact with air. The nanolayer of cationic copolymer is then transferred to
the substrate by dipping. Then, the substrate is immersed in metal nanoparticles
solution (i.e. colloids stabilized by citrate groups in aqueous solution) and finally
rinsed in water. The process can be repeated to increase the number of deposited
bilayers (copolymer + metal nanoparticles) as schematically shown in Fig. 9.27b.
Different nanostructures obtained by this strategy are presented in Fig. 9.27c. It
clearly appears that the final color of the nanostructured film directly depends on
the number of layers (Fig. 9.27c).
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Fig. 9.25 A general method for assembling 1D arrays of colloidal particles. a Schematic illustration
showing colloidal particle dispersions with sequentially reduced dimensionality. First, a 3D colloidal
solution is spread onto a water surface, forming a 2D particle monolayer. An immersed substrate
intersects the monolayer and creates a contact line. Under proper conditions, parallel 1D arrays of
particles can be deposited on the substrate upon lifting through a stick–slip motion of the contact
line. A typical optical microscopy image of the prepared Ag single nanocube (diameter of about
50 nm) lines on a Si substrate is shown in (b). The curvature of the lines replicates that of the
water meniscus. The typical line width is about 1 nanoparticle as revealed by the scanning electron
microscopy image in (c). From [53]

9.3.2 Metallic Structures Fabrication on a NonPlanar Surface

Derived from planar technology, nanolithography is usually not well suited for
structures on a nonplanar surface. The problem of a nonplanar surface lies in the sen-
sitivity of the different lithography techniques to the height of the sample. Nonplanar
surfaces will lead to in- and outfocus areas. This may not be an issue as long as one
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Fig. 9.26 a 1D arrays of Si nanorods can be grown on the Au single nanoparticle lines, replicating
the pattern of the Au nanoparticles. Part (b) and its inset are SEM images showing an overview and
a close-up of the Si nanowire array, respectively. From [53]

is interested in localized structuration. Indeed as shown in Fig. 9.28, nanostructures
have been fabricated at the very end of SNOM tips, for example [55], using a dual-
beam system combining ion-beam lithography and electron-beam microscopy. The
main issue here will be to have the ion and electron beams focused on the same area,
i.e. within the beam diameter typically smaller than 10 nm. The SEM picture shown
in Fig. 9.28 illustrates well the ion-beam milling process (cf. subsection FIB lithogra-
phy), which is very similar to sculpting where matter is first removed at micron scale
before being removed at nanoscale. This step is necessary to avoid any redeposition
of the material.

A similar type of structures has also been demonstrated on a few optoelectronic
devices in order to obtain electrically driven optical nanosources. Figure 9.29 shows
one of the very first results obtained where a nanoantenna has been drilled on the edge
of a laser diode [56]. As simulated, one will expect the emission from the active region
to be concentrated in the nanoantenna gap. Indeed, as probed by apertureless SNOM,
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Fig. 9.27 a Schematic illustration of the preparation process of hybrid polymer nanoassemblies.
b Schematic representation of the Au/copolymer architecture. c Photographs of gold nanoparticle
multilayers with different numbers of pDDA layers after their respective third deposition cycles.
The numbers of pDDA spacer layers include (A) 0, (B) 4, (C) 8, and (D) 24. From [54]

the near-field pattern shows a polarization and wavelength-dependent maximum at
the center of the nanoantenna.

Even if a multistep process can be used with subsequent planarization as discussed
later, this is a rather heavy, time-consuming process where precise alignment will be
needed. This is not compatible with low cost and easy fabrication. An alternative and
original approach will consist in combining surface functionalization as previously
described with meso- or micro-structuring. The approach consists in shaping the
substrate in order to obtain a 3D plasmonic nanostructure with enhanced optical
properties [57]. The approach is schematically represented in Fig. 9.30a–h. In this
example, a SAM terminated by an amine group is used to functionalize the glass
substrate. Then, a dense layer of metal colloids stabilized by citrate groups is grafted
onto the substrate. Then, the substrate is etched through a patterned resist obtained
by optical lithography. Finally, a structured substrate under the form of an array of
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Fig. 9.28 Integration of a nanoantenna on a SNOM tip from [55]

Fig. 9.29 Integration of a nanoantenna on an optoelectronic device. From left to the right, SEM
image of the nanoantenna, calculated optical response, measured optical response as probed by
SNOM, intensity profile. Right schematic view of the electrically driven optical nanosource.
Adapted from [56]

glass tips is obtained as shown in Fig. 9.30i–k. Each tip acts as a lens to focalize the
light at its apex where 1–3 metal colloidal particles are grafted as clearly evidenced
by Fig. 9.30j.

9.3.3 Metallic Structure Surface Functionalization

The functionalization of noble metal nanoparticles primarily relies on the thiol-based
molecules. As explained above (see Sect. 9.2.6), a thiol group binds spontaneously
onto gold (or silver). Depending on the final application, the head group of the thiol
molecule will be adjusted. A few examples will be detailed below. The first applica-
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Fig. 9.30 Fabrication steps of integrated plasmonic glass nanotips a–c functionalization; d–f real-
ization of the holographic grating; g and h chemical etching and final result. Left, SEM image of
the integrated plasmonic glass nanotips with, on the top of each tip, only a few gold nanospheres
as evidenced by the zoom. Bottom left, AFM image of glass nanotips array. From [57]

tion of functionalization of metal is the lock–key system for detecting the streptavidin
molecule or antibiotin molecule (key) with the biotin one (lock). In such a case, the
metal nanoparticle is functionalized with 11-mercaptoundecanoic acid (MUA). Then,
an amine–biotin molecule is grafted to MUA using an EDC crosslinker: 1-Ethyl-3-
(3-dimethylaminopropyl) carbodiimide [58]. Finally, streptavidin or antibiotin will
react specifically with biotin. The complete process is schematically represented in
Fig. 9.31a–d. Moreover, the corresponding measured shifts are shown in Fig. 9.31e.
A second approach is the use of thiolated DNA molecule to functionalize gold
nanoparticles [47, 59]. In such case, a thiolated DNA strand is grafted onto a gold
nanoparticle. Then the complementary strand is grafted on the first one to attach
another gold nanoparticle. Such approach is used in a more complex process, which
is schematically explained in Fig. 9.32.

9.3.4 Hybrid Nanostructures Fabrication

Emerging nanostructures include hybrid nanostructures, which are constituted of at
least two different materials (metal/polymer [52, 60] or metal/semiconductor [39] or
metal/polymer/semiconductor [61]). These hybrid nanostructures show new proper-
ties as polarization dependent plasmon resonance [60], fluorescence enhancement
[61], or directional emission [39].

The first example relies on the localized photopolymerization induced by the local
increase of the incident field around a metallic resonant nanoparticle. The process
is schematically shown in Fig. 9.33a–e. First, the bare nanoparticle (Fig. 9.33a) is
covered by the photopolymerizable solution (Fig. 9.33b). Then, the system is illu-
minated with an incident power lower than the dose threshold Dth (Fig. 9.33c). As
shown in Fig. 9.33f, there is a threshold energy to overpass in order to trigger the
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Fig. 9.31 Schematic representation of the different functionalization steps of gold nanoparticle (a).
(b) Grafting of MUA followed by the grafting of the amine–biotin (lock) onto the MUA using the
EDC crosslinker (c). Finally, the key (streptavidin or antibiotin) reacts with the lock (biotin) (d).
(e) Corresponding measured extinction spectra after each step. From [58]

polymerization process. This threshold dose is principally due to the presence of
oxygen which acts as a radical killer [60]. Thus, using an incident power lower than
the threshold of polymerization, induces no polymerization in the far field. Contrar-
ily, in the near field of the nanoparticle, due to the localized plasmon resonance, the
threshold will be overpassed and the polymerization will be induced (Fig. 9.33c,d).
Finally, the nonreacting solution is removed by a rinsing step (Fig. 9.33e, g, and h).
This approach allows one to fabricate hybrid nanoparticles with a tunable plasmon
resonance due to symmetry breaking. Indeed, the two polymer lobes created around
the metal nanoparticle will induce a second plasmon mode (i.e. one along the short
axis and another one along the long axis). Thus, it will be possible to continuously
tune the plasmon resonance of the created hybrid nanostructure by changing the
incident polarization [60].

The second example not shown here combines top–down approach (two-step
e-beam lithography) with surface functionalization in order to graft the semicon-
ducting quantum dots (QD) only at one end of a metallic nanoparticle [39]. Such an
approach allows to localize the emitters at a high electric mode density position.

Finally, the third approach is schematically shown in Fig. 9.34a–e. In such a
case, gold nanoparticles (GNP) were fabricated by electron-beam lithography tech-
nique and lift-off offering thus the possibility to precisely control size, shape,
and interdistance of the metal nanostructures. The QD–GNP distance is controlled
through a layer-by-layer deposition of polyelectrolytes. Polyelectrolyte multilay-
ers were deposited by alternate dipping of the substrate in aqueous solutions of
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Fig. 9.32 Schematic representation of a combination of top-down nanopattern fabrication and
bottom-up gold nanoparticle self-assembly process (Not to Scale). (1) Nanopattern generation into
PMMA by means of EBL; (2) stripping; (3) etching (sub-B only), chromium and gold evaporation,
and PMMA lift-off, yielding sub-A with elevated feature and sub-B with negative surface features
as schematically illustrated; (4) gold nanopattern arrays functionalization with thiol-terminated
surface DNA; (5) linker DNA hybridized with the surface DNA; and finally (6) hybridization of
the AuNP–DNA conjugates. The inset shows an illustration of the DNA interaction that drives the
self-assembly. The linker DNA (red in illustration) links the particle to the nanopatterned surface
thanks to two different 15 base-pair segments: one complementary to the surface DNA (black in
illustration) and the other complementary to the particle DNA (blue in illustration, sticky-end).
Adapted from [59]

PDDA (poly(diallyldimethylammonium chloride) and PSS (poly(styrenesulfonate)).
Finally, a thin layer of QD-doped PMMA (10 nm thick) is spin coated onto the sam-
ple. By controlling the interdistance between the QDs and the GNP, it is possible to
modulate the QD emission as shown in Fig. 9.34f.

9.4 Alternative Techniques and Emerging Issues

In this section, we will address various alternative techniques and emerging issues
related to the application of plasmonics such as large-scale nanostructuring and
integration.



9 Nanofabrication for Plasmonics 307

Fig. 9.33 Scheme of the approach. a AgNP deposited on a functionalized glass substrate. b Deposi-
tion of the photopolymerizable formulation. c, d Plasmon-enhanced near-field photopolymerization
of PPF leading to two wings corresponding to the dipolar LSP resonance. e The resulting hybrid
nanoparticle revealed by the rinsing procedure. f Grating height as a function of incident energy
density allowing one to define the threshold of polymerization. g and h AFM images recorded after
irradiation and developing of the silver nanoparticles arrays covered with the photopolymerizable
formulation. From [52] and [60]

9.4.1 Localized Photochemical Combined Synthesis
and Patterning

A new approach has been recently developed by Jradi et al. [62]. This method
relies on the photogeneration of silver nanoparticles. Starting from a solution of
photosensitizer and silver cations, the absorbed light will induce the generation of
radicals, which will reduce the silver cations to form silver nanoparticles. Thus, it
is very easy to pattern silver nanoparticles using this method combined with the
different optical-based lithography techniques. In this example, the growth of metal
nanoparticles at the very end of a single mode optical fiber is demonstrated.

9.4.2 Material Issues

There are two material issues emerging in the field of plasmonics. The first one is
related to the adhesion of metals on oxide substrate and the second one concerns
the material intrinsic losses. A third one will be the material compatibility with
standard already existing processes and especially Complementary metal–oxide–
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Fig. 9.34 a–e Schematic representation of the different steps allowing one to control the interdis-
tance between the gold nanoparticle and the QDs. The interdistance is tuned by successive dipping
in polycations and polyanions solutions. f Fluorescence enhancement measured on gold nanoparti-
cles of different sizes (from 80 to 160 nm in diameter) as a function of the interdistance. From [61]

semiconductor (CMOS) process in the case of silicon integration (cf. Sect. 9.4.4 on
Plasmonic integration).

Chromium is usually used to promote adhesion on the glass substrate of gold and
silver. This has been confirmed by adhesion force measurement using an AFM tip
interacting with the gold surface [63]. The mechanism could be the formation of a
chromium oxide at the substrate interface. While a Cr thin layer gives satisfactory
results as an adhesion promoter, it appears that it also strongly affects the optical
properties of the overlaying metallic structures. Figure 9.36 simulates the effect of
Cr adhesion layer on particle resonance [64]. FDTD calculation combined with the
critical points model which was found to be well adapted for particle resonance
description through the entire visible range was used here. The damping of resonance
is already visible for 1 nm of Cr thickness.

The effect of adhesion was further studied through fluorescence enhancement
and alternative adhesion layers were proposed [65]. As shown in Fig. 9.37, a higher
fluorescence enhancement is observed when replacing Cr or Ti layer by Cr2 O3 or
TiO2 layer, respectively. These observations were done using fluorescent molecules
going through a metallic single aperture of 120 nm of diameter (cf. 9.37b). A 10 nm
TiO2 adhesion layer gives the highest enhancement factor (four times). The results
were again interpreted in terms of absorption losses via the material properties or
thickness.
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Fig. 9.35 a Silver NPs photogenerated at the extremity of an optical fiber. Influence of the photonic
conditions on the size and number of silver NPs fabricated at the extremity of single mode optical
fiber. (Wavelength = 405 nm; 0.15 wt% of AgNO3; 0.30 wt% of Irgacure 819.) b P = 1 µW,
t = 12, 5 s. c P = 25 µW, t = 0, 5 s

Fig. 9.36 Chromium adhe-
sion layer effect on particle
resonance. From [64]

Another material-related aspect is the crystallinity of the evaporated metals. While
thermal or electron-beam evaporations are very versatile techniques, the films show a
granular structure as shown in Fig. 9.7b. One of the first papers which emphasized on
the importance of the crystallographic quality of the metallic structure, was published
in 2005 [66]. As shown in Fig. 9.38, plasmons generated at one end of the structure can
be reflected back to form a stationary wave pattern whose contrast directly depends on
losses. A 10 times larger contrast is observed for a chemically synthesized nanowire
than the evaporated one [66].
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Fig. 9.37 Adhesion layer effect on fluorescence enhancement. From [65]

9.4.3 Large-Scale Nanostructuring: Toward Plasmonic Materials
(Effective Properties) and Metamaterials

Large-scale nanolithography has become an issue in numerous fields and not only
in electronics. As far as periodic patterns are concerned, laser interference lithogra-
phy is definitely a technique of interest. In 2007, a high-throughput nanofabrication
technique, soft interference lithography (SIL), combining the ability of interference
lithography to produce wafer-scale nanopatterns with the versatility of soft lithogra-
phy, was proposed and used to produce plasmonic metamaterials [67]. Metal films
perforated with quasi-infinite arrays of 100-nm holes were generated over areas
greater than 10 square centimeters, exhibiting sharp spectral features. In addition,
soft interference lithography was also used to produce various infinite and finite-
area arrays of nanoparticles, including patterns that contained optically side-by-side
distinct particles and arrays that contained both metallic and dielectric materials.
A sketch of the technique is shown in Fig. 9.39. An amazing aspect of this technique
is that one can obtain metallic foils as shown in Fig. 9.40.

As far as high resolution, fast process, and low cost are concerned, one of the
most promising techniques is to combine electron-beam lithography with nanoim-
printing. While high-resolution nanoimprinting of plasmonic structures has been
demonstrated, large-scale replication is still an issue. One of the issues lies in the
intimate contact, which is needed on the wafer scale. An example of replicated and
transferred, bow-tie nanoantenna with sub-30-nm gap is shown in Fig. 9.41. While
large-scale structuring is still an issue, there is an increase in the number of papers
dealing with nanoimprinting applied to plasmonics [68].

As already mentioned, large-scale nanolithography is an issue for 2D patterning.
It appears even more challenging in 3D or at least 2.5D structuring. As an example of
2.5D large-scale nanostructuring, the reader may refer to Fig. 9.30 presented earlier
showing an array of plasmonic glass nanotips obtained by combining interference
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Fig. 9.38 a Schematic of the experiment. b and c Scanning electron micrographs of a chemically
and an electron-beam lithographically fabricated silver nanowire, respectively. d Scattered light
spectra at the end of the nanowires and resulting stationary waves. From [66]

lithography together with surface functionalization. As far as 3D nanostructuring is
concerned, multistep processes based on planar nanotechnology (“wood pile” struc-
ture [69]) have already been demonstrated for the fabrication of metamaterials [70].
Alternatively 3D self-assembly of mesospheres could be used as for photonic crys-
tals [71], but metamaterials are usually based on more elaborated elementary cells,
which require even more elaborated surface chemistry with anisotropic interaction.
Alternatively to self-assembly, the latter approach combining laser interference litho-
graphy with surface functionalization in order to graft to 3D nanoobjects could also
be used. It is worth mentioning here that compared to plasmonics, large-scale litho-
graphy appears to be an even more important issue in the case of metamaterials.
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Fig. 9.39 Soft interference lithography. a Optical micrograph of a 14 cm2 array of 100-nm-diameter
Si posts (height and pitch = 400 nm) prepared by interference lithography. The inset shows the
SEM image of the Si posts. The pattern was used as a master for preparing Simon India Ltd.
polydimethylsiloxane (SIL PDMS) photomasks. b Scheme depicting the fabrication procedure of
infinite nanohole arrays and finite-sized arrays (patches) of holes. c Optical micrograph of a large-
area (around 3 cm times 4 cm) gold film perforated with an array of 100-nm holes supported on
glass. A reflection of the penny can be seen at the bottom of the gold film. From [67]

9.4.4 Plasmonic Integration

Integration of plasmonic structures on glass has already been demonstrated making
plasmonic platforms available for bio or chemical sensing and even more and more for
imaging. In addition, plasmonic structures integration on optoelectronic devices, such
as edge-emitting diodes, has also been demonstrated [56]. Plasmonic structures are
also potentially of great interest for other applications and especially major ones like
telecommunications and computing relying on integrated electronics and photonics.
Plasmonic structures are often presented as candidates to transport both electronic and
photonic information and to bridge the gap between electronic and photonic devices.
Silicon photonics has become a reality thanks to the Silicon on insulator (SOI)
technology which is fully compatible with CMOS processes. The same compatibility
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Fig. 9.40 Folding plasmonic foil from [67]

Fig. 9.41 Nanoimprinted nanoantenna (courtesy of LETI)

has to be met for plasmonic devices. Figure 9.42 shows a very recent result dealing
with copper slit waveguides bridging SOI waveguides [72].

The processes used to realize the structure shown in Fig. 9.42 include deep UV
photolithography, dry etching, and chemo-mechanical polishing (CMP) allowing
for monolithic integration with no alignment step. Besides a very efficient optical
coupling (over 50 %), unexpectedly low propagation losses, and a broadband sub-50-
nm optical confinement, the structure reported in this paper is of importance because
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Fig. 9.42 CMOS-compatible hybrid plasmonic/photonic optical chip. From [72]

it is the first CMOS-compatible plasmonic device ever made. The use of frontline
microelectronic fabrication facilities is suitable for very large-scale integration. This
work follows first attempts on plasmonic waveguide integration on SOI [73] and
other works on active devices [74, 75].

9.5 Summary

Within the past 15 years tremendous progresses have been done in the control of
metallic nanostructure or particle size, shape, and distribution. Remarkable is the
number of techniques and approaches that have been developed. While electron-
beam lithography allows for perfect arrangement, it does not give access to the
full zoology of particles that can be chemically synthesized. As a consequence if
simple assemblies of well-defined structures have been demonstrated, there is still a
long way to go to be able to synthesize a real plasmonic material with well-defined
engineering macroscopic properties. Large-scale structuring is definitely one of the
issues, together with the nanostructuring in the third direction. It is therefore most
likely that depending on the application, a combination of techniques will be required
including soft chemistry routes and 3D nanoobjects’ assembly. Forthcoming issue,
include silicon photonics integration and elaboration of (hybrid) functional Materials
and Metamaterials.
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