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PTCP Aim and Scope

Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material sciences, including
theoretical, mathematical and computational chemistry, physical chemistry and chemical
physics and biophysics.

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: the-
ory is used to interpret experimental results and may suggest new experiments; ex-
periment helps to test theoretical predictions and may lead to improved theories.
Theoretical Chemistry (including Physical Chemistry and Chemical Physics) pro-
vides the conceptual and technical background and apparatus for the rationalisation
of phenomena in the chemical sciences. It is, therefore, a wide ranging subject,
reflecting the diversity of molecular and related species and processes arising in
chemical systems. The book series Progress in Theoretical Chemistry and Physics
aims to report advances in methods and applications in this extended domain. It will
comprise monographs as well as collections of papers on particular themes, which
may arise from proceedings of symposia or invited papers on specific topics as well
as from initiatives from authors or translations.

The basic theories of physics—classical mechanics and electromagnetism, rela-
tivity theory, quantum mechanics, statistical mechanics, quantum electrodynamics—
support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the valence theories, which allow to interpret the structure of molecules, and for
the spectroscopic models, employed in the determination of structural information
from spectral patterns. Indeed, Quantum Chemistry often appears synonymous with
Theoretical Chemistry; it will, therefore, constitute a major part of this book se-
ries. However, the scope of the series will also include other areas of theoretical
chemistry, such as mathematical chemistry (which involves the use of algebra and
topology in the analysis of molecular structures and reactions); molecular mechan-
ics, molecular dynamics and chemical thermodynamics, which play an important
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vi PTCP Aim and Scope

role in rationalizing the geometric and electronic structures of molecular assem-
blies and polymers, clusters and crystals; surface, interface, solvent and solid state
effects; excited-state dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific re-
search, based on the exploitation of fast electronic digital computers. Computation
provides a method of investigation which transcends the traditional division between
theory and experiment. Computer-assisted simulation and design may afford a solu-
tion to complex problems which would otherwise be intractable to theoretical analy-
sis, and may also provide a viable alternative to difficult or costly laboratory experi-
ments. Though stemming from Theoretical Chemistry, Computational Chemistry is
a field of research in its own right, which can help to test theoretical predictions and
may also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions,
to the role of molecules in the biological sciences. Therefore, it involves the physi-
cal basis for geometric and electronic structure, states of aggregation, physical and
chemical transformations, thermodynamic and kinetic properties, as well as unusual
properties such as extreme flexibility or strong relativistic or quantum-field effects,
extreme conditions such as intense radiation fields or interaction with the contin-
uum, and the specificity of biochemical reactions.

Theoretical Chemistry has an applied branch (a part of molecular engineering),
which involves the investigation of structure-property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design or
genetic engineering. Relevant properties include conductivity (normal, semi- and
super-), magnetism (ferro- and ferri-), optoelectronic effects (involving nonlinear
response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, biological and pharmaceutical
activities, as well as properties favouring self-assembling mechanisms and combi-
nation properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular
or cluster physicist, and the biochemist or molecular biologist who wish to employ
techniques developed in theoretical, mathematical and computational chemistry in
their research programs. It is also intended to provide the graduate student with
a readily accessible documentation on various branches of theoretical chemistry,
physical chemistry and chemical physics.



Preface

This volume collects 20 selected papers from the scientific contributions presented
at the Seventeenth International Workshop on Quantum Systems in Chemistry and
Physics (and Biology), QSCP-XVII, which was organized by Prof. Matti Hotokka
at Åbo Akademi University, Turku, Finland, from August 19 to 25, 2012. Over 120
scientists from 27 countries attended this meeting. Participants of the QSCP-XVII
workshop discussed the state of the art, new trends, and future evolution of methods
in molecular quantum mechanics, as well as their applications to a wide variety of
problems in chemistry, physics, and biology.

The large attendance attained in this conference was particularly gratifying. It is
the renowned interdisciplinary character and friendly atmosphere of QSCP meetings
that makes them so successful discussion forums.

Turku is located in the southwestern part of Finland. It was the capital city of
the country as well as its religious and cultural center throughout the Swedish pe-
riod. Christina, Queen of Sweden, founded the Åbo Akademi University in Turku
in 1630. When Finland became a Grand Duchy under Alexander I, Czar of Rus-
sia, in 1809, the former University was transferred to the new capital, Helsinki, and
eventually became the University of Helsinki.

The present-day Åbo Akademi University was founded in 1918, shortly after
Finland became independent from Russia. Some of the buildings of the old Åbo
Akademi University, such as the Ceremonial Hall, are still used by the University.
Today, Turku is the seat of the Archbishop of Finland and an active cultural and
industrial city endowed with numerous museums, art galleries and historical sites,
as well as an important seaport.

Details of the Turku meeting, including the scientific program, can be found on
the web site: http://www.qscp17.fi. Altogether, there were 19 morning and afternoon
sessions, where 56 plenary talks were given, and one evening poster session, with
21 flash presentations for a total of 55 posters displayed. We are grateful to all
participants for making the QSCP-XVII workshop such a stimulating experience
and great success.

QSCP-XVII followed the traditions established at previous workshops:
QSCP-I, organized by Roy McWeeny in 1996 at San Miniato (Pisa, Italy);

vii
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viii Preface

QSCP-II, by Stephen Wilson in 1997 at Oxford (England);
QSCP-III, by Alfonso Hernandez-Laguna in 1998 at Granada (Spain);
QSCP-IV, by Jean Maruani in 1999 at Marly-le-Roi (Paris, France);
QSCP-V, by Erkki Brändas in 2000 at Uppsala (Sweden);
QSCP-VI, by Alia Tadjer in 2001 at Sofia (Bulgaria);
QSCP-VII, by Ivan Hubac in 2002 near Bratislava (Slovakia);
QSCP-VIII, by Aristides Mavridis in 2003 at Spetses (Athens, Greece);
QSCP-IX, by Jean-Pierre Julien in 2004 at Les Houches (Grenoble, France);
QSCP-X, by Souad Lahmar in 2005 at Carthage (Tunisia);
QSCP-XI, by Oleg Vasyutinskii in 2006 at Pushkin (St Petersburg, Russia);
QSCP-XII, by Stephen Wilson in 2007 near Windsor (London, England);
QSCP-XIII, by Piotr Piecuch in 2008 at East Lansing (Michigan, USA);
QSCP-XIV, by Gerardo Delgado-Barrio in 2009 at El Escorial (Madrid, Spain);
QSCP-XV, by Philip Hoggan in 2010 at Cambridge (England);
QSCP-XVI, by Kiyoshi Nishikawa in 2011 at Kanazawa (Japan).

The lectures presented at QSCP-XVII were grouped into nine areas in the field of
Quantum Systems in Chemistry, Physics, and Biology, ranging from Concepts and
Methods in Quantum Chemistry and Physics through Molecular Structure and Dy-
namics, Reactive Collisions, and Chemical Reactions, to Computational Chemistry,
Physics, and Biology.

The width and depth of the topics discussed at QSCP-XVII are reflected in the
contents of this volume of proceedings in the book series Progress in Theoretical
Chemistry and Physics, which includes four sections:

I. Fundamental Theory (4 papers);
II. Molecular Structure, Properties and Processes (5 papers);

III. Clusters and Condensed Matter (9 papers);
IV. Structure and Processes in Biosystems (2 papers).

In addition to the scientific program, the workshop had its usual share of cultural
events. There was an entertaining concert by a tuba orchestra on the premises. The
City of Turku hosted a reception on the museum sail ship Suomen Joutsen, and one
afternoon was devoted to a visit to the archipelago on board of the old-fashioned
steamship Ukkopekka. The award ceremony of the CMOA Prize and Medal took
place in the historical Ceremonial Hall of the old Åbo Akademi University.

The CMOA Prize was shared between two selected nominees: Marcus Lundberg
(Uppsala, Sweden) and Adam Wasserman (Purdue, USA). The CMOA Medal was
awarded to Pr. Martin Quack (ETH, Switzerland). Following an established custom
at QSCP meetings, the venue of the next (XVIIIth) workshop was disclosed at the
end of the banquet: Paraty (Rio de Janeiro), Brazil, in December 2013.

We are pleased to acknowledge the generous support given to the QSCP-XVII
conference by the Federation of Finnish Learned Societies, the Svenska Tekniska
Vetenskaps-Akademien i Finland, the City of Turku, the Åbo Akademi University,
the Walki company, and Turku Science Park. We are most grateful to the members
of the Local Organizing Committee (LOC) for their work and dedication, which
made the stay and work of the participants both pleasant and fruitful. Finally, we
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would like to thank the members of the International Scientific Committee (ISC)
and Honorary Committee (HC) for their invaluable expertise and advice.

We hope the readers will find as much interest in consulting these proceedings as
the participants in attending the meeting.

Matti Hotokka
Erkki J. Brändas

Jean Maruani
Gerardo Delgado-Barrio

Turku, Finland
Uppsala, Sweden
Paris, France
Madrid, Spain
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Part I
Fundamental Theory



Chapter 1
The Potential Energy Surface in Molecular
Quantum Mechanics

Brian Sutcliffe and R. Guy Woolley

Abstract The idea of a Potential Energy Surface (PES) forms the basis of al-
most all accounts of the mechanisms of chemical reactions, and much of theoret-
ical molecular spectroscopy. It is assumed that, in principle, the PES can be calcu-
lated by means of clamped-nuclei electronic structure calculations based upon the
Schrödinger Coulomb Hamiltonian. This article is devoted to a discussion of the
origin of the idea, its development in the context of the Old Quantum Theory, and
its present status in the quantum mechanics of molecules. It is argued that its present
status must be regarded as uncertain.

1.1 Introduction

The Coulombic Hamiltonian H′ does not provide much obvious information or guidance,
since there is [sic] no specific assignments of the electrons occurring in the systems to the
atomic nuclei involved—hence there are no atoms, isomers, conformations etc. In particular
one sees no molecular symmetry, and one may even wonder where it comes from. Still it is
evident that all of this information must be contained somehow in the Coulombic Hamilto-
nian H′ [1].

Per-Olov Löwdin, Pure. Appl. Chem. 61, 2071 (1989)

This paper addresses the question Löwdin wondered about in terms of what quan-
tum mechanics has to say about molecules. A conventional chemical description
of a stable molecule is a collection of atoms held in a semi-rigid arrangement by
chemical bonds, which is summarized as a molecular structure. Whatever ‘chemical
bonds’ might be physically, it is natural to interpret this statement in terms of bond-
ing forces which are conservative. Hence a stable molecule can be associated with
a potential energy function that has a minimum value below the energy of all the
clusters that the molecule can be decomposed into. Finding out about these forces,
or equivalently the associated potential energy, has been a major activity for the past
century. There is no a priori specification of atomic interactions from basic physical
laws so the approach has been necessarily indirect.

B. Sutcliffe (B)
Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, 1050 Bruxelles,
Belgium
e-mail: bsutclif@ulb.ac.be

M. Hotokka et al. (eds.), Advances in Quantum Methods and Applications in
Chemistry, Physics, and Biology, Progress in Theoretical Chemistry and Physics 27,
DOI 10.1007/978-3-319-01529-3_1,
© Springer International Publishing Switzerland 2013
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4 B. Sutcliffe and R.G. Woolley

After the discovery of the electron [2] and the triumph of the atomic, mechanistic
view of the constitution of matter, it became universally accepted that any specific
molecule consists of a certain number of electrons and nuclei in accordance with its
chemical formula. This can be translated into a microscopic model of point charged
particles interacting through Coulomb’s law with non-relativistic kinematics. These
assumptions fix the molecular Hamiltonian as precisely what Löwdin referred to as
the ‘Coulombic Hamiltonian’,

H=
n∑

i

p2
i

2mi
+

n∑

i<j

eiej

4πε0|qi − qj | (1.1)

where the n particles are described by empirical charge and mass parameters
{ei,mi, i = 1, . . . , n}, and Hamiltonian canonical variables {qi ,pi , i = 1, . . . , n},
which after quantization are regarded as non-commuting operators.

As is well-known classical dynamics based on (1.1) fails completely to account
for the stability of atoms and molecules, as evidenced through the facts of chem-
istry and spectroscopy. And so, starting about a century ago, there was a progressive
modification of dynamics as applied to the microscopic world from classical (‘ratio-
nal’) mechanics, through the years of the Old Quantum Theory until finally quan-
tum mechanics was defined. This slow evolution left its mark on the development of
molecular theory in as much that classical ideas survive in modern Quantum Chem-
istry. In the following sections we review some aspects of this progression; we also
emphasize that a direct approach to a quantum theory of a molecule can be based
on the quantized version of (1.1), simply as an extension of the highly successful
quantum theory of the atom.

It is of interest to compare this so-called ‘Isolated Molecule’ model with the
conventional account; after all, the sentiment of the quotation from Löwdin reflects
the widespread view that the model is the fundamental basis of Quantum Chemistry.
Even though there are no closed solutions for molecules, it is certainly possible to
characterize important qualitative features of the solutions for the model because
they are determined by the form of the defining equations [1, 3, 4]. One of the most
important ideas in molecular theory is the Potential Energy Surface for a molecule;
this is basic for theories of chemical reaction rates and for molecular spectroscopy.
In Sect. 1.2 we discuss some aspects of its classical origins. Then in Sect. 1.3 we
revisit the same topics from the standpoint of quantum mechanics, where we will
see that if we eschew the conventional classical input (classical fixed nuclei), there
are no Potential Energy Surfaces in the solutions derived from (1.1). It is not the
case that the conventional approach via the clamped-nuclei Hamiltonian is merely
a convenience that permits practical calculation (in modern terms, computation)
with results concordant with the underlying Isolated Molecule model that would
be obtained if only the computations could be done. On the contrary, a qualitative
modification of the formalism is imposed by hand. The paper concludes in Sect. 1.4
with a discussion of these results; some relevant mathematical results are illustrated
in the Appendix.
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We wish to emphasize that the paper is about a difficult technical problem; it is
not a contribution to the philosophy of science. In the traditional picture, (1.15) is
widely held to be exact in principle, so if the adiabatic approximation is found to be
inadequate we would expect to do ‘better’ by including coupling terms. Our analysis
implies that belief is not well founded because (1.15) is not well founded a priori
in quantum mechanics; it requires an extra ingredient put in by hand. It might work,
or it might not; in other words it is not a sure-fire route to a better account. While
we can’t offer a better alternative, that information is surely important for chemical
physics.

1.2 Classical Origins

The idea of a Potential Energy Surface can be glimpsed in the beginnings of chemi-
cal reaction rate theory that go beyond the purely thermodynamic considerations of
van ’t Hoff and Duhem more than a century ago, and in the first attempts to under-
stand molecular (‘band’) spectra in dynamical terms in the same period. Thereafter
progress was rapid as the newly emerging ideas of a ‘quantum theory’ were devel-
oped; by the time that quantum mechanics was finalized (1925/6) ideas about the
separability of electronic and nuclear motions in molecules were common currency,
and were carried forward into the new era. In this section we describe how this
development took place.

1.2.1 Rates of Chemical Reactions—René Marcelin

The idea of basing a theory of chemical reactions (chemical dynamics) on an energy
function that varies with the configurations of the participating molecules seems to
be due to Marcelin. In his last published work, his thesis, [5], Marcelin showed
how the Boltzmann distribution for a system in thermal equilibrium and statistical
mechanics can be used to describe the rate, v, of a chemical reaction. The same work
was republished in the Annales de Physique [6] shortly after his death.1 The main
conclusions of the thesis were summarized in two short notes published in Comptes
Rendus in early 1914 [7, 8]. His fundamental result can be expressed, in modern
terms, as

v =M(e−�G#+/RT − e−�G#−/RT
)

(1.2)

where R is the molar gas constant, T is the temperature in Kelvin, the subscripts
+,− refer to the forward and reverse reactions, and �G# is the change in the molar
Gibbs (free) energy in going from the initial (+) or final (−) state to the ‘activated

1René Marcelin was killed in action fighting for France in September 1914.
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state’. The pre-exponential factor M is obtained formally from statistical mechan-
ics. Marcelin gave several derivations of this result using both thermodynamic argu-
ments and also the statistical mechanics he had learnt from Gibbs’s famous mem-
oir [9]. It is perhaps worth remarking that Gibbs saw statistical mechanics as the
completion of Newtonian mechanics through its extension to conservative systems
with an arbitrarily large, though finite, number of degrees of freedom. The laws
of thermodynamics could easily be obtained from the principles of statistical me-
chanics, of which they were the incomplete expression, but Gibbs did not require
thermodynamic systems to be made up of molecules; he explicitly did not wish his
account of rational mechanics to be based on hypotheses concerning the constitution
of matter, which at the time were still controversial [10].

From our point of view the most interesting aspect of Marcelin’s account is the
suggestion that molecules can have more degrees of freedom than those of simple
point material particles. In this perspective, a molecule can be assigned a set of
Lagrangian coordinates q = q1, q2, . . . , qn, and their corresponding canonical mo-
menta p = p1,p2, . . . , pn. Then the instantaneous state of the molecule is associ-
ated with a ‘representative’ point in the canonical phase-space P of dimension 2n,
and so “as the position, speed or structure of the molecule changes, its representative
point traces a trajectory in the 2n-dimensional phase-space” [5].

In his phase-space representation of a chemical reaction the transformation of
reactant molecules into product molecules was viewed in terms of the passage of a
set of trajectories associated with the ‘active’ molecules through a ‘critical surface’
S in P that divides P into two parts, one part being associated with the reactants,
the other with the products. Such a [hyper]surface is defined by a relation

S(q,p)= 0.

According to Marcelin, for passage through this surface it is required2 [5]

[une molécule] il faudra [. . . ] qu’elle atteigne une certaine région de l’éspace sous une
obliquité convenable, que sa vitesse dépasse une certain limite, que sa structure interne
corresponde à une configuration instable, etc.; . . .

In modern notation, the volume of a cell in the 2n-dimensional phase-space is

d� = dqdp.

The number of points in d� is given by the Gibbs distribution function f

dν = f (q,p, t)d�. (1.3)

Marcelin chose the distribution function for the active molecules as

f (q,p, t)= e−G#+/RT e−H (q,p)/kBT (1.4)

2That a molecule must reach a certain region of space at a suitable angle, that its speed must exceed
a certain limit, that its internal structure must correspond to an unstable configuration etc.; . . .
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where kB is Boltzmann’s constant, H is the Hamiltonian function for the molecule,
andG#+ is the Gibb’s free energy of the active molecules relative to the mean energy
of the reactant molecules. It is independent of the canonical variables. There is an
analogous expression for the reverse reaction involving G#−. Marcelin quoted a for-
mula due to Gibbs [9] for the number of molecules dN crossing a surface element
ds in the critical surface in the neighbourhood of q,p, in time dt , which may be
written in shorthand as

dN = dtf (q,p, t)J (q̇, ṗ,q,p)
where ṗ, q̇ are regarded as functions of q,p by virtue of Hamilton’s equations of
motion. The total rate is

v =
∫
d�f (q,p)J δ

[
S(q,p)

]
(1.5)

where the delta function confines the integration to the critical surface S . Equa-
tion (1.2) results from taking the difference between this expression for the forward
and reverse reactions, and factoring out the terms in G#±; the remaining integration,
which Marcelin did not evaluate, defines the multiplying factor M .

1.2.2 Molecular Spectroscopy and the Old Quantum Theory

Although the discussion in the previous section looks familiar, it does so only be-
cause of the modern interpretation we put upon it.3 It is important to note that
nowhere did Marcelin elaborate on how the canonical variables were to be cho-
sen, nor even how n could be fixed in any given case. The words ‘atom’, ‘electron’,
‘nucleus’ do not appear anywhere in his thesis, in which respect he seems to have
followed the scientific philosophy of his countryman Duhem [11]. On other pages
in the thesis Marcelin referred to the ‘structure’ (also ‘architecture’) of a molecule
and to molecular ‘oscillations’ but never otherwise invoked the atomic structural
conception of a molecule due to e.g. van ’t Hoff, although he was very well aware
of van ’t Hoff’s Physical Chemistry.

Contemporary with Marcelin’s investigation of chemical reaction rates was the
introduction of a completely novel model of an atom due to Rutherford. However

3Nevertheless it seems proper to regard Marcelin’s introduction of phase-space variables and a
critical reaction surface into chemical dynamics as the beginning of a formulation of the Transition
State Theory that was developed by Wigner in the 1930’s [12–15]. The 2n phase-space variables
q,p were identified with the n nuclei specified in the chemical formula of the participating species,
and the Hamiltonian H was that for classical nuclear motion on a Potential Energy Surface; this
dynamics was assumed to give rise to a critical surface which was such that reaction trajectories
cross the surface precisely once. The classical nature of the formalism was quite clear because
the Uncertainty Principle precludes the precise specification of position on the critical surface
simultaneously with the momentum of the nuclei.
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it quickly became apparent that Rutherford’s solar system model of the atom (plan-
etary electrons moving about a central nucleus) cannot avoid eventual collapse if
classical electrodynamics applies to it. This is because of Earnshaw’s theorem which
states that it is impossible for a collection of charged particles to maintain a static
equilibrium purely through electrostatic forces [16]. This is the classical result that
Bohr alluded to in his 1922 Nobel lecture [17] to rule out an electrostatical explana-
tion for the stability of atoms and molecules.

The theorem may be proved by demonstrating a contradiction. Suppose the
charges are at rest and consider the motion of a particular charge en in the electric
field, E, generated by all of the other charged particles. Assume that this particular
charge has en > 0. The equilibrium position of this particle is the point x0

n where
E(x0

n)= 0, since the force on the charge is enE(xn) (the Lorentz force for this static
case). Obviously, x0

n cannot be the equilibrium position of any other particle. How-
ever, in order for x0

n to be a stable equilibrium point, the particle must experience
a restoring force when it is displaced from x0

n in any direction. For a positively
charged particle at x0

n, this requires that the electric field points radially towards x0
n

at all neighbouring points. But from Gauss’s law applied to a small sphere centred
on x0

n, this corresponds to a negative flux of E through the surface of the sphere, im-
plying the presence of a negative charge at x0

n, contrary to our original assumption.
Thus E cannot point radially towards x0

n at all neighbouring points, that is, there
must be some neighbouring points at which E is directed away from x0

n. Hence,
a positively charged particle placed at x0

n will always move towards such points.
There is therefore no static equilibrium configuration. According to classical elec-
trodynamics accelerated charges must radiate electromagnetic energy, and hence
lose kinetic energy, so even a dynamical model cannot be stable according to purely
classical theory.

Molecular models which can be represented in terms of the (phase-space) vari-
ables of classical dynamics had a far-reaching influence on the interpretation of
molecular spectra after the dissemination of Bohr’s quantum theory of atoms and
molecules based on transitions between stationary states [18]. An important feature
of his new theory was that classical electrodynamics should be deemed to be still
operative when transitions took place, but not when the system was in a stationary
state, by fiat. Bohr had originally used the fact that two particles with Coulombic
interaction lead to a Hamiltonian problem that is completely soluble by separation
of variables. With more particles and Coulombic interactions this is no longer true;
however by largely qualitative reasoning he was able to develop a quantum theory of
the atom and the Periodic Table (reviewed in [17]). Furthermore by the introduction
of Planck’s constant h through the angular momentum quantization condition, Bohr
solved another problem of the classical theory. In classical electrodynamics the only
characteristic length available is the classical radius ro for a charged particle. This is
obtained by equating the rest-mass energy for the charge to the electrostatic energy
of a charged sphere of radius ro

ro =
(

e2

4πε0mc2

)
.
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For an electron this yields ro ≈ 2.8 × 10−15 m and an even smaller value for any
nucleus. It was clear that this was far too small to be relevant to an atomic theory;
of course the Bohr radius ao ≈ 0.5× 10−10 m is of just the right dimension.

Bohr’s theory developed into the Old Quantum Theory which was based on a
phase-space description of an atomic-molecular system and theoretical techniques
originally developed in celestial mechanics. These came from the application of the
developing quantum theory to molecular band spectra by Schwarzschild [19] and
Heurlinger [20] who used it to describe the quantized vibrational and rotational en-
ergies of small molecules (diatomic and symmetric top structures). Schwarzschild,
an astrophysicist, was responsible for the introduction of action-angle methods as
a basis for quantization in atomic/molecular theory. Heurlinger assumed a quanti-
zation of the energy of the nuclear vibration analogous to that used by Planck for
his ideal linear oscillators, with the possibility of anharmonic behaviour. Thus a
force-law or potential energy depending on the separation of the nuclei, for a given
arrangement of the electrons, was required.

The basic calculational tool was a perturbation theory approach developed enthu-
siastically by Born [21] and Sommerfeld [22] with their research assistants. The so-
lution of the Hamiltonian equations of motion could be attempted via the Hamilton-
Jacobi method based on canonical transformations of the action-angle variables.
This leads to an expression for the energy that is a function of the action integrals
only. The action (or ‘phase’) integrals are constants of the motion, and are also adi-
abatic invariants [23], and as such are natural objects for quantization according to
the ‘quantum conditions’. Thus for a separable system with k degrees of freedom
and action integrals {Ji, i = 1, . . . , j ≤ k}, the quantum conditions according to
Sommerfeld are

Ji ≡
∮
pidqi = nih, i = 1, . . . , j (1.6)

where the ni are non-negative integers (j < k in case of degeneracy). Here it is
assumed that each pi is a periodic function of only its corresponding conjugate co-
ordinate qi , and the integration is taken over a period of qi . An important principle,
due to Bohr, was that slow, continuous (‘adiabatic’) deformations of an atomic sys-
tem kept the system in a stationary state [24, 25]. Thus the action integrals for a
Hamiltonian depending on parameters that vary slowly in time are conserved under
slow changes of the parameters.4 This could be applied to the problem of chemical
bonding by treating the nuclear positions as the slowly varying parameters in an
adiabatic transformation of the Hamiltonian for the electrons in the presence of the
nuclei.

We now know that systems of more than 2 particles with Coulomb interactions
may have very complicated dynamics; Newton famously struggled to account quan-
titatively for the orbit of the moon in the earth-moon-sun problem (n = 3). The
underlying reason for his difficulties is the existence of solutions carrying the sig-
nature of chaos [27] and this implies that there are classical trajectories to which

4This is strictly true only for integrable Hamiltonians [26].
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the quantum conditions simply cannot be applied5 because the integrals in (1.6) do
not exist [28]. We also know that the r−1 singularity in the classical potential en-
ergy can lead to pathological dynamics in which a particle is neither confined to a
bounded region, nor escapes to infinity for good. If the two-body interaction V (r)
has a Fourier transform v(k) the total potential energy can be expressed as

U =
n∑

i<j

eiejV
(|xi − xj |

)

= −n
2
V (0)+ 1

(2π)3

∫
d3kv(k)

∣∣∣∣
∑

i

eie
ik.xi

∣∣∣∣
2

.

In the case of the Coulomb interaction v(k)= 4π/k2 > 0 and so the potential energy
U is bounded from below by −nV (0)/2; unfortunately for point charges as r→ 0,
V (r)→±∞ and collapse may ensue [29].

Attempts were made by Born and his assistants to discuss the stationary state
energy levels of ‘simple’ non-trivial systems such as He, H+2 , H2, H2O. The molec-
ular species were tackled as problems in electronic structure, that is, as requiring the
calculation of the energy levels for the electron(s) in the field of fixed nuclei as a cal-
culation separate from the rotation-vibration of the molecule as a whole. Pauli gave
a lengthy qualitative discussion of the possible Bohr orbits for the single electron
moving in the field of two fixed protons in H+2 but could not obtain the correct sta-
tionary states [32]. Nordheim investigated the forces between two hydrogen atoms
as they approach each other adiabatically6 in various orientations consistent with
the quantum conditions. Before the atoms get close enough for the attractive and
repulsive forces to balance out, a sudden discontinuous change in the electron orbits
takes place and the electrons cease to revolve solely round their parent nuclei. Nord-
heim was unable to find an interatomic distance at which the energy of the combined
system was less than that of the separated atoms; this led to the conclusion that the
use of classical mechanics to discuss the stationary states of the molecular electrons
had broken down comprehensively [33, 34]. This negative result was true of all the
molecular calculations attempted within the Old Quantum Theory framework which
was simply incapable of accounting for covalent bonding [35].

The most ambitious application of the Old Quantum Theory to molecular theory
was made by Born and Heisenberg [36]. They started from the usual non-relativistic
Hamiltonian (1.1) for a system comprised of n electrons and N nuclei interacting
via Coulombic forces. They assumed there is an arrangement of the nuclei which is a
stable equilibrium, and use that (a molecular structure) as a reference configuration

5The difficulties for action-angle quantization posed by the existence of chaotic motions in non-
separable systems [30] were recognized by Einstein at the time the Old Quantum Theory was
developed [31].
6This is the earliest reference we know of where the idea of adiabatic separation of the electrons
and the nuclei is proposed explicitly.
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for the calculation. Formally the rotational motion of the system can be dealt with
by requiring the coordinates for the reference structure to satisfy7 what were later to
become known as ‘the Eckart conditions’ [37]. Then with a suitable set of internal
variables and

λ=
(
m

M

) 1
2

as the expansion parameter, the Hamiltonian was expressed as a series

H =Ho + λ2H2 + · · · (1.7)

to be treated by the action-angle perturbation theory Born had developed. The ‘un-
perturbed’ Hamiltonian Ho is the full Hamiltonian for the electrons with the nuclei
fixed at the equilibrium structure,H2 is quadratic in the nuclear variables (harmonic
oscillators) and also contains the rotational energy,8 while . . . stands for higher or-
der anharmonic vibrational terms. H1 may be dropped because of the equilibrium
condition. With considerable effort there follows the usual separation of molecu-
lar energies, although of course no concrete calculation was possible within the
Old Quantum Theory framework. It is noteworthy that their calculation gives the
electronic energies at a single configuration because the perturbation calculation re-
quires the introduction of the (assumed) equilibrium structure. This is different from
the adiabatic approach Nordheim tried (unsuccessfully) to get the electronic energy
at any separation of the nuclei [33].

1.3 Quantum Theory

With the completion of quantum mechanics in 1925–1926, the old problems in
atomic and molecular theory were reconsidered and considerable success was
achieved. The idea that the dynamics of the electrons and the nuclei should be
treated to some extent as separate problems was generally accepted. Thus the elec-
tronic structure calculations of London [39–41] can be seen as a successful reformu-
lation of the approach Nordheim had tried in terms of the older quantum theory, and
the idea of ‘adiabatic separation’ is often said to originate in this work. It is however
also implied in the closing section of Slater’s early He atom paper where he sketches
(but does not carry through) a perturbation method of approximate calculation for
molecules in which the nuclei are first held fixed, and the resulting electronic eigen-
value(s) then act as the potential energy for the nuclei [42]. A quantum mechanical

7This also deals with the uninteresting overall translation of the molecule.
8The rotational and vibrational energies occur together because of the choice of the parameter λ;
as is well-known, Born and Oppenheimer later showed that a better choice is to take the quarter
power of the mass ratio as this separates the vibrational and rotational energies in the orders of the
perturbation expansion [38].
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proof of Ehrenfest’s adiabatic theorem for time-dependent perturbations was given
by Born and Fock [43]. Most famously though, the quantum mechanical basis for
the idea of electronic Potential Energy Surfaces is commonly attributed to Born and
Oppenheimer, and it is to a consideration of their famous paper [38] that we now
turn.

1.3.1 Born and Oppenheimer’s Quantum Theory of Molecules

Much of the groundwork for Born and Oppenheimer’s treatment of the energy lev-
els of molecules was laid down in the earlier attempt by Born and Heisenberg [36].
The basic idea of both calculations is that the low-lying excitation spectrum of
a molecule can be obtained by regarding the nuclear kinetic energy as a ‘small’
perturbation of the energy of the electrons for stationary nuclei in an equilibrium
configuration. The physical basis for the idea is the large disparity between the
mass of the electron and the masses of the nuclei; classically the light electrons
undergo motions on a ‘fast’ timescale (τe ≈ 10−16 → 10−15 s), while the vibration-
rotation dynamics of the much heavier nuclei are characterized by ‘slow’ timescales
(τN ≈ 10−14 → 10−12 s).

Consider a system of electrons and nuclei and denote the properties of the for-
mer by lower-case letters (mass m, coordinates x, momenta p) and of the latter by
capital letters (mass M , coordinates X, momenta P ). The small parameter for the
perturbation expansion must clearly be some power of m/Mo, where Mo can be
taken as any one of the nuclear masses or their average. In contrast to the earlier
calculation they found the correct choice is

κ =
(
m

Mo

) 1
4

rather than Born and Heisenberg’s λ= κ2. In an obvious shorthand notation using a
coordinate representation the kinetic energy of the electrons is then9

Te = Te
(
∂

∂x

)

while the nuclear kinetic energy depends on κ

TN = κ4H1

(
∂

∂X

)
.

9The details can be found in the original paper [38], and in various English language presentations,
for example [44–46].
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The Coulomb energy is simply U(x,X). They then define the ‘unperturbed’ Hamil-
tonian

Te +U =Ho
(
x,
∂

∂x
,X

)
(1.8)

and express the total Hamiltonian as

H =Ho + κ4H1 (1.9)

with Schrödinger equation

(H −E)ψ(x,X)= 0. (1.10)

At this point in their argument they state

Setzt man in (12) [(1.10) above] κ = 0, so bekommt man eine Differentialgleichung für die
xk allein, in der die Xl als Parameter vorkommen:

{
Ho

(
x,
∂

∂x
;X
)
−W
}
ψ = 0.

Sie stellt offenbar die Bewegung der Elektronen bei festgehaltenen Kernen dar.10

This splitting of the Hamiltonian into an ‘unperturbed’ part (κ = 0) and a ‘per-
turbation’ is essentially the same as in the earlier Old Quantum Theory version [36].
The difference here is that the action-angle perturbation theory of the Old Quantum
Theory is replaced by Schrödinger’s quantum mechanical perturbation theory. In
the following it is understood that the overall translational motion of the molecule
has been separated off by a suitable coordinate transformation; this is always possi-
ble. The initial step in setting up the perturbation expansion involves rewriting the
Hamiltonian Ho as a series in increasing powers of κ . This is achieved by introduc-
ing new relative coordinates that depend on κ

X =Xo + κζ (1.11)

for some fixed Xo, and using the {ζ} as the nuclear variables, in an expansion of
Ho about Xo.

Then as usual the eigenfunction and eigenvalue of (1.10) are presented as series
in κ

ψ = ψ(0) + κψ(1) + κ2ψ(2) + · · · ,
E = E(0) + κE(1) + κ2E(2) + · · · ,

the expansions are substituted into the Schrödinger equation (1.10), and the terms
separated by powers of κ . This gives a set of equations to be solved sequentially.

10If one sets κ = 0. . . one obtains a differential equation in the xk alone, the Xl appearing as
parameters:. . . . Evidently, this represents the electronic motion for stationary nuclei.
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The crucial observation that makes the calculation successful is the choice of Xo;
the Schrödinger equation for the unperturbed Hamiltonian Ho can be solved for any
choice of the nuclear parameters X, and yields11 an unperturbed energy E(X) for
the configuration X. For the consistency of the whole scheme however it turns out
(cf. footnote 9) that Xo in (1.11) cannot be arbitrarily chosen, but must correspond
to a minimum of the electronic energy. That there is such a point is assumed to be
self-evident for the case of a stable molecule. The result of the calculation was a
triumph; the low-lying energy levels of a stable molecule can be written in the form

EMol =EElec + κ2EVib + κ4ERot + · · · (1.12)

in agreement with a considerable body of spectroscopic evidence. The eigenfunc-
tions that correspond to these energy levels are simple products of an electronic
wavefunction obtained for the equilibrium geometry and suitable vibration-rotation
wavefunctions for the nuclei.

The Born and Heisenberg calculation [36] had been performed while Heisenberg
was a student with Born; Kragh [35] quotes Heisenberg’s later view of it in the
following terms

As an exasperated Heisenberg wrote to Pauli, “The work on molecules I did with
Born. . . contains bracket symbols [Klammersymbole] with up to 8 indices and will probably
be read by no one.” Certainly, it was not read by the chemists.

Curiously that may have initially been the fate of Born and Oppenheimer’s paper. As
noted by one of us many years ago, a survey of the literature up to about 1935 shows
that the paper was hardly if ever mentioned, and when it was mentioned, its argu-
ments were used as a posteriori justification for what was being done anyway [47].
What was being done was the general use in molecular spectroscopy and chemical
reaction theory of the idea of Potential Energy Surfaces on which the nuclei moved.
As we have seen, that idea is not to be found in the approach taken by Born and
Oppenheimer which used (and had to use) a single privileged point in the nuclear
configuration space—the assumed equilibrium arrangement of the nuclei [38].

In 1935 a significant event was the publication of the famous textbook Introduc-
tion to Quantum Mechanics [48] which was probably the first textbook concerned
with quantum mechanics that addressed in detail problems of interest to chemists.
Generations of chemists and physicists took their first steps in quantum theory with
this book, which is still available in reprint form. Chapter X of the book is entitled
The Rotation and Vibration of Molecules; it starts by summarizing the empirical re-
sults of molecular spectroscopy which are consistent with (1.12). The authors then
turn to the wave equation for a general collection of electrons and nuclei and remark
that its Schrödinger wave equation may be solved approximately by a procedure
that they attribute to Born and Oppenheimer; first solve the wave equation for the
electrons alone, with the nuclei in a fixed configuration, and then solve the wave
equation for the nuclei alone, in which a characteristic energy value [eigenvalue] of

11W(X) in the notation of the above quotation.
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the electronic wave equation, regarded as a function of the internuclear distances,
occurs as a potential function. After some remarks about the coordinates they say

The first step in the treatment of a molecule is to solve this electronic wave equation for all
configurations of the nuclei. It is found that the characteristic values Un(ξ) of the electronic
energy are continuous functions of the nuclear coordinates ξ . For example, for a free di-
atomic molecule the electronic energy function for the most stable electronic state (n= 0)
is a function only of the distance r between the two nuclei, and it is a continuous function
of r , such as shown in Fig. 34-2.

Figure 34-2 referred to here is a Morse potential function. Later in the book where
they give a brief introduction to activation energies of chemical reactions they ex-
plicitly cite London [41] as the origin of the idea of adiabatic nuclear motion on
a Potential Energy Surface, though there is also a nod back towards Chap. X. Al-
though it is now almost universal practice to refer to treating the nuclei as clas-
sical particles that give rise to an electronic energy surface as ‘making the Born-
Oppenheimer approximation’ it is our opinion that the justification for such a strat-
egy is not to be found in The Quantum Theory of Molecules, [38]. Nor is it to be
found in the early papers of London [39–41] where it was simply assumed as a rea-
sonable thing to do. And it is certainly the case that Born and Oppenheimer did not
show the electronic energy to be a continuous function of the nuclear coordinates;
that was first demonstrated for a diatomic molecule forty years after Pauling and
Wilson’s book was published (see Sect. 1.3.4).

1.3.2 Born and the Elimination of Electronic Motion

Many years after his work with Heisenberg and Oppenheimer, Born returned to the
subject of molecular quantum theory and developed a different account of the sepa-
ration of electronic and nuclear motion [44, 49]. It is to this method that the expres-
sion ‘Born-Oppenheimer approximation’ usually refers in modern work. Consider
the unperturbed electronic Hamiltonian Ho(x,Xf ) at a fixed nuclear configuration
Xf that corresponds to some molecular structure (not necessarily an equilibrium
structure). The Schrödinger equation for Ho is

(
Ho(x,Xf )−Eo(Xf )m

)
ϕ(x,Xf )m = 0. (1.13)

This equation can have both bound-state and continuum eigenfunctions; the bound-
state eigenvalues considered as functions of the Xf are the molecular Potential
Energy Surfaces. Born proposed to solve the full molecular Schrödinger equation,
(1.10) by an expansion

ψ(x,X)=
∑

m

Φ(X)mϕ(x,X)m (1.14)

with coefficients {Φ(X)m} that play the role of nuclear wavefunctions. As in the
original calculation (Sect. 1.3.1) a crucial step is to assign the nuclear coordinates
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the role of parameters in the Schrödinger equation (1.13) for the electronic Hamil-
tonian; it differs from the earlier approach of Born and Oppenheimer because now
the values of Xf range over the whole nuclear configuration space. Substituting this
expansion into (1.10), multiplying the result by ϕ(x,X)∗n and integrating over the
electronic coordinates x leads to an infinite dimensional system of coupled equa-
tions for the nuclear functions {Φ},

(
TN +Eo(X)n −E

)
Φ(X)n +

∑

nn′
C(X,P )nn′Φ(X)n′ = 0 (1.15)

where the coupling coefficients {C(X,P )nn′} have a well-known form which we
need not record here [44].

In this formulation the adiabatic approximation consists of retaining only the
diagonal terms in the coupling matrix C(X,P ), for then a state function can be
written as

ψ(x,X)≈ψ(x,X)AD
n = ϕ(x,X)nΦ(X)n (1.16)

and a product wavefunction corresponds to additive electronic and nuclear energies.
The special character of the electronic wavefunctions {ϕ(x,X)m} is, by (1.13), that
they diagonalize the electronic Hamiltonian Ho; they are said to define an ‘adia-
batic’ basis (cf. the approximate form (1.16)) because the electronic state label n is
not altered as X varies. The Born approach does not really require the diagonaliza-
tion of Ho; it is perfectly possible to define other representations of the electronic
expansion functions through unitary transformations of the {ϕ}, with concomitant
modification of the coupling matrix C. This leads to so-called ‘diabatic’ bases; the
freedom to choose the representation is very important in practical applications to
spectroscopy and atomic/molecular collisions [50, 51].

1.3.3 Formal Quantum Theory of the Molecular Hamiltonian

We now start again and develop the quantum theory of the Hamiltonian for a col-
lection of n charged particles with Coulombic interactions.12 We remind ourselves
again from Sect. 1.1 that for particles with classical Hamiltonian variables {qi ,pi}
this is

H=
n∑

i

p2
i

2mi
+

n∑

i<j

eiej

4πε0|qi − qj | (1.17)

with the non-zero Poisson-bracket

{xi ,pj } = δij .

12The reader may find it helpful to refer to the Appendix which summarizes some mathematical
notions that are needed here, and illustrates them in a simple model of coupled oscillators with two
degrees of freedom.
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Let us denote the classical dynamical variables for the electrons collectively as
x,p, and those for the nuclei by X,P and denote the classical Hamiltonian by
H(x,p,X,P). After the customary canonical quantization these variables become
time-independent operators in a Schrödinger representation

x→ x̂ etc.

In the following it will be important to distinguish between operators and c-numbers,
so in the following we will use the x̂ notation for operators, and make no special
choice of representation.

As we have seen, the idea that the kinetic energy of the massive nuclei could be
treated as a perturbation of the electronic motion was first formulated in the frame-
work of the Old Quantum Theory. The idea was to separate the classical Hamilto-
nian H into two parts to isolate the nuclear momentum variables

H(x,p,X,P)=Ho(x,p,X)+ κ4H1(P). (1.18)

According to Hamilton’s equations for the unperturbed problem

dX
dt
= {X,Ho} = 0, (1.19)

using Poisson-bracket notation, which was interpreted (correctly) as describing the
dynamics of the electrons in the field of stationary nuclei. This was the starting point
of Born and Heisenberg’s calculations [36].

Let us now move to quantum theory and recast (1.18) as an operator relation,
writing the molecular Hamiltonian operator as

Ĥ(x̂, p̂, X̂, P̂)= Ĥo(x̂, p̂, X̂)+ κ4Ĥ1(P̂) (1.20)

with equation of motion under Ĥo

i�
dX̂
dt
= [X̂, Ĥo] = 0 (1.21)

from which we infer the nuclear position operators X̂ are constants of the motion
under Ĥo. We no longer make the interpretation that follows from (1.19) since speci-
fying precisely the positions {X} for stationary nuclei violates the Uncertainty Prin-
ciple. Instead (1.21) leads to a completely different conclusion (see below).

We must now take a little bit of care about the definition of the variables, and
dispose of the uninteresting overall motion of the molecule [4]. Since the Coulomb
interaction only depends on interparticle distances it is translation invariant, and
therefore the total momentum operator P̂

P̂=
∑

n

p̂n
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commutes with Ĥ. It follows that the molecular Hamiltonian may be written as a
direct integral

Ĥ=
∫ ⊕

R3
Ĥ (P )dP (1.22)

where [52]

Ĥ (P )= P 2

2MT
+ Ĥ′ (1.23)

is the Hamiltonian at fixed total momentum P and MT is the molecular mass. The
internal Hamiltonian Ĥ′ is independent of the centre-of-mass variables and is explic-
itly translation invariant. The form of Ĥ′ is not uniquely fixed but whatever coordi-
nates are chosen the essential point is that it is always the same operator specified
in (1.23) acting on a Hilbert space H that may be parameterized by functions of the
electron and nuclear coordinates.

The separation of the centre-of-mass terms from the internal Hamiltonian is the
same in quantum mechanics as in classical mechanics so we need not distinguish
operators from classical variables in this step. It is convenient to choose the centre-
of-nuclear mass for the definition of suitable internal coordinates.13 Let te be a set
of internal electronic coordinates defined as the original electronic coordinates x
referred to the centre-of-nuclear mass, and let tn be a set of internal nuclear coor-
dinates constructed purely from the original nuclear coordinates X. If there are s
electrons and M nuclei, there are s internal electronic coordinates, and M − 1 in-
ternal nuclear coordinates. There are corresponding canonically conjugate internal
momentum variables. In terms of these variables the total kinetic energy of all the
particles can be decomposed into the form

T0 = TCM + TN + Te (1.24)

where TCM is the kinetic energy for the centre-of-mass, TN is the kinetic energy for
the nuclei expressed purely in terms of the internal nuclear momentum variables,
and Te is the kinetic energy for the electrons expressed purely in terms of the inter-
nal electronic momentum variables. The Coulomb energy can be expressed purely
in terms of the internal coordinates, U = U(te, tn). These relations are true both
classically and in quantum mechanics with a suitable operator interpretation.

In parallel with the decomposition in (1.18), we define the quantum mechanical
‘electronic’ Hamiltonian as

Ĥelec = T̂e + Û
(
t̂e, t̂n) (1.25)

13It is always possible to split off the kinetic energy of the centre-of-mass without any approxi-
mation; with this choice we retain the separation of the electronic and nuclear kinetic energies as
well, as in (1.24). Explicit formulae are given in e.g. [3] where it is shown that the nuclear kinetic
energy terms involve reciprocals of the nuclear masses, so that overall, the nuclear kinetic energy
is proportional to κ4.
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so that after dropping the uninteresting kinetic energy for the overall centre-of-mass,
we see that the internal Hamiltonian has the form,

Ĥ′ = Ĥelec + T̂N (1.26)

where, as before, the nuclear kinetic energy term is proportional to κ4 (see foot-
note 13). Its Schrödinger equation may be written

Ĥ′|Ψm〉 =Em|Ψm〉 (1.27)

where m is used to denote a set of quantum numbers (J M p r i): J and M for
the angular momentum state: p specifying the parity of the state: r specifying the
permutationally allowed irreducible representations within the groups of identical
particles, and i to specify a particular energy value. Any bound state (a ‘molecule’)
has an energy lying below the start of the essential spectrum.

Now just as in (1.21) Ĥelec is independent of the nuclear momentum operators
and so it commutes with the internal nuclear position operators

[
Ĥelec, t̂

n]= 0. (1.28)

They may therefore be simultaneously diagonalized and we use this property to
characterize the Hilbert space H for Ĥelec. Let b be some eigenvalue of the t̂n cor-
responding to choices {xg = ag, g = 1, . . . ,M} in the laboratory-fixed frame; then
the {ag} describe a classical nuclear geometry. The set, X, of all b is R3(M−1).
We denote the Hamiltonian Ĥelec evaluated at the nuclear position eigenvalue b
as K̂(b, t̂e)o = K̂o for short; this K̂o is very like the usual clamped-nuclei Hamil-
tonian but it is explicitly translationally invariant, and has an extra term, which is
often called the Hughes-Eckart term, or the mass polarization term. Its Schrödinger
equation is of the same form as (1.13), with eigenvalues Eo(b)k and corresponding
eigenfunctions ϕ(te,b)k ,

K̂oϕ
(
b, te)

k
=Eo(b)kϕ

(
b, te)

k
. (1.29)

As before its spectrum in general contains a discrete part below a continuum,

σ(b)≡ σ (K̂(b, t̂e)
o

)= [Eo(b)0, . . . ,Eo(b)m
)⋃[

Λ(b),∞). (1.30)

Note that for other than diatomic molecules, it is not possible to proceed further
and separate out explicitly the rotational motion. For any choice of b the eigenvalues
of K̂o will depend only upon the shape of the geometrical figure formed by the {ag},
being independent of its orientation. It is possible to introduce a so-called body-
fixed frame by transforming to a new coordinate system built out of the b consisting
of three angular variables and 3M − 6 internal coordinates. In so doing however
one cannot avoid angular momentum terms arising which couple the electronic and
nuclear variables, and so there is no longer a clean separation of the kinetic energy
into an electronic and a nuclear part. Moreover no single specification of body-fixed
coordinates can be given that describes all possible nuclear configurations.
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The internal molecular Hamiltonian Ĥ′ in (1.23) and the clamped-nuclei like op-
erator K̂o just defined can be shown to be essentially self-adjoint (on their respective
Hilbert spaces) by reference to the Kato-Rellich theorem [53] because in both cases
there are kinetic energy operators that dominate the (singular) Coulomb interaction;
they therefore have a complete set of eigenfunctions. As regards Ĥelec, we have a
family of Hilbert spaces {H (b)} which are parameterized by the nuclear position
vectors b ∈ X that are the ‘eigenspaces’ of the family of self-adjoint operators K̂o;
from them we can construct a big Hilbert space as a direct integral over all the b
values

H =
∫ ⊕

X

H (b)db (1.31)

and this is the Hilbert space for Ĥelec in (1.25).
Equation (1.31) leads directly to a fundamental result; since Ĥelec commutes with

all the {t̂n}, it has the direct integral decomposition

Ĥelec =
∫ ⊕

X

K̂
(
b, t̂e)

o
db. (1.32)

Even if the ‘ clamped-nuclei’ Hamiltonian has a set of discrete states—Potential En-
ergy Surfaces—(1.32) implies that the unperturbed Hamiltonian,14 Ĥelec, has purely
continuous spectrum (cf. Appendix),

σ = σ (Ĥelec)=
⋃

b

σ(b)≡ [V0,∞)

where V0 is the minimum value of E(b)0; in the diatomic molecule case this is the
minimum value of the usual ground-state potential energy curveE0(r). The operator
Ĥelec has no localized eigenfunctions; rather, its eigenfunctions are continuum func-
tions. To avoid any misunderstanding, we emphasize that this result has nothing to
do with the continuous spectrum of the full molecular Hamiltonian associated with
the centre-of-mass motion which can be dealt with trivially in the preliminaries.

A possibly helpful way to think about this paradoxical result is as follows. The
quantum mechanical molecular Hamiltonian for a collection of electrons and nuclei
with Coulomb interactions is a function of position and momentum operators for all
the specified electrons and all the nuclei. If now we separate off the terms containing
all the nuclear momentum operators (the terms proportional to κ4) what is left must
be a function of position and momentum operators for the electrons and position
operators for all the nuclei. This statement is true in any representation of the oper-
ators, and in particular must be respected if one chooses a position representation.

This is not what Born and Oppenheimer assumed about their equation (12) [our
equation (1.10)] when κ = 0—see Sect. 1.3.1 above—and which has been assumed
ever since in Quantum Chemistry. In effect they chose to work only in the ‘small’

14After the elimination of the centre-of-mass variables Ĥelec is playing the role of Ĥo in (1.20).
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Hilbert space of a fixed configuration, H (X), in which X can be assumed to be a
‘parameter’ in the position space wavefunction ψ(x,X), whereas if they had con-
tinued with quantum mechanics they would have been working in the ‘big’ Hilbert
space H with x̂ and X̂ treated on an equal footing as operators, and all possible
nuclear configurations being treated simultaneously, rather than one at a time.

The unusual properties of the (‘electronic’) Hamiltonian Ĥo(x̂, p̂, X̂) = Ĥelec

in (1.32)15 considered as a quantum-mechanical operator on the whole space H,
are of exactly the kind to be expected from the work of Kato [54]. In Lemma 4 of
his paper he showed that for a Coulomb potential U and for any function f in the
domain D0 of the full kinetic energy operator T̂0, the domain, DU , of the internal
Hamiltonian Ĥ′ contains D0 and there are two constants a, b such that

‖Uf ‖ ≤ a‖T̂0f ‖ + b‖f ‖
where a can be taken as small as is liked. This result is often summarised by say-
ing that the Coulomb potential is small compared to the kinetic energy. Given this
result he proved in Lemma 5 (the Kato-Rellich theorem) that the usual Coulomb
Hamiltonian operator is essentially self-adjoint and so is guaranteed a complete set
of eigenfunctions, and is bounded from below.

In the present context the important point to note is that the Coulomb term is
small only in comparison with the kinetic energy term involving the same set of
variables. So the absence of one or more kinetic energy terms from the Hamiltonian
may mean that the Coulomb potential term cannot be treated as small. It is evident
that one can’t use the Kato-Rellich argument to guarantee self-adjointness for the
customary representation of Helec in a position representation as a differential and
multiplicative operator because it contains the nuclear positions {X} in Coulomb
terms that are not dominated by corresponding kinetic energy operators involving
the conjugate momentum operators {−i�∇} since they have been separated off into
the ‘perturbation’ term ∝ κ4. As a quite separate matter, the abstract direct integral
operator (1.32) is self-adjoint since the resolvent of the clamped-nuclei Hamiltonian
is integrable. This is demonstrated in Theorem XIII.85 in the book by Reed and
Simon [53]. It is in this form that the operator is used in the mathematically rigorous
accounts (to be discussed later) of the Born-Oppenheimer approximation in [64]
and [70]. The operator used in the standard account of Born and Huang [44] is
however simply the usual one which, as discussed above, is not self-adjoint in the
Kato sense.

1.3.4 Approximate Calculations

It might have been hoped, in the light of the claim in the original paper by Born
and Oppenheimer quoted in Sect. 1.3.1, that the eigensolutions of the κ→ 0 limit

15We assume that the centre-of-mass contributions are eliminated as usual.
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of the internal Hamiltonian, Ĥ′, would actually be those that would have been ob-
tained from (1.10) after separation of the centre-of-mass term, by letting the nuclear
masses increase without limit. Although there are no analytically solved molecular
problems, the work of Frolov [55] provides extremely accurate numerical solutions
for a problem with two nuclei and a single electron. Frolov investigated what hap-
pens when the masses of one and then two of the nuclei increase without limit in his
calculations. To appreciate his results, consider a system with two nuclei; the natu-
ral nuclear coordinate is the internuclear distance which will be denoted here simply
as t. When needed to express the electron-nuclei attraction terms, xn

i is simply of the
form αit where αi is a signed ratio of the nuclear mass to the total nuclear mass; in
the case of a homonuclear system αi =± 1

2 .
The di-nuclear electronic Hamiltonian after the elimination of the centre-of-mass

contribution as described in Sect. 1.3.3 is

Ĥelec(te, t
) = − �

2

2m

N∑

i=1

∇2(te
i

)− �
2

2(m1 +m2)

N∑

i,j=1

∇(te
i

) ·∇(te
j

)

− e2

4πε0

N∑

j=1

(
Z1

|te
j + α1t| +

Z2

|te
j + α2t|

)

+ e2

8πε0

N∑

i,j=1

′ 1

|te
i − te

j |
+ Z1Z2

R
, R = |t| (1.33)

while the nuclear kinetic energy part is:

T̂N(t)=−�
2

2

(
1

m1
+ 1

m2

)
∇2(t)≡− �

2

2μ
∇2(t). (1.34)

The full internal motion Hamiltonian for the three-particle system is then

Ĥ′
(
te, t
)= Ĥelec(te, t

)+ T̂N(t) (1.35)

which is of the same form as (1.26).
It is seen from (1.34), that if only one nuclear mass increases without limit then

the kinetic energy term in the nuclear variable remains in the full problem and so the
Hamiltonian (1.35) remains essentially self-adjoint. Frolov’s calculations showed
that when one mass increased without limit (the atomic case), any discrete spec-
trum persisted but when two masses were allowed to increase without limit (the
molecular case), the Hamiltonian ceased to be well-defined and this failure led to
what he called adiabatic divergence in attempts to compute discrete eigenstates of
(1.35). This divergence is discussed in some mathematical detail in the Appendix to
Frolov [55]. It does not arise from the choice of a translationally invariant form for
the electronic Hamiltonian; rather it is due to the lack of any kinetic energy term to
dominate the Coulomb potential.
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To every solution of (1.29) there corresponds a function

Φ
(
te, tn)

m
= ϕ(b, te)

m
δ
(
tn − b

)
(1.36)

in the (te, tn) position representation which is a formal solution, in the sense of dis-
tributions, of the Schrödinger equation for Ĥelec. The energy, Em(b) of the function
(1.36) is independent of the orientation of the figure defined by the b, and is also un-
altered by the parity operation b→−b, and by permutations of the labelling of any
identical nuclei. Φm however depends on the orientation of the body-fixed frame
defined by the configuration b with respect to some space-fixed reference frame.
Let the Euler angles relating these two frames be Ω so that

Φ(b)m =Φ(b,Ω)m
in an obvious notation, so we have a continuous family of degenerate states. The
dependence on orientation is eliminated by forming a continuous superposition
through integration over the Euler angles with some weight function c(Ω)

Ψm =
∫
dΩ ′c

(
Ω ′
)
Φ
(
b,Ω ′

)
m
.

Similarly one may form superpositions of the space-inverted and permuted states in
order to form a new basis that displays the corresponding symmetries that leave the
energy eigenvalue unchanged.

There are two quite distinct approaches to the solution of the molecular
Schrödinger equation (1.27) based on the formal theory reviewed in Sect. 1.3.3.
Functions of the type (1.36) can be used as the basis of a Rayleigh-Ritz calculation
being, hopefully, well-adapted to the construction of useful trial functions. Several
different lines have been developed; in the adiabatic model the trial function is
written as the continuous linear superposition

Ψ
(
te, tn)

m
=
∫
dbF(b)ϕ

(
b, te)

m
δ
(
tn − b

)

= F (tn)ϕ
(
tn, te)

m
(1.37)

where the square-integrable weight factor F(tn) may be determined by reducing
(1.27) to an effective Schrödinger equation for the nuclei in which F(tn) appears as
the eigenfunction [56].

If the {ϕm} are chosen to be orthonormal we have

〈Ψm|Ψm〉 =
∫∫

dtedtn
∣∣Ψ
(
te, tn)

m

∣∣2 =
∫
dtn
∣∣F
(
tn)∣∣2.

We may choose the weight factor F to be normalized, so that the state function Ψm
is also normalized. On the other hand

〈Ψm|Ĥ′|Ψm〉 =
∫∫

dtedtnΨ ∗m
(
Ĥ′Ψm

)=
∫
dtnF

(
tn)∗(ĤmF)

(
tn)
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where we have defined the effective nuclear Hamiltonian

(ĤmF)
(
tn)=

∫
dteϕ
(
te, tn)

m

[
Ĥ′ϕ
(
te, tn)

m
F
(
tn)]. (1.38)

The Rayleigh-Ritz quotient

E[Ψm] = 〈Ψm|Ĥ
′|Ψm〉

〈Ψm|Ψm〉 (1.39)

is stationary for those functions that are solutions of the effective nuclear
‘Schrödinger equation’

ĤmFs =EmsFs. (1.40)

In particular, using the electronic ground state ϕ0, the Rayleigh-Ritz quotient
leads to an upper bound to the ground state energy E0 of Ĥ′. Having set up the cal-
culation with square integrable functions the approximate ground-state is naturally
a discrete state; the discussion however yields no information about the bottom of
the essential spectrum i.e. it does not prove the existence of a bound-state below
the continuum. This calculation amounts to the diagonalization of the projection of
Ĥ′ on the one-dimensional subspace spanned by Ψ0. In principle the subspace may
be enlarged, and the accuracy thereby improved, by using the subspace spanned by
a set of trial functions (Ψ0,Ψ1, . . . ,Ψm) of the form of (1.37). Such non-adiabatic
calculations which make no use of a Potential Energy Surface are restricted to very
small molecules.

In practice the variational approach is implemented as follows; a collection of en-
ergiesE(bi ) is found through standard quantum chemical computations for different
geometries {bi} and fitted to produce a function V (tn) that is treated as a potential
energy contribution to the left-hand-side of the Born equation (1.15), rather than
(1.40), so the clamped-nuclei assumption enters in an essential way (see Appendix).
With considerable computational effort it is possible to construct permutationally
invariant energy surfaces for molecules with up to 10 nuclei [57]. Note however that
if Ĥ′ is separated as in (1.26), then it is Ĥelec that appears in (1.38) rather than the
clamped-nuclei Hamiltonian.

Another generalization is to replace the unnormalizable delta function in (1.37)
by a square integrable function; the relation

δ3(x− y)= lim
a→∞

(
a

π

) 3
2

e−a(x−y)2 ≡ lim
a→∞χa(x,y)

suggests that one might consider trial wavefunctions

Ψ
(
te, tn)GCM

m
=
∫
dbF(b)ϕ

(
b, te)

m
χa
(
tn,b
)

for some suitably chosen parameter a. This is the basis of the molecular Genera-
tor Coordinate Method (GCM) which is a non-adiabatic formalism; as before the
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weight factor F(b) is determined by appeal to the Rayleigh-Ritz quotient, although
part of its structure can be determined purely by symmetry arguments. In the GCM
the effective Schrödinger equation for the weight function becomes an integral equa-
tion (the Hill-Wheeler equation) [45]. Again the trial function may be improved, in
the sense of a variational calculation, by forming linear superpositions of the wave-
functions {Ψ GCM}; this has been done for diatomic molecules for which a fairly
complete GCM account has been developed [45, 58]. Usually however the depen-
dence on the nuclear variables {tn} is not expressed through functions adapted to
nuclear permutation symmetry, and the GCM weight functions are determined by
molecular structure considerations.

It should be noted here that ϕ(b, te) as a solution to the Schrödinger equation
(1.29) where tn has been replaced by b, is defined only up to a phase factor of the
form

exp
[
iw(b)

]

w is any single-valued real function of the {bi} which can be different for different
electronic states. The phase factor is only trivial in the absence of degeneracies. Spe-
cific phase choices may therefore be needed when tying this part to the nuclear part
of the product wave function. It is only by making suitable phase choices that the
electronic wave function is made a continuous function of the formal nuclear vari-
ables, b, and the complete product function, made single valued. This is the origin
of the Berry phase in clamped-nuclei calculations involving intersecting Potential
Energy Surfaces; for a discussion of these matters see [59, 60]. It is worth noting
explicitly that notions of molecular Berry phases and conical intersections of PE
surfaces are tied to the clamped-nuclei viewpoint which introduces ‘adiabatic pa-
rameters’. According to quantum mechanics the eigensolutions of (1.27) are single-
valued functions by construction with arbitrary phases (rays) so one does not expect
any Berry phase phenomena a priori.

The rigorous mathematical analysis of the original perturbation approach pro-
posed by Born and Oppenheimer [38] for a molecular Hamiltonian with Coulombic
interactions was initiated by Combes and co-workers [61–64] with results for the
diatomic molecule. Some properties of the operator Helec, (1.32), seem to have been
first discussed in this work. A perturbation expansion in powers of κ leads to a
singular perturbation problem because κ is a coefficient of differential operators
of the highest order in the problem; the resulting series expansion of the energy
is an asymptotic series, closely related to the WKB approximation obtained by a
semiclassical analysis of the effective Hamiltonian for the nuclear dynamics. This
requires a more complete treatment than the adiabatic model using the partitioning
technique to project the full Coulomb Hamiltonian, Ĥ′, onto the adiabatic subspace.
A normalized electronic eigenvector |ϕ(b)j 〉 is associated with a projection operator
by the usual correspondence

P̂ (b)j =
∣∣ϕ(b)j

〉〈
ϕ(b)j

∣∣.
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In view of our earlier discussion of the ‘big Hilbert space’ H , we can form a direct
integral over all nuclear positions

P̂j =
∫ ⊕

X

P̂ (b)j db

to yield a projection operator on the adiabatic subspace. If we want to include m
electronic levels we can form a direct sum of the contributing {P̂j}

P̂ =
m⊕

j=0

P̂j .

This is an Hermitian projection operator and it, and its complement, Q̂, have the
usual properties

P̂ + Q̂= 1̂, P̂ 2 = P̂ , Q̂2 = Q̂, P̂ Q̂= Q̂P̂ = 0.

Using these projection operators the original molecular Schrödinger equation

Ĥ′|Ψ 〉 =E|Ψ 〉
can be transformed into a pair of coupled equations

P̂ Ĥ′P̂ |ψ〉 + P̂ Ĥ′Q̂|χ〉 = E1̂|ψ〉 (1.41)

Q̂Ĥ′P̂ |ψ〉 + Q̂Ĥ′Q̂|χ〉 = E1̂|χ〉 (1.42)

where

|ψ〉 = P̂ |Ψ 〉, |χ〉 = Q̂|Ψ 〉.
Solving (1.42) for |χ〉

|χ〉 = 1

E1̂− Q̂Ĥ′Q̂
Q̂Ĥ′P̂ |ψ〉

and substituting in (1.41) yields the usual Löwdin partitioned equation [65]
(
P̂ Ĥ′P̂ + P̂ Ĥ′Q̂ 1

E1̂− Q̂Ĥ′Q̂
Q̂Ĥ′P̂

)
|ψ〉 =E1̂|ψ〉. (1.43)

Further progress depends crucially on establishing the properties of the energy
dependent operator in (1.43). A detailed consideration of the diatomic molecule case
can be found in [63, 64]. The main result is that (1.43) is a generalized version of the
effective nuclear Schrödinger equation (1.40) in the adiabatic model, so it contains
the nuclear kinetic energy operators and an effective potential V̂ . The microscope
transformation used by Combes and Seiler [63] to give a rigorous version of the
Born-Oppenheimer theory of a diatomic molecule is essentially a semiclassical the-
ory. It is applicable if there is a minimum in the potential V0 = V (x0) associated
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with a particular configuration of the nuclei16 that is deep enough for the lowest
energy eigenstates to be localized about x0. One can look at these states with a
‘microscope’ with a certain resolving power that depends on Planck’s constant.

The microscope transformation produces a translation to make x0 the origin of
the coordinates, and a dilation (scale transformation)

x̂λ = x̂− (1− λ)(x̂− x0), p̂λ = p̂+ (1− λ)
λ

p̂. (1.44)

It is readily verified that the commutation relations are preserved for λ �= 0

[x̂λ, p̂λ] = [x̂, p̂].
Under this transformation a Hamiltonian of the form

Ĥ =
∑

g

p̂2
g

2mg
+ V̂ (x)

becomes

Ĥλ = V̂ (x0)+ λ2N̂(λ)

where

N̂(λ)=−�
2

λ4

∑

g

∇2
g

2mg
+ 1

λ2

(
V̂
(
x0 + λ(x− x0)

)− V̂ (x0)
)
.

We now put λ=√� so as to eliminate λ from the kinetic energy term in N̂(λ);
with this choice for λ, unitary equivalence of the spectrum implies that the eigen-
values of the original Hamiltonian Ĥ are related to those of N̂(λ) by

En = V (x0)+ �μn(λ).

Provided V̂ is analytic in λ it can be expanded about λ= 0, and this puts N̂(λ), in
lowest order, into the form of a sum of coupled oscillators so that the first approxi-
mation for the eigenvalue function μn is

μn =
∑

k

(
nk + 1

2

)
.

In the Born-Oppenheimer calculation for the diatomic molecule the potential V̂ is
identified with the effective potential for the nuclei [63]; analyticity of V̂ in λ could
be proven, and the role of

√
� was taken by the usual BO expansion parameter

κ = (me/MN) 1
4 . In this way the molecular energy level formula (1.12) is recovered

as an asymptotic expansion.

16The multiminima case can also be treated in this way.
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The singular nature of the microscope transformation for λ= 0 is demonstrated
by the modification of the spectrum associated with the limit κ → 0. The spec-
trum of the Coulomb Hamiltonian for a molecule can be discussed in terms of the
Hunziker-van Winter-Zhislin theorem [66–68]; for the diatomic molecule, σess(Ĥ′)
starts at the lowest two-body threshold Σ = λA(mA)+ λB(mB) given by the min-
imal value of the sums of pairs of binding energies for atoms A and B with fi-
nite masses mA and mB respectively. On the other hand the spectrum of the elec-
tronic Hamiltonian, Ĥelec, is purely continuous, σ(Ĥelec) = [V0,∞). In the limit
mA,mB →∞, Σ does not generally converge to V0; instead the missing part of
the continuous spectrum [V0, λA(∞)+ λB(∞)] is provided by an accumulation of
bound states in this interval [62]. The microscope transformation is formally appli-
cable to the polyatomic case but it may not be sufficient to control the asymptotic
behaviour, and has not been used for general molecules.

Since the initial work of Combes, a considerable amount of mathematical work
has been published using both time-independent and time-dependent techniques
with developments for the polyatomic case; for a recent review of rigorous results
about the separation of electronic and nuclear motions see Hagedorn and Joye [69]
which covers the literature to 2006. The Hamiltonian (1.26) is the one used by Klein
et al. [70] in their consideration of the precise formulation of the Born-Oppenheimer
approximation for polyatomic systems. Their work was based on a powerful sym-
bolic operator method, the pseudodifferential calculus [70, 71] and a formalism re-
lated to the partitioning technique described above. In [70] it is assumed that (1.26)
has a discrete eigenvalue which has a minimum as a function of the tn in the neigh-
borhood of some values tn

i = bi . If it can be assumed that (a) the electronic wave-
function vanishes strongly outside a region close to a particular nuclear geometry
and (b) that the electronic energy at the given geometry is an isolated minimum, then
it is possible to present a rigorous account of the separation of electronic and nu-
clear motion which corresponds in some measure to the original Born-Oppenheimer
treatment.

A novel feature arises from the requirement that the inversion symmetry of the
original problem be respected. If the geometry at the minimum energy configuration
is either linear or planar then inversion can be dealt with in terms of a single min-
imum in the electronic energy. If the geometry at the minimum is other than these
two forms, inversion produces a second potential minimum and the problem must
be dealt with as a two-minimum problem; then extra consideration is necessary to
establish whether the two wells have negligible interaction so that only one of the
wells need be considered for the nuclear motion. The nuclei are treated as distin-
guishable particles that can be numbered uniquely. The symmetry requirements on
the total wavefunction that would arise from the invariance of the Hamiltonian op-
erator under the permutation of identical nuclei are not considered. Because of the
continuous spectrum of the electronic Hamiltonian Ĥelec, it is not possible to use
regular perturbation theory in the analysis; instead asymptotic expansion theory is
used so that the result has essentially the character of a WKB approximation [70].
Similar functional analytic techniques have been used to consider such phenom-
ena as Landau-Zener crossing by using a time-dependent approach to the problem
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and looking at the relations between the electronic and nuclear parts of a wave-
packet [72]. This is essentially a use of standard coherent state theory where again
the nuclei are treated as distinguishable particles and the method is that of asymp-
totic expansion.

1.4 Discussion

Quite generally one needs to make a distinction between an hypothetical Isolated
Molecule, and a real observable individual molecule. There are no strictly ‘isolated’
systems of course, but what is striking is that an approach based on the station-
ary state eigensolutions of the appropriate Coulomb Hamiltonian works so well for
atoms and diatomic molecules, but fails with three or more nuclei. We have always
been clear that for most of chemistry, molecular eigenstates (‘stationary states’) are
of no relevance since metastability is an essential aspect of isomerism. The inter-
esting question is how to get from the quantum theory of an Isolated Molecule to
a quantum theory of an individual molecule by rational mathematics. It is as well
to remember that the generic molecule is sufficiently complex that the quantum
mechanical permutation symmetry of identical nuclei is a feature that cannot be ig-
nored, if one is doing quantum mechanics. The Isolated Molecule model doesn’t
capture isomerism, nor optical activity. We see no reason at all for Löwdin’s opti-
mistic assertion (Sect. 1.1) that molecular symmetry must be contained somehow in
the Coulomb Hamiltonian.

If a molecule is not isolated it must be interacting with something; that some-
thing is loosely referred to as the ‘environment’. It might be other molecules, the
(macroscopic) substance the molecule finds itself in, or quantized electromagnetic
radiation. Blackbody radiation is all pervasive and charges are always coupled to
the photon vacuum state in QED and so ‘dressed’ with clouds of virtual photons.
A crucial feature of ‘environments’ in quantum theory is that generally they are de-
scribed by Hamiltonians with purely continuous spectra. This is important because
a quantum system with a finite number, n, of degrees of freedom described by the
usual linear Schrödinger equation does not yield ‘broken symmetry’ solutions if
n <∞. Such matters were discussed at length thirty years ago in the context of
molecular structure and quantum theory [73–75]. The characteristic feature of such
discussions, and this also applies to more modern formulations under the chic head-
ing of ‘decoherence’, is that they start with some primitive notion of structure built
in: two-state systems, potential energy wells, wavefunctions associated with dis-
tinct isomers etc. The ‘environment’ is modelled in the simplest possible way (for
example, a free boson quantum field). These crucial ideas are put in by hand at the
outset. We don’t see that as a ‘problem’ or ‘difficulty’; it is a characteristic feature of
many-body physics (condensed matter, nuclei, chemistry) and results in remarkably
powerful and fruitful theoretical formalisms; see, for example, Anderson’s discus-
sion of what he calls ‘adiabatic continuity’ [76]. But one can hardly avoid noticing
that the models of molecules used are caricatures that contain just the right features
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for the answer (for example, loss of permutation symmetry, loss of parity—in the
case of chirality) and have no clear connection to Löwdin’s’s Coulomb Hamiltonian.

An alternative account that is based on the Coulomb Hamiltonian may however
be possible in the light of the fact that each part of it in the division made in (1.26)
has a completely continuous spectrum. As noted in Sect. 1.3.4 the formal eigenvec-
tors of Ĥelec from the ground state up can exhibit extensive degeneracy. It might be
that ‘broken symmetry’ solutions corresponding to molecular structure could result
from treating the two parts as asymptotic states in a scattering or reaction process in
a manner analogous to that used in standard S-matrix theory. Such a state would be
characterised as a ‘resonance’ and would have to be long-lived to be describable as
a molecule. Only a true bound state, of infinite lifetime, such as a bound eigenstate
of the molecular Hamiltonian is really independent of how it was formed; resonant
states have histories that describe the environment of their preparation. The Poten-
tial Energy Surface would then appear only as an auxiliary concept through the in-
volvement of the clamped-nuclei Hamiltonian in the construction of the states {ϕm}
required for (1.36). That however remains subject to further investigation.

When Bohr introduced his quantum theory of the Rutherford atomic model of the
hydrogen atom he made a drastic change in the status of electrodynamics. Hitherto,
it had been understood17 that charged particles affected, and were affected by, the
electromagnetic field, and that was the root cause of the failure of a dynamical clas-
sical atom (‘radiation damping’ is a strong coupling interaction). Bohr relegated the
electromagnetic field to a perturbation theoretic—weak coupling—role; the charges
interacted among themselves according to Coulomb’s law, to be treated as a strong
coupling situation, and would exist permanently in the stationary states selected by
the quantization conditions unless perturbed by an ‘external’ electromagnetic field
which produced ‘transitions’. That perturbation theory viewpoint was maintained
when quantum theory was applied to the atom and the electromagnetic field, and
largely survives to this day, to the extent that the electromagnetic field is frequently
regarded as a classical system. Such a spectroscopic viewpoint is not appropriate
in the present context; quantum electrodynamics teaches us that there is no strict
separation of charged particles and the (quantized) electromagnetic field, not least
because of the requirements of gauge invariance.

The difficulty with quantum mechanical perturbation theory for the interaction
of atomic/molecular systems with radiation is this: the spectrum of the unperturbed
atom/molecule consists of a continuum corresponding to the half-axis [Σ,∞) for
some Σ ≤ 0, and discrete energy levels E0,E1, . . . below the continuum, that is
E0 ≤E1 ≤ · · ·<Σ [66–68]. The spectrum of the free electromagnetic field Hamil-
tonian consists of a simple eigenvalue at 0, corresponding to the vacuum state Ψ0,
and absolutely continuous spectrum on the half-axis [0,∞). This means that when
coupling between particles and radiation is admitted, all the discrete energy lev-
els of the atomic system including E0 become thresholds of continuous spectra; a
quantum theory of matter and the electromagnetic field therefore requires the per-
turbation theory of continuous spectra. The quantum mechanical theory of electrons

17The Lorentz Theory of the electron for example [77].



1 The Potential Energy Surface in Molecular Quantum Mechanics 31

and nuclei interacting with quantized radiation in the low-energy regime is an ac-
tive area of research in mathematical physics concerned with the stability of matter,
the existence of the thermodynamic limit etc., but with no particular reference to
features of chemical interest [78–82].

The presentation of a presumed exact bound state solution of the Schrödinger
Coulomb Hamiltonian as a product of electronic and nuclear factors has been con-
sidered both by Hunter [83] and, more recently, by Gross et al. [84]. For present
purposes the Hunter approach will be employed on the translationally invariant form
of the internal Hamiltonian, given earlier (in Sect. 1.3.3). Were the exact solution
known, Hunter argues that it could be written in the form

ψ
(
tn, te)= χ(tn)φ

(
tn, te) (1.45)

with the nuclear wave function defined by means of

∣∣χ
(
tn)∣∣2 =

∫
ψ
(
tn, te)∗ψ

(
tn, te)dte. (1.46)

Providing the function χ(tn) has no nodes,18 an ‘exact’ electronic wavefunction
could be constructed as

φ
(
tn, te)= ψ(t

n, te)

χ(tn)
(1.47)

if the normalization choice
∫
φ
(
tn, te)∗φ

(
tn, te)dte = 1

is made. The electronic wavefunction (1.47) is then properly defined, and a ‘Poten-
tial Energy Surface’ could be defined in terms of it by integrating out the electronic
variables in the expectation value of the internal Hamiltonian in the state φ,

U
(
tn)=

∫
φ
(
tn, te)∗Ĥ′

(
tn, te)φ

(
tn, te)dte. (1.48)

The nuclear function χ is evidently quite different [86] from the usual approximate
nuclear wavefunctions for vibrationally excited states which do have nodes.

Although no closed solutions to the full problem are known for a molecule, some
extremely good approximate solutions have been obtained for excited vibrational
states of H2; Czub and Wolniewicz [87] took such an accurate approximation for
an excited vibrational state in the J = 0 rotational state of H2 and computed U(R).
They found strong spikes in the potential close to two positions at which the usual
vibrational wave function would have nodes. To quote [87]

18A similar requirement must be placed on the denominator in (12) of [85] for the equation to
provide a secure definition.
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This destroys completely the concept of a single internuclear potential in diatomic
molecules because it is not possible to introduce on the basis of non-adiabatic potentials
a single, approximate, mean potential that would describe well more than one vibrational
level.
It is obvious that in the case of rotations the situation is even more complex.

Wilson suggested [88] that using the clamped-nuclei Hamiltonian instead of the
full one in (1.48) to define the potential might avoid the spikes but Hunter in [86]
showed why this was unlikely to be the case, and Cassam-Chenai [89] repeated the
work of Czub and Wolniewicz using a clamped-nuclei electronic Hamiltonian and
showed that exactly the same spiky behaviour occurred.

Another approach to this problem is in [84]; there is reason to believe however
that this sort of difficulty is bound to arise whatever the approach. To see this, simply
rewrite (1.45) to recognise that the exact states will actually have definite quantum
numbers according to their symmetry, so that it would be more realistic to write

ψJMpri
(
tn, te)= χJMPri

(
tn)φJMpri

(
tn, te). (1.49)

In the H2 study cited the first four quantum numbers are of no relevance, only i
remains and here i labels the vibrational states. There is thus every reason to expect
that the best that can be done from this approach is a distinct PES for each nuclear-
motion state.

This anticipated behaviour seems to be confirmed in very accurate calculations
on H2 [90] for the electronic Σ ground state of the molecule assumed to dissociate
into two hydrogen atoms in their ground states. That work shows that, for example,
the J = 0 state supports just 14 vibrational states while the J = 15 state supports
10 and the J = 31 supports only 1 state. Of course in a diatomic molecule, states
of different k are states which differ in the electronic angular momentum and these
results cannot be regarded as typifying the results for a polyatomic system. How-
ever work on H+3 shows that in the case of J = 0 there are 1280 vibrational states
below dissociation [91] and that 46 is the highest value of J for which at least one
vibrational state exists [92]. At this level then it cannot be assumed that the potential
surface calculated in the usual way is an approximation to anything exact.

The eigenstates of the full molecular Hamiltonian (the Coulomb Hamiltonian for
the electrons and nuclei specified by a chemical formula)—a theory of an Isolated
Molecule modeled on the quantum theory of the atom which we call the Isolated
Molecule model—are reasonably well understood and might have some utility in
a limited area of high-resolution experiments on very small molecules where ques-
tions of isomerism do not arise [93]. Their computation poses formidable problems,
and really belongs to few-body physics. If it is to be taken as underlying Quantum
Chemistry then it is worth exploring the consequences of the model without regard
to approximations made for practical utility which are a quite separate matter. In this
paper we have attempted to discuss the Born-Oppenheimer and Born approaches to
the quantum theory of molecules in terms first set out by Combes [61]. The essential
point is that the decomposition of the molecular Hamiltonian (with centre-of-mass
contribution removed) into the nuclear kinetic energy, proportional to κ4 and a re-
mainder, is specified by (1.26), not by (1.9), or in other words, (1.9) cannot be
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written with an = sign if the conventional interpretation of the X acting as param-
eters is made. Allowing the nuclear masses to increase without limit in Ĥelec does
not produce an operator with a discrete spectrum since this would just cause the
mass polarisation term to vanish and the effective electronic mass to become the
rest mass. As we have seen it leads to ‘adiabatic divergence’ [55].

It is thus not possible to reduce the molecular Schrödinger equation to a system
of coupled differential equations of classical type for nuclei moving on Potential
Energy Surfaces as suggested by Born. An extra choice of fixed nuclear positions
must be made to give any discrete spectrum and normalizable L2 eigenfunctions. In
our view this choice, that is, the introduction of the clamped-nuclei Hamiltonian into
the molecular theory as in Sect. 1.3.1, is the essence of what is commonly meant by
the expression,19 the ‘Born-Oppenheimer approximation’

Ĥelec =
∫ ⊕

X

K̂
(
b, te)

o
db→ K̂

(
b, te). (1.50)

If the molecular Hamiltonian H were classical as in [36], the removal of the nuclear
kinetic energy terms would indeed leave a Hamiltonian representing the electronic
motion for stationary nuclei, as claimed by Born and Oppenheimer [38, 46]. As we
have seen, quantization of H changes the situation drastically, so an implicit appeal
to the classical limit for the nuclei is required. The argument is a subtle one, for
subsequently, once the classical energy surface has emerged, the nuclei are treated as
quantum particles for the determination of the vibration-rotation spectrum (though
indistinguishability is rarely carried through); this can be seen from the complexity
of the mathematical account given by Klein and co-workers [70].

This qualitative modification of the internal Hamiltonian, the extra choice of
fixed nuclear positions in the ‘electronic’ Hamiltonian, is ad hoc in the same sense
that Bohr’s quantum theory of the atom is an ad hoc modification of classical me-
chanics. An essential feature of the answer is put in by hand. We know that both
modifications have been tremendously useful and our point is not that something
else must be done in practical calculations on molecules. The point is how the suc-
cessful description of molecules involving the clamped-nuclei modification at some
stage can best be understood in terms of quantum mechanics. In the case of the Bohr
atom the resolution of the inconsistency in mechanics applied to the microscopic
realm was achieved quite quickly with the formulation of quantum mechanics; in
the molecular case, no such resolution is at present known.

Appendix

In this appendix we give an heuristic account of the mathematical notion of the
direct integral of Hilbert spaces, and then study a simple model problem to illustrate
the general ideas discussed in the paper.

19In its original form b= bo , the equilibrium configuration, on the right-hand side of (1.50).
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Consider a self-adjoint operator T that depends on a parameter X, so T = T (X).
The parameter X = −∞ ≤ X ≤ +∞, covers the whole real line R, and T (X) is
assumed to be defined for all X. T (X) is an operator on a Hilbert space, which is
denoted H (X); its eigenfunctions {φ} defined by

T (X)φ(X)k = λk(X)φ(X)k,
form a complete orthogonal set for the space H (X). The scalar product is

〈
φ(X)k

∣∣φ(X)j
〉
X
=
∫
φ(X,x)∗kφ(X,x)j dx = f (X)kj ≡ f (X)δkj , f (X) <∞

(1.51)
T may have discrete eigenvalues below a continuous spectrum that starts at Λ, that
is

σ(X)= σ (T (X))= [λ0(X),λ1(X), . . . , λk(X)
)⋃[

Λ(X),∞).
Now let’s introduce a ‘big’ Hilbert space H as a direct integral over the

{H (X)},

H =
∫ ⊕

R
H (X)dX (1.52)

and correspondingly the operator T acting on H defined by

T =
∫ ⊕

R
T (X)dX.

The scalar product on the big space H is defined explicitly in terms of (1.51) by

〈
φ(X)k

∣∣φ(X)j
〉
H :=

∫

R

〈
φ(X)k

∣∣φ(X)j
〉
X
dX <∞. (1.53)

In (1.51) one can always chose the functions {φk} to be orthonormalized indepen-
dently of X,

f (X)= 1.

However this choice is not consistent with (1.53), which requires f (X) to decrease
sufficiently fast as |X| →∞ for the integral to exist. The mathematical motivation
for this construction is this: the cartesian product of the spaces {H (X)},

F =
∏

X∈R
H (X)

is a field of Hilbert spaces over R which has a natural vector space structure. In
modern geometric language, the Hilbert space H (X) is a fibre over a point X in a
fibre bundle; F is the vector space of sections of this bundle. The subspace of F
consisting of square integrable sections is the direct integral (1.52). The direct in-
tegral is the generalization to the continuous infinite dimensional case of the notion
of the direct sum of finite dimensional vector spaces.
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Purely as a heuristic explanation suppose initially that the parameter X has only
two discrete values {X1,X2}. There are then two eigenvalue equations to consider,
and two associated Hilbert spaces. In the direct sum space we have

T2 = T (X1)⊕ T (X2), H =H (X1)⊕H (X2).

The eigenfunctions of T2 are then two-dimensional column vectors, and so

T2

[
φ(X1)k
φ(X2)j

]
= (λk(X1)+ λj (X2)

)[φ(X1)k
φ(X2)j

]
.

The spectrum of T2 is the union of the spectra of T (X1) and T (X2). This discussion
is trivially extended to n points {Xk : k = 1, . . . , n}, with the spectrum of Tn given
by the union of the n operators T (X1), . . . , T (Xn). The limit n→∞ is not trivial
since it brings in important notions from topology and integration (measure theory)
which we gloss over [94]. When these are taken into consideration however the
result is that the spectrum σ of T is purely continuous since its direct integral
representation implies that its spectrum is the union of the spectra of the infinite set
of T (X) operators,

σ = σ(T )=
⋃

X

σ(X)≡ [L0,∞) (1.54)

where L0 is the minimum value of λ0(X). The eigenvalue equation for T is,

T ΦΛ =ΛΦΛ, L0 ≤Λ<∞
with Λ a continuous index for the {Φ}. Even if T (X) is self-adjoint, it doesn’t
follow that its direct integral T is self-adjoint; that depends on specifics and has to
be investigated. So the {Φ} cannot be assumed to be complete.

In the application of this mathematics to the Born-Oppenheimer approximation,
the role of x is taken by the electronic coordinates te, and X is to be identified with
definite choices of the nuclear coordinates b. If there are M nuclei the parameters
b are elements of R3(M−1). The operator T (X) is the clamped-nuclei Hamilto-
nian K̂(b, t̂e)o = K̂o. With the conventional normalization of clamped-nuclei elec-
tronic eigenfunctions independent of the nuclear positions b, the formal eigenvec-
tors, (1.36), [56] of Ĥelec do not belong to the Hilbert space H ; this simply reflects
the loose use of the Dirac delta function for the position operator eigenfunctions.

We now consider a concrete model consisting of coupled harmonic oscillators
with two degrees of freedom; we try to mimic the steps taken in the usual Born-
Oppenheimer discussion. Consider the following Hamiltonian where κ and a are
dimensionless constants20

Ĥ= p̂2 + κ4P̂2 + x̂2 + X̂2 + ax̂X̂. (1.55)

20The variables are expressed in dimensionless form for simplicity. The quantum oscillator ĥ =
1
2 (p̂

2 + q̂2) has eigenvalues n+ 1
2 .
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The only non-zero commutators of the operators are

[x̂, p̂] = i, [X̂, P̂] = i.
Following the conventional discussion of electron-nuclear separation outlined in
Sects. 1.3.1, 1.3.2, define

Ĥo = p̂2 + x̂2 + ax̂X̂+ X̂2 (1.56)

Ĥ1 = P̂2 (1.57)

so that

Ĥ= Ĥo + κ4Ĥ1 (1.58)

with Schrödinger equation

(Ĥ−E)Ψ = 0. (1.59)

We note that

[Ĥo, Ĥ1] �= 0 (1.60)

so the two parts cannot be simultaneously diagonalized. A principal axis transfor-
mation of the whole expression Ĥ brings it to separable form, but we do not need to
pursue explicitly the full solution here.

On the other hand

[Ĥo, X̂] = 0 (1.61)

so these two operators may be simultaneously diagonalized, and consider Ĥo at a
definite eigenvalue of X̂, say X

K̂o = p̂2 + x̂2 + ax̂X+X2. (1.62)

This is the Hamiltonian (in the variables x̂, p̂) of a displaced oscillator in which X is
a (c-number) parameter, with Schrödinger equation in position representation

K̂oϕ(x,X)n =En(X)ϕ(x,X)n (1.63)

K̂o is the analogue in this model of the ‘clamped-nuclei’ electronic Hamiltonian.
The solution is immediate; we make a unitary transformation by introducing a

displaced coordinate involving X

x̂′ = x̂− 1

2
aX, p̂′ = p̂ (1.64)

Û = eiaXp̂/2, K̂′o = Û−1K̂0Û (1.65)

so that the transformed K̂o in the new variables is

K̂′o = p̂′2 + x̂′2 +
(

1− a
2

4

)
X2
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which has oscillator eigenvalues and eigenfunctions

En(X)=E0
n +
(

1− a
2

4

)
X2, ϕ

(
x′
)
n

(1.66)

where x′ = x − aX
2 , the {ϕn} are the usual harmonic oscillator eigenfunctions and

E0
n is the energy of the free oscillator 2(n+ 1

2 ). For fixed n the spectrum σ(X) is
discrete and, as a function of the X parameters, would be conventionally interpreted
as a ‘potential energy curve’. As far as (1.58) is concerned, K̂o, evaluated at some
point X0 cannot be regarded as an ‘approximation’ to Ĥo, since obviously

[
K̂o(X0), Ĥ1

]= 0

so they can be simultaneously diagonalized, and Ĥ1 has purely continuous spectrum
(free motion). So we have to consider X in the full problem in its operator form, X̂.

We make the same unitary transformation of the x̂, p̂ variables in Ĥo as before,
and it is still brought to diagonal form; however Ĥ1 will be modified because P̂ is
also translated by the operator Û in (1.65) that generates the coordinate displacement
(cf. (1.60)); thus

Û−1P̂Û= P̂+ 1

2
ap̂

so the transform of Ĥ1 contains linear and quadratic terms in p̂.
Nevertheless (1.61) is still valid, and formally we may write Ĥ0 as a direct inte-

gral

Ĥo =
∫ ⊕

X

K̂(x̂, p̂,X)odX. (1.67)

The Schrödinger equation for Ĥo in position representation is now an equation in-
volving functions of x and X

ĤoΦε
(
x′,X
)= εΦε

(
x′,X
)
. (1.68)

Just as before (see (1.54)) the direct integral decomposition (1.67) implies that the
spectrum is purely continuous, explicitly

σ(Ĥo)=
⋃

X

σ(X)= [1,∞). (1.69)

ε in (1.68) takes all positive values ≥ 1, where 1 is the minimum value of the os-
cillator eigenvalue 2(n + 1

2 ). The associated continuum eigenfunctions {Φ} may
formally be written as products of oscillator eigenfunctions (in x′), and delta func-
tions (in X). They don’t lie in Hilbert space of course and one needs the Gel’fand
construction of a rigged space to make sense of the formal calculation [95]. If one
returns to the x variable, the {ϕn} are functions of x and X, since x′ = x′(X).
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One can’t do anything very useful with the direct integral expression (1.67) for
Ĥo apart from adding it onto the κ4 term, which just returns us to the full problem.
The full wavefunction in (1.59) can be expanded as

Ψ
(
x′,X
) =
∑∫

n,X′
ϕ
(
x′
(
X′
))
δ
(
X−X′)c(X′)

n
dX′ (1.70)

=
∑

n

c(X)nϕ
(
x′(X)

)
n

(1.71)

which obviously leads towards a variational approach [56]; such expansions rely on
the completeness of the states employed. In this simple problem there is no diffi-
culty, but as noted earlier, in realistic Coulomb systems it is much less clear that a
complete set of states is available.

However that may be, let us rehearse again the argument due to Born summarized
in Sect. 1.3.2. We substitute (1.71) in (1.59), left multiply by ϕ∗m and integrate out
the x′ variables to leave an equation for the coefficients {c(X)n},

∫
dx′ϕ
(
x′(X)

)∗
m

[
Ĥo + κ4Ĥ1

]∑

n

c(X)nϕ
(
x′(X)

)
n

=E
∫
dx′ϕ
(
x′(X)

)∗
m

∑

n

c(X)nϕ
(
x′(X)

)
n
. (1.72)

At this point in the conventional account, Ĥo is replaced by K̂o, (1.62), and then
the action of K̂o on the functions {ϕ} in (1.72) can be evaluated using (1.63) in the
well-known way,

Ĥoϕ
(
x′(X)

)
n
→ K̂oϕ

(
x′(X)

)
n
= ε(X)nϕ

(
x′(X)

)
n
.

From the foregoing discussion it is clear that the substitution of Ĥo by K̂o makes a
qualitative change in the theory. This change does seem to be the ‘right’ thing to do,
but so far there is no explanation as to why this is so.
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Chapter 2
A Comment on the Question of Degeneracies
in Quantum Mechanics

Michal Svrček

Abstract The problem of degeneracies, descending from the Born-Oppenheimer
(B-O) approximation serves as a “comeback backdoor” of the principle of com-
plementarity, but on a much more subtle level. Quantum mechanics incorporates
both mechanical and field theory features, which results in the well-known particle-
wave aspects of complementarity. The degeneracy problem, however, prompts a
new type of “property-object” complementary phenomena. This leads to serious
consequences: Field theoretical methods, unlike mechanical ones, are incapable of
separating the internal and the external degrees of freedom with respect to the cen-
tre of gravity, but on the other hand adapt relativistically in a natural manner very
similar to the space-time formulas of Maxwell’s equations. The solutions of the
quantum field equations, relativistic in the mentioned specific sense, yield singu-
larities at symmetric points that correspond to the well-known B-O degeneracies
giving the latter in actual fact a metaphysical attribute. However, Nature has in this
case a more sophisticated method or modus operandi to avoid degenerations and to
instigate symmetry violations.

In quantum mechanics, we often encounter degenerate states, which are authentic
and experimentally detectable. The most famous case of degeneracy removal is the
splitting of states under the influence of external electric or magnetic fields (Stark
and Zeeman effects). On the other hand, we also often come across virtual degener-
ate states that are the product of a simplified Hamiltonian, which we usually have to
choose due to the possibility of a realistic analytical solution when the total Hamil-
tonian does not directly provide such a solution. Since the step toward the answer
exploit the principle of superposition, the simplified Hamiltonian may lead to non-
existent fictional degenerations, which are eventually eliminated when taking the
total Hamiltonian into consideration. This removal is either resolved in perturbation
theory or in a non-perturbative approach based on multiconfigurational interaction.

Realistic degenerate states are mostly well defined and they do not therefore need
to be considered further here. In contrast, in the case of so-called virtual degenerate
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states there are many unresolved questions. A typical example is the situation of
degenerate states arising in connection with the use of the Born-Oppenheimer (B-O)
approximation [1]. Since the wave function of the system of electrons and nuclei can
be decomposed due to their small mass ratio m/M into

Ψ (r,R)=ψ(r,R)χ(R) (2.1)

we can separately solve the equations for the electron and the nuclear states. Quan-
tization is carried out in a hierarchical manner: First the electron states are paramet-
rically quantized at given internuclear distances R

He(R)
∣∣ψ(r,R)

〉=Ee(R)
∣∣ψ(r,R)

〉
(2.2)

after which the introduction of the kinetic energy of electrons, Te, the electron-
nuclear and two-electron potentials, EeN and Eee, respectively, the electron Hamil-
tonian He in Eq. (2.2) is expressed as

He = Te(r)+EeN(r,R)+Eee(r). (2.3)

Finally the nuclear motions are quantized as

HN
∣∣χ(R)

〉=E∣∣χ(R)〉 (2.4)

where one obtains for the nuclear Hamiltonian in Eq. (2.4) (TN is the kinetic energy
of nuclei and ENN the internuclear potential)

HN = TN(R)+ENN(R)+Ee(R). (2.5)

When Eq. (2.2), at the nuclear equilibrium position, causes a degenerate solu-
tion, represented by the crossing of two or more potential surfaces, the Jahn-Teller
(J-T) effect [2] shows up. The usual responses to this impasse are the incorpora-
tion of standard non-adiabatic corrections as the only cure capable of removing the
degeneracies originating from the B-O approximation.

There would be no further reason to think about the origin of this type of de-
generacies, if field theoretic methods did not exist. In the latter situation, with an
approach, borrowed from quantum electrodynamics and made operational within
quantum mechanics and furthermore widely used in the theory of solids, we are in
fact facing a similar degeneracy problem, but with a completely different method of
solution regarding degeneracy removal. Perhaps the most famous is the model field
Hamiltonian

H =
∑

k,σ

εka
+
k,σ ak,σ +

∑

q

�ωq
(
b+q bq + 1/2

)+
∑

k,q,σ

uq(bq + b+−q
)
a+k+q,σ ak,σ .

(2.6)
Now the question arises how Eq. (2.6) relates with the B-O approximation. Elec-

tron and electron-phonon terms come from the second quantization of Eq. (2.3)
neglecting the two-electron term, i.e. Te + EeN . The phonon term comes from the



2 A Comment on the Question of Degeneracies in Quantum Mechanics 43

second quantization of the B-O equation (2.5), i.e. TN + ENN + Ee. This means
that whenever the system is in a degenerate situation in a quantum mechanical de-
scription, according to Eq. (2.2), it is simultaneously degenerate in the quantum field
description, see to Eq. (2.6). What is indeed striking is the way the quantum mechan-
ical approach on the one hand and the field theoretical approach on the other hand,
in reality are capable to eliminate the degeneracy. The mechanical approach leads to
multiconfigurational interaction descriptions including all intersecting potential sur-
faces, as is standard practice in the theory of J-T effect [3, 4], while the field theoret-
ical approach uses the Fröhlich transformation [13] (which, unfortunately, is unable
to remove the degeneracies) and subsequently the Bogoljubov-Valatin transforma-
tion [5], the latter reflecting the BCS theory [6], as is customary in the theory of
superconductivity. Both approaches lead to broken symmetries. Again we find here
a striking difference: the mechanical approach of the J-T effect leads to a structural
symmetry breaking, whereas symmetry violations in the field theoretical approach
to BCS theory relates to charge superselection rule violation.

At this point, we may correctly speculate over the differences between the two
approaches, quantum mechanical and quantum field theoretical ones, and in partic-
ular over the origin of these differences as, e.g., resulting from the B-O approxima-
tion, and moreover how to completely bypass this almost undefeatable approxima-
tion. It provides a certain type of virtual degeneracies, and therefore the question
appears whether these are still justified and if there exists some higher principle,
that would entirely circumvent such circumstances and arrive without more ado at
the desired lifting of the degeneration.

Actually, there is an, in principle, exact formulation in quantum mechanics, con-
sidered by Monkhorst [7, 8], which ignores the B-O approximation, but, however,
suffers some disadvantages. Firstly, it is not possible to derive analytic expressions
for quantum mechanical measurable quantities, cf. the B-O separation procedure;
and secondly, even with the best computers the computations are numerically ex-
ceedingly demanding. It is in effect prohibiting even going beyond such a hum-
ble endeavour as just about ten considered particles, electrons and nuclei included.
Hence, unfortunately, it is quite impossible to consider systems where the B-O ap-
proximation leads to electronically degenerated states, such as those leading to the
J-T effect or the mechanisms of superconductors.

Regarding quantum field methods, there do not seem to exist any definite tech-
niques in consideration of how to construct a field that is not based on the B-O ap-
proximation, or in other words going further than the model Hamiltonian (2.6). This
Hamiltonian representation has turned out to be especially advantageous in treat-
ing systems like insulators and conductors, but alas in superconductivity it points
to the same problems in analogy with non-adiabatic corrections in the J-T problem,
i.e. one obtains B-O degenerate states that we then try to eliminate in a subsequent
treatment.

The primary problem of the B-O approximation is related to the centre-of-mass
(COM) notion. It was indeed one of the main reasons why Monkhorst promoted his
concept and entirely avoided to make this approximation. However, it also appears
that the mistake to determine the centre of gravity in the B-O approximation may be
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compensated via the Born-Huang (or Born-Handy) [9, 10] ansatz, which provides
the lowest diagonal adiabatic correction to the B-O formulation. The Born-Handy
ansatz has been tested numerous times, and it yields accurate results in agreement
with experiment. The reason behind the popularity of the Born-Handy ansatz and
why it has been so carefully verified was its approximate avoidance of the COM
problem in the B-O separation. Handy’s contribution consisted, in addition to for-
mulating the procedure, in convincing the broad scientific community of the value
of this pragmatic ansatz, without having to solve the full COM problem, which
amongst other things demands the introduction of relative coordinates and masses.
Kutzelnigg then gave the proof that the Born-Handy ansatz fully replaces the very
complicated and difficult COM solution [11].

Unfortunately, there exists no analogy of the Born-Handy ansatz in the field the-
oretical equation (2.6), which would compensate for the error in the determination
of the centre of mass by means of the B-O approximation. If we perform its gener-
alization for systems without translational symmetry (applicable not only to crystals
with translational symmetry but also to molecules), and subsequently applying the
Fröhlich transformation (cf. Fröhlich’s attempts to explain superconductivity [13]),
we obtain, for the ground state of the hydrogen molecule, only about 20 % of the
total adiabatic correlation energy, while, in quantum mechanics, the Born-Handy
ansatz yields the correct result [14, 15]. Of course, insulators or conductors are
not as sensitive to these effects, and there we prevail with Eq. (2.6). Nevertheless,
cf. non-adiabatic effects in connection with superconductivity, we have to devote
deeper thoughts to the correctness of the Hamiltonian representation (2.6).

As we proceed we will look in more detail at the COM separation problem as
it appears in the B-O approximation. Equation (2.4) leads to a solution in terms of
coupled oscillators, in which relative coordinates represent normal coordinates of
the vibrational modes. After introducing the normal coordinates Br = br + b+r and
B̃r = br − b+r for the kinetic and potential energies, respectively, of the nuclei in the
effective field of the electrons, we have

HBO =Ekin(B̃)+Epot(B) (2.7)

where the kinetic and potential energies are given by

Epot = 1

4

∑

r∈V
�ωrB

+
r Br (2.8)

Ekin = 1

4

∑

r∈V
�ωrB̃

+
r B̃r . (2.9)

From the B-O separation we finally get the well-known vibrational Hamiltonian

HBO = 1

4

∑

r∈V
�ωr
(
B+r Br + B̃+r B̃r

)=
∑

r∈V
�ωr
(
b+r br + 1/2

)
. (2.10)

The mechanical approach, based on this procedure, clearly separates the internal
and the external degrees of freedom. The internal degrees correspond to vibrational
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modes r , r ∈ V , and the external degrees are reflected in the translational degrees of
freedom corresponding to the de Broglie wave of COM, and the rotational degrees
of freedom corresponding to the quantized states of angular momentum, with eigen-
values of L2 and L3. An error in the determination of the centre of gravity is then
entirely compensated by the Born-Handy ansatz, but only on the adiabatic level, as
Kutzelnigg did prove [11].

The field theoretical approach, unfortunately, involves Eq. (2.10) as an ingredient
in the total Hamiltonian (2.6) without any possibility to compensate for the COM
factual error. Where is, however, the mistake? Is the error to be found in Eq. (2.10)?
In considering this question, we get back to one of the fundamental problems of
quantum mechanics, which for inexplicable reasons were never brought up for con-
sideration. As is well-known, in quantum mechanics the mechanical and the field
attributes are brought together, and this gives rise to recognized microscopic pecu-
liarities, viz. the complementarity between the coordinate and the momentum rep-
resentations, the alleged dualism of the considered entities, e.g., the appearance as
particles or as waves, the non-commutativity between different classes of opera-
tors. Even if this has been correctly formulated for single-particle states, the general
role of complementarity in quantum mechanics is not completely unraveled in this
way. There is yet another manifestation of complementarity, which shows up at the
many-body level, i.e. the degenerate states in the B-O many-body approximation
just emerge as the reappearance through the backdoor of the fundamental principle
of complementarity, however on a much more subtle level.

Equations (2.8) and (2.9) represent the standard quantum mechanical picture of
vibrations as the properties of the system of electrons and nuclei. However, if we
want to further include Eq. (2.10) in the ensuing field Hamiltonian (2.6), the vi-
brations must not be interpreted as properties only, but instead they are quantum
mechanical objects themselves, ontologically equivalent with electrons. Hence, the
external degrees of freedom cannot be separated from the internal ones, rather they
are materialized in the form of quasiparticles, i.e. rotons and translons, cf. the in-
ternal degrees of freedom that are materialized e.g. in the form of phonons. This
leads to a surprising deduction: Eqs. (2.8) and (2.9) have two mutually exclusive
interpretations: firstly, they are the determining equations for the properties of elec-
trons and nuclei, e.g. vibrations with a clear separation from the external degrees
of freedom; or secondly, they are the generic equations for new quasiparticles, e.g.
phonons, rotons and translons. In the latter case Eqs. (2.8) and (2.9) have the fol-
lowing solution:

Epot = 1

4

∑

r∈V
�ωrB

+
r Br (2.11)

Ekin = 1

2

(
1

2

∑

r∈V
�ωr +

∑

r∈R
ρr +

∑

r∈T
τr

)
B̃+r B̃r . (2.12)

Dual interpretations of the same equations with two alternate solutions, in the
form of (2.8), (2.9) and (2.11), (2.12), result in a new type of complementarity.
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Hence, in addition to the well-known particle-wave dualism, we discern here a new
type of property-object dualism. Equations (2.11), (2.12) thus become the proper
opening from the original mechanical formulation of the system of electrons and
nuclei to the new field theoretic formulation of electrons, phonons, rotons and
translons. There is here no reduction of the system into a subsystem with 3N − 5(6)
degrees of freedom, as in the B-O case, but we must instead consider all 3N de-
grees, and as a replacement for vibrations, we introduce the concept of hypervibra-
tions (vibrations+ rotations+ translations) and the corresponding hypervibrational
double-vector

ω=
(
ωr
ω̃r

)
=
(
ωr 0 0
ωr

2
�
ρr

2
�
τr

)
(2.13)

from which we get covariant expressions for the boson hypervibrational Hamilto-
nian with respect to all 3N hypervibrational modes.

HB = 1

4

∑

r

(
�ωrB

+
r Br + �ω̃r B̃

+
r B̃r
)
. (2.14)

It is important to point out that this hypervibrational Hamiltonian (2.14), and
not merely the vibrational Hamiltonian (2.10) must be used in the field equations
of type (2.6). Consequently, while the mechanical pattern in quantum mechanics
retains the classical separation of the degrees of freedom, the field theory pattern
does not permit this, while binding together the internal and the external degrees in a
relativistic manner. It may sound astonishing, but it looks like the second time in the
history of physics, when we come across something similar. The space-time theory
of relativity works in four-dimensions where the time can be seen as the fourth—
external degree of freedom. This feature was not present in the classical mechanical
laws of Newton, but it was finally discovered in the classical field equations known
as Maxwell’s equations, where the Lorentz transformation binds together space and
time.

Although the property-object complementarity as well as the related relativistic
nature of the degrees of freedom was not previously shown, Fröhlich, nevertheless,
used the incomplete field Hamiltonian (2.6) and applied his transformation [13]

H ′ = e−S(Q,P )HeS(Q,P ) (2.15)

which refers only to the internal degrees of freedom. However, by attempting to
remove the degeneracy in Eq. (2.6), and further, to get from the initial conducting
state to the state of superconductivity the treatment fails since it would not produce
the requisite gap. On the other hand we can generalize the Fröhlich transformation,
and, instead of the ordinary vibrational modes, we will use the relativistic hyper-
vibrational ones and in addition consider a general case without any translational
symmetry requirement.
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The following application, in accord with (2.15), of the two quasiparticle trans-
formations, the first Q-dependent

aP =
∑

Q

cPQ(B)aQ, br = br +
∑

PQ

drPQ(B)a
+
P aQ (2.16)

with the unitary conditions
∑

R

cPR(B)c
+
QR(B)= δPQ, drPQ =

∑

R

c+RP (B)
[
br , cRQ(B)

]
(2.17)

and the second P -dependent

aP =
∑

Q

c̃PQ(B̃)aQ, br = br +
∑

PQ

d̃rPQ(B̃)a
+
P aQ (2.18)

with the unitary conditions
∑

R

c̃PR(B̃)c̃
+
QR(B̃)= δPQ, d̃rPQ =

∑

R

c̃+RP (B̃)
[
br , c̃RQ(B̃)

]
(2.19)

will lead to new systems of fermions and bosons. The diagonalization procedures
permit choosing an optimal system, where we achieve a realistic separation into
individual (quasi) fermions and bosons with minimal interaction between them.

Looking at this problem from the standpoint of group theory, we realize that
we must adhere to the Poincaré group, as one of the most general group reflecting
the full symmetry of special relativity, a problem seldom treated in full generality.
Asking the question what would the most general group be that reflects the full
symmetry of the Fröhlich transformation, or in other words, what would be the
analogy of the Poincaré group for transformations carried out in the field theoretic
methods of quantum mechanics. It can be shown that the Fröhlich transformation
in Eq. (2.15) is decomposable into a product of two quasiparticle transformations:
the coordinate (adiabatic) and the momentum (non-adiabatic) ones. We can perform
the generalization to the case without the implied translational symmetry in a very
simple way by replacing the quasimomentum/spin notation, which Fröhlich used
in his original work, by the spinorbital notation. A further simple generalization
can also be attempted, given that the quasiparticle transformations remain valid,
by replacing the vibrational modes r , r ∈ V by the hypervibrational modes r , r ∈
{V,R,T }.

We can now show that (2.16), (2.18) form a group. First we write their inverse
transformations:

aP =
∑

Q

cPQ(B)aQ, br = br +
∑

PQ

drPQ(B)a
+
P aQ (2.20)

aP =
∑

Q

c̃PQ(B̃)aQ, br = br +
∑

PQ

d̃rPQ(B̃)a
+
P aQ. (2.21)



48 M. Svrček

It is easy to prove, see e.g. [17], that (2.16), (2.20) contain two invariants: the
coordinate operator B and the number of fermion particles N

Br = Br, N =
∑

P

a+P aP =
∑

P

a+P aP =N (2.22)

and further, the transformations (2.18), (2.21) contain also two invariants: the mo-
mentum operator B̃ and the number of fermion particles N

B̃r = B̃r , N =
∑

P

a+P aP =
∑

P

a+P aP =N. (2.23)

Finally, the transformations (2.16), (2.18) and their inverses (2.20), (2.21) are tied
up in a certain way:

cPQ(B) = c+QP (B), drPQ(B)=−
∑

RS

cPR(B)drRS(B)c
+
QS(B) (2.24)

c̃PQ(B̃) = c̃+QP (B̃), d̃rPQ(B̃)=−
∑

RS

c̃PR(B̃)d̃rRS(B̃)c̃
+
QS(B̃). (2.25)

Consequently we realize that (2.16), (2.18) actually form a group and thus all sys-
tems of fermions and bosons, obtained by these are equivalent. It is the most general
group of transformations of the Fröhlich type. Unfortunately the Fröhlich treatment
was sadly undervalued and it is now primarily remembered as an ad hoc transfor-
mation that Fröhlich applied to the Hamiltonian describing conductors, while the
resulting Hamiltonian was eventually used in the BCS theory of superconductiv-
ity. However, from the generalized group structure it follows, that Fröhlich type
transformations are of cardinal importance, not only in solids, but also generally in
quantum chemistry, where they are regrettably still practically unused. In conclu-
sion we point out that the main interest lies in that this generalized group combines
the internal and external degrees of freedom in a relativistic fashion.

As is quite obvious the present understanding only needs a straightforward
knowledge of the quantum nature of the harmonic oscillator. As an example we
investigate how the harmonic oscillator manifests itself in a different way compar-
ing the mechanical, see (2.8), (2.9), and in the field approach, see (2.11), (2.12).
Hence we immediately arrive at the novel type of complementarity as based on
the property-object dualism. Continuing further with the degrees of freedom, where
they, in classical form, enter directly in the electron-nuclear Hamiltonian. As a result
of the COM formulation, they represent the quantum form of vibrational, rotational
and translational quanta—as quasiparticles, which transform according to the most
general group (2.16), (2.18). In the mechanical method one does not recognize any
translational quanta, but the in the field theoretical case one does! It is not possible
to separate internal and external degrees of freedom in the field formulation in con-
trast to the mechanical approach, and therefore we attain a new kind of relativistic
flavour in molecular and solid state structures. This variety of relativity is logically
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of quantum origin! Again, as already pointed out, all the aforementioned statements
are merely a consequence of the properties of the harmonic oscillator.

Let us now continue by applying the general transformations, (2.16), (2.18), to
the field Hamiltonian. Here we will only sketch the derivation, since it is, however,
very time-consuming. The final formula for the change of the ground state energy
has a surprisingly simple analytical form. Details of the derivation have been given
in previous work [15] as well as a more comprehensive discussion in [16].

For the correction of the ground state energy we finally get

ΔE0 =
∑

AIr

(
�ω̃r
∣∣crAI
∣∣2 − �ωr

∣∣c̃rAI
∣∣2) (2.26)

where the summation refers to virtual spinorbitals A, occupied spinorbitals I , and
all hypervibrational modes r , r ∈ {V,R,T }. The coefficients c resp. c̃ are related to
the adiabatic and the non-adiabatic transformation, respectively, and determined by
the set of equations

urPQ +
(
ε0
P − ε0

Q

)
crPQ +

∑

AI

[(
ν0
PIQA − ν0

PIAQ

)
crAI −

(
ν0
PAQI − ν0

PAIQ

)
crIA
]

− �ωr c̃
r
PQ = εrP δPQ (2.27)

(
ε0
P − ε0

Q

)
c̃rPQ +

∑

AI

[(
ν0
PIQA − ν0

PIAQ

)
c̃rAI −

(
ν0
PAQI − ν0

PAIQ

)
c̃rIA
]

− �ω̃rc
r
PQ = ε̃rP δPQ (2.28)

where u are the coefficients of the electron-hyperphonon interaction, ε0 are one-
electron energies, and ν0 two-electron potential energies.

For the derivation we stress the most interesting three limits of Eq. (2.26):

(a) The adiabatic limit, which means that all non-adiabatic coefficients c̃ will be
equal to zero. Thus, we obtain the adiabatic correction

ΔE0(ad) =
∑

AIr

�ω̃r
∣∣crAI
∣∣2 = 2

∑

AI

(∑

r∈V

1

2
�ωr +

∑

r∈R
ρr +
∑

r∈T
τr

)∣∣crAI
∣∣2 (2.29)

which we can directly compare with the Born-Handy ansatz. In the author’s
works [14, 15], the exact CPHF reformulation of the Born-Handy ansatz is dis-
played, leading to the identity between the field and the mechanical equations
at the adiabatic level

ΔE0(ad) =
〈
ψ(R)

∣∣TN
∣∣ψ(R)

〉
R0
= 2
∑

AI

(∑

r∈V

1

2
�ωr +

∑

r∈R
ρr +

∑

r∈T
τr

)∣∣crAI
∣∣2.

(2.30)
Numerical verification was performed on the molecules H2, HD and D2 [14].

It was surprising that the vibrational contribution only amounted about 20 %,
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while the remaining 80 % consisted of rotational and translational contribu-
tions, even if considering molecules at rest, i.e. they neither rotate nor move.
This comparison is very important because the field equations used in the the-
ory of solids and derived from the B-O approximation, kept only the first term in
(2.30), which is in complete contrast to the Born-Handy ansatz. From the iden-
tity of (2.29) and (2.30), we can clearly see how the mechanical and the field
approaches get by differently with the inaccurate determination of the centre of
gravity, however, eventually leading to the same results, i.e. that the mechanical
Born-Handy ansatz is equivalent to the relativistic field correction.

(b) The non-relativistic limit+ neglection of the two-electron terms. It means that
the summation in Eq. (2.26) will involve only the internal degrees of freedom—
phonons.

ΔE0 =
∑

AI,r∈V

(
�ωr
∣∣crAI
∣∣2 − �ωr

∣∣c̃rAI
∣∣2)=

∑

AI,r∈V

∣∣urAI
∣∣2 �ωr

(ε0
A − ε0

I )
2 − (�ωr)2

(2.31)
from which, after changeover from quantum chemical to solid state physics no-
tation, we get exactly the same results as originally derived by Fröhlich [12, 13].

ΔE0 = 2
∑

k,k′;k�=k′

∣∣uk′−k∣∣2fk(1− fk′)
�ωk′−k

(ε0
k′ − ε0

k)
2 − (�ωk′−k)

2
. (2.32)

Unfortunately, as mentioned above, this equation did not acquire the ex-
pected superconducting gap, as Fröhlich initially had expected. In fact the opti-
mization of the occupation factors fk yields some decrease of the total energy
and Fröhlich then tried to interpret this new state as the superconducting state.

(c) The complete non-adiabatic and relativistic limit, where we only omit two-
electron terms in order to obtain transparent analytical expression:

ΔE0 =
∑

AIr

∣∣urAI
∣∣2 �ω̃r

(ε0
A − ε0

I )
2 − (�ωr)2

(2.33)

which in the form of the sum of vibrational, rotational and translational parts
finally reads

ΔE0 =
∑

AI,r∈V

∣∣urAI
∣∣2 �ωr

(ε0
A − ε0

I )
2 − (�ωr)2

+ 2
∑

AI,r∈R

∣∣urAI
∣∣2 ρr

(ε0
A − ε0

I )
2
+ 2

∑

AI,r∈T

∣∣urAI
∣∣2 τr

(ε0
A − ε0

I )
2
. (2.34)

After the rewriting Eq. (2.34) in solid state notation we obtain
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ΔE0 = 2
∑

k,k′

∣∣uk′−k∣∣2 �ωo,k′−k

(ε0
c,k′ − ε0

v,k)
2 − (�ωo,k′−k)

2

+ 4
∑

k,r∈R

∣∣ur
∣∣2 ρr

(ε0
c,k − ε0

v,k)
2
+ 4
∑

k,r∈T

∣∣ur
∣∣2 τr

(ε0
c,k − ε0

v,k)
2

(2.35)

where o denotes the optical branches and c, v the conducting and the valence
bands respectively.

Equations (2.34), (2.35) are indeed quite intriguing. Here degenerate states can-
not exist unless all the matrix elements of electron-roton and electron-translon in-
teractions are equal to zero. If not, these types of interactions induce singularities
in symmetric points, where the system would be degenerate according to the B-O
approximation. Rotons and translons thus cause symmetry breaking, which results
in automatic elimination of system degeneracies. Degenerations resulting from the
B-O approximation therefore constitute a metaphysical trait, as well as do the con-
cepts of intersecting potential surfaces.

Unfortunately, many scientists consider real and virtual degeneracies to be of the
same nature, as well as their removal, and that the J-T effect and superconductivity
should be treated on an equal footing using the same quantum mechanical rules
as e.g. the Stark and the Zeeman effects. As we have seen here this is not true.
Nature has yet another, more sophisticated means to eliminate virtual degenerations,
and not removing them in some perturbative or multiconfigurational way as usually
carried out in the case of realistic ones.

The question arises how to interpret the B-O approximation, which entrusts a
metaphysical essence to the resulting degeneracies. The development of quantum
mechanics due to the practical but misleading B-O paradigm has somehow stale-
mated halfway between the mechanical and field theoretical methods, and exactly
at the unlucky point where the corresponding complementarity cannot be seen at
the same time leading to incorrect metaphysical conclusions. As a possible recipe
the author recommends either to go back, totally ignoring the B-O procedure, like
was done by Monkhorst in his concept which in fact is the only correct mechanical
approach, or to go on to the concluding line, where the relativistic field approach
ultimately appears. Despite some incongruousness’s as regards the theory of special
relativity, cf. the fulfillment of the group properties of the Poincaré group, the latter
will not be fully solved until we have obtained a consistent quantum gravity theory.

Quantum mechanics is today considered to be a closed discipline; that means,
it should not lead to any internal contradictions. As we have shown here, in this
work, the transformed standard field Hamiltonian, compared with the Born-Handy
ansatz, yields the same paradox as if trying to apply the Galilean transformation
to Maxwell’s equations. The only way out of this quantum mechanical crisis is to
incorporate the concept of a relativistically noncontradictory structure of molecules
and crystals, binding together their internal and external degrees of freedom in the
same way as the Lorentz transformation binds together space and time. We then
arrive at the more general concept of relativity principles, which concern explic-
itly internal and external degrees of freedom. Relativity of space and time forms
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a special subclass, in which the three internal (spatial) and one external (time) co-
ordinates are bound into a four-dimensional spacetime. Brändas recently opened a
discussion of the possible quantum origin of Einstein’s general relativity [18].

Here we have described a different subclass of relativity considerations, with
reference to the structure of molecules and crystals, which follows as a direct result
of the overlooked property-object dualism. The particle-wave dualism is not the only
manifestation of Bohr’s complementarity; there is also a more subtle property-object
dualism. In conclusion we refer to the old controversy between Einstein and Bohr,
with Einstein’s answer to the puzzles of quantum mechanics: “God does not play
dice.” Thus we can understand the principle of relativity as a direct consequence of
the general complementarity principle.

Acknowledgements The author wishes to express his gratitude to E. Brändas for a very careful
reading of the manuscript and improvements of many linguistic and stylistic formulations.

References

1. Born M, Oppenheimer R (1927) Ann Phys (Leipzig) 84:457
2. Jahn HA, Teller E (1937) Proc R Soc London A 161:220
3. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59
4. Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, Cambridge
5. Bogoliubov NN (1958) Nuovo Cim 10 Ser 7:794
6. Bardeen J, Cooper LN, Schrieffer JR (1957) Phys Rev 108:1175
7. Monkhorst HJ (1987) Phys Rev A 36:1544
8. Cafiero M, Adamowicz L (2004) Chem Phys Lett 387:136
9. Born M, Huang K (1954) The dynamical theory of crystal lattices. Oxford University Press,

London
10. Handy NC, Lee AM (1996) Chem Phys Lett 252:425
11. Kutzelnigg W (1997) Mol Phys 90:909
12. Fröhlich H (1950) Phys Rev 79:845
13. Fröhlich H (1952) Proc R Soc Lond A 215:291
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Chapter 3
The Dirac Electron as a Massless Charge
Spinning at Light Speed: Implications on
Some Basic Physical Concepts

Jean Maruani

Abstract The Dirac equation, which was derived by combining, in a consistent
manner, the relativistic invariance condition with the quantum probability princi-
ple, has shown its fecundity by explaining the half-integer spin of fermions and
predicting antimatter, the first resulting from a wave beat between a particle and its
antiparticle. In the previous paper, it was conjectured that the spinning motion of the
electron is that of a massless charge vibrating at light speed, and that this internal
motion is responsible for the rest mass measured in external motions (inertia) and
interactions (gravitation). In this paper, we develop implications of this concept on
such basic properties as time, mass, electric charge, and magnetic moment.

‘[Now let man] search, amidst what he knows, the most delicate things. Let a small insect
offer him, within his tiny body, incomparably smaller things . . . . Dividing these latter fur-
ther, . . . , the last object he can attain will be that of our discourse . . . . I want to present him
a new abyss . . . within this embryo of an atom. There, he will see an infinity of universes,
each with its firmament, planets, earth, . . . , animals, and eventually small insects, within
which he will meet again what the former have given . . . .’

Blaise Pascal (1623–1662), Pensées (translated from the French)

3.1 Introduction

Wave mechanics originated from a detailed analysis by Louis de Broglie [1] of the
Maupertuis and Fermat principles in classical mechanics and classical optics, to-
gether with a comparison of Einstein’s quantum frequency-energy relationship in for
light (ΔE = hν) and relativistic matter-energy relationship for matter (E =mc2).
This led him to the concept of matter waves:

λB = h/mv, (3.1)

where m and v are the mass and velocity of the matter particle.
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However, further developments in quantum mechanics (both in the Schrödinger
and Heisenberg representations) used classical kinetic and potential energy expres-
sions (with spin added as an ansatz), and were not Lorentz invariant. Contrary to
the equations for the electric and magnetic components of the light waves, the
Schrödinger equation for matter waves contains a first-order time derivative with
second-order space derivatives. A relativistic energy was used in the Klein-Gordon
equation, bringing time and space on the same footing but in a quadratic form which,
while being compatible with the quantum superposition principle, led to a non-
definite positive probability density and proved unsuitable for the description of
particles endowed with rest mass and spin momentum.

Dirac made a breakthrough [2–5] by designing a relativistic equation which was
linearized by introducing anticommutative 4-D matrices, which he expressed in
terms of 2-D Pauli matrices. This implied 4-component state vectors or 4-valued
wave functions with double-valued spin and mass as extra coordinates. It was no-
ticed by de Broglie [6] that the process leading from the Klein-Gordon equation
to the Dirac equation is similar to that leading from the second-order equations for
the electric and magnetic fields E and B to the four coupled, first-order, Lorentz-
invariant Maxwell equations for the scalar and vector potentials A4 and A.

Further consistency was reached by quantizing the electromagnetic field, which
led to quantum electrodynamics [7] for the electron and other leptons. This served
as a model to quantum chromodynamics [8] for particles involving quarks, such as
nucleons and other baryons. Modern quantum field theory [9] encompasses the var-
ious cases. In these theories, the entanglement of matter and antimatter is expressed
by the necessity to include particles and antiparticles on the same footing to cope
with infinities.

De Broglie’s wavelength λB was an outcome of a (theoretical) encounter of light
and matter. Another outcome of a (physical) encounter of light and matter was
Compton’s wavelength λC [10]. When X-rays hit electrons (relatively) at rest, the
wavelength λ2 of a scattered photon differs from that λ1 of the incident photon by a
value: λ2 − λ1 = λC(1− cos θ), θ being the angle between the two X-rays and λC
being given by:

λC = h/m0c, (3.2)

where m0 is the rest mass of the electron and c, the velocity of light.
From the definitions of λB and λC it appears that the former depends on the

particle velocity v (and may thus vary from∞ to 0) while the second depends solely
on its rest mass (and universal constants). The relation between the two involves the
Lorentz ‘boost’ transformation factor:

λC/λB = βγ, (3.3)

where β ≡ v/c and γ ≡ (1− β2)−1/2 are coefficients of the Lorentz proper trans-
formations.

De Broglie’s wavelength is linked to the external motion, with momentum mv,
of the particle wave packet, whereas Compton’s wavelength seems to be linked to
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some internal motion, involving a ‘momentum’ m0c, within a ‘ball’ of width 2rC
determined by the Heisenberg uncertainty relation:

m0c · 2rC ∼ � → 2rC ∼ �/m0c= λC/2π. (3.4)

This internal motion was identified by Schrödinger [11, 12] as a ‘trembling mo-
tion’ (Zitterbewegung), which vanishes when one takes expectation values over
wave packets made up entirely of positive (or negative) energy solutions of the
Dirac equation. This was understood by de Broglie [6] as resulting from a wave
beat between the positive and negative energy states: ±mc2, the beat frequency be-
ing the difference of the two wave frequencies: νe = 2mc2/h. The amplitude of this
internal motion was shown to be precisely 2rC .

Various authors have seen the electron as a point charge oscillating at velocity
c within a ball of radius rC [13–16, 18–21], and identified the orbital momentum
of this motion to its spin momentum [17–21]. In a previous paper [22], we have
conjectured that the rest mass involved in external motions (inertia) and interac-
tions (gravitation) results from this very internal motion. In the present paper, we
reassess our previous discussion and see how this may lead to some insights into
basic physical concepts.

3.2 The Dirac Equation and the Electron Internal Motion

Today, the Dirac equation can be deduced from more general theoretical frame-
works [7, 9, 23–26]. But the inductive derivation originally given by Dirac [2–5]
has shown great heuristic value, and we shall summarize it with only a few notation
changes. He started with the time-dependent wave equation for a free particle in the
Schrödinger representation, the Hamiltonian being given the relativistic expression,
H =mc2:

i�∂Ψ/∂(ct)=mcΨ, (3.5)

with the expanded form for mc:

mc= (m2
0c

2 + p2)1/2. (3.6)

Here, p2 = p2
1 + p2

2 + p2
3 with pi = mvi along xi , and m = m0γ . Dimension-

wise, one can define an overall ‘momentum’ p4 ≡ mc corresponding, according
to Eq. (3.5), to the time coordinate x4 ≡ ct , and an invariant ‘momentum’ p0 ≡m0c

for a particle at rest. With these notations, Eq. (3.6) can be rewritten:

p2
4 = p2

0 + p2
1 + p2

2 + p2
3. (3.7)

This expression for the invariant (rest mass) ‘momentum’ p0 is similar to that for
the invariant (proper interval) ‘coordinate’ x0:

x2
4 ≡ x2

0 + x2
1 + x2

2 + x2
3 . (3.8)

The Minkowski 4-D relativistic space-time has a Lorentz (non-Euclidean) hyper-
bolic metric. However, as x4 ≡ ct appears as a Pythagorean sum of the three xi ’s
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plus x0, and p4 ≡ mc of the three pi ’s plus p0, one may wonder if the Lorentz-
invariant x0 and p0 do not point to some wrapped dimension related to a different
metric. This is not to be confused with the fifth dimension designed to unify gravita-
tion and magnetism in Kaluza-Klein theories [27], which pointed the way to string
theories.

The Dirac equation was derived in several steps [5]. By analogy, Dirac first wrote:

pi→−i�∂/∂xi (i = 1,2,3) and p4 → i�∂/∂(ct). (3.9)

One notices that there is no ‘coordinate’ derivative associated with the fifth, com-
bined, invariant ‘momentum’ p0. It has been proposed [26] to formally assign to
this rest-mass momentum a combined operator: i�d/d(ct) = i�[∂/∂(ct) + α.∇].
But this amounts to a tautological reformulation of Eq. (3.11), not to a definition of
a specific fifth dimension.

Substituting Eq. (3.7) into Eq. (3.5) with the generalized momenta pμ replaced
by their respective operators from Eq. (3.9) yields:

[
p4 −

(
p2

0 + p2
1 + p2

2 + p2
3

)1/2]
Ψ = 0, (3.10)

which is linear in p4 but not in the other pi ’s. Multiplying on the left side by the
conjugate expression yields an equation that is symmetric in all pμ’s but not linear
in p4. Dirac’s feat was to design a relativistic wave equation that was both symmetric
and linear:

[
p4 − (α0p0 + α1p1 + α2p2 + α3p3)

]
Ψ = 0. (3.11)

In order to yield the same solutions as Eq. (3.10), the αμ’s must be 4-D matrices
commuting with the four pμ’s and satisfying, for μ, ν = 0,1,2,3, the relations:

α2
μ = 1, αμαν + αναμ = 0. (3.12)

In the original, most common representation of the Dirac 4-D matrices αμ, the Pauli
2-D matrices σ i are used as off-diagonal elements.

A result is that Ψ must be a four-valued wave function or a four-component state
vector. It was already known that, in order to satisfy Pauli’s antisymmetry condi-
tion, Ψ had to be endowed with a two-valued internal dynamical variable, which
Dirac interpreted as being the spin angular momentum. But he also discovered that
this number must be doubled because Eq. (3.11) has additional, negative energy
solutions, which he assigned to an ‘antielectron’ with opposite charge [2–5]. The
entanglement of the four components of Ψ when Eq. (3.11) is written in the explicit
form of four coupled equations [6] shows that spin itself is related to the negative-
energy states.

The electron spin first entered quantum mechanics through an intrinsic magnetic
moment interacting with an external field. To have the electron magnetic moment
show up, Dirac made it interact with an external field. And to have its spin momen-
tum appear, he made it combine with an orbital momentum. Equation (3.11) was
thus extended to include interactions with an electromagnetic field, with scalar and
vector potentials A4 and A:

[
(p4 + eA4/c)− α0p0 − α.(p+ eA)]Ψ = 0. (3.13)
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One may notice that, while the ‘time momentum’ p4 is affected by the electric po-
tential A4/c and the ‘space momenta’ p by the magnetic potential A, the ‘invariant
momentum’ p0 is not affected by the external electromagnetic field.

Writing H =m0c
2+H ′ and using the Heisenberg representation one obtains, to

first order:

H ′ = p4c− p0c=−eA4 + (p+ eA)2/2m0 + (e�/2m0)σ ·B. (3.14)

In addition to the classical potential and kinetic energy terms, there appears an extra
term which was interpreted as being due to the interaction of an intrinsic magnetic
moment: μ=−(e�/2m0)σ , with the magnetic field B .

The spin angular momentum does not give rise to any potential energy. To show
its existence, Dirac computed the angular momentum integrals for an electron mov-
ing in a central electric field (e.g., that of a nucleus), i.e.:

H = p4c=−eA4(r)+ cα0p0 + cα · p. (3.15)

For a component l1 of the orbital angular momentum: l =−i�rx∇ , Dirac obtained
a non-zero expression for i�∂l1/∂t , and similarly for the corresponding component
σ1 of the Pauli matrix/operator vector used to build the Dirac matrices αμ. Neither
l nor σ was then a constant of the motion; but the sum was:

∂l1/∂t + (�/2)∂σ1/∂t = 0. (3.16)

Dirac interpreted this as the electron having a spin angular momentum: s = (�/2)σ ,
that has to be added to the orbital angular momentum, l, to get a constant of the
motion. The directions of s and μ are defined by the same matrix/operator vector σ .
It was noticed by de Broglie [6] that it is not possible to separate the spin and orbital
momenta because uncertainties on the latter would be larger than the former, due to
the electron having a finite size defined by the Compton diameter 2rC .

In another computation [5] Dirac used a field-free Hamiltonian to determine at
which velocity the electron ‘rotates’ to acquire kinetic and magnetic spin momenta:

H = c(α0p0 + α1p1 + α2p2 + α3p3). (3.17)

The linear momentum p commutes with H and thus is a constant of the motion.
Making use of the properties of the αk’s (Eqs. (3.12)), it can be written, for an
arbitrary component vk (k = 1,2,3) of the electron velocity:

i�∂xk/∂t = [xk,H ] = i�cαk → vk = |∂xk/∂t | = ±c, (3.18)

which means the electron moves at the speed of light!
This paradox was elucidated by Schrödinger [11, 12] while investigating the

Dirac velocity operators vk = cαk . He showed that:

i�∂αk/∂t = 2αkH − 2cpk.

Since H and pk are time-independent, this entails:

i�∂2αk/∂t
2 = 2(∂αk/∂t)H.
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This differential equation can be integrated twice, yielding first the explicit time
dependence of the velocity and then that of the position. One first obtains:

vk = cαk = c2pkH
−1 + (i�c/2)γ 0

k e
−iωtH−1, (3.19)

where ω= 2H/� and γ 0
k = ∂αk/∂t at t = 0. AsH =mc2, the first term is a constant

of the order of pk/m, the classical relation between momentum and velocity. But
there is, here again, an extra term, which is oscillating at the electron Zitterbewegung
frequency [11, 12]:

νe = 2mc2/h. (3.20)

The constant part gives the average velocity, through a time interval larger than
ν−1
e , which is observed in practical measurements, whereas the oscillatory part ex-

plains why the instantaneous velocity has eigenvalues ±c [5]. Further integration
yields the time dependence of the electron coordinate xk , and it appears that the Zit-
terbewegung amplitude is of the order of rC = �/2m0c, the Compton radius given
by Eq. (3.4).

3.3 The Electron as a Quasi-Bohr Subsystem

Since its introduction by Uhlenbeck and Goudsmit in 1925, spin has been the subject
of a number of speculations [28–31]. The three additional terms which emerged in
Eqs. (3.14), (3.16), and (3.19) stemming from the very same properties of the 4-D α

matrices introduced by Dirac to linearize his quadratic equation, the internal motion
giving rise to both the spin angular momentum and intrinsic magnetic moment can
be identified to Zitterbewegung [13–21], which occurs at the velocity of light. As
the rest masses of both the electron and positron are non-zero, one may then wonder
why they do not go to infinity.

If Zitterbewegung is interpreted as a wave beat between the positive and negative
energy states [6], then the average mass of the vibrating entity can be considered as
being null, departures from this value being allowed by the Heisenberg uncertainty
principle. A related point of view [26] is to consider a vacuum fluctuation, with
frequency νe , associated with a particle of mass m0, this latter becoming a wave
with momentum p0 when it yields its energy to the vacuum and recovering its mass
when it is restored as a corpuscle.

If one writes the Heisenberg uncertainty relation for the energy:

Δ
(
2mc2) ·Δt =Δ(2mc) ·Δ(ct)∼ �,

and the Δ’s are removed and appropriate substitutions are made, one obtains:

2m0c · cτ0 ∼ � → τ0 ∼ �/2m0c
2 = (2πν0)

−1, (3.21)

where ν0 = 2m0c
2/h is the Zitterbewegung frequency for the electron at rest, and

τ0 ∼ 0.645× 10−21 sec is the time scale for the electron internal motion. To the rest
mass ‘momentum’ m0c ≡ p0 is associated an internal time ‘coordinate’ cτ0 ≡ x0.
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One may then see Eq. (3.8) as involving formally three space dimensions and two
time dimensions.

In the simple classical picture of a particle endowed with charge e and mass m0
moving at velocity c around a loop of radius rC , the intrinsic angular momentum
would be: s =m0c · rC = rC · 2π�/λC , from the definition of λC in Eq. (3.2). As in
the Bohr model for the orbital motion of an electron around a nucleus, the quantum
number s/� = 2πrC/λC takes on a (half) integer value if the circumference 2πrC
involves a (half) integer number of wave-lengths λC (the half stemming from the
Zitterbewegung frequency being that of a wave beat between the positive and neg-
ative energy states). This loop could then be seen as a kind of ‘intrinsic orbit’ with
range 2rC .

If then the electron (m0 ∼ 0.5 MeV) is viewed as the ‘lowest (stable) state’ of
a kind of ‘hidden structure’ similar to the Bohr atom, then the related muon and
tau particles (mμ ∼ 106 MeV,mt ∼ 1800 MeV) could be seen as ‘excited (un-
stable) states’ of this quasi-Bohr substructure. In a classical (spinless) extensible
model of the electron as a charged conducting surface [32], Dirac showed that its
first excited state with spherical symmetry has a rest mass about four times smaller
(m∗1s ∼ 27 MeV) than the muon’s. A large part of the rest mass should then arise
from the spin motion.

The muon and tau particles belonging to the same (lepton) family as the elec-
tron, their Compton wavelength λC , Eq. (3.2), if it was measurable in spite of their
very short lifetime (τμ ∼ 2.10−6, τt ∼ 3.10−13), would be much smaller than the
electron’s. In hydrogenoid atoms, the smaller the ‘Bohr’ (average) radius 〈r〉n of a
given (spherically symmetric) ns orbital, the larger the ionization energy In from
this state. In our quasi-Bohr lepton substructure, the smaller the ‘Compton radius’
rC , the larger the rest mass energy m0c

2.
In the hydrogen atom, there is an infinite sequence of excited states, with higher

and higher discrete energies bounded by the Rydberg energy RH (∼13.6 eV) and
ending in the continuum. Similarly, one may conjecture that in the electron family,
there is an infinite sequence of excited states, with larger and larger discrete energies
bounded by the Planck energyEP (∼1.96×109 J∼ 1.22×1022 MeV), correspond-
ing to a Planck spinning range 2rP (∼1.62× 10−35 m) and a Planck time scale τP
(∼5.39× 10−44 s).

We have tried to find some regularity in the sequence of known members of
the electron family, so as to estimate what could be the next member in the se-
ries. Results of a quadratic fit of the logarithms of reduced energies, including the
Planck limit, are shown in Table 3.1. The next member would have a rest mass
mν ∼ 122 GeV, very close to that (125 GeV) of the particle identified in 2012 at
CERN as the celebrated ‘Higgs boson’: it could be detected in the same energy
range. Figure 3.1 displays a fit of these masses.

The proton and the neutron belong to a different (baryon) family: they are com-
posite particles (both are made up of three quarks) and are sensitive to the strong
nuclear force. Their charge radii rN (N for nucleon), measured by electron scat-
tering, differ from their Compton radii rC by one to two orders of magnitude, and
their magnetic moments μN from the nuclear magneton μP = ecrP (rP being the
Compton radius of the proton) by factors 2.79285 and −1.91315, respectively.
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Table 3.1 The lepton series
of the electron family Name Rank E/MeV log(E/Ee) Ratio

Electron 1 0.5110 0. “

Muon 2 105.7 2.316 “

Tau 3 1 777 3.541 1.529

‘Next’ 4 122.5× 103 5.380 1.519

Planck limit Limit 1.221× 1022 22.378 Limit

Fig. 3.1 Quadratic fit of the
logarithms of reduced
energies in the electron family

In our earlier paper [22] we noted that the Compton diameter (reduced wave-
length): λ̄C ≡ λC/2π = 2rC ∼ 3.86159× 10−13 m, is a geometric average of the
classical electrostatic radius: r0 = kee2/m0c

2 ∼ 2.81794× 10−15 m, and the Bohr
hydrogen radius: a0 = �

2/kemee
2 ∼ 5.29177 × 10−11 m, ke being the Coulomb

constant (ke = 1/4πε0):

2rC/a0 = r0/2rC = α, α = kee2/�c∼ 0.729735× 10−2. (3.22)

The Compton diameter 2rC was also shown to be a geometric average of the
space-time curvatures, defined from general relativity theory, ‘inside’ the elec-
tron: rG = (G/c2)m0, and ‘outside’ a volume of radius rQ: RG = r2

Q/rG [22]. For
rQ = rC , one is led to define a gravitational invariant δ similar to the fine-structure
constant α:

2rC/4RG = rG/2rC = δ, δ =Gm2
0/�c∼ 1.751× 10−45. (3.23)

Auxiliary relations resulting from Eqs. (3.22) and (3.23) can be written:

rG/r0 = δ/α, rG/2rC = δ, rG/a0 = δ · α. (3.24)

The gravitational invariant δ introduced here differs from that, αp , introduced by
Carr and Rees [33] while discussing cosmological issues raised by Dirac, Dicke,
Jordan, and others: αp involves the mass of the proton, mp , instead of that of the
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electron, m0. It is involved, for instance, in estimating the minimum size and age of
the Universe [34] and in building universe models.

In one of these models [35, 36], the whole Universe undergoes a kind of Zit-
terbewegung. Let MU ∼ NH · mH × 10/3 be, according to Eddington [34], the
total mass of the Universe, NH and mH being the number and the mass of hy-
drogen atom equivalents: NH ∼ 0.53 × 1080 →MU ∼ 0.88 × 1053 kg. The Uni-
verse resulting radius is given by the relativistic formula: RU = 2G ×MU/c2 ∼
13.0 × 1025 m ∼ 13.8 × 109 light-years. A ‘cosmic flickering’ frequency is then
defined as: νU = 2MUc2/h ∼ 0.24 × 10104 s−1, which is a kind of ‘wave beat’
between matter and antimatter, reminding of Zitterbewegung [6].

According to Sanchez et al. [35, 36], this frequency is coordinated with the
electron and other fermion frequencies—which occur in widely different ranges—
through an extended ‘holographic principle’ [37]. In the hydrogen atom, for in-
stance, there is a ‘holographic relation’ between the Bohr radius and the electron and
proton radii. If ordinary matter results from an oscillation between positive and neg-
ative energy states [6], what we call antimatter then amounts to a totally dephased
oscillation [35, 36]. But this does not explain the dissymmetry of the occurrences of
the two species.

Expressing the distance r between two identical particles (e,m0) as a multiple
N of the Compton diameter: 2rC = �/m0c (Eq. (3.4)), and scaling both the electro-
static force: Fe = ke · e2/r2, and the gravitational force: Fg =G ·m2

0/r
2, to Planck

units: FP = c4/G, EP = (�c5/G)1/2 [38], Macken [39] managed to express the
two widely different forces as two different powers of the rest mass energy of the
particles (E0 =m0c

2):

Fe = αE2
0/N

2, F g =E4
0/N

2, (3.25)

where Fe ≡ Fe/FP , Fg ≡ Fg/FP , and E0 ≡ E0/EP are dimensionless quantities.
ForN = 1, the two particles are contiguous: r = 2rC = �/m0c, and Eq. (3.25) yields
a harmonic relation [39] similar to Eqs. (3.22) and (3.23):

α−1Fe/FP = Fg/α−1Fe = δ. (3.26)

According to this relation, within the fine-structure constant α, the Planck force is to
the electromagnetic force as the electromagnetic force is to the gravitational force,
the ratio of this relation being the gravitational constant δ [22]. This is an indication
that these forces are deeply related to the Compton wavelength and, following our
previous comments, to the spin of the particles.

It may be interesting to put side by side the analogies revealed by Eqs. (3.22)–
(3.26) (with the involved constants in parentheses):

Classical radius∼ Inside curvature ∼ α Gravitational force

Compton diameter (α)∼ Compton diameter (δ) ∼ Electromagnetic force (δ)

Bohr radius∼Outside curvature ∼ α Planck force.

The Compton radius rC thus appears as playing a privileged role in the descrip-
tion of the electron. Of the various definitions of electron radii, only that emerging
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from the analysis of X-ray inelastic scattering has direct experimental evidence. The
Compton radius rC defines the amplitude of the Zitterbewegung responsible for the
electron spin angular momentum and intrinsic magnetic moment. Equation (3.4)
also relates Planck’s energy EP , length 2rP , and time τP of the Big-Bang singular-
ity [38].

In Dirac’s semi-classical model of the electron as a charged conducting sur-
face [32], the potential ‘inside’ the surface is constant, according to Gauss’ theorem,
and equal to:

V =−kee/rC =−kee2α/r0 =−α
(
2m0c

2/e
)
. (3.27)

The second equality results from Eq. (3.22) and the third one, which is obtained
by replacing r0 by its expression given above, means that the constant electric po-
tential ‘inside’ the electron, acting on the proton charge, generates an energy that
is not infinite but proportional to that of a particle-antiparticle pair (times the fine-
structure constant). There is no Coulomb singularity, and no cusp condition [40–42]
is required for the wave function if the wave equation is reformulated accordingly.

There is no discontinuity either when the nucleus moves away from the ‘electron
core’ through the ‘Compton frontier’ to distances larger than the Compton radius. Its
interaction energy with the electron simply decreases as: H =−kee2/r(r ≥ rC). If
the interaction energy of the proton ‘inside’ the ball was exactly that of the creation
of a pair (the quantum-like equivalent to infinity), then the effective factor ke within
this no man’s land would be divided by α.

That there is no singularity when the nucleus is at the electron core is not con-
tradictory with the existence of contact Darwin and Fermi terms entering the ex-
pressions of isomer shifts ei and hyperfine couplings ai measured in Mössbauer and
magnetic resonance spectroscopies [43]:

ei = (2π/3)R2
i Zie

2ρ(ri); ai = (8π/3)�2γiγeσ (ri), (3.28)

where ρ(ri) and σ(ri) are the effective charge and spin densities at nucleus i.
Although the volume ‘inside’ the Compton radius may have different properties

than that ‘outside’, the electron cannot be considered as a micro black hole. Consider
a particle with rest massM ·me, electric chargeQ · e, and angular momentum J · s,
where me , e, and s are the mass, charge, and spin of the electron, used as units. For
this particle to be a black hole having an event horizon, these properties must satisfy
the relation [44]:

Q2α + (J 2/4
)/(
M2δ
)≤M2δ, (3.29)

with α and δ defined in Eqs. (3.22)–(3.24). For the electron,Q= J =M = 1. Then,
the positive solution forM in the extremal case obeys:M2δ = [α+(1+α2)1/2]/2∼
0.504, yieldingM ∼ 0.170× 1023, i.e. 0.028 Avogadro numbers of electron masses
(∼15 µg). In addition, the Schwartzschild radius, given in our previous paper [22]
as 2rG (∼1.353× 10−57 m), would be considerably smaller than the Planck limit,
2rP (∼1.616× 10−35 m).

In one of his conjectures [45, 46], de Broglie described the photon as resulting
from the fusion of a particle-antiparticle pair (real or virtual). In our model for the
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electron, the metastable hydrogenoid species positronium (τ ∼ 0.1 ns) would be
viewed as a couple of oppositely charged vortices rotating around a barycentre. As
in hydrodynamics, the two vortices would attract each other if they spin in the same
direction and eventually merge into a single vortex, which would be our compound
photon (in fact, both para and ortho positronium decay into several lower-energy
photons). There results a charge oscillating along an axis orthogonal to the mo-
tion [22], generating an electromagnetic field.

Thus, Zitterbewegung is what relates a real electron and a virtual positron, their
mass and spin being linked by a wave beat between the two states; positronium is
a Bohr-like structure associating a real electron and a real positron, with resulting
spin S = 0/1; and a photon is what results for S = 1 when the fermion pair merges.

3.4 Rest Mass and Spin Motion

The essential idea in this paper is that the rest mass of the electron stems from the
spinning motion of a massless charge at light speed, in a confined region defined
by the Compton radius. That a mass may stem from motion already appears in the
increase of inertial mass with increasing speed: mv =m0/(1− v2/c2)1/2. And that
a massless entity moving at light speed may display mass properties also appears in
the photon showing kinetic momentum: p = h/λ (e.g. in the Compton effect) and
gravitational mass: m= p/c (e.g. in a Mössbauer shift).

Rewording in classical terms the interpretation of Zitterbewegung resulting from
Eq. (3.19), one may say that the intrinsic orbit (Sect. 3.3), which defines the ‘internal
structure’ of the electron, is described at velocity c, whereas the external orbit, in
an atom for instance, is described at velocity v. This makes it necessary to consider
that the charged entity describing the intrinsic orbit has zero rest mass. The rest
mass observed with respect to an external body, such as an atomic nucleus, must
then arise from the intrinsic motion of the charged entity at velocity c.

Rest mass induction by space confinement also holds for massless bosons like
photons. It has been shown [39, 47] that photons trapped in optical resonators ac-
quire mass properties similar to those of fermions. For a similar reason, light trapped
on the photon sphere of a black hole or a neutron star acquires a rest mass much
larger than that resulting from the finite size of the Universe, RU ∼ 1.3× 1026 m.
Its total energy would be given by:

E2 =m2
0c

4 + p2c2 = �
2c2/4r2

C + �
2ω2. (3.30)

For a blue radiation (λ ∼ 4.10−7 m) trapped around a stellar black hole (M ∼
2.1031 kg, R ∼ 3.104 m), the ratio of the two contributions in Eq. (3.30) would
be: E1/E2 ∼ 10−12.

However, a rest mass induced by a confined motion must draw its energy from an
immaterial source which, for a massless charge, should be an electromagnetic field
(A4,A). For immaterial particles, the expression for the energy reduces to:E = p ·c.
For photons, one has: p = h/λ, yielding: E = hν. For a spinning charge, one would
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have: p = (�/2)/rC , yielding: E = �c/2rC =m0c
2 according to Eq. (3.4). Writing

E = eV and making use of Eq. (3.4), one obtains:

V = �c/2erC = keα−1e/2rC. (3.31)

What maintains the massless charge −e in a spinning orbit and provides it with the
energy accounting for the electron rest mass would then be the electric potential V
exerted by an opposite charge at a distance equal to twice the Compton radius, as if
the spheres of the electron and its mirror image were contiguous. This is indeed the
occurrence leading to Eq. (3.26). However, in this no man’s land (cf. Eq. (3.27)),
the inverse permittivity of the medium or, alternatively, the attracting virtual charge
would be multiplied by α−1 ∼ 137.

That an internal potential V acting on a massless charge −e be responsible for
its spin motion and rest mass is not contradictory with p0 and x0 (Eqs. (3.7) and
(3.8)) being invariant under an external field, while p4 is modified by A4 and p
by A (Eq. (3.13)). The spin momentum s = p0rC and rest mass m0 = p0/c are
also insensitive to (A4, A), although these potentials can act on the associated mag-
netic moment and electric charge. The deep connection between spin and mass also
appears in the unitary irreducible representations of the group of isometries in rela-
tivistic space-time being indexed by spin and mass.

A corroboration of our conjecture can be found in more formal treatments. Barut
and Bracken [18–21] have derived the Dirac equation for a finite quantum system in
an arbitrary moving frame. There, spin appears as the orbital momentum associated
with the internal system, while the rest mass is the internal energy in the rest frame.
In another, stochastic electrodynamics approach [48], Haisch, Rueda and Puthoff
have shown that Zitterbewegung arises from the electromagnetic interaction of a
subelementary charged particle (parton) with the vacuum zero-point field (ZPF).
Inertia was interpreted as a resistance of ZPF to spectral distortion in an acceler-
ated frame, and the van der Waals force generated by this oscillating motion was
identified with the Newtonian gravitational force. In addition, the inertial and grav-
itational masses thus derived were shown to be equivalent.

In Sect. 3.5, we shall see that charge is the only independent quantity that re-
mains when one identifies time with length, and mass with length inverse. It is not
surprising then that the three related quantities: length, time, and mass, vary with
velocity, but not charge. If the electron rest mass essentially results from the spin-
ning motion, over a sphere of radius rC , of a massless charge−e at light speed, then
the contribution of the electrostatic potential due to the charge distribution over this
sphere is [22]:

E0 ∼ kee2/2rC = α ·m0c
2. (3.32)

The contribution of the electrostatic self-energy to the electron rest mass is less
than 1 % of the kinetic contribution due to the spin motion around the effective vir-
tual charge α−1e (Eq. (3.31)). This energy can be compared to the electron-nucleus
‘contact energy’ (Eq. (3.27)).

Using again the semi-classical picture of an electron ball, the hidden confined
motion of a massless charge at velocity c can be related to the visible free motion
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of the resulting particle at velocity v by the Compton formula, which connects the
mass increase to the radius decrease:

mv = �/2rvc= �γ /2rCc=m0γ. (3.33)

A velocity increase in the outer motion entails an amplitude decrease in the inner
motion. This may be the deep reason why c is a limiting velocity for all motions,
and why inertial frames play a specific role in relativity theory. However, contrary
to what we stated in our previous paper [22], the contraction of the radius with
increasing velocity should appear as uniform [49, 50] and not just along the direction
of the motion.

3.5 Homologies in the Hierarchy of Complexity and Dimensional
Analysis of Fundamental Physical Properties

‘Analogy is the key to the understanding of . . . the universal law that governs all things as a
whole and every thing in its detail’.

(Attributed to Hermês ho Trismégistos)

This part is intended to trigger reflections on possible impacts of the inner struc-
ture, as discussed above, of the Dirac electron on the properties and interactions of
structures generated at the various levels of complexity.

The number and nature of the quantities that can be defined in a given field of
science (physics, chemistry, biology, ecology, . . .) is a matter of convenience and,
whenever it is possible, of coherence. This is true also for the units that can be
designed to measure or, at least, to scale these quantities. In fact, thousands of units
have been used (and are still in use) in various periods of history (and various regions
of the world) to quantify scores of quantities: from distance, duration, and weight to
radioactivity level, viscosity grade, earthquake strength, nutritional value, or music
interval [51]. However, since Aristotle, and even more since Galileo, it has been
admitted that physics, especially mechanics, is a science more fundamental than
others. This led to a mechanistic vision of Nature, which prevailed until it became
partly challenged by the paradoxes of relativity and quantum theories [52, 53].

This paradigm of modern sciences is based on an analytical and deterministic
approach to natural phenomena, which has made obsolete the holistic and finalistic
vision of traditional sciences. Nevertheless, it is still admitted that the biological
realm, even though it keeps obeying physical laws, has properties and laws of its
own (called emergences in the theories of complex systems), including holistic and
finalistic characters [54]. In the 19th century, Louis Pasteur (who refuted the old
belief in spontaneous generation) expressed an even more radical view, contrasting
with the prevailing materialistic and reductionist views:

‘Who tells you that the steady progress of science will not compel scientists who will live
in a hundred, a thousand years . . . to state that life has existed from all eternity, not matter
. . . . Who ensures me that in ten thousand years, one will not consider that it is from life . . .
that it is impossible to proceed to matter?’
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Even in the physical sciences, the Newtonian concept of interaction at a distance,
as well as Mach’s idea of a mass being determined by all masses in the Universe,
had an odd holistic flavour. In fact, in classical mechanics as in classical optics one
can use, to compute the trajectory of a matter particle or a light ray, either a de-
terministic, derivative formulation (Hamilton’s equations for position and momen-
tum, Descartes’ laws of reflection and refraction), or a finalistic, integral approach
(Maupertuis’ principle of least action integral, Fermat’s principle of stationary op-
tical path). The latter formulations are now well understood as resulting from inter-
ferences between waves associated with matter particles or light rays, constructive
along the effective, real trajectory and destructive along other, virtual paths [1, 55].

In the biological sciences, only deterministic approaches to microevolution (as
those involving Darwinian mechanisms of natural and sexual selection) have indeed
been rationalized. There is no real understanding of the macroevolution process in
which we are embedded (and not just external observers, as in the physical sciences).
However, the existence of selected trajectories for phylum evolution cannot be dis-
carded. In a way, chance and necessity play a role similar in the Darwinian theory
of biological evolution and in the Copenhagen interpretation of quantum mechan-
ics. In the former, the ecosystem acts as an ‘observer’ reducing the species ‘wave
packet’ (population variety) generated by ‘subquantum’ (genotype) fluctuations. If
biological phenomena are indeed, as Schrödinger had foreseen it [56], a manifes-
tation of quantum laws at the macroscopic level, then constructive and destructive
interferences may operate also among living systems, and hence within social struc-
tures [57]. There remains a Maupertuis or Fermat-like principle to be built on a
quantification model for biological evolution.

Schrödinger’s argumentation on the quantum nature of living systems, together
with Darwin’s theory of biological evolution, reminds of Epicure’s conjecture that
matter is made up of atoms driven by chance and necessity. Schrödinger’s idea was
expressed before the discovery of DNA (which actually it inspired). But, still earlier,
life quantization was implicit in Mendel’s laws of heredity and Morgan’s theory of
genes. This may be seen as the latest step in a fractal progress of complexity. Among
the so-called elementary particles, some of the most stable (electrons and nucleons)
build up a few scores of atoms, which constitute a kind of alphabet making up usual
matter. Some of the molecules (words) built up with a few light atoms constitute
a higher-order alphabet making up molecules of life (sentences). These assemble
into cells (paragraphs), tissues (chapters), organisms (books), species (bookseries),
and eventually ecosystems (libraries).

This evolving auto-organization process [58] follows four main rules [59]. 1. At
every level of complexity, the forces that have driven the lower-level structures be-
come less relevant, and new forces take over. 2. The higher the level of complex-
ity, the weaker the driving force: nucleons are held together by the strong nuclear
force; atoms and molecules by the weaker, electromagnetic force; and living organ-
isms communicate by exchanging energy-free signals (languages). 3. At every level
of complexity, a new variety of structures emerge, while only a few of those that
emerged at the lower level are retained (natural selection). 4. Subsidiary to this rule,
at critical levels of complexity there is a dissymmetry in the entities retained: matter
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over antimatter for elementary particles, levogyre over dextrogyre amino-acids in
protein macro-molecules.

The third rule starts applying at the lowest level: particles may constitute com-
plex systems without going through molecular structures and living organisms. Hy-
drogen is the main constituent of complex stars like the Sun while nucleons make up
neutron stars. Some Sun-like stars drive complex systems of planets and satellites,
and in turn they belong to galaxies. At the cosmic scale, the first two rules make
the very weak gravitational force control the auto-organization process, although
nuclear forces are still effective in the core of stars and electromagnetic radiation
in their environment. In fact, the rise of complexity in the micro-systems seems to
be conditioned by that in the macro-structures. It is as if the whole process aims
at producing life in the Universe: changes in the original conditions or in universal
constants may not allow the process to be completed [33, 34].

The electrostatic force, in its quantum version involving antisymmetry of the
wave function for particles obeying the Fermi-Dirac statistics, plays the main role
in chemical bonding and in the structure and properties of molecules, including
biomolecules. However, according to our second rule, the magnetostatic and weak
nuclear forces could also affect specific biological phenomena. On line with this
idea, investigations have since long been made on a possible role of the weak nu-
clear force in biomolecular homochirality [60].

Regarding magnetism (which is due mainly to the electron spin), it occurs in
various aspects of our daily life, from the oxygen we breathe to the hard disks of
our computers. It is also involved in magnetoreception [61], an extra sense that
allows various species to detect magnetic fields due to motions in the Earth nucleus
or storms in the Sun corona. It has been detected in bacteria, mushrooms, insects,
sea animals, small mammals, and migrating birds [61]. In most cases, it is due to
magnetosensitive proteins in the brain (hippocampus) or in sense organs (especially
in the eyes).

Living organisms may also be sensitive to electromagnetic waves, irrespective
of their energy content [62, 63]. The gigantic amount of invisible information sur-
rounding us (decoded by radio, TV, computer or cell-phone devices) might act, in
the long run, on proteins or nucleic acids in the brain or in the body, with unpre-
dictable effects.

Regarding the gravitational force, an influence on biological phenomena, in par-
ticular through natural selection, has been recognized [64]. In addition to acting
indirectly on the environment through the seasons and daily cycles, gravitation may
act directly at the cell level. Observations on cosmonauts undergoing microgravity
will tell more.

The relevance of this discussion to our topic is that, according to our conjecture,
not only the magnetic moment but also the rest mass of the electron is related to
its spin motion (and its interplay with its antiparticle), the resulting fermion prop-
erties being responsible for chemical bonding. Deeper knowledge of the electron
microcosm may then be a key to better understanding of biological phenomena.

Coming back to the physical realm, a convenient and consistent system of quan-
tities (and units) has eventually been designed: the International System (SI). In
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this system, there are seven basic quantities/units: length/meter, mass/kilogram,
time/second, electric current/ampere, temperature/kelvin, substance amount/mole,
and light intensity/candela. There are also twenty-two derived quantities (and units),
designed to quantify such entities as planar or solid angle, force and pressure, en-
ergy and power, electric charge and circuit properties, magnetic and light properties,
radioactivity, and biocatalysis. Multiples and fractions of these units are defined ac-
cording to the decimal system.

One may wonder why the plane or solid angle was not retained as a basic quan-
tity, for angle is linked to isotropy, a basic symmetry which entails conservation of
angular momentum. A property like magnetic flux density could also have been se-
lected, although magnetism is related to electricity, contrary to gravitation. It seems
strange that radioactivity is relegated to derived quantities and measured in s−1, no
more lethal than a music note! On the other hand, one may argue about the theo-
retical relevance (though not the practical convenience) of such basic units as the
kelvin, mole, or candela, all related to energy through heat, mass, or light.

One may also wonder if different units could not be defined for the three dimen-
sions of space: length, width, and height. For Aristotle, it made sense to distinguish
between going up or down, East or West, South or North. Contrary to the two hori-
zontal directions, the vertical seemed oriented, as time is for us. Medieval painters
represented objects on two dimensions, ignoring perspective display by projective
geometry (and, of course, holographic storing and retrieval by diffraction patterns
of coherent light). Until Descartes’ analytical geometry in the 17th century, it was
not clearly understood that space has three dimensions, with axis representations
and measuring units that are both rotatable (due to space isotropy) and translatable
(due to space homogeneity) [65].

In general relativity theory, the vertical relative to a massive body is different
indeed from the other two space dimensions, due to space curvature resulting from
gravitational attraction; and in special relativity theory, time is already a different
dimension, involving an imaginary axis. Hence, a non-Euclidean metric in the two
theories. Having reduced the vertical to the two horizontal dimensions, one could
further simplify by reducing time to the three spatial dimensions, writing in dimen-
sional terms: c∼ L/T ∼ 1 (the length associated with 1 second being 1 parsec).

The velocity of light c, assumed to be an upper limit in relativity theory, is one
of the fundamental constants of Nature. The quantum of action �, assumed to be a
lower limit in quantum theory, is another fundamental constant. If it is also taken as
dimensionless, one has: � ∼ 1→ML2T −1 ∼ML ∼ 1→M ∼ L−1 ∼ T −1. This
is consistent with Eq. (3.4) for the Compton radius when both c ∼ 1 and � ∼ 1
(dimensionwise), as well as with mass being identical to energy when c ∼ 1 (and
with time inverse when �∼ 1). In Table 3.2, we show how some universal constants
and physical properties are related in this dimensional system, commonly used in
relativistic quantum mechanics.

This system should not be confused with the natural system of units proposed in
1881 by George Stoney, who derived units for length, time, and mass by normalizing
G,c, and e to unity. This system was extended in 1899 by Max Planck, who derived
also units for temperature by normalizingG,c,�, and kB (the Boltzmann constant),
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Table 3.2 Some universal constants and electron properties (upper half) and a few physical prop-
erties (lower half) with dimensions scaled to �∼ c∼ 1 (dimensionwise)

Name Symbol Formula Dim.

Newton constant G Fgrav =Gmm′/d2 L2 ∼ T 2

Coulomb constant ke Felec = keee′/d2 Q−2

Planck constant � ΔE = �ω 1

Light velocity c Constant in all frames 1

Elementary charge e Negative or positive Q

Fine-structure constant α kee
2/�c 1

Electron rest mass me Negative for positrons L−1 ∼ T −1

Gravitational invariant δ Gm2
e/�c 1

Classical electron radius r0 kee
2/mec

2 L

Compton electron radius rC �/2mec L

Hydrogen Bohr radius a0 k−1
e �

2/mee
2 L

Gravitational electron radius rG (G/c2)me L

Force F F =mg L−2 ∼ T −2

Pressure P P = F/d2 L−4 ∼ T −4

Energy E E = Fd L−1 ∼ T −1

Power W W =E/t L−2 ∼ T −2

Electric potential V V =E/Q Q−1T −1

Electric resistance Ω Ω = V/A Q−2

Electric inductance H H = V t/A Q−2T

Electric capacitance F F =Q/V Q2T

Electric field E E = V/l Q−1T −2

Magnetic flux density B B = V t/ l2 Q−1T −2

Electric moment d d = er QL

Magnetic moment μ μ= e�/2me QL

to which was later added ke = (4πε0)
−1 [38]. As they are free of anthropocentric

choices, these units help physicists to reframe fundamental questions such as the
smallness of G relative to ke in SI units. Expressing Universe properties such as
age or temperature in terms of Planck units discloses a regular occurrence of large
dimensionless numbers, which led Weyl, Hoyle, Eddington, Wheeler, Dirac, and
others to speculations which inspired Carter’s Anthropic Principle in 1973 [33, 34].
Table 3.3 gives expressions of some Planck units and their values in the SI system.
Those for EP and FP were used in deriving Eq. (3.25).

In the system we use here (Table 3.2), only c and � ∼ 1 (dimensionwise). As
expected, both the fine-structure constant α (pregnant in quantum electrodynamics)
and the similar gravitational invariant δ (introduced in our previous paper) remain
dimensionless. This choice also will help to reframe some basic physical concepts.
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Table 3.3 Expressions and values of a few Planck units

Planck unit Expression Dimension Value/SI units

Length lP = (�G/c3)1/2 L 1.6162× 10−35 m

Time tP = lP /c= (�G/c5)1/2 T 5.3911× 10−44 s

Mass mP = �/c2tP = (�c/G)1/2 M 2.1765× 10−8 kg

Charge qP = (�c/ke)1/2 Q 1.8755× 10−18 C

Linear momentum PP = �/lP =mP c MLT −1 6.5249 kg m s−1

Force FP = �/lP tP = c4/G MLT −2 1.2103× 1044 N

Energy EP = �/tP =mP c2 ML2T −2 1.9561× 109 J

In Table 3.2, it can be seen that, while all mechanical quantities appear homol-
ogous to powers of length (or time), charge and related electromagnetic quantities
are not reducible to space-time. It can also be seen that, since ke expresses a prop-
erty of free space relative to electricity similar to that expressed by G relative to
gravitation, the role played by charge in electricity is homologous to that played by
curvature in gravitation. This is, of course, due to the homology between M and
L−1 in the dimensional system we have used. However, this suggests that a property
related to the charge inverse may have to be included as an additional dimension to
space-time in a general unification scheme.

While length and time allow continuous (translation and rotation) as well as dis-
crete (P and T reversal) operations, charge is a discrete, pseudo-scalar quantity,
eligible only to C conjugation. Now, whereas there is exact invariance of usual
Hamiltonians with respect to translations/rotations in space-time, only combined
CPT is a rigorous symmetry operation [60, 66]. There may then be a hidden dimen-
sion, homologous to Q−1, allowing continuous operations also for charge (as for
length and time), whose visible aspect would be discrete conjugation. The Poincaré
group would then have to be extended to account for this extra dimension. How-
ever, it has been suggested that charge may just be a relativistic-invariant quantum
whole number [35, 36], while a space-time interpretation for charge has also been
proposed [39].

In Table 3.2, force and power are homodimensional to L−2 or T −2 (the inverse
of G), due to our choice c ∼ 1. For the same reason, energy (mc2) and momen-
tum (mc) are homodimensional, which is consistent with energy being the fourth
component of a four-vector momentum in relativity theory. Electric resistanceΩ is,
as expected, homologous to the Coulomb constant ke. Electric field and magnetic
flux density also appear homologous, and both electric and magnetic moments are
homologous to the inverse electric potential.

The Lorentz transformation equations for the electric and magnetic components,
Ei and Bj , of an electromagnetic field between two inertial frames, S and S′, mov-
ing with relative velocity v along a common axis x, are similar to those for the
space and time coordinates, x and ct , of a free particle (Eqs. (2.4) of Ref. [22]).
But here, Ex and Bx remain unchanged while Ey transforms as x and Bz as ct (or,
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alternatively, Ey as ct and Bz as x), with similar correspondences for the other two
components:

Ey(Bz)∼ x, Bz(Ey)∼ ct; Ez(By)∼±x, By(Ez)∼±ct. (3.34)

Just as p2
0 and x2

0 (Eqs. (3.7) & (3.8)) are invariant under a change of frame, here
also there are two invariants [65]:

Y 2 =E2 −B2, Z2 =E ·B. (3.35)

As (dimensionwise) E ∼ B ∼MLT −2Q−1 ∼ L−2Q−1 (in our system), these two
invariants are homologous to L−4Q−2. According to our previous remark on the
analogy between charge Q and curvature L−1, one may then write: Y ∼ Z ∼ L−1,
homologous to p0, then to rest mass.

The electric and magnetic fields are different in that E is a polar vector (trans-
lational symmetry) while B in an axial vector (rotational symmetry). Now, in the
Dirac equation, space coordinates x are related to the external, linear momentum
p while the time coordinate x0 = cτ0 is related to the internal, spin momentum
p0 = m0c. There is thus a correspondence between electric field, translation, lin-
ear momentum, and space, and a similar one between magnetic field, rotation, spin
momentum, and time.

While space homogeneity entails conservation of p, and time homogeneity con-
servation of p4 ≡ E/c, space-time isotropy entails conservation of l + s, for l and
s cannot be measured independently [6]. A definition of isotropy consistent with
relativistic quantum mechanics then necessarily involves full space-time.

3.6 Conclusions

In this paper we have conforted our previous conjecture that the visible properties
of the electron, especially its rest mass, are determined by a subquantum massless
charge spinning at light speed within a Compton radius. In complement to the con-
clusions drawn in our previous paper [22], the following points can be stressed.

1. The rest mass energy m0c
2 of the electron is essentially a kinetic self-energy

related to its spin motion, with a contribution α-smaller of the potential self-
energy related to its charge content. For photons, p = �ω/c (p being the external
linear momentum), whereas for electrons, 1/2�/rC = m0c

2/c (1/2� being the
spin angular momentum). This sets the Compton radius: rC = �/2m0c, as the
range of the spin motion.

2. Spin itself being the ‘orbital momentum’ of Zitterbewegung, which in turn stems
from a wave beat between the electron and its mirror twin the positron, there
is no matter without antimatter: there is no need to search for antimatter for it
is around us and in us, as the two faces of a same coin or the two poles of a
magnetic moment.

The question now is, why ‘only one face of the coin’ shows up regarding
the electric charge, while magnetic poles always appear in couple. If charge is
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interpreted as a quantized curvature involving an additional dimension, then this
dissymmetry means that a single sign is privileged for this curvature, charge
conjugation amounting to its reversal. Mass arises from the confined motion of
the extra-dimension curvature over usual space-time.

3. By relating rest mass to spin motion, quantum theory brings an insight into such
relativistic concepts as the proper interval x0, which is the residual interval when
the space coordinates r2 are subtracted from the time coordinate c2t2. The ve-
locity of light c is not simply that of electromagnetic waves, but also that of
basic motions at the heart of matter. Time is deeply related to the inner clock:
τ0 = x0/c, spin momentum: s = p0rC , and rest mass: m0 = p0/c, of the matter
particles.

4. If the electron is regarded as the ground state of a subsystem analogous to the
Bohr atom, then a regular series of excited states, with decreasing Compton
wavelength, may occur, starting with the parent muon and tau leptons and ending
at the Planck limit. Being charged fermions, the two quark families could follow
a similar pattern.
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Chapter 4
Some Biochemical Reflections on Information
and Communication

Erkki J. Brändas

Abstract The biochemical aspects of communication have been investigated via an
extended framework of original quantum-statistical concepts. The key idea devel-
ops from the notion of a so-called Spatio-Temporal Neumatic, STN, configuration,
an open dissipative structure resting on the boundaries connecting micro-, meso- and
macroscopic levels. In this category one finds de novo self-organization of molecu-
lar motion, enzymatic catalysis and the self-assembly of nano-structures all the way
to biologically relevant processes like cell evolution, cellular neurobiology etc. The
possibility to store and communicate coded messages in this enlarged organization
is documented and recognized, unifying various proposals of theoretical understand-
ing including in particular the law of Gödelian self-reference. It is demonstrated that
intra-cell and inter-cell order leads to differentiation through a Poissonian modus
operandi. The latter lacks intrinsic memory, but its statistical nature gives way to
something non-intrinsic of teleonomic significance. Various consequences of this
idea prompt a broadened notion of communication and information, generating en-
codable cell differentiation through cell quality value factors resonating through
original communication channels accessible through Poisson statistics. It is shown
that inter-cell communication is temporally dominated while intra-cell information
is largely spatio-controlled. The nested (spatio-temporal) property of the “code of
codes” extends from the genetic- through the socio-, ecological- and to the cosmo-
logical rank, while taking account of a more stringent and appraisable representation
of the contemporary concept of a meme.

4.1 Introduction

Communication is a fundamental concept that covers as well as demands a deeper
and philosophical understanding at all levels of physical, chemical and biologi-
cal (even social) processes. Communication appears between the various parts of
a microscopic system, e.g. to interpret single-molecule-information transfer or in
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Fig. 4.1 Levels of
communication from
molecules to living organisms

understanding molecular, enzymatic and protein catalytic properties of biological
systems [1, 2].

On the mesoscopic level there appears macro-molecular structures and their
dynamics, self-organization and autocatalytic processes, chemical waves and pat-
terns [1–3]. Communication and pattern recognition play a decisive role in the spe-
cific evolution of the cell. Concepts such as microtubules, spindles, molecular pro-
pellers etc., are contained in biological information systems governing the conver-
sion of chemical energy to mechanical energy [4]. An analogous challenge relates to
metabolism, i.e. the proxy of the classical Helmholtz free energy with its quantum
analogue including the functional emergence of quantum-thermal correlations and
associated microscopic self-organization.

The enormous development within nano-science is based on a fundamental un-
derstanding of quantum mechanical meso- macro systems, e.g. characteristic poly-
mers [5]. This in turn leads to the formation of new molecular electronics build-
ing communication systems for the future [6]. One can safely predict that quantum
technology will revolutionize our new information society, not only by dramatically
reducing the size of ingoing components, but also via the exploitation of an entirely
new and completely different theory for information transfer, based on quantum
communication [7].

In the present description the concept of communication, including aspects like
function, information, reception, submission, transmission, regulation and adap-
tation have been extended. In Fig. 4.1 a sketch of the levels of communication
presently discussed in this contribution, have been made. The figure will be com-
pleted with a larger picture in the final concluding section.

Target-directed behaviour was already generalized by Mayr [8] to conceive
of biological functions to so-called teleonomic processes, which owe their goal-
directness to the operation of a program, see also Pittendrigh [9] for an early
introduction of the term. Following Deacon, Ref. [10], one may attempt to di-
vide dynamics into three separate categories, viz. homeo- (thermo-), morpho- (self-
organization) and teleo-dynamics. The view conveyed here indicates incomplete-
ness in our scientific vision and physical representation. The word “intentional”
is a philosophical expression that corresponds to a metaphysical concept that also
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admits purpose. However, to introduce a general term for all phenomena that are
intrinsically incomplete in the sense of being arranged or ordered to accomplish
something non-intrinsic, Deacon in his excellent monograph [10] introduced the
generic attribute “ententional”.

In order to disentangle the dilemma of separating the world into a physical and
a mental part, we will introduce the concept of an open dissipative structure that
in effect corresponds to active transitions between germane states of biological sig-
nificance. The ensuing spatio-temporal adaptation exhibits teleonomy, since their
autogenetic epithet is controlled by diverse factorizations of the apt transformation.
This allows transcended encodings [11, 12], a feature that will be expounded below.

To realize this agenda we will establish a basic statistical relationship between
the spatio-temporal neumatic structure (STN), [13], mentioned above, see Appen-
dices A, B, and the infinitely divisible probability distribution a.k.a. the Poisson dis-
tribution. For a recent discussion and application of the latter in connection with
cell-radiation interactions in radiotherapy, see Advances in Quantum Chemistry,
volume 65 edited by Dz. Belkic [14]. Although the number of occurrences of an
event, within a unit of time, if characterized as Poissonian, lacks memory, i.e. is in-
dependent of previous occurrences, it will be demonstrated that the transformation
properties of STN systems carry encodable factorizations. Thus the intrinsic statis-
tical property of the Poisson distribution gives way to something non-intrinsic with
ententional significance. This insight will provide realistic modelling of genetic and
epigenetic factors interlocking cell differentiation and cell communication, chaotic
neuron dynamics and bestow additional understanding of the general binding prob-
lem, a central issue in cognitive neuroscience. The energetics of the teleonomic
processes, to be considered here, recognizes the quantum statistical emergence and
self-organisational mode of quantum-thermal correlations, the latter yet in concert
with the second law. This undertaking will conclusively make possible the commu-
nicative aspects of evolution, as it will extend also to the socio-ecological and the
cosmological ranks.

4.2 Theoretical Basis and Background

In order to confront the challenges enunciated above, it is essential to incorporate
the examination of microscopic systems that exhibit irreversible behavior as well as
the associated time asymmetry of entropic increase. Thus one needs to consider the
following requirement: In what way could thermodynamics possibly emerge from
the abstract concept of statistical mechanics, where temporal asymmetry material-
izes from perfectly time symmetric microscopic dynamics. To remove unnecessary
detailed theoretical formulae and their derivations in the main text they have been
collected in Appendices A and B, see also Refs. [11–13, 15–25]. In these so-called
STN-structures it is particularly emphasized that the synergetic emergence of the
quantum- and the thermally activated correlations operates as a constructive driving
force in far from equilibrium situations. Note that the present quantum-classical fu-
sion, reminiscent of the notion of quantum discord, a recent hot topic in quantum
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information theory [26, 27], is in fact a quite different conception. As demonstrated
in the appendices further below, the STN configuration reproduces evolution in that
it inhibits loss of ordering between the phases of the system or otherwise stated is
decoherence code forbidden leading to atypically longer lifetimes.

To complete the picture, we call attention to the sub-dynamics programme of the
Brussels School [22, 28], a derivation that combines classical and quantum mechan-
ics employing the Nakajima-Zwanzig projection and the Liouville operator tech-
nique [29, 30]. Making use of the dilation analytic properties of the many-body
molecular Hamiltonian, i.e. employing the universal complex scaling method for
the subsequent analytical continuation via a mathematical theorem due to Balslev
and Combes [31] the author derived and developed the advanced-retarded represen-
tation of the Prigogine Generalized Master Equation [32], see e.g. Refs. [15, 33, 34].
These extensions are not merely technical as the possibility to formulate and analyze
the STN concept rests on the incorporation of broken symmetry solutions (parity vi-
olations, time irreversibility, non-probabilistic evolution etc.) resulting in the above
mentioned quantum-thermal unification. Moreover it will be easy to separate, in the
Master Equation, the appropriate residue contributions of its key partaker, the non-
hermitian collision operator, in addition to calculate related creation- and destruc-
tion operators via proper analytic continuation as ascertained by the mathematical
theorem just mentioned. The ensuing spectral limit on the real axis gives the dissi-
pativity condition for a quantum mechanical system with an absolutely continuous
spectrum as well as rigorously defining necessary analytic extensions.

In summary the primary differences between the causal dynamics of the Brussels
School and the present formulation is appended. Thus it is advocated [13, 37]:

(i) a retarded-advanced (homeo-, morpho-, teleo-) dynamics, allowing conversion
of the authentic time evolution into contracted semigroups

(ii) a relaxed positivity preserving condition, compelling a non-probabilistic inter-
pretation

(iii) an entrenched integration of an inevitable objective loss of information
(iv) a wide-ranging self-organization through integral quantum-thermal correla-

tions as established by the instituted Bloch thermalization.

This progression begets a new concept, viz. the Spatio-Temporal Neumatic struc-
ture, STN, which in addition to perpetuating microscopic self-organization including
a rich variation of timescales as well as (code-forbidden) protection against deco-
herence, also brings about transmissible encodable transformations yielding autho-
rization to consecutive changes between germane, e.g. polymorph biological states.

4.3 Nucleic Acids Versus Proteins as Cell Discriminator in Vivo

The recent Nobel Prize in Physiology and Medicine, recognized work that con-
cerned the remarkable possibility to reprogram somatic cells to so-called induced
pluripotent stem cells, IPS [35, 36]. This achievement is not only predicted to stim-
ulate progress and providing new tools to scientists around the world in many areas
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of medicine, but it also brings up new challenges, such as what differentiates vari-
ous somatic cells from each other and how does the cell in a stable culture environ-
ment, including other cells of similar mode (homeostasis), communicate its tasks
and responsibilities to the cell nucleus thereby starting the appropriate program to
generate the necessary information in agreement with its position in the hierarchy
of the organism.

In Appendices A and B, we have examined the dynamics of the DNA structure of
the cell nucleus and on the next level described the evolution of the cell. The central
request for information concerns the cellular signal opening up the program stored
in the cell nucleus. In the search for answers one recognizes the conditions related to
one of Darwin’s basic evolutionary mechanism, i.e. Natural Selection, NS. In the en-
tropic language of Shannon the constraints of the signal probability, and further the
dynamics of the signal generator is entailed, while maintaining the far from equi-
librium situation. In consequence one must incorporate simultaneously, thermo-,
morpho-, and teleodynamics, using the term self-organization more or less synony-
mously with morphodynamics. In other words, therefore, self-organisation is the
expression of the intrinsic thermodynamics of the STN constitution that gets “artic-
ulated” within a specific non-equilibrium boundary condition. NS, quoting Ref. [10],
is a function of the organization of the system’s internal non-equilibrium dynamics
with respect to non-intrinsic external conditions.

The properties of the so-called STN configurations and their role in NS, are ex-
amined in the Appendices A, B, see below. Hence one might characterize the cell
Ci as derived for M base pairs (the DNA double helix joined together by hydrogen
bonded nucleotide bases will be further detailed below) via the m-dimensional STN
configuration. Rewriting (4.25) and using the normalization condition

Tr
{
ρρ†}= 1

one obtains

Ci = 1√
10

{
3
∣∣f i1
〉〈
f im

∣∣+ 1

(m− 1)

m−1∑

k=1

∣∣f ik
〉〈
f ik+1

∣∣
}
. (4.1)

Here the preferred molecular basis h refers to the molecular double proton tun-
nelling motion of the various base pairs adenine-thymine, guanine-cytosine, the
canonical basis f obtains from the transformation h = f B , where B becomes
the crucial bearer of phonon induced channel information, see Eq. (4.12) in Ap-
pendix A, i.e.

B = 1√
m

⎛

⎜⎜⎜⎜⎝

1 ω ω2 · ωm−1

1 ω3 ω6 · ω3(m−1)

· · · · ·
· · · · ·
1 ω2m−1 ω2(2m−1) · ω(m−1)(2m−1)

⎞

⎟⎟⎟⎟⎠
; ω= e

iπ
m . (4.2)

Although M and m in general satisfies M < m (or even M � m), it is natural, in
the case of a description related to the DNA helix, to choose m = 4M , since the
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account refers to four different nucleotides, alternatively one can also make the op-
timal choice m= 2M preferring the general tautomeric structures of the two basic
proton configurations, see Appendix B for more details on the origin of Eq. (4.1).
The STN structure Eq. (4.1) describes a dynamical situation, which mimics the he-
lical structure of the nucleotides. Note that the transformation engenders two funda-
mental undertakings: (i) it diagonalises the apposite second order reduced density
matrix, which in ideal cases might develop ODLRO, see Appendix A and Eq. (4.13),
(ii) it transforms the thermalized density, fulfilling the far from equilibrium bound-
ary conditions (4.18), to classical canonical form (4.21)–(4.23). Hence B emerges
to “store information” in the helical arrangement before the cell division, where the
structure represented by Eq. (4.1) mimics the step operator properties of e.g. angular
momentum. The former property is wide-ranging and has actually been respected in
the context of cosmological evolution, see Ref. [37] and in the conclusion.

The opening up of the double helix, the copying of the gene, leads to a very com-
plex process (here much oversimplified) where the copy is made via the so-called
messenger ribonucleic acid mRNA. In the subsequent step transfer RNA (tRNA), is
bound to mRNA. The former carry an amino acid at one end of the chain. Hence the
anticodon of the tRNA is bound to the complementary codon of the mRNA. Note
that in RNA the nucleotide base is uracil instead of thymine and of course it forms
no double helix. Note also that the anticodon defines the group of the three com-
plementary nucleotide bases coding for the amino acid carried by the tRNA. The
process describes the generation of a protein from the complete sequence coding
of one gene, where triples of nucleotide bases code for one of the twenty natural
amino acids building up the protein. In addition to the protein coding genes, the
so-called extrons, there are interruptions by long DNA sequences, introns (missing
in the mRNA synthesis), which do not code proteins and whose biological role for a
long time appeared uncertain. We will return to this exon-intron mechanism below.

Before examining the factorization properties of the transformation B it is impor-
tant to realize that the molecular constituents of the cell as formulated in Eq. (4.1)
and in the appendices is a coarse grained simplification and require further details.
At the outset the reader is reminded of the Watson and Crick stereo-model utiliz-
ing the hydrogen bond complementarity between the nucleotide base pairs, see e.g.
Löwdin [38] and references therein for the state-of-the-art of that period. Thus it
is important to model the preferred basis as essentially developed from the double
proton tunnelling movements inside the DNA helical order even if the description
refers to an open dissipative system. This is clearly not the whole story since the dy-
namics is intrinsically defined by the highly complex correlated motions of the light
fermionic carriers e.g. the electrons that accompany nuclear position changes and
vice versa. In this procedure one usually invokes the purported Born-Oppenheimer
(BO) approximation, implying essentially that electrons, being much lighter and
quicker, moves in a more or less nuclear equilibrium configuration. Obviously this
is not adequate here, cf. Ref. [39] where the mirroring between the “light carrier”
and its “heavy partner” should be perceived beyond the BO picture via correspond-
ing traces over all nuclear degrees of freedom in the electronic picture and vice
versa for the nuclear dynamics. Without going into more details it will be sufficient
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to consider the nuclear organization, while knowing in principle that one can re-
cover the complementary portrait in the more complex world of the light carrier via
the Generalized Master Equation.

The intimate relation between the guardians of the blue print (DNA-RNA) and
the proteins as responsible for the business of life, see Refs. [40, 41], prompts
the establishment of a nested code, where the codon triplets defines the actual
amino acid and the sequence of amino acids builds the protein. Note that Szent-
Györgyi [40, 41], already more than 70 years ago, did postulate electron conduction
along the main polypeptide chain of the main protein, a hypothesis that the sci-
entific community did not originally accept, see e.g. Ref. [42]. It was, however,
corroborated by Ladik and Ye [43] half a century later. Incidentally we have here
a clear indication of the mirroring symmetry between the non-equilibrium nuclear
degrees of freedom and the electronic motion. The proton tunnelling movement in
the hydrogen bond is, at this juncture, commensurate with electron transfer through
several different proteins, similar to the situation in photosynthesis or the case of
oxidation-reduction enzymes. As will be seen below, this relationship calls for an
encoding that incorporates at the same time the molecular-, the super-molecular and
the cellular levels.

4.4 The Nested Code and the Cell Quality Factor

The puzzle or question: why are there four bases in DNA and what role is played by
the natural selection, NS, of the coding form has been belaboured on and off since
the origin of the work of Watson and Crick, see e.g. Ref. [44] for various inherent
constraining requirements on the coding system itself considering the efficiency of
performing the code’s biological roles. As seen below, we will attempt to go be-
yond the model of a linear sequence of symbols “under the constraint of a constant
number of units in a symbol pool”, Ref. [44], and assemble a more flexible scheme
based on non-commutative factorizations of the STN-graph.

To appreciate the coding possibilities of the transformation B in Eq. (4.2), one
can take the case of m= 12 as an example. The display of √12B will be portrayed
as a diagram below, where the dimension of the cyclic vectors is given in parenthe-
sis. For simplicity the first vector of one-dimensional units (1) have been removed
and hence there will only be 11 columns, i.e.

(2)
(3) (2) (3)

(4) (4)
(6) (3) (2) (3) (6)

(12) (4) (12) (12) (4) (12)
(6) (3) (2) (3) (6)
(4) (4)
(3) (2) (3)

(2)

(4.3)

bearing in mind, at the same time, the manifest symmetry in the diagram. A realistic
consideration of the cyclic nature of the columns above elicits the implication that
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certain input locations or key subject areas of the system are spatio-temporally cor-
related. In addition the nested characteristic of the non-commutative map recognize
interlevel communication and dynamics.

Belabouring the factorizations one could also simplify the graph, Eq. (4.3), as
the seven noncommuting factors below including the first column of (1)’s, leaving
out the final 5 repetitions, i.e.

{12} = {12× (1)⊕ 1× (12)⊕ 2× (6)⊕ 3× (4)⊕ 4× (3)⊕ 1× (12)⊕ 6× (2)}.
In particular one sees that amongst the 12 columns there are 4 columns that are

of the type 1× (12), i.e. that one third of the columns are not factorizable, while
the remaining two thirds are. Also the choice of m= 12 has a particular relevance
since the diagram supports the codon triplets as fundamental cycles. To include cy-
cles corresponding to the 20 amino acids one could append the example to the case
m= 12× 5= 60, i.e. including the factor “5”, which will add columns divisible by
5, 10, 15, 20, 30. Here one finds that 40 columns of 60 are not factorizable, in-
creasing the abundance of the latter (m = 12) from 1/3 to 2/3, a number rapidly
increasing with m. Already at this instance, one is able to predict the characteristic
that a large number of vectors in fact do not convey any information as they contain
no closed cycles of order smaller than m compared to the number of those that did
contain such cycles, not to mention the situation when m equals a prime number.
It has not escaped our notice that the specific property postulated above immedi-
ately suggests a possible exon-intron mechanism for the genetic material; see the
comment in the previous section.

The general diagram for a number n, with an initial factorial progression would
essentially read (nk = n/k)

(n n
2
)

(npk ) (·) (npk )

· · (·) · · · · (·) · ·
(n3) · · · · (n n

2
) · · · · (n3)

(n2) (npk ) (npk ) (n2)

(n) (n3) · · · (n) · (n n
2
) · (n) · · · (n3) (n)

(n2) (npk ) (npk ) (n2)

(n3) · · · · (n n
2
) · · · · (n3)

· · (·) · · · · (·) · ·
(npk ) (·) (npk )

(n n
2
)

(4.4)

In fact one can use the unique prime decomposition of every number n to devise
a so-called Gödel numbering identifying any “proposition”, cf. the famous Gödel
incompleteness theorem in propositional logic [21], see also [11, 12], the “propo-
sition” here in general meaning anything from amino acid identification to higher
order ententional meanings [10]. To account for the nested combination of charac-
teristics in (4.4), Nature must develop a more compact and flexible code than the
Gödel numbering, for instance bijective K-numeral systems e.g. the bijective base
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26 without a zero, which make compact strings of alphabetic labels (which finally
gives rise to languages as developed from mathematics). It is also required that the
decoding depends on the prior “knowledge” of each “receiver” and in this sense the
code may have different interpretations and versions.

In Appendix B the cell’s Q-value factor was obtained, the latter essentially being
equal to the dimensional number m. Rewriting Eq. (4.27) (here ω0 is the thermal
frequency, τ the lifetime corresponding to the resonance half-width, and τcorr is the
short time scale defined in Eq. (4.18), see Appendices A, B for details)

P = (ω0τ − i)I +J =m
(
ω0τcorr − i

m

)
I +J (4.5)

it is easy to see that resonance between correlated cells and STN structures of the
cell nucleus occurs when the dimension of the STN matches (essentially) the Q-
value of the cell, noting that the first term in Eq. (4.1) is short-lived compared the
second one.

Metaphorically the cell can be imagined as a tuning fork coupled to a resonance
box, i.e. the cell confinement containing the cell nucleus. The Q-value depends on
the actual position of the cell in the hierarchy of the organism and the corresponding
assignment for the business of building material structures of a particular kind. As
an example one might consider nerve cells or neurons, which regulates the flow of
information from sensory input to motor output, via the production of appropriate
neurotransmitters. Obviously high Q-factors contribute to various types of memory
and learning, see e.g. Kandel [45] for an excellent summary of the state of the art in
memory research.

Continuing the metaphor one can envisage the phonon assisted communication
between the cells as a number of “phone calls” between the cells during a given
time, t , being multiples of the characteristic time τ = τrel, see Eqs. (4.31)–(4.34)
in the appendices. The probability that k “calls” are exchanged during a specific
time interval, with each “telephone call” occurring with a known average (intensity)
parameter λl = (l − 1)τrel/τrel = (l − 1); l = 2,3..m i.e. with a specific distribution
for each value of l, is trivially given by

Pλl (k)=
(l − 1)k

k! e−(l−1) (4.6)

with the mean and variance given by λ = l − 1. The mean maximum number of
events during Tl = (l − 1)τrel are clearly given by l = m, with λm = (m − 1) or
counting l = 0 as an event, the community of cells encompasses during Tm−1,
according (4.6), m communications between M cells distributed over m possible
“sites” in the organism. From the properties of the Poisson distribution one can rec-
ognize that the maximum length m, of a message set, is directly matched by the
variance and the mean λ.

To put it concisely, each cell is characterized as an STN system, i.e. an open dis-
sipative system, containing nested encodings, programmed in the factorized canon-
ical vectors of the transformation B , from the genetic to higher order codes, e.g. the
blueprint for the protein build up, stored in the genetic alphabet and converted via a
resonating mechanisms (depending on the Q-value) from cell to cell.
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While the intercell interconnection essentially emerges temporally, the intracell
communication is also spatially linked. This is simply recognized since the intra-cell
configuration, as analysed by the Zubarev-like double time Green function [25], see
Appendix B, entails a cumulative Poisson statistics, see Eq. (4.38), with the param-
eter λ = 4π/3m and where communication divides into much smaller packages,
i.e. dividing up the unit sphere of the cell into m units for various values of m (re-
member its relation to the Q-factor of the “resonating tuning fork”). In this vein
it is tempting to speculate how the choices of various factors in this super-genetic
game permits factors that include essentially the first prime factors plus some key
elements from the knowledge of the organized structure of DNA and protein. In ad-
dition to observing the presence of the factors 2,3,4,5,10,12,15,20,30,60, see
discussions above, one also observes the inevitable choice of the factor 23 for the
human chromosome (consisting of 23 pairs), each containing 400–4000 genes and
50–250 million base pairs. Some further comments will be given in the conclusion.

Lastly, noting the curious choice 3m = 12, yields a close proximity to the key
case (λ = 1), i.e. λ = 1.047, which favours the one-event case over the zero event
situation while at the same time rapidly approaching the cumulative distribution
with an increasing number of terms, the latter a critical property of the code transfer
process on the microscopic stratum. Unless this observation is an artefact of the
formulation, the deviation of λ from unity, should be experimentally noticeable, cf.
the hypofractionation modality of radiotherapy, Belkic and Belkic [14].

Finally the column vectors of B , i.e. the actual canonical vectors f or F , give
the contents of “telephone calls”. While the encoded diagrams (4.3), (4.4) concern
the memory storage of information, the decoding is read (column wise) via the in-
verse (unitary) transformation B−1 corresponding to the transpose rotated diagram,
see the tilted view in Fig. 4.2 below. Thus in the revolved diagram, the various
column vectors start with a “1” in the first entry, supplied by the omitted column
in (4.3). Hence data messages, scanned during the decoding process, are scrambled
compared to the stored information given by the vectors of B , but nevertheless sim-
plified by the obvious symmetry of the portrait in Fig. 4.2. Although it is appealing
to continue a more detailed examination and interpretation of neuron dynamics and
their adaptability as well as their potential for any organisms’ behaviour, as built
into the brain, we will here only emphasize the commensurateness of the present
idea with regular genetic and developmental control. Some evidence will, however,
be enunciated in the final stages below.

4.5 Conclusion

As the conclusion is approached, we should briefly address the question how hu-
mans had retained some of the cellular mechanisms of learning and memory stor-
age found in simple animals and further, during evolution, developed higher quality
neurons, e.g. the pyramidal neurons in the prefrontal cortex. The modern state of the
art, i.e. how the flow of information from sensory input, coding for a perception and
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Fig. 4.2 The 90 degree
rotated diagram for the case
m= 12 corresponding to the
decoding process, i.e. the
inverse transformation B−1

couples the information, via the interneurons, to motor output, emerged primarily
from the research group of the Nobel Laureate Erik Kandel in their fundamental
studies of the giant marine snail (Aplysia) [45] via simple neuronal circuits of orig-
inally a small number of nerve cells. In general, different forms of learning give rise
to different patterns of neuronal activity. A fundamental feature of memory is that it
is formed in stages and that fixation onto long-term memory requires the synthesis
of new proteins. Further, memory is distributed and stored throughout the circuit
and without going into detail regarding the synaptic transmissions; it is realized that
the important point is that chemical synapses predominate in the brain. It is hence
tempting to analyse the spinal cord and its neuronal activities in terms of the model
put forward here. For instance combining the factor 60 from the triplet codon anal-
ysis with 23 (the number of chromosome pairs), one obtains a possible Q-number
for single sensory neurons of m = 23 × 60 = 1380 or using a more compact fac-
torization m = 23× 6× 4 = 552, numbers that is slightly larger than those found
in Aplysia [45]. These figures (or multiples thereof) correspond to active neural ter-
minals serving as classical communication channels for synaptic transmission, with
shifting Q-values, each linked to a particular schema, Fig. 4.2.

Obviously the present understudy of numbers may be a great deal too naïve not
only in comprehending its nested attributes, but also in the entreating appeal to un-
derstand the detailed structure of the chromatin strands, the estimated gene content
of a particular chromosome, its size and associated gene prediction. Nevertheless
the structure of the DNA packing in general and the DNA and protein in the cell
cycle in particular, provide important communicative information about e.g. cen-
tromeres and other chromosomal components, which should become transferrable
information for code entanglement.
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Although it is too early to draw specific conclusions it is obvious that the Q-
factor representation of the cell actually becomes more like a passive Q-switching
model. The synchronization of so-called spike trains may be examined in terms of
their Poissonian property, cf. Eq. (4.6), where classes of statistical distributions with
λ = l − 1 for l = 2,3, . . . ,m− 1; provides the necessary channel for communica-
tion. The somewhat ambiguous interpretation that free will, interpreted in its naïve
form, should be contradicted by incompatible time lags between increasing brain ac-
tivity and its conscious perception in the cortex, does not appear here if one avoids
to conflate time as an evolving (generalized) observable with the various biological
time scales building up the actual organism under reasonable statistical conditions.
In fact the self-referential nature of our theoretical formulation, cf. the analogy be-
tween Gödel’s theorem(s) and multiple surface intersections in molecular chemical
physics, introduces decision making processes already working at the microscopic
level. Since communicative semiology, at various levels, with its basis in the fun-
damental idea of self-reference, produce teleodynamic encodings, then, irrespective
of the location of the spatio-temporal site for any decisions made, the only agent is
by definition the self!

A central question in cognitive neuroscience is the way the collection of neurons
combines external signals with internal memories. Although different in perspec-
tive, i.e. studying quantum aspects of chaotic neuron dynamics, Arecchi [46], did
put forward a novel conjecture in terms of homoclinic chaotic systems and studied
the problem mentioned above, also known as the Feature Binding Problem, finding
that mutual synchronizations of spike trains may contribute to well-defined percep-
tions. Homoclinic chaos then appears suitable for encoding of information of equal
spikes occurring at apparently erratic times via a given metric structure of a so-called
percept space, the latter displaying fundamental quantum features. Nevertheless the
conjecture, of great interest, is wanting in the verification of an explicit code.

In our model one might well anticipate expanding the encoding and decoding
processes to the appropriate regions in the cortex, viewing higher-level perceptions,
“codes of codes”, as an extended STN configuration in which it should be possible to
incorporate a more distinct gene-based definition of the reproductive “social gene”,
known as the meme, a notion coined as a concept for discussion by Dawkins [47].
For instance, the actual physical representation of an information processing ca-
pability in the brain leads to neural circuits in action and the question how e.g.
hippocampus processes sensory information. Neurons in the hippocampus register
information, not with respect to a single sensory attribute, or one of the five senses
individually, but more precisely, to a modality that depends on the synchronized in-
formation from several senses including spatial and temporal recognition. It is not
unreasonable to sanction the spatial map that maintains the unitary and subjective
nature of the conscious state, i.e. feature bindings via the present nesting of the
“codes of codes”.

In passing one note our attempts to find answers to the question, whether it is
possible to reduce biological explanations to chemistry and/or physics. In more de-
tail we have tried to advance a positive response at the same time amalgamating the
systematic- and selectionist viewpoint. While pursuing natural selection to its basic
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Fig. 4.3 Ranks of
communication from the
micro level to cosmos

level, we end up with a genotypic position. Nevertheless, the teleonomic dynamics,
i.e. the view of biology as a goal-directed evolution according to the operation of
a program inevitably puts a more complete answer closer to the scientific borders
between physics, metaphysics and philosophy. Not only do we hypothesize whether
macro- and micro evolution are instigated by the same process, but in addition, even
if we believe that the answer should be “yes”, the unattainable question arise, viz.
when and how did the origin of life emerge in the universe? The answer that we
want to communicate in this article, i.e. an assertion at the highest branch of evolu-
tion, as is presently known, without religious implications, complies with Fig. 4.3,
containing an extended forethought of Fig. 4.1, in the introduction, to the socio-,
ecological- and cosmological rank.

In the present investigation it is stressed as well that a different contention or
query has been made, i.e. rather than asking the problematical question: what is
consciousness, we have attempted to delineate a more specific problem; i.e. what
distinguishes animate from inanimate behaviour. Obviously our analysis gives a
valid picture of continual evolutionary transitions, entailing decoherence protec-
tion, with physical observables represented by operators and their conjugate ones
[11–13, 37]. Surprisingly these properties do not only show up at the microscopic
biological arena, but also on the cosmic level, see more on this below. Hence the
origin of life, although of great interest as far as discovering its first indicators, is
already an intrinsic property of a Heraclitean universe.

In the present scenario, Fig. 4.3, it has been added, to the individual level of an
organism, the “larger” portrait, exploiting communication between life forms, their
interaction with the terrestrial environment, and finally the universal cosmological
echelon, as understood today. Also the development or evolution of social structures
based on sophisticated meme-like “codes of codes”, like mathematics, linguistics,
fine arts, music etc. have been examined as well as providing metaphors like tun-
ing forks etc., in anticipation of other phonon-induced communications. For more
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considerations and assessments, see e.g. the excellent account of the science of mu-
sic that goes back to the very remote periods of history including the Neanderthal
flute by Maruani et al. [48]. On the ecological level, semiotic investigations concern
the anthropogenic impact on our climate. Even if we have succeeded to reduce the
patterns of communication to a principle that defines “the self” and that it is “the
self” that, in our representation, is the director of its cell-based orchestra, there still
remain puzzles. The director acts as a scheduler of the partiture and participates
in the upgrading, hence the director-composer becomes a member of the Universal
Composers’ Guild that includes the universality of knowledge and coding, i.e. infor-
mation in its semiotic-, anthropogenic- and self-referential connotation. Therefore
far and beyond the macro- as well as by and within the microscopic level concealed
and unrequited questions are hiding: What is the origin of teleonomy? Is the com-
position of the universal symphony a built in property of our Universe? Our present
conjecture portrays evolution as a natural physical law founded on the principle of
self-reference.

In discussing the cosmological category of the chart above, it is necessary to pro-
vide a more penetrating assessment of the general concept of teleology. The con-
cept was largely in disrepute until the work of Mayr [8, 49], where he categorized
various types of teleology, but unfortunately ruled out the cosmological domain.
A surprising relationship between propositional logics (Gödel’s theorem [21]), STN
(then referred to as coherent dissipative structure) [11, 12], and Einstein’s theory of
general gravity [50], were suggested, proved and exploited [11–13, 37]. The rela-
tion suggests a general heuristic Gödelian arrow of time [51] and then a Gödelian
structure of the general “codes of codes”. Using this allegory, communication on all
levels, can be characterized as Gödelian absentia, see also Deacon’s analogy, i.e. the
concept of the absential as a paradoxical intrinsic property of existence with respect
to something missing and as a defining attribute of life and mind [10].

Note that Penrose [52] unequivocally considered the Gödelian theorem(s) of
mathematical logic, the latter asserting the inherent limitations of all nontrivial sys-
tems, in connection with the main positions of Artificial Intelligence, AI. The cri-
tique of his view, i.e. essentially that appropriate physical action of the brain, evok-
ing awareness, can not be properly simulated computationally, has been unforgiving
from the philosophical community, but all the same the logically based view finds
support in the light of the present report, see also [11, 12] for an earlier account.

It is quite compelling to recognize that our present project rests on analogies with
Gödel’s work in propositional logic, which unexpectedly did lead to a consistent for-
mulation of gravity [11–13, 37] without any inclusion of a cosmological constant.
Nevertheless Gödel is famous also for another paradox [53], namely his cosmologi-
cal solution to Einstein’s field equations [50]. Since this example results in a metric,
which allows closed time loops; it implies that Einstein’s general relativity sup-
ports time as being ideal rather than subscribing to our own primitive intuition. This
paradox can be eliminated, however, by the realization that our present operator-
conjugate operator method rules out the Gödel metric on account of its dependence
on the cosmological constant. As already demonstrated in Ref. [54], the relativis-
tic Kepler problem, e.g. the perihelion movement of Mercury can here be given a
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treatment that agrees with general relativity. Whether probing the small or the large,
communication in its most general sense seems to follow comparable patterns, i.e.
originating from a certain awareness of absentia complying with the law of self-
reference. In this way we are all children of evolving time [22], making our way
through the sanctuary of spatio-temporal communication via Gödelian Absentia.

Note Added in Proof The meme-based evolution of culture has been vividly
illustrated by Deutsch [55], who concludes that knowledge changes the very struc-
ture of the Universe, i.e. that the creativity program is a combination of genes and
memes and that replicating genes evolve the hardware that support better memes, cf.
also the Blackmore “meme machine” [56]. These ideas find support in the present
theory that indicates a more detailed gene-oriented meme structure. In addition our
teleonomic approach provides backing to the authors simple resolution to the two
puzzles presented [55], (a) why was human creativity evolutionary advantageous at
a time where there was almost no innovation, and (b) why did human memes suc-
cessfully replicate, given that brains have no mechanism to download them from
other brains. As also confirmed here, complex memes do mandate rules. It remains
a conundrum that Richard Semon’s views [57] on human memory, that emerged in
a biological context for more than 100 years ago, have been ignored not only by
his contemporaries, but almost forgotten until this day. For more details on this, see
Schacter’s remarkable book on Semon’s life and work, as well as considerations
raised about recognition and neglect of ideas in science [58]. It goes without say-
ing that the actual concept of a mneme, introduced in Ref. [57], notwithstanding its
introduction, long before the conceptual development of modern genetics, should
play a significant role also in our present investigation.
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Appendix A: Derivation of the STN Configuration

To ease the reader I will sketch the theoretical background for the so-called Spatio-
Temporal Neumatic (STN) configuration, earlier also denoted a coherent dissipative
structure, including a list of the relevant equations needed for the formulation. Neu-
matic stands for the basic element, “neum”, used in medieval musical notation prior
to the invention of the modern staff notation. It could also relate to the ancient Greek
word, “pneuma”, and meaning breath. For further details on the development, see
the work of the author, [11–13, 15] and references therein, where also more thorough
accounts can be found. The focal point will be the density matrix ρ (the fundamen-
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tal particles are fermions like electrons or protons), subject to the Liouville equation
(� briefly omitted)

i
∂ρ

∂t
= L̂ρ (4.7)

where the Liouvillian is defined as usual from the Hamiltonian H describing the
system, e.g. the molecular configuration under investigation, i.e.

L̂=Hρ − ρH †. (4.8)

Normally H is self-adjoint, but to carry out analytic continuation a “dagger” is in-
serted in (4.8). Since the microscopic system might be very complex, not to mention
depicting biological structures and organization, it is convenient to start by introduc-
ing the N th particle fermionic (and its q-reduced) representable density matrix Γ (q)

as follows

Γ (q)
(
x1 · · ·xq |x′1 · · ·x′q

)

=
(
N

q

)∫
Ψ (x1 · · ·xq, xq+1 · · ·xN)Ψ ∗

(
x′1 · · ·x′q, xq+1 · · ·xN

)
dxq+1 · · ·dxN

(4.9)

defined in terms of the many body (normalized) wave function Ψ (here Γ represents
a pure state, with obvious extensions for an ensemble) in Eq. (4.9). In particular we
will discuss the 2-particle reduced density matrix below, since it is of fundamental
importance in connection with the all-embracing electronic correlation problem in
ab initio quantum chemistry, primarily in connection with strongly correlated struc-
tures [16, 17], like e.g. high-TC cuprates [18]. In the so-called extreme case [17] the
density matrix takes on a very simple form. For instance defining an m-dimensional
preferred real localized basis |h〉 of geminals (two-particle functions) on suitable
sites of correct symmetry, one can show that the finite dimensional representation
essentially writes [13, 19]

Γ (2) = ρ =
m∑

k,l

|hk〉ρkl〈hl |; Tr{ρ} = N
2

ρkk = p; ρkl = p(1− p); k �= l; p = N

2m
.

(4.10)

In Eq. (4.10) N is the number of fermions or N/2 (quasi-)bosonic pairs and p is
“the probability to find” a pair in the state m. The number of possible states must
fulfill m ≥ N/2. The associated secular equation renders a non-degenerate large
eigenvalue λL = mp − (m− 1)p2 and a small (m− 1)-degenerate λS = p2. Note
that for largem and p small (m�N ), λL ≈N/2. Hence the density operator writes

Γ (2) = ρ = λL|g1〉〈g1| + λS
m∑

k,l=1

|hk〉
(
δkl − 1

m

)
〈hl |. (4.11)
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Although the diagonalisation of the degenerate subspace corresponding to the
“small” eigenvalue is not unique, a particularly simple form results from the trans-
formation |h〉B = |g〉 = |g1, g2, . . . , gm〉, see e.g. Refs. [15, 20] for the origin of
this transformation

B = 1√
m

⎛

⎜⎜⎜⎜⎝

1 ω ω2 · ωm−1

1 ω3 ω6 · ω3(m−1)

· · · · ·
· · · · ·
1 ω2m−1 ω2(2m−1) · ω(m−1)(2m−1)

⎞

⎟⎟⎟⎟⎠
; ω= e

iπ
m (4.12)

from which our reduced density operator reduces to a very simple and compact form

Γ (2) = ρ = λL|g1〉〈g1| + λS
m∑

k=2

|gk〉〈gk|

E = Tr
{
H2Γ

(2)}.
(4.13)

Before proceeding to discuss open or so-called dissipative systems, which in
effect are characterized as exchanging energy and/or entropy with its surroundings,
one learns a very uncomplicated yet signifying lesson. The formulation above, that
under certain optimal conditions, would develop Off-Diagonal Long-Range Order,
ODLRO [16], displays a rather trivial construction, i.e. the diagonal elements of ρ is
the probability p to find a pair in the statem, while the off-diagonal ρkl is the answer
to the question “what is the transition probability for a particle to go from the state
k to l”. Since the preferred basis is localized on the various sites one could also
“loosely” replace the state “k” with the site “k”. Note that this type of reasoning is
non-classical in the sense that it is prompted by the general structure of the density
matrix under the extreme form or the precursor to ODLRO. Normally one would
think about electronic systems here, but it is equally appropriate to discuss mirroring
dynamics in the nuclear skeleton, and e.g. model the nuclear degrees of freedom
instead tracing over all the electron variables, for more on the mirroring mapping,
see Ref. [39]. Hence the present formulation is completely general as the quantum
correlations incorporated here can be modeled as a means to describe propositional
logics in a consistent manner that also includes a formal mathematical solution to
the Gödel enigma [11, 12, 21].

In order to extend the discussion to include dissipativity, i.e. invoking the temper-
ature of the environment or in other words to merge quantum and thermal correla-
tions one continues by employing the traditional trick of letting the time parameter,
t , include the temperature through

t→ t + i�β; β = 1

kBT
(4.14)

where kB is the Boltzmann constant and T the absolute temperature. Thermalization
is straightforwardly carried out via the Bloch equation

− ∂ρ
∂β
= L̂Bρ; L̂B = 1

2

{
H | 〉〈∗| + | 〉〈∗|H}; E = Tr

{
H2Γ

(2)} (4.15)
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where the energy (anticommutator) superoperator, see Prigogine [22], is equipped
with a complex conjugate sign in the bra-position. The latter is a necessity in order
to analytically continue the resonance solution into the complex plane, for more
details see Ref. [15]. Writing the Hamiltonian as a sum of two-body operators the
total energy follows from a simple trace formula. The formal solution of Eq. (4.15)
obtains uncomplicatedly as

e−βL̂BΓ (2) = λL
m∑

k,l

|hk〉eiβ 1
2 (εk+εl)〈hl | + λS

m∑

k,l

|hk〉eiβ 1
2 (εk+εl)

(
δkl − 1

m

)
〈hl |
(4.16)

with the standard relation observed between the imaginary part of the energy and
the appropriate lifetime as

εk = Γk
2
= �

2τk
. (4.17)

The thermalized density portrays a complex symmetric representation containing
apposite phases due to the thermal fluctuations instigated at the temperature T . To
merge the thermal and the quantum correlations, i.e. relating the lifetimes above
with the absolute temperature of the environment one might make take advantage
of the following boundary conditions [19, 20] (τ2 = τrel)

βεl = 2π(l − 1)

m
; l = 2, . . . ,m

m= 4πkT

�
τrel; τrel = τ2 = τl(l − 1)= τcorr

(4.18)

which is due to an important observation [19, 20, 23, 24], viz. Eq. (4.16) becomes
a Jordan block provided (4.18) holds. Not only will the condition Eq. (4.18) lead to
anomalous time evolutions, see the subsequent appendix, but it will also provide us
with a unique transformation, cf. (4.12), with specific coding properties as well as
providing in retrospect a cumulative Poisson statistics to be used in the main text in
connection with cell characteristics and cell differentiation. The first realization is
that E = Tr{H2Γ

(2)
T }; Γ (2)T = e−βL̂BΓ (2), i.e. exhibiting an m-dimensional degen-

eracy. Secondly it follows surprisingly, inserting the condition (4.18) into (4.16),
that

Γ
(2)
T = λL

m∑

k,l

|hk〉ei πm (k+l−2)〈hl | + λS
m∑

k,l

|hk〉ei πm (k+l−2)
(
δkl − 1

m

)
〈hl | (4.19)

under the inverse transformation B−1 transforms to a more accessible canonical
form, i.e. using the knowledge [20, 23] that Q

Qkl =
(
δkl − 1

m

)
ei
π
m
(k+l−2); k, l = 1,2, . . . ,m (4.20)
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and the classical canonical form J defined by J (m−1) �= 0; J (m) = 0

J =

⎛

⎜⎜⎜⎜⎝

0 1 0 · 0
0 0 1 · ·
· · · · 0
· · · · 1
0 · · · 0

⎞

⎟⎟⎟⎟⎠
(4.21)

are similar through the unitary transformation

Q=B−1JB

|h〉B−1 = |f 〉 = |f1, f2, . . . , fm〉.
(4.22)

In terms of the basis |f 〉 one can finally rewrite Eq. (4.19) in classical canonical
form

Γ
(2)
T = λLJ (m−1) + λSJ ; J =

m−1∑

k=1

|fk〉〈fk+1| (4.23)

with

E = Tr
{
H2Γ

(2)
T

}= 0. (4.24)

Looking back, we have in fact carried out a sequence of steps, i.e. complex
scaling and localized thermal fluctuations leading up to two orthogonal many-body
functions, Ψ (g) and Ψ (g∗), see Eq. (4.9) above. Thus the degenerate structure char-
acterized by Eq. (4.23) is in actual fact not a standard quantum mechanical state as
it does represent more accurately a sequence of successive transitions. It is an open
spatio-temporal structure, which does not exist under a certain minimum “size” and
lifetime, see Refs. [19, 24], with anomalous time evolutions and, as will be demon-
strated below, subject to a (cumulative) Poisson-like statistics. A final attribute of
far-reaching importance is the factorization property of transformation B as dis-
played in Eq. (4.12).

Appendix B: Time Evolution of the STN Configuration

As portrayed in the central part of the text there are many distinct realizations of
STN structures to amorphous condensed matter in general and biological, complex
enough systems in particular [11–13, 19, 24]. For instance describing cellular in-
teractions and their various properties and differentiation, it is convenient to model
each cell as an STN entity, based on tunneling proton pairs (quasibosonic degrees
of freedom) as sites for the preferred basis. The dimension of the STN organiza-
tion gives rise to a particular transformation B =Bm where the associated factoriz-
ing structure of the vectors exhibits nested encoded programs, e.g. the genetic- and
higher level codes, as will be pursued in the main script.
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Lifting the argument from the molecular- to the cellular level it is straightforward
to set up an extended Liouville equation for the cell i, i.e. Ci defined via Eq. (4.23)

Ci ∝
{
∣∣f i1
〉〈
f im

∣∣+ 1

m′
m−1∑

k=1

∣∣f ik
〉〈
f ik+1

∣∣
}

(4.25)

where the proportionality sign ∝ signifies appropriate normalization, see also
Eq. (4.1) regarding the normalization, and

m′ =m(1− p)
p

. (4.26)

The value of the “probability” p depends on the context, e.g. for the base pair system
discussed in the main text the choice m = 4M yields p = 1/4, m′ = 3m, while
the optimal value of the large eigenvalue obtains from m = 2M , i.e. p = 1/2 and
m′ =m.

In order to formulate the cellular correlations one repeats the trick of constructing
the appropriate reduced density matrix [19, 24] derived from the symmetric prod-
uct of all cells. The (quasibosonic) one matrix describes a cell in the environment
of all the others. Note that the energy degeneracy (4.24) for each cell rests on the
quasi-equilibrium reached at temperature T with the energy equal to kBT and the re-
laxation time, (4.18), �/Γ = τ = τrel, where Γ , not to be confused with the density
matrix notation above, is the width of the resonance profile. For reasons to be clear
below the Liouvillian generator of the time evolution is subject to a Poisson-like
statistics and it is by now well-known that this follows simply from the inclusion
of Jordan-like perturbations. Hence in the space spanned by the cell basis Ci the
propagator/generator P writes

P = (ω0τ − i)I +J (4.27)

where ω0 is the thermal frequency corresponding to kBT and I,J are the unit
matrix and the Jordan canonical form respectively. For simplicity we take the di-
mension to be denoted by m although the dimension here in general should be
separated from the intracell dimension in (4.25). Note also that the correspond-
ing transformations B and B−1 of the “localized” cell basis Ci holds yielding the
correspondences |G〉 to |g〉 and |F 〉 to |f 〉. From Eq. (4.27) follows directly the
causal propagator G(t) and the resolvent G(z) defined by

G(t)= e−iP t
τ ; G(ωτ)= (ωτI −P)−1 (4.28)

with the recognized polynomially perturbed time evolution of the propagator and
the associated multipole expansion of its Fourier transform, i.e.

e−iP t/τ = e−iω0t e−t/τ
m−1∑

k=0

(−it
τ

)k 1

k!J
(k) (4.29)

(ωτI −P)−1 =
m∑

k=1

(
(ω−ω0)τ + i

)−kJ (k−1). (4.30)
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From the degeneracy with Fk(t) = e−iω0t e−t/τFk , one gets for the r th power of t
(note that only F1 is an eigenfunction, while the others complete the root manifold)

N(t)∝ ∣∣〈F1|J (r)|Fr+1〉
∣∣
(
t

τ

)r 1

r!e
− t
τ =
(
t

τ

)r 1

r!e
− t
τ (4.31)

where the r’th power of J writes (note the relation between (4.31) and the statistical
projection below)

J (r) =
m−r∑

k=1

|Fk〉〈Fk+r |. (4.32)

For e.g. the highest power m− 1 one obtains from Eq. (4.31)

dN = tm−2
(
m− 1− t

τ

)
N(t)dt (4.33)

with an altered microscopic law of evolution

dN(t) > 0; t < (m− 1)τ. (4.34)

Hence it has been demonstrated (i) that Eq. (4.31) suggests a Poisson-like statis-
tics, see more below, and (ii) that Jordan blocks appearing in the generator of the
STN teleo-dynamical system results in a non-decaying evolution law that supports
microscopic self-organization. The total evolution, being non-statistical, with max-
imum information becomes “chaotic” when summing over all terms in Eq. (4.29).
Note that any reference to statistics here concerns events where genetic code data is
transferred between cells.

To proceed one makes the substitution Eq. (4.14), i.e. using the analogue of the
Zubarev double-time Green function [25], implying that P in formula (4.28) is con-
verted into

G(t)→ G(t + i�β)= e−iP (t+i�β)
τ . (4.35)

Since ω0 = τ/�β =M/4π , see Eq. (4.18), the formula (4.29) becomes statistically
projected

∣∣e−iP
(t+i�β)
τ

∣∣= ee− t
τ

∣∣e−iJ
t
τ

∣∣
m−1∑

r=0

(
4π

m

)r 1

r!J
(r) (4.36)

which inserted below, using the relation C1 = (1/√m)∑m−1
l=0 Fl+1, becomes

N(t + i�β)= ∣∣〈C1|e−iP
ti�β

τ |C1〉
∣∣=
∣∣∣∣
m−1∑

r=0

〈F1|J (r)|Fr+1〉
(

4π

m

)r 1

r!e
− (t−τ )

τ

∣∣∣∣

=
m−1∑

r=0

(
4π

m

)r 1

r!e
− (t−τ )

τ . (4.37)
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Note that the term containing powers of the operator J in (4.36) inserted into (4.37)
translates to the sum

m−1∑

k=0

(−it
τ

)k 1

k! ≈ e
−it/τ

who’s magnitude is essentially one for large m and |t |< τ .
From Eq. (4.37) follows, dividing the lifetime τ into m/4π discrete time units,

or going from t − τ to t in single steps, defines a cumulative Poisson distribution
with the intensity (rate) parameter λ = 4π/m (or factoring out the triplet codon
λ= 4π/3m)

P
{
(t − τ)/τ < m/4π}=

m−1∑

k=0

(
4π

m

)k 1

k!e
−4π/m. (4.38)

Equation (4.38) sustains the statistical response to the quantum-thermal chaos,
for each cell Ci , via collective intra-cell quantum-thermal correlations leading up
to a cumulative statistical distribution. It is interesting to ponder whether the choice
m = |4π | = 12 carries any particular meaning, since it yields an almost critical
case with λ = 1.047, with P(0) = e−1.047 and P(1) = 1.047× e−1.047, where the
probability for one event of communication is larger than that for no event, being
exactly the same for λ= 1.

In summary we have mapped the basic constituents of the cell onto an STN con-
figuration, i.e. spatio-temporally structured on the electron-proton transfer molec-
ular level of the gene. Examining cell evolution and cell differentiation, based on
thermalization along with a degeneracy analysis, where the dimension of the largest
Jordan block, m, defines the so-called Segrè characteristic of the degenerate level,
one finds a particular type of statistics known as the (cumulative) Poisson distri-
bution (4.31), (4.38). The number m∝ ω0τ is essentially the cell’s Q-value factor,
cf. its use in regard to quality aspects of an oscillator or a resonator. One can e.g.
imagine the cell as a tuning fork coupled to a resonator or in the case of over-
damping a “slamming door”. The factor 4π obtains naturally in the derivation and
may be given a geometric interpretation as being related to space angle integrations.
Note that standard practice usually gives the quality factor in terms of energy ratios
times 2π .
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Chapter 5
Application of the Uniformly Charged Sphere
Stabilization for Calculating the Lowest 1S
Resonances of H−

S.O. Adamson, D.D. Kharlampidi, and A.I. Dementiev

Abstract The uniformly charged sphere stabilization method has been used to cal-
culate the lowest 1S resonances ofH−. It was shown that this method is sensitive to
the choice of basis set and parameters of the stabilization potential. The conclusion
on the suitability of this method for calculating resonance energies and widths is
based on the analysis of our computational results.

5.1 Introduction

Considering the progress in development of the direct methods for resonance cal-
culations [1–3], the uniformly charged sphere stabilization (UCS-stabilization) ap-
proach now can be considered as the simple “first-aid” tool for the estimation of
resonance parameters of molecular negative ions [4–12]. This method, based on the
ideas from the previous works [13, 14], has two advantages distinguishing it from
the other stabilization techniques [1, 10, 12, 15–17]. First, the calculations may be
carried out by almost all modern quantum chemistry programs, including multi-
reference ab initio methods. Secondly, the scope of this approach isn’t limited to
consideration of only the single-channel problem (but up to now there are no exam-
ples of multi-channel calculations). On the other hand, for a long time this method
was applied in the absence of the theoretical base proving possibility to estimate
the resonance energy and width using only the known parameters of the potential,
and the energies of the discrete levels. Later it was shown, that these parameters
allow to estimate the amplitudes of the incoming and outgoing waves of the partial
solution [18–20]. One more lack of this method is the absence of recommendations
for creating the optimal computational scheme (the construction of the single- and
many-particle functions, choice of the external potential parameters, etc.).
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Taking into account that all the listed problems of the UCS-stabilization method
will be solved only through systematic investigations of the well studied molecular
systems, the aim of this paper is to assess the influence of the UCS-potential param-
eters on the accuracy of the resonance energy and width calculation. It is expected
that the choice of the UCS-potential parameters (charge and radius of the uniformly
charged sphere) should also influence the accuracy of the estimated resonance pa-
rameters by analogy with the optical potential method [21, 22]. Two lowest 1S reso-
nances ofH− below the threshold n= 2 were chosen as the computational examples
because both theoretical calculations performed by different methods [1, 23–34] and
measurements [35] are known for these resonances. The experiments give the en-
ergy and width (Eres = 0.35092± 0.00048 and Γ = 0.00232± 0.0003 a.u.) for the
lowest resonance and prove the existence of one more resonance (Eres ≈ 0.37403
a.u.) [35]. The energies and widths for the six 1S resonances below the thresh-
old n = 2 were estimated in the later theoretical works and for the first and sec-
ond resonances Eres = 0.35122025, Γ = 0.00173870 and Eres = 0.373979753,
Γ = 9.0934 × 10−5 a.u. [1, 33]. The energies and widths given in other men-
tioned works were calculated less accurately and differ from the above ones by
about 10−4 a.u. [24–32, 34].

The theoretical background is described in the next section. Following parts con-
tain the details of the Hamiltonian matrix construction and method used for the
resonance parameters calculation. In conclusion the obtained results and their dis-
cussion are presented.

5.2 Theory

Within the limit of the infinite nuclear mass approximation the Hamiltonian of the
H− system has the form

Ĥs =
2∑

i=1

Ĥs(i)+ e2

r12
, (5.1)

where Ĥs(i) = −�2Δi/2m − e2/ri + Vs(ri), m is electron mass, e is elementary
charge, ri is distance between the nucleus and i-th electron, and r12 is distance
between electrons. The external (stabilization) potential is given by the formula

Vs(ri)=
{

0, ri < R,

V0 −Z0e
2/ri, ri ≥R, (5.2)

where V0 and R are independent parameters, and Z0 is determined by the condition
Z0 =RV0.

Consider the application of the variational method for the calculation of the sta-

tionary eigenfunctions Ψ
LS

with eigenvalues E lying in the continuum spectrum of
the system, which consists of a target and an electron. The brief notation LS is used
for the full set of the quantum numbers {α,L,S,Lz, Sz}, where L, S—are the total
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angular and spin moments, Lz, Sz—its projections on the z-axis and α—all quan-
tum numbers, which were not introduced explicitly. For the two-electron system the
wave function can be represented by [23, 36–39]

ΨLS =
∑

μ

aμDμ + ÂSL
∑

ν

fν(1)Γν(2). (5.3)

The first term on the right-hand side of (5.3) refers to the electron correlation and it
is defined as the linear combination of Slater determinants Dμ with coefficients aμ.
The second term refers to the asymptotic part of the wave function at ri ≥ R and it
can be written as a set of antisymmetrized products of the single-particle functions
fν(1) and Γν(2). The operator ÂSL is taken in the form ÂSL = (1−P12)/

√
2, where

P12 is the permutation operator.
Let’s define the finite set of single-particle functions {ϕi}, i = 1,2, . . . ,N , where

each function is a product of independently normalized spatial and spin parts:
ϕi = χi(r)τ (σ ), 〈ϕi |ϕj 〉 = δij . To define both terms of (5.3) the {ϕi} set is split

in the subsets {ϕΓi }, {ϕfi } and {ϕDi }. The first subset {ϕΓi } determines the orthonor-
mal target states {Γν}, Γν =∑i cνiϕ

Γ
i , where cνi are some coefficients and index

ν corresponds to the full set of quantum numbers {nν, lΓν , sΓν , lΓzν, sΓzν}, character-
izing uniquely the state of target. The target functions should satisfy the condition
〈Γμ(i)|Ĥs(i) − Eνs |Γν(i)〉 = 0, i.e. these functions may be exact or obtained by
the linear variational method. To describe the scattered electron state let’s introduce
the single-particle functions fν =∑j bνjϕ

f
j expanded over the subset {ϕfj } of the

initial set {ϕi} with coefficients bνj . The last subset is used to define the functions
Dμ = ÂSL{ϕDi (1)ϕDj (2)}.

In the general case the basic formulation of the variational method depends on the
choice of {ϕΓi }, {ϕfi } and {ϕDi } sets. For example, the case when the initial choice
does not provide the orthogonality conditions 〈ASL(fν(1)Γν(2))|Dμ(1,2)〉 = 0 was
discussed earlier [23, 37]. Further it will be assumed that the wave function variation
preserves the orthogonality of both terms of (5.3) due to the corresponding choice of
the single-particle subsets. In this case the basic equations of the variational method
are

(
Γν(2)

∣∣Ĥs −E
∣∣ΨLS

)= 0, (5.4)

〈Dμ|Ĥs −E
∣∣ΨLS

〉= 0, (5.5)

where the integration in (5.4) is realized over all the variables of the second par-
ticle and in (5.5) over all the variables of both particles. As has been shown
earlier, if the wavefunction of the scattered electron fν is written in the form
fν(1)= r1−1Fν(r1)Ylνmν (r̂1)τν(σ1), where r̂1 represents the polar (θ ) and azimuthal
(φ) angles, mν + lΓzν = Lz and Ylm(r̂) is a spherical harmonic, (5.4) can be trans-
formed to a system of the radial integro-differential equations. In our case this sys-
tem of equations will differ slightly from its original form [23, 36–39] and have the
form
(
− d2

dr2
+ lν(lν + 1)

r2
+ Ṽs(r)− k2

νs

)
Fν(r)=

∑

ν′
Aνν′(r)+

∑

μ

Bνμ(r), (5.6)
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where r = r1 is radial variable of the first electron, k2
νs = 2m(E−Eνs)/�2, Ṽs(r)=

2mVs(r)/�2 and Aνν′(r), Bνμ(r) are coupling functions.
If the parameter R is acceptably large to provide the conditions Aνν′(r)→ 0

and Bνμ(r)→ 0 in the region r ≥ R for the all coupling elements then the radial
functions Fν(r) for the open channels (kνs > 0) can be represented in the asymptotic
form

lim
r→R−0

Fν(r)=AνIlν (zν)+BνOlν (zν), (5.7)

where zν = kνsr , Aν , Bν are amplitude coefficients, Ilν (z) and Olν (z) are linearly
independent solutions (limz→∞ Il(z)= sin(z− lπ/2) and limz→∞Ol(z)= cos(z−
lπ/2)), which can be represented as the Riccati-Bessel functions of the first and
second kind Il(z) = zjl(z) and Ol(z) = −zyl(z) [40]. As the functions Fν(r) and
their first derivatives are continuous at the point r = R, the coefficients Aν and Bν
are obtained from the expressions

Aν =−k−1
νs Wr

(
Fν(r),Olν (zν)

)∣∣
r=R, (5.8)

Bν = k−1
νs Wr

(
Fν(r), Ilν (zν)

)∣∣
r=R, (5.9)

where Wr(f,g) = f dg
dr − g df

dr is the Wronskian. As discussed below, in the case
of a single open channel the scattering phase can be calculated as tan δl(k)= B/A,
where subscript ν is omitted.

After the premultiplying by single-particle functions ϕfi (1) and the integrating
over coordinates of the first electron the system of (5.4) is reduced to

〈
ϕ
f
i (1)Γν(2)

∣∣Ĥs −E
∣∣ΨLS

〉= 0. (5.10)

These equations together with (5.5) formulate the generalized eigenvalue problem
and its solution gives the optimal value of E and coefficients {bνj , aμ}, which are
necessary to calculate the scattering parameters.

It is possible to introduce another method to estimate the scattering phase using
only the known values of E and external potential parameters (V0 and R). The opti-

mal functionΨ
LS

that satisfies the condition 〈ΨLS |Hs−E|ΨLS〉 = 0 can be consid-
ered to approach the exact solution of the Schrödinger equation (H ′s −E)ΨLS = 0
with the Hamiltonian H ′s , which differs from (5.1) by the parameters of poten-
tial V ′s only. Denoting the difference between exact and approximate solutions as

ΔΨ = ΨLS −ΨLS , one obtains
〈
Ψ
LS∣∣Hs −E

∣∣ΨLS
〉= 〈ΨLS∣∣Vs − V ′s

∣∣ΨLS
〉+ 〈ΔΨ |H ′s −E

∣∣ΨLS
〉

+ 〈ΨLS∣∣H ′s −E|ΔΨ 〉 + 〈ΔΨ |H ′s −E|ΔΨ 〉. (5.11)

The second term on the right-hand side of (5.11) is equal to zero because ΨLS is the
exact solution of the Schrödinger equation and it can be shown using the Green’s
theorem that the third term is equal to zero as well. Hence the formula (5.11) is
simplified to the equality

〈
Ψ
LS∣∣Vs − V ′s

∣∣ΨLS
〉+ 〈ΔΨ |H ′s −E|ΔΨ 〉 = 0. (5.12)
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Assuming thatΔΨ is small, we obtain the condition 〈ΨLS |Vs−V ′s |ΨLS〉 = 0 which
leads to the approximate equality Vs ≈ V ′s only if one of the external potential pa-
rameters (V0 or R) has the same value for both potentials. It has been shown ear-
lier [19, 20], that the exact solution F(r) for the external interval (r ≥R) is

F(r)=U(l + 1− a,2l + 2, y)yl+1e−y/2, (5.13)

where (using the notations introduced above) r = λy, λ2 = �
2/8me(V0 −E +Es),

Es =E(H,2 S,n= 1), a = 2mee2Z0λ/�
2 and U(l+1−a,2l+2, y) is the Tricomi

function [40, 41]. Taking into account the approximate equality between the external
potential Vs used in variational calculation and V

′
s required for exact calculations,

the function F(r) from (5.8) and (5.9) can be calculated using the relation (5.13)
with the parameters of the external potential and E. Because the parameters of the
external potential V0 and R were chosen as constants in each energy calculation, the
stationarity condition δE|E=E = 0 leads to the stationarity of the parameter λ(E)
which is included in the equation for the exact radial function (5.13). Thus, if (5.13)
is used, the coefficients (5.8) and (5.9) and their ratio tan δl(k)= B/A are stationary
with respect to small variations of λ.

Because this method to estimate the scattering parameters doesn’t require the
calculation of the coefficients bνi , one can solve the eigenvalue problem in the
basis of Slater determinants (CI method) instead of the system of equations (5.5)
and (5.10). The asymptotic part of the wave function (5.3) can be always writ-
ten as ÂSL

∑
ν fν(1)Γν(2)=

∑
i

∑
j dij ÂSLϕ

f
j (1)ϕ

Γ
i (2), where coefficients dij =∑

ν bνj cνi . Accordingly, the calculation of the coefficients bνj with the known dij
and cνi is possible only if the set of functions {Γν} has the same dimension as the
set {ϕΓi }. At least two variants of the wave function construction in the Slater deter-
minant basis satisfying this requirement are possible. In the first variant the initial
set {ϕi} is separated onto the non-overlapping subsets {ϕΓi } and {ϕfi }, which are
used to define the asymptotic part. The correlation part includes the complete set of
the antisymmetrized products constructed from the single-particle functions {ϕΓi }.
This variant corresponds to the restricted CI (RCI). In the second one wave function
contains the complete set of the antisymmetrized products of ϕi without the explicit
fragmentation in the asymptotic and correlation parts (full CI method, or FCI).

5.3 The Calculation Method

The trial wave function was taken as the linear combination of configuration-state
functions (CSF) which are proper for the operators Ŝz(1,2) and Ŝ2(1,2)

Ψ LS =
∑

i,j

cijΦij (1,2), (5.14)
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where indexes 1, 2 denote the spatial and spin variables of electrons and indexes i
and j satisfy the condition i ≤ j . For singlet states functions Φij (1,2) are defined
as

Φii(1,2)= 1√
2
χi(1)χi(2)Θ(α,β),

Φij (1,2)= 1

2

[
χi(1)χj (2)+ χj (1)χi(2)

]
Θ(α,β),

(5.15)

where Θ(1,2)= α(1)β(2)− β(1)α(2), α(j) and β(j) (j = 1,2) are the spin func-
tions of electron j with Sz =±1/2, and χi(j) is the spatial part of the single-particle
function.

The key moment in using ab initio methods is the basis construction of single-
particle functions (atomic orbitals, or AO). As a rule, in this procedure AOs are
approximated by the linear combination of non-orthogonal nodeless Gaussians with
the purpose of minimizing calculation error of the target parameter (energy, electron
density, etc.) [42–45]. The AO bases created in this manner give the opportunity to
find, with acceptable accuracy, the energies of the lowest bound electronic states
and matrix elements of one- and two-particle operators for molecular systems. Nev-
ertheless they show a rather essential disadvantage: non-orthogonality of Gaussians
doesn’t allow to infinitely increase the existing AO set using additional functions,
as this procedure results in so-called “computational linear dependence“ [46, 47].
To avoid the computational linear dependence problem, the set of the orthogonal
single-particle functions was used for the CSF construction

χ(br)= |nlm〉 =Rnl(br)Ylm(r̂), (5.16)

where

Rnl(br)=Nnl(br)le−br/2L2l+2
n (br), (5.17)

with the normalizing multiplier Nnl = (b3n!/(n+ 2l + 2)!)1/2, the scaling factor b
and the associated Laguerre polynomial L2l+2

n (br) [40, 41]. To preserve the spin
and angular degeneracy of the target states, the number of basis functions (5.16)
with the moments l > 0 was chosen to be equal to (N− l), whereN—the number of
functions with l = 0: Ns, (N − 1)p, (N − 2)d, . . . , (N − l)l. Further, for simplicity
the basis sets being used are represented by the pairs of parameters: (N, lmax), where
lmax—maximal moment l value. The details of the matrix elements computation are
described in the Appendix. When calculating the scattering phase the R parameter
was chosen sufficiently large to consider Eνs(n = 1) in (5.13) being equal to the
energy of the hydrogen ground state.

For calculating the Tricomi function and its derivatives the computational scheme
similar to [19, 20] was used. At the first step the values of functionsU(β−[β], γ, x)
and U(β−[β]+1, γ, x) ([β] being the integer part of β) were calculated according
to the algorithm [48]. Further these values were applied for initiating an ascending
recursion U− + (γ − 2β − x)U + β(1 + β − γ )U+ = 0, where U = U(β,γ, x)
and U± = U(β ± 1, γ, x), and the derivative U

′ = U(β,γ, x) were calculated by
the formula β(1+ β − γ )U+ − βU − xU ′ = 0 [40, 41, 49]. Because the lowest 1S
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Fig. 5.1 Energy of the lowest
1S resonance with respect to
the scaling factor (b) for
bases (19,2) (©), (23,2) (�)
and (27,2) (♦). The 8th
eigenvalue is used, V0 = 1
a.u., Rres ≈ 20 a.u. All data
are given in a.u.

resonances were previously interpreted as the Breit-Wigner ones, their energies and
widths are calculated by the approximation of the phase shift derivative dδl(k)/dE
by the Lorentz function.

5.4 Results and Discussion

The full CI method was chosen as the main way for the wave function construction.
If no additional conditions provided, the results being discussed are obtained by this
method. The resonance parameters were calculated with the use of the AO bases
with N ≤ 39 and lmax ≤ 3. The values of scaling factor (1.0 ≤ b ≤ 2.5) with the
step 0.1 and the parameter V0 (1≤ V0 ≤ 10 a.u.) were varied.

The phase shift function δl(k) was built for each of the lowest eigenvalues, cal-
culated at the gradual increasing the radius of the charged sphere in the range 10.0–
75.0 a.u. with the fixed value of the parameter V0. Like the box stabilization this
procedure results in the family of monotonously decreasing curves Ei(R) (i.e. sta-
bilization curves) [16, 50]. So, it seems appropriate to enumerate these curves in
order of the eigenvalues starting with the ground state of H−. In addition, any sta-
bilization curve can be characterized also by the R parameter value approximately
corresponding to the resonance energy (Rres).

In the preliminary series of calculations with the fixed value of V0 = 1.0 a.u.,
the energy and width of the lowest resonance were found to depend on the value of
scaling factor b and for both parameters these dependencies show the oscillations
in the vicinity of some average value. The dependencies for one of the stabilization
curves are given below as an example (Figs. 5.1, 5.2). To take this dependence into
account the average values P =∑n

i=1P(bi)/n instead of P(b) (P = Eres,Γ ) and
average linear deviations ΔP =∑n

i=1 |P(bi)− P |/n are used for all the available
results determined for the scaling factor 1.0–2.5.

The comparison of the resonance parameters calculated for the stabilized solu-
tions with various Rres shows that with increasing Rres the estimations of energy
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Fig. 5.2 Width of the lowest
1S resonance with respect to
the scaling factor (b) for
bases (19,2) (©), (23,2) (�)
and (27,2) (♦). The 8th
eigenvalue is used, V0 = 1
a.u., Rres ≈ 20 a.u. All data
are given in a.u.

and width are going to the reference ones. The simultaneous increase of the aver-
age deviations and Rres can be explained by the incompleteness of AO bases that
don’t give the opportunity to correctly reproduce the asymptotic behavior of the
wave function at the long distances from the nucleus (Table 5.1). The analysis of the
results demonstrates that the average values of energy and width of the lowest reso-
nance for the chosen basis (N, lmax) depend on the values V0 and Rres. The average
deviations of Eres and Γ grow with the increasing of parameter V0 (Table 5.2).

For the fixed value V0 the largest differences between the average parameters and
reference ones are observed for the bases included only single-particle functions
(AO) with l = 0. If the AO set is extended by functions with l ≤ 2 the differences
decrease quickly. The further basis set enlarging by orbitals with l > 2 does not
considerably change the resonance energy and width (Table 5.3). The comparison
of the calculated phase shift with the exact one [30, 32] shows that the stabilization
curves with the acceptable accuracy of the average Eres and Γ do not provide the
accurate estimation of the phase shift (Fig. 5.3). The observed error in the phase shift
demonstrates that the used AO sets provide the correct asymptotic part of the wave
function only for the curves with Rres < 25.4 a.u. (this corresponds to stabilization
curves with numbers 8 and 9).

In addition to FCI method the RCI one was applied to the phase shift and lowest
resonance parameters calculations. In this case the correlation part of the wave func-
tion included the full set of CSF constructed in the bases (8,2), (11,2) or (15,2). The
asymptotic part was represented by the full set of the CSF created by one-electron
excitations from the CSF of the correlation part. It is found that the phase shift val-
ues obtained by the RCI even for the wave function with correlation part of the
minimal size (corresponding to (8,2) AO set) practically coincide with the FCI ones
(Fig. 5.4) and the difference in resonance parameters does not exceed 2× 10−5 a.u.

Taking into account the dependence of the resonance energy and width on the
V0 value, the second 1S resonance was calculated with V0 = 1.0 a.u. for sphere ra-
dius R = 25.0–75.0 a.u. The RCI approach with correlation part constructed from
the single-particle basis set (11,2) was used in all cases. It was found that this res-
onance appears at Rres > 45 a.u. and the results which agree better with reference
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Table 5.1 Average parameters and its linear deviations (×105) of the lowest 1S resonance for
V0 = 1 a.u. All data are given in a.u.

Basis Root Eres ΔEres Γ ΔΓ Rres

(19,2) 7 0.35209 1 0.00286 3 16.8

8 0.35146 4 0.00211 11 19.8

9 0.35123 15 0.00182 19 23.1

10 0.35115 24 0.00173 25 26.6

11 0.35116 44 0.00151 16 30.8

12 0.35113 62 0.00135 17 35.9

(23,2) 7 0.35210 0 0.00285 0 16.8

8 0.35149 1 0.00208 2 19.7

9 0.35129 3 0.00186 5 22.6

10 0.35122 7 0.00174 9 25.6

11 0.35123 7 0.00174 28 28.8

12 0.35121 14 0.00169 50 32.1

(27,2) 7 0.35210 0 0.00285 0 16.8

8 0.35150 0 0.00208 0 19.7

9 0.35131 0 0.00185 1 22.6

10 0.35126 1 0.00178 2 25.4

11 0.35123 2 0.00176 6 28.3

12 0.35120 6 0.00174 17 31.5

(31,2) 7 0.35210 0 0.00286 0 16.8

8 0.35150 0 0.00208 0 19.6

9 0.35131 0 0.00185 0 22.5

10 0.35126 1 0.00177 1 25.4

11 0.35123 1 0.00175 1 28.3

12 0.35121 3 0.00172 5 31.1

ones were obtained for the stabilization curves with Rres ≈ 70 a.u. (Table 5.4). Nev-
ertheless, the good agreement between our estimations and reference results has not
been found for the all used AO sets but the tendency to improve our estimations is
observed.

The presented method should be considered as a modification of the uniformly
charged sphere stabilization including the new routine of the phase shift calculation.
This routine has two significant features. First one is in the using the parameters
of the external potential and energy of discrete level only. Second one is in the
stationarity of the tan δl(E) with respect to the small variations of the energy of
quasidiscrete level. It should be noted that the requirement δE|E=E = 0 is not a
unique way to introduce the variational method. Another way is to define the optimal
V0 value for the fixed energy from the variational equations.
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Table 5.2 Average parameters and its linear deviations (×105) of the lowest 1S resonance with
respect to V0 value at the same Rres. All data are given in a.u.

Basis V0 Eres ΔEres Γ ΔΓ Rres Root

(19,2) 1.0 0.35116 44 0.00151 16 30.8 11

2.0 0.35116 28 0.00188 68 32.5 10

5.0 0.35124 20 0.00176 58 31.0 9

10.0 0.35125 28 0.00172 62 32.1 9

(23,2) 1.0 0.35123 7 0.00174 28 28.8 11

2.0 0.35122 16 0.00169 20 30.6 10

5.0 0.35121 10 0.00173 32 29.7 9

10.0 0.35120 12 0.00172 36 30.8 9

(27,2) 1.0 0.35123 2 0.00176 6 28.3 11

2.0 0.35123 5 0.00176 12 30.0 10

5.0 0.35124 4 0.00175 11 28.9 9

10.0 0.35123 7 0.00174 13 29.7 9

(31,2) 1.0 0.35123 1 0.00175 1 28.3 11

2.0 0.35123 1 0.00175 4 29.7 10

5.0 0.35124 2 0.00176 4 28.7 9

10.0 0.35124 3 0.00176 8 29.6 9

Fig. 5.3 Phase shift
functions obtained by FCI
method (basis (31,2)) with
respect to
k2
s /2= (E(H−,1 S)−E(H,2 S))me/�2. Symbol
© corresponds to 8th
eigenvalue (stabilization
curve), �—9th, �—10th,
and ∇—11th. Symbols ♦ and
� correspond to the exact
phase shift [30, 32]. k2

s /2 is
given in a.u., phase shift—in
radians

The main condition to successful application of the considered method is in using
the AO sets which provide the correct representation of the asymptotic part of the
wave function and allow to use sufficiently large values of the parameter R. The
analysis of the results shows that the phase shift can be obtained for R > 25 a.u.
with acceptable accuracy in narrow energy intervals required to estimate the energy
and width of isolated resonances located far from the channel threshold. To calculate
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Table 5.3 Average parameters and its linear deviations (×105) of the lowest 1S resonance with
respect to the size of single-particle basis. (10th eigenvalue corresponding to Rres ≈ 24–27). All
data are given in a.u.

lmax N

19 23 27 31

Eres ΔEres Eres ΔEres Eres ΔEres Eres ΔEres

0 0.37453 5 0.37465 2 0.37468 0 0.37468 0

1 0.35155 25 0.35164 8 0.35167 1 0.35167 0

2 0.35115 24 0.35122 7 0.35126 1 0.35126 1

3 0.35125 1

Γ ΔΓ Γ ΔΓ Γ ΔΓ Γ ΔΓ

0 0.00096 13 0.00091 3 0.00090 1 0.00090 0

1 0.00161 33 0.00178 10 0.00181 3 0.00181 0

2 0.00173 25 0.00174 9 0.00178 2 0.00177 1

3 0.00177 2

Fig. 5.4 Phase shift
functions (9th stabilization
curve) with respect to
k2
s /2= (E(H−,1 S)−E(H,2 S))me/�2. Symbol
� corresponds to FCI results,
©—RCI (8,2), •—RCI
(11,2), obtained in basis set
(31,2). Symbol �—RCI (8,2)
and �—RCI (11,2)
correspond to the results
obtained in basis set (35,2).
Symbols ♦ and � correspond
to the exact phase
shift [30, 32]. k2

s /2 is given in
a.u., phase shift—in radians

the phase shift in wide energy intervals the chosen way based on using curvesEj(R)
with fixed V0 is not effective and should be replaced by technique which operates
with the curves Ej(V0) with changed V0.

Earlier it was found that the use of neighboring stabilization curves leads to
slightly different estimations of the resonance energy and width [7, 8]. This effect
was explained by unsatisfactory account of electron correlation, so checking up the
stability of the estimations with respect to the variation of AO basis was not car-
ried out [7, 8]. On the other hand, it has been previously shown that for the model
single-channel systems the resonance parameters deviate only in the case of specific
choice of the basis set [18]. Taking into account the oscillations of the resonance
energy and width (Figs. 5.1, 5.2), demonstrated in this paper, it is reasonable to as-
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Table 5.4 Average energy and width of the second 1S resonance of H− (V0 = 1 a.u.). All data
are given in a.u.

Root (31,2) (35,2) (39,2)

Eres Γ Rres Eres Γ Rres Eres Γ Rres

18 0.37506 0.00059 45.2 0.37526 0.00058 43.5 0.37532 0.00058 43.0

19 0.37470 0.00048 49.5 0.37492 0.00047 46.9 0.37499 0.00048 46.2

20 0.37439 0.00043 54.3 0.37465 0.00036 50.5 0.37472 0.00040 49.4

21 0.37423 0.00020 60.2 0.37447 0.00028 54.5 0.37452 0.00034 52.8

22 0.37433 0.00022 58.8 0.37435 0.00028 56.6

23 0.37423 0.00018 63.9 0.37422 0.00022 60.7

24 0.37416 0.00016 70.3 0.37413 0.00018 65.4

25 0.37406 0.00014 70.3

sume that the main cause of the resonance parameters deviation in many-electron
anions is connected with the used method of constructing the AO basis, but not with
the correlation effects.

5.5 Conclusions

Thus, the method considered in this paper is the most comprehensive variant of the
uniformly charged sphere stabilization. It can be applied for the resonance parame-
ters calculation with a good accuracy only if the formulated above requirements are
taken into account. Nevertheless, the optimal strategy of the wave function construc-
tion which provides the reasonable accuracy of the calculations for the real atomic
or molecular systems is still open.

Acknowledgements The study has been carried out with the financial support of the Russian
Foundation for Basic Research, grant No. 12-03-00821.

Appendix: Calculation of Matrix Elements for One- and
Two-Electron Operators

The matrix elements of the one-electron operators can be written as

〈
n′l′m′

∣∣1
r
|nlm〉 = 1

b2
Ql

′+l+1
n′l′nl (0)Nn′l′Nnlδl′lδm′m, (5.18)

〈
n′l′m′

∣∣− 1

2
Δ|nlm〉 = − 1

2b

{
1

4
Ql

′+l+2
n′l′nl (0)− (n+ l + 1)Ql

′+l+1
n′l′nl (0)

− nQl′+l
n′l′nl(0)+ (n+ 2l + 2)Ql

′+l
n′l′n−1l (0)

}
Nn′l′Nnlδl′lδm′m,

(5.19)
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〈
n′l′m′

∣∣Vst (r)|nlm〉 = V0

b3

{
Ql

′+l+2
n′l′nl (bR)− bRQl

′+l+1
n′l′nl (bR)

}
Nn′l′Nnlδl′lδm′m,

(5.20)

where Qm
n′l′nl(x) is the auxiliary integral

Qmn′l′nl(x)=
∫ ∞

x

e−zzmL2l′+2
n′ (z)L2l+2

n (z)dz. (5.21)

For the calculation of integrals (5.18)–(5.20) the method based on the recurrence
relation for product of Laguerre polynomials has been used [51]. The main rela-
tion of this method can be obtained by substituting the recursion (n+ 1)Lkn+1(z)−
(2n+ k+1− z)Lkn(z)+ (n+ k)Lkn−1(z)= 0 [40] for L2l+2

n or L2l′+2
n′ polynomial in

(5.21) which gives two different three-term recursions for integrals over the indexes
n and n′. Elimination of the integralQm+1

n′l′nl(x) from the both recursions leads to the
new relation

nQmn′l′nl(x)=
(
n′ + 1

)
Qmn′+1l′n−1l (x)+

(
n′ + 2l′ + 2

)
Qmn′−1l′n−1l (x)

− (n+ 2l + 1)Qmn′l′n−2l (x)+ 2
(
n+ l − n′ − l′ − 1

)
Qmn′l′n−1l (x).

(5.22)

This relation is applied for construction of the ascending recursion which starts from
the elements Qmkl0l (x) with n′ − n+ 1 ≤ k ≤ n′ + n− 1 and finishes at Qm

n′lnl(x)
(assume that n ≤ n′). The integrals with m = 2l + 2 and x = 0 can be evaluated
directly using the orthogonality relation

Q2l+2
n′lnl (0)=

(n+ 2l + 2)!
n! δn′n. (5.23)

For integrals with m < 2l + 2 and x = 0 the recursion (5.22) is initialized by the
elements

Qm0l0l (0)=m!, (5.24)

Qm1l0l (0)=Qm0l1l (0)=m!(2l + 2−m), (5.25)

Qm1l1l (0)=m!
(
(m+ 1)(m+ 2)− 2(m+ 1)(2l + 3)+ (2l + 3)2

)
. (5.26)

All elements Qmkl0l (0) needed for the evaluation of integrals (5.18) and (5.19) are
calculated by means of the special three-term recursion (n′ +1)Qm

n′+1l0l (x)− (2n′ +
2l + 1)Qm

n′l0l (x)+ (2n′ + 2l + 1)Qm+1
n′l0l (x)+ (n′ + 2l + 2)Qm

n′−1l0l (x)= 0.
The case of the integrals (5.20) is more complicate. The elements Qm

n′l0l (x) and
Qm
n′l1l (x) (m= 2l+ 2 or m= 2l+ 1) needed for the initializing (5.21) can be taken

analytically

Qmn′lnl(x)=
n′+n∑

t=0

Γ (m+ t + 1, x)Wt
(
n′, l′, n, l

)
, (5.27)
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where Γ (a, x) = ∫∞
x
za−1e−zdz—incomplete gamma function, Wt(n′, l, n, l)—

coefficient of the term zt in the product of two associated Laguerre polynomials.
This coefficient is calculated by the formula

Wt
(
n′, l′, n, l

)=
u≤n,t−u≤n′∑

u=0

(−1)t (n′ + v)!(n+ v)!
u!(t − u)!(n′ − t + u)!(n− u)!(v′ + t − u)!(v + u)! .

(5.28)

In this formula v = 2l + 2 and v′ = 2l′ + 2. The function Γ (a, x) from expres-
sion (5.27) can be derived analytically at the integer values of parameter a. For this
purpose the function is represented as the product Γ (a, x) = e−xxag(a, x), where
g(a, x)—the auxiliary function defined for the a = 1 as g(1, x) = 1/x. This rep-
resentation allows to use the standard recurrence relation for incomplete gamma
function Γ (a + 1, x)= aΓ (a, x)+ e−xxa by g(a + 1, x)= a

x
g(a, x)+ 1

x
with the

minimal numerical error [52]. The analytical method of calculation is suitable for
integrals with n′ ≤ 23, that one can see by the comparison of the values obtained
from the formula (5.27) with ones obtained by Gauss-Laguerre integration. For the
integrals with n′ > 23 the quadrature method was applied.

During the calculation of electron-electron repulsion integrals the operator 1/r12
can be represented by the series

1

r12
=

∞∑

l=0

l∑

m=−l

4π

2l + 1
Ylm(r̂1)Y

∗
lm(r̂2)

rl<

rl+1
>

, (5.29)

where r< =min(r1, r2) and r> =max(r1, r2) [53–57]. With this expression the two-
electron integral is

〈
n′1l′1m′1n′2l′2m′2

∣∣ 1

r12
|n1l1m1n2l2m2〉

=Nn′1l′1Nn′2l′2Nn1l1Nn2l2b
−5

∞∑

L=0

RL

L∑

M=−L
DLM, (5.30)

where RL—radial integral in the form

RL =
∫ ∞

0

∫ ∞

0
dxdyf1(x)f2(y)

xL<

xL+1
>

, (5.31)

in which variables r1, r2 and r</> are replaced by x, y and x</>, and fi(x) =
e−xxl′i+li+2L

2l′i+2
n′i

(x)L
2li+2
ni (x) (i = 1,2). The multiplier DLM from the formula

(5.30) is

DLM = (−1)m+m′1+m′2
√
(2l′1 + 1)(2l′2 + 1)(2l1 + 1)(2l2 + 1)

(2L+ 1)2

×CL0
l′10,l10C

L0
l′20,l20C

L−M
l′1−m′1,l1m1

CLM
l′2−m′2,l2m2

, (5.32)

where Clml1m1,l2m2
—Clebsch-Gordan coefficients.
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Substitution x</> by x and y the integral (5.31) can be represented as

RL =
∫

x>y

∫
dxdyf1(x)f2(y)

yL

xL+1
+
∫

x<y

∫
dxdyf1(x)dyf2(y)

xL

yL+1
, (5.33)

where the integration over variables x, y is realized on the region [0,∞); integrals
from the right part correspond to x > y and x < y cases, respectively. As the inte-
gration order in this relation is arbitrary, each of integrals from the right part can be
taken in two variants [53–57]. For the first integral there is the expression
∫ ∞

0
dxf1(x)

∫ x

0
dyf2(y)

yL

xL+1
=
∫ ∞

0
dxf2(x)

∫ ∞

x

dyf1(y)
xL

yL+1
. (5.34)

The second integral from the right part of (5.33) can be obtained from (5.34) by
substitution f2 for f1 (and vice versa). Using the expressions with the internal in-
tegration over the interval x ≤ y ≤∞, the integrals from (5.33) can be modified
as

RL =
∫ ∞

0
dxf2(x)

∫ ∞

x

dyf1(y)
xL

yL+1
+
∫ ∞

0
dxf1(x)

∫ ∞

x

dyf2(y)
xL

yL+1
. (5.35)

The expansion of Laguerre polynomials from (5.35) over powers of variables x
and y permits to present RL as

RL =
n1+n′1∑

t=0

n2+n′2∑

u=0

Wt
(
n′1, l′1, n1, l1

)
Wu
(
n′2, l′2, n2, l2

)[Hα+t,β+u−γ +Hβ+u,α+t−γ ],
(5.36)

where α = l′1 + l1 +L+ 2, β = l′2 + l2 +L+ 2, γ = 2L+ 1 and Ha,b—integral in
the form

Ha,b =
∫ ∞

0
xae−xΓ (b+ 1, x)dx = Γ (a + b+ 2)

(a + 1)2a+b+2 2F1(1, a + b+ 2, a + 2;1/2).
(5.37)

By means the integral
∫∞

0 xae−xγ (b+ 1, x)dx = Γ (a+b+2)
(b+1)2a+b+2 2F1(1, a + b+ 2, b+

2;1/2)=Hb,a it can be shown that Ha,b = Γ (a + 1)Γ (b+ 1)−Hb,a and Ha,a =
(Γ (a+1))2/2. Putting the recurrence relation Γ (b+1, x)= bΓ (b, x)+xbe−x into
integral (5.37), one obtains

Ha,b = bHa,b−1 + Γ (a + b+ 1)

2a+b+1
. (5.38)

To evaluate the Ha,b it is useful to introduce the new formula ha,b =Ha,b 2a+b+1

Γ (a+b+1)

(h0,0 = 1), which allows to rewrite recursion (5.38) as ha,b = 2b
a+bha,b−1 + 1.

The numerical tests demonstrated, that the evaluation of the radial integral by
formulas (5.36)–(5.38) gives the accuracy up to 12th significant digits for the ba-
sis functions with max(n′1, n1, n

′
2, n2) ≤ 7, if the 64th bits representation of real

numbers is used. The 128th bit representation allows to preserve the same accuracy
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level for the basis functions with max(n′1, n1, n
′
2, n2) ≤ 10. The check of the two-

indexes recursion, which is analogous to the (5.22) [51], showed that this one pro-
vides a good precision only for integrals with max(n′1, n1, n

′
2, n2)≤ 13 when 128th

bit representation of real numbers is used. This is in accord with the remark in [51]
about the possibility of using this recursion for integral calculation with a good
accuracy max(n′1, n1, n

′
2, n2)≤ 14. As it was not known beforehand if in construct-

ing a wave function one can select polynomials with n ≤ 13 only, the combined
scheme was used. Calculations have been done with the formulas (5.36)–(5.38), if
max(n′1, n1, n

′
2, n2) < 11 and the quadrature integration being used in the opposite

case. Using the replacement of u = x and v = y − x, similar to [57], the integral
(5.35) can be represented as

RL =
∫ ∞

0
duf1(u)

∫ ∞

0
dvf2(u+ v) uL

(u+ v)L+1

+
∫ ∞

0
duf2(u)

∫ ∞

0
dvf1(u+ v) uL

(u+ v)L+1
. (5.39)

Thus, it is possible to use Gauss-Laguerre integration for calculation (5.39). Note,
that the relation as

∑n
m=0L

α
m(x)L

β
n−m(y)= Lα+β+1

n (x+y) [41] allows to factorize
the two-dimensional integral completely.
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Chapter 6
Charge Transfer Rate Constants in Ion-Atom
and Ion-Molecule Processes

M.C. Bacchus-Montabonel

Abstract The theoretical treatment of charge transfer processes in collisions of ions
with atomic and molecular targets is developed using ab initio molecular calcula-
tions. An analysis of quantum and semi-classical dynamics is presented in order to
determine the limit of validity of such methods. Accurate cross sections and rate
constants are determined which provide important data for space chemistry mod-
els. Additionally, such theoretical approaches give an insight into the mechanism of
these processes with consideration of anisotropic effects for collisions with diatomic
molecular targets.

6.1 Introduction

Charge transfer processes are involved in the description of a number of astrophysi-
cal environments, astrophysical plasmas, interstellar medium, atmospheres of plan-
ets and stars. . . The knowledge of their rate constants is determinant for the mod-
elisation of these mediums. However experimental data remain very scarce and the-
oretical approaches appear to be a very efficient tool for evaluation of such rate
constants. With regard to the environment, the temperature and consequently the
energy to be considered in the collision process may vary significantly, from 10 K
for example in the interstellar medium, to more than 104 K in some stellar environ-
ments. This requires developing different collision approaches in order to analyze
such processes. Charge transfer recombination with neutral atoms has been widely
investigated; this is indeed a fundamental process in the description of the inter-
stellar medium which drives the ionization balance of charged species [1–5]. But
charge transfer between multiply charged ions and molecular targets has also to be
taken into account and appears to play a quite important role [6, 7]. In that sense, we
present in this paper significant results on collisions of carbon ions with atomic and
molecular targets. First of all, we consider the C+(2P)+ S(3P) collision and its re-
verse reaction which is determinant in the chemistry of sulfur and carbon species. It
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is crucial in the chemistry of the photon dominated regions (PDR’s) of the interstel-
lar medium [8] and drives the ionic carbon chemistry at the origin of the formation
of the complex carbon molecules observed in the PDR’s. The rate constant gener-
ally accepted for this process from the UMIST database [9] is 1.5× 10−9 cm3 s−1

between 10 K and 41000 K, but it appears uncertain for such a large temperature
domain and accurate calculations have been performed [10, 11].

We have also investigated the charge transfer of C2+ ions with CO and N2 di-
atomic targets [7, 12]. Up to now, most of the theoretical studies involving molecular
targets have been devoted to molecular hydrogen [13, 14] and experiments between
carbon ions and diatomic targets have been performed mainly at keV collision ener-
gies [15, 16]. But recent measurements of Gao and Kwong provide a precise deter-
mination of the charge transfer rate coefficients for the C2+ collision with CO and
N2 targets at Tequiv = 1.17× 104 K [17] which may be compared with theoretical
studies.

6.2 Theoretical Approach

6.2.1 Molecular Hamiltonian

The single charge transfer process Aq+ + B→ A∗(q−1)+ + B+ may be treated in
the framework of the molecular description of the collisions. The Hamiltonian is
the sum of the radial and rotational parts of the kinetic energy and the electronic
Hamiltonian:

H = TR + Trot +H el. (6.1)

The spin-orbit effects are neglected in the energy range of interest; spin manifolds
are thus considered separately and spin is taken into account via its multiplicity
when calculating the charge transfer cross sections. The total time dependent wave
function is expanded in a parity adapted ro-electronic basis set [18, 19]:

ζmKMΩ = 1

[2(1+ δΛ0)]1/2
[
ψmΛ|KMΩ〉 + (−1)Kεm,−Λ|KM,−Ω〉

]
(6.2)

where m numbers the electronic states ψmΛ and Λ is the quantum number for the
projection on the molecular axis of the total electronic orbital angular momentum L.
We consider here Σ (Λ = 0) and Π (Λ = 1) states. The total angular momentum
is K= N+ L where N is the rotational angular momentum. |KMΩ〉 are the states
of the total angular momentum representation of quantum number K .M and Ω are
the projection of the total angular momentum on the laboratory Z axis and on the
internuclear z axis, respectively. The two cases ε = 1 and ε =−1 correspond to the
e and f states.

The adiabatic electronic functions ψadia
mΛ diagonalize H el. The charge transfer

process is driven mainly by non-adiabatic interactions in the vicinity of avoided
crossings [20]. The corresponding radial coupling matrix elements between all pairs
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of states of the same symmetry and multiplicity are calculated by means of the finite
difference technique [21]:

gmΛ,nΛ(R)=
〈
ψadia
mΛ

∣∣∂R
∣∣ψadia
nΛ

〉= lim
Δ→0

1

Δ

〈
ψadia
mΛ (R)

∣∣ψadia
nΛ (R +Δ)

〉
, (6.3)

with the parameter Δ= 0.0012 a.u. previously tested [22].
The rotational coupling matrix elements 〈ψK |iLy |ψL〉 between states of angu-

lar moment ΔΛ = ±1 have been calculated directly from the quadrupole moment
tensor with the centre of mass of the system chosen as origin of electronic coordi-
nates [23].

6.2.2 Collision Dynamics

In the time-dependent quantum approach [24, 25], the adiabatic electronic functions
ψadia
mΛ are transformed into diabatic electronic functions by means of the transforma-

tion matrix D(R) obtained by solving the equation ∂RD(R)+ g ·D(R)= 0 with the
asymptotic condition D(R∞) = I where I is the identity matrix and g the matrix
containing the radial coupling matrix elements.

For each value of K , the coupled equations for the radial functions χdia,K
mΛ corre-

sponding to the electronic channels in the diabatic representation take the form

χdia,K(R, t)= e−iH
dia,K (t−t0)

� χdia,K(R, to) (6.4)

where

Hdia,K(R)= �
2
(
− 1

2μ

∂2

∂R2
+ K(K + 1)−Λ2

2μR2

)
× I+Hel,dia(R)+Tdia,K

rot (R).

(6.5)

Tdia,K
rot (R) contains the rotational off diagonal elements in the diabatic representa-

tion.
A Gaussian wave packet in entrance channel ζmΛK is then propagated by the

coupled equations in the diabatic representation by using the split operator formal-
ism [26] extended to take into account non-adiabatic interactions [27]. The propa-
gation is stopped when the norm is smaller than a threshold fixed to 10−6, ensuring
that the entire wave packet has been absorbed. The χK

nΛ′(R, t) are Fourier trans-
formed to get the eigenstates χ̄K

nΛ′(R,E) in the same domain and finally determine
the square modulus of the collision matrix element |SK

nΛ′,mΛ(E)|2.
The cross section for the transfer of an electron from an initial state ψmΛ to a

final state ψnΛ′ is obtained by summing over the total angular momentum values up
to convergence

σnΛ′,mΛ(E)= π

k2
mΛ(E)

∑

K

(2K + 1)
∣∣SKnΛ′,mΛ(E)− δnmδΛ′Λ

∣∣2. (6.6)
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In the semiclassical approach, the nuclei are considered to follow a classical trajec-
tory R(t) = b + vt with regard to the impact parameter b and the velocity v [28].
The time-dependent Schrödinger equation reduces thus to:

(
H el[r,R(t)

]− i ∂
∂t

)
×Ψ (r, b, v, t)= 0 (6.7)

where r stands for the electronic coordinates. It may be solved for each velocity v
and impact parameter b by expanding the total wave function on the eigenfunctions
ψadia
mΛ of H el with eigenvalues εmΛ:

Ψ (r, b, v, t)=
∑

mΛ

amΛ(b, v, t)ψ
adia
mΛ

[
r,R(t)

]× exp

(
−i
∫ t

o

εmΛ
[
R
(
t ′
)]
dt ′
)
.

(6.8)

By integration of equation (6.7), the capture probabilities are given by P(b, v) =∑
mΛ |amΛ(b, v,∞)|2 with summation over all charge exchange channels. The

cross section is then defined by:

σ(v)= 2π
∫
bP (b, v)db. (6.9)

In this approach, the collision dynamics was treated using the EIKONXS pro-
gram [29] taking into account radial and rotational coupling matrix elements, as
well as translation effects, although they are expected to be low at these energies.

6.2.3 Thermal Rate Constant

The rate constants k(T ) are calculated by averaging the cross sections σ(E) over a
Maxwellian velocity distribution at temperature T [30]:

k(T )=
(

8

πμ

)1/2( 1

kBT

)3/2 ∫ ∞

0
Eσ(E)× exp

(
− E

kBT

)
dE. (6.10)

The rate constant for the reverse ionization process krev(T ) may be determined eas-
ily by means of the micro-reversibility relation from the corresponding charge trans-
fer rate constant k(T ):

krev(T )= g exp

(
− ΔE
kBT

)
k(T ), (6.11)

where g is the ratio of the statistical weights of initial and final states, andΔE is the
energy gain of the charge transfer reaction.

6.3 Molecular Calculations

The electron spin being conserved in the collision process, we have to determine
the potential energies of the different molecular states involved in the process for all
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Table 6.1 Correlation diagram

Configuration Molecular states Asymptotic energies (eV)

NIST database [34] 2Π/2Σ 4Π/4Σ states

C(2s22p2)1D+ S+(3s23p3)4S 4Σ , 4Π , 4Δ 1.26 1.32

C+(2s22p)2P+ S(3s23p4)3P 2,4Σ , 2,4Π , 2,4Δ 0.92 0.98 0.93

C(2s22p2)3P+ S+(3s23p3)4S 2,4,6Σ , 2,4,6Π 0.0 0.0 0.0

Fig. 6.1 (a) Adiabatic potential energy curves for the Σ (full lines) and Π (dashed lines)
states of the doublet manifold of the CS+ molecular system. (1) {C(2s22p2)3P+ S+(3s23p3)4S}.
(2) {C+(2s22p)2P+ S(3s23p4)3P} entrance channel. (b) Adiabatic potential energy curves for the
Σ (full lines) and Π (dashed lines) states of the quartet manifold of the CS+ molecular system.
(1) and (2), same labels as in Fig. 6.1a. (3) {C(2s22p2)1D+ S+(3s23p3)4S}. (c) Radial coupling
matrix elements between the 4Π and 4Σ states of the CS+ molecular system: s12, 〈1Σ |∂/∂R|2Σ〉;
p12, 〈1Π |∂/∂R|2Π〉; p23, 〈2Π |∂/∂R|3Π〉

spin symmetries, as well as the couplings between these states. They are determined
by means of ab initio quantum chemistry approaches. For all systems, the poten-
tials have been calculated by means of state-average CASSCF/MRCI (Complete
Active Space Self Consistent Field/ Multi-Reference Configuration Interaction) cal-
culations using the MOLPRO code [31] with the correlation-consistent quadruple-ζ
aug-cc-AVQZ basis sets of Dunning for all atoms [32]. The ECP10sdf (Effective
Core Potential) relativistic pseudo-potential has been used to describe the 10 core-
electrons of sulfur [33]. The active space includes the n= 2 orbitals for carbon, and
the n= 3 orbitals for sulfur.

At low temperatures in the interstellar medium, the different species involved
in the C+(2P)+ S(3P) collision process may be in their ground state. With regard
to the correlation diagram (Table 6.1), only two molecular states {C+(2s22p)2P+
S(3s23p4)3P} and {C(2s22p2)3P+ S+(3s23p3)4S} could thus be involved in the di-
rect charge transfer reaction for the doublet manifold. However, for quartet states
the higher {C(2s22p2)1D + S+(3s23p3)4S} configuration is close in energy to the
entrance channel and has to be considered.

The potential energy curves are presented in Figs. 6.1a, b for doublet and quartet
manifolds. Both 2Σ and 2Π potentials show a smooth avoided crossing around
R = 5 a.u., in agreement with previous calculations [35, 36]. In the quadruplet
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Fig. 6.2 Internal Jacobi
coordinates

manifold, a similar smooth avoided crossing is observed for the 4Σ potential en-
ergy curves. But a strong interaction between the 4Π entry channel and the upper
4Π{C(2s22p2)1D + S+(3s23p3)4S} level is exhibited around R = 4 a.u. It corre-
sponds to a strong radial coupling, about 10 a.u. high which might be determinant
in the description of the charge transfer process (Fig. 6.1c). A very peaked radial
coupling appears also between states 14Π and 24Π in the repulsive part of the po-
tential energy curves.

We have performed the same theoretical treatment for the C2+ +CO and C2+ +
N2 isoelectronic collision systems. The geometry has been described using the in-
ternal Jacobi coordinates {R, r,α} with the origin at the centre of mass of the target
molecule (see Fig. 6.2). The equilibrium geometries of the CO and N2 diatomics
have been optimized, respectively rCO = 2.140535 a.u. and rN2 = 2.0749 a.u., and
provide accurate ionization potentials [7, 12]. The orientation of the projectile to-
ward the molecular target may be studied for different values of the angle α, from
linear to perpendicular geometry (α = 90◦). The angle α = 180◦ corresponds to the
collision in the linear approach toward the oxygen atom for the C2+ + CO charge
transfer.

Considering the symmetry of the entrance channels, respectively C2+(1s22s2)1S+
CO(1Σ+) and C2+(1s22s2)1S+ N2(

1Σ+g ), only 1Σ+ levels could be involved in

the process by means of radial coupling, and 1Π levels by means of rotational cou-
pling. Seven levels have thus been taken into account in the calculation for each
system:

C2+(1s22s2)1S+CO(1Σ+)/N2(
1Σ+g ) 41Σ+

C+(1s22s22p)2P+CO+(B2Σ+)/N+2 (2Σ+u ) 31Σ+, 31Π

C+(1s22s22p)2P+CO+(A2Π)/N+2 (2Πu) 21Σ+, 21Π

C+(1s22s22p)2P+CO+(A2Σ+)/N+2 (2Σ+g ) 11Σ+, 11Π

The potential energy curves of these isoelectronic systems are presented respec-
tively in Figs. 6.3a, c. They show very similar features, with a relatively smooth
avoided crossing around 6–7 a.u. between the entrance channel and the 31Σ+ level,
as well as between respectively the 2–31Σ+ and 1–21Σ+ states. A sharper avoided
crossing may be observed at shorter range between the entrance channel and the
highest 31Σ+ exit channel as exhibited in Fig. 6.3b for the C2+ +CO system.



6 Charge Transfer Rate Constants 125

Fig. 6.3 (a) Potential energy curves for the 1Σ+ (full lines) and 1Π (dashed lines) states
of the C2+ + CO molecular system at equilibrium, internal Jacobi coordinates {R, r,α}
α = 180◦. (1) C+(1s22s22p)2P + CO+(A2Σ+); (2) C+(1s22s22p)2P + CO+(A2Π);
(3) C+(1s22s22p)2P + CO+(B2Σ+); (4) C2+(1s22s2)1S + CO(1Σ+) entrance chan-
nel. (b) Corresponding radial coupling matrix elements between 1Σ+ states: ij ,
〈iΣ |∂/∂R|jΣ〉. (c) Potential energy curves for the 1Σ+ (full lines) and 1Π (dashed
lines) states of the C2+ + N2 molecular system at equilibrium in linear geometry.
(1) C+(1s22s22p)2P + N+2 (2Σ+g ); (2) C+(1s22s22p)2P + N+2 (2Πu); (3) C+(1s22s22p)2P +
N+2 (2Σ+u ); (4) C2+(1s22s2)1S+N2(

1Σ+g ) entrance channel

6.4 Collision Rate Constants

The total cross section for each charge transfer is calculated from all the space and
spin symmetry states involved in the process, taking account of their respective sta-
tistical weights.

In the C+(2s22p)2P + S(3s23p4)3P → C(2s22p2)3P + S+(3s23p3)4S reaction
where the entrance channel may be of doublet and quartet spin symmetry, the total
cross section is thus σtot = 1

3
2σ + 2

3
4σ with regard to the statistical weights between

doublet and quartet manifolds. In this expression, the cross sections for doublet and
quartet manifolds are expressed respectively from the cross sections σΣ and σΠ for
Σ and Π states:

2,4σ = 1/3σΣ + 2/3σΠ. (6.12)

The partial and total cross sections C+ + S→ C+ S+ are presented in Fig. 6.4
and an interesting analysis on the domain of validity of the semi-classical ap-
proach may be discussed. The quartet states provide the main contribution to the
total cross section at low collision energies and the consideration of the upper
4Π{C(2s22p2)1D+ S+(3s23p3)4S} level is necessary for an accurate description of
the charge transfer from the quadruplet 4Σ and 4Π entrance channels. For the dou-
blet manifold, the partial cross sections calculated with a semiclassical approach are
in excellent agreement with the results of quantum wave packet dynamics for colli-
sion energies higher than 8–10 eV. As expected, of course, the semiclassical calcu-
lation deviates at lower energies from the quantum one. However, the semiclassical
method appears to be valid down to energies far below its generally accepted do-
main of accuracy. The variation is even less sensitive for the quartet cross sections
which correspond to a statistical weight two times higher than the doublet one. The
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Fig. 6.4 Semiclassical (blue)
and wave packet (red) partial
and total cross sections for
the CS+ molecular system in
the 0.5–50 eV ECM energy
range: doublet manifold (full
lines); quartet manifold
(dashed lines); total cross
section (full lines)

Table 6.2 Rate coefficients
for the C+ + S reaction (in
cm3 s−1)

T (K) C+(2P)+ S(3P)→ C(3P)+ S+(4S)

Semiclassical dynamics Quantum dynamics

10 6.0× 10−12

50 1.3× 10−11

100 1.9× 10−11

500 1.8× 10−11 4.1× 10−11

1000 3.8× 10−11 5.6× 10−11

5000 7.3× 10−11 9.0× 10−11

10000 7.3× 10−11 1.0× 10−10

50000 1.3× 10−10 1.5× 10−10

total cross section remains close in wave packet and semiclassical approaches, even
at eV energies. Such a result is very encouraging in order to have, at a low price,
an order of magnitude of cross sections, and consequently rate coefficients, for a
number of astrophysical processes.

This is visualized on the corresponding rate constants presented in Table 6.2
using, on one hand, the semi-classical cross sections, and, on the other hand, the
wave packet quantum approach. Integration over the whole collision energy domain
down to 10−3 eV for the quantum dynamics may provide charge transfer rate con-
stants at low temperature. This is of course not possible with semiclassical methods
for which rate constants cannot be established for temperatures lower than 500 K.
However, such semiclassical approaches may provide the correct order of magni-
tude, in particular at higher temperatures. The absolute values are significantly lower
than the 1.5 × 10−9 cm3 s−1 rate constant given in the UMIST data base for the
10–41000 K temperature range, in particular at low temperature. The variation is
relatively smooth, between about 10−11–10−10 cm3 s−1, which could be in relative
accordance with the constant rate considered in astrophysical models, but the usual
value seems to be overestimated at least by a power of 10.
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Table 6.3 Rate coefficients
for the C2+ +CO and
C2+ +N2 collision systems
(in cm3 s−1)

T (K) C2+ +CO exp [17] C2+ +N2 exp [17]

10 5.4× 10−15 1.7× 10−15

50 6.3× 10−14 2.4× 10−14

100 1.2× 10−13 6.1× 10−14

500 1.1× 10−12 3.2× 10−13

1000 6.7× 10−12 8.4× 10−13

5000 9.6× 10−11 1.1× 10−11

10000 2.4× 10−10 4.2× 10−11

11700 2.9× 10−10 4.6× 10−10 5.5× 10−11 1.1× 10−10

Similar calculations may provide charge transfer cross sections and rate constants
for the C2+ +CO and C2+ +N2 collision systems (Table 6.3). In that case, the total
cross section is averaged over the different orientations of the projectile ion toward
the molecular target, at the equilibrium distance optimized for each diatomic target.
The process is highly anisotropic, markedly inefficient in the perpendicular orien-
tation (α = 90◦), and clearly preferred in the linear orientation for both collision
systems. In the case of the C2+ +CO reaction, the charge transfer is favoured in the
collision toward the oxygen atom (α = 180◦) in correspondence with a higher value
of the main 〈31Σ+|∂/∂R|41Σ+〉 radial coupling.

For both systems, the rate constants increase with increasing temperatures in the
whole temperature range. The calculated values appear in relative good agreement
with experiment. At Tequiv = 1.17× 104 K, the calculated rate constants are 2.88×
10−10 cm3 s−1 for C2+ + CO, and 5.55 × 10−11 cm3 s−1 for C2+ + N2, slightly
underestimated compared to experimental data, respectively 4.58× 10−10 cm3 s−1

and 1.08× 10−10 cm3 s−1, but the relative difference between the rate coefficients
for the CO and N2 targets is correctly reproduced. This comparison has however
to take into account several uncertainties in both experimental and theoretical stud-
ies. Experimental measurements are performed using an ion trap combined with a
laser-plasma electron beam ion source. In such technique, the determination of the
temperature, Tequiv, remains always questionable as it is given by a mean value be-
tween the temperature Ti of the incident ion and the temperature Tn of the target
molecule:

Tequiv/μ= Ti/mi + Tn/mn (6.13)

with μ the reduced mass of the system and mi and mn, respectively, the masses
of the C2+ ion and target molecule [17]. As Ti (∼1.7 × 104 K) and Tn (300 K)
are very different and the collision process very fast, it is hard to imagine the colli-
sion system at equilibrium. On the other hand, the theoretical calculation has been
performed for a number of given orientations between the molecular target and the
projectile ion, a full 3D calculation would be necessary to take account completely
of the anisotropy of the process, besides, the calculation of rate constants needs the
determination of very low-energy cross sections. Such approach provides anyway
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a quantitative determination of charge transfer rate constants and our treatment en-
lightens the mechanism involved in the process.

6.5 Conclusion

The present results exhibit some interesting features of charge transfer processes
with atomic or molecular targets. Rate constants can be determined theoretically for
such processes. The charge transfer mechanism is driven mainly by non-adiabatic
interactions between the molecular states, and correlations between non-adiabatic
radial couplings and charge transfer cross sections may be pointed out. The process
is highly anisotropic, favoured in the linear approach toward the more electronega-
tive atom.
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Chapter 7
Spin Torque and Zeta Force in Allene-Type
Molecules

Masahiro Fukuda, Masato Senami, and Akitomo Tachibana

Abstract The spin torque, the zeta force, and the zeta potential, which are signifi-
cant quantities to describe the local picture of spin dynamics, are studied by using
allene-type molecules (C3H4 and C3H2Li2) in their stationary states. We show that
the two molecules have different distribution patterns of these quantities though
their structures are very similar to each other. It is also shown that the zeta potential
distribution is almost independent of the electron density distribution.

7.1 Introduction

Due to the great innovation of the field of spintronics, the electron spin is now one
of the most interesting quantities for electronic devices. The control of the spin is
the key element of the spintronics. Hence, the further knowledge of the nature of
the electron spin enables us to improve spintronics devices. The size of spintronics
materials is already about nano-scale. For these microscopic materials, local effects
are relatively important for the evolution of the electron spin. However, few studies
for the local evolution of the electron spin are reported in spite of its necessity. We
consider that it is important to analyze the local evolution from the first principles
calculation.

In our laboratory, nano-materials have been studied by using several local quanti-
ties proposed by one of the authors [1–4]. For example, the local dielectric constant
and local polarizability clarify the local dielectric response in high dielectric con-
stant thin films. We have reported the local dielectric property of hafnium dioxide,
which is a candidate for materials of a future semiconductor [5–10]. For the study
of the local electric conductive property, the local conductivity is used to investi-
gate the conductive property of nanowire materials [11–14]. For the description of
local torque for the electron spin, the local spin torque and the zeta force have been
proposed based on quantum field theory [1–4] and we have studied these quantities
for atoms of transition elements and dimers of alkali metal atoms [15, 16]. In these
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works, we have reported that the local description of the torque for the electron spin
is available in quantum field theory due to the existence of the zeta force, while in
relativistic quantum mechanics we cannot use the local description. In quantum me-
chanics, when the Heisenberg equation of the electron spin is considered at a point,
this equation gives nonzero result even for spin steady states [16], though the expec-
tation value of the whole region is zero, of course. Hence, the zeta force plays an
important role to describe the local picture of the spin even for the stationary state.
In this article, we study the local spin torque and zeta force following our preceding
works.

This paper is organized as follows. In Sect. 7.2, we introduce the definitions of
the spin angular momentum density and the zeta potential. The spin torque and the
zeta force are derived from the equation of motion of the spin angular momentum
density. We also mention the comparison with the Heisenberg equation in relativistic
quantum mechanics. In Sect. 7.2.2, we explain computational details. In Sect. 7.3,
our results of the spin torque, the zeta force, and the zeta potential of allene-type
molecules (C3H4, C3H2Li2) are shown. The last section is devoted to our conclu-
sion.

7.2 Theory and Calculation Method

In this section, we briefly review the equation of motion of the spin angular mo-
mentum density and the quantities of the spin torque density and the zeta force
density [1–4]. These quantities play important roles to investigate the local elec-
tronic spin dynamics. In this work, relativistic quantum field theory is adopted. It is
known that the electronic spin is intrinsically included in the Dirac equation. In the
relativistic quantum theory, the electronic spin and orbital angular momentums are
not conserved separately, for example due to the spin-orbit interaction. Hence, if we
treat the spin degree of freedom correctly, we should rely on the relativistic quan-
tum theory. In addition, we adopt the quantum field theory, which is considered to
be more correct than quantum mechanics, since one of the authors found the novel
contribution to the torque for the electron spin, the zeta force.

7.2.1 Spin Torque Density and Zeta Force Density

The electronic spin angular momentum density operator is represented as

ŝke (x)=
1

2
�ψ̂†(x)Σkψ̂(x), (7.1)

where ψ̂ is the four-component Dirac spinor operator and Σk is the Pauli matrix in
the four-component representation.

The torque density for the electron spin is derived by the time derivative of the
spin angular momentum density,
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∂ŝke (x)

∂t
= ∂

∂t

(
1

2
�ψ̂†(x)Σkψ̂(x)

)
. (7.2)

The time derivative of the field operators in the right-hand side can be calculated by
using the Dirac equation,

i�γ μD̂μ(x)ψ̂(x)=mcψ̂(x), (7.3)

where γ μ is the gamma matrix and m is the mass of electron. The covariant deriva-
tive is given by

D̂μ(x)= ∂μ + i Zee
�c
Âμ(x), Ze =−1, (7.4)

where Âμ(x) is the photon field operator. As a result, we obtain the equation of mo-
tion of the spin angular momentum density, and the right-hand side can be arranged
in two terms,

∂ŝke (x)

∂t
= t̂ ke (x)+ ζ̂ ke (x), (7.5)

where the first term, t̂ ke (x), is the spin torque, which is the same as that of quantum
mechanics, and the second term, ζ̂ ke (x), is the zeta force, respectively [1, 3, 4]. (In
this article, we call only t̂ ke (x) the spin torque, and the sum of the terms in the
right-hand side is called the torque for the spin.) The spin torque density operator is
defined with the relativistic stress tensor density, τ̂Πlne (x), as

t̂ ke (x)=−εlnkτ̂Πlne (x), (7.6)

where εlnk is the Levi-Civita tensor. The relativistic stress tensor operator is given
by [1, 3, 4, 17–22],

τ̂Πlne (x)= i�c
2

[
ψ̂†(x)γ 0γ nD̂l(x)ψ̂(x)−

(
D̂l(x)ψ̂(x)

)†
γ 0γ nψ̂(x)

]
. (7.7)

The zeta force density operator is defined with the zeta potential, φ̂5, as

ζ̂ ke (x)=−∂kφ̂5. (7.8)

The zeta potential is given by

φ̂5(x)= �c

2

[
ψ̂†(x)γ5ψ̂(x)

]
, (7.9)

where γ5 = iγ 0γ 1γ 2γ 3.
The stress tensor (Eq. (7.7)) is known to classify the chemical bond. The third

eigenvalue of the stress tensor characterize compressive (negative) and tensile (pos-
itive) stress in a molecule. For a covalent bond, the region between bonding atoms is
associated with tensile stress and a spindle structure of an inter-atomic region [22].

The spin torque density (Eq. (7.6)) is defined so that it is the same as the
well-known spin torque term in relativistic quantum mechanics. The Heisen-
berg equation of the spin angular momentum in quantum mechanics is given by
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d ŝe/dt =−cπ̂ × α [23, 24]. The zeta force density (Eq. (7.8)), which does not ap-
pear in quantum mechanics, gives a novel local contribution to the torque for the
electron spin. The potential of the zeta force, zeta potential, is proportional to ĵ0

5 (x),
which is the zeroth-component of the chiral current,

ĵ
μ
5 (x)= cZee

[ ˆ̄ψ(x)γ μγ5ψ̂(x)
]
. (7.10)

We note that the spin angular momentum density is also represented by the chiral
current as ŝke (x)= �

2cZee
ĵ k5 (x). The zeta potential can be cast into another form,

φ̂5(x)= �c

2

(
ψ̂

†
R(x)ψ̂R(x)− ψ̂†

L(x)ψ̂L(x)
)
, (7.11)

where ψ̂L(x) and ψ̂R(x) are the spinor with the left-handed and right-handed chi-
rality, respectively. These operators are defined as

ψ̂L(x)= 1− γ5

2
ψ̂(x), ψ̂R(x)= 1+ γ5

2
ψ̂(x). (7.12)

We now proceed to the discussion of the physical interpretation of the equation
of motion of the spin. It can be seen from Eq. (7.5) that the electronic spin can be
accelerated by two torque terms: the spin torque and zeta force. One may wonder
whether this new contribution disturbs the consistency between experimental obser-
vations and the prediction by quantum mechanics. The expectation value of the zeta
force is zero after the integration over the whole region, since the zeta force den-
sity operator is given as the gradient of the zeta potential operator (see Eq. (7.8)).
Hence, Eq. (7.5) is the same as the Heisenberg equation in quantum mechanics, and
this new contribution can safely be neglected in past experiments. However, if we
consider a local region in target materials, the contribution from the zeta force can
give a nonzero effect even after the integration over a restricted local region. Hence,
the effect of the zeta force can be observed if an experimental setup is carefully de-
signed for this purpose. Therefore, our equation, Eq. (7.5), based on quantum field
theory can predict the correct local picture of electron spin dynamics.

Next, we mention a time-independent stationary state of the electron spin. In the
state, as seen in Eq. (7.5), the spin torque and zeta force are canceled out with each
other. Hence, we can obtain a new local picture of a time-independent stationary
state of the electron spin. In quantum mechanics, any local spin dynamics predic-
tion cannot be derived, since the Heisenberg equation cannot give zero torque for
a local region even for the spin stationary state. Of course, the quantum mechanics
is defined for the expectation value, and hence the local description is theoretically
out of scope of quantum mechanics.

In a time-dependent spin evolution state, this balance is not maintained. In the
viewpoint of quantum electrodynamics (QED), which is a kind of quantum field
theory, the dynamical local picture of the spin is summarized as follows: When
some photons enter a system, the balance between the spin torque and the zeta force
is disturbed, and the electronic spin is driven by the photons. Then the photons are
also affected by the back reaction from this torque.
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Fig. 7.1 Structures of molecules. Blue, green and orange spheres represent C, H, and Li atoms,
respectively. In C3H4 (a), the lengths of C–C, C–H, and H–H bonds are 1.29660 [Å], 1.08625 [Å],
and 1.83670 [Å], respectively. In C3H2Li2 (b), the lengths of C–C, C–Li, and Li–H bonds are
1.29660 [Å], 1.08625 [Å], and 1.83670 [Å], respectively

Table 7.1 Details of CI calculations

Number of electrons
(excluding frozen
core)

Active space
number

Active orbitals
(electronic
eigenvalue no.)

Number of
spinors in the
RAS1 (1A, 2A)

Number of
spinors in the
RAS3 (1A, 2A)

C3H4 16 19 4–22 (8, 8) (11, 11)

C3H2Li2 20 18 4–21 (10, 10) (8, 8)

7.2.2 Computational Details

We study the spin torque and zeta force of allene-type molecules, an achiral
molecule (C3H4) and a chiral molecule (C3H2Li2), in this work. The achiral and
chiral molecules in the steady state are compared from the viewpoint of chirality.

To calculate the spin torque and zeta force, a state derived by quantum field
theory is required. However, the state is not available for our purpose, since most
computation code is based on quantum mechanics. Hence, in this work, we use the
four-component wave function by relativistic quantum mechanics as a substitution.
This is derived by using DIRAC11 program package [25]. Structures of C3H4 and
C3H2Li2 are shown in Fig. 7.1. In this calculation, the cc-pVTZ basis set [26] is
used with the uncontraction for large components of H, Li, and C atoms. The small
component basis is generated by restricted kinetic balance. After Hartree-Fock cal-
culations with Dirac-Coulomb Hamiltonian, Configuration Interaction (CI) calcula-
tions are performed by the restricted active space (RAS) method by using DIRRCI
module. The details of CI calculations are summarized in Table 7.1. The screening
technique [27] is not used in our computations in order to derive higher accuracy.

After these quantum chemistry computations, the spin torque and zeta force
are calculated for derived wave functions. The lowest energy singlet state is used
for these calculations. These calculations are performed by QEDynamics program
package [28–30]. The effect of vector potential is ignored in our calculations, since
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Fig. 7.2 The distributions of the spin torque (a), the zeta force (b), and the sum of them (c) in
C3H4. The threshold value is 1.0× 10−5 [a.u.]

Fig. 7.3 The distributions of the spin torque (a), the zeta force (b), and the sum of them (c) in
C3H2Li2. The threshold value is 1.0× 10−5 [a.u.]

it is quantitatively small for the states by quantum mechanics. All the physical quan-
tities, such as the spin torque and zeta force, are depicted for only active electrons
of CI calculations.

7.3 Result and Discussion

7.3.1 Spin Torque and Zeta Force

We investigate the spin torque and the zeta force of C3H4 and C3H2Li2. The results
are shown in Figs. 7.2 and 7.3 for C3H4 and C3H2Li2, respectively. It can be seen
that the sum of the spin torque and the zeta force is much smaller than the spin
torque and the zeta force itself in the whole region. This result is consistent with the
fact that the nonzero spin torque is in balance with the zeta force for the spin steady
state. Hence, although our computational result is derived from wave functions of
quantum mechanics, it is considered that we can study the behavior of the spin
torque and zeta force by using these wave functions.

The values of the norm of the spin torque and zeta force in the vicinity of nuclei
amount to 10−4–10−5 [a.u.] for both molecules. In C3H4, the spin torque and zeta
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Fig. 7.4 Electron density and zeta potential. Blue and red envelopes represent positive and nega-
tive zeta potential iso-surfaces, respectively. The threshold value of iso-surfaces of the zeta poten-
tial is taken as ±7.5× 10−6 [a.u.]. Green envelopes represent electron density iso-surfaces. The
threshold value of iso-surfaces of the electron density is taken as 0.25 [a.u.]

force are concentrated in the vicinity of C nuclei, especially around the center of
them. In contrast, the spin torque and zeta force in C3H2Li2 are also distributed
around the vicinity of Li nuclei. In both molecules, the spin torque around H atoms
are very small. In comparison between two molecules, the distribution around the
center C atom is almost similar to each other. On the other hand, around C atoms
at both ends, the distribution of the spin torque (zeta force) of C3H2Li2 is wide
and its values are large. The cause to make this difference is discussed in the next
subsection from the viewpoint of the electron density.

7.3.2 Zeta Potential

In this section, the distribution of the zeta potential introduced in Sect. 7.2.1 is dis-
cussed. The zeta potential is principally an observable quantity and hence this quan-
tity is one of the most significant physical quantities to discuss spin dynamics as well
as the spin angular momentum density. As denoted in Sect. 7.2.1, the zeta potential
is the difference between the electron density with right-handed chirality and left-
handed one. Only left-handed electrons interact with neutrinos and/or weak gauge
bosons (W/Z bosons) according to the standard model of particle physics. Hence we
can principally observe the zeta potential, for example if we can prepare appropriate
neutrino beam and detector.

The distributions of the electron density and the zeta potential are shown in
Fig. 7.4. Blue and red envelopes represent positive and negative zeta potential iso-
surfaces, respectively. The threshold value of these iso-surfaces of the zeta poten-
tial is taken as ±7.5× 10−6 [a.u.]. Green envelopes represent electron density iso-
surfaces. The threshold value of the iso-surfaces of the electron density is taken as
0.25 [a.u.]. It can be seen from this figure that the distribution of the zeta potential
is almost independent of the electron density distribution for both models, while
around the C atom at both ends where the zeta potential of C3H2Li2 is larger than
that of C3H4, the electron density is seen to be also large.

We have anticipated that the zeta potential of a chiral molecule is larger than that
of an achiral one because it is considered that molecular chirality is probably related
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to the electron chirality. While our result supports our conjecture, it cannot yet be
concluded whether our conjecture is correct, since we cannot separate the effect
of the difference between H and Li atoms and that between the chiral and achiral
structures. It can be confirmed that the zeta force distribution is closely related to
the zeta potential distribution and the increase of the zeta potential of C3H2Li2 from
C3H4 is inevitably accompanied by the increase of the spin torque.

7.4 Conclusion

In this study, we have studied the spin torque density, the zeta force density, and
zeta potential of allene-structure molecules (C3H4, C3H2Li2), whose states are in
the time-independent stationary singlet one. The local picture of the electronic spin
stationary states have been described in terms of these density quantities based on
quantum field theory. We have shown the local spin torque and zeta force distribu-
tions of allene-structure molecules. We have pointed out that the distribution pattern
of the zeta potential is not related to the distribution of the electron density. It is
considered that the torque for the electrons in a molecule is dependent on the spin
orbit interaction. Hence we visualize the distribution of the spin orbit interaction in
these molecules and compare the distributions of the spin torque and the zeta force,
in our next work.

In our near future work, the local pictures of the electronic spin are studied for
chiral and achiral molecules, which interact with photons by using the time evolu-
tion simulation based on quantum electrodynamics.
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Chapter 8
A Refined Quartic Potential Surface for S0
Formaldehyde

Svetoslav Rashev and David C. Moule

Abstract We present an improved quartic potential energy surface for S0 formalde-
hyde. The field was refined starting from the original Martin, Lee, Taylor ab initio
field (Martin et al. in J. Mol. Spectrosc. 160:105, 1993). In the calculations we have
been using our recently developed variational vibrational calculation method. Dur-
ing the refinement procedure, all (80) harmonic, cubic and quartic force constants
of the original field have been varied sequentially in groups of ten, until the best
possible fit between the calculated and experimentally measured results has been
obtained for a set of carefully selected 29 frequencies (of A1 symmetry), extending
up to ∼6000 cm−1 of excess vibrational energy.

8.1 Introduction

Formaldehyde is a benchmark polyatomic molecule that has been thoroughly stud-
ied spectroscopically [1–6] and has frequently served as a model for large scale
vibrational calculations [7–19]. To the present day, 276 vibrational levels in the
ground electronic state (up to 12500 cm−1) have been experimentally observed
and assigned [3–6]. There have been a number of ab initio determinations of the
S0 ground electronic state molecular force field and equilibrium geometry param-
eters [20–24], of steadily improving quality. The first exact variational calcula-
tion of vibrational levels in formaldehyde, using an exact analytical expression
for the kinetic energy [25] and the Martin, Lee, Taylor (MLT) quartic field [22],
was carried out by Carter, Pinnavaia and Handy [11]. There have been numer-
ous adjustments and refinements of the MLT quartic force field based on exten-
sive vibrational calculations [11–14]. Burleigh et al. [14] performed a calculation
and adjustment to experimental data of 138 vibrational levels in formaldehyde, us-
ing 4th and 6th order canonical Van Vleck perturbation theory [6, 14]. Lee and
Light [18] applied their iterative solutions/energy selected bases variational method
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to calculate 729 A1 symmetry states up to 13500 cm−1 of excess vibrational en-
ergy, based on a slightly modified version of the Burleigh et al. adjusted PES [14].
More recently, Yachmenev et al. [24] produced an ab initio PES for ground elec-
tronic state formaldehyde, that surpassed the quality of the MLT field [22] be-
ing closer to spectroscopic accuracy. The authors [24] designed an analytical ex-
pression for their field, determined by 110 parameters. Next, these authors var-
ied the values of the parameters, aiming to obtain a PES of spectroscopic accu-
racy.

In our recent work we described and implemented an alternative method [26] for
the calculation of exact frequencies in S0 formaldehyde that is based on the exact
kinetic energy expression [25], a PES expression that should be given in separable
form (as a sum of products; the quartic expression [22] and the analytical expres-
sion [24] satisfy this requirement) and the employment of a specific iterative proce-
dure for deriving the most economic Hamiltonian matrix of the vibrational problem,
complemented by a Lanczos manipulation of the Hamiltonian matrix. The main as-
set of our method is the possibility to achieve arbitrarily high precision as well as
to extend the calculations to extremely high vibrational excitation energies [26–29].
We first assessed the performance of our method [26], by reproducing exactly the
vibrational energy levels of S0 formaldehyde, corresponding to the ab initio MLT
PES, calculated earlier by Carter et al. [11] and Luckhaus [15] and next demon-
strated the ability of our method to extend the calculations up to extremely high lev-
els of vibrational excitation energy [26]. We also performed converged large scale
calculations on deuterated species D2CO [27] and HDCO [28, 29] and compared
the calculated frequencies to experimentally measured values. We also studied the
IVR behavior at very high vibrational excitations and compared the mode selectiv-
ity and vibrational redistribution of different formaldehyde isotopomers [26–29]. In
all these calculations the original ab initio MLT PES was used without any adjust-
ment.

This work is organized as follows. In Sect. 8.2 we give a very brief descrip-
tion of our variational vibrational procedure for calculation of vibrational energy
levels, that has been described in detail in our recent work [26]. Next in Sect. 8.3
we first briefly describe our experience with the recently computed formaldehyde
PES by Yachmenev et al. [24] and then we describe our strategy employed for
adjustment of the force constants of the original MLT field to yield vibrational
frequencies of S0 H2CO, possibly closest to a set of well defined experimentally
measured H2CO frequencies. In Sect. 8.4 we present the newly obtained set of
quartic force constants, and a selection of H2CO and HDCO vibrational level en-
ergies, calculated with this new set of force constants and compared to the exper-
imentally measured frequencies. Finally in Sect. 8.5 we conclude. Our code for
computation of the obtained refined quartic PES is given in a supplement to this
work.
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8.2 Variational Vibrational Calculation Procedure for
Formaldehyde

In our calculations we use the expression of Handy for the kinetic energy of
formaldehyde [25], in terms of his curvilinear coordinates qk (three bond stretches,
two interbond angles and one dihedral “book” angle [22, 25]). For the PES of S0
formaldehyde, we use a quartic expansion in terms of the shifts from equilibrium of
the above internal curvilinear coordinates, exactly in the form, given by MLT [22].
This surface does not give spectroscopic accuracy, but it is quite realistic as a start-
ing point of the fitting procedure and very well adapted to our vibrational method,
allowing the calculations to access very high vibrational excitation energies (Ev).

Our 6D basis functions are products of 6 1D basis functions Ψi =∏χnk (qk). The
1D basis functions are chosen to resemble most closely the lower excited molecu-
lar vibrational eigenfunctions so that the nondiagonal Hamiltonian matrix elements
be as small as possible. For the three stretching coordinates of the C–H1, C–H2
and C–O bonds, we employ Morse oscillator eigenfunctions χnk (qk), k = 1,2,3
nk = 0,1, . . . , nk0 that are optimally adapted to the relevant molecular motions, by
setting appropriately the two parameter values of the Morse oscillators. For the out
of plane bend, we employ harmonic oscillator eigenfunctions χn4(q4) [q4 = ϕ—the
out-of-plane bend (“book”) angle]. Finally, for the two O–C–H(θ ) bends (coordi-
nates q5 = cos θ1, q6 = cos θ2), we use a set of normalized associated Legendre
polynomials P 2

n (cos θ), n= 2,3, . . . , that cancel the singularities in the KE opera-
tor. However since they have no free parameters to adjust and are not well adapted
to the molecular vibrations, for them we apply a prediagonalization of the 1D basis
(using a simple 1D Hamiltonian) in order to obtain suitable 1D basis functions as
linear combinations of the original wavefunctions. This procedure was described in
detail in our previous work [26].

Our specific search/selection procedure for constructing the Hamiltonian matrix
H in a vibrational calculation, designed for selection of a characteristic and repre-
sentative active space (AS) of basis vectors from a huge primitive space, involves
the intermediate calculation of a great number of Hamiltonian matrix elements (that
are employed to test whether a state should be selected or not), greatly exceeding
the final number of elements in H . Therefore we need a very fast method for cal-
culation of matrix elements that does not include numerical integrations. For this
purpose, prior to each actual vibrational calculation, we compute a number of 2D
arrays P i,αimi,ni = 〈χmi (qi)|Fαi (qi)|χni (qi)〉, mi,ni = 0,1,2, . . . , ni0, corresponding
to all vibrational coordinates qi and each function or operator Fαi (qi), occurring
in either KE or PES expressions, using either Gauss-Hermite, Gauss-Laguerre or
Gauss-Legendre numerical integrations [30], where ni0 is the number of basis func-
tions employed for the vibrational coordinate qi . All computed ni0 × ni0 arrays are
stored in computer core memory, ready to use in the subsequent matrix elements
calculations. As a result of this and of the separable forms of the KE and PES, each
matrix element is obtained as the sum of products of the appropriate values, thus
reducing the actual calculation to a number of multiplications and summations and
no integrations, which greatly accelerates the calculation of matrix elements.
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Our search/selection procedure, serves to select an optimally small however rep-
resentative active space of basis states, that are most relevant to the particular vi-
brational calculation. A search/selection procedure is started from a particular basis
(feature) state |0〉, chosen to be the best zeroth-order representation of the vibra-
tional levels to be calculated. The algorithm is symmetrically adapted to search and
select only such basis states whose symmetry coincides with the symmetry species
of the initial state |0〉. During the implementation of the search/selection algorithm,
many basis states are probed and each state that satisfies the criteria for sufficient
coupling strength is selected and consecutively added to the previously selected AS.
There are three parameters, determining the scope and the quality of the search, C,
f and R, whose values have to be fixed at the outset, that have been defined and
discussed in our previous work [26]. According to the values chosen for the three
parameters C, f and R, the search/selection procedure will select a varying num-
ber of basis states, i.e., include more and more weakly coupled basis states into the
selected AS, which will result in enhanced accuracy and convergence in the calcula-
tion of the desired molecular vibrational levels. All selected basis states are stored in
an array in computer core memory. Simultaneously the Hamiltonian matrix is being
built, containing the diagonal and nondiagonal matrix elements of all selected basis
states.

The Hamiltonian matrix H constructed in the course of the search/selection pro-
cedure, besides being optimal in size, is also quite sparse, because the algorithm
employed automatically discards the matrix elements that are too small according
to the criteria of the search. This makes our vibrational procedure both memory and
time efficient. For the tridiagonalization of H we employ a conventional Lanczos
iteration without reorthogonalization [31, 32], started again with the vector |0〉. We
diagonalize the obtained tridiagonal Lanczos matrix using the routine tqli() from
Numerical recipes [31], in slightly modified form.

8.3 Adjustment of the Original MLT PES to the Experimentally
Measured Frequencies

Prior to presenting our adjustment procedure and the obtained refined quartic poten-
tial field for formaldehyde, we shall have to discuss the recently ab initio computed
and refined field by Yachmenev et al. [24]. In fact, before starting our own work on
the refinement of the MLT field, we wanted to use the refined field of the authors [24]
for our large scale calculations on formaldehyde and its deuterated species [26–29].
For that purpose we have spent much effort to present in the required product form
the analytic expression for the PES, supplied in the supplementary material to [24],
in order to incorporate it into our vibrational code. Then we performed converged
variational calculations on the vibrational frequencies of S0 H2CO, using both the
set of ab initio parameters as well as the refined set from [24]. Our experience with
the field [24] is briefly summarized below.

In Table 8.1 are presented the results from our calculations on the H2CO vibra-
tional frequencies of A1 symmetry (J = 0), using both the ab initio and refined
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Table 8.1 Calculated A1 vibrational states (in cm−1) in S0 H2CO, using both the ab initio and
refined PES from Ref. [24] (columns 3 and 5 respectively), the corresponding calculated values
by the authors [24] themselves (columns 4 and 6 respectively) and the experimentally measured
frequencies [6] (column 2) with their assignments (column 1)

Assign. Observed [6] Ab initio Refined

Our calc. Ref. [24] Our calc. Ref. [24]

ν3 1500.2 1499.03 1499.10 1495.64 1500.19

ν? 1746.1 1744.53 1744.61 1745.75 1746.03

2ν4 2327.5 2324.94 2325.18 2350.27 2327.54

2ν6 2495.1 2487.45 2487.73 2495.53 2494.34

ν1 2782.2 2781.70 2781.74 2783.13 2782.46

2ν3 2998.1 2997.07 2997.24 2989.94 2998.94

ν2 + ν3 3239.0 3235.91 3236.11 3233.39 3238.36

2ν2 3471.6 3469.22 3469.39 3470.39 3471.23

ν3 + 2ν4 3825.3 3822.00 3822.43 3840.48 3825.94

ν3 + 2ν6 3937.4 3928.92 3929.86 3931.95 3936.02

ν2 + 2ν4 4058.3 4054.26 4054.60 4077.50 4058.53

ν5 + ν6 4083.1 4078.67 4078.88 4084.79 4083.21

ν2 + 2ν6 4248.7 4240.61 4241.02 4247.97 4247.13

ν1 + ν3 4253.8 4253.60 4253.86 4250.83 4254.58

ν1 + ν2 4529.4 4527.30 4527.54 4529.55 4529.82

4ν4 4629.0 4624.73 4625.12 4628.59

ν2 + 2ν3 4730.8 4725.71 4726.16 4722.72 4732.59

2ν4 + 2ν6 4842.0 4834.03 4834.67 4840.93

2ν2 + ν3 4955.2 4952.37 4952.81 4947.92 4954.65

ν1 + 2ν4 5092.4 5089.58 5089.97 5117.39 5092.32

3ν2 5177.6 5174.67 5175.01 5174.27 5177.82

2ν3 + 2ν4 5321.3 5316.83 5317.59 5311.29 5324.51

4ν6 5389.4 5381.17 5380.66 5380.77 5386.16

2ν1 5462.7 5460.30 5460.43 5463.49 5462.94

ν2 + ν3 + 2ν4 5546.5 5539.81 5540.40 5542.45 5545.43

ν3 + ν5 + ν6 5551.3 5548.26 5548.73 5554.23 5553.13

2ν5 5651.0 5649.87 5650.04 5648.79 5651.38

ν2 + ν3 + 2ν6 5687.9 5681.43 5681.97 5682.61 5688.20

ν1 + 2ν3 5729.2 5727.19 5727.84 5721.69 5729.86

ν2 + ν5 + ν6 5809.5 5803.66 5804.16 5807.79 5810.02

2ν2 + 2ν6 5986.2 5984.88 5985.47 5982.72 5984.48

ν3 + 4ν4 6123.6 6118.43 6119.14 6123.36

ν1 + 2ν2 6254.7 6251.95 6252.59 6249.15 6253.93

ν3 + 2ν4 + 2ν6 6263.1 6257.86 6258.82 6275.16 6262.05

ν3 + 4ν6 6373.4 6365.06 6357.54 6370.65 6372.06
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Table 8.1 (Continued)

Assign. Observed [6] Ab initio Refined

Our calc. Ref. [24] Our calc. Ref. [24]

2ν4 + ν5 + ν6 6401.2 6394.49 6395.01 6414.91 6399.83

ν1 + ν3 + 2ν4 6562.7 6560.57 6561.59 6544.88 6565.39

ν2 + 2ν4 + 2ν6 6578.8 6570.28 6570.97 6572.47 6575.74

3ν2 + ν3 6652.2 6648.93 6649.83 6641.00 6653.34

3ν3 + 2ν4 6815.2 6808.70 6809.16 6791.27 6816.11

ν1 + ν2 + 2ν4 6825.5 6821.30 6821.88 6838.86 6823.88

6ν4 6909.0 6902.46 6903.18 6915.02 6910.15

ν2 + 2ν3 + 2ν6 7137.4 7127.24 7139.51 7135.45 7140.25

fields [24], that are compared to the results from the respective calculations by the
authors themselves. Given are also the experimentally measured frequencies [6] and
assignments. This Table essentially corresponds to Table III from Ref. [24], but we
have changed most of the assignments in accord with Ref. [6] and excluded several
states, that do not have the correct A1 symmetry. From a comparison of columns 3
and 4 in Table 8.1 it is seen that the results of our calculations using the parame-
ters, corresponding to the ab initio field, are close to those of the authors [24], but
consistently somewhat lower, the difference starting from ∼0.1 cm−1 for the low-
est levels and ranging up to ∼1 cm−1 or even more, for the highest excited levels
in the Table. This slight mismatch between the two sets of calculated data might
be attributed to the program suite TROVE [34], used by the authors [24] that in-
volves a truncation of both the kinetic as well as the potential energy operators and
a limitation Pmax = 14 for the highest polyad number accessed in the calculation,
which limits the active space to about 21000 basis states. On the other hand, our
variational vibrational code is based on the exact expressions for both the kinetic
and the potential energy operators and a search/selection procedure, that selects as
many basis states (of almost unlimited high excitation) as needed for the calculation
at hand, the AS dimensions ranging up to 50000 or much more, when necessary. As
a result, our calculated results are converged to ∼0.01 cm−1. Anyway, the overall
results show, that the ab initio computed PES in [24] presents an improvement over
the MLT quartic field [22].

Next, our calculations using the parameter set corresponding to the refined PES
in [24] are displayed in column 5 of Table 8.1 and the calculated results of the
authors [24] are given in the last column 6. It is obvious from a comparison of
columns 5 and 6, that both sets of results are substantially different. Our calculated
results are substantially different both from the calculated results by the authors [24]
and from the experimentally measured frequencies in column 2, of Table 8.1, as
well. In fact, according to our calculations, the so called refined field is not an im-
provement over the ab initio field but a deterioration. Similar is the situation with
the other sets of calculated vibrational energy levels (of symmetries A2, B1 and B2),
displayed in Tables IV, V and VI of Ref. [24]. Our guess could be, that either there
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might be some formal errors in the supplied electronic file for the set of refined pa-
rameters or that the authors [24] might have serious problems with their fitting code.
Anyway, we were not able to confirm the spectroscopic quality of the refined field in
Ref. [24] and we decided to carry out our own refinement of the MLT quartic field.

For the adjustment procedure, we employed the Marquardt’s method for nonlin-
ear parameter estimation through the “chi-square” minimization (chi-square is equal
to the sum of squares of the differences between calculated and experimental values
for all 29 frequencies, involved in the fitting process), essentially implemented in the
routine mrqmin( ) from [30]. We incorporated our vibrational calculation code into
the least squares fitting routine mrqmin( ) [30]. We fitted the calculated 29 frequen-
cies to the corresponding experimentally measured values (indicated in Table 8.3
by an asterisk), all of them of the same symmetry type A1, in order to be able to
obtain all required frequencies in a single calculation. However most of these 29 vi-
brational energy levels represented combinations and overtones of all six molecular
vibrational modes, which meant that all molecular modes of all symmetries were
involved into the refinement process. We proceeded to carry out the fitting process
by varying all 80 force constants sequentially, in groups of 10. We first started with
harmonic force constants, next cubic and finally quartic force constants were varied.
The whole sequence was repeated a second time. The three equilibrium parameters
(two bond lengths and one interbond angle) were left unchanged, equal to the values
used by MLT themselves [22]. In the vibrational calculations for the fitting routine,
the state 11 (A1g symmetrized combination of the one quantum excitation in the C–
H stretching mode) was used as the initial state of the search |0〉. The convergence
of the results obtained in this calculation was better than 0.01 cm−1 for the frequen-
cies up to ∼6000 cm−1 and 0.1 cm−1 for the higher excited ones, as discussed in
detail in our recent work [26, 27]. The final chi-square value achieved in the fitting
process was 9.27 for the 29 frequencies employed.

8.4 Results and Discussion

The set of harmonic, cubic and quartic force constants, that were obtained as a re-
sult of our fitting process, are displayed in Table 8.2. In the Supplement to this work
we have provided a C++ code, for calculation of the potential energy for arbitrary
input values of the deviations of all six vibrational coordinates from equilibrium. In
Table 8.2 are displayed the resulting vibrational energy levels of various symmetry
types for S0 H2CO, up to ∼6000 cm−1, that were obtained from a series of cal-
culations with the final adjusted set of force constants (Table 8.2). The vibrational
energy levels in Table 8.3, calculated using our newly determined set of force con-
stants (Table 8.2), are compared with the experimentally measured values [6], as
well as with the vibrational level energies calculated by the authors, for two earlier
refined fields: Ref. [12] and Ref. [14]. As it is seen from Table 8.3, the agreement
between the calculated and the experimentally measured frequencies as well as with
the calculated results by the authors [12, 14], up to ∼6000 cm−1 is quite satisfac-
tory (with very few exceptions). In addition we have also performed calculations
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Table 8.2 A set of adjusted
quartic force constants,
determined in this work,
using our vibrational code
[equilibrium configuration:
r(C–O)= 1.2096 Å,
r(C–H)= 1.1033 Å,
∠(H–C–H)= 116.19 deg]

F11= 3.0049422 F1113= 0.0435328

F22= 9.5205955 F1122=−1.3352289

F33= 0.83487867 F1123=−1.1744012

F44= 0.1305192 F1133=−0.2543632

F55= 2.9252182 F1144=−.0422238

F66= 0.4132887 F1155=−.2210200

F12= 1.0322378 F1156= 0.31075900

F13=−0.2385655 F1166=−0.1931805

F23= 0.7845680 F1222=−0.3903829

F56= 0.1283040 F1223=−7.1392288

F111=−0.3338075 F1233= 3.32196713

F112= 1.4975541 F1244= 0.05576686

F113= 1.0129728 F1255=−10.5728899

F122=−0.1992566 F1256=−6.94089592

F123= 0.8324351 F1266= 1.671599806

F133=−0.5153881 F1333= 0.408204336

F144=−0.08179475 F1344= 0.053017191

F155=−2.0146801 F1355= 0.9230410

F156= 0.675122 F1356= 0.9919296

F166=−0.1216545 F1366= 0.5599576

F222=−6.5754184 F2222=−7.5345681

F223= 0.21434682 F2223=−1.5646255

F233=−0.0618665 F2233=−1.3061651

F244=−0.3294825 F2244=−0.2222958

F255= 3.50491397 F2255=−1.3966364

F256=−0.8697603 F2256= 20.0713766

F266=−0.9656138 F2266=−0.64347064

F333= 0.3176335 F2333= 0.23759968

F344= 0.0881654 F2344= 0.01078432

F355=−1.1731703 F2355=−7.4242240

F356= 0.0434476 F2356=−2.4665830

F366=−0.3536357 F2366= 0.87704112

F1111=−0.8396216 F3333= 0.18653205

F1112=−0.9988350 F3344= 0.06039921

F3355=−1.5720053 F4466=−0.0663805

F3356=−2.4342667 F5555= 0.3666690

F3366=−0.0918158 F5556= 3.2674870

F4444= 0.01642359 F5566=−0.3661640

F4455=−0.2304280 F5666=−0.3584239

F4456=−0.0743773 F6666= 0.04302172
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Table 8.3 Calculated vibrational levels [in cm−1] of S0 formaldehyde, using the refined PES in
this work (column 2). The 29 frequencies that were employed in the fitting process are indicated
with an asterix (column 2). Results from calculations by the authors for two earlier refined fields:
Ref. [12] (column 3) and Ref. [14] (column 4). The experimentally measured values are also given
in the Table for comparison (column 5)

Assignment Calculated this work Calculated [12] Calculated [14] Experimental [6]

00 5777.90

41 1167.26 1167.3 1167.3 1167.4

61 1249.89 1249.8 1248.9 1249.6

31 1500.40* 1499.6 1499.5 1500.2

21 1746.41* 1745.8 1746.1 1746.1

42 2327.50* 2327.5 2327.9 2327.1

4161 2422.74 2421.3 2422.0 2422.4

62 2496.08* 2495.9 2495.0 2496.1

3141 2666.80 2666.8 2666.1 2667.1

3161 2719.47 2718.9 2718.0 2718.6

11 2782.58* 2782.2 2782.3 2782.5

51 2843.61 2842.6 2842.5 2843.0

2141 2905.22 2905.7 2905.9 2906.0

32 2999.84* 2999.0 2998.2 2998.1

2161 3001.12 3000.0 2999.9 3000.6

2131 3238.87* 3238.0 3238.4 3239.0

22 3471.85* 3471.1 3472.4 3471.7

43 3480.40 3481.0 3482.3 3480.7

4261 3585.60 3585.7 3585.6 3586.6

4162 3676.26 3672.5 3675.9 3673.5

3142 3824.83* 3825.3 3825.0 3825.3

314161 3889.41 3886.3 3886.6 3886.5

3162 3938.13* 3935.9 3935.2 3937.4

1141 3941.99 3942.2 3942.0 3940.2

4151 4002.45 3995.6 3996.0 3995.8

2142 4057.53* 4057.8 4058.2 4058.3

5161 4082.79* 4083.2 4083.0 4083.1

214161 4164.99 4164.2 4163.6 4163.9

2162 4247.07* 4250.0 4248.1 4248.7

1131 4254.13* 4253.7 4255.2 4253.8

213141 4396.10 4397.9 4397.3 4397.5

213161 4467.04 4467.0 4466.2 4466.8

1121 4528.77* 4527.5 4528.9 4529.4

2151 4572.78 4572.2 4570.7 4571.5

2241 4622.90 4624.3 4624.5 4624.3
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Table 8.3 (Continued)

Assignment Calculated this work Calculated [12] Calculated [14] Experimental [6]

44 4629.29* 4628.2 4630.6 4629.0

2132 4730.34* 4729.6 4729.5 4730.8

2261 4736.46 4735.0 4734.3 4733.8

4361 4740.83 4744.4 4741.6 4741.9

4262 4841.77* 4840.4 4842.6 4842.0

2231 4956.43* 4956.3 4957.1 4955.2

3143 4975.70 4976.4 4977.2 4977.1

314261 5046.88 5042.5 5042.4 5043.7

1142 5092.73* 5094.2 5094.4 5092.4

314162 5114.44 5105.8 5109.8 5104.0

4251 5146.88 5140.9 5141.5 5140.1

3163 5152.62 5151.7 5152.5 5151.0

23 5176.92* 5177.1 5179.5 5177.6

2143 5205.11 5204.0 5204.9 5205.2

415161 5250.29 5242.6 5246.5 5244.1

5162 5314.45 5314.2 5312.9 5312.2

3242 5319.69 5321.0 5320.6 5321.3

214261 5324.80 5325.6 5325.3 5325.6

324161 5360.10 5357.4 5357.6 5353.2

3262 5388.56* 5386.2 5384.5 5389.4

214162 5418.61 5417.4 5414.5 5417.6

113161 5435.68 5432.4 5434.3 5433.4

12 5462.85* 5462.0 5467.1 5462.7

314151 5498.14 5489.3 5489.1 5489.0

1151 5543.66 5531.4 5533.7 5530.5

213142 5544.81 5543.8 5544.5 5546.5

315161 5551.46* 5553.6 5552.5 5551.3

21314161 5628.52 5625.8 5625.8 5625.5

52 5651.00* 5651.0 5651.7 5651.0

112141 5678.90 5681.2 5680.0

213162 5688.20* 5687.1 5687.9

214151 5722.89 5718.1 5717.7

1132 5727.87* 5730.1 5729.2

2242 5769.00* 5769.2 5768.8

45 5771.35 5772.8 5771.0

215161 5809.58* 5809.9 5809.5

224161 5891.76 5888.2 5887.5

4461 5889.12 5890.6 5891.8
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Table 8.3 (Continued)

Assignment Calculated this work Calculated [12] Calculated [14] Experimental [6]

2262 5986.74 5985.4 5986.2

112131 5998.87 5997.8 5996.0

213151 6057.55 6052.3 6051.7

223141 6105.21 6108.1 6106.2

3144 6119.98 6122.9 6123.6

314361 6195.63 6189.3 6189.1

223161 6198.55 6196.7 6194.8

1143 6235.88 6239.9 6235.2

1122 6252.96 6254.6 6254.7

314262 6272.80 6264.8 6263.1

2251 6276.04 6275.4 6276.4

on the much higher excited vibrational levels (up to ∼12500 cm−1 and higher) and
compared them to the experimentally measured and calculated frequencies from
Ref. [6], as well as with the results from calculations by Lee and Light [18], who
used essentially the PES of Burleigh et al. [14], with a slight modification for the
out-of-plane mode. Our calculated results were found to be reasonably close to the
experimentally measured frequencies as well as to the calculated frequencies by
Burleigh et al. [6, 14] and by Lee et al. [18].

In order to demonstrate that in spite of our using only vibrational levels of A1
symmetry in the adjustment process, the levels of other symmetries were also well
approximated, we have provided the Table 8.4, containing calculated vibrational
levels using our refined PES, of A2, B1 and B2 symmetries, up to ∼5000 cm−1,
compared to the experimentally measured frequencies [6]. It is readily seen from the
table, that the agreement between the calculated and the experimentally measured
values is quite satisfactory.

Lee and Light [18] calculated all vibrational levels of A1 symmetry up to
13500 cm−1 in S0 H2CO and they found their exact number to be 729. In our present
calculation with the newly obtained quartic PES (Table 8.1) we have counted 727
A1 vibrational levels in this energy range. There is a remarkable agreement between
the two calculations. This can be considered as evidence, that the two fields are of
the same quality. In addition we have found 422 A2 levels, 501 B1 levels, and 615
B2 levels in the same energy range (0–13500 cm−1).

In order to find out whether our refined field retains the physically justified char-
acter of the ab initio computed fields, we have calculated cuts through all four types
of vibrational curvilinear coordinates in formaldehyde (1-CH and 2-CO stretches,
3-HCO in plane bend and 4- out of plane bend of the two HCO planes), in each case
holding all the remaining coordinates fixed at equilibrium. For the sake of com-
parison, we have also calculated the corresponding cuts for three other fields: the
original MLT field [22] and the ab initio and refined fields by Yachmenev et al. [24].
These cuts for all four fields are displayed in Figs. 8.1, 8.2, 8.3, and 8.4, for the
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Table 8.4 Calculated vibrational states in S0 H2CO, of other symmetries (A2, B1, B2), using the
refined PES in this work (column 2). The experimentally measured frequencies [6] are displayed
in column 2, for comparison. Assignments and symmetries of the states are given in column 1

Assignment and symmetry Calculated with the refined PES Measured [6]

ν4 (B1) 1167.26 1167.4

ν6 (B2) 1249.89 1249.6

ν4 + ν6 (A2) 2422.74 2422.4

ν3 + ν4 (B1) 2666.80 2667.1

ν3 + ν1 (B2) 2719.47 2718.6

ν5 (B2) 2843.61 2843.0

ν2 + ν4 (B1) 2905.22 2906.0

ν2 + ν6 (B2) 3001.12 3000.6

3ν4 (B1) 3481.40 3480.7

2ν4 + ν6 (B2) 3585.60 3586.6

ν4 + 2ν6 (B1) 3676.26 3673.5

ν3 + ν4 + ν6 (A2) 3889.41 3886.5

ν1 + ν4 (B1) 3941.99 3940.2

ν3 + ν4 + ν6 (A2) 4164.99 4163.9

ν2 + ν3 + ν4 (B1) 4396.10 4397.5

ν2 + ν3 + ν6 (B2) 4467.04 4466.8

ν2 + ν5 (B2) 4572.78 4571.5

2ν2 + ν4 (B1) 4622.90 4624.3

2ν2 + ν6 (B2) 4736.46 4733.8

2ν4 + ν6 (A2) 4740.83 4741.9

ν3 + 3ν4 (B1) 4975.65 4977.1

ν3 + 2ν4 + ν6 (B2) 5046.88 5043.7

above coordinates 1–4, respectively. As it is seen from the figures, all four fields
show very similar behavior up to quite high excitation levels, with only the ab initio
Yachmenev et al. field [24] showing marked deviation, for the CH stretch.

Using the obtained refined quartic PES in this work, we have also carried out a
calculation on the vibrational frequencies in HDCO. It was our purpose to find how
well does the PES, fitted to the vibrational frequencies of H2CO, perform for the
isotopomer HDCO. In Table 8.5 are displayed the results from our calculation of
all A′ (even number of ν4 quanta) vibrational states in S0 HDCO, in the range up
to Ev = 5000 cm−1. In this table, the results from the calculations with our newly
obtained refined PES, are compared to the results from our recent calculations [29],
using the original ab initio MLT PES [22], as well as to the set of experimentally
measured frequencies in the recent work of Ellsworth et al. [33]. It can be seen from
Table 8.5, that there is a marked improvement in the calculations with the refined
PES over the results obtained with the original MLT field, as regards the comparison
with experimental results [33]. However the improved frequencies are still too far
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Fig. 8.1 Cut through the CH
stretch mode for the four
formaldehyde fields indicated
in the figure, with all
remaining coordinates fixed
at equilibrium

Fig. 8.2 Cut through the CO
stretch mode for the four
formaldehyde fields indicated
in the figure, with all
remaining coordinates fixed
at equilibrium

Fig. 8.3 Cut through the
HCO in plane bend mode for
the four formaldehyde fields
indicated in the figure, with
all remaining coordinates
fixed at equilibrium
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Fig. 8.4 Cut through the
out-of-plane plane bend mode
(book angle) for the four
formaldehyde fields indicated
in the figure, with all
remaining coordinates fixed
at equilibrium

from the experimental measurements. This means that in order to obtain an universal
PES for formaldehyde, that would be valid for the other isotopomers besides H2CO
as well, a refinement should be carried out, including the experimentally measured
frequencies of the other isotopomers as well.

8.5 Conclusions

In this work we have carried out a careful adjustment of all the 80 force constants
(harmonic, cubic and quartic), comprising the quartic PES of MLT [22], defined as a
quartic expansion in terms of the shifts from equilibrium of their internal curvilinear
coordinates. Using Marquardt’s method for nonlinear parameter estimation through
the “chi-square” minimization, we have varied all the force constants sequentially in
groups of ten, until we have obtained the best possible agreement of a particular set
of our calculated frequencies (29), corresponding to well assigned vibrational en-
ergy levels, with the corresponding set of experimentally measured frequencies [6].
For the vibrational calculations we have employed our recently developed vari-
ational vibrational method, based on an iterative search/selection/diagonalization
procedure to obtain the eigenvalues and some eigenvectors of the vibrational prob-
lem (using the exact kinetic energy expression [25]). The calculations, performed
with the newly obtained refined quartic PES (Table 8.2, Supplement) have been
shown to yield vibrational frequencies for H2CO that are in reasonably good agree-
ment with the experimentally measured frequencies, up to quite high vibrational
excitation energies. However the calculation performed on the vibrational frequen-
cies of the asymmetric formaldehyde isotopomer HDCO, using the refined PES did
not show very good agreement with the experimentally measured frequencies [33].
This means, that an additional fitting procedure should be carried out, by including
into the set of fitting frequencies some frequencies belonging to the isotopic species
of formaldehyde.
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Table 8.5 All calculated A′ (even number of ν4 quanta) vibrational states in S0 HDCO, in the
range up to Ev = 5000 cm−1, using the refined PES in this work (column 2). The frequencies
calculated with the original MLT PES, taken from our recent work [29] are in column 1. Experi-
mentally measured frequencies [33] are in column 3

Calculated with MLT PES [29] Calculated with refined PES Measured [33]

1032.2 1029.15 1027.1

1404.2 1397.49

1725.8 1722.14 1724.0

2042.2 2035.28 2028.2

2100.6 2095.11 2104.4

2133.9 2138.31 2129.0

2435.7 2426.99

2742.3 2730.19 2737.2

2767.6 2762.22

2849.1 2845.61 2846.8

3045.6 3034.15

3125.6 3112.53

3143.2 3135.11 3125.1

3166.8 3168.35 3163.9

3431.9 3424.45 3428.5

3443.8 3433.59

3503.0 3494.23

3540.1 3535.40 3521.4

3751.1 3735.19 3745.9

3791.4 3781.44

3819.0 3806.45 3813.6

3851.8 3849.87 3851.2

3880.3 3874.53 3869.5

4033.7 4021.54

4103.1 4087.70

4111.8 4101.15 4111.6

4145.8 4139.54 4144.4

4154.2 4143.38 4168.8

4195.0 4185.71 4192.1

4212.2 4215.58

4259.7 4243.41 4258.5

4261.0 4277.37

4443.0 4424.26

4447.6 4434.16 4435.6

4488.9 4474.18

4546.1 4535.87
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Table 8.5 (Continued)

Calculated with MLT PES [29] Calculated with refined PES Measured [33]

4569.4 4565.42 4564.5

4573.0 4566.70

4747.8 4727.45

4801.2 4790.32

4827.5 4807.85

4837.8 4820.04 4825.0

4864.6 4853.38

4867.9 4861.47 4864.5

4887.3 4878.85 4883.0

4894.2 4893.81

4946.1 4935.19 4945.2

4976.5 4975.58

8.6 Supplement

C++ code for calculation of the refined (and the original MLT) potential field
at arbitrarily chosen values for the 6 curvilinear vibrational coordinates: z1,
z2—C–H stretches; z3—CO stretch; t1, t2—in plane bending angles; f—out of
plane angle (stretches are in A, angles are in radians; the input values are de-
viations from equilibrium, which is obtained for zero values of all coordinates).

// PES.cpp : MLT PES of S0 H2CO in wavenumbers

#include "stdafx.h"
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <fstream>
#include <iomanip>
#include <cstdio>
using namespace std;

/*
// MLT force ctes:
double F11=3.00134, F22=9.53546, F33=0.84581, F44=0.13237, F55=2.89965,
F66=0.41504, F12=1.00934, F13=-0.24764, F23=0.78790, F56=0.11165;
double F111=-0.35451, F112=0.89040, F113=0.08391, F122=-1.42689, F123=-0.36867,
F133=-0.41373, F144=-0.10521, F155=-1.33402, F156=0.26701, F166=-0.12874;
double F222=-6.81287, F223=-0.23282, F233=-0.81319, F244=-0.09166, F255=1.45247,
F256=-0.77602, F266=-0.78182, F333=0.19412, F344=0.11961;
double F355=-0.57006, F356=0.00180, F366=-0.29413;
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double F1111=-0.70019, F1112=0.34900, F1113=0.30059, F1122=-0.53308,
F1123=-0.83581, F1133=-0.30456, F1144=-0.04892, F1155=-3.84204, F1156=0.19062,
F1166=-0.20060;
double F1222=-0.84544, F1223=0.91400, F1233=0.35388, F1244=0.06732,
F1255=2.36355, F1256=-1.18313, F1266=0.63147, F1333=-0.07450, F1344=-0.01473;
double F1355=-0.49110, F1356=-0.21855, F1366=0.12851;
double F2222=-5.16837, F2223=-0.85737, F2233=-0.06649, F2244=-0.21414,
F2255=-1.20379, F2256=1.01391, F2266=-0.29680, F2333=0.02937, F2344=0.00279;
double F2355=-0.08514, F2356=0.00854, F2366=0.66654, F3333=0.09006,
F3344=-0.05665, F3355=-1.09814, F3356=0.14720, F3366=-0.02848;
double F4444=0.01628, F4455=-0.20953, F4456=0.03736, F4466=-0.06331,
F5555=-0.51645, F5556=0.08444, F5566=-0.21524, F5666=0.03680, F6666=0.03321;
double r_CO=1.2096, r_CH=1.1033; //equilibrium bond lengths
*/
// Refined PES:
double F11=3.00494217108178, F22=9.52059546762136, F33=0.834878668759375,
F44=0.1305192, F55=2.92521820970712, F66=0.413288662007181,
F12=1.03223777792455;
double F13=-0.238565486726518, F23=0.784568001214077, F56=0.128304035672759,
F111=-0.333807527166278, F112=1.49755408987174, F113=1.01297276169864;
double F122=-0.199256642842184, F123=0.832435133553144,
F133=-0.515388146213856, F144=-0.0817947526301169, F155=-2.01468041534641,
F156=0.675122316448874, F166=-0.121654497183245;
double F222=-6.57541838669074, F223=0.214346818916391,
F233=-0.0618665114342241, F244=-0.329482480919666, F255=3.50491397221967,
F256=-0.869760304068994;
double F266=-0.965613840212784, F333=0.317633458279646,
F344=0.0881654357764115, F355=-1.17317028629488, F356=0.043447613736584,
F366=-0.353635660595592;
double F1111=-0.839621603756803, F1112=-0.998834983017552,
F1113=0.043532837827995, F1122=-1.33522886259013, F1123=-1.17440119152888,
F1133=-0.254363171447765;
double F1144=-0.0422237648905299, F1155=-2.22101995214809,
F1156=0.310758985970269, F1166=-0.193180509345745, F1222=-0.390382928902052,
F1223=-7.13922876943697;
double F1233=3.32196712897583, F1244=0.0557668588009518,
F1255=-10.5728898743163, F1256=-6.94089592039379, F1266=1.67159980627772,
F1333=0.408204336193871, F1344=0.0530171916146628;
double F1355=0.923041047680587, F1356=0.991929635564585,
F1366=0.559957611225298, F2222=-7.53456809141082, F2223=-1.56462546139935,
F2233=-1.30616512098343, F2244=-0.222295773473732;
double F2255=-1.39663644279243, F2256=20.0713765590419,
F2266=-0.643470636292006, F2333=0.237599682525006, F2344=0.0107843208366685,
F2355=-7.42422396175545, F2356=-2.46658300013839;
double F2366=0.877041118643844, F3333=0.186532054408352,
F3344=0.0603992076591577, F3355=-1.5720053307153, F3356=-2.43426672835613,
F3366=-0.0918157894206982, F4444=0.0164235874521334;
double F4455=-0.23042803656397, F4456=-0.0743772882717946,
F4466=-0.0663805139499858, F5555=0.366668964397229, F5556=3.26748699700024,
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F5566=-0.366164046715441, F5666=-0.358423904173009, F6666=0.0430217192246419;
double r_CO=1.2096, r_CH=1.1033; //equilibrium bond lengths

double Fact2=50341.17, x1, x2, x3, mt=0;
double z1=0, z2=0, z3=0, t1=0, t2=0, f=0;// input values for the calculation
// z1,z2 - C–H stretches; z3 - CO stretch; t1,t2 - in plane bending angles; f - o.p. angle
(stretches are in A, angles are in radians)

void main()
x1=z1/(z1+r_CH); x2=z2/(z2+r_CH); x3=z3/(z3+r_CO);

// harmonic
mt+=.5*F11*(x1+x2)*(x1+x2);
mt+=.5*F55*(x1-x2)*(x1-x2);
mt+=F22*x3*x3;
mt+=F44*f*f;
mt+=F12/sqrt(2.)*(x1+x2)*x3;
mt+=0.5*(F33+F66)*(t1*t1+t2*t2) + (F33-F66)*t1*t2;
mt+=F13/2.*(x1+x2)*(t1+t2);
mt+=F23/sqrt(2.)*x3*(t1+t2);
mt+=F56/2.*(x1-x2)*(t1-t2);

// cubic
mt+=F111/2./sqrt(2.)*(x1+x2)*(x1+x2)*(x1+x2);
mt+=F155/2./sqrt(2.)*(x1*x1-x2*x2)*(x1-x2);
mt+=F222*x3*x3*x3;
mt+=F112/2.*x3*(x1+x2)*(x1+x2);
mt+=F255/2.*x3*(x1-x2)*(x1-x2);
mt+=F122/sqrt(2.)*x3*x3*(x1+x2);
mt+=F144/sqrt(2.)*(x1+x2)*f*f;
mt+=F244*x3*f*f;
mt+=F113/2./sqrt(2.)*(x1+x2)*(x1+x2)*(t1+t2);
mt+=F355/2./sqrt(2.)*(x1-x2)*(x1-x2)*(t1+t2);
mt+=F133/2./sqrt(2.)*(x1+x2)*(t1+t2)*(t1+t2);
mt+=F156/2./sqrt(2.)*(x1*x1 - x2*x2)*(t1-t2);
mt+=F166/2./sqrt(2.)*(x1+x2)*(t1-t2)*(t1-t2);
mt+=F356/2./sqrt(2.)*(x1-x2)*(t1*t1 - t2*t2);
mt+=F223/sqrt(2.)*x3*x3*(t1+t2);
mt+=F233/2.*x3*(t1+t2)*(t1+t2);
mt+=F266/2.*x3*(t1-t2)*(t1-t2);
mt+=F123/2.*x3*(x1+x2)*(t1+t2);
mt+=F256/2.*x3*(x1-x2)*(t1-t2);
mt+=F344/sqrt(2.)*(t1+t2)*f*f;
mt+=F333/2./sqrt(2.)*(t1+t2)*(t1+t2)*(t1+t2);
mt+=F366/2./sqrt(2.)*(t1*t1 - t2*t2)*(t1-t2);

// quartic
mt+=F1111/4.*(x1+x2)*(x1+x2)*(x1+x2)*(x1+x2);
mt+=F5555/4.*(x1-x2)*(x1-x2)*(x1-x2)*(x1-x2);
mt+=F1155/4.*(x1*x1*x1*x1 - 2.*x1*x1*x2*x2 + x2*x2*x2*x2);
mt+=F1112/2./sqrt(2.)*x3*(x1+x2)*(x1+x2)*(x1+x2);
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mt+=F1122/2.*x3*x3*(x1+x2)*(x1+x2);
mt+=F2255/2.*x3*x3*(x1-x2)*(x1-x2);
mt+=F1222/sqrt(2.)*x3*x3*x3*(x1+x2);
mt+=F1255/2./sqrt(2.)*x3*(x1*x1-x2*x2)*(x1-x2);
mt+=F1244/sqrt(2.)*x3*(x1+x2)*f*f;
mt+=F1144/2.*(x1+x2)*(x1+x2)*f*f;
mt+=F4444*f*f*f*f;
mt+=F2222*x3*x3*x3*x3;
mt+=F2244*x3*x3*f*f;
mt+=F4455/2.*(x1-x2)*(x1-x2)*f*f;
mt+=F1123/2./sqrt(2.)*x3*(x1+x2)*(x1+x2)*(t1+t2);
mt+=F2355/2./sqrt(2.)*x3*(x1-x2)*(x1-x2)*(t1+t2);
mt+=F1223/2.*x3*x3*(x1+x2)*(t1 + t2);
mt+=F1233/2./sqrt(2.)*x3*(x1+x2)*(t1+t2)*(t1+t2);
mt+=F1256/2./sqrt(2.)*x3*(x1*x1 - x2*x2)*(t1-t2);
mt+=F1266/2./sqrt(2.)*x3*(x1+x2)*(t1-t2)*(t1-t2);
mt+=F2256/2.*x3*x3*(x1-x2)*(t1-t2);
mt+=F2356/2./sqrt(2.)*x3*(x1-x2)*(t1*t1 - t2*t2);

mt+=F1113/4.*(x1+x2)*(x1+x2)*(x1+x2)*(t1+t2);
mt+=F1355/4.*(x1*x1-x2*x2)*(x1-x2)*(t1+t2);
mt+=F1133/4.*(x1+x2)*(x1+x2)*(t1+t2)*(t1+t2);
mt+=F3355/4.*(x1-x2)*(x1-x2)*(t1+t2)*(t1+t2);
mt+=F1156/4.*(x1+x2)*(x1+x2)*(x1-x2)*(t1-t2);
mt+=F5556/4.*(x1-x2)*(x1-x2)*(x1-x2)*(t1-t2);
mt+=F1166/4.*(x1+x2)*(x1+x2)*(t1-t2)*(t1-t2);
mt+=F5566/4.*(x1-x2)*(x1-x2)*(t1-t2)*(t1-t2);
mt+=F1356/4.*(x1*x1 - x2*x2)*(t1*t1 - t2*t2);
mt+=F1366/4.*(x1+x2)*(t1*t1-t2*t2)*(t1-t2);
mt+=F1333/4.*(x1+x2)*(t1+t2)*(t1+t2)*(t1+t2);
mt+=F3356/4.*(x1-x2)*(t1*t1-t2*t2)*(t1-t2);
mt+=F5666/4.*(x1-x2)*(t1-t2)*(t1-t2)*(t1-t2);
mt+=F1344/2.*(x1+x2)*(t1+t2)*f*f;
mt+=F2223/sqrt(2.)*x3*x3*x3*(t1+t2);
mt+=F2233/2.*x3*x3*(t1+t2)*(t1+t2);
mt+=F2266/2.*x3*x3*(t1-t2)*(t1-t2);
mt+=F2333/2./sqrt(2.)*x3*(t1+t2)*(t1+t2)*(t1+t2);
mt+=F2366/2./sqrt(2.)*x3*(t1*t1-t2*t2)*(t1-t2);
mt+=F2344/sqrt(2.)*x3*(t1+t2)*f*f;
mt+=F3333/4.*(t1+t2)*(t1+t2)*(t1+t2)*(t1+t2);
mt+=F3366/4.*(t1*t1-t2*t2)*(t1*t1-t2*t2);
mt+=F6666/4.*(t1-t2)*(t1-t2)*(t1-t2)*(t1-t2);
mt+=F3344/2.*(t1+t2)*(t1+t2)*f*f;
mt+=F4456/2.*(x1-x2)*(t1-t2)*f*f;
mt+=F4466/2.*(t1-t2)*(t1-t2)*f*f;

mt*=Fact2;
cout<<"\nPotential energy="<<mt<<"\n";

return;
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Chapter 9
Operator Perturbation Theory for Atomic
Systems in a Strong DC Electric Field

Alexander V. Glushkov

Abstract A consistent uniform quantum approach to the solution of the non-
stationary state problems including the DC (Direct Current) strong-field Stark ef-
fect and also scattering problem is presented. It is based on the operator form of the
perturbation theory for the Schrödinger equation. The method includes the physi-
cally reasonable distorted-waves approximation in the frame of the formally exact
quantum-mechanical procedure. The zero-order Hamiltonian possessing only sta-
tionary states is determined only by its spectrum without specifying its explicit form.
The method allows calculating the resonance complex energies and widths plus a
complete orthogonal complementary of the scattering state functions. The calcula-
tion results of the Stark resonance energies and widths for the hydrogen and sodium
atoms are presented and compared with other theoretical data.

9.1 Introduction

The Stark effect [1] is one of the best known problems in quantum mechanics, but
at the same time one of the most difficult (outside the weak-field region) [1–8].
A new interest in this effect has been stimulated in the last two decades. A range of
the interesting phenomena to be studied includes: quasi-discrete state mixing; a zoo
of Landau-Zener anticrossings in non-hydrogenic (non-H) atoms; autoionization in
non-H atoms; the effects of potential barriers (shape resonances); new kinds of reso-
nances above threshold etc. [1–63]. The dielectronic recombination involves highly
excited (Rydberg) atomic states, which are very strongly affected by relatively weak
fields [3–6]. In fact these states provide the gateway for ion-electron recombination
processes. Now it is well known that weak-field effects on Rydberg states can cause
the large changes in electron-ion collision cross sections. One subject stands out
quite clearly: possible non-perturbative effects of the electric fields on the autoion-
ization states responsible for dielectronic recombination. It is of a great importance
for a consistent treating the different processes in a laser plasma, astrophysical en-
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vironments etc. [4–14]. Naturally in the last two decades a great progress has been
made on the Stark effect for the hydrogen atom as well as for non-H atoms [2–62].

An external electric field shifts and broadens the bound state atomic levels.
The standard quantum -mechanical approach relates complex eigenenergies (EE)
E =Er + iΓ /2 and complex eigenfunctions (EF) to the shape resonances. The field
effects drastically increase upon going from one excited level to another. The highest
levels overlap forming a “new continuum” with lowered boundary. The calculation
difficulties inherent to the standard quantum mechanical approach are well known.
Here one should mention the well-known Dyson phenomenon. The Wentzel-
Kramers-Brillouin (WKB) approximation overcomes these difficulties for the states
lying far from the “new continuum” boundary. Some modifications of the WKB
method [4, 6–8, 50, 56, 63–66] are introduced in [4, 50, 66] and Glushkov, Ivanov
and Letokhov, where the first theoretical estimation of the effectiveness of the selec-
tive ionization of the Rydberg atom using electric and laser fields has been fulfilled.
The usual WKB approximation applicability is substantiated in the case of a rela-
tively weak electric field [2, 3]. One can show that the standard form of the WKB
method applicability condition can be reformulated as the requirement that the ex-
amined resonances be well separated one from other. The same is so regarding the
widespread asymptotic phase method [42], based on the Breit-Wigner parameteriza-
tion for the asymptotic phase shift dependence on scattering energy and the method
by Luc-Koenig and Bachelier, who have used a normalization constant [42, 48]. Dif-
ferent calculational procedures are used in the Pade and then Borel summation of the
divergent Rayleigh-Schrödinger perturbation theory (PT) series [45, 66] and in the
sufficiently exact numerical solution of the difference equations following from ex-
pansion of the wave function over finite basis [41, 46, 48, 51, 52], complex-scaling
method [17–55]. It should be noted that the latter has been extensively used to de-
scribe the resonance behavior in different atomic and even molecular systems. Its
mathematical foundation is linked with the theory of dilatation analyticity [27, 28].
Surely, though the Hamiltonian of an atom in a DC electric field is not a dilatational
analytic operator, Reinhardt [44] has performed the numerical experiments on the
diagonalization of the complex-scaled Stark Hamiltonian for a hydrogen with a real
L basis set. The same method has been used by Cerjan et al. [40] to get new data on
the ground and low-excited states of a hydrogen atom in a DC and AC fields. Farrelly
and Reinhardt [47] have used the complex coordinate rotation method in combina-
tion with numerical integration of the separated equation. Ivanov and Ho [54] have
applied the method for the Dirac Hamiltonian. Different applications are reviewed
in Ref. [53].

Hehenberger, McIntosh and E. Brändas [21] have applied the Weyl’s theory to
the Stark effect in the hydrogen atom. They have shown that one of the interest-
ing features of Weyl’s theory is that it requires a complex parameter and complex
solutions to the differential equations making it a powerful tool for the treatment
of resonance states [21]. Rittby, Elander and Brändas [25] have applied the Weyl’s
theory and the complex-rotation method to phenomena associated with a continuum
spectrum. Brändas and Froelich [23] have shown that a complex scale transforma-
tion of the time-dependent Schrödinger equation leads to a symmetric EE value
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problem containing both bound states and resonance (complex) EE values as so-
lutions. They have stated the extended virial theorem and developed an original
approach to determination of the resonance eigenvalues by means of elementary
matrix manipulations. The error estimates for the approximate complex eigenval-
ues of the dilated Schrödinger operator are derived in Ref. [24], where the calcula-
tion data for the resonances of the DC Stark effect in the hydrogen are presented.
In the complex-coordinate method a dilation transformation is used to make the
resonance EF square integrable. The resonance of nondilation analytic potentials
can be obtained numerically by using Simons exterior-scaling procedures within
the finite-basis-set approximation [27, 28]. The exterior-scaling procedure has been
used only with direct numerical integration methods [27–30]. The use of a finite
basis set in these calculations will enable one to use numerical techniques devel-
oped for bound states in calculating resonance positions and widths for nondilation
potentials [27–36].

Rao, Liu and Li [18] have studied theoretically the DC strong-field Stark reso-
nances by a complex-scaling plus B-spline approach and shown that the high ac-
curacy is attributed to the good stationarity behavior of eight trajectories with a
well-adjusted 8-spline basis. Rao and Li [19] have also studied the behavior of
the resonances of a hydrogen atom in parallel magnetic and electric fields with a
complex scaling plus B-spline method too and received a consistent data on the
corresponding resonance parameters in dependence upon the ratio of the magnetic-
field strength to the electric-field strength. It is worth to remind that the similar
approaches have been developed to describe the Zeemane resonances. Namely, for
hydrogen atoms in pure magnetic fields, the properties of resonant states were cal-
culated by the complex scaling, the R matrix, the operator PT (OPT) and other
methods (look, for example, [4–7]. The generalization of methods to account for
the resonance interference, non-H and relativistic effects is still an important prob-
lem, though here a definite progress has been reached too. One should mention such
approaches as a model potential method, quantum defect approximation, the OPT,
complex scaling plus B-spline method etc. [3–19, 64–76]. Regarding the quantum
chaos phenomenon in atoms in electromagnetic fields (look, for example, [77–80])
note that this topic should not be considered here. Let us only note that the ap-
proach presented below together with the various methods of the theory of chaos
in options [80–82] has been effectively used to describe the chaotic behavior of the
hydrogen and non-H atoms in the magnetic and microwave fields.

Here a consistent uniform quantum-mechanical approach to the solution of the
non-stationary state problems including the DC strong-field Stark effect and also
scattering problem is presented. It allows calculation of complex EE and espe-
cially is destined for investigation of the spectral region near the new continuum
boundary. The essence of the method is the inclusion of the well known “distorted
waves approximation” method in the frame of the formally exact PT. The zero-order
Hamiltonian H0 of this PT possesses only stationary bound and scattering states.
To overcome formal difficulties, we define the zero-order Hamiltonian by the set
of orthogonal eigenfunctions (EF) and EE without specifying the explicit form of
the corresponding zeroth-order potential. To ensure rapid PT convergence, a phys-
ically reasonable spectrum (EE and EF) must be chosen as the zero order, similar
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to the “distorted waves” method [6, 56–58]. In a case of the optimal zeroth-order
spectrum, the PT smallness parameter is of the order of Γ/E, where Γ and E are
the field width and bound energy of the state level examined. The successive PT
corrections can be expressed through the matrix elements of the total Hamiltonian
calculated between the zeroth-order basis functions. This method is called the OPT.
We will define H0 so that it coincides with the total Hamiltonian H at ε⇒ 0 (ε is
the electric field strength). Let us emphasize that perturbation in our theory does not
coincide with the electric field potential though they disappear simultaneously. We
also present a generalization of the OPT for calculation of the DC strong field Stark
effect in the non-H atoms in an electric field [59–61]. The difference between the
atomic and Coulomb field is taken into account by introducing the quantum defects
on a parabolic basis. The results of calculation of the Stark resonance energies and
widths for the H and sodium atoms are listed and compared with other theoretical
and experimental data.

9.2 Operator Perturbation Theory for DC Strong-Field Stark
Effect

9.2.1 DC Strong-Field Stark Effect for the Hydrogen Atom

The Schrödinger equation for the electron function taking into account the uniform
electric field and field of the nucleus (Coulomb units are used: for length, 1 unit is
h2/Ze2m; for energy 1 unit is mZ2e4/h2) is [6, 57]:

[−(1−N/Z)/r + Vm(r)+ εz− 1/2Δ−E]ψ = 0, (9.1)

whereE is the electron energy, Z is the nucleus charge,N is the number of electrons
in the atomic core (for the hydrogen atom: Z = 1, N = 0), Vm is an model potential
(for the hydrogen atom Vm = 0). Firstly, we only deal with the Coulomb part of the
electron- atomic residue interaction. The non-Coulomb part, as well as relativistic
effects, can be approximately accounted for next step. The separation of variables
in the parabolic coordinates (ξ = r + z, η= r − z,ϕ = tan−1(y/x)):

ψ(ζ,η,ϕ)= f (ζ )g(η)(ζ · η)|m|/2 exp(imϕ)/(2π)1/2 (9.2)

transforms it to the system of two equations for the functions f,g:

f ′′ + |m| + 1

t
f ′ + [1/2E + (β1 −N/Z)/t − 1/4ε(t)t

]
f = 0, (9.3)

g′′ + |m| + 1

t
g′ + [1/2E + β2/t + 1/4ε(t)t

]
g = 0, (9.4)

coupled through the constraint on the separation constants:

β1 + β2 = 1. (9.5)
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For the uniform electric field ε(t) = ε. In principle, the more realistic models can
be considered in the framework of our approach. Potential energy in (9.4) has the
barrier. Two turning points for the classical motion along the η axis, t1 and t2, at a
given energy E are the solutions of the quadratic equation (β = β1,E =E0):

t2 =
{[
E2

0 − 4ε(1− β)]1/2 −E0
}
/ε, (9.6)

t1 =
{−[E2

0 − 4ε(1− β)]1/2 −E0
}
/ε, t1 < t2. (9.7)

Here and below t denotes the argument common for the whole equation system. To
simplify the calculational procedure, the uniform electric field ε in (9.3) and (9.4)
should be substituted by the function [57, 58]:

ε (t)= 1

t
ε

[
(t − τ) τ 4

τ 4 + t4 + τ
]

(9.8)

with sufficiently large τ (τ = 1.5t2). The function ε(t) practically coincides with
the constant ε in the inner barrier motion region (t < t2) and disappears at t � t2.
The minimal acceptable value of τ introduced in the spatial dependence of the elec-
tric field, which does not influence the final results, can be established experimen-
tally. Thus, the final results do not depend on the parameter τ (the further calculation
has entirely confirmed this fact). Besides the pure technical convenience, the case of
an asymptotically disappearing electric field is more realistic from the physical point
of view. Now we deal with the asymptotically free (without electric field) motion of
the ejected electron along the η-axis. The corresponding effective wavenumber is:

k = (E/2+ ετ/4)1/2. (9.9)

The scattering states energy spectrum now spreads over the range (−ετ/2,+∞),
compared with (−∞,+∞) in the uniform field. In contrast to the case of a free atom
in scattering states in the presence of the uniform electric field remain quantified at
any energy E, i.e. only definite values of β1 are possible. The latter are determined
by the confinement condition for the motion along the η-axis. The same is true in our
case, but only for E ⊂ (− 1

2ετ,+ 1
2ετ). The motion with larger E is non-quantified,

similar to the free atom case.

9.2.2 Energy and Width of the Stark Resonance

The total Hamiltonian H(ς, ν,ϕ) does not possess the bound stationary states. Ac-
cording to OPT [6, 56–58]), one has to define the zero order Hamiltonian H0, so
that its spectrum reproduces qualitatively that of the initial one. In contrast to H ,
it must have only stationary states. To calculate the width Γ of the concrete qua-
sistationary state in the lowest PT order one needs only two zeroth-order EF of H0:
bound state function ΨEb(ε, η,ϕ) and scattering state function ΨEs(ε, η,ϕ) with the
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same EE. We solve a more general problem: a construction of the bound state func-
tion along with its complete orthogonal complementary of scattering functions ΨE
with E ⊂ (− 1

2ετ,+∞). First, one has to define the EE of the expected bound state.
It is the well known problem of states quantification in the case of the penetrable
barrier [65, 66]. Following [57], we solve the system (9.3) and (9.4) with the total
Hamiltonian H under the conditions:

f (t)→ 0 at t⇒∞, (9.10a)

∂x(β,E)/∂E = 0 (9.10b)

with

x(β,E)= lim
t⇒∞
[
g2(t)+ {g′(t)/k}2]t |m|+1. (9.11)

The first condition ensures the finiteness of motion along the ς -axis, the second
condition minimizes the asymptotic oscillation amplitude for the function describ-
ing the motion along the η-axis. These two conditions quantify the bound energy
E and separation constant β1. We elaborated a special numerical procedure for this
two-dimensional eigenvalue problem. Our procedure deals repeatedly with the solv-
ing of the system of the ordinary differential equations (9.3) and (9.4) with probe
pairs of E, β1. The corresponding EF:

ψEb(ζ, η,ϕ)= fEb(ζ )gEb(η)(ζη)|m|/2 exp(imϕ)(2π)−1/2. (9.12)

Here fEb(t) is the solution of (9.3) (with the just determined E, β1) at t ⊂ (0,∞)
and gEb(t) is the solution of (9.4) (with the same E, β1) at t < t2 (inside barrier) and
g(t)= 0 otherwise. These bound state EE, eigenvalue β1 and EF for the zero-order
Hamiltonian H0 coincide with those for the total Hamiltonian H at ε⇒ 0, where
all the states can be classified due to the quantum numbers n,n1, n2,m (principal,
parabolic, azimuthal) connected with E, β1, m by the well known expressions. We
preserve the n,n1,m states classification in the non-zero ε case. The scattering state
functions:

ψE′s(ζ, η,ϕ)= fE′s(ζ )gE′′s(η)(ζη)|m|/2 exp(imϕ)(2π)−1/2 (9.13)

must be orthogonal to the above defined bound state function and to each other. In
addition, these functions must describe the motion of the ejected electron, i.e. gE′s
must satisfy (9.4) asymptotically. Following the OPT ideology [57], we choose the
next form of gE′s :

gE′s(t)= g1(t)− z′2g2(t) (9.14)

with fE′s and g1(t) satisfying the differential equations (9.3) and (9.4). The function
g2(t) satisfies the non-homogeneous differential equation, which differs from (9.4)
only by the right-hand term, disappearing at t ⇒∞. The total equation system,
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determining the scattering function, reads

f ′′E′s +
|m| + 1

t
f ′E′s +

[
1/2E′ + (β ′1 −N/Z

)
/t − 1/4ε(t)t

]
fE′s = 0,

g′′1 +
|m| + 1

t
g′1 +

[
1/2E′ + β ′2/t + 1/4ε(t)t

]
g1 = 0,

g′′2 +
|m| + 1

t
g′2 +

[
1/2E + β ′2/t + 1/4ε(t)t

]
g2 = 2gEb,

(9.15)

(β ′1 + β ′2 = 1). As mentioned above there remains motion quantification for E′ ⊂
(− 1

2ετ,+ 1
2ετ). At the given E′, the only quantum parameter β ′1 is determined by

the natural boundary condition: fE′s⇒ 0 at t⇒∞. Of course: β ′1 = β1, fE′s = fEb
at E′ = E; only this case is needed in the particular problem we deal with here.
The coefficient z′2 ensures the orthogonality condition 〈ΨEb|ΨE′s〉 = 0:

z′2 =
{∫∫

dζdη(ζ + η)f 2
Eb(ζ )gEb(η)g1(η)

}

/{∫∫
dζdη(ζ + η)f 2

Eb(ζ )gEb(η)g2(η)

}
. (9.16)

One can check that

〈ψEs′ |ψE′′s〉 = 0 for E′ �=E′′.

The imaginary part of state energy in the lowest PT order is

ImE = Γ/2= π ∣∣〈ΨEb|H |ΨEs〉
∣∣2 (9.17)

with the total Hamiltonian H . The state functions ΨEb and ΨEs are assumed to be
normalized to 1 and by the δ(k − k′) condition, accordingly. The action of H on
ΨEb is defined unambiguously by (9.15):

(
H −E′)ψs = 2|m|(ζ · η2) · fE′s(ζ )gEb(η)z′2 exp(imϕ/)/

[
(2π)1/2(ζ + η)],

〈ψEb|H |ψE′s〉 =
∫∫

dζdη(ζη)|m|ηf 2
Eb(ζ )f

2
E′s(ζ )gEb(η)z

′
2.

(9.18)
The matrix elements 〈ΨEb|H |ΨE′s〉 entering the high- order PT corrections can

be determined in the same way. All the two-dimensional integrals in (9.16)–(9.18)
and the normalization coefficients can be expressed through the next set of one-
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dimensional integrals:

I1 =
∫
dtf 2

b (t)t
|m|, I2 =

∫
dtf 2

b (t)t
|m|+1,

I3 =
∫
dtgb(t)g1(t)t

|m|, I4 =
∫
dtgb(t)g1(t)t

|m|+1,

I5 =
∫
dtgb(t)g2(t)t

|m|, I6 =
∫
dtgb(t)g2(t)t

|m|+1,

I7 =
∫
dtg2

b(t)t
|m|, I8 =

∫
dtg2

b(t)t
|m|+1,

(9.19)

calculated with the arbitrary normalized functions fEb, gEb, f2, g2, and f1 = fEb ,
g1 = gEb . In this notation

Γ = 32πz2
2N

2
s I

2
1 I

2
8 /[I2I7 + I1I8],

z2 = [I1I4 + I2I3]/[I1I6 + I2I5]
(9.20)

with

N2
s = lim

t⇒∞X(t)/
{
2πη2|m|+1[g2

s (η)X
2(t)+ g′2s (η)

]}
,

X(t)= {E/2+ (β −N/Z)/t −Et/4}1/2.
(9.21)

Remember that arbitrary normalized state functions are assumed in (9.20)
and (9.21). The whole calculational procedure at known resonance energy E and
separation parameter β1 has been reduced to the solution of one system of the or-
dinary differential equations. This master system includes the differential equations
for the state functions fEb, gEb , fEs , gEs , as well as the equations for the inte-
grals I1–I8. Thus, our calculational procedure is one-dimensional. The procedure
is sufficiently simple and realized as the numerical code with using the fourth-
order Runge–Kutta method of solving the differential equations (the atomic code
“Superatom-ISAN-Stark”).

9.2.3 Operator Perturbation Theory for Non-H Atoms in Electric
Field

In contrast to the hydrogen atom, the non-relativistic Schrödinger equation for an
electron moving in the field of the atomic core in many-electron atom (in particular,
an alkali element) and a uniform external electric field does not allow separation of
variables in the parabolic coordinates ξ , η, ϕ [2, 3]. This separation is not possi-
ble, in particular, due to the fact that the potential of the atomic core is essentially
non-Coulomb. This makes difficult to take into account an external field, e.g., as
the zeroth approximation of the PT [71, 75, 76] in order to calculate the spectral



9 Operator Perturbation Theory for Atomic Systems 169

characteristics of multi-electron atoms in an external electric field, regardless of its
strength. Obviously, such a method would be extremely useful and effective. Note,
however, that one of the ways this problem could be related to the use of effec-
tive potentials, chosen in such a way that to achieve the separation of variables in
the Schrödinger equation. Here the model potential approach or the quantum defect
approximation can be used. One may introduce the ion core charge z∗ for the mul-
tielectron atom. According to standard quantum defect theory, the relation between
quantum defect value μ1, electron energy E and principal quantum number n is:
μ1 =m−z∗(−2E)−1/2. The quantum defect in the parabolic coordinates δ(n1n2m)

is connected to the quantum defect value of the free (ε = 0) atom by the following
relation [59]:

δ(n1n2m)= (1/n)
n−1∑

l=m
(2l + 1)

(
CJMJ,M−mlm

)2
μl,

J = (n− 1)/2, M = (n1 − n2 +m)/2.
(9.22)

Using the quantum defect approximation allow to use the above OPT method for
the non-H atoms. Naturally, it is possible to use more complicated forms for the ion
core potential. As alternative approach, it should be mentioned the finite difference
methods of calculation without separation of variables in the Schrödinger equation
for atom in an electric field [5, 6]. The long-term possibility of solving the problems
associated with the use of a screened Coulomb approximation and further taking
into account the non-Coulomb potential of the atomic residue in the calculation
of mixing levels of an atom in an external field. In this way, we also reserve the
separability of variables. Let us separate the Coulomb part VC of the model Ivanova-
Ivanov potential V [9]:

v(r)=NC
[
1− e−2br (1− br)]/Zr =Nc/Zr −Nce−2br (1− br)/Zr = vc − vnc

(9.23)
and put it in our potential into the Schrödinger equation for the hydrogen-like atom
with nuclear charge Z. The rest of the non-Coulomb part is factorized. The matrix
element in parabolic coordinates on the screened H-like functions f and g:

〈i|vnc|j 〉

= (−NC/2Z)
∫
dξfi(ξ)fj (ξ) exp(−bξ)

∫
dηgi(η)gj (η) exp(−bη)

+ (−bNC/4Z)
∫
dξfi(ξ)fj (ξ) exp(−bξ)

∫
dηgi(η)gj (η) exp(−bη)

+ (−bNC/4Z)
∫
dξfi(ξ)fj (ξ) exp(−bξ)

∫
dηηgi(η)gj (η) exp(−bη).

(9.24)

As indicated above, the inclusion of an electric field rearranges atomic spectrum
so that the states become autoionization ones (the shape resonances). An energy
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of the state becomes complex: E = Er − iΓ /2. The total problem is thus reduced
to the diagonalization of the energy complex matrix for a many-electron atom (see
details in Refs. [12, 59–63, 71–76]). The matrix of interaction operator should be
then calculated [6, 61, 75]:

E(i−j) = ReE(i−j) + i ImE(i−j). (9.25)

Further it is possible to limit the calculation accuracy to the relationship
ImE/ReE (the justification for this approach is set out in detail, for example,
in [6, 75]). The components of the eigenvectors of states can be obtained as a result
of the diagonalization of the real part of the energy matrix. The imaginary part of
the energy matrix is as follows:

ImEik =
∑

n,m

Ĉ∗in ImEi−jnm Ĉmk, (9.26)

where C is the matrix of eigenvectors. The widths of the resonances are determined
by the corresponding imaginary parts. As a result, this approach allows in principle
to calculate the characteristics of the Stark resonances in the spectrum of an arbitrary
multi-electron atom in a strong external electric field, which is a great interest to a
wide range of applications in modern atomic, molecular and laser physics, quantum
electronics, plasma physics and chemistry etc.

9.3 Calculation Results and Discussion

9.3.1 The Stark Resonances Energies and Widths of Hydrogen
Atom

The calculation results for the Stark resonances energies and widths of the ground
state hydrogen atom in the DC electric field with the strength ε = 0.04, 0.08, 0.10,
0.80 a.u. are presented in Tables 9.1 and 9.2. The comparison with earlier similar
results, obtained within the generalized WKB approximation, summation of diver-
gent PT series, the numerical solution of the differential equations following from
expansion of the wave function over finite basis, a complex scaling plus B-spline
calculation [15–51] shows quite acceptable agreement.

The calculation results of the Stark resonances parameters for the excited state
H atom (n= 2,5,15) for different strength values are listed in Table 9.3. The com-
parison with earlier similar results, obtained within the summation of divergent PT
series, the numerical solution of the differential equations with using the finite basis
expansion of the wave function again shows acceptable agreement. It is important to
compare the theoretical values of the resonance energy and width for the H atom in
the field ε = 16.8 kV/cm with experimental data [4]. There is quite good agreement
between theory and experiment. Note that our results are obtained in the first PT
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Table 9.1 The energies and widths (a.u.) of the Stark resonances of the ground state hydrogen
atom (ε = 0.04, 0.08 a.u.). Notation: (a1) Mendelson [15], (a2) Alexander [17], (b1) Hehenberger,
McIntosh and Brändas [21], (b2) Brändas and Froelich [23], (c) Benassi and Grecchi [46], (d) Cer-
jan et al. [40], (e) Farrelly and Reinhardt [47], (f) Franceschini, Greechi, and Silverstone [45],
(g) Reinhardt [44], (h) Maquet, Chu, and Reinhardt [41], (i) Kolosov [48], (j) Damburg and
Kolosov [42], (k) Anokhin and Ivanov [51], (l) Ivanov and Ho (relativistic and non-relativistic
results respectively) [54], (m) Rao, Liu and Li [18], (n) the OPT method (our data), (o) Filho et
al. [49]

ε, a.u. Method Er , a.u. Γ/2, a.u.

0.04 a1 −0.5038 –

a2 −0.5038 0.2× 10−5

b1 −0.5037714 0.195× 10−5

b2 −0.5037715 0.191× 10−5

c −0.5037716 0.1946× 10−5

f −0.5037716 0.1946× 10−5

j −0.5037716 0.195× 10−5

k −0.5038 0.248× 10−5

1 −0.5037780 0.205× 10−5

−0.5037716 0.195× 10−5

m −0.5037716 0.1946× 10−5

n −0.5037714 0.1945× 10−5

o −0.503752 –

0.08 a1 −0.5193 –

a2 −0.5175 0.230× 10−2

b1 −0.51756 0.227× 10−2

c −0.51756 0.2270× 10−2

f −0.51756 0.2270× 10−2

g −0.51756 0.2269× 10−2

h −0.51756 0.2270× 10−2

j −0.51749 0.2255× 10−2

k −0.5176 0.220× 10−2

1 −0.51757 0.2270× 10−2

−0.51756 0.2270× 10−2

m −0.51756 0.2270× 10−2

n −0.51757 0.2270× 10−2

o −0.51745 –

order, i.e. already the first PT order provides the physically reasonable results. Nat-
urally its accuracy can be increased by an account of the next PT order. The range
of validity of the proposed method which uses the Fermi golden rule is quite wide
and it is not restricted to resonances lying far from the continuum boundary.
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Table 9.2 The energies and widths of the Stark resonances of the ground state hydrogen atom
(ε = 0.10, 0.80 a.u.). Notation: (a1) Mendelson [15], (a2) Alexander [17], (b1) Hehenberger, McIn-
tosh and Brändas [21], (b2) Brändas and Froelich [23], (c) Benassi and Grecchi [46], (d) Cerjan et
al. [40], (e) Farrelly and Reinhardt [47], (f) Franceschini, Greechi, and Silverstone [45], (g) Rein-
hardt [44], (h) Maquet, Chu, and Reinhardt [41], (i) Kolosov [48], (j) Damburg and Kolosov [42],
(k) Anokhin and Ivanov [51], (l) Ivanov and Ho (relativistic and non-relativistic results respec-
tively) [54], (m) Rao, Liu and Li [18], (n) the OPT method (our data), (o) Filho et al. [49], (p) Popov
et al. [66]

E, a.u. Method Er , a.u. Γ/2, a.u.

0.10 a1 −0.556 –

a2 −0.527 0.750× 10−2

b1 −0.52743 0.725× 10−2

b2 −0.52742 0.727× 10−2

c −0.527418 0.7269× 10−2

d −0.527417 0.727× 10−2

f −0.527418 0.7269× 10−2

g −0.527425 0.7271× 10−2

h −0.527418 0.7269× 10−2

i −0.527418 0.7269× 10−2

j −0.526905 0.7170× 10−2

1 −0.527423 0.7268× 10−2

−0.527418 0.7269× 10−2

m −0.527418 0.7269× 10−2

n −0.527419 0.7269× 10−2

o −0.53109 –

p −0.5274 0.727× 10−2

0.80 e −0.6304 0.5023

i −0.630415 0.50232

m −0.630415 0.50232

n −0.630416 0.50232

9.3.2 DC Stark Effect for the Sodium Atom

Observation of the DC Stark effect near threshold in alkali atoms led to the discovery
by Freeman and colleagues of resonances extending into the ionization continuum
(look Refs. [4–6, 64–66]). The unique characteristics in a photoionization spectrum
are connected to the presence of a non-H core, which produces the interference dips
below threshold and attenuates the modulations above threshold.

As an application of the presented method, in Table 9.4 we present the calculation
results for the Stark resonance energies for some Rydberg states of the Na atom in
an electric field with the strength 3.59 kV/cm. For comparison, we also list the
experimental data, the results of calculation within the 1/n-expansion method by
Popov et al. [4, 5, 57, 59, 65, 66]. Agreement between both the theory and the
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Table 9.3 The energies and widths of the Stark resonances of the hydrogen atom (n= 2,5). No-
tation: a, OPT calculation; b, Damburg and Kolosov [42]; c, Kolosov [48]; d, Benassi and Grecchi
[46]; e, Telnov [52]; f, Popov et al. [66]; exp—experimental data (from Refs. [4, 42, 46, 48, 57, 58,
65, 66]

(n n1 n2 m) ε, a.u. Method Er , a.u. Γ , a.u.

2 0 1 0 0.005 a 0.1426 0.102× 10−3

c 0.1426 0.106× 10−3

e 0.1426 0.106× 10−3

0.01 a 0.1661 0.108× 10−1

c 0.1661 0.109× 10−1

d 0.1661 0.109× 10−1

e 0.1661 0.109× 10−1

2 0 0 1 0.005 a 0.1272 0.267× 10−4

c 0.1272 0.262× 10−4

e 0.1272 0.262× 10−4

0.01 a 0.1345 0.637× 10−2

c 0.1345 0.628× 10−2

e 0.1345 0.628× 10−1

5 2 2 0 1.8× 10−4 a 0.2062 0.278× 10−5

b 0,2062 0.228× 10−5

f 0.2062 0.228× 10−5

f 0.2062 0.222× 10−5

15 10 4 0 3.27× 10−6 a 1.9098× 10−3 2.782× 10−7

f 1.9095× 10−3 2.278× 10−7

exp 1.91× 10−3 2.92× 10−7

Table 9.4 The energies (in cm−1) of the Stark resonances for Na atom (ε = 3.59 kV/cm)

State: (n1 n2 m) δ Exp Data Method by Popov et al. This method

26, 0, 0 0.140 15.5 15.5 15.5

25, 0, 1 0.007 21.1 21.1 21.1

25, 0, 0 0.145 35.5 35.5 35.5

24, 0, 1 0.008 41.1 40.4 41.0

24, 1, 0 0.130 50.5 50.3 50.5

24, 0, 0 0.151 56.5 57.0 56.5

23, 0, 1 0.008 61.2 60.7 61.1

23, 0, 0 0.157 79.3 80.3 79.4

22, 0, 1 0.009 84.1 83.1 83.9

22, 1, 1 0.016 75.0 74.9 75.1
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experiment is good. Our results are obtained in the first PT order, i.e., the first PT
order provides physically reasonable results.

9.4 Conclusions

In this chapter it is presented a new uniform quantum-mechanical approach to the
solution of the non-stationary state problems including the DC strong-field Stark
effect and also scattering problem. New OPT method allows sufficiently exact cal-
culating the complex EE and resonance widths and especially is destined for inves-
tigation of the spectral region of an atom near the new continuum boundary in a
strong field. The essence of the method is the inclusion of the well known “distorted
waves approximation” in the frame of the formally exact PT. The method is gener-
alized to provide the description of the DC strong field Stark effect for the non-H
atoms. The results of the calculation of the Stark resonance energies and widths for
the hydrogen and sodium atoms are presented and in a physically reasonable agree-
ment with the best results of the alternative theoretical methods and experiment. It
is noted that the zeroth model approximation, including the potential of a strong ex-
ternal electric field, can be implemented into the general formalism of the formally
exact PT for many-electron atom [6, 12, 59–63, 71–76].

The range of validity of the presented method which uses the Fermi golden rule is
sufficiently wide and it is not restricted to resonances lying far from the continuum
boundary. Let us conclude that the OPT method has been also successfully applied
to correct description of the resonances of the Zeeman effect in a strong magnetic
field, crossed electric and magnetic fields, the resonances in molecular systems, as
well as descriptions of resonant states in nuclear systems such as the resonances of
the compound nucleus and the resonances arising from the collision of heavy ions
(nuclei), accompanied by the electron-positron pairs production (look the details in
Refs. [6, 80, 83–91]).

Acknowledgements The author would like to thank Prof. Jean Maruani and Prof. Matti Hotokka
(the organizer of QSCP XVII-2012, Turku, Finland) for the friendly cooperation and invaluable
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References

1. Stark J (1914) Ann Phys 43:965
2. Bethe HA, Salpeter EE (1957) Quantum mechanics of one- and two-electron atoms. Springer,

Berlin
3. Landau LD, Lifshitz EM (1977) Quantum mechanics. Pergamon, Oxford
4. Stebbings RF, Dunning FB (eds) (1983) Rydberg states of atoms and molecules. Cambridge

University Press, Cambridge
5. Nayfeh MN, Clark CW (eds) (1984) Atomic excitation and recombination in external fields.

NBS, Gaithersburg
6. Glushkov AV (2005) Atom in an electromagnetic field. KNT, Kiev, pp 1–450



9 Operator Perturbation Theory for Atomic Systems 175

7. Lisitsa VS (1987) Phys Usp 153:369
8. Ivanov LN, Letokhov VS (1975) Quantum Electron 2:585
9. Ivanov LN, Ivanova EP (1979) At Data Nucl Data Tables 24:95

10. Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33
11. Ivanova EP, Grant IP (1998) J Phys B, At Mol Opt Phys 31:2871
12. Glushkov AV (2012) In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch

P (eds) Advances in the theory of quantum systems in chemistry and physics. Frontiers in
theoretical physics and chemistry, vol 26. Springer, Berlin, pp 231–254

13. Delone NB, Fedorov MV (1989) Phys Usp 158:215
14. Siegert AJF (1939) Phys Rev 56:750
15. Mendelson LB (1968) Phys Rev 176:90
16. Dolgov AD, Turbiner AV (1977) Phys Lett A 77:15
17. Alexander MH (1969) Phys Rev 178:34
18. Rao J, Liu W, Li B (1994) Phys Rev A 50:1916
19. Rao J, Li B (1995) Phys Rev A 51:4526
20. Meng H-Y, Zhang Y-X, Kang S, Shi T-Y, Zhan M-S (2008) J Phys B, At Mol Opt Phys

41:155003
21. Hehenberger M, McIntosh HV, Brändas E (1974) Phys Rev A 10:1494
22. Hehenberger M, McIntosh HV, Brändas E (1975) Phys Rev A 12:1
23. Brändas E, Froelich P (1977) Phys Rev A 16:2207
24. Brändas E, Hehenberger M, McIntosh HV (1975) Int J Quant Chem 9:103
25. Rittby M, Elander N, Brändas E (1981) Phys Rev A 24:1636
26. Froelich P, Davidson ER, Brändas E (1983) Phys Rev A 28:2641
27. Lipkin N, Moiseyev N, Brändas E (1989) Phys Rev A 40:549
28. Rittby M, Elander N, Brändas E (1983) Int J Quant Chem 23:865
29. Simon B (1979) Phys Lett A 7(1):211
30. Nicolaides CA, Beck DR (1978) Phys Lett A 65:11
31. Brändas E, Froelich P, Obcemea CH, Elander N, Rittby M (1982) Phys Rev A 26:3656
32. Engdahl E, Brändas E, Rittby M, Elander N (1986) J Math Phys 27:2629
33. Engdahl E, Brändas E, Rittby M, Elander N (1988) Phys Rev A 37:3777
34. Brändas E, Elander N (eds) (1989) Resonances: the unifying route towards the formulation of

dynamical processes—foundations and applications in nuclear, atomic and molecular physics.
Lecture notes in physics, vol 325. Springer, Berlin, pp 1–564

35. Scrinzi A, Elander N (1993) J Chem Phys 98:3866
36. Ostrovsky VN, Elander N (2005) Phys Rev A 71:052707
37. Sigal JM (1988) Commun Math Phys 119:287
38. Herbst IW, Simon B (1978) Phys Rev Lett 41:67
39. Silverstone HJ, Adams BG, Cizek J, Otto P (1979) Phys Rev Lett 43:1498
40. Cerjan C, Hedges R, Holt C, Reinhardt WP, Scheibner K, Wendoloski JJ (1978) Int J Quant

Chem 14:393
41. Maquet A, Chu SI, Reinhardt WP (1983) Phys Rev A 27:2946
42. Damburg RJ, Kolosov VV (1976) J Phys B, At Mol Phys 9:3149
43. Luc-Koenig E, Bachelier A (1980) J Phys B, At Mol Phys 13:1743
44. Reinhardt WP (1982) Int J Quant Chem 21:133
45. Franceschini V, Grecchi V, Silverstone HJ (1985) Phys Rev A 32:1338
46. Benassi L, Grecchi V (1980) J Phys B, At Mol Phys 13:911–924
47. Farrelly D, Reinhardt WP (1983) J Phys B, At Mol Phys 16:2103
48. Kolosov VV (1987) J Phys B, At Mol Phys 20:2359
49. Filho O, Fonseca A, Nazareno H, Guimarães P (1990) Phys Rev A 42:4008
50. Kondratovich VD, Ostrovsky VN (1984) J Phys B, At Mol Phys 17:2011
51. Anokhin SB, Ivanov MV (1984) Opt Spectrosc 59:499
52. Telnov DA (1989) J Phys B, At Mol Opt Phys 22:1399–1403
53. Ho Y-K (1983) Phys Rep 99:3
54. Ivanov IA, Ho Y-K (2004) Phys Rev A 69:023407



176 A.V. Glushkov

55. González-Férez R, Schweizer W (2000) In: Hernández-Laguna A, Maruani J, McWeeny R,
Wilson S (eds) Quantum systems in chemistry and physics. Progress in theoretical chemistry
and physics, vol 2/3. Springer, Berlin, p 17

56. Glushkov AV, Ivanov LN (1992) Proc of 3rd symposium on atomic spectroscopy. Moscow,
Chernogolovka

57. Glushkov AV, Ivanov LN (1993) J Phys B, At Mol Phys 26:L379
58. Glushkov AV, Malinovskaya SV, Ambrosov SV, Shpinareva IM, Troitskaya OV (1997) J Tech

Phys 38:215
59. Glushkov AV, Ambrosov SV, Ignatenko AV, Korchevsky DA (2004) Int J Quant Chem 99:936
60. Glushkov AV, Loboda AV (2007) J Appl Spectrosc (Springer) 74:305
61. Glushkov AV, Khetselius OYu, Loboda AV, Svinarenko AA (2008) In: Wilson S, Grout PJ,

Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and
physics. Progress in theoretical chemistry and physics, vol 18. Springer, Berlin, pp 523–588

62. Glushkov AV, Khetselius O, Malinovskaya S (2008) Eur Phys J T 160:195
63. Glushkov AV, Khetselius OYu, Svinarenko AA, Prepelitsa GP (2011) In: Duarte FJ (ed) Co-

herence and ultrashort pulsed emission. Intech, Vienna, pp 159–186
64. Zimmerman ML, Littman MG, Kash MM, Kleppner D (1979) Phys Rev A 20:2251
65. Harmin DA (1982) Phys Rev A 26:2656
66. Popov V, Mur V, Sergeev A, Weinberg V (1990) Phys Lett A 149:418, 425
67. Grutter M, Zehnder O, Softley T, Merkt F (2008) J Phys B, At Mol Opt Phys 41:115001
68. Stambulchik E, Maron Y (2008) J Phys B, At Mol Opt Phys 41:095703
69. Dunning FB, Mestayer JJ, Reinhold CO, Yoshida S, Burgdörfer J (2009) J Phys B, At Mol

Opt Phys 42:022001
70. Bryant HC, Clark DA, Butterfield KB et al (1983) Phys Rev A 27:2889
71. Glushkov AV, Ambrosov S, Khetselius OYu, Loboda AV, Gurnitskaya E (2006) In: Julien

J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds) Recent advances in theoretical
physics and chemistry systems. Progress in theoretical chemistry and physics, vol 15. Springer,
Berlin, pp 285–300

72. Khetselius OYu (2012) J Phys Conf Ser 397:012012
73. Khetselius OYu (2009) Int J Quant Chem 109:3330
74. Khetselius O, Florko T, Svinarenko A, Tkach T (2013) Phys Scr T 153:01437
75. Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) Phys Scr 32:512
76. Ivanova EP, Glushkov AV (1986) J Quant Spectrosc Radiat Transf 36:127
77. Benvenuto F, Casati G, Shepelyansky DL (1994) Z Phys B 94:481
78. Buchleitner A, Delande D (1997) Phys Rev A 55:1585
79. Gallagher TF, Noel M, Griffith MW (2000) Phys Rev A 62:063401
80. Glushkov AV, Ambrosov SV (1996) J Tech Phys 37:347
81. Glushkov AV, Khokhlov V, Tsenenko I (2004) Nonlinear Process Geophys 11:285
82. Glushkov A, Khohlov V, Loboda N, Bunyakova Yu (2008) Atmos Environ 42:7284
83. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Mol Phys 106:1257
84. Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) In: Fazio G, Hanappe F (eds)

New projects and new lines of research in nuclear physics. World Scientific, Singapore,
pp 126–142

85. Glushkov AV (2005) In: Grzonka D, Czyzykiewicz R, Oelert W, Rozek T, Winter P (eds) Low
energy antiproton physics, vol 796. AIP, New York, pp 206–210

86. Glushkov AV (2007) In: Krewald S, Machner H (eds) Meson-nucleon physics and the structure
of the nucleon, vol 2. IKP, Juelich. SLAC eConf C070910 (Menlo Park, CA, USA, 2007),
pp 111–117

87. Glushkov AV, Khetselius OYu, Loboda AV, Malinovskaya SV (2007) In: Krewald S, Machner
H (eds) Meson-nucleon physics and the structure of the nucleon, vol 2. IKP, Juelich. SLAC
eConf C070910 (Menlo Park, CA, USA, 2007), pp 118–122

88. Glushkov AV, Khetselius OYu, Lovett L, Gurnitskaya EP, Dubrovskaya YuV, Loboda AV
(2009) Int J Mod Phys A, Part Fields Nucl Phys 24:611



9 Operator Perturbation Theory for Atomic Systems 177

89. Glushkov AV, Khetselius OYu, Lovett L (2010) In: Piecuch P, Maruani J, Delgado-Barrio
G, Wilson S (eds) Advances in the theory of atomic and molecular systems: dynamics, spec-
troscopy, clusters, and nanostructures. Progress in theoretical chemistry and physics, vol 20.
Springer, Berlin, pp 125–151

90. Glushkov AV, Khetselius OYu, Svinarenko AA (2012) In: Hoggan P, Brändas E, Maruani J,
Delgado-Barrio G, Piecuch P (eds) Advances in the theory of quantum systems in chemistry
and physics. Progress in theoretical chemistry and physics, vol 22. Springer, Berlin, pp 51–70

91. Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems As-
troprint, Odessa, pp 1–704



Part III
Clusters and Condensed Matter



Chapter 10
Structural and Thermodynamic Properties
of Au2–58 Clusters

Yi Dong, Michael Springborg, and Ingolf Warnke

Abstract In this study, we have used a parametrized density-functional tight-
binding method combined with genetic algorithms for an unbiased global opti-
mization to study systematically neutral gold clusters with from 2 to 58 atoms.
The ground states of the clusters are identified and different descriptors are used to
analyze the properties of the clusters, including stability, overall shape, similarity,
growth patterns, and structural motifs. The vibrational heat capacity of the ground
state of neutral gold clusters at different temperatures are calculated by a newly de-
veloped method. The results show that the heat capacity is strongly size-dependent,
particularly at low temperature.

10.1 Introduction

Clusters science has been an active research area for some decades because of the
fascinating properties of the clusters. Thus, quantum-size effects combined with the
fact that the number of surface atoms relative to the total number of atoms is far
from vanishing may be held responsible for the unique, size-dependent properties
of clusters. Moreover, there is a highly non-trivial dependence of the properties on
the size and composition of the clusters. Since, on the other hand, the properties
depend sensitively on the structure of the clusters, one of the most fundamental
challenges in the study of clusters is related to the determination of their ground-
state structures.

Without any further information the theoretical identification of the structure of
the ground state of a cluster of N atoms requires searching in a geometry space of
3N − 6 dimensions, which for even small values of N is hardly possible. Accord-
ingly, even for not too large clusters, an unbiased determination of the structure of
the global total-energy minimum will easily require that very many structures are
studied whereas for each structure the calculation of the total energy is computation-
ally demanding. Therefore, theoretical studies of the properties of the clusters have
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to incorporate one or more approximations. For instance, one may choose to study
only small(er) clusters or clusters of selected sizes and/or structures. Furthermore,
by employing empirical potentials that depend only on the interatomic distances it
may become possible to study more structures and/or larger systems at the cost of
possible inaccuracies due to the approximate descriptions of the interatomic inter-
actions. As a compromise, parametrized methods that include electronic degrees of
freedom can be used. Besides the use of such approximate methods for the deter-
mination of the total energy for a given structure, various approaches for the deter-
mination of the structure of the global total-energy minimum have been suggested.
These include Simulated Annealing, the Basin-Hopping method, and Genetic Algo-
rithms [1–9].

Gold clusters constitute a special case that has attracted much attention partly be-
cause of their application as catalysts and in nanoscience, and partly because these
systems provide a useful model system with surprising results for theoretical stud-
ies. However, it has turned out to be particularly difficult to determine the properties
of gold cluster because the calculated structures depend very sensitively on the ap-
plied methods [10, 11], which is to a much lesser extent the case for most other
elemental clusters. Therefore, the reported theoretical results for gold clusters show
a particularly large scatter and a strong dependence on the approximations of the
calculations.

Interesting information on the clusters can be obtained by studying their thermo-
dynamic properties, both experimentally and theoretically. This includes the melting
of small clusters [12–14] but also their low-temperature properties can provide use-
ful information.

In this contribution we shall present results of a theoretical study of the prop-
erties of gold clusters. We shall partly review our earlier results on the structural
and energetic properties of gold clusters [15] and, in addition, present and apply a
new method for studying the vibrational contributions to the thermodynamic low-
temperature properties of the clusters. Our computational methods will be described
in Sect. 10.2, followed by a discussion of the results in Sect. 10.3. Finally, our results
are summarized in Sect. 10.4.

10.2 Computational Method

10.2.1 Parametrized Density-Functional Method

In the present work the total energy and the electronic properties of a given struc-
ture were calculated using a parametrized tight-binding density-functional (DFTB)
method [16]. According to this method, the relative total energy of a compound with
a chosen structure can be written as the difference of the orbital energies of the com-
pound ({εi}, with i being an orbital index) minus those of the isolated atoms ({εim}
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with i and m being an orbital and an atom index, respectively) augmented with pair
potentials,

Etot =
∑

i

εi −
∑

m

∑

i

εim +
∑

m1,m2

Um1m2

(|Rm1 −Rm2 |
)
. (10.1)

Here, Um1,m2(R) is the pair potential between atomm1 andm2 that depends on their
interatomic distance R.

In order to determine the orbital energies, the single-particle Kohn-Sham operator
is written as the kinetic-energy operator plus an effective potential. The latter is
approximated as the superposition of the potentials of the isolated atoms,

Veff(r)=
∑

m

V 0
m

(|r−Rm|
)
. (10.2)

The single-particle wavefunctions, {ψi}, are expanded in terms of atom-centered
functions,

ψi(r)=
∑

jm

cijmφjm(r−Rm) (10.3)

withm identifying the atom and j used in distinguishing between different functions
centered on the same atom.

We assume that 〈φj1m1 |V 0
m|φj2m2〉 vanishes unless at least one of the two ba-

sis functions is centered at Rm. Thereby, all relevant information for the secular
equation can be extracted from accurate density-functional calculations on the two-
atomic molecules. The short-ranged pair potentials are determined by requiring that
the total energy of two-atomic systems (in our case, of Au2) as a function of inter-
atomic distance as determined through accurate density-functional calculations is
accurately reproduced.

Finally, in the present study only the 5d and 6s electrons of the isolated Au atom
are explicitly included in the calculations, whereas the other electrons are treated
within a frozen-core approximation.

10.2.2 Genetic Algorithms

The DFTB calculations provide information on the total energy of the cluster as a
function of structure and can also be used in determining local total-energy-minima
structures. In order to find the global total-energy-minimum structures of the clus-
ters we have used a method based on genetic algorithms, which was developed in
connection with our earlier studies on HAlO clusters [17]. Such methods are based
on the principles of natural evolution and are, therefore, also called evolutionary al-
gorithms [18]. They have been found to provide an efficient tool for global geometry
optimizations.

Our version of the genetic algorithms is as follows. Suppose that we have op-
timized the structure of the cluster with N atoms. Using this structure we create a
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set of M initial structures (which define the first generation) for the (N + 1)-atom
system by randomly adding one Au atom and afterward letting each of these struc-
tures relax to its nearest total-energy minimum. Subsequently, the next generation
ofM new (N + 1)-atomic clusters is formed by cutting each of the original clusters
randomly into two parts that are interchanged and requiring that no atom should
be too close to any other atom or too far from all the other ones. Also these struc-
tures are relaxed to their nearest total-energy minima. Out of the total set of 2M
structures, those M of the lowest total energy define the next generation. This pro-
cedure is repeated until the lowest total energy is unchanged for a large number of
generations. We add that even if this unbiased structure-optimization is reliable and
efficient, there is no absolute certainty that the global total-energy minimum has
been identified.

10.2.3 Jellium Model

Because the jellium model has been intensively used for metal clusters, we consid-
ered that model, too. Within this model we assumed that the total charge formed by
all but the 5d and 6s valence electrons of each gold atom as well as of the nuclei is
smeared out to a spherical medium (jellium) with a constant density within which
the valence electrons are moving. The value of the density of the jellium is taken as
that of crystalline Au, and a local-density approximation within density-functional
theory is assumed valid for the valence electrons. The resulting one-dimensional,
single-particle equations are then solved numerically and self-consistently.

10.2.4 Thermodynamics Calculations

Within the Normal Mode Harmonic Oscillator (NMHO) approximation [19], the
total energy, E, is approximated with a Taylor expansion up to second order in the
coordinates of the atoms relative to the equilibrium positions, {qi}, i = 1,2, . . . ,3N .
Since the first order derivatives vanish at the equilibrium structure, we have accord-
ingly

E �E0 + 1

2

3N∑

i,j=1

(
∂2E

∂qi∂qj

)

0
qiqj + · · · ≡E0 + 1

2

3N∑

i,j=1

fij qiqj + · · · . (10.4)

Here, the subindex 0 indicates properties at the equilibrium structure.
For the vibrational properties, we need the 3N × 3N the dynamical matrix that

can be constructed from the force constants fij ,

Dij = 1√
MiMj

fij , (10.5)
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withMi being the mass for the ith coordinate. Then, the vibrational frequencies, ωi ,
are found as the square roots of the eigenvalues of the dynamical matrix.

In order to calculate the force constants fij we use a finite-difference approxi-
mation

fij = ∂

∂qi

∂E

∂qj
= ∂

∂qj

∂E

∂qi
= 1

2

(
∂

∂qi

∂E

∂qj
+ ∂

∂qj

∂E

∂qi

)
= −1

2

(
∂Fi

∂qj
+ ∂Fj
∂qi

)

� −1

4Δs

[
Fi(qj +Δs)− Fi(qj −Δs)+ Fj (qi +Δs)− Fj (qj −Δs)

]
(10.6)

where Δs is a small but finite change in the coordinates, and Fm(qn ± Δs) de-
notes the mth force component for the structure where the nth coordinate has been
changed by ±Δs. From test calculations we found that Δs = 0.01 a.u. results in
numerically stable results.

From the calculated vibrational frequencies we can use Boltzmann statistics in
determining first the vibrational partition function and subsequently the vibrational
heat capacity,

Cvib = kB
NVM∑

i=1

α2
i e
αi

(eαi − 1)2
(10.7)

with

αi = �ω

kBT
≡ Ti
T

(10.8)

and kB being the Boltzmann constant. NVM is the number of non-zero frequencies
and equals 3N − 6 (3N − 5) for non-linear (linear) systems. Moreover, for each
mode Ti is a characteristic temperature that describes that temperature (T � 2.35Ti )
at which the contribution of the given mode changes most rapidly as a function of
temperature. At T � 2.35Ti the contribution of the ith node equals roughly 64 % of
its maximal contribution (at T →∞).

Finally, it is easily seen that

lim
T→∞Cvib =NVM · kB. (10.9)

10.3 Results

For the AuN clusters withN up to 6 the calculations give that the lowest total energy
is found for planar structures, whereas for larger clusters the structure is purely three
dimensional. As discussed elsewhere [15] this result is only partly in agreement
with findings of more accurate studies for these relatively small systems. In those,
planar structures are found for clusters with more than 10 atoms. However, our
studies show also that the inaccuracies that lead to the discrepancies in the optimized
structures indeed are small [15]. In agreement with other studies, we find that the
optimized structures of the gold clusters in general possess a low symmetry.
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Fig. 10.1 The average nearest-neighbor bond length as a function of cluster size. The horizontal
dashed lines give (from below) the experimental value for the gold dimer, the theoretical value for
a linear chain of gold atoms, and the experimental value for crystalline gold

Fig. 10.2 The left panel shows the stability function from the DFTB results; the right panel that
of the jellium calculations

With the purpose of obtaining general information on the structural properties of
the clusters we shall use various simplifying descriptors. At first we study (Fig. 10.1)
the average of the nearest-neighbour interatomic distances for the gold clusters as a
function of size N , whereby we assume that two atoms are nearest neighbors when
their interatomic distance is below the average of the nearest-neighbor and the next-
nearest-neighbor distances of crystalline gold (6.58 a.u.). From the figure we can
see that our calculated bond length of Au2 is slightly smaller than the experimental
value. Furthermore, we observe that the bond lengths for all cluster sizes lie between
the (experimental) length for the dimer and the experimental value for crystalline
gold and are close to the theoretical value for the linear chain of gold atoms. This
finding is in accordance with the fact that the atoms of the gold clusters have a fairly
low coordination.

Particularly stable clusters can be identified from the stability function, defined
as

Δ2E(N)=E(N + 1)+E(N − 1)− 2E(N) (10.10)

[with E(K) being the total energy of AuK ], and shown in Fig. 10.2 both for the
DFTB and for the jellium calculations. We see that there is hardly any similarity be-
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Fig. 10.3 The radial
distances as a function of
cluster size. For a given
cluster size, N , each small
line represents (at least) one
atom with that value of the
radial distance. The smooth
curve shows the radius of the
spherical jellium with a
density as in the crystal

tween the two sets of results, implying that the jellium approximation is not adequate
for the AuN clusters. Moreover, for the DFTB calculations, the stability function is
much more smooth for N < 20 than for N > 20. For N ≤ 20, there is a clear odd-
even oscillatory pattern, which suggests that those clusters with even N are more
stable than those with odd N . But for the clusters with size above 20, the stabil-
ity function does not follow the even-odd oscillatory pattern. The most pronounced
maxima are found for N = 8, 18, and 20 for N ≤ 20 and for N = 24, 33, 40, 42, 51,
and 54 for N ≥ 20.

More detailed information on the structural properties of the clusters can be ob-
tained with the help of the so called radial distances that are defined as follows. For
the cluster with N atoms we first define its center,

R0 = 1

N

N∑

i=1

Ri , (10.11)

(here, Ri is the position of the ith atom), and subsequently the radial distance of the
ith atom is given as

ri = |ri | = |Ri −R0|. (10.12)

At first we show in Fig. 10.3 the radial distances themselves and compare with
the radius of the spherical jellium. The figure shows that for 8 ≤ N ≤ 24 no atom
has a small value of the radial distance suggesting that the clusters have cage-like
structures as also was found in the study by Bulusu et al. [23].

Information on the overall shape of the clusters can be obtained by analyzing, for
each N , the eigenvalues of the 3 × 3 matrix containing the elements

∑
i si ti with

si and ti being the x, y, and/or z components of ri . The eigenvalues Iαα of this
matrix are used to identify the overall cluster shape. At first, their average (divided
by N5/3 which is the N dependence of the value for the spherical jellium) gives the
overall spatial extension of the cluster, whereas three identical eigenvalues suggest a
spherical shape, and two large and one small (two small and one large) value suggest
a lens-like (cigar-like) shape.

The results are summarized in Fig. 10.4. Only in one single case (N = 1), the
cluster is characterized as being spherical, whereas in all other cases the clusters
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Fig. 10.4 Properties related
to the eigenvalues Iαα that
describe the overall shape of
the clusters. The upper panel
shows the average value
(scaled by N−5/3) together
with marks indicating
whether the AuN cluster is
overall spherical (dots in the
lowest row), overall cigar-like
shaped (middle row) or
overall lens-like shaped
(upper row). The lower panel
shows the largest difference
in the eigenvalues

have a low(er) symmetry, although for some sizes (N = 8, 9, 18, 25, and 33) the
eigenvalues are very close.

A highly relevant issue for, e.g., the understanding of growth mechanisms is to
study the structural similarity between clusters of different sizes. To this end, we
have developed a new scheme for introducing a so called similarity function [24]
that works as follows when comparing the structures of Aun and Aum for which
we will assume that m ≥ n. At first, the two structures are scaled (using the aver-
age of the nearest-neighbor and next-nearest-neighbor distances in the crystal), and
subsequently the two resulting structures are placed upon each other so that

Q=
n∑

i=1

∣∣∣∣
1

dA
RA,i − 1

dB
RB,i

∣∣∣∣
2

(10.13)

is minimized. Here, dA and dB are the two scaling factors for the two systems, RA,i
is the position of the ith atom of the A cluster, and RB,i is the position of that atom
of the B cluster that (after scaling) is closest to the ith atom of the A cluster (also
after scaling). From the minimum value of Q we define a similarity function,

S = 1

1+ (Q/n)1/2 . (10.14)

In Fig. 10.5 we show S for the comparison between the clusters with m = N
atoms with those with n = N − 1, N − 2, N − 3, and N − 4. With few excep-
tions, S takes relatively low values, implying that for the cluster sizes of the present
study, there is only little structural similarity. An interesting exception is found for
the comparison between the clusters with N = 12 or N = 13 atoms with that with
N = 11 atoms. Here, S takes large values (close to 1), although the comparison
between N = 13 and N = 12 gives a small values for S. Thus, both of the two lat-
ter structures resemble the 11-atomic cluster, although they are not similar to each
other. Our approach can also be used in comparing the structures with a fragment of
the crystalline (fcc) structure. The result in shown in Fig. 10.6 and imply that these
clusters have structures markedly different from that of the crystal.
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Fig. 10.5 The similarity function for the comparison between AuN with AuN−1, AuN−2, AuN−3,
and AuN−4

Fig. 10.6 The similarity
function for the comparison
between the AuN cluster and
the crystal

Alternatively, we may use the common-neighbor analysis [20–22] for the pur-
pose of identifying structural motifs. At first, a cut-off distance is defined that de-
scribes whether two atoms are bonded (again, we use the average of the nearest-
and next-nearest-neighbor distances in the fcc crystal) and to each pair of atoms,
three indices, (i, j, k), are defined. i is the number of common neighbors, j is the
number of bonds between those, and k is the number of bonds in the longest un-
broken sequence of bonds. For an infinite fcc crystal, the four sets (2,1,1), (1,0,0),
(4,2,1), and (4,4,4) occur with a relative occurrence of 4 : 2 : 2 : 1. Thus, if a cluster
has a structure that is identical to a cutout of the crystal, we will for this system find
those three sets of indices with roughly the above mentioned relative occurrence and
hardly any other set. However, as shown in Fig. 10.7 we recognize a very different
behavior for all cluster sizes of the present study. Thus, also this analysis does not
at all suggest that fragments of the crystal are found.

As an extension of our earlier study [15] on the structural properties of the gold
clusters, we shall here present results related to their vibrational properties. At first,
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Fig. 10.7 Results of a common-neighbor analysis. Each curve shows the relative occurrence
of a certain set of indices (i, j, k) (described in the text), when excluding (i, j, k) = (0,0,0),
and the thicker curves show the occurrences for (i, j, k) = (1,0,0), (i, j, k) = (2,1,1), and
(i, j, k)= (4,2,1), whereas (i, j, k)= (4,4,4) is not found in this size range

Fig. 10.8 The vibrational
contribution to the heat
capacity per atom for
different temperatures (given
in the upper panel) as
function of the size of the
clusters. The lower panel
shows an expanded version of
the results for 70 K

we show in Fig. 10.8 the heat capacity per atom of the AuN clusters for tempera-
tures of 70, 298.25, 500, 700, and 1200 K. We observe a strong size dependence of
the vibrational heat capacity per atom in particularly for the smallest clusters and
lowest temperatures. That this is so can be understood from Eqs. (10.7) and (10.9).
Thus, for the highest temperatures the vibrational heat capacity per atom approaches
(3− 6

N
)kB for non-linear clusters, which is smooth and monotonically increasing

as a function of N and converges to 3kB for N→∞. On the other hand, for a low
temperature, T , only those clusters for which there exist one or more vibrational
modes with characteristic temperatures Ti < T will have significant heat capacities.

An interesting issue is whether a correlation between stability and heat capacity
exists. One may speculate that clusters that are particularly stable (unstable) also
are particularly rigid (soft), i.e., have particularly high (low) vibrational frequen-
cies. That would imply that the heat capacity then has a minimum (maximum) for
those clusters. Since, in Fig. 10.8, the results for T = 70 K are those that show the
most pronounced size dependence, we shall use those in comparing with the stabil-
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Fig. 10.9 Heat capacity as a
function of temperature for
clusters of different size

Fig. 10.10 The temperature
dependence of the individual
modes (thin curves) to the
total vibrational heat capacity
(thick curve) for the N = 3
cluster

ity function of Fig. 10.2. Then, it is clearly seen that there is no correlation between
stability and heat capacity. Thus, the largest values for the heat capacity are found
for N = 5 and 6, for which, however, the stability function does not show any pro-
nounced minima. On the other hand, the most stable clusters according to Fig. 10.2
are found for N = 42 and 51, for which the heat capacity has average values.

Next we study the temperature dependence of the vibrational heat capacity, Cvib,
of individual clusters. Accordingly, Fig. 10.9 shows the heat capacity as function
of temperature for the cluster sizes 3, 6, 7, 13, 18, 33, 55, and 58. As expected and
in agreement with Eqs. (10.7) and (10.8), for each size, Cvib is a monotonously in-
creasing function of temperature. An interesting result is that the heat capacity for
N = 6 is a much more rapidly increasing function of temperature at low tempera-
ture than is the case for other cluster sizes. In order to explain this, we first observe
that the heat capacity is a superposition of the contributions of the individual modes,
whereby each mode gives a contribution that is a decreasing function of frequency.
This is illustrated in Fig. 10.10 where we present the contributions from the three
modes with non-vanishing frequencies for the cluster size N = 3. For low temper-
atures, the modes with the lowest frequencies or lowest characteristic temperatures
[see Eq. (10.8)] are the most important for Cvib. By plotting the characteristic tem-
peratures as a function of cluster size (this is done in Fig. 10.11) we can identify
those clusters that have a particularly large value Cvib at low temperatures as those
that have modes with particularly low characteristic temperatures. As seen in the
figure, this is the case for N = 5, 6, 12, 22, 25, 32, 35, 38, 39, 40, 45, 50, 51, and 53,
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Fig. 10.11 The characteristic
temperatures for the different
vibrational modes as function
of the size, N , of the clusters.
For a given N , each line
marks that at least one mode
has that characteristic
temperature

which agrees well with the cluster sizes for which Cvib is particularly large (see the
lower panel in Fig. 10.8).

The reason that the N = 6 cluster has a mode with a particularly low frequency
can be explained by considering its structural and vibrational properties in detail.
As mentioned above, the N = 6 size cluster has a planar structure, and this planar
structure results in energetically low-lying wagging modes (see [25]). Since it is
known that also slightly larger clusters have planar structure, we suggest that also
these larger clusters will have particularly large heat capacities at low temperatures.

10.4 Summary

In this work, we have used a parametrized density-functional method combined with
genetic algorithms to systemically study the properties of the global total-energy
minima of gold clusters with size from 2 to 58 atoms. The use of an approximate
total-energy method allows us to perform unbiased structure-determination studies
also for larger clusters, although the approximations may lead to (smaller) inaccu-
racies in the final results. We believe, however, that our study will give the overall
trends. As an extension of our earlier work we have developed a new method to
calculate some thermodynamic properties of the clusters for low temperatures.

Our study shows that the gold clusters in general have a low symmetry and that
for up toN = 6 the clusters are planar. For larger values ofN our approach finds that
the clusters have a three dimensional structure, although more accurate studies give
that clusters with slightly more than 10 atoms should be planar. By analyzing the
structures we find that the clusters do not resemble those with 1, 2, 3, or 4 atoms less,
and that the clusters do not resemble fragments of the fcc crystal. The vibrational
heat capacity of the gold clusters is found to be strongly size dependent at low
temperatures and for the smallest clusters. This becomes less pronounced when the
size and/or temperature increases. An interesting observation is that some structures
have a particularly large vibrational heat capacity at low temperatures, and that this
is not correlated with particularly high or low stability of those clusters.
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Chapter 11
An Evaluation of Density Functional Theory
for CO Adsorption on Pt(111)

Yu-Wei Huang, Ren-Shiou Ke, Wei-Chang Hao, and Shyi-Long Lee

Abstract In this study, serveal different density functionals were applied to study
the CO adsorption on Pt(111) clusters. When adding more contribution of HF ex-
change energy, it can be found that the HOMO energy is decreased and LUMO
energy is increased, thus increasing the HOMO-LUMO energy gap. The accuracy
of S-T excitation energy can also be largely improved when increasing the ratio of
HF exchange energy. For CO adsorption at Pt7–3 cluster, most functionals predict
that CO favors to adsorb at fcc site. Only when adding more than 40 % HF ex-
change energy, the M06HF, BMK, wB97 and M06-2X functionals can predict the
top-site preference. For CO adsorption at Pt9–9–9 cluster, when adding more than
40 % HF exchange energy, the CO prefers to adsorb at top site than fcc site. Among
these functionals, the M06HF strongly predicts the top-site preference. The chemi-
cal bonding analysis shows that the effects of σ -repulsion are reduced as the CO S-T
excitation energy increasing, and the effect of reduction for CO at top site is more
remarkable than that for CO at fcc site. Therefore, CO would more favor to adsorb
at top site in those functionals which can give better CO S-T excitation energy. Al-
though the opposite trend can be found for the π-attraction, the overall effect also
supports CO favoring to adsorb at top site.

11.1 Introduction

The CO adsorption on Pt surface has been studied extensively with great academic
and industrial interest because it is an important step of various CO catalytic re-
actions, such as CO oxidation, hydrogenation, Fischer-Tropsch reaction, and many
others [1, 2]. Due to its importance, the adsorption behaviors of CO on Pt have been
investigated not only experimentally but also theoretically [3–47]. Especially, CO
adsorption on Pt(111) has been long known as a puzzle and attracted much attention
in surface science [9]. Experimentally, low-energy electron diffraction (LEED) and
electron energy loss spectroscopy (EELS) indicates that the top site is favored for
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CO adsorption on Pt(111) surface at low coverage [34]. However, theoretically the
density functional theory calculation based on LDA and GGA failed to predict the
correct adsorption site for CO on Pt(111) [9]. Up to now, it is still hard to find a
suitable and complete DFT functional to solve this puzzle. In this study, we would
like to evaluate the performance of computational schemes including 21 different
density functionals, HF and MP2 for CO adsorption on Pt(111) cluster model. The
chemical bonding analyses were also adopted to investigate the effect of DFT func-
tionals to the adsorption behavior of CO on Pt nanocluster.

Investigations of CO on Pt(111) by using density functional theory has been
long back to early 90’s. Philipsen et al. applied the BP86 [48] functional to cal-
culate CO adsorption on Pt(111) surface showing that the adsorption energies
are 0.83 and 1.02 eV for CO adsorption on top site and hollow site [43]. Lynch
et al. applied the PW91 [49] functional with ultrasoft pseudopotentials to calcu-
late the CO/Pt(111) obtaining the adsorption energies of 1.87 and 2.00 eV for
CO adsorption at top and fcc sites, respectively [25]. Both results did not agree
with the experimental observation. In order to check this problem of site prefer-
ence, Feibelman et al. considered different DFT functionals including LDA [50],
PW91, PBE [51] and RPBE [52], and different numerical condition to calculate
the CO on Pt(111) surface [9]. However, all LDA and GGA functionals predicted
the wrong site preferences and then coined this interesting problem, “CO/Pt(111)
puzzle”. Since then this “puzzle” has been addressed and studied further by several
groups [7, 14, 16, 19, 20, 23, 26, 30, 31, 37, 44].

Grinberg et al. carefully studied the influence of pseudopotentials and DFT func-
tional on the CO binding energy and site preference [16]. Their results show the
wrong prediction of site preference was due to the poor treatment of CO bonding
for LDA and GGA functional. Gil et al. applied several different GGA and hybrid-
GGA B3LYP [53] to calculate CO adsorption on Pt clusters [14]. The results show
that the inaccuracy in site preference may come from the underestimation of unoc-
cupied CO 2π∗ orbital by DFT-GGA, which leads to the unrealistic strengthening
of the 2π∗-d bonding interaction. Kresse and co-workers also report that a linear
relationship between the CO LUMO energy and the top-hollow adsorption energy
difference by using slab model [23]. Mason et al. also found out the relationship
between singlet-triplet excitation and adsorption energy [26]. These results all im-
plied that the CO/Pt(111) puzzle may be attributed to the incorrect underestimation
of CO LUMO energy in the conventional LDA or GGA DFT schemes. Therefore,
the modification of the CO LUMO energy by improving the DFT functional may be
a feasible way to solve this puzzle.

On the other hand, Gil et al. applied the B3LYP and cluster model to study the
CO adsorption on Pt(111) and also compared their results with other LDA/GGA
functional and slab model [14]. They found that both slab and cluster models, irre-
spective of the functionals used, always favor CO adsorption at hollow site than at
top site. However, the B3LYP functional can largely reduce the adsorption energy
difference between the top site and hollow site. The predicted adsorption energies
under the B3LYP and Pt12−6 cluster model are 1.42 and 1.49 eV for CO adsorption
at top and fcc sites. They also found that the CO LUMO energy increased when
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including more exact HF exchange contribution, and thus may improve the results
for the site preference of CO adsorption. By adopting the slab model calculation
with hybrid B3LYP functional, Doll described better LUMO property and success-
fully predicted top-CO adsorption preference [7]. The adsorption energies are 1.44
and 1.40 eV for CO at top and fcc sites, respectively. However, the energy splitting
between top site and fcc site is still too small and hard to confirm the experimental
observation. Similar results are also reported by Stroppa et al. who apply hybrid
PBE0 [54] and HSE03 [55] methods in the CO/Pt(111) slab model calculation with
the plane wave basis set [35]. Although hybrid-GGA functionals can improve the
results of site preference, it still cannot reproduce experimental observation in most
case. Hence, the CO/Pt(111) puzzle is still a unsolved problem up to now.

Recently many new density functionals were developed for different purpose.
For instance, Truhlar et al. developed M-series hyper-GGA functionals which are
better than conventional hybrid functionals in thermodynamics and kinetics calcu-
lations [56–63]. Boese et al. developed the hyper BMK functional which includes
the kinetic energy term and a large percentage of Hartree-Fock (HF) exchange en-
ergy (42 %). Zhao et al. has also tested the performance of these DFT functionals,
the results show that BMK, M052X, M062X and M06HF owns the better perfor-
mance in the calculation of excitation energies of CO [63].

Therefore, in this study, we would like to apply various density functional theory
including LDA, GGA, meta-GGA, hybrid-GGA and hyper-GGA to calculate CO
adsorption on Pt(111) cluster model. Through the chemical bonding analysis, the
effect of different functionals to CO adsorption behavior on Pt(111) cluster can be
clearly presented.

In Sect. 11.2, a brief description of the computational method and cluster con-
struction are given. In Sect. 11.3, the results and discussion of the adsorption ener-
gies and chemical bonding analyses on CO/Pt(111) cluster for different DFT func-
tionals are presented. Conclusions are drawn in the final section.

11.2 Computational Method

In this study, the density functional theory (DFT) and the wavefunction theory
(WFT) were performed with the program package Gaussian 09 [64]. Several den-
sity functionals, including LDA (SVWN) [50], GGAs (BLYP [65], PBE, PW91,
B97D [66] and BP86, meta-GGA (M06-L) [59] and hybrid-GGAs (HSE03, HSE06,
B3PW91 [53], PBE0, B3LYP, B1B95 [67], BHandHLYP [68], BHandH [68],
wB97 [69], wB97X [69], M052X [58], M062X [63], M06HF [61], BMK), were
adopted to check the effect of exchange-correlation functional on computed CO
adsorption energy on Pt(111). The wavefunction theory HF and MP2 were also
applied for the comparison. The LANL2DZ basis set as well as effective core po-
tentials was used for Pt atom [70]. In our previous study, several different basis sets
including 6–31G, 6–31G∗, 6–31 + G, 6–31 + G∗, 6–311G, 6–311G∗, 6–311 + G
and 6–311+ G∗, were adopted to check the effect to CO properties. Among these
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Fig. 11.1 The adsorption
geometries of CO on
two-layer Pt7–3 and
three-layer Pt9–9–9 cluster
models

basis sets, the 6–31G∗ can predict the better CO LUMO properties. Due to this
reason and consideration of CPU cost, the 6–31G∗ basis set was chosen for CO
molecule in all calculations. Although the effect of spin multiplicity is important
in cluster calculation, it would be an artifact when adopting to mimic Pt(111) sur-
face if lacking detailed examination. Hence, all calculations on Pt nanocluster are
spin-unpolarized.

In order to simulate the Pt surface structure, geometry parameters for Pt clusters
are fixed in bulk platinum geometry with the Pt-Pt distance of 2.775 Å, calculated
from the experimental lattice constant 3.92 Å over the square root of 2. Two dif-
ferent size Pt clusters, Pt7–3 and Pt9–9–9, are used as model systems and shown in
Fig. 11.1.

Due to the convergence problem for LDA, GGA and meta-GGA functionals, only
the hybrid-GGA functionals were adopted to calculate the CO on Pt9–9–9 cluster.
The adsorption energy Eads is obtained according to

Eads =EPt−CO −EPt −ECO (11.1)

where EPt−CO is the total energy of CO-adsorbed Pt clusters, EPt is the total energy
of Pt cluster, and ECO is the total energy of CO molecule.

The surface atom-projected density of states and overlap population density of
states were computed based on the orbital analysis of Mulliken formulation by using
the AOMIX software 6.5 [71, 72]. The projected d-band center Edbc is defined as

Edbc =
∑
i∈d-bandEiPEi∑
i∈d-band PEi

(11.2)

where the Ei is the i-th orbital energy of metal cluster and PEi is the projected
proportion of specific metal orbitals.
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Table 11.1 The calculated singlet-triplet excitation, HOMO, LUMO, HOMO-LUMO energies
(eV) and electronic dipole moment (Debye) of CO and the ratio of HF exchange (%) for several
wavefunction theories (WFT) and density functional theories (DFT)

Level Method ES–T
aES–T

err EHOMO ELUMO ELUMO–HOMO Ex
HF μe

WFT MP2 6.41 0.09 −14.97 4.14 19.11 100 0.188

WFT HF 5.19 −1.13 −14.86 4.57 19.43 100 −0.264

Hybrid M06HF 6.29 −0.03 −14.61 3.17 17.77 100 −0.068

Hybrid BMK 6.12 −0.20 −11.47 0.57 12.04 42 −0.001

Hybrid M052X 6.11 −0.21 −12.10 1.16 13.26 56 −0.032

Hybrid wB97 6.03 −0.29 −13.40 2.59 15.99 100 0.022

Hybrid M062X 5.99 −0.33 −11.91 1.08 13.00 54 −0.002

Hybrid wB97X 5.93 −0.39 −13.09 2.26 15.35 100 0.025

Hybrid BHandH 5.92 −0.40 −11.85 1.30 13.15 50 −0.025

Hybrid BHandHLYP 5.91 −0.41 −12.10 1.21 13.31 50 −0.064

Hybrid B1B95 5.90 −0.42 −10.43 −0.03 10.40 28 0.039

Hybrid B3LYP 5.83 −0.49 −10.11 −0.59 9.51 20 0.060

Hybrid PBE0 5.71 −0.61 −10.40 −0.27 10.13 25 0.063

Hybrid B3PW91 5.71 −0.61 −10.14 −0.61 9.53 20 0.068

Hybrid HSE03 5.70 −0.62 −10.27 −0.92 9.35 25 0.057

Hybrid HSE06 5.70 −0.62 −9.98 −0.67 9.31 25 0.062

mGGA M06L 5.66 −0.66 −9.07 −1.42 7.65 0 0.068

GGA BP86 5.70 −0.62 −8.76 −1.79 6.97 0 0.144

GGA B97D 5.68 −0.64 −8.70 −1.59 7.12 0 0.103

GGA PW91 5.64 −0.68 −8.66 −1.71 6.95 0 0.165

GGA PBE 5.64 −0.68 −8.60 −1.66 6.94 0 0.172

GGA BLYP 5.73 −0.59 −8.51 −1.55 6.96 0 0.144

LDA SVWN 5.86 −0.46 −9.13 −2.31 6.82 0 0.186

Exp. 6.32 0.123

aThe error of singlet-triplet excitation energies comparing with the experimental result of 6.32 eV

11.3 Results and Discussion

11.3.1 The Properties of CO

Table 11.1 shows the computed single-triplet (S-T) excitations, HOMO, LUMO,
HOMO-LUMO energies and electronic dipole moment of CO and the ratio of HF
exchange energy by HF, MP2 and 21 different level density functional theories. Per-
formance of DFT on excited states can be revealed by examining the S-T excitation
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energies. As can be seen in Table 11.1, the HF method strongly underestimates the
S-T excitation energy as compared to the experimental value of 6.32 eV [73]. After
considering the second order perturbation correction, the error of S-T excitation en-
ergy for MP2 is largely reduced to 0.09 eV. For the density functional theories, the
error of S-T excitation energy at LDA (SVWN) is −0.46 eV.

For the GGA and meta-GGA functionals, the error of S-T excitation energies
is increased to ca. −0.65 eV. For the hybrid GGA functionals, the errors of S-T
excitation at functionals with low ratio of HF exchange energy, like HSE03, HSE06,
B3PW91 and PBE0 are only slightly reduced by ca. 0.03 eV. Increasing the ratio of
HF exchange energy, the accuracy of S-T excitation energy can be largely improved.
It can be found that the S-T excitation energy of M06HF agrees excellently well with
the experimental value.

The electronic dipole moment of CO was also collected in Table 11.1. As is
well known [74], the HF method predicts wrong sign of CO dipole moment and
MP2 method overestimates the CO dipole moment comparing with the experimental
value of 0.123 D [75]. It can also be found that the LDA and GGA functionals all
overestimate the CO dipole moment except for B97D. However, the meta-GGA and
hybrid functional all underestimates the CO dipole moment. When adding more
than 40 % HF contribution, it can be found most functionals predict wrong sign of
CO dipole moment except for wB97 and wB97X.

It is well-known that DFT schemes of LDA and GGA levels give a poor de-
scription of CO LUMO. As can be seen in Table 11.1, LDA and GGA levels give
a negative energy for CO LUMO. By adding the HF exchange contribution, the
hybrid functional can raise the LUMO energy, lower the HOMO energy, and thus
increase the HOMO-LUMO gap. This is important as the CO LUMO energies be-
come positive after adding more than 40 % HF contribution in exchange-correlation
functionals. It can also be found that the linear relationship exists between HOMO-
LUMO gap and S-T excitation energy except only for the case of HF which the
HOMO-LUMO gap is high but the S-T excitation energy is far from the experimen-
tal value.

11.3.2 The Properties of Pt7–3 and Pt9–9–9 Clusters

Performance of DFT on metal clusters has long been an intense subject however
the accurately calculating properties of metal cluster has been shown to be prob-
lematic [76]. Here HF, MP2 and 21 DFT schemes were adopted to calculate the
electronic structure of Pt clusters. To understand the effect of functionals to the
electronic structure of Pt clusters, the projected d-band center (DBC) energy is an-
alyzed. According to the adsorption position and symmetry, the projected d-band
center energies for one Pt atom at top site and three Pt atoms at fcc site, and the σ/π -
projected DBC energies at top site are considered. Figure 11.2 shows the projected
DBC as respect to the ratio of HF exchange energy for Pt7–3 and Pt10−6 cluster. As
can be seen in Fig. 11.2, the projected DBC energies are strongly dependent on the
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Fig. 11.2 The projected
d-band center energies for
(a) Pt7–3 and (b) Pt9–9–9
clusters as respect to the ratio
of HF exchange energy

ratio of HF exchange energy. When increasing the ratio of HF exchange energy, the
projected DBC energies are decreased. Our results also show that the top-DBC en-
ergies are ca. 0.9 and 0.4 eV smaller than the fcc-DBC energies except for the case
of M06HF in Pt9–9–9. For M06HF, the top-DBC energy is almost the same with the
fcc-DBC energy. As a reasonable expectation, the top-DBC energy should be the
same with the fcc-DBC energy in real extended Pt surface, and thus the M06HF can
give the better description among the 21 functionals used in this study. Comparing
the σ -top-DBC and π -top-DBC energies, it can be found that the σ -top-DBC en-
ergy is higher than the π -top-DBC energy in most cases. However, the differences
between σ -top-DBC and π -top-DBC energies are reduced as increasing Pt cluster
size and adding more ratio of HF exchange energy. For the case of M06HF in Pt7–3
and M06HF, BMK, wB97 and wB97X in Pt9–9–9, the π -top-DBC energies become
higher than the σ -top-DBC energies.
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Table 11.2 The adsorption energies (eV) for CO on Pt7–3 by using several wavefunction theories
(WFT) and density functional theories (DFT)

Level Method ETOP EFCC ETOP–FCC

WFT MP2 −2.70 −2.79 0.09

WFT HF −1.09 −0.86 −0.23

Hybrid M06HF −1.62 −1.48 −0.14

Hybrid BMK −2.68 −2.46 −0.22

Hybrid M052X −1.93 −2.47 0.54

Hybrid wB97 −1.83 −1.22 −0.61

Hybrid M062X −1.76 −1.35 −0.41

Hybrid wB97X −1.85 −2.28 0.43

Hybrid BHandH −2.70 −3.12 0.42

Hybrid BHandHLYP −1.78 −1.89 0.11

Hybrid B1B95 −1.88 −2.46 0.58

Hybrid B3LYP −1.50 −1.83 0.33

Hybrid PBE0 −1.82 −2.49 0.67

Hybrid B3PW91 −1.64 −2.20 0.56

Hybrid HSE03 −1.76 −2.38 0.62

Hybrid HSE06 −1.77 −2.35 0.58

mGGA M06L −1.56 −2.00 0.44

GGA BP86 −1.64 −1.91 0.27

GGA B97D −2.24 −2.27 0.03

GGA PW91 −1.81 −2.18 0.37

GGA PBE −1.79 −2.17 0.38

GGA BLYP −1.26 −1.38 0.12

LDA SVWN −2.76 −3.48 0.72

11.3.3 The CO Adsorption on Pt Clusters

Table 11.2 collects the adsorption energies of CO on Pt7–3 for HF, MP2 and 21 dif-
ferent level density functional theories. It is found that HF method predicts CO ad-
sorption favoring at top site than at fcc site. However, the MP2 method predicts that
the adsorption strengths at both sites are almost the same. For the LDA (SVWN),
it can be found that the CO strongly favors to adsorb at fcc site than at top site,
and the predicted adsorption energies are strongly overestimated compared to the
experimental value of ca. 1.0–1.3 eV at top site.

For the GGA and meta-GGA, the adsorption energies and energy differences be-
tween top and fcc sites are both reduced comparing with these obtained at LDA
level. Among these functionals, the energy differences between top and fcc sites for
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Table 11.3 The adsorption energies for CO on Pt9–9–9 by using 14 hybrid density functional
theories

Level Method ETOP EFCC ETOP–FCC

Hybrid M06HF −1.37 −0.41 −0.96

Hybrid BMK −1.40 −1.21 −0.19

Hybrid M052X −1.35 −1.15 −0.20

Hybrid wB97 −1.32 −1.12 −0.20

Hybrid M062X −1.29 −1.29 0.00

Hybrid wB97X −1.26 −1.23 −0.03

Hybrid BHandH −1.96 −1.95 −0.01

Hybrid BHandHLYP −1.01 −0.81 −0.20

Hybrid B1B95 −1.44 −1.61 0.17

Hybrid B3LYP −1.13 −1.12 −0.01

Hybrid PBE0 −1.53 −1.70 0.17

Hybrid B3PW91 −1.33 −1.47 0.14

Hybrid HSE03 −1.46 −1.61 0.15

Hybrid HSE06 −1.47 −1.61 0.14

BLYP and B97D are 0.12 and 0.03 eV, respectively, smaller than those for other
GGA and meta-GGA functionals. For the hybrid functionals with low ratio of HF
exchange energy, the energy differences between top and fcc sites are increased
comparing with those at GGA level. It can also be found that the energy differ-
ence between top and fcc sites for B3LYP method is smaller than those for other
functionals with low ratio of HF exchange energy. When increasing the ratio of HF
exchange energy more than 40 %, half of the 8 DFT schemes, i.e., M06HF, BMK,
wB97 and M062X functionals, give the correct site preference of CO adsorption.

In order to further check the effects of geometry relaxation, the symmetry-
constrained optimization was adopted for CO on Pt7–3 [77], which the Pt7–3 cluster
can be freely relaxed but still maintains the C3V symmetry. The results show that
adsorption energies are −1.30 and −1.59 eV for CO adsorption at top and fcc sites,
respectively by using B3LYP functional, and −1.83 and −1.04 eV for CO adsorp-
tion at top and fcc, respectively by using BMK functional. It can be found that the
site preference is still not changed when considering the effect of geometry relax-
ation.

Table 11.3 shows the adsorption energies for CO on Pt9–9–9 for 14 different
hybrid density functionals. Comparing with the results of Pt7–3, it can be found
that the adsorption energies are reduced for all functionals. For functionals with
low ratio of HF exchange energy, the energy differences are ca. 0.15 eV favoring
fcc site except B3LYP which predicts no site preference for CO adsorption. When
increasing the ratio of HF exchange more than 40 %, it can be found that the CO
prefers to adsorb at top site than fcc site in most functionals. Comparing with other
functionals, the M06HF strongly predicts the top-site preference.
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Fig. 11.3 The bonding model for CO adsorption on Pt cluster

Alaei et al. have reported that the CO adsorption on Pt(111) by using the PBE and
BLYP functional [44]. Their results show that BLYP functional own the better pref-
erence to deal with the CO/Pt(111) puzzle comparing with PBE functional. It can be
seen from Table 11.3 that B3LYP and BHandHLYP functionals predict the top-site
preference for CO adsorption while PBE0 and HSE03/06 give fcc preference. Our
results also agree with their point.

11.3.4 The Bonding Analysis for CO on Pt Clusters

In order to further analyze the effect of density functionals to CO adsorption be-
havior on Pt clusters, the chemical bonding analyses were considered. The bonding
model between CO and Pt surface was firstly proposed by Blyholder based on the
frontier orbital theory [78]. According to the frontier orbital theory, the interaction
between CO and metal surface can be separated into two parts. First one is a dative
bond between CO HOMO 5σ and metal empty d-band. The second is the π -back
donation from filled Pt d-band to CO LUMO 2π∗ orbital. Some experimental and
theoretical evidence shows that 1π and 4σ levels should also have contribution for
CO-metal bonding [4, 45–47]. A latest bonding model was proposed by Nilsson and
Föhlisch et al. combining the X-ray emission spectroscopy and density functional
theory [10, 11, 79, 80]. They proposed the π -attraction σ -repulsion model to ex-
plain the behavior of CO adsorption on metal surface. As can be seen in Fig. 11.3,
the CO 1π and 2π∗ orbitals can interact with the metal sp- and d-band and form
the tilde-type hybrid CO-metal orbitals 1π̃ , 2π̃∗ and d̃π . Comparing with the Bly-
holder model, the π–σ model includes the contribution of 1π orbital and does not
assume the direct back-donating from metal to CO. For the σ repulsion in the π–σ
model, the CO 4σ and 5σ -orbitals can mix with the metal sp- and d-band and form
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Fig. 11.4 The redistributed σ -electrons population with respect to the singlet-triplet excitation
energy of CO adsorbed at (a) top-Pt7–3, (b) top-Pt9–9–9, (c) fcc-Pt7–3 and (d) fcc-Pt9–9–9

the tilde-type orbitals 4σ̃ , 5σ̃ and d̃σ . The origin of the repulsion comes from the
electron density redistribution in the CO region. Basing on the Nilsson and Föh-
lisch’s model, we can examine the performance of different computation schemes
on CO/Pt(111) adsorption.

In order to clarify the effect of density functionals, the charge contribution to
adsorbed CO orbitals are collected under the π -attraction σ -repulsion model frame-
work.

Figure 11.4 shows the redistributed σ -electron population respect to the CO S-T
excitation energy. As can be seen in Fig. 11.4(a) for CO adsorption at top-Pt7–3, the
redistributed σ -electron population is decreased with the CO S-T excitation energy
increasing. It clearly shows the effect of σ -repulsion for CO adsorption at top site
is reduced as the CO S-T excitation energy increases. This trend can also be seen
in Fig. 11.4(b) for CO adsorption at top-Pt9–9–9 except the case for BMK, M06-2X
and BHandHLYP. It can be found that the BMK method predicts larger redistributed
σ -electron population and M06-2X and BHandHLYP predict lower one.

Figure 11.4(c) shows the redistributed σ -electron population for CO adsorption
at fcc-Pt7–3. It can be found that the LDA and GGA functionals predict lager redis-
tributed σ -electron population. Among these LDA and GGA functionals, BLYP and
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B97D can predict smaller redistributed σ -electron population. Most hybrid func-
tionals predicted redistributed σ -electron population within the range of 0.24–0.28.
However, it can be found that BMK and M052X functionals predict higher redis-
tributed σ -electron population (∼0.31) and BHandH, M062X and BHandHLYP
predict lower one (∼0.22). The wavefunction methods HF and MP2 all predict quite
low redistributed σ -electron population of 0.20 and 0.23, respectively. No observ-
able relation between the redistributed σ -electron population and CO S-T excitation
energy can be found for CO fcc-Pt7–3.

As can be seen in Fig. 11.4(d) for CO adsorption at fcc-Pt9–9–9, the redis-
tributed σ -electron population only slightly decreases with the CO S-T excitation
energy increasing except in the case for BMK, BHandHLYP and BHnadH func-
tionals. The BMK functional gives higher redistributed σ -electron population and
the BHandHLYP and BHnadH functionals gives lower one. Comparing with CO
adsorption at top-Pt9–9–9, it can be found that as the computed CO S-T excitation
energy increasing, the reduction of σ -repulsion for top site is more observable than
that for fcc site, and thus CO favors to adsorb at top site in those functionals which
can give better CO S-T excitation energy.

Figure 11.5 shows the redistributed π -electron population as respect to the CO S-
T excitation energy. As can be seen in Fig. 11.5(a) for CO adsorption at top-Pt7–3,
the LDA(SVWN) predict quite high redistributed π -electron population of 0.76.
However, for most other GGA and hybrid functionals, the redistributed π -electron
populations are within the range of 0.4–0.5. The PW91 and BP86 functionals pre-
dict higher redistributed π -electron population (∼0.58) and BHandHLYP predicts
lower one (0.34). For CO adsorption at top-Pt9–9–9, as can be seen in Fig. 11.5(b),
it can be found that the BHandHLYP predicts quite low redistributed π -electron
population (0.38), but redistributed π -electron populations for most hybrid func-
tionals are within 0.45–0.55. As can be seen in Fig. 11.5(c) that for CO adsorption
at fcc-Pt7–3, LDA and GGA functionals predict higher redistributed π -electron pop-
ulation comparing with hybrid functionals and WFT. For most hybrid functionals,
the predicted redistributed π -electron population are within the range of 1.0–1.2 ex-
cept for the case of BHandHLYP and M05-2X (∼0.9). The predicted redistributed
π -electron population for HF and MP2 are 0.70 and 0.99, respectively. As can be
seen in Fig. 11.5(d) that for CO adsorption at fcc-Pt9–9–9, it can be found that the
B3PW91, PBE0, HSE03/06 and BMK functionals predict higher redistributed π -
electron population, and BHandHLYP predicts lower one (1.05) comparing with
other functionals. The predicted redistributed π -electron populations for most func-
tionals are within the range of 1.15–1.28. No observable dependence between the
redistributed π -electron population and CO S-T excitation energy can be found for
CO adsorption at fcc-Pt9–9–9.

Figure 11.6 shows the π -electron population transferred from metal with respect
to the CO singlet-triplet excitation energy for CO adsorption at top site and fcc
site on Pt7–3 and Pt9–9–9. As can be seen in Fig. 11.6(a) that for CO adsorption
at top-Pt7–3, the transferred π -electron population is decreased with the CO S-T
excitation energy increasing. Similar trends can also be seen in Fig. 11.6(b) that for
CO adsorption at top-Pt9–9–9. It implies that the effect of π -attraction through π -
back bonding is reduced with the CO S-T excitation energy increasing. In contrast,
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Fig. 11.5 The redistributed π -electron population of with respect to the singlet-triplet excitation
energy for CO adsorbed at (a) top-Pt7–3, (b) top-Pt9–9–9, (c) fcc-Pt7–3 and (d) fcc-Pt9–9–9

for CO adsorbed at fcc site on Pt7–3, it can be seen in Fig. 11.6(c) that the transferred
π -electron population is increased with the CO S-T excitation energy increasing.
Similar trends can also be seen in Fig. 11.6(d) for CO adsorption at fcc-Pt9–9–9. It
implies that the effect of π -attraction through π -back bonding is enhanced with the
CO S-T excitation energy increasing.

In summary, both the effects of σ -repulsion for CO adsorption at top and fcc
sites are reduced with the CO S-T excitation energy increasing. However, the effect
of σ -repulsion reduction for CO at top site is more remarkable than that for CO at
fcc site. In contrast, the effect of π -attraction is reduced with the CO S-T excitation
energy increasing for CO at top site, but enhanced for CO at fcc site. Even so, the
overall effect also supports CO favor to adsorb at top site when increasing the CO
S-T excitation energy.

11.4 Conclusion

Summarizing, we have evaluated the performance of HF, MP2 and 21 DFT func-
tionals including LDA, GGA, meta-GGA, hybrid-GGA and hyper-GGA for CO ad-
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Fig. 11.6 The π -electron population transferred from metal with respect to the singlet-triplet ex-
citation energy for CO adsorbed at (a) top-Pt7–3, (b) top-Pt9–9–9, (c) fcc-Pt7–3 and (d) fcc-Pt9–9–9

sorption on Pt(111) cluster. When adding more contribution of HF exchange energy,
it can be found that the HOMO energy is decreased and LUMO energy is increased,
thus increasing the HOMO-LUMO energy gap. The accuracy of S-T excitation en-
ergy can also be largely improved when increasing the ratio of HF exchange energy.

For CO adsorption at Pt7–3 cluster, it can be found that LDA, GGA and meta-
GGA all predict that CO favors to adsorb at fcc site. For the hybrid functionals with
low ratio of HF exchange energy (<40 %), it still predicts the fcc-site preference.
However, when adding more than 40 % HF exchange energy, half of the 8 DFT
functionals, including M06HF, BMK, wB97 and M06-2X, predict the top-site pref-
erence.

For CO adsorption at Pt9–9–9 cluster, all the hybrid functionals with low ratio
of HF exchange predict the fcc-site preference except the B3LYP functional. When
adding more than 40 % HF exchange energy, it can be found that the CO prefers
to adsorb at top site than fcc site. Among these functionals, the M06HF strongly
predicts the top-site preference.

The chemical bonding analysis shows that the effects of σ -repulsion are reduced
as the CO S-T excitation energy increasing, and the reduction of σ -repulsion for
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CO at top site is more remarkable than that for CO at fcc site. Therefore, CO would
more favor to adsorb at top site in those functionals which can give better CO S-T
excitation energy. Although the opposite trend can be found for the π -attraction, the
overall effect also supports CO favoring to adsorb at top site.
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Chapter 12
Hydrogen in Light-Metal Cage Assemblies:
Towards a Nanofoam Storage

Fedor Y. Naumkin and David J. Wales

Abstract Isomeric alternatives to usual metal-hydrides as hydrogen-storage mate-
rials are considered. Presented are results of ab initio calculations for Ben (n≤ 18)
clusters with up to two endohedral H2 molecules which undergo in-cage dissocia-
tion. The systems structures and stabilities are discussed, including energy barriers
for hydrogen exit from the cage. The origin of the observed metastability, allowing
for a lower-temperature release of H2, is explored. Preservation of the cage integrity
and hydrogen confinement is investigated when such core-shell units are merged
into larger assemblies structurally resembling fragments of hydrogen-filled metal
nanofoams, possible isomeric forms of metal-hydride solid. Different “nanofoam”
isomers are composed of pairs or single H atoms suspended electrostatically inside
the metal cage units (“nanobubbles”). Interesting features include simultaneous exit
of two H atoms, etc. Structural extrapolations suggest potential hydrogen storage
capacity up to ∼10 weight-%.

12.1 Introduction

Reliable storage of hydrogen with an easy release on demand is a bottleneck prob-
lem of hydrogen-based energy solutions. Solid metal hydrides (e.g. MgH2) offer
high capacity but are so far problematic due to strong metal-H bonds needing high
temperature (>300 °C for MgH2) for releasing H2 [1].

Corresponding clusters face similar problem, while being smaller and less rigid,
both factors reducing the hydrogen-desorption temperature—see, e.g., recent ad-
vances for MgH2-related species [2, 3]. Another class of such systems is represented
by mixed/doped metal clusters MnAk (M= Be, B, Al; A= Li, Na, Mg, B, P, etc.),
both physi- and chemisorbing hydrogen [4–7]. Here the hydrogen binding energies
can be close to estimated ideal ∼0.5 eV [1], larger or smaller up to negative values
(corresponding to metastable systems, e.g. for CAl12 or SiAl12 substrates [6, 7]),
usually with ad-/desorption barrier of ∼1 eV.
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In particular, H2 encapsulated in small Mgn cluster cages can form weakly bound
or even metastable species, although with a low storage capacity (∼1 weight-%) [8].
In order to try to improve the situation, the present work has two aims: (1) investigate
similar systems of a lighter metal, Be; (2) evaluate feasibility of merging them into
assemblies as a step to material.

Previous relevant work includes modeling adsorption of atomic H on solid Be
(see [9] and references therein). The desorption temperature for molecular hydro-
gen has been predicted as ∼450 °C, with the desorption energy of ∼1 eV, which
is even higher than for bulk MgH2. Another family of systems studied have been
BeH2 aggregates and “polymers” [10], for which species, however, the hydrogen
desorption temperature or energy has not been specified. The present work employs
the earlier results indicating cage isomers of small Ben clusters as most stable [11].

12.2 Computational Methods and Tools

Calculations have been carried out at the MP2/aug-cc-pvtz level, followed by the
standard counterpoise BSSE correction [12]. This level of theory is employed as im-
plemented in the NWChem ab initio package [13], and is preferred due to capability
to deal reliably with anticipated non-covalent interactions and strong charge-transfer
in the systems studied.

The system geometries have been fully optimized for all atomic coordinates, with
no constraints (for the C1 symmetry). Vibrational frequencies have been calculated
to verify local minima of energy. The Ben cages have been preoptimized, then hy-
drogen molecules have been put inside with different orientations, and the system
then reoptimized. The potential energy barriers (e.g. for hydrogen exit from the
cages) were estimated by pulling H in proper direction (e.g. through a gap between
Be atoms): an appropriate Be–H distance was fixed at a series of values and all the
other coordinates were reoptimized for each displacement.

Higher-spin states have been checked to confirm the ground state multiplicity.
Natural charges on atoms have been calculated using the natural bonding orbital
formalism [14].

12.3 Results and Discussion

12.3.1 H2@Ben

It is found that H2 molecule can be trapped inside small Ben clusters starting from
n= 8 [15]. In particular, this and n= 10 cages generally preserve their shapes en-
veloping the dihydrogen oriented along their symmetry axis. This is different from
the analogous case of Mg8 cage which changes its shape [8]. Inside the Be9 cage,
however, the inserted molecule is trapped perpendicular to the original symmetry
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Fig. 12.1 Optimized geometries of H2@Be8, H2@Be9, H2@Be10

Fig. 12.2 Optimized
geometries of higher-energy
isomers of H2@Be9 and
H2@Be10

axis of the cage which therefore transforms slightly, adopting a matching shape
(capped square antiprism) now axially symmetric around the molecule. In all these
cases, the H2 molecule dissociates into H atoms suspended electrostatically (nonco-
valently) in the cage (Fig. 12.1).

For n = 9 one H atom protrudes from the cage, while adding another axial Be
atom pushes it inside for n= 10. A higher-energy (by 1.7 eV relative to the isomer
with the protruding H atom), “sunken” isomer of H2@Be9 has both H atoms inside
the cage (Fig. 12.2), with a very low (∼0.04 eV) potential energy barrier separating
this isomer from the more stable one. Another, “radial” isomer of H2@Be10 with
the H2 molecule perpendicular to the cage axis is 0.7 eV higher in energy (relative
to the isomer with the axial orientation of H2), with the potential energy barrier for
turning the dihydrogen into axial orientation (in the lower-energy isomer) of only
∼0.06 eV.

The apparent reason for the H2 molecule to dissociate is a considerable charge-
transfer from the beryllium cage. According to calculations, each H atom is charged
by −1.5e and −1.3e for n = 8 and 10, respectively. The high negative charge is
apparently due to the number of Be atom neighbours donating the electron density.
This charge is much larger than −0.15e for analogous H2@Mg10 [8], contrary to
the opposite relation in the BeH and MgH diatoms as well as to the higher ionization
energy of Be, but consistent with considerably shorter Be–H distances in H2@Ben.
Accordingly, each Be atom is charged by +0.2e to +0.4e (Table 12.1).

For n= 9, the charge drops to −0.7e on the protruding H atom while remaining
at−1.2e on the other one, the system asymmetry producing an axial dipole moment
of 0.76 D. The two charges become about equal for the “sunken” isomer which,
however, exhibits a fourfold dipole value of 3.1 D. The “radial” isomer of H2@Be10
is also slightly polar (0.35 D) due to the introduced slight asymmetry.
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Table 12.1 Equilibrium parameters (in eV and Å) and atomic charges (in e) of H2@Ben

System Dtotal
e /Dea Re(H–H) Re(Be–H) Re(Be–Be) q(H) q(Be)

H2@Be8 11.41/−1.47 1.71 1.42 1.97–2.38 −1.56 0.36, 0.42

H2@Be9 17.30/1.44 1.96 1.68–1.87b 2.06–2.25 −1.19, −0.70c 0.17–0.32d

H2@Be10 18.98/−1.72 1.70 1.48–1.57b 2.13–2.22 −1.33 0.23, 0.41d

aFor H2@Ben→H2 + n Be /→H2 +Ben
bTo axial Be
cProtruding atom
dAxial atom

The Coulomb explosion of H2 upon the shell-to-core charge-transfer is confined
by the Ben cage, which is the reason of the metastability of H2@Ben for n= 8 and
10. These systems are, respectively, 1.5 and 1.7 eV higher in energy relative to the
isolated relaxed molecule and cage. The n= 9 system, however, allows one H atom
to stick outside, and, as a result, exhibits stability of 1.4 eV to such a dissociation.
The “sunken” isomer of H2@Be9 is thus nearly iso-energetic with the dissociation
products, such a stabilization relative to n = 8 and 10 being consistent with the
“magic” number (20) of valence electrons in H2@Be9.

Calculations predict a low barrier of∼0.06 eV for H atom to escape from the Be8
cage which then opens up and lets both hydrogen atoms to surface. The resulting
system is only marginally lower in energy (by 0.2 eV) than the original one, hence
still metastable. For n = 9, the further axial withdrawal of the protruding H atom
shows a similar barrier (∼0.08 eV), with the other H atom escaping to the surface
as well. The Be9 cage recovers its shape and the system further stabilizes by 1.3 eV
relative to the original one. For n= 10, however, the barrier experienced by H atom
on its way to the cage surface reaches 0.6 eV, the resulting system having almost the
same (marginally higher) energy as original H2@Be10. However, the cage distorts
and, as a result, the other hydrogen atom can leave the cage with almost no barrier.
This lowers the system energy by 2.2 eV, thereby making it stable by about 1 eV to
dissociation into Be10 and H2.

The relative stabilities of H2@Ben to dissociation into H2 + Ben are reflected
in their total dissociation energies Dtotal

e (into H2 + n Be) as compared to those for
respective Ben. Metastable H2@Be8 and H2@Be10 have Dtotal

e decreased relative to
the original cages by about 0.2 eV per Be atom, while H2@Be9 is stabilized by a
similar amount relative to relaxed Be9. The overall trend of Dtotal

e increasing with n
(in the range of 1.4–1.9 eV per Be atom) is, however, preserved (see Table 12.1).

12.3.2 (H2)2@Ben

Both H2@Be8 and H2@Be10 are employed as units in cluster assemblies [16].
Merging two n = 8 systems axially via two shared atoms produces (H2)2@Be14
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Fig. 12.3 Optimized geometries of (H2)2@Be14 and (H2)2@Be18

Fig. 12.4 Optimized geometries of “radial” (H2)2@Be18 and (H2)2@Be17

with slightly zig-zagging chain of four H atoms inside the Be14 cage (Fig. 12.3).
The system is triply more metastable, being 4.3 eV above the relaxed cage plus two
hydrogen molecules, as compared to H2@Be8, while the barrier for escape of H
remains about same.

A similar situation is found when axially merging two n= 10 units while remov-
ing two Be atoms. In fact, the resulting system resembles two H2@Be9 units joined
by their open ends, with protruding H atoms being pushed back inside (Fig. 12.3).
The system is twice as high in energy (by 3.4 eV) relative to relaxed Be18 + 2H2
as H2@Be10 relative to Be10 + H2, the difference from the (H2)2@Be14 versus
H2@Be8 case being due to longer distances between the hydrogen anions (Ta-
ble 12.2).

The higher-energy isomers of H2@Be10 can also be merged in a similar way, in
which case, however, the resulting (H2)2@Be18 isomer is only 2.4 eV above Be18+
2H2, i.e. significantly lower in energy than the previous isomer. The apparent reason
of this is a larger distance between the hydrogen diatoms oriented perpendicularly,
even though each “radial” H2@Be10 unit is higher in energy.

Finally, two H2@Be10 units have been merged via a shared triatomic Be3 face
at their ends, with the units twisting relative to one another to adopt a staggered
arrangement of atoms at the other ends. The resulting (H2)2@Be17 system is com-
posed of a C-shaped chain of four H atoms inside a bent Be17 cage (Fig. 12.4). An
interesting feature of this species is its almost identical metastability (about 1.7 eV
higher in energy than relaxed Be17 + 2H2) as compared to that of H2@Be10.

In all above systems, the charges on the H atoms only slightly reduce (by 0.2e
for (H2)2@Be14 and 0.1e for the H2@Be10-based species) relative to those in the
respective units (Table 12.2). This, together with shorter distances between the hy-
drogen anions in (H2)2@Be17 as compared to “radial” (H2)2@Be18, could not ex-
plain such a stabilization of the former. One possible interpretation could be based
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Table 12.2 Equilibrium parameters (in eV and Å) and atomic charges (in e) of (H2)2@Ben

System Dtotal
e /n; Dea Re(H–H) Re(Be–H) Re(Be–Be) q(H) q(Be)

(H2)2@Be14 1.73; −4.25 1.46b, 1.63 1.39–1.72 1.95–2.58 −1.27, −1.30c 0.15–0.46d

(H2)2@Be18 2.08; −3.45 1.80, 1.82b 1.48–1.67 2.05–2.48 −1.15c, −1.23 0.04–0.38d

“Radial” 2.14; −2.36 1.56 1.37–1.62 2.09–2.46 −1.22 0.05–0.43d

(H2)2@Be17 2.14; −1.71 1.74–1.78b 1.45–1.78 2.05–2.35 −1.16c, −1.20 0.09–0.45e

a→ 2H2 + nBe;→ 2H2 +Ben
bBetween inner H atoms
cInner H atoms
dOutermost Be atoms
eInnermost shared Be atom

on the specific structure with Be atoms located between H atoms and resulting in
a charge distribution “negative-positive-negative” creating a significant quadrupole
moment of such a layered centre polarizing the outer beryllium atoms.

In addition, the (H2)2@Be17 system exhibits a significant stability to the hydro-
gen escape from the cage, with the potential energy barrier of 0.3 eV. This is a half
of the barrier for the H2@Be10 unit, the reduction likely being due to increased
repulsion between the larger number of closely-spaced hydrogen anions.

Further 1D structural extension of the above (H2)2@Be14 and (H2)2@Be18 sys-
tems into a beryllium “nanotube” with a hydrogen “wire” inside by adding more
units would lead to the hydrogen storage capacity up to 3.6 and 2.7 weight-% (one
H per three and four Be), respectively. This value could be increased via merging
the units by their sides as well, i.e. for 2D and 3D extensions. In particular, when
the (H2)2@Be10 units are merged by a shared Be3 face at their ends, as in the above
(H2)2@Be17 system, the storage capacity is evaluated to have an upper limit of
about 8 weight-%.

12.3.3 Hk@Ben

Since H2 dissociates in Ben, encapsulation of separate H atoms in such cages has
been considered as well [17]. The Be6 cluster is found to be the smallest one
able to accommodate an H atom inside. The centrally positioned hydrogen atomic
core transforms the beryllium shell from a bipyramid into a perfect octahedron
(Fig. 12.5). Unlike the metastable H2@Be10 counterpart, the system is stable to
dissociation into relaxed Be6 + H by appreciable 1.7 eV. The isomers with H at-
tached to Be6 outside are more stable (bound by 3 eV), both Be2-edge and Be3-face
sites being nearly degenerate (within 0.1 eV). The barrier for the hydrogen exit from
the cage is found to be 0.5 eV.

In endohedral H@Be6, the H atom is charged by −0.95e, which is only slightly
more negative than −0.8e for the other, HBe6 isomers. The charge on H is smaller
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Fig. 12.5 Optimized geometries of endohedral H@Be6 and two HBe6 isomers

Fig. 12.6 Optimized geometries of (2H)@Be9, (2H)@Be10, and (2H)@Be11

than in H2@Be10, even though in the latter case each hydrogen atom has less neigh-
bouring electron-density donors.

The stability of the H@Be6 species suggests a possibility of building larger
assemblies from such blocks. Merging two H@Be6 units via a shared Be3 face
produces a (2H)@Be9 species with the units distorted but generally preserved
(Fig. 12.6). The repulsion of two hydrogen anions makes the system metastable,
1.2 eV above relaxed Be9 +H2, hence a higher-energy isomer relative to the above
H2@Be9. When empty, the relaxed beryllium cage generally preserves its shape
of two face-merged Be6 units, as a higher-energy isomer of Be9. Due to strain in
the system, the barrier for H exit from the cage reduces to 0.2 eV. The two hydro-
gen centres close to one another in (2H)@Be9 carry significantly increased negative
charges as compared to H@Be6, −1.4e on each, in spite of the smaller number of
Be atoms per H. The system has a small dipole moment of 0.2 D, close to that for
the (H2)@Be17 counterpart.

When two H@Be6 units are merged via a shared Be2 edge, a (2H)@Be10 system
is produced (Fig. 12.6), with the shared edge stretched. The H anions are slightly
further apart as compared to (2H)@Be9 (see Table 12.3), which stabilizes the sys-
tem which is now 0.8 eV above relaxed Be10 + H2. This value is a half that for
(H2)@Be10, but is relative to the relaxed empty beryllium cage preserving its shape
of two Be6 edge-sharing units, which is a higher-energy isomer of Be10. As a result,
(2H)@Be10 remains 1.9 eV higher in energy as compared to (H2)@Be10. The po-
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Table 12.3 Equilibrium parameters (in eV and Å) and atomic charges (in e) of (kH)@Ben

System Dtotal
e

a/n; Deb Re(H–H) Re(Be–H) Re(Be–Be) q(H) q(Be)

H@Be6 1.56; 1.72 1.51 2.13 −0.95 +0.08–0.31

(2H)@Be9 1.62; −1.19 1.68 1.50–1.72 2.14–2.43 −1.38 +0.15–0.42

(2H)@Be10 1.71; −0.77 1.95 1.51–1.58 1.96–2.48 −1.26 −0.08–+0.40

(2H)@Be11 1.94; −1.52 1.71 1.51–2.01 2.01–2.24 −1.21 +0.11–0.35

(3H)@Be11 1.99; 0.41 1.67 1.52–1.69 1.99–2.32 −1.36 +0.16–0.46

a(kH)@Ben→ nBe+H/H2/(H+H2) for k = 1/2/3
b(kH)@Ben→ Ben +H/H2/(H+H2) for k = 1/2/3

Fig. 12.7 Optimized
geometry of (3H)@Be11

tential energy barrier between the two isomers is 0.15 eV, and this isomerization
occurs along the pathway followed by H atom exiting the cage.

An attempt to separate the H anions even further by merging two H@Be6 units
via a shared atom results in a collapse of the units into a Be11 cage encapsulating
both H atoms (Fig. 12.6). The (2H)@Be11 system is metastable, being higher in
energy than relaxed Be11 + H2 by 1.5 eV which is the largest value among those
for (2H)@Ben, n = 9–11. The Be–Be interactions holding the cage together thus
overcome the repulsion of the hydrogen anions. The charges on the H atoms slightly
decrease with increasing n (Table 12.3), to−1.2e for n= 11, opposite to the number
of the donating Be atoms. The asymmetry of the cage leads to a small dipole moment
of 0.34 D.

As a next step, a third H@Be6 unit is merged to (2H)@Be9 via two shared Be3
faces, leading to a D3h-symmetric (3H)@Be11 assembly with three H atoms forming
an equilateral triangle (Fig. 12.7). The beryllium frame keeps its shape when empty,
the (3H)@Be11 system being weakly stable by 0.4 eV to dissociation into relaxed
Be11 +H2 +H. Such a stabilization of (3H)@Be11 can be viewed as being due to
combination of metastable (2H)@Be9 and stable H@Be6. An alternative channel is
represented by dissociation into (2H)@Be11 + H, in which case the above n = 11
species with two H atoms is recovered. These products correspond to the dissocia-
tion energy of 0.6 eV. The barrier for H atom exit from the cage is back to 0.5 eV
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(as for H@Be6), apparently due to a lower strain in the beryllium cage. The charge
on each of the H atoms is −1.4e, same as for (2H)@Be9.

Similar to (H2)@Ben, the relative stabilities of the above (kH)@Ben systems
to separation into the hydrogen and beryllium components translate into their total
dissociation energies Dtotal

e (corresponding to Ben dissociated into atoms). Inserting
H into Be6 and H + H2 into Be11(D3h) stabilizes these clusters, significantly (by
0.3 eV per Be atom) for the former and slightly for the latter. While insertion of H2
into Be9, Be10 and Be11 destabilizes them by about 0.1 eV per Be atom. Overall,
the Dtotal

e values increase with the system size, as for (H2)@Ben, from 1.6 to 2 eV
per Be atom (Table 12.3).

12.4 Conclusions

Beryllium cluster cages form metastable (by a few eV) core-shell systems when
endohedrally doped by molecular hydrogen dissociating due to a strong electron
donation from, and confined in, the cage. When small H2@Ben units are merged
together, they can generally preserve shapes and integrity in the larger assem-
blies. In some cases, this can result in a further stabilization of the system, as for
(H2)2@Be17. Another feature is a possible higher stability of the assemblies com-
posed of higher-energy isomers of the units, as for (H2)2@Be18. Energy barriers to
extraction of H2 can be low (∼0.1 eV for n= 8, 9, 14) to appreciable (∼0.6 eV for
n= 10), suggesting low-temperature conditions for stabilization. Extraction of both
H atoms at once is more likely.

The metastability may offer two benefits: (1) easier release of hydrogen, (2) di-
rect storage of extra energy (∼0.5–2 eV per H2 molecule here). Hydrogen stor-
age capacity can be increased in cluster assemblies/materials, e.g. nanofoams. This
is confirmed for face-sharing H2@Be10 units, with extrapolated upper bound of
∼8 weight-%. Feasibility of such materials is supported experimentally by a recent
progress reported for Mg [18].

Such an endohedral doping may also offer options for modification of mechani-
cal and electronic characteristics (shape, dipole moment) of clusters. This suggests
potential applications in nanomaterials and molecular electronics.

Be6 is able to accommodate H atom inside and is significantly stable (by ∼2 eV)
to its release. This stability can be reduced by design via merging such units into as-
semblies which are metastable to release of molecular H2, with a desorption barrier
of ∼0.5 eV (matching the suggested ideal binding energy [1]). Hydrogen storage
capacity of such systems extrapolated to a nanofoam material, composed of face-
sharing H@Be6 units filling space, can reach ∼10 weight-%. This may exceed the
value for the counterparts with encapsulated H2 (e.g. inside Be10 units) due to higher
symmetry and better packing.

Such cluster-assembled materials could be more straightforward to develop than
macro-assemblies of clusters preserving multiple surface sites for external binding
of H2 molecules. Firm conclusions, however, would benefit from relevant experi-
ments as well as modelling of molecular dynamics related to hydrogen entering and
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exiting the cages, in particular for refilling the nanofoam. It is hoped that the present
work will stimulate such studies in the near future.
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Chapter 13
A Theoretical Study on a Visible-Light
Photo-Catalytic Activity in Carbon-Doped
SrTiO3 Perovskite

Taku Onishi

Abstract Carbon-doping has been explored to enhance the visible-light photocat-
alytic activity in SrTiO3 perovskite. Here, we considered carbon anion (C2−)-doping
at oxygen site, because no oxygen vacancy is then formed. From our density func-
tional theory (DFT) calculations for carbon anion-doped cluster models, it was
found that carbon anion-doping enhances the visible-light photocatalytic activity,
realizing a stable crystal structure. Finally, we concluded that carbon anion-doped
SrTiO3 is one of the best visible-light active photocatalysts.

13.1 Introduction

Hydrogen has been considered as one of the next-generation energy resources. Hy-
drogen is generally produced by steam reforming of natural gas. Recently, it has
been much expected that hydrogen is produced from water splitting by a photocat-
alyst. Titanium oxides such as SrTiO3 perovskite [1–3] and TiO2 [4, 5] have been
widely utilized as photocatalysts. SrTiO3 has a large bandgap (3.27 eV) [6], corre-
sponding to absorption of ultraviolet (UV) light which is less than 5 % of sunlight.
To use the whole spectrum of sunlight effectively, visible-light active photocatalysts
have been explored.

Previously, we investigated the effect of nitrogen-doping to enhance a visible-
light photocatalytic activity of SrTiO3, by the use of molecular orbital (MO) cal-
culation [7–9]. Experimental works reported that nitrogen anion-doping (N3−) at
oxygen site realizes the high visible-light photocatalytic activity, as the decreased
bandgap corresponds to visible light region [10, 11]. However, oxygen vacancy is
accompanied by nitrogen-doping, to compensate charge. We concluded that photo-
catalytic activity becomes inactive, when oxygen vacancy exists in the vicinity of
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Fig. 13.1 (a) The crystal
structure of SrTiO3
perovskite, and (b) CO2 and
CO2−

3 formation around
doped carbon

doped nitrogen [9]. It is because bandgap becomes much smaller, due to the direct
chemical bonding between titanium atoms.

We consider carbon-doping for SrTiO3, as an alternative to nitrogen-doping. Car-
bon cation-doping (C4+) at titanium site can be considered [12]. However, carbon
cation-doping is unrealistic for SrTiO3 and TiO2 photocatalysts. It is because the
elimination reaction of CO2 or CO2−

3 [13] can be easily caused, due to the stable
double bond (C=O) formation, as shown in Fig. 13.1. On the other hand, in TiO2, it
was reported that carbon anion (C2−)-doping at oxygen site lowers the bandgap, and
enhances a visible-light photocatalytic activity [14, 15]. In SrTiO3, as the photocat-
alytic activity of carbon anion-doped SrTiO3 has not been investigated enough, we
perform carbon anion (C2−)-doping at oxygen site. In general, carbon has a strong
covalency with transition metals such as titanium, in comparison with nitrogen and
oxygen [16]. However, the details of chemical bond formation between titanium
and carbon are still unclear. In this study, we perform hybrid density functional the-
ory (DFT) calculations to examine a visible-light photocatalytic activity in carbon
anion-doped SrTiO3.

13.2 Theoretical Background

13.2.1 Onishi Chemical Bonding Rule

MO analysis is very useful to examine the mechanism of chemical bonding forma-
tion. Beyond Kanamori-Goodenough rule, Onishi chemical bonding rule [7] (see
Fig. 13.2) can be applicable to judge chemical bonding character (covalency or ion-
icity) for strongly correlated M–X–M system (M= transition metal, X=O, F etc.).

1. In MOs including outer shell electrons, check whether the orbital overlap be-
tween M and X exists or not.
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Fig. 13.2 The schematic
picture of Onishi chemical
bonding rule

2. With orbital overlap, bonding character is covalent. Without orbital overlap,
bonding character is ionic.

13.2.2 Calculation Method

The calculations presented here have been performed using BHHLYP hybrid DFT
method [17], which properly reproduces the electronic structure of the strongly cor-
related perovskite-type transition metal oxides. In hybrid DFT, the total exchange
and correlation energies are given by

EXC = C1E
HF
X +C2E

Slater
X +C3E

Becke
X +C4E

VWN
C +C5E

LYP
C (13.1)

where EHF
X , ESlater

X , EBecke
X , EVWN

C and ELYP
C denote HF exchange, Slater exchange,

Becke exchange, VWN correlation and LYP correlation, respectively. C1 coeffi-
cients are 1.0, 0.5, 0.2 and 0.0 in Hartree-Fock (HF), BHHLYP, B3LYP and BLYP,
respectively. We have used the Tatewaki–Huzinaga MINI basis [18] for titanium
and strontium, combined with the 6–31G(d) basis for oxygen and carbon. All cal-
culations were performed with the GAMESS program [19]. MOs have been plotted
using MOLEKEL 4.3 [20].

13.2.3 Bandgap Estimation

Previously, we demonstrated a theoretical approach to estimate the bandgap quan-
titatively for the strongly correlated perovskite-type titanium oxide by the use of
MO [7–9]. Bandgap is defined as the orbital energy difference between highest oc-
cupied MO (HOMO) and lowest unoccupied MO (LUMO), as shown in Fig. 13.3.
In the case of SrTiO3, HOMO and LUMO correspond to oxygen 2p valence band
and titanium 3d conduction band, respectively. It is known that bandgap is very sen-
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Fig. 13.3 The schematic
picture of bandgap definition:
(a) molecular orbital (MO),
(b) band structure

sitive to the coefficient of HF exchange term (C1) in hybrid DFT [7, 8]. As bandgap
is proportional to C1, the corrected bandgap (Δ) can be practically estimated from
the calculated one by BHHLYP (ΔBHHLYP).

Δ= kΔBHHLYP (13.2)

In SrTiO3, the scaling factor (k) was determined to be 0.73 [7, 8].

13.2.4 Calculation Model

Our cluster model approach is not only applicable for bandgap estimation but also
useful to examine the relationship between bandgap and chemical bond formation
related to doped defect (In this case, carbon). In fact, we illustrated that Ti–Ti and
Ti–N–Ti bondings affect bandgap in oxygen vacancy-doped and nitrogen-doped
SrTiO3, respectively [7–9].

SrTiO3 has a simple cubic structure, with a lattice parameter (the Ti–O–Ti
distance) of 3.905 Å [21]. We constructed mono-carbon-doped SrTi8O11C and
di-carbon-doped SrTi8O10C2 models, to examine the effect of carbon-doping
on bandgap. Referring to Fig. 13.4, one divalent carbon anion is introduced in
SrTi8O11C model. Two divalent carbon anions are introduced in SrTi8O10C2 (I) and
SrTi8O10C2 (II) models, where two carbon atoms are allocated in parallel. It is be-
cause a large structural strain occurs if second carbon atom is doped at neighbouring
oxygen position, and two carbon atoms are allocated in anti-parallel. It is considered
that Ti–C–Ti bonding forms a strong covalent bonding, due to a strong covalency
of doped carbon. In this study, we investigate the change of orbital energy, when
titanium atoms in Ti–C–Ti are displaced along z axis.
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Fig. 13.4 The carbon-doped cluster models for SrTiO3 perovskite: (a) mono-carbon doped
SrTi8O11C model, (b) di-carbon doped SrTi8O10C2 (I) model, (c) di-carbon doped SrTi8O10C2
(II) model. The arrows depict a titanium displacement direction

Fig. 13.5 (a) Potential energy curve and (b) bandgap change in SrTi8O11C model, displacing
titanium atom along z axis. r is the displacement distance from the initial lattice position

13.3 Results and Discussion

13.3.1 Mono-Carbon-Doping

Figure 13.5(a) shows the potential energy curve in SrTi8O11C model, displacing
titanium atom from the initial lattice position along z axis. The minimum total en-
ergy was given at r = 0.10 Å (Ti–C= 2.15 Å). Mulliken charge densities of doped
carbon and titanium neighbouring carbon are−0.25 and 1.94, respectively. It is con-
cluded that the weak ionic bonding between titanium and carbon is responsible for
the structural relaxation such as Ti–C elongation. In order to examine the relation-
ship between bandgap and structural relaxation, we calculated bandgap, displacing
titanium atom from the initial lattice position along z axis, as shown in Fig. 13.5(b).
It is found that bandgap decreases when Ti–C is elongated or shrinks. At the local
minimum (r = 0.10 Å), bandgap is 2.41 eV (513 nm), corresponding to a visible
light region (see Fig. 13.6).
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Fig. 13.6 The schematic
picture of the relationship
between wavelength and
bandgap in a visible light

Fig. 13.7 The figures of
selected molecular orbitals
(MOs) and corresponding
energy diagram at the local
minimum for SrTi8O11C
model

Figure 13.7 depicts the figures of selected MOs and corresponding energy di-
agram at the local minimum for SrTi8O11C model. The π -type Ti–C–Ti covalent
bonding in HOMO is the impurity level of carbon. HOMO-1 and LUMO are va-
lence band and conduction band, respectively. It is concluded that visible light ab-
sorption energy corresponds to the orbital energy difference between impurity level
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Fig. 13.8 The potential energy curves in (a) SrTi8O10C2 (I) and (b) SrTi8O10C2 (II) models,
coincidently displacing titanium atoms along z axis. r is the displacement distance from the initial
lattice position

(HOMO) and titanium 3d conduction band (LUMO). In MO132 and MO142, σ -
type orbital overlap exists between titanium 3dz2 orbital and carbon 2pz orbital.
From Onishi chemical bonding rule, a strong covalent bonding is formed in Ti–C–
Ti of SrTi8O11C model. However, it is concluded that Ti–C–Ti covalent bonding is
not strong enough to cause an elimination reaction, because of Ti–C elongation.

Let us explain bandgap change from the viewpoint of MO. At r > 0, HOMO
orbital energy is unstabilized and LUMO orbital energy is unchanged. The orbital
overlap between titanium and carbon in HOMO becomes smaller by Ti–C elonga-
tion. As the result, bandgap decreases, when r increases. On the other hand, at r < 0,
HOMO orbital energy is stabilized and LUMO orbital energy is also stabilized. As
covalencies of HOMO and LUMO become larger by Ti–C shrink, the two effects
are competitive. As the result, bandgap decreases in SrTi8O11C model.

13.3.2 Di-Carbon-Doping

Figures 13.8(a) and 13.8(b) show the potential energy curves in SrTi8O10C2 (I) and
SrTi8O10C2 (II) models, coincidently displacing titanium atoms from the initial lat-
tice position along z axis. The minimum total energies were given at r = 0.10 Å
(Ti–C = 2.15 Å) in both curves. Mulliken charge densities of doped carbon and
titanium neighbouring carbon are −0.26 and 1.93 in SrTi8O10C2 (I) model, respec-
tively. On the other hand, those are −0.25 and 1.94 in SrTi8O10C2 (II) model, re-
spectively. As same as mono-carbon-doped case, it is concluded that the weak ionic
bonding between titanium and carbon is responsible for the structural relaxation
such as Ti–C elongation. At the local minimum (r = 0.10 Å), bandgap is 2.23 eV
(556 nm) in SrTi8O10C2 (I) model and 2.40 eV (517 nm) in SrTi8O10C2 (II) model,
corresponding to a visible light region (see Fig. 13.6).

Figure 13.9(a) depicts the figures of selected MOs and corresponding energy dia-
gram at the local minimum for SrTi8O10C2 (I) model. HOMO-2 and LUMO+1 cor-
respond to valence band and conduction band, respectively. LUMO and LUMO+1
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Fig. 13.9 The figures of selected molecular orbitals (MOs) and corresponding energy diagram at
the local minimum for (a) SrTi8O10C2 (I) and (b) SrTi8O10C2 (II) models

are degenerated, though the π -type Ti–C–Ti covalent bondings are only formed in
LUMO. The π -type Ti–C–Ti covalent bondings in HOMO and HOMO-1 are to the
impurity level. It is concluded that a visible light absorption energy corresponds
to the orbital energy difference between impurity level (HOMO) and titanium 3d
conduction band (LUMO+1). In MO141, titanium 3dz2 orbitals have σ -type and π -
type orbital overlaps with carbon 2pz orbital and oxygen 2pz orbital, respectively.
In MO140, σ -type orbital overlaps exist between titanium 3dz2 orbital and carbon
2pz orbital. Figure 13.9(b) depicts the figures of selected MOs and corresponding
energy diagram at the local minimum for SrTi8O10C2 (II) model. HOMO-2 and
LUMO correspond to valence band and conduction band, respectively. The π -type
Ti–C–Ti covalent bondings in HOMO and HOMO-1 are the impurity level. It is con-
cluded that a visible light absorption energy corresponds to the orbital energy differ-
ence between impurity level (HOMO) and titanium 3d conduction band (LUMO).
In MO131, MO132, MO139 and MO141, σ -type orbital overlaps exist between ti-
tanium 3dz2 orbital and carbon 2pz orbital. From Onishi chemical bonding rule, a
strong covalent bonding is formed in Ti–C–Ti of SrTi8O10C2 (I) and SrTi8O10C2

(II) models. However, it is concluded that Ti–C–Ti covalent bonding is not strong
enough to cause an elimination reaction, because of Ti–C elongation.
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Fig. 13.10 The schematic
picture of Ti–C elongation in
the carbon-doped SrTi8O11C
unit and Ti–O shrink in the
neighbouring SrTi8O12 unit.
The arrows depict a titanium
displacement direction

13.3.3 Concentration of Carbon-Doping

Let us explain the relationship between bandgap and concentration of carbon-
doping. The orbital energy difference between valence band and conduction band
is getting larger, when the concentration of carbon-doping is higher. In SrTi8O12,
SrTi8O11C, SrTi8O10C2 (I) and SrTi8O10C2 (II) models, they are 3.27 eV, 3.43 eV,
3.57 eV and 3.73 eV, respectively. However, bandgap decreases, due to the existence
of carbon 2p impurity level. The smallest bandgap (2.23 eV) is given in SrTi8O10C2

(I) model. It is because HOMO is more unstabilized, due to the anti-bonding cova-
lent bonding between titanium 3d orbital and oxygen 2pz orbital. The bandgap of
SrTi8O10C2 (II) model (2.40 eV) is as same as SrTi8O11C model (2.41 eV), though
the orbital energy difference between valence band and conduction band is larger
in SrTi8O10C2 (II) model. It is because HOMO is more unstabilized in SrTi8O10C2

(II) model, due to the scare orbital overlap between titanium 3d orbital and carbon
2p orbital.

13.3.4 Effect of Structural Relaxation

As shown in Fig. 13.10, in carbon-doped SrTiO3, Ti–C elongation and Ti–C shrink
along z axis occur in carbon-doped SrTi8O11C unit and neighbouring SrTi8O12 unit,
respectively. Figure 13.11 depicts three types of Ti–O shrinks in SrTi8O12 model,
corresponding to Ti–C elongations in SrTi8O11C, SrTi8O10C2 (I) and SrTi8O10C2

(II) models.
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Fig. 13.11 The three types of Ti–O shrinks in SrTi8O12 model, corresponding to Ti–C elongations
in (a) SrTi8O11C, (b) SrTi8O10C2 (I) and (c) SrTi8O10C2 (II) models. The arrows depict a titanium
displacement direction

Figure 13.12 shows the potential energy curves for three types of Ti–O shrinks,
displacing titanium atoms from the initial lattice position along z axis. The min-
imum total energies are given at r = −0.1 Å in all curves. Ti–C elongation and
Ti–O shrink coincidently occur in carbon-doped SrTi8O11C unit and neighbour-
ing carbon-undoped SrTi8O12 unit, respectively. Hence, it is concluded carbon
anion-doped SrTiO3 has a stable crystal structure. In addition, bandgap change is
slight, when titanium atoms are displaced in SrTi8O12 model. At the local minima,
bandgaps are 3.29 eV, 3.32 eV and 3.34 eV for (a), (b) and (c) types of Ti–O shrinks,
respectively.

13.4 Concluding Remarks

13.4.1 General Conclusions

We performed hybrid DFT calculations to examine a visible-light photocatalytic
activity in carbon anion-doped SrTiO3 perovskite. The potential energy curve,
bandgap and MO were obtained. We concluded as follows.

1. Ti–C–Ti covalent bonding is formed.
2. Ti–C elongation occurs, due to the weak ionic bonding between titanium and

carbon.
3. Ti–C–Ti covalent bonding is not strong enough to cause an elimination reaction,

because of Ti–C elongation.
4. Bandgap is in the range between 2.23 eV and 2.41 eV, corresponding to a visible

light region.
5. A stable crystal structure is realized, due to Ti–C elongation in SrTi8O11C unit

and Ti–O shrink in SrTi8O12 unit.
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Fig. 13.12 The potential
energy curves for three types
of Ti–O shrinks in SrTi8O12
model, corresponding to Ti–C
elongations in (a) SrTi8O11C,
(b) SrTi8O10C2 (I) and
(c) SrTi8O10C2 (II) models.
Titanium atoms are displaced
along z axis. r is the
displacement distance from
the initial lattice position

13.4.2 Comparison with Nitrogen-Doping

In nitrogen-doped SrTiO3, we concluded that oxygen vacancy leads the degradation
of visible light photocatalytic activity [9]. On the other hand, in LaTiO2N perovskite
with a bandgap of 2.1 eV [22], no oxygen vacancy is formed. However, it is consid-
ered that the local strain by the covalent Ti–N–Ti bonding cannot be negligible. It
may be difficult for LaTiO2N to obtain a stable structure.

In carbon-doped SrTiO3, no oxygen vacancy is formed. The stable structure is
kept, as the alternate Ti–C–Ti elongation and Ti–O–Ti shrink are caused. We con-
cluded that carbon anion-doped SrTiO3 is one of the best photocatalysts, from the
viewpoints of both a visible light photocatalytic activity and structural stability. The
efficient synthesis of carbon anion-doped SrTiO3 perovskite should be explored.
This work is in progress.
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Chapter 14
A Theoretical Study on Proton Conduction
Mechanism in BaZrO3 Perovskite

Taku Onishi and Trygve Helgaker

Abstract Hybrid Kohn-Sham calculations were performed to clarify the proton
conduction mechanism in BaZrO3 perovskite, from the viewpoint of energetics and
bonding. The calculated activation energy for proton conduction was much larger
than the experimental one. It is because O–H covalent bonding formation affects the
low-frequency real part in AC impedance spectra. The higher proton conductivity in
wet condition is derived from “proton pumping effect”. We concluded that N-doping
at oxygen site enhances the proton conductivity, due to the existence of much hy-
drogen atoms. We also investigated hydrogen defect around zirconium vacancy.

14.1 Introduction

The perovskite-type cubic BaZrO3 shows proton conductivity in high temperature
range (over 500 K) [1]. Many experimental [2–7] and theoretical [8–12] works were
performed to investigate the proton conduction mechanism. Two proton conduction
paths were theoretically proposed [10–12]. However, our previous studies [13, 14]
discovered that three different proton conduction paths exist in cubic SrTiO3 per-
ovskite.

Figure 14.1 shows three proton conduction paths in BaZrO3 perovskite: O–O
diagonal path, two-dimensional O–H rotation within Zr4O4 square, and three-
dimensional (3D) O–H rotation cross Zr4O4 square. The 3D O–H rotation was
neglected in other previous studies. In general, pure Kohn-Sham methods such as
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Fig. 14.1 The three proton
conduction paths in cubic
BaZrO3 perovskite:
two-dimensional O–H
rotation within Zr4O4 square,
O–O diagonal path, and
three-dimensional O–H
rotation cross Zr4O4 square

GGA, LDA and BLYP underestimate bandgap, and overestimate orbital overlap be-
tween transition metal and oxygen, due to neglecting the delocalization effect [15].
It is considered that pure Kohn-Sham method underestimates or overestimates acti-
vation energy. In this study, we calculated activation energy by several hybrid Kohn-
Sham methods.

Many experimental studies have estimated activation energy from AC impedance
spectra [3, 5, 7]. In wet (dry) condition, it is in 0.44–0.49 eV (0.71–0.80 eV) range.
The experimental values are the same as lithium ion conductive perovskite at room
temperature (below 0.4 eV) [15–17]. Hybrid Kohn-Sham method provides a rea-
sonable activation energy. However, the operation temperature is much higher than
lithium ion conduction. Here, we reconsider the calculated large activation energy
for proton conduction, from the viewpoint of O–H covalent bonding formation.

In dry condition, H+ dissolves directly to oxygen anion. On the other hand, in
wet condition, OH− and H+ from water dissolve into an oxygen vacancy and an
oxygen site, respectively:

H2O+V••O +OXO → 2OH•. (14.1)

It is considered that proton conduction starts form the stable O–H position. We
investigate the effect of OH conduction through oxygen vacancy on proton conduc-
tion. We also discuss the effect of Y-doping and Sc-doping, which are performed to
introduce an oxygen vacancy, on proton conduction.

Previously, we concluded that nitrogen doping at oxygen site enhances proton
conductivity in SrTiO3 perovskite [13]. It is because much hydrogen atoms as a part
of NH2− enhances proton conductivity. We discuss the effect of nitrogen doping at
oxygen site on proton conductivity.

Hydrogen defects in proton conductors have attracted much scientific interest,
due to difficulty of characterizing hydrogen defects in experimental measurement.
Recently, Norby et al. investigated hydrogen defects in rutile-type TiO2 by band cal-
culations using hybrid Kohn-Sham method [18, 19]. It was concluded that titanium
vacancy and OH defects are created under oxidizing conditions.

2H2O+ 2OXO → V ′′′′Ti + 4OH•O. (14.2)

They investigated the number of OH defects around titanium vacancy and forma-
tion enthalpies. However, the details of O–H covalent bonding formation around
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titanium vacancy, and proton conduction mechanism related to O–H defect are still
unknown. In BaZrO3 perovskite, zirconium vacancy and O–H defects are created
under oxidizing conditions in the same manner.

2H2O+ 2OXO → V ′′′′Zr + 4OH•O. (14.3)

In this study, we investigate the effect of a hydrogen defect around zirconium va-
cancy on proton conductivity, from energetics and bonding.

14.2 Computation

14.2.1 Calculation Method

The calculations presented here were performed using the BHHLYP hybrid Kohn-
Sham method [20], which properly reproduces the electronic structure of the
strongly correlated perovskite-type transition metal oxides. In BHHLYP theory, the
total exchange and correlation energy is expressed by 50 % Hartree-Fock (HF) ex-
change, 50 % Becke exchange and LYP correlation energies. Previously, we demon-
strated that bandgap and effective exchange integral depend on HF exchange co-
efficient [21, 22] because M–O (M = transition metal) bonding character is con-
trolled by localization effect. In this study, HF, B3LYP and BLYP theories with
100 %, 20 % and 0 % HF exchange, respectively, was also used to investigate
the dependence of localization effect on activation energy. We used the Tatewaki-
Huzinaga MINI basis [23] for zirconium, barium, yttrium and scandium, combined
with the 6-31G(d) basis for oxygen and hydrogen. All calculations were performed
with the GAMESS program [24]. The molecular orbitals (MOs) were plotted using
MOLEKEL 4.3 [25].

14.2.2 Calculation Model

BaZrO3 has a simple cubic structure, with a lattice parameter (the Zr–O–Zr dis-
tance) of 4.20 Å [26]. In our previous work, several ionics models were constructed
to investigate an ionic conduction in perovskite-type solids [13–16, 27, 28]. The po-
sitions of the atoms in perovskite-type solids were kept fixed while the conductive
ions migrated inside these models. To introduce hydrogen atom in BaZrO3 per-
ovskite, trivalent cation or trivalent anion is doped at zirconium or oxygen site,
respectively. As the doped concentration is below 10 %, the pseudo-cubic structure
can be adapted to construct cluster models.

Ba2Zr4O4H model was constructed to investigate the energetics and bonding in
three proton conduction paths (see Fig. 14.2). In our ionics models [27], counter
cation (in this case, barium) is included. It is because it participates in O–H and
O–H–O bond formation. Figure 14.3 illustrates four proton conduction paths in
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Fig. 14.2 The proton
conductive ionics model
Ba2Zr4O4H

Fig. 14.3 The four proton
conduction paths in
Ba2Zr4O4H model: (a) O–O
diagonal path (A path),
(b) O–H rotation path within
Zr4O4 square (B path),
(c) O–O path along y axis
(B′ path),
(d) three-dimensional
out-of-plane proton
conduction path (C path). The
arrows denote
hydrogen-migration direction

BaZrO3 perovskite. One is the O–O diagonal path (A path), corresponding to proton
conduction along O–O diagonal line. The second is O–H rotation path within Zr4O4

square (B path). To investigate the stable point along y axis, the proton conduction
along y axis (B′ path) was also considered. Note that B′ path is a virtual path in
proton conduction in BaZrO3 perovskite. The last is three-dimensional out-of-plane
proton conduction path (C path), noting that the positions of the local minima along
these paths are needed in order to construct the three-dimensional paths [13, 14].

The N-doped ionics model Ba2Zr4O3NH was constructed to examine the effect
of N-doping on proton conduction. Referring to Fig. 14.2, nitrogen is introduced at
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Fig. 14.4 The proton
conduction paths in the
nitrogen-doped ionics model
Ba2Zr4O3NH: (a) O–N
diagonal path (A path),
(b) N–H rotation path within
Zr4O4 square (B path),
(c) N–O path along y axis
(B′ path),
(d) three-dimensional
out-of-plane proton
conduction path around
doped nitrogen (C path). The
arrows denote
hydrogen-migration direction

Fig. 14.5 The proton
conduction paths in
zirconium vacancy doped
ionics models: proton
conduction paths along
(a) Zr–O–Zr, (b) O–O
diagonal line and (c) toward
centre in Ba2Zr3O4H2 model;
proton conduction paths
along (d) Zr–O–Zr, (e) O–O
diagonal line and (f) toward
centre in Ba2Zr3O4H model.
The arrows denote
hydrogen-migration direction

the O2 site. Figure 14.4 illustrates the four proton conduction paths (A, B, B′ and
C paths) around doped nitrogen, in the same manner.

To investigate O–H covalent bonding formation around zirconium vacancy, the
Zr vacancy-doped ionics models Ba2Zr3O4H2 and Ba2Zr3O4H were constructed. In
Ba2Zr3O4H2 model, zirconium vacancy is introduced at the Zr3 site, and the second
hydrogen atom is introduced near the O2 site. In Ba2Zr3O4H model, zirconium
vacancy is introduced in the same manner (the Zr3 site). Figure 14.5 illustrates three
proton conduction paths in Ba2Zr3O4H2 and Ba2Zr3O4H models.
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Fig. 14.6 The potential
energy curve for proton
conduction in B′ path of
Ba2Zr4O4H model

14.2.3 Onishi Chemical Bonding Rule

Molecular orbital (MO) analysis is very useful to investigate the mechanism of
chemical bonding formation. We constructed Onishi chemical bonding rule to judge
chemical bonding character (Covalency or Ionicity) in strongly correlated M–X–M
system (M= transition metal, X=O, F etc.) [26]:

1. In MOs including outer shell electrons, check whether the orbital overlap be-
tween M and X exists or not.

2. With orbital overlap, bonding character is covalent. Without orbital overlap,
bonding character is ionic.

14.3 Results and Discussion

14.3.1 Proton Conduction in BaZrO3 Perovskite

Figures 14.6 and 14.7 show the potential energy curves along y axis and O–O di-
agonal line, respectively. The minimum total energy was given around 0.9 Å along
y axis. The activation energy for O–H rotation within Zr4O4 square is 2.26 eV, given
by the total energy difference between at local minima along O–O diagonal line and
y axis. The activation energy for O–O diagonal path is 1.65 eV. When the hydro-
gen atom migrates cross Zr4O4 square, the three-dimensional, out-of-plane proton
conduction path dominates. Hydrogen migrates between two local minima in O–O
diagonal path. Figure 14.8 shows the potential energy curve for 3D O–H rotation.
The activation energy for 3D O–H rotation is 1.30 eV. It is found that O–H rotation
within Zr4O4 square needs much energy.

In Fig. 14.9, the all potential energy curves are plotted together. It is found that
the much energy is necessary to start proton conduction from the most stable point
(x = 0.0 Å). The total activation energy was 3.91 eV, which is given by the total
energy difference between the most stable point along y axis and local maximum
along O–O diagonal path.
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Fig. 14.7 The potential
energy curve for proton
conduction in A path of
Ba2Zr4O4H model

Fig. 14.8 The potential
energy curve for proton
conduction in C path of
Ba2Zr4O4H model

Fig. 14.9 The all potential
energy curves for proton
conduction in Ba2Zr4O4H
model

14.3.2 Hartree-Fock (HF) Exchange in Hybrid Kohn-Sham

Pure Kohn-Sham methods such as LDA, GGA and BLYP underestimate bandgap,
since they overestimate orbital overlap. The delocalization effect should be prop-
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Fig. 14.10 The variation of
the activation energy for
proton conduction in A path
of Ba2Zr4O4H model by
changing HF exchange
functional coefficient

erly included by using HF exchange. Here, we investigate the dependence of HF
exchange on activation energy in O–O diagonal path. Figure 14.10 shows the vari-
ation of the activation energy by changing HF exchange functional coefficient. It is
found that activation energy is approximately proportional to HF coefficient. The
activation energies along O–O diagonal path are 2.19, 1.65, 1.23 and 1.03 eV by
HF, BHHLYP, B3LYP and BLYP, respectively. BHHLYP approximately provides
the reasonable physical constants for strongly correlated perovskite-type transition
metal oxides. It is found that HF and BLYP overestimates and underestimates acti-
vation energy along O–O diagonal path.

14.3.3 Chemical Bonding Analysis

Figure 14.11 depicts MOs related to the conductive hydrogen 1s orbital at the min-
imum and maximum in O–O diagonal path, and the minimum along y axis. Fig-
ure 14.12 depicts the diagram on MO energies.

It is found that MO129 (MO136) is O–H bonding (antibonding) MO at the local
minimum in O–O diagonal path. The energy difference between bonding and an-
tibonding MOs was 4.60 eV. Although bonding and antibonding MOs exist at the
maximum in O–O diagonal line, the energy difference became smaller (2.04 eV).
It is concluded that O–H covalency is larger than O–H–O covalency, due to the
larger orbital overlap. At the minimum along y axis, MO123 is O–H bonding, and
MO129 and MO135 are O–H antibonding. It is found that antibonding O–H MOs
(MO129 and MO135) have the bonding and antibonding interactions, respectively,
with barium 5p orbital. The energy difference between O–H bonding MO123 and
O–H antibonding MO129 (MO135) was 14.8 eV (17.4 eV). It is concluded that O–H
covalency around the minimum is extremely large, and O–H covalency around the
local minimum is larger than that around the local maximum in O–O diagonal line.

Let us consider the large mismatch between the calculated (3.91 eV) and experi-
mental (0.44–0.49 eV) activation energies for proton conduction. In AC impedance
measurement, the real part, which means electric resistance, is divided into three
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Fig. 14.11 The molecular orbitals (MOs) related the conductive hydrogen 1s orbital: (a) the local
minimum in O–O diagonal path, (b) the local maximum in O–O diagonal path, (c) the minimum
along y axis

Fig. 14.12 The diagram on molecular orbital energies related the conductive hydrogen 1s orbital:
(a) the local minimum in O–O diagonal path, (b) the local maximum in O–O diagonal path, (c) the
minimum along y axis

contributions in Nyquist plot: bulk, grain boundary and electrode interface. In a
conventional ion conductivity measurement, it is assumed that the ion exists as a
part of not molecule but sole ion. However, hydrogen exists as a part of O–H bond-
ing or O–H–O bonding rather than ion. In O–H bonding region, O–H rotation oc-
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Fig. 14.13 The potential
energy curve for
OH-conduction along y axis
in Ba2Zr4O4H model

curs instead of hydrogen migration. On the other hand, it is considered that hydro-
gen migration is measured in O–H–O covalent bonding (O–H dissociation region).
The low-frequency real part in Nyquist plot corresponded to only O–H–O covalent
bonding region. In other words, the experimental activation energy is much under-
estimated. The calculated large activation energy for proton conduction in BaZrO3
perovskite is consistent with a high temperature (over 500 K) required to start pro-
ton conduction. However, in lithium ion conductive perovskite-type titanium oxide,
our calculated activation energies approximately corresponded to the experimental
ones (under 0.4 eV at room temperature) [17]. The conductive lithium ion forms
ionic bonding with other atoms, according to Onishi chemical bonding rule [15]. In
AC impedance measurement, as conductivity is simply recognized as lithium ion
migration, the low-frequency real part corresponds well to lithium ion conduction.

14.3.4 Proton Pumping Effect: OH-Conduction in Wet Condition

To introduce hydrogen in BaZrO3 perovskite, trivalent cations such as yttrium and
scandium are doped at zirconium site. At the same time, oxygen vacancy is created
at oxygen site. In wet conditions, OH dissolved from water migrates through oxy-
gen vacancy. We considered O–H-conduction along y axis, where O–H direction
is perpendicular to Zr–O–Zr, and O–H distance is kept fixed. When hydrogen in
OH exists between oxygen and zirconium in Zr–O–Zr, the total energy is higher,
due to the ionic repulsion between hydrogen and zirconium, same as in SrTiO3 per-
ovskite [13].

Figure 14.13 shows the potential energy curve for OH-conduction along y axis.
The local minimum was given at 0.3 Å. It means that proton conduction starts from
this stable O–H site inside Zr4O4 square. We considered the proton conduction path
from this site to oxygen. Figure 14.14 shows all potential energy curves in the three
proton conduction paths namely O–H rotation within Zr4O4 square, short O–O di-
agonal line and 3D O–H rotation cross Zr4O4 square. The activation energies for
O–H rotation, short O–O diagonal path and 3D O–H rotation were 1.64, 0.78 and
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Fig. 14.14 The all calculated
potential energy curves in
proton conduction paths such
as O–H rotation within Zr4O4
square, short O–O diagonal
line and three-dimensional
O–H rotation of Ba2Zr4O4H
model

1.36 eV, respectively. They became smaller than in dry conditions except for 3D
O–H rotation. The total activation energy became 2.42 eV, given by the total energy
difference between the most stable point along y axis and local maximum along
O–O diagonal path. It means that wet condition is superior to dry condition, due to
this “proton pumping effect”. Phonon assisted proton conduction mechanism and
tunnelling effect are also considered. However, their effect is smaller, due to the
smaller displacement of oxygen atoms in Zr4O4 square.

In Y-doped (Sc-doped) ionics model Ba2Zr3YO4H (Ba2Zr3ScO4H), where Y
(Sc) is doped at Zr3 site in Fig. 14.2, the total activation energy was 4.09 eV
(3.01 eV). On the other hand, the activation energies for 3D O–H rotation were 1.79
and 1.76 eV, respectively. It is concluded that Sc-doping is superior to Y-doping for
proton conduction.

14.3.5 Nitrogen-Doping at Oxygen Site

To enhance the proton conduction, we considered trivalent anion-doping at oxygen
site. In nitrogen doping at oxygen site, hydrogen can exist as a part of NH2−. We cal-
culated the activation energy for nitrogen-doped BaZrO3 perovskite in three proton
conduction paths namely N–H rotation around nitrogen, O–N diagonal path and 3D
N–H rotation. Figure 14.15 shows the potential energy curve in O–N diagonal path
(O is located at d = 0.0 Å). The activation energy from N to O is 2.14 eV, and reverse
barrier (from O to N) is 0.40 eV. It is found that hydrogen is more stabilized around
nitrogen. As the most stable hydrogen position was given in y axis, the activation
energies for N–H rotation around nitrogen, and 3D N–H rotation were 2.13 and
1.68 eV, respectively. The total activation energy from nitrogen to nearest-neighbour
oxygen is 4.26 eV, which is slightly larger than Ba2Zr4O4H model (3.91 eV). It is
concluded that nitrogen-doping enhances proton conductivity, due to introduction
of much hydrogen.
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Fig. 14.15 The potential
energy curve for proton
conduction in O–N diagonal
path of Ba2Zr4O3NH model

14.3.6 Hydrogen Defect Around Zirconium Vacancy

We investigated O–H covalent bonding formation around zirconium vacancy. In the
Ba2Zr3O4H2 model, the relationship between two hydrogen defects was investi-
gated. The proton conduction mechanism between hydrogen defects around zirco-
nium vacancy was investigated in Ba2Zr3O4H model.

Figure 14.16 depicts the potential energy curves for proton conduction in the
Ba2Zr3O4H2 model. The local minima were given in the all curves. The minimum
total energy was obtained, when hydrogen atom is located along Zr–O–Zr. It is
found that two hydrogen-defects are stabilized when OH covalent bonding is toward
zirconium vacancy. It is because the ionic repulsion between conductive hydrogen
and barium is smaller. Figure 14.17 depicts the schematic picture on hydrogen de-
fects around zirconium vacancy. Four hydrogen defects are theoretically captured
per one zirconium vacancy to compensate charge.

Figure 14.18 depicts the potential energy curve for proton conduction in
Ba2Zr3O4H model. Whereas the local minima were given in the all curves, the
local maxima were given along Zr–O–Zr and O–O diagonal path. The activation
energies for proton conduction along Zr–O–Zr and diagonal line were 1.77 and
1.08 eV, respectively. The minimum energy was given along Zr–O–Zr, the same as
Ba2Zr3O4H2 model. The total activation energy for proton conduction along O–O
diagonal path was 2.85 eV. Proton conduction along Zr–O–Zr occurs more often
than along O–O diagonal path. The activation energy for O–H rotation within Zr4O4

square was 3.15 eV. We concluded that conductive hydrogen atoms are trapped
around zirconium vacancy, and proton conduction occurs from oxygen to oxygen
through zirconium vacancy. The schematic picture is depicted in Fig. 14.19.
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Fig. 14.16 The potential
energy curves for proton
conduction in Ba2Zr3O4H2
model: proton conduction
paths along (a) Zr–O–Zr,
(b) O–O diagonal line and
(c) toward centre
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Fig. 14.17 A schematic
picture of hydrogen defects
around zirconium vacancy in
BaZrO3 perovskite

14.4 Concluding Remarks

14.4.1 General Conclusions

In this study, hybrid Kohn-Sham calculations were performed for ionics models to
investigate the proton conduction mechanism in BaZrO3 perovskite. We concluded
as follows.

1. The activation energies were 2.26, 1.65 and 1.30 eV for O–H rotation within
Zr4O4 square, O–O diagonal path and 3D O–H rotation across Zr4O4 square,
respectively. The total activation energy was 3.91 eV, which is calculated from
the energy difference between the minimum in O–H rotation and maximum in
O–O diagonal path.

2. The activation energy changes, depending on Hartree-Fock coefficient in hybrid
Kohn-Sham method. Pure Kohn-Sham underestimates the activation energy.

3. The strong O–H covalent bonding is formed within Zr4O4 square. O–H–O cova-
lent bonding is in O–H dissociation region, from the energy difference between
bonding and antibonding molecular orbitals. It is considered that hydrogen as a
part of O–H covalent bonding is not recognized in the low-frequency real part of
AC impedance spectra.

4. Proton pumping effect is responsible for high proton conductivity. It is because
the short O–O distance blocks O–H dissociation.

5. Sc-doping is superior to Y-doping at titanium site.
6. N-doping at oxygen site enhances proton conductivity, the same as in SrTiO3

perovskite.
7. Hydrogen defect is located toward zirconium vacancy, to avoid the ionic repul-

sion with barium. Proton conduction occurs between oxygen atoms around zir-
conium vacancy. However, hydrogen atom is trapped around zirconium vacancy,
due to the higher energy barrier.

14.4.2 Future Prospects

Very recently, we concluded that the defect of hydrogen-molecule (H2) exists at
strontium vacancy at the cubic centre, and H2 conduction occurs through stron-
tium vacancy and Ti4O4 bottleneck in SrTiO3 perovskite [29]. The activation en-
ergy (1.4–1.5 eV) was calculated by BHHLYP hybrid Kohn-Sham method. The
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Fig. 14.18 The potential
energy curves for proton
conduction in Ba2Zr3O4H
model: proton conduction
paths along (a) Zr–O–Zr,
(b) O–O diagonal line and
(c) toward centre

proton conductive SrTiO3 and BaZrO3 are used in electrolyte of solid oxide fuel
cell (SOFC). In a practical use, safety problem cannot be negligible. The relation-
ship between H2 defect and safety should be explored.
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Fig. 14.19 A schematic
picture of trapped hydrogen
defects and proton conduction
around zirconium vacancy
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Chapter 15
Molecular Theory of Graphene

E.F. Sheka

Abstract Odd electrons of benzenoid units and the correlation of these electrons
having different spins are the main concepts of the molecular theory of graphene.
In contrast to the theory of aromaticity, the molecular theory is based on the fact
that odd electrons with different spins occupy different places in the space so that
the configuration interaction becomes the central point of the theory. Consequently,
a multi-determinant presentation of the wave function of the system of weakly in-
teracting odd electrons is utterly mandatory on the way of the theory realization
at the computational level. However, the efficacy of the available CI computational
techniques is quite restricted in regard to large polyatomic systems, which does not
allow performing extensive computational experiments. Facing the problem, com-
putationists have addressed standard single-determinant ones albeit not often being
aware of the correctness of the obtained results. The current chapter presents the
molecular theory of graphene in terms of single-determinant computational schemes
and discloses how reliable information about the electron-correlated system can be
obtained by using either UHF or UDFT computational schemes.

When the paper was written, a splendid conceptually profound ‘informal reflection’
of Roald Hoffmann appeared in the first issue of the Angewandte Chemie (Interna-
tional edition) that celebrates its 125-year anniversary [1]. Hoffmann’s “Small but
Strong Lessons from Chemistry for Nanoscience” turned out to be remarkably con-
cordant to the main ideas discussed in the current chapter. This should be expected
since the Hoffmann concepts on stabilizing singlet states of biradicals in organic
chemistry (see [2] and references therein) and dimeric molecular magnets [3] have
laid the foundation of the molecular theory of fullerenes [4, 5], application of which
to graphene science is discussed below. These problems are on a knife-edge today
that is why, once in full agreement with Hoffmann’s answers to the question ‘What
you can trust about theory?’. I would like to preface the presentation of the text of a
quote from the ‘informal reflection’, placing it as the epigraph
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It goes without saying that theory is really of value when it is
used to perform numerical experiments that capture a trend.

Not numbers, but a trend.

Roald Hoffmann, 2013.

15.1 Introduction

For more than ten years, I have been immersed in an absorbing world of quan-
tum chemistry of sp2 nanocarbons, a world full of mysteries, hidden obstacles, and
wonderful discoveries. My first travelling was stimulated by a wish to find the an-
swer to a very simple question: why is there no fullerene Si60 while fullerene C60
does exist? A widely spread standard statement “silicon does not like sp2 configura-
tion” just postulated the fact but did not explain the reason. Moreover, computations,
available by that time, showed that Si60 molecule could exist. A comparative exam-
ination of C60 and Si60 showed a strange feature in the high-spin states behavior of
the molecules. As occurred, a sequence of spin-varying states (singlet (RHF)-triplet-
quintet) formed a progressively growing series by energy for the C60 molecule while
for the Si60 one energy of the triplet and quintet states turned out to drop drastically
with respect to the RHF singlet. Due to a crucial controversy with the reality, a nat-
ural question arose: what is wrong with the molecule singlet state? I will not touch
here on the frequent claim that the semiempirical approach is bad. It is not the case,
in general, and is absolutely not relevant to carbonaceous and siliceous species due
to superior parameterization of both atoms. Actually, all the next stories have shown
that the matter was not due to the wrong approximation but was provided by an
inherent peculiarity of both molecules. At that time, in 2003, it was shown that the
singlet state of the Si60 molecule took its correct place below the triplet one if it
only is calculated by using the open-shell unrestricted Hartree-Fock (UHF) approx-
imation [4, 6, 7]. Since then, in more than eight dozen papers that followed, I and
my colleagues have convinced ourselves and have tried to convince others that UHF
approach touches very intimate properties of sp2 nanocarbons that select them from
other carbonaceous species and put them in a particular place. The properties are
the result of a significant weakening of the interaction between the odd electrons of
the species in comparison with, say, that one in the benzene molecule.

During these investigations we obtained (i) the answer to the initial ques-
tion concerning the absence of Si60 molecule [4], (ii) disclosed regulations that
govern chemistry, magnetism, biomedical and photonic behavior of carbonaceous
fullerenes [5], (iii) showed a tight similarity in the description of the properties of
fullerenes, carbon nanotubes, and graphene molecules [5, 8]. Little by little an ap-
plied molecular theory of sp2 nanocarbons became sharply defined, which revealed
itself in the most vivid way in case of graphene. However, graphene, which is a fa-
mous nobeliated 2D solid, and molecular theory—if there is no controversy between
these subjects?

The answer lies on a surface and follows from a well known definition of
graphene: ‘Graphene is an allotrope of carbon, whose structure is one-atom-thick
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planar sheets of sp2-bonded carbon atoms that are densely packed in a honeycomb
crystal lattice [9]’. This definition clearly exhibits a molecular-crystal duality of
this extraordinary substance. From the molecular viewpoint, the extraordinariness
is provided with the availability of odd electrons that are responsible for the sp2

configuration of valence electrons of carbon atoms. The 2D-dimensionality, on the
other hand, dictates peculiar properties of a regularly packed honeycomb pattern.
Due to this, the graphene properties are similar to those of both polycondensed ben-
zenoid molecules and 2D-dimensional crystals. Obviously, fundamental character-
istics of the two forms are tightly interconnected. Thus, as will be discussed below,
such seemingly solid state properties as magnetism and mechanics of graphene are
of molecular origin.

The above mentioned peculiar duality is embodied in the computational strategy
of graphene, as well. On one hand, the solid state microscopic theory of quasipar-
ticles in a 2D space forms the ground for the description of the graphene crystal.
On the other hand, quantum molecular theory creates the concept of the graphene
molecule. Seemingly, the two theoretical approaches, obviously different from the
computational viewpoint, have nevertheless much in common. Thus, the solid state
quasiparticles are usually described in the approach based on a unit cell and/or su-
percell followed by periodic boundary conditions; besides, the unit cell is described
at the molecular theory level thus presenting the molecular object in the same way as
in the case of the molecular theory. However, the very molecular object provides a
crucial difference between the two approaches. In the case of a correct solid state for-
mulation, the cell and/or supercell should be strictly chosen as a known crystalline
motive. Accordingly, the two-atomic cell of graphene crystal finds its exhibition
in the peculiarities of the crystal electron band structure. However, nowadays, the
solid state approach is explored in the graphene science in regard to practically all
the phenomena including graphene chemical modification, graphene deformation
and magnetization. The two-atomic unit cell of the crystal does not meet conditions
needed for examining these complicated events, particularly, related to the chemical
modification. The cell is substituted by a supercell, whose structure is taken at one’s
own choosing, once in the preponderance of cases just ‘drawn’ in stead off attributed
to a reality. Moreover, regular structure of the graphene object is fastened by the pe-
riodical boundary conditions. The two features of the solid-state approach, namely,
the arbitrarily chosen supercell and the fastened periodicity make clear the Hoff-
mann answer “Not much” to the question “What you can trust about theory?” [1].
Then Hoffmann continues: “Aside from the natural prejudice for simplicity, peo-
ple really want translational periodicity in their calculations, for then the quantum
mechanical problem reduces to one of the size of the unit cell. But the real world
refuses to abide by our prejudices. And it is often an aperiodic, maximally defect-
ridden, amorphous world, where emergent function is found in matter that it is as far
from periodic as possible”. The reality of the graphene science, particularly, related
to the chemical modification, strongly witnesses the domination of aperiodic struc-
tures. In view of this, the molecular theory of graphene has a convincing preference
since its molecular object is created in the course of computations without structural
restrictions introduced in advance.
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The current chapter is concentrated at the molecular essence of graphene consid-
ered from the viewpoint of the molecular theory of sp2 nanocarbons. The theory is
based on two main concepts, which involve the odd-electron origin of the graphene
electron system and these electrons correlation. The latter turns out to play the gov-
erning role. As will be shown below, such an approach occurs very efficient in de-
scribing chemical, magnetic, mechanical, and optical properties of graphene.

15.2 Odd Electrons Correlation

In spite of formally two-atomic unit cell of crystalline graphene, its properties are
evidently governed by the behaviour of odd electrons of the hexagonal benzenoid
units. The only thing that we know about the behaviour for sure is that the interac-
tion between odd electrons is weak; nevertheless, how weak is it? Is it enough to
provide a tight covalent pairing when two electrons with different spins occupy the
same place in space or, oppositely, is it too weak for this and the two electrons are
located in different spaces thus becoming spin correlated? This supremely influen-
tial molecular aspect of graphene can be visualised on the platform of the molecular
quantum theory.

To exhibit a trend, a system computational experiment must be carried out mean-
ing that a vast number of computations are to be performed as well as a great number
of atoms are to be considered. When speaking about electron correlation, one should
address the problem to the configuration interaction (CI). However, neither full CI
nor any its truncated version, clear and transparent conceptually, can be applied for
the computational experiments, valuable for graphene nanoscience. Owing to this,
techniques based on single unrestricted open-shell determinants becomes the only
alternative. Unrestricted Hartree-Fock (UHF) and unrestricted DFT (spin polarized,
UDFT) approaches form the techniques ground and are both sensitive to the elec-
tron correlation, but differently due to different dependence of their algorithms on
electron spins [10, 11]. The approach application raises two questions: (1) what are
criteria that show the electron correlation in the studied system and (2) how much
are the solutions of single-determinant approaches informative for a system of cor-
related electrons.

Answering the first question, three criteria, which highlight the electron correla-
tion at the single-determinant level of theory, can be suggested. Those concern the
following characteristic parameters:

Criterion 1

�ERU ≥ 0,

where,

�ERU =ER −EU (15.1)

presents a misalignment of energy. Here, ER and EU are the total energies calcu-
lated by using the restricted and unrestricted versions of the software in use.
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Criterion 2

ND �= 0.

Here, ND is the total number of effectively unpaired electrons. The number is de-
termined as

ND = trD
(
r|r ′) �= 0 and ND =

∑

A

DA. (15.2)

Here, D(r|r ′) [12] and DA [13] present the total and atom-fractioned spin density
caused by the spin asymmetry due to the location of electrons with different spins
in different spaces.

Criterion 3

�Ŝ2 ≥ 0. (15.3)

Here,

�Ŝ2 = Ŝ2
U − S(S + 1)

presents the misalignment of squared spin. Ŝ2
U is the squared spin calculated within

the applied unrestricted technique while S(S + 1) presents the exact value of Ŝ2.

Criterion 1 follows from the well known fact that the electron correlation, if avail-
able, lowers the total energy [14]. Criterion 2 highlights the fact that the electron cor-
relation is accompanied with the appearance of effectively unpaired electrons that
provide the molecule radicalization [12, 13, 15]. Those electrons total number ND
depends on interatomic distance: when the latter is under a critical value Rcrit

cov, two
adjacent electrons are covalently bound and ND = 0. However, when the distance
exceeds Rcrit

cov, the two electrons become unpaired; ND ≥ 0, the more, the larger is
the interatomic spacing. In the case of the sp2 C–C bonds, Rcrit

cov = 1.395 Å [16].
Criterion 3 is the manifestation of the spin contamination of unrestricted single-
determinant solutions [13, 15]; the stronger electron correlation, the bigger spin
contamination of the studied spin state.

Table 15.1 presents sets of the three parameters evaluated for a number of
graphene molecules presented by rectangular (na,nz) fragments of graphene (na
and nz count the benzenoid units along armchair and zigzag edges of the fragment,
respectively [19]), (na,nz) nanographenes (NGrs) below, by using the AM1 version
of the semiempirical UHF approach implemented in the CLUSTER-Z1 codes [18].
To our knowledge, only this software allows for getting all the above three parame-
ters within one computing session. As seen in the table, the parameters are certainly
not zero, obviously greatly depending on the fragment size while their relative val-
ues are practically non size-dependent. The attention should be called to rather large
ND values, both absolute and relative. The finding evidences that the length of C–
C bonds in the considered molecules exceed the critical value Rcrit

cov = 1.395 Å. It
should be added as well that the relation ND = 2�Ŝ2

U , which is characteristic for
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Table 15.1 Identifying parameters of the odd electron correlation in the rectangular graphene
fragments [17]

Fragment (na, nz) Odd electrons Nodd �ERU a kcal/mol δERU %b ND , e δND , %b �Ŝ2
U

(5, 5) 88 307 17 31 35 15.5

(7, 7) 150 376 15 52.6 35 26.3

(9, 9) 228 641 19 76.2 35 38.1

(11, 10) 296 760 19 94.5 32 47.24

(11, 12) 346 901 20 107.4 31 53.7

(15, 12) 456 1038 19 139 31 69.5

aAM1 version of UHF codes of CLUSTER-Z1 [18]. Presented energy values are rounded off to an
integer
bThe percentage values are related to δERU =�ERU/ER(0) and δND =ND/Nodd , respectively

spin contaminated solutions in the singlet state [13], is rigidly kept over all the frag-
ments.

Summarizing said above, it is possible to conclude the following.

1. Nowadays, single-determinant computational schemes, based on the open-shell
approximation of either Hartree-Fock or DFT approach, are the only alternative
for practically valuable computations of polyatomic graphene systems (Nat >
30–40);

2. For electron-correlated systems, the obtained solutions are not exact but spin-
mixed;

3. The question arises: which reliable information about electron-correlated system
can be obtained by using either UHF or UDFT computational scheme?

Given below has been organized as getting answers to this question.

Answer 1 Broken symmetry approach allows obtaining the exact energy of pure-
spin states.

The wave functions of the unrestricted single-determinant solutions satisfy the
operator equations for the energy and z-projection of the spin Sz but do not satisfy
the operator equation for the squared spin Ŝ2. This causes a spin contamination of
the solution whose extent is determined by �Ŝ2 (3). Owing to this, one faces the
problem of the evaluation of the energies of pure spin states.

The unrestricted broken symmetry (UBS) approach suggested by Noodle-
man [20] can be considered as the best way to solve the problem. It is the most
widely known among the unrestricted single-determinant computational schemes
used in practice, both UHF and UDFT. The UBS approach provides the determi-
nation of the exact energy of pure-spin states on the basis of the obtained single-
determinant results within each of the computational schemes at the level of the
theory that is equivalent to the explicit CI. According to the approach, the energy of
pure-spin singlet state is expressed as

EPS(0)=EU(0)+ SmaxJ, (15.4)
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Table 15.2 Energies of singlet ground state and exchange integral of the rectangular graphene
fragments,a kcal/mole [17]

Fragment (na, nz) ER(0) EU (0) EPS(0) �ERPS δERPSb % �EUPS δEUPSb % J

(5, 5) 1902 1495 1432 470 24.70 63 4.39 −1.429

(7, 7) 2599 2223 2156 443 17.03 67 3.09 −0.888

(9, 9) 3419 2778 2710 709 20.75 68 2.53 −0.600

(11, 10) 4072 3312 3241 831 20.42 71 2.20 −0.483

(11, 12) 4577 3676 3606 971 21.22 70 1.95 −0.406

(15, 12) 5451 4413 4339 1112 20.40 74 1.70 −0.324

aAM1 version of UHF codes of CLUSTER-Z1. Presented energy values are rounded off to an
integer
bThe percentage values are related to δERPS = �ERPS/ER(0) and δEUPS = �EUPS/EU (0),
respectively

where, EU(0) is the energy of the singlet state of the USB solution while Smax is the
highest spin of the studied odd electron system and J presents the exchange integral

J = E
U(0)−EU(Smax)

S2
max

. (15.5)

Here, EU(Smax) is the energy of the highest-spin-multiplicity state and corresponds
to the Smax-pure-spin state.

Table 15.2 presents sets of three energies, namely: ER(0), EU(0), and EPS(0),
alongside with the exchange integrals J related to (na,nz) NGrs considered ear-
lier. As seen in the table, comparing with ER(0), the odd electron correlation
causes lowering of not only EU(0) energy, but EPS(0) as well, therewith, the
pure-spin energy EPS(0) occurs to be the lowest. As seen from the table, the per-
centage quantities δERPS =�ERPS/ER(0) and δEUPS =�EUPS/EU(0), where
�ERPS = ER(0) − EPS(0) and �EUPS = EU(0) − EPS(0) present the corre-
sponding energy misalignment, deviate differently: if δERPS changes from ∼20
to 25 %, δEUPS varies much less within ∼2–5 %. These values clearly show the
measure of incorrectness that is introduced when the graphene molecule energy is
described by either restricted or unrestricted computational schemes.

Answer 2 Broken symmetry approach provides exact determination of the mag-
netic constant.

Obviously, the odd electrons correlation is a necessary reason for the graphene
magnetization. However, this, as such, is not enough since there are additional re-
quirements concerning the magnetic constant value equal to the exchange integral
J [21] (see Ex. (15.5)). Graphene molecules are among the singlet bodies, whose
magnetic phenomenon may occur as a consequence of mixing the ground singlet
state with those of high-spin multiplicity [22] following, say, to the van Fleck mix-
ing promoted by the applied magnetic field [23]. Since the effect appears in the
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first-order perturbation theory, it depends on the J value that determines the en-
ergy differences in denominators. Consequently, J should be small by the absolute
value to provide noticeable magnetization. Estimated for molecular magnets [24],
the phenomenon can be fixed at |J | of 10−2–10−3 kcal/mole or less.

The joint unit cell of graphene crystal involves two atoms that form one C–C
bond of the benzenoid unit. Estimation of J value for the ethylene and benzene
molecule with stretched C–C bonds up to 1.42 Å in length gives −13 kcal/mole
and −16 kcal/mole, respectively. In spite of the molecules do not reproduce the unit
cell of graphene crystal exactly, a similar J value of the cell constant is undoubted.
Owing to this, the magnetization of the graphene crystal cannot be observed so
that the crystal should demonstrate the diamagnetic behaviour only. The latter is
supported both theoretically [25] and empirically (see [26] and references therein).
To provide a remarkable magnetization means to drastically decrease the magnetic
constant |J |, which, in its turn, determines a severe strengthening of the odd electron
correlation. Since it is impossible to the regular crystal, let us look what can be
expected at the molecular level.

Analyzing data published earlier [27, 28] and addressing the discussion presented
in the previous section, one may suggest the NGr molecule size as a regulating factor
of the electron correlation. As shown in Table 15.2, the magnetic constant |J | de-
creases when the molecule becomes larger. When speaking about mixing the ground
singlet state with those of high-spin ones, obviously, the singlet-triplet mixing is the
most influent. As follows from Table 15.2, the energy gap to the nearest triplet state,
equal 2|J |, for the studied molecules constitutes 2.8–0.6 kcal/mole. The value is
still large to provide a recordable magnetization of these molecular magnets, but the
trend is quite optimistic.

In view of this idea, let us estimate how large should be the graphene molecule to
provide a noticeable magnetization. As mentioned earlier, the molecular magnetism
can be fixed at |J | ∼ 10−2–10−3 kcal/mole or less. Basing on the data presented in
Table 15.2 and supposing the quantity to be inversely proportional to the number
of odd electrons, we get N ∼ 105. For rectangular NGrs with N odd electrons, the
number of carbon atoms constitutes N=N −2(na+nz+1) that, according to [19],
is determined as

N= 2(nαnz + nα + nz). (15.6)

To fit the needed N value, the indices nα and nz should be of hundreds, which leads
to linear sizes of the NGrs from a few units to tens nm. The estimation is rather
approximate, but it, nevertheless, correlates well with the experimental observations
of the magnetization of activated carbon fibers consisting of nanographite domains
of ∼2 nm in size [29, 30]. Recently, has been reported a direct observation of the
size-dependent large-magnitude room-temperature ferromagnetism of graphene in-
terpore regions [31, 32]. The maximum effect was observed at the region width of
20 nm after which the signal gradually decreased when the width increased. The
behaviour is similar to that obtained for fullerene oligomers [33] that led to the sug-
gestion of a scaly mechanism of the nanostructured solid state magnetism of the
polymerized fullerene C60 that was confirmed experimentally.
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The obtained results highlight another noteworthy aspect of the graphene mag-
netism attributing the phenomenon to size-dependent ones. The latter means that the
graphene magnetization is observed for nanosize samples only, moreover, for the
samples whose linear dimensions fit a definite interval, while the phenomenon does
not take place at either smaller or bigger samples outside the critical region. An indi-
vidual benzenoid unit (including benzene molecule) is non-magnetic (only slightly
diamagnetic [34]). When the units are joined to form a graphene-like benzenoid
cluster, the effectively unpaired electrons appear due to weakening the interaction
between the odd electrons followed by their correlation. The correlation accelerates
when the cluster size increases, which is followed with the magnetic constant |J |
decreasing until the latter achieves a critical level that provides a noticeable mixing
of the singlet ground state with high-spin states for the cluster magnetization to be
fixed. Until the enlargement of the cluster size does not violate the molecular be-
havior of the odd electrons, the sample magnetization will grow. However, as soon
as the electron behavior becomes spatially quantized, the molecular character of the
magnetization will be broken and will be substituted by that one determined by the
electron properties of the crystal unit cell [22]. The critical cluster size is determined
by the electron mean free path lel . Evidently, when the cluster size exceeds lel the
spatial quantization quenches the cluster magnetization. The accurate determination
of lel for the odd electrons in graphene is not known, but the analysis of a standard
data base for the electron mean free paths in solids [35] shows the quantity should
be ∼10 nm, which is supported by the experimental data of 3–7 nm electron free
path in thin films of Cu-phthalocyanine [36].

Another scenario of getting magnetic graphene is connected with introducing the
impurity and structural defects in the graphene body. The best illustration of such
scenario reality can be found in a recent publication of the Geim team [26] where
a paramagnetic behaviour of graphene laminates consisting of 10–50 nm sheets has
been recorded after either their fluorination or bombarding by electrons. The treat-
ment provides the ‘spin-half paramagnetism in graphene induced by point defects’.
In both cases, the magnetization is weak and is characterized by one moment per
approximately 1,000 carbon atoms, which is explained by the authors by cluster-
ing of adatoms and, for the case of vacancies, by the loss of graphene’s structural
stability. Besides, the unit cell contains one additional spin thus lifting the spin mul-
tiplicity to doublet. The latter explains the paramagnetic behaviour of the sample
while the size of the cell provides small value of the magnetic constant |J | due to
large (∼40 nm) cell dimension. Therefore, introduced adatoms and point defects
cause a magnetic nanostructuring of the pristine crystal that favors the realization of
the size-dependent magnetism.

Explaining magnetic behavior of the graphene molecule, we attribute the phe-
nomenon to the correlation of the molecule odd electrons. As was said in Introduc-
tion, Criterion 2 highlights the fact that the electron correlation is accompanied with
the appearance of the effectively unpaired electrons that provide the molecule rad-
icalization [12, 13, 15]. A natural question arises which characteristic of graphene
does control its electrons correlation? Looking for answering the question we have
come to Answer 3.
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Answer 3 Odd electrons correlation is controlled by lengths of C–C bonds.

Firstly shown by Takatsuka, Fueno, and Yamaguchi [12], the correlation of
weakly interacting electrons is manifested through the density matrix, named as
the distribution of ‘odd’ electrons,

D
(
r|r ′)= 2ρ

(
r|r ′)−

∫
ρ
(
r|r ′′)ρ(r ′′|r ′)dr ′′. (15.7)

The function D(r|r ′) was proven to be a suitable tool to describe the spatial separa-
tion of electrons with opposite spins, and its trace

ND = trD
(
r|r ′) (15.8)

was interpreted as the total number of these electrons [12, 37]. The authors sug-
gested ND to manifest the radical character of the species under investigation. Over
twenty years later, Staroverov and Davidson changed the term by the ‘distribution
of effectively unpaired electrons’ [13, 38] emphasizing that not all the odd electrons
may be taken off the covalent bonding. Even Takatsuka et al. mentioned [12] that
the function D(r|r ′) can be subjected to the population analysis within the frame-
work of the Mulliken partitioning scheme. In the case of a single Slater determinant,
Eq. (15.8) takes the form [13]

ND = trDS, (15.9)

where

DS = 2PS − (PS)2. (15.10)

Here, D is the spin density matrix D = Pα −Pβ while P = Pα +Pβ is a standard
density matrix in the atomic orbital basis, and S is the orbital overlap matrix (α and
β mark different spins). The population of effectively unpaired electrons on atom A
is obtained by partitioning the diagonal of the matrix DS as

DA =
∑

μ∈A
(DS)μμ, (15.11)

so that

ND =
∑

A

DA. (15.12)

Staroverov and Davidson showed [13] that the atomic population DA is close to
the Mayer free valence index [39] FA in a general case while in the singlet state
DA and FA are identical. Thus, plotting DA over atoms gives a visual picture of the
actual radical electrons distribution [13], which, in its turn, exhibits atoms with the
enhanced chemical reactivity.

The effectively unpaired electron population is definitely connected with the spin
contamination of the UBS solution state. In the case of UBS HF scheme, there is
the straight relation between ND and squared spin 〈Ŝ2〉 [13]

ND = 2

(〈
Ŝ2〉− (N

α −Nβ)
4

2)
, (15.13)
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where

〈
Ŝ2〉=

(
(Nα −Nβ)2

4

)
+ N

α +Nβ
2

−
Nα∑

i

Nβ∑

j

∣∣〈φi |φj 〉
∣∣2. (15.14)

Here, φi and φj are the atomic orbitals; Nα and Nβ are the numbers of electrons
with spin α and β , respectively.

If the UBS HF computations are realized in the NDDO approximation (the basis
for the AM1/PM3 semiempirical techniques) [40], a zero overlap of orbitals leads
to S = I in Eq. (15.10), where I is the identity matrix. The spin density matrix D
assumes the form

D = (Pα − Pβ)2. (15.15)

The elements of the density matrices Pα(β)ij can be written in terms of the eigenvec-
tors of the UHF solution Cik

P
α(β)
ij =

Nα(β)∑

k

C
α(β)
ik C

α(β)
jk . (15.16)

Expression for 〈Ŝ2〉 has the form [41]

〈
Ŝ2〉=

(
(Nα −Nβ)2

4

)
+ N

α +Nβ
2

−
NORBS∑

i,j=1

PαijP
β
ij . (15.17)

Within the framework of the NDDO approach, the HF-based totalND and atomic
NDA populations of effectively unpaired electrons take the form [42]

ND =
∑

A

NDA =
NORBS∑

i,j=1

Dij (15.18)

and

NDA =
∑

i∈A

NAT∑

B=1

∑

j∈B
Dij . (15.19)

Here, Dij are elements of the spin density matrix D that presents a measure of the
electron correlation [12, 13, 43], NORBS and NAT mark the number of orbitals and
atoms, respectively.

Explicit expressions (15.18) and (15.19) are the consequence of the wave-
function-based character of the UBS HF. Since the corresponding coordinate wave
functions are subordinated to the definite permutation symmetry, each value of the
spin S corresponds to the definite expectation value of the energy [11]. Oppositely,
the electron density ρ is invariant to the permutation symmetry. The latter causes
a serious spin problem for the UBS DFT [10, 11]. Additionally, the spin density
D(r|r ′) of the UBS DFT depends on the spin-dependent exchange and correlation
functionals and can be expressed analytically in the former case only [11]. Since
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Fig. 15.1 The total number
of the effectively unpaired
electrons ND accompanying
the stretching of the C–C
bond in ethylene. RC–C

cov
marks the extreme distance
that corresponds to the
completion of the covalent
bonding. RC–C

rad matches
completion of the homolytic
bond cleavage. Two vertical
arrows mark the interval of
the C–C bond lengths
characteristic for sp2

nanocarbons

the exchange-correlation composition deviates from one method to the other, the
spin density is not fixed and deviates alongside with the composition. Serious UBS
DFT problems are known as well in relevance to the 〈Ŝ〉2 calculations [44, 45].
These obvious shortcomings make the UDFT approach practically inapplicable in
the case when the correlation of weakly interacting electrons is significant. Cer-
tain optimism is connected with a particular view on the structure of the density
matrix of the effectively unpaired electrons developed by the Spanish-Argentine
group [15, 43, 46] from one hand and new facilities offered by Yamagouchi’s ap-
proximately spin-projected geometry optimization method intensely developed by
a Japanese team [47, 48], from the other. By sure, this will give a possibility to
describe the electron correlation at the density theory level more thoroughly.

The odd electrons story is counted from the discovery of the benzene molecule
made by Michael Faraday in 1825. However, only a hundred years later Hückel sug-
gested the explanation of the deficiency of hydrogen atoms in the molecule to com-
plete the valence ability of its carbon atoms. Extra, or odd, electrons were named as
π electrons that, in contrast to σ electrons, interact much weaker while providing
the additional covalent coupling between neighbouring atoms. The two electrons
are located in the same space, and their spins are subordinated to the Pauli law. For-
mally, this view on extra π electrons, which lays in the foundation of the aromaticity
concept, has been expanded over all sp2 nanocarbons and has been shared by a num-
ber of material scientists in the field until now. However, the concept does not take
into account a crucial role of the distance between two neighbouring odd electrons.
As seen in Fig. 15.1, which presents a plotting of the total number of effectively un-
paired electrons ND as a function of the C–C distance in the ethylene molecule, the
bond stretching from its equilibrium value of 1.326 Å up toRcrit =RC–C

cov = 1.395 Å
does not cause the appearance of the unpaired electrons so that the relevant π elec-
trons are fully covalently bound. However, above Rcrit the number ND gradually
increases up to a clearly vivid knee that is characterized by ND ∼= 2 at R = 1.76 Å,
which evidences a complete radicalization of the previous π electrons. On the way
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Table 15.3 Effectively unpaired electrons in the aromatic molecules, UBS HF singlet state [16]

Molecules C–C bond length, Å ND, e

Number of bonds

Benzene 1.395 0.05

6

Naththalene 1.385 1.411 1.420 1.430 1.483

4 2 4 1

Anthracene 1.387 1.410 1.421 1.435 3.003

4 6 4 2

Tetracene 1.388 1.410 1.421 1.436 4.320

4 8 6 3

Pentacene 1.388 1.411 1.420 1.436 5.540

4 10 8 4

from Rcrit to R = 1.76 Å, the two electrons are not more located in the same space,
but electrons with different spins occupy different spaces. Further stretching con-
cerns mainly two σ electrons that, once fully covalently bound until R = 1.76 Å,
gradually become unpaired just repeating the fortune of π electrons resulting in
ND ∼= 4 at 2.5 Å.

In spite of clear explanation where unpaired electrons are coming from, the ques-
tion about their existence still remains due to suspicion of their attribution to an ar-
tifact caused by the limitations of the single-determinant calculations. Looking for
the confirmation of the physical reality of the unpaired electrons leads to Answer 4.

Answer 4 Effectively unpaired electrons are the definite physical reality.

In a series of aromatic hydrocarbon molecules, the unified length of C–C bonds
in the benzene molecule exactly fits Rcrit, which is why ND = 0 as is expected for a
truly aromatic molecule. However, even the naphthalene molecule is characterized
by a set of C–C bonds, short and long representatives of which have lengths that
are below and above Rcrit, respectively. This slightly dispersive many-length set is
further kept in all the aromatic molecules (becoming a two-length one in fullerene
C60). As the number of the benzene units grows, the number of long bonds increases,
which is followed by increasing ND (see Table 15.3) [16]. As seen in the table,
for the pentacene molecule ND constitutes 5.4 e so that the molecule is a 5.4-fold
radical. The ND distribution over the molecule atoms in terms of NDA is shown in
Fig. 15.2a. As seen in the figure, the main chemical reactivity of the molecule is
concentrated in its central part.

This finding could have been one of questionable results of the molecular theory
only if it were not for a recent experimental viewing of the molecule by using the



262 E.F. Sheka

Fig. 15.2 Effectively unpaired electrons of the pentacene molecule. (a) Calculated NDA image,
UBS HF singlet state. (b) AFM imaging of pentacene on Cu(111) using a CO-at-Au tip [49].
(c) Extracted vertical force along the molecule long axis [49]

AFM with unprecedented high resolution [49] (see Fig. 15.2b). The molecule im-
age was obtained by using the short-range chemical forces of noncontact AFM. The
forces profiles are shown in Fig. 15.2c. As seen in the figure, the least forces and,
consequently, the weakest interaction are observed at the molecule ends (the bright-
est area in Fig. 15.2b) while the strongest interaction (the darkest area in Fig. 15.2b)
is characteristic for the molecule central area. Since the interaction of the CO apex
of the AFM tip is obviously proportional to the electron density on the atoms above
which the tip is located, thus recorded AFM molecule image should be inverted
by color with respect to the NDA image map in Fig. 15.2a. This has actually been
observed exhibiting the first evidence of the distribution of the effectively unpaired
electrons in the sp2 molecules. The next example concerns a similar imaging of the
olympicene molecule that has been synthesized on the eve of the London Olympic
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Fig. 15.3 Effectively unpaired electrons of the olympicene molecule. Calculated NDA image,
UBS HF singlet state (a) and AFM imaging of olympicene on Cu(111) using a CO-at-Au tip [50]

Games 2012 [50]. Figure 15.3 presents the image map of the NDA distribution over
the molecule alongside with its AFM image obtained as previously. The color inver-
sion of the two images is clearly seen.

Two vertical arrows in Fig. 15.1 mark the C–C bond length interval that is char-
acteristic for graphene molecules equilibrated in the framework of the UBS HF ap-
proach. (It should be mentioned that the application of the restricted version of the
same program results in practically non-dispersive value of the C–C bond length of
1.42 Å.) As seen, the C–C bond lengths exceed Rcrit which leads to a considerable
amount of the effectively unpaired electrons, total numbers of which are listed in
Table 15.1 for different graphene fragments. Figure 15.4a exhibits a typical image
map of the NDA distribution over one of them. The fragment edges are not termi-
nated, and the NDA image map has a characteristic view with a distinct framing of
the sample by edge atoms since the main part of the unpaired electrons is concen-
trated in this area. The NDA image map intensity in the basal plane is of ∼0.3 e in
average.
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Fig. 15.4 Effectively unpaired electrons of graphene. (a) Calculated NDA image of (15, 12) NGr
molecule, UBS HF singlet state. (b) The atomic-resolved image of a portion of the graphene mono-
layer [53]. (c) The image of a single suspended sheet of graphene taken with the TEAM 0.5, at
Berkeley Lab National Center for Electron Microscopy [54]
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The peculiarity of the graphene edges had been a topic for intense discussions
from the very beginning of the graphene science [51] when they were disclosed
by using the tight-binding band calculation within the Hückel approximation [52].
However, they have not been attributed to the effectively unpaired electrons and have
been discussed in the context of the graphene spin system peculiarity with respect
to the expected magnetic behavior of the sample. In this context, it is worthwhile
to refer to one more quote from the Hoffmann ‘informal reflection’ [1]: “There is a
special problem that theory has with unterminated structures—ribbons cut off on the
sides, polymers lacking ends. If passivation is not chosen as a strategy, then the rad-
ical lobes of the unterminated carbon atoms, or undercoordinated transition metals,
will generate states that are roughly in the middle energetically, above filled levels,
below empty levels in a typical molecule that has a substantial gap between filled
and unfilled levels. If such levels—states, the physicists call them—are not identi-
fied as “intruder” states, not really real, but arising from the artifact of termination,
they may be mistaken for real states in the band gap, important electronically. And
if electrons are placed in them, there is no end to the trouble one can get into. These
band gap states are, of course, the origin of the reactivity of the terminated but not
passivated point, line, or plane. But they have little to do with the fundamental elec-
tronic structure of the material”. Supporting the said above, depicted in Fig. 15.4a
presents the reactivity image of the graphene molecule. As seen in the figure, not
only edge, but basal-plane carbon atoms are chemically active, albeit with differ-
ent efficacy. Important to note, that the reactivity is distributed over atoms rather
inhomogeneously. The recent atom-resolved graphene images convincingly witness
this inhomogeneity as can be seen in Figs. 15.4b and c. Therefore, the effectively
unpaired electrons of the sp2 molecules are a physical reality and are assuming their
leading place in the molecular theory of graphene.

In the singlet state, the NDA values are identical to the atom free valences [13]
and thus exhibit the atomic chemical susceptibility (ACS) [55, 56]. The NDA distri-
bution over atoms plots a ‘chemical portrait’ of the studied molecule, whose anal-
ysis allows for making the definite choice of the target atom with the highest NDA
value to be subjected to the chemical attack by an external addend. Therefore, we
have come to Answer 5 claiming that peculiarities of the graphene chemistry can be
exhibited at the quantitative level, much as this has been done for fullerenes [5].

Answer 5 Computational strategy of the chemical modification of graphene.

The typical chemical portrait of graphene fragment in Fig. 15.4a highlights edge
atoms as those with the highest chemical activities, besides rather irregular, while
exhibiting additionally the basal atoms ACS comparable with that one of fullerene
C60 [28, 57]. This circumstance is the main consequence of the odd electron correla-
tion in graphene in regard to its chemical modification. Ignoring the correlation has
resulted in a common conclusion about chemical inertness of the graphene atoms
with the only exclusion concerning the edge ones. Having this general indication
only, a computationist is still in the dark concerning the place of both the first and
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Fig. 15.5 Top and side views of the equilibrium structure of the (5,5) NGr molecule (a); NDA
image map (b) and NDA distribution over atoms according to the atom numbers in the output
file (c) [60]

consequent chemical attacks and has to perform a large number of calculations sort-
ing them out over the atoms by using the lowest-total-energy (LTE) criterion (see,
for example, [58]). In contrast, basing on the NDA value as a quantitative pointer
of the target atom at any step of the chemical attack, one can suggest the algorith-
mic ‘computational syntheses’ of the molecule polyderivatives [59]. In what follows
the algorithm-in-action will be illustrated by the examples of the hydrogenation and
oxidation of the (5,5) NGr molecule.

(5,5) NGr Molecule Hydrogenation The equilibrium structure of the (5,5) NGr
molecule alongside with its NDA image map is shown in Fig. 15.5. Panel b exhibits
the NDA distribution attributed to the atoms positions thus presenting the ‘chemical
portrait’ of the molecule. Different NDA values are plotted in different colouring
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according to the attached scale. The absolute NDA values are shown in panel c ac-
cording to the atom numbering in the output file. As seen in the figure, 22 edge
atoms involving 2 × 5 zg and 2 × 6 ach ones have the highest NDA thus mark-
ing the perimeter as the most active chemical space of the molecule. The molecule
hydrogenation will start on atom 14 (star-marked in Fig. 15.5c) according to the
highest NDA in the output file. The next step of the reaction involves the atom from
the edge set as well, and this is continuing until all the edge atoms are saturated by a
pair of hydrogen atoms each since all 44 steps are accompanied with the high-rank
NDA list where edge atoms take the first place [60]. Thus obtained hydrogen-framed
graphene molecule is shown in Fig. 15.6 alongside with the correspondingNDA im-
age map. Two equilibrium structures are presented. The structure in panel a corre-
sponds to the optimization of the molecule structure without any restriction. In the
second case, positions of the edge carbon atoms and framing hydrogen atoms under
optimization were fixed. In what follows, we shall refer to the two structures as a
free standing and fixed membrane, respectively. Blue atoms in Fig. 15.6c alongside
with the framing hydrogens are excluded from the forthcoming optimization under
all steps of the further hydrogenation.

The chemical portraits of the structures shown in Figs. 15.6b and 15.6d are quite
similar and reveal the transformation of brightly shining edge atoms in Fig. 15.5b
into dark spots. The addition of two hydrogen atoms to each of the edge ones sat-
urates the valence of the latter completely, which results in zeroing NDA values, as
is clearly seen in Fig. 15.6e. The chemical activity is shifted to the neighbouring in-
ner atoms and retains higher in the vicinity of zg edges, however, differently in the
two cases. The difference is caused by the redistribution of the C–C bond lengths of
the free standing membrane when it is fixed over perimeter, thus providing different
starting conditions for the hydrogenation of the two membranes.

Besides the two types of initial membranes, the hydrogenation will obviously de-
pend on other factors, such as (1) the hydrogen species in use and (2) the accessibil-
ity of the membranes sides to the hydrogen. Even these circumstances evidence the
hydrogenation of graphene to be a complicated chemical event that strongly depends
on the initial conditions, once divided into 8 adsorption modes in regard to atomic
or molecular adsorption; one- or two-side accessibility of membranes; and free or
fixed state of the membranes perimeter. Only two ones of the latter correspond to
the experimental observation of hydrogenated specimens discussed in [61], namely:
two-side and one-side atomic hydrogen adsorption on the fixed membrane. Stepwise
hydrogenation of the (5,5) NGr molecule was considered in details in [60]. Here,
we restrict ourselves with a brief description of the main results.

Two-Side Atomic Adsorption of Hydrogen on Fixed Membrane The hydro-
genation concerns the basal plane of the fixed hydrogen-framed membrane shown
in Fig. 15.6c that is accessible to hydrogen atoms from both sides. As seen in
Fig. 15.6e, the first hydrogenation step should occur on basal atom 13 marked by a
star. Since the membrane is accessible to hydrogen from both sides, one has to check
which deposition of the hydrogen atom, namely, above the carbon plane (‘up’) or
below it (‘down’) satisfies the LTE criterion.
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Fig. 15.6 Equilibrium structures of the free standing (top and side views) (a) and fixed (c) (5,5)
NGr membrane; NDA image maps (b, d) and NDA distribution over atoms according to the atom
numbers in the output file (e) [60]. Light gray histogram plots the ACS data for the pristine (5,5)
NGr molecule. Curve and black histogram are related to the membranes in panels (a) and (c),
respectively
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Fig. 15.7 Equilibrium structures (left) and NDA image maps (right) of the graphene polyhydrides
related to the initial stage of the basal-plane hydrogenation. HKs denote hydrides with K hydrogen
atoms deposited on the fixed membrane basal plane [60]. Framing hydrogen atoms are not shown
to simplify the structure image presentation

After deposition of hydrogen atom on basal atom 13, the NDA map has revealed
carbon atom 46 for the next deposition (see H1 NDA map in Fig. 15.7). The LTE
criterion favours the down position for the second hydrogen on this atom so that
we obtain structure H2 shown in Fig. 15.7. The second atom deposition highlights
next targeting carbon atom 3 (see NDA map of H2 hydride), the third adsorbed hy-
drogen atom activates target atom 60, the fourth does the same for atom 17, and so
forth. Checking up and down depositions in view of the LTE criterion, a choice of
the best configuration can be performed and the corresponding equilibrium struc-
tures for a selected set of the (5,5) NGr polyhydrides from H1 to H11 are shown in
Fig. 15.7. The structure obtained at the end of the 44th step is shown in Fig. 15.8a.
It is perfectly regular, including framing hydrogen atoms, thus presenting a com-
putationally synthesized fully saturated chairlike (5,5) nanographane (NGra) that
is in full accordance with the experimental observation of the graphane crystalline
structure [61].
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Fig. 15.8 Top and side views
of the equilibrium structures
of the saturated graphene
polyhydrides formed at the
atomic adsorption of
hydrogen on the fixed (5,5)
NGr membrane, accessible to
the adsorbate from both (1)
(a) and one (2) (b) sides [60].
Framing hydrogen atoms are
not shown to simplify the
structure image presentation

One-Side Atomic Adsorption of Hydrogen on Fixed Membrane Coming back
to the first step of the hydrogenation, let us proceed further with the second and
all the next steps of the up deposition only. As previously, the choice of the target
atom at each step is governed by the high-rank NDA values. Figure 15.8b presents
the saturated graphene polyhydride related to the final 44th step. A peculiar canopy
shape of the carbon skeleton of the hydride is solely provided by the formation of
the table-like cyclohexanoid units. However, the unit packing is quasi-regular which
may explain the amorphous character of the polyhydrides formed at the outer sur-
face of graphene ripples observed experimentally [61]. The reasons of the hydrogen
molecule desorption at the 44th step are discussed elsewhere [60].

As for the hydrogen coverage, Fig. 15.9 presents the distribution of C–H bond
lengths of the saturated graphene polyhydrides. In both cases, the distribution con-
sists of two parts, the first of which covers 44 C–H bonds formed at the molecule
skeleton edges. Obviously, this part is identical for both hydrides since the bonds
are related to the framing atoms. The second part covers C–H bonds formed by
the hydrogen atoms attached to the basal plane. As seen in the figure, in the case
of polyhydride 1, C–H bonds are practically identical with the average length of
1.126 Å and only slightly deviate from those related to framing atoms. This is just a
reflection of the regular graphane structure of the polyhydride shown in Fig. 15.8a
similarly to highly symmetric fullerene polyhydride C60H60 [62]. In contrast, C–H
bonds on a canopy-like carbon skeleton of polyhydride 2 are much longer than those
in the framing zone, significantly oscillate around the average value of 1.180 Å. In
spite of the values markedly exceed a ‘standard’ C–H bond length of 1.11 Å, typical
for benzene, those are still among the chemical C–H bonds, whilst stretched, since
the C–H bond rupture occurs at the C–H distance of 1.72 Å [63]. A remarkable
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Fig. 15.9 C–H bond length distribution for the saturated graphene polyhydrides 1 (1)
and 2 (2) [60]

stretching of the bonds points to a considerable weakening of the C–H interaction
for polyhydride 2 in comparison with polyhydride 1, which is supported by the ener-
getic characteristics of the hydrides, as well [60]. The total energies of both hydrides
are negative by sign and gradually increase by the absolute value when the number
of adsorbed atoms increases. However, the absolute value growth related to poly-
hydrides 2 is slowing down starting at step 11 in contrast to the continuing growth
for polyhydrides 1 [60]. This retardation obviously shows that the one-side addition
of hydrogen to the fixed membrane of polyhydrides 2 at the coverage higher than
30 % is more difficult than in the case of the two-side addition of polyhydrides 1,
for which the reaction of the chemical attachment of the hydrogen atoms is thermo-
dynamically profitable through over the covering up to the 100 % limit. In contrast,
the large coverage for polyhydrides 2 becomes less and less profitable so that at final
steps the hydrogen adsorption and desorption become competitive.

(5,5) NGr Molecule Oxidation Stepwise oxidation of the (5,5) NGr molecule
can be considered similarly to the hydrogenation described above. On the back-
ground of a tight similarity in both processes, in general, important difference of
the events concerns the fact that instead of atomic hydrogens, which were attacking
agents in the first case, a set of oxidants consisting of oxygen atoms O, hydroxyls
OH, and carboxyls COOH had to be considered in the latter case. A detailed descrip-
tion of the molecule oxidation is given in [64, 65]. Skipping extended explanations
of details given above for hydrogenation, below there is a brief presentation of re-
sults of the performed computational experiment, attributed to the main hot points
of the graphene oxide (GO) chemistry.



272 E.F. Sheka

Morphology Empirical experiments reveal a remarkable disordering of the ini-
tial graphene structure even by partial oxidation so that the chemically produced
graphene polyoxides (GOs) are highly amorphous (see [66–69] and references
therein).

The performed computational experiment fully supports this finding since none
of the regularly structured GOs has been obtained in the study.

Graphene Oxidation as a Process in General Experimentally was shown that
the oxidation of the graphene proceeds in a rather random manner [66]. The satu-
rated at% ratio of oxygen to carbon is ∼20–45 [69–72]. When GOs are heated to
110 °C, there is still about 5–10 at% oxygen left [71–73].

As shown computationally, the oxidation can be considered as a stepwise ad-
dition of oxidants to the pristine graphene molecule subordinated to the algorithm
governed by the list of high-rank atomic chemical susceptibilities NDA. In numer-
ous cases presented in [64, 65], the algorithm action does cause seemingly random
distribution of oxidants over the molecule body in due course of the oxidation pro-
cess.

The algorithmic approach to the chemical modification of sp2 nanocarbons does
not impose any restriction on the limit at% ratio of any addend attached to the carbon
skeleton, in general. This was supported by the results of the ‘computational synthe-
sis’ of polyderivatives of fullerene C60 [5] as well as polyhydrides and polyfluorides
of the (5,5) NGr molecule [60]. However, the initial radicalization of any pristine
sp2 molecule, which is provided by ND effectively unpaired electrons, is gradually
suppressed as the chemical reaction proceeds. The molecule chemical reactivity is
little by little worked out approaching zero due to which the reactions stop. This
explains why the hydrogenation and fluorination of fullerene C60 is terminated at
producing C60F48 and C60H36 polyderivatives, respectively, [59, 62] and why at%
ratio of hydrogen to carbon in the experiment of Elias et al. [61] decreases when
going from graphene polyhydrides formed from two-side, H-accessible, perimeter-
fixed membranes to one-side, H-accessible ripples [60]. The same regularities gov-
ern the (5,5) NGr molecule oxidation, which, as shown, terminates the oxidation
at achieving ∼67 at% of oxygen when the oxidation is provided by the addition
of either hydroxyls or oxygen atoms. The saturation number involves filling both
edge and basal atoms. Since the pristine (5,5) NGr molecule is rather small, the
contribution of edge atoms is significant. If the latter is excluded, the basal plane
coverage approaches 48 at% that is quite reasonable and points to a predominant
C2O stoichiometry. The earlier mentioned data of ∼20–45 at% are mainly related
to the basal positions of rather big experimental samples for which the contribution
of edge atoms is small.

In contrast, the availability of the remaining oxygen in the reduced GOs (rGOs)
subjected to heating up to 1100 °C, is connected with the edge atoms of the lat-
ter. As shown, these atoms, which include not only perimeter atoms of the rGOs
molecules but the atoms framing every defect zone, form a local area with very high
chemical reactivity. The oxidants are strongly coupled with the atoms and can leave
the molecule jointly with the carbon partners. The number of such atoms depends
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Fig. 15.10 Based on the (5,5) NGr molecule, the structural model of a top-down exfoliated GO
(a) and per step coupling energy (b) versus step number for the GOs family under subsequent O-
and OH-additions to carbon atoms at either the molecule basal plane (curves 1 and 2) or edges
(curve 3) [64, 65]

on linear size of both pristine GO molecules and their inner defects and cannot ev-
idently exceed a few percents, which perfectly correlates with the observed amount
of the remaining oxygen.

Chemical Composition of Graphene Oxide Basing on empirical data, the most
common opinion attributes COOH, OH, and C = O groups to the edge of the GO
sheet, while the basal plane is considered to be mostly covered with epoxy C–O–
C and OH groups [66, 69, 74, 75]. At least five structural models were suggested
to exhibit the GOs chemical composition [68]. However, none of them could stand
comparison with the full set of experimental data.

The performed computations have allowed for forming up a hierarchy of the main
three oxidants (O, OH, COOH) with respect to their participation in the graphene
oxidation that has shown an extremely low probability of such activity for carboxyls.
Basing on the results obtained, it is possible to suggest a reasonable, self-consistent
model of a convenient GO presented in Fig. 15.10a. Sure, the model cannot be sim-
ply scaled for adapting to larger samples. Obviously, due to extreme sensitivity of
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Fig. 15.11 Based on the
(5,5) NGr molecule, the
structural model of the
reduced top-down exfoliated
rGO [64, 65]

the graphene molecule structure and electronic system to even small perturbations
caused by external factors, the fractional contribution of O, OH, and C–O–C groups
may change in dependence of changing the molecule size, shape as well as of the
presence of such impurities as metal atoms [76] and so forth. These facts may ex-
plain ‘fluidness’ of the term “graphene oxide” pointed by Ruoff et al. [66]. However,
it is possible to convincingly state that the chemical composition of any GO has been
governed by the presence of two zones drastically differing by the coupling of the
relevant oxidants with the graphene molecule body so that carbonyl/hydroxyl and
epoxy/hydroxyl combinations will be typical for edge and basal areas of all GOs of
different size and shape (see Fig. 15.10b).

Besides the chemical composition of chemically produced GOs, the performed
calculations are able to suggest the chemical composition of rGOs as well. Discus-
sion based on a two-zone-chemical-reactivity peculiarity of graphene molecules,
clearly pointed to a reliable rGO model shown in Fig. 15.11.

Concluding discussion of hydrogenation and oxidation of graphene, some words
should be said concerning the computational strategy applicable to the molecule
chemical modification, in general. Until now, the computations in this field have
been aimed at finding support to one of the available models, the majority of which
has been suggested just intuitively. This strategy has been a result of certain lim-
itations provided by a standard computational DFT scheme within the framework
of the solid-state periodic boundary conditions, which requires a beforehand given
structure of the relevant supercell unit. However, the computational study, based on
such concept ‘from a given structure to reliable properties’ has resulted in wrong
conclusions, which, for example, in the case of GO have led to the statement about
kinetically constrained metastable nature of GO [77], thus revealing the inability to
meet the calls of the GO chemistry at the computational level. In contrast, the molec-
ular theory of graphene does not need any given structure beforehand but creates the
structure in the course of the calculations following the algorithms that take into ac-
count such fragile features of graphenes as their natural radicalization, correlation of
their odd electrons, an extremely strong influence of structure on properties, a sharp
response of the graphene molecule behavior on small action of external factors.

The molecular theory not only well works with the graphene chemical mod-
ification but opens large possibility in considering the mechanical properties of
graphene, in general, and its mechanochemistry, in particular, thus suggesting An-
swer 6.
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Fig. 15.12 C–C bond length distribution for the carbon skeletons of the pristine (5,5) NGr
molecule (gray filled region); canopy-like (dark triangles); and basket-like (gray balls) fixed mem-
branes [60]

Answer 6 Electron correlation of graphene is strongly influenced by mechanical
deformation.

Deformation of graphene is tightly connected with the odd electron correlation
since it concerns changing the interatomic distances. As we saw, the latter are very
important regulators of the correlation extent thus increasing it when the distances
grow. Obviously, strengthening of the electron correlation results in the growths of
the number of effectively unpaired electrons ND as it was shown in Fig. 15.1.

The deformation might be either static or dynamic. The former is caused by the
deformation of the carbon skeleton of the graphene molecule due to chemical mod-
ification. The C–C bonds stretching occurred in this case can be highlighted when
comparing the carbon skeletons of the pristine (5,5) NGr molecule and those of the
canopy-like and basket-like ones subjected to the one-side hydrogen adsorption on
either fixed or free standing membrane, respectively [60]. Figure 15.12 presents the
views of the skeletons alongside with the distribution of their C–C bond lengths.
As seen in the figure, the C–C bonds of both deformed skeletons are elongated,
whilst the summary elongation for the basket-like skeleton is evidently bigger than
that one for the canopy-like one. The elongation is restricted by the bond length of
1.53 Å, which is dictated by the sp3 configuration of carbon atoms due to hydro-
genation. Naturally, the accumulated deformation may cause some bonds breaking,
which occurs for bond 2 of the basket-like skeleton. As a whole, changes in the
C–C bond lengths presented in Fig. 15.12 result in decreasing magnetic constant J
by the absolute value from −1.43 kcal/mole for the pristine (5,5) NGr to −0.83
and −0.59 kcal/mole for the canopy-like and basket-like skeletons. Simultaneously,
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ND increases from 31 e to 46 e and 54 e, respectively. Both findings evidence an
undoubted strengthening of the odd electron correlation caused by the chemically-
stimulated deformation of the carbon skeleton.

Yet another evidence of the deformation effect is presented in Fig. 15.13. The fig-
ure shows the redistribution of unpaired electrons density over the skeleton atoms
caused by the deformation. As seen in the figure, the skeleton electron-density im-
age greatly changes when the electron correlation becomes stronger (draw attention
on a large vertical scale of plottings presented in the top figure). Consequently, if ob-
served by HRTEM, the basket-like skeleton might have look much brighter than the
canopy-like one and especially than the least bright pristine molecule. In view of the
finding, it is naturally to suggest that raised above the substrate and deformed areas
of graphene in the form of bubbles, found in a variety of shapes on different sub-
strates [78, 79], reveal peculiar electron-density properties just due to the stretching
deformation that results in strengthening the odd electron correlation. Small (5,5)
NGr molecule presented in Fig. 15.13 cannot pretend to simulate the picture ob-
served for micron bubbles, but it exhibits the general trend that might take place in
bubbles, as well. In view of the obvious strengthening of the odd electron correlation
caused by the deformation, this explanation looks more natural than that proposed
from the position of an artificial ‘gigantic pseudo-magnetic field’ [78].

A considerable decreasing of the magnetic constants J stimulated by the de-
formation allows for suggesting a peculiar magnetic behaviour of the deformed
graphene regions, such as, say, bubbles, stimulated by both their size and curva-
ture. The two parameters obviously favour decreasing in the constant values thus
promoting the appearance of magnetic response localized in the bubble regions.

Besides the formation of bubbles caused by ultrastrong adhesion of graphene
membranes to different substrates [80], the dynamic deformation of graphene can
be caused by the application of the external stress. The quantum molecular the-
ory suggests considering the graphene molecule deformation and rupture in terms
of a mechanochemical reaction [81–83]. The quantum chemical realization of the
approach is based on the coordinate-of-reaction concept for the purpose of introduc-
ing a mechanochemical internal coordinate (MIC) that specifies the deformational
mode. The related force of response is calculated as the energy gradient along the
MIC while the atomic configuration is optimized over all other coordinates under
the MIC constant-pitch elongation. When applied to the description of the defor-
mation of both (5,5) NGr [81, 82] and (5,5) NGra [83] molecules under uniaxial
tension, the calculations highlighted a pronounced changing in the number of ef-
fectively unpaired electrons ND of the sample in due course of its deformation. As
shown, the changing is different when the deformation occurs either along or normal
to the chains of C–C bonds. However, in all cases the changing is quite significant
pointing to a considerable strengthening of odd electron correlation due to changes
in interatomic spacings. A detailed consideration of a possible regulating mission of
the stress with respect to the enhancement of chemical reactivity of carbon atoms
and magnetic behaviour of the loaded sample obviously deserves a further thorough
study.
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Fig. 15.13 Effectively-unpaired-electron-density images of the carbon skeletons of the pristine
(5,5) NGr molecule (a); canopy-like (b); and basket-like (c) fixed membranes
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15.3 Discussion and Conclusive Remarks

The odd electrons of benzenoid units and the correlation of these electrons having
different spins are the main building stones of the molecular theory of sp2 nanocar-
bons. In contrast to the theory of aromaticity, the molecular theory accepts that the
odd electrons with different spins occupy different places in the space so that the
configuration interaction (CI) becomes the central point of the theory. Consequently,
a multi-determinant presentation of the wave function of the system of the weakly
interacting odd electrons is absolutely mandatory on the way of the theory imple-
mentation at the computational level. However, the efficacy of the available CI com-
putational techniques is quite restricted in regards large polyatomic systems, which
does not allow performing extensive computational experiments. On the other hand,
the modern computational science of sp2 nanocarbons, in general, and graphene, in
particular, is, actually, the field of such experiments due to its steadily grown impor-
tance caused by prevailing computations over other empirical technique, which is
evidently the case of graphene. Facing the problem, computationists have addressed
standard single-determinant software albeit not often being aware of how correct
are the obtained results. The current paper attempts to present the molecular theory
of graphene in terms of the single-determinant computational schemes as well as to
analyze the reliability of the obtained results.

The open-shell presentation of the wave functions is the first step towards the
multi-determinant computational schemes so that naturally one has to address this
form of the function presentation. Unrestricted Hartree-Fock (UHF) and density
functional techniques (UDFT) are to be the basic grounds for the techniques used.
In spite of a partial suiting of both approaches to the CI ones, both UHF and UDFT
schemes provide spin-contaminated solutions with the relevant energies that exceed
the pure-spin ones. Much higher energies and, thus, much less reliability correspond
to the standard computational HF and DFT schemes in the restricted closed-shell
approach. Nevertheless, a predominant majority of the DFT computations related
to graphene have been performed in this approximation, which greatly impugns the
reliability of the results obtained.

In the case of the unrestricted approach, the situation is better but this does not
remove the issue about the result reliability. On the example of the application of
the UHF-based theory to graphene, were obtained answers to most of the questions.
These answers lead the foundation of the current paper. It should be noted that get-
ting them has required the performance of system computational experiments in the
majority of cases.

Before passing to the answers, one should pay attention to the fact that the inner
features of the unrestricted computational schemes open the possibility in issuing
three criteria that can distinguish electrons systems by the electrons correlation.
These criteria are presented by the following quantities: (1) the energy misalignment
�ERU ≥ 0; (2) the total number of effectively unpaired electrons ND �= 0; and
(3) the squared spin misalignment �Ŝ2 ≥ 0. A detailed description of the values is
given in the relevant Section. When all the quantities are zero, the electrons are non-
correlated (that is the case of the benzene molecule), and the relevant sp2 systems
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subordinate to the theory of aromaticity. In the case of graphene, the values are not
zero, which manifests a considerable correlation of its odd electrons. Studying the
graphene odd electrons system by using the unrestricted broken symmetry approach,
one can obtain the following answers concerning the issue mentioned above.

Answer 1 states that application of both UHF and UDFT techniques in the frame-
work of the broken symmetry approach [20] allows determining the energies of pure
spin states quite correctly.

Answer 2 concerns the quantitative description of the graphene magnetism and
shows that the broken symmetry approaches provide the exact determination of the
magnetic constant. The value is size-dependent and steadily decreases by absolute
value when the graphene molecule size increases. The molecules with linear dimen-
sion of a few nm can provide the constant small enough for the magnetism of the
singlet graphene to be recorded. However, when the size exceeds the electron mean
free pass, the magnetism disappears due to quantizing electronic states and coming
back to the crystalline graphene unit cell that is diamagnetic.

Answer 3 is related to the graphene characteristic that controls the odd electrons
correlation. As shown, this is the C–C bond length that exceeds the critical value
Rcrit = 1.395 Å. Above this value two adjacent odd electrons become effectively
unpaired, firstly, partially radicalized and then completely radicalized as the C–C
distance grows.

Answer 4 addresses the definite physical reality of the effectively unpaired elec-
trons. So far there had been only one case when UBS HF computational results
were compared with those obtained by using one of the CI schemes in the form
of either CASSCF or MRCI approach [38]. The two techniques were applied to
the description of diradical character of the Cope rearrangement transition state.
CASSCF, MRCI, and UBS HF calculations have revealed effectively unpaired elec-
trons ND at the level of 1.05, 1.55, and 1.45 e, respectively, just highlighting that
the feature is a characteristic for the electron correlation but not the proximity of
the UBS HF approach. Recent successes in the atomic force microscopy with un-
precedented high accuracy have allowed seeing the unpaired electrons directly. The
recorded molecular images for the pentacene, olympicene, and graphene molecules
are in full consent with those calculated in the UBS HF approximation.

Answer 5 concerns the basic grounds of the chemical modification of graphene.
As shown, the fractional number of the effectively unpaired electrons related to a
given atom NDA is the quantitative indicator of the atom chemical activity (atomic
chemical susceptibility) that can be used as a reliable pointer of the target atom
entering the reaction. A large scale stepwise reaction can be considered computa-
tionally, which leads to the formation of different polyderivatives of graphene. On
the example of hydrogenation and oxidation of graphene, was obtained a general
view of graphene polyhydrides and polyoxides that well fit the experimental reality.

Answer 6 testifies that molecular theory is quite efficient when considering me-
chanical behavior of graphene. Leaving outside the theory application to the consid-
eration of the deformational process as such [81–83], the current chapter is concen-
trated on the consequences, related to the odd electros correlation, that are caused by
stretching and rupture of the C–C bonds in the graphene molecules in due course of
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deformation. The C–C bonds stretching causes increasing of both the total and frac-
tional numbers of the effectively unpaired electrons. The feature explains changing
in the chemical reactivity of graphene during deformation, on one hand, and appear-
ing bright spots on the TEM images in the area of graphene bubbles.

A limited volume of the chapter does not allow touching all the features of the
extremely large graphene science. However, the selected topics and answers ob-
tained in the course of their consideration clearly show that the molecular theory of
graphene, implemented in the format of the UBS HF computing schemes, is highly
efficient and suggests reliable explanations for a number of different graphene pe-
culiarities. These explanations are obtained on the same platform based on quite
a few concepts involving the odd electrons of the graphene benzenoid units and
their correlation due to weak interaction. Outside the paper, there are still ques-
tions concerning the chemical topology of graphene [84, 85], different aspects con-
cerning graphene quantum dots [86, 87], the silicene as siliceous counterpart of
graphene [88, 89], the graphene catalytic activity [90, 91], and so forth. The molec-
ular theory of graphene is very successful in dealing with all these issues, not being
concentrated on numbers but giving the main attention to clearly seen trends.

The odd electron correlation is not a prerogative of graphene only. Similar phe-
nomenon is characteristic for all sp2 nanocarbons, including fullerenes and nan-
otubes as well [5]. The only preference of graphene consists in much larger variety
of cases when this inherent characteristic of the class can be visualized.
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Chapter 16
Topological Mechanochemistry of Graphene

E.F. Sheka, V.A. Popova, and N.A. Popova

Abstract In view of the formal topology, two common terms, namely, the connec-
tivity and adjacency, determine the ‘quality’ of the C–C bonds of sp2 nanocarbons.
The feature is the most sensitive point of the inherent topology of the species so
that such external action as the mechanical deformation should obviously change
it and result in particular topological effects. The current chapter describes the
effects caused by uniaxial tension of a graphene molecule in due course of the
mechanochemical reaction. Basing on the molecular theory of graphene, the effects
are attributed to both mechanical loading and chemical modification of the edge
atoms of the molecule. The mechanical behavior is shown to be not only highly
anisotropic with respect to the direction of the load application, but greatly depen-
dent on the chemical modification of the molecule edge atoms thus revealing the
topological character of the graphene deformation.

16.1 Introduction

The modern topology in chemistry covers two large valleys, namely, formal, mathe-
matical and empirical, chemical. The former is concerned with the description of the
molecular structures on the basis of the finite topological spaces. The space shows
itself as a mathematical image or instrument of the theoretical study. A large collec-
tion of comprehensive reviews, related to the topological description of fullerenes
from this viewpoint, has recently been published [1]. The second field covers vastly
studied topochemical reactions. The space in this case is the physical reality defin-
ing the real place where the reactions occur. If the appearance of the mathemati-
cal topology in chemistry can be counted off the publication of the Merrifield and
Simmons monograph in 1989 [2], the topochemical reactions have been studying
from the nineteenth century (see [3] and references therein). The first stage of the
study was completed in the late nineteenth-twenties [4] and then obtained a new
pulse after appearing the Woodward and Hoffmann monograph, devoted to the con-
servation of orbital symmetry, in 1970 [5]. Since then, the topochemical reactions
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have become an inherent part of not only organic, but inorganic chemistry, as well.
The readers, who are interested in this topic, are referred to a set of comprehensive
reviews [3, 6–9], but a few. The current situation in this field can be seen by the
example of a direct structural understanding of the topochemical solid state pho-
topolymerization reaction [10].

Nowadays, we are witnessing the next pulse, stimulating investigations in the
field, which should be attributed to the appearance of a new class of the spatially ex-
tended molecular materials, such as sp2 nanocarbons. Obviously, the main members
of the class such as fullerenes, nanotubes, and numerous graphene-based species
are absolutely different from the formal topology viewpoint. Thus, fullerenes exist
in the form of a hollow sphere, ellipsoid, or tube consisting of differently packed
benzenoid units. Carbon nanotubes present predominantly cylindrical packing of
the units. In graphene, the benzenoid units form one-atom-thick planar honeycomb
structure. If we address the common terms of the formal topology, namely, connec-
tivity and adjacency, we have to intuitively accept their different amount in the above
three species. In its turn, the connectivity and adjacency determine the ‘quality’ of
the C–C bond structure of the species, thus, differentiating them by this mark. Since
non-saturated C–C bonds are the main target for chemical reactions of any type, one
must assume that identical reactions, involving the bonds, will occur differently for
different members of the sp2 nanocarbon family. Therefore, one may conclude that
the spatially extended sp2 nanocarbons present not only peculiar structural chemi-
cals, but the class of species for which the formal and empirical topology overlap.
At the first time, the results, presented in [11, 12] have revealed this tight intercon-
nection in terms of the molecular quantum theory. Not only fullerenes, but carbon
nanotubes and graphene (their fragments) have been considered at the molecular
level. The obtained results are related to the computational study of the intermolec-
ular interaction between one of the above sp2 nanocarbon molecules and one of
the other addends, among which there are both sp2 nanocarbons and monoatomic
species. The intermolecular interaction lays the foundation of any reaction so that
its topological peculiarities may evidence a topochemical character of the reaction
under study. However, since the ‘quality’ of the C–C bonds is the most sensitive
point of the inherent topology of the sp2 nanocarbons, external actions, such as me-
chanical deformation, on the bonds should obviously result in particular topological
effects that accompany the relevant intramolecular reactions. The current chapter is
devoted to the discussion of such reactions that are presented by the mechanochem-
ical one related to the uniaxial tension of a graphene molecule.

16.2 Uniaxial Tension of Graphene as a Mechanochemical
Reaction

Below we will consider a particular topological effect caused by the influence of
both the loading direction and the graphene molecule edge termination on the in-
herited topology of the molecule. As turned out, the graphene deformation under
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external mechanical loading is extremely sensitive to the state of the edge atoms
and makes it possible to disclose a topological nature of this sensitivity.

Oppositely to real physical experiments, when changing the object shape under
loading is usually monitored, computational experiments deal with the total energy
response to the object shape deformation that simulates either tension and contrac-
tion or bending, screwing, shift, and so forth. As for graphene, whose mechanical
properties are amenable to experimental study with difficulty, the computational ex-
periments take on great significance.

A lot of works are devoted to the calculation of mechanical properties of
graphene due to which two approaches, namely, continuum and atomistic ones have
been formulated. The continuum approach is based on the well developed theory
of elasticity of continuous solid media applied to shells, plates, beams, rods, and
trusses. The latter are the structure elements used for the continuum description.
When applying to graphene, its lattice structure is presented in terms of the above
continuum structure elements and the main task of the calculations is the refor-
mulation of the total energy of the studied atomic-molecular system subjected to
changing in shape in terms of the continuum structure elements. This procedure
actually involves the adaptation of the theory of elasticity of continuous media to
nanosize objects which makes allowance for introducing macroscopic basic me-
chanical parameters such as Young’s modulus (E), the Poisson ratio (ν), the po-
tential energy of the elastic deformation, etc into the description of mechanical
properties of graphene. Since the energy of graphene is mainly calculated in the
framework of quantum chemistry, which takes the object atom structure into ac-
count, the main problem of the continuum approach is a linkage between molecu-
lar configuration and continuum structure elements. Nanoscale continuum methods
(see Refs. [13–17] and references therein), among which those based on the struc-
tural mechanics concept [18] are the most developed, have shown the best ability to
simulate nanostructure materials. In view of this concept, graphene is a geometri-
cal frame-like structure where the primary bonds between two nearest-neighboring
atoms act like the load-bearing beam members, whereas an individual atom acts as
the joint of the related beams [19–22].

The basic concept of the atomistic approach consists in obtaining mechanical
parameters of the object from results of the direct solutions of either Newton motion
laws [22, 23] or Schrödinger equations [24, 25] under changing the object shape
following a particular algorithm of simulation of the wished type of deformation. It
should be necessary to issue a general comment concerning calculations based on
the application of the DFT computational schemes. All the latter, except the recent
one [26], were performed in the framework of restricted versions of the programs
that do not take into account spins of the graphene odd electrons and thus ignore the
correlation interaction between the latter. Peculiarities of the graphene odd electron
behavior is connected with a considerable enlarging of its C–C bonds, which, in its
turn, causes a noticeable weakening of the odd electron interaction and thus requires
taking into account these electrons correlation [27, 28].

In the case of atomistic approach, not energy itself, but forces applied to atoms
become the main goal of calculations. These forces are inputted later into the rela-
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tions of macroscopic linear theory of elasticity and lay the foundation for the evalu-
ation of micro-macroscopic mechanical parameters such as Young’s modulus (E∗),
the Poisson ratio (ν∗), and so on. Nothing to mention that parameters E and E∗ as
well as ν and ν∗ are not the same so that their coincidence is quite accidental. Ob-
viously, the atomistic approach falls in opinion comparing with the continuum one
due to time consuming calculations and, as a result, due to applicability to smaller
objects. However, it possesses doubtless advantages concerning the description of
the mechanical behavior of the object under certain loading (shape changing) as
well as exhibiting the deformation and failure process at the atomic level. A serious
deficiency of both standard approaches is their close links with the theory of elas-
ticity, which drives the graphene into the Procrustean bed of elastic deformation,
depriving it of the right to permanent plastic behavior.

Recently a new atomistic approach has been suggested for the description of
the graphene deformation based on considering the failure and rupture process of
graphene as the occurrence of a mechanochemical reaction [29–32]. A similarity
between the mechanically induced reaction and the first-type chemical ones, first
pointed out by Tobolski and Eyring seventy years ago [33], suggested the use of
a well developed quantum-chemical approach of the reaction coordinate [34] in
the study of the atomic structure transformation under deformation. Firstly applied
to the deformation of poly(dimethylsiloxane) oligomers [35], the approach has re-
vealed a high efficacy in exhibiting elastic, plastic, and superplastic regions of the
uniaxial tension of the oligomer, disclosing the mechanism of its failure and rupture.
It has been successfully applied recently for the description of the uniaxial tension
of both graphene [29, 30] and graphane [31] molecules, thus positioning itself as a
significant part of the molecular theory of graphene [28].

The main point of the approach concerns the reaction coordinate definition.
When dealing with chemical reactions, the coordinate is usually selected among
the internal ones (valence bond, bond angle or torsion angle) or is presented as a
linear combination of the latter. Similarly, mechanochemical internal coordinates
(MICs) are introduced as modified internal coordinates defined in such a way as to
be able to specify the considered deformational modes [35, 36]. Thus, uniaxial ten-
sion and contraction are described by linear MICs similar to valence bonds. In the
case of tensile deformation, the benzenoid pattern of graphene sheets and a regular
packing of the units predetermined the choice of either parallel or normal MICs ori-
entation with respect to the chain of C–C bonds. In the rectangular nanographene
sheets and nanoribbons the former orientation corresponds to tensile deformation
applied to the zigzag edges (zigzag mode) while the latter is attributed to the arm-
chair edges (armchair mode). The MIC configurations of the two tensile modes of
the (5,5) NGr molecule are presented in Fig. 16.1. The molecule lays the foun-
dation of previously performed computational experiments [29–32] and presents a
rectangular fragment of a graphene sheet that is cut along zigzag and armchair edges
and contains 5 benzenoid units along each direction. The deformation proceeds as
a stepwise elongation of the MICs with the increment δL = 0.1 Å at each step so
that the current MIC length constitutes L= L0+nδL, where L0 is the initial length
of the MIC and n counts the number of the deformation steps. The right ends of
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Fig. 16.1 Six mechanochemical internal coordinates of the uniaxial tension of the molecule (5, 5)
NGr for two deformation modes. F1, F2, F3, F4, F5, F6 are the forces of response along these
coordinates. Blue atoms fix the coordinates ends

all the MICs are fixed so that these blue colored atoms are immobilized while the
atoms on the left ends of MICs move along the arrows providing the MIC succes-
sive elongation, once excluded from the optimization, as well. The relevant force of
response is calculated as the energy gradient along the MIC while the atomic config-
uration is optimized over all of the other coordinates under the MIC constant-pitch
elongation. The results presented in the chapter were obtained in the framework
of the Hartree-Fock unrestricted (UHF) version of the DYQUAMECH codes [37]
exploiting advanced semiempirical QCh methods (PM3 version [38]).

The corresponding forces of response Fi applied along the ith MICs are the first
derivatives of the total energy E(R) over the Cartesian coordinates [35]:
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Here, ϕ is the wave function of an atom in the ground state at fixed nucleus posi-
tions, H presents the adiabatic electron Hamiltonian, and P is the nucleus momen-
tum. When the force calculation is completed, the gradients are re-determined in the
system of internal coordinates in order to proceed further in seeking the total energy
minimum by the atomic structure optimization. Forces Fi are used afterwards for
determining all the required micro-macroscopic mechanical characteristics, which
are relevant to the uniaxial tension, such as the total force of response F =∑i Fi ,
the stress σ = F/S = (∑i Fi)/S, where S is the loading area, the Young’s modu-
lus E = σ/ε, where both stress σ and the strain ε are determined within the elastic
region of deformation.

16.3 Computational Results

Thus arranged computations have revealed that a high stiffness of the graphene body
is provided by that one of the benzenoid units. The anisotropy of the unit mechan-
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Fig. 16.2 The equilibrium structures of the (5, 5) NGr with different chemical modification of the
edge atoms before and after completing the tensile deformation in two modes of deformation. Bare
edges (top); H1-terminated edges (middle); H2-terminated edges (bottom)

ical behavior in combination with different packing of the units either normally or
parallel to the C–C bond chains lays the ground for the structure-sensitive mecha-
nism of the mechanical behavior of the object that drastically depends on the de-
formation modes [29–31]. The elastic region of tensile deformation of both (5, 5)
nanographene (NGr) and nanographane (NGra) molecules is extremely narrow and
corresponds to a few first steps of the deformation. The deformation as a whole
is predominantly plastic and dependent on many parameters. Among the latter, the
most important is the chemical composition of the molecule edge atoms [32].

The equilibrium structures of the (5, 5) NGr molecule before and after uniax-
ial tension, which was terminated by the rupture of the last C–C bond coupling
two fragments of the molecule, are shown in Fig. 16.2. Looking at the picture, two
main peculiarities of the molecule deformation should be notified. First concerns
the anisotropy of the deformation with respect to two deformational modes. Sec-
ond exhibits a strong dependence of the deformation on the chemical composition
of the molecule edge atoms. As mentioned above, the deformation anisotropy of
graphene has been attributed to the mechanical anisotropy of the constituent ben-
zenoid units [29, 30]. The dependence of the deformation on the chemical modifi-
cation of the framing edge atoms has been revealed for the first time.

As seen in Fig. 16.2, the deformation behavior is the most complex for the naked
molecule. The mechanical behavior of the (5, 5) NGr molecule is similar to that of a
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tricotage sheet when either the sheet rupture has both commenced and completed by
the rupture of a single stitch row (armchair mode) or the rupture of one stitch is ‘tug-
ging at thread’ the other stitches that are replaced by still elongated one-atom chain
of the carbon atoms (zigzag mode). In the former case, the deformation is one-stage
and is terminated on the 17th step of the deformation. In contrast, the deformational
mode zigzag is multi-stage and consists of 250 consequent steps with elongation of
0.1 Å at each step [29, 30]. The formation of the one-atom chain under zigzag-mode
tension of the naked graphene piece has been supported experimentally [39].

Quite unexpectedly, the character of the deformation has occurred to be strongly
dependent on the chemical situation at the molecule edges. As seen in Fig. 16.2b,
the addition of one hydrogen atom to each of the molecule edge atoms does not
change the general character of the deformation: it remains a tricotage-like one so
that there is still a large difference between the behavior of zigzag and armchair
modes. At the same time, the number of the deformation steps of the zigzag mode
reduces to 125.

Even more drastic changes for this mode are caused by the addition of the second
hydrogen atoms to the edge ones (Fig. 16.2c). Still, the armchair mode is quite
conservative while the zigzag one becomes practically identical to the former. The
tricotage-like character of the deformation is completely lost and the rupture occurs
at the 20th step.

Figure 16.3 presents a set of the ‘stress-strain’ relations that fairly well high-
light the difference in the mechanical behavior of all the three molecules. Table 16.1
presents the Young modules that were defined in the region of the elastic deforma-
tion. As seen from the table, the Young modules depend on the character of the
edge atom chemical modification. As shown in [31], elastic properties of extended
molecules such as polymers [35, 40] and nanographenes [31] are determined by
dynamic characteristics of the objects, namely, by force constants of the related
vibrations. Since benzenoid units provide the determining resistance to any defor-
mation of the graphene molecules, the dynamic parameters of the stretching C–C
vibrations of the units are mainly responsible in the case of the uniaxial tension.
Changing in Young’s modules means changing in the force constants (and, conse-
quently, frequencies) of these vibrations. The latter are attributed to the G-band of
graphene that lays the foundation of a mandatory testing of any graphenium sys-
tem by the Raman spectroscopy. In numerous cases, the relevant band is quite wide
which might indicate the chemical modification of the edge zone of the graphene
objects under investigation.

Since the deformation-induced molecule distortion mainly concerns the basal
atoms, so drastic changes in the deformation behavior points to a significant influ-
ence of the chemical state of the edge atoms on the electronic properties in the basal
plane. The observed phenomenon can be understood if suggest that (1) the defor-
mation and rupture of the molecule are a collective event that involves the electron
system of the molecule as a whole; (2) the electron system of the graphene molecule
is highly delocalized due to extreme correlation of the odd electrons; and (3) the
electrons correlation is topologically sensitive due to which the chemical termina-
tion of the edge atoms so strongly influences the behavior of the entire molecule.
The latter has turned out to be the reality, indeed.
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Fig. 16.3 The stress-versus-strain dependences of the tensile deformation of the (5, 5) NGr
molecule with the different chemical modification in two deformation modes. Nake molecule (top);
H1-terminated edges (middle); H2-terminated edges (bottom)

Table 16.1 Young’s modules for (5, 5) NGr with different configuration of edge atoms, TPa

Mode Bare edges H1-terminated edges H2-terminated edges

Zigzag 1.05 1.09 0.92

Armchair 1.06 1.15 0.95

16.4 Topological Character of the Odd Electron Correlation in
Graphene

The performed computations have revealed that the correlation of the odd electrons
of the studied molecules changes quite remarkably in the course of the deformation.
This result can be illustrated by the evolution of the total number of effectively un-
paired electrons ND during the deformation. The ND value is a direct characteristic
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Fig. 16.4 The evolution of the odd electrons correlation in terms of the total numbers of the
effectively unpaired electrons under the tensile deformation of the (5, 5) NGr at two deformation
modes. Bare edges (top); H1-terminated edges (middle); H2-terminated edges (bottom)

of the extent of the electron correlation, on one hand, [28] and molecular chemical
susceptibility, on the other, [41]. Changing in ND reveals changing in the molecule
chemical activity induced by deformation.

Figure 16.4 presents the evolution of ND for the three studied molecules. Since
breaking of each C–C bonds causes an abrupt changing in ND , a toothed charac-
ter of the relevant dependences related to the zigzag mode of the molecule with the
naked and H-terminated edges is quite evident. One should draw attention to theND
absolute values as well as to their dependence on both the chemical modification of
the edge atoms and the deformational modes. Evidently, the chemical activity of
the molecules drastically changes in the course of the mechanically induced trans-
formation. This changing is provided by the redistribution of the C–C bond lengths
caused by the mechanical action. This action combines the positions of both basal
plane and edge atoms into the united whole and is topologically sensitive. There-
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Fig. 16.5 The image NDA maps and the equilibrium structures of the naked (5, 5) NGr molecule
in the course of the first stage armchair-mode tensile deformation. The black and white figures
number steps and equalizing coefficients, respectively. The same intensity scale is related to all the
maps

fore, the redistribution of the C–C bonds over their lengths causes changing in the
topological ‘quality’ of individual bonds. To illustrate the latter, let us look at not the
total number of the effectively unpaired electrons ND , but at the atomic chemical
susceptibility distribution over the molecule atoms that is determined by a fractional
number of the effectively unpaired electrons NDA at atom A [28].

16.4.1 Naked Graphene Molecule

Figure 16.5 presents a set of the NDA image maps related to the first 17 steps of
the armchair mode of the molecule uniaxial tension. The set corresponds to gradu-
ally increased NDA values up to the 17th step shown at the right-hand top panel of
Fig. 16.4. The maps are accompanied by the molecule equilibrium structures. For
the maps to be presented in one scale, the NDA data were normalized by equalizing
maximum NDA values at each map to that one at the zeroth step that corresponds to
the non-deformed molecule. White figures present the equalizing coefficients.

As seen in the figure, the segregation of the atoms into two groups related to
the edge and basal plane areas, respectively, which is characteristic for the non-
deformed molecules, takes place up to the 16th step inclusively. Obviously, since
simultaneously, the total number of the effectively unpaired electrons ND grows,
the redistribution of the NDA values should occur. However, the latter mainly con-
cerns the basal plane atoms leaving the edge atoms only slightly changed due to
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Fig. 16.6 The histograms of theNDA distribution over the atoms of the naked (5, 5) NGr molecule
related to the non-deformed (light) and the 16th step-deformed (dark) armchair-mode tensile de-
formation. The curve plots the presented values ratio when n= 16

practically constant maximum NDA values of the latter, which follows from the
presented equalizing coefficient. Actually, Fig. 16.6 shows the distribution of the
absolute NDA values for the zero and 16th steps alongside with their ratio. As seen
in the figure, the redistribution concerns basal plane atoms mainly, indeed.

Important to draw attention to both the image NDA maps and the corresponding
structures related to the 15th and 16th steps. The structures are drawn by a visu-
alization standard program that is based on tabulated values of the chemical bond
lengths. According to the data, there is one broken C–C bond at the 15th step and
five of them appear at the 16th step. Since the bonds are ruptured homolytically,
one should expect the radicalization of the molecule at these points. Providing the
NDA indicative ability of just the very events, the appearance of white spots on the
maps should be expected. However, until the 17th step no such spots are observed.
This shows that the bonds breaking occurs at much longer interatomic distance in
comparison with the standard tabulated data, which supports the conclusion made
in [42].

Figure 16.7 presents a similar picture describing changes in the odd electron cor-
relation during the zigzag-mode tension of the studied molecule. The first 17 steps
cover the first-stage zigzag-mode deformation and correspond to the first tooth of
the strain-stress and ND-elongation dependences shown in the left-hand top panels
in Figs. 16.3 and 16.4, respectively. In contrast to the previous case, the redistribu-
tion of the NDA values occurs quite differently. Although the general image of the
maps is kept up to the 16th step, the appearance of strongly stretched C–C bonds
can be already noticed at the 15th step while a complete bond breaking becomes
absolutely evident at the 17th step only. The effect of the stretched C–C bonds in
the basal plane on the NDA value redistribution is well seen in Fig. 16.8. About 5.5-
fold changing in the NDA value is characteristic for one of them while edge atoms
preserve only slightly changed NDA values.
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Fig. 16.7 The image NDA maps and the equilibrium structures of the naked (5, 5) NGr molecule
in the course of the first stage zigzag-mode tensile deformation. The black and white figures number
steps and equalizing coefficients, respectively. The same intensity scale is related to all the maps

Fig. 16.8 The histograms of theNDA distribution over the atoms of the naked (5, 5) NGr molecule
related to the non-deformed (light) and the 16th step-deformed (dark) zigzag-mode tensile defor-
mation. The curve plots the presented values ratio when n= 16

As was previously mentioned [29, 30], per step elongation (stretching) of the
C–C bonds under the armchair- and zigzag-mode tension is quite different from
the geometrical viewpoint. Evidently, this might explain the difference in the NDA
values related to the same step of both modes but cannot explain why the character
of the redistribution for the two modes is completely different thus attributing the
difference to the topological nature of the considered mechanochemical reaction.



16 Topological Mechanochemistry of Graphene 297

Fig. 16.9 The image NDA maps and the equilibrium structures of the single-hydrogen-terminated
(5, 5) NGr molecule in the course of the first stage of the armchair (left) and zigzag (right)-mode
tensile deformation. The black and white figures number steps and equalizing coefficients, respec-
tively. Scales are related to all the maps within the deformational mode

16.4.2 Single-Hydrogen Terminated Graphene Molecule

The evolution of the NDA image maps in the course of the armchair- and zigzag-
mode uniaxial tension of the (5, 5) NGr molecule with the single-hydrogen termi-
nated edges is presented in Fig. 16.9. The data are related to the first stage of de-
formation for both modes. The picture in the figure drastically differs from that one
shown in Figs. 16.5 and 16.7. The difference starts from the non-deformed molecule.
As seen in the figure, the NDA distributions differ remarkably for the two modes.
The two maps are obtained in due course of the following procedure. Firstly, the
equilibrium structure of the free standing H1-terminated (5, 5) NGr molecule was
obtained. Afterwards, a set of carbon atoms, which determine six selected MICs
(see blue atoms in Fig. 16.1), was fixed, differently for two deformation modes.
Then the optimization procedure was repeated for adopting calculation to the new
conditions. If in the case of the naked molecule considered in the previous section,
this procedure caused only a homogeneous scaling of the NDA values (see scales in
Figs. 16.5 and 16.7), a complete reconstruction of the image NDA map occurs in the
current case while the maximumNDA values are practically identical. Both findings
mean that fixation of the graphene sheet edges provides a considerable change in its
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Fig. 16.10 The image NDA maps and the equilibrium structures of the double-hydrogen-ter-
minated- (5, 5) NGr molecule in the course of the first stage of the armchair (left) and zigzag
(right)-mode tensile deformation. The black and white figures number steps and equalizing coeffi-
cients, respectively. Scales are related to all the maps within the deformational modes

electron distribution. The latter is additionally greatly influenced by the chemical
composition of the sheet edge atoms.

Coming back to Fig. 16.9, one can see that, as previously, in the case of armchair
mode the image maps keep practically unchanged appearance until the 19th step in
spite of highly stretched C–C bonds at the latter step. The next 0.1 Å elongation
provides simultaneous breaking of six C–C bonds followed with 3-fold increasing
of the NDA values. The sample becomes highly radicalized. Concentration of high
NDA values in the area of broken bonds drastically changes the image map fully
suppressing much less active pristine atoms. Further elongation does not change the
situation.

In the case of zigzag mode, the map appearance has been kept up to the 14th step
after which highly stretched C–C bonds are observed in the middle of the molecule
basal plane at the 15th step, whose complete breaking is followed at the 16th step.
The sample becomes highly radicalized.

16.4.3 Double-Hydrogen Terminated Graphene Molecule

Addition of the second hydrogen atom to the edge carbons drastically changes the
image maps again as seen in Fig. 16.10. In contrast to the previous case, the initial
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fixation of edge atoms does not cause changing in both the map appearance and
absolute NDA value. However, the molecule becomes non-planar, which greatly
influences further deformation. Thus, in due course of the armchair-mode tension,
the difference in the values of eight framing basal atoms and remainders is gradually
smoothed, once equalizing at the 19th step. The situation remains the same for the
20th step in spite of the presence of the stretched C–C bonds. The bond breaking
occurs at the 21st step; the sample becomes radicalized with a small area of the
radical concentration. Oppositely to the case, the zigzag-mode deformation does not
cause any smoothing of the NDA values distribution and keeps the non-deformed
shape up to the 19th step. The bond stretching is observed at the steps from 17th to
19th, and the bond breaking occurs at the 20th step.

Taking together, Figs. 16.5, 16.7, 16.9, and 16.10 exhibit changing in the odd
electron correlation of the graphene molecule under deformation and highlight a
strong dependence of the correlation on both the deformational mode configuration
and the chemical modification of the molecule edge atoms.

16.5 Conclusion

Presented in the current chapter undoubtedly shows that the chemical modification
of the graphene molecule edge atoms has a great impact on its mechanical behav-
ior. The feature results from the significant correlation of the molecule odd elec-
trons followed by their conjugation over the molecule. Thus, the transition from the
naked molecule, characterized by the maximal correlation of the odd electrons, to
the molecule with the single- and double-hydrogen-terminated edges is followed by
a considerable suppression of the correlation related to the edge atoms in the for-
mer case and a complete zeroing of the latter in the second case. As turned out, the
changes are not local and strongly influence the electronic structure in the region of
the basal plane, where the main deformational process occurs, causing the redistri-
bution of the C–C bonds over their lengths, thus, changing ‘the quality’ of the bonds
and providing the topological character of the deformational processes in graphene.
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Chapter 17
Theoretical Analysis of Phase-Transition
Temperature of Hydrogen-Bonded Dielectric
Materials Induced by H/D Isotope Effect

Takayoshi Ishimoto and Masanori Tachikawa

Abstract We theoretically analyzed the H/D isotope effect for phase transition tem-
perature (Tc) and geometrical changes of hydrogen-bonded dielectric materials by
using the multi-component molecular orbital method, which can take account the
quantum effect of proton, deuteron, triton, and muon. Taking into account the quan-
tum effect of proton/deuteron using the MC_MO method directly, the difference of
Tc, as well as, the geometry and electronic charge difference is universally eluci-
dated. The origin of the isotope effect for hydrogen-bonded dielectric materials is
from the difference of the proton/deuteron wave distributions under the anharmonic-
ity of the potential.

17.1 Introduction

The hydrogen-bonded dielectric material is classified into the (anti-) ferroelectric
materials having hydrogen bond in the crystal structure. Many hydrogen-bonded di-
electric materials have been reported since the discovery of potassium dihydrogen
phosphate, KH2PO4 (KDP), in 1935 [1]. The hydrogen-bonded dielectric materi-
als have various hydrogen-bonded networks such as three-, two-, one-, and zero-
dimensional structures [2–5].

The phase transition of the hydrogen-bonded dielectric materials strongly de-
pends on the nature of hydrogen-bonded networks. The hydrogen bond in the crystal
of hydrogen-bonded dielectric materials plays an important role to control various
physical properties. In particular, drastic change of the phase transition temperature
(Tc) of the hydrogen-bonded dielectric materials upon replacing hydrogen atoms
with deuterium is usually called the ‘isotope effect’. Sometimes the difference of
the Tc between the hydrogen and deuterium compounds is more than 100 K. The
problem of its phase transition and the large isotope effect on such physical quan-
tities as the Tc has been one of the most interesting topics in this field. Although
there are many models and experimental results with respect to the isotope effect of
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the phase transition, the origin of the isotope effect is not yet completely elucidated.
We should address here that the origin of the isotope effect is among the major sub-
jects in condensed matter physics. The history of research of the isotope effect is
introduced below.

More than sixty years ago, Slater first investigated the mechanism of the phase
transition of KDP using a statistical mechanism [6]. He concluded the order-disorder
type phase transition using the classical double-minimum protonic potential func-
tions, while he did not refer to the isotope effect.

Since the chemical nature of the hydrogen and deuterium atoms is believed to
be the same, the origin of the isotope effect is related to the difference in only their
masses. In order to elucidate the isotope effect, various theoretical approaches were
proposed after his work. Among the various theoretical models, the proton tunnel-
ing model [7–10] has been most widely accepted, since it was supported by the light
scattering experiment [11, 12] and high-pressure measurement [13]. In the tunnel-
ing model, which occurs in the disordered phase at high temperature, each proton
(deuteron) occupies two equilibrium positions with equal probability in a symmet-
ric double well potential, and proton (deuteron) tunneling between these positions
opposes localization. Within this model, the phase transition is driven by the direct
proton-proton interaction. The isotope effect is explained as the difference of the
splitting of energy levels by the proton (deuteron) tunneling amplitudes.

Some serious doubts, however, have been thrown upon the proton tunneling
model. Ichikawa has pointed out the importance of the isotope effect on geome-
try and symmetry of the hydrogen bond for inducing the large isotope effect of the
Tc [14]. This is called the “geometrical isotope effect” based on the empirical inves-
tigation of KDP families at various temperatures and pressures. This indicates that
the large difference of Tc might be interpreted without invoking proton tunneling.

Recent developments in experimental techniques have made it possible to give
various novel information. Noda and Kasatani et al. observed the difference in
the electronic population around the proton and deuteron by the X-ray diffraction
study [15–18]. The total number of electrons around the proton and deuteron in the
tripotassium hydrogen disulfate (KHS) and its deuterium compound DKHS are 0.65
and 1.19, respectively. They suggested that the charge difference is important for the
occurrence of the large isotope effect. In addition, there is no evidence of the proton
(deuteron) tunneling phenomena from the Raman spectroscopic analysis by Tomi-
naga [19]. In this sense, the some experimental results such as the origin of isotope
effect on the Tc of hydrogen-bonded dielectric materials cannot be fully understood
by only proton tunneling model.

Recently, new models which take into account the quantum effect of nucleus such
as proton and deuteron are proposed [20–22]. In particular, Koval et al. [20] studied
the nuclear quantum effects of KDP (DKDP) based on the density functional theory
(DFT) [23]. The DFT is not fully unveiled the hydrogen-bonded dielectric materials,
even though the DFT based on the local density approximation (LDA) [24] and gen-
eralized gradient approximation (GGA) [25] with the plane wave basis expansion
has been employed with great success to theoretically analyze the various materials.
This method is no longer able to predict the difference in the electronic charge dis-
tributions around the proton (deuteron) and polarized structures such as hydrogen
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bonds. On the other hand, the molecular orbital (MO) and crystal orbital methods
based on the one electron approximation are powerful tools for the electronic struc-
ture calculation of molecules and clusters. This method is effective for the detailed
geometry analysis using the potential energy surfaces. Recently, we have proposed
the multi-component MO (MC_MO) method which takes into account the quantum
effect of proton and deuteron directly [26]. Here, the quantum effect can include the
effect of the anharmonicity due to the zero-point vibration induced by the quantum
proton and deuteron. The MC_MO method extends the concept of the conventional
MO method not only to the electrons but also to nucleus. It is a great and important
challenge to elucidate the origin of the isotope effect.

The computational procedure of the multi-component MO method, which can
take into account of the quantum effect of the proton and deuteron directly, is intro-
duced in next section. In Sect. 17.3.1, we show the results of our MC_MO calcula-
tion for isotope effect on the phase transition in the K3H(SO4)2 and its deuterated
K3D(SO4)2 in order to theoretically analyze the quantum effect of the proton and
deuteron and to show the efficiency of the MC_MO method. In Sect. 17.3.2, the
origin of the phase transition and the isotope effect in the squaric acid, which is
well known as the organic dielectric material, will be shown through the stabilities,
structures, and cluster size dependency of the unit. The phase transition temperature
(Tc) difference between H2SQ and D2SQ is theoretically evaluated. In Sect. 17.3.3,
the Tc and geometrical changes of the mixed K3H1−xDx(SO4)2 and (H1−xDx )2SQ
crystal is discussed. The Tc of TKHS and T2SQ substituted from hydrogen to tritium
is also predicted. From the above results and discussion, the origin of the isotope ef-
fect on the phase transition temperature in hydrogen-bonded dielectric materials is
deduced, as shown in Summary.

17.2 Computational Method

The quantum mechanical description of nuclear motion is a problem of central in-
terest in physics, chemistry, and interdisciplinary fields [27–29]. However, quan-
tum chemical molecular orbital (MO) theory has been developed for the description
of electronic motion in the molecular system. A multi-component MO (MC_MO)
method [26] is proposed to the description of the nuclear motion; that is, both elec-
tronic and nuclear wave functions are calculated simultaneously and all the parame-
ters are determined variationally, except for the physical constant [30–32] to express
the ‘optimized nuclear MO’ directly.

The electronic Hamiltonian of an Ne electron and M nuclear system in atomic
units is

He =
Ne∑

i=1

(
−1

2
∇2
i −

M∑

μ=1

Zμ

riμ

)
+

Ne∑

i>j

1

rij
+

M∑

μ>ν

ZμZν

rμν
, (17.1)

where, the i and j indices refer to the electrons, μ and ν to the nuclei and Zμ repre-
sents the nuclear charge. In the conventional MO calculation, the time-independent
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Schrödinger equation of the electronic Hamiltonian is solved approximately using
the variational method with the nuclei fixed; that is, the motion of the electrons is
evaluated in the field of fixed nuclear charges [33, 34]. This electronic Hamilto-
nian expresses only electronic states and includes no nuclear kinetic energy oper-
ator terms. Based on the Born-Oppenheimer (B.O.) approximation [35], two steps
are necessary to analyze the nuclear motion. First, the electronic Hamiltonian for all
possible nuclear configurations (in principle) is solved to obtain a potential energy
hypersurface, which is then used as an adiabatic potential for the analysis of the nu-
clear motion. However, this treatment is practicable only di- or tri-atomic molecules
[36, 37].

In order to obtain both the electronic and nuclear wave functions simultaneously,
the total Hamiltonian including the nuclear kinetic-energy operators is used as,

Htot =−
M∑

p

1

2Mp
∇2
p +He, (17.2)

where the p index refers to the nucleus treated as a quantum wave and Mp is the
mass of the pth nuclear particle. For simplicity, one kind of nuclear species is treated
as the quantum mechanical wave and the other nuclei as the point charges. It may
be a better approximation if the lightest nuclei, such as protons, are dealt with as
a quantum wave. Furthermore, in order to obtain better convergence of the total
wavefunction at Hartree-Fock level, the independent-particle approximation for the
electronic and nuclear wavefunction is adopted as

Ψtot ∼=Φe0 ·Φp0 . (17.3)

The superscript refers to the type of particles; i.e. e for electrons and p for protons.
The energy of this system after integration of the spin coordinates is given by

E =
Ne∑

i

nei h
e
ii +

Ne∑

i,j

[
αeij (φiφi |φjφj )+ βeij (φiφj |φiφj )

]+
Np∑

i

n
p
ph
p
pp

+
Np∑

p,q

[
α
p
pq(φpφp|φqφq)+ βppq(φpφq |φpφq)

]−
Ne∑

i

Np∑

p

nei n
p
p(φiφi |φpφp),

(17.4)

where, the p and q indices refer to the nuclei, φi and φp are the spatial MOs of
an electron and a nucleus, heii and hppp are one-electron and one-nuclear integral,
(φiφi |φjφj ) and (φiφj |φiφj ) the Coulomb and exchange integrals of electrons,
(φpφp|φqφq) and (φpφq |φpφq) those of nuclei, and (φiφi |φpφp) Coulomb integral
between an electron and a nucleus. The coefficients nei and npp are the occupation
numbers of φi and φp , the α and β are Coulomb and exchange coupling constants
and Ne and Np are the number of electrons and nuclei, respectively.

The effective one-electron (f e) and a fermion nucleus (f p) are given by the
variational method as
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f eφi = εiφi,

f e = 2he +
Ne/2∑

i

(2Ji −Ki)−
Np/2∑

p

2Jp,
(17.5)

f pφp = εpφp,

f p = 2hp +
Np/2∑

p

(2Jp −Kp)−
Ne/2∑

i

2Ji,
(17.6)

where J andK are the Coulomb and exchange operators, respectively. In Eq. (17.5),
the effective field of the electronic MO φi is due to the motion of the nuclei and the
remaining electrons. In Eq. (17.6) that of the nuclear MO φp is due to the motion
of the electrons and remaining nuclei. The φi and φp MOs are given by solving
Eqs. (17.5) and (17.6) iteratively.

The linear combination of gaussian-type function (LCGTF) for both the elec-
tronic and nuclear MOs is used as

φi =
∑

r

Ceriχ
e
r , (17.7)

φp =
∑

v

C
p
vpχ

p
v . (17.8)

In Eqs. (17.7) and (17.8), there are three types of parameters such as LCGTF
coefficients (Ce , Cp), GTF exponents (αe, αp), and centers (Re , Rp). In the con-
ventional LCGTF-MO calculation, only the LCGTF coefficients (Ce, Cp) are de-
termined by the variational theorem with the other parameters fixed [38].

However, the GTF exponent and center of the nuclear MO have not yet been
determined by optimization. The optimization of only GTF exponents [39–42] or
only GTF centers [43–45] has been reported. In this study, the fully variational MO
(FVMO) method was applied; that is, the parameters such as GTF exponents and
centers are also optimized, as well as, the LCGTF coefficients for both the electronic
and nuclear GTFs. In the present case, the analytical formulas should be derived for
energy derivatives with respect to the GTF parameters in electron and nuclei to
optimize the energy in Eq. (17.4). Since, the GTF exponents depend on the GTF
centers, a nonlinear optimization must be carried out. The MC_MO method used
the updated Hessian matrix, as estimated by the Davidson, Fletcher, and Powell
method [46].

17.3 Results and Discussion

17.3.1 Isotope Effect in K3H(SO4)2 and K3D(SO4)2

Hydrogen bonding materials are one of the most attractive and widely studied sys-
tems to investigate the phase transition phenomena in dielectric materials. The dras-
tic change of the phase transition temperature (Tc) of the hydrogen-bonded dielectric
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Fig. 17.1 Cluster model for K3H(SO4)2 (KHS) crystal

materials upon replacing hydrogen atoms with deuterium is usually called the ‘iso-
tope effect’. The isotope effect on the phase transition behavior of the M3H(XO4)2
type crystals is remarkably large (M=K, Rb, X= S, Se).

In particular, from the view point of the phase transition tripotassium hydro-
gen disulfate, K3H(SO4)2 (KHS), has unique characteristics among the hydrogen-
bonded dielectric materials. The deuterium compound K3D(SO4)2 (DKHS) has
the phase transition temperature (Tc = 85 K), while the hydrogen compound KHS
does not show any phase transition [5, 47]. Secondly, the hydrogen-bonded net-
work is restricted to within two SO2−

4 ions because KHS is a zero-dimensional
hydrogen-bonded dielectric material, i.e. SO2−

4 ion is hydrogen-bonded to only
one other SO2−

4 ion. There is, thus, no effect of the hydrogen-bonded network
on the phase transition, as shown in Fig. 17.1. Other M3H(XO4)2 type crystals
also show similar properties. Rb3H(SO4)2 [48] and Rb3H(SeO4)2 [49] show no
phase changes from room temperature down to the lowest temperature examined
(typically 4.2 K), whereas their deuterated analogues undergo phase transitions at
70–100 K. K3H(SeO4)2 undergoes a phase transition at 20 K and K3D(SeO4)2 at
103 K [50, 51].

Recent precise structure analyses of KHS and DKHS revealed that the structures
are isomorphous with each other, and the difference of positional parameters is ex-
tremely small [15–18]. Noda and Kasatani [17] obtained an experimental result that
the total number of electrons around the proton in KHS and the deuteron in DKHS
are 0.65 and 1.19 in the room temperature, respectively. They suggested that the
charge difference is important for the occurrence of the large isotope effect.

In here, the isotope effect on the phase transition in the KHS and DKHS is exam-
ined. In order to explore the origin of the isotope effect between KHS and DKHS,
the multi-component molecular orbital (MC_MO) calculation [52–54] was carried
out beyond the adiabatic approximation.

Using the MC_MO calculation, the isotope effect was analyzed with the poten-
tial energy surfaces, geometrical changes, and electronic charge densities around the
proton and deuteron for the cluster models of KHS and DKHS crystals. The adopted



17 Theoretical Analysis of Phase-Transition Temperature 309

Fig. 17.2 The relation
between the O–H distance
and the relative energy of
cluster model of KHS using
the conventional MO method

cluster models of KHS and DKHS are shown in Fig. 17.1. In this MC_MO calcu-
lation, the proton and the deuteron are treated as quantum waves, as well as the
electrons under the field of S and O nuclear point charges. The positions (geometry)
of the S and O point charges were determined by means of ordinary optimization
procedures using analytical gradients [55]. The single s-type Gaussian-type func-
tion (GTF), exp{−α(r − R)2}, was employed for each protonic or deuteronic ba-
sis function, and the GTF variational parameter (α) was optimized. The standard
[3s1p]/(4s1p) electronic basis set was used for hydrogen and Pople’s 3-21G∗ basis
set [56–58] for S and O. The centers of the electronic GTFs were fixed on each
nucleus. All calculations were carried out at the Hartree-Fock level using modified
versions of the Gaussian 98 program packages [59].

The potential energy surface is described with the location of the hydrogen atom
which is connected the two sulfuric acid ions (SO2−

4 ) between the oxygen atoms.
The geometries in which the hydrogen atom moves from at the center between two
oxygen atoms to near one side oxygen atoms were optimized gradually. In this ge-
ometry optimization, the hydrogen atom is moved on the straight line between the
oxygen atoms because the energy difference is a little in comparison with ordinary
O–H· · ·O bending structure. Acquired energies were plotted as a relative energy to
the geometrical energy in which the hydrogen atom is centered between the oxygen
atoms. The potential energy surface acquired the conventional MO method is shown
in Fig. 17.2. The O–H distance in which the hydrogen atom is centered between two
oxygen atoms is 1.202 Å. The O–H distance of the most stable geometry is 1.020 Å.
The energy difference is 1.70 kcal/mol.

The cluster model of KHS using the conventional MO method describes the po-
tential energy surface of double-well having each stable points of two near oxygens
with the hydrogen moving. This potential energy surface is adiabatic potential be-
cause the motion of the nucleus does not consider by the conventional MO method.
The potential energy surface in Fig. 17.2 is a fundamental model of the conventional
tunneling theory. The origin of the isotope effect was believed the difference of the
mass of the proton and the deuteron which move above this potential energy surface.

The potential energy surfaces were acquired using the MC_MO method. The
potential energy surfaces of KHS and DKHS are shown in Fig. 17.3. The poten-
tial energy surface having the double-well is obtained for the DKHS cluster model.
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Fig. 17.3 The relation between the O–H (a)/O–D (b) distance and the relative energy of cluster
model of KHS/DKHS using the MC_MO method

The O–D distance of the most stable geometry is 1.100 Å. The energy difference
(ΔED) is 0.17 kcal/mol. On this potential energy surface (Fig. 17.3(a)), the positive
territory of energy corresponds the disordered state in which the deuteron locates
at random. The energy territory shifts to the negative together with the falling tem-
perature. The deuteron occupies the orderly two stable points. It is indicated that
the drastic changes from the disordered state to ordered state results in the phase
transition.

The potential energy surface having the single-well is obtained for the KHS clus-
ter model. The O–H distance of the most stable geometry is 1.224 Å, that is, the
hydrogen atom locates at the center between two oxygen atoms. On this potential
energy surface (Fig. 17.3(b)), the drastic change does not occur in the proton from
the disordered state accompanying the falling temperature. It is deduced that the
KHS crystal does not have a phase transition because there is no drastic change.

The conventional tunneling model was treated with the motions of the proton and
deuteron above the same potential energy surface. However, the potential energy
surfaces for the motion of the proton and the deuteron are completely different in
shape using the MC_MO method when taking into account of the quantum effect of
the proton and deuteron. Thus, the occurrence or absence of the phase transitions of
KHS and DKHS can be successfully explained the difference of their shapes.

For the geometrical structures the focus was on the two characteristically stable
structures. One structure is geometry (a), in which the hydrogen atom locates at
the center between two oxygen atoms. The other is the most stable geometry (b).
The two optimized geometries (a) and (b) using the conventional MO method are
shown in Fig. 17.4. Geometry (a) has a point symmetry in which the hydrogen atom
is centered between two oxygen atoms of two sulfuric acid ions (SO2−

4 ). On the
other hand, the symmetry is broken in geometry (b), and the hydrogen atom is not
centered but bonded to one of the oxygen atoms strongly. Geometry (b) is more
stable than geometry (a) because of the relaxation of the cluster model including
the sulfuric acid ions (SO2−

4 ). Note that geometries (a) and (b) correspond to the
paraelectric and antiferroelectric phases, respectively.
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Fig. 17.4 The optimized geometries of KHS cluster model of paraelectric (antiferroelectric) phase
using the conventional MO method. The bond lengths and angles are given in angstroms and de-
grees, respectively

Fig. 17.5 The optimized
geometry of KHS cluster
model of paraelectric phase
using the MC_MO method.
The bond lengths and angles
are given in angstroms and
degrees, respectively

The optimized geometries (a) and (b) using the MC_MO method are also shown.
The optimized geometries from KHS and DKHS are shown in Figs. 17.5 and 17.6,
respectively. At this level of theory only geometry (a) is obtained for the KHS clus-
ter as the most stable. This result is consistent with the experimental result, where
only the paraelectric phase is known for the KHS crystal. Geometry (a) and (b) are
obtained for the DKHS cluster as the characteristic stable structures. These results
are theoretically reproduced the experimental results in which DKHS crystal is oc-
curred the phase transition from paraelectric phase to antiferroelectric phase.

The most stable geometries of KHS and DKHS are the geometries (a) (Fig. 17.5)
and (b) (Fig. 17.6), respectively. The existence of the geometrical isotope effect
was theoretically confirmed from the alteration of the whole cluster model. The
most stable structures of the KHS and DKHS cluster models obtained using both
the conventional MO and the MC_MO methods were analyzed. The most stable
structure is geometry (b) (Fig. 17.4) as determined by the conventional MO method.
The most stable structures of KHS and DKHS cluster models are geometries (a)
(Fig. 17.5) and (b) (Fig. 17.6) by the MC_MO method, respectively.
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Fig. 17.6 The optimized geometries of DKHS cluster model of paraelectric (antiferroelectric)
phase using the MC_MO method. The bond lengths and angles are given in angstroms and degrees,
respectively

Table 17.1 Hydrogen-bonded characters in stable structures of (D)KHS cluster models

Conventional MO MC_MO(H) MC_MO(D)

Exponent – 16.90 26.12

Electronic Population −0.307 −0.598 −0.633

O–H Distance [Å] 1.020 1.224 1.100

O· · ·O Distance [Å] 2.542 2.448 2.479

The focus was on the bond lengths and electronic charge density of hydrogen-
bonded structures in which are the most stable geometries. The exponents (α) of
GTF, which represent the charge distribution, are indicated in Table 17.1. Table 17.1
also shows the electronic charge densities as the gross electronic charge by Mulliken
population analysis [60], as well as O–H and O· · ·O distances for the hydrogen
bonds. The proton is treated as a point charge by the conventional MO method. The
proton and the deuteron are treated as waves using the GTF by the MC_MO method.
The exponent of the deuteron (26.12) is larger than that of the proton (16.90), which
indicates that the distribution of the deuteron wave shrinks more than that of the pro-
ton one. The electronic charge densities around the proton and deuteron are −0.598
and −0.633, respectively. According to these charge distributions of the proton and
the deuteron, it was found that the electronic charge density around the deuteron
was higher than that of the proton. These results agree with the experimental results
of X-ray diffraction studies to KHS by Kasatani et al.

Taking notice of the hydrogen-bonded distances, the O–H distance in KHS clus-
ter and O–D distance in DKHS are calculated to be 1.224 Å and 1.100 Å, respec-
tively. The O· · ·O distance in DKHS cluster (2.479 Å) is longer than KHS cluster
(2.448 Å). These geometrical differences are consistent with the well-known the
Ubbelohde effect [61] due to the geometrical isotope effect which was proposed
by Ichikawa et al. It is found that the difference in the distribution of the proton
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Fig. 17.7 The schematic structure of molecular sheet of the H2SQ crystal: (a) paraelectric and
(b) antiferroelectric phases

wave and the deuteron wave is reflected in the electronic charge densities around
the proton and the deuteron and the hydrogen bonds.

17.3.2 Phase Transition Mechanism and Isotope Effect in Squaric
Acid

In the previous Sect. 17.3.1, the isotope effect on the phase transition of KHS and
DKHS was examined using the MC_MO method. The importance of the quantum
effect of proton/deuteron and the efficiency of the MC_MO method to apply the
hydrogen-bonded dielectric material was clearly shown. Hereafter, for the universal
understanding of the origin of isotope effect on the phase transition, the focus is on
squaric acid.

Squaric acid (H2C4O4, abbreviated as H2SQ) is an organo dielectric material and
an effective model system for the design of the organo materials. The H2SQ crys-
tal has a two-dimensional hydrogen-bonded network between the unit structures
of C4O2−

4 [62]. The schematic structure of the molecular sheet and a constituent
molecular unit of the H2SQ crystal are shown in Fig. 17.7. The phase transition of
the H2SQ crystal occurs from (a) the paraelectric phase to (b) the antiferroelectric
phase [63, 64]. The temperatures of the phase transition for H2SQ and D2SQ (in
the deuterated crystal) are 371 K and 516 K, respectively [3]. The temperature is
high compared with another inorganic dielectric material such as KDP-type crys-
tals, so that proton tunneling does not occur in the H2SQ/D2SQ systems. It has been
reported from X-ray diffraction studies that, at the phase transition, the unit struc-
tures in the H2SQ crystal change their symmetry from the high symmetrical C4h
(Fig. 17.7(a)) to the low symmetrical C1h (Fig. 17.7(b)) [65–67].

High-pressure effects on the vibrational modes in Raman and infrared spec-
tra, furthermore, have been investigated in H2SQ/D2SQ crystals by Moritomo et
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Fig. 17.8 The cluster models
in H2SQ crystal: (a) unit
structures and (b) cluster
models of dimer and tetramer.
Unit structures are two types
of C4O2−

4 and C4H4O4. The
cluster models of dimer have
two kinds of
hydrogen-bonded structures
B1 and B2

al. [68]. This result suggests that the high pressure causes an anomalous change
in the symmetry of constituent molecules, which is possibly induced by deforma-
tion of the proton potential from the double-well to single-well type. In addition,
recent high-resolution NMR data on the H2SQ/D2SQ systems have given detailed
hydrogen-bond distance and atomic positions of hydrogen/deuterium [69]. The ori-
gin of the isotope effect including the evident structural changes, however, has not
as yet been rationalized.

The geometrical and energetic changes for the (H2SQ)n (n = 1, 2, and 4)
clusters were analyzed. Adopted cluster models (H2SQ)n (n = 1, 2, and 4) are
shown in Fig. 17.8. Two structures (C4O2−

4 and C4H4O4) of n = 1 molecule
in Fig. 17.8(a) are the units of the crystal system. The dimer structure of
n = 2 cluster ([C4H3O4–H–C4H3O4]3+) and tetramer structure of n = 4 cluster
([(C4H3O4)4H4]4+) are shown in Fig. 17.8(b), respectively. Note that in the dimer
structure, there are two kinds of hydrogen bonds from the crystallographic structural
point of view. The hydrogen bond in the dimer B1 spreads to the direction of crys-
tallographic axis a, while that in the dimer B2 spreads to axis c. All the geometrical
parameters of the systems (bond lengths, bond angles, and dihedral angles) were
optimized by using the energy gradient method [70].

The isotope effect in the dimer models was analyzed by using the MC_MO
method [52–54] which takes explicitly into account the quantum effect of proton
(deuteron) and the electronic charge density on the proton (deuteron). In the ac-
tual MC_MO calculation for the dimer model, the proton, deuteron, and muon are
treated as quantum waves, as well as, the 116 electrons under the field of C and
O nuclear point charges. C and O nuclei are treated as +6 and +8 point charges,
respectively. The position of point charges for C and O nuclei is determined by ordi-
nary optimization procedures using analytical gradients. The single s-type gaussian
type function (GTF), exp{−α(r − R)2}, is employed as each protonic, deuteronic,
and muonic basis function, and the GTF variational parameter α is optimized. The
standard [3s1p]/(4s1p) for hydrogen electronic basis set, and the Pople’s 3-21G ba-
sis set [56–58] for C and O were used. Centers of electronic GTFs is fixed on each
nucleus. All calculations were carried out based on the Hartree-Fock level by using
modified Gaussian 98 program packages [59].
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Fig. 17.9 The optimized geometries of unit structures. The bond lengths and angles are shown in
angstroms and degrees, respectively

In the H2SQ crystal, there are π electrons above the molecular sheet formed via
the two-dimensional hydrogen-bonded networks. The behavior of the π electrons
significantly controls the phase transition of the H2SQ crystal. C4O2−

4 and C4H4O4
were treated as the unit structures of the H2SQ crystal. The optimized geometry for
C4O2−

4 having 10π electrons is shown in Fig. 17.9. All C–C and C–O distances
are 1.478 Å and 1.257 Å, respectively. The most stable geometry of C4O2−

4 has a
high symmetry (C4h) owing to the delocalization of 10π electrons. According to
the traditional theory of aromaticity, the high symmetrical geometry is the most sta-
ble of the [4n + 2]π system. The square geometry of the carbon frames obtained
is consistent with aromaticity. The optimized geometries for C4H4O4 having 12π
electrons are shown in Fig. 17.9. There are two stable geometries for C4H4O4. One
has the C2h symmetry, while the other has C4h. In contrast to the C4O2−

4 case, the
low symmetrical geometry (C2h) is 26.98 kcal/mol more stable than high symmet-
rical geometry (C4h). According to the Jahn-Teller effect [71], the low symmetrical
geometry is energetically more stable than the high symmetrical geometry in which
the electronic structure is degenerate for the [4n]π system. The geometrical change
of the unit according to the Jahn-Teller effect propagates through the entire sys-
tem of the hydrogen-bonded network. The resulting distortion of the crystal system
causes the phase transition. The driving force of the phase transition of H2SQ crystal
was found to be the Jahn-Teller effect of the constituent molecular unit.

The next focus was on the nature of hydrogen-bonded part. The dimer struc-
ture of the n = 2 cluster includes a hydrogen bond. The optimized geometries of
dimer models are shown in Fig. 17.10. The geometry of dimer A has C4h symmetry
in which the hydrogen atom is at the center between oxygen atoms of each unit.
Otherwise, there are two possible structures having lower symmetry with hydrogen
atom attached to one of the oxygen atoms. One is the structure denoted by dimer B1
in which the hydrogen bond and double bonds of C–C form the axial conformation.
The other structure is dimer B2 in which they form the equatorial conformation (see
Fig. 17.8). Dimers A and B1 (B2) are regarded as paraelectric and antiferroelectric
phases, respectively. The O–H distances of dimer A, where hydrogen atom locates at
the center between oxygen atoms, are both 1.192 Å. The O–H distances of dimer B1
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Fig. 17.10 The optimized geometries of dimer. The bond lengths and angles are shown in
angstroms and degrees, respectively

are 1.008 and 1.535 Å. Dimer B1 is 7.33 kcal/mol more stable than dimer A. When
lowering the symmetry of the unit geometry from C4h to C1h, the hydrogen atom
moves from the center between oxygen atoms to near one oxygen atom. The geome-
try of the dimer then changes from dimer A to B1 (or B2). The phase transition from
paraelectric to antiferroelectric phase corresponds to the geometrical change from
dimer A to B1/B2. The local geometrical change on the phase transition with the
dimer model could be reproduced theoretically. A larger cluster size than the dimer,
however, should be required to distinguish the nature of hydrogen bond along a or
c axis in H2SQ crystal.

The optimized geometries of tetramer (n= 4) respectively keeping C4h and C1h
symmetries are shown in Fig. 17.11. In the structure having C4h symmetry, four hy-
drogen atoms are at the center between two oxygen atoms. When lowering the sym-
metry of unit from C4h to C1h, the hydrogen atom moves from the center between
oxygen atoms to near one oxygen, as well as, for the dimer model. In the structure
having the lower C1h symmetry, intermolecular hydrogen bonds are classified into
two types. One is axial (c direction) and the other is equatorial (a direction) to the
C–C double bond (1.424 Å) of the unit moiety. The O–H distances of a and c axis
directions are 1.025 Å and 1.030 Å, respectively. The lower symmetry C1h geome-
try is 9.30 kcal/mol more stable than the higher symmetry C4h geometry. It should
be noted that the tetramer model is possible to predict the different nature of the
respective hydrogen bonds along a and c axis directions in the crystal.

The calculated results for C1h symmetrical geometries of dimer and tetramer
were compared in regard to the antiferroelectric phase with the experimental re-
sult by neutron diffraction in antiferroelectric phase [67]. The illustration of the
unit structure of H2SQ crystal in antiferroelectric phase is shown in Fig. 17.12. The
optimized geometrical parameters (bond lengths and angles) are summarized in Ta-
ble 17.2, together with neutron diffraction data.

The unit structure of H2SQ crystal on antiferroelectric phase is experimen-
tally known to have a trapezoid-like geometry in which C(1)–C(2) bond distance
(1.414 Å) is shorter than any other C–C bond distances (1.461∼1.500 Å). That is,
in a chemical viewpoint, the bond between C(1) and C(2) atoms is a double bond,
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Fig. 17.11 The optimized geometries of tetramer. The bond lengths and angles are shown in
angstroms and degrees, respectively

Fig. 17.12 An illustration of unit structure of the H2SQ crystal in the antiferroelectric phase

while the other C–C bonds are single. The calculated results show that in dimer B1,
the unit structure C4O2−

4 forms a rhombus-like geometry rather than a trapezoid-
like geometry in which C–C bonds are classified into two shorter bonds (1.43 Å)
and two longer bonds (1.46 Å). The trapezoid like geometry, where C(1)–C(2) bond
distance (1.425 Å) is shorter than any other C–C bond distances (1.444∼1.474 Å)
in tetramer model have been reproduced.

From the experimental results using neutron diffraction, the O· · ·O distances
along the a and c axis directions are both about 2.55 Å. Considering the O–H bond,
the O–H distances O(2)–H(2) bond (1.037 Å) along the a axis direction and O(1)–
H(1) bond distance (1.030 Å) along the c axis direction are different. The O–H
bond distances along the a and c axis directions of the calculated tetramer model
are 1.030 Å and 1.025 Å, respectively, which are in significant agreement with the
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Table 17.2 The optimized geometrical parameters of the unit structure of H2SQ in its antiferro-
electric phase. Bond distances and angles are shown in angstroms and degrees, respectively

Calculation Experiment

Dimer Tetramer Neutron

C(1)–O(1) 1.276 1.276 1.289(1)

C(2)–O(2) 1.273 1.277 1.287(1)

C(3)–O(3) 1.273 1.244 1.227(1)

C(4)–O(4) 1.239 1.248 1.230(1)

C(1)–C(2) 1.431 1.425 1.414(1)

C(1)–O(4) 1.464 1.454 1.464(1)

C(2)–C(3) 1.432 1.444 1.461(1)

C(3)–C(4) 1.462 1.471 1.500(1)

O(1)–H(1) – 1.025 1.030(1)

O(2)–H(2) 1.008 1.030 1.037(1)

O(1)· · ·O(3) – 2.473 2.553(1)

O(2)· · ·O(4) 2.543 2.474 2.554(1)

H(1)· · ·O(3) – 1.448 1.524(2)

H(2)· · ·O(4) 1.535 1.441 1.517(2)

C(4)–C(1)–C(2) 91.0 90.7 91.66(4)

C(4)–C(1)–O(1) 138.7 138.7 136.14(4)

C(2)–C(1)–O(1) 130.3 130.6 132.21(5)

C(1)–C(2)–C(3) 89.9 91.1 91.72(4)

C(1)–C(2)–O(2) 139.7 139.3 136.85(5)

C(3)–C(2)–O(2) 130.0 129.6 131.43(5)

C(2)–C(3)–C(4) 91.0 89.2 88.40(3)

C(2)–C(3)–O(3) 138.9 137.7 136.59(5)

C(4)–C(3)–O(3) 130.0 133.1 135.01(5)

C(3)–C(4)–C(1) 87.8 88.9 88.23(3)

C(3)–C(4)–O(4) 138.7 137.3 136.48(5)

C(1)–C(4)–O(4) 133.6 133.8 135.30(5)

C(1)–O(1)–H(1) – 127.4 112.70(7)

C(2)–O(2)–H(2) 126.6 126.7 113.61(7)

C(3)–C(3)· · ·H(1) – 129.6 118.15(5)

C(4)–O(4)· · ·H(2) 141.3 130.6 116.24(5)

experimental tendency. Not only was the difference of the two hydrogen bond struc-
tures along the a and c axis directions reproduced, but also the unit structure of
C4O2−

4 . Applying the adequate cluster model as tetramer, it can be found that both
local structures represented hydrogen bond structures and generally the systems in-
cluding unit structures are reproducible.
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Fig. 17.13 The optimized geometries of H2SQ, D2SQ, and Mu2SQ cluster models of dimer using
MC_MO method

Furthermore, the origin of the isotope effect on the phase transition of H2SQ and
D2SQ crystal was analyzed by applying the MC_MO method taking directly into
account the quantum effects of the proton and deuteron. The cluster model used
as dimer took note of the hydrogen-bonded part to the a axis. The optimized ge-
ometries of the dimer modeled of H2SQ crystal are shown in Fig. 17.13(a). The
high C4h symmetry geometry, where the hydrogen atom is at the center between the
oxygen atoms and the low C1h symmetry geometry are shown in Fig. 17.13(a)-1
and Fig. 17.13(a)-2, respectively. The low symmetry geometry ((a)-2) is more sta-
ble than high symmetry geometry ((a)-1). The energy difference (ΔEH ) between
the (a)-1 and (a)-2 geometries is 6.19 kcal/mol. The corresponding C4h and C1h
geometries for deuterated D2SQ crystal are shown in Fig. 17.13(b)-1 and (b)-2, re-
spectively. The most stable geometry is (b)-2, as for the cluster model of H2SQ crys-
tal. The calculated energy difference (ΔED) between (b)-1 and (b)-2 geometries is
6.57 kcal/mol. Thus, the energy difference between ΔEH and ΔED corresponds to
the calculated difference, 192 K, of the phase transition temperature between H2SQ
and D2SQ crystals by using the dimer model. On the other hand, the experimental
difference of the phase transition temperature between H2SQ and D2SQ crystal is
145 K [3]. Therefore, the difference of the phase transition temperature of the crystal
systems was theoretically reproduced.

The most stable structures of H2SQ and D2SQ cluster models ((a)-2, (b)-2) are
also presented and the bond lengths and electronic charge densities of H2SQ with the
bond lengths and electronic charge densities of D2SQ hydrogen-bonded parts were
compared. The exponents (α) of the GTF, which represents the charge distribution,
are indicated in Table 17.3. Table 17.3 also shows the electronic charge densities as
the gross electronic charge by Mulliken population analysis [60], O–H and O· · ·O
distances of the hydrogen-bonded parts. The exponent of deuteron is larger than that
of proton. This indicates that the charge distribution of the deuteron shrinks more
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Table 17.3 The characteristics of the hydrogen bonds in stable structures of (H/D/Mu)2SQ

Conventional MO MC_MO(H) MC_MO(D) MC_MO(Mu)

Exponent – 17.65 26.89 4.68

Electronic Population −0.385 −0.514 −0.545 −0.430

O–H Distance [Å] 1.008 1.096 1.058 1.252

O· · ·O Distance [Å] 2.543 2.468 2.487 2.504

than that of proton. The difference of the distribution reflects the local unit struc-
tures. The O–H distance in the H2SQ cluster and O–D distance in the D2SQ cluster
were calculated to be 1.096 and 1.058 Å, respectively. The O· · ·O distance in D2SQ
cluster (2.487 Å) is longer than H2SQ cluster (2.468 Å). These geometrical differ-
ences are consistent with the well-known Ubbelohde effect due to the geometrical
isotope effect [61]. The electronic charge density around the deuteron (−0.545) is
larger than one around the proton (−0.514). This result shows the same tendency
as obtained from the recent experimental result of X-ray diffraction. It is found that
the influence of the isotope effect appears the geometrical structure and electronic
charge densities following the change of the wave distribution of the proton and
deuteron.

Finally, the Tc of Mu2SQ was predicted where the hydrogen atom was substituted
by a muonium in H2SQ crystal. The muonium has one electron bound to the muon
meson whose mass is 1/9 of hydrogen. The Bohr radius and ionization energy of the
Mu (0.5315 Å and 13.54 eV) are significantly close to those of hydrogen (0.5292 Å
and 13.60 eV), that is the Mu behaves as an isotope of hydrogen. The average span
of life for the Mu is very short (2.20× 10−6). There are no experimental results of
the phase transition temperature for Mu2SQ crystal because the experiment for the
Mu is very difficult. The MC_MO calculation was applied to the dimer model of
the Mu2SQ crystal. The optimized geometry of the dimer is shown in Fig. 17.13(c).
Only the C4h symmetry geometry where the Mu locates at the center between the
oxygen atoms was obtained. This geometry corresponds to paraelectric phase. This
result clearly predicts that the Mu2SQ crystal system would not undergo the phase
transition. The exponent of the Mu is very small compared the proton, so that the
Mu is delocalized itself.

17.3.3 Phase Transition Temperature of Mixed K3H1−XDx(SO4)2,
(H1−xDx)2SQ and Tritiated TKHS, T2SQ

In the hydrogen-bonded dielectric materials, partial substitution of protons with
deuterons can control the phase transition with varying Tc [72]. Therefore, a proton-
deuteron mixed crystal can provide a good opportunity for the study of the dy-
namics of protons in this class of compounds. Concerning the KHS and H2SQ
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crystals, the phase transition temperature upon changing the deuteron concentra-
tion is investigated using the mixed K3H1−xDx(SO4)2 and (H1−xDx)2SQ crys-
tals with random substitution of protons with deuterons [73, 74]. In the mixed
K3H1−xDx(SO4)2 crystal, the phase transition appearance was reported with in-
creasing deuterium concentration. The deuterium concentration dependent behavior
of Tc was described by simple transverse Ising Hamiltonian. However, it is impos-
sible to express the geometrical and electronical changes as well as the Tc between
the H- and D-compounds. Therefore, the first-principle calculation is necessary to
theoretically analyze the origin of isotope effect for phase transition including ge-
ometrical changes. In the mixed (H1−xDx)2SQ crystal, the critical temperature Tc
for the dielectric phase transition was found to increase linearly with the deuterium
concentration. Since, the phase transition of H2SQ and D2SQ crystals has large ge-
ometrical change, conventional model calculations are not enough to theoretically
investigate the relation between phase transition and geometrical changes.

In addition, tritium behaves as an isotope of hydrogen since the mass is three
times of hydrogen. Tritium is also well known as a radioactive nuclide that emits
β-rays, even a trace amount of tritiated products can be detected with high sensitiv-
ity [75]. Tritium is often used to measure the kinetic isotope effect on enzyme cat-
alyzed hydrogen transfer [76, 77]. To date, there is no experimental report about the
tritiated hydrogen-bonded dielectric materials. It is a great and important challenge
to theoretically elucidate the Tc of tritiated hydrogen-bonded dielectric materials.

In this chapter, the deuterium concentration dependence of phase transition tem-
perature and geometrical changes of mixed K3H1−xDx(SO4)2 and (H1−xDx)2SQ
crystal in random substitution of protons with deuterons was theoretically investi-
gated. Furthermore, the phase transition temperature of TKHS and T2SQ crystals
that is the tritium substitutions from theoretical prediction was estimated.

In order to describe the proton-deuteron mixed crystal, the mass of proton is
adopted as the 1836.59, 2293.59, 2750.59, 3207.58, and 3664.58 a.u. for x = 0.00,
0.25, 0.50, 0.75, and 1.00, respectively. These masses are indicated as the average
of H1−xDx in each K3H1−xDx(SO4)2 and (H1−xDx)2SQ crystal at the random sub-
stitution of protons with deuterons.

In the MC_MO calculation which directly takes into account the quantum effect,
the proton, deuteron, and other mixed particles (these particles are called the “light
nuclei” in this chapter) are treated as quantum waves, as well as electrons under the
field of S, C, and O nuclear point charges. The positions of these point charges are
determined by conventional optimization procedures using analytical gradient [70].
The single s-type gaussian type function (GTF), exp{−α(r − R)2}, was employed
for each light nuclear basis function in which the GTF variational parameters were
optimized, simultaneously. The standard [3s1p]/(4s1p) electronic basis set for hy-
drogen and Pople’s 3-21G∗ basis set [56, 78] for S, C, and O were used. The centers
of electronic GTFs are fixed on each nucleus. All calculations were carried out at the
Hartree-Fock level using modified versions of Gaussian/98 program packages [59].

Furthermore, in order to predict the phase transition temperature and geome-
tries of TKHS and T2SQ in which the triton is substituted from proton, the clus-
ter model was calculated using the MC_MO method by the same procedure of the



322 T. Ishimoto and M. Tachikawa

Table 17.4 The stable hydrogen-bonded structures of paraelectric and antiferroelectric phases of
mixed K3H1−xDx(SO4)2

D concentration (x) 0.00 0.25 0.50 0.75 1.00

a (Paraelectric Phase) Energy (kcal/mol) 0.00 0.00 0.00 0.00 0.00

Exponent 16.90 19.17 21.21 23.08 24.81

Electronic Population −0.598 −0.600 −0.601 −0.603 −0.604

O–H Distance (Å) 1.224 1.222 1.221 1.220 1.219

O· · ·O Distance (Å) 2.448 2.444 2.442 2.440 2.438

b (Antiferroelectric Phase) Energy (kcal/mol) – −0.01 −0.07 −0.12 −0.17

Exponent – 19.85 22.21 24.32 26.12

Electronic Population – −0.618 −0.624 −0.632 −0.633

O–H Distance (Å) – 1.123 1.112 1.105 1.100

O· · ·O Distance (Å) – 2.471 2.474 2.477 2.479

Tc – 7 25 59 85

Δα – 0.68 1.00 1.24 1.31

mixed K3H1−xDx(SO4)2 and (H1−xDx)2SQ above. The mass of triton was treated
as 5492.57 a.u.

Before discussing the details of geometrical changes and Tc of mixed K3H1−xDx
(SO4)2 crystal, the important two geometries of KHS cluster have already reported
in the previous Sect. 17.3.1. In one structure (a) the proton/deuteron locates at the
center between two connected oxygen atoms. In the other structure (b) the pro-
ton/deuteron is located at one side of two oxygen atoms. These structures, (a) and
(b), correspond to the paraelectric and antiferroelectric phases, respectively. First the
two characteristics stable structures in mixed K3H1−xDx(SO4)2 crystal were calcu-
lated. Table 17.4 lists the relative energies, exponent values, electronic charge den-
sities, and geometrical parameters of two stable structures in the various deuteron
concentrations. In the case where x = 0.00, (a) is obtained as the most stable struc-
ture. When increasing the deuteron concentration (x), (b)s are obtained as the most
stable structures. The exponent values that express the charge distributions become
larger with increasing x values. In other words, the charge distribution shrinks more
when the mass of light nucleus increases. These charge distributions reflect the ge-
ometrical parameters and electronic charge densities. The O· · ·O distances in the
most stable structure of each x is, 2.448, 2.471, 2.474, 2.477, and 2.479 Å, gradually
lengthening with the increase in deuteron concentration. The electronical relaxation
also depends on the charge distribution of light nucleus.

Compared with the energy difference between the (a) and (b) at same deuteron
concentration, its relative energy corresponds to the Tc. Figure 17.14 shows various
deuterium concentration dependencies of Tc in the mixed K3H1−xDx(SO4)2. The
experimental results by Moritomo et al. are also plotted in Fig. 17.14. The calcu-
lated result is reproduced from the experimental result in the large deuterium con-
centration field (x ≥ 0.50). In regard to the appearance area of the phase transition
(x = 0.30 ∼ 0.40), there is a gap between the calculated and experimental results.
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Fig. 17.14 The relationship
between the phase transition
temperature (Tc) and
deuterium concentration of
mixed K3H1−xDx (SO4)2
crystal. The experimental and
calculated values are plotted
as � and �, respectively

As one of the reasons, the cluster size is not enough to describe the surrounding
electrostatic effect in this drastically changing area.

Next, the deuterium concentration dependence of the relative energy, expo-
nent value, electronic charge density, and geometrical parameters in the mixed
(H1−xDx )2SQ crystal were analyzed. It has been demonstrated in the previous
Sect. 17.3.2 that the phase transition temperature difference (ΔTc) between the
H2SQ and D2SQ crystals theoretically can be obtained as 192 K (experimental ΔTc
is 145 K). In this calculation, two structures corresponding to paraelectric and anti-
ferroelectric phases having C4h and C1h symmetries in each unit were optimized. In
addition, the two structures (a) and (b) were treated in this chapter. The calculated
results of (a) and (b) are shown in Table 17.5 with the theoreticalΔTc . The exponent
values show the tendency to become large with increasing deuterium concentrations.
The geometrical difference and electronic charge densities are also obtained with the
same pattern in the mixed K3H1−xDx(SO4)2 crystal. Large difference of exponent
values in same deuterium concentration reflects the energy difference, as well as,
geometrical and electronical relaxations.

The energy difference becomes large when the deuterium concentration in-
creases. Various deuterium concentration dependence of ΔTc recalculated from the
energy difference are shown in Fig. 17.15 with experimental results. Increasing the
deuterium concentration, theΔTc increases linearly with x from 0 (x = 0.00) to 192
(x = 1.00) K. The experimental results suggest that ΔTc increases linearly with x
from 0 K at x = 0 to 145 K at x = 1. As reproduced, the ΔTc from H2SQ to D2SQ
crystals increases linearly with the various deuterium concentration from x = 0.00
to x = 1.00, although the calculated value has overestimated the experimental one.
The energy difference between the (a) and (b) structures is a reasonable approxi-
mation for represent the Tc. Hence, not only ΔTc but electronical and geometrical
relaxations of mixed (H1−xDx )2SQ crystal have been theoretically obtained.

The energy difference between two cluster model structures for paraelectric
and antiferroelectric phase is approximately corresponding to the Tc of mixed
K3H1−xDx(SO4)2 and (H1−xDx)2SQ crystal in the present chapter. In here, the
prediction of the Tcs for TKHS and T2SQ crystals substituted from hydrogen to
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Table 17.5 The stable hydrogen-bonded structures of paraelectric and antiferroelectric phases of
mixed (H1−xDx)2SQ

D concentration (x) 0.00 0.25 0.50 0.75 1.00

a (Paraelectric Phase) Energy (kcal/mol) 0.00 0.00 0.00 0.00 0.00

Exponent 16.67 18.94 20.94 22.80 24.58

Electronic Population −0.481 −0.485 −0.487 −0.488 −0.490

O–H Distance (Å) 1.210 1.208 1.207 1.205 1.204

O· · ·O Distance (Å) 2.420 2.416 2.414 2.410 2.408

b (Antiferroelectric Phase) Energy (kcal/mol) −6.19 −6.30 −6.40 −6.49 −6.57

Exponent 17.65 20.20 22.66 24.77 26.89

Electronic Population −0.513 −0.523 −0.534 −0.539 −0.546

O–H Distance (Å) 1.096 1.083 1.070 1.066 1058

O· · ·O Distance (Å) 2.468 2.474 2.484 2.486 2.496

ΔTc 0 57 109 153 192

Δα 0.98 1.26 1.72 1.97 2.31

Fig. 17.15 The relationship
between the Tc difference
(ΔTc) and deuterium
concentration of mixed
(H1−xDx )2SQ crystal. The
experimental calculated
values are plotted as � and �,
respectively

tritium is attempt. Though there are many experimental studies of Tc for various
hydrogen-bonded dielectric materials, no report has been published that Tc includes
for a tritium.

At first, the TKHS cluster model was calculated using the MC_MO method. The
two stable structures (a) and (b) corresponding to the paraelectric and antiferroelec-
tric phase are shown in Fig. 17.16, respectively. The structure (b) is −0.36 kcal/mol
more stable than (a). The Tc of the TKHS crystal is predicted as about 190 K
from first-principle calculation. The optimized exponent values of triton, electronic
charge densities, and geometrical parameters are listed in Table 17.6 along with the
previous calculated results of KHS and DKHS. The exponent value of triton is more
localized than those of proton and deuteron. Owning to the localization of triton, the
electronic charge density and O· · ·O distance are larger and longer than the other re-
sults of the most stable structure.
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Fig. 17.16 The stable structures of TKHS cluster models of paraelectric (a) and antiferroelec-
tric (b) phases. The bond lengths and angles are shown in angstroms and degrees, respectively

Table 17.6 The stable hydrogen-bonded structures of paraelectric and antiferroelectric phases of
KHS. The hydrogen in KHS crystal is substituted deuterium, tritium, and muonium

Substitution H D T Mu

(Paraelectric Phase) Energy (kcal/mol) 0.00 0.00 0.00 0.00

Exponent 16.90 24.81 30.93 4.50

Electronic Population −0.598 −0.604 −0.606 −0.545

O–H Distance (Å) 1.224 1.219 1.217 1.257

O· · ·O Distance (Å) 2.448 2.438 2.434 2.514

(Antiferroelectric Phase) Energy (kcal/mol) – −0.17 −0.36 –

Exponent – 26.12 33.24 –

Electronic Population – −0.633 −0.651 –

O–H Distance (Å) – 1.100 1.077 –

O· · ·O Distance (Å) – 2.479 2.500 –

Δα – 1.31 2.31 –

Two stable structures of the T2SQ cluster model were optimized to analyze the
energy difference. Figure 17.17 shows the stable structures obtained. The structure
(a) and (b) correspond to the paraelectric and antiferroelectric phases having C4h
and C1h symmetries in each unit, respectively. The energy difference between (a)
and (b) is −6.99 kcal/mol. In order to estimate the Tc for T2SQ crystal, the relative
energy of D2SQ result was compared. The energy difference (0.42 kcal/mol) be-
tween T2SQ and D2SQ corresponds to about 210 K. In the case of D2SQ, however,
since the theoretical ΔTc has overestimated the experimental results by 25 %, it is
necessary to correct ΔTc between T2SQ and D2SQ. As a result of the correction,
the ΔTc between D2SQ and T2SQ was deduced to be about 160 K from the tem-
perature difference (210 K) before compensation. The Tc of T2SQ crystal is about
160 K higher than that of D2SQ. The Tc of T2SQ was theoretically predicted to
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Fig. 17.17 The stable structures of T2SQ cluster models of paraelectric (a) and antiferroelec-
tric (b) phases. The bond lengths and angles are shown in angstroms and degrees, respectively

Table 17.7 The stable hydrogen-bonded structures of paraelectric and antiferroelectric phases of
H2SQ. The hydrogen in H2SQ crystal is substituted deuterium, tritium, and muonium

Substitution H D T Mu

(Paraelectric Phase) Energy (kcal/mol) 0.00 0.00 0.00 0.00

Exponent 16.67 24.58 30.06 4.28

Electronic Population −0.481 −0.490 −0.494 −0.416

O–H Distance (Å) 1.210 1.204 1.202 1.253

O· · ·O Distance (Å) 2.420 2.408 2.404 2.506

(Antiferroelectric Phase) Energy (kcal/mol) −6.19 −6.57 −6.99 –

Exponent 17.65 26.89 33.82 –

Electronic Population −0.514 −0.545 −0.557 –

O–H Distance (Å) 1.094 1.058 1.048 –

O· · ·O Distance (Å) 2.468 2.487 2.501 –

Δα 0.98 2.31 3.76 –

be about 680 K. Table 17.7 lists the optimized exponent values of triton, electronic
charge densities, and geometrical parameters with the calculated results of H2SQ
and D2SQ. The optimized exponent value of triton also shrinks more than that of
deuteron, as well as, the TKHS. Thus, not only the Tc, but also the stable structures
of paraelectric and antiferroelectric phase of the unknown T2SQ crystal were found.

17.4 Summary

The exploration of the isotope effect on the phase transition of hydrogen-bonded
dielectric materials is one of the most major subjects in condensed matter physics.
Although, many models and theories are proposed concerning the origin of the iso-
tope effect, an universal understanding is far from complete. Even with only the
difference between a proton and a deuteron, the phase transition temperature dif-
ference must be rationalized as well as the geometrical and electronic relaxation
induced by the isotope effect. In order to explain the isotope effect of hydrogen-
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bonded dielectric materials, it is essential to elucidate the quantum effect of proton
and deuteron from the microscopic view.

In computational details, the importance of the quantum effect of proton and
deuteron with not only the Tc, but also the structures and electronic charge difference
in the hydrogen-bonded dielectric materials was dealt using the adequate cluster
model and multi-component molecular orbital (MC_MO) method which takes into
account the quantum effect, such as, an anharmonicity due to the zero-point energy
of the proton/deuteron directly.

In Sect. 17.3.1, the isotope effect of K3H(SO4)2 (KHS) and K3D(SO4)2 (DKHS)
was discussed in order to verify the importance of the quantum effect of pro-
ton/deuteron and the efficiency of the MC_MO method. The difference between
the KHS and DKHS was clearly demonstrated, namely: (1) the shape of potential
energy surface, (2) the geometrical parameter including the hydrogen-bond (Ubbe-
lohde effect), and (3) the electronic charge density. These results are universally
explained the independent various theories. In conclusion, the origin of the isotope
effect of KHS and DKHS is concluded that the difference of the reflection to the
geometrical parameters because of the difference in the proton and deuteron wave
distributions.

In Sect. 17.3.2, the mechanism of the phase transition of H2C4O4 (H2SQ) was
discussed. The main driving force of phase transition in H2SQ crystal was found
to be the Jahn-Teller effect of the constituent molecular unit. The phase transition
causes the distortion of the crystal system because the geometrical change of the unit
propagates throughout the entire system via the hydrogen-bonded network. In addi-
tion, the Tc difference was shown, as well as, the theoretical geometrical difference
using the MC_MO method. The H2SQ and D2SQ crystals are different in the way
which propagates the alternation of the unit induced by the shrinkage distribution of
the deuteron as opposed to the proton.

In Sect. 17.3.3, the difference of the Tc, geometry, and electronic charge density
of K3H1−xDx(SO4)2 and (H1−xDx )2SQ crystals were examined with increasing
deuterium concentration. Calculated Tcs of K3H1−xDx(SO4)2 and (H1−xDx )2SQ
reproduced the experimental results, since the variation of light nuclear quantum
effect (i.e. exponent value) has influenced the Tc, geometry, and electronic charge
density. Furthermore, the Tc values of tritiated TKHS and T2SQ are predicted to be
equal to 190 and 680 K, respectively. Owing to the localization of charge distribu-
tion of triton, hydrogen-bond structure and electronic charge density are longer and
larger than in the case of DKHS and D2SQ.

The major aim of manuscript is to explain the difference of Tc in hydrogen-
bonded dielectric materials induced by the H/D isotope effect. The importance of the
quantum effect (i.e. anharmonicity) of proton/deuteron for the KHS (DKHS), H2SQ
(D2SQ), their mixed K3H1−xDx(SO4)2 and (H1−xDx )2SQ, and tritiated TKHS and
T2SQ which have special features such as hydrogen-bonded networks and Tc were
confirmed. Taking into account the quantum effect of proton/deuteron using the
MC_MO method directly, the difference of Tc , as well as, the geometry and elec-
tronic charge difference is universally elucidate without a tunneling model. In con-
clusion, the origin of the isotope effect of hydrogen-bonded dielectric materials is
the anharmonicity due to the difference of the proton/deuteron wave distribution.
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Chapter 18
On Converse Piezoelectricity

Michael Springborg, Bernard Kirtman, and Jorge Vargas

Abstract We review theoretical treatments of large regular non-conducting sys-
tems exposed to an electrostatic field. The field will induce a structural change (our
primary focus) that depends noticeably upon the surfaces no matter how large the
system. Interestingly, the surface effect can be determined by treating the system as
infinite and periodic, even though no surfaces are present in that case. Accurate re-
sults are presented for a simple model that verify and illustrate our infinite periodic
treatment. Approximate calculations are also carried out for a couple of real mate-
rials. The breakdown of our treatment for metals is analyzed and, on the basis of
that analysis, our approach is extended to account for the strain induced by a metal
short-circuiting the opposite surfaces of a semiconductor/insulator.

18.1 Introduction

Piezoelectricity describes the ability of materials (most often, crystals) to produce
an electric potential under the influence of an externally applied mechanical stress.
For a material that is not short-circuited, the mechanical stress will lead to a sep-
aration of opposite electrical charges at opposite crystal surfaces which results in
an electric voltage across the material. This effect is reversible in the sense that
materials exhibiting the so called direct piezoelectric effect, i.e., the production of
electricity when a stress is applied, also exhibit the converse piezoelectric effect,
i.e., the production of stress and/or strain when an electric field is applied.

In the present contribution we concentrate on the converse piezoelectric effect.
Specifically, we study how the spatial dimensions of a sample exposed to an electro-
static field change as a function of the externally applied voltage, as shown schemat-
ically in Fig. 18.1. The materials of interest to us are taken to be macroscopic so
that the thermodynamic limit has been reached. This assumption has two interesting
consequences that are discussed in this presentation.

Firstly, for a large macroscopic material the surfaces constitute an almost vanish-
ingly small part of the complete system. This would suggest that their contribution
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Fig. 18.1 Schematic
presentation of the converse
piezoelectric effect. The
sample to the left is placed
between two electrodes.
When an electrical voltage
between the two electrodes is
applied, the sample changes
its spatial dimensions, as
shown in the right hand part

to any property, including the converse piezoelectric effect, can be made arbitrarily
small simply by considering sufficiently large samples. However, we demonstrate
in the present contribution that this is not the case. Certain converse piezoelectric
properties have a finite contribution from the surfaces regardless of how large the
samples are when the thermodynamic limit has been reached.

Secondly, as a consequence of the above, it might be thought that the converse
piezoelectric properties can be calculated only by considering a very large finite
system. In general this approach would lead to very large computational demands.
The alternative of treating the system as infinite and periodic, but perturbed by the
scalar interaction potential due to an external electrostatic field, is also inadequate
because this potential is both non-periodic and unbounded. However, in the present
work we demonstrate how it is possible to treat the system as infinite and periodic
even in the presence of the field and also to include the effects due to the surfaces.

The question of whether surfaces have an effect on piezoelectric properties has
been discussed for more than four decades [1–8]. Often, a crystal with polar surfaces
was analyzed and arguments for why the crystal terminations should, or should not,
play a role in the responses were presented. In the present work, we demonstrate
that it is possible to modify the converse piezoelectric responses by modifying the
chemical nature of the surfaces, but not completely arbitrarily. Thus, both sets of
arguments contain some truth.

Our presentation is structured as follows. In Sect. 18.2 we present our mathe-
matical arguments, which involve comparing a large, finite system to an infinite,
periodic one. In that section the focus is on dielectrics,* for which there is an energy
gap between occupied and unoccupied electronic orbitals. Then, in Sect. 18.3 results
are presented for both a simple model system and a real system. Subsequently, we
briefly discuss metallic systems in Sect. 18.4 and in Sect. 18.5 treat the dielectrics
when they are short-circuited by a metallic connection. Finally, our results are sum-
marized in Sect. 18.6.

Except where otherwise mentioned, we restrict ourselves, for the sake of sim-
plicity, to systems that are extended in one dimension but finite in the other two, i.e.,
chain compounds/polymers. Moreover, we use atomic units whereby the elementary
charge |e|, Planck’s constant �, and the dielectric constant of vacuum 4πε0 are all
set equal to 1.
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Fig. 18.2 Schematic representation of a long, but finite, regular chain. Each black circle represents
a building block containing one or more atoms, which is placed regularly along the chain axis (the
z axis). The separation into a central and two terminal (left and right) regions is shown through the
vertical lines

18.2 Theoretical Foundations

18.2.1 Large Finite System

When exposed to a uniform electrostatic field the Hamilton operator for a large finite
system changes according to

Ĥ → Ĥ − μ̂ ·E, (18.1)

where Ĥ is the Hamilton operator in the absence of the field and we have used the
scalar interaction potential with E as the electrostatic field. Finally, μ̂ is the dipole
moment operator for the system of interest.

If the system contains a large number of building blocks that are regularly dis-
tributed and identical, except at the surfaces (we will refer to such a system as reg-
ular), it may be most convenient to treat it as being infinite and periodic. Moreover,
for any extensive property, ξ , that depends on the number of units of the system, N ,
it is often more useful to consider the corresponding intensive property,

ξ̄ = lim
N→∞

ξ(N)

N
= lim
N→∞

1

ΔN

[
ξ(N +ΔN)− ξ(N)], (18.2)

where ξ may be, for example, the total energy or any of the components of the dipole
moment vector.

For a system like that of Fig. 18.2 the presence of an electrostatic field leads to
several complications. First of all, the dipole-moment operator is unbounded so that
states with electrons confined to the chain become resonances. Moreover, for suffi-
ciently strong fields, some electrons may tunnel from one end to the other in order
to lower the total energy of the system. Finally, for very long chains, such tunneling
may occur for any non-vanishing field. These complications make the theoretical
treatment of a system like that of Fig. 18.2, when exposed to an electrostatic field,
very difficult.

An alternative might be to treat the chain as infinite and periodic. However, since
the dipole moment operator is unbounded and does not possess the periodicity of
the system, it is not straightforward to formulate the Hamilton operator for that
case. One way to formulate the desired operator may be developed by consider-
ing the dipole moment for the large, but finite, system and, subsequently, applying
Eq. (18.2). The total dipole moment of the system in Fig. 18.2 can be written as
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μ=
∫
ρ(r)rdr=

∫

C

ρ(r)rdr+
∫

L

ρ(r)rdr+
∫

R

ρ(r)rdr

=KCμC + (RR −RL)
∫

R

ρ(r)dr+
∫

L

ρ(r)(r−RL)dr+
∫

R

ρ(r)(r−RR)dr,

(18.3)

where we have made explicit use of the spatial separation into right (R), left (L),
and central (C) regions. It is also assumed that the total charge in region L is equal
in magnitude to that in region R, but opposite in sign, in order to satisfy overall
neutrality (given that the units in C are neutral by construction). In Eq. (18.3) ρ(r)
is the total charge density, RR and RL are typical positions within the right and left
regions, respectively, and KC is the number of units in C. Combining this relation
with the second definition of Eq. (18.2) gives immediately

μ̄= μC +QR · a, (18.4)

in whichQR is the total charge of R, μC is the dipole moment of one of the C units,
and a is the lattice constant of C.

It is clear that μ̄ depends on the charge accumulated at the terminations. Thus,
it might be thought that upon chemical substitution at the terminations, QR can
vary essentially arbitrarily (within chemical limits), thereby making all values of
μ̄ possible. However, that is not the case as may be seen from the following argu-
ment [9, 10]. The set of orthonormal electronic orbitals for the entire system can
be transformed into a set of maximally localized orthonormal functions. In terms of
these localized functions the density matrix consists of three diagonal blocks, one
for each of the regions in Fig. 18.2, whereas the remaining elements are exponen-
tially vanishing. Since the complete density matrix is idempotent, each of the three
blocks will be idempotent as well. This implies that the number of electrons associ-
ated with each block can change only by an integer and, thus, thatQR can vary only
by an integer.

18.2.2 The Dipole Moment per Unit for the Infinite Periodic
System

Per construction, the infinite periodic system is lacking the terminations. Thus, the
contribution from the second term in Eq. (18.4) must appear in another form. In
order to see how that occurs we need to formulate an expression for the dipole
moment per unit of the infinite periodic system. For an infinite, periodic system,
the electronic orbitals in an independent particle model can be written as Bloch
functions,

ψ(r)=ψj(k, r)= eikzuj (k, r). (18.5)

Here uj (k, r) is a lattice-periodic function, k is a continuous variable in the inter-
val −π

a
< k ≤ π

a
, and a is the lattice constant in the chain direction. In a practical



18 On Converse Piezoelectricity 335

calculation one considers only a finite set of K equidistant k values, which is equiv-
alent to assuming that the properties are periodic with the periodicity Ka—i.e. they
have the symmetry of the Born von Kármán (BvK) zone. This is clearly not the case
for the dipole moment operator in the scalar interaction potential. Thus, one must
consider an alternative approach.

About 20 years ago alternative formulations allowing for calculation of the dipole
moment per unit cell, based on an operator that has (i) the BvK periodicity and
(ii) approaches the position operator as the size of the BvK zone approaches infinity,
began to appear. Working expressions were initially proposed within the so-called
modern theory of polarization [9, 11, 12]; later they were formally developed and
generalized from other points of view [13, 14] (see also [15, 16]).

In the description provided here we concentrate on the component of the total
dipole moment per unit cell along the chain (z) direction and separate it into an
electronic and a nuclear contribution,

μ̄z = μ̄zn + μ̄ze. (18.6)

For an independent particle model, the electronic contribution can be written either
as [11]

μ̄ze = μ̄R ≡− a

2π
Im ln detS+ = a

2π
Im ln detS− (18.7)

or [9, 12]

μ̄ze = μ̄KSV ≡− i
K

K∑

k=1

B∑

j=1

〈
uj (k, r)

∣∣∣∣
∂

∂k
uj (k, r)

〉

=− i
K

K∑

k=1

B∑

j=1

〈
e−ikzψj (k, r)

∣∣∣∣
∂

∂k
e−ikzψj (k, r)

〉
, (18.8)

whereB is the number of occupied bands and spin degeneracy is not assumed. These
expressions are valid only for systems with an energy gap between occupied and
unoccupied orbitals, i.e., semiconductors and insulators; metals will be discussed
briefly in Sect. 18.4.

In Eq. (18.7), the dimension of the matrices S± is equal to the number of
electrons per BvK zone (i.e., KB) and the elements, in a Bloch wave basis [cf.
Eq. (18.5)], are given by

[
Sj1j2(k1k2)

]± = 〈ψj1(k1, r)
∣∣e±iΔkz

∣∣ψj2(k2, r)
〉

= δk1,k2±Δk
〈
ψj1(k1, r)

∣∣e±iΔkz
∣∣ψj2(k2, r)

〉

= δk1,k2±Δk
〈
uj1(k1, r)

∣∣uj2(k2, r)
〉
, (18.9)

where Δk = 2π
Ka

is the spacing between the k points. Upon organizing the occupied
Bloch waves in order of increasing k, the S± matrices have the simple structure
shown in Fig. 18.3 with square blocks above and below the k1 = k2 diagonal (except
at the corners). The expressions (18.7) and (18.8) were derived [14] for an indepen-
dent particle model. In a more recent work [15] we have shown how to generalize
this result to the case of a multi-determinant electronic wavefunction.
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Fig. 18.3 Schematic
presentation of the structure
of the S± matrices

In order to complete the picture, the nuclear contribution to the dipole moment
per unit cell may be obtained simply as

μ̄zn =
∑

m

(Zmp − pa)Qm. (18.10)

Here, Zmp is the z component of the position of the mth nucleus in the pth unit cell
and Qm is the nuclear charge.

It is useful to examine Eq. (18.7) from a different perspective. To that end we
transform the set ofK delocalized Bloch functions in Eq. (18.5) to a set of localized
Wannier functions, i.e.

wj,p(r)= 1√
K

K∑

k=1

ψj (k, r)e−ikap,

ψj (k, r)= 1√
K

K∑

p=1

wj,p(r)eikap.

(18.11)

Here the Wannier function wj,p of the j th band is more or less localized to the pth
unit inside the BvK zone. In terms of these functions, one can easily obtain

μ̄KSV =−
B∑

j=1

〈
wj,0(r)

∣∣z
∣∣wj,0(r)

〉
. (18.12)

(Notice the minus sign that originates from the negative charge of the electrons).
Alternatively, we may consider an LCAO approach in which the single particle

orbitals are written as linear combinations of localized basis functions centered on
the atoms,

ψj(k, r)=
∑

m

Cmj (k)χm(k, r),

χm(k, r)= 1√
K

∑

p

eikapχpm(r)
(18.13)

with χpm being the mth atomic basis function of the pth unit. It then follows that
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μ̄ze = μ̄KSV

=− i
K

∑

j

∑

k

〈
uj (k, r)

∣∣∣∣
∂

∂k
uj (k, r)

〉

=− 1

K

∑

jm

∑

k

eikma
∑

pq

C∗qj (k)
(
〈χq0|z−ma|χpm〉︸ ︷︷ ︸

charge

+ i〈χq0|χpm〉 d
dk︸ ︷︷ ︸

current

)
Cpj (k).

(18.14)

Hereby, μ̄ze may be split into so-called charge and current contributions. This
separation can also be carried out including the nuclear part, which only affects the
charge contribution, to give

μ̄= μ̄charge + μ̄current. (18.15)

It can be shown analytically [15] that the charge contribution corresponds to that
part of the dipole moment per unit for a large finite system that has its origin in
the dipole moment of a central unit, i.e., μC of Eq. (18.4). Accordingly, the current
contribution corresponds to that part of the dipole moment per unit for a large finite
system that is due to the charge transfer between the termination regions, i.e.,QR ·a
of Eq. (18.4).

For our arguments it is important to notice that each expression for the dipole
moment per unit contains an unknown integer multiple of the lattice constant. In
the expression of Eq. (18.7) Im ln detS± is just the phase of the complex number
detS±, which contains an unknown integer multiple of 2π . Thus, μ̄R is only deter-
mined up to an integer times the lattice constant. Equivalently, in evaluating μ̄KSV

of Eq. (18.8) we may modify each electronic orbital by a phase factor

ψj (k, r)→ψj (k, r)eiφj (k) (18.16)

which is arbitrary except for requiring that

eiφj (π/a) = eiφj (−π/a) (18.17)

or, equivalently,

φj (π/a)= φj (−π/a)+ ñj · 2π (18.18)

with ñj an integer. As a result the dipole moment per unit is changed by an amount

−ñ · a =−
B∑

j=1

ñj · a. (18.19)

This change modifies the current, but not the charge term. Finally, since the assign-
ment of the Wannier functions in Eq. (18.11) to the individual units is non-unique,
the expression of Eq. (18.12) also contains an unknown integer multiple of the lat-
tice constant.
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18.2.3 The SCF Equations for the Infinite Periodic System

In the absence of an electrostatic field, and for an independent particle model, the
coefficients {Cmj (k)} of Eq. (18.13) are determined from the well-known SCF equa-
tion

F(k) ·Cj (k)= εj (k) · S(k) ·Cj (k). (18.20)

Here, F(k) is the Fock (or Kohn-Sham) matrix, S(k) is the overlap matrix, εj (k)
is the orbital energy, and Cj (k) the vector containing the coefficients for the j th
orbital. As shown, k is a good quantum number.

When the infinite, periodic system is exposed to an electrostatic field there are
different approaches for including the field. One is to use a scalar potential to de-
scribe the interaction and, accordingly, to include the dipole term derived from the
expression in Eq. (18.14). Alternatively, the effect of the field may be included by
using the time-dependent vector potential, A(t). Then, the (time-dependent) SCF
equation is obtained by replacing

p̂→ p̂+ 1

c
A(t), (18.21)

which leads to
(
F̂ − i ∂

∂t

)
ψj1(k, r, t)=

∑

j2

εj2j1(k, t)ψj2(k, r, t) (18.22)

or, using the LCAO expansion of Eq. (18.13), [13, 17]

F(k, t) ·C(k, t)+E(t) ·
[
M(k) ·C(k, t)+ iS(k) ∂

∂k
C(k, t)

]
− iS(k) ∂

∂t
C(k, t)

= S(k) ·C(k, t) · ε(k, t). (18.23)

Here, E(t) is the electric field obtained by taking the time derivative of the vector
potential.

Independent of whether the scalar potential, or the vector potential for a static
field, is used one arrives at the same matrix equation
(
F(k)+E ·

[
M(k)+ iS(k) ∂

∂k

])
·Cj(k)= εj (k) · S(k) ·Cj (k), (18.24)

that was originally derived within the so-called vector-potential approach [13, 17].
In this equation

Sqp(k)=
∑

l

eikal〈χq0|χpl〉,

Fqp(k)=
∑

l

eikal〈χq0|F̂ |χpl〉,

Mqp(k)=
∑

l

eikal〈χq0|z− la|χpl〉 =
∑

l

e−ikal〈χql |z|χp0〉

(18.25)
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are the overlap, Fock (or Kohn-Sham), and dipole matrices, respectively. It is im-
portant to note that k remains a good quantum number, as indicated in Eq. (18.24),
and thus translational symmetry is preserved. On the other hand, due to the ∂

∂k
term

on the left hand side, Eq. (18.24) is not a simple matrix-eigenvalue relation. Since
Cj (k) may contain essentially random, j - and k-dependent phase factors, it is a
non-trivial problem to solve Eq. (18.24). During the last few years, however, we
have presented a numerically stable and accurate procedure for doing so [8, 18–21].

18.2.4 The Total Energy

For the large finite system exposed to an electrostatic field, the total energy can be
written as

Etot =Ekin
[{ψj }

]+EJ
[
ρ(r)
]+Exc

[{ψj }
]−E ·μ

≡Etot,0 −E ·μ. (18.26)

In principle, the above expression is exact, provided one uses a set of occupied
orbitals {ψj } that yield the exact density. In practice, we will assume that one is
using either the Hartree-Fock or the Kohn-Sham independent particle model. The
first term in the top line of the right hand side is the kinetic energy contribution;
the second term is the classical Coulomb interaction between all charged particles
(i.e., electrons and nuclei); and the third term is either the exchange energy for a
Hartree-Fock treatment or the exchange-correlation energy for a Kohn-Sham treat-
ment. The last term describes the interaction between the system and the electro-
static field. Since the electronic orbitals, and thereby the electron density, obtained
from Eq. (18.24) depend upon the electrostatic field each term in the total energy
expression will depend upon E including Etot,0 as well as μ.

By considering large finite systems of different (sufficiently large) size it is pos-
sible to calculate the total energy per unit, Ētot. Alternatively, one may consider the
infinite periodic system directly. In that case the quantity μ per unit cell is calculated
using the expression of Eq. (18.6) with the nuclear part given by Eq. (18.10) and the
electronic part by Eq. (18.14).

18.3 Results for Semiconductors

18.3.1 A Model System

As discussed in the previous section, for the infinite periodic system, μ̄ contains an
unknown additive term, i.e.

μ̄= μ̄0 − ñ · a, (18.27)
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Fig. 18.4 Optimized lattice constant a from a set of representative calculations for the model
chain (see text). Open and filled circles (connected by solid straight lines) are for finite chains
with 40/41 units, whereas all other symbols are for infinite periodic chains with K = 80. The finite
chain results differ by an end-to-end transfer of two electrons. For the periodic chains,×, triangles,
squares, stars, and + mark results for the integer ñ equal to 0, 2, −2, 4, and −4, respectively. The
dashed straight lines are linear approximations to the infinite-chain results

where μ̄0 represents some reference value and the integer ñ is arbitrary, but related
to the orbital phases. On the other hand, for an extended finite system the dipole
moment per unit can be written as

μ̄= μC +QR · a, (18.28)

where the charge QR is, in principle, arbitrary although it can change only by an
integer. This theoretical limitation on the terminal charge has been termed charge
quantization [10] and it has been found in numerical studies [22].

A highly relevant question is whether the properties of the infinite periodic sys-
tem and those of the large finite system coincide. In order to address that issue we
have studied a simple model linear chain [8, 16] with alternating A and B atoms,
a lattice constant a, and alternating bond lengths a2 ± 2u. We use a basis set of two
AOs per atom and assume that there are 4 electrons per repeat unit. All elements of
the Fock and overlap matrices are parametrized as described in detail in [8], where
a further description of the model parameters is given. The advantage of studying
a model, instead of a real system, is that one can eliminate truncation errors due to
summations in real and reciprocal space and to basis set expansions. Furthermore,
it becomes possible to study large finite systems without prohibitive computational
demands.

We studied both large finite systems and infinite periodic systems as a function
of field. In order to study how the properties of the infinite periodic system depend
upon the integer ñ in Eq. (18.27) the orbital phases were modified by hand. For
the large finite system the Fock matrix elements of AOs near the terminations were
modified in order to vary the terminal charge QR in Eq. (18.28).

For the present purpose, the most important results of our model calculations
are reproduced in Fig. 18.4 where the optimized lattice constant a is shown as a
function of the field E. For other properties, please consult [8]. From the results
of Fig. 18.4 we emphasize two findings. First, there are two sets of finite chain
results which differ by an end-to end transfer of two electrons. These correspond
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to the infinite periodic chain calculations with ñ equal to 0 and −2. The important
point is that the finite chain and infinite periodic chain results lie on top of one
another, which means that the properties do coincide. Second, different values of
ñ, or QR , lead to different results. For the infinite periodic system the integer ñ
exactly mimics the effect of the terminal charge, QR , for the large finite system.
We hasten to add that the calculations are several orders of magnitude faster for
the former system than for the latter. Finally, the variation in a, as a function of E,
is what causes all other properties to depend upon the terminal charge. This was
also demonstrated in [8, 16], where it was shown that the dependence upon terminal
charge is eliminated by keeping a fixed.

The converse piezoelectric effect describes the relative change in the lattice con-
stant as a function of the external electric field. This can be quantified through a
converse piezoelectric coefficient,

d =
[

1

a

∂a

∂λ

]∣∣∣∣
λ=0
, (18.29)

where λ can be either the field strength, E, or the potential drop over one unit cell,
V = E · a. It turns out to make an important difference which of the two is used
as will be seen below. In order to determine d for the present model, we expand
the total energy per unit cell to second order in the lattice constant, a, the internal
coordinate, u, and λ about the field-free optimum geometry (indicated by subscript
0 on a and u),

Ētot ≡ Ētot(a,u,λ)

� Ētot,0 + λ∂Ētot
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+ 1

2
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2 ∂
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2
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∂λ2
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∂2Ētot
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∂2Ētot

∂λ∂u
. (18.30)

All partial derivatives in the above equation are evaluated at a0, u0 and λ= 0. If λ is

the field, then ∂Etot
∂λ
=−μ and, thus, ∂

2Ētot
∂λ∂a

will depend on ñ. In fact, this is the only
term on the right hand side in which this integer explicitly appears. On the other
hand, if λ is the voltage, V , then ñ will not appear at all because μ is replaced by
μ/a. Setting λ = E, we may differentiate the right-hand side of Eq. (18.30) with
respect to a and u to determine the optimized structure for a given field. This yields

a(E)= a0 +E
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∂2Ētot

∂u2

]

×
[
∂2Ētot
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,
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(18.31)
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from which we can determine the converse piezoelectric coefficient, d . The latter
can, then, be written in a form similar to Eq. (18.27)

d = d0 − ñ · d1, (18.32)

where we have used the fact that ∂
2Ētot
∂E∂a

is directly proportional to ñ. The straight
dashed lines in Fig. 18.4 show the curves for

a(E)= a0(1+ d ·E) (18.33)

with d calculated from Eq. (18.32). Since the several straight lines have different
slopes it is clear that the value of the (bulk) lattice constant depends on the sur-
faces/terminations. Due to coupling between a and u the bond length alternation
(not shown) depends upon the surfaces as well. Finally, the close fit of the dashed
lines to the ‘exact’ numerical results in Fig. 18.4 shows that the approximation of
Eq. (18.33) is quite reasonable for the fields considered in this model study.

18.3.2 A Real System

The results of the model calculations suggest that the converse piezoelectric effect
contains a non-negligible contribution from the surface charges. However, the model
was not designed to represent any real system and, accordingly, it is possible that
this contribution is overestimated. It is, therefore, relevant to study a real material.

We chose to consider the so-called layered perovskites R2Ti2O7 with R being
Sm or Gd [23]. Although these systems possess many structural parameters, we
reduced these to the two that are closely related to the spontaneous polarization (i.e.
the permanent dipole moment per unit volume) that these materials possess. One
of the two parameters is the lattice constant, a, in the direction of the spontaneous
polarization, and the other, u, describes the distortion from the centrosymmetric
structure at which the spontaneous polarization would vanish. All other structural
parameters were relaxed to the optimized field-free value for a given a and u. For
further details of the calculations, please consult [23].

Assuming that the 2nd order expansion on the right hand side of Eq. (18.30) is
sufficiently accurate in this case as well, we can calculate all required quantities
approximately from the total energy and dipole moment as a function of a and u
using finite-differences (see [23]). The results for the (converse) piezoelectric pa-
rameters in Eq. (18.32) are d0 = 9.9 (7.9) 10−10 (V/cm)−1 and d1 = −7.5 (−7.0)
10−11 (V/cm/(surface cell))−1 for R= Sm (R=Gd). Even if these numbers should
be taken with some caution due to the finite difference approximations involved
in their determination, they do indicate a non-negligible effect of the surfaces. Of
course, d1 must be multiplied by the number of electrons per surface unit cell that
are transferred from one surface to the opposite one due, for example, to chemical
modifications. For a transfer of ±2 electrons/(surface cell), our results above corre-
spond to a change in the converse piezoelectric coefficient of about 20 % which is
an effect that should be detectable experimentally.
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18.3.3 Measuring Surface-Dependent Converse Piezoelectricity

In order to measure the converse piezoelectric coefficient we propose the following
approach using, for illustrative purposes, the linear chain shown in Fig. 18.1. Our
approach guarantees that surface effects, other than those discussed above, are elim-
inated as soon as the samples are large enough to reach the thermodynamic limit.
We also do not need to assume that the surface regions have an almost vanishing
spatial extent. Finally, this approach can be used to separate the coefficients d0 and
d1 as well as to measure the direct piezoelectric effect.

Let us consider a set of samples that have the same terminations but different
lengths. Thus, they differ only in the size of the central region (at least, to a good
approximation for a large system). When these samples are exposed to an electro-
static field their length, l, will change. Since the termination regions may respond
differently than the central region

l = lR + lL +KC · a
= lR0(1+ dRE)+ lL0(1+ dLE)+KCa0(1+ dCE), (18.34)

where dX is the converse piezoelectric coefficient for region X and the subscript 0
again indicates the field-free value. We seek the converse piezoelectric coeffi-
cient dC . To that end it is convenient to re-write Eq. (18.34) as

l = l0(1+ dCE)+ lR0(dR − dC)E + lL0(dL − dC)E, (18.35)

whereas lR0 and lL0 are independent of the size of the sample, l0 is not. Thus, a plot
of l as a function of l0 for samples of different lengths, but subject to the same field,
will give a straight line with slope (1+ dCE). Ultimately, by repeating the whole
process for another set of samples with different terminal charges, it is possible
to separate the bulk converse piezoelectric coefficient into a reference value and a
surface-dependent term as done in Eq. (18.32).

18.4 Metals

So far we have assumed that the occupied and unoccupied orbitals are separated by
a finite gap, i.e., that the system is insulating or semiconducting. It is natural to ask
whether it is possible to treat a metallic system with the approaches presented here.
As it turns out, there are aspects in which a metal is fundamentally different from a
semiconductor, or an insulator, that make it impossible to do so.

First, we discuss the infinite periodic case. In principle, for a metal the electronic
part of the dipole moment per unit could be formulated using an expression like
that of Eq. (18.8). The only difference would be that the sum over occupied orbitals
would not include the complete band, i.e., the j summation in Eq. (18.8) would have
an upper limit that is k-dependent. Although the substitution of Eq. (18.16) is still
possible, this means that the conditions of Eqs. (18.17) and (18.18) cannot be used
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to fix μ̄ze (up to an integer multiple of the lattice constant). As a result the electronic
dipole moment per unit cell given by Eq. (18.8) may take any value.

A similar result is obtained when attempting to use Wannier functions [see
Eq. (18.12)] to calculate μ̄ze. That approach is not applicable because Wannier func-
tions cannot be constructed for fractionally occupied bands.

One could try to calculate μ̄ze from Eq. (18.7). For a semiconductor/insulator the
S± matrices contain K blocks of dimension B × B (B is the number of occupied
bands) with non-vanishing matrix elements between band orbitals of neighboring
k values [see Eq. (18.9) and Fig. 18.3] whereas all other matrix elements are zero.
Thus, det(S±) will equal the product of the K determinants of each block. For
a metallic system, since there are partially occupied bands, some of these square
blocks will become rectangular and det(S±) will vanish. Thus, as above, μ̄ze can
take any value.

Next we turn to the case of a very large finite system, for which the energy
gap between occupied and unoccupied orbitals approaches zero as the system size
grows. As pointed out by Resta [24], one can construct localized orbitals for such
small band gap semiconductors even though it is not possible to do so for a metal.
Indeed, in our model zero field calculations these long finite chains behaved sim-
ilarly to ordinary semiconductors. However, as soon as a field was turned on, it
became no longer possible to identify a central region even for the longest chains,
which were more than one order of magnitude longer than those discussed earlier
in Sect. 18.3.1). Moreover, the dipole moment per unit increased supralinearly with
chain length. Upon fitting the latter property to a power series in the applied field,

μ̄= μ̄(0) + ᾱE + 1

2
β̄E2 + 1

6
γ̄ E3 + · · · , (18.36)

we found that the polarizability per unit, ᾱ, as well as the hyperpolarizabilities per
unit, β̄ and γ̄ , also grow rapidly with system size in accord with the behavior for a
perfect metal. Thus, the field causes a charge redistribution throughout the complete
system and, as a result, the charge associated with the chosen surface region can take
any value.

18.5 Short-Circuited Semiconductor

The results of the last two sections will now be used to study a system (‘device’)
like that of Fig. 18.5. This system contains a semiconductor placed between two
metal capacitor plates connected through a metal so that the semiconductor is short-
circuited. We assume that there is a non-vanishing polarization P inside the semi-
conductor in the direction perpendicular to the capacitor plates. P is related to the
dipole moment per unit cell through

P= 1

Ω
μ̄ (18.37)
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Fig. 18.5 Schematic
representation of a
semiconductor short-circuited
by two metal plates connected
to one another via a metal

with Ω being the unit cell volume. Inside the semiconductor, assuming that the
polarization is uniform, there will be an electrostatic field

E0 =−4πP. (18.38)

When the semiconductor is free-standing, this field will give rise to a potential drop
from one side to the other. However, when the semiconductor is short-circuited,
as in Fig. 18.5, there will be no potential drop and, instead, the electrostatic field
of Eq. (18.38) will induce a compensating external uniform electrostatic field E =
−E0 originating from charge redistribution within the metal.

For the semiconductor in the(induced) electrostatic field of the metal we may
rewrite the total energy of Eq. (18.26) as

Ētot = Ētot,0 −EΩP. (18.39)

Here P is the self-consistent polarization of the semiconductor and E is the self-
consistent external electrostatic field of the metal. In this expression we insert the
value of E =−E0 determined by Eq. (18.38), with P now being the self-consistent
polarization, to obtain

Ētot = Ētot,0 − 4πΩP 2. (18.40)

In this derivation, as noted above, we have used the fact that the charge distribution
within the metal is completely delocalized and will reorganize to exactly compen-
sate the potential drop over the semiconductor due to the (self-consistent) polariza-
tion of the latter. This situation would, clearly, be different if the two metal plates
were connected via another semiconductor.

The structural parameters of the short-circuited semiconductor may be deter-
mined by minimizing the total energy of Eq. (18.40). However, we shall here de-
termine a simple estimate of the changes in the structure due to the short-circuiting.
Thereby, Ētot,0 and P of Eq. (18.40) are both expanded to second order in the two
parameters a and u, and the derivatives in the resulting expression are evaluated nu-
merically by finite differences [23]. Ētot,0 depends on both the structure and the elec-
tronic wavefunctions, and the latter depend on whether the system is short-circuited
or not. As one approximation, we shall ignore this difference, whereby all quanti-
ties entering the second order expansion can be extracted from calculations without
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Table 18.1 The relative
change in the optimized
lattice constant, i.e., the
strain δ, for the device of
Fig. 18.5 and the two systems
of Sect. 18.3.2

ñ Sm Gd

−2 0.075 −0.257

−1 −0.032 −0.030

0 −0.057 −0.056

1 −0.069 −0.069

2 −0.076 −0.077

inclusion of an electrostatic field. As a further approximation, we shall assume that
this second order expansion is sufficiently accurate to describe the structural changes
due to short-circuiting even if these are far from being infinitesimally small.

The relative change in the optimized lattice constant with respect to the isolated
chain value a0, i.e., the strain

δ = a − a0

a0
, (18.41)

is given in Table 18.1 for different values of ñ. These results demonstrate a couple
of points. First, there is a highly non-trivial dependence on ñ. Second, the structural
changes are significant, though not large; they vary up to about 8 percent. A single
exception is found in the case of the Gd-based compound for ñ = −2. The reason
for this exception is to be found in the highly non-linear dependence of δ on ñ
which, in turn, is associated with a near-cancellation of terms in the denominator
[cf. Eq. (18.31)] of the expression for a.

As emphasized above, our approach is based on several approximations. Thus,
the results of Table 18.1 may be considered only as a rough estimate for the effects
of short-circuiting.

18.6 Summary

In this work we have studied properties of large regular systems. Such systems con-
tain a large number of regularly arranged, identical units and only in the surface
regions may there be deviations from this regularity. We have focused on a single
property, namely the converse piezoelectric effect, which describes how the spatial
extensions of the system change upon application of an external electrostatic field.

A central result of our work is that the quantitative converse piezoelectric coeffi-
cient depends on the surfaces of the system, in particular on the surface charge. This
dependence does not vanish in the limit of an almost infinitely large system, but the
coefficient also cannot take on an arbitrary numerical value. It turns out that the sur-
face effect can be accounted for in theoretical studies which assume that the system
is infinite and periodic, even though there are no surfaces in that case. The surfaces
have a finite effect on bulk properties, independent of system size, and despite the
fact that they have essentially vanishing volume compared to the total volume in a
large sample.
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We also sketched our theoretical approach for including an external electrostatic
field in calculations on infinite periodic systems, as is necessary to determine the
converse piezoelectric coefficient. This approach involves development of an ap-
propriate dipole moment operator containing both ‘charge’ and ‘current’ terms. It
also leads to the introduction of an (unknown) integer multiple of the lattice constant
into the phases of the crystal orbitals. Many details are non-trivial and could not be
discussed here, but for a complete and more thorough description the interested
reader is referred to [16].

Results are shown from earlier model calculations on semiconductor chains that
verify and illustrate our theoretical treatment. More recent calculations for real ma-
terials are included as well. They involve some approximations but, nonetheless,
confirm that the surface effect is significant, though not very large for the particular
materials studied.

The infinite periodic treatment we have presented is applicable only for semicon-
ductors and insulators. It is shown to be inapplicable to metals because the electronic
charge cannot be localized to a central region and, by the same token, the electronic
dipole moment may take any arbitrary value. For a large finite system the electronic
dipole moment grows supralinearly with chain length.

Based on our analysis of a metallic system we studied an idealized device where
a semiconductor (or insulator) is sandwiched between two metallic capacitor plates
and short-circuited by connecting the plates through the metal. If the free-standing
semiconductor is spontaneously polarized (i.e. has a permanent dipole moment) it
will have an associated internal electric field. When attached to the metal the latter
will respond by creating an (external) field that exactly compensates the internal
one. The external field, in turn, will induce a change in the polarization of the semi-
conductor, and so forth. This leads ultimately to a total energy for the semiconductor
that depends upon the square of its self-consistent polarization. Using the results for
the real material, we were able to estimate the relative change in the lattice constant,
i.e. the strain, due to short-circuiting the semiconductor.
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Chapter 19
Analysis of Water Molecules in the Hras-GTP
and GDP Complexes with Molecular Dynamics
Simulations

Takeshi Miyakawa, Ryota Morikawa, Masako Takasu, Akira Dobashi,
Kimikazu Sugimori, Kazutomo Kawaguchi, Hiroaki Saito, and Hidemi Nagao

Abstract In the Hras-GTP and GDP complexes, the coordination bonds between
Mg2+ and oxygen atoms are very important. In this study, we use AMBER03 and
our calculated force field parameters, and perform MD simulations of Hras-GTP and
GDP complexes with water solvents. It is shown that the number of water molecules
in the first hydration sphere is larger in GDP than in GTP. The duration time and the
direction of water molecules in the first hydration sphere in GTP is not so different
from those in GDP. It is shown that water molecules are distributed evenly around
PG, although they are not distributed evenly around PB. This difference can be the
reason why the hydrolysis of GTP in Hras-GTP is easier than the hydrolysis of GDP
in Hras-GDP.

19.1 Introduction

Hras is a product of proto-oncogene Hras, and is included in the signaling process
to induce the cell division and cell differentiation. Hras is one of G-proteins, which
act as molecular switch.

In inactive state, Hras forms a complex with GDP (guanosine diphosphate). Hras
is in inactive state if Hras is in non-cancerous cell and if cell division is not needed.
When EGF (epidermal growth factor) binds EGFR (epidermal growth factor recep-
tor), the signal of cell division and differentiation propagates to Hras. When the
signal reaches Hras, GEF (guanine nucleotide exchange factor) binds Hras. This
promotes the dissociation of GDP from Hras. Because the concentration of GTP
(guanosine triphosphate) is much higher than the concentration of GDP in cyto-
plasm, active Hras-GTP complex is made. Because Hras-GTP has higher affinity to
Hras binding protein than Hras-GDP, the signal of cell division and cell differentia-
tion propagates to nuclei through the path including the Hras binding protein. When
the signal of cell division and cell differentiation reaches nuclei, the expression of
genes which are coding the protein needed for cell division and cell differentiation
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are enhanced. In non-cancerous cell, GTP in Hras-GTP complex is hydrolyzed to
GDP in appropriate time. When inactive Hras-GDP complex is made, the propagat-
ing of the signals of cell division and cell differentiation is stopped [1].

To study the hydrolysis of GTP in Hras-GTP complex, we investigate the struc-
ture of Hras-GTP. In about 30 % of human cancer cells, at least one of Ras family,
which consists of Hras, Kras and Nras, is mutated [2]. The mutated Hras protein
has different structure from wild type Hras. This change of structure suppresses the
hydrolysis of GTP in Hras-GTP complex. As a result, the mutated Hras-GTP sends
continuously signals of cell division and cell differentiation [3]. The structure of
Hras-GTP complex is important for the hydrolysis of Hras-GTP. The suppression of
the hydrolysis of GTP is important to generate the tumor in the cell with the mutated
Hras-GTP complex. Investigating the structure of Hras-GTP complex is important
in order to prevent mutated Hras-GTP complex generating the tumor.

In 1990, the structures of Hras-GTP complex [4] and Hras-GDP complex
[5] were investigated by X-ray crystallography analyses. These analyses showed
that the structures of Hras-GTP complex and Hras-GDP complex are different in
switch I, which consists of 30–38 residues, and in switch II, which consists of 60–
72 residues.

In order to understand the mechanism of the hydrolysis of GTP in Hras-GTP
complex, we consider the role of water molecules in GTP hydrolysis by the analysis
of the position and direction of water molecules. The reaction mechanism of GTP
hydrolysis is classified mainly in two types. One is that the P–O bond is cleaved
after the attack of OH−. The other is that the P–O bond is cleaved and the water
molecule attacks the intermediate of hydrolysis. In order to know which mechanism
is preferred in Hras complex, we compare the positions of water molecules around
GTP and GDP. If some differences are found, the former mechanism is preferred.

While some researches suggest associative transition states [4, 6–12], other re-
searches suggest mostly dissociative transition states [13–24]. We focused on the
orientation of water instead of OH− because most of these researches suggest that
GTPase catalyzes GTP hydrolysis reactions by neutralizing the negative charge de-
velopment at β- or γ -phosphate of GTP and by correct positioning of the nucle-
ophilic water molecule via a conserved Gln residue in the switch II region. Because
oxygen atoms in γ -phosphate of GTP are not protonated in Hras-GTP complex,
a water molecule attacks γ -phosphate in either case of dissociative mechanism or
associative mechanism.

In fact, the MD simulations of these complexes in water solvent have been per-
formed in the former studies by several scientists [25–29]. In those studies, some
calculated the potential parameters with a small basis set [25, 26]. Others did not
write the used parameters in detail in their paper [27, 28]. Still others used the po-
tential parameters of guanosine nucleotide calculated in water, not in Hras protein
complex [29].

Using the parameters in AMBER03 [30] and the parameters calculated by us
[31], we performed MD simulations of Hras-GTP and Hras-GDP complexes in wa-
ter solvent. From the trajectories of MD simulations, we analyzed the position and
direction of water molecules.
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Fig. 19.1 The chemical
structure of guanosine
triphosphate, GTP (a), and of
guanosine diphosphate
GDP (b). The identification
of the phosphorus atom is
explicitly indicated in each
chemical structure

19.2 Method

19.2.1 MD Simulation

In Fig. 19.1, we show the chemical structures of GTP (a) and GDP (b). PA is the
phosphorus atom nearest to the guanosine in GTP. PB is the second nearest phos-
phorus atom and PG is the third nearest phosphorus atom. In GDP the same identi-
fication is used.

We use the structures of PDBID:121P determined by X-ray crystallography for
GTP and PDBID:1Q21 determined by X-ray crystallography for GDP as initial
states. Because 121P contains the GCP, which is the slowly hydrolyzable GTP ana-
logue, we start with GCP and substitute C atom in GCP to O atom in order to change
GCP to GTP. We use TIP3P model for water molecules [32]. We add counterions
to the system in order to neutralize the total charge of the system. For bonds con-
taining hydrogen atom, SHAKE algorithm [33] is used. The energy of the system is
minimized. We heat the temperature of the solvent water to 300 K under NPT condi-
tion, while we constrain the Hras, GTP/GDP and crystallization water by harmonic
force with 50 kcal/mol. The harmonic constraints are taken off gradually at 300 K.
Without harmonic constraints, the system is equilibrated at 300 K for 500 ps under
NPT condition. We used Langevin thermostat [34, 35] for temperature coupling and
Berendsen’s method [36] for pressure coupling. MD simulations are performed with
the time step 1.0 fs.

19.2.2 Analysis

We calculate the radial distribution function (RDF) of water molecules with respect
to the phosphorus atoms in guanine nucleotides (GTP, GDP) of the Hras-GTP and
Hras-GDP complexes. We define the first hydration radius as the distance which
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Fig. 19.2 The schematic
picture of snap shots of from
step= n to step= n+ 4 of
i-th water molecule and the
first hydration sphere

gives the local minimum of RDF between the first peak and the second peak. We
also define the first hydration sphere as the sphere whose radius is the first hydration
radius and whose center is the position of the phosphorus atom.

Here, we explain how to estimate the duration time of the i-th water molecule
in the first hydration sphere as shown in Fig. 19.2. The snap shot of trajectories is
recorded for every time interval Δsnap_shot. At step = n and n + 4, the i-th water
is outside the first hydration sphere. From step = n+ 1 to n+ 3, the i-th water is
inside the first hydration sphere. When the i-th water is inside the first hydration
sphere in two successive snap shots, we assume that the i-th water stayed inside the
first hydration sphere during the intervals. In this case, the i-th water is inside the
first hydration sphere from step= n+ 1 to step n+ 3. We assume the entrance time
as step= n+ 0.5 and the leaving time as step= n+ 3.5. We estimate the duration
time as 3Δsnap_shot.

We define the occurrence ratio of duration time of water molecules in the first
hydration sphere. The occurrence ratio is proportional to the number of events
with corresponding duration time, when an event starts with the entrance of water
molecule in the first hydration sphere and stops with the leaving the sphere. Here,
the number of events are divided by the summation of events throughout the sim-
ulation. This divided number is the occurrence ratio of events with corresponding
duration time.

19.3 Results and Discussion

We check the averaged structures and fluctuations throughout the MD simulations
of Hras-GTP and Hras-GDP complexes, although these data are not shown in this
paper.

Averaged structures throughout the MD simulations of Hras-GTP and Hras-GDP
complexes are different at the switch I and the switch II regions. In particular, as
shown in crystal structures [4, 5] and shown in the paper of MD simulations by
Kobayashi et al. [29], α helix in switch II of Hras-GDP complex is shorter than α
helix of Hras-GTP complex.

We compare the fluctuations of structures of Hras-GTP and Hras-GDP com-
plexes by performing PCA (principal component analysis) in switch I and II re-
gions. The fluctuations of structures of Hras-GDP are larger than Hras-GTP around
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Fig. 19.3 The radial distribution functions of water molecules with respect to the phosphorus
atoms in GTP (a), and in GDP (b)

Table 19.1 The first hydration radius with respect to phosphorus atom in guanosine nucleotide
and the averaged number of water molecules in the first hydration sphere

Guanosine nucleotide Phosphorus atom Radius (Å) Averaged number of water

GTP PA 4.63 0.91

GTP PB 4.88 0.65

GTP PG 4.88 0.90

GDP PA 4.68 3.23

GDP PB 4.63 1.73

THR35 in switch I, as shown in the paper of MD simulations by Kobayashi et al.
[29], because THR35 binds Mg coordinately in the Hras-GTP complex although
THR35 does not bind Mg coordinately in the Hras-GDP complex.

We calculate the radial distribution function (RDF) of water molecules with re-
spect to the phosphorus atoms in guanine nucleotides (GTP, GDP) of the Hras-GTP
and Hras-GDP complexes as shown in Fig. 19.3.

In Table 19.1, we show the values of hydration radius, which are defined in
Sect. 19.2.2. The values are from 4.63 Å to 4.88 Å. The averaged number of wa-
ter molecules in the first hydration sphere are calculated and summarized in Ta-
ble 19.1. It is shown that the averaged number around phosphorus atoms in GDP has
larger value than those in GTP. The hydration of the phosphorus atoms weaken the
Coulomb interaction between phosphorus atoms and atoms in the residues around
the phosphorus atoms. Thus, the fact that the averaged number around phosphorus
atoms in GDP has larger value than those in GTP suggests that GDP dissociates
from Hras more easily than GTP. In vital cells, neither GDP nor GTP dissociates
from Hras, unless other proteins are connected.

We compare the atomic charges calculated by quantum chemistry in our previous
work [31] in the Hras-GTP complex and in the Hras-GDP complex, in order to
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Fig. 19.4 Identification of
atoms in molecular structure
of GTP (a), and of GDP (b).
The atomic charges in
GTP (c), and in GDP (d)
calculated by quantum
chemistry in our previous
work [31]

confirm that the difference in atomic charges does not cause the larger value of
averaged number of water molecules in GDP than in GTP. As is shown in Fig. 19.4,
the values of atomic charges in GDP are almost the same in GTP except O3B. One
reason why the averaged number of water molecules is larger in GDP than in GTP
is that water molecules are less restricted in GDP than in GTP.

In Fig. 19.5, we show the occurrence ratio of duration time of water molecules
in the first hydration spheres, which is defined in Sect. 19.2.2. The horizontal axis
is the evaluated duration time. The vertical axis is the occurrence ratio of duration
time of water molecules, which is defined in Sect. 19.2.2. When duration time is
shorter than about 5 ps, the occurrence ratio is proportional to t−1.4 in PA, PB and
PG. When duration time is longer than about 5 ps, the occurrence ratio does not
follow power law, and curves of PA are different from the curves of PB and PG.
This suggests that the network of water molecules is conserved in 5 ps.

Next, we consider the reason why the hydrolysis of GTP in Hras-GTP is easier
than the hydrolysis of GDP in Hras-GDP, although the duration time is not so dif-
ferent, and the averaged number of water molecules in the first hydration spheres in
GDP is larger than in GTP. By analogy of the typical hydrolysis of a ester, the mech-
anism of hydrolysis can be dissociative when the water molecule attacks from the
extension of a O3B-PG line to γ -phosphate. In order to ascertain whether the water
molecule attacks from the extension of a O3B-PG line to γ -phosphate, we calculate
the angular distribution of water molecules around PG in Hras-GTP and around PB
in Hras-GDP. When we calculate the angular distribution of water molecules around
PG in Hras-GTP, we define PG as the origin as shown in Fig. 19.6. The O3B-PG
line is z axis. The plane which includes PG and which is perpendicular to z axis
is the x–y plane. The projection of the PG-O1G line onto the x–y plane is x axis.
The angle from the z axis to the j -th water is θ , and the angle from the x axis to
the j -th water on the x–y plane is φ. In the same manner, when we calculate the
angular distribution of water molecules around PB in Hras-GDP, we define PB as
the origin. The O3A-PB line is z axis. The plane which includes PB and which is
perpendicular to z axis is the x–y plane. The projection of the PB-O1B line onto the
x–y plane is x axis.

Figure 19.7 shows the angular distribution of water molecules in the shell with
radius from 3.5 Å to 4.0 Å around PG in Hras-GTP (a) and around PB in Hras-
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Fig. 19.5 The occurrence ratio of entrance event with corresponding duration time of the water
molecules in the first hydration sphere with respect to the phosphorus atoms in GTP (a) and in
GDP (b). Filled circles are PA, open circles are PB, and open rectangles are PG. The lines are the
guide to the eyes, which are proportional to t−1.4

Fig. 19.6 The coordinates
used for angular distribution
of water molecules around
PG in Hras-GTP

GDP (b). The angular distribution of water molecules in Hras-GTP is different from
those in Hras-GDP. Water molecules are distributed in θ < 30◦ around PG in Hras-
GTP although water molecules are not distributed in θ < 30◦ around PB in Hras-
GDP. Only in the area θ ∼ 30◦, φ ∼ 0◦, the density of water molecules in Hras-GTP
is higher than those in Hras-GDP. The hydrolysis of GTP in Hras-GTP is easier than
the hydrolysis of GDP in Hras-GDP, although the duration time is not so different,
and the averaged number of water molecules in the first hydration spheres in GDP
is larger than in GTP. Thus, the fact that the density of water molecules in Hras-
GTP is higher than those in Hras-GDP in the area θ ∼ 30◦, φ ∼ 0◦ suggests that
the hydrolysis of GTP in Hras-GTP complex can be triggered by the attack of water
molecules to γ -phosphate from the direction θ ∼ 30◦, φ ∼ 0◦. This difference of the
positions of water molecules between GTP and GDP suggests that the associative
transition state is preferred for the hydrolysis.

We also calculate the distribution of the direction of waters. We define the di-
rection of waters by the angle between PG-O(H2O) line and O(H2O)-G(H2O) line,
where O(H2O) is the oxygen atom of the water molecule and G(H2O) is the cen-
ter of mass of the water molecule. Figure 19.8 shows the direction angle of wa-
ter molecules averaged over the volume element such that r0 < r < r1, θ0 < θ <

θ0 +Δθ,φ0 < φ < φ0 +Δφ, where r0 = 3.5 Å, r1 = 4.0 Å, and Δθ = Δφ = 9◦.
The values of averaged direction of water molecules are distributed from 40◦ to 50◦.
In detail, at the area θ ∼ 30◦, φ ∼ 0◦, the averaged directions in Hras-GTP are dis-
tributed also in direction angle < 50◦ as shown by the complicated contour of 50◦
in Fig. 19.8(a), although the averaged directions in Hras-GDP are distributed in di-
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Fig. 19.7 The angular distribution of used for angular distribution of water molecules in the shell
with radius from 3.5 Å to 4.0 Å around PG in Hras-GTP (a) and around PB in Hras-GDP (b)

Fig. 19.8 The direction angle of water molecules averaged over the volume element such
that r0 < r < r1, θ0 < θ < θ0 + Δθ,φ0 < φ < φ0 + Δφ, where r0 = 3.5 Å, r1 = 4.0 Å, and
Δθ =Δφ = 9◦

rection angle > 50◦ as shown by the simple contour of 50◦ in Fig. 19.8(b). The
direction of water molecules is related to the capability of water molecules sitting
on the space restricted by the atoms in the phosphate of guanine nucleotide. This dif-
ference of direction angle between in Hras-GTP and in Hras-GDP possibly causes
the difference of density at the area θ ∼ 30◦, φ ∼ 0◦. In future work, in order to con-
firm the relation between the direction of water molecules and the density of water
molecules, we need to investigate the restrictions on water molecules around PG in
GTP and PB in GDP by the amino acid residues, Mg2+, and crystallization water.
And we need to investigate the possible directions of water molecules around PG in
GTP and around PB in GDP.

19.4 Summary

Differences of structures between Hras-GTP and Hras-GDP are presented in
switch I and II regions. The value of the first hydration radii defined from the RDF
of water molecules with respect to phosphorus atoms in GTP and GDP is from 4.63
to 4.88 Å. Averaged number of water molecules in the first hydration sphere with
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Fig. 19.9 The categories of
the occurrence ratio of
duration time by the number
of water molecules

respect to the phosphorus atoms is larger in GDP than in GTP. Occurrence ratio of
duration time is proportional to t−1.4 when duration time is less than about 5 ps. PA
has a long tail in occurrence ratio of duration time. This suggests that the network
of water molecules is conserved in 5 ps. Here, for short-time behaviour, we will
explain three cases. (1) When we analyzed the occurrence ratio of duration time of
water molecules in the first hydration sphere around atoms in areas in which water
molecules rarely come in, we found that the occurrence ratio decay exponentially,
(data are not shown). (2) When we analyzed the occurrence ratio of duration time
around Cα atoms near the protein surface, we found that the power is about −1.8,
and conserved time is about 10 ps or more, (data are not shown). (3) In our case
of Fig. 19.5, the occurrence ratio of duration time is proportional to t−1.4 when
duration time is less than about 5 ps, because the water molecules around GTP or
GDP are partially restricted, and the entering and the leaving the area around GTP
or GDP are not so rare.

We can categorize them into two: In one category ((1) above), the occurrence ra-
tio of duration time of water molecules in the first hydration sphere is proportional
to exponential function, when the number of water molecules is very small. In the
other category ((2) and (3) above), the occurrence ratio of duration time is propor-
tional to the power of t , when the number of water molecules is not very small.
In detail, the power index is small and conserved time is long when the number of
water molecules is large, while the power index is large and conserved time is short
when the number of water molecules is small, as is drawn schematically in Fig. 19.9.
The water molecules are distributed evenly around PG in GTP although not evenly
around PB in GDP. This suggests that the hydrolysis of GTP can be triggered by
the attack of water molecule to the γ -phosphate by an appropriate direction. The di-
rection distribution of water molecules around PG in GTP is slightly different from
the distribution around PB in GDP. This slight difference in distribution of direction
possibly causes the difference in the density distribution of water molecules.
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Chapter 20
Bath Correlation Effects on Inelastic Charge
Transport Through DNA Junctions

Tal Simon, Daria Brisker-Klaiman, and Uri Peskin

Abstract The effect of correlations in bath-assisted inelastic transport through
DNA molecular junctions is studied. Assigning physical meaning to the corre-
lated bath modes, we examine the relative contributions of different types of nu-
clear modes to the inelastic transport. In particular, we demonstrate that intra-strand
(backbone modes) and inter-strand (Hydrogen bonds) modes have different contri-
butions to the current, and thus can be associated with a measurable phenomenon.
This work emphasizes the important effect of bath correlations on quantum trans-
port, as pointed out recently also in the context of electron energy transport in bio-
molecular environment. The approach presented in this work is complementary to
detailed atomistic simulations which account for specific intra-molecular and inter-
molecular vibrational modes.

20.1 Introduction

The mechanism of charge transport (CT) through DNA has been under intensive
study. Much of the work was devoted to photochemical experiments in which charge
(hole, typically) is transiently injected into one end of the molecule, and the rate
of transport through the molecule is monitored. Most experiments which aim to
identify the CT mechanism in DNA focus on the effects of the number of base
pairs [1–5], or the temperature [6, 7]. Different mechanisms were attributed to the
transport process under different conditions, including tunneling (superexchange),
or hopping (kinetic transport) [8–13] in the off-resonant regime, and ballistic or in-
elastic transport in resonant tunneling [14, 15]. Only few experiments measured di-
rectly the single molecule conductance of DNA [4, 6, 16–18] in a molecular junction
setup [19, 20], where a molecule is placed between two macroscopic leads and the
steady state current is measured. Particularly interesting are experiments in which
the connection strategy between the double helix structure and the two electrodes in
a junction configuration can be controlled [18].
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Our recent theoretical study focused on specific highly ordered DNA sequences
and proposed that for some connection strategies the transport may be dominated by
coherent ballistic charge transport, whereas for other connection strategies the trans-
port is dominated by inelastic hopping between de-localized orbitals of the double
helix structure [14, 15]. The inelastic processes induced by the intra-molecular nu-
clear modes and/or the solvent environment were modeled by coupling the elec-
tronic transport Hamiltonian to a harmonic bath. In Ref. [15] each nucleobase was
coupled to a local environment (bath) of nuclear modes, and these local environ-
ments were uncorrelated.

In this work we examine the effect of correlations between nuclear baths on the
measured current through the molecule. Assigning physical meaning to the corre-
lated bath modes, our theoretical study highlights the relative importance of different
nuclear motions to the inelastic transport. In particular, we demonstrate that intra-
strand (e.g., backbone) modes and inter-strand (e.g., hydrogen bonds) modes have
different effects on the inelastic current.

The paper is organized as follows: In Sect. 20.2 we review the model for hole
transport through DNA, based on a tight-binding parameterization of a double helix
structure. In Sect. 20.3 our model of correlated baths is introduced and in Sect. 20.4
the current is formulated in terms of a reduced density matrix. Numerical results
that illustrate the effect of bath correlations on the inelastic current are given in
Sect. 20.5 and analyzed in Sect. 20.6. Conclusions and future perspectives are drawn
in Sect. 20.7.

20.2 The Rigid Double Helix Model

Our model for hole transport through DNA is based on a tight-binding ladder molec-
ular Hamiltonian, used in our earlier work [14, 15] on coherent elastic transport in
ordered DNA sequences. The model takes explicit account of the double strand na-
ture of the structure, beyond the 1D sequence of base pairs. This level of detail is
often unnecessary for simulating transport through DNA [21, 22], but it is essen-
tial for modeling different connection strategies between the four terminals of the
double strand structure and the electrodes [15, 18]. The model parameterization is
based on the work by Voityuk et al. [23–25] for the on-site hole energies and hop-
ping integrals:

ĤM =
2N∑

n=1

εnd
†
ndn +

{
N−1∑

n=1

αn,n+1d
†
ndn+1 + h.c.

}
+

2N−1∑

n=N+1

{
αn,n+1d

†
ndn+1 + h.c.

}

+
N∑

n=1

{
βnd

†
ndn+N + h.c.

}
. (20.1)

The operators d†
n(dn) represent a creation (annihilation) of a hole at the nth nu-

cleobase site. It is convenient to rewrite the molecular Hamiltonian in terms of the
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creation (a†
m) and annihilation (am) operators of a single hole in Molecular Orbitals

(MOs), ĤM =∑2N
m=1 εma

†
mam, where each MO is a superposition of the local nu-

cleobases orbitals, a†
m ≡∑2N

n=1 un,md
†
n . Each (many body) molecular eigenvector is

then associated with a unique set of hole occupation numbers {nm} (nm ∈ 0,1) in
the MOs.

In the molecular junction scenario the molecule is coupled to two charge (elec-
tronic) reservoirs, which enables flow of holes into and out of the molecule. The
coupling between the system and the reservoirs is introduced here by the leads
Hamiltonian [26],

Ĥleads = ĤR + ĤL; ĤJ =
∑

jJ

εjJ b
†
jJ
bjJ +

{∑

jJ

ξjJ b
†
jJ

∑

n

λn,J dn + h.c.
}
,

(20.2)

where b†
jJ
(bjJ ) is the creation (annihilation) operator of a hole at the j th orbital of

the J th electrode. The connection strategy between the double strand structure and
the two leads is captured in a matrix {λn,J } which obtains the value 1 when the nth
site is coupled to the J th electrode and zero otherwise. The state to state coupling
parameters, {ξjJ }, are defined by the electrodes spectral densities.

20.3 Correlated Nuclear Baths

Nuclear vibrations of the molecule and its environment are modeled in terms of col-
lections of harmonic baths modes. In our earlier work, the charge at each nucleobase
site was coupled to a specific bath representing local vibrations. Here we introduce
correlation between the baths by allowing non-local coupling, i.e. groups of modes
that are coupled simultaneously to several nucleobase sites. Denoting the number of
baths as Nb , and the number of sites, 2N , the corresponding nuclear Hamiltonian
reads,

Ĥnuc =
Nb∑

nb=1

Ĥnb ;

Ĥnb =
Nnb∑

jnb

�ωjnb

(
c

†
jnb
cjnb +

1

2

)
+
Nnb∑

jnb

ηjnb√
2

(
c

†
jnb
+ cjnb

) 2N∑

n=1

Wn,nbd
†
ndn

(20.3)

and the full Hamiltonian takes the form,

Ĥ = ĤM + Ĥleads + Ĥnuc. (20.4)

c
†
jnb
(cjnb ) are the creation (annihilation) operators of a vibration quantum at the

j th nuclear mode associated with the nbth nuclear bath. The microscopic coupling
parameters are related to the spectral density of each bath, defined as, Jnb(�ω) =
2π
∑
jnb
η2
jnb
δ(�ω−�ωjnb ).Wn,nb defines the strength of coupling between the nth

nucleobase and the nbth bath, where the choice Wn,nb = δn,nb defines an uncorre-
lated bath model, and Wn,nb = const corresponds to a fully correlated bath. For the
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Fig. 20.1 Three types of bath correlations. In each case different sites are grouped into subspaces,
where each subspace is coupled to common nuclear bath modes

comparative study below the number of baths was kept equal to the number of nu-
cleobases, Nb = 2N , and the coupling strength for each bath was normalized, such
that
∑2N
n=1Wn,nb =

∑2N
nb=1Wn,nb = 1.

The correlation introduced by coupling a group of nuclear modes to a group
(electronic subspace) of nucleobase sites is natural to specific types of vibronic cou-
pling in the double stranded DNA. For example, vibrations associated with a par-
ticular base-pair (e.g., hydrogen bonds) would be mainly affected by hole hopping
from one base-pair to another, and less affected by hole hopping within the base-
pair. In contrast, vibrations within a given strand (e.g., backbone vibrations) would
be mainly affected by hole hopping from one strand to another, and less affected by
hole hopping within the same strand. Below, we focus on these two types of bath
correlations (see Fig. 20.1). The first would be termed “base pair” correlation, where
each base pair constitutes a molecular subspace which is coupled to a specific bath.
The second would be termed “strand” correlation where each strand constitutes a
molecular subspace, coupled to a specific bath. These two types of bath correlations
are introduced by the matrices W= 1

2 C(2) ⊗ I(N) and W= 1
N

I(2) ⊗ C(N), respec-
tively, where C(M) is a matrix of sizeM×M with Cm,n = 1, and I(M) as theM×M
identity matrix.

20.4 Steady State Currents

The current calculations are based on a second order approximation in the coupling
to the electronic and nuclear reservoirs [26]. The weak molecule-electrodes coupling
regime is fundamentally interesting since the electronic properties of the molecular
bridge (e.g. the MOs) are expected to dominate the current. In a conductance exper-
iment, the molecule-electrodes coupling strength can be controlled by the linking
group between the electrodes and the DNA strand. The presence of long linkers and
the relatively small currents measured (in the 10–100 nA regime [18]), justify our
weak coupling assumption. The vibronic coupling was also restricted to the weak
coupling limit, thus effects of strong vibronic coupling, such as transport through
vibronic pathways [27] or vibrationally induced coherences [28] are excluded, and
the focus is on the sole effect of weakly coupled bath modes. We note that the
treatment can be extended to include strong coupling to particular nuclear modes
by including the relevant nuclear degrees of freedom within the molecular (system)
Hamiltonian such that the system eigenstates are vibronic states, but this is beyond
our scope in the present work. Within these assumptions each one of the electrodes
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(hole reservoirs) and the local nuclear environments (phonon reservoirs) maintains a
quasi equilibrium density. Invoking a Markovian second order approximation in the
system-reservoirs coupling, and accounting for rapid de-phasing (decay of coher-
ences) between molecular eigenstates [26, 29], the time evolution of the molecular
(reduced) density matrix in the presence of interaction with the reservoirs is cast
into population transfer rates between the electronic eigenstates of the molecular
system. Denoting the hole population at the mth eigenstate as, Pm(t), the following
set of equations is obtained [15, 30],

∂

∂t
Pm(t)=

(
∑

J∈R,L

[
k
(ele)
J

]
m,m′ +

Nb∑

nb=1

[
k(nuc)nb

]
m,m′

)
Pm′(t). (20.5)

The rate constants for electrode-induced molecular transitions are given by
[15, 26],
[
k
(elec)
J

]
m,m′ = (1− δm,m′)

(
Γ
J ;e
m,m′ + Γ J ;hm′,m

)− δm,m′
∑

m′′ �=m

(
Γ
J ;e
m′′,m + Γ J ;hm,m′′

)
,

(20.6)

where Γ J ;h/e
m,m′ = |

∑
n λn,J 〈m|dn|m′〉|2JJ (Em′ −Em)f (h/e)J (Em′ −Em)/� are single

hole hopping rates out of or into the molecule. These rates depend on the voltage
via the Fermi occupation numbers for holes at the two electrodes,

f
(h)
J (E)≡ 1

1+ e(E−μJ )/KBT ; f
(e)
J (E)≡ 1− f (h)J (E)

and on the microscopic coupling parameters, {ξ2
jJ
}, via the electrode conductance

band spectral density [26].
The rate constants for nuclear-induced molecular transitions are given by [15, 30],
[
k(nuc)nb

]
m,m′ = (1− δm,m′)

(
Γ
nb;em
m,m′ + Γ nb;abm′,m

)− δm,m′
∑

m′′ �=m

(
Γ
nb;em
m′′,m + Γ nb;ab

m,m′′
)
,

(20.7)

where Γ nb;em/ab
m,m′ = |〈m|∑nWn,nbd

†
ndn|m′〉|2Jnb(Em′ −Em)g(em/ab)(Em′ −Em)/�

are rates of phonon emission and absorption during the respective molecular transi-
tions. These rates are related to the phonon thermal occupation factors at the respec-

tive nuclear reservoir, g(ab)(�ω) = 1
e�ω/KBT−1

; g(em)(�ω) = e�ω/KBT

e�ω/KBT−1
, and they

depend on the microscopic vibronic coupling parameters {η2
jnb
} via the nuclear bath

spectral density.
Transient left-to-right currents [31] are associated with the net rate of hole transi-

tions from the left electrode into the molecule. The steady state current is associated
with the infinite time limit, and depends explicitly on the steady state populations
of the molecular eigenstates (coherences, if present, do not appear in the current
formula), i.e. [26]

IL→R = lim
t→∞

∑

m,m′
2e
[
κ
(ele)
L

]
m,m′Pm′(t)Nm, (20.8)



366 T. Simon et al.

Fig. 20.2 Three types of DNA sequences. Each sequence is represented by a tight binding
model Hamiltonian, with on-site hole energies and hopping matrix elements (in eV), taken from
Refs. [23–25]. In each sequence only one of the strands (upper) is coupled to the two electrodes

Table 20.1 Calculated currents (nA)

No correlation Base-pair correlation Strand correlation

- -CGCG- - 19.5 7.8 9.0

GCGC

- -ATAT- - 47.7 43.7 23.9

TATA

- -CATG- - 50.8 40.7 10.4

GTAC

where Nm =∑2N
n=1 δnm,1 is the hole occupation number at the mth eigenstate. No-

tice that the infinite time limit assures that the entire frequency band of the dynami-
cal fluctuations is accounted for in the current calculation [21].

20.5 Results

Steady state currents were calculated for hole chemical potentials, μL = μ0+eΦ/2,
μR = μ0 − eΦ/2. The values μ0 = 7 eV and eΦ = 4.5 eV were chosen to assure
that the entire “band” of molecular orbitals is within the Fermi conductance win-
dow [15]. The metallic nature of the electrodes was captured using a semi-elliptic

band model [33], JJ (E) = 2π
∑
jJ
ξ2
jJ
δ(E − εjJ ) ∼= ξ2

J

γ 2
J

√
4γ 2
jJ
− (E −μJ )2, with

a band width parameter, γJ = 5 eV, and a molecule-electrode coupling param-
eter, ξJ = 0.02 eV. For the nuclear baths an Ohmic model was invoked, where,

Jnb(�ω)=
2πη2

nb

�ω2
C,nb

ωe−ω/ωC,nb for ω > 0, and zero otherwise. To account for the net

effect of bath correlations, the different baths were all associated with the same
spectral density, ηnb ≡ η= 0.1 and �ωC,nb ≡ �ωC = 0.25 eV for nb = 1,2, . . . ,M .
The temperature of the system was set to zero (using a numerical value 10−6 K).
This choice fixes the direction of energy flow from the system into the bath. En-
ergy flow into the molecular system, following thermal activation of low frequency
modes (�ω�KBT ), is therefore explicitly blocked.

The calculated currents for three different sequences (Fig. 20.2) are presented
in Table 20.1 for three different types of bath correlations (see Fig. 20.1). Notice
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Fig. 20.3 Inelastic currents through poly-GC and poly-TA sequences at varying lengths. The cir-
cles, pluses and crosses correspond to no bath correlations, base pair correlations and strand corre-
lations respectively

that each orbital in these structures can be classified as a G-type, T-type, C-type or
A-type, according to the bases which dominate the probability amplitude distribu-
tion over the molecular sites [14, 15]. The connection strategy between the double
stranded structure and the two electrodes (see Fig. 20.1) was chosen to assure that
the transport is predominantly inelastic [15], by coupling the source and drain elec-
trodes to orbitals of different types. This way a charge entering a specific MO from
the source, can exit to the drain only through a different MO at a different orbital
energy. The different bath correlations correspond to ‘no correlation’, ‘base pair
correlation’ and ‘strand correlation’ according to the discussion in Sect. 20.3.

The effect of bath correlations is found to be specific to each particular strand.
In poly-GC, both strand correlations and base pair correlations reduce significantly
(∼50 %) the inelastic current, suggesting that inelastic transitions from C-type to G-
type orbitals are not dominated by base pair or intra-strand vibrations. In contrast,
in poly-TA and CATG, the currents induced by base pair correlations seem to be
still smaller than, but similar to the currents induced in the absence of any bath
correlations. This suggests that vibrations within each base-pair are less effective
in promoting inelastic transitions from A-type to T-type orbitals in these sequences.
The same trends are observed for poly-GC and poly-TA sequences of varying length
(Fig. 20.3). In all cases the inelastic current is largest in the absence of any bath
correlations. However, in poly-GC, both strand and base-pair correlations reduce
the current significantly, whereas in poly-AT base-pair correlations tend to reduce
the current only slightly.

20.6 Discussion

The specific efficiency of bath induced charge transport in each sequence, as well
as the general observations, can be rationalized by inspecting the rate constants for
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the dominant inelastic processes. First we notice that the general expression for a
bath-induced molecular transition rate,

Γ
nb;em/ab
m,m′ =

∣∣∣∣∣〈m|
2N∑

n=1

Wn,nbd
†
ndn
∣∣m′
〉
∣∣∣∣∣

2

Jnb(Em′ −Em)g(em/ab)(Em′ −Em)/�,

is simplified in the low temperature limit (�ω�KBT ), since phonon emission pro-
cesses are favored over phonon absorption. This amounts to setting the respective
phonon occupation factors, g(em)(�ω)≈ 1 and g(ab)(�ω)≈ 0 in the rate expression.
The overall rate of an inelastic transition from a (many body) system eigenstate,
|m′〉, to another eigenstate, |m〉 reads in this case,

Km,m′ ≡
Nb∑

nb=1

[
k(nuc)nb

]
m,m′ =

Nb∑

nb=1

Γ
nb;em
m,m′

=
Nb∑

nb=1

1

�

∣∣∣∣∣〈m|
2N∑

n=1

Wn,nbd
†
ndn
∣∣m′
〉
∣∣∣∣∣

2

Jnb(Em′ −Em), (20.9)

where Em′ > Em. Using the expansion of single hole molecular orbitals (MOs) in
the local sites basis, a†

l ≡
∑2N
n=1 un,ld

†
n , the electronic coupling term at the nth

site can be expressed in terms of the MOs creation and annihilation operators,
i.e., 〈m|d†

ndn|m′〉 =∑2N
k,l=1 u

∗
n,lun,k〈m|a†

l ak|m′〉. This term vanishes, unless the two
many body eigenstates, |m′〉 and |m〉, are identical except for the (hole) occupation
in precisely two of the orbitals, one of which is occupied only at the mth state while
the other is only occupied at the m′th state. Denoting these orbital indexes as lm and
km′ respectively, it follows that 〈m|d†

ndn|m′〉 = u∗n,lmun,km′ . A non-vanishing tran-
sition between the many-body states |m′〉 and |m〉 would therefore involve a single
“MO Hopping” event at the corresponding rate,

Km,m′ =
Nb∑

nb=1

1

�

∣∣∣∣∣

2N∑

n=1

Wn,nbu
∗
n,lm
un,km′

∣∣∣∣∣

2

Jnb(Em′ −Em). (20.10)

Let us define a partial overlap between the km′ and the lm orbitals, with respect
to the nb bath, Snblm,km′ ≡

∑2N
n=1Wn,nbu

∗
n,lm
un,km′ . It follows that,

Km,m′ =
Nb∑

nb=1

1

�

∣∣Snblm,km′
∣∣2Jnb(Em′ −Em) (20.11)

i.e., each bath contributes to the rate of hopping between two orbitals according
to the partial overlap between these orbitals. The partial overlap for each bath is
defined as the overlap, projected onto the partial (sub) space of sites which are si-
multaneously coupled to that bath.

One can readily see that for a fully correlated bath (uniformly coupled to all sites,
Wn,nb = const), the respective rate vanishes due to the orthogonality of the different
orbitals. In contrast, as observed in the numerical calculations presented above, a
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maximal rate is obtained in the absence of any bath correlations, where each nu-
cleobase site is associated with its own local bath, i.e., Wn,nb = δn,nb , and Km,m′ =
J (Em′−Em)

�

∑2N
n=1 |un,lm |2|un,km′ |2. This can be proved within our normalization con-

vention for the overall vibronic coupling strength,
∑2N
n=1Wn,nb =

∑2N
nb=1Wn,nb = 1,

and when the same spectral density is assumed for all baths,

Km,m′ = J (Em′ −Em)
�

2N∑

nb=1

∣∣Snblm,km′
∣∣2

≤ J (Em′ −Em)
�

2N∑

nb=1

2N∑

n=1

|Wn,nb |2|un,lm |2|un,km′ |2

≤ J (Em′ −Em)
�

2N∑

nb=1

2N∑

n=1

Wn,nb |un,lm |2|un,km′ |2

= J (Em′ −Em)
�

2N∑

n=1

|un,lm |2|un,km′ |2. (20.12)

An upper bound for the inelastic transport rates is therefore obtained in the ab-
sence of any correlation between bath modes associated with different nucleobases.
Indeed, according to our model a correlated motion of nuclei from two different sites
is not coupled to charge transport between these sites. Only charge transport into or
out off either one of the two sites is coupled the correlated motion. Therefore, the
introduction of bath correlations reduces the number of vibronic coupling channels
and diminishes the overall inelastic current.

For partially correlated baths the inelastic transition rates are very sensitive to
the partial overlaps, which vary from one type of bath correlations to another. In Ta-
ble 20.2 partial overlaps are presented for two sequences. In each case the overlap
was calculated between orbitals that are coupled to the source electrode and orbitals
that are coupled to the drain electrode. As one can see, strand correlations are asso-
ciated with relatively small partial overlaps in the two sequences, in agreement with
the relatively low currents obtained for this type of correlations in all studied cases
(see Table 20.1, Fig. 20.3). Base pair correlations on the other hand have more sig-
nificant partial overlaps, and particularly for the poly-TA sequence, in consistency
with the calculated currents involving A-type to T-type inelastic transitions.

The overlap between any two orbitals is most sensitive to the relative phases of
the probability amplitudes at different sites, and therefore reflects the orbitals nodal
structure. Large partial overlap within a given subspace indicates a similar nodal
structure of the two orbitals within that subspace. Consider for example the inelas-
tic transition from the A-type 2 and the T-type 2 orbitals in the poly-TA sequence.
Figure 20.4 demonstrates the respective orbital structures. As one can see both or-
bitals have a node between the two strands, but a different nodal structure between
the base-pairs. As a consequence, these two orbitals have different nodal structure
along a single strand but the same nodal structure for each base pair. This is con-
sistent with the much smaller partial overlap obtained for the strand correlations vs.
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Table 20.2 Partial overlap
integrals between molecular
orbitals

Poly-GC: Base pair correlations

IN\OUT G-type 1 G-type 2 G-type 3 G-type 4

C-type 1 0.0011 0.0008 0.0002 0

C-type 2 0.0007 0.0012 0 0.0002

C-type 3 0.0163 0 0.0012 0.0008

C-type 4 0 0.0163 0.0007 0.0011

Poly-GC: Strand correlations

IN\OUT G-type 1 G-type 2 G-type 3 G-type 4

C-type 1 0 0 0.0034 0

C-type 2 0 0 0 0.0034

C-type 3 0.0031 0 0 0

C-type 4 0 0.0031 0 0

Poly-TA: Base pair correlations

IN\OUT G-type 1 G-type 2 G-type 3 G-type 4

A-type 1 0.0171 0.0026 0.0098 0

A-type 2 0.0021 0.0183 0 0.0098

A-type 3 0.0427 0 0.0183 0.0026

A-type 4 0 0.0427 0.0021 0.0171

Poly-TA: Strand correlations

IN\OUT G-type 1 G-type 2 G-type 3 G-type 4

A-type 1 0 0 0.0039 0

A-type 2 0 0 0 0.0039

A-type 3 0.003 0 0 0

A-type 4 0 0.003 0 0

base pair correlations in this case. While the details should depend strongly on the
sequence and on the type of correlations, we point out that similar nodal structures,
and thus larger partial overlaps, are more likely to occur for more compact subspaces
as in the case of base pair correlations. We therefore speculate that baths with short
range correlations are more significant than baths with long range correlations in
promoting inelastic charge transport through the types of sequences studied above.

20.7 Conclusions

The effect of nuclear baths correlations on charge transport through models of DNA
junctions was studied using a reduced density matrix formulation. Different types
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Fig. 20.4 Two representative orbital plots for a poly-AT sequence. The color changes correspond
to changes in the sign of the probability amplitude between different sites

of correlations were introduced accounting for different types of vibrations inherent
to the double-strand structure. In particular, base-pair correlations correspond to
nuclear vibrations within each base pair, as, e.g., the hydrogen bonds between bases,
whereas strand correlations correspond to vibrations within each strand, as, e.g.,
DNA backbone vibrations. The inelastic currents for given sequences and given
connections to the electrodes were found to be highly sensitive to the specific type
of bath correlations, suggesting that the relative role of different type of vibronic
couplings can be associated with a measurable phenomenon.

Analysis of the inelastic transition rates relates the effect of bath correlations to
partial overlap integrals between specific molecular orbitals of the DNA sequence.
These integrals are defined within subspaces of sites that are coupled to common
bath modes. Our model analysis of the studied DNA sequences suggests that long-
range correlations (such as strand correlations) in the vibronic coupling are likely
to be less efficient than short range correlations (such as base pair correlations) in
promoting inelastic currents through DNA.

On a more basic level this work emphasizes the important effect of bath corre-
lations on quantum transport, as highlighted recently also in electron energy trans-
port in bio-molecular environment [28, 32]. Inelastic charge transport through bio-
molecules was studied extensively using both atomistic simulations and minimal
models. We believe that the analysis in terms of bath correlations, as introduced
above, provides an important bridge between these two types of approaches. While
atomistic simulations are often too detailed to enable understanding of the princi-
ples in action, generic models are often too simplified to provide reasoning for the
complexity of the biological structures. In this work, a systematic study of the ef-
fect of bath correlations on the inelastic transport enabled us to point to the relative
role of specific nuclear motions (e.g., hydrogen bonds or backbone modes) although
they were not explicitly included in the generic model. These results naturally call
for more detailed atomistic simulations which can demonstrate the role of specific
nuclear vibrations in the DNA and its surroundings on the inelastic transport effi-
ciency [13, 21, 33, 34], according to their type of correlation.

Acknowledgements This research was supported by the US-Israel Binational Science founda-
tion and by the German-Israeli Foundation for Scientific Research and Development.



372 T. Simon et al.

References

1. Lewis FD, Wu T, Zhang Y, Letsinger RL, Greenfield SR, Wasielewski MR (1997) Science
277:673

2. Giese BB (2000) Acc Chem Res 33:631
3. Schuster GB (2000) Acc Chem Res 33:253
4. Xu B, Zhang P, Li X, Tao N (2004) Nano Lett 4:1105
5. Nogues C, Cohen SR, Daube S, Apter N, Naaman R (2006) J Phys Chem B 110:8910
6. Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635
7. O’Neil MA, Barton JK (2004) J Am Chem Soc 126:11471
8. Grozema FC, Berlin YA, Siebbeles LDA (2000) J Am Chem Soc 122:10903
9. Gutiérrez R, Porath D, Cuniberti G (2000) DNA conduction: the issue of static disorder, dy-

namic fluctuations and environmental effects. In: Baranovski S (ed) Charge transport in disor-
dered solids with applications in electronics. Wiley, New York

10. Shih C-T, Roche S, Römer RA (2008) Phys Rev Lett 100:018105
11. Gutiérrez R, Caetano RA, Woiczikowski BP, Kubar T, Elstner M, Cuniberti G (2009) Phys

Rev Lett 102:208102
12. Zilly M, Ujsághy O, Wolf DE (2010) Phys Rev B 82:125125
13. Skourtis SS, Waldeck DH, Beratan DN (2010) Ann Rev Phys Chem 61:461–485
14. Brisker-Klaiman D, Peskin U (2010) J Phys Chem C 114:19077
15. Brisker-Klaiman D, Peskin U (2012) Phys Chem Chem Phys 14:13835
16. Braun E, Eichen Y, Sivan U, BenYoseph G (1998) Nature 391:775–778
17. Cohen H, Nogues C, Naaman R, Porath D (2005) Proc Natl Acad Sci USA 102:11589
18. Guo X, Gorodetsky AA, Hone J, Barton JK, Nuckolls C (2008) Nat Nanotechnol 3:163
19. Joachim C, Gimzewski JK, Aviram A (2000) Nature (London) 408:541
20. Nitzan A, Ratner MA (2003) Science 300:1384
21. Gutiérrez R, Caetano RA, Woiczikowski BP, Kubar T, Elstner M, Cuniberti G (2009) Phys

Rev Lett 102:208102
22. Conwell EM, Rakhmanova SV (2000) PNAS 97:4556
23. Voityuk AA, Jortner J, Bixon M, Rösch N (2000) Chem Phys Lett 324:430
24. Voityuk AA, Rösch N, Bixon M, Jortner J (2000) J Phys Chem B 104:9740
25. Voityuk AA, Bixon M, Jortner J, Rösch N (2001) J Chem Phys 114:5614
26. Peskin U (2010) J Phys B, At Mol Opt Phys 43:153001
27. Abu-Hilu M, Peskin U (2005) J Chem Phys 122:021103
28. Volkovich R, Caspary Toroker M, Peskin U (2008) J Chem Phys 129:034501
29. May V, Kuhn O (2011) Charge and energy transfer dynamics in molecular systems. Wiley-

VCH, Weinheim
30. Volkovich R, Härtle R, Thoss M, Peskin U (2011) Phys Chem Chem Phys 13:14333
31. Volkovich R, Peskin U (2011) Phys Rev B 83:033403
32. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A (2009) New J Phys 11:033003
33. Peskin U (2012) Mol Phys 110:729
34. Berlin YA, Voityuk AA, Ratner MA (2012) ACS Nano 6:8216



Index

A
Adiabatic, 5, 9–12, 15, 16, 22–26, 29, 32, 33
Algorithmic approach, 272
Algorithmic ‘computational syntheses’, 266
Allene-type molecules, 132
Anisotropy of the deformation, 290
Anthropic Principle, 69
Anticommutative 4-D matrices, 54
Antiferroelectric, 310
Antimatter, 53
Armchair, 296, 298
Armchair mode, 288, 291, 294, 298, 299
Aromatic molecules, 261
Aromaticity concept, 260
Asymptotic phase shift, 162
Atom free valences, 265
Atomic chemical susceptibility, 265, 279, 294
Atomistic approach, 287
Auto-organization process, 66, 67
Autoionization states, 161

B
B-spline approach, 163
Bandgap, 221–227, 229–231
Bare edges, 290
Basal atoms, 265
Basal plane, 263, 267, 293–295, 298, 299
Basic quantities, 68
Bath correlations, 361, 362, 364, 366, 367,

369, 371
Bath-assisted inelastic transport, 361
Ben cages, 212
Beat frequency, 55
Benzene molecule, 250
Benzenoid units, 249, 257, 280, 289, 291
Big-Bang singularity, 62
Biological phenomena, 66, 67

Biomolecular homochirality, 67
Black hole, 62, 63
Bloch functions, 334
Bohr, 8–10, 30, 33
Bohr hydrogen radius, 60
Bohr model, 59
Bohr radius, 61
Bond rupture, 270
Born, 9–12, 14–17, 20, 21, 24–28, 32, 33, 35,

38
Bound state function, 163, 165
Breit-Wigner parameterization, 162
Broken symmetry, 29, 30
Broken symmetry approach, 254, 255

C
Capacitor, 344
Carbon anion-doping, 221, 222, 230, 231
Carbon anion-doping at oxygen site, 221, 222
C conjugation, 70
Cell nucleus, 79
Cell quality factor, 81
Cell signalling, 352
Chance and necessity, 66
Charge, 64, 70, 71
Charge quantization, 340
Charge-transfer, 212
Chemical bonding, 67
Chemical composition of any GO, 274
Chemical composition of graphene oxide, 273
Chemical dynamics, 5, 7
Chemical modification, 251, 265, 275, 290,

291, 293, 299
Chemical modification of graphene, 265, 279
Chemical portrait, 265–267
Chemical portrait of graphene, 265
Chemical reactivity, 261

M. Hotokka et al. (eds.), Advances in Quantum Methods and Applications in
Chemistry, Physics, and Biology, Progress in Theoretical Chemistry and Physics 27,
DOI 10.1007/978-3-319-01529-3,
© Springer International Publishing Switzerland 2013

373

http://dx.doi.org/10.1007/978-3-319-01529-3


374 Index

Chemical reactivity of graphene, 280
Chemical topology of graphene, 280
Chemically-stimulated deformation of the

carbon skeleton, 276
Chromosome, 84, 85
Clamped-nuclei, 3, 4, 19, 20, 24, 25, 30, 32,

33, 35, 36
Classical dynamics, 4, 8
Classical electrostatic radius, 60
Classical radius, 61
Cluster assemblies, 214
Cluster model, 196–198
Cluster-assembled materials, 219
Clusters, 182
CO, 195–200, 202–209
Code nesting, 86
Collision dynamics, 121
Common neighbor analysis, 188
Complex eigenenergies, 162
Complex eigenfunctions, 162
Complex-rotation method, 162
Complex-scaling, 162
Compton diameter, 57, 60, 61
Compton effect, 63
Compton radius, 59, 62–64, 71
Compton wavelength, 54, 59, 61, 72
Computational strategy, 265
Computational strategy of graphene, 251
Computational synthesis, 272
Confined motion, 63, 72
Connectivity and adjacency, 286
Constant-pitch elongation, 276
Continuous spectrum, 20, 28, 30, 34, 37
Continuum boundary, 162
Continuum description, 287
Contraction, 288
Converse piezoelectric effect, 331, 341
Coordinate-of-reaction concept, 276
Copenhagen interpretation, 66
Core-shell systems, 219
Correlation interaction, 287
Correlation of, 299
Coulomb, 3, 4, 8–10, 13, 16–18, 20–22, 25,

28–32, 38
Coulomb approximation, 169
Coulomb explosion, 214
Coulomb singularity, 62
Coulomb units, 164
Curvature, 70, 72
Cusp condition, 62
Cyclohexanoid units, 270

D
Darwinian theory, 66
De Broglie’s wavelength, 54
Deformation, 276, 290
Deformational modes, 276, 288, 293, 297, 298
Density matrix, 80, 89–91, 258
Derived quantities, 68
Descartes’ laws, 66
Device, 344
DFT, 196, 197, 199, 200, 202, 203, 207, 208
DFT computational schemes, 287
DFTB method, 183
Diagonalization of the energy matrix, 170
Differential equations, 162, 166, 168
Dilatation analyticity, 162
Dimensional analysis, 65
Dipole moment, 333
Dirac 4-D matrices, 56
Dirac electron, 53
Dirac equation, 53–56
Dirac velocity operators, 57
DIRAC11 program package, 135
Direct current, 161
Direct integral, 18, 20, 26, 33–35, 37, 38
Direct piezoelectric effect, 331
Distorted waves approximation, 161, 163
DNA junctions, 361, 370
DNA molecular junctions, 361
Double-hydrogen terminated graphene

molecule, 298
Double-hydrogen-terminated edges, 299
Duhem, 5, 7
Dynamical matrix, 185

E
Earnshaw, 8
Eckart, 11, 19
Edge atoms, 265, 290, 291, 293–295, 299
Effectively unpaired electrons, 253, 257, 258,

260, 263, 265, 272, 275, 276, 279, 280,
294

Ehrenfest, 12
Elastic deformation, 288, 291
Elastic region, 290
Elastic region of deformation, 289
Electric charge, 53
Electrodynamics, 8, 30
Electromagnetic field, 63
Electromagnetic force, 61, 66
Electron, 71, 72
Electron correlation, 252, 253, 260, 275, 276,

293
Electron correlation of graphene, 275
Electron family, 59, 60



Index 375

Electron mean free path, 257
Electron spin, 131
Electronic structure, 3, 10, 11
Electrostatic field, 331
Electrostatic self-energy, 64
Encapsulation, 216
Endohedral doping, 219
Energy barriers to extraction of H2, 219
Energy complex matrix, 170
Energy gradient along the MIC, 289
Energy of pure-spin states, 254
Enhances a visible-light photocatalytic

activity, 221, 222
Ententional meaning, 82
Epigenetic factor, 77
Equilibrium configuration, 8, 12, 33
Exchange integral, 255
Expansion (1/n) method, 172
Exterior-scaling procedure, 163
External motion, 54
External orbit, 63

F
Fermat’s principle, 66
Fermi golden rule, 171
Fine-structure constant, 60, 61, 69
Finite-basis-set approximation, 163
Fixed, 275
Fixed membrane, 267, 269, 271
Fock, 12
Force of response, 289
Framing edge atoms, 290
Free standing, 297
Free standing and fixed membrane, 267
Free standing membrane, 275
Frequency-energy relationship, 53
Fullerene C60, 250, 265
Fullerene Si60, 250
Fullerenes, 280, 286

G
G-proteins, 351
Gauge invariance, 30
Gaussian wave packet, 121
GDP, 352
Generator Coordinate Method, 24
Genetic algorithms, 183
Genetic alphabet, 83
Genetic factor, 77
Gibbs, 5–7
Gödel’s theorem, 86, 88
Gold, 182
Gold clusters, 182
Graphane, 269, 288

Graphene, 280, 286, 292, 294, 299
Graphene catalytic activity, 280
Graphene deformation, 251
Graphene magnetism, 257, 279
Graphene magnetization, 255, 257
Graphene molecule, 263, 265, 274, 279, 299
Graphene molecule deformation and rupture,

276
Graphene odd electrons, 287
Graphene oxide (GO) chemistry, 271
Graphene polyhydride, 270
Graphene polyoxides, 272
Graphene quantum dots, 280
Gravitation, 53
Gravitational force, 61, 67
Gravitational invariant, 60, 69
Growth, 188
GTP, 352
Guanosine diphosphate, 352
Guanosine triphosphate, 352

H
H-terminated, 293
H1-terminated, 297
H1-terminated edges, 290
H2-terminated edges, 290
H2SQ, 305
Half-integer spin, 53
Hamiltonian, 3, 4, 7–11, 13–22, 24, 25, 27–33,

35, 36
Hamilton’s equations, 66
Hartree-Fock unrestricted (UHF), 289
Heat capacity, 190
Heisenberg, 10, 12, 14, 15, 17
Heisenberg representation, 57
Heisenberg uncertainty principle, 58
Hierarchy of complexity, 65
Hilbert space, 18–21, 26, 33–35, 37
Homeodynamics, 76
Homologous, 70, 71
Hras, 351
Hybrid DFT, 223, 224, 230
Hydrogen atom, 59
Hydrogen confinement, 211
Hydrogen-bonded dielectric materials, 303
Hydrogen-framed graphene molecule, 267
Hydrogen-framed membrane, 267
Hydrogenation, 270, 271, 274, 279
Hyperfine couplings, 62
Hyperpolarizability, 344

I
In the basal plane, 291
In-cage dissociation, 211



376 Index

Independent-particle model, 335
Inelastic charge transport, 361
Inelastic transport, 361, 362, 369, 371
Inertia, 53
Inside curvature, 61
Internal Jacobi coordinates, 124
Internal motion, 53, 55, 58
Internal time ‘coordinate’, 58
International system, 67
Intrinsic magnetic moment, 56–58, 62
Intrinsic orbit, 59, 63
Invariant ‘momentum’, 55
Isolated molecule, 4, 29, 32
Isomer shifts, 62
Isotope effect, 303
Ivanov-Ivanova potential, 169

J
Jahn-Teller effect, 315
Jellium model, 184, 187

K
Kaluza-Klein theories, 56
KDP, 303
KHS, 304
Kinetic energy, 8, 12, 17–22, 26, 27, 32, 33
Kinetic self-energy, 71
Klein-Gordon equation, 54
Kragh, 14

L
Layered perovskites, 342
Light ray, 66
Light speed, 53, 63, 64, 71
Light waves, 54
Liouville equation, 90, 94
London, 11, 15
Lorentz ‘boost’ transformation factor, 54
Lorentz invariant, 54
Lorentz proper transformations, 54
Lorentz transformation equations, 70
Lorentz-invariant, 56
Löwdin, 3, 4, 26, 29, 30

M
Macroevolution, 66
Magnetic constant, 255–257, 275, 276, 279
Magnetic moment, 53, 67, 71
Magnetic poles, 71
Magnetization of the graphene crystal, 256
Magnetosensitive proteins, 67
Marcelin, 5–7
Mass, 53
Mass increase, 65

Massless charge, 53, 63, 64, 71
Mathematical topology in chemistry, 285
Matter particle, 66
Matter waves, 53, 54
Matter-energy relationship, 53
Maupertuis’ principle, 66
Maxwell equations, 54
Mayer free valence index, 258
MC_MO, 303
MD Simulation, 353
Measure of incorrectness, 255
Mechanical anisotropy, 290
Mechanical behavior of graphene, 279
Mechanical deformation, 275
Mechanochemical internal coordinate, 276,

288
Mechanochemical reaction, 276, 286, 288, 296
Metals, 343
Metastability, 211
Micro-macroscopic mechanical characteristics,

289
Micro-macroscopic mechanical parameters,

288
Microevolution, 66
Microscope transformation, 26–28
Minkowski 4-D relativistic space-time, 55
Misalignment of energy, 252
Misalignment of squared spin, 253
Mode tensile deformation, 298
Model potential, 163, 164
Modern theory of polarization, 335
Molecular chemical susceptibility, 293
Molecular structure, 3, 10, 15, 25, 29, 30
Molecular theory, 261
Molecular theory of graphene, 249, 265, 274,

280, 288
Molecular theory of sp2 nanocarbons, 250, 252
Molecule, 294
Molecule chemical modification, 274
Molecule hydrogenation, 267
Molecule polyderivatives, 266
Molecule radicalization, 253, 257
Momentum operator, 17, 19–21
Morphodynamics, 79
Mössbauer shift, 63
Mulliken population analysis, 319
Multi-component molecular orbital, 303
Multielectron atom, 169
Muon, 59, 72
Muonium, 320

N
Naked, 293, 294
Naked molecule, 290, 297, 299



Index 377

Nanofoam, 219
Nanographane, 269, 290
Nanographene, 290, 291
Nanotubes, 280, 286
Natural selection, 66
Negative energy states, 56, 58, 59, 61
Neutron, 59
Newton, 6, 9
NMHO approximation, 184
Non-covalent interactions, 212
Non-Euclidean metric, 68
Non-stationary state problem, 163
Nordheim, 10, 11
Normal mode harmonic oscillator

approximation, 184

O
Odd electron correlation, 255, 256, 265, 275,

276, 279, 280, 292, 295, 299
Odd electrons, 249–252, 257, 260, 279, 280,

291, 299
Odd-electron origin of the graphene electron

system, 252
Old quantum theory, 3, 4, 7, 9–11, 13, 17
Olympicene, 279
Olympicene molecule, 262
Open-shell unrestricted Hartree-Fock (UHF)

approximation, 250
Operator perturbation theory, 161, 164
Oppenheimer, 11, 12, 14–16, 20, 21, 25–28,

32, 33, 35
Outside curvature, 61
Overall ‘momentum’, 55
Oxidants, 271, 272, 274
Oxidation of graphene, 274, 279

P
Pade summation, 162
P and T reversal, 70
Paraelectric, 310
Paramagnetic behaviour of graphene, 257
Particle-antiparticle pair, 62
Pauli 2-D matrices, 56
Pauling, 15
Pentacene, 279
Pentacene molecule, 261
Perturbation theory, 161, 164
Phase transition temperature, 303
Phase-space, 6–9
Photon, 63
Physical properties, 68
Piezoelectricity, 331
Planck energy, 59
Planck force, 61

Planck limit, 62, 72
Planck units, 61, 69
Plastic, 290
Plastic behavior, 288
Point charge, 55
Poisson ratio, 288
Poisson statistics, 84, 92
Polarizability, 344
Polarization, 344
Polyderivatives of graphene, 279
Polyfluorides, 272
Polyhydrides, 272, 279
Polyoxides, 279
Population of effectively unpaired electrons,

258
Position operator, 17, 19, 20, 35
Positron, 71
Positronium, 63
Potential energy surface, 3–5, 7, 12, 14, 15, 20,

24, 25, 30, 31, 33
Potential self-energy, 71
Proper interval, 72
Proteins, 78, 85
Proton, 59
Pt(111), 195–198, 204, 205, 208

Q
Quality factor, 81, 96
‘Quality’ of the bonds, 299
‘Quality’ of the C–C bond structure, 286
Quantities, 65
Quantum chromodynamics, 54
Quantum defect, 169
Quantum electrodynamics, 54
Quantum field theory, 54, 131
Quantum mechanics, 54
Quantum probability principle, 53
Quantum transport, 361
Quantum wave packet dynamics, 125
Quantum-chemical approach, 288
Quark families, 72
Quasi-Bohr substructure, 59
Quasi-Bohr subsystem, 58

R
Radial distance, 187
Radicalization, 272
Radicalization of the molecule, 295
Radius decrease, 65
RAS-CI, 135
Rayleigh-Schrödinger perturbation theory, 162
Rectangular fragment of a graphene sheet, 288
Reduced wavelength, 60
Relativistic invariance condition, 53



378 Index

Resonance, 30
Resonance energy, 165, 168
Resonance parameters, 101
Resonance width, 165, 170
Rest mass, 53–55, 63, 64, 67, 71, 72
Rest-mass momentum, 56, 58
Runge–Kutta method, 168
Rydberg energy, 59
Rydberg states, 172

S
Scattering state function, 163, 165
Schrödinger, 3, 13–17, 19, 23–26, 29, 31, 33,

36, 37
Schrödinger equation, 164
Schrödinger representation, 55
Schwartzschild radius, 62
Screened H-like functions, 169
Selected trajectories, 66
Self-adjoint, 20–22, 34, 35
Semi-classical approach, 125
Semiempirical QCh methods (PM3 version),

289
Shape, 187
Shape resonance, 162
Short-circuited semiconductors, 344
Similarity function, 188
Single, 299
Single-determinant calculations, 261
Single-determinant computational schemes,

249, 254
Single-hydrogen terminated graphene

molecule, 297
Slater, 11
Somatic cells, 78
Sommerfeld, 9
sp2 nanocarbons, 250
Space homogeneity, 68, 71
Space isotropy, 68
Space-time curvatures, 60
Space-time isotropy, 71
Spatial quantization, 257
Spatially extended molecular materials, 286
Spatio-temporal neumatic structure, 77, 78, 89
Spin, 71
Spin angular momentum, 57, 58, 62, 133
Spin contamination of unrestricted

single-determinant solutions, 253
Spin density matrix, 258
Spin momentum, 54, 55
Spin motion, 67, 72
Spin torque, 131
Spin-projected geometry optimization method,

260

Spinning motion, 53, 63, 64
Spinning orbit, 64
Spintronics, 131
SrTiO3 perovskite, 221, 222, 225, 230, 231
Stability function, 186
Stabilization technique, 101
Stark effect, 161
Stark resonance of hydrogen atom, 170
Stark resonance of sodium atom, 172
Stationary nuclei, 12, 13, 17, 33
Stationary state, 8–10, 29, 30
Stem cells, 78
Stepwise elongation, 288
Stepwise hydrogenation, 267
Stepwise oxidation, 271
Stochastic electrodynamics, 64
Strain, 346
Stretched C–C bonds, 295, 299
Strong electric field, 161, 163
Strong nuclear force, 59, 66
Strongly stretched C–C bonds, 295

T
Tau, 59, 72
Teleodynamics, 79
Tensile deformation, 288, 290
Tension, 299
Theory of aromaticity, 249, 279
Theory of elasticity, 288
Thermal rate constants, 122
Thermodynamic limit, 331
Thermodynamic properties, 182
Time, 53, 72
Time coordinate, 55
Time homogeneity, 71
Topochemical character of the reaction, 286
Topochemical reactions, 285
Topological character, 292
Topological ‘quality’ of individual bonds, 294
Total energy, 339
Total number of effectively unpaired electrons,

253, 292, 294
Transport in bio-molecular environment, 361
Tricomi function, 105
Tricotage sheet, 291
Tricotage-like, 291
Tricotage-like character of the deformation,

291
Turning points for the classical motion, 165
Two deformational modes, 290
Two modes of deformation, 290



Index 379

U
Ubbelohde effect, 312
UBS HF computing schemes, 280
UHF or UDFT computational schemes, 249
Uncertainty principle, 7, 17
Uniaxial, 288
Uniaxial tension, 276, 286, 288–290, 294, 297
Uniaxial tension of a graphene molecule, 286
Uniformly charged sphere, 101
Units, 65
Universal constants, 68
Universe models, 61
Unpaired electrons density, 276
Unrestricted broken symmetry approach, 279
Unrestricted broken symmetry (UBS)

approach, 254
Unrestricted DFT (spin polarized, UDFT), 252
Unrestricted Hartree-Fock (UHF), 252

V
Vacuum fluctuation, 58
Vacuum zero-point field, 64
Variational method, 103
Vector potential, 338
Vector-potential approach, 338
Velocity of light, 58

Vibrational heat capacity, 185
Visible-light photo-catalyst, 221, 222, 230
Vortex, 63

W
Wannier functions, 336
Wave beat, 53, 55, 58, 59, 61, 71
Wave mechanics, 53
Wave packets, 55
Weak nuclear force, 67
Wentzel-Kramers-Brillouin approximation,

162
Weyl’s theory, 162

Y
Young modulus, 288, 289, 291

Z
Zeta force, 131
Zigzag, 298
Zigzag-mode, 288, 291, 293, 295, 296, 298
Zigzag-mode deformation, 299
Zitterbewegung, 55, 61–64, 71
Zitterbewegung amplitude, 58
Zitterbewegung frequency, 58, 59


	Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology
	Preface
	Contents
	Contributors

	Part I: Fundamental Theory
	Chapter 1: The Potential Energy Surface in Molecular Quantum Mechanics
	1.1 Introduction
	1.2 Classical Origins
	1.2.1 Rates of Chemical Reactions-René Marcelin
	1.2.2 Molecular Spectroscopy and the Old Quantum Theory

	1.3 Quantum Theory
	1.3.1 Born and Oppenheimer's Quantum Theory of Molecules
	1.3.2 Born and the Elimination of Electronic Motion
	1.3.3 Formal Quantum Theory of the Molecular Hamiltonian
	1.3.4 Approximate Calculations

	1.4 Discussion
	Appendix
	References

	Chapter 2: A Comment on the Question of Degeneracies in Quantum Mechanics
	References

	Chapter 3: The Dirac Electron as a Massless Charge Spinning at Light Speed: Implications on Some Basic Physical Concepts
	3.1 Introduction
	3.2 The Dirac Equation and the Electron Internal Motion
	3.3 The Electron as a Quasi-Bohr Subsystem
	3.4 Rest Mass and Spin Motion
	3.5 Homologies in the Hierarchy of Complexity and Dimensional Analysis of Fundamental Physical Properties
	3.6 Conclusions
	References

	Chapter 4: Some Biochemical Reﬂections on Information and Communication
	4.1 Introduction
	4.2 Theoretical Basis and Background
	4.3 Nucleic Acids Versus Proteins as Cell Discriminator in Vivo
	4.4 The Nested Code and the Cell Quality Factor
	4.5 Conclusion
	Note Added in Proof

	Appendix A:  Derivation of the STN Conﬁguration
	Appendix B:  Time Evolution of the STN Conﬁguration
	References


	Part II: Molecular Structure, Properties and Processes
	Chapter 5: Application of the Uniformly Charged Sphere Stabilization for Calculating the Lowest 1S Resonances of H-
	5.1 Introduction
	5.2 Theory
	5.3 The Calculation Method
	5.4 Results and Discussion
	5.5 Conclusions
	Appendix:  Calculation of Matrix Elements for One- and Two-Electron Operators
	References

	Chapter 6: Charge Transfer Rate Constants in Ion-Atom and Ion-Molecule Processes
	6.1 Introduction
	6.2 Theoretical Approach
	6.2.1 Molecular Hamiltonian
	6.2.2 Collision Dynamics
	6.2.3 Thermal Rate Constant

	6.3 Molecular Calculations
	6.4 Collision Rate Constants
	6.5 Conclusion
	References

	Chapter 7: Spin Torque and Zeta Force in Allene-Type Molecules
	7.1 Introduction
	7.2 Theory and Calculation Method
	7.2.1 Spin Torque Density and Zeta Force Density
	7.2.2 Computational Details

	7.3 Result and Discussion
	7.3.1 Spin Torque and Zeta Force
	7.3.2 Zeta Potential

	7.4 Conclusion
	References

	Chapter 8: A Reﬁned Quartic Potential Surface for S0 Formaldehyde
	8.1 Introduction
	8.2 Variational Vibrational Calculation Procedure for Formaldehyde
	8.3 Adjustment of the Original MLT PES to the Experimentally Measured Frequencies
	8.4 Results and Discussion
	8.5 Conclusions
	8.6 Supplement
	References

	Chapter 9: Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field
	9.1 Introduction
	9.2 Operator Perturbation Theory for DC Strong-Field Stark Effect
	9.2.1 DC Strong-Field Stark Effect for the Hydrogen Atom
	9.2.2 Energy and Width of the Stark Resonance
	9.2.3 Operator Perturbation Theory for Non-H Atoms in Electric Field

	9.3 Calculation Results and Discussion
	9.3.1 The Stark Resonances Energies and Widths of Hydrogen Atom
	9.3.2 DC Stark Effect for the Sodium Atom

	9.4 Conclusions
	References


	Part III: Clusters and Condensed Matter
	Chapter 10: Structural and Thermodynamic Properties of Au2-58 Clusters
	10.1 Introduction
	10.2 Computational Method
	10.2.1 Parametrized Density-Functional Method
	10.2.2 Genetic Algorithms
	10.2.3 Jellium Model
	10.2.4 Thermodynamics Calculations

	10.3 Results
	10.4 Summary
	References

	Chapter 11: An Evaluation of Density Functional Theory for CO Adsorption on Pt(111)
	11.1 Introduction
	11.2 Computational Method
	11.3 Results and Discussion
	11.3.1 The Properties of CO
	11.3.2 The Properties of Pt7-3 and Pt9-9-9 Clusters
	11.3.3 The CO Adsorption on Pt Clusters
	11.3.4 The Bonding Analysis for CO on Pt Clusters

	11.4 Conclusion
	References

	Chapter 12: Hydrogen in Light-Metal Cage Assemblies: Towards a Nanofoam Storage
	12.1 Introduction
	12.2 Computational Methods and Tools
	12.3 Results and Discussion
	12.3.1 H2@Ben
	12.3.2 (H2)2@Ben
	12.3.3 Hk@Ben

	12.4 Conclusions
	References

	Chapter 13: A Theoretical Study on a Visible-Light Photo-Catalytic Activity in Carbon-Doped SrTiO3 Perovskite
	13.1 Introduction
	13.2 Theoretical Background
	13.2.1 Onishi Chemical Bonding Rule
	13.2.2 Calculation Method
	13.2.3 Bandgap Estimation
	13.2.4 Calculation Model

	13.3 Results and Discussion
	13.3.1 Mono-Carbon-Doping
	13.3.2 Di-Carbon-Doping
	13.3.3 Concentration of Carbon-Doping
	13.3.4 Effect of Structural Relaxation

	13.4 Concluding Remarks
	13.4.1 General Conclusions
	13.4.2 Comparison with Nitrogen-Doping

	References

	Chapter 14: A Theoretical Study on Proton Conduction Mechanism in BaZrO3 Perovskite
	14.1 Introduction
	14.2 Computation
	14.2.1 Calculation Method
	14.2.2 Calculation Model
	14.2.3 Onishi Chemical Bonding Rule

	14.3 Results and Discussion
	14.3.1 Proton Conduction in BaZrO3 Perovskite
	14.3.2 Hartree-Fock (HF) Exchange in Hybrid Kohn-Sham
	14.3.3 Chemical Bonding Analysis
	14.3.4 Proton Pumping Effect: OH-Conduction in Wet Condition
	14.3.5 Nitrogen-Doping at Oxygen Site
	14.3.6 Hydrogen Defect Around Zirconium Vacancy

	14.4 Concluding Remarks
	14.4.1 General Conclusions
	14.4.2 Future Prospects

	References

	Chapter 15: Molecular Theory of Graphene
	15.1 Introduction
	15.2 Odd Electrons Correlation
	(5,5) NGr Molecule Hydrogenation
	Two-Side Atomic Adsorption of Hydrogen on Fixed Membrane
	One-Side Atomic Adsorption of Hydrogen on Fixed Membrane
	(5,5) NGr Molecule Oxidation
	Morphology
	Graphene Oxidation as a Process in General
	Chemical Composition of Graphene Oxide

	15.3 Discussion and Conclusive Remarks
	References

	Chapter 16: Topological Mechanochemistry of Graphene
	16.1 Introduction
	16.2 Uniaxial Tension of Graphene as a Mechanochemical Reaction
	16.3 Computational Results
	16.4 Topological Character of the Odd Electron Correlation in Graphene
	16.4.1 Naked Graphene Molecule
	16.4.2 Single-Hydrogen Terminated Graphene Molecule
	16.4.3 Double-Hydrogen Terminated Graphene Molecule

	16.5 Conclusion
	References

	Chapter 17: Theoretical Analysis of Phase-Transition Temperature of Hydrogen-Bonded Dielectric Materials Induced by H/D Isotope Effect
	17.1 Introduction
	17.2 Computational Method
	17.3 Results and Discussion
	17.3.1 Isotope Effect in K3H(SO4)2 and K3D(SO4)2
	17.3.2 Phase Transition Mechanism and Isotope Effect in Squaric Acid
	17.3.3 Phase Transition Temperature of Mixed K3H1-XDx(SO4)2, (H1-xDx)2SQ and Tritiated TKHS, T2SQ

	17.4 Summary
	References

	Chapter 18: On Converse Piezoelectricity
	18.1 Introduction
	18.2 Theoretical Foundations
	18.2.1 Large Finite System
	18.2.2 The Dipole Moment per Unit for the Inﬁnite Periodic System
	18.2.3 The SCF Equations for the Inﬁnite Periodic System
	18.2.4 The Total Energy

	18.3 Results for Semiconductors
	18.3.1 A Model System
	18.3.2 A Real System
	18.3.3 Measuring Surface-Dependent Converse Piezoelectricity

	18.4 Metals
	18.5 Short-Circuited Semiconductor
	18.6 Summary
	References


	Part IV: Structure and Processes in Biosystems
	Chapter 19: Analysis of Water Molecules in the Hras-GTP and GDP Complexes with Molecular Dynamics Simulations
	19.1 Introduction
	19.2 Method
	19.2.1 MD Simulation
	19.2.2 Analysis

	19.3 Results and Discussion
	19.4 Summary
	References

	Chapter 20: Bath Correlation Effects on Inelastic Charge Transport Through DNA Junctions
	20.1 Introduction
	20.2 The Rigid Double Helix Model
	20.3 Correlated Nuclear Baths
	20.4 Steady State Currents
	20.5 Results
	20.6 Discussion
	20.7 Conclusions
	References


	Index

