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Rüdiger Vaas
University of Giessen, Center for Philosophy and Foundations of Science, 35394 Giessen,
Germany
email: ruediger.vaas@t-online.deH.

Dieter Zeh
Gaiberger Straße 38, 69151 Waldhilsbach, Germany
email: zeh@uni-heidelberg.de

ISSN 1612-3018
ISBN 978-3-642-21328-1 e-ISBN 978-3-642-21329-8
DOI 10.1007/978-3-642-21329-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011939307

# Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Dedicated to the memory of Itamar Pitowsky



.



Preface

The notion of probability has become fundamental to modern physics, playing a

crucial role in both quantum mechanics and statistical mechanics. Understanding

probability is thus an essential part of research into the foundations of contemporary

physics. Notably, the meaning of the notion of probability has been a matter of

controversy ever since its conception, and is still being debated quite independently

of the role of probability in physics. At the center of this debate is the question of

whether probabilities are ‘objective,’ that is, do they characterize events and states

of affairs ‘in the world,’ or are they ‘subjective,’ representing only degrees of our

knowledge or belief about such states? With the integration of probabilistic laws

into physics, this traditional question has become all the more pertinent. Moreover,

new possibilities come to mind: On the one hand, a specific interpretation of the

notion of probability might change our conception of the physical theory in which it

figures. For example, a subjective interpretation of probability could turn a theory

previously considered a description of reality into an account of what one can know,

or is entitled to believe, about reality. On the other hand, the integration of

probability into physics may transform the very notion of probability, turning it

from a concept constrained solely by a priori considerations, into an empirical

concept. Many of the papers in this collection engage these intriguing possibilities

and their implications.

This volume is dedicated to the memory of Itamar Pitowsky, a beloved friend

and colleague of many of the present contributors. Itamar Pitowsky was born in

Jerusalem in 1950. He was awarded the B.Sc. in physics and mathematics, and

M.A. in mathematics from the Hebrew University of Jerusalem, and received his

Ph.D. from the University of Western Ontario. His dissertation entitled The Logic of
Fundamental Processes was written under the direction of Jeffrey Bub. Itamar

Pitowsky was the Eleanor Roosevelt Professor of the History and Philosophy of

Science at the Hebrew University of Jerusalem. His untimely death in 2010 is a

great loss to the international community of philosophers of physics. He is survived

by his wife Liora Lurie Pitowsky and his daughters Noga and Michal Pitowsky.

Itamar Pitowsky devoted much of his intellectual life to thinking about probability and
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its role in physics. He worked on the foundations of probability theory, statistical

mechanics, computation theory and, above all, the foundations of quantummechanics.

His interpretation of quantum mechanics is described in the introduction to this

collection. Some of the papers published here originate in a conference held in

honor of Pitowsky at the van Leer Jerusalem Institute in December 2008. All the

papers are published here for the first time. We wish to thank Avshalom Elitzur for

establishing contact with Springer, and Angela Lahee, our editor, for her professional

advice and unfailing support in bringing this project to completion.

July 2011 Yemima Ben-Menahem

Meir Hemmo
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Chapter 1

Introduction

Yemima Ben-Menahem and Meir Hemmo

Questions concerning the meaning of probability and its applications in physics are

notoriously subtle. In the philosophy of the exact sciences, the conceptual analysis

of the foundations of a theory often lags behind the discovery of the mathematical

results that form its basis. The theory of probability is no exception. Although

Kolmogorov’s axiomatization of the theory [1] is generally considered definitive,

the meaning of the notion of probability remains a matter of controversy.1

Questions pertain both to gaps between the formalism and the intuitive notions of

probability and to the inter-relationships between the intuitive notions. Further,

although each of the interpretations of the notion of probability is usually intended

to be adequate throughout, independently of context, the various applications of the

theory of probability pull in different interpretative directions: some applications,

say in decision theory, are amenable to a subjective interpretation of probability as

representing an agent’s degree of belief, while others, say in genetics, call upon an

objective notion of probability that characterizes certain biological phenomena. In

this volume we focus on the role of probability in physics. We have the dual goal

and challenge of bringing the analysis of the notion of probability to bear on the

meaning of the physical theories that employ it, and of using the prism of physics to

study the notion of probability.

Y. Ben-Menahem (*)

Department of Philosophy, The Hebrew University of Jerusalem, Jerusalem, Israel

e-mail: msbenhy@mscc.huji.ac.il

M. Hemmo

Department of Philosophy, University of Haifa, Haifa, Israel

e-mail: meir@research.haifa.ac.il

We thank Orly Shenker for comments on an earlier draft.

1 As far as interpretation is concerned, the drawback of the axiom system is that, in formalizing

measure theory in general, it captures more than the intuitive notion of probability, including such

notions as length and volume.

Y. Ben-Menahem and M. Hemmo (eds.), Probability in Physics, The Frontiers Collection,
DOI 10.1007/978-3-642-21329-8_1, # Springer-Verlag Berlin Heidelberg 2012
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The concept of probability is indispensable in contemporary physics. On the

micro-level, quantum mechanics, at least in its standard interpretation, describes

the behavior of elementary particles such as the decay of radioactive atoms, the

interaction of light with matter and of electrons with magnetic fields, by employing

probabilistic laws as its first principles. On the macro-level, statistical mechanics

appeals to probabilities in its account of thermodynamic behavior, in particular the

approach to equilibrium and the second law of thermodynamics. These two entries

of probability into modern physics are quite distinct. In standard quantum mechan-

ics, probabilistic laws are taken to replace classical mechanics and classical

electrodynamics. Quantum probabilities are here understood as reflecting genuine

stochastic behavior, ungoverned by deterministic laws.2 By contrast, in classical

statistical mechanics, probabilistic laws are supplementary to the underlying deter-

ministic mechanics, or perhaps even reducible to it. These probabilities may

therefore be the understood as reflecting our ignorance about the details of the

microstates of the world or as a byproduct of our coarse-grained descriptions of

these states.

Despite this radical difference, the probabilistic laws in both theories pertain to

the behavior of real physical systems. When quantum mechanics ascribes a certain

probability to the decay of a radium atom, it must be saying something about the

atom, not only about our beliefs, expectations or knowledge regarding the atom.

Likewise, when classical statistical mechanics ascribes a high probability to the

spreading of a gas throughout the volume accessible to it, it is purportedly saying

something about the gas, not only about our subjective beliefs about the gas. In this

sense the probabilistic laws in both quantum and statistical mechanics are supposed

to have some genuine objective content. What this objective content is, however,

and how it is related to epistemic notions such as ignorance, rational belief and the

accuracy of our descriptions are open issues, hotly debated in the literature, and

reverberating through this volume. Before getting into these issues in the physical

context, let us briefly review some of the general problems confronting the inter-

pretation of probability.3

1.1 The Notion of Probability

Consider the paradigmatic example of a game of chance, a flip of a coin in which in

each flip there is a fixed probability of 1/2 for getting tails and 1/2 for getting heads.

How are we to understand the term ‘probability’ in this context? At least three

2 This does not apply to Bohmian quantum mechanics, which is deterministic. See also Earman [2]

for an analysis of determinism and for an unorthodox view about both classical and quantum

mechanics regarding their accordance with determinism.
3 See Fine [3] for the various approaches to probability, and Hajek [4] for an overview and

references.
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distinct answers can be found in the literature. First, we could be referring to the

objective chance for getting heads or tails in each flip. This objective chance is

supposed to pertain to the coin, or the flip, or both, or, more generally, to the set up

of the coin flip. On this understanding, the chance is a kind of property, a tendency

(propensity) of the set up, analogous to other tendencies of physical systems. The

analogy suggests that, just as fragility is a tendency to break, chance is the tendency

to. . . The problem in completing this sentence is that fragile objects sometimes in

fact break whereas a chance 1/2 coin always lands on one of its faces. In other

words, a single outcome never instantiates the chance in the way a broken glass

instantiates fragility.

The response to this problem leads to the second notion of probability according

to which when we say that the probability of tails (heads) in each game is 1/2 we

refer to the relative frequency of tails (heads) in a (finite or infinite) series of

repeated games. The intuition here is that it is the relative frequency that links the

probability of an event to the actual occurrences. While the link cannot be

demonstrated in any single event, it is manifest in the long run by a series of events.

How does this response affect the notion of chance? We may either conclude that

chance has been eliminated in favor of relative frequency, or hold on to the notion

of chance along with the caveat that it is instantiated (and thus verified) only by

relative frequency. An example of the first kind is the relative frequency analysis by

vonMises [5], where probability is identified with the infinite limit (when it exists) of

the relative frequency along what vonMises called random sequences. Of course, the

notion of a random sequence is itself in need of a precise and non-circular characteri-

zation. Moreover, the relation between a single case chance and relative frequency is

not yet as close as we would like it to be, for any objective chance, say 1/2 for tails, is

compatible with any finite sequence of heads and tails, no matter how long it is.

The third notion of probability is known as subjective or epistemic probability.

On this interpretation, championed by Ramsey, de Finetti and Savage, probabilities

represent degrees of belief of rational agents, where rationality is defined as acting

so as to maximize profit. The rationality requirement places normative constraints

on subjective degrees of belief: the beliefs of rational agents, it is claimed, must

obey the axioms of probability theory in the following sense. Call a series of bets

each of which is acceptable to the agent a Dutch-book if they collectively yield

a sure loss to the agent, regardless of the outcomes of the games. It has been proved

independently by de Finetti and Ramsey that if the degrees of belief (the subjective

probabilities) of the agent violate the axioms of probability theory, then a Dutch-

book can be tailored against her. And conversely, if the subjective probabilities of

the agent conform to the axioms of probability, then no Dutch book can be made

against her. That is, obeying the axioms of probability is necessary and sufficient to

guarantee Dutch-book coherence, and in this sense, rationality. Thus construed, the

theory of probability – as a theory of partial belief – is actually an extension of

logic!

One of the problems that the subjective interpretation faces is that without

further assumptions, the consistency of our beliefs (in the above sense of avoiding

a Dutch book, or complying with the axioms of probability theory) does not

1 Introduction 3



guarantee their reasonableness. In order to move from consistency to reasonable-

ness, it would seem, we need some guidance from ‘reality’, namely, we need a

procedure for adjusting our subjective probabilities to objective evidence. Here

Dutch book considerations are less effective – they do not even compel rational

agents to update their beliefs by conditioning on the evidence (see van Fraassen

[6]). To do that, one needs a so-called diachronic (rather than synchronic) Dutch

book argument. More generally, the question arises of whether the evidence can be

processed without recourse to objectivist notions of probability.4 If it cannot, then

subjective probability is not, after all, the entirely self-sufficient concept that

extreme subjectivists have in mind. Suppose we accept this conclusion and seek

to link the subjective notion of probability to objective matters of fact. Ideally, it

seems that the subjective probability assigned by a rational agent to a certain

outcome should converge on the objective probability of that outcome, where the

objective probability is construed either in terms of chance or in terms of relative

frequency. Can we appeal to the laws of large numbers of probability theory in

order to justify this idea and close the gaps between the three interpretations of

probability? Not quite, for the following reasons.

According to Bernoulli’s weak law of large numbers, for any e there is a number

n such that in a sequence of (independent) n flips, the relative frequency of tails will,
with some fixed probability, be in the interval 1=2 � e. And if we increase the

number of flips without bound then according to the weak law, the relative

frequency of tails and heads will approach their objective probability with proba-

bility that approaches one. That is, the relative frequency would probably be close
to the objective probability. But this means that the convergence of relative

frequency to objective chance is itself probabilistic. Threatening to lead to

a regress, these second-order probabilities cast doubt on the identification of the

concept of objective chance with that of relative frequency. A similar problem

arises for the subjectivist: are the second order probabilities to be understood

subjectively or objectively? The former reply is what we would expect from

a confirmed subjectivist, but it leaves the theorem rather mysterious.

Moreover, consider a situation in which the objective chance is unknown and one
wishes to form an opinion about the chance relying on the observed evidence: Can

the law of large numbers support such an inference? Unfortunately, the answer is

negative, essentially because any finite relative frequency is compatible with

infinitely many objective chances. Suppose that we want to find out whether the

objective chance in our coin flip is 1/3 for tails and 2/3 for heads, or whether it is 1/2

for both. Even if we assume that the flips are independent of each other (so that the

4 It has been shown that the subjective probabilities of an agent who updates her beliefs in

accordance with Bayes’ theorem, converge on the observed relative frequencies no matter what

her prior subjective probabilities are. But this is different from converging on the chances or the

relative frequencies in the infinite limit. Similar considerations apply also to the so-called ‘logical’

approach to probability on which probabilities are quantitative expressions of the degree of support

of a statement conditional on the evidence.
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law of large numbers applies), we cannot infer the chance from long run relative

frequencies unless we put weights on all possible sequences of tails and heads.

Placing such weights, however, amounts to presupposing the objective chances we

are looking for.5 We will encounter several variations on this question in the context

of quantum mechanics and classical statistical mechanics. In both cases, the choice

of the probability measure over the relevant set of sequences is designed to allow

for the derivation of the chances from the relative frequencies. Let us now turn to

these theories.

1.2 Statistical Mechanics

Statistical mechanics, developed in the late nineteenth century by Maxwell,

Boltzmann, Gibbs and others, is an attempt to understand thermodynamics in

terms of classical mechanics. In particular, it aims to explain the irreversibility

typical of thermodynamic phenomena on the basis of the laws of classical mechan-

ics. Thus, while in classical thermodynamics, the irreversibility characteristic of the

approach to equilibrium and the second law of thermodynamics is put forward in

addition to the Newtonian laws of classical mechanics, in statistical mechanics the

laws of thermodynamics are expected to be reducible to the Newtonian laws. This,

at least, was the aspiration underlying the theory. One of the major difficulties in

this respect is that the laws of classical mechanics (as well as those of other

fundamental theories) are time-symmetric, whereas the second law of thermo-

dynamics is time-asymmetric. How can we derive an asymmetry in time from

time-symmetric laws?

In order to appreciate the full force of this question, it is instructive to consider

Boltzmann’s approach in the early stages of the kinetic theory of gases.6 In his

famous H-theorem, Boltzmann attempted to prove a mechanical version of the

second law of thermodynamics on the basis of the mechanical equations of motion

(describing the evolution of a low density gas in terms of the distribution of the

velocities of the particles that make up the gas). Roughly, according to the

H-theorem, the dynamical evolution of the gas as described by Boltzmann’s

equation is bound to approach the distribution that maximizes the entropy of the

gas, that is, the Maxwell-Boltzmann equilibrium distribution. Essentially, what this

startling result was meant to show was that an isolated low-density gas in a non-

equilibrium state evolves deterministically towards equilibrium, and therefore its

entropy increases with time. However, Boltzmann’s H-theorem turned out to be

5 See van Fraassen [7], p. 83. Note again that the condition of Dutch-book coherence is of no help

here since the objective probabilities in the situation we consider are unknown.
6 Our account below is not meant to be historically rigorous. We essentially follow the Ehrenfest

and Ehrenfest [8] reconstruction of Boltzmann’s ideas in a very schematic way. See Uffink [9] for

a detailed historical account of statistical mechanics and references.
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inconsistent with the fundamental time-symmetric principles of mechanics. This

was the thrust of the reversibility objection raised by Loschmidt: given the time-

symmetry of the classical equations of motion, for any trajectory passing through

a sequence of thermodynamic states along which entropy increases with time, there

is a corresponding trajectory which travels through the same sequence of states in

the reversed direction (i.e., with reversed velocity), along which entropy therefore

decreases in the course of time.7

It is at this juncture that probability came to play an essential role in physics. In

the face of the reversibility objections, Boltzmann concluded that his H-theorem

must be interpreted probabilistically. The initial hope was that an analysis of the

behavior of many-particles systems in probabilistic terms would reveal a straight-

forward linkage between probability and entropy. If one then makes the seemingly

natural assumption that a system tends to move from less probable to more probable

states, a direction in the evolution of thermodynamic systems towards high entropy

states would emerge. In other words, what Boltzmann now took the H-theorem

to prove was that although it is possible for a thermodynamic system to evolve

away from equilibrium, such an anti-thermodynamic evolution is highly unlikely or

improbable.

To see how this idea can be made to work, consider the following. First,

thermodynamic magnitudes such as volume, pressure and temperature, are

associated with regions in the phase space called macrostates, where a macrostate

is conceived as an equivalence class of all themicrostates that realize it. Second, the
thermodynamic entropy of a macrostate is identified with the number of microstates

that realize that macrostate, as measured by the Lebesgue measure (or volume) of

the phase space region associated with the macrostate. Third, a dynamical hypoth-

esis is put forward to the effect that the trajectory of a thermodynamic system in the

phase space is dense in the sense that the trajectory passes arbitrarily close to every

microstate in the energy hypersurface. This idea, which goes back to Boltzmann’s

so-called ergodic hypothesis, was rigorously proved around 1932 by Birkhoff and

von Neumann. According to their ergodic theorem, a system is ergodic if and only if

the relative time its trajectory spends in a measurable region of the phase space is

equal to the relative Lebesgue measure of that region (i.e., its volume) in the limit of

infinite time. This feature holds for all initial conditions except for a set of Lebesgue

measure zero. Now, since the probability of a macrostate (or rather the relative

frequency of that macrostate) along a typical infinite trajectory can be thought of as

the relative time the trajectory spends in the macrostate, it seems to follow that in

the long run the probability of a macrostate is equal to its entropy. And this in turn

seems to imply that an ergodic system will most probably follow trajectories that in

the course of time pass from low-entropy macrostates to high-entropy macrostates.

7 In fact, there are other arguments, which show that Boltzmann’s deterministic approach in

deriving the H-theorem could not be consistent with the classical dynamics, e.g. the historically

famous objection by Zermelo based on the Poincaré recurrence theorem. It was later discovered

that one of the premises in Boltzmann’s proof was indeed time-asymmetric.

6 Y. Ben-Menahem and M. Hemmo



And so, if thermodynamic systems are in fact ergodic, we seem to have a probabi-

listic version of the second law of thermodynamics.

This admittedly schematic outline gives the essential idea of how the thermody-

namic time-asymmetry was thought to follow from the time-symmetric laws of

classical mechanics. Despite its ingenuity, the probabilistic construal of the second

law still faces intriguing questions. Current research in the foundations of statistical

mechanics is particularly beleaguered by the problems generated by the (alleged?)

reduction of statistical mechanics to the fundamental laws of physics. Here are

some of the questions that are addressed in this volume.

1. The first challenge is to give a mathematically rigorous proof of a probabilistic
version of the second law of thermodynamics. Some attempts are based on

specific assumptions about the initial conditions characterizing thermodynamic

systems (as in Boltzmann’s H-theorem), while others appeal to general features

characterizing the dynamics of thermodynamic systems (as in the ergodic

approach). The extent to which these attempts are successful is still an open

question. In this volume, Roman Frigg and Charlotte Werndl defend a number of

variations on the ergodic approach.

A related issue is that of Maxwell’s Demon. Maxwell introduced his thought

experiment – portraying a Demon who violates the second law – to argue that it

is impossible to derive a universal proof of this law from the principles of

mechanics. He concluded that, while the law is generally (probabilistically)

valid, its violation under specific circumstances, such as those described in his

thought experiment, is in fact possible. In the literature, however, the standard

view is that Maxwell was wrong. That is, it is argued that the operation of the

Demon in bringing about a local decrease of entropy is inevitably

counterbalanced by an appropriate increase of entropy in the environment

(including the Demon’s own entropy).8 The article by Eric Fanchon, Klil

Ha-Horesh Neori and Avshalom Elitzur analyses some new aspects of the

Demon’s operation in defense of this view.

2. Another question concerns the status of the probabilities in statistical mechanics.

Given that the classical equations of motion are completely deterministic, what

exactly do probabilities denote in a classical theory? Of course, classical deter-

ministic dynamics applies to the microstructure of physical systems whereas

Boltzmann’s probabilities are assigned to macrostates, which can be realized in

numerous ways by various microstates. Nonetheless, the determinism of classi-

cal mechanics implies that anything that happens in the world is fixed by the

world’s actual trajectory. And so, at first sight, the probabilities in statistical

mechanics can only represent the ignorance of observers with respect to the

microstructure. But if so, it is not clear what could be objective about statistical

8 See Leff and Rex [10] and Maroney [11] for reviews and the recent literature on the Demon

question. For a rigorous recent account of Maxwell’s Demon supporting Maxwell in the context of

Boltzmann’s approach, see Albert [12] and Hemmo and Shenker [13, 14].
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mechanical probabilities and how they could be assigned to physical states and

processes.9 Since we expect these probabilities to account for thermodynamic

behavior– the approach to thermodynamic equilibrium and the second law of

thermodynamics – which are as physically objective as anything we can get, the

epistemic construal of probability is deeply puzzling. Responding to this chal-

lenge, David Albert provides an over-arching account of the structure of proba-

bility in physics in terms of single case chances. Wayne Myrvold, in turn,

proposes a synthesis of objective and subjective elements, construing

probabilities in statistical mechanics as objective, albeit epistemic, chances.

3. We noted that the appeal to probability was meant to counter the reversibility

objection. But does it? What we would like to get from statistical mechanics is

not only a high probability for the increase of entropy towards the future but also

an asymmetry in time – an ‘arrow of time’ (or rather an arrow of entropy in time) –

so that the same probabilistic laws would also indicate a decrease of entropy

towards the past. And once again, the time-reversal symmetry of classical

mechanics stands in our way. Whatever probability implies with respect to

evolutions directed forward in time must be equally true with respect to

evolutions directed backward in time. In particular, whenever entropy increases

towards the future, it also increases towards the past. If this is correct, it implies

that the present entropy of the universe, for any present moment, must always be

the minimal one. That is to say, one would be justified to infer that the cup of coffee

in front of me was at room temperature a few minutes ago and has spontaneously

warmed up as to infer that it will cool off in a few minutes. To fend off this absurd

implication, Richard Feynman ([25], p. 116) said, “I think it necessary to add to the

physical laws the hypothesis that in the past the universe was more ordered, in

the technical sense, than it is today.” Here Feynman is introducing the so-called

past-hypothesis in statistical mechanics,10 which in classical statistical mechanics

is the only way to get a temporal arrow of entropy. Note that the past-hypothesis

amounts to adding a distinction between past and future, as it were, by hand. It is an

open question as to whether quantum mechanics may be more successful in this

respect.11 The past-hypothesis and its role in statistical mechanics are subject to

a thorough examination and critique in Alon Drory’s paper.

4. In the assertion that thermodynamic behavior is highly probable, the high

probability pertains to subsystems of the universe. It is generally assumed that

the trajectory of the entire universe, giving rise to this high probability, is itself

fixed by laws and initial conditions. Questions now arise about these initial

conditions and their probabilities. Must they be highly probable in order to

confer high probability on the initial conditions of subsystems? Would

9 See Maudlin [15] for a more detailed discussion of this problem.
10 See Albert [12], Chap. 4 for some variations on this idea.
11 The situation, however, is somewhat disappointing, since in quantum mechanics the question of

how to account for the past is notoriously hard due to the problematic nature of retrodiction in

standard quantum mechanics.
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improbable initial conditions of the universe make its present state inexplicable?

But even before we answer these questions, it is not clear that it even makes

sense to consider a probability distribution over the initial conditions of the

universe. A probability distribution suggests some sort of a random sampling,

but with respect to the initial conditions of the universe, this random sampling

seems an empirically meaningless fairy tale. An attempt to answer these

questions goes today under the heading of the typicality approach. The idea is

to justify the set of conditions that give rise to thermodynamic behavior in

statistical mechanics (or to quantum mechanical behavior in Bohmian mechan-

ics) by appealing to the high measure of this set in the space of all possible initial

conditions, where the high measure is not understood as high probability. Two

articles in this volume contribute to this topic: Sheldon Goldstein defends the

non-probabilistic notion of typicality in both statistical and Bohmian mechanics;

Meir Hemmo and Orly Shenker criticize the typicality approach.

5. Finally, a probability distribution over a continuous set of points (e.g. the phase

space) requires a choice of measure. The standard choice in statistical mechanics

(relative to which the probability distribution is uniform) is the Lebesgue

measure. But in continuous spaces infinitely many other measures (including

some that do not even agree with the Lebesgue measure on the measure zero and

one sets) are mathematically possible. Such measures could lead to predictions

that differ significantly from the standard predictions of statistical mechanics.

Are there mathematical or physical grounds that justify the choice of the

Lebesgue measure? This problem is intensified when combined with the previ-

ous question about the probability of the initial conditions of the universe. And

here too there are attempts to use the notion of typicality to justify the choice of

a particular measure. In his contribution to this volume, Itamar Pitowsky justifies

the choice of the Lebesgue measure, claiming it to be themathematically natural
extension of the counting (combinatorial) measure in discrete cases to the

continuous phase space of statistical mechanics.

1.3 Quantum Mechanics

The probabilistic interpretation of the Schr€odinger wave equation, put forward by

Max Born in 1926, has become the cornerstone of the standard interpretation of

quantum mechanics. Two (possibly interconnected) features distinguish quantum

mechanical probabilities from their classical counterparts. First, on the standard

interpretation of quantum mechanics, quantum probabilities are irreducible, that is,

the probabilistic laws in which they appear are not superimposed on an underlying

deterministic theory. Second, the structure of the quantum probability space differs

from that of the classical space. Let us look at each of these differences more

closely.

According to the von Neumann-Dirac formulation of quantum mechanics, the

ordinary evolution of the wave function is governed by the deterministic
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Schr€odinger equation. Upon measurement, however, the wave function undergoes

a genuinely stochastic, instantaneous and nonlocal ‘collapse,’ yielding a definite

value – one out of a (finite or infinite) series of possible outcomes. The probabilities

of these outcomes are given by the quantum mechanical algorithm (e.g. the

modulus square of the amplitude of Born’s rule). Formally, this process is construed

as a projection of the system into an eigenstate of the operator representing the

measured observable, where the measured value represents the corresponding

eigenvalue of this state. Thus, the collapse of the wave function, unlike its ordinary

evolution, is said to be governed by a ‘projection postulate’. Among other impli-

cations, this ‘projection’ means that in contrast with the classical picture, where

a measurement yields a result predetermined by the dynamics and the initial

conditions of the system at hand, on the standard interpretation of quantum

mechanics, measurement results are not predetermined. Moreover, they come

about through the measurement process (although how precisely this happens is

an open question) and in no way reflect the state of the system prior to

measurement.

The collapse of the wave function is the Achilles heel of the standard interpreta-

tion. Is it a physical process or just a change in the state of our knowledge? Why

does it occur specifically during measurement? Can it be made Lorentz invariant in

a way that ensures compatibility with special relativity? Above all, can quantum

mechanics be formulated in a more uniform way, one that does not single out

measurement as a distinct process and makes no recourse to ‘projection’? These

questions are the departure point of alternative, non-standard, interpretations of

quantum mechanics that seek to solve the above problems either by altogether

getting rid of the collapse or by providing a dynamical account that explains it. As it

turns out, rival interpretations also provide divergent accounts of the meaning of

quantum probabilities. While the standard interpretation has been combined with

practically all the probabilistic notions, relative frequency, single case chance and

epistemic probability, the non-standard alternatives are generally more genial to

a specific interpretation.

Bohm’s [16] theory is a deterministic theory, empirically equivalent to quantum

mechanics. Here there is no collapse. Rather, the probability distribution cðxÞj ij j2,
introduced in order to reproduce the empirical predictions of standard quantum

mechanics, reflects ignorance about the exact positions of particles (and ultimately

about the exact initial position of the entire universe). In this sense the probabilities

in Bohm’s theory play a role very similar to that played by probability in statistical

mechanics, and can thus be construed along similar lines. By contrast, stochastic

theories, such as that proposed by Ghirardi et al. (GRW, [17]), prima facie construe

quantum probabilities as single case chances. In these theories, probability-as-

chance enters quantum mechanics not only through the measurement process but

through a purely stochastic dynamics of spontaneous ‘jumps’ of the wave function

under general dynamical conditions. Many worlds approaches, based on Everett’s

relative-state theory [18], take quantum mechanics to be a deterministic theory

involving neither collapse nor ignorance over additional variables. Rather, the

unitary dynamics of the wave function is associated with a peculiarly quantum
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mechanical process of branching (fission and fusion) of worlds. However, since the

branching is unrelated to the quantum probabilities, the role of probability in this

theory remains obscure and is widely debated in the literature. Addressing this

issue, Lev Vaidman’s article secures a place for probabilities (obeying Born’s rule)

in the many worlds theory.

In addition, there are subjectivist approaches, according to which quantum

probabilities are constrained only by Dutch-book coherence. Such an epistemic

approach was defended by Itamar Pitowsky [19] and is advocated in this volume by

Christopher Fuchs and R€udiger Schack. A subjectivist approach inspired by de

Finetti is the subject of Joseph Berkovitz’s paper. He discusses the implications of

de Finetti’s verificationism for the understanding of the quantum mechanical

probabilities in general and Bell’s nonlocality theorem in particular.

The second characteristic that distinguishes quantum mechanical probabilities

from classical probabilities is the logical structure of the quantum probability space.

This feature, first identified by Schr€odinger in 1935, was the basis of Itamar

Pitowsky’s interpretation of quantum mechanics. In a series of papers culminating

in 2006, he urged that quantum mechanics is to be understood primarily as a non-

classical theory of probability. On this approach, it is the non-classical nature of the

probability space of quantum mechanics that is at the basis of other characteristic

features of quantum mechanics, such as the non-locality exemplified by the viola-

tion of the Bell inequalities. Since these probabilities obey non-classical axioms,

the expectation values they lead to deviate from expectations derived from classical

ignorance interpretations.

Pitowsky believed that the difference between quantum and classical mechanics

is already manifested at the phenomenological level, that is, the level of events and

their correlations. He therefore insisted that before saving the quantum phenomena

by means of theoretical terms such as superposition, interference, nonlocality,

probabilities over initial conditions, collapse of the wavefunction, fission of worlds,

etc. (let alone the vaguer notions of duality or complementarity), we should first

have the phenomena themselves in clear view. The best handle on the phenomena,

he maintained, is provided by the non-classical nature of the probability space of

quantum events. Note that what is at issue here is not the familiar claim that the laws

of quantum mechanics, unlike those of classical mechanics, are irreducibly proba-

bilistic, but the more radical claim that quantum probabilities deviate in significant

ways from classical probabilities. Hence the project of providing an axiom system

for quantum probability. The very notion of non-classical probability, that is, the

idea that there are different notions of probability captured by different axiom

systems, has far-reaching implications not only for the interpretation of quantum

mechanics, but also for the theory of probability and the understanding of rational

belief.

Pitowsky’s probabilistic interpretation brings together suggestions made by

a number of earlier theorists, among them Schr€odinger and Feynman, who saw

quantum mechanics as a new theory of probability, and Birkhoff and von Neumann,

who sought to ground quantum mechanics in a non-classical logic. However,

Pitowsky goes beyond these earlier works in spelling out in detail the non-classical
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nature of quantum probability. In addition, his work differs from that of his

predecessors in three important respects. First, Pitowsky clarified the relation

between quantum probability and George Boole’s work on the foundations of

classical probability. Second, Pitowsky explored in great detail the geometrical

structure of the non-classical probability space of quantum mechanics, an explora-

tion that sheds new light on central features of quantummechanics, and non-locality

in particular. Finally, unlike any of the above mentioned theorists, Pitowsky

endorsed an epistemic interpretation of probability [19, 20]. It is this epistemic

component of his interpretation, arguably its most controversial component, that he

took to be necessary in order to challenge rival interpretations of quantum mechan-

ics, such as the many worlds and Bohmian interpretations. Once quantum mechan-

ics is seen as a non-classical theory of probability, he argued, and once probability is

construed subjectively, as a measure of credence, the puzzles that gave rise to these

rival interpretations lose much of their bite. Specifically, Pitowsky thought we may

no longer need to worry about the notorious measurement problem. For, as Pitowsky

and Bub put it in their joint paper [24], we may now safely reject “the two dogmas of

quantum mechanics,” namely, the concept of the quantum state as a physical state
on a par with the classical state, and the concept of measurement as a physical

process that must receive a dynamical account. Instead, we should view the formal-

ism of quantum mechanics as a ‘book-keeping’ algorithm that places constraints on

(rational) degrees of belief regarding the possible results of measurement.

To motivate this point of view, Pitowsky and Bub draw an analogy between

quantum mechanics and the special theory of relativity: According to special

relativity, effects such as Lorenz contraction and time dilation, previously thought

to require dynamical explanations, are now construed as inherent to the relativistic

kinematics (and therefore the very concept of motion). Theories that do provide

dynamical accounts of the said phenomena may serve to establish the inner

consistency of special relativity, but do not constitute an essential part of this

theory. Similarly, on the probabilistic approach to quantummechanics, the puzzling

effects of quantum mechanics need no deeper ‘physical’ explanation over and

above the fact that they are entailed by the non-classical probability structure.

And again, theories that do provide additional structure, e.g. collapse dynamics of

the measurement process, should be regarded as consistency proofs of the quantum

formalism rather than an essential part thereof. As it happens, the debate over the

purely kinematic understanding of special relativity has recently been renewed (see

Brown [21]). Following Pitowsky’s work, a similar debate may be conducted in the

context of quantum mechanics. A number of papers in this volume contribute to

such a debate. While Laura Ruetsche and John Earman examine the applicability of

Pitowsky’s interpretation to quantum field theories, William Demopoulos and

Yemima Ben-Menahem address issues related to its philosophical underpinnings.

To illustrate the difference between classical and quantum probability, it is

useful to follow Pitowsky and revisit George Boole’s pioneering work on the

“conditions of possible experience.” Boole raised the following question: given

a series of numbers p1, p2, . . . pn,, what are the conditions for the existence of

a probability space and a series of events E1, E2, . . . En, such that the given numbers
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represent the probabilities of these events. (Probabilities are here understood as

frequencies in finite samples represented by numbers between 0 and 1). The answer

given by Boole was that the envisaged necessary and sufficient conditions could be

expressed by a set of linear equations in the given numbers. All, and only, numbers

that satisfy these equations, he argued, can be the obtained from experience, i.e.

from actual frequencies of events. In the simple case of two events E1 and E2, with

probabilities p1 and p2 respectively, an intersection E1 \ E2whose probability is p12,
and a union E1 [ E2, Booles conditions are:

p1 � p12

p2 � p12

pðE1 [ E2Þ ¼ p1 þ p2 � p12 � 1

Prima facie, these conditions seem self-evident or a priori. Evidently, if we have
an urn of balls containing, among others, red, wooden and red-and-wooden balls,

the probability of drawing a ball that is either red or wooden (or both) cannot exceed

the sum of the probabilities for drawing a red ball and a wooden ball. And yet,

violations of these predictions are predicted by quantum mechanics and

demonstrated by experiments. In the famous two-slit experiment, for instance,

there are areas on the screen that receive more hits than allowed by the condition

that the probability of the union event cannot exceed the sum of the probabilities of

the individual events. We are thus on the verge of a logical contradiction. The only

reason we do not actually face an outright logical contradiction is that the proba-

bilities in question are obtained from different samples, or different experiments

(in this case, one that has both slits open at once, the other that has them open

separately). It is customary to account for the results of the two-slit experiment by

means of the notion of superposition and the wave ontology underlying it. But as

noted, Pitowsky’s point was that acknowledging the deviant phenomena should

take precedence over their explanation, especially when such an explanation

involves a dated ontology.

Pitowsky [22] showed further that the famous Bell-inequalities (and other

members of the Bell inequalities family such as the Clauser, Horn, Shimony

and Holt inequality) can be derived from Boole’s conditions. Thus, violations of

Bell-inequalities actually amount to violations of Boole’s supposedly a priori
“conditions of possible experience”! This derivation provides the major motivation

for Pitowsky’s interpretation of quantum mechanics, for, if Bell’s inequalities

characterize classical probability, their violation (as predicted by quantum mechan-

ics) indicates a shift to an alternative, non-classical, theory of probability. Note that

the classical assumption of ‘real’ properties, existing prior to measurement and

discovered by it, underlies both Pitowsky’s derivation of the Bell inequalities via

Boole’s conditions and the standard derivations of the inequalities. Consequently,

in both cases, the violation of the inequalities suggests renunciation of a realist

understanding of states and properties taken for granted in classical physics. In this
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respect, Pitowsky remained closer to the Copenhagen tradition than to its more

realist rivals – Bohmian, Everett and GRW mechanical theories.

Examining the geometrical meaning of Boole’s classical conditions, Pitowsky

showed that the probabilities satisfying Boole’s linear equations lie within

n-dimensional polytopes whose dimensions are determined by the number of the

events and whose facets are determined by the equations. The geometrical expres-

sion of the fact that the classical conditions can be violated is the existence of

quantum probabilities lying outside of the corresponding classical polytope.

The violation of Bell-type inequalities implies that in some experimental set-ups

we get higher correlations than those permitted by classical considerations, that is,

we get nonlocality. If, as Pitowsky argued, the violation of the inequalities is just

a manifestation of the non-classical structure of the quantum probability space, non-

locality is likewise such a manifestation, integral to this structure and requiring no

further explanation.

The next step was to provide an axiom system for quantum probability. The core

of such a system had been worked out early on by Birkhoff and von Neumann [23],

who considered it a characterization of the non-Boolean logic of quantum mechan-

ics. Pitowsky endorsed the basic elements of the Birkhoff-von Neumann axioms, in

particular the Hilbert space structure with its lattice of its subspaces. He also

followed Birkhoff and von Neumann in identifying the failure of the classical

axiom of reducibility as the distinct feature of quantum mechanics. By employing

a number of later results, however, Pitowsky managed to strengthen the connection

between the Birkhoff-von Neumann axioms and the theory of probability. To begin

with, Gleason’s celebrated theorem ensures that the only non-contextual probability

measure definable on an n-dimensional Hilbert Space (n � 3) yields the Born rule.

On the basis of this theorem, Pitowsky was able to motivate the non-contextuality

of probability, namely the claim that the probability of an event is independent of

that of the context in which it is measured. Further, Pitowsky linked this non-

contextuality to what is usually referred to as ‘no signaling,’ the relativistic limit on

the transmission of information between entangled systems even though they may

exhibit nonlocal correlations. In his interpretation, then, both nonlocality and no

signaling are derived from formal properties of quantum probability rather than

from any physical assumptions. It is the possibility of such a formal derivation that

inspired the analogy between the probabilistic interpretation of quantum mechanics

and the kinematic understanding of special relativity.

Several articles in this volume further explore the probabilistic approach and the

formal connections between the different characteristics of quantum mechanics.

Alexander Wilce offers a derivation of the logical structure of quantum mechanical

probabilities (in a quantum world of finite dimensions) from four (and a half)

probabilistically motivated axioms. Daniel Rohrlich attempts to invert the logical

order by taking nonlocality as an axiom and derive standard quantum mechanics

(and its probabilities) from nonlocality and no signaling. Jeffrey Bub takes up

Wheeler’s famous question ‘why the quantum?’ and uses the no signaling principle

to explain why, despite the fact that stronger violations of locality are logically

possible, the world still obeys the quantum mechanical bound on correlations.
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From a philosophical point of view, Pitowsky’s approach to quantum mechanics

constitutes a landmark not only in the interpretation of quantum mechanics, but also

in our understanding of the notion of probability. Traditionally, the theory of

probability is conceived as an extension of logic, in the sense that both logic and

the theory of probability lay down rules for rational inference and belief. Like logic,

the theory of probability is therefore viewed as a priori. But if Pitowsky’s concep-
tion of quantum mechanics as a non-classical theory of probability is correct, then

the question of which is the right theory of probability is an empirical question,

contingent on the way the world is. The shift from an a priori to an empirical

construal has its precedents in the history of science: Geometry as well as logic have

been claimed to be empirical rather than a priori, the former in the context of the

theory of relativity, the latter in the context of quantum mechanics. Pitowsky’s

approach to quantum mechanics suggests a similar reevaluation of the status of

probability and rational belief.
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Chapter 2

Physics and Chance

David Albert

Abstract I discuss the role of chance in the fundamental physical picture of the

world, and in the connections between that fundamental picture and the various other

pictures of the world that we have from the special sciences, and I make a few remarks

about the sort of thing that chancewould need to be in order to be able to play that role.

2.1 Chance

Suppose that theworld consisted entirely of pointmasses,moving in perfect accordwith

the Newtonian law of motion, under the influence of some particular collection of inter-

particle forces. And imagine that that particular law, in combination with those particu-

lar forces, allowed for the existence of relatively stable, extended, rigid, macroscopic

arrangements of those point masses – chairs (say) and tables and rocks and trees

and all of the rest of the furniture of our everyday macroscopic experience.1 And

consider a rock, traveling at constant velocity, through an otherwise empty infinite

space, in a world like that. And note that nothing whatsoever in the Newtonian law of

motion, together with the laws of the interparticle forces, together with a stipulation to

the effect that those interparticle forces are all the forces there are, is going to stand in

the way of that rock’s suddenly ejecting one of its trillions of elementary particulate

constituents at enormous speed and careening off in an altogether different direction, or

(for that matter) spontaneously disassembling itself into statuettes of the British

royal family, or (come to think of it) reciting the Gettysburg address.
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1And this, of course, is not true. And it is precisely because Newtonian Mechanics appears not to
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It goes without saying that none of these is in fact a serious possibility. And so

the business of producing a scientific account of anything at all of what we actually

know of the behaviors of rocks, or (for that matter) of planets or pendula or tops or

levers or any of the traditional staples of Newtonian mechanics, is going to call

for something over and above the deterministic law of motion, and the laws of the

inter-particle forces, and a stipulation to the effect that those inter-particle forces

are all the forces there are – something along the lines of a probability-distribution

over microconditions, something that will entail, in conjunction with the law of

motion and the laws of the inter-particle forces and a stipulation to the effect that

those forces are all the forces there are, that the preposterous scenarios mentioned

above – although they are not impossible – are nonetheless immensely unlikely.

And there is a much more general point here, a point which has nothing much to

do with the ontological commitments or dynamical peculiarities or empirical

inadequacies of the mechanics of Newtonian point masses, which goes more or

less like this: Take any fundamental physical account of the world on which a rock

is to be understood as an arrangement, or as an excitation, or as some more general

collective upshot of the behaviors of an enormous number of elementary micro-

scopic physical degrees of freedom. And suppose that there is some convex and

continuously infinite set of distinct exact possible microconditions of the world –

call that set {R} – each of which is compatible with the macrodescription “a rock of

such and such a mass and such and such a shape is traveling at such and such a

velocity through an otherwise empty infinite space”. And suppose that the funda-

mental law of the evolutions of those exact microconditions in time is completely

deterministic. And suppose that the fundamental law of the evolutions of those

exact microconditions in time entails that for any two times t1 < t2, the values of all

of the fundamental physical degrees of freedom at t2 are invariably some continuous

function of the values of those degrees of freedom at t1. If all that is the case, then it

gets hard to imagine how {R} could possibly fail to include a continuous infinity of

distinct conditions in which the values of the elementary microscopic degrees of

freedom happen to be lined up with one another in precisely such a way as to

produce more or less any preposterous behavior you like – so long as the behavior in

question is in accord with the basic ontology of the world, and with the conservation

laws, and with the continuity of the finial conditions as a function of the initial ones,

and so on. And so the business of discounting such behaviors as implausible – the

business (that is) of underwriting the most basic and general and indispensable

convictions with which you and I make our way about in the world – is again going

to call for something over and above the fundamental deterministic law of motion,

something along the lines, again, of a probability-distribution over microconditions.

If the fundamental microscopic dynamical laws themselves have chances in

them, then (of course) all bets are off. But there are going to be chances – or that

(at any rate) is what the above considerations suggest – at one point or another.

Chances are apparently not to be avoided. An empirically adequate account of a

world even remotely like ours in which nothing along the lines of a fundamental

probability ever makes an appearance is apparently out of the question. And

questions of precisely where and precisely how and in precisely what form such

probabilities enter into nature are apparently going to need to be reckoned with in

any serviceable account of the fundamental structure of the world.
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2.2 The Case of Thermodynamics

Let’s see what there is to work with.

The one relatively clear and concrete and systematic example we have of a

fundamental probability-distribution over microconditions being put to useful

scientific work is the one that comes up in the statistical-mechanical account of

the laws of thermodynamics.

One of the monumental achievements of the physics of the nineteenth century was

the discovery of a simple and beautiful and breathtakingly concise summary of the

behaviors of the temperatures and pressures and volumes and densities ofmacroscopic

material systems. The name of that summary is thermodynamics – and thermodynam-

ics consists, in its entirety, of two simple laws. The first of those laws is a relatively

straightforward translation into thermodynamic language of the conservation of

energy. And the second one, the famous one, is a stipulation to the effect that a certain

definite function of the temperatures and pressures and volumes and densities of

macroscopic material systems – something called the entropy – can never decrease

as time goes forwards. And it turns out that this second law in and of itself amounts to a

complete account of the inexhaustible infinity of superficially distinct time-

asymmetries of what you might call ordinary macroscopic physical processes. It

turns out – and this is something genuinely astonishing – that this second law in and

of itself entails that smoke spontaneously spreads out from and never spontaneously

collects into cigarettes, and that ice spontaneously melts and never spontaneously

freezes in warm rooms, and that soup spontaneously cools and never spontaneously

heats up in a cool room, and that chairs spontaneously slow down but never spontane-

ously speed up when they are sliding along floors, and that eggs can hit a rock and

break but never jump off the rock and re-assemble themselves, and so on, without end.

In the latter part of the nineteenth century, physicists like Ludwig Boltzmann in

Vienna and John Willard Gibbs in New Haven began to think about the relationship

between thermodynamics and the underlying complete microscopic science of

elementary constituents of the entirety of the world – which was presumed (at the

time) to be Newtonian Mechanics. And the upshot of those investigations is a

beautiful new science called statistical mechanics.

Statistical mechanics begins with a postulate to the effect that a certain very

natural-looking measure on the set of possible exact microconditions of any

classical-mechanical system is to be treated or regarded or understood or put to

work – of this hesitation more later – as a probability-distribution over those

microconditions. The measure in question here is (as a matter of fact) the simplest

imaginable measure on the set of possible exact microconditions of whatever

system it is one happens to be dealing with, the standard Lebesgue measure on

the phase-space of the possible exact positions and momenta of the Newtonian

particles that make that system up. And the thrust of all of the beautiful and

ingenious arguments of Boltzmann and Gibbs, and of their various followers and

collaborators, was to make it plausible that the following is true:
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Consider a true thermodynamical law, any true thermodynamical law, to the effect that

macrocondition A evolves – under such-and-such external circumstances and over such-and-

such a temporal interval – into macrocondition B. Whenever such a law holds, the over-

whelming majority of the volume of the region of phase-space associated with

macrocondition A – on the above measure, the simple measure, the standard measure, of

volume in phase-space – is taken up by microconditions which are sitting on deterministic

Newtonian trajectories which pass, under the allotted circumstances, at the end of the allotted

interval, through the region of the phase space associated with the macrocondition B.

And if these arguments succeed, and if Newtonian mechanics is true, then the

above-mentioned probability-distribution over microconditions will underwrite great

swaths of our empirical experience of the world: It will entail (for example) that a half-

melted block of ice alone in the middle of a sealed average terrestrial room is

overwhelmingly likely to be still more melted towards the future, and that a half-

dispersed puff of smoke alone in a sealed average terrestrial room is overwhelmingly

likely to be stillmore dispersed towards the future, and that a tepid bowl of soup alone in

a sealed average terrestrial room is overwhelmingly likely to get still cooler towards the

future, and that a slightly yellowed newspaper alone in a sealed average terrestrial room

is overwhelmingly likely to get still more yellow towards the future, and uncountably

infinite extensions and variations of these, and incomprehensibly more besides.

But there is a famous trouble with all this, which is that all of the above-

mentioned arguments work just as well in reverse, that all of the above-mentioned

arguments work just as well (that is) at making it plausible that (for example) the

half-melted block of ice I just mentioned was more melted towards the past as well.

And we are as sure as we are of anything that that’s not right.

And the canonical method of patching that trouble up is to supplement the

dynamical equations of motion and the statistical postulate with a new and explic-

itly non-time-reversal-symmetric fundamental law of nature, a (so-called) past-

hypothesis, to the effect that the universe had some particular, simple, compact,

symmetric, cosmologically sensible, very low entropy initial macrocondition. The

patched-up picture, then, consists of the complete deterministic microdynamical

laws and a postulate to the effect that the distribution of probabilities over all of the

possible exact initial microconditions of the world is uniform, with respect to the

Lebaguse measure, over those possible microconditions of the universe which are

compatible with the initial macrocondition specified in the past-hypothesis, and

zero elsewhere. And with that amended picture in place, the arguments of

Boltzmann and Gibbs will make it plausible not only that paper will be yellower

and ice cubes more melted and people more aged and smoke more dispersed in the

future, but that they were all less so (just as our experience tells us) in the past. With

that additional stipulation in place (to put it another way) the arguments of

Boltzmann and Gibbs will make it plausible that the second law of thermodynamics

remains in force all the way form the end of the world back to its beginning.

*

What we have from Boltzmann and Gibbs, then, is a probability-distribution

over possible initial microconditions of the world which – when combined with the

exact deterministic microscopic equations of motion – apparently makes good
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empirical predictions about the values of the thermodynamic parameters of macro-

scopic systems. And there is a question about what to make of that success: We

might take that success merely as evidence of the utility of that probability-

distribution as an instrument for the particular purpose of predicting the values of

those particular parameters, or we might take that success as evidence that the

probability-distribution in question is literally true.

And note (and this is something to pause over) that if the probability-distribution

in question were literally true, and if the exact deterministic microscopic equations

of motion were literally true, then that probability-distribution, combined with

those equations of motion, would necessarily amount not merely to an account of

the behaviors of the thermodynamic parameters macroscopic systems, but to the

complete scientific theory of the universe – because the two of them together assign

a unique and determinate probability-value to every formulable proposition about

the exact microscopic physical condition of whatever physical things there may

happen to be. If the probability-distribution and the equations of motion in question

here are regarded not merely as instruments or inference-tickets but as claims about

the world, then there turns out not to be any physical question whatever on which

they are jointly agnostic. If the probability-distribution and the equations of motion

in question here are regarded not merely as instruments or inference-tickets but as

claims about the world, then they are either false or they are in some sense (of which

more in a minute) all the science there can ever be.

And precisely the same thing will manifestly apply to any probability-distribu-

tion over the possible exact microscopic initial conditions of the world, combined

with any complete set of laws of the time-evolutions of those macroconditions.2

2 Shelly Goldstein and Detlef Durr and Nino Zhangi and Tim Maudlin have worried, with

formidable eloquence and incisiveness, that probability-distributions over the initial conditions

of the world might amount to vastly more information than we could ever imaginably have a

legitimate epistemic right to. Once we have a dynamics (once again) a probability-distribution

over the possible exact initial conditions of the world will assign a perfectly definite probability to

the proposition that I am sitting precisely here writing precisely this precisely now, and to the

proposition that I am doing so not now but (instead) 78.2 s from now, and to the proposition that

the Yankees will win the world series in 2097, and to the proposition that the zodiac killer was

Mary Tyler Moore, and to every well-formed proposition whatever about the physical history of

the world. And it will do so as a matter of fundamental physical law. And the worry is that it may

be mad to think that there could be a fundamental physical law as specific as that, or that we could

ever have good reason to believe anything as specific as that, or that we could ever have good

reason to believe anything that logically implies anything as specific as that, even if the

calculations involved in spelling such an implication out are prohibitively difficult.

Moreover, there are almost certainly an enormous number of very different probability-

distributions over the possible initial conditions of the world which are capable of underwriting

the laws of thermodynamics more or less as well as the standard, uniform, Boltzmann-Gibbs

distribution does. And the reasons for that will be worth rehearsing in some detail.

Call the initial macrocondition of the world M. And let RM be that region of the exact

microscopic phase-space of the world which corresponds to M. And let aRM be the sub-region

of RM which is taken up with “abnormal” microconditions – microconditions (that is) that lead to

anomalously widespread violations of the laws of thermodynamics. Now, what the arguments of
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Boltzmann and Gibbs suggest is as a matter of fact not only that the familiarly calculated volume

of aRM is overwhelmingly small compared with the familiarly calculated volume of RM – which is

what I have been at pains to emphasize so far – but also that aRM is scattered, in unimaginably tiny

clusters, more or less at random, all over RM. And so the percentage of the familiarly calculated

volume of any regularly shaped and not unimaginably tiny sub-region of which is taken up with

abnormal microconditions will be (to an extremely good approximation) the same as the percent-

age of the familiarly calculated volume of RM as a whole which is taken up by aRM. And so any

reasonably smooth probability distribution over the microconditions in RM – any probability-

distribution over the microconditions in RM (that is) that varies slowly over distances two or three

orders of magnitude larger than the diameters of the unimaginably tiny clusters of which aRM is

composed – will yield (to an extremely good approximation) the same overall statistical propensity

to thermodynamic behavior as does the standard uniform Boltzmann-Gibbs distribution over RM

as a whole. And exactly the same thing, or much the same thing, or something in the neighborhood

of the same thing, is plausibly true of the behaviors of pin-balls and adrenal glands and economic

systems and everything else as well.

The suggestion (then) is that we proceed as follows: Consider the complete set of those

probability-distributions over the possible exact initial conditions of the world – call it {Pƒ} –

which can be obtained from the uniform Boltzmann-Gibs distribution over RM by multiplication

by any relatively smooth and well-behaved and appropriately normalized function ƒ of position in
phase space. And formulate your fundamental physical theory of the world in such a way as to

commit it to the truth of all those propositions on which every single one of the probability-

distributions in {Pƒ}, combined with the dynamical laws, agree – and to leave it resolutely agnostic

on everything else.

If everything works as planned, and if everything in the paragraph before last is true – a theory

like that will entail that the probability of smoke spreading out in a room, at the usual rate, is very

high, and it will entail that the probability of a fair and well flipped coin’s landing on heads is very

nearly 1/2, and it will entail (more generally) that all of the stipulations of the special sciences are

very nearly true. And yet (and this is what’s different, and this is what’s cool) it will almost entirely

abstain from the assignment of probabilities to universal initial conditions. It will entail – and it

had better entail – that the probability that the initial condition of the universe was one of those that

lead to anomalously widespread violations of the laws of thermodynamics, that the probability that

the initial condition of the universe lies (that is) in aRM, is overwhelmingly small. But it is going to

assign no probabilities whatsoever to any of the smoothly-bounded or regularly-shaped or easily-

describable proper subsets of the microconditions compatible with M.

Whether or not a theory like that is ever going to look as simple and as serviceable and as

perspicuous as the picture we have from Boltzmann and Gibbs (on the other hand) is harder to say.

And (anyway) I suspect that at the end of the day it is not going to spare us the awkwardness of

assigning of a definite probability, as a matter of fundamental physical law, to the proposition that

the Zodiac Killer was Mary Tyler Moore. I suspect (that is) that every single one of the probability-

distributions over RM that suffice to underwrite the special sciences are going end up assigning

very much the same definite probability to the proposition that the Zodiac Killer was Mary Tyler

Moore as the standard, uniform, Boltzmann-Gibbs distribution does. And if that’s true, then a

move like the one being contemplated here may end up buying us very little.

And beyond that, I’m not sure what to say. In so far as I can tell, our present business is going

proceed in very much the same way, and arrive at very much the same conclusions, whether it

starts out with the standard, uniform, Boltzmann-Gibbs probability-distribution over the

microconditions in RM, or with any other particular one of the probability-distributions in {Pƒ},

or with {Pƒ} as a whole. And the first of those seems by far the easiest and the most familiar and the

most intuitive and the most explanatory and (I guess) the most advisable. Or it does at first glance.

It does for the time being. It does unless, or until, we find it gets us into trouble.

*
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I want to look into the possibility that the probability-distribution we have from

Boltzmann and Gibbs, or something like it, something more up-to date, something

adjusted to the ontology of quantum field theory or quantum string theory or

quantum brane theory, is true.

And this is a large undertaking.

Let’s start slow.

Here are three prosaic observations.

The laws of thermodynamics are not quite true. If you look closely enough,

you will find that the temperatures and pressures and volumes of macroscopic

physical systems occasionally fluctuate away from their thermodynamically

predicted values. And it turns out that precisely the same probability-distribution

over the possible microconditions of such a system that accounts so well for the

overwhelming reliability of the laws of thermodynamics accounts for the relative

frequencies of the various different possible transgressions against those laws as

well. And it turns out that the particular features of that distribution that play a

pivotal role in accounting for the overwhelming reliability of the laws of thermo-

dynamics are largely distinct from the particular features of that distribution that

play a pivotal role in accounting for the relative frequencies of the various

possible transgressions against those laws. It turns out (that is) that the relative

frequencies of the transgressions give us information about a different aspect of

the underlying microscopic probability-distribution (if there is one) than the

overwhelming reliability of the laws of thermodynamics does, and it turns out

that both of them are separately confirmatory of the empirical rightness of the

distribution as a whole.

And consider a speck of ordinary dust, large enough to be visible with the aid of

a powerful magnifying glass. If you suspend a speck like that in the atmosphere, and

you watch it closely, you can see it jerking very slightly, very erratically, from side

to side, under the impact of collisions with individual molecules of air. And if you

carefully keep tabs on a large number of such specks, you can put together a

comprehensive statistical picture of the sorts of jerks they undergo – as a function

(say) of the temperatures and pressures of the gasses in which they are suspended.

And it turns out (again) that precisely the same probability-distribution over the

possible microconditions of such a system that accounts so well for the overwhelm-

ing reliability of the laws of thermodynamics accounts for the statistics of those

jerks too. And it turns out (again) that the particular features of that distribution that

play a pivotal role in accounting for the reliability of the laws of thermodynamics

are largely distinct from the particular features of that distribution that play a

pivotal role in accounting for the statistics of the jerks. And so the statistics of the

jerks give us information about yet another aspect of the underlying microscopic

probability-distribution (if there is one), and that new information turns out to be

confirmatory, yet again, of the empirical rightness of the distribution as a whole.

And very much the same is true of isolated pin-balls balanced atop pins, or

isolated pencils balanced on their points. The statistics of the directions in which

such things eventually fall turn out to be very well described by precisely the same
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probability-distribution over possible microconditions, and it turns out (once more)

that the particular features of that distribution that play a pivotal role in accounting

for the reliability of the laws of thermodynamics are distinct from the particular

features of that distribution that play a pivotal role in accounting for the statistics of

those fallings.

And so the standard statistical posit of Boltzmann and Gibbs – when combined

with the microscopic equations of motion – apparently has in it not only the

thermodynamical science of melting, but also the quasi-thermodynamical science

of chance fluctuations away from normal thermodynamic behavior, and (on top of

that) the quasi-mechanical science of unbalancing, of breaking the deadlock, of

pulling infinitesimally harder this way or that. And these sorts of things are

manifestly going to have tens of thousands of other immediate applications. And

it can now begin to seem plausible that this standard statistical posit might in fact

have in it the entirety of what we mean when we speak of anything’s happening at

random or just by coincidence or for no particular reason.

2.3 The Special Sciences in General

The thermodynamic parameters all have straightforward and explicit and complete

translations into the fundamental physical languages of Newtonian point mechan-

ics, or of non-relativistic quantum mechanics, or of relativistic quantum field

theory, or what have you. But that’s not the case, and perhaps it will never be the

case, and perhaps it can never be the case, for (say) economics, or epidemiology, or

reader reception theory.

Let’s take that for granted, then. Let’s suppose that there can be no explicit

translations from the languages of the various special sciences into the language of

fundamental physics. But let’s suppose as well that there is some fundamental

physical language in which the world can be described completely, in at least the

minimal sense that no two physically possible worlds can have different

descriptions in the languages of any of the special sciences unless they have

different descriptions in that fundamental physical language too. And let’s imagine

that we have in hand a complete microscopic dynamics, a complete theory (that is)

of the time-evolutions of the elementary particles and fields or the elementary

strings and branes or the elementary quantum-mechanical wave-functions or what-

ever the elementary physical constituents of the world turn out to be. And let’s

imagine (just for the sake of keeping things simple, and just for the moment) that

that theory is fully deterministic.

And now take a computer, or (rather) super-computer, or (rather) a super-duper-

computer, or whatever sort of a computer it is that the operations about to be

described might turn out to require. And enter the dynamics into the computer. And

enter the exact microscopic physical conditions of (say) the entirety of the solar
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system, at precisely 8:00 P.M., on the evening of a certain particular formal dinner

party, into the computer.3 And instruct the computer to perform a calculation

(which nothing on the level of principle will now stand in the way of it’s success-

fully carrying out, with the benefit of no further input whatever, and to whatever

accuracy we might like) of the fundamental physical conditions obtaining near the

surface of the earth throughout the period between (say) 10:00 P.M. and 10:15 P.M.

later that same evening. And instruct the computer to output that information in

such a way as to make it possible for its human operators to walk at will, in real

time, about a virtual reconstruction of the barometric and electromagnetic

conditions in the room where the dinner-party is taking place, throughout the

interval between 10:00 P.M. and 10:15 P.M. later that same evening, and look

here, and listen there, and just sort of take the whole thing in.

A sufficiently powerful computer (then) equipped with nothing over and above

the fundamental physical laws, and provided (on the particular occasion in ques-

tion) with nothing over and above an appropriate set of fundamental physical initial

conditions, can show us, can display, for us, how any particular party (or war, or

election, or painting, or investigation, or marriage, or whatever) comes out.

Suppose we want something fancier. Suppose (that is) that we want a computer

that can do more than merely show us or display for us how the dinner party in

question (or any other one) is going to come out. Suppose that what we want is a

computer that can evaluate for us, and report to us, and predict for us, in English –

equipped (mind you) with nothing over and above the fundamental physical theory,

and provided with nothing over and above an appropriate set of fundamental

physical initial conditions (of which more in a minute) – whether the party succeeds

or fails.

Here’s how to do that: Take a computer of the sort we were talking about before.

And enter the dynamics into the computer. And enter the exact microscopic

physical conditions of the entirety of the solar system, at precisely 8:00 P.M., on

the evening of the party, into the computer. And instruct the computer (as before) to

perform a calculation of the fundamental physical conditions obtaining near the

surface of the earth throughout the period between 10:00 P.M. and 10:15 P.M. later

that same evening. And instruct the computer to output that information in precisely

the same sort of virtual-reality format as we described above. And instruct the

computer’s human operator to survey whatever portions of that output he needs to

in order to evaluate whether the party turns out to be a success or a failure, and to

report his findings in writing, in English, on a piece of paper, and to place that piece

of paper in a certain particular (otherwise empty) box. And now enter the dynamics

into a second computer. And enter into that second computer the exact microscopic

3Or (at any rate) enter in the conditions of as much of the world, at 8:00 P.M. of the evening in

question, as would need to be taken into account in the process of calculating the physical

conditions on the surface of the earth some hours later – enter in (that is) the conditions throughout

the cross-section, at 8:00 P.M. of the evening in question, of the backward light cone of the surface

of the earth some hours later.
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fundamental physical conditions of the entirety of (say) the sealed interstellar

spaceship containing the first computer and its output mechanisms and its human

operator and the piece of paper and the empty box and whatever else happens to be

in there at (say) the moment just after all of the instructions described in the earlier

part of this paragraph have been delivered. And instruct the second computer to

calculate and reproduce for us the physical contents of the box 20 min or so hence.

The output of this second computer, then, will consist of a piece of paper on

which either “the party is a success” or “the party is a failure” appears. And the

report on that piece of paper will (with extremely rare exceptions, of which more in

a minute) prove accurate – once the actual historical facts are in. And the input

(once again) consists of nothing over and above the fundamental physical laws and

the fundamental physical initial conditions of various parts of the world back at the

time the party in question first got underway.

Suppose we want something fancier still. Suppose we want a computer that can

deduce for us, given nothing over and above the fundamental physical laws, the

laws (if there are any) of the special science of the success or failure of formal

dinner parties. Suppose (for example) that we want a computer that can deduce for

us, given nothing over and above the fundamental physical laws, whether inviting

an odd number of guests, or inviting an even number, is more likely to produce a

better party.

Here’s how to work that: Take a computer. And enter the fundamental physical

dynamical laws into it. And set things up in such a way as to allow the operator of

the computer to take a virtual tour – of just the sort we talked about above – of

whichever of the possible exact physical microconditions of the solar system he

chooses.4 And instruct the operator to survey the space of those exact physical

microconditions by means of this technique, and to identify the regions of that space

which correspond to circumstances in which odd numbers of guests are being

invited to a formal dinner party, and to identify the regions of that space which

correspond to circumstances in which even numbers of guests are being invited to a

formal dinner party, and to order the computer to calculate, and to display for him,

how all of those dinner-parties come out, and to prepare a written report, and to put

it into the box we were talking about above. And now (just as before) enter the

dynamics into a second computer. And enter into that second computer the exact

microscopic fundamental physical conditions of the entirety of the sealed interstellar

spaceship containing the first computer and its output mechanisms and its human

operator and the piece of paper and the empty box and whatever else happens to be

in there at the moment just after all of the instructions described in the earlier part of

this paragraph have been delivered. And instruct the second computer to calculate

and reproduce for us the physical contents of the box 20 min (or 20 years, or

however long it might imaginably take) hence.

Now a few remarks are in order.

4 Things might be set up in such a way as to allow the operator to point and click on a map of the

space of states.
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Note that the roles of the various computers in the above three scenarios are

merely to function as concrete realizations of the implicative structures of the

fundamental physical theories – the roles of those computers are merely to make

vivid what sorts of information about the world those theories have in them, what

sorts of things they can predict, what sorts of things they can account for. Nothing

whatever hinges on the possibility (which is presumably immensely remote – both

for practical reasons and for reasons of principle as well) of such computers ever

actually being constructed!

And note that the role of the actual living human operator of the computer in the

second and third of the scenarios is merely to serve as a catalogue of fundamental

physical initial conditions. Neither of those two scenarios involves any living

human being’s ever actually evaluating the success or failure of a virtual dinner

party, or surveying sets of possible initial conditions, or preparing a written report,

or anything of the sort – all of that gets done by a simulator, by a subroutine – call it

the ‘human operator subroutine’ – which exists only in cyberspace, and of

which the living human being in question is merely the plan, merely the template,

merely the set of instructions. The living human being in question can perfectly

well be far away, or asleep, or dead, long before the simulated evaluations or

surveyings or reportings ever get underway. It is nothing whatever over and

above the computer, nothing (that is) over and above the implicative structure of

the fundamental physical laws, that’s doing all the work.

These subroutines (by the way) – precisely because and precisely in so far as

they can faithfully reproduce the behavioral dispositions of the living human beings

on which they are modeled, beings which (after all) can lie and make mistakes and

get moody and have heart attacks – will necessarily be imperfect as speakers of the

language of dinner parties. But they can be very good. They can be exactly as good

as the best of us, or as whole committees of us, or as whole societies of us. And the

very idea of doing any better, the very idea of coming up with a program which

somehow instantiates a formal and mechanical and algorithmic scheme for trans-

lating from the language of fundamental physical theory to the language of dinner

parties is (by hypothesis) out of the question.

And there’s one more thing – and this is precisely the thing that the previous two

sections of this chapter were about. Recall the third of the scenarios we talked about

above – the one where the computer derives the general laws (if – once again – there

are any) of the success and failure of dinner parties, and the full apparatus for

explaining why this or that particular dinner party succeeded or failed, from nothing

over and above the fundamental laws of physics. The computer first surveys the

space of possible exact physical microconditions of the solar system, and then it

identifies the regions of that space which correspond to circumstances in which odd

numbers of guests are being invited to a formal dinner party and the regions of that

space which correspond to circumstances in which even numbers of guests are

being invited to a formal dinner party, and then it calculates how all those dinner

parties come out, and finally it prepares a written report on the respective

probabilities that even or odd numbers of invitations will (as a matter of fundamen-

tal physical law) result in success. And what I want to draw attention to at the

2 Physics and Chance 27



moment is just that the fundamental physical laws in question here are going to

have to include stipulations of a kind that we have so far neglected to bring up in

this section, that the fundamental physical laws in question here are going to have to

amount (again) to something over and above the complete theory of the time-

evolutions of the fundamental physical systems that we talked about some pages

back. And the reason (of course) is this: A complete theory of the time-evolutions of

the fundamental physical systems – although it will settle all questions as to which

initial microconditions lead to success and which to failure, although it will settle

all questions as to how many of the microconditions which correspond to (say) an

even number of invitations being sent out lead to success and how many lead to

failure – will have nothing whatever to say about the probability of any particular

one of those microconditions actually obtaining, given (say) that an even number of

invitations are sent out. And without that we have nothing of any macroscopic use

at all. And so (again) we are going to need an other and altogether different sort of

fundamental physical law, a law which will apparently need to take the form of a

probability-distribution – or something like a probability-distribution – over initial

conditions.

And the alluring possibility is (again) that the law we need here is in fact the one

we already have, the one suggested by altogether different sorts of considerations,

the one that seemed to show some promise of making concrete and explicit and

quantitative sense of what we mean when we speak of anything’s happening at

random or just by coincidence or for no particular reason, the one (that is) due to

Boltzmann and Gibbs.

2.4 Explanation

Here is a line of argument – one of many – aimed directly against the sort of

universality and completeness of physics that I was trying to imagine in the

previous section. It comes from Science, Truth, and Democracy, by my friend

and teacher Philip Kitcher. The worry here is not about the capacities of fundamental

physical theories to predict – which Philip is willing to grant – but about their

capacities to explain. Philip directs our attention to

.... the regularity discovered by John Arbuthnot in the early eighteenth century. Scrutinizing

the record of births in London during the previous 82 years, Arbuthnot found that in each

year a preponderance of the children born had been boys: in his terms, each year was a

“male year”. Why does this regularity hold? Proponents of the Unity-of Science view can

offer a recipe for the explanation, although they can’t give the details. Start with the first

year (1623); elaborate the physicochemical details of the first copulation-followed-by-

pregnency showing how it resulted in a child of a particular sex; continue in the same

fashion for each pertinent pregnancy; add up the totals for male births and female births and

compute the difference. It has now been shown why the first year was “male”; continue for

all subsequent years.
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Even if we had this “explanation” to hand, and could assimilate all the details, it would

still not advance our understanding. For it would not show that Arbuthnot’s regularity was

anything more than a gigantic coincidence. By contrast, we can already give a satisfying

explanation by appealing to an insight of R. A. Fisher. Fischer recognized that, in a

population in which sex ratios depart from 1:1 at sexual maturity, there will be a selective

advantage to a tendency to produce the underrepresented sex. It will be easy to show from

this that there should be a stable evolutionary equilibrium at which the sex ratio at sexual

maturity is 1:1. In any species in which one sex is more vulnerable to early mortality than

the other, this equilibrium will correspond to a state in which the sex ratio at birth is skewed

in favor of the more vulnerable sex. Applying this analysis to our own species, in which

boys are more likely than girls to die before reaching puberty, we find that the birth sex ratio

ought to be 1.104:1 in favor of males – which is what Arbuthnot and his successors have

observed. We now understand why [my italics], for a large population, all years are

overwhelmingly likely to be male.

The key word here, the word that carries the whole burden of Philip’s argument,

is ‘coincidence’.

And that will be worth pausing over, and thinking about.

The moral of the first section of this chapter (remember) was that the fundamen-

tal physical laws of the world, merely in order to get the narrowest imaginable

construal of their ‘work’ done, merely in order to get things right (that is) about

projectiles and levers and pulleys and tops, will need to include a probability-

distribution over possible microscopic initial conditions. And once a distribution

like that is in place, all questions of what is and isn’t likely, all questions of what

was and wasn’t to be expected, all questions of whether or not this or that particular

collection of events happened merely ‘at random’ or ‘for no particular reason’ or ‘as

a matter of coincidence’, are (in principle) settled. And (indeed) it is only by

reference to a distribution like that that talk of coincidence can make any precise

sort of sense in the first place – it is only against the background of a distribution

like that that questions of what is or is not coincidental can even be brought up.

It goes without saying that we do not (typically, consciously, explicitly) consult

that sort of a distribution when we are engaged in the practical business of making

judgments about what is and is not coincidental. But that is no evidence at all

against the hypothesis that such a distribution exists, and it is no evidence at all

against the hypothesis that such a distribution is the sole ultimate arbiter of what is

and is not coincidental, and it is no evidence at all against the hypothesis that such a

distribution informs every single one of our billions of everyday deliberations. If

anything along the lines of the complete fundamental theory we have been trying to

imagine here is true (after all) some crude, foggy, reflexive, largely unconscious but

perfectly serviceable acquaintance with that distribution will have been hard-wired

into us as far back as when we were fish, as far back (indeed) as when we were

slime, by natural selection – and lies buried at the very heart of the deep instinctive

primordial unarticulated feel of the world. If anything along the lines of

the complete fundamental theory we have been trying to imagine here is true

(after all) the penalty for expecting anything else, the penalty for expecting any-

thing to the contrary, is extinction.

2 Physics and Chance 29



And if one keeps all this in the foreground of one’s attention, it gets hard to see

what Philip can possibly have in mind in supposing that something can amount to a

‘gigantic coincidence’ from the standpoint of the true and complete and universal

fundamental physical theory of the world and yet (somehow or other) not be.

*

If anything along the lines of the picture we are trying to imagine here should

turn out to be true, then any correct special-scientific explanation whatsoever can in

principle be uncovered, can in principle be descried, in the fundamental physical

theory of the world, by the following procedure:

Start out with a distribution of probabilities which is uniform, on the standard

statistical-mechanical measure, over all of the possible exact initial microconditions

of theworld which are compatible with the past-hypothesis, and zero elsewhere. And

conditionalize that distribution on whatever particular features of the world play a

role in the special-scientific explanation in question – conditionalize that distribution

(that is) on whatever particular features of the world appear either explicitly or

implicitly among the explanans of the special-scientific explanation in question.5

And check to see whether or not the resultant distribution – the conditionalized

distribution, makes the explanandum likely. If it does, then we have recovered the

special-scientific explanation form the fundamental physical theory – and if it

doesn’t, then either the fundamental theory, or the special-scientific explanation,

or both, are wrong.

Consider (for example) the evolution of the total entropy of the universe over the

past 10 min. That entropy (we are confident) is unlikely to have gone down over

those 10 min. The intuition is that the entropy’s having gone down over those

10 min would have amounted to a gigantic coincidence. The intuition is that the

entropy’s having gone down over those 10 min would have required detailed and

precise and inexplicable correlations among the positions and velocities of all of the

particles that make the universe up. And questions of whether or not correlations

like that are to be expected, questions of whether or not correlations like that

amount to a coincidence, are matters (remember) on which the sort of fundamental

physical theory we are thinking about here can by no means be agnostic. And it is

part and parcel of what it is for that sort of a theory to succeed that it answers those

questions correctly. It is part and parcel of what it is for that sort of a theory to

succeed (that is) that it transparently captures, and makes simple, and makes

elegant, and makes precise, the testimony our intuition, and our empirical experi-

ence of the world, to the effect that correlations like that are in fact fantastically

unlikely, that they are not at all to be expected, that they do indeed amount to a

5 Those explanans, of course, are initially going to be given to us in the language of one or another

of the special sciences. And so, in order to carry out the sort of conditionalization we have in mind

here, we are going to need to know which of those special-scientific explanans correspond to

which regions of the space of possible exact physical microconditions of the world. And those

correspondences can be worked out – not perfectly, mind you, but to any degree of accuracy and

reliability we like – by means of the super-duper computational techniques described in Sect. 2.3.
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gigantic coincidence. And there is every reason in the world to believe that there is a

fundamental physical theory that can do that. It was precisely the achievement of

Boltzmann and Gibbs (after all) to make it plausible that the Newtonian laws of

motion, together with the statistical-postulate, together with the past-hypothesis, all

of it conditionalized on a proposition to the effect that the world was not swarming,

10 min ago, with malevolent Maxwellian Demons, can do, precisely, that.

And now consider the descent of man. The first humans (we are confident) are

unlikely to have condensed out of swamp gas, or to have grown on trees, or to have

been born to an animal incapable of fear. The first (after all) would require detailed

and precise and inexplicable correlations among the positions and velocities of all

of the molecules of swamp gas, and of the surrounding air, and the ground, and god

knows what else. And the second would require a vast, simultaneous, delicately co-

ordinated unimaginably fortuitous set of mutations on a single genome. And the

third would require that every last one of a great horde of mortal dangers all

somehow conspire to avoid the animal in question – with no help whatever from

the animal herself – until she is of age to deliver her human child. And it is precisely

because the account of the descent of man by randommutation and natural selection

involves vastly fewer and more minor and less improbable such coincidences than

any of the imaginable others that it strikes us as the best and most plausible

explanation of that descent we have. And (indeed) it is precisely the relative paucity

of such coincidences, and it is precisely the relative smallness of whatever such

coincidences there are, to which words like ‘random’ and ‘natural’ are meant to

direct our attention! And questions about what does and what does not amount to a

coincidence are matters (once again) on which the sort of fundamental physical

theory we are imagining here can by no means be agnostic. And it is part and parcel

of what it is for that sort of a theory to succeed (once again) that it answers every

last one of those questions correctly.

Now, compelling arguments to the effect that this or that particular fundamental

physical theory of the world is actually going to be able to do all that are plainly

going to be harder to come by here than they were in the much more straightforward

case of the entropy of the universe. All we have to go on are small intimations – the

ones mentioned above, the ones you can make out in the behaviors of pin-balls and

pencils and specks of dust – that perhaps the exact microscopic laws of motion

together with the statistical postulate together with the past-hypothesis has in it the

entirety of what we mean when we speak of anything’s happening at random or for

no particular reason or just by coincidence.

But if all that should somehow happen to pan out, if there is a true and complete

and fundamental physical theory of the sort that we have been trying to imagine

here, then it is indeed going to follow directly from the fundamental laws of motion,

together with the statistical-postulate, together with the past-hypothesis, all of it

conditionalized on the existence of our galaxy, and of our solar system, and of the

earth, and of life, and of whatever else is implicitly being taken for granted in

scientific discussions of the descent of man, that the first humans are indeed

extraordinarily unlikely to have condensed out of swamp gas, or to have grown

on trees, or to have been born to an animal incapable of fear.

2 Physics and Chance 31



And very much the same sort of thing is going to be true of the regularity

discovered by Arubthot.

What Fisher has given us (after all) is an argument to the effect that it would

amount to a gigantic coincidence, that it would represent an enormously improba-

ble insensitivity to pressures of natural selection, that it would be something very

much akin to a gas spontaneously contracting into one particular corner of its

container, for sex ratios to do anything other than settle into precisely the stable

evolutionary equilibrium that he identifies. And questions about what does and

what does not amount to a coincidence are (for the last time) matters on which the

sort of fundamental physical theory we are imagining here can by no means be

agnostic. And it is part and parcel of what it is for that sort of a theory to succeed

that it answers every last one of those questions correctly.

And once again, compelling arguments to the effect that this or that particular

fundamental physical theory of the world is actually going to be able to do all that

are plainly going to be hard to come by – and all we are going to have to go on are

the small promising intimations from pin-balls and pencils and specks of dust.

But consider how things would stand if all that should somehow happen to pan

out. Consider how things would stand if there is a true and complete and funda-

mental physical theory of the sort that we have been trying to imagine here.

Start out – as the fundamental theory instructs us to do – with a distribution of

probabilities which is uniform, on the standard statistical-mechanical measure, over

all of the possible exact initial microconditions of the world which are compatible

with the past-hypothesis, and zero elsewhere. And evolve that distribution – using

the exact microscopic deterministic equations of motion – up to the stroke of

midnight on December 31st of 1623. And conditionalize that evolved distribution

on the existence of our galaxy, and of our solar system, and of the earth, and life,

and of the human species, and of cities, and of whatever else is implicitly being

taken for granted in any scientific discussion of the relative birth rates of boys and

girls in London in the years following 1623. And call that evolved and

conditionalized distribution P1623.

If there is a true and complete and fundamental theory of the sort that we have

been trying to imagine here, then what Fisher has given will amount to an argument

that P1623 is indeed going to count it as likely that the preponderance of the babies

born in London, to human parents, in each of the 82 years following 1623, will be

boys. Period. End of story.

Of course, the business of explicitly calculating P1623 from the microscopic laws

of motion and the statistical postulate and the past-hypothesis is plainly, perma-

nently, out of the question. But Philip’s point was that even if that calculation could

be performed, even (as he says) “if we had this “explanation” to hand, and

could assimilate all the details, it would still not advance our understanding. For

it would not show that Arbuthnot’s regularity was anything more than a gigantic

coincidence.” And this seems just....wrong. And what it misses – I think – is that the

fundamental physical laws of the world, merely in order to get the narrowest

imaginable construal of their ‘work’ done, merely in order to get things right
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(that is) about projectiles and levers and pulleys and tops, are going to have to come

equipped, from the word go, with chances.

*

And those chances are going to bring with them – in principle – the complete

explanatory apparatus of the special sciences. And more than that: those chances,

together with the exact microscopic equations of motion, are going to explain all

sorts of things about which all of the special sciences taken together can have

nothing whatever to say, they are going to provide us – in principle – with an

account of where those sciences come from, and of how they hang together, of how

it is that certain particular sets of too-ings and fro-ings of the fundamental

constituents of the world can simultaneously instantiate every last one of them, of

how each of them separately applies to the world in such a way as to accommodate

the fact that the world is a unity.

And so (you see) what gets in the way of explaining things is not at all the

conception of science as unified, but the conceit that it can somehow not be.

2.5 The General Business of Legislating Initial Conditions

All of this delicately hangs (of course) on the possibility of making clear metaphys-

ical sense of the assignment of real physical chances to initial conditions.6

6 I will be taking it for granted here that a probability-distribution over initial conditions, whatever

else it is, is an empirical hypothesis about the way the world contingently happens to be.

But this is by no means the received view of the matter. Indeed, the statistical postulate of

Boltzmann and Gibbs seems to have been understood by its inventors as encapsulating something

along the lines of an a priori principle of reason, a principle (more particularly) of indifference,

which runs something like this: Suppose that the entirety of what you happen to know of a certain

system S is that S is X. And let {ni}X,t be the set of the possible exact microconditions of S such

that ni’s obtaining at t is compatible with S’s being X. Then the principle stipulates that for any two

nj, nk 0 {ni}X,t the probability of nj’s obtaining at t is equal to the probability of nk’s obtaining at t.
And that (I think) is more or less what the statistical postulate still amounts to in the

imaginations of many physicists. And that (to be sure) has a supremely innocent ring to it. It

sounds very much, when you first hear it, as if it is instructing you to do nothing more than attend

very carefully to what you mean, to what you are saying, when you say that the entirety of what

you know of S is that S is X. It sounds very much as if it is doing nothing more than reminding you

that what you are saying when you say something like that is that S is X, and (moreover) that for

any two nj, nk 0 {ni}X,t, you have no more reason for believing that nj obtains at t than you have for
believing that nk obtains at t, that (in so far as you know) nothing favors any particular one of the

nj 0 {ni}X,t over any particular other one of the nj 0 {ni}X,t, that (in other words) the probability of

any particular one of those microconditions obtaining at t, given the information you have, is equal

to the probability of any particular other one of them obtaining at t.

And this is importantly and spectacularly wrong. And the reasons why it’s wrong (of which

there are two: a technical one and a more fundamental and less often remarked-upon one too) are

worth rehearsing.

2 Physics and Chance 33



And conceptions of chance as anything along the lines of (I don’t know) a cause

or a pressure or a tendency or a propensity or a pulling or a nudging or an enticing or

a cajoling or (more generally) as anything essentially bound up with the way in

The technical reason has to do with the fact that the sort of information we can actually have

about physical systems – the sort that we can get (that is) by measuring – is invariably compatible

with a continuous infinity of the system’s microstates. And so the only way of assigning equal

probability to all of those states at the time in question will be by assigning each and every one of

them the probability zero. And that will of course tell us nothing whatever about how to make our

predictions.

And so people took to doing something else – something that looked to them to be very much in

the same spirit – instead. They abandoned the idea of assigning probabilities to individual

microstates, and took instead to stipulating that the probability assigned to any finite region of

the phase space which is entirely compatible with X – under the epistemic circumstances described

above – ought to be proportional to the continuous measure of the points within that region.

But there’s a trouble with that – or at any rate there’s a trouble with the thought that it’s innocent –

too. The trouble is that there are in general an infinity of equally mathematically legitimate ways of

putting measures on infinite sets of points. Think, for example, of the points on the real number

line between 0 and 1. There is a way of putting measures on that set of points according to which

the measure of the set of points between any two numbers a and b (with a< 1 and b< 1 and b > a)

is b – a, and there is another way of putting measures on that set of points according to which the

measure of the set of points between any two numbers a and b between (with a < 1 and b < 1 and

b > a) is b – a, and according to the first of those two formulae there are “as many” points between 1

and 1/2 as there are between 1/2 and 0, and according to the second of those two formulae there are

three times “as many” points between 1 and 1/2 as there are between 1/2 and 0, and there turns out to

be no way whatever (or at any rate none that anybody has yet dreamed up) of arguing that either one

of these two formulae represents a truer or more reasonable or more compelling measure of the

“number” or the “amount” or the “quantity” of points between a and b than the other one does. And

there are (moreover) an infinite number of other such possible measures on this interval as well, and

this sort of thing (as I mentioned above) is a very general phenomenon.

And anyway, there is a more fundamental problem, which is that the sorts of probabilities being

imagined here, probabilities (that is) conjured out of airy nothing, out of pure ignorance, whatever

else might be good or bad about them, are obviously and scandalously unfit for the sort of

explanatory work that we require of the probabilities of Boltzmann and Gibbs. Forget (then)

about all the stuff in the last three paragraphs. Suppose there was no trouble about the measures.

Suppose that there were some unique and natural and well-defined way of expressing, by means of a

distribution-function, the fact that “nothing in our epistemic situation favors any particular one of the

microstates compatible with X over any other particular one of them”. So what? Can anybody

seriously think that that would somehow explain the fact that the actual microscopic conditions of

actual thermodynamic systems are statistically distributed in the way that they are? Can anybody

seriously think that it is somehow necessary, that it is somehow a priori, that the particles of which

the material world is made up must arrange themselves in accord with what we know, with what we

happen to have looked into? Can anybody seriously think that our merely being ignorant of the exact

microstates of thermodynamic systems plays some part in bringing it about, in making it the case,

that (say) milk dissolves in coffee? How could that be? What can all those guys have been up to? If

probabilities have anything whatever to do with how things actually fall out in the world (after all)

then knowing nothing whatever about a certain system other than X can in and of itself entail nothing

whatever about the relative probabilities of that system’s being in one or another of the microstates

compatible with X; and if probabilities have nothing whatever to dowith how things actually fall out

in the world, then they can patently play no role whatever in explaining the behaviors of actual

physical systems; and that would seem to be all the options there are to choose from!
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which instantaneous states of the world succeed one another in time, is manifestly

not going to be up to the job – since the initial condition of the world is (after all) not

the temporal successor of anything, and there was (by definition) no historical

episode of the world’s having been pulled or pressed or nudged or cajoled into

this or that particular way of getting started.

Our business here (then) is going to require another understanding of chance.

And an understanding of law in general, I think, to go with it. Something Humean.

Something wrapped up not with an image of governance, but with an idea of

description. Something (as a matter of fact) of the sort that’s been worked out,

with slow and sure and graceful deliberation, over these past 20 years or so, by

David Lewis and Barry Loewer.

*

Here’s the idea. You get to have an audience with God. And God promises to tell

you whatever you’d like to know. And you ask Him to tell you about the world. And

He begins to recite the facts: such-and-such a property (the presence of a particle,

say, or some particular value of some particular field) is instantiated at such-and-

such a spatial location at such-and-such a time, and such-and-such another property

is instantiated at such-and-such another spatial location at such-and-such another

time, and so on. And it begins to look as if all this is likely to drag on for a while.

And you explain to God that you’re actually a bit pressed for time, that this is not all

you have to do today, that you are not going to be in a position to hear out the whole

story. And you ask if maybe there’s something meaty and pithy and helpful and

informative and short that He might be able to tell you about the world which (you

understand) would not amount to everything, or nearly everything, but would

nonetheless still somehow amount to a lot. Something that will serve you well, or

reasonably well, or as well as possible, in making your way about in the world.

And what it is to be a law, and all it is to be a law, on this picture of Hume’s and

Lewis’ and Loewer’s, is to be an element of the best possible response to precisely

this request – to be a member (that is) of that set of true propositions about the world

which, alone among all of the sets of true propositions about the world that can be

put together, best combines simplicity and informativeness.

On a picture like this, the world, considered as a whole, is merely, purely, there.

It isn’t the sort of thing that is susceptible of being explained or accounted for or

traced back to something else. There isn’t anything that it obeys. There is nothing to

talk about over and above the totality of the concrete particular facts. And science is

the business of producing the most compact and informative possible summary of

that totality. And the components of that summary are called laws of nature.7

7 This is not at all (of course) to deny that there are such things as scientific explanations! There are

all sorts of explanatory relations – on a picture like this one – among the concrete particular facts,

and (more frequently) among sets of the concrete particular facts. There are all sorts of things to be

said (for example) about how smaller and more local patterns among those facts fit into, or are

subsumed under, or are logically necessitated by, larger and more universal ones. But the totality

of the concrete particular facts is the point at which – on a view like this one – all explaining

necessarily comes to an end.
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The world (on this picture) is not what it is in virtue of the laws being what they

are, the laws are what they are in virtue of the world’s being what it is.

*

Now, different possible worlds – different possible totalities (that is) of concrete

particular facts – may turn out to accommodate qualitatively different sorts of

maximally compact and informative summaries.

The world might be such that God says: “I have just the thing: The furniture of

the universe consists entirely of particles. And the force exerted by any particle on

any other particle is equal to the product of the masses of those two particles divided

by the square of the distance between them, directed along the line connecting

them. And those are all the forces there are. And everywhere, and at every time, the

acceleration of every particle in the world is equal to the total force on that particle

at that time divided by it’s mass. That won’t tell you everything. It won’t tell you

nearly everything. But it will tell you a lot. It will serve you well. And it’s the best I

can do, it’s the most informative I can be, if (as you insist) I keep it short.” Worlds

like that are called (among other things) Newtonian and particulate and determin-

istic and non-local and energy-conserving and invariant under Galilean

transformations.

Or the world might be different. The world might be such that God says “Look,

there turns out not to be anything I can offer you in the way of simple, general,

exact, informative, exceptionally true propositions. The world turns out not to

accommodate propositions like that. Let’s try something else. Global physical

situations of type A are followed by global physical situations of type B roughly

(but not exactly) 70% of the time, and situations of type A are followed by

situations of type C roughly (but not exactly) 30% of the time, and there turns out

not to be anything else that’s simple to say about which particular instances of

A-situations are followed by B-situations and which particular instances of the

A-situations are followed by C-situations. That’s pithy too. Go fourth. It will serve

you well.” We speak of worlds like that as being lawful but indeterministic – we

speak of them as having real dynamical chances in them.

Or the world might be such that God says: “Sadly, I have nothing whatever of

universal scope to offer you – nothing deterministic and nothing chancy either. I’m

sorry. But I do have some simple, useful, approximately true rules of thumb about

rainbows, and some others about the immune system, and some others about tensile

strength, and some others about birds, and some others about interpersonal

relationships, and some others about stellar evolution, and so on. It’s not elegant.

It’s not all that concise. But it’s all there is. Take it. You’ll be glad, in the long run,

that you did.” We speak of worlds like that – following Nancy Cartwright – as

dappled.

Or the world might be such that God has nothing useful to offer us at all. We

speak of worlds like that as chaotic – we speak of them as radically unfriendly to the

scientific enterprise.

Or the world might (finally) be such that God says: “All of the maximally simple

and informative propositions that were true of the Newtonian particulate determin-

istic non-local energy-conserving Galilean-invariant universe are true of this one
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too. The furniture of the universe consists entirely of particles. And the force

exerted by any particle on any other particle is equal to the product of the masses

of those two particles divided by the square of the distance between them, directed

along the line connecting them. And those are all the forces there are. And

everywhere, and at every time, the acceleration of every particle in the world is

equal to the total force on that particle at that time divided by it’s mass. But that’s

not all. I have something more to tell you as well. Something (as per your request)

simple and helpful and informative. Something about the initial condition of the

world. I can’t tell you exactly what that condition was. It’s too complicated. It

would take too long. It would violate your stipulations. The best I can do by way of

a simple and informative description of that condition is to tell you that it was one of

those which is typical with respect to a certain particular probability-distribution –

the Boltzmann-Gibbs distribution, for example. The best I can do by way of a

simple and informative description of that initial condition is to tell you that it was

precisely the sort of condition that you would expect, that it was precisely the sort of

condition that you would have been rational to bet on, if the initial condition of the

world had in fact been selected by means of a genuinely dynamically chancy

procedure where the probability of this or that particular condition’s being selected

is precisely the one given in the probability-distribution of Boltzmann and Gibbs.”

And this is precisely the world we encounter in classical statistical mechanics. And

this is the sought-after technique – or one of them – for making clear metaphysical

sense of the assignment of real physical chances to initial conditions. The world has

only one microscopic initial condition. Probability-distributions over initial

conditions – when they are applicable – are compact and efficient and informative

instruments for telling us something about what particular condition that is.8

And note that it is of the very essence of this Humean conception of the law that

there is nothing whatever metaphysical at stake in the distinctions between deter-

ministic worlds, and chancy ones, and dappled ones, and chaotic ones, and ones of

the sort that we encounter in a deterministic statistical mechanics. All of them are

nothing whatever over and above totalities of concrete particular facts. They differ

only in the particular sorts of compact summaries that they happen – or happen not –

to accommodate.

8 The strategy described in footnote 2 – the strategy (that is) of abstaining from the assignment of

any particular probability-distribution over those of the possible microconditions of the world

which are compatible with its initial macrocondition, has sometimes been presented as a way

around the problem, as a way of avoiding the problem, of making clear metaphysical sense of

assigning probability-distributions to the initial conditions of the world. But that seems all wrong –

for two completely independent reasons. First, the strategy in question makes what looks to me to

be ineliminable use of sets of probability-distributions over the possible initial microconditions of

the world – and if those distributions themselves can’t be made sense of, then (I take it) sets of

them can’t be made sense of either. Second, the problem of making clear metaphysical sense of the

assignment of probability-distributions to the initial microcondition of the world isn’t the sort of

thing that needs getting around – since (as we have just now been discussing) it can be solved!
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2.6 Dynamical Chances

Quantum Mechanics has fundamental chances in it.

And it seems at least worth inquiring whether or not those chances can do us any

good. It seems worth inquiring (for example) whether or not those chances are up to

the business of guaranteeing that we can safely neglect the possibility of a rock,

traveling at constant velocity, through an otherwise empty infinite space, spontane-

ously disassembling itself into statuettes of the British royal family. And the answer

turns out to depend, interestingly, sensitively, on which particular one of the

available ways of making sense of Quantum Mechanics as a universal theory, on

which particular one of the available ways (that is) of solving the quantum-

mechanical measurement problem, turns out to be right.

The sorts of chances that come up in orthodox pictures of the foundations of

Quantum Mechanics – the pictures (that is) that have come down to us from the

likes of Bohr and von Neumann and Wigner – turn out not to be up to the job. On

pictures like those, the chanciness that is so famously characteristic of the behaviors

of quantum-mechanical systems enters into the world exclusively in connectionwith

the act of measurement. Everything whatever else – according to these pictures –

is fully and perfectly deterministic. And there are almost certainly exact micro-

scopic quantum-mechanical wave-functions of the world which are compatible

with there being a rock, traveling at constant velocity, through an otherwise

empty infinite space, and which are sitting on deterministic Quantum-Mechanical

trajectories along which, a bit later on, if no ‘acts of measurement’ take place in the

interim, that rock spontaneously disassembles itself into statuettes of the British

royal family. And it happens to be the case, it happens to be an empirical fact, that

the overwhelming tendency of rocks like that not to spontaneously disassemble

themselves into statuettes of the British royal family has nothing whatsoever to do

with whether or not, at the time in question, they are in the process of being

measured!

And the same thing goes (for slightly different reasons) for the chances that

come up in more precisely formulable and recognizably scientific theories of the

collapse of the wave-function like the one due to Penrose. On Penrose’s theory,

quantum-mechanical chanciness enters into the evolution of the world not on

occasions of ‘measurement’, but (rather) on occasions when certain particular

wave-functions of the world – wave-functions corresponding to superpositions of

macroscopically different states of the gravitational field – obtain. But the worry

here is that there may be exact microscopic quantum-mechanical wave-functions of

the world which are compatible with there being a rock, traveling at constant

velocity, through an otherwise empty infinite space, and which are sitting on

deterministic Quantum-Mechanical trajectories which scrupulously avoid all of

the special collapse-inducing macroscopic superpositions mentioned above, and

along which, a bit later on, that rock spontaneously disassembles itself into

statuettes of the British royal family.
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And the same thing goes (for slightly more different reasons) for the chances that

come up in Bohm’s theory. The only things that turn out to be chancy, on Bohm’s

theory, are the initial positions of the particles. The only sort of fundamental chance

there is in Bohm’s theory is (more particularly) the chance that the initial spatial

configuration of all of the particles in the world was such-and-such given that the

initial quantum-mechanical wave-function of those particles was so-and-so. And it

happens – on Bohm’s theory – that those parts of the fundamental physical laws that

govern the evolution of the wave-function in time, and those parts of the funda-

mental physical laws that stipulate precisely how the evolving wave-function drags

the particles around, are completely deterministic. And it turns out that there are

possible exact wave-functions of the world which are compatible with there

initially being a rock, traveling at constant velocity, through an otherwise empty

infinite space, which (if those laws are right) will determine, all by themselves, that

the probability of that rock’s spontaneously disassembling itself into statuettes of

the British royal family is overwhelmingly, impossibly, high.

And the long and the short of it is that the same thing goes (for all sorts of

different reasons) for the chances that come up in Modal theories, and in the many-

worlds interpretation, and in the Ithaca interpretation, and in the transactional

picture, and in the relational picture, and in a host of other pictures too.

On every one of those theories, the business of guaranteeing that we can safely

neglect the possibility of a rock, traveling at constant velocity, through an otherwise

empty infinite space, doing something silly, turns out to require the introduction of

another species of chance into the fundamental laws of nature – something over and

above and altogether unrelated to the Quantum-Mechanical chances, something

(more particularly) along the lines of the non-dynamical un-quantum-mechanical

probability-distributions over initial microscopic conditions of the world that we

have been discussing throughout the earlier sections of this chapter.

And this seems (I don’t know) odd, cluttered, wasteful, sloppy, redundant,

perverse.

And there is (perhaps) a way to do better. There is a simple and beautiful and

promising theory of the collapse of the quantum-mechanical wave-function due to

Ghirardi and Rimini and Weber that puts the quantum-mechanical chanciness in

differently.

On the GRW theory – as opposed to (say) Bohm’s theory, quantum-mechanical

chanciness is dynamical. And on the GRW theory – as opposed to any theory

whatever without a collapse of the wave-function in it – quantum-mechanical

chanciness turns out to be a chanciness in the time-evolution of the universal

wave-function itself. And on the GRW theory – as opposed to theories of the

collapse like the one due to Penrose – the intrusion of quantum-mechanical

chanciness into the evolution of the wave-function has no trigger; the probability

of a collapse per unit time (that is) is fixed, once and for all, by a fundamental

constant of nature; the probability of a collapse over the course any particular time-

interval (to put it one more way) has nothing whatsoever to do with the physical

situation of the world over the course of that interval.
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And this is precisely what we want. On the GRW theory – as opposed to any of

the other theories mentioned above, or any of the other proposed solutions to the

measurement problem of which I am aware – quantum-mechanical chanciness is

the sort of thing that there can be no outwitting, and no avoiding, and no shutting

off. It insinuates itself everywhere. It intrudes on everything. It seems fit (at last) for

all of the jobs we have heretofore needed to assign to probability distributions over

initial conditions. If the fundamental dynamics of the world has this sort of

chanciness in it, then there will be no microconditions whatsoever – not merely

very few, not merely a set of measure zero, but not so much as a single one – which

make it likely that a rock, traveling at constant velocity, through an otherwise empty

infinite space, will spontaneously disassemble itself into statuettes of the British

royal family.9 And the same thing presumably goes for violations of the second law

of thermodynamics, and for violations of the law of the survival of the fittest, and

for violations of the law of supply and demand.

And so if something along the lines of the GRW theory should actually turn out

to be true, science will apparently be in a position to get along without any

probability-distribution whatsoever over possible initial microcinditions.10 If some-

thing along the lines of the GRW theory should actually turn out to be true, then it

might imaginably turn out that there is at bottom only a single species of chance in

nature. It might imaginably turn out (that is) that all of the robust lawlike statistical

regularities there are in the world are at bottom nothing more or less than the

probabilities of certain particular GRW collapses hitting certain particular sub-

atomic particles.11

Whether or not it does turn out to be true – of course – is a matter for empirical

investigation.

9 For details, arguments, clarifications, and any other cognitive requirements to which this sentence

may have given birth – see chapter seven of my Time and Chance.
10 It will still be necessary (mind you) to include among the fundamental laws of the world a

stipulation to the effect that the world started out in some particular low-entropy macrocondition –

but (in the event that something along the lines of GRW should turn out to be true) nothing further,

nothing chancy, nothing (that is) along the lines of a probability-distribution over those of the

possible microconditions of the world which are compatible with that macrocondition, will be

required.

These considerations are spelled out in a great deal more detail in chapter seven of my Time and
Chance.
11 The theory we are envisioning here will of course assign no probabilities whatever to possible

initial microconditions of the world, and it will consequently assign no perfectly definite

probabilities to any of the world’s possible conditions – microscopic or otherwise – at any time

in its history. What it’s going to do – instead – is to assign a perfectly definite probability to every

proposition about the physical history of the world given that the initial microcondition of the

world was A, and another perfectly definite probability to every proposition about the physical

history of the world given that the initial microcondition of the world was B, and so on. But note

that the probability that a theory like this is going to assign to any proposition P given that the

initial microcondition of the world was A is plausibly going to be very very very very close to the

probability that it assigns to P given that the initial microcondition of the world was B – so long as

both A and B are compatible with the world’s initial macrocondition, and so long as P refers to a

time more than (I don’t know) a few milliseconds into the world’s history.
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Chapter 3

Typicality and the Role of the Lebesgue

Measure in Statistical Mechanics

Itamar Pitowsky

Abstract Consider a finite collection ofmarbles. The statement “half themarbles are

white” is about counting and not about the probability of drawing a white marble from

the collection. The question iswhether non-probabilistic counting notions such as half,
or vast majority can make sense, and preserve their meaning when extended to the

realm of the continuum. In this paper we argue that the Lebesguemeasure provides the

proper non-probabilistic extension, which is in a sense uniquely forced, and is as

natural as the extension of the concept of cardinal number to infinite sets byCantor. To

accomplish this a different way of constructing the Lebesgue measure is applied.

One important example of a non-probabilistic counting concept is typicality,

introduced into statistical physics to explain the approach to equilibrium. A typical

property is shared by a vast majority of cases. Typicality is not probabilistic, at least

in the sense that it is robust and not dependent on any precise assumptions about the

probability distribution. A few dynamical assumptions together with the extended

counting concepts do explain the approach to equilibrium. The explanation though

is a weak one, and in itself allows for no specific predictions about the behavior of

a system within a reasonably bounded time interval.

It is also argued that typicality is too weak a concept and one should stick with the

fully fledged Lebesgue measure. We show that typicality is not a logically closed

concept. For example, knowing that two ideally infinite data sequences are typical

does not guarantee that theymake a typical pair of sequenceswhose correlation iswell
defined. Thus, to explain basic statistical regularities we need an independent concept

of typical pair, which cannot be defined without going back to a construction of the

Lebesgue measure on the set of pairs. To prevent this and other problems we should

hold on to the Lebesgue measure itself as the basic construction.

I. Pitowsky (*)
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3.1 Introduction

Consider a finite but large collection of marbles. When one says that a vast majority

of the marbles are white one usually means that all the marbles except possibly very

few are white. And when one says that half the members are white, one makes

a statement about counting, and not about the probability of drawing a white

marble from the collection. The question is whether non-probabilistic notions

such as vast majority or half can make sense, and preserve their meaning when

extended to the realm of the continuum, especially when the elements of the

collection are the possible initial conditions of a large physical system.

A major purpose of this paper is to argue that the task of expanding combinato-

rial counting concepts to the continuum can be accomplished. In the third section

we shall see that counting concepts, which have a straight-forward meaning in the

finite realm, also have an extension in the construction of the Lebesgue measure.

Moreover, we shall argue that the extension is in a sense uniquely forced, as the

famous extension of the concept of cardinal number to infinite sets by Cantor. To

accomplish this task a different route to the construction of the Lebesgue measure

is taken.

All this relates to the notion of typicality [1–9], introduced to statistical physics

to explain the approach to equilibrium of thermodynamic systems. This concept has

at least three different definitions [9], all entail that a typical property is shared by

a vast majority of cases, or almost all cases. Typicality is not a probabilistic

concept, this is maintained explicitly [3, 7, 8] or implied, at least in the sense that

typicality is robust and “not dependent on any precise assumptions” about the

probability distribution [2]. A recent example ([8], page 9):

“When employing the method of appeal to typicality, one usually uses the language of

probability theory. When we do so we do not mean to imply that any of the objects

considered is random in reality. What we mean is that certain sets (of wave functions, of

orthonormal bases, etc.) have certain sizes (e.g., close to 1) in terms of certain natural

measures of size. That is, we describe the behavior that is typical of wave functions,

orthonormal bases, etc. However, since the mathematics is equivalent to that of probability

theory, it is convenient to adopt that language. For this reason, we do not mean, when using

a normalized measure m, to make an “assumption” of a priori probabilities,” even if we

use the word “probability”.

However, none of the above papers explain in a precise manner why the

Lebesgue measure is a “natural measure of size”, or what is the connection

between the continuum notions of “vast majority of cases” or “typical cases”, and

the equivalent finite notions which are based on simple counting.

A few modest dynamical assumptions combined with the combinatorial notions

do explain the approach to equilibrium. I shall argue that the explanation is a weak

one, and in itself allows for no specific predictions about the behavior of the system

within a reasonably bounded time interval. Whenever predictions of that kind are

made some additional knowledge about the initial condition or dynamics should be

added. This is where probability enters the picture. We shall argue this for a finite

system in the next section, and consider the infinite case in the 4th section.
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Typicality, however, is too weak a concept and it is argued in the last section that

one should stick with the full-fledged Lebesgue measure. Typicality does not quite

cover measurable subsets whose measure is strictly between zero and one, which

we might use in statistical mechanics. Even more seriously, the concept is not

logically closed. For example, consider Galton’s Board which is a central example

in [3, 7]. Knowing that two ideally infinite sequences are typical does not guarantee

that they make a typical pair of sequences whose correlation is well defined and

equal to 0.25. Therefore, the concept of typical sequence cannot be used to explain

basic long term statistical regularities. For this we need an independent concept of

typical pair, which cannot be defined without going back to a construction of the

Lebesgue measure on the set of pairs. Similar observations apply to triples,

quadruples, and all k-tuples; in each case typicality cannot be defined just on the

basis of the former notions.

3.2 Divine Comedy- the Movie

Consider the set of all possible square arrangements of 1,000 � 1,000 black and

white pixels. There are 210
6

such arrangements, we shall call each one a picture, and

the set of all pictures is our phase space. Imagine that upon his arrival in Hell,

a lesser sinner is seated in a movie theater (no air conditioning). The show consists

of the following movie:

1. Pictures are projected on the screen at a constant pace of 25 frames a second.

2. The sequence is deterministic, the director has arranged that each picture gives

rise to a unique successor. We can assume that the dynamical rule is internal, so

that each picture, apart from the first, depends uniquely on the pixel arrangement

of its predecessors.

3. The movie goes through all 210
6

pictures, and then starts again. So the show

is periodic, but the period is extremely long, more than 10301020 years long

(compared with the age of the universe which is less than 1011 years). The phase

space contains all the pictures that were ever shot and will ever be shot,

including photo copies of written texts and frames from movies, provided they

are cast in the format of a thousand by a thousand black and white pixels. Despite

this, the set of pictures that look remotely like regular photographs is very small

compared with the totality of pictures. Worse, the set of pictures that contain

a large patch of black (or white) pixels is very small. These are just combinato-

rial facts: the overwhelming majority of pictures look gray, approximately half

black and half white, with the black and the white pixels well mixed. The

number of pictures with a single color patch of size m decreases exponentially

with m.

The conjunction of the three dynamical rules for the movie with this combinato-

rial observation explains why, in the long run, the movie is extremely boring and
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looks gray. It also explains why, in the long run, the frequency of the pictures that

have more black than white pixels is (a little less than) 0.5.1 We have to be clear

about the meaning of “the long run” here. In the absence of any detail about the

dynamics other than rules 1, 2, 3, we cannot really say how long the long run is. It

may be the case that the movie begins with a 50,000 year-long stretch of cinematic

masterpieces. However, this cannot last much longer and the movie then settles into

almost uniform gray for a vast length of time. Likewise, it is also possible that the

director has chosen a dynamics that puts all the pictures with more black than white

pixels at the end of the movie. In this case the long run may be very long indeed.

Another way of looking at the long run is to notice that, given the nature of the

theater, different spectators arrive at different times. The first picture each new-

comer encounters upon arrival can be taken as an “initial condition”. So the answer

to the question “how long will it take for the movie to settle into almost uniform

gray?” depends on the initial condition. Similarly, the number of to frames it takes

the time average of an “observable” (a function f : 0; 1f g106 ! R) to stabilize

depends on the initial condition.

So far nothing has been said about probabilities, it is clear that the frequencies

are just proportions in a finite set. The explanation for the frequencies is straight-

forward and involves no probabilities. However, the questions that can be answered

are limited. On the basis of the three dynamical rules and counting alone we can

make no specific forecasts. In the best case we obtain a simple theory which is

consistent with what we see.

Probabilistic considerations enter when definite predictions are made, beyond the

long run explanations. Given the deterministic nature of the system, probability in this

context is invariably epistemic. Consider the claim that the picture to be projected two

minutes from now will have more black than white pixels. We can imagine

two extreme reactions: A savant spectator (Laplace’s demon) may have figured out

what the dynamics is, and knowing the present condition, may calculate the pattern of

pixels twominutes from now. The probability he assigns his result is one, or very near

one allowing for a possible mistake. At the other extreme, where most spectators

are, no information beyond the dynamical rules is available. In this case a natural

choice of a prior is the uniform distribution, that is, the counting measure represents

the probability.2 The probability assigned to the event is thus (slightly less) than

0.5. It is easy to invent stories where partial information is available, with the

consequence that the probability can be anything between zero and one.

Now imagine that upon their arrival in Hell heavier sinners are made to watch

a different show. They are seated in front of a large transparent insulated container

1Note that the number of white pixels in a picture may be considered a “macroscopic” observable,

whose measurement requires no detailed knowledge of the pixel distribution. If we assume that

white pixels emit light, and black pixels do not, we just measure the light emitted from a picture,

and compare it with the all white picture.
2 This is not a very smart prior, though. It assumes independence, and therefore blocks the

possibility of learning from experience.
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full of gas at a constant temperature and sulk at it. Nothing much happens of course,

and the question is whether we can explain why this is the case on grounds that are

similar to the movie story. Here a single picture is analogous to one microscopic

state, and the movie as a whole to the continuous trajectory of the microstate in

phase space. However, since there is a continuum of microstates it is not clear how

to expand the finite concepts to the continuum. In particular, it is not clear what is

the meaning of overwhelming majority of microstates, or typical states, or half the

microstates, unlike the finite case where we just use the terms with their ordinary

meaning. The translation of the dynamical rules 1, 2, 3 to the motion of particles is

not obvious either.

Boltzmann had a long and complicated struggle with these issues [10]. In some

writings he was clearly attempting to associate combinatorial intuition, finite in

origin, with continuous classical dynamics. However, he lacked the appropriate

mathematics which had not yet been invented, or at any rate, was not yet widely

known among physicists. By the time it became available combinatorial and

probabilistic consideration were hopelessly mixed up. The idea of typicality goes

a long way to disentangle the two issues.

Putting the dynamical questions aside for a while, the next section is devoted to

the extension of the relevant combinatorial concepts to the domain of the contin-

uum. It is therefore a chapter in the philosophy of mathematics.

3.3 The Road Less Travelled to Lebesgue Measure

Our purpose is to extend concepts such as majority of cases, or one quarter of the
cases, from the finite realm, where their meaning is obvious, to the domain of the

continuum. Extensions of mathematical concepts from one realm to a larger domain

that contains it are not necessarily unique, and may result in a large variety of quite

different creatures [11]. However, in some cases there are very compelling

arguments why one particular possible extension is the correct choice, the most

important example being Cantor’s definition of the cardinality of infinite sets. I

shall argue below that the Lebesgue measure plays a similar role in the extension of

combinatorial counting concepts.

Usually the Lebesgue measure is introduced as part of the modern theory of

integration, the extension of the definition of the integral beyond the limitations of

Riemann’s construction. This is consistent with the historical development, and

answers the requirements of the mathematics curriculum. Here we take another

approach altogether. First note that without loss of generality our efforts can

concentrate on the interval [0, 1] with the Lebesgue measure on it. The reason is

that every (normalized) Lebesgue space is isomorphic to this space, meaning that

there is a measure preserving isomorphism between the two spaces.3 Second, note

3 This general result is due to Caratheodory, see [12, page 16].
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that the interval [0, 1] can be replaced with the set of all infinite sequences of zeros

and ones {0, 1}o, when we identify each infinite zero-one sequence a ¼ (a1, a2,
a3, . . .) with a binary development of a number in [0, 1], that is, a ! P1

j¼1 aj2
�j.

This map is not 1–1, but fails to be 1–1 only on the countable set of rational

numbers whose denominator is a power of 2 (dynamic numbers), hence a set of

measure zero. In sum, our construction of the Lebesgue measure is developed

without loss of generality as an extension from sets of finite 0–1 sequences to

subsets of {0, 1}o.

We start with the finite case, where the movie of the previous section is the

example we want to generalize. We can represent the movie as the set of sequences

of zeros and ones of length one million f0; 1g106 , where each picture is an element

of that set. Consider more generally the set {0, 1}n where n is any natural number,

and A � {0, 1}n. Then the measure mn of A is defined to be

mnðAÞ ¼ 2�njAj; (3.1)

where |A| is the number of elements of A. So that, for example, if mn (A) ¼ 0.5 we

can say that half the sequences of {0, 1}n belong to A. The size measure has an

important invariance property: If m > n then f0; 1gm ¼ f0; 1gn � f0; 1gm�n
, we

can embed every A � {0, 1}n in {0, 1}m by the map

A � f0; 1gn ! A0 ¼ A� f0; 1gm�n � f0; 1gm; (3.2)

so that mnðAÞ ¼ mmðA0Þ:
With these notations we can formulate the claim made in the movie story, that

the overwhelming majority of pictures are approximately half black and half white.

Given a sequence a ¼ (a1, a2, . . . , an) ∈ {0, 1}n, let SnðaÞ ¼
Pn

j¼1 aj be the sum of

the elements of a, and thus the average number of ones in the sequence is

n�1SnðaÞ ¼ n�1
Pn

j¼1 aj: Therefore, the claim is that for a sufficiently large n the

vast majority of sequences satisfy n�1 Sn (a) ~ 0.5. Indeed, the weak law of large

numbers (LLN) states: For every e > 0

mn a 2 f0; 1gn; 1
2
� e � n�1SnðaÞ � 1

2
þ e

� �
>1� 1

4n2e4
; (3.3)

so that the left hand side tends to 1 as n ! 1.4

Students usually encounter this or similar finite versions of LLN in a course on

probability and statistics. In rare cases the teachers make it a point to distinguish the

4 The rate of convergence on the right hand side of (3.3) is better than the historical one derived by

Bernoulli. We need the stronger result (essentially due to Borel) for later purposes. See [13], page 40.
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two meanings of LLN. First there is the familiar one of probability theory

concerning, for example, Bernoulli trials with probabilities p and q ¼ 1 � p for

the two outcomes. In case the distribution is uniform, p ¼ q ¼ 0.5, a formula like

(3.3) obtains. The second meaning, the one used here, concerns counting the

number of elements in the set between the braces in (3.3), or equivalently, calculat-

ing the proportion of such elements in the set of all 0–1 sequences of length n. This
combinatorial meaning is much simpler, and is qualitatively apparent by looking at

Pascal’s Triangle.

The difference between the two meanings of LLN can be better understood when

we consider the conditions for their applications. In the probabilistic case we have

to describe by which process the digits in the sequence are chosen, for example, by

coin tosses with probability p for “heads”. Subsequently, we have to justify the

assumption that coin flips are independent, and finally to explain that LLN is saying

that the probability that the average of “heads” lies close to p is large. By contrast,

in the application of the combinatorial theorem there is nothing to explain, the

process of counting requires no further analysis. As noted, the distinction between

the two meanings of the weak LLN is rarely taught in the class-room or mentioned

in text books. Moreover, this distinction is never mentioned at all when it comes to

the strong LLN, despite the fact that the strong LLN is a consequence of inequality
(3.3) and s-additivity (see below).

Moving to the infinite case, consider the set of all infinite 0–1 sequences {0, 1}o.

Given a finite set A � {0, 1}n we can embed it as a subset of {0, 1}o using the same

method in (3.2) namely

A � f0; 1gn ! F ¼ A� f0; 1g � f0; 1g � :::: � f0; 1go: (3.4)

Call every subset of {0, 1}o that has the form of F in (3.4) finite. Summarizing,

F � {0, 1}o is finite if it has the form F ¼ A � {0, 1} � {0, 1} � . . . , with
A � {0, 1}n for some natural number n. Of course F has infinitely many elements,

but this does not cause confusion as long as the context is clear. Now, define the

measure m of F to be

mðFÞ ¼ mnðAÞ ¼ 2�njAj: (3.5)

As long as only finite subsets of {0, 1}o are considered no real expansion of the

concept of measure is achieved. Note that the family of all finite subsets is

a Boolean algebra, it is closed under complementation and (finite) unions and

intersections. The minimal expansion to infinity is achieved by considering count-

able infinite unions and intersections. Denote the Boolean algebra of finite subsets

of {0, 1}n by F . In other words, F 2 F if F has the form F ¼ A � {0, 1} � {0,

1} � . . . with A � {0, 1}n for some natural number n. The s-algebra B of Borel

subsets of {0, 1}o is defined to be the minimal s-algebra that contains F . This

means that B is the minimal family of subsets of {0, 1}o which contains F , and is

closed under complementation, and under countable unions and countable

3 Typicality and the Role of the Lebesgue Measure in Statistical Mechanics 47



intersections of its own elements, to generate B, one takes countable unions of finite
sets, then countable intersections of the resulting sets, and so on.5

The measure m is extended from F to B using the s-additivity rule: If
E1; E2; . . . ;Ej; . . . 2 B is a sequence subsets, disjoint in pairs, i.e., Ei \ Ej ¼
f for i 6¼ j; then

m [1
j¼1

Ej

� �
¼

X1
j¼1

m Ej

� �
: (3.6)

Usually, one additional “small” step is taken to complete the construction: Given

any Borel set B 2 B such that mðBÞ ¼ 0 add every such subset of B to the Borel

algebra B. The larger s-algebra which is generated after this addition is the

Lebesgue algebra L. The measure m, which is extended to L in an obvious way,

is the Lebesgue measure.6

Why is m the correct expansion to infinity of the size measure in the finite case?

Obviously, the crucial steps in the expansion are the construction of the s-algebra
and the application of s-additivity. As a consequence new theorems can be

formulated and proved, for example, the strong law of large numbers:

m a 2 0; 1f go; lim
n!1 n�1Sn að Þ� � ¼ 1

2

� �
¼ 1; (3.7)

which says that the set defined within the braces in (3.7) is an element of L (in fact

even B) and its Lebesgue measure is 1; hence in almost every infinite 0–1 sequence

half the elements are zero and half one. This is a direct extension of the counting

intuition expressed by the weak LLN (3.3). Indeed, the strong LLN (3.7) is a logical

consequence of the weak law (3.3) in conjunction with s-additivity. This means that

the finite (3.3) and infinite (3.7) express the same idea, and s-additivity is a way to

translate the cumbersome (3.3) to the compact (3.7). Borel, the author of the strong

LLN, actually preferred (3.3), in line with his intuitionistic views. He thought that

(3.7) added nothing except for the illusion that infinite sets of infinite sequences

made sense.

Similar observations can be made with respect to other limit laws that have

familiar infinite formulations in L, but also parallel formulations in F which

together with s-additivity imply the infinite laws. An important example is

the Law of Iterated Logarithm (LIL), a stronger and more subtle law than (3.7),

which implies, among other things, that for almost every a 2 0; 1f go the sign of n�1

5 The construction of B is achieved by transfinite induction over the two operations, countable

union and then countable intersection, all the way to the first uncountable ordinal.
6 Further extensions of the Lebesgue measure are possible. The validity of the strong version of the

axiom of choice entails the existence of non-measurable sets, that is, C � 0; 1f go such that C =2L.
We can add some of those to L and extend the measure to them [14]. With this the measure is no

longer regular (see below). Moreover, there are models of set theory, with weaker principles of

choice, in which every subset of 0; 1f go is Lebesgue measurable [15].
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Sn (a) � 0.5 oscillates infinitely often as n ! 1. Sometimes the infinite law is

more easily discovered than its finite parallel which may be even hard to formulate.

In any case one can prove the regularity of m, that every set in L can be

approximated by a set in F to an arbitrary degree.

Theorem 1. Let E 2 L be any Lebesgue measurable set and let e> 0; then there
is Fe 2 F such that m E nFeð Þ [ FenEð Þ½ �< e:

The proof is in Appendix 1 (note that the theorem becomes trivial when

m ðEÞ ¼ 0 or m ðEÞ ¼ 1Þ. Therefore, the expansion of the measure from the finite

to the infinite domain conserves the meaning of the counting terms. We can, in

principle, replace any set in E 2 L by a finite set Fe 2 F which is arbitrarily close

to E. If direct counting shows that Fe comprises 0.75 of the cases, then so does E up

to a small error.7 Moreover, the Lebesgue algebra L is the maximal extension of F
for which theorem (1) is valid (see footnote 6). This seems to me to be a compelling

argument for why L is the correct extension of F , and why the Lebesgue measure m
on L is the correct extension of the combinatorial counting measure to infinity. It is

also a compelling argument for why the notions of s-algebra and s-additivity are

the appropriate tools in extending the combinatorial measure to infinity.

Let us come back to the issue of the Lebesgue measure and probability. As noted

before only in rare cases do teachers make a point of distinguishing the meanings of

weak LLN as a combinatorial and as a probabilistic statement. As for the strong

LLN and other similar theorems, teachers and textbooks alike never make the

distinction, and invariably interpret the Lebesgue measure in this context as proba-

bilistic. There is no intrinsic reason for this, the application of s-additivity has no

probabilistic qualities. The reason is more sociological: For the pure mathematician

there is no difference between the uniform probability distribution and the combi-

natorial measure, since their formal properties are one and the same. At a certain

point in time mathematicians started to use the probabilistic language exclusively,

and fellow scientists, physicists in particular, followed in their footsteps. But there

is all the difference in the world between the mathematicians who are using the

measure probabilistically, as a mere formality, and the physicists who are commit-

ting themselves to an application of probability as part of a theory of reality.

This has not always been the case, even for mathematicians! For example, in the

struggle to obtain the correct estimation of frequency oscillations (LIL- the law of

iterated logarithm), bounds were suggested by Hardy and Littlewood in 1914. They

viewed the problem as number theoretic, concerning the binary development of real

numbers between zero and one, and related to Diophantine approximation. Even in

his final formulation of LIL from 1923 (for the uniform case) Khinchine was using

the number-theoretic language, and only a year later switched to probability [16].

Extending the notion of vast majority from the finite to the infinite realm results

in typical cases. None of these concepts is intrinsically probabilistic. I believe that

7Actually Fe ¼ A � 0; 1f g � 0; 1f g � . . . � 0; 1f go with A � 0; 1f gn for some integer n,
and we are counting the elements of A.
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this is an important step towards removing the host of problems associated with

probability distributions over initial conditions. As an example consider a recent

application that does not even involve dynamics. Let a quantum system (“the

universe”) be associated with a finite dimensional Hilbert space H, with a large

dimension D. Now, consider a small subsystem of dimension d � D that

corresponds to a subspace H1. We can write H ¼ H1 	H2, where H2 is the

Hilbert space of the environment with a large dimension d�1D. The set of pure

states inH is the unit sphere ofH; let m be the normalized Lebesuge measure on it.

Each pure state induces a mixed relative state on the small subsystem. The

following recent result was proved independently in [17, 18]: Almost all pure states
in H induce on H1 a relative state which is very close, in the trace norm, to the
maximally mixed state on H1, that is, d

�1Id with Id the unit operator on H1.

One possible reading is that with probability one the state of the large system

induces the near uniform state on the subsystem.8 A natural question is, “What does

probability mean in this context?” Assume the large system is a model of the

universe; it began in one pure state, and after time t it is again in one particular

pure state. This state has been deterministically developed from the initial condition

by the unitary time transformation. So the question is, “What do we mean by saying

that the initial condition of the universe was picked from a uniform rather than some

other probability distribution?” The only sensible answer is that this statement

represents the epistemic probability of an agent who has no knowledge at all

about the initial condition. However, this agent cannot be a physicist, who usually

knows something about the present and earlier (macroscopic) states of the universe.

In the typicality approach, by contrast, the result simply means that the vast

majority of pure states of the big system have the property in question, a combinato-

rial claim. This claim gives rise to a weak, but still informative conditional statement:

If the universe began from a typical state then equilibrium should be a widespread

phenomenon. A simple assumption (typicality) explains a large set of observations.

3.4 Dynamics

Our aim is to discuss the dynamical conditions that are the infinite parallels of the

constraints 1, 2, 3 we have imposed on the movie. To fix notations let G denote the

energy hypersurface of the closed system under consideration. If x0 2 G is a point,

it can be considered as a possible initial condition, let x0(t) denote the trajectory

starting from this point in G. Alternatively, if t is fixed x0(t) is the point to which

x0 travels after time t. The Lebesgue measure on G will be denoted by m, and we

assume it is normalized (we ignore the difficulties arising from a non compact G,
which are settled by known techniques). The s-algebra of the Lebesgue measurable

8 See [17]. In a later important dynamical extension of this result the authors adopt the typicality

point of view [19].
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sets will again be denoted by L. If E 2 L, define Et to be the time translation of E,
that is, Et ¼ {x0(t); x0 ∈ E,} for 0 � t < 1.

The second assumption 2 corresponds to the determinism inherent in classical

mechanics and already reflected in the notation. The classical dynamical rule

closest to assumption 1 is the conservation of energy. In the case of an ideal gas

the velocities of the individual particles are varied but the average (square of the)

particle’s speeds remains constant (by analogy, the pace of the movie is constant).

Energy conservation, that is, the Hamiltonian character of the system, also

guarantees that the dynamics is measure preserving: m(E) ¼ m(Et). In the movie

case measure preservation is trivial.

Condition 3 corresponds to ergodicity. Historically, a major difficulty was

associated with the formulation of this condition, Boltzmann mistakenly thought

that a path can fill the whole energy hypersurface in phase space, so that every state

will be visited. However, this requirement contradicts basic topological facts.9 It

took a long struggle until the modern version of the ergodic condition was

formulated, and the ergodic theorems subsequently proved [16]. Instead of referring

to individual points visited by the path, the condition takes (measurable) set of

points, and puts a constraint on the way the set fills up the space. Let E be

a measurable subset of the energy hypersurface in phase space. Then E is invariant
if for some t > 0 we have Et � E. The system is ergodic if all invariant sets have

measure zero or one.

In the finite case the dynamical rules provide an explanation why, in the long

run, the movie is extremely boring and looks almost always gray. They also explain

why, in the long run, the frequency of the pictures that have more black than white

pixels is (a little less than) 0.5. This corresponds, in the infinite case, to the identity

of the long run averages and the phase space averages of thermodynamic

observables, a highly non-trivial fact which is the content of the ergodic theorems.

In both cases the long run may be very long, in the infinite case there is no a priori

bound on its length. This is the explanation why the system is at maximal entropy

most of the time, or why about half the time the pressure in the left half of the

container is less (even very slightly so) than in the right half.

However, there seems to be a difference between the finite and infinite case here.

Given a thermodynamic observable, only typical initial conditions result in the

identity of its phase space and long time averages. This may seem like a major

difference from the finite case in which all initial conditions behave properly.

However, a small amendment to the movie story can lead us to the conclusion

that the movie satisfies condition 3 only for a vast majority of initial conditions, not

all. To see this imagine that the set of pictures is divided into two disjoint subsets,

one very small containing 20 pictures and the other containing the rest. When

a movie begins with a picture in the small subset it goes through a small loop,

9Dimension is a topological invariant, as proved by Brouwer in 1911. Partial results concerning

the non-existence of a homeomorphism between the real line and higher dimensional real spaces

existed in Boltzmann’s time. For example, L€uroth in 1878.
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visiting all 20 pictures and starts again. Similarly for an initial condition in the

second set, but then it covers all the pictures except 20. In both cases determinism is

satisfied. We can say that for the vast majority of initial conditions the time and

space averages of “thermodynamic observables”, functions f :f0; 1g106 ! R, are
(very nearly) the same.

It must be emphasized that the sense of explanation obtained in this manner is

significant but limited. As a result of the unbounded nature of the long run, and in

the absence of more information, there is no way we can combine the dynamical

rules with the combinatorial facts to yield a definite prediction, for example, about

what will take place 2 days from now. The kind of explanation we do have is

weaker, and has the conditional form: “If the initial condition is typical, then. . . ”
The assumption of typicality explains why the (calculated) space averages of

observables are the same as the measured long time averages (which stabilize

quickly in practice). Thus, assuming we are on a typical trajectory, one of a vast

majority, explains much of what we actually see.

So far the explanation relies on the dynamical rules and the observations derived

from the combinatorial nature of the Lebesgue measure. One may object to the

latter point on the ground that the measure here does not seem to be “the same” as

the measure on the set of infinite 0–1 sequences, being a Lebesgue measure on

a Euclidean manifold of high dimension. This objection can be answered on two

levels, the first is purely formal. As indicated before, all Lebesgue spaces which are

defined on compact subsets of real or complex Euclidean spaces are isomorphic

(after normalization of the measure) to the interval [0,1] with the Lebesgue measure

on it. Therefore, they are also isomorphic to the space of all 0–1 sequences,

and every measurable set E � G corresponds to a measurable set bE � f0; 1go,
with the same measure, and bE can be approximated by a finite set F 2 F as

indicated in theorem 1.

On a deeper level there often exists a connection between ergodic systems

and the sequence space when we apply a mapping of the ergodic system, includ-

ing its dynamics, to the set two sided infinite 0–1 sequences [12, page 274]. This

space, denoted by {0, 1}z, is equipped with the (uniform) Lebesgue measure, and its

elements can be written as a ¼ ð . . . ;a�2; a�1; a0; a1; a2; . . .Þ, with ai 2 f0; 1g;
i ¼ 0;
1;
2; . . . . To perform the mapping between the thermodynamic system

and this space one has to replace the continuous time variable by a discrete

parameter. It turns out that many important ergodic systems, including the few

physically realistic systems for which ergodicity was actually proved, are isomor-

phic as dynamical systems to the Bernoulli shift on {0, 1}Z, defined by10

ðSaÞi ¼ ai�1. These results were proved in a sequence of papers, mainly by

Orenstein and his collaborators [12]. Ergodic systems with this property include

the standard model of the ideal gas (hard-sphere molecules in a rectangular box),

10 The reason why the double sided sequence space is used is to make the Bernoulli shift well

defined and invertible.
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Brownian motion in a rectangular region with reflecting boundary, geodesic flows

in hyperbolic and many other spaces.

The connection with the combinatorial character of the measure is even more

transparent in this case. For example, the Ergodic theorem for {0, 1}ℤ with the shift

entails the strong LLN. To see this let A � f0; 1gZ be a measurable set then the

ergodic theorem for the Bernoulli shift states,

m a 2 f0; 1gZ; lim
n!1

1

n

Xn
i¼1

wAðSjðaÞÞ ¼ mðAÞ
( )

¼ 1: (3.8)

Here wA is the indicator function of A, so that wA (a) ¼ 1 if a 2 A, and wA(a) ¼ 0

otherwise. Now take A ¼ fa 2 f0; 1gZ; a0 ¼ 1g, then m(A) ¼ 0.5 andPn
i¼1 wAðSjðaÞÞ ¼

Pn
i¼1 ai, and we obtain the strong LLN as a special case.

Probabilistic considerations enter when definite predictions are made, beyond

the weaker long term explanations that are possible on the basis of ergodicity.

Given the deterministic nature of the system we shall take probability in this context

to be epistemic, although this may be disputed [7, 20]. The assignments of

probabilities are based on knowledge about the system that may go beyond the

simple rules we have considered. Some-times, in the absence of any knowledge

about the initial condition and the dynamics beyond ergodicity, the uniform

Lebesgue measure can serve as the degree of knowledge regarding the system.

Often more knowledge is available, which can be theoretical, but frequently

concerns the initial condition and is based on experience. For example, we may

know something about the rate with which the dynamics is moving to mix

the molecules. Usually the rate cannot be derived directly on the basis of the

interactions between the particles. Higher theories such as fluid dynamics may be

involved, together with experimental data. If a gas is prepared in a container with

a divider, and the pressure on the left hand side much higher than the pressure on the

right, then upon removing the divider the pressures will equalize very swiftly. By

contrast, when we drop ink into water we know that it will take much longer to mix

uniformly with the medium. Therefore, if we where to bet whether the pressures on

both sides will equalize 20 s from now, the answer will be yes with probability close

to 1, but the probability that the ink will be well mixed within 20 s is near zero. This

does not follow from ergodicity which just explains why the system will eventually

arrive at equilibrium and stay there most of the time.

We also know that in all recorded human history the reverse of these processes

has never seen reported. Consequently, the probability assigned to a spontaneous

large pressure differences occurring within the next week (or month, or year. . .) is
zero or very nearly so. This observation too cannot be derived logically from the

dynamical and combinatorial rules. Given ergodicity, almost all initial conditions

will take the system arbitrarily near every possible state. How do we know that the

creation of a spontaneous large pressure difference is not around the corner?

We do know from combinatorial considerations that non equilibrium states are

very rare, but this condition is insufficient to derive the probabilistic conclusion,
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because we do not know what the trajectory is, and have no clue about the way rare

states are distributed on it. The movie analog is a photograph of the Empire State

Building appearing suddenly in the midst of gray pictures. This photograph must

appear sometime, but in the absence of detailed knowledge of the dynamics one

cannot tell when. However, after sitting 1010 years and watching gray pictures one

may assign the sudden pop up of the Empire State Building in the next week a very

small probability. This would not be the case after a long stretch of pictures of

buildings. By analogy, we assign zero probability to the creation next week of

a spontaneous large pressure differential because this has never happened, and not

just because we know abstractly that this is an atypical event.11

3.5 Troubles with Typicality

The problem is that typicality is too restrictive a notion, and the reasons are twofold,

physical and logical. Physically, there are good reasons to deal with measurable sets

of intermediate size. For example, the set of micro states for which the pressure in

the left half of the container is equal or less than the pressure in the right comprise

0.5 of all the states. Logically, we shall see that the concept of typicality lacks

closure. For example, even after typical points have been “fixed” one cannot use

this stipulation to define typical pairs of points, that is, a pair of typical points is not
necessarily a typical pair of points. To define the latter, one has to go back to the

Lebesgue measure on the set of pairs (which is defined in terms of the Lebesgue

measure on the set of singletons) and redefine typicality for pairs.

As for the physical restriction, one important case is that of smooth classical

Hamiltonian systems which are not ergodic, but only measure preserving. By

Birkhoff’s theorem convergence of the time average of a thermodynamic observ-

able for typical initial conditions is guaranteed, but the result is not identical to the

space average. In this case the phase space is partitioned into invariant sets of

positive measure, such that the restriction of the dynamics to each element in the

partition is ergodic (after a suitable renormalization). By KAM’s theorem many

Hamiltonian systems are not ergodic, although the partition is often composed of

one large invariant set and other much smaller elements. (For such systems the

notion of e ergodicity has been introduced [22]). Even in this case one has to say

something about sets of initial conditions with measure smaller than 1, which

cannot even be formulated without the full Lebesgue measure.

The logical point is that exchanging the full Lebesgue measure for the weaker

notion of typicality does not even accomplish the task of explaining the long run

statistical regularities. In order to provide such an explanation one has to introduce

an infinite sequence of logically independent concepts of typicality, none of which

11A similar point about the role of induction in statistical mechanics is made in [21].

54 I. Pitowsky



are definable in terms of the former. Consider Galton’s board, which serves as

a central example in the papers by D€urr [3] and Maudlin [8]. The first notion

introduced is that of a typical initial condition, which explains, e.g., the stability

of relative frequencies of going left and going right. Next, we must introduce a new

notion of typical pairs of initial conditions to explain the stability of the frequency

of the correlated sequence obtained from two runs of the board, then we have to

introduce a new notion of typical triples to explain the stability of triple correlated

sequences obtained from three runs, and so on. Each one of these notions is

logically independent of the former notions, that is, none of them can be defined

on the basis of the previous concepts of typicality. In each case one has to

reintroduce the fully fledged Lebesgue measure (respectively, on the interval of

initial conditions, the Cartesian product of the interval by itself, the three–fold

Cartesian product, and so on), and only then, in each case separately, throw away

the ladder as it were, and introduce the new notion of typicality in the manner

described by Maudlin for the singleton case.

One consequence of this state of affairs is that being typical is not an intrinsic

property of a point even for a single dynamical system, but is a property induced by

its relations to other points. Moving to the system comprising the whole universe

(which after all has only one initial state) does not solve the problem. In this case it

also arises in the context of the typicality of idealized sequences of empirical

observations, the correlations or independence of two such sequences, and of

triples, etc. Even if we observe only one (ideally infinite) typical sequence, the

problem arises with respect to its subsequences and their relations.

To see this consider a pair of a;b 2 f0;1go and denote a � b ¼ ða1b1; a2b2;
a2b2; :::Þ. We know that typically a � b is a sequence whose averages satisfy 1

n �Pn
i¼1 aibi ! 0:25: But does this fact follow if we assume that a and b are typical?

The negative answer follows from

Theorem 2. Let A � f0; 1go be any measurable set with mðAÞ> 1
2
; then there are

a;b 2 A such that a � b has a divergent sequence of averages.
The proof is in Appendix 2. This means that no matter what the set of typical

sequences is, there will always be pairs of typical sequences whose correlation is

not even defined. One might object on the ground that the set of such bad pairs has

measure zero, and the set of typical pairs has measure one. However, this refers to

the measure on the Lebesgue space of pairs. The set of typical pairs does not have
the form A � A with A 2 L, and m(A) ¼ 1. By theorem 2 any set of the form A � A
contained in the set of typical pairs has at most measure mðAÞ � 0:5: Therefore, to
be able to speak about typical pairs one has to construct first the Lebesgue measure

on the set of pairs f0; 1go � f0; 1go, or alternatively [0, 1] � [0 1], and only then

define typicality for pairs. One cannot do it by relying on the already established set

of typical points. This observation can be extended to triple, quadruple correlations,

and so forth. In the case of triples the equivalent theorem applies when mðAÞ> 1
3
,

and so on, for k-tuples when mðAÞ> 1
k In all these cases the notion of typicality

cannot be derived from the lower dimensional ones.
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As noted this also means the being typical is not an intrinsic property of an initial

condition, not even for a single fixed system, but depends on the relation between

the point and other possible initial conditions. The way suggested here to avoid this

difficulty is to use the fully fledged Lebesgue measure, in its combinatorial inter-

pretation. In this case subsets of measure one are just special cases. I think all the

advantages of the concept of typicality that were pointed out in the literature are

preserved, but the difficulties are avoided.
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Appendix 1: Proof of Theorem 1

Theorem 1. Let E 2 L be any Lebesgue measurable set and let e>0; then there is
Fe 2 F such that m½ðEnFeÞ [ ðFenEÞ�<e:
Proof. Consider first a Lebesgue measurable subset E � ½0; 1�: By the regularity of
the Lebesgue measure (see [23], page 230) given any e>0 there is an open set U,
with E � U and mðUnEÞ< e

2
: The family of open intervals with dyadic endpoints

forms a basis for the usual topology on [0, 1] (recall that a dyadic number is

a rational whose denominator is a power of 2). Thus, we can represent U as

a disjoint countable union U ¼ [1
j¼1ðcj; djÞ; where cj and dj are dyadic, and mðUÞ ¼P1

j¼1 ðdj � cjÞ: By choosing a sufficiently large natural number Nwe can make sure

that U0 ¼ [N
j¼1ðcj; djÞ � U satisfies mðU0Þ>mðUÞ � e

2
: Now define U00 to be the set

obtained from U0 by adding the endpoints of each interval: U00 ¼ [N
j¼1ðcj; djÞ. Since

we have added just finitely many points the measure of U00 is the same as that of U0,
and therefore, m½ðEnU00Þ [ ðU00nEÞ�<e:
Now apply the map

P1
j¼1 aj2

�j ! ða1; a2; a3; . . .Þ which takes real numbers in [0,

1] to their sequence of binary coefficients in f0; 1go. Dyadic rationals have two

binary developments, one ending with an infinite sequence of zeroes, and the other

ending with an infinite sequence of ones. Adopt the convention that in case of

a dyadic rational d, the map takes d to its two binary sequences. Since the set of

dyadic numbers has measure zero the map is measure preserving. The set E is then

mapped to a subset of f0; 1gowhich we shall also denote by E. The set U00 is
mapped to a finite subset of f0; 1go which we will denote by Fe 2 F . The reason is

that every closed interval with dyadic endpoints is mapped to a finite set, for

example, 1
4
; 5
8

� 	 ! fð0; 1; 0Þ; ð0; 1; 1Þ; ð1; 0; 0Þg � f0; 1g � f0; 1g � . . . � f0; 1go; :
and U00 is a finite union of such intervals. This completes the proof.
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Appendix 2: Proof of Theorem 2

This theorem and proof appeared first in [24] as part of a criticism of the frequency

interpretation of probability.

Theorem 2. Let A � {0, 1}o be any measurable set with mðAÞ> 1
2
, then there are

a, b ∈ A such that a�b has a divergent sequence of averages.
Proof. Denote by a � b the XOR of the elements a and b, in other words (a � b)i ¼
ai + bi (mod 2). We first show that mðAÞ> 1

2
implies that A � A ¼ {a � b; a, b

∈ A} ¼ {0, 1}o. Indeed if c =2 A � A, then (c � A) \A ¼ f, where c � A ¼ {c �
a; a∈ A}. Otherwise, if d∈ (c � A) \ A then d∈ A and d ¼ (c � a) for some a∈
A. Hence c ¼ (d � a)∈ A � A, contradiction. Therefore, (c � A) \ A ¼ f, but this
also leads to a contradiction since mðc � AÞ ¼ mðAÞ> 1

2
, hence A � A ¼ {0, 1}o.

We can assume without loss of generality that all elements of A have a conver-

gent sequence of averages. This is the case because the set of elements of {0, 1}o

whose averages diverge has measure zero. Let c ∈ {0, 1}o be some sequence with

a divergent sequence of averages. Then by the above argument there are a, b ∈ A
such that c ¼ (a � b), that is ci ¼ ai + bi (mod 2) ¼ ai + bi � 2aibi and therefore

1

n

Xn
i¼1

ci ¼ 1

n

Xn
i¼1

ai þ 1

n

Xn
i¼1

bi � 2

n

Xn
i¼1

aibi:

The sequence on the left diverges, and the first two sequences on the right

converge. Hence, n�1
Pn

i¼1 aibi diverges. This completes the proof.
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Chapter 4

Typicality and Notions of Probability in Physics

Sheldon Goldstein

Abstract A variety of notions of probability, playing different roles, are relevant in

physics. One crucial notion, typicality, while not genuinely probabilistic at all, is

arguably the mother of them all.

4.1 Introduction

There are lots of different words for probability. Here are some: chance, likelihood,

distribution, measure. There are also a variety of different notions of probability:

• Subjective chance (Bayesian?)

• Objective chance (propensity?)

• Relative frequency, empirical (pattern)

• A mathematical structure providing a measure of the size of sets (Kolmogorov)

Sometimes these are presented as competing notions. That’s not my intention

here. I wish only to emphasize at this point that when one speaks of probability it is

a good idea to be clear about which notion one has in mind.

My main concern in this paper, however, is with typicality, a notion that, while

extremely important for understanding probability, is not really a notion of proba-

bility at all. The logic of typicality is this. Many important phenomena, in physics

and beyond, while they cannot be shown to hold without exception, can be shown to
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hold with very rare exception, suitably understood. Such phenomena are said to

hold typically; a proof that they do so is a typicality proof.

Regarded as mathematics, such results can be very interesting, with prizes

awarded for their achievement. Of course the practical relevance of such results

is that if some observed behavior has been shown to hold with rare exception, one

should not be surprised if no exceptions are seen and one will tend to feel justified in

regarding the behavior as explained.

It must be admitted, however, that as a matter of logic such practical conclusions

don’t follow. If exceptions exist there is nothing that would preclude the excep-

tional cases from being the only cases we ever encounter. Nonetheless, science

could make little if any progress without invoking appeals to typicality, at least

implicitly.

Here is an important example of a typicality statement:

One should not forget that the Maxwell distribution is not a state in which each molecule

has a definite position and velocity, and which is thereby attained when the position and

velocity of each molecule approach these definite values asymptotically. . . . It is in no way
a special singular distribution which is to be contrasted to infinitely many more non-

Maxwellian distributions; rather it is characterized by the fact that by far the largest number

of possible velocity distributions have the characteristic properties of the Maxwell distri-

bution, and compared to these there are only a relatively small number of possible

distributions that deviate significantly from Maxwell’s. Whereas Zermelo says that the

number of states that finally lead to the Maxwellian state is small compared to all possible

states, I assert on the contrary that by far the largest number of possible states are

“Maxwellian” and that the number that deviate from the Maxwellian state is vanishingly

small. (Ludwig Boltzmann, 1896 [1])

Notice that this statement of Boltzmann involves probability (“distribution”) and

typicality. Boltzmann is saying here that states with Maxwellian probabilities are

typical (“by far the largest number of possible states are ‘Maxwellian’ . . . the
number that deviate from the Maxwellian state is vanishingly small”). This

illustrates an important source of confusion in this business: that typicality

statements often concern probabilities, making it all too easy to conflate typicality

and probability.

4.2 History

There has been a revival of interest in typicality among physicists and philosophers

in recent years. However the recognition of the importance of the notion is not new.

That goes back to the very beginnings of probability theory in the eighteenth

century. What I shall describe here of the relevant ancient history I’ve learned

from Glenn Shafer [2, 3]. Notice in what follows how some of the founding fathers

of probability theory struggled to finesse the gap between an event having

extremely small size as measured in some natural way and the event being impos-

sible, or certain to fail.
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4.2.1 Ancient History (<1950)

• Jakob Bernoulli, in his great work Ars Conjectandi (1713), writes that “Because

it is only rarely possible to obtain full certainty, necessity and custom demand

that what is merely morally certain be taken as certain.”

• Antoine Cournot (1843) writes that “A physically impossible event is one whose

probability is infinitely small. This remark alone gives substance—an objective

and phenomenological value—to the mathematical theory of probability.” This

later became known as Cournot’s principle.
• According to Paul Levy (�1919), Cournot’s principle is the only connection

between probability and the empirical world. He calls it “the principle of the

very unlikely event.”

• Hadamard refers instead to “the principle of the negligible event.”

• Kolmogorov, in his Foundations of Probability (1933), Chapter 1, }2, The
Relation to Experimental Data, writes that “Only Cournot’s principle connects

the mathematical formalism with the real world.”

• Similarly Borel (�1948) writes that “The principle that an event with very small

probability will not happen is the only law of chance.”

4.2.2 Modern History (>1950)

Notice that while the probablists did not refer to “typical” or “typicality,” that

notion, or something very much in its vicinity, is what they had in mind. In more

recent years the “t”-word has been used quite frequently, most often, curiously,

in connection with probability in quantum mechanics. I hope the following quota-

tions help convey the idea of the method of appeal to typicality.

In order to establish quantitative results, we must put some sort of measure (weighting) on

the elements of a final superposition. This is necessary to be able to make assertions which

hold for almost all of the observer states described by elements of the superposition.

We wish to make quantitative statements about the relative frequencies of the different

possible results of observation—which are recorded in the memory—for a typical observer

state; but to accomplish this we must have a method for selecting a typical element from

a superposition of orthogonal states. . . .
The situation here is fully analogous to that of classical statistical mechanics, where one

puts a measure on trajectories of systems in the phase space by placing a measure on the

phase space itself, and then making assertions . . .which hold for “almost all” trajectories.

This notion of “almost all” depends here also upon the choice of measure, which is in this

case taken to be the Lebesgue measure on the phase space. . . .Nevertheless the choice of

Lebesgue measure on the phase space can be justified by the fact that it is the only choice

for which the “conservation of probability” holds, (Liouville’s theorem) and hence the only

choice which makes possible any reasonable statistical deductions at all. (Hugh Everett, III,

1957 [4], page 460)

Then for instantaneous macroscopic configurations the pilot-wave theory gives the

same distribution as the orthodox theory, insofar as the latter is unambiguous. However,
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this question arises: what is the good of either theory, giving distributions over a hypotheti-
cal ensemble (of worlds!) when we have only one world.

. . .a single configuration of the world will show statistical distributions over its different

parts. Suppose, for example, this world contains an actual ensemble of similar experimental

set-ups. . . . it follows from the theory that the ‘typical’ world will approximately realize

quantum mechanical distributions over such approximately independent components. The

role of the hypothetical ensemble is precisely to permit definition of the word ‘typical.’

(John S. Bell, 1981 [5], page 129)

4.3 Typicality in Statistical Mechanics

If there is a branch of physics in which typicality is most prominently used it is

probably statistical mechanics. And the most famous use of typicality in statistical

mechanics concerns Boltzmann’s equation. Moreover one could scarcely have

a better illustration of the point of and the need for a typicality argument than in

the transition from Boltzmann’s presentation of 1872 to his presentation in 1877.

Boltzmann (1872) claimed that (at low density) the state of a gas must evolve in

accord with his equation. Boltzmann (1877) claimed, in effect, only that it would

typically do so. Here are some details.

Boltzmann’s equation is an evolution equation for a function f (q, v, t), where
q is a point in physical space, v is a velocity, and t of course is time. Boltzmann

analyzed the behavior of a certain function of q and v that provides an efficient

summary of the most important details of the state of a gas, namely the empirical

one-partical distribution remp (q, v) � fX (q, v), giving basically the density of

particles of the gas that are at or near q with velocity more or less v.

Here, for an N-particle system, X ¼ (q1, v1,. . ., qN, vN) is the point in the

N-particle phase space describing the detailed state of the gas. The subscripts

“emp” and X on r and f are to emphasize that fX is indeed an empirical distribution,

determined by the phase point X, and not a probability distribution that describes

a random system or a hypothetical ensemble of systems. As the phase point X(t)
evolves according to the Hamiltonian dynamics for the system, remp evolves

accordingly: remp(q, v, t) � fX(t)(q, v).
What Boltzmann claimed to have shown in 1872 is that for a low density gas it must

be the case that fX(t) (q, v) is well approximated by a solution f (q, v, t) to Boltzmann’s

equation. On the basis of an analysis of that equation using his H-function

Hðf ðq; v; tÞÞ ¼
ð
f ðq; v; tÞlog f ðq; v; tÞdqdv

Boltzmann then argued that for large times t, f (q, v, t)—and hence also fX(t) (q, v)—
will approach the distribution that minimizes H, namely the equilibrium distri-

bution—the Maxwellian distribution—feqðq; vÞ / e�
1
2
mv2=kT , where k is Boltzmann’s

constant and T is the temperature of the gas.
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Because of Loschmidt’s reversibilty objection, by 1877 Boltzmann had realized

that his earlier claim could not be right. He concluded that he had shown, not that

fX(t) (q, v) is, approximately, a solution to Boltzmann’s equation for all initial phase

points X(0), but only for most of them. More precisely, he concluded that he had

shown that given any distribution function f (q, v), even one that is non-Maxwellian

and that does not correspond to equilibrium, fX(t) will approximate a solution to

Boltzmann’s equation for the overwhelming majority, suitably understood, of initial

phase points for which fX(0) is (approximately) f—the overwhelming majority of

phase points in the macrostate defined by f. In other words, in 1877 Boltzmann

argued that the evolution of a gas in accord with Boltzmann’s equation, while not

inevitable, is typical. (Boltzmann’s proof was not rigorous. Almost a century later,

a rigorous typicality proof, valid only for short times, was found byOscar Lanford [6].)

More important for our understanding of the origin of thermodynamics, in

1877 Boltzmann arrived at a far deeper appreciation of why a gas will tend to

approach a state of equilibrium, in which nothing seems to change. Crucial to this

understanding is the notion of macrostate, alluded to above. The macrostate

Gf ¼ {X ∈ GE | fX (q, v) � f (q, v)} corresponding to f is the set of phase points,

in the energy surface GE of phase points having energy E, that are all macroscop-

ically like f—in the sense that the macro-variable fX is approximately f. The phase
points in the same macrostate are thus very similar from a macroscopic perspective.

The most important fact about these macrostates, recognized by Boltzmann,

concerns their sizes as measured using the natural volume measure on the phase

space, Lebesgue or Liouville measure. It is, in fact, this natural volume measure that

provides a sufficiently precise notion of “overwhelming majority” for his typicality

claim.

Here are two depictions of the partition of GE into macrostates (corresponding to

different choices of f):

One special macrostate is singled out here by “Eq,” indicating the equilibrium

macrostate Gfeq , which is larger than all the others. The crucial fact is that the

depiction on the left is utterly misleading, giving a very wrong sense of the relative

sizes of the macrostates.

The depiction on the right is much better. But in fact the equilibrium macrostate is

so verymuch larger than the other macrostates that no picture could adequately depict

the difference in sizes. In fact, as Boltzmann showed, at low density |Gf | ~ e�NH(f). For

a macroscopic system, with particle number N ~ 1020 or greater, this means that

the overwhelming majority of the points of GE are in Gfeq , the ratio of the size of
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a non-equilibrium macrostate to that of the equilibrium macrostate being ridiculously

small, of order 10�1020 .

The depiction on the right illustrates another one of Boltzmann’s typicality

results—that equilibrium is typical: the overwhelming majority of the phase points

X in the energy surface GE correspond to a gas having equilibrium properties, in the

sense that fX is approximately feq. This typicality result, which is easy, should not be
confused with the typicality result for Boltzmann’s equation, which is very hard.

For the former, “overwhelming majority” is relative to the entire energy surface,

while for the latter it is mainly relative to the incredibly small non-equilibrium

macrostates.

Be that as it may, the estimates associated with the depiction do in fact provide

us with a good rule of thumb for the relative size of atypical events of all sorts in

statistical mechanics: corresponding to the ratio 10�1020 . You should at least not be

surprised when events corresponding to sets of possibilities that are so small aren’t

observed.

Besides the two typicality results that I’ve mentioned there are many others in

statistical mechanics—either proven already or awaiting a rigorous proof. Some

examples are the second law of thermodynamics, the derivation of hydrodynamic

equations, approach to equilibrium in quantum mechanics, and the universality of

the canonical ensemble in quantum mechanics (canonical typicality). And outside

of statistical mechanics there is, for example, the origin of quantum randomness in

Bohmian mechanics, to which I now turn.

4.4 Bohmian Mechanics

Bohmian mechanics [7–10] is arguably the simplest formulation of non-relativistic

quantum mechanics. It concerns the dynamics of a system of particles, with

positions Q1,. . .,QN, defining a configuration Q. This dynamics is determined by

the usual quantum mechanical wave function c, itself evolving, as in standard

quantum mechanics, according to Schr€odinger’s equation. In the simplest case, of

particles without spin, c is a function c(q1,. . .,qN) of the possible positions of the
particles. The joint evolution of c and Q is deterministic. Nonetheless, as

a consequence of a typicality analysis, the usual quantum probabilities, given by

|c(q)|2, govern the results of observations in a Bohmian universe.

Quantum equilibrium, corresponding to the quantum equilibrium distribution

rqe(q) ¼ |c(q)|2, should be thought of, in this regard, as roughly analogous to

thermodynamic equilibrium, corresponding to the Maxwellian feq / e�
1
2
mv2=kT .

A proper understanding of quantum equilibrium probabilities and of thermodynamic

equilibrium probabilities both require that we appreciate that there are a variety of

conceptually different probablistic objects relevant to the analysis, as I shall explain

later. They also require that we appreciate that there are, in both cases, two different

sorts of systems to be dealt with: a large system, for thermodynamics a gas in a box,
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and for Bohmian mechanics the entire universe; and a small subsystem of the large

system, which in both cases we will take here, for simplicity, to be a single particle.

4.4.1 The Wave Function of a Subsystem

Consider a 1-particle subsystem of an N-particle Bohmian universe. Let’s denote by

Q the position of the particle and by Qenv the configuration of the rest of the

particles of our universe—the configuration of the environment. Let C be the

wave function of the universe. It is a function C(q, qenv). (Here we’ve used, as is

common in Bohmian mechanics, lower case letters to indicate possible values,

generic values, as opposed to the actual values, denoted with capital letters.)

The appropriate notion for the wave function of our subsystem is given by the

conditional wave function

cðqÞ ¼ Cðq;QenvÞ ;

a function of the generic position of our particle obtained by plugging the actual

configuration of its environment into the wave function of the universe. Note that c
need not be normalized—its absolute square integral over all of space need not be 1.

Whenever c appears as part of a probability formula it should be regarded as having

been normalized via multiplication by the appropriate positive real number. Note

also that because of the dependence on the actual configuration of the environment,

which inherits its own typically complicated evolution from the Bohmian evolution

of the configuration of the universe, the wave function of our particle depends on

time in a somewhat complicated way:

ctðqÞ ¼ Ctðq;QenvðtÞÞ ;

with C itself, as a solution of Schr€odinger’s equation, depending on t. As

a consequence of this evolution, the wave function of a subsystem in Bohmian

mechanics can evolve in a variety of ways. In particular it will evolve according

to Schr€odinger’s equation when the system is suitably decoupled from its envi-

ronment, and will undergo collapse of the wave packet in the appropriate measure-

ment situations.

For our purposes here, the most important fact about the conditional wave

function is that it provides us with the probability distribution of our subsystem—

in fact in a variety of senses. The most basic sense in which it does so is expressed in

the following simple mathematical fact:

PðQðtÞ 2 dq jQenvðtÞÞ ¼ jctðqÞj2dq (4.1)

Here P is the probability distribution on initial configurations of the universe

(at a time, say, shortly after the big bang) given by |C(q)|2. This fundamental
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conditional probability formula of Bohmian mechanics says that for such a random

universe the conditional distribution of the position of a particle at any time, given

its environment at that time, depends only on its conditional wave function at that

time, and does so via the usual Born, quantum equilibrium, probability formula.

As a consequence of this formula it follows via a typicality analysis [10] that for

the overwhelming majority—in the sense of the measure P—of initial configu-

rations of a Bohmian universe, the empirical distribution for the positions of

particles (and for larger subsystems) in suitable real world ensembles of systems

having given conditional wave function c is (approximately) the quantum equilib-

rium distribution |c|2. In short, quantum equilibrium is typical.

4.5 Probability and Typicality

In a typical typicality analysis in physics—and arguably in any serious application

of probability to the real world—probability structures play several quite different

roles, the most important of which are the following:

• remp: empirical distribution (relative frequency)

• rth: theoretical distribution (idealization, N ! 1)

• P: measure for typicality

It is the empirical distribution that describes a real world pattern of events that is

responsible for what we observe. The theoretical distribution is an idealization

providing a good approximation to the empirical distribution, remp � rth, in the

limit of large ensembles of subsystems. P is a probability distribution on the big

system containing the subsystems. It is via a law of large numbers kind of analysis

using P that one can show that it typically happens that remp � rth, with typicality

defined in terms of P.
Many different probability distributions P define the same sense of typicality.

This is because, insofar as typicality is concerned, the detailed probability of a set is

not relevant; all that matters is which sets have very large measure and which very

small. Nonetheless, it is often the case that a particular choice of P is special. It is

for such a choice that one in fact can most efficiently carry out the relevant analysis.

For this special P the theoretical distribution will be in some sense a conspicuous

part of P, meaning that:

rthðxÞdx ¼ rPðxÞdx ¼ 00PðX 2 dxÞ00:

Here I use X and x for the subsystem variables. (I shall use X and x—without

bold—to refer to the variables for the big system.) rP is a sort of marginal

distribution of the subsystem, arising from the distribution P of the big system,

and the quotation marks are to indicate that rP is often only “sort of” a marginal,

and not always an actual marginal. For example the relevant rP in Bohmian
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mechanics is a conditional marginal, just as is suggested by the fundamental

conditional probability Formula 4.1.

For the second typicality result in statistical mechanics mentioned above, that

“equilibrium is typical,” P(dx) is the microcanonical ensemble on ГE, the uniform

distribution over the energy surface. However, to illustrate the points I wish to make

here it would be better to make a different but physically equivalent choice for P,
namely the canonical ensemble, given by

PðdxÞ / e�HðxÞ=kTdx :

And we shall assume we are dealing with the simplest case, that of noninteract-

ing particles, with H ¼Pi
1
2
mvi

2. In this case P ¼ ∏i feq (vi) is simply the product

over all the particles of the equilibrium distribution for each particle.

Then [with x ¼ (q, v)] we have that

rempðxÞ � rðXÞempðxÞ ¼ fXðq; vÞ

(the precise definition of remp is r
ðXÞ
empðq; vÞ ¼ 1

N

P
ðqi;viÞ2X dðq� qiÞdðv� viÞ) and

that

rthðxÞ � feqðxÞ ¼ rPðxÞ / e�
1
2
mv2=kT :

In particular the theoretical distribution here is a factor of P—a piece, as it were,

of the measure for typicality.

In Bohmian mechanics (writing x for q, etc.) we have that

PðdxÞ ¼ jCðxÞj2dx
rempðxÞ � rXempðxÞ ¼

1

N

X
xi2X

dðx� xiÞ

and

rthðxÞ � rqeðxÞ ¼ rPðxÞ ¼ jcðxÞj2 :

Here too the theoretical distribution is sort of a piece of the measure for

typicality.

A typicality analysis binds tightly together these three very different probablistic

objects. This is particularly so for the special choice of P, a choice for which P has

some nice properties—more on these shortly—the simplest such being that P be

a product measure as above. When P is thus “nice” one can show via a law of large

numbers type analysis that (when N is large) remp � rP, P-typically—that for the

P-overwhelming majority of points X, rXemp is approximately the theoretical
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distribution, with the latter itself being a quasi-marginal of the measure for typical-

ity P We shall say in this situation that P is statistically transparent.

4.5.1 Ergodicity and Statistical Transparency

Statistical transparency is closely connected to the notion of ergodicity [11]. That is

because it is often the case that remp is more or less a time-average or space-

average—the sorts of things with which ergodicity is concerned. The ergodicity of

P (under either space or time translation) implies that these averages agree with the

phase averages, i.e., with the theoretical distribution rP arising from P. Thus we can
more or less identify statistical transparency with the ergodicity of P.

This does, however, have to be taken with a grain of salt, since the space

averages relevant to ergodicity would be infinite system averages (so N ¼ 1) or

for time averages, infinite time averages (T ¼ 1), idealizations that might not

exactly match the typicality analysis under consideration. We shall however ignore

this point, abusing mathematics a bit, and simply pretend without qualification that

statistical transparency can be identified with ergodicity—that it is the ergodicity of

P that makes it special, so that we have statistical transparency.

4.5.2 Symmetry and Statistical Transparency

There is another way in which P might be special: among all measures defining the

same sense of typicality, it might be one that is symmetric, and the only one that is.

The relevant symmetry here depends upon whether remp involves space or time

averages. In the former case the symmetry is that of spatial-translation invariance

(remember we are pretending that our system is suitably idealized, and thus

spatially infinite if necessary), in the latter case that of time-translation invariance.

Suppose P is in this sense symmetric. The set of measures ~P defining the same sense

of typicality as P are those of the form ~PðdxÞ ¼ gðxÞPðdxÞ obtained from P by

multiplying it by a positive function g that is bounded above and away from zero

below. And if, as we are pretending, remp involves infinite space or time averages,

the set of probability measures equivalent to P in the sense of typicality could now

be taken to correspond to the requirement that g be positive, with integral with

respect to P equal to 1—i.e., to the set of probability measures equivalent to P in the

sense of measure theory.

The connection between symmetry and statistical transparency is then this: P is

the only symmetric probability measure in the class of equivalent ones precisely in

case there is statistical transparency. That’s because of the connection between

ergodicity and statistical transparency just discussed together with the fact that

a system is ergodic precisely in the case of there being a unique symmetrical P
in the equivalence class.
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4.5.3 Predictive Typicality and Ergodicity

The discussion has so far taken for granted that we have unambiguous (space or

time) averages, i.e., that remp is unambiguous. This predictive typicality, we should
remark, is a property of the typicality class itself, and not a characterization of

a special member of that class. Predictive typicality is more or less equivalent to

the requirement that the typicality equivalence class has an ergodic member P.
This will of course be the member of the class that most directly expresses the

observed probabilities remp.

4.5.4 The Good, the Bad, and the Ugly

To summarize, the three probability measures, remp, rth ¼ rP, and P, involved in

the usual typicality analysis are intimately related: We have that

remp $ rP $ P ;

conveying that the observed probability distribution remp, which of course varies

from trial to trial of the same experiment, is well approximated by the theoretical

distribution rP (which of course is the same for all trials of an experiment), the latter

being a conspicuous part of the measure for typicality P.
This is both good and bad. It is good, because it suggests a nice simplicity,

inasmuch as it means that for many practical purposes one need worry about just

one probability measure and not three. At the same time it is bad, because the

simplicity is a misleading simplicity, since the three probability measures are

conceptually of entirely different natures, despite their closeness for practical

purposes. And the consequences of the conflation of three such very different

notions—the discussions and analyses in which crucial distinctions between very

different objects are not properly recognized—can be quite ugly.

The confusion is probably greater still with regard to the typicality analysis for

Bohmian mechanics, which can be summarized like so:

remp $ rcth $ PC

Here rcth ¼ jcj2 and PC ¼ |C|2 are given by the very same formula, with the

only difference being c versus C. Unless one appreciates the great difference

between the wave function c of a subsystem and that of the universe C, this can

make it difficult to accept that the probabilistic objects involved are so very

different.
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4.6 Two Directions for Typicality Research

I have discussed here the method of appeal to typicality and given some examples.

I have indicated that, while typicality is fundamentally not a version of probability,

it can nonetheless easily seem to be one. But we have not attempted here to justify

the conclusions that scientists arrive at by appealing to typicality. In particular

I have not explained why what is typical should be expected to happen.

Nor shall I do so here: a systematic analysis would require that we deal with some

of the most fundamental issues in the philosophy of science, such as the meaning and

nature of scientific explanation. I do feel, however, that a comprehensive philoso-

phical analysis of scientific explanation and the logic of appeal to typicality would be

most welcome. (Some gestures in this direction can be found in Sect. 6 of [12].)

4.6.1 Types of Typicality

I would, however, like to mention here three distinctions between types of typicality

that are relevant to how strongly typicality seems to compel our expectations:

(i) natural versus axiomatic, (ii) continuum versus finite, and (iii) hypothetical

versus actual. The measure of typicality might be natural, like the uniform distri-

bution over the space of possibilities, naturally expressed; or it might be merely

stipulated axiomatically. The set of possibilities might be finite, or it might be

a continuum (it of course might also be infinite but not a continuum). The possi-

bilities might be merely possibilities—they might be hypothetical—or they might,

as with many-worlds, be all actual.

Other things being equal, typicality corresponding to the first type of each pair

seems to more strongly compel our expectations. For example, the notion of most

elements of a finite set seems entirely unambiguous, corresponding to countingmeasure,

whereas with a continuum one might be able to argue that there are a variety of

reasonable senses of most. The worst case in this regard is that of axiomatic typicality

with a finite set of actualities. (It might well be that the only way typicality can be

persuasively applied to the case in which the possibilities are in fact actual is within the

Human approach to law and probability advocated by Barry Lower [13]; however,

the goal in this approach is more modest: description rather than explanation.)

4.6.2 Typicality Not Given by Probability

I will conclude by putting on the table a possibility afforded by the recognition that

typicality is not probability. While it is usually the case that typicality is defined

using a probability measure, a different way of deciding which sets are large and

which small, for example one that is given by a set function that violates the axioms
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of probability, is feasible. Such a wider notion of typicality could be used for the

formulation of new types of physical theories.

Along such lines not much has yet been done. But Murray Gell-Mann and James

Hartle [14] have noted with regard to their decoherent histories version of quantum

mechanics that insofar as their decoherence functional fundamentally is used to

define, in effect, typicality (though they don’t use that word) the fact that it may end

up violating the axioms of probability in a limited sort of way need not concern us.

And Bruno Galvan [15] has proposed a trajectory based version of quantum

mechanics that, unlike Bohmian mechanics, is defined solely in terms of a typicality

that is not based on probability. While Galvan’s theory is a bit odd, it does have the

virtue of seeming to exploit only traditional quantum mechanical structure.

The possibility of a typicality liberated from probability might be a great source

of inspiration for theory formation. I think that this possibility would have pleased

Itamar very much.
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Chapter 5

Deterministic Laws and Epistemic Chances

Wayne C. Myrvold

Abstract In this paper, a concept of chance is introduced that is compatible with

deterministic physical laws, yet does justice to our use of chance-talk in connection

with typical games of chance, and in classical statistical mechanics. We take our

cue from what Poincaré called “the method of arbitrary functions,” and elaborate

upon a suggestion made by Savage in connection with this. Comparison is made

between this notion of chance, and David Lewis’ conception.

5.1 Probability, Chance, and Credence: A Brief History

As has been often pointed out, the word “probability” has been used in at least two

distinct senses.1 One sense, the epistemic sense, has to do with degrees of belief of

a rational agent. The other sense, which Hacking calls the aleatory sense, is the

concept appropriate to games of chance; this is the sense in which one speaks, for

example, of the probability (whether known by anyone or not) of rolling at least one

pair of sixes, in 24 throws of a pair of fair dice.

A particularly clear statement that there are two concepts that need to be

distinguished is found in Poisson’s book of 1837.

In ordinary language, the words chance and probability are nearly synonymous. Quite often

we employ one or the other indifferently, but when it is necessary to distinguish between

their senses, we will, in this work, relate the word chance to events in themselves,

independently of our knowledge of them, and we will reserve for the word probability

the previous [epistemic] definition. Thus, an event will have, by its nature, a greater or less
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chance, known or unknown; and its probability will be relative to the knowledge we have,

in regard to it.

For example, in the game of heads and tails,2 the chance of getting heads, and that of

getting tails, results from the constitution of the coin that one tosses; one can regard it as

physically impossible that the chance of one be equal to that of the other; nevertheless, if

the constitution of the coin being tossed is unknown to us, and if we have not already

subjected it to trials, the probability of getting heads is, for us, absolutely the same as that of

getting tails; we have, in effect, no reason to believe more in one than the other of the two

events [2, p. 31].3

Note that Poisson’s use of “chance” refers to single events, and the chance of

heads on a coin toss is a matter of the physical constitution of the chance set-up

(he says “the constitution of the coin,” but clearly it matters also how the coin is

tossed). This is not a frequency interpretation.

Something happened on the way to the twentieth century: the notion of objective

chance—that is, single-case probability thought of as a feature of a physical

situation—largely dropped out of discussions. There remained that the idea that

“probability” can be taken in either an objective or an epistemic sense, but the

objective sense became identified with a frequency interpretation.

Thus we find de Finetti rejecting objective notions of probability on the basis of

a rejection of Laplacean and frequency conceptions ([3], pp. 16ff; [4], pp. 71ff).

In a similar vein, Savage [5, p. 4] identifies an objective conception of probability

with a frequency interpretation, and takes it as a virtue of the subjectivist view

that it is applicable to single cases. Absence of the notion of objective chance in

so many discussions of the foundations of probability led Popper [6, 7] to conclude

that he had an entirely new idea in single-case objective probabilities, which he

called “propensities.”

We also find some historians of probability have projecting a frequency con-

ception onto writers of previous centuries, in place of the notion of chance. For

example, though Hacking [1, p. 12] initially characterizes this duality much as we

2 Poisson says “croix et pile”; heads and tails is our equivalent.
3 Dans la langage ordinaire, les mots chance et probabilité sont á peu prés synonymes. Le plus

souvent nous emploierons indifféremment l’un et l’autre; mais lorsqu’il sera nécessaire de mettre

une différence entre leurs acceptions, on rapportera, dans cet ouvrage, le mot chances aux

événements en eux-mêmes et indépendamment de la connaissance que nous en avons, et l’on

conservera au mot probabilité sa définition précédente. Ainsi, un événement aura, par sa nature,

une chance plus ou moins grande, connue ou inconnue; et saprobabilité sera relative á nos

connaissances, en ce qui le concerne.

Par exemple, au jeu de croix et pile, la chance de l’arrivée de croix et celle de l’arrivée de pile,
résultent de la constitution de la pièce que l’on projette ; on peut regarder comme physiquement

impossible que l’une de ces chances soit égale à l’autre; cependant, si la constitution du projectile

nous est inconnue, et si nous ne l’avons pas déjà soumis à des épreuves, la probabilité de l’arrivée

de croix est, pour nous, absolument la même que celle de l’arrivée de pile: nous n’avons, en effet,

aucune raison de croire plutôt à l’un qu’à l’autre de ces deux événements. I’l n’en est plus de

même, quand la pièce a été projetée plusieurs fois: la chance propre à chaque face ne change pas

pendant les épreuves; mais, pour quelqu’un qui en connaı̂t le résultat, la probabilité de l’arrivée

future de croix ou de pile, varie avec les nombres de fois ces deux faces se sont déjà présentées.
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have here, later in the book the aleatory concept of probability identified with

a frequency interpretation: “On the one hand it [probability] is epistemological,

having to do with support by evidence. On the other hand it is statistical, having to

do with stable frequencies” (p. 43). Hacking is far from alone in this. For example,

Daston [8, p. 191] attributes a frequency notion to A.A. Cournot [9], who

distinguishes between probability and what he calls degrees of physical possibility

in much the same way that Poisson distinguished between probability and chance.

Howie [10, p. 36] attributes a frequency concept of chance to Poisson.

It’s not entirely clear what the reason is for the disappearance of chance from

discussions of probability. A plausible conjecture is that it had to do with increasing

acceptance that the laws that govern the physical world are deterministic, together

with the notion that objective chance and determinism are incompatible. Laplace

famously began his Philosophical Essay on Probabilities (1841) with a discussion

of determinism. A being that had complete knowledge of the laws of nature and the

state of the world at some time, and was able to perform the requisite calculations,

would have no need of the calculus of probabilities, according to Laplace. It is only

because our abilities depart from those of such a being that we employ probabilities.

Laplace then proceeds to characterize probability in epistemic terms; “[t]he theory

of chance consists in reducing all the events of the same kind to a certain number

of cases equally possible,” where “equally possible” means that we are equally

undecided about which of the cases obtain [11, p. 6]. It is not clear that Laplace is

consistent in maintaining an epistemic view throughout; there are passages in the

Essay that suggest that it is a matter of fact, which we can investigate empirically,

whether events are truly equipossible. Nevertheless, the official view, for Laplace,

is an epistemic one.4

Though it may be that emphasis on determinism led to the decay of the notion of

objective chance, there is nevertheless a tension between the idea that chance

and determinism are incompatible, and the way that we talk about chances. We

talk about the chance of heads on a coin toss, casino owners worry about whether

their roulette wheels show discernible bias, and these seem to be matters that can

subjected to experimental test, by doing multiple trials and performing a statistical

analysis on the results.5 Yet we also think that, at least to the level of approximation

required, these systems can be adequately modelled by deterministic, classical

physics.6 Nor does it seem that Poisson was supposing any departure from

determinism.

Of course, such talk might simply be deeply ill-conceived. David Lewis declared

that “[t]o the question how chance can be reconciled with determinism, . . . my

answer is: it can’t be done” [13, p. 118], and Schaffer [14] has provided arguments

for this conclusion. It is the purpose of this paper to present a notion that may

4 See Hacking [12; 1, Ch 14] for a lucid discussion.
5 Though perhaps this should go without saying, it should be emphasized that taking frequency

data as evidence about chances is not tantamount to holding a frequency interpretation of chance.
6 Though, it must be noted, Lewis [13, p. 119] has suggested that this is false.
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appropriately be called chance, which fits quite nicely with deterministic evolution

of a certain kind, and which is suited to play the role of chance in our chance-talk.

Schaffer [14] distinguishes between genuinely objective chances and what he calls

“epistemic chances,” while noting that the latter can be objectively informed.

“Epistemic chance” is an apt name for the notion that we will be introducing,

as it highlights the fact that we will be interweaving epistemic and physical

considerations.

In what follows, we will use the word “chance” for the aleatory concept;

a chance is an objective, single-case probability. When we are speaking of the

belief states of a (possibly idealized) agent, we will use the word “credence.”

“Probability” will be used when we want to be noncommittal.

5.2 Learning About Chances

The chance of heads on a coin toss, if it is regarded as an objective feature of the set-

up, is ipso facto the sort of thing that we can have beliefs about, beliefs that may be

correct or incorrect, better or worse informed. Under certain conditions, we can

learn about the values of chances.

Particularly conducive to learning about chances are cases in which we have

available (or can create) a series of events that we take to be similar in all aspects

relevant to their chances, that are, moreover, independent of each other, in the sense

that occurrence of one does not affect the chance of the others. The paradigm cases

are the occurrence of heads on multiple tosses of the same coin, occurrence of a six

on multiple throws of the same die, and the like. Consider a sequence of N coin

tosses. If, on each toss, the chance of heads is l, then the chance of any given

sequence of results is

lmð1� lÞN�m;

where m is the number of heads in the sequence. Considered as a function of l, this
is peaked at the observed relative frequency m/N, and becomes more sharply

peaked, as N is increased.

Let E be the proposition that expresses the sequence of results these N tosses,

and, for any l, let Hl be the proposition that the chance of heads on each toss is

equal to l. Consider an agent who has some prior credences about the chance of

heads, and updates them by Bayesian conditionalization:

crðHlÞ ) crðHljEÞ ¼ crðEjHlÞ crðHlÞ
crðEÞ :

It seems natural to suppose—and, indeed, in the statistical literature this is typi-

cally assumed without explicit mention—that our agent’s credences set cr(E|Hl)
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equal to the chance of E according to Hl, as is required by what Lewis [26] has

dubbed the Principal Principle. This has the consequence that our agent’s credence in
chance-values close to the observed relative frequency is boosted, and her credence

in other values, diminished. Moreover, since the likelihood function lm(1 � l)N�m

is more sharply peaked, the larger the number of trials, relative frequency data

becomes more valuable for narrowing credence about chances as the number of trials

is increased.

Note that there are three distinct concepts at play here: chance, credence, and

relative frequency in repeated trials. None of these three is to be identified with any

of the others. They do, however, connect in a significant way: relative frequency

data furnish evidence on which we update credences about chances.

5.3 “Almost Objective” Chances

We take our cue from what Poincaré called the method of arbitrary functions (see
[15] for the history of this). Poincaré’s analysis leaves some crucial questions

unanswered, and, in particular, leaves it unclear what notion of probability might

be in play. Savage [16] argued that subjective credence has a role to play. And so it

does, but it is not a radical subjectivism that is needed, but a tempered personalism

that distinguishes between reasonable and unreasonable credence-functions.

5.3.1 Tempered Personalism About Credences

Objective Bayesians hold that there are, for any body of background knowledge,

unique credences that would be the degrees of belief of an ideally rational agent.

At the opposite extreme would be radical subjectivists (if there are any), who hold

that the only constraint on credences is the requirement of coherence, that is, that

they satisfy the axioms of probability; within the class of coherent credence

functions, there can be no grounds for judging one better or worse than another.7

The attitude that Abner Shimony [17] has dubbed tempered personalism steers

between these extremes, finding cognitive virtue between two opposing vices.

Without supposing that there are uniquely rational credences, not all are equally

acceptable; excessively dogmatic credences are to be eschewed as obstacles to

learning about the world. In what follows, we will assume that there is a class of

credences, perhaps imprecisely defined, that represent the possible credences of

a reasonable agent.

7 The parenthetical qualification is due to the fact that, though, in some passages de Finetti sounds

like a radical subjectivist, there are others that indicate a more moderate position.
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As an example relevant to the sorts of cases we are discussing, suppose that

a gambler in a casino becomes convinced that the next spin of the roulette wheel

will be 23, to the extent that he is willing to bet his life savings on it.8 Not because

he thinks the game is rigged; he takes it to be an ordinary roulette wheel, being spun

in the ordinary way, with the ordinary sorts of causal influences on the outcome.

Though the gambler’s credences need not violate coherence, we would nevertheless

take such a conviction to be unreasonable. If, further, our gambler claimed that his

conviction was based on a belief that the current state of everything causally

relevant to the outcome was such as to lead, via the unfolding of deterministic

laws of physics, to the result 23, we would, even if we shared his conviction

in determinism, nevertheless regard it as ludicrous to pretend to knowledge to the

degree of precision that such a conviction would require. In what follows, I will

simply take it that the reader shares this judgment, with the issue of what justifica-

tion we might have for this to be left for another occasion.

5.4 Poincaré and the Method of Arbitrary Functions

Poincaré [18, 19] considered a simple, roulette-like game, in which a wheel, divided

into a large number n of sectors of equal size, alternately colored red and black, is spun,
and eventually comes to rest due to friction. Bets are to be placed on whether a pointer

affixed to the wheel’smount will point to a red or a black sector when thewheel comes

to rest. The set-up is such that small differences in the initial impulse, too small to be

perceived or controlled, canmake a difference between the outcome being red or black.

Poincaré supposes the probabilities of initial impulses to be given by a density

functionf, a function that is “entirely unknown” [18, p. 148]. This function yields, via
the dynamics of the set-up, a density function f over the angle y at which the wheel

comes to rest. Suppose, now, that the function f is continuous and differentiable, and
that the derivative is bounded, so that, for someM, |f0(y)| < M for all y. If the angle (in
radians) subtended by each sector is e, then the difference between the probability of
red and the probability of black is at mostMpe. This goes to zero as e goes to zero.

There are a number of questions left open by Poincaré’s discussion. First is the

status of the limit e ! 0. We are, after all, considering the probability of a red or

black outcome on a spin of a particular wheel, with fixed number of sectors, not

a sequence of wheels with an ever-increasing number of sectors. We need not

take Poincaré’s limit-talk literally. What matters is that f vary slowly enough over

intervals of size e that the probability of landing in any red sector be approximately

equal to the probability of landing in the adjacent black sector, and that any

differences between probabilities associated with successive sectors be small

enough that they remain negligible when n/2 of them are summed.

8 This example is inspired by the behaviour of the character played by James Garner in the comic

western Support Your Local Gunfighter (1971).
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For our purposes, a more serious issue is the status of the function f, which
yields probabilities over initial conditions. Poincaré calls f an unknown function,

which suggests that there is a matter of fact about what function it actually is.

In a discussion of the game of roulette, Poincaré writes,

What is the probability that the impulse has this or that value? About this I know nothing,

but it is difficult for me not to admit that the probability is represented by a continuous

analytic function [18, p. 12].9

In a parallel discussion in Science and Hypothesis, he writes,10

I do not know what is the probability that the ball is spun with such a force that this angle

should lie between and y + dy, but I can make a convention.

I can suppose that this probability is f(y). As for the function f(y), I can choose it in an
entirely arbitrary manner. I have nothing to guide me in my choice, but I am naturally

induced to suppose the function to be continuous [19, p. 201].

This, it must be admitted, is puzzling. Poincaré alternates between treating the

probability as something objective but unknown, and treating it as something that

we can make arbitrary choices about.

Suppose, now, that we take the function f to represent an agent’s degrees of

belief about the impulse imparted to the wheel. Applying the dynamics of the

system to this credence function yields a probability density f over the orientation
of the wheel after it has come to rest, at some later time t1. The probability function
yielded by f might not represent our agent’s degrees of belief about the final angle,

if she doesn’t know the dynamics of the set-up, or is unable to perform the requisite

calculation; this will be important in Sect. 5.3, below.

Suppose, now, that small changes in the initial conditions—too small to be

controlled or noticed by our agent—yield differences in the final angle that are

large compared to the width of a single sector. It is reasonable to suppose that an

agent’s credences would not vary much over such small scales; a credence function

that changed appreciably when shifted by an imperceptible amount would represent

more detailed knowledge of initial conditions than would be available to an agent in

the epistemic situation we are imagining. Then application of the system’s dynam-

ics to the agent’s credences will yield roughly equally probabilities of red and black

outcomes. Moreover, this conclusion does not depend sensitively on the function f.
Though, pace Poincaré, it is not true that an arbitrary probability density over

initial conditions, or even an arbitrary density with bounded variation, yields equal

probabilities for red and black, it is true that a mild constraint on the density

function f—moreover, a constraint that arguably any reasonable credence should

satisfy—suffices to entail that f yield approximately equal probabilities for red and

9Quelle est la probabilité pour que cette impulsion ait telle ou telle valeur? Je n’en sais rien, mais il

m’est difficile de ne pas admettre que cette probabilité est representée par une fonction analytique

continue.
10 Note that there is a shift of notation between Calcul des Probabilités and Science and Hypothe-
sis; f is here a density function over the final angle, that is, the function we have been calling f.
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black. The dynamics of the set-up ensure that any reasonable credences about states

of affairs at one time yield approximately the same probabilities for certain coarse-

grained propositions about a later state of the system.

Generalizing, the situations of interest to us are ones in which we have a physical

set-up such that, for some proposition A (or class of propositions) about the

outcome of an observation undertaken at time t1, the dynamics of the set-up are

such that any reasonable credences about states of affairs at time t0 yield, as a result
of the evolution of the system, approximately the same value for the probability of

A. There are four interacting components at play here. One is a limitation on the

knowledge of the system available to the agent. Although it remains true that

a being in possession of precise knowledge of initial conditions and able to do the

requisite calculation would be in a position to have precise knowledge about the

outcome, we suppose limits to the precision of the knowledge available to our

agents. Second is a judgment about what sorts of credences are reasonable, given

the knowledge available to our agents; we are neither supposing uniquely reason-

able credences, nor are we supposing that coherence is the only criterion of

reasonableness. Third is a limitation of attention to certain macroscopic

propositions about the system’s state at a later time. Lastly, and crucially, it should

be a feature of the dynamics of the system that any differences between reasonable

credence-functions wash out; any reasonable credences about initial conditions lead

to approximately the same credence in the proposition A.
In situations like this—in which the dynamics of the system lead all reasonable

credences about the state of affairs at t0 to effectively the same probability for some

proposition A about states of affairs at a later time t1—we are justified, I think, in

calling this common probability the chance of A. What value these chances have

depends on the physics of the set-up, and,moreover, it makes sense to talk of unknown

chances, or in cases of disagreement about what the chances are, about one value being

more correct than another. The limitations on knowledge might be in principle
limitations. For an example that may or may not apply to the real world, consider

the de Broglie-Bohm hidden-variable interpretation of quantum mechanics. There,

it is provably impossible for an agent (who must interact with a system via physical

means to gain information about it) to gain enough information about corpuscle

positions to make betting at other than the quantum-mechanical probabilities reason-

able. In other cases, even if it might in principle be possible to gain further knowledge,

obtaining such knowledge is so far beyond feasibility that it might as well be

impossible in principle. Consider a real roulettewheel, to be spun by a human croupier,

and take t0 to be some time before the spin.11 Even if it is possible, in principle, to gain
sufficient information about the croupier’s physical state and all influences on it that

would be sufficient to make it reasonable to bet at other than the values we are calling

chances, this matters little to the credences of actual agents. Quantities of this sort have

been called “almost objective” [20]. On the issue of terminology, see Sect. 5.5, below.

11After the ball has been released is another matter.
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5.4.1 Learning About Chances, Revisited

The function f is meant to represent an agent’s credences about states of affairs at

t0; f, the result of applying the system’s dynamics to this function. These dynamics

will often be imperfectly known to the agent, who might be unsure, say, whether the

wheel is biased in some way. Even if the dynamics are known, the requisite

computation might be intractable.

Nonetheless, our agent might believe that there is some value, unknown to her,

that gives the probability assigned to a proposition A by time-evolving, not only

her current credences, but those of any reasonable agent. This value is the degree

of belief in A that a reasonable agent would have if she knew the dynamics of the

set-up and could do the calculation, and in this sense represents credence that

makes optimal use of information available. Our agent can have credences about

what this value is. For any real number l, let Hl be the proposition that this value

is equal to l. It is a reasonable constraint on our agent’s credences that they

satisfy

crðAjHlÞ ¼ l;

and that, moreover, if E is any proposition whose truth-value could be ascertained

by the agent at t0,

crðAjHl&EÞ ¼ l:

To see that this is a reasonable condition on an agent’s credences, recall that, if

l is the chance of A, and our agent’s credences in A is not equal to l, this is due to
the agent’s imperfect knowledge of the dynamical laws governing the system, or

else to her inability to apply these laws. Her conditional credence, conditional on

the supposition that her credence would be l were these limitations lifted, is

required to be l.
Our constraint on credence suffices for our agent to learn about the chances of

a series of events that are regarded as having equal and independent chances, in the

manner outlined in Sect. 5.2, above. The constraint is a cousin of Lewis’ Principal

Principle. The chief difference is that, in the Principal Principle, E may be any

admissible proposition, and, though Lewis does not explicitly define admissibility,

he takes all statements about the past to be admissible. This would be unjustified on

our treatment.

There is considerable literature on the justification of the Principal Principle; to

some it appears a mysterious constraint.12 About our constraint there is no mystery.

12 For some references to this literature, and skepticism about the possibility of a cogent justifica-

tion, see Strevens [21].
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5.5 Chances in Statistical Mechanics

An appropriate physical set-up can wash out very considerable differences in

credences about initial conditions. Consider a gas in a box with a partition down

the middle. Alice believes that at t0 the gas is initially in the left side of the box;

Bob, that it is in the right. The partition is removed, and, a few minutes later, at t1,
some measurements are to be performed on the gas. Let fA(t0) and fB(t0) be Alice
and Bob’s credences about the state of the system at t0, and let f

A(t1) and f
B(t1) be

the result of applying the actual dynamical evolution of the system to these

credence-functions. That is, the probability assigned by fA(t1) to a region D of

the system’s phase space is the probability that fA(t0) assigns to the system being at

t0 in some state that will evolve into a state in D.13 Though this would be difficult to
prove rigorously for anything like a realistic gas, there is good reason to believe

that, provided that their initial credences don’t vary too rapidly within the respec-

tive regions of phase space on which they are non-zero, the probability functions

that result from applying the dynamics of the system to Alice’s and Bob’s credences

about initial conditions will yield virtually the same probabilities for the results of

any feasible measurements (that is, there is no feasible experiment to be performed

on the gas that will be informative about whether, a few minutes earlier, the gas had

been in the left or the right side of the box). This is true even though, in one sense,

the time-evolved credences are as different as the original ones: if there is no

overlap between the regions of phase space that Bob and Alice believe the gas to

be in at t0, there will be no overlap in the regions assigned non-zero probability by

the time-evolved credence functions. Nevertheless, these two regions will be finely

intertwined in the phase space of the system, and macroscopic regions will contain

roughly equal proportions of both, so that the two probability functions will agree

closely on the probabilities of outcomes of macroscopic observations.

Here we see a role to play for the equilibrium probability measures used in

statistical mechanics. Provided the relaxation to the new equilibrium proceeds as we

think it does, Alice’s and Bob’s time-evolved credences about measurements will not

only agree with each other, but with those of a third agent, Charles, who believes that

both sides of the box initially contained gas of the same temperature and pressure.

Charles will take the removal of the partition to effect no change in macroscopically

observable properties of the gas, and his credences may be represented by an equili-

brium distribution, a probability measure that is invariant under dynamical evolution.

If Alice and Bob are convinced that this distribution yields the same probabilities

for results of macroscopic measurements as would their own credences, applied to the

system, then theymay use the equilibrium distribution—which will typically bemuch

more tractable mathematically—as a surrogate for their own credences.

13 Once again, these time-evolved credence functions might not be Alice and Bob’s credences

about the states of affairs at t1, if they don’t know the dynamics of the system, or are unable to do

the requisite calculation.
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Taking statistical mechanical probabilities in this way removes some of the

puzzles that have been associated with them. The equilibrium distribution distin-

guishes no direction in time. If we took it to represent Alice or Bob’s credences

about the state of the system at t1, this would clash with their beliefs about the state
of the system at t0, as the equilibrium distribution at t1 renders it overwhelmingly

probable that the gas was spread evenly over the box at t0. But this is not how it is

being used; Alice and Bob are using it as a surrogate for the more complicated

functions fA(t1) and f
B(t1), and the justification for doing so is that the equilibrium

distribution yields what are effectively the same probabilities for the results of

measurements performed after t1. There is no justification for applying this distri-

bution to past events, and hence we do not encounter the disastrous retrodictions

that prompt David Albert [22] to introduce his Past Hypothesis.

5.6 Chances, Real or Counterfeit?

As mentioned, some philosophers might be willing to accept all the substantive

claims made in this paper, yet resist the use of the word “chance” for the quantities

we have discussed. Lewis himself might be among these; with reference to ideas

advanced by Jeffrey [23, Sect. 12.7] and Skyrms [24, 25], Lewis speaks of a “kind

of counterfeit chance” [13, p. 120].

There is an argument, stemming from the Principal Principle, for the incom-

patibility of non-extremal chances with deterministic laws of nature (see [14],

pp. 128–129). Recall that the PP says that a reasonable agent’s credences should

have it that, for any proposition A, any real number l in [0, 1], and any admissible

information E,

crðAjE&chðAÞ ¼ lÞ ¼ l:

Lewis does not offer a definition of admissibility, but he does declare that all

propositions about past events and present states of affairs are admissible, “every

detail—no matter how hard it might be to discover—of the structure of the coin, the

tosser, other parts of the setup, and even anything nearby that might somehow

intervene” [26, p. 272]. If the laws of nature are deterministic, then these laws,

together with sufficient information about events to the past of A, entail either A or

its negation. Suppose that laws of nature are always admissible. This means that,

for a suitable choice of admissible E, probabilistic coherence requires

crðAjEÞ ¼ 0 or 1:

This in turn entails that our agent must assign zero credence to any proposition

that asserts that the value of a chance lies in an interval not containing 0 or 1. An

agent whose credences satisfy Lewis’ PP must be certain that, in a deterministic

world, there are no non-extremal chances (that is, the agent must assign zero

credence to the conjunction of some proposition that entails that the laws are
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deterministic and some proposition that entails that there are nonextremal chances).

If we add the further condition, as Lewis [26, p. 267] does, that the agent assign zero

credence only to the empty proposition, true at no possible world, then the incom-

patibility of determinism and non-extremal chances follows.14

If it is part of our notion of chance that reasonable credences must satisfy Lewis’

Principal Principle, with laws of nature and all propositions about the past of an

event counted as admissible, then Lewis is right; determinism and chance are

irreconcilable. This is a symptom of the fact that Lewis’ notion of chance differs

from the conception we are trying to capture in this paper. On Lewis’ notion, chance

requires chancy laws. The notion we are trying to capture stems from the idea that,

in the face of unavoidable (or, perhaps, unavoidable for all practical purposes)

limitations on accessible information about the world, there might be some

credences that are optimal for an agent who makes maximal use of available infor-

mation and dynamical features of the systems involved. There is nothing incoherent

in Lewis’ notion; indeed, as suggested by quantum mechanics, the fundamental

laws of physics probably are chancy. We need not leave the notion of chance

behind, however, when we emerge from the domain in which quantum chanciness

predominates and enter into the realm of systems whose behaviour can be ade-

quately modelled by classical mechanics. There is a useful conception of chance

that is compatible with determinism.

A terminological distinction between the two notions is in order. Schaffer’s term

“epistemic chance” seems to be an apt one, as a term that combines epistemic

and objective connotations. Lewisian metaphysicians may, if they choose, call such

chances “counterfeit” chances, but we should not let this obscure the value that lies

in the concept, nor should we let it dissuade us from accepting such chances as valid

currency when appropriate.

Acknowledgement This work is supported by a grant from the Social Sciences and Humanities

Research Council of Canada.

References

1. Hacking, I.: The Emergence of Probability. Cambridge University Press, Cambridge (1975)

2. Poisson, S.-D.: Recherches sur la Probabilité des Jugements en Matiére Criminelle et en
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Chapter 6

Measures over Initial Conditions

Meir Hemmo and Orly Shenker

Abstract This paper concerns the meaning of the idea of typicality in classical

statistical mechanics and how typicality is related to the notion of probability.

6.1 Introduction

This paper concerns the meaning of the idea of typicality in classical statistical

mechanics and how typicality is related to the notion of probability. Our thoughts

about these issues have been greatly influenced along the years by numerous

conversations with Itamar Pitowsky. In his last paper [1] which he devoted to the

issue of typicality, he writes:

Consider a finite but large collection of marbles. When one says that a vast majority of the

marbles are white one usually means that all the marbles except possibly very few are

white. And when one says that half the marbles are white, one makes a statement about

counting, and not about the probability of drawing a white marble from the collection.

Here Itamar is making a sharp distinction between the size of a set of outcomes

of an experiment and the probability of these outcomes. The size of a set of

outcomes is fixed by a measure defined on the event space. In the discrete case,

the size of the set is fixed by counting the number of outcomes that belong to it. Itamar

thought that in the discrete case the measure obtained by counting is natural, and

therefore he thought that it is worthwhile to generalize this measure to the continuous

case. In his paper (ibid.) he argues that the Lebesguemeasure in the continuous case is
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the natural extension of the counting measure in the discrete case, and he takes this

result to establish a preference for the Lebesgue measure in the continuous case. This

means that in classical statistical mechanics, for example, the Lebesguemeasure is the

natural measure to determine sizes of sets in the state space. If this is right, the problem

of justifying the choice ofmeasure in classical statisticalmechanics is partially solved.

The reason why it is only partially solved is that on the standard way of thinking about

statistical mechanics, the problem concerns the justification of the statistical mechan-

ical probabilities, and as Itamar himself stresses (in the quotation above) the measure

of sets is not enough to determine probability.

Despite the distinction between measure and probability, Itamar thought (see

ibid.) that the Lebesgue measure in statistical mechanics plays some role, admittedly

weak, in the explanation of thermodynamic behavior. In this paper we examine this

question. Our starting point is similar to Itamar’s that measure is indeed different

from probability, but while Itamar thought that the Lebesgue measure is natural in

some a priori sense, it seems to us that the choice of measure in physics is guided by

experience, which in turn guides our choice of probabilistic laws.

The structure of the paper is as follows.We begin in Sect. 6.2 by describing the so-

called typicality approach (as it is usually framed in the context of deterministic

theories in physics). In Sect. 6.3 we describe the way in which probabilistic

statements in classical statistical mechanics ought to be understood. In Sect. 6.4 we

examine arguments based on the classical dynamics to the effect that the Lebesgue

measure is natural in statistical mechanics. In Sect. 6.5 we analyze the significance of

Lanford’s theorem in classical statistical mechanics, and we explain how the theorem

ought to be understood without appealing to typicality. Section 6.6 is the conclusion.

6.2 Typicality

In classical statistical mechanics the standard way of understanding the thermody-

namic behavior of systems around us appeals to a probability distribution over the

initial microstates of the systems (compatible with the initial thermodynamic

macrostate). On the standard way of thinking one says that given the uniform

probability distribution (relative to the Lebesgue measure) over the initial

macrostate, it is highly probable that the system will, for example, approach

equilibrium after some designated time. In this way, the behavior of the system is

explained by the fact that its actual microstate is highly likely to sit on a trajectory,

which will take it to equilibrium at the time in question. Here the high probability

pertains to subsystems of the universe, and it is assumed further that the trajectory

of the whole universe that gives rise to this high probability itself sits on an initial

condition which has high probability. Note that here there are two notions of

probability: a probability distribution over the initial macrostate (i.e. the

microstates compatible with the macrostate at some present time) of subsystems

of the universe, and a probability distribution over the initial conditions of the

universe.
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Another important example of the central role played by the measure in

explaining physical behavior in statistical mechanics is in Einstein’s [2] account

of Brownian motion, as developed by Wiener (see [3]). As is well known, Wiener

has proved that the so-called Wiener measure of trajectories in the phase space of a

Brownian particle which are continuous but nowhere differentiable is one. The

explanation of the actual behavior of Brownian particles is based on the assumption

that their actual trajectories belong to this measure one set. Avogadro’s number is

derived from this assumption.

A question that immediately arises concerning this understanding is what could a

probability distribution over the initial conditions of the universe possibly mean.

A probability distribution suggests some sort of a random sampling of an initial

condition out of the set of all possible conditions. But with respect to the initial

conditions of the universe any such sampling (if it is to be physical) would be

external to the universe, and therefore this seems to suggest an empirically mean-

ingless fairy tale. This problem does not arise with respect to subsystems of the

universe, since one can ground a probability distribution over initial conditions in

experience (as we show in Sect. 6.3). Moreover, probability in physical theories is

usually conceived as involving (or as being tested by) repetitions of experiments,

which in the case of the initial conditions of the universe are trivially impossible.

We understand the typicality approach1 as an attempt to solve these problems by

appealing to a certain natural measure over initial conditions, where the measure is

not understood as a probability measure (see [5] for a similar construal).

Here is an example of how the distinction between typicality and a probability

distribution over initial conditions is made:

When employing the method of appeal to typicality, one usually uses the language of

probability theory. When we do so we do not mean to imply that any of the objects

considered is random in reality. What we mean is that certain sets (of wave functions, of

orthonormal bases, etc.) have certain sizes (e.g., close to one) in terms of certain natural

measures of size. That is, we describe the behavior that is typical of wave functions,

orthonormal bases, etc. However, since the mathematics is equivalent to that of probability

theory, it is convenient to adopt that language. For this reason, we do not mean, when using

a normalized measure m, to make an “assumption of a priori probabilities,” even if we use

the word “probability.” Rather, we have in mind that, if a condition is true of most D, or
most H, this fact may suggest that the condition is also true of a concrete given system,

unless we have reasons to expect otherwise. [7].

And in another place [8], they say:

When we express that something is true for most H or most c relative to some normalized

measure m, it is often convenient to use the language of probability theory and speak of a

random H or c chosen with distribution m. However, by this we do not mean to imply that

the actual H or c in a concrete physical situation is random, nor that one would obtain, in

repetitions of the experiment or in a class of similar experiments, differentH’s or c’s whose
empirical distribution is close to m. That would be a misinterpretation of the measure m, one

1 For various formulations and extensive discussions of the typicality approach, see D€urr et al. [4],
Maudlin [5], Callender [6].
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that suggests the question whether perhaps the actual distribution in reality could be non-

uniform. This question misses the point, as there need not be any actual distribution

in reality. Rather, Theorem 1 means that the set of “bad” Hamiltonians has very small

measure m.

There are three different statements made here about the idea of typicality:

(1) The set of initial conditions compatible with the initial macrostate of the

universe is divided into two subsets, T1 and T2 such that all the microstates

in T1 but not in T2 give rise to some property F. The property F may be for

example the approach to equilibrium in statistical mechanics, or the Born rule

in Bohmian mechanics.

(2) There is some natural (normalized) measure m over the initial conditions such

that m(T1) is close to one (and m(T2) is close to zero). In this sense, most initial
conditions, as determined by m, are in T1 (and are called typical).

(3) In a given experiment, the actual initial microstate of the universe belongs to T1.

Let us explain these three statements in turn. The statement in (1) above

expresses a contingent fact about the dynamics, namely a fact about how the initial

conditions are mapped by the equations of motion into microstates at later times.

There are various theorems in classical statistical mechanics that demonstrate that

special cases of (1) hold under some conditions with some appropriate property F.

Examples are Lanford’s theorem in which F is (roughly) entropy increase and the

Birkhoff-von Neumann theorem in which F is the so-called pointwise ergodic

theorem, which we discuss below. Statement (1) is not controversial in our

discussion.

The notion of most in statement (2) above requires a measure over the phase

space. That is, there are infinitely many ways to determine the size of subsets of a

continuous set of points. The question is on what grounds one can justify the choice

of measure, or the choice of some class of measures. Usually, in classical statistical

mechanics the measure chosen is the Lebesgue measure (or the class of measures

absolutely continuous with the Lebesgue measure), and in quantum mechanics the

measure is given by the absolute square of the wavefunction. The grounds for these

choices are that each of these measures has a preferred dynamical status in the

theory.

Statement (3), as stated above, seems as expressing the brute fact, without

further reasoning, that the microstate of the universe invariably (in every experi-

mental set up) belongs to T1. But since there are microstates of the universe that

don’t belong to T1 this fact calls for a justification. It is evident that (2) is taken in

the typicality approach to completely justify (3), that is if T1 were to contain only a

small fraction of the microstates of the universe, one would not see (3) as justified.

It is important to stress that in this approach the justification of (3) makes no appeal

to probability. Rather, it is the measure of T1 that is supposed to do the whole work.

This implies that, lacking reasons to expect otherwise, microstates of the universe

that belong to T2 are not realized.

In short, there are two questions that need be answered in the context of

typicality: what justifies the choice of measure in (2), and what justifies the passage
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from (2) to (3). In particular, the question we consider is whether there are grounds

that justify the choice of measures in a way that explains the observed behavior of

physical systems. If such grounds could be spelled out the problems concerning

the meaning of probability distributions over the initial conditions of the universe

would obviously evaporate together with the probability distribution itself. In the

subsequent sections we attempt to answer these two questions. We will see that

statements (2) and (3) are both wanting. Again, statement (1) is not controversial in

the context of typicality. Our analysis will lead us to reject the typicality approach.

6.3 Probability in Classical Statistical Mechanics

In order to set the stage we need to go into some detail concerning the way in which

probability statements arise in classical statistical mechanics and how precisely the

choice of measure over the state space is carried out.

Consider the paradigmatic case of an ideal gas S, which is initially confined by a
partition to the left half of a container, and then, by removing the partition, is allowed

to expand. Finally, the gas fills out the entire container. Suppose that we set up a very

large number of such gases S1. . .Sk, all of which are prepared in the same initial

macrostate M0 in which the gas is confined to the left half of the container by a

partition. We then remove the partitions and follow the spontaneous macroscopic

evolution of these gases for a certain time intervalDt, and we see by simple counting

that the overwhelmingmajority of the gases S1. . .Sk quickly reach and then remain in

macrostateM1 in which they fill up the entire container. We now wish to predict the

evolution of another system, call it Sk+1, which is prepared in the same initial

macrostate as S1. . .Sk. We know that the dynamical equation of motion that governs

the evolution of Sk+1 is the same as the ones governing S1. . .Sk , but we do not know
the details of this dynamics, nor do we know the exact initial microscopic conditions

of Sk+1 and therefore all we can rely on in this prediction is the above experiment.

Can we infer from the experiment with S1. . .Sk that Sk+1 is highly likely to end up
in macrostateM1? That is, can we use the experiment with S1. . .Sk in order to come

up with a probabilistic law, on which we can base our bets regarding the evolution

of Sk+1? The answer is, of course, yes, we can infer the probabilities from the finite

observed relative frequencies.2 This inference is valid just to the extent that we can

infer from experience any other physical law or prediction, such as F ¼ ma.
However, the way in which our probabilistic predictions can be justified, and the

extent to which they can be justified – are not always clear in the literature, as we

show later.

To see how to understand probabilistic statements in statistical mechanics let us

describe the above experiment in the phase space of the gas. Classical mechanics

2 This inference is a subtle issue which depends on how probability is understood. We don’t

address this question here.
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tells us that the universe consists of microscopic particles, and that our experience is

an effect of the microstate of the universe, which is the state of those particles.

However, it is a physical fact that our senses are too coarse to reflect the full details

of the microscopic structure of the universe; we can only perceive some of its

general features. In this sense our experience is macroscopic. In the above experi-

ment, we can only observe relative frequencies of transitions between macrostates

of the gas. Let us see how these transitions are described in the phase space, and

then how these relative frequencies are accounted for in the phase space.

The phase space of a system (in our example, of any of the systems Si) is

partitioned into sets of microstates, which are indistinguishable by an observer;

these sets are called macrostates. The phase space regions corresponding to the

macrostates express the observer’s maximal observational capability, and therefore

while the observer can tell which macrostate contains the actual microstate of

the system at the time of observation, it cannot tell which part of the macrostate

contains that microstate.

We now formulate what we take to be the essential way for calculating transition

probabilities in statistical mechanics. Suppose that at time t0 an observer O finds the

system S in macrostate M0 (as for example in our experiment above; see Fig. 6.1).

Suppose also that O knows the laws of classical mechanics, which govern S’s

evolution in time. If O knows the Hamiltonian of S, that is: if O knows the equations

of motion of S, then O can (in principle) calculate the evolution of all the trajectory

segments that start out in the microstates contained inM0 and find out the end points

of these trajectory segments after the time interval Dt. These end points make up a

set, which we call the dynamical blob B(t0 + Dt) of S at t0 + Dt given that it was in

M0 at t0. In general, the region covered by B(t0 + Dt) overlaps with several

macrostate regions; for instance, it may partially overlap with M1 (in which the

gas fills out the entire container), and with some other macrostates, such as M2 or

M3 in which the macrostate of the gas is different. If the system S, which started out
inM0 at t0, is observed to be (say) in macrostate M1 at t0 + Dt, then this means that

the microstate of S is actually in the region of overlap between the region of

macrostate M1 and the region of the dynamical blob B(t0 + Dt). Now, in our

above experiment, O carries out the experiment k times (or on k identical systems).

In some of these experiments – actually in most of them (in our story) – at t0 + Dt

Fig. 6.1 The time evolved

blob B(t) spreads over

different macrostate
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the system S is observed to be inM1 and in other fewer experiments it is found inM2

orM3, or more precisely in the regions of overlap of the dynamical blob B(t0 + Dt)
with these macrostates, with some relative frequencies F1, F2 and F3 respectively.

These relative frequencies are the empirical basis on which the probabilistic

statements of the theory can be based, and on the basis of which these statements

can be tested or justified.

The next step towards constructing or justifying the probabilistic theory is as

follows. Given the above experimental outcomes, we have the relative frequencies

with which systems of type S that start out in M0 at t0 are found in the macrostates

M1, M2 or M3. We conclude that the phase points of our k systems evolved into the

regions of overlap of the dynamical blob B(t0 + Dt) with the macrostatesM1,M2 or

M3. We then conjecture on the basis of our experience that this statistical behavior

will be repeated (more or less) in the future. Since any of the microstates inM0 is a

possible initial condition of Sk+1 and since the phase space is continuous, such

a generalization of our experience requires that we impose a measure on the phase

space. We identify the set of probability measures that, if applied to the continuous

phase space of S, yield a measure of the regions of overlap of the blob B(t0 + Dt)
with the macrostates M1, M2 or M3 that are (to a satisfactory approximation)

identical with the relative frequencies F1, F2 and F3, respectively. There are

many – possibly infinitely many – such measures, and all of them are empirically
adequate. Among them we choose one measure, using pragmatic criteria such as

simplicity, convenience, meshing with other theories, etc. Call this measure m. The
(normalized) measures of the regions of overlap are then given by

mðBðtÞ \M1Þ � F1; mðBðtÞ \M2Þ � F2; mðBðtÞ \M3 � F3. This measure m is

imposed over the blob B(t0 + Dt) and provides the basis for predicting the evolution
of system Sk+1 in terms of transition probability (roughly) as follows:

(*) The transition probability that Sk+1 will evolve to macrostate Mi at t0 + Dt
given that it was in macrostate M0 at t0, is equal to

m Bðt0 þ DtÞ \Mi Bðt0Þ ¼ M0jð Þ � Fi:

That is, the transition probability from the macrostate M0 at t0 toMi at t0 + Dt is
equal to the (normalized) measure of the region of overlap of the blob B(t0 + Dt)
with the macrostates Mi. This is the basis of our probabilistic theory.

Note that in general mðMiÞ=mðMjÞ need not be equal to mðBðtÞ \MiÞ=
mðBðtÞ \MjÞ.3 Note further that despite the deterministic dynamics these transition

probabilities between macrostates are physically objective provided the partition to
the macrostates is objective.4

What is the significance of taking the m (normalized) measure over the blob

B(t0 + Dt) as underwriting our probabilities for measurement outcomes? It is crucial

3 This implies that the transition to a given macrostate need not be equal to the entropy of that

macrostate, even if both are measured by the same measure m.
4 This last condition needs to be flashed out; we skip this here.
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to see that the probabilistic statements are about transitions fromM0 at t0 to any one of

themacrostatesMi. We don’t distribute probabilities relative to the mmeasure over the

initial macrostateM0 at t0. Of course, if the measure m is invariant under the classical

dynamics, e.g. if it happens to be the Lebesguemeasure , then one canmap, backwards

(as it were), the measure of regions over the blob at later times to the corresponding

regions over the initialmactostate. That is, in this case themeasure of a set of points in

M0 is equal to the measure of the time evolved set of points to which it is mapped by

the dynamics. Once the (normalized) measure is fixed (by the probabilities) one can

distribute uniform probabilities relative to the Lebesgue measure over the initial

macrostate. But note that this interpretative move is derivative. In general, whether

or not the measure that best fits our observations is the Lebesgue measure, or more

generally a measure that is invariant under the dynamics, is a contingent matter.

We can now see what justifies the choice of measure and what justifies probabi-

listic statements in classical statistical mechanics, and moreover how these two

issues are related. First, probabilistic statements are grounded in the experience of

relative frequencies in the way stated above. Second, the choice of measure is

dictated inductively (not uniquely) by the observed relative frequencies. That is, the

measure is implied by the probabilities rather than the other way around. We can

only justify empirically transition probabilities as sketched in (*) above rather than

distributions over initial conditions.

The implications of this analysis for the typicality approach are as follows.

1. The probability measure m is applicable only to subsystems of the universe. Of

course, if the dynamics is deterministic, each microstate of all the subsystems of

the universe can be mapped backwards to the initial conditions and the measure

over the initial conditions will depend on the measure at the later times. But in

this way the justification of the choice of the measure over the initial conditions

is grounded in experience, and therefore it cannot be taken to explain (non-

circularly) experience. Note that this argument applies to the question of the

choice of the measure regardless of whether the measure is understood as

determining the typical set of initial conditions (as in the typicality approach)

or as a probability measure over the initial conditions of the universe (as in

standard approaches to statistical mechanics).

2. This strategy of grounding the measure over the initial conditions of the universe

in experience can hold only with respect to a fraction of all possible initial

conditions of the universe (compatible with the initial macrostate). It excludes

by construction initial conditions that lead to a universe at the later times which

is macroscopically different from what we see.

3. Our ignorance about the initial microstate of Sk+1 is often illustrated by appealing

to some random sampling of a point out of M0. Of course, this idea need not be

taken too seriously (as describing a fairy tale about some mechanism of selec-

tion). However, the point to be stressed here is the following. A random

sampling is a sampling that depends only on the measure. The measure with

respect to which the sampling is random need only be the measure that fits the

observed relative frequencies in experience. In particular the measure need not
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be the Lebesgue measure, and may not even be conserved under the dynamics.

By appealing to the probabilitymeasure we can now justify statements about the

probability of randomly sampling initial conditions for subsystems of the uni-

verse. Here unlike the statement (3) of the typicality approach, the sampling is

described in terms of probability rather than typicality. The role of the measure

in our approach is derivative rather than fundamental and is patently

probabilistic.

6.4 Are There Natural Measures?

In the literature there are attempts to justify the choice of the measure (in the typicality

approach and in other approaches) on the basis of dynamical considerations.

An argument sometime given for preferring the Lebesgue measure as ‘natural’

on the basis of the classical dynamics is the invariance of the Lebesgue measure

under the dynamics as expressed by Liouville’s theorem. If a measure is invariant

under the dynamics it means that the measure of a given set of points in the state

space is equal to the measure of the set to which it is mapped by the time evolution

equations for all times. Of course this feature has very attractive properties (sim-

plicity, elegance, etc.) but it is unclear why this fact is relevant at all to the issue at

stake, namely the explanation and prediction of physical behavior.

A similar argument is sometimes given in the case of ergodic dynamics. Obvi-

ously, the ergodic theorem gives a preferred status to the Lebesgue measure (or to

any measure absolutely continuous with the Lebesgue measure) since it shows that

the relative frequency of any macrostate M along an infinite trajectory is equal to

the Lebesgue measure of M for a Lebesgue measure one of points in the phase space

of the system. There are various senses in which the preferred status of the

Lebesgue measure here is irrelevant for the issue at stake. First, the ergodic theorem

yields no predictions concerning finite times, and therefore strictly speaking the

theorem is not empirically testable. For example, it is extremely difficult to distin-

guish empirically between an ergodic system and a system with KAM dynamics

(see [9]). Second, even if the dynamics of the universe is granted to be ergodic and

even if one accepts the fairy tale about an initial random sampling, this does not

imply that the sampling is random relative to the Lebesgue measure. One can say

metaphorically that God could have used a non-Lebesgue sort of die in sampling at

random the initial condition of the universe even if the universe were ergodic.

Third, and with respect to the typicality approach. Consider again statement (3) in

Sect. 6.1. Here the idea is that the fact that T1 has measure (close to) one suggests

that the initial condition of the universe belongs to T1. Since the measure is not to

be understood as a probability measure, this seems to mean that the measure zero

set is excluded as impossible in some sense. But the measure zero set belongs to the

initial macrostate of the universe and we don’t see what justifies this exclusion.

Finally, it is important to stress in this context that in understanding the ergodic

theorem as a theorem about probability one must identify from the outset that a set
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of Lebesgue measure zero (one) has zero (one) probability. Although the theorem is

usually understood in probabilistic terms, it should be stressed that this identifica-

tion is not part of von Neumann’s and Birkhoff’s ergodic theorem. Whether or not

the Lebesgue measure may be interpreted as the right probability measure for

thermodynamic systems depends on whether it satisfies our probability rule (*).

Another argument sometimes given for taking the Lebesgue measure as

the natural measure in statistical mechanics is that the Lebesgue measure of

a macrostate corresponds to the thermodynamic entropy of that macrostate. How-

ever, this correspondence is true only if the Second Law of thermodynamics (even

in its probabilistic version) is true. But as we argued elsewhere (see our [7, 8, 10],

Chap. 5) the Second Law of thermodynamics is not universally true in statistical

mechanics.

6.5 Lanford’s Theorem

The above conclusion has implications for the significance of measure one

theorems in statistical mechanics. We focus here as an example on Lanford’s

theorem.5 Lanford proved on the basis of the classical equations of motion, that,

roughly, given some specific initial macrostate, and some specific kind ofHamiltonian,

a Lebesgue measure one of the microstates in that macrostate will evolve to

a macrostate with larger entropy, after a certain short time.6 Can such a theorem

endow the Lebesgue measure with a status that is stronger than that of an empirical

generalization (as sketched in (*) above)?

In terms of our transition probabilities Lanford’s theorem proves that the

Lebesgue measure of the overlap between the blob B(t0 + Dt) and the macrostate

E of equilibrium (or some other high entropy macrostate) is 1. Of course, as we said

above, since the Lebesgue measure is conserved under the dynamics, one may

interpret Lanford’s theorem as referring to the Lebesgue measure of subsets of the

initial macrostate M0 at t0. However, inferring anything about the measure of

subsets of the initial macrostate is an artifact of the contingent fact that the

Lebesgue measure matches the observed relative frequencies.

Another crucial point in this context is the following. There are two different and

logically independent ways of understanding the role of the Lebesgue measure in

Lanford’s theorem. (A) The size of the overlap between the blob B(t0 + Dt) and the
macrostate E, as determined by the Lebesgue measure, is 1; (B) Upon a random

sampling of a point out of the blob B(t0 + Dt), one is highly likely to pick out a point

5 For details concerning Lanford’s theorem see Uffink [11].
6 The fact that a Maxwellian Demon is compatible with classical statistical mechanics

demonstrates that there can be no theorem in mechanics that implies a universal entropy increase.

See Albert [10, Chap. 5] and Hemmo and Shenker [12, 13].
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from the overlap of the blob with E. The distinction between (A)-type statements

about sizes of sets and (B)-type statements about probabilities is general.

Lanford’s theorem is about the size of the overlap with E, that is, it is only an

(A)-type theorem, whereas in order to make predictions about the future behavior of

S-type systems (such as our Sk+1 in the above example) one needs to add a (B)-type

statement, which is not proven by Lanford’s theorem. In other words, assuming that

we already know from experience that the Lebesgue measure of the overlap regions

(of the blob with the macrostates) matches the relative frequencies of the

macrostates, Lanford’s theorem provides possible mechanical conditions, which

underwrite these observations.

To appreciate this point, note that if the measure m that matches our experience

were not the Lebesgue measure, but some other measure (that may not be absolutely

continuous with Lebesgue) then Lanford’s theorem would have a completely

different significance: for instance, it could happen that by the measure m the

number of systems that go to equilibrium given Lanford’s Hamiltonian would be

small. The theorem that a set of Lebesgue measure one of points has a certain

property (such as approaching equilibrium after some finite time interval) would be

empirically insignificant – unless this fact is supplemented by the additional fact

that the Lebesgue measure happens to correspond (to a useful approximation) to the

observed relative frequencies.

The general structure of Lanford’s theorem is that it proves a certain statement

about the dynamics of the form of (1) in the typicality approach (see Sect. 6.2). That

is, Lanford’s theorem shows that a certain subset of micrsostates T1 share some

property F (entropy increase, for example), such that all the points in T1 are mapped

by the dynamics to points in T1*. Moreover, the theorem shows that the subset T1

has Lebesgue measure one. But nothing in this theorem justifies the choice of the

measure. In particular, the fact that T1 has Lebesgue measure one does not

constitute such a justification. What’s important in Lanford’s theorem is that it

identifies two sets T1 and T1* and proves that T1 evolves to T1* under the

dynamics. That is, the theorem is about the structure of trajectories. The fact that

T1 has Lebesgue measure one is important only if there are independent reasons for

preferring the Lebesgue measure. As we saw in Sect. 6.3 such reasons can be

grounded essentially only in experience.

6.6 Conclusion

In this paper we showed that one can understand the full scope of classical statistical

mechanics by appealing to the notion of transition probabilities between

macrostates, without resorting to probability distributions over initial conditions

or to typicality considerations.
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Chapter 7

A New Approach to the Approach

to Equilibrium

Roman Frigg and Charlotte Werndl

Abstract Consider a gas confined to the left half of a container. Then remove the

wall separating the two parts. The gas will start spreading and soon be evenly

distributed over the entire available space. The gas has approached equilibrium.

Why does the gas behave in this way? The canonical answer to this question,

originally proffered by Boltzmann, is that the system has to be ergodic for the

approach to equilibrium to take place. This answer has been criticised on different

grounds and is now widely regarded as flawed. In this paper we argue that these

criticisms have dismissed Boltzmann’s answer too quickly and that something

almost like Boltzmann’s answer is true: the approach to equilibrium takes place if

the system is epsilon-ergodic, i.e. ergodic on the entire accessible phase space

except for a small region of measure epsilon. We introduce epsilon-ergodicity and

argue that relevant systems in statistical mechanics are indeed espsilon-ergodic.

7.1 Introduction

Let us begin with a paradigmatic example. A gas is confined to the left half of a

container by a dividing wall. We now remove the wall, and as a result the gas spreads

uniformly across the entire container. It reaches equilibrium. Thermodynamics (TD),

via its Second Law, regards this process as uniform and irreversible: once the wall is

removed, the entropy increases until it reaches its maximum which it will thereafter
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never leave. Statistical mechanics (SM) tries to understand this manifest macroscopic

behaviour in terms of the dynamics of the micro-constituents of the system.

One might expect SM to provide a justification of the exact laws of TD, in our

case a justification of why systems invariably exhibit monotonic and irreversible

entropy increase. This is asking for too much. In fact we have to rest content with

less in two respects. First, classical Hamiltonian systems are time-reversal invariant

and show Poincaré recurrence; it is therefore impossible for the entropy of such a

system to increase irreversibly: sooner or later the system will move out of

equilibrium again. Thermodynamics is an approximation, which, echoing

Callender’s [1] memorable phrase, we should not take too seriously.1 Instead of

trying to derive irreversible behaviour stricto sensu we should aim to show that

systems in SM exhibit thermodynamic-like behaviour (TD-like behaviour): the

entropy of the evolving system is most of the time close to its maximum value,

from which it exhibits frequent small and rare large fluctuations [3, p. 255]. Second,

the Second Law of TD does not allow for exceptions. However, no statistical theory

can ever justify an exceptionless law. The best one could hope for is to show that

something happens with probability equal to one (but even then zero-probability-

events are not ruled out because zero probability is not impossibility!). But even

that is a tall order since probability zero results are usually unattainable. What we

have to aim for instead is showing that the desired behaviour is very likely [4].
These considerations suggest a new approach to the approach to equilibrium:

rather than trying to derive monotonic and exceptionless entropy increase, we ought

to aim to show that systems in SM are very likely to exhibit TD-like behaviour. The

aim of this paper is to propose a response to this challenge. But before turning to our

proposal, let us briefly comment on a recent approach which offers an explanation

of TD-like behaviour in terms of the notion of typicality (see, for instance, [5]) and

without explicit reference to dynamical properties of the system. In our view, such

an explanation is either flawed or incomplete.2

TD-like behaviour is a dynamical phenomenon. SM is a reductionist enterprise

in that its constitutive assumption is that the behaviour of large systems is deter-

mined by the behaviour of its constituents. In the case of the initial example this

means that the behaviour of the gas is determined by the behaviour of the gas

molecules; that is, the gas spreads because the individual molecules bounce around

in such a way that they fill the space evenly and that their velocities obey the

Maxwell-Boltzmann distribution. So the question is: what kind of motion do

the molecules have to carry out for the gas as a whole to show TD-like behaviour?

The motion of molecules is governed by the laws of mechanics, which we assume

to be the laws of classical Hamiltonian mechanics. What kind of motion a Hamil-

tonian system carries out is determined by the Hamiltonian of the system. The

question then becomes: what dynamical properties does the Hamiltonian have to

possess for the system to show TD-like behaviour?

1 In passing we would like to mention that deriving the exact laws of TD from SM is also not a

requirement for a successful reduction (see 2).
2 For a detailed discussion of this approach see Frigg [6, 7].
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An answer to this question is an essential ingredient of an explanation of the

approach to equilibrium. For one, the only way to deny that the dynamics of

molecules matters is to deny reduction, but this amounts to pulling the rug from

underneath SM altogether. For another, the answer to the question about dynamics

is non-trivial because there are Hamiltonians under which systems do not show TD-

like behaviour (for instance, quadratic Hamiltonians). So we need to know what

properties a Hamiltonian must have for TD-like behaviour to take place. And this

question must be answered in a non-trivial way. Just saying the relevant

Hamiltonians possess the dynamical property of TD-likeness has no explanatory

power—it would be a pseudo-explanation of the vis dormitiva variety. The chal-
lenge is to identify in a non-question-beggingway a dynamical property (or, indeed,

properties) that those Hamiltionians whose flow is TD-like have.

The traditional answer to this question (which can be traced back to Boltzmann)

is that the system has to be ergodic. In recent discussions this answer has fallen out

of favour. After introducing the formalism of Boltzmannian Statistical Mechanics

(Sect. 7.2), we briefly discuss the Boltzmannian justification of TD-like behaviour

along with the criticisms levelled against it (Sect. 7.3). There is indeed a serious

question whether the original proposal is workable (although, rife prejudice not-

withstanding, there is no proof that it fails). For this reason is seems sensible to look

for a less uncertain solution. We point out that to justify TD-like behaviour it

suffices that a system be almost ergodic, where being almost ergodicis is explained

in terms of epsilon-ergodicity (Sect. 7.4). The most important criticism of the

ergodic programme is that relevant systems in SM are, as a matter of fact, not

ergodic. We review the two most powerful arguments for this conclusion—based

on the so-called KAM-Theorem and Markus-Meyer-Theorem, respectively—and

argue that they have no force against epsilon-ergodicity (Sect. 7.5). Not only do

these arguments have no force against epsilon-ergodicty, there are good reasons to

believe that relevant systems in SM are epsilon-ergodic (Sect. 7.6). We end with a

summary of our results (Sect. 7.7).

7.2 Boltzmannian Statistical Mechanics

We consider Boltzmannian SM and set Gibbsian SM aside, and we restrict attention

to gases.3 Furthermore we assume systems to be classical;4 a discussion of quantum

SM can found in Emch and Liu [10].

Consider a system of n particles moving in three-dimensional physical space.

The system’s microstate is specified by a point x in its 6n-dimensional phase

3 The explanation of TD-like behaviour in liquids and solids demands conceptual resources we

cannot discuss here. Let us just mention that an explanation of thermodynamic-like behaviour in

liquids and solids might well differ from an explanation of thermodynamic-like behaviour in

gases. In other words, we see no reason why for systems as different as gases and solids there has to

be one single dynamical property that explains thermodynamic-like behaviour.
4 For a discussion of Gibbsian SM see Frigg [8] and Uffink [9].
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space Г. This space is endowed with the standard Lebesgue measure m. The time

evolution of the system is governed by Hamilton’s equations, and the function sx :
R ! GE; sxðtÞ ¼ ftðxÞ is the solution originating in x. Because the energy is

conserved, the motion of the system is confined to a 6n � 1 dimensional energy

hypersurface ГE, where E is the value of the energy of the system. The measure m is

preserved under the dynamics of the system, and so is its restriction to ГE, mE.
If normalised, mE is a probability measure on ГE. From now on we assume that mE
be normalised. The triple ðGE; mE;ftÞ is a measure-preserving dynamical system,
where ft : GE ! GEðt 2 RÞ is a family a one-to-one measurable mappings such

that ftþs ¼ ftðfsÞ for all t; s 2 R; ftðxÞ is jointly measurable in (x, t), and mEðRÞ ¼
mEðftðRÞÞ for all measurable R � GE and all t 2 R (which is the condition of

measure-preservation).

From a macroscopic perspective the system is characterised by a set of

macrostates Mi, i ¼ 1, . . . , m. To each macrostate corresponds a macro-region GMi

consisting of all x 2 GE for which the system is inMi. The GMi
form a partition of ГE,

meaning that they do not overlap and jointly cover ГE. The Boltzmann entropy of a

macrostateMi is SBðMiÞ :¼ kBlog½mðGMi
Þ� (where kB is the Boltzmann constant), and

the Boltzmann entropy of a system at time t, SBðtÞ, is the entropy of the macrostate of

the system at t: S
B
ðtÞ :¼ S

B
ðMxðtÞÞ, where x(t) is the microstate at t and MxðtÞ is the

macrostate corresponding to x(t) (cf. [11]). The equilibrium state, Meq, and the

macrostate at the beginning of the process, Mp, also referred to as the ‘past state’,

are particularly important. For gases GMeq
is vastly larger (with respect to mE) than

any other macro-region, a fact also known as the ‘dominance of the equilibrium

macrostate’ (we briefly return to this in the conclusion); in fact ГE is almost entirely

taken up by equilibrium microstates (see, for instance, [5], p. 45).5 For this reason

the equilibrium state has maximum entropy. The past state is, by assumption, a

low entropy state. The Boltzmann entropy is the quantity that is expected to show

TD-like behaviour.

7.3 The Ergodic Programme

We now introduce the notion of ergodicity and discuss the problems that attach to it

when used in the context of Boltzmannian SM. The time-average of the phase flow
ft relative to a measurable set A of GE of a solution starting at x 2 GE is

LAðxÞ ¼ lim
t!1

1

t

ðt
0

wAðftðxÞÞdt; (7.1)

5As Lavis [3, pp. 255–258] has pointed out, some care is needed here. Non-equilibrium states can

be degenerate and together can take up a large part of ГE. However, those non-equilibrium states

that occupy most of the non-equilibrium area have close to equilibrium entropy values and so one

can then lump together equilibrium and close-to-equilibrium states and get an ‘equilibrium or

almost equilibrium’ region, which indeed takes up most of ГE. The approach to equilibrium can

then be understood as the approach to this ‘equilibrium or almost equilibrium’ state.
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where the measure on the time axis is the Lebesgue measure and wAðxÞ is the

characteristic function of A: wAðxÞ ¼ 1 for x 2 A and 0 otherwise. Birkhoff [12]

could prove that LAðxÞ exists except for a set of measure zero, i.e., except for a set B
in ГE with mEðBÞ ¼ 0. A system is ergodic (on the energy hypersurface) if and only

if (iff) for all measurable A in GE

LAðxÞ ¼ mEðAÞ (7.2)

for all x 2 GE except for a set of measure zero.

Ergodic systems exhibit TD-like behaviour. Setting A ¼ GMeq
and taking into

account the dominance of the equilibrium macro region, it follows immediately that

almost all initial conditions lie on solutions that spend most the time in equilibrium

and only show relatively short fluctuations away from it (because non-equilibrium

regions are small compared to GMeq
). Therefore, the Boltzmann entropy is maximal

most of the time and fluctuates away from its maximum only occasionally: the

system behaves TD-like.6

In passing we would like mention that neither TD itself, nor TD-like behaviour

as defined above, make any statement about how quickly a system approaches

equilibrium; that is, they remain silent about relaxation times. The same holds true

of ergodicity, which is also silent about how long it takes a system to reach

equilibrium. This is no drawback: it is unlikely that one can say much about the

speed of convergence in general because this will depend on the system under

consideration. However, it is true that many gases approach equilibrium fairly

quickly, and a full justification of the macroscopic behaviour of systems has to

show that the relevant dynamical systems show realistic relaxation times. For want

of space we do not pursue this issue further.

The two main arguments levelled against the ergodic approach are the measure

zero problem and the irrelevancy charge. The measure zero problem is that LAðxÞ ¼
mEðAÞ holds only ‘almost everywhere’, i.e. except, perhaps, for initial conditions of

a set of measure zero. This is seen as a problem because sets of measure zero can be

rather ‘big’ (for instance, the rational numbers have measure zero within the real

numbers) and because sets of measure zero need not be negligible if sets are

compared with respect to properties other than their measures (see, for instance,

[16], pp. 182–188).

What lies in the background of this criticism is the quest for a justification of a

strict version of the Second Law. However, as we have pointed out in the introduc-

tion, this is an impossible goal. At best SM can show that TD-like behaviour is very

likely, and there is no way to rule out that there are initial conditions for which this

is not the case. As long as the probability for this to happen is low, this is no threat to

the programme. In fact, our explanation (in the next section) for why systems

behave TD-like is even more permissive than the traditional ergodic programme:

6We can then interpret mE as a time-average. For a discussion of this interpretation see Frigg [13],

Lavis [14] and Werndl [15].
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it allows for sets of ‘bad’ initial conditions that have finite (yet very small)

measure.7

The second objection, the irrelevancy challenge, is that ergodicity is irrelevant to

SM because real systems are not ergodic. In effect, by appealing to ergodicity we

are like the proverbial fool who searches for his lost wallet underneath the lantern.

This is a serious objection, and the aim of this paper is to develop a response to it.

Our response departs from the observation that less than full-fledged ergodicity is

sufficient to explain why systems behave TD-like most of the time. We introduce

epsilon-ergodicity and then argue that epsilon-ergodicity gives us what we need.

We then revisit the main two arguments for the conclusion that SM systems are not

ergodic and show that they have no force against epsilon-ergodicity (or ergodicity).

7.4 Epsilon-Ergodicity and Thermodynamic-Like Behaviour

Roughly speaking, a system is epsilon-ergodic if it is ergodic on the entire energy

hypersurface except, perhaps, on a set of measure e, where e is very small or zero.8

In order to eventually introduce epsilon-ergodicity, we first define the (different!)

notion of e-ergodicity. The latter captures the idea that a system is ergodic on a set of

measure 1 � e: ðGE; mE;ftÞ is e-ergodic, e 2 R; 0 � e<1, iff there is a set Z � GE,

mðZÞ ¼ e, withftðĜEÞ � ĜE for all t 2 R, where ĜE :¼ GE n Z, such that the system
ðĜE; mĜE

;fĜE
t Þ is ergodic, where mĜE

ð�Þ :¼ mEð�Þ=mEðĜEÞ for any measurable set in

ĜE and fĜE
t is ft restricted to ĜE . Trivially, a 0-ergodic system is simply an ergodic

system. We now say that a dynamical system ðGE; mE;ftÞ is epsilon-ergodic iff there
exists a very small e (i.e. e<<1) for which the system is e-ergodic.

An epsilon-ergodic system ðGE; mE;ftÞ is ergodic on GE n Z, and, therefore, it
shows thermodynamic-like behaviour for the initial conditions in GE n Z. If e is very
small compared to mEðGMp

Þ, then the system will behave TD-like for most initial

conditions (i.e. for all initial conditions except, perhaps, ones that form a set of

measure e).9 If we now interpret mE as a probability density (which we are free to do
because it has the formal properties of a probability measure),10 then it follows that

7 This solution (or rather: dissolution) of the measure zero problem presupposes that the initial

conditions are measured with respect to the Lebesgue measure. Justifying this choice is a well-

known and thorny problem which we cannot address here. In what follows we assume that such a

justification can be given and that the Lebesgue measure is the right measure to use in these cases.
8 Epsilon-ergodicity has been introduced into the foundations of SM by Vranas [17]. However,

Vranas uses it to justify Gibbsian equilibrium theory, while we use it within Boltzmannian SM. For

a discussion of Vranas’ views, see Frigg [8, pp. 149–151].
9 A weaker antecedent still warrants the consequent: mEðGMp

n ZÞ=mEðGMp
Þ has to be close to one.

This is trivially true if mEðZÞ is small compared to mEðGMp
Þ, but it can also be true if mEðZÞ is larger

(but substantial parts of Z come to lie in other macro-regions).
10 For a discussion of how to interpret these probabilities see Frigg and Hoefer [18].
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the system is overwhelmingly likely to behave TD-like. Therefore, we find that if a

system is epsilon-ergodic, then it is overwhelmingly likely to behave TD-like. This

is the sought after result.

7.5 Threats from the Sidelines

This result is relevant only if real systems are actually epsilon-ergodic. In this

section we discuss two general mathematical theorems that are often marshaled

against ergodicity and argue that these arguments are based on a misinterpretation

of the theorems. In the next section we look at some important systems in SM and

provide evidence (both mathematical and numerical) that they are indeed epsilon-

ergodic.

The Kolmogorov-Arnold-Moser theorem (KAM-Theorem). Physically speaking,

a first integral of a dynamical system is constant of motion. Formally, a function G
is a first integral of a dynamical system with Hamiltonian H just in case the Poisson

bracket {H,G} equals zero. A dynamical system with n degrees of freedom is called

integrable (in the sense of Liouville) just in case there are n independent first

integrals Gi which are in involution (the Gi are in involution iff fGi;Gjg ¼ 0 for

all i; j; 1 � i; j � n). Iff a dynamical system is not integrable, it is called

nonintegrable. For an integrable system the energy hypersurface is foliated into

tori, and on each torus there is either periodic motion or quasi-periodic motion with

a specific frequency [19, 20].

The KAM-theorem gives an answer to the question of what happens when an

integrable system is perturbed by a small perturbation which is nonintegrable.

According to the KAM-theorem, under certain conditions,11 there are two kinds

of motion on the hypersurface of constant energy. Namely, first, there is the motion

on tori with sufficiently irrational frequencies; the solutions on these tori behave

like the ones in the integrable case, meaning that there is quasi-periodic motion

(these tori are said to “survive the perturbation”). Second, between the surviving

tori the motion is irregular and unpredictable. As the perturbation decreases, the

measure of the tori which survive the perturbation goes to one. Thus the hypersur-

face of constant energy splits into two regions invariant under the dynamics: the

region where the tori survive and the region where this is not the case; moreover, the

measure of the former goes to one as the perturbation goes to zero. The motion on

the region where the tori survive cannot be ergodic or epsilon-ergodic because the

solutions are confined to tori. Consequently, dynamical systems to which the KAM-

Theorem applies fail to be ergodic, and for a small enough perturbations they also

fail to be epsilon-ergodic (cf. [20]).

11 It is required that (i) one of the frequencies never vanishes, and (ii) that the ratios of the non-

vanishing frequency to the remaining n � 1 frequencies are functionally independent on the entire

energy hypersurface (this means that the ratios depend on the action) [20, pp. 182–183].
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This consequence of the KAM-theorem is often taken to show that many, or even

all, systems in SM fail to be ergodic. Consider, for instance, the following

quotations:

[T]he evidence against the applicability [of ergodicity in SM] is strong. The KAM-

Theorem leads one to expect that for systems where the interactions among the molecules

are non-singular, the phase space will contain islands of stability where the flow is non-

ergodic. [21, p. 70]

Actually, demonstrating that the conditions sufficient for the regions of KAM-stability

to exist can only be done for simple cases. But there is strong reason to suspect that the case

of a gas of molecules interacting by typical intermolecular potential forces will meet the

conditions for the KAM result to hold. [. . .] So there is plausible theoretical reason to

believe that more realistic models of typical systems discussed in statistical mechanics will

fail to be ergodic. [16, p. 72]

First appearances notwithstanding, these claims are unfounded. The KAM-

Theorem does not show that gases in SM fail to be ergodic (and hence does not

show that they fail to be epsilon-ergodic). The crucial point, which is often ignored,

is that the KAM-theorem only applies to extremely small perturbations of integrable
systems. For systems in SM it has been found that the largest admissible perturba-

tion parameter rapidly converges toward zero as the number of degrees of freedom

n goes to infinity [22, 23]. Consequently, as Pettini points out, “for large n-systems

– which are dealt with in statistical mechanics – the admissible perturbation

amplitudes for the KAM-theorem to apply drop down to exceedingly tiny values

of no physical meaning” [22, p. 60]. For larger perturbations the surviving tori

disappear and the motion can be epsilon-ergodic or even ergodic. Thus the KAM-

theorem is simply irrelevant because it does not apply to gases in SM.

Moreover, it is at best unclear whether systems in SM can be represented as

integrable systems plus a small perturbation.12 Hamiltonians of that kind are

extremely special. And not only is there no reason to believe that SM systems are

of this special kind; the systems commonly studied in SM are not (as becomes clear

in the next section). Hence, once again, the KAM-Theorem is just irrelevant to the

question of whether or not systems in SM are epsilon-ergodic (or ergodic), and

dismissals of the ergodic approach based on the KAM-Theorem are misguided.

The Markus-Meyer Theorem (MM-Theorem). The MM-theorem is about the

class of infinitely differentiable Hamiltonians on a compact manifold. It says that in

this class nonergodic systems are generic in a topological sense (of first Baire

category) [24]. Furthermore, when studying the proof of the MM-Theorem, one

sees that the proof implies that the set of Hamiltonians which are not epsilon-ergodic

are also generic. Here an ergodic Hamiltonian (epsilon-ergodic Hamiltonian)
(as opposed to a dynamical system) is defined to be a Hamiltonian which is ergodic

(epsilon-ergodic) on the energy hypersurface for a dense set of energy values. So is

the MM-Theorem a threat to the claim that all gases in SM are epsilon-ergodic?

12 Thanks to Pierre Lochack for making us aware of this.
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We do not think so for two reasons. First, the proof of the MM-theorem

shows that those Hamiltonians which are generic are not epsilon-ergodic because

there is exactly one minimum value of the energy (where the motion is a general

elliptic equilibrium point). And for energy values which are arbitrarily close to this

minimum the motion on the energy hypersurface is not epsilon-ergodic. However,

these very low energy values are of no relevance to gases in SM. Either for very low

energy values quantum effects come in, rendering these energy values irrelevant for

SM. Or these low energy values do not correspond to gases but to glasses or solids

[17, 25–28].

Second, the MM-Theorem only holds for compact phase spaces. However, for

systems considered in SM the phase space is usually not compact (see, e.g., [19]).13

The proof of the MM-Theorem cannot be easily transferred to noncompact phase

spaces; but this is exactly what would be needed. For these reasons, also the MM-

Theorem is no threat to the claim that all gases in SM are epsilon-ergodic (or

ergodic).

7.6 Relevant Cases

A different line of attack draws attention to particular systems that fail to be ergodic

and yet behave TD-like, from which it is concluded that ergodicity cannot explain

TD-like behaviour. We will argue that these examples are besides the point and that

there are good reasons to believe that gases in SM are epsilon-ergodic.

Common counterexamples to the ergodic programme are the following. First,

solids show thermodynamic-like behaviour; however, in a solid the molecules

oscillate around fixed positions in a lattice, implying that a state can only access a

small part of the energy hypersurface [9, p. 1017]. Second, a system of n uncoupled
anharmonic oscillators of identical mass shows TD-like behaviour, but it is not

ergodic [29]. Third, the Kac Ring Model is known not to be ergodic, but it still

shows TD-like behaviour (ibid.). Fourth, a system of non-interacting point particles

is not ergodic, yet it is still often studied in SM [30, p. 381].

None of these examples threatens our claim that gases in SM are epsilon-

ergodic. Clearly, solids are not gases and hence can be set aside. Similarly,

uncoupled harmonic oscillators and the Kac-ring model are irrelevant because

they seem to have nothing to do with gases. The properties of ideal gases are

very different from the properties of real gases because there are no collisions in

ideal gases and collisions are essential to the behaviour of gases. So while ideal

gases may be an expedient in certain context, no conclusion about the dynamics of

real gases should be drawn from them. Hence, the well-rehearsed examples do not

establish that there is a gas-like system which behaves TD-like while failing to be

13 The hypersurface of constant energy is usually compact, but the phase space is not, and the

theorem cannot be rephrased as one about the energy hypersurface.
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ergodic.14 We now argue that this is not an artifact of the way the examples have

been chosen; gases do seem to be epsilon-ergodic. We should point out that there

are only few rigorous results about the dynamical properties of gases. Nevertheless,

these, together with the results of some numerical studies, support the hypothesis

that gases in SM are epsilon-ergodic.

The dynamics of a gas is specified by the potential which models the force

between the particles. Two potentials are of particular importance: the Lennard-
Jones potential and the hard-sphere potential. For two particles the Lennard-Jones

potential has the form:

UðrÞ ¼ 4a
r
r

� �12

� r
r

� �6
� �

; (7.3)

where r is the distance between the particles, a corresponds to the depth of the

potential well and r is the distance at which the inter-particle potential is 0. From

this one obtains the potential of the entire system by summing over all two-particle

interactions or by considering only the interactions between the nearest neighbours.

The Lennard-Jones potential is among the most widely-used potentials because it

agrees well with the data about inter-particle forces [31, pp. 236–237, 32,

pp. 502–505].

The hard-sphere potential models the motion of impenetrable spheres of radius R
that bounce off elastically. For two particles the hard-sphere potential is:

UðrÞ ¼ 1 for r < R and 0 otherwise; (7.4)

where r is the distance between the particles. Again, one obtains the potential of the
entire system by summing over all two-particles interactions. The hard-sphere

potential simulates the steep repulsive part of realistic potentials [31, p. 234]. It is

widely used in mathematical as well as numerical studies because it is the simplest

potential.

Let us start by discussing the hard-sphere potential. Boltzmann [33] already

studied this potential and conjectured that hard-sphere systems are ergodic when

the number of balls is large. From a mathematical viewpoint it is easier to study the

movement of particles on a torus rather than the movement of particles in box or in

other containers with walls. For particles moving on a torus there are no walls; it is

like if a ball reappears at the opposite side of the box instead of bouncing off the

wall. Studying the motion of hard-spheres on a torus is important: if anything,

the walls cause the motion to be more random than the motion on a torus (relative to

the trivial invariants of motion; see Chernov [34]). Thus if the motion of hard-

spheres on a torus is ergodic, this provides good evidence that the motion of hard

14However, the case of solids highlights an important issue. Namely that the approach to

equilibrium in solids is an unsolved problem and that this problem deserves more attention than

it has received so far.
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spheres in a box (or other containers) is ergodic. Sinai [35] hypothesised that a

system of N hard-spheres moving on T2 and on T3 is ergodic for all N � 2 where Tm

is the m-torus [36]; this hypothesis became known later as the ‘Boltzmann-Sinai

ergodic hypothesis’. The first step towards proving this hypothesis was made by

Sinai [37], who showed that the motion of two hard spheres on T2 is ergodic.15

Since then several important proofs have been accomplished; taken together, they

add up to an almost complete proof of the Boltzmann-Sinai ergodic hypothesis (and

mathematicians in this field expect that a full proof will be forthcoming soon).

Three results are particularly important. First, Simányi [42] showed that a system of

N hard-spheres moving on Tm is ergodic for all m � N, N � 2. Second, Simányi

[43] proved that a system of N hard spheres moving on Tm is ergodic for all N � 2

and all m � 2 and for almost all values ðM1; . . . ;MN; rÞ, whereMi is the mass of the

i-th ball and r is the radius of the balls.16 Third, Simányi [44] showed that a system

of N hard spheres moving on Tm is ergodic for all N and all m provided that the

Sinai-Chernov Ansatz is true (mathematicians who work in this field widely expect

that the Sinai-Chernov Ansatz holds).17

Obtaining strict mathematical results about the more realistic case of hard-

spheres moving in a box (rather than on a torus) is more difficult. Only few results

have been obtained here. Most importantly, Simányi [45] proved that the system of

two balls moving in an m-dimensional box is ergodic for all m. Numerical studies

suggest that the same result holds true for an arbitrary number of balls. Zheng

et al. [46] found evidence that systems of identical hard-spheres in a two-dimensional

and a three-dimensional box are ergodic. Dellago and Posch [47] studied systems of

a large number of identical hard-spheres in a three-dimensional box, and obtained

numerical evidence that the motion is ergodic.

We now turn to the Lennard-Jones potential, which is much harder to treat

mathematically. Donnay [48] showed that a system of two particles moving on T2

where there is a generalised Lennard-Jones type potential is not ergodic for certain

values of the energy of the system.18 However, this result does not say anything

15All hard-sphere systems which are discussed in this section are not only ergodic but are also

strongly chaotic – they are Bernoulli systems (for a discussion of the meaning of Bernoulli

systems, see [38–41]).
16We are most interested in the case where the system has equal masses. Unfortunately, it is

unknown whether the system is ergodic for equal masses because the proof does not provide an

effective method of checking whether a given ðM1; . . . ;MN ; rÞ is among the values where the

system is ergodic [44, p. 383].
17 Consider @M, the boundary of all possible statesM of the hard-sphere system. Define SRþ as the

set of all states x in dM which correspond to singular reflections with the post-collision velocity v0,
for any arbitrary v0. According to the Chernov-Sinai Ansatz, the forward solution originating from
x is geometrically hyperbolic for almost every x 2 SRþ [44, p. 392].
18 The set of generalised Lennard-Jones potentials consists of potentials of the same general shape

as the Lennard-Jones potential and potentials which share some characteristics with the Lennard-

Jones potential. More specifically, generalised Lennard-Jones potentials as considered by Donnay

are smooth potentials where (a) for large r the potential is attracting, (b) as r goes to zero the
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about the cases of interest in SM, namely systems with a large number of particles.

And there is a general tendency that the larger the number of particles, the more

often systems are ergodic. Important for us is that even if systems with Lennard-

Jones potentials and with a large number of particles should turn out to be non-

ergodic, they are likely to be epsilon-ergodic [49]. Donnay [48, p. 1024] expresses

this as follows:

Even if one could find such examples [generalised Lennard-Jones systems with a large

number of particles that are non-ergodic], the measure of the set of solutions constrained to

lie near the elliptic periodic orbits is likely to be very small. Thus from a practical point of

view, these systems may appear to be ergodic.

Indeed, it is widely believed that Lennard-Jones type systems are epsilon-

ergodic because similar systems are epsilon-ergodic and numerical studies provide

evidence that they are epsilon-ergodic. More specifically, numerical studies of

systems with Lennard-Jones potentials have found that there exists an energy

threshold (a specific value of the energy) such that the system is epsilon-ergodic

for values above the energy threshold and fails to be epsilon-ergodic for values

below the threshold. Whether for energy values below the threshold the system is

really not epsilon-ergodic, or is epsilon-ergodic but appears to be not so because it

needs a very long time to approach equilibrium is still discussed [49–51]. Important

for our purpose is that the energy values below the energy threshold are very low.

This implies that the classical statistical mechanical description breaks down

because quantum effects cannot be ignored any longer [17, 27, 32]. Consequently,

the behaviour of these systems with very low energy values is irrelevant. In

conclusion, there is evidence that gases with a Lennard-Jones potential are epsi-

lon-ergodic for the relevant energy values.

After having discussed the hard-sphere potential and the Lennard-Jones poten-

tial, we want to briefly mention two important results about other potentials of

relevance in SM. First, Donnay and Liverani [52] proved that the motion of two

particles moving on T2 is ergodic for three types of potentials, namely for a general

class of repelling potentials, a general class of attracting potentials, and a class of

potentials with attracting and repelling parts (the latter are called mixed potentials).

Of particular importance here are the mixed potentials because they are everywhere

smooth. Everywhere smooth potentials are regarded as more realistic than

potentials with singularities, and Donnay and Liverani’s [52] mixed potentials

were the first smooth potentials which were proven to lead to ergodic motion.

Second, among the systems with many degrees of freedom which have been most

extensively investigated is the one-dimensional self-gravitating system consisting

of N plane-parallel sheets with uniform density; this system models processes in

plasma physics. Numerical investigations suggest that for N � 11 the system is

potential approaches infinity, and (c) the potential has finite range, i.e., there exists an R>0 such

that UðrÞ ¼ 0 for all r � R ((c) is assumed because it considerably simplifies the mathematical

treatment).
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ergodic [53–55]. To conclude, the mathematical and numerical results provide

evidence for the claim that all gases in SM are epsilon-ergodic.

7.7 Conclusion

This paper aimed to explain why gases exhibit thermodynamic-like behaviour. We

have argued that there is thermodynamic-like behaviour when the system is epsilon-

ergodic, i.e., ergodic on the entire accessible phase space except for a small

region of measure epsilon. Then we have shown that the common objections

against the ergodic approach are misguided and that there are good reasons to

believe that the relevant systems in statistical mechanics are indeed epsilon-ergodic.

Therefore, epsilon-ergodicity seems to be the sought-after explanation of why

gases show thermodynamic-like behaviour. However, our approach presupposes

that the equilibrium macro region is dominant, which can be shown only for gases.

The situation might well be different in liquids and solids. Whether, and if so how,

the current approach generalises to liquids and solids is an open question.
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Chapter 8

Revising Statistical Mechanics: Probability,

Typicality and Closure Time

Alon Drory

Abstract Standard statistical mechanics routinely assumes that the probable

behavior of a system is determined by the phase-space volume of its present

macrostate. In this context, typicality is merely the latest language in which one

expresses this presumed relation between phase-space measure and probability. I

argue that such a connection cannot hold in general, as we cannot, for example,

reconstruct without further information the history of a system found to be in

equilibrium now. Even if the system is not in equilibrium, we cannot in general

know its history, unless it has been closed for an extremely long time, in which case,

its present state most likely arose from equilibrium. As a consequence, there is no

way in general to relate probabilities to phase-space measure. The standard exposition

of statistical mechanics cannot be expected to adequately cover non-equilibrium

behavior, therefore. I show that the past hypothesis requires an incredible degree of

fine-tuning to explain this behavior, one that is as hard to explain as the observed

behavior itself. Finally, an analysis of the diffusion equation suggests that the problem

is independent of microscopic time-reversibility, and lies instead with the loss of

microscopic information entailed in the very definition of macrostates.

8.1 Introduction

Several papers in the present volume are concerned with the relation between

probability and the notion of typicality. In the context of statistical mechanics,

which is the focus of the present work, the relation between probability and

typicality can be said to be the relation between probability and measure, and as

such can be traced back to the work of Maxwell and Boltzmann (even though the

language of typicality is much more recent).
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Much of the literature addresses the problem of justification, which is the

question whether the typicality of a property justifies its being highly probable.

Here, on the other hand, my claim will be that in statistical mechanics, when

considering the type of systems that most interest us, the problem is more difficult

than we think, because typicality and probability do not agree. In other words, I will
argue that what we observe in practice, i.e., what we take to be the most probable

observation, is not always the typical state, and that the question is not therefore of

justifying why the typical states are the most probable but rather to find when (and

if) the typical states are the most probable ones.

In statistical mechanics, the basic objects of interest are the microstates of a

system, defined to be the complete set of positions and momenta of its N constituent

particles, (q,p). Here, q is the multi-dimensional (usually 3 N-dimensional) vector

of the generalized positions of all the particles, and p the multi-dimensional vector

of all their generalized momenta. These microstates may be grouped in similarity

classes according to some criteria while still remaining distinct (i.e., there are other

criteria that can differentiate between them). These similarity classes are said to be

“properties” of the microstates. One particular set of property classes holds special

significance. This is the set of macrostates of the system, which represent the

macroscopically (which we take to mean experimentally1) distinguishable states

of the system. Thus microstates belonging to the same class are said to represent the

same macrostate. This means that such microstates are indistinguishable by macro-

scopic observation performed at the time when the microstates are said to represent

the macrostate (the “present” time).2

Typicality requires a measure on the set of microstates, and a microstate is said

to be typical with respect to a certain property if it belongs to the maximal similarity

class defined by the property. Here we take maximal to mean the class that has the

largest measure, assuming there is such a class.

Thus, according to the standard account of statistical mechanics, among the

macrostates of the system there is one state of maximum size with respect to

the Lebesgue measure. This maximal macrostate is overwhelmingly larger than

all the other states put together. This is taken to be the equilibrium state of the

system, and empirically, any closed system will attain this state at some point and

remain in it henceforth. One of the main problems of statistical mechanics is to

explain this behavior.

1 The definition of what constitutes a macrostate is hardly trivial. See for example Pitowsky [1].

For the present purpose, however, I shall assume that some such states can be defined meaning-

fully, no matter how.
2 This distinction is important because it may be the case that future macroscopic observations

reveal distinctions between these microstates (for example, some may evolve to a non-equilibrium

state while others do not). Such future observations are not acceptable for the purpose of defining

the macroscopic equivalence of microstates. The determination of the macrostate corresponding to

a given microstate must be performed at the time to which the correspondence refers.
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Through the work of Maxwell and Boltzmann it has become clear that although

the empirical (macroscopic) observation is of a unidirectional evolution towards the

equilibrium state, in fact this behavior cannot be expected to be absolute and is only

extremely “likely”.

It is in order to clarify the meaning of this likelihood that the notion of

probability is introduced into statistical mechanics. But it turns out that there are

two apparently different ways to formalize this.

8.2 Two Notions of Probability

The first formalization, developed mainly by Boltzmann, centers on the probability

that a system observed over an interval of time T will be found to be in the

equilibrium state. In this view, if we observe the system at random times, the

most probable observation is that the system is in equilibrium. If we observe it in

a non-equilibrium state, the most probable outcome of the next observations is that

the system will be found to evolve towards equilibrium. Evolution towards the

equilibrium state is taken to mean that the next observation is most likely to be in a

state that has a larger Lebesgue measure than the original state. Thus, if the next

observed macrostate is still not the maximal state, it is nevertheless highly probable

that its Lebesgue measure is larger than that of the original state, and so on from one

observation to the next until we reach the maximal state of equilibrium. At this

point, we expect that the most probable outcome of any further observation is that

the system remains in equilibrium.

The second way to formalize the likelihood of a system reaching equilibrium

originates with Maxwell but was mainly developed by Gibbs. In this view, we

imagine a large (tending to infinity) collection of systems observed to be in the

same macrostate, but in possibly different microstates. From this ensemble, we pick

at random a system and perform an observation on it, asking specifically whether

this system evolves towards equilibrium within a certain time frame T. Not all
systems in the ensemble will evolve towards equilibrium, but according to this

view, there is an overwhelming probability that the system we have picked will

do so.

These Boltzmannian and Gibbsian formalizations are sometimes presented as

mutually exclusive, but that is not the case. Nor is there any need to choose one over

the other. Indeed both types of probability are required to obtain a full picture of the
system’s behavior.

Consider Boltzmann’s view first. It is hardly obvious that every microstate will

evolve so that the system spends most of its time in the equilibrium state. This does

hold if the system is ergodic, but this appears to be a rare property, and many

realistic systems are probably non-ergodic. Fortunately, we do not need such a

strong property. All we require is that when we observe a system, there should be

a high probability that it will spend most of its time in equilibrium in the future.
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In the last sentence, however, the type of probability wemean is not Boltzmannian,

but rather Gibbsian.What we are actually claiming is that out of many observations of

the system (basically, we are considering an ensemble of systems), the most probable

future is that the system will spend most of its time in equilibrium. In other words,

Boltzmann’s formalization shouldmore properly be viewed along such lines: Suppose

that we repeatedly observe a system to be in somemacrostate. In each observation, the

system is in one of the microstates that correspond to the observed macrostate. Then,

in overwhelmingly most of these observations, the systemwill be in such a microstate

that its future phase-space path remains overwhelmingly most of the time in the

equilibrium state. Equivalently, we could say that, in overwhelmingly most of

the observations, the system will be in such a microstate that, in future observations,

the system is overwhelmingly likely to be found in the equilibrium state. In this

(and the previous) sentence, the various occurrences of “overwhelmingly” refer to

two different types of probability. The first is Gibbsian, the second Boltzmannian.

Another (slightly cumbersome) way to say this is the following: Empirically, a

statistical mechanical system has a very high (Gibbsian) probability of being in such

a microstate that whenever we perform an observation, it will be found to be in

equilibrium with a high (Boltzmannian) probability.

Conversely, suppose we start with the Gibbsian formalization, i.e., from the

requirement that the microstate in which the system is found when we observe it is

highly likely to evolve towards the equilibrium state. This is insufficient for what

we seek to explain, because it could happen, in principle, that the system reaches

equilibrium but does not remain there. Clearly, part of what we mean by a state of

equilibrium is that the system should also stay there. This means that we must also

require that the temporal behavior of the system be such that it spends most of its

time in the equilibrium state. Just as not all microstates are likely to evolve to the

equilibrium state, so not all microstates are likely to remain forever in the equilib-

rium state once they reach it. We know that fluctuations do occur, so that often

enough, the system evolves out of equilibrium at least for a short while. Hence, we

must not only require that the system should evolve towards the equilibrium state,

but also that it should return to it swiftly whenever it fluctuates out of equilibrium.

Now the description of the system’s behavior in time calls for the Boltzmann

formalization. Indeed, the Gibbsian formalization could be expressed in the follow-

ing way: In a series of experimental observations of a statistical mechanical system,

there is an overwhelmingly high (Gibbsian) probability that the system will be

found in a microstate that evolves towards equilibrium and to a very high

(Boltzmannian) probability, remains there.

Thus, Gibbsian and Boltzmannian views complete each other, and we need both

types of probabilities to account for the statistical mechanical behavior of systems.

It is immaterial what view we take of probability itself, whether it is a frequentist

view, or a subjective view or any other, but we ought to be able to justify the claims

put forward. On what grounds can we assess whether a system is most probably to

be found in the equilibrium state or to belong to the class that evolves towards this

state? Classical mechanics has no built-in concept of probability. Hence, to extract

from it some notion of probability requires a linkage to something that can be based
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on dynamical properties alone. Typicality represents an attempt to make just such a

linkage by relating probability to measures and identifying “high probability” with

“majority”.

8.3 Measure and Typicality

The idea is that the dynamics can be used to establish (or at least to suggest) that in

any macrostate, the majority of microstates will evolve towards the equilibrium

state. Here, “majority” means this: consider the set of microstates that correspond to

a given macrostate, and define the subset of microstates that will evolve towards

equilibrium. Then the measure of this subset is overwhelmingly larger than the

measure of the set of microstates that do not evolve towards equilibrium. This claim

is unrelated to probabilities. It is a matter of counting phase-space paths, and is

entirely determined by the underlying microdynamics. Thus, according to the

definition given above, microstates that evolve towards equilibrium are typical.

Advocates of typicality as an explanation of the behavior of macroscopic systems

claim that this suffices to establish that with high probability, we will observe

systems to evolve towards equilibrium, because we select microstates “at random”

and thus in the overwhelming majority of cases, we will select a microstate that

evolves towards equilibrium.

As Pitowsky [2], Hemmo and Shenker [3] argue, however, this argument lacks

justification because “at random” requires a probability distribution of its own on

the microstates. This serves as a measure on the set of microstates, and nothing

requires using the same measure for the phase-space size of macrostates. Of course,

one can always claim that this is simply one of the axioms of statistical mechanics.

As Hemmo and Shenker put it, this means relying on pure induction. And while

there is nothing wrong with such a step, it does rob us of a justification in terms of

the microdynamics.

It is instructive to compare this situation with what happens in the Boltzmannian

view. In Boltzmann’s program, the microdynamics is used to justify or at least

make plausible the claim that the phase-space path of the system’s microstate

corresponds to the equilibrium state during overwhelmingly most of the time.

This again is not a probabilistic claim, but one that relies on the microdynamics

(and the definition of the macrostates). Although rarely expressed in this manner,

this too is in fact a claim of typicality. Indeed, what we mean by “most of the time”

must be something along these lines: consider the set of moments when the

microstate corresponds to the equilibrium state, and compare it to the set of

moments when it corresponds to some other macrostate. Then, we expect that the

measure of the set of “equilibrium moments” will be overwhelmingly larger than

the measure of the set of remaining moments. Here the transition to probability is

made by assuming that we observe the system at random times, and therefore, so the

standard claim goes, there is an overwhelmingly high probability of finding it in the

equilibrium state.
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What happens if we try to raise the same objections as before? After all, a

random selection of the observation times requires a probability distribution on the

set of moments, according to which these random moments are selected. And

nothing logically requires that we should select, e.g., a uniform probability distri-

bution on the observation times.

There is a fundamental difference between this and the previous case, however.

We are free to perform observations in any way we please, so the selection of a

probability distribution over the observation times is truly a matter of choice. Thus,

while there is no logical necessity to choose the moments from a uniform distribu-

tion, we are nevertheless free to stipulate that we should do so. By contrast,

whenever we select a microstate from an ensemble of systems in the same

macrostate, we have no control over the distribution from which the selection is

performed. Empirical conditions do the selection for us.

But this does raise another problem. If we are truly free to determine the set of

observation times as we please, why should we use a uniform distribution? Indeed,

it would appear that any experimental result could be established by merely

adopting whatever distribution over observation times we wish so that it would

yield the desired result. Thus, if these distributions are truly free, they are in danger

of becoming meaningless. Unless, that is, we could establish that the precise form

of the distribution is of little importance.

To some extent, we can actually hope to achieve this, provided we recall that any

observation requires some time to perform, so that any series of observations

necessitates a minimal extent. We cannot, for example, take a realistic series of

experiments and treat the series of times in which they are performed as mere points

on the number line. Were this the case, we could imagine an infinite series of

experiments performed during a well chosen couple of seconds that would yield

whatever result we wish. But real experiments take a minimum time to perform. As

the number of observations increases, the minimal extent of the series must also

increase, therefore. Thus, if we make the series infinite, it must extend over an

infinite time. If, indeed, the system spends most of its time in the equilibrium state,

we can hope that in such a series, the minimal time-separation between the various

observations will force the results to mimic a uniform distribution, at least in the

sense that most observations will show the system to be in equilibrium. It may still

be the case, of course, that a particular series of observations hits a fluctuation every

time so that the system appears to be constantly out of equilibrium. In fact, that

might happen even if the observations times are uniformly distributed. But there is

no way to ensure such a result beforehand. There is no particular choice of a time

series that will likely yield such a result a-priori, even if it might happen acciden-

tally. Thus, it seems that the form of the distribution over observation times is not

crucial and that the typicality argument has at least a reasonable chance of working

here.

But this is only true if the series of observations times is infinite. Clearly, if the

series is finite, not only are there no grounds for preferring one distribution over

another, but more seriously, even a uniform distribution can yield systematically

skewed results. Indeed, if the series of observations is short enough, the system may
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not have enough time to reach equilibrium, so that this apparently typical state is not

observed at all. Hence, if we seek to connect Boltzmannian probability to measures

in the manner of the typicality argument, it seems that we must have a system that

remains closed for a very long time. In fact it must remain closed forever.

This relation between probability, measure and closure time is not limited to this

case, however. It turns out to be absolutely crucial to statistical mechanical arguments.

The way to see this is to consider the past of systems rather than their future.

8.4 The Reversibility Paradox

Let us accept for a moment the typicality argument in either of its two forms. This

implies the following. Assume we observe a system and find it in a non-equilibrium

state. What can we say about this state? If probability and measure are directly

related, i.e., if typicality determines probability, then there is an overwhelming

probability that we are observing a microstate that will evolve into the equilibrium

state. This is the ensemble view. Alternatively, we can say that future observations

are overwhelmingly likely to yield a state closer to equilibrium. This is the time

evolution view.3

Now for both these conclusions to hold, the system must remain closed in the

future. We must assume, in other words, that the system is completely described by

a Hamiltonian of the form:

H = Hint q; pð Þ; (8.1)

where Hint represents the Hamiltonian of the internal interactions, which depends

entirely on the generalized positions and momenta of the particles in the system,

(q, p), and contains no parameter describing external interventions.

We know from experience that such external interactions, if they existed, could

allow us to change drastically the behavior of the system we observe (for example,

we can connect it to a refrigerator and cause its entropy to drop). Thus, an open

system need not even reach equilibrium (which is the supposedly typical state in

which the system should be observed), much less stay in it. Hence, the requirement

that the system remains closed in the future is a necessary one.

Now what about the past of the system? We know that a Hamiltonian of the type

expressed in Eq. 8.1 is time-reversible. This means that the phase-space paths of the

system exhibit a certain symmetry, expressible through an operation that transforms

every microstate r ¼ (q,p) into a time-reversed state, denoted Rr, which is a state in

3As argued above, both views must be combined to yield a proper understanding of the system’s

behavior. However, for the sake of this analysis, it is sometimes simpler to treat each aspect

separately. I will therefore continue to speak of these as alternative views, though they are actually

complementary.
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which all momenta have been reversed without altering the positions; in other

words Rr ¼ (q,�p). In thermodynamic macrostates, the direction of the velocities

will generally not be of importance, so that if r corresponds to a macrostate A, so

will Rr. Figure 8.1 shows the symmetry associated with the time-reversal operation.

A microstate rA ¼ (qA,pA), corresponding to a macrostate A, evolves over a time

t into a microstate rB ¼ (qB,pB) corresponding to a different macrostate B. To each

of these microstates corresponds a time-reversed state, RrA and RrB, respectively.
Because the Hamiltonian equations of motions are invariant under time-reversal,

the evolution in time of Rr looks like the time evolution of r run backwards. Thus, if

rA evolves into rB, RrB will evolve into RrA over the same time period. The paths

described by these processes are mirror-images of each other, with respect to the

position or q-hyperplane. This result has nothing to do with probabilities. It is

merely a geometric fact of phase-space, directly derivable from the micro-

dynamics.

This result further implies the following geometric fact. Consider the times prior

to the moment at which the system is in the macrostate A, i.e., the past history of the

microstate rA. Suppose then that over a time period t this microstate has evolved

from a past microstate rP, which corresponds to a macrostate P. Figure 8.2 shows

the implication of time-reversal symmetry, which is merely the reversal of Fig. 8.1.

To every microstate rA there corresponds a reversed microstate RrA, which will
evolve over a time t into the microstate Rrp. Thus to every past history of the

system, there corresponds a future unfolding, which is its mirror-image through the

q-hyperplane.

p
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•

•

•
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rB 

RrA
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Fig. 8.1 A microstate

rA evolves in time into a

microstate rB. The time

reversed microstate RrB will

evolve in the same time into

the reversed microstate RrA
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It bears stressing that this one-to-one correspondence is unrelated to

probabilities, and represents a mere dynamical fact. For this very reason, it relates

to typicality, however. Because both rA and RrA belong to the same macrostate, any

claim that holds of the majority of microstates holds of the majority of the reversed

microstates as well. This is because every macrostate can be divided into two

symmetrical parts, the first being a set of microstates AF ¼ {r} and the second

being the times reversed set AR ¼ {Rr}. Obviously, we have that:

A ¼ AF þ AR; (8.2a)

AF \ AR ¼ �;
4

(8.2b)

m AFð Þ ¼ m ARð Þ; (8.2c)

where m(A) represents the Lebesgue measure of the set A. Thus, if we claim that the

overwhelming majority of microstates in a macrostate A evolves into the equilib-

riummacrostate E, this cannot hold of AF alone or of AR alone, because the measure

of each of these sets is half the measure of the set A, so that neither can represent on

its own an overwhelming majority. The overwhelming majority of reversed states

p

q
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RrA

RrP

P

A
rA

rP

Fig. 8.2 A microstate rA has

evolved in time from a

microstate rP. The time

reversed microstate RrA will

evolve in the same time into

the reversed microstate RrP

4 Unless A contains the anomalous microstates (q, 0), but these have measure zero in phase space;

hence property (8.2c) still holds, and this is the main point.
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(AR) must also evolve into the equilibrium state, therefore. This evolution

represents the past of microstates in AF, however. Thus, in any macrostate, if the

overwhelming majority of microstates evolves into the equilibrium state (as it must

according to the standard account), an equally overwhelming majority of

microstates must have evolved from the equilibrium state.

This is very bad news if we wish to relate probability directly to measure,

however. If we consider an ensemble of states, à la Gibbs, and wish to maintain

that when observing a system we are overwhelmingly likely to observe a typical

microstate, then the preceding argument leads inexorably to the conclusion that

there is an overwhelming probability that the present state evolved from the

equilibrium state. If we consider a time series à la Boltzmann, the same argument

yields that past observations were very highly likely to have shown the system to be

in equilibrium. Either way, we should retrodict that the system has evolved into its

present state from an equilibrium past. Yet this is surely not the case for real

systems, so we are in a quandary, variously known as “Boltzmann’s second

problem” [4], or “The reversibility objection” ([5], p. 128), or “the reversibility

paradox” [6]. I shall use the last term.

8.5 The Past Hypothesis

There seems to be a relative consensus that the reversibility paradox is solved by

invoking cosmology, namely some special initial conditions for the beginning of

the universe (see, e.g., [7]). This “past hypothesis” posits that the universe began in

a “low entropy” state (i.e., one very dissimilar to equilibrium),5 and that this initial

state is sufficient to explain the observed behavior of actual systems. I have no

objection to the idea that the universe may have begun in a special state, but this

would be merely a necessary condition. The idea that it could be sufficient to

explain the behavior of every cup of coffee seems to be highly unlikely, given what

we know of cosmology today.

To begin with, the observed background cosmic radiation is highly uniform,

which implies that the early universe was also highly uniform. In fact, since this

radiation fits the black-body curve to a very high precision, the early universe must

have been in thermal equilibrium [9]. This is already bad news for the past

hypothesis, which would require it to be very far from equilibrium.

But perhaps this notion of thermal equilibrium, involving as it does a mixture of

radiation and matter is not quite what proponents of the past hypothesis have in

5 I have purposely avoided up to now the use of entropy, as I believe the problem is of a more

fundamental nature. In particular, I have no clear idea of how to define the entropy of the universe.

John Earman [8] has analyzed this concept thoroughly and concludes it is merely an “intuition

pump”. Nevertheless, even given some such concept, there is a growing body of opinion that the

past hypothesis will not solve the reversibility paradox.
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mind when discussing the “initial” state of the universe. One possibility, for

example, is that by “equilibrium”, they really mean “uniformity”. To say that the

universe began in some special condition would then mean that it possessed some

internal structure that led it to evolve into what we observe today. And to be sure,

the early universe was not completely uniform, as this would not have led to the

evolution of stars and planets.6 Variations in density were shown to relate directly

to variations in the temperature of the background cosmic radiation, so we should

be able to estimate just how much “structure” the early universe possessed. Obser-

vational data shows inhomogeneities in the cosmic radiation of the order of 10�5

[9]. These are presumed to be the seeds of super-clusters of galaxies, so that the

seed of a single galaxy should be a fluctuation of the order of about 10�7–10�8. The

mass of a galaxy such as our Milky Way can be estimated at around 1041–1042 kg.

Now consider the notion that the initial state of the universe determines what

happens to a cup of coffee. Since such a cup has a mass of about 0.1 kg, the initial

state of the universe must be determined down to sizes that are at least 10�42

smaller than that of a galaxy, which corresponds to a fluctuation of relative size

10�50 at the time from which we obtain the background cosmic radiation. There-

fore, to rely on the “initial” conditions of the universe to determine the behavior of

local systems implies that these conditions must be determined to at least 50 digits.

Such a precision is nothing short of miraculous, and one will be hard put to explain

why at least some local systems do not exhibit a non-thermodynamic behavior.

This quandary becomes even greater when considering that the past hypothesis

requires merely “low entropy” beginnings. But at best this could only explain why

the present state of the universe as a whole is not one of equilibrium. There is no

reason why some – or even many – closed subsystems should not evolve from

equilibrium states into non-equilibrium states (as suggested by the reversibility

paradox) provided the overall entropy of the universe is still growing. It is in this

sense that the past hypothesis seems to fail as a sufficient condition to guarantee that
every single closed subsystem should evolve from what we consider to be the

correct past – a state of individual low entropy, unrelated to the state of its

surroundings. To obtain this stronger result seems to require not merely low

entropic initial conditions, but much more highly specific conditions that determine

the future behavior of every single subsystem to which statistical mechanics

applies. This brings us back to a kind of fantastic conspiracy on the cosmic scale,

in which the state of the universe is determined to dozens of significant figures, in

such a way to give the impression of a law-like behavior (thermodynamics) whilst

being in fact a huge coincidence. It may be, of course, that this is the correct

explanation and that the universe does behave in this ridiculous manner. Before we

6Whether this relates to some concept of universal entropy or not is not essential. Clearly, the early

universe could not have been in a state of complete uniformity, and as much as I can make out, this

is the property usually meant when one talks of “equilibrium” and “high entropy” in the cosmo-

logical context.
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embrace such a stringent constraint on the universe, however, we should be certain

that we have understood the problem correctly.

8.6 Closure Time and Probability

Actually, what the reversibility paradox leads to is the realization that probability

and measure are not as simply related as we thought up to now. To see why,

consider a system closed from an initial time t0 ¼ 0 up to a certain moment 2T.

For illustration, assume that this is a thermos bottle. Suppose that we observe the

system at the mid-point T, and find that it is not in equilibrium; the thermos bottle

could contain some ice and lukewarm water, for example. When asked what

the state of the system is at t0 and at 2T, experience leads us to expect that at 2T

the system will be at equilibrium or closer to it (smaller ice chunks and cooler

water) while at t0 the system was further away from equilibrium (larger ice chunks

and warmer water). But as the previous argument shows, this contradicts the notion

that the system is in a typical microstate. While the overwhelming majority of states

will evolve towards equilibrium, in accordance with our experience, it is also true

that the overwhelming majority has evolved from equilibrium, contrary to what we

expect. Thus the typical microstate is one that represented, at t0, a system in

equilibrium or close to it (closer than it is at T). The horns of the dilemma are

quite pointed, and we cannot have it both ways. One cannot claim that observed

microstates must be typical and that this explains their future behavior, without

necessarily accepting that the same typicality leads to incorrect explanations of

their origins. One might posit the typicality of the behavior in the future but reject it

for the past, but this would void the typicality argument of any explanatory power,

and introduce time asymmetry into the argument by fiat.

As mentioned, the time reversal argument that leads to this retrodiction only

works if the system is closed, however. The Hamiltonian of an open system

contains terms that describe the interaction of the particles of the system with

outside sources, so that it can be written as:

H = Hint q; pð ÞþHext q; p; a1; . . . ; aRð Þ; (8.3)

where the term Hext , which describes the interaction with the external world,

depends on some set of parameters a1 , . . . , aR that may be functions of time.

Because of this, reversing the momenta will cause the external interaction term to

behave differently in the time reversed and the original processes, unless all the

parameters a1 , . . . , aR are also time reversed. However, to do so would mean to

extend, in effect, the definition of the system so that it includes the sources of these

external interactions, thereby creating a larger system that can be considered closed.

Only then will time-reversing all the parameters of the system cause it to retrace its

history and end up in its time-reversed original state.

126 A. Drory



Let us concentrate on closed systems, therefore. As long as we consider the

system’s microstate, it is mathematically obvious that the previous argument only

requires the system to be closed between the times t0 ¼ 0 and 2T. If that is the case,

the equations of motion allow us to determine uniquely the initial microstate of the

system if we know its microstate at the mid-point T (or indeed at any time between

0 and 2T). The system’s history prior to t0 and posterior to 2T is of no import, so that

the system may cease to be closed after 2T or may have been open right up to the

moment t0 without it influencing the argument.

What holds at the microscopic scale does not hold at the macroscopic scale,

however. In particular, the amount of closure time prior to the moment t0 does

influence considerably our macroscopic retrodictions.

To see why, imagine two copies of the thermos bottle, which we open at a time

T. In both cases we find some ice chunks and lukewarm water. In both cases we are

told the bottles have been closed and isolated from the time t0, and we are asked to

retrodict what the state of the system was at t0. There seems to be no reason to

retrodict anything other than the standard result, namely, that at t0, the system was

further away from equilibrium than it is at time T.

But now imagine that without changing in any way what happened between the

time t0 and the time T, we are given additional information. One bottle, we are told,

was closed at t0 or shortly before. But the other had been closed and isolated for

5 years (assume for the sake of the argument that this is possible and that we are

convinced that the isolation was complete). For this second bottle, the retrodiction

we are likely to make will change drastically. For if the bottle had indeed been

isolated for such a long time, then, however improbable it may be, the most likely

explanation for what we observe at the time T is that we are witnessing a spontane-

ous fluctuation from equilibrium. No amount of ice and more or less warm water

that we would have placed in the bottle 5 years ago could explain a present state of

non-equilibrium unless it involved some form of thermodynamic fluctuation,

uncaused by external interventions.

But such fluctuations are rare, and the larger they are the rarer. Which is more

unlikely, therefore: a very recent fluctuation that produced just about the state we

observe at T, or a larger fluctuation at t0, that would then have relaxed to the extent

we observe at T? Clearly, the smaller fluctuation is more probable. But this means

that at t0 the system was most likely to be in equilibrium. We should therefore

retrodict a completely different state than in the case of the first bottle. Now, both

systems were under identical conditions from t0 up to the time T, both were

observed to be in the same macrostate at T, and yet we retrodict different past

states for each. To be sure, they are in different microstates at the time T, but this is

a type of information to which we can have no access. Empirically, there is no

observable difference in the conditions of the two systems between t0 and T, and no

difference between their observable states at T. Yet these observations are insuffi-

cient to determine the most likely macrostate of the system at t0.

This should come as no surprise, actually, and the problem can be made far more

acute. Consider a slightly different case, in which a thermos bottle that has been

closed for 10 min is opened and found to contain only water at a uniform
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temperature, but one slightly lower than the ambient room temperature. What can

we say of the system’s state 10 min ago? Clearly nothing, for it is impossible to

make any retrodiction at all. The water may have been placed 10 min ago in the

container in the same condition in which it is observed to be now, uniformly cool.

Or it may have contained slightly warmer water and small chunks of ice that have

melted in the meantime. Even the quantity of such ice chunks may not be deter-

mined. Small chunks and cooler water could lead to the same observed equilibrium

state as slightly larger chunks and warmer water. A 10 min closure time would not

permit very large chunks of ice (barring an improbable fluctuation), but there are

still infinitely many possibilities of choosing the size of initial ice chunks and of the

water temperature that would all lead to uniformly cool water after 10 min. There is

no way to distinguish between them or to assign probabilities to these initial

macrostates. This is clearly not a probabilistic question at all, but rather a lack of

sufficient information.

What is important to notice is that the additional necessary information regards

what happened before the time t0. There is no way to establish any probability

regarding the initial state on the basis of the present observed state and of the

conditions that prevailed from t0 to T. In other words, the present macrostate and the

Hamiltonian of the system between t0 and T are insufficient to provide any

information, even a probabilistic one, on the state of the system at t0 (or indeed

even at times later than t0 but prior to T).

This is a drastic conclusion, but it is important to realize that it only holds if the

system could have been open at or around t0. The situation is very different if we

know that the bottle has been closed several years. If that is the case, then we will

consider it highly likely that 10 min ago, the contents of the bottle were in the same

state in which we find them now, namely in equilibrium. Any other state could only

represent a highly unlikely fluctuation.

What can we conclude from all this regarding the validity of the connection

between probability and macrostate measure, or probability and typicality? If there

is to be any chance of determining probabilities purely on the basis of the

macrostate of the system, then we should at least be able to assign probabilities to

different histories based on the measures of the possible initial states. But if the

system was recently open, there is no way of making such an assignment at all,

neither on the basis of macrostate volume nor on any other macrostate parameter.

The history of a recently open system cannot be determined, either probabilistically

or otherwise, solely on the basis of its present macrostate. It requires some knowl-

edge of the interactions between the system and its environment prior to its

becoming closed.

The situation is dramatically different if the system has been closed for a very

long time, however. In that case, the effect of such prior interactions has had time to

dissipate before the observation or the time we are requested to retrodict about. In

other words, the far history of the system has no longer any influence on our

predictions/retrodictions, and on our assignments of probabilities. This is a neces-

sary precondition for any probabilistic analysis of the system. Thus, only long-

closed systems can possibly be described probabilistically in the standard
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statistical-mechanical approach. Because an assignment of probabilities on the

basis of macrostate measure implies that the history of the system is irrelevant,

standard statistical mechanics can only apply to systems that have no “memory” of

such histories, i.e., systems that have been closed long enough to have such histories

“erased”.

As we have seen, such systems force us to make a drastically different retrodic-

tion than the usual one. No matter the macrostate of the contents of the thermos

bottle at the time T, if we know that the bottle has been closed and isolated for

years, we shall retrodict that 10 min ago, the system was in equilibrium. This is

precisely the retrodiction that we should have made on the basis of the typicality/

measure argument. Typical system do indeed originate from equilibrium as well as

evolve towards it.

These arguments do not prove the relation of probability to measure or typical-

ity, nor can they serve as any justification of it. Instead, they put in question the very

existence of this relation for the most common systems we encounter. Only in

systems that have been closed for an extremely long time (long with respect to the

thermalization time of the system) can we hope to find a direct relation between the

measure of a macrostate and its probability. For systems that were open recently we

have no basis for such a connection, because although it does seem to give the right

answer regarding future behavior, it gives the wrong answer regarding the system’s

history. Such a track record would be considered a rather poor one in any other

theory.

I have suggested elsewhere [6] that for the purposes of constructing a logically

consistent theory, we could add an explicitly time-asymmetrical assumption to the

usual axioms of statistical mechanics, one that recognizes this state of affairs. I will

not defend this proposal here, as it is not the main subject of this paper. I merely

note that that proposal was not meant to be an explanation of this state of affairs,

merely an attempt to clarify the nature of the question.

8.7 Macrostates and Information Loss

The previous argument stresses the problem of time reversal and its consequences.

But the question of time reversal only serves to heighten the problem. The origin of

the problem lies elsewhere and this is what I would like to turn to now.

I shall argue that the origin of the problem lies in the very fact that for

macrostates to be defined at all, there must be a certain loss of information about

the system. Indeed, the problem we have identified, namely the influence of

histories prior to the time t0 at which we know the system to be already closed,

does not exist on the microscopic scale. Knowledge of the present microstate q;pð Þ
of the system at a time T completely determines its future and past states, and in

particular the microstate q0;p0ð Þ at t0. For example, one can imagine several copies

of the system in question, each influenced by a different Hamiltonian up to the

moment t0 ¼ 0. It is perfectly possible that each of these systems is brought to an
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identical state q0;p0ð Þ by a different Hamiltonian, but this has no influence on its

subsequent history. Thus, the initial state q0;p0ð Þ stands in a one-to-one correspon-

dence with any state q;pð Þ observed at a later time t, via the Hamiltonian of the

system between t0 and t. It makes no difference if ones goes forwards or backwards

in time, and it is a well-known mathematical property of the equations of motion

that they can be expressed just as easily on the basis of final conditions as on the

basis of initial ones.

But as the above argument shows, it is precisely this property that fails in the

case of macroscopic systems. When the states of the system are only defined

macroscopically, the final state does not in general determine the initial state of

the system. Identical macrostates can have very different origins, and there is no

simple way to attach probabilities to them, certainly not on the basis of their

measure alone. The system’s present macrostates do not determine its past states.

Only the microstates do.

Now, that problem has nothing to do with time reversal. To see this, consider a

phenomenological macroscopic dynamical equation like the diffusion equation

@r
@t

¼ Dr2r (8.4)

This equation describes the macroscopic behavior of the system, and it is explicitly

non time-reversible. Thus, it offers us the opportunity to check the source of the

under-determination of the system’s past separately from the reversibility

argument.

The diffusion equation can be solved by Fourier transforming the spatial

components, thus yielding the solution in the form of an integral

rðr; tÞ¼
ð
r̂ðk; tÞe�ik�rdr (8.5)

The coefficients r̂ðk; tÞ are easily found from the diffusion equation, and they are

of the form

r̂ðk; tÞ ¼ r̂ðk; 0Þe�ðDk2Þt (8.6)

The coefficients r̂ðk; 0Þ are the spatial Fourier transforms of the initial state of

the function rðr; tÞ, i.e., the transforms of rðr; 0Þ.
As noted above, the diffusion equation is time-irreversible because of the first

order time derivative. Yet mathematically speaking, the value of the function rðr; tÞ
determines its initial value (and thus its past history) completely, because given the

present Fourier coefficients r̂ðk; tÞ, one can always use Eq. 8.6 to calculate the

initial coefficients r̂ðk; 0Þ, and from them the initial condition rðr; 0Þ. Conversely,
one needs nothing more than the initial function to completely determine the state

of the system at any future time. Thus, both past and future can be determined from

130 A. Drory



the present state of the system, even though the system is not time-reversible. This

property is therefore independent of time reversibility.

But if the diffusion equation does determine completely the history of the

system, does this not contradict the previous argument that macroscopic systems

have determined pasts only if they are long-closed? Indeed it would if the diffusion

equation (and other phenomenological equations like it) were correct and complete

descriptions of the system. But a look at Eq. 8.6 shows where the problem lies. As

time goes by, every coefficient diminishes exponentially, except r̂ð0; tÞ which

generates a uniform function. This means that the spatial variations of

rðr; tÞdecrease exponentially, but never truly vanish. It is for this reason that the

system exhibits – formally – an infinitely long memory. This is a mathematical

fiction, however, and this is precisely where we reach the root of the problem.

The very notion of macroscopic states requires the inability to distinguish

between microscopic states. Thus, at some time, the variations in rðr; tÞ must
become macroscopically unnoticeable.. This means that observationally, all the
Fourier components except r̂ð0; tÞ are zero. Such a solution corresponds to a

uniform density, which means, for the processes described by the diffusion equa-

tion, that the system has reached equilibrium.

But if all the other Fourier components must be considered observationally zero,

then any microscopic information is truly lost and the initial state of the system can

no longer be reconstructed.

For the equilibrium state this is not very surprising, however, and one may be

tempted to think that we are being excessive. After all, what matters is

reconstructing a system’s history from it present non-equilibrium state. But a

moment’s thought shows that this is an equally vain hope. The equilibrium state

may be the most dramatic occurrence of information loss, but it is by no means the

only one. Any macrostate contains many microstates that will differ from one

another by some small variations in the Fourier components, variations that are

macroscopically indistinguishable. Thus, at any point, a given function rðr; tÞis
macroscopically indistinguishable from myriad other such functions that differ

from it by small variations. The past history of the macrostate cannot be deter-

mined, since one can no longer be sure of the exact values of the Fourier

components at present. Yet these past histories may correspond to macroscopically

different states.

This is seen most clearly by rewriting Eq. 8.6 in the following form:

r̂ðk;�TÞ ¼ r̂ðk; 0ÞeDk2T; (8.7)

which represents a retrodiction of the system’s state at –T. As we trace back the

system’s history from t0 ¼ 0 to the time –T, every Fourier components is exponen-

tially magnified. Thus, if two states differ at a certain time by minute amounts, their

histories will diverge exponentially as we look back in time. States that are

macroscopically indistinguishable now can have evolved from very different

pasts, and there is no way to determine the correct history on the basis of the
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present macrostate alone (though there would be, of course, if we had access to the

actual microstate).

Now, the diffusion equation is phenomenological, and can make no pretense to

being a fundamental description of the system, as statistical mechanics aspires to

be. I do not mean to imply that the details of the foregoing analysis are directly

applicable to statistical mechanics. But the general situation is similar. Any macro-

scopic description must, by its very definition, be insensitive to microscopic

differences in the system’s state. Yet these now immeasurable differences arise

from vastly different histories. In the past, they represented macroscopic

differences. Thus, there is no way in principle of reconstructing the system’s

past – either probabilistically or otherwise – solely on the basis of its observed

present macrostate.

It is an empirical fact that while minute microscopic differences in the present

state can build up to vast macroscopic differences in the past, they (most probably)

do not do so in the future. To an overwhelming probability, microscopic states that

are very similar now (in the sense that they belong to the same macrostate) will

evolve similarly in the future, i.e., into the same macrostate. This fact cannot be

explained by mere typicality or by the measure of the present macrostate, however.

For any such claim would hold of the system’s history as well, independently of

whether the system is time-reversible or not. The question is not whether a process

can be time-reversed, but whether its history can be determined at all. Typical states

do have a common typical history, but in most cases that interest us, this is not the

actual history of the system. Indeed, only if the system has been closed for a very

long time is the typical history also the actual history.

8.8 Conclusions

It is well known that statistical mechanics is a highly successful theory for describ-

ing a system’s equilibrium state. It is equally well-known that there is no single

complete theory of the dynamics of systems far from equilibrium (though some

specific systems are better understood than others).

In view of the present analysis, this is no accident. Standard statistical mechanics

relates probabilities to measure in phase-space, whether in Boltzmann’s formula-

tion or in Gibbs’s. But in order for such a relation to hold, the system must be closed

for a very long time, both in the future and in the past.

As noted in Sect. 8.3, if the system does not remain closed for a very long future

time, we cannot apply Boltzmannian probabilities, and as noted in Sect. 8.2, this

type of analysis is required even if we take the Gibbsian point of view. Thus the

requirement of long closure time in the future is necessary for the standard

probabilistic analysis to hold.

The same holds for the past. If the system was not closed for a very long time in

the past, we cannot reconstruct its recent history on the basis of its present condition

alone. If we observe the system to be in a non-equilibrium state now, it only appears

132 A. Drory



that we can reconstruct its history because we implicitly assume that the system was

open recently, and what type of interaction with the external world operated then.

But if we make no such assumptions, we can truly make no retrodiction at all. We

would only retrodict a non-equilibrium past state if we explicitly added the infor-

mation that the system was recently open, and that we have some knowledge of the

type of intervention it could have been subjected to.

This last point is important. Suppose for example that the thermos bottle of

Sect. 8.4 was open recently, but that we are told the only external intervention was

that a light was shone on it. This type of external intervention would not help

explain how we happen to find ice chunks in it now. If this is the only recent

interaction with the external world, we would still have to assume that we are

witnessing a fluctuation and that the system was recently in equilibrium. Our

retrodictions are different only if we specifically assume that someone could have

put ice chunks in the bottle, namely if we assume a specific kind of recent external

intervention in order to be able to retrodict the system’s state. We implicitly make

such assumptions continually, but we must recognize them as additional informa-

tion on the system. Adding a different information, namely that the system had been

closed for a long time, would lead us to retrodict an equilibrium past state.

As noted in Sect. 8.6, the situation can be pushed to extreme by imagining that

the system is observed to be in equilibrium. Then adding the information that the

system was recently open is no longer sufficient. Even assuming this, along with

any kind of intervention we wish, there is still no way to retrodict the system’s

recent past, because there are infinitely many histories that fit the present observa-

tion. Only if the added information is that the system had been closed for a very

long time can we reach a decisive retrodiction, namely that the system was recently

in the equilibrium state. Hence, retrodictions about recently open systems require

more information than merely the system’s present state and the conditions between

t0 and T.

Thus, the only systems in which we might expect probabilities to be directly

related to phase-space measure are those that have been long-closed and will

remain so in the future. In such systems, the typical state is equilibrium, and any

non-equilibrium state must be the result of fluctuations. Such fluctuations are time-

symmetrical, and long-closed systems do not exhibit any time arrow, therefore. If

standard statistical mechanics only applies to such systems, as I claim here, then we

cannot expect it to explain the thermodynamic time arrow.

This arrow of time is only present in systems that have interacted with the

external world recently. But for these systems, we cannot hope for a complete

probabilistic description based solely on phase-space measures of macrostates.

Observing the specific macrostate of a system that was recently open does not

suffice to determine its history in any way, probabilistic or otherwise, without

further information or assumptions. It bears repeating that it does suffice if the

system has been closed for a very long time, and that no additional assumptions or

details are required.

That the present macrostate of a recently opened system does suffice to probabi-

listically determine its future is an empirically surprising property, and it should be
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treated thus. Our inability to derive a probable history from the present macrostate

alone is not a problem to be explained away. Rather, it is our success in establishing

from the present macrostate a probable future that is surprising.
This asymmetry is deeply related to the fact that every macrostate contains many

microstates that cannot be distinguished experimentally. This loss of detail is

essential for understanding the behavior of the system, and the temporal asymmetry

of its behavior must be somehow related to it, as I tried to argue in Sect. 8.7. The

nature of this relation is yet unclear. We must better understand the notion of

macrostates, and how the temporal evolution of the system combines with empirical

limitations on our knowledge to generate the observed thermodynamic time arrow.

This element is still underdeveloped in statistical mechanics. I believe that this is

the direction in which we must seek further developments.
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Chapter 9

How Many Maxwell’s Demons, and Where?

Eric Fanchon, Klil Ha-Horesh Neori, and Avshalom C. Elitzur

Abstract Maxwell’s demon has been conceived as a tool for challenging the law

of entropy increase. Several resolutions of the paradox have been proposed, making

it clear that the demon does not violate the second law of thermodynamics.

Nevertheless, since recent experiments come close to realizing some variants of

Maxwell’s demon, it is interesting to revisit it. In this article we first address two

questions, left unnoticed despite many years of intensive study: (1) on which side of

the door should the demon be located when the door is shut? and (2) how is kinetic

energy exchanged between the two compartments due to the demon’s sorting? We

propose a simple setting which is more realistic than the current versions, in which

the demon monitors and accesses both sides of the partition, so as to enable the

sorting task. Next we study the impact of this sorting on the molecular kinetic

energy exchanges. We show that the temperature difference between compartments

grows till the cold part of the gas approaches 0 K. We then emphasize that this

setting yields to the familiar resolution of the paradox. In the last part we derive

the expression of the average rate of energy flow between the two compartments of

the system, based on the new setting proposed.
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Maxwell’s [1] demon is a famous paradox, the various resolutions of which have

provided new insights into the nature of entropy and information. Yet some basic

details of the demon’s alleged operation remain unclear. Below we address these

still-open issues.

9.1 The Paradox

For the sake of clarity we begin with a simple and precise protocol for the demon’s

operation. Let a closed box be divided into two halves by a compartment that has

a small hole in it. The box is full with a gas at temperature To. As the gas’s

molecules freely move between the box’s two halves through the hole, its entropy

is maximal. Now consider a tiny demon positioned next to the hole. It measures the

molecules’ velocities. It then determines the initial root mean square velocity,

s0 ¼ (<v2>)1/2, as the threshold. Every time a fast molecule, v2 > s0
2, approaches

the hole from the left, the demon lets it pass to the right side, whereas every slow

molecule, v2 < s0
2, is denied passage by closing the door. Conversely, the demon

allows slow molecules to pass from the right to the left side and denies such passage

to fast molecules. In time, fast molecules will accumulate on the right side and slow

molecules on the left, with the resulting temperatures Tr>To>Tl:
The apparent paradox is clear. Entropy has been lowered in defiance of the

Second Law: The energy required to open and close the slit can be made negligible,

therefore operating the slit does not disperse energy and hence does not increase

entropy outside of the box [2, 3].

Two species of the demon are known. The above demon, which Maxwell first

had in mind, is a “temperature demon”. Later he considered also a “less intelligent”

one, named “pressure demon,” whose task is simpler, namely, to concentrate all the

gas in one side of the box [4]. Its protocol in the latter case is therefore simpler:

Let all molecules pass from one side to the other, never vice versa (see [1] for

Maxwell’s own references to both species). In what follows we discuss the com-

moner “temperature demon.”

The paradox importance stems from its being deeply rooted in some of thermo-

dynamics’ basic principles. It also bears on some fundamental issues in biology and

nanotechnology [5].

9.2 The Resolutions

Equally famous is the paradox’s resolution, due to Szilard [6] and Brillouin [7]: The

acquisition of the information needed for the sorting operation has its cost in energy

(e.g., warranting an additional light source), which increases entropy more than that

decreased by the sorting.

Landauer [8] and Bennett [9] have made the resolution more precise, proving

that the principal energetic cost goes to the erasure stage: In order for the demon to
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perform continuously, it must erase one bit of information before registering a new

one. It is this erasure that takes the basic energetic toll.

For the discussion’s completion we also mention a dissenting view that the

above resolutions to the paradox are not satisfactory, hence the demon may violate

the second law nonetheless [10].

9.3 How Many Demons, and Where?

Surprisingly, in all the discussions of Maxwell’s demon a seemingly trivial question

has been left unaddressed: On which side of the door should the demon wait during
the time interval it is shut?

For the pressure demon the answer is simple: He must always be positioned

within the half of the box that has to be emptied, waiting for any molecule that

approaches the hole at whatever velocity, in order to open the door and let it pass to

the other side. But for the commoner, temperature demon, the question is trickier

(Fig. 9.1): In order to maintain an equal number of molecules on both sides of the

partition, the demon must have access to both of them. Yet the door must be shut

every time a molecule is about to make an inappropriate passage. From which side,

then, should the demon shut it?

We note in passing that this question has been indirectly dealt with by Leff and

Rex’s [2] review, which shows that some authors depicted the demon as located on

one side of the door, while others depicted it as operating from outside the box,

on which the reviewers themselves comment: “placing a temperature-demon out-

side the gas is questionable because of the need for thermal isolation” (p. 7). Yet,

surprisingly, the authors did not indicate their own opinion concerning this essential

point.

Two possibilities, then, come to mind:

1. One demon moving back and forth between the two compartments. As the demon

is supposed to be material, made of at least one atom and possessing at least one

??

Fig. 9.1 On which side of the

door should the demon be

placed?

9 How Many Maxwell’s Demons, and Where? 137



degree of freedom. This switching between compartments would therefore give

rise to an additional thermal energy transfer. In other words, it will thermalize

the gas, hence this procedure will fail.

2. Two demons, each located at another side of the door. The inefficiency of this

method is even more obvious. Two demons must work in accordance with one

another, so as to avoid, for example, the case in which one opens the door at the

same moment that the other has to shut it. For this propose, they need to

communicate between them, necessitating again the energy investment for the

information acquisition invoked in Szilard’s [6] solution.

In what follows we present still another mode of operation involving a single

demon, and show that it leads to formulae different from those of Leff [11] which

are based on the selective effusion process (see Sect. 9.7 below). Our proposal is

based on the following reasoning. Rather than performing bulk measurements, it is

more practical to measure the velocity of a single isolated molecule within a small

protected volume accessible to the demon.

Having indicated a single demon, we now deal with the “which side” problem.

Let the two compartments be not in direct communication, but rather connected

through a small intermediate chamber with two doors, one opening to the cold side

and the other to the hot side (see Fig. 9.2).

Calling n ¼ N/V the density of molecules in the compartments, the volume of

the connecting chamber should be 1/n, so that it contains on average one molecule.

The working cycle of the demon, starting from a state in which the door on the hot

(right) side is open and the other door is closed, is as follows:

1. Close the door on the hot side.

2. Make sure a single molecule is trapped.

3. Measure its velocity.

4. If the velocity is above the threshold, open the door on the cold side, wait for

some preset time Dt0 (to let the molecule go back to where it came from), and

return to step 1. Otherwise open the other door to realize a transfer and wait some

preset time Dt0.

Fig. 9.2 The proposed answer to the “which side” question
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5. Close the door on the cold side.

6. Make sure a single molecule is trapped.

7. Measure its velocity.

8. If the velocity is below the threshold, open the door on the hot side, wait for

some preset time Dt0 (to let the molecule go back to where it comes from), and

return to step 5. Otherwise open the other door to realize a transfer (from the hot

to the cold compartment) and wait some preset time Dt0.

A few remarks are in order:

1. At any time, only one door is in the “open” position.

2. The protocol ensures that transfers occur in pairs: a transfer in one direction is

necessarily followed by a transfer in the reverse direction.

3. There is a non-zero probability that zero, two or more molecules would get

trapped simultaneously during steps 1 and 5. In that case, the door should be

reopened to the same side for another try.

4. Having verified that exactly one molecule is present (steps 2 and 6), and after the

velocity measurement, the door must remain open for a sufficiently long time Dt0
to allow for the trapped molecule to go out and for another to get in. This interval

Dt0 is a parameter of the protocol and its value depends on the velocity of the

slowest molecules to be processed.

5. Neglecting the measurement times, the minimum time for the total cycle is thus

equal to 2 � Dt0. In any case the total cycle time is k � Dt0, with k> 1, when at

least one of the transfers fails on the first trial.

6. Once a molecule has been trapped, there is no need to measure its position, nor to

perform complicated computations of individual trajectories to compute the time

at which the trapdoor should be opened.

This defines the framework of the derivation in Sect. 9.7. The demon picks at

random one molecule at each cycle, and its velocity is thus drawn from Maxwell-

Boltzmann (MB) distribution (divided by 2 because half the velocity space is

involved) at the current temperature.

Von Neumann [12] suggested a superficially similar model, in terms of

“windows” in a membrane separating two compartments, but he posits the success

of his model (and its dissimilarity from Maxwell’s demon, of which he explicitly

states that it is not an example) precisely on the fact that it ignores which side of the

membrane the molecules originate from, a point which, as we have shown above, is

essential to the operation of Maxwell’s demon.

9.4 Intermolecular Kinetic Energy Exchanges

Our next question concerns the details of the heat extraction performed by the

demon. All texts conclude Maxwell’s gedankenexperiment with demon’s apparent

completion of the molecular sorting task, proceeding to the paradox’s resolution.
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It thus appears that the demon’s only operation on the molecules is their placement

in the appropriate compartment. O. Penrose [13] (who incidentally preceded

Landauer [8] and Bennett [9] in pointing out the role of erasure in resolving

Maxwell’s paradox) gives what seems to be the common view of the demon’s

task, namely, “collecting all the fast molecules on one side of a diaphragm and the

slow ones on the other” (p. 1994).

But is it the case? A pure sorting based on velocities would result in truncated

Maxwell-Boltzmann distributions, the above-threshold temperature part of the gas

now being in the hot compartment, and the below-threshold temperature part in the

cold one.

Let us analyze the process in detail. In what follows we are interested only in

energy transfers and do not need to worry about the exact working cycle of the

demon. Consider again the above demon’s box divided into two compartments,

each containing N molecules of mass m, at the same initial temperature T0. For
a (monoatomic) ideal gas, the internal energy is U ¼ N:ð1=2Þ:m:s20 (N times the

average kinetic energy). As a function of temperature T0: U ¼ (3/2) N kT0. For
convenience, we will henceforth refer to the right compartment as the “hot” and to

the left one as the “cold” compartment.

The demon executes the following protocol: It first lets one molecule with

velocity v, such that v2 < s20, to go from the hot to the cold compartment. The

removal of this slower-than-average molecule results in a small increase of temper-

ature of the hot side. The demon’s next step is to let a molecule go from the cold to

the hot side, in order to recover an equal number of molecules on both sides. This

time it chooses a molecule that satisfies v2 > s20. This contributes to a slight decrease
of the temperature of the cold side. The time between the two transfers is long

enough for the system to relax toward statistical equilibrium, so that the demon

always draws molecules from Maxwell-Boltzmann distributions (the one

associated to the compartment considered). The variables THi and TCi represent
the temperature of these compartments, respectively, at step number i. By conven-

tion i ¼ 0 represents the initial step where TH0 ¼ TC0 ¼ T0. An odd value of i is
associated with a state with N + 1 molecules in the cold compartment, and N�1 in

the hot one. An even value is associated to a state with N molecules in each

compartment.

Let us now show that, following the above simple protocol, the temperature

difference THi–TCi grows monotonically. Let us assume that we are at step i ¼ 2p.
We want to express TH,2p+2 and TC,2p+2 as functions of TH,2p and TC,2p. In the

transition from i ¼ 2p to i ¼ 2p + 1, the demon lets one molecule with

v2pþ1
2 < s20 from the hot compartment go to the cold one. Denoting by e2p+1

the kinetic energy of this molecule, we can write: e2p+1 ¼ (3/2).kT0–e2p+1, where
e2p+1 > 0 and (3/2).kT0 represents the average kinetic energy of the molecules at T0.
The internal energies of the compartments after the transfer of this molecule are:

UH;2pþ1 ¼ UH;2p � e2pþ1
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UC;2pþ1 ¼ UC;2p þ e2pþ1:

In the next step, i ¼ 2p + 2 ¼ 2(p + 1), the demon transfers a molecule

with kinetic energy e2p+2 higher than (3/2).kT0 from the cold to the hot side:

e2p+2 ¼ (3/2).kT0 + e2p+2, where e2p+2 > 0. Conservation of energy gives:

UH;2pþ2 ¼ UH;2pþ1 þ e2pþ2 ¼ UH;2p � e2pþ1 þ e2pþ2

UC;2pþ2 ¼ UC;2pþ1 � e2pþ2: ¼ UC;2p þ e2pþ1 � e2pþ2

Using the expressions for the ei’s, and for the U’s in terms of the T’s, we get:

TH;2ðpþ1Þ ¼ TH;2p þ 2ðe2pþ1 þ e2 pþ1ð ÞÞ= 3Nkð Þ

TC;2ðpþ1Þ ¼ TC;2p � 2ðe2pþ1 þ e2 pþ1ð ÞÞ= 3Nkð Þ:

From these expressions one deduces that indeed, when one considers only pairs

of consecutive transfers (i.e., even steps), TH monotonically increases and TC

monotonically decreases (since ei+1 and ei+2 are both strictly positive). This was

not obvious because a molecule with v2pþ1
2 < s20 leaving the hot side contributes to

increase TH,2p+1, but may well also increase the cold side, TC,2p+1, when v2pþ1
2 is

larger than the average squared velocity in the cold compartment at the current

temperature TC,2p+1. It turns out, however, that the increase in TH,2p+1 is larger than
the increase in TC,2p+1, hence the difference TH,2p+1 – TC,2p+1 is monotonically

increasing. The same is true for a transfer in the reverse direction, from cold to hot:

The criterion v2 > s20 insures that TC will decrease, but the temperature TH might

decrease too, the important point being that the temperature difference is growing

nevertheless.

Two remarks can be made at this point. First, the arithmetic average <T>2ðpþ1Þ
of TH,2(p+1) and TC,2(p+1) is equal to the average <T>2p. From this we deduce, by

recurrence: <T>2p ¼ T0. Second, the monotonicity property of TC and TH holds

true if the protocol compares the squared velocities to (3kBTs)/m, where Ts is any
temperature within the interval [TC,2p, TH,2p]. The only requirement is that the same
temperature Ts should be chosen (in [TC,2p, TH,2p]) for each pair of consecutive

transfers (hot to cold, and cold to hot, the reference states being those in which there

are exactly N molecules in each compartment).

The entropy in the transition from step 2p to step 2(p + 1) can be calculated from

the well-known formula for the change in entropy of an ideal gas, when the volume

and number of molecules remain the same, and only the temperature changes:

SH;2ðpþ1Þ � SH;2p ¼ 3=2ð ÞNk ln TH;2ðpþ1Þ=TH;2p
� �

SC;2ðpþ1Þ � SC;2p ¼ 3=2ð ÞNk ln TC;2ðpþ1Þ=TC;2p
� �
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Using the fact that ln(y) ¼ y – 1 when y is close to 1, we get:

SH;2ðpþ1Þ � SH;2p ¼ 3=2ð ÞNk TH;2ðpþ1Þ � TH;2p
� �

=TH;2p

SC;2ðpþ1Þ � SC;2p ¼ 3=2ð ÞNk TC;2ðpþ1Þ � TC;2p
� �

=TC;2p

Then, using the expressions we obtained above for the temperature variations:

SH;2ðpþ1Þ � SH;2p ¼ e2pþ1 þ e2ðpþ1Þ
� �

=TH;2p

SC;2ðpþ1Þ � SC;2p ¼ � e2pþ1 þ e2ðpþ1Þ
� �

=TC;2p

Finally, the total variation of entropy for both compartments is:

STotal;2ðpþ1Þ � STotal;2p ¼ � e2pþ1 þ e2ðpþ1Þ
� �

TH;2p � TC;2p
� �

= TH;2pTC;2p
� �

It can thus be verified that the entropy variation is negative, as expected (since

e2p+1 and e2(p+1) are strictly positive quantities).

In conclusion of this part, with the protocol considered, the temperatures of the

two compartments are growing apart monotonically, and the average of the two

temperatures stays equal to T0 (only at even steps i ¼ 2p, strictly speaking).

How far can the demon go? It is clear that, when the internal energy UC;i ¼
N:ðm=2Þ:<v2>i becomes smaller than the threshold value ðm=2Þ:s20, the process

stops: Even if a fluctuation concentrates the total kinetic energy of the N molecules

into one of them, this molecule would not be selected by the demon. The lower

bound for TC,i is TC,min ¼ T0/N, and is thus very close to 0 K (N being of the order of

the Avogadro constant).

However, with reference to our above remark on monotonicity, it is still con-

ceivable to go beyond that limit by decreasing the temperature Ts used in the

selection criterion, instead of keeping it constant at T0 during the process. Of course
the durations involved now become unphysically long well before reaching T0/N.
In other words, given infinite time, and neglecting the fact that the gas would

eventually experience a phase transition, the demon could get very close to 0 K.

9.5 The Paradox Made More Precise

Let us summarize the above analysis. The demon monitors not only velocity

differences between one molecule and another, but also variations in the velocity

of the same molecule over time. Thus, a molecule that was denied passage at one
instant may be allowed to pass at the next, and a molecule that has passed from
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one side to the other may make the passage back and forth, in accordance with the
changing velocities it acquires due to collisions. What the demon actually

accumulates in the hot compartment, therefore, is not merely fast molecules, but

kinetic energy itself.

Gradually, the cold and hot portions of the gas would deviate further and further

from the initial temperature T0, decreasing the likelihood of velocity fluctuations

large enough to enable molecules crossing sides. The demon will now have to

expend another resource, namely, time [11].

One could think of optimizing the durations by devising a meta-protocol for Ts
decrease (requiring an external control device), as explained at the end of Sect. 9.4,

but the time between two successive transfers would nevertheless remain extremely

long. The non trivial result is that, in theory, with this protocol Maxwell’s demon

could extract almost all the energy from one compartment, and the temperature

would approach 0 K.

9.6 Reaffirming the Thermodynamic Resolution

We next show how our refined analysis of the demon’s feat is subject to the same

restrictions that hold for the familiar one, namely, that the second law of thermo-

dynamics is not violated.

In the standard experiment, these restrictions say that in order to transfer

molecules between the hot and cold compartments, the demon must measure their

velocities [6, 7], and further erase each measurement’s result so as to enable further

measurements [8, 9], for which it must pay with energy.

How do these restrictions apply to our version? A possible source of confusion

lies in the use of the word sorting itself, which implies that the sorted objects have

permanent attributes. We have stressed, however, that “fast” and “slow” are not

permanent but temporary attributes of molecules. The demon’s task is therefore

different from sorting, say, 16O and 17O isotopes, whose properties remains

unchanged. Therefore, as the demon is likely to measure the changing velocities

of the same molecule several times, that means that it has to carry out a larger

number of measurements than that envisaged in the common version described in

Sect. 9.4. In view of the fact that the present protocol allows the demon to achieve

much higher energy difference, it perfectly makes sense that it has to carry out

a much larger number of measurements, for which the thermodynamic price in

energy is naturally higher.

Notice also that, as the probability for molecules to deviate from their ensemble

average velocity decreases with the increase of temperature difference between

compartments, the demon must wait for longer and longer periods, eventually for an

infinite time.
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9.7 Analysis of the Rate of Energy Transfer for a Variant

of the Improved Protocol

Leff [11] presented a derivation of the rate of energy transfer between the two

compartments, which is based on the kinetic theory of the effusion process. In

Leff’s picture the demon measures the velocity of the molecules by emitting

a photon in one of the box’s two compartments and measuring its scattering upon

collision with a gas molecule. This scheme may give rise to some errors, because

a photon does not necessarily interact with the nearest molecule. In addition, the

molecule’s position is not measured by this method, making it difficult to open the

trapdoor during just the time needed to let the right molecule go through. In other

words, bulk measurements are not practical. Moreover, Leff does not mention the

question addressed in Sect. 9.3 concerning the demon’s position on whither side of

the door.

These problems are avoided by our setting, where the demon first isolates
a molecule and then measures its velocity. In what follows this setting enables us

also to compute the limit temperatures reached in infinite time and present a new

derivation of the rate of energy transfer using the setting presented in Sect. 9.3 with

a single demon residing within an intermediate chamber.

We now consider a variant of the above setting: The demon uses the current

temperatures TC and TH instead of T0. It lets a molecule go from the hot to the cold

compartment if ei+1 < (3/2)kTH, and in the next step lets a molecule from the cold

to the hot compartment if ei+2 > (3/2)kTC. In other words, there are now two

different threshold values, and the selection criteria are now less stringent. This

results in a larger number of transfers realized per time unit, and in the loss of the

monotonicity property. At a given temperature T the Maxwell-Boltzmann (MB)

velocity distribution is:

f ðvÞ ¼ ðm=2pkTÞ3=2expð�mv2=2kTÞ:

The distribution of the norm v of the velocity is: F(v) ¼ 4pv2f(v) where the

factor 4p results from the integration of the surface element sinydyd’ (spherical

coordinates) over a sphere. In our case the demon selects molecules in a half space

and this factor should be replaced by 2p. The root mean square velocity at

temperature T is denoted rT (equal to (3kT/m)1/2).
Starting from a state where the temperature is T0 in both compartments, the

temperatures will grow apart steadily during the first steps. The system will thus

reach a state where the two F distributions are significantly separated. Conse-

quently, a molecule from the hot side which passes the test might well heat up

the cold side (if its kinetic energy is between (3/2)kTC and (3/2)kTH). In the long

run, the system will reach a point where the balance of the energy transfers is

0 when averaged over time. To make this more precise, let us consider a series of

measurement cycles. We assume the measurement time itself is negligible, and only

take into account the time Dt0 during which the door remains open (see Sect. 9.3).
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Every Dt0 a molecule is trapped in the intermediate chamber and its velocity

measured. If the molecule does not meet the above criterion, it is sent back to

where it came from, and the cycle is repeated until a molecule passes the test. Thus

each transfer is characterized by the number of trials n which have been made, and

by the kinetic energy e of the selected molecule, these two quantities being both

stochastic variables. Starting from step i ¼ 2p, a pair of consecutive H-C and C-H
transfers is described by ((n2p+1, e2p+1), (n2(p+1),e2(p+1))), meaning that the transfer

to 2p + 1 took n2p+1.Dt0 unit of time and the transfer to 2(p + 1), in the reverse

direction, took n2(p+1).Dt0. Each pair of transfers changes the total energy of the

compartments, and consequently their temperature, by an infinitesimal amount, so

that a very large number of transfers is required to obtain a significant displacement

of the FTC and FTH distributions. Now let us assume that the demon has made

a large number M of pairs of consecutive transfers over a period of time. M is

chosen to be large enough for the averages of n2p and e2p to make sense, and small

enough to consider that the FTC and FTH distributions are constant. The variation of

temperature dT resulting from a molecule transfer is of the order T/N, where T is the

temperature of the compartment considered and N the number of molecules. If N is

taken as being the Avogadro number, then M can be fairly large before having

a significant impact on the MB distributions. The average over M transfer pairs of

the kinetic energy flowing from the cold to the hot compartment is DeCH ¼ he2(p+1)
�e2p+1i, which can be written he2(p+1)i�he2p+1i because the draws are independent.
It should be understood that <e>HC is the arithmetic average over the odd indices,

corresponding to transitions from hot to cold, and similarly for<e>CH. The average

time taken by the M transfer pairs is equal to ð<n>CH þ<n>HCÞDt0. Finally the

rate k of energy transfer from C to H is

k ¼ 1=2 � ðm=Dt0Þ � <v2>CH �<v2>HC

� �
= <n>CH þ<n>HCð Þ:

We assume next that the above arithmetic averages over M independent draws,

M being large, can be approximated by ensemble averages. To express these, we

define IC(r,a) and IH(r,a) as the integrals of v4exp(�av2) from r to + 1, and

from 0 to r, respectively. Similarly JC(r,a) and JH(r,a) are the integrals of

v2exp(�av2) from r to + 1, and from 0 to r, respectively. Thus

<v2>HC ¼ IHðrTH; aTHÞ=JHðrTH; aTHÞ, as it samples from the cold portion of

the hot distribution, and similarly <v2>CH ¼ ICðrTC; aTCÞ=JCðrTC; aTCÞ, as it

samples from the hot portion of the cold side’s distribution, with aTH ¼
m/(2kTH) and aTC ¼ m/(2kTC).

The stationary regime is reached when the average <v2>HC of molecules drawn

from the hot compartment is equal to the average <v2>CH of the ones drawn from

the cold compartment, which can be rewritten as: <v2>HC ¼ <v2>CH.

The integrals to compute are well-known and the results are expressed in term of

the Gaussian error function erf(x) and erfc(x) ¼ 1 – erf(x):

JH r; að Þ ¼ p
p=4a�3=2erf r

p
að Þ þ 1=2ð Þ r=að Þexp �ar2

� �
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JC rað Þ ¼ p
p=4a�3=2erfc r

p
að Þ � 1=2ð Þ r=að Þexp �ar2

� �
IH r; að Þ ¼ 3=8ð Þppa�5=2erf r

p
að Þ � 1=2ð Þ 3=2þ ar2

� �
r=a2
� �

exp �ar2
� �

IC r; að Þ ¼ 3=8ð Þppa�5=2erfc r
p
að Þ þ 1=2ð Þ 3=2þ ar2

� �
r=a2
� �

exp �ar2
� �

Considering that aT ¼ m/2kT and rT ¼ (3kT/m)1/2, a simplification occurs:

ar2 ¼ 3/2.

<v2>HC ¼
�
kTH=m

�
:
h�

3
p
perf

��
3=2
�1=2�

�6
p
6exp

�
�3=2

��
=
�p

perf
��

3=2
�1=2�

�p
6exp

�
�3=2

��i
<v2>CH ¼ kTC=mð Þ: 3

p
perfc 3=2ð Þ1=2

� ��h
þ6

p
6exp �3=2ð ÞÞ= p

perfc 3=2ð Þ1=2
� �

þp
6exp �3=2ð Þ

� �i
A remarkable result ensues: The condition for a stationary state reduces to a

linear relationship between TC and TH. Numerically: TH ¼ 3.63 TC. Conservation
of energy entails TC + TH ¼ 2 T0, so that:

TH ¼ 1:568T0; TC ¼ 0:432T0

With T0 ¼ 298K (room temperature), for instance, we get TH ¼ 467.3K (close
to the melting point of Lithium) and TC ¼ 128.7 K (close to the condensation point
of NO)!

In order to obtain the full expression of the rate k, we still need to compute

<n>_HC and <n>CH. We denote by qC the probability that v2 > r2C when

a molecule is picked at random in the distribution FTC. It is easy to show that the

probability pr(n2(p+1) ¼ a) for the number of trials to be equal to a is (1–qC)
a�1 qC.

Consequently:

<n>CH ¼
X1
a¼1

a 1� qCð Þa�1qC ¼ �qc d=dqC
X1
a¼1

1� qCð Þa
 !

From this we deduce <n>CH ¼ 1=qC. Since by definition qC ¼ 2p(m/2pkTC)
3/

2 JC(rTC, aTC), this gives the expression of <n>CH in term of an integral we have

already computed. The same derivation would give for odd steps: <n>HC ¼ 1=qH,
with qH ¼ 2p (m/2pkTH)

3/2 JH(rTH, aTH). Since the rate k is expressed in term of
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<v2>HC; <v2>CH; <n>HC and <n>CH, we now have a full expression of K
as a function of the temperatures (TH and TC), Dt0 and basic constants:

k ¼ 1

2Dt0

ffiffiffiffiffiffiffiffiffiffi
m5

2pk3

r
� JHIc � JcIH

JHTC
3=2 þ JcTH

3=2

Remember that Dt0, the time interval during the doors remain open, is

a parameter of the protocol, as explained in Sect. 9.3.

We now revisit Leff’s [11] derivation of the flux generated by the demon and the

rate of energy exchange between the compartments. The setting is different (selec-

tive effusion process), and the protocol is also slightly different from the one

considered here: A molecule is simply allowed to enter into H, or C, if its kinetic
energy is greater than (3/2)kTH, or lower than (3/2)kTC, respectively. The second

difference is minor as it suffices to adapt the integration bounds in the above

computation. The expressions obtained are different, and a comparison of the two

approaches is interesting.

In Leff’s derivation the action of the demon is viewed as a selective effusion

process. Two comments can be made:

1. The validity of Leff’s derivation is questionable. The demon manipulates one

molecule at a time. Consequently, the energy transferred, and the time between

two arrivals, should both be considered as stochastic variables. The rate of

energy transfer should then be computed from the probability distribution of

these variables. It is nevertheless possible that Leff’s results are qualitatively

correct if the fluxes and energy rates are interpreted as averages over a large

number of transfers (a method we used explicitly in our derivation).

2. In Leff’s picture, the demon measures the velocity of the molecules by emitting

a photon in one of the box’s two compartments and measuring the scattered

photon. This scheme would generate many errors because the photon would not

necessarily interact with the closest molecule. In addition the molecule’s

position is not measured this way, and it is thus difficult to open the trapdoor

during just the time needed to select the right molecule. In other words, bulk

measurements are not practical.

In conclusion, two categories of protocols have been considered in this paper for

Maxwell’s demon operation. In the first category the demon uses a single threshold

to select “hot” and “cold” molecules. Then, this single threshold can either stay

fixed at the initial temperature, or be adjusted as the demon proceeds. We showed

that the evolution of TC and TH is monotonous as long as the threshold temperature

used at each step belongs to the interval [TC,TH]. This allows, in theory, to reach

a temperature very close to 0 K. Next we studied a different kind of protocol

in which the demon uses two different thresholds, one for each compartment.

We showed that with this protocol the system reaches a stationary regime,

and that is a linear relationship holds between the temperatures, involving only

mathematical constants.
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9.8 Summary

In this paper we presented a new, refined scheme for the operation mode of

Maxwell’s demon, in which the demon resides in a little intermediate chamber

between the box’s two compartments, and makes measurements on isolated

molecules trapped within the chamber. In addition we have made the Maxwell

demon paradox more precise, stressing the fact the demon does not actually

sort molecules on the basis of a fixed attribute, but transfers kinetic energy

from one compartment to the other. In the last section we analyzed a variant of

the demon protocol in which the molecule velocity is not compared to a fixed

temperature. Using the scheme mentioned above, we proposed a new derivation of

the rate of energy transfer, and of the stationary temperature reached. We then

commented on a similar study proposed by Leff [12] and argued that our scheme is

more realistic.
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Chapter 10

Locality and Determinism: The Odd Couple

Yemima Ben-Menahem

Abstract This paper examines the conceptual relations between the notions of

determinism and locality. From a purely conceptual point of view, determinism

does not appear to imply locality, nor (contrapositively) does nonlocality appear to

imply indeterminism. The example of Newtonian mechanics strengthens this

impression. It turns out, however, that in the context of quantum mechanics, a

more complex connection between determinism and locality emerges. The connec-

tion becomes crucial when nonlocality is distinguished from no signaling. I argue

that it is indeterminism that allows nonlocal theories such as quantum mechanics to

comply with the no signaling constraint. I examine a number of interpretations of

quantum mechanics, among them that of Schr€odinger, Pitowsky and Popescu and

Rohrlich, to support this claim.1

In the physics literature, the term ‘causality’ usually refers to either determinism or

locality. This ambiguity could be taken to pertain to the very meaning of the notion

of cause, or, less dramatically, to the different constraints that physicists believe to

be relevant to its application. Either way, the conceptual relationship between these

two pivotal notions, and in particular, the question of whether they are inter-

dependent, merits consideration. Despite the importance of this question for a better

understanding of causal relations in general, the philosophical literature on causa-

tion has all but ignored it. Here I will not attempt a general analysis of causation2;
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I focus exclusively on the relationship between determinism and locality (as well as

the contrary notions of indeterminism and nonlocality). Let me stress at the outset

that although I begin by considering strict determinism and its relation to locality,

the analysis extends to probabilistic correlations of the kind found in quantum

mechanics (QM). In fact, both determinism and locality need not be understood as

binary notions: It is helpful to replace strict determinism with quantitative

assessments of degrees of correlation and conceive of locality as well as coming

in degrees, so that theories can be more or less deterministic as well as more or less

local.

In what follows, I consider the relation between determinism and locality first in

abstract terms (Sect. 10.1), and then in the context of QM, where traditional

conceptions of determinism and locality have been most radically challenged

(Sect. 10.2). Limiting myself to the standard interpretation of QM, I compare

three interpretative approaches, due to Schr€odinger, Pitowsky, and Popescu and

Rohrlich.3 The common denominator of these approaches (and the characteristics

guiding my choice) is that all of them concentrate on conceptual characteristics of

QM rather than dynamical or mechanical ones. Though these authors do not address

the question of the relation between determinism and locality explicitly, their work

provides important clues for answering it. I will argue that determinism and locality

are independent concepts. Nonetheless, and this can be taken to be the thrust of this

paper, under certain conditions (to be discussed below), determinism and locality

counterbalance one another so that the violation of one makes room for the

satisfaction of the other.

10.1 Determinism and Locality

Determinism requires that two copies of a closed system that agree in their

fundamental physical parameters at some time t, agree on the values of these

parameters at all other times (or at least future times).4 Although in many contexts,

for example, that of the free will problem, the concern is over the truth of

determinism ‘in reality’, it is more accurate to think of determinism (indetermin-

ism) as a characteristic of theories. A theory is deterministic if it implies the above

condition, that is, if, given the equality of the states of a closed system at one point,

3 Clearly there is no single ‘standard’ interpretation, but the term is used here, as is common, to

refer to descendents of the Copenhagen interpretation. Pitowsky’s interpretation, for instance, is

based on the Birkhoff von Neumann axiomatization, the corner stone of the standard interpreta-

tion. Rival interpretations such as Bohm’s, GRW, modal interpretations and the many world

interpretation deserve separate analyses.
4 The concept of a closed system is of course an idealization that should be weakened to meet more

realistic conditions. Further, the notion of the value of a parameter at a specific time also needs

refinement, for some physical magnitudes such as velocity involve change over time, convergence

to a limit, and so on.
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the theory implies the equality of states at other (or future) times. Ascribing

determinism (indeterminism) to the world is then just a short way of ascribing

this property to our best theory of the world.5 Also, in principle, it could be the case

that a theory is not deterministic with regard to all of its parameters but only with

regard to some of them.

Determinism resembles the traditional ‘same-cause-same-effect’ postulate, and

thus, when this postulate is considered constitutive of causality, determinism and

causality are identified. Alternatively, determinism has also been identified with the

idea that every event has a cause so that spontaneous events are excluded. Note that

the two postulates, the universality postulate, asserting that every event has a cause,

and the regularity requirement, according to which the same causes have the same

effects, are quite distinct principles. On the one hand, it could happen that whenever

the same (type of) cause recurs, the same (type of) effect(s) recur but that uncaused,

random, events may also happen. On the other hand, it could be the case that every

event has a cause but the same (type of) cause does not invariably lead to the same

(type of) effect. If, however, we define causation by means of the same-cause-same-

effect requirement, then, a world in which every event has a cause is, ipso facto, a
world in which the same (type of) cause leads to the same (type of) effect. The

reverse does not follow; causation can be defined via the regularity requirement but

a world obeying regularity may still contain chance events. Whereas the two

traditional requirements of universality and regularity, as well as the ensuing

characterizations of determinism, are thus distinct, the contemporary definition of

determinism given above (although it is not construed in terms of an ontology of

events or causes), seeks to cover both of them: If any two systems occupying the

same physical state at one instance continue to be identical in their physical

parameters at all other times, then deviation from both universality and regularity

is excluded. A number of writers construe determinism (usually as opposed to

causation) in epistemic terms: a theory is deterministic if knowledge of a set of

initial conditions of a system enables the prediction of any other state. This

condition is stronger than the one given above, for a state may be predetermined

but nonetheless unpredictable due to difficulties in ascertaining the initial

conditions, or due to complexity and computability considerations. As noted, it

may become necessary to introduce quantitative measures—degrees of correlation—

rather than make do with the binary division between determinism and indetermin-

ism. Depending on the context, therefore, conclusions about the links between

determinism and locality may apply to a whole spectrum of situations ranging

from perfect to weak correlation. (Analogously, the notion of indeterminism could

be applied to a variety of situations from less-than-perfect correlation to genuine

randomness).

5 Naturally, by ‘state’ what is meant here is a state-type (rather than a token), which involves the

question of the description-sensitivity of the state. This question will not affect what follows and is

not discussed in this paper. See Davidson [24]; Ben-Menahem [1].
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Locality has two components: it asserts the continuity of causal influence and

constrains its speed to forbid instantaneous propagation of impact and information.6

Like determinism, locality has classical origins, e.g. in the classical notion of

contiguity and the idea that there are no ‘jumps’ in Nature. In contemporary

physics, locality is generally taken to mean Lorentz invariance, and the upper

bound on the speed of propagation is the speed of light. (The requirement of

asymmetry in time, namely, that the cause precedes the effect, is often added.7)

Comparing the notion of locality with that of determinism, the two notions appear

completely independent8: Locality requires that if there is a cause it must act

locally, that is, continuously and at a finite speed, but it asserts neither that every

event has a cause, nor that the same cause must have the same effect. In the same

vein, continuous and finite-speed interactions can be deterministic or indeterminis-

tic. The latter possibility describes a case in which despite the continuity and finite

speed of an interaction, there are no laws guaranteeing that a recurrence of the same

initial conditions dictates the repetition of the trajectory in its entirety. Conversely,

deterministic interactions can in principle be continuous or discontinuous, instanta-

neous or of finite speed. Naturally, there are circumstances that lead us to conjoin

determinism and locality. The deterministic laws that make up classical physics, for

example, have specific mathematical characteristics, such as analyticity, which

guarantee the continuity of a physical interaction even if not its finite speed. We

are thus accustomed to the picture of laws that are both continuous and determin-

istic. In this picture, there is no room for spatial ‘jumps’, but the legitimacy of

infinite speed still allows for temporal ‘jumps’. In other words, in classical physics,

we are accustomed to think in terms of a combination of determinism and continu-

ity, even if not full-blown locality. Still, this combination is not forced on us by the

concepts of determinism or locality per se. From the logical point of view, all four

combinations therefore seem conceivable:

locality and determinism

nonlocality and determinism

locality and indeterminism

nonlocality and indeterminism

Note, however, that the fourth combination, nonlocality and indeterminism,

although logically possible, poses a serious epistemological difficulty. Nonlocality,

i.e., an instantaneous interaction between distant events, or a transmission of signals

6Note that I here refer to locality, not Bell-locality; see below.
7 See Frisch [2].
8 They were not conceived as independent in Antiquity and the Middle Ages; see Glasner [3]

Chap. 3. One of the reasons for the difference between ancients and moderns on this point is that

the former were inclined to understand determinism in terms of the universality requirement—

every event has a cause –rather than in terms of the same-cause-same effect requirement. On this

construal, it is easier to appreciate why the contiguity of interaction appeared to exclude sponta-

neous occurrences.
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between them that exceeds the speed limit, can only be demonstrated via the

existence of recurring correlations between such distant events. Individual nonlocal
interactions would not be identified by us as interactions, but seen, instead, as the
occurrence of independent and causally unrelated events. But recurring

correlations, even merely probabilistic ones, introduce at least some degree of

regularity, or determinism, into the picture. A local indeterministic influence

could perhaps still be identified as such when the actual trajectory of the action is

visible: For example, if we witnessed that identical pushes of a ball result in its

moving haphazardly in different directions, we could perhaps still think of the push

as a cause, albeit one that does not act deterministically. By contrast, a nonlocal
indeterministic interaction could not be perceived in this way. Hence, the fourth

possibility, combining nonlocality and indeterminism, can only appear in our

theories in a tempered form; such theories will not be totally indeterministic with

regard to all parameters. Surprisingly, then, a grain of determinism turns out to be

de facto, even if not de jure, necessary for nonlocality; necessary, that is, for the

formulation of a nonlocal theory.9 In our actual theories, therefore, we do not have

absolute independence between determinism and locality after all.

The history of physics provides concrete examples of possible combinations of

locality and determinism. While the special theory of relativity (STR) is local and

deterministic, exemplifying the first possibility above, Newtonian mechanics,

which is nonlocal and deterministic, exemplifies the second.10 Determinism is

evidently not a sufficient condition for locality. But is it a necessary condition?

Or, putting the same question counterpositively, is indeterminism sufficient for

nonlocality? Here again, from the purely conceptual point of view, the answer

seems to be negative. Nonetheless, in actual theories, OM in particular, we get a

more complicated picture. Let me briefly review the situation.

Famously, the threat to locality appears in the context of QM with the phenome-

non of quantum entanglement—the existence of states exhibiting long-distance

correlations that are maintained even when the systems occupying these states are

separated by spacelike intervals. Entanglement was identified by Schr€odinger in
1935 and is amply demonstrated by experiment. It is a well-known fact that

correlations challenge our causal intuitions more than singular events. While

most people can envisage random singular events, systematic correlations seem

to demand a causal explanation. Systematic correlations are thus generally

explained either as the result of direct causal influences or as the result of ‘common

9Again, by ’a grain of determinism’ I do not mean the necessity of strict universal laws;

probabilistic dependence would be sufficient to indicate nonlocality. Indeed this is what happens

in some of the quantum mechanical cases.
10 See, however Earman [4] and Norton [5] for counter examples to determinism in Newtonian

mechanics. Despite these examples, Newtonian mechanics countenances numerous processes that

are deterministic but nonlocal, attesting to the insufficiency of determinism for locality. It is also

questionable as to whether STR is necessarily deterministic, but it is certainly compatible with

determinism, which is all we need in order to demonstrate the feasibility of the first combination.
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causes’ acting on the systems in question at an earlier time and producing the

correlated states.11 Such common causes are said to ‘screen off’ the dependence

between correlated states, meaning that, conditional on the common cause, the

states no longer appear inter-dependent.12 If the explanatory options of direct

influence and common causes are exhaustive, entangled quantum states should

likewise be seen as indicating either that the systems in question exert direct, albeit

nonlocal, influences on one another, or that there are common causes responsible

for the linkage between entangled states. Accepting the former option liberates

causation from the locality constraint, generating overt conflict between QM and

STR, a theory centered on locality. The alternative of explaining entanglement by

means of common causes (local hidden variables, as they are usually referred to)

that predetermine each of the correlated states independently is, therefore, much

more attractive.13

There is a battery of arguments, however, beginning with the violation of Bell

(and Bell-type) inequalities, that are generally thought to preclude this alternative.14

In response to this conundrum, the following distinction between types of locality

(nonlocality) has been introduced: The nonlocal correlations exhibited by entangled

states are tolerated and considered consistent with STR as long as they do not allow

super-luminal ‘signaling’—transmission of information, between the remote states.

Causality cum locality (as defined above) is thus narrowed down to a constraint on

signaling rather than correlation in general.15 Based on this understanding of

locality, entangled states escape the horns of the dilemma: they result neither

11 Reichenbach [6] Chap. 19.
12 To test the existence of a common cause, one therefore compares the conditional probability of

the joint event (on the common cause) with the product of the conditional probabilities of the

individual events (on the common cause). When these probabilities are equal (unequal), one talks

of factorizability (non-factorizability). See Chang and Cartwright [7] for an analysis of the

relationship between factorizability and the existence of a common cause. They argue that

since, in the probabilistic (indeterministic) case, factorizability is in general not a necessary

condition for the existence of a common cause, the non-factorizability of quantum distributions

does not exclude the possibility of common causes of the EPR correlations. They go on to propose

such a common cause model, but their model requires discontinuous causal influences and is

manifestly nonlocal.
13 In the context of discussions of Bell’s inequalities, the assumption that a common cause

(whether deterministic or stochastic) exists is sometimes referred to as locality, or Bell-locality.

Note, however, that the Bell-locality is not identical to the requirement of locality characterized

above, for it is committed not only to the continuity and finite speed of any causal interaction if it
exists, but to the very existence of a cause—a ‘screening-off’ event.
14 Bohmians reject this conclusion. See note no. 17 below.
15 The notion of signaling has an anthropomorphic flavor, but I will not attempt to refine it. It

should be noted that no signaling is not identical with Lorentz invariance; a theory can prohibit

signaling while failing to be Lorents invariant. Note, further, that in the traditional understanding

of the concept of locality the only possibilities were locality plus no signaling or nonlocality plus

signaling. The distinction seeks to make room for a new possibility—nonlocality and no signaling
which was previously seen as incoherent. (The fourth possibility, locality plus signaling, remains

incoherent).
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from nonlocal causal interaction, nor from preexisting common causes. In the new

terminology, QM can be said to observe relativistic locality, for, despite entangle-

ment, nonlocal signaling is prohibited. The merit of this route is obvious—no

conflict with STR. Its drawback is that the strange correlations are not only left

unexplained, but are deemed inexplicable, or rather, not even in need of

explanation.16

Clearly, the distinction between (legitimate) nonlocal correlations and (illegiti-

mate) nonlocal signaling would not make a genuine difference if the correlations

could have been used for signaling. But why can’t they? The very idea that

correlation and signaling could be separated seems paradoxical: correlation is

certainly necessary for signaling and at a first glance it also seems sufficient.

How then can we conceive of correlations between systems that nonetheless

observe the no signaling constraint? It turns out that entangled states can be

prevented from becoming a means of signaling precisely because they are not

predetermined! Had the results of measurement been predetermined, the experi-

menter at one end of the entangled system, by looking at her results, could in fact

immediately know whether the experimenter at the other end had made a measure-

ment that interfered with the predicted outcome.17 In the absence of such determi-

nation, even though her results are correlated with those at the other end, they do not

disclose information about them. In other words, it is the indeterminism of QM (on

the standard interpretation) which saves it from signaling and thereby saves its

consistency with STR. What an ironic twist of Einstein’s vision!

I have argued above that nonlocality cannot be identified as such if the nonlocal

correlations are completely random. Nonlocal theories must therefore accommo-

date correlations, i.e. at least some measure of determinism. In the case of QM, it is

indeed the correlations exhibited by entangled states (to wit, not only strictly

deterministic correlations) that suggest nonlocality. In contrast, we now see that

abiding by the no signaling constraint is made possible by the fact that QM also

accommodates (at least a certain measure of) indeterminism. The upshot of these

dual considerations is that theories such as QM (there could be a family of such

theories, see below), which sanction entanglement, but prohibit signaling, strike a

very delicate balance between their deterministic and indeterministic features.

To better understand how this balance is maintained in QM, I would like to link

both determinism and locality to a central tenet of QM—the uncertainty relations.

While the connection between the uncertainty relations and indeterminism is

conspicuous, their connection with nonlocality and entanglement is far less

16 See Redhead [8] and Maudlin [9] for finer distinctions between locality notions. Although the

distinction between correlation and signaling is widely accepted, many physicists and

philosophers feel that non-signaling correlations still violate the spirit, if not the letter of STR.
17 Bohmian QM seems to provide a counter-example, for despite being deterministic, it does not

allow signaling. Recall, however, that in Bohmian QM the equilibrium state excludes knowledge

of the predetermined states. In the absence of this information, the experimenter cannot use the

correlations for signaling.
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obvious. Nonetheless, there are arguments to the effect that not only indeterminism,

but entanglement, and nonlocality as well, are implicit in the uncertainty relations

and mediated by them. I will mention three approaches that link uncertainty and

nonlocality: The first two, due to Schr€odinger and Pitowsky, move from the

uncertainty relations to entanglement, the second, following Popescu and Rohrlich,

moves from entanglement to the uncertainty relations.

10.2 Three Approaches to Locality and Determinism in QM

10.2.1 Schr€odinger’s Approach

For Schr€odinger, the crux of the uncertainty relations is their restriction on the

determinacy of the basic physical parameters. Accordingly, “The classical notion of

state becomes lost in that at most a well-chosen half of a complete set of variables

can be assigned definite numerical values” [10, p. 153]. Remarkably, Schr€odinger
does not point to an epistemic problem. He does not see the uncertainty relations as

referring to our knowledge or the possibility of measurement, but to the assignment
of values—the very assignment of definite values to all variables is excluded.

Schr€odinger therefore goes on to rule out the possibility that quantum probabilities

and uncertainties are analogous to probabilities in statistical mechanics, reflecting

our ignorance rather than genuine indeterminacy in physical reality. Further,

Schr€odinger, who was in general a friend of continuity and very critical of the

idea of ‘quantum jumps’ [11], acknowledges candidly that the basic characteristic

that distinguishes quantum from classical mechanics is not merely the admission of

discrete processes, but the different structure of the event space. Rather than

stressing (along with many of his colleagues) the difference between the determin-

istic character of classical mechanics and the probabilistic nature of QM,

Schr€odinger stresses the non-classical nature of quantum probability, an insight

that was driven home decades later by the work of Bell, Gleason, Kochen and

Specker, and others. (This is the core of Pitowsky’s approach discussed in the next

section). Schr€odinger makes the following pertinent observation:

One should note that there was no question of any time-dependent changes. It would be of

no help to permit the model to vary quite ‘unclassically,’ perhaps to ‘jump.’ Already for the

single instant things go wrong. At no moment does there exist an ensemble of classical

states of the model that squares with the totality of quantum mechanical statements of this

moment. The same can also be said as follows: if I wish to ascribe to the model at each

moment a definite (merely not exactly known to me) state, or. . .to all determining parts

definite (merely not exactly known to me) numerical values, then there is no supposition as

to these numerical values to be imagined that would not conflict with some portion of

quantum theoretical assertions. [10, p. 156]

The move to indeterminism is straightforward: “If even at any given moment not

all the variables are determined by some of them, then of course neither are they all

determined for a later moment by data obtainable earlier” (p. 154). And further, “if
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a classical state does not exist at any moment, it can hardly change causally. What

do change are. . . the probabilities; these, moreover, causally”.

Schr€odinger takes the C function to represent a maximal catalog of possible

measurements. It embodies “the momentarily-attained sum of theoretically based

future expectations, somewhat as laid down in a catalog. . . . It is the determinacy

bridge between measurements and measurements” (p. 158). As such, upon a new

measurement theC function undergoes a change that “depends on the measurement
result obtained, and so cannot be foreseen” (ibid. italics in original.) The

maximality or completeness of the catalog—a consequence of the uncertainty

relations—entails that we cannot have a more complete catalog, that is, cannot

have two C functions of the same system one of which is included in the other.

“Therefore, if a system changes, whether by itself or because of measurement, there

must always be statements missing from the new function that were contained in the

earlier one” (p. 159). In other words, any additional information, arrived at by

measurement, must change the previous catalog by deleting information from it.

This is the basis of the ‘disturbance’ that the measurement brings about. True

statements, that had been part of the catalog prior to the measurement, now become

false. This means that at least some of the previous values have been destroyed.

So far Schr€odinger has derived from the uncertainty relations three features of

OM, indeterminism, ‘disturbance’ by measurement and the bold claim that no

classical ensemble will recover the quantum probabilities. As I have noted, only

the first two were fully acknowledged at the time. But now comes entanglement.

This new feature also follows from the maximality or completeness of the C
function, that is, from the uncertainty relations. He argues as follows: A complete

catalog for two separate systems is, ipso facto, also a complete catalog of the

combined system, but the reverse does not follow. “Maximal knowledge of a
total system does not necessarily include total knowledge of all its parts, not even
when these are fully separated from each other and at the moment are not
influencing each other at all” (p. 160, italics in original). The reason we cannot

infer such total information is that the maximal catalog of the combined system may

contain conditional statements of the form: if a measurement on the first system

yields the value x, a measurement on the second will yield the value y, and so on. He
sums up: “Best possible knowledge of a whole does not necessarily include the

same for its parts. . .The whole is in a definite state, the parts taken individually are

not” (p. 161). In other words, separated systems can be correlated or entangled via

theC function of the combined system, but this does not mean that their individual

states are already determined! Schr€odinger’s argument clarifies the conclusion

reached above regarding the merit of a combination of determinism—to detect

nonlocality—and indeterminism—to prevent signaling. The grain of determinism

is supplied by the conditional statements governing the correlations and derived

from conservation laws. Indeterminism pertains to the individual outcomes.

Schr€odinger’s argument is purely conceptual. As we have seen, he does not

examine entanglement as a physical process in space and time (such processes

would be described as intuitive or anschaulich in the idiom of the time), but rather

as a conceptual possibility emerging from the uncertainty relations and the notion
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of a maximal catalog. Similarly, he does not see the collapse of the wave function as

a physical process. It too is a formal property of theC function, a function which is

anyway in configuration space rather than real space. The only causal, or intuitive,

consideration that figures in Schr€odinger’s argument is that, to be entangled, the

two systems must have interacted in the past. We cannot create entanglement

between the systems at a distance.

Schr€odinger tells us (in f.n. no. 7) that his 1935 paper was written in response to

the EPR paper published earlier that year. One tends to think of Schr€odinger as
Einstein’s ally in opposing the Copenhagen interpretation, and, indeed,

Schrodinger’s paper leaves no doubt as to the fact that he is unhappy with “the

present situation in QM”. One can therefore easily miss the point that without

saying so explicitly, Schr€odinger also assumes here the role of Einstein’s critic,

launching a much more lucid and effective critique of the EPR argument than that

of Bohr. The EPR argument purports to show that the correlations between the

remote parts of the system—the conditional statements—entail that each individual

state has a determinate value prior to measurement. By contrast, Schr€odinger
argues, first, that such determinacy is precluded by the uncertainty relations prop-

erly understood, and second, that, given his reading of theC function as a maximal

catalog of possible measurements, the indeterminacy of individual outcomes makes

perfect sense. In other words, whereas the EPR argument seeks to understand the

correlations in terms of predetermined values, which amounts to understanding

them in terms of common causes, Shr€odinger sees that this solution does not work.

He therefore suspects that QM might be incompatible with STR. Schr€odinger’s
pioneering argument is of course still programmatic, but in later years there are

more rigorous derivations of several of his claims.

10.2.2 Pitowsky’s Approach

In his “Quantum Mechanics as a Theory of Probability” [12], Pitowsky elaborates

the axiomatic approach originating with Birkhoff and von Neumann [23]. Building

upon their classic axiomatization in terms of the Hilbert space structure of quantum

events and its relation to projective geometry, Pitowsky seeks to incorporate later

developments, such as Gleason’s [13] theorem and the Bell (and Bell-type)

inequalities, and identify their roots in the axiom system. In this work, Pitowsky

wraps up much of his earlier work on the foundations of QM, highlighting, in

particular, the non-classical nature of quantum probability. The ramifications of the

non-classical structure of the quantum probability space, he argues, include inde-

terminism, the loss of information upon measurement, entanglement and the Bell-

type inequalities. They are also closely related to Gleason’s [13] and Kochen and

Specker’s [14] theorems, and (as he argues in a later work with Jeffrey Bub) to the

information-theoretic principle of no-cloning (or no broadcasting). I will mention

those aspects of Pitowsky’s system and interpretation that enhance our understand-

ing of locality and determinism
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The non-classical nature of quantum probability manifests itself in the violation

of basic classical constraints on the probabilities of interrelated events and is

already reflected in simple paradigm cases such as the two-slit experiment. For

example, in the classical theory of probability, it is obvious that if we have two

events E1 and E2 with probabilities p1 and p2, and their intersection whose proba-

bility is p1.p2 , the probability of the union (E1UE2) is p1 + p2 � p12 , and cannot

exceed the sum of the probabilities (p1 + p2).

0 � p1 þ p2 � p12 � p1 þ p2 � 1

In the two-slit experiments, however, the predictions of quantum mechanics

violate this classical condition, for there are areas on the screen that get more hits

when the two slits are open together for a certain time Dt, than when each slit is

open separately for the same time interval Dt. In other words, contrary to the

classical principle, we get a higher probability for the union than the sum of the

probabilities of the individual events. (Since we get this violation in different

experiments—different samples—it does not constitute an outright logical contra-

diction) This phenomenon is usually described in terms of interference, superposi-

tion, the wave particle duality, the nonlocal influence of one open slit on a particle

passing through the other, and so on. Pitowsky’s point is that before we venture an

explanation of the pattern predicted by QM (and confirmed by experiment), we

must acknowledge the bizarre phenomenon that it displays—nothing less than a

violation of the highly intuitive principles of the classical theory of probability.

QM predicts analogous violations of almost any other classical condition of

probability. The most famous of these violations is that of the Bell inequalities

which, like the above rule, can be derived from classical combinatorial

considerations. In fact, the analog of the above classical condition for three events

says that the probability of the union event (E1UE2UE3) cannot exceed p1 + p2 + p3�
p12� p13� p23. From here, Pitowsky showed ([12] and references therein), that it is

just a short step to the Bell inequalities, which are violated by QM (and experi-

ment). Bell’s famous inequalities are thus directly linked by Pitowsky to Boole’s

classical “conditions of possible experience”. What makes the violated conditions

‘classical’ is their underlying assumption of stable properties obtained by the

entities in question independently of measurement: Just as balls in an urn are red

or wooden, to derive Bell’s inequalities it is assumed that particles have a definite

polarization, or a definite spin in a certain direction, and so on. The violation of the

classical principles of probability compels us to discard this picture, replacing it

with a new understanding of quantum states and quantum properties. What does it

mean for a particle to be in a certain state, say, spin-1 in the x direction, and what is
the role of measurement in revealing this state? More generally, what is

the meaning of the quantum state function? Pitowsky’s answer is similar to

that of Schr€odinger’s: Rather than an analogue of the classical state, which

represents physical entities and their properties prior to measurement, the

quantum state function only keeps track of the probabilities of measurement results,
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“a book-keeping device” in Pitowsky’s terms or “a catalog of possible experiments”

in Schr€odinger’s.
This understanding of the state function, in turn, led Pitowsky to two further

observations: First (and unlike Schr€odinger), he interpreted the book-keeping

picture subjectively, i.e., quantum probabilities are understood as degrees of partial

belief. Second (in agreement with Schr€odinger), the notorious collapse problem is

not as formidable as when the state function is construed realistically, for if what

collapses is not a real entity in physical space, then there is no reason why the

collapse should be construed as a real physical process abiding by the constraints of

locality and Lorentz invariance. There is thus a direct link between Pitowsky’s

seeing QM primarily as a theory of non-classical probability and his renouncing of

what he and Bub, in their joint paper [15], dub “two dogmas” of the received view,

namely the reality of the state function and the need for a dynamic account of the

measurement process.

Like Schr€odinger, Birkhoff and von Neumann, Pitowsky takes the uncertainty

relations to be “the centerpiece that demarcates between the classical and quantum

domain” [12, p. 214]. The only non-classical axiom in the Birkoff von Neumann

axiomatization, and thus the logical anchor of the uncertainty relations, is the axiom

of irreducibility.18 While a classical probability space is a Boolean algebra where

for all events x and z

x ¼ ðx \ zÞ [ ðx \ z?Þ reducibilityð Þ

in QM, we get irreducibility, i.e., (with 0 as the null event and 1 the certain event):

If for some z and for all x; x ¼ ðx \ zÞ [ ðx \ z?Þ then z ¼ 0 or z ¼ 1

Irreducibility signifies the non-Boolean nature of the algebra of possible events,

for the only irreducible Boolean algebra is the trivial one {0,1}. As Birkhoff and

von Neumann explain, irreducibility means that there are no ‘neutral’ elements z,

z 6¼ 0 z 6¼ 1 such that for all x, x ¼ (x \ z) U (x \ z⊥). (If there would be such

‘neutral’ events, we would have non-trivial projection operators commuting with

all other projection operators). Intuitively, irreducibility embodies the uncertainty

relations for when x cannot be presented as the union of its intersection with z and
its intersection with z⊥, the complement of z, then x and z cannot be assigned

definite values at the same time. Thus, whenever x 6¼ (x \ z) \ (x \ z⊥,) x and z are
incompatible and, consequently, a measurement of one yields no information about

the other. The axiom further implies genuine uncertainty, or indeterminism—

probabilities strictly between (unequal to) 0 and 1. This result follows from a

18 Pitowsky’s formulation is slightly different from that of Birkhoff and von Neumann, but the

difference is immaterial. Pitowsky makes significant progress, however, in his treatment of the

representation theorem for the axiom system, in particular in his discussion of Solér’s theorem.

The theorem, and the representation problem in general, is crucial for the application of Gleason’s

theorem, but will not concern us here.
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theorem Pitowsky calls the logical indeterminacy principle, and which proves that

for incompatible events x and y

pðxÞ þ pðyÞ< 2

The loss of information upon measurement—the phenomenon called ‘distur-

bance’ by the founders of QM—also emerges as a formal consequence of the

probabilistic picture.

Having shown that the axiom system entails genuine uncertainty, Pitowsky

moves on to demonstrate the violation of the Bell-inequalities, i.e. the phenomenon

of entanglement and nonlocality. These violations already appear in finite-

dimensional cases and follow from the calculation of the probabilities of the intersec-

tion of the subspaces of the Hilbert space representing the (compatible) measurement

results at the two ends of the entangled system. He shows, in both logical and

geometrical terms, that the quantum range of possibilities is indeed larger than the

classical range so that we get more correlation than is allowed by the classical

conditions.19 Whereas the usual response to this phenomenon consists in attempts

to discover the dynamics that makes it possible, Pitowsky emphasizes that this is a

logical-conceptual argument, independent of specific physical considerations over

and above those that follow from the non-Boolean nature of the event structure. He

says

Altogether, in our approach there is no problem with locality and the analysis remains intact

no matter what the kinematic or the dynamic situation is; the violation of the inequality is a

purely probabilistic effect. The derivation of Clauser-Horne inequalities. . . is blocked since
it is based on the Boolean view of probabilities as weighted averages of truth values. This,

in turn, involves the metaphysical assumption that there is, simultaneously, a matter of fact

concerning the truth-values of incompatible propositions. . .. [F]rom our perspective the

commotion about locality can only come from one who sincerely believes that Boole’s

conditions are really conditions of possible experience. . . .. But if one accepts that one is
simply dealing with a different notion of probability, then all space-time considerations

become irrelevant. [12, pp. 231–232]

Recall that in order to countenance nonlocality without breaking with STR, the

no signaling constraint must be observed. As nonlocality is construed by Pitowsky

in formal terms—a manifestation of the quantum mechanical probability calculus,

uncommitted to a particular dynamics—it stands to reason that the no signaling

principle will likewise be derived from probabilistic considerations. Indeed, it turns

out that no signaling can be construed as an instance of a more general principle

known as the non-contextuality of measurement [17]. In the spirit of the probabi-

listic approach to QM, Pitowsky and Bub therefore maintain that “‘no signaling’ is

not specifically a relativistic constraint on superluminal signaling. It is simply a

condition imposed on the marginal probabilities of events for separated systems

19 In his book [16], Pitowsky studied the geometrical meaning of Boole’s classical conditions on

probability. More details can be found in the introduction to this volume.
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requiring that the marginal probability of a B-event is independent of the particular

set of mutually exclusive and collectively exhaustive events selected at A, and

conversely” (2010, p. 443).20

I have used Pitowsky’s formal approach to trace both indeterminism and

nonlocality to the event structure of QM. As made clear in the introduction to this

volume, it is a basic tenet of this approach that there is no deeper foundation to QM

than this formal structure. Once we accept QM as a new and non-classical theory of

probability (or information), the argument goes, the intriguing problems of how

nonlocal correlations are brought about, why measurement generates disturbance,

and so on, can be set aside. Pitowsky and Bub draw an analogy between their formal

approach to QM and the widely held understanding of STR, according to which

relativistic effects such as the contraction of rods in the direction of motion and time

dilation are kinematical effects that need no further dynamical explanation. These

issues need not be addressed here. Pitowsky’s approach, like Schr€odinger’s, was
used here only to tackle the conceptual question I raised regarding the relation

between determinism, locality and the uncertainly relations. The further claim

regarding the explanatory value of this approach, or the redundancy of alternative

dynamical ones, is not part of my argument.

10.2.3 Popescu and Rohrlich’s Approach

So far we have seen that according to both Schr€odinger and Pitowsky, a formalism

that incorporates the uncertainly relations (or, equivalently, incorporates the axiom

of irreducibility and countenances incompatible events), also gives rise to both

indeterminism and nonlocality. The question now arises of whether we can also

move in the opposite direction, that is, does quantum entanglement yield the

uncertainty relations. A series of papers by Rohrlich and Popescu [26] shed light

on this intriguing question. The original question addressed in these papers was

whether the nonlocal correlations of QM could be tempered with and destroyed by a

third party. The idea was that if the nonlocal correlations reflect superluminal

communication between distant systems, it might be possible to interfere with

this mysterious communication channel. To test this idea Popescu and Rohrlich

consider Jim the Jammer, situated in a position that enables him to jam the EPR

correlations between Bob and Alice. We have noted repeatedly that nonlocality in

itself could be sanctioned as long as it does not entail super-luminal signaling.

20 In the literature, following in particular Jarrett [30], it is customary to distinguish outcome

independence, violated in QM, from parameter independence, which is observed, a combination

that makes possible the peaceful coexistence with STR. The non-contextuality of measurement

amounts to parameter independence. See, however Redhead [8] and Maudlin [9], among others,

for a detailed exposition and critical discussion of the distinction between outcome and parameter

independence and its implications for the compatibility with STR.
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Accordingly, the envisaged jamming must be such that Bob and Alice will not

notice it.

Popescu and Rohrlich seek a quantitative assessment of the relation between

nonlocality and no signaling: they look for the maximal amount of nonlocality that

does not lead to signaling, i.e. the maximal nonlocality that avoids a clash with

STR. Their initial conjecture was that the constraints of maximum nonlocality and

no signaling suffice to precisely recover QM, no more, no less. Intuitive support for

this conjecture came from the observation made above that an indeterministic

theory could be both nonlocal and consistent with STR. Hence the feasibility of

the idea that QM strikes exactly the right balance between nonlocality, no signaling

and indeterminism. Are nonlocality and no signaling then sufficient to generate

OM? Surprisingly, the answer reached by Rohrlich and Popescu was negative:

nonlocality plus no signaling give us a family of theories that includes, in addition

to QM, a range of theories that are more nonlocal than QM.21 Yet in all members of

this family we get uncertainty relations analogous to those of QM, but possibly

differing from them in the value of the numerical limit they set. Here both (non)

locality and (in)determinism have become quantitative, rather than binary, notions.

Moreover, they have become mutually interdependent. The combination of

nonlocality and no signaling is linked to, and made possible by, the existence of

uncertainty relations and the indeterminism that follows from them.

The Popescu-Rohrlich argument suggests that indeterminism is at least (part of)

a sufficient condition for the peaceful coexistence of nonlocality and STR. On the

face of it, the stronger claim that indeterminism is also a necessary condition for this

coexistence clashes with Bohmian QM, which is deterministic but does not allow

signaling.22 However, given the fact that in Bohmian QM, due to the equilibrium

conjecture, the pre-determined states are unknown to the experimenter, and are thus

useless for signaling, this clash may turn out to be illusory. If so, a kind of epistemic

indeterminism (such as is found even in Bohmian QM) is not only a sufficient

condition for the peaceful coexistence of nonlocality and no signaling, but also a

necessary one. The interconnection between nonlocality and indeterminism is

further supported by two recent papers. Oppenheim and Wehner [19] argue that

the two basic features of QM, nonlocality and the uncertainty relations, “are

inextricably and quantitatively linked” (p. 1072), so that QM cannot be more

nonlocal than it is without violating the uncertainty principle. From a different

perspective, Goldstein et al. [20], in their critique of Conway and Kochen’s [21]

“free will theorem”, also stress the difference between deterministic and stochastic

21 In the Clauser-Horn-Shimony-Holt inequality the classical limit reached by local realist

considerations is �2 � S � 2. In QM this inequality can be violated, but as Boris Tsirelson has

shown there is an upper bound to this violation: �2√2 � S � 2√2. Rohrlich and Popescu show

that the Tsirelson bound can be violated without violation of STR, that is, without violation of the

no signaling requirement.
22 Although it does not allow signaling, Bohmian QM is not Lorentz invariant; see Albert [18]

Chap. 7.
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theories in so far as their compliance with the no signaling constraint is concerned.

Their argument is particularly significant in view of Tumulka’s relativistic version

of the GRW theory [22]. Were Tumulka’s argument to apply to a deterministic

analogue of the GRW theory, we would have a deterministic Lorentz invariant

version of quantum mechanics and thus a counterexample to the argument of this

paper. Goldstein et al. show, however, that indeterminism plays a crucial role in

Tumulka’s argument.

To conclude, we have seen that, conceptually, determinism is neither sufficient

nor necessary for locality, but epistemically, a degree of determinism is necessary

for the detection of nonlocalty. We have seen, further, that once we distinguish

between nonlocality and no signaling, the lesson of QM is that a combination of

nonlocality and no signaling is made possible by indeterminism. In theories that,

like QM, sanction nonlocal correlations, nonlocality and indeterminism cooperate

to prevent signaling and protect compatibility with STR. The uncertainty relations

play a major role in maintaining this cooperation.
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Chapter 11

Why the Tsirelson Bound?

Jeffrey Bub

Abstract Wheeler’s question ‘why the quantum’ has two aspects: why is the world

quantum and not classical, and why is it quantum rather than superquantum, i.e.,

why the Tsirelson bound for quantum correlations? I discuss a remarkable answer

to this question proposed by Pawłowski et al. [1], who provide an information-

theoretic derivation of the Tsirelson bound from a principle they call ‘information

causality.’

11.1 Introduction

In a remarkable information-theoretic derivation of the Tsirelson bound for quan-

tum correlations by Pawłowski et al. [1], the authors derive the bound from

a principle they call ‘information causality.’ Here I review the original derivation

and the information-theoretic principle involved, and consider the significance of

the result.

Einstein’s special theory of relativity follows from just two principles: the light

postulate and the principle of relativity. In a seminal paper [2], Popescu and

Rohrlich asked whether quantum mechanics follows from relativistic causality,

the principle that causal processes or signals cannot propagate outside the light

cone, and nonlocality in the sense of Bell’s theorem [3]. They showed that it does

not: quantum mechanics is only one of a class of theories consistent with these two

principles.

To see this, consider a ‘nonlocal box,’ a hypothetical device proposed by

Popescu and Rohrlich, now called a ‘Popescu-Rohrlich box’ or PR-box. A PR-box

has two inputs, a ∈ {0, 1} and b ∈ {0, 1}, and two outputs, A ∈ {0, 1} and
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B ∈ {0, 1},1 and is defined by the following correlations between inputs and

outputs:

A� B ¼ a � b (11.1)

where � is addition mod 2, i.e.,

1. Same outputs (i.e., 00 or 11) if the inputs are 00 or 01 or 10

2. Different outputs (i.e., 01 or 10) if the inputs are 11

together with a ‘no signaling’ constraint.

A PR-box is bipartite and nonlocal in the sense that the a-input and A-ouput can
be separated from the b-input and B-output by any distance without altering the

correlations. For convenience, we can think of the a-input as controlled by Alice,

who monitors the A-output, and the b-input as controlled by Bob, who monitors the

B-output. If we want the correlations of a PR-box to be consistent with relativistic

causality, they should satisfy a ‘no signaling’ constraint: no information should be

available in the marginal probabilities of Alice’s outputs about alternative input

choices made by Bob, and conversely, i.e.,X
b2f0;1g

pðA;Bja; bÞ ¼ pðAjaÞ; A; a; b 2 f0; 1g (11.2)

X
a2f0;1g

pðA;Bja; bÞ ¼ pðBjbÞ; B; a; b 2 f0; 1g (11.3)

Note that ‘no signaling’ is not a relativistic constraint per se – it is simply

a constraint on the marginal probabilities. But if this constraint is not satisfied,

instantaneous (hence superluminal) signaling is possible, i.e., ‘no signaling’ is

a necessary condition for relativistic causality.

It follows from (11.1) and ‘no signaling’ that the correlations are as in

Table 11.1:

The probability p(00|00) is to be read as p(A ¼ 0, B ¼ 0|a ¼ 0, b ¼ 0), and the

probability p(01|10) is to be read as p(A ¼ 0, B ¼ 1|a ¼ 1, b ¼ 0), etc. (I drop the

Table 11.1 PR-box correlations

a 0 1

b

0 p(00|00) ¼ 1/2 p(10|00) ¼ 0 p(00|10) ¼ 1/2 p(10|10) ¼ 0

p(01|00) ¼ 0 P(11|00) ¼ 1/2 p(01|10) ¼ 0 p(11|10) ¼ 1/2

1 p(00|01) ¼ 1/2 p(10|01) ¼ 0 p(00|11) ¼ 0 p(10|11) ¼ 1/2

p(01|01) ¼ 0 P(11|01) ¼ 1/2 p(01|11) ¼ 1/2 p(11|11) ¼ 0

1 In a simulation of PR-box correlations by classical or quantum correlations, inputs correspond to

observables measured and outputs to measurement outcomes represented by real numbers, so it

might seem more appropriate to use A, B for inputs and a, b for outputs. I follow the notation of

Pawłowski et al. [1] here, since this is the result I discuss in detail below.

168 J. Bub



commas for ease of reading; the first two slots in p(� � | – –) before the conditio-

nalization sign ‘|’represent the two possible outputs for Alice and Bob, respectively,

and the second two slots after the conditionalization sign represent the two possible

inputs for Alice and Bob, respectively.) Note that the sum of the probabilities in each

square cell of the array in Table 11.1 is 1, and that the marginal probability of 0 for

Alice or for Bob is obtained by adding the probabilities in the left column of each

cell or the top row of each cell, respectively, and the marginal probability of 1 is

obtained for Alice or for Bob by adding the probabilities in the right column of each

cell or the bottom row of each cell, respectively. One could define a PR-box as

exhibiting the correlations in Table 11.1, which are ‘no signaling,’ rather than in

terms of the condition A � B ¼ a. b and the ‘no signaling’ constraint.

Note that a PR box functions in such a way that if Alice inputs a 0 or a 1, her

output is 0 or 1 with probability 1/2, irrespective of Bob’s input, and irrespective of

whether Bob inputs anything at all. Similarly for Bob. The requirement is simply

that whenever there are in fact two inputs, the inputs and outputs are correlated

according to (11.1). A PR-box can function only once, so to get the statistics for

many pairs of inputs one has to use many PR-boxes. This avoids the problem of

selecting the ‘corresponding’ input pairs for different inputs at various times, which

would depend on the reference frame. In this respect, a PR-box is like a quantum

system: after a system has responded to a measurement (produced an output for an

input), the system is no longer in the same quantum state, and one has to use many

systems prepared in the same quantum state to exhibit the probabilities associated

with a given quantum state.

What is the optimal probability that Alice and Bob can simulate a PR-box,

supposing they are allowed certain resources?

In units where A ¼ �1, B ¼ �1,2

00h i ¼ pðsame outputj00Þ � pðdifferent outputj00Þ (11.4)

so:

pðsame outputj00Þ ¼ 1þ h00i
2

(11.5)

pðdifferent outputj00Þ ¼ 1� h00i
2

(11.6)

and similarly for input pairs 01, 10, 11.

2 It is convenient to change units here to relate the probability to the usual expression for the

Clauser-Horne-Shimony-Holt correlation, where the expectation values are expressed in terms of

�1 values for A and B (the relevant observables). Note that ‘same output’ or ‘different output’

mean the same thing whatever the units, so the probabilities p(same output | AB) and p(different
output | AB) take the same values whatever the units, but the expectation value hABi depends on
the units for A and B.
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It follows that the probability of successfully simulating a PR-box is given by:

pðsuccessful simÞ ¼ 1

4
ðpðsame outputj00Þ þ pðsame outputj01Þ

þ pðsame outputj10Þ þ pðdifferent outputj11ÞÞ
(11.7)

¼ 1

2
1þ K

4

� �
¼ 1

2
ð1þ EÞ (11.8)

where K ¼ h00iþ h01iþ h10i� h11i is the Clauser-Horne-Shimony-Holt (CHSH)

correlation.

Bell’s locality argument in the Clauser-Horne-Shimony-Holt version [4] shows

that if Alice and Bob are limited to classical resources, i.e., if they are required to

reproduce the correlations on the basis of shared randomness or common causes

established before they separate (after which no communication is allowed), then

|KC| � 2, i.e., jEj � 1
2
, so the optimal probability of successfully simulating a PR-

box is 1
2
ð1þ 1

2
Þ ¼ 3

4
.

If Alice and Bob are allowed to base their strategy on shared entangled states

prepared before they separate, then the Tsirelson bound for quantum correlations

requires that jKQj � 2
ffiffiffi
2

p
, i.e., jEj � 1ffiffi

2
p , so the optimal probability of successful

simulation limited by quantum resources is 1
2
ð1þ 1ffiffi

2
p Þ � :85.

Clearly, the ‘no signaling’ constraint (or relativistic causality) does not rule out

simulating a PR-box with a probability greater than 1
2
ð1þ 1ffiffi

2
p Þ. As Popescu and

Rohrlich observe, there are possible worlds described by ‘superquantum’ theories

that allow nonlocal boxes with ‘no signaling’ correlations stronger than quantum

correlations, in the sense that 1ffiffi
2

p � E � 1. The correlations of a PR-box saturate

the CHSH inequality (E ¼ 1), and so represent a limiting case of ‘no signaling’

correlations.

We see now that Wheeler’s question ‘why the quantum’ has two aspects: why

is the world quantum and not classical, and why is it quantum rather than

superquantum, i.e., why the Tsirelson bound? In the following section, I discuss

a remarkable answer to this question proposed by Pawłowski et al. [1].

11.2 Information Causality

Pawłowski et al. [1] consider a condition they call ‘information causality,’ that the

information gain for Bob about an unknown data set of Alice, given all his local

resources and m classical bits communicated by Alice, is at most m bits.3 They

3 The restriction to the communication of classical bits is essential here. Recall that entanglement

correlations can be exploited to allow Alice to send Bob two classical bits by communicating just

one quantum bit.
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remark that the ‘no-signaling’ condition is just information causality for m ¼ 0: if

Alice communicates nothing to Bob, then there is no information in the statistics of

Bob’s outputs about Alice’s data set. Pawłowski et al. show that the Tsirelson

bound, jEj � 1ffiffi
2

p , follows from this condition.

To see how they arrive at this startling result, it is convenient to consider the

following game (related to oblivious transfer and communication complexity

problems; see [5–7] and Sect. 11.4): At each round of the game, Alice receives N
random and independent bits ~a ¼ ða0; a1; . . . ; aN�1Þ. Bob, separated from Alice,

receives a value of a random uniformly distributed variable b∈ {0, 2, . . . , N � 1}.

Alice can send one classical bit to Bob with the help of which Bob is required to

guess the value of the b-th bit in Alice’s list, ab, for some value of b∈ {0, . . . ,N� 1}.

We assume that Alice and Bob are allowed to communicate and plan a mutual

strategy before the game starts, but once the game starts the only communication

between them is the one classical bit that Alice is allowed to send to Bob at each

round of the game. They win a round if Bob correctly guesses the b-th bit for

the round. They win the game if Bob always guesses correctly over any succession

of rounds. Note that Alice must decide on the bit she sends to Bob at each round of

the game independently of the value of b, which is given to Bob at each round and is
unknown to Alice.

Clearly, Bob will be able to correctly guess the value of one of Alice’s bits,

assuming they agree in advance about the index k of the bit Alice sends at each

round, but Bob’s guess will be at chance when the value of b 6¼ k.
Now, suppose Alice and Bob are equipped with a supply of shared PR-boxes.

Pawłowski et al. show that there is a strategy that will allow Alice and Bob to win

the game, i.e., for any round, and for any b∈ {0, 2, . . . , N� 1}, Bob will be able to

correctly guess the value of any designated bit ak in Alice’s list a0, a1, . . . , aN�1.

Consider first the simplest case N ¼ 2, where Alice receives two bits, a0, a1. The
strategy in this case involves a single shared PR-box. Alice inputs a0 � a1 into her

part of the box (i.e., a ¼ a0 � a1) and obtains the output A. She sends the bit

x ¼ a0 � A to Bob. Bob inputs the value of b, i.e., 0 or 1, into his part of the box

and obtains the output B. He guesses ab ¼ x � B ¼ a0 � A � B.
Now, the box functions in such a way that A � B ¼ a · b ¼ (a0 � a1) · b. So

Bob’s guess is x � B ¼ a0 � A � B ¼ a0 � ((a0 � a1) · b). It follows that if

b ¼ 0, Bob correctly guesses a0, and if b ¼ 1, Bob correctly guesses

a0 � a0 � a1 ¼ a1.
Suppose Alice receives four bits, a0, a1, a2, a3. (N ¼ 4). Bob’s random variable

labeling the bit he has to guess takes four values, b ¼ 0, 1, 2, 3, and can be specified

by two bits, b0, b1:

b ¼ b02
0 þ b12

1 ¼ b0 þ 2b1

The strategy in this case involves an inverted pyramid of PR-boxes: two shared

PR-boxes, L and R, at the first stage, and one shared PR-box at the final second

stage. Alice inputs a0 � a1 into the L box, and a2 � a3 into the R box. Bob inputs b0
into both the L and R boxes and obtains the output B0 (the input to one of these
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boxes will be irrelevant, depending on what bit Bob is required to guess; see below).

At the second stage, Alice inputs (a0 � AL) � (a2 � AR) into the shared PR-box,

where AL is the Alice-output of the L box and AR is the Alice-output of the R box,

and obtains the output A. Bob inputs b1 into this box and obtains the output B1.

Alice then sends Bob the bit x ¼ a0 � AL � A.
Now, Bob could correctly guess either a0 � AL or a2 � AR, using the elemen-

tary N ¼ 1 strategy, as x � B1 ¼ a0 � AL � A � B1. Here A � B1 ¼ (a0 � AL

� a2 � AR)·b1. If b1 ¼ 0, Bob would guess a0 � AL. If b1 ¼ 1, Bob would guess

a2 � AR.

So if Bob is required to guess the value of a0 (i.e., b0 ¼ 0, b1 ¼ 0) or a1 (i.e.,
b0 ¼ 1, b1 ¼ 0)— the input to the PR-box L—he guesses a0 � AL � A � B1 � B0,

where B0 is the Bob-output of the L box. Then:

a0 � AL � A� B1 � B0 ¼ a0 � AL � B0

¼ a0 � ða0 � a1Þ � b0
(11.9)

If b0 ¼ 0, Bob correctly guesses a0; if b0 ¼ 1, Bob correctly guesses a1.
If Bob is required to guess the value of a2 (i.e., b0 ¼ 0, b1 ¼ 1) or a3 (i.e.,

b0 ¼ 1, b1 ¼ 1)— the input to the PR-box R—he guesses a0 � AL � A � B1 � B0,

where B0 is the Bob-output of the R box. Then:

a0 � AL � A� B1 � B0 ¼ a2 � AR � B0

¼ a2 � ða2 � a3Þ � b0
(11.10)

If b0 ¼ 0, Bob correctly guesses a2; if b0 ¼ 1, Bob correctly guesses a3.
These strategies are winning strategies for N ¼ 2, and N ¼ 4 (the game for

N ¼ 1 is trivial). Clearly, the strategy for N ¼ 4 is also a strategy for N ¼ 3 (there

is just one less value of b that Bob has to worry about). By adding more stages

(levels) to the inverted pyramid, one obtains a strategy for N ¼ 8 (four shared PR-

boxes at the first stage, two shared PR-boxes at the next stage, and one shared PR-

box at the third and final stage), and so on. This is also a strategy for 4 � N < 8, so

there is a strategy for any N.
The game can be modified to allow Alice to send m classical bits of information

to Bob at each round, in which case Bob is required to guess the values of any set of

m bits in Alice’s list of N bits. In this case, Alice and Bob simply apply the above

strategy for any N with m inverted pyramids of PR-boxes, one for each bit in the set

of bits Bob is required to guess.

We have seen that Alice and Bob can win this game if they share PR-boxes

(E ¼ 1). What if they share non-signaling (NS) boxes with any ‘no signaling’

correlations corresponding to |E| < 1, such as classical correlations(jEj � 1
2
), or

the correlations of entangled quantum states (jEj � 1ffiffi
2

p ), or superquantum ‘no

signaling’ correlations ( 1ffiffi
2

p <E< 1)?

The probability of simulating a PR-box with a NS-box is 1
2
ð1þ EÞ, where E

depends on the NS-box (the nature of the correlations). Consider the N ¼ 4 game
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where Alice and Bob share NS-boxes, and Alice is allowed to communicate one bit

to Bob. Bob’s guess x � B1 � B0 will be correct if B1 and B0 are both correct or

both incorrect (since B1 � B0 will be the same in either case).

The probability of being correct at both stages is:

1

2
ð1þ EÞ � 1

2
ð1þ EÞ ¼ 1

4
ð1þ EÞ2 (11.11)

The probability of being incorrect at both stages is:

1� 1

2
ð1þEÞ

� �
� 1� 1

2
ð1þEÞ

� �
¼ 1

2
ð1�EÞ � 1

2
ð1�EÞ ¼ 1

4
ð1�EÞ2 (11.12)

So the probability Pk that Bob guesses correctly, i.e., the probability that b ¼ ak
when b ¼ k, is:

Pk ¼ 1

4
ð1þ EÞ2 þ 1

4
ð1� EÞ2 ¼ 1

2
ð1þ E2Þ (11.13)

In the general case N ¼ 2n, Bob guesses correctly if he makes an even number of

errors over the n stages (B0, B1, B2,. . .) and the probability is:

Pk ¼ 1

2n
ð1þ EÞn þ 1

2n

Xn2b c

j¼1

n
2j

� �
ð1� EÞ2jð1þ EÞn�2j ¼ 1

2
ð1þ EnÞ (11.14)

where n
2

� �
denotes the integer value of n

2
. For example, if n ¼ 3, the probability of

being correct at each stage is:

1

2
ð1þ EÞ � 1

2
ð1þ EÞ � 1

2
ð1þ EÞ (11.15)

and the probability of being incorrect at two out of the three stages (i.e., at B0, B1 or

B0, B2 or B1, B2) is:

3 � 1
2
ð1� EÞ � 1

2
ð1� EÞ � 1

2
ð1þ EÞ (11.16)

so the probability that Bob guesses correctly is :

Pk ¼ 1

8
ð1þ EÞ3 þ 3

8
ð1� EÞ2ð1þ EÞ ¼ 1

2
ð1þ E3Þ (11.17)
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11.3 The Tsirelson bound

In the game considered above, Alice has a list of N bits and Bob has to guess

an arbitrarily selected one of these bits, b ¼ k. If Bob knows the value of the

bit he has to guess, Pk ¼ 1. The binary entropy of Pk is defined as

hðPkÞ ¼ �Pk logPk � ð1� PkÞ log ð1� PkÞ, so h(Pk) ¼ 0. If Bob has no informa-

tion about the bit he has to guess, Pk ¼ 1/2, i.e., his guess is at chance, and

h(Pk) ¼ 1.

If Alice sends Bob one classical bit of information, information causality requires

that Bob’s information about the N unknown bits increases by at most one bit. So if

the bits in Alice’s list are unbiased and independently distributed, Bob’s information

about an arbitrary bit b ¼ k in the list cannot increase by more than 1/N bits, i.e., for

Bob’s guess about an arbitrary bit in Alice’s list, the binary entropy h(Pk) is at most

1/N closer to 0 from the chance value 1, i.e., h(Pk) � 1�1/N.
It follows that the condition for a violation of information causality in this case

can be expressed as:

hðPkÞ< 1� 1=N (11.18)

or, taking N ¼ 2n, the condition is:

hðPkÞ< 1� 1

2n
(11.19)

Since Pk ¼ 1
2
ð1þ EnÞ, we have a violation of information causality when:

h
1

2
ð1þ EnÞ

� �
< 1� 1

2n
(11.20)

Pawłowski et al. [1] make use of the following inequality:

h
1

2
ð1þ yÞ

� �
� 1� y2

2ln2
(11.21)

where ln 2 � .693 is the natural log of 2 (base e). So information causality is

violated if

1� E2n

2ln2
< 1� 1

2n
(11.22)

i.e., if

ð2E2Þn > 2ln2 � 1:386 (11.23)

If 2E2 ¼ 1, i.e., if E ¼ ET ¼ 1ffiffi
2

p (the Tsirelson bound), the inequality (11.23) is

satisfied. This is a sufficient condition for a violation of information causality, but it
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is not necessary: even if ð2E2
TÞn 6 2ln2, we could still have a violation of informa-

tion causality for some n if hð1
2
ð1þ En

TÞÞ< 1� 1
2n
. See the Appendix for a proof that

information causality is satisfied for E ¼ ET, i.e., hð12ð1þ En
TÞÞ � 1� 1

2n
for any n.

If E > ET, i.e., if 2E
2 ¼ 1 + a, for some a, no matter how small, there is a

violation: (2E2)n > 1 + na,4 but 1 + na > 2ln 2 � 1.386 for some n. That is, for
any a, however small, there is a value of n such that n> :386

a , hence a value of n for

which information causality is violated.

To appreciate the significance of this result, consider some numbers for E and n.
The condition for a violation of information causality is hðPkÞ< 1� 1

2n
. Recall that

log2x ¼ log10x

log102
� log10x

:301 .

Consider first the case where E ¼ ET ¼ 1ffiffi
2

p � :707, the Tsirelson bound.

When n ¼ 1, Alice has 21 ¼ 2 bits:

hðPkÞ ¼ �
�
1

2
1þ 1ffiffiffi

2
p

� �
log10

1
2
ð1þ 1ffiffi

2
p Þ

:301

þ 1

2
1� 1ffiffiffi

2
p

� �
log10

1
2
ð1� 1ffiffi

2
p Þ

:301

�
�:600

(11.24)

There is no violation of information causality because :600> 1� 1
21
¼ 1

2
.

When n ¼ 10, Alice has 210 ¼ 1,024 bits:

hðPkÞ ¼ �
 
1

2
1þ 1ffiffiffi

2
p 10

 !
log10

1
2
ð1þ 1ffiffi

2
p 10Þ

:301

þ 1

2
1� 1ffiffiffi

2
p 10

 !
log10

1
2
ð1� 1ffiffi

2
p 10Þ

:301

!
� :99939

(11.25)

There is still no violation of information causality because :99939>

1� 1
210

¼ 1� 1
1024

� :9990.

Now consider the case where E > ET. Take E ¼ .725 and n ¼ 7. In this case,

there is a violation of information causality:

hðPkÞ ¼ �
 
1

2
ð1þ :7257Þ log10

1
2
ð1þ :7257Þ
:301

þ 1

2
ð1� :7257Þ log10

1
2
ð1� :7257Þ
:301

!
� :99208

(11.26)

4 Recall that (1 + a)n can be expanded as ð1þ aÞn ¼ 1þ naþ nðn�1Þ
2! þ nðn�1Þðn�2Þ

3! þ � � �
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There is a violation of information causality because :99208< 1� 1
128

� :99218.
There is no violation for n ¼ 6 because :9848> 1� 1

64
� :9844.

Note that the inequality (11.21) has not been used in the above calculations. The

only role of the inequality is to allow one to easily see that information causality is

violated for some value of n if E > ET, i.e., if 2E
2 > 1 + a for any a. In fact,

information causality could be violated for a lower value of n. In the case above,

E ¼ .725, a � .05125. Using the inequality, we find that information causality is

violated when n> :386
a , i.e., when n � 8.

If E is very close to the Tsirelson bound, then nmust be very large for a violation

of information causality. For n ¼ 10 and E ¼ .708:

hðPkÞ ¼ �
 
1

2
ð1þ :70810Þ log10

1
2
ð1þ :70810Þ
:301

þ 1

2
ð1� :70810Þ log10

1
2
ð1� :70810Þ
:301

!
� :99938

(11.27)

There is no violation of information causality because :99938>1� 1
1024

� :9990.
Using the inequality, with a¼ :708� 1ffiffi

2
p , we find that n � 432 for a violation of

information causality.

Another way to look at this: If E ¼ ET ¼ 1ffiffi
2

p , Pk ¼ 1
2
ð1þ EnÞ ! 1

2
and

h(Pk) ! 1 as n ! 1. So, if Alice has a very long list and sends Bob one bit of

information,Bob’s ability to correctly guess an arbitrary bit inAlice’s list is essentially

at chance if the correlations are bounded by the Tsirelson bound. For a PR-box,E ¼ 1,

Pk ¼ 1, h(Pk) ¼ 0, so Bob can correctly guess any arbitrary bit in Alice’s list.

11.4 Comments

The analysis in Sect. 11.3 related information causality directly to a condition on

the binary entropy. In Pawłowski et al. [1], the authors relate information causality

directly to a condition on the mutual information between Alice and Bob, and only

indirectly to the binary entropy:

Ideally, we wish to define that information causality holds if, after transfer of the m-bit
message, the mutual information between Alice’s data~a and everything that Bob has—that

is, the message ~x and his part B of the previously shared correlation—is bounded by m.
Intuitively appealing though such a definition is, it has the severe issue that it is not theory-

independent. Specifically, a mutual information expression ‘Ið~a :~x;BÞ’ has to be defined

for a state involving objects from the underlying theory (the possibilities include classical

correlation, a shared quantum state and NS-boxes). It is far from clear whether mutual

information can be defined consistently for all nonlocal correlations, nor whether such a

definition would be unique.
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Pawłowski et al. denote Bob’s output by b and quantify the efficiency of Alice’s

and Bob’s strategy by:

I 	
XN�1

k¼0

Iðak : bjb ¼ kÞ (11.28)

where I(ak : b | b ¼ k) is the Shannon mutual information between ak and b,
computed under the condition that Bob is required to guess the bit b ¼ k. They
show that if the mutual information Ið~a :~x;BÞ for any ‘no signaling’ theory satisfies
three constraints (which are satisfied for quantum information and for classical

information, a special case of quantum information):

• consistency with the classical Shannon mutual information when the Alice and

Bob subsystems are both classical

• the data-processing inequality: any local manipulation of data can only degrade

information, i.e., acting on one subsystem locally by any admissible transforma-

tion cannot increase the mutual information

• the chain rule: I(A : B, C) ¼ I(A : C) + I(A : B | C), where I(A : B | C) is the
conditional mutual information

then (i) information causality is satisfied, i.e., Ið~a :~x;BÞ � m, and (ii) Ið~a :~x;BÞ � I.
Since Ið~a :~x;BÞ>m if I>m, it follows that information causality is violated if:

I>m (11.29)

So if information causality is satisfied, then I � m, i.e., I � m is a necessary

condition for information causality. (Note that we could, of course, have I � m but

Ið~a :~x;BÞ>m, so (11.29) is not a sufficient condition for information causality.) As

the authors emphasize, I is fully specified by Alice’s and Bob’s input and output bits
and is independent of the details of any particular physical theory.

The Shannon mutual information I(X:Y) of two random variables is a measure of

how much information they have in common: the sum of the information content of

the two random variables, as measured by the Shannon entropy (in which joint

information is counted twice), minus their joint information:

IðX : YÞ ¼ HðXÞ þ HðYÞ � HðX; YÞ
¼ HðXÞ � HðXjYÞ (11.30)

where HðXÞ ¼ �Pi pilog pi is the Shannon entropy of the random variable X,
HðX; YÞ ¼ �Pi; j pi; j log pi; j is the joint Shannon entropy of the two random

variables X, Y representing the joint information, and H(X | Y) is the conditional

entropy: H(X | Y) ¼ H(X, Y)�H(Y). Note that H(X | Y) � H(X), with equality if and
only if X, Y are independent.

So:

I 	
XN�1

k¼0

Iðak : bjb ¼ kÞ ¼
XN�1

k¼0

ðHðakÞ þ HðbÞ � Hðak; bÞÞ (11.31)
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where the condition b ¼ k has been omitted for ease of reading.

First note that

HðakjbÞ ¼Hðak � bjbÞ
�Hðak � bÞ (11.32)

The first equality follows because only the probabilities of the different

alternatives are relevant in the calculation of the entropy. In this case, the

probabilities are 0 and 1 and, given that b ¼ 0, the probability that ak ¼ 0 is the

same as the probability that ak � b ¼ 0, i.e., that ak ¼ b, and the probability that

ak ¼ 1 is the same as the probability that ak � b ¼ 1, i.e., that ak 6¼ b; and

similarly if b ¼ 1. The second inequality follows because conditioning decreases

entropy.

Now:

Hðak � bÞ ¼ hðPkÞ (11.33)

so

HðakjbÞ � hðPkÞ (11.34)

It follows that:

Iðak : bÞjb ¼ kÞ � HðakÞ � hðPkÞ (11.35)

In the case where the bits in Alice’s list are unbiased and independently

distributed, H(ak) ¼ 1, so:

Iðak : bÞjb ¼ kÞ � 1� hðPkÞ (11.36)

i.e.,

I � N �
XN�1

k¼0

hðPkÞ (11.37)

and since hðPkÞ ¼ 1
2
ð1þ EnÞ, which is independent of k:

I � N � NhðPkÞ (11.38)

For a PR-box, E ¼ 1, h(Pk) ¼ 0, and I ¼ N. If Bob guesses randomly for all k,
then h(Pk) ¼ 1, I ¼ 0. So in the case where Alice sends m bits of information to

Bob, 0 � I � N, with a violation of information causality when I > m.
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If Alice sends Bob one bit of information, information causality is violated if

I > 1, i.e., if:

hðPkÞ< 1� 1

N
(11.39)

or, taking N ¼ 2n, if:

hðPkÞ< 1� 1

2n
(11.40)

which are, respectively, Eqs. 11.18 and 11.19 of Sect. 11.3.

Pawłowski et al. [1, p. 1101] express the condition of information causality as

follows:

Formulated as a principle, information causality states: ‘the information gain that Bob can

reach about a previously unknown to him data set of Alice, by using all his local resources

and m classical bits communicated by Alice, is at most m bits.’ The standard no-signalling

condition is just information causality for m ¼ 0.

Stated in this way, the condition seems trivial: of course, if Alice sends Bob m
bits of information, his information gain is at most m bits, and if m ¼ 0 his

information gain is 0. But implicit in the condition is that Bob’s local resources

include the marginal probabilities of correlations between Alice and Bob and the

values of the correlated variables, and similarly for Alice. The issue concerns the

extent to which Alice and Bob can exploit previously established correlations

between them in such a way that the m bits of information communicated by

Alice to Bob will allow Bob to correctly guess an arbitrarily designated set of bits

in Alice’s data set, which might contain N > m bits. Of course, without exploiting

the correlations, Bob can know some specific, previously agreed upon set of m
bits and, exploiting classical correlations, i.e., previously established shared

randomness, Bob can know a different specific set of m bits on each occasion that

Alice sends him m bits.5 The relevant insight is that if the correlations are PR-box

correlations, then Alice can send Bob a set of m bits chosen on the basis of the

Alice-values of the correlated variables, where Alice and Bob select the variables

appropriately as the inputs to the PR-boxes, in such a way that Bob can correctly

guess any arbitrary set of m bits in Alice’s data set. In other words, for the case

m ¼ 1, there is a way of exploiting the PR-box correlations so that the one bit of

information can be associated with any designated bit in Alice’s data set of N bits,

for any N (this was pointed out already in [8]).

So in the case where the bits in Alice’s data set are unbiased and independently

distributed and Alice sends Bob one bit of information, the PR-box correlations can

be exploited to achieve Pk ¼ 1 for all k, i.e., h(Pk) ¼ 0 for all k. The intuition

5A suitably long shared list of random bits can be used by Alice and Bob to pick a different set of

m bits at each round of the guessing game, for some finite set of rounds.
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behind information causality is that this is ‘too good to be true,’ in fact, that the

binary entropy should be bounded: hðPkÞ � 1� 1
N. Putting it differently, when the

bits in Alice’s data set are unbiased and independently distributed, the intuition is

that if the correlations can be exploited to distribute one bit of communicated

information among the N unknown bits in Alice’s data set, the amount of informa-

tion distributed should be no more than 1
N bits, because there can be no information

about the bits in Alice’s data set in the previously established correlations

themselves.

As Pawłowski et al. show, for ‘no signaling’ correlations, Pk ¼ 1
2
ð1þ EnÞ, where

N ¼ 2n. For classical correlations, E ¼ 1
2
, h(Pk) � .811 for n ¼ 1. For quantum

correlations, E ¼ ET ¼ 1ffiffi
2

p , h(Pk) � .600 for n ¼ 1, so Alice and Bob can do better

exploiting quantum correlations than they can if they are restricted to classical

correlations. This is the case for any n, but information causality is always satisfied.

The intriguing result by Pawłowski et al. is that information causality is violated for
some value of n if E > ET. From this perspective, it is misleading to claim that the

‘no signaling’ condition is ‘just information causality for m ¼ 0.’ If Alice

communicates no information to Bob, they have no possibility of exploiting

correlations to increase Bob’s access to Alice’s data set. The condition of informa-

tion causality concerns the extent to which correlations can be exploited to increase

Bob’s access to Alice’s data set, in the sense of improving Bob’s ability to correctly

guess any arbitrary bit in Alice’s data set.

In fact, the term ‘information causality’ is suggestive in the wrong sense.

The principle really has nothing to do with causality and is better understood as

a constraint on the ability of correlations to enhance the information content of
communication in a distributed task. A more appropriate term would be ‘informa-

tional neutrality of correlations,’ and the principle should be formulated as follows:

Correlations are informationally neutral: insofar as they can be exploited to allow Bob to

distribute information communicated by Alice among the bits in an unknown data set held

by Alice in such a way as to increase Bob’s ability to correctly guess an arbitrary bit in the

data set, they cannot increase Bob’s information about the data set by more than the number

of bits communicated by Alice to Bob.

So if Alice has a data set of N uniformly and independently distributed bits and

sends Bob one bit of information, and Bob can exploit previously established

correlations to increase his ability to correctly guess an arbitrary bit in the data

set, his information gain about an arbitrary bit in the data set can be no more than

1/N bits, i.e., the binary entropy of the probability of a correct guess cannot be less

than 1�1/N.
The correlations of a PR-box are not informationally neutral in this sense. While

they are logically admissible, they are ‘too good to be true’ in the way they allow

the solution of the following two distributed tasks:

• The ‘dating game’: Alice and Bob would like to go on a date, but only if they

know that they both like each other. In other words, they would like to compute

a function that takes the value 1 if they both like each other (i.e., if both inputs to

the function are 1), but takes the value 0 if at least one party does not like the
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other (i.e., if the inputs are both 0, or one input is 0 and the other input is 1). Now,

in the real world, there is no way they can do this without revealing information

that they both want to keep private: Alice does not want Bob to know that she

likes him if he does not like her, and similarly for Bob. With a PR-box, they can

compute this function, while keeping private the information they want to keep

private. Alice and Bob input 0 or 1 into their inputs to the PR-box when they are

separate (so neither party sees the other’s input). They then come together and

share the outputs. If the outputs are different, they know that both inputs were 1,

so they happily go on a date. In this case, of course, Alice knows that Bob likes

her, and Bob knows that Alice likes him, but that’s fine. If the outputs are the

same, they know only that either Alice did not like Bob, or that Bob did not like

Alice, or that the dislike was mutual. While Alice can infer that Bob does not like

her if she likes him, this knowledge is private, so Alice avoids any humiliation;

and similarly for Bob.

• ‘One-out-of-two’ oblivious transfer: Alice has a data set consisting of two bits

of information. The constraint on Alice is that she can send Bob one bit of

information. The requirement for Bob is that he uses the one bit of

communicated information to correctly guess whichever bit he chooses in

Alice’s data set, in such a way that Alice is oblivious of his choice. Again,

there is no way to do this in the real world, but if Alice and Bob have access to

a PR-box they can successfully achieve this task. The protocol is the same as the

protocol for the N ¼ 2 case discussed in Sect. 11.2.

The remarkable result of Pawłowski et al. shows that, while quantum corre-

lations are ‘more like’ PR-box correlations than classical correlations, insofar as

they increase the ability of Alice and Bob to perform distributed tasks relative to

classical correlations, they represent the limit of what is possible if correlations are

‘informationally neutral,’ in the sense that correlations established prior to the

choice of a data set can contain no information about such a data set, and hence

should not be able to be exploited to allow a party who has no access to the data set

to correctly guess any arbitrary bit in the set. This considerably extends related

results by van Dam [6, 7], Brassard et al. [5], Linden et al. [9]. Note that there are

other results in which nonlocal boxes are exploited to derive the Tsirelson bound.

See Skrzypczyk et al. [10], in which a dynamics is defined for PR-boxes and the

Tsirelson bound is derived from a condition called ‘nonlocality swapping.’

Pawłowski et al. [1, p. 1103–1104] conclude with the following remarks:

In conclusion, we have identified the principle of Information Causality, which precisely

distinguishes physically realized correlations from nonphysical ones (in the sense

that quantum mechanics cannot reach them). It is phrased in operational terms and in

a theory-independent way and therefore we suggest it is at the same foundational level as

the no-signaling condition itself, of which it is a generalization.

The new principle is respected by all correlations accessible with quantum physics

while it excludes all no-signaling correlations, which violate the quantum Tsirelson bound.

Among the correlations that do not violate that bound it is not known whether Information

Causality singles out exactly those allowed by quantum physics. If it does, the new

principle would acquire even stronger status.
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Classical correlations bounded by E � 1
2
can be associated with a polytope,

where the vertices represent ‘no signaling’ deterministic states. For example, in

the case considered above for a bipartite system with two binary-valued quantities,

the deterministic state in which the values of the two quantities are both zero, for all

four possible combinations, is given by Table 11.2.

There are 16 ‘no signaling’ deterministic states (each of which can be

represented as a product of local states, an Alice deterministic state and a Bob

deterministic state) out of 256 possible deterministic states—the remaining 240

deterministic states allow signaling. The 16-vertex classical polytope is included in

a 24-vertex ‘no signaling’ nonlocal polytope, where the vertices are the 16 ‘no

signaling’ deterministic states and 8 additional PR-box states, represented by the

probabilities in Table 11.1, or probabilities obtained from Table 11.1 by relabeling

the a-inputs, and the A-outputs conditionally on the a-inputs, and the b-inputs, and
the B-outputs conditionally on the b-inputs. Quantum correlations bounded by

E ¼ ET � 1ffiffi
2

p are associated with a spherical convex set with extremal points

between the 16-vertex classical simplex and the 24-vertex ‘no signaling’ nonlocal

polytope.

The open question is whether non-quantum correlations represented by points

outside the quantum convex set but below the Tsirelson bound can also be excluded

by information causality. For a discussion, see Allcock et al. [11].

11.5 Appendix

In [1], the authors prove quite generally that information causality is satisfied for

any ‘no signaling’ theory satisfying three constraints on mutual information (con-

sistency with the classical Shannon mutual information, the data-processing

inequality, and the chain rule), hence for quantum information, which satisfies the

constraints. It follows that information causality is satisfied at and below the

Tsirelson bound.

The following is a simple direct proof (see Sect. 11.3) that if E ¼ ET ¼ 1ffiffi
2

p , then:

hð1
2
ð1þ EnÞ � 1� 1

2n
(11.41)

Table 11.2 A deterministic state

a 0 1

b

0 p(00|00) ¼ 1 p(10|00) ¼ 0 p(00|10) ¼ 1 p(10|10) ¼ 0

p(01|00) ¼ 0 p(11|00) ¼ 0 p(01|10) ¼ 0 p(11|10) ¼ 0

1 p(00|01) ¼ 1 p(10|01) ¼ 0 p(00|11) ¼ 1 p(10|11) ¼ 0

p(01|01) ¼ 0 p(11|01) ¼ 0 p(01|11) ¼ 0 p(11|11) ¼ 0

182 J. Bub



i.e.,

� 1

2
ð1þ EnÞlog 1

2
ð1þ EnÞ

� �
� 1

2
ð1� EnÞlog 1

2
ð1� EnÞ

� �
� 1� 1

2n
(11.42)

After a little algebra, this can be expressed as:

logð1� E2nÞ þ Enlog
1þ En

1� En
� 1

2n�1
(11.43)

Note that the logarithms are to the base 2.

Now, if �1 � x � 1:

logeð1þ xÞ ¼ x� 1

2
x2 þ 1

3
x3 � 1

4
x4 þ � � � (11.44)

loge
1þ x

1� x
¼ 2 xþ x3

3
þ x5

5
� � � þ 1

2m� 1
x2m�1 þ � � �

� �
(11.45)

So

logeð1� E2nÞ þ Enloge
1þ En

1� En
¼ E2n þ 1

6
E4n þ 1

15
E6n � � �

þ 1

mð2m� 1ÞE
2mn þ � � � (11.46)

Substituting E ¼ ET ¼ 1ffiffi
2

p , this becomes:

1

2

� �n

þ 1

6
� 1

2

� �2n

þ 1

15
� 1

2

� �3n

� � � þ 1

mð2m� 1Þ �
1

2

� �mn

þ � � � (11.47)

Since log2 x ¼ log2e·loge x, it follows that logð1� E2nÞ þ Enlog1þEn

1�En, where the

logarithms are to the base 2, can be expressed as the following infinite series:

log2e �
1

2n
þ 1

6
� 1

22n
þ 1

15
� 1

23n
� � � þ 1

mð2m� 1Þ �
1

2mn
þ � � �

� �
(11.48)

so the inequality (11.43) we are required to prove becomes:

1

2n
þ 1

6
� 1

22n
þ 1

15
� 1

23n
� � � þ 1

mð2m� 1Þ �
1

2mn
þ � � � � loge2 �

1

2n�1
(11.49)

11 Why the Tsirelson Bound? 183



or

1

2
þ 1

6
� 1

2nþ1
þ 1

15
� 1

22nþ1
� � � þ 1

mð2m� 1Þ �
1

2ðm�1Þnþ1
þ � � � � loge2 � :693147

(11.50)

This is clearly the case. The largest value of the series is obtained for n ¼ 1,

when the first term is .5. The remaining terms affect only the second and later

decimal places.

Alternatively, from (11.44) we have:

loge2 ¼ 1� 1

2
þ 1

3
� 1

4
þ � � � (11.51)

so, subtracting the series on the left hand side of the inequality (11.50) from the

series for loge 2, what has to be proved is that, for any n:

1

3
� 1

6
� 1

2nþ1

� �
� 1

4
þ 1

15
� 1

22nþ1

� �
þ 1

5
� 1

28
� 1

23nþ1

� �
� 1

6
þ 1

45
� 1

24nþ1

� �
þ � � � � 0

(11.52)

This is obvious by inspection, since each negative term in parenthesis is smaller

than its positive predecessor, for any n.
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Chapter 12

Three Attempts at Two Axioms for Quantum

Mechanics

Daniel Rohrlich

Abstract The axioms of nonrelativistic quantum mechanics lack clear physical

meaning. In particular, they say nothing about nonlocality. Yet quantum mechanics

is not only nonlocal, it is twice nonlocal: there are nonlocal quantum correlations,

and there is the Aharonov-Bohm effect, which implies that an electric or magnetic

field heremay act on an electron there. Can we invert the logical hierarchy? That is,
can we adopt nonlocality as an axiom for quantum mechanics and derive quantum
mechanics from this axiom and an additional axiom of causality? Three versions of

these two axioms lead to three different theories, characterized by “maximal

nonlocal correlations”, “jamming” and “modular energy”. Where is quantum

mechanics in these theories?

12.1 Introduction

Among Itamar Pitowsky’s many admirable qualities, I admired most his capacity

for thoroughly exploring incompatible points of view, approaches and theoretical

frameworks. We tend to ignore approaches that are incompatible with our own. It is

a natural tendency. It takes work to overcome it. Itamar worked hard to understand

all points of view, which led to another of his admirable qualities, his comprehen-

sive knowledge. He was a true philosopher – love of knowledge and understanding
animated him. As a result, whether in a seminar on campus or at a demonstration on

a street corner, he most often understood all the points of view better than anyone

else did. The Talmud expresses this capacity in a adage,

– “scholars bring peace to the world” – which

Rabbi Avraham Kook (1865–1935) explained as follows:
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Some people mistakenly believe that world peace demands uniformity of views and

practices. When they see scholars studying philosophy and Torah and arriving at a plurality

of views and approaches, they see only controversy and discord. But – on the contrary – true

peace comes to the world only by virtue of its plurality. The plurality of peace means

appreciating each view and approach and seeing how each has its own place, consistent

with its value, context and content.

(From ; translations from Hebrew are mine.) One theoretical

framework that Itamar explored [1] is the one that I have the honor to present here. •

Quantum mechanics doesn’t supply its own interpretation. The numerous com-

peting interpretations of quantum mechanics testify to the fact that quantum

mechanics doesn’t supply its own interpretation. About one of these interpretations,

due to Everett [2] and Wheeler [3], Bryce DeWitt said the following:

Everett took the quantum theory the way it was and didn’t impose anything on it from the

outside. No classical realm. Does the theory produce its own interpretation? If so, how?

And he, in my view he’s the only one who’s answered properly in the affirmative that it

provides its own interpretation [4].

Yet, more than half a century after Everett’s bold and provocative paper, the

Everett-Wheeler interpretation remains exactly that – one more competing inter-

pretation, with no consensus in sight. This irony, as well, testifies to the fact that

quantum mechanics doesn’t supply its own interpretation. What would it take to

show that, on the contrary, quantum mechanics does supply its own interpretation?

It would take an interpretation so natural and satisfactory as to induce consensus.

But how could such an interpretation ever spring from the opaque axioms of

quantum mechanics? If we seek a theory that has clear, unambiguous physical

meaning, let us derive it from axioms that have clear, unambiguous physical

meaning. This paper argues that the way towards a natural and satisfactory inter-

pretation of quantum mechanics passes through new and physically meaningful

axioms for the theory, and reports attempts to define such axioms.

The axioms of quantum mechanics are notoriously opaque. Without trying or

needing to be comprehensive, let us mention a few of them. “Any possible physical

state corresponds to a ray in a Hilbert space.” “Physical observables correspond to

Hermitian operators.” Do these axioms tell us something about the physical world?

Or do they merely list mathematical structures useful for describing the world? If

they merely list useful mathematical structures, what is it about the underlying

physics that makes these structures useful? What we want, after all, is the physics.

“If P(a, c) is the probability that a measurement of a physical observable A,
corresponding to a Hermitian operator Â, on a system in the normalized state

|c>, yields a, then P(a, c) ¼ <c| Pa |c>, where Pa projects onto the subspace

of eigenstates of Â having eigenvalue a.” This axiom, too, is opaque; it offers no

hint as to whether the probability P(a, c) is intrinsic or derives from an underlying

determinism. It is more of an algorithm than an axiom.

Long ago, Yakir Aharonov [5] drew an analogy that is at once amusing and

penetrating. The special theory of relativity, we know, follows elegantly from two

axioms: first, the laws of physics are the same for observers in all inertial reference

frames; second, the speed of light is a constant of nature. These axioms have clear
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physical meanings: the first specifies a fundamental space-time symmetry and the

second specifies a physical constant. Suppose we had, instead of these two standard

axioms, three “nonstandard” axioms: first, physical objects contract in the direction

of their motion (FitzGerald contraction); second, this contraction and a “local time”

(lacking clear physical significance) combine in “Lorentz transformations” that

form a group; third, simultaneity is subjective. Even supposing we could deduce

the special theory of relativity from these three axioms, would there be consensus

about its interpretation? What kind of consensus could there be, as long as we were
stuck with the wrong axioms? Analogously, perhaps consensus about how to

interpret quantummechanics is elusive because we are stuck with the wrong axioms

for the theory. Perhaps we have grasped quantum mechanics by the tail, or by the

hind legs, instead of by the horns.

If this analogy seems strained, let us note that all three of these “nonstandard”

axioms had proponents (not including A. Einstein) already in 1905. Moreover, as

late as 1909, H. Poincaré delivered a series of lectures in G€ottingen, culminating in

a lecture on “La mécanique nouvelle”. At the basis of Poincaré’s “new mechanics”

were three axioms, the third being the FitzGerald contraction: “One needs to make

still a third hypothesis, much more surprising, much more difficult to accept, one

which is of much hindrance to what we are currently used to. A body in translational

motion suffers a deformation in the direction in which it is displaced.” [6] In

Poincaré’s new mechanics, the FitzGerald contraction was an axiom in itself, not

a consequence of other axioms, hence Poincaré found it “much more difficult to

accept” than we do. Well, aren’t all the axioms of quantum mechanics surprising,

difficult to accept, and of much hindrance to what we are used to?

We can take the analogy further [5]. The logical structure of the special theory of

relativity is exemplary. From its two axioms we can deduce all the kinematics of the

theory, and with scarcely more input we can deduce all the dynamics as well. How

can two axioms be so efficient? If we look at the axioms with a Newtonian mindset,

we see clearly that the two axioms contradict each other. Well, of course they don’t

contradict each other. But they come so close to contradicting each other, that a

unique mechanics reconciles them: Einstein’s special theory of relativity. Now in

the quantum world, as well, we have two physical principles that come close to

contradicting each other. One is the principle of causality: relativistic causality, also
called “no signalling”, is the principle that no signal can travel faster than light. The

other principle is nonlocality. Quantum mechanics is nonlocal, indeed twice

nonlocal: it is nonlocal in two inequivalent ways. There is the nonlocality of the

Aharonov-Bohm [7] and related [8] effects, and there is the nonlocality implicit in

quantum correlations that violate Bell’s [9] inequality. Let us briefly comment on

each of these.

One often reads that the Aharonov-Bohm effect proves that the scalar and vector

potentials of electromagnetism have a degree of reality in quantum physics that

they do not have in classical physics. This distinction is valid, but it can mislead us

into thinking that the Aharonov-Bohm effect is local, because an electron

diffracting around a shielded solenoid or capacitor interacts locally with the vector

potential of the magnetic field in the solenoid, or with the scalar potential of the
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electric field in the capacitor. However, there is no way to measure these potentials.

What is measurable are the magnetic and electric fields. The dependence of the

electron diffraction pattern on these fields, i.e. the Aharonov-Bohm effect, must be

nonlocal, because the electron does not pass through them. Yet the fields are

produced locally; so one might try (i.e. by adjusting the capacitor or the current

in the solenoid) to send a superluminal signal that would show up in the electron

diffraction pattern. It is indeed possible to send signals that show up in the

interference pattern, but they are never superluminal.

Bell’s inequality implies that quantum correlations can be nonlocal in the

following sense. Let Alice and Bob, shown in Fig. 12.1, be two experimental

physicists, in their respective labs. Note that each is equipped with a black box.

From spacelike-separated measurements on their respective black boxes, Alice and

Bob obtain correlations that violate Bell’s inequality. They may suppose that the

correlations already existed (as local “plans” or programs) in the black boxes before

their measurements, but this explanation is what Bell ruled out. Another explana-

tion – that the black boxes send superluminal signals to each other – might suggest

to them that they, too, could send superluminal signals to each other. But they

cannot [10]. Quantum correlations can violate Bell’s inequality but they are useless

for signalling.

The coexistence of nonlocality and causality in the Aharonov-Bohm effect and

in nonlocal quantum correlations is remarkable. If there are nonlocal effects, what

stops us from signalling with them? Quantum mechanics must be an extraordinary

theory if it can do this trick – if it can make nonlocality and causality coexist.

Shimony [11, 12] speculated that quantum mechanics might be the only theory that

can do so, i.e. that quantum mechanics might follow uniquely from the two axioms

of nonlocality and causality. Aharonov [5] even suggested a part of the logical

structure. If we look at the details of just how nonlocality coexists with causality,

we discover they always involve quantum uncertainty. Indeed, quantum mechanics

has to be a probabilistic theory, because if nonlocal influences were certain, how

could they not violate causality? Aharonov’s suggestion thus inverts the

Bob

Alice

Fig. 12.1 Alice and Bob (drawn by Tom Oreb # Walt Disney Co) with their respective black

boxes
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conventional logical hierarchy of quantum mechanics: instead of making probabil-

ity an axiom and deriving nonlocality as a quantum effect, he makes nonlocality an

axiom and derives probability (uncertainty) as a quantum effect.

Inspired by Aharonov’s suggestion, I will now describe three attempts [13–15]

to define more precisely the axioms of “causality” and “nonlocality” and to derive

quantum mechanics from them. The three attempts fall under the headings “Maxi-

mally nonlocal correlations” (or “PR boxes”), “Jamming”, and “Modular energy”.

12.2 Maximally Nonlocal Correlations

Our goal is to derive quantum mechanics, but we have still to decide whether we

should try to derive nonrelativistic or relativistic quantum mechanics. We have two

reasons to decide for nonrelativistic quantum mechanics. First, it is a simpler theory

with a superior formalism. Relativistic quantum mechanics naturally allows crea-

tion of particle-antiparticle pairs; it is more complicated in that the number of

particles is not fixed. Even if we artificially fix the number of particles, the

formalism of relativistic quantum mechanics is not satisfactory: not all of its

Hermitian operators correspond to physical observables [16]. That is, not all of its

Hermitian operators are measurable in practice. Relativistic causality imposes

constraints on what is measurable in practice. However, these constraints do not

apply to the Hermitian operators of nonrelativistic quantum mechanics; they are all

measurable [17]. If our goal is to find the right axioms for quantum mechanics, we

have a better chance of finding them for a theory that already has a satisfactory

formalism. It is also plausible that if we find the right axioms for the nonrelativistic

theory, we will be in a better position to find the right axioms for the relativistic

theory, axioms that do not lead to unmeasurable Hermitian operators.

The second reason to decide for nonrelativistic quantum mechanics has to do

with the axiom of nonrelativistic causality. According to this axiom, no signal can

travel faster than the speed of light, c. In the nonrelativistic limit, c is infinite, so the
axiom of relativistic causality appears, initially, to become vacuous. But closer

inspection reveals that the axiom of relativistic causality is actually stronger in this
limit: it tells us that quantum correlations cannot be used to send signals at any
speed. How so? Suppose that the quantum correlations measured by Alice and Bob

could be used to send a signal. These correlations do not depend on whether the

interval between Alice’s and Bob’s respective measurements is spacelike or

timelike; indeed, nothing in nonrelativistic quantum mechanics can distinguish

between spacelike and timelike intervals, because there is no c. Hence if quantum
correlations could be used to send any signal, they could be used to send a

superluminal signal. Hence they cannot be used to send any signal. If our choice

of an axiom of nonlocality has to do with nonlocal correlations, the axiom of

causality implies that quantum correlations are useless for sending signals at any

speed. We find ourselves with two axioms with clear physical meaning:
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1. No quantum correlations can be used to send signals.

2. Some quantum correlations are nonlocal.

The second axiom means that some quantum correlations violate some version

of Bell’s inequality. The most suitable version of Bell’s inequality for the case of

bipartite correlations (measured by Alice and Bob) is due to Clauser, Horne,

Shimony and Holt (CHSH) [18]. Let us assume that Alice and Bob make a series

of joint measurements on their respective boxes, in which Alice measures either

A or A0 and Bob measures either B or B0 in each joint measurement, where A, A0, B
and B0 are physical observables. In each joint measurement they must each choose

which observable to measure – they can never measure both – and the results of

their measurements are always 1 or �1. From the results of their joint

measurements, they can compute four types of correlations: C(A, B), C(A0, B),
C(A, B0) and C(A0, B0), where C(A, B) is the correlation between the results of their

joint measurements when Alice chooses to measure A and Bob chooses to measure

B, and so on. The CHSH inequality states that if these correlations already existed

(as local plans or programs) in the black boxes before their measurements, then a

certain combination of them is bounded in absolute magnitude:

C A;Bð Þ þ C A;B0ð Þ þ C A0;Bð Þ � C A0;B0ð Þj j � 2: (12.1)

So if the correlations that Alice and Bob measure satisfy this inequality, they are

local correlations. Conversely, if the correlations that they measure do not satisfy

the inequality, they are nonlocal correlations. Axiom 2 above, the nonlocality

axiom, states that at least for some physical variables A, A0, B and B0 and some

preparation of their black boxes, the correlations they measure violate the CHSH

inequality.

Besides the bound 2 of the CHSH inequality, two other numbers, 2√2 and 4,

are important bounds for the left-hand side of Eq. 12.1. If the correlations C(A,B),
C(A0, B), C(A, B0) and C(A0, B0) were completely independent, the absolute value on

the left-hand side could be as large as 4. But if they are quantum correlations, the

absolute value on the left-hand side can only be as large as “Tsirelson’s bound”

[19], which is 2√2. It can be larger than 2 just as 2√2 is larger than 2, but it cannot be
larger than 2√2. Now the fact that quantum correlations cannot violate Tsirelson’s

bound is curious. If they are strong enough to violate the CHSH inequality, why

aren’t they strong enough to violate Tsirelson’s bound?

A plausible answer to this question, in the spirit of Aharonov’s suggestion, is that

if quantum correlations were any stronger, they would violate causality as well as

Tsirelson’s bound. Indeed, if quantum mechanics follows from our two axioms,

then so does Tsirelson’s bound – a theorem of quantum mechanics. Conversely, if

Tsirelson’s bound does not follow from our two axioms, then certainly quantum

mechanics does not. So if we can find “maximally nonlocal” correlation functions

Cmax(A, B), Cmax(A
0, B), Cmax(A, B

0) and Cmax(A
0, B0) that obey the two axioms but

violate Tsirelson’s bound, we must conclude that quantum mechanics does not

follow from our two axioms.
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It is straightforward to define such correlations. We do it in two steps:

1. In any measurement of A, A0, B or B0, let the results 1 and �1 be equally likely.

2. Let Cmax(A ,B) ¼ Cmax(A, B
0) ¼ Cmax(A

0, B) ¼ 1 ¼ �Cmax(A
0, B0).

The first step insures that whatever Alice chooses to measure will not change the

probabilities of�1 as results of Bob’s measurement – whether he measures B or B0 –
and vice versa, because in any case the probabilities of all the results equal 1/2.

Hence Alice cannot send a signal to Bob by her choice of what to measure, and vice

versa. These correlations satisfy the axiom of causality. At the same time, they are

so strong – joint measurements of A and B, of A0 and B, and of A and B0 are perfectly
correlated, while joint measurements of A0 and B0 are perfectly anticorrelated – that
the left-hand side of Eq. 12.1 violates the CHSH inequality and Tsirelson’s bound

maximally.

Our attempt to derive nonrelativistic quantum mechanics from two axioms is

apparently a failure, but not necessarily a total failure. We may still hope that, with

an additional axiom, we will be able to derive it. Indeed, van Dam [20] showed that

in a world containing maximally nonlocal correlations, an important class of

communication tasks would become dramatically simpler. Brassard et al. [21]

extended this result to nonlocal correlations that are not maximal, indeed not

much stronger than nonlocal quantum correlations. More recently, Pawłowski

et al. [22] have defined an axiom of “information causality” and shown that any

nonlocal correlation violating Tsirelson’s bound is incompatible with this axiom.

Their results are striking, but the physical meaning of “information causality” is

perhaps not sufficiently clear. Maximal nonlocal correlations have even inspired

experimental work [23].

12.3 Jamming

There is action at a distance in the Aharonov-Bohm effect. A solenoid acts at a

distance on a beam of electrons; the interference pattern of the electrons depends on

how the experimental physicist prepares the solenoid. By contrast, there is no action

at a distance in quantum correlations. If there were, Alice and Bob could use them

to send signals to each other; but in quantum correlations there is only “passion at a

distance”, as Shimony [11] aptly put it. If we define nonlocality as action at a

distance, can we derive quantum mechanics (or some part of it) from nonlocality

and causality? We shall see that “jamming”, a presumably non-quantum form of

action at a distance, could coexist with causality. We shall also discuss an axiom for

“modular energy”, a quantum form of action at a distance.

Having redefined the axiom of nonlocality, we must now redefine also the axiom

of causality. We cannot say, “No action at a distance can be used to send signals,”

when action at distance is itself a signal. We can only say that the signal cannot be

outside the forward light cone of the act of sending it. So we are back to relativistic

causality. Our two axioms are then
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1. There is no superluminal signalling.

2. There is action at a distance.

In the Aharonov-Bohm effect, the act of preparing the solenoid or capacitor pro-

duces electromagnetic radiation, which cannot have an effect outside the forward

light cone of the preparation. If the effect shows up in the interference pattern,

it is always within the forward light cone of the preparation and there is no

superluminal signalling.

We return to Alice and Bob, and welcome their friend, Jim the Jammer

(in Fig. 12.2). Jim has a large black box of his own, which acts nonlocally on

their boxes. If Jim presses the button on his box, it turns their nonlocal correlations

into local correlations, i.e. into correlations that obey the CHSH inequality. The

probability of each result 1 or �1 does not change – it remains 1/2 – but the

correlations change. Let’s assume that their results become completely uncorre-

lated. So here we have Jim acting at a distance to change the correlations between

the black boxes of Alice and Bob. Does this action at a distance obey the

no-signalling constraint? Clearly, Jim cannot send a signal to either Alice or Bob,
because his action does not change the probabilities of 1 and �1 as results of their

measurements. But can Jim send a signal to Alice and Bob? Indeed he can, because
when Alice and Bob compare their results and compute correlations, they immedi-

ately identify their correlations as local or nonlocal. If Alice, Bob and Jim have

arranged in advance that local correlations mean “Yes”, and nonlocal correlations

mean “No” (in some context), then Jim can signal “Yes” or “No” by choosing to

jam, or not to jam, their correlations.

Figures 12.3a and b are spacetime diagrams of jamming (with time on the

vertical axis). For simplicity, we reduce jamming to three spacetime events. At j,
Jim may press the button on his black box. At a and b, Alice and Bob make their

respective measurements. Now, Alice and Bob can compare their results anywhere,

and only, in the overlap of their future light cones. Hence, they can receive Jim’s

signal anywhere, and only, in the overlap of their future light cones. However, if

this overlap does not lie entirely within the future light cone of j, Jim’s signal can be

superluminal. So for jamming to be consistent with the no-signalling axiom,

Bob

Alice

 

Jim the Jammer

Fig. 12.2 Alice and Bob, with Jim the Jammer
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jamming must work only when the overlap of the future light cones of a and b lies

within the future light cone of j.
Hence in Fig. 12.3a Jim can jam their correlations, in Fig 12.3b he cannot. Then

jamming is consistent with our two axioms.

On the face of it, at least, there is nothing like jamming in quantum mechanics.

If not, then we have once again shown that causality and nonlocality – now in the

guise of action at a distance – do not imply quantum mechanics as a unique theory:

at least one other theory, however rudimentary, is consistent with these two axioms.

Another failure!

12.4 Modular Energy

Twice, starting with a general axiom of nonlocality, we have failed to derive

quantum mechanics. What if we start with an axiom of nonlocality that is tailored

to quantum mechanics? Can we then derive quantum mechanics (or part of it)?

If we succeed, our success will be less impressive because of the initial tailoring;

but at least we may succeed. I will now define an axiom of nonlocality that is,

in fact, a dynamical form of quantum nonlocality [24]. The axiom of causality,

as well, will be tailored to nonrelativistic quantum mechanics.

We begin with the axiom of causality. The speed of light has no special status in

nonrelativistic quantum mechanics. For nonlocal correlations, this fact implies that

correlations are useless for any kind of signalling, not just superluminal signalling.

Our first try at an axiom of causality was, therefore, that no correlations can be used

for signalling. But here we will define nonlocal dynamics instead of nonlocal

correlations. Our axiom cannot be that no dynamics can be used for signalling;

causal relations, including signalling, are inherent in dynamics. If Alice sends

a particle to Bob, the particle carries a signal. A more plausible axiom of causality

a
b ja b

j

a b

Fig. 12.3 The overlap of the future light cones of a and b either (a) lies or (b) does not lie entirely
within the future light cone of j
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is that signalling is possible only via a material interaction, i.e. only when a particle

or other object connects the cause and effect. If Alice’s particle mysteriously

disappears and then reappears in Bob’s lab, that particle cannot carry a signal,

according to this axiom of causality.

We now define an axiom of nonlocality for a specific physical setting that

includes Alice and Bob. Figure 12.4 shows a shaft with a piston in it at Bob’s

end. The piston can slide without friction in the shaft. Attached to the outer end of

the piston is a box with two open sides. Bob throws a ball that ricochets through the

box in two elastic collisions, pushing the (stationary) piston in a short distance.

Alice’s end of the shaft is closed, yet she can release a particle at her end. Our axiom

of nonlocality states that the ball and particle – if Alice releases a particle –

exchange energy nonlocally in the time between the two collisions. Energy is

conserved, but it can mysteriously disappear from Alice’s lab and reappear in

Bob’s, even before the particle reaches the piston.

On the face of it, this axiom contradicts the causality axiom. If Alice chooses to

release a particle into the shaft, Bob will detect a change in the energy of the ball; if

she chooses not to, he will detect no change. Thus Alice can signal to Bob via her

choice whether or not to release a particle. In the spirit of Aharonov’s suggestion,

we can infer that Bob’s measurements of energy must be uncertain. Even so, there

seems to be no way to reconcile the nonlocality axiom with the causality axiom. Let

the energies EA and EB of the particle and the ball, respectively, be distributed

according to probability distributions, so that the energy of each is uncertain. If the

particle enters the shaft, we expect the probability distribution of EB to change. If

so, Alice and Bob can still use nonlocal energy exchange to send a signal – if not in

one run of the experiment, then in many simultaneous runs on many copies of the

experiment: Alice’s signal will emerge from the statistics of Bob’s measurements.

Yet mathematical analysis [24] reveals an additional possibility. Let E0 be

a parameter with units of energy. For any E0 and for any energy E, we define an

associated quantity Emod ¼ Emodulo E0 (also written Emod ¼ E mod E0), which is

the energy Eminus a multiple of E0 such that 0 � Emod < E0. We call this quantity

modular energy. If the particle and the ball exchange modular energy, they

exchange at most E0 in energy. Since the total energy EA þ EB is conserved in

any exchange, so is the total modular energy EA þ EB mod E0, for any E0. Now if,

particle

ball

Fig. 12.4 Alice may release a particle at her end while Bob throws a ball at his end

196 D. Rohrlich



for any E0, the distribution of the modular energy EB mod E0 of the ball is flat – i.e.

if all values of EBmod E0 between 0 and E0 are equally likely – then an exchange of

energy between the particle and the ball will not change the distribution of EB mod

E0, although it will, in general, change the distribution of EA mod E0. This one-way

effect occurs if and only if the distribution of EB mod E0 is flat. But if the

distribution of EB mod E0 is flat, then the uncertainty in EB is at least E0:

DEB � E0:

We can say that a nonlocal exchange of energy of up to E0 between the particle

and the ball is consistent with causality, because Bob cannot detect the exchange

when DEB � E0.

For how long must the uncertainty DEB be at least E0? We may reason as

follows: DEB must be at least E0 for the whole time T it takes Alice’s particle to

reach the piston. This reasoning suggests an inverse relationship between the time T
and DEB, since the more energy a particle has, the less time it takes to reach the

piston, and the more energy it transfers to the ball. Indeed, let L be the distance from

Alice’s end of the shaft to the piston and let mA, mB and pA, pB be the masses and

momenta of the particle and the ball, respectively. In the limit of mA, mB negligibly

small compared to the mass M of the piston, a straightforward classical calculation

shows that EB changes by 4pA pB/M, if and only if Alice releases the particle. Bob

can detect a nonlocal transfer of energy only if DEB < 4pA pB/M. He cannot detect

it if DEB > 4pA pB/M. Since pA ¼ mAL/T, we can eliminate pA to obtain

DEB > 4mALpB=MT (12.2)

as the condition for Bob not to detect the nonlocal transfer of energy.

Equation 12.2 looks like an uncertainty relation for DEB and T. But T in Eq. 12.2

is the time Alice’s particle takes to reach the piston; it is not the minimum time

Dt that Bob takes to measure EB with uncertainty DEB. Moreover, Bob’s measure-

ment of EB is a local measurement. The uncertainty in a local measurement depends

only on local variables. The axiom of nonlocality implies that EB, but not DEB,

depends nonlocally on what Alice does. In particular, DEB cannot depend on T if T
is not a local variable. If Alice releases a particle with momentum pA, then EB

changes by 4pA pB/M (according to the classical calculation), but T depends on L
and mA as well as pA. Indeed, for a given change in EB, the time Tmay be arbitrarily

large. So, on the one hand, DEB cannot depend on T. On the other hand, E0 – which

is the maximum nonlocal energy transfer – can certainly depend on T. Such
a dependence is quite consistent with the axiom of nonlocality. In brief, what

Eq. 12.2 tells us is not how Dt depends on DEB, but rather how E0 depends on T:
Eq. 12.2 tells us that E0 is inversely related to T.

And now, from this inverse relation, we can infer how nonlocal energy exchange

could be consistent with the axiom of causality. Let E0 ¼ k/T, for some constant k,
while Dt is the time it takes to measure EB with uncertainty DEB. If the

inequality Dt � k/DEB holds, then DEB � E0 implies Dt � T while Dt < T implies
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DEB > E0, and Bob will never detect an exchange of energy before the particle

reaches him. Conversely, if Dt � k/DEB does not hold, we have Dt DEB < E0T and

Bob can detect the nonlocal exchange of energy by measuring EB with uncertainty

DEB < E0 in a time Dt < T. The axiom of causality therefore demands the inequal-

ity Dt � k/DEB; and for this axiom to apply consistently to nonlocal exchange of

energy, k must be a universal constant: Alice and Bob must not be able to

circumvent the inequality Dt � k/DEB by varying parameters of their experiment

so as to vary k. Thus k is a universal constant, which we can identify with Planck’s

constant h.
As noted, in quantum mechanics there is nonlocal exchange of energy.

What allows quantum mechanics and causality to coexist, despite this nonlocal

exchange, is the uncertainty relation for energy E and time t [24]. We have inverted

the logical hierarchy, and from axioms of causality and nonlocality, we have

derived a principle of quantum theory: the uncertainty relation for energy

and time, DE Dt � h.
•

Let us conclude by reviewing our progress towards a derivation of nonrelativis-

tic quantum mechanics from the axioms of causality and nonlocality. All three

attempts presented here fall short of a complete derivation. Yet there is reason for

optimism. Maximal nonlocal correlations outperform quantum mechanics, but if

we take a closer look, we find something quite unreasonable about them. They are

so strongly correlated that, for example, Alice can actually determine the product of
measurements of B and B0 by choosing whether to measure A, or A0; for if she
measures A, then B and B0 are perfectly correlated, while if she measures A0, then B
and B0 are perfectly anticorrelated. Thus Alice could superluminally signal to Bob,

if it were not for the (tacit) assumption that Bob cannot measure both B and B0 but
only one of them, as in quantum mechanics. In quantum mechanics, with its

uncertainty relations, this assumption is natural. But in a theory with maximally

nonlocal correlations, it is quite unnatural. Bob can measure B directly and also

infer B0 indirectly from Alice’s measurement. It is true that this method of measur-

ing B and B0 does not allow Alice to send a superluminal signal to Bob, but it defeats

any uncertainty relation for B and B0. We may still hope, therefore, that if we

consider nonlocal correlations as subject to the logic of uncertainty relations, we

will arrive uniquely at quantum correlations.

As for jamming, it is notable that the authors of Ref. [14] never proved the

incompatibility of jamming with quantum mechanics. It just seemed obvious to

them. Yet it is possible to devise a quantum thought-experiment that is equivalent to

jamming. Let Alice, Bob and Jim share triplets in the GHZ state [25]:

CGHZj i ¼ 1ffiffiffi
2

p "j iAlice "j iBob "j iJim � #j iAlice #j iBob #j iJim
� �

; (12.3)

Equation 12.3 does not show the spatial wave functions of Alice, Bob and Jim,

but it shows the combined state of an ensemble of three spin-1/2 atoms distributed
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among them. Now suppose Jim measures either the z-component or the x-component

of the spin of his atom. If he measures the z-component of the spin, he leaves

the atoms of Alice and Bob in a mixture of product states; if he measures the

x-component of the spin, he leaves their atoms in a mixture of entangled states. Jim

announces the results of his measurements, but he does not announce what he
measured; nevertheless Alice and Bob can deduce what he measured if they

compare the results of their measurements. They can do so, however, only in the

future light cone of his announcement (which we can identify with the future light

cone of j in Fig. 12.3) because they need the results of Jim’s measurements, as well,

to deduce what he measured. This is jamming, within quantum mechanics! Hence

the question of whether quantum mechanics is the unique theory reconciling

causality and action at a distance remains open after all.

These optimistic thoughts arose in the course of writing this paper, and I hope to

discuss them further in a separate work.
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Chapter 13

Generalized Probability Measures

and the Framework of Effects

William Demopoulos

Abstract This paper is dedicated to the memory of Itamar Pitowsky. It develops

the idea that the generalized probability measures of quantum mechanics are the

probabilities of “effects.” As explained below, effects are included among mea-

surement outcomes but are not exhausted by them. They also differ in key respects

from propositions which attribute dynamical properties to the systems that are

probed by measurements. These differences are elaborated, and an interpretation

of the implicit probability theory of quantum mechanics in terms of effects is

outlined. A central feature of this interpretation is that it supports a form of realism

that accommodates the no hidden variable theorem of Kochen and Specker, and it

does so without appealing to any notion of contextuality.

Generalized measures were introduced by Gleason [2] in the context of his charac-

terization of the measures definable on the closed linear subspaces of Hilbert space.

The analysis of the three-dimensional case proved to be fundamental. For this case,

a generalized measure is a map f from the closed linear subspaces of H3 to the

closed unit interval satisfying the conditions

faþ fb � 1
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for a ⊥ b, and

faþ fbþ fc ¼ 1

for any three rays a, b, c which are mutually orthogonal. A generalized two-valued
measure takes values in {0, 1}.1 The interpretation of such measures as probability
measures arises when the rays are taken to represent propositions; and a generalized
two-valued probability measure is a generalized truth-value assignment when 0 and
1 are interpreted as Truth and Falsity. It is evident that generalized two-valued

measures and generalized truth-value assignments are formally interchangeable

with one another, whatever the conceptual differences between probability

measures and truth-value assignments.

The focus of this paper is a particular feature of the statistical behavior of

elementary particles, simple composite systems of them and the quantum probabil-

ity theory to which their behavior gives rise. This feature was given its canonical

formulation by Kochen and Specker [4] in the course of an investigation of the

problem of hidden variables. It is captured by their principal theorem (Kochen and

Specker [4], Theorem 1) and the discussion of it in Section IV of their paper; and it

consists in the fact that there exist simple systems of particles and finite

combinations of propositions “belonging to them” for which no generalized two-

valued measures are possible, where a proposition belongs to a particle if its

constituent dynamical property is a possible property of the particle. The assump-

tion of such propositions expresses the idea that the systems which they describe are

characterizable by systems of properties which are uncovered when the systems are

probed. Hence the notion of a proposition belonging to a particle supports the idea

that measurements reveal a particle’s dynamical properties. I will argue that the

significance of the existence of systems of the sort that underlie the Kochen-

Specker construction is to show that the generalized probability measures that

arise in quantum mechanics are not naturally interpretable as the probabilities of

propositions belonging to particles. (The notion of a proposition belonging a

particle is developed further below in conjunction with the explanation of the

notion of a natural interpretation.) The idea I will develop is that quantum

probabilities are probabilities of “effects,” probabilities of the traces of particle-

interactions with objects and processes that are epistemically accessible to us in a

sense which I will explain. I hope to make it clear that such a view is not committed

to anti-realism about the micro-world and that it illuminates at least one otherwise

paradoxical feature of quantum mechanics.

I should emphasize that the focus of this paper is not the notion of an effect as it

pertains to the study of effect algebras, but the question whether the probabilities

that arise in quantum mechanics should be understood to apply to propositions

which express the properties of particles or whether they should be understood to

1 These definitions are taken from Pitowsky [3].
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apply to propositions which express the effects of particles. The issue I intend to

address is not whether the probabilities of quantum mechanics concern propositions

in any sense, but whether they concern propositions belonging to particles. I will

argue that they do not, and I will explain the kind of proposition with which they are

concerned. The terminology of effects offers a simple mnemonic device with which

to mark this different kind of proposition.

It is true that classical systems are themselves composed of particles whose

quantum probability measures have the peculiarities just noted. And it is also true

that quantum mechanics is essential to the correct theoretical description of classi-

cal systems. However, I wish to defer the questions ‘How should classically

described systems be subsumed under quantum mechanics?’ and ‘How do classi-

cally described systems enter into the measurement process?’ A burden of the

discussion to follow is to clarify the view that there is a basic conceptual difference

between classical states and quantum states, between what is represented by a point

in phase space and a vector in Hilbert space. The premature consideration of the

measurement problem and the quantum theory of classically described systems has

a tendency to mask this conceptual difference. For these and other reasons, the

conceptual issues raised by these questions are best taken up after the impossibility

of two-valued measures has been considered. Although I will not argue directly for

this thesis here, the discussion which follows is intended to support the view that the

c–function represents a state of belief about a system rather than its physical state.2

The discussion of measurement and the issues it raises can be deferred, as can the

discussion of the relationship between classical and quantum states, since even if

quantum mechanics is a theory of the fundamental constituents of matter, the

evidence for the theory can perfectly well come from our experience with things

for which we do not possess a quantum-theoretical account. And in fact the

phenomena relevant to the present discussion were either known prior to the

theory’s discovery and elaboration or are easily elicited with only a very modest

contribution from developments that the theory initiated. Our problem is how to

understand the real possibility of physical systems for which there are finitely many

direction-dependent propositions,

ðPa
�Þ The square of the spin in the direction a 6¼ 0;

which are so related that there is no generalized two-valued measure definable on

them. These direction-dependent propositions are arranged in families of Boolean

algebras of which the largest families are generated by three atomic propositions,

each associated with one of three mutually orthogonal directions x, y, z of ordinary
physical space. (The propositions Pa* are “co-atoms,” the Boolean complements of

algebraically atomic propositions.) To each such family there corresponds an

operational procedure which is interpretable as offering a means of detecting

2 This thesis has been advanced and defended by Itamar in Pitowsky [5, 6]. See also Fuchs [7] for a

recent statement and defense from a different “Quantum Bayesian” perspective.
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which of the propositions of the Boolean algebra are true and which are false. This

is not merely a theoretical possibility, but one that comes close to being actually

realizable in the laboratory. Kochen and Specker [4] show this for an atom of

orthohelium whose total angular momentum is given by its spin. The atom is a spin-1

system whose spin components in three mutually orthogonal directions of space are

not commeasurable, but whose square of the spin components in any three mutually

orthogonal directions are commeasurable.

The canonical operational procedure for the measurement of a component of

spin is a Stern-Gerlach magnet which splits a beam of spin-1 systems into three

groups, each corresponding to one of the values �1, 0 or +1. The ideal operational

procedure for the direct measurement of a square of the spin component is wholly

different from that used for a measurement of a component of spin; it must employ

an electric rather than a magnetic field, since it is only in the absence of a magnetic

field that the Hamiltonian of the system preserves certain of its essential symmetry

properties. Such a direct measurement of a square of the spin component

distinguishes spin values of 0 from spin values of +1 or�1, but does not distinguish

between the latter two possible values, which is what accounts for the way the

propositions Pa* are formulated.

The ideal measurement procedure for the square of the spin produces an electric

field with the crystalline form of an octahedron. Such a field occurs naturally in a

crystal of nickel Tutton salts consisting of an ion surrounded by an octahedron of

water molecules. An ideal measurement procedure for the atom of orthohelium thus

emulates the nickel ion’s environment in the salt crystal by subjecting the

orthohelium atom to an external electric field of the same rhombic symmetry as

the field inside the crystal. As noted earlier, the use of an electric rather than a

magnetic field is important for preserving the spin-Hamiltonian. In the case of

nickel Tutton salts it is standardly assumed “that, in the absence of a magnetic field,

[the Hamiltonian of the crystal exhibits] rhombic symmetry [; i.e.,] it is possible to

choose rectangular co-ordinates Ox, Oy and Oz such that the Hamiltonian is

invariant under rotations through p about Ox and Oy” (Stevens [8], p. 238). An

ideal test procedure for the square of the spin of the atom of orthohelium would

allow one to probe experimentally the behavior of the orthohelium atom as the

apparatus is rotated, and the external field turned off and on, by observing the shifts

in the electromagnetic spectrum of the atom. One infers the directional properties

associated with the dynamical magnitude, square of the spin in the direction a, for
mutually orthogonal directions a, from the spectral shifts which result as the atom is

subjected to the electric field by the measurement device.

By contrast with actual experiments with a nickel ion in a salt crystal, in this

idealized experimental situation involving the atom of orthohelium, the field

generated by the measurement device can be applied at orientations chosen at the

discretion of the experimenter, with each orientation corresponding to a different

orthogonal triple of axes of symmetry. The application of every such test procedure

determines that exactly one of the propositions Pa*, for a ¼ x, y, z is false, and

exactly two are true. But on the hypothesis that the families of propositions are

related in the way specified, one discovers as one considers all the triples of
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directions appealed to in the proof of the Kochen-Specker theorem that it is

logically impossible that there should be an assignment of truth-values to all

these propositions that respects this observation.

Now it may be that a complete understanding of the conceptual innovation

occasioned by the discovery of systems whose behavior shares this feature of the

behavior of an atom of orthohelium will require invoking the quantum theory of the

measuring instrument and other classically describable systems. But this does not

affect the point that the interpretive problem raised by the statistical behavior of

orthohelium is conceptually separable from any such account. The interpretive

puzzle depends on the possibility of forcing an interaction with an electric field

of specified character and then noting how the interaction gives rise to changes

in the atom’s electromagnetic spectrum. All of this is characterizable at a pre-

quantum-mechanical level of description. In light of these considerations, it seems

reasonable to conclude that the problem posed by the Kochen-Specker theorem—

the problem of understanding the significance of systems whose propositions do not

admit generalized truth-value assignments—is not conceptually dependent on the

provision of a quantum theory of measurement.

My plan in the balance of the paper is to argue in support of a conceptual

framework that provides a solution to this interpretive problem, not by providing

a hidden variable theory that is a counter-example to the theorem, but by providing

a framework which yields a natural interpretation of the impossibility of such truth-

value assignments, where, by a natural interpretation, I mean one that does not

violate any of the following three desiderata:

Determinacy: Every proposition which attributes a possible dynamical property to a

particle (i.e., every proposition which, in the special sense noted earlier, belongs
to a particle) is determinately true or false. In particular, if P is a disjunction of

propositions, each disjunct of which attributes a possible point value of a

dynamical variable, and if the disjuncts exhaust all possible point values, then

if P is true, exactly one of its disjuncts must be true. The intuition that supports

determinacy is that while it makes perfect sense, when thinking of a fictional

world, to treat some propositions belonging to its inhabitants as neither true nor

false, this is precluded when we are concerned not with fiction, but with reality.

This is because the failure of determinacy is one of the marks that separates our

concept of a fictional world from the real one.

Objectivity: Dynamical properties are indicated by a variety of experimental

conditions and operational criteria. The methodological basis for objectivity

rests on two considerations: (a) every property requires a clear physical criterion

for saying when it holds and when it fails to hold; (b) an objective property must

have some degree of conceptual independence from the procedures for deter-

mining its presence or absence, since the same property must be accessible in

different measurement contexts and by alternative measurement procedures. For

an interpretation of the theory to be based on the attribution of dynamical

properties to physical systems, it is necessary that there should be a conceptual

gulf between properties and the procedures which probe their presence or
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absence. Accessibility in a variety of experimental contexts is not only largely

constitutive of what we mean by the objectivity of properties, it is also

presupposed by standard forms of counterfactual reasoning about them. For

example it is presupposed when we ask whether a property would have obtained

had a different operational procedure been applied, or when we ask whether the

property would have obtained had the presence of another property been

investigated. The possibility of such reasoning is an essential component of

the objectivity we associate with physical properties. In the extreme case, where

each property is tied to a single operational procedure, this aspect of our concept

of objectivity is given up, since admitting only a single operational procedure is

tantamount to abandoning the idea that the same property may be presented

differently. The connection between objectivity and the existence of a variety of

operational indicators suggests that there are degrees of objectivity,

corresponding to the multiplicity of different operational procedures that are

indicative of a property’s presence or absence. As we will see, interpretations

may differ on the degree of objectivity which they accord the dynamical

properties of physical systems.

Observer independence: The reality that attaches to particles is an observer-

independent reality; this holds as well for their physically important properties.

The observer independence of particles is so closely tied to the objectivity of

their properties and the determinacy of propositions involving them that it is

generally assumed to be undermined when these desiderata are violated.

I will assume without further argument that an interpretation of the impossibil-

ity of generalized truth-value assignments is successful to the extent that it is a

natural interpretation in the sense just explained. I intend to show that if the

generalized probability measures of quantum mechanics are understood to apply

to propositions belonging to particles, it is not possible to frame a natural

interpretation of the theory. I will argue that there is an alternative account of

the domain over which such probabilities are defined that leads to a natural

interpretation. This is the interpretation of probabilities as probabilities of effects.

The burden of this paper is to show that such an alternative interpretation does not

violate determinacy or objectivity, and that it also satisfies observer independence.

The role of the notion of a natural interpretation in the following analysis is

therefore a dialectical one: it is used to show that the framework of propositions

belonging to particles cannot support an account of the absence of two-valued

measures without compromising determinacy or objectivity. As a consequence,

such a propositional framework undermines observer independence. By contrast,

the framework of effects interprets the absence of two-valued measures as a

simple failure of determinism without calling into question the determinacy of

physical propositions, and without compromising our conception of the objectivity

of physical properties. But the true measure of the success of an analysis in terms

of effects turns on its account of observer independence. This issue is taken up at

the end of the paper. Let me begin by considering more closely the desiderata of

objectivity and determinacy.
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Objectivity, in the sense considered here, is motivated by the idea of

contextuality, which has figured especially prominently in discussions of the

Kochen-Specker theorem. The issues surrounding contextuality are particularly

clear in the case of directional properties and the direction-dependent propositions

of which they are constituents. Consider two orthogonal triples of directions in E3,

(x, y, z) and (yx, yy, yz), where yx ¼ x but yy 6¼ y and yz 6¼ z. The direction x in E3

is evidently independent of the family of orthogonal triples—(x, y, z) or (x, yy, yz)—
to which it belongs. But in the case of direction-dependent propositions, it is not
clear a priori that the identity of a proposition is independent of the other direction-

dependent propositions with which its truth is evaluated. The constituent directional

properties of the propositions might be associated with distinct measurement

procedures, and this might be sufficient to justify distinguishing direction-dependent

propositions that are associated with the same direction in space.

For example, for directions a ¼ x, . . . , yz, consider the direction-dependent

propositions,

ðPaÞ The square of the spin in the direction a ¼ 0;

where the Pa are algebraic atoms and are the Boolean complements of the Pa*,
considered earlier. (Pa ¼ Pa**, when * is understood as the operation of comple-

mentation.) Suppose that the families of directions (x, y, z) and (x, yy, yz) are

associated with distinct ideal measurement procedures, one involving the triple of

directions, x, y, z, the other involving the triple of directions, x, yy, yz. The first

operational procedure decides the propositions Px, Py, Pz, while the second decides

the propositions, Px, Pyy, Pyz, but there is no measurement procedure that simulta-

neously decides all the Pa. That is, we have that Px is comeasurable with Py and Pz,

and with Pyy and Pyz, but Py and Pz are not comeasurable with Pyy and Pyz. Then

contextuality concerns the bearing of measurement procedures on the identity of

propositions: Is Px the same proposition when the operational procedure by which

the presence or absence of its constituent property is decided is one that measures Px

in conjunction with Py and Pz as when the operational procedure is one that

measures Px in conjunction with Pyy and Pyz? It is certainly possible that the

difference between these two measurement procedures is sufficient to show that

Px splits into two propositions, each with its own constituent property, one decided

by an operational procedure associated with (x, y, z), the other by one associated

with (x, yy, yz).
Now it is simply a fact about quantum mechanics that its statistical states are

such that the probability measures they generate are non-contextual. In the present

case, this means that quantum states do not distinguish direction-dependent

propositions any more finely than Euclidean geometry distinguishes directions of

space. But a contextual hidden variable theory is characterized by the fact that it

allows for the possibility that propositions are distinguished more finely by the

“hidden” (i.e., two-valued) measures such theories introduce than they are by the

probability measures of quantum mechanics. The issues raised by the possibility of

such theories center on whether it is justifiable to require of the hidden measures
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they introduce that they too should be non-contextual. Since the hidden measures

are mathematically interchangeable with truth-value assignments, this is equivalent

to the question whether the constituent properties of the propositions to which truth-

values are assigned vary with the measurement context.

Turning to composite systems, there is also an important sense in which the

statistical states of quantum mechanics are local. This is not a tendentious remark

since it does not contradict the fact that there are quantum states that are non-local

in the sense that they violate the inequalities discovered by Bell [9]. The claim that

quantum states are local is a simple consequence of the observation that locality is a

special case of non-contextuality, the case that concerns the invariance of the

probability measures of the theory when one leaves unchanged the local measure-

ment context for one system while varying the test procedure for the system with

which it is paired. Locality makes it difficult to invoke the modification of mea-

surement procedures as a justification for distinguishing propositions, since one

would have to distinguish propositions belonging to one system on the basis of what

properties one chooses to detect by performing a measurement on the spatially

separated system with which it is correlated.

For direction-dependent properties, conformity with what is allowed by the

geometry of the associated rays of E3 is a natural measure of objectivity, and by

this criterion, quantum mechanics accords the Pa a maximum degree of objectivity

since they are individuated exactly as finely as the directions of E3. Hence quantum

mechanics permits a much more inclusive class of measurement procedures for a

directional property than any of its contextualist rivals. I claim that it is a desirable

property of an interpretation that it should preserve this feature of the theory.

Although it is not a decisive objection against an interpretation that it requires a

multiplicity of propositions Px on the basis of contextual considerations involving

their constituent properties, it does show that within such a framework, the preser-

vation of determinacy necessitates some sacrifice of objectivity. Relativity to the

measurement context secures the determinacy of propositions belonging to

particles only by compromising the objectivity of some of their constituent direc-

tional properties.

It might seem that one could confine the properties that are contextually

individuated to a small subset of the directional properties we have been consider-

ing. However it is possible to show that one cannot fix in advance those properties

which must be more finely individuated than the directions of space with which

they are associated. To be sure, Kochen and Specker’s argument isolates a particu-

lar orthogonal triple of propositions and shows how the assumption of a truth-value

assignment is inconsistent with the assumption that exactly one of the propositions

of the triple is true and the others false. But the argument can also be run backwards

in the sense that we can choose a different triple and proceed to construct a Kochen

and Specker orthogonality graph so that the argument concludes by applying to the

selected triple the observation that exactly one of the propositions Pa is true, and the
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others false.3 Since the choice of orthogonal triple which conflicts with this

observation is completely arbitrary, in order to maintain determinacy any square

of the spin property may have to be represented by a multiplicity of properties, one

for each operational procedure corresponding to a relevant triple of directions. This

consequence is a “paradox” of sorts when one considers the realist motivation for

securing determinacy together with the fact that for realism the objectivity of

physical properties is as fundamental a requirement as the determinacy of the

propositions which contain them. That the same property may be presented as the

property indicated by a number of different measurement procedures, and that

counterfactual reasoning in association with a multiplicity of measurement

procedures is legitimate, are no less indispensable to our concept of the objectivity

of physical properties than determinacy is to our concept of reality.

To summarize our discussion thus far, in the context of generalized probability

measures like those exhibited by quantum mechanics, the desiderata of determinacy

and objectivity cannot be maximally satisfied within a framework of propositions

belonging to particles; the satisfaction of determinacy involves some sacrifice in

objectivity since a maximum degree of objectivity is incompatible with determi-

nacy. As a result, the suggestion that one must give up the idea that particles have an

observer independent reality has exercised a powerful appeal over both physicists

and philosophers of physics.

By way of articulating an alternative to giving up determinacy, objectivity or

observer independence, let me begin by separating “eternal” properties of particles

from dynamical properties. Eternal properties are never lost: an electron is always a
spin-1/2 particle, photons are always spin-1, etc. The possession of such properties

is not brought into question by the interpretive problems that are raised by the

Kochen-Specker theorem. Rather, it is the ascription of dynamical properties and

the notion that they are the subject of the theory’s probability assignments that

poses difficulties for a natural interpretation of the theory. The resolution of these

difficulties that I will outline gives up the framework of dynamical properties of

particles and the notion of propositions belonging to them and replaces it with the

framework of effects. Effects constitute the domain of the algebraic structure over

which probabilities regarding the behavior of particles are defined. Effects consti-

tute the evidential basis for all our theoretical assertions about particles and simple

combinations of them. They are to be thought of as the traces of particle interactions

on systems for which we have “admissible” theoretical descriptions in terms of their

dynamical properties. (I will return to the notion of admissibility in a moment.)

3 The possibility of running an argument like Kochen and Specker’s backwards is exploited by a

theorem of Pitowsky [3] showing that given any two noncomeasurable propositions Px and Py

represented by rays in H3, we can always find a finite set G of rays of H3 which contains the

representatives of Px and Py and has an orthogonality structure that forces any generalized two-

valued measure on G to assign them both 0. More generally, one can show that either the

probability of any two noncomeasurable Px and Py is 0, or at least one of them has a probability

strictly between 0 and 1.
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Such systems are epistemically accessible to an extent that systems which are

characterized only in terms of their eternal properties and their effects are not.

To see why treating probabilities as probabilities of effects allows for an

interpretation of the Kochen-Specker Theorem that leaves intact the desiderata of

determinacy and objectivity, recall that the problem of interpreting the theorem

arose because effects were implicitly taken to be indicative of a particle’s

dynamical properties. This meant that the algebraic structure of the theory was

interpreted as an algebra of propositions belonging to particles, and the probabilities

of the theory were understood to be the probabilities of such propositions. The

objectivity of properties then demanded that had a different effect been elicited, it

would have revealed that the particle had a different dynamical property. Proceed-

ing through Kochen and Specker’s sub-algebra of possible propositions, we were

led to a contradiction with the observation that for every orthogonal triple of

directions x, y, z, exactly one of the propositions Pa is true for a ¼ x, y, z. By
moving to the framework of effects we give up the idea that probabilities are

assigned to propositions containing a particle’s dynamical properties, and focus

instead on the effects to which particles give rise. Effects are determinate indepen-

dently of the determinacy of propositions involving a particle’s dynamical

properties, and their objectivity does not depend on counterfactual reasoning

involving such properties. In a framework in which generalized probability

measures are defined on effects, the problems posed by determinacy and objectivity

are avoided since there is nothing in the concept of an effect to require that effects

should obtain in the absence of the interactions in which they are found. The effects

framework has no analogue of a state comprised of the totality of dynamical

properties as there is in a classical picture of particles and their effects. In particular,

there is no assumption of classical trajectories underlying the attribution of an

observer independent reality to particles. The effects framework is agnostic about

all such classical pictures.

Despite its agnosticism on questions of ontology, the effects framework offers a

subtle account of the nature of the conceptual shift from classical to quantum

mechanics. The transition to an effects framework consists in replacing the charac-

terization of a particle by a list of its dynamical properties with one according to

which a particle’s characterization has the logical form of a function: when

presented with an experimental idealization of some naturally occurring situation,

particles are characterized not by changes in their dynamical properties, but by the

effects they produce. The fact that these effects cannot be anticipated with certainty

is understood within the effects framework as the unsolvability of the following

Problem of Determinism: Given a particle and a class of experimental procedures,

to predict particle-effects with perfect knowledge, i.e., to predict with probability

0 or 1, uniformly and without foreknowledge of the experimental procedure to

which a particle will be subjected, the answer to every question regarding the

occurrence of a possible effect. The no hidden variable theorem of Kochen and

Specker (together with the related theorems inspired by the work of Bell) shows

that the quantum probabilities of such effects are not compatible with the existence

of a two-valued measure which solves the Problem of Determinism. Applied to the
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example of an atom of orthohelium, this means that within the framework of effects

the atom is represented not by a collection of dynamical properties but by a function

which, when presented with an orthogonal triple of directions associated with the

axes of symmetry of an electric field, produces an effect consisting of a shift in its

spectrum. In the propositional framework, this shift is taken to be indicative of the

truth of exactly two of the propositions,

ðPa
�Þ The square of the spin in the direction a 6¼ 0;

attributing dynamical properties to the atom. But this is precisely the interpretive

step that is resisted by the effects framework: So far as probability assignments are

concerned, there are only effects—in the present case, shifts in the spectrum of the

atom—which the atom’s interaction with the field induces.

It is important to see how an interpretation in terms of effects bears on realism in

view of the fact, already noted, that such an interpretation does not situate the

theory within an “ontology.” But before turning to the question of observer inde-

pendence, let me review an analogy which may clarify the status of realism in the

present approach.

Imagine that we are concerned to construct a model of past events for which

there is very little basis to assume that they resemble the events with which we are

familiar. Let us also assume that the traces of these events are accessible to us only

in fragments that can be examined one at a time, that the information contained in

any one fragment is insufficient to determine a complete account of the events

which produced the traces which comprise it, and that the traces are themselves

continually changing. Assume further that the fragmentary traces do not combine to

give a single consistent story regarding the events at this earlier time. Now suppose

it is discovered that although the past is in this way “hidden” from us, our epistemic

situation with respect to its traces is systematic and even susceptible of a relatively

simple representation. Although systematic, the representation of available traces

not only fails to facilitate the reconstruction of the past state of the world, but

actually precludes the possibility of a consistent reconstruction on its basis. Under

such circumstances we might cease looking for a representation of a past state in

terms of the properties that hold of it because we will have come to recognize that

there can be no convergence from present or future traces to such a representation.

We might then dispense with the search for a theory of such states and focus instead

on understanding the distribution of present traces, their relevance to one another,

and the task of predicting their likely evolution. This would be a theory of past

events of a sort, but not what we had originally imagined such a theory would be

like. In particular, it would not aim to model the past, but to anticipate its present

and future traces. To recover quantum mechanics from the analogy, replace traces

with particle-effects, and past states of the world with lists of dynamical properties

of particles. Then two things are worth noting: neither such a theory of traces of the

past nor the quantum theory of effects contravenes the thesis of determinacy, and

where the one theory accepts the reality of the past, the other accepts the reality of
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the micro-world. In each case, one has merely abandoned a familiar style of

theorizing and the modeling associated with it.

Our discussion of the Kochen-Specker theorem, and our resolution of the

conceptual difficulties it poses for determinacy and objectivity, is predicated on

the idea that the probability assignments of the theory are not interpretable as

probabilities of propositions belonging to particles; rather, there is a domain of

effects which are epistemically accessible to us in a way in which dynamical

properties of particles have been shown not to be, and it is these effects that are

the proper subject of the theory’s probability assignments. This leaves a large

residual issue that we must now address.

I have said that effects are marks or traces particles leave on certain physical

systems, and these systems and the traces of their interactions constitute the

epistemic basis for our evaluation of our quantum mechanical descriptions of

the behavior of single particles and simple composite systems of them. But what

is the status of the systems which record the effects of particles? Since they are

merely complex systems of large numbers of particles, on the assumption that

quantum mechanics is a truly universal and fundamental theory, shouldn’t they

also fall within the purview of the theory?

The issue these questions raise is a familiar one: it is the issue the early founders

of the theory addressed with the doctrine of the indispensability of classical

concepts and the necessity of locating the “cut” between physical systems and

observers. For them, both the question of the location of the cut and the indispens-

ability of classical concepts arose because of epistemological considerations which

had their source in the special status they supposed quantum mechanics assigns

observers. They argued that the role of the observer in quantum mechanics is utterly

unlike the situation in classical mechanics where it is possible to proceed on the

assumption that all physical systems fall within the range of the theory, and where it

is possible to treat observers as altogether absent from the application of the

classical framework, except insofar as they may happen to occur among the

physical systems the theory encompasses.4 But if the very notion of an effect

requires reference to observers and to a preferred, extra-quantum-theoretical, char-

acterization of the physical systems accessible to them, an interpretation of the

theory in terms of effects can hardly be advanced as one that restores observer

independence to the theory’s interpretation. So although the notion of an effect may

provide solutions to the problems of determinacy and objectivity, a more elaborate

argument is needed to show that the notion has anything new to offer regarding the

problem of observer independence.

4 See Camilleri [10] for discussions of the views of Heisenberg, Bohr and Pauli and the similarities

and divergences among them. Fuchs’s Quantum Bayesian approach to the theory preserves the

primacy of the observer that was emphasized by Pauli. Observers in Fuchs’s framework are called

“agents.” In conformity with Fuchs’s understanding of the purely epistemic character of the

quantum state, effects belong to agents and consist in modifications of their subjective probability

judgements.
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Let me address this objection by considering first the use of classical concepts.

There is a general observation which it is easy to lose sight of. It is that any

description of the phenomena we wish to explain is admissible just in case

reasoning in accordance with generally recognized methodological norms, we are

able to reach agreement on the correctness of its application in any particular case.

This is simply the non-operationalist core of the methodological framework of

Einstein’s analysis of simultaneity. Provided our descriptions meet this admissibil-

ity condition, there need be nothing methodologically questionable about the

continued, or even exclusive, use of classical concepts for the description of the

phenomena we are interested in explaining. Our discussion of the atom of

orthohelium showed that there is a family of descriptions of the relevant phenomena

that are expressed in terms of classical concepts that satisfy this admissibility

condition. But to concede that classical mechanics is a descriptive framework that

supplies admissible descriptions of the phenomena we seek to explain does not

preclude the possibility that we may uncover a framework that revises these

descriptions and is in some sense more “fundamental” than the classical one. All

that is required to justify the classical framework in this evidentiary role is that there

should be consensus about the application of its descriptions. If this observation

about admissible descriptions is accepted, the doctrine of the indispensability of

classical concepts raises at least two questions: (i) In what sense, if any, is the

quantummechanical frameworkmore fundamental than the classical one? (ii) What

feature distinguishes the descriptive framework of classical mechanics and makes it

not just well-suited but indispensable to the provision of admissible descriptions of

at least some of the phenomena quantum mechanics is used to explain? The answer

to this second question will direct us to an answer to the first, so let us begin with it.

The classical framework involves both dynamical properties and effects of the

systems with which it deals. This ability to encompass a system’s properties as well

as its effects is a consequence of the deterministic character of the classical

framework. Here, as before, by the determinism of the classical framework, I

mean that feature of it that admits the presence of dispersion-free pure states in

the form of two-valued measures on the totality of propositions belonging to a

classical mechanical system. The mathematical fact that two-valued probability

measures are interchangeable with truth-value assignments entails that it is always

possible to represent the state of a classical system in terms of the totality of its

dynamical properties: these are the constituents of the propositions which a truth-

value assignment (on the Boolean algebra of propositions belonging to the system)

maps to Truth. In the case of quantum mechanical systems of particles and simple

combinations of them, the absence of such measures led us to interpret the theory’s

probability assignments as probabilities of their effects, rather than of propositions

involving their dynamical properties. But to describe the effects of particles we

need a framework whose systems are represented by their dynamical properties,

since it is the properties of these systems that constitute particle-effects.

From the perspective of the effects framework, the conceptual dependence of

quantum mechanics on classical mechanics is a result of the conceptual dependence

of descriptions of the systems which record effects on descriptions involving the
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dynamical properties of these systems. This kind of conceptual dependence, does

not preclude the application of quantum mechanics to systems that record effects.

Although it is largely a matter of convenience which systems are, and which are not,

taken to record effects, it is not wholly a matter of convenience. The development

of the quantum theory shows that there are systems that are resistant to a satisfac-

tory classical description—this is the content of Kochen-Specker—and as a result,

such systems lack admissible descriptions of the kind we require for the description

of the phenomena the quantum theory is invoked to explain.

As for the cut between classical and quantum systems, this also is mandated by

the fact that quantum mechanics is a theory devised for the explanation of the

behavior of systems that are inherently indeterministic in the sense that (i) they are

represented in the theory by their non-dynamical properties and their effects, and

(ii) their effects are such that they do not admit a solution to the Problem of

Determinism. So far as the conceptual issues raised by the interpretation of the

theory are concerned, the basis for the cut lies in the methodological demand for

admissible descriptions of the appearances we hope to save.

Although the framework of effects assumes that there are two distinct kinds

of system, this is compatible with the thesis that reality is unitary and quantum-

mechanical. The reason for this compatibility is that the notion of a system is relative

to a theoretical representation. There can be both classical and quantum mechanical

systems because to assert that there are classical systems is to claim that theoretical

representations expressed in the framework of classical mechanics yield what I earlier

characterized as admissible descriptions. Nothing in this formulation precludes the

possibility that a representation hitherto formulated within classical mechanics might

be replaced by a quantum mechanical representation. Whether reality is “captured”

by classical mechanics is a separate question, one whose answer may be ‘No’

compatibly with the descriptions of classical mechanics being admissible.

Since the effects framework locates the classical-quantum cut at the level of

differences in theoretical representation, there is no incompatibility between the

thesis that there are admissible classical mechanical descriptions and the thesis that

reality is quantum mechanical. According to the framework of effects, the world

presents us with appearances that we attempt to “save” and that we represent as

classical systems. The framework leaves open the empirical question of why it is

that the world appears to be amenable to descriptions that are expressible in

classical mechanics. But whatever the character of its appearance, supposing

quantum mechanics is true, reality itself has all the peculiarities quantum mechan-

ics says it has. This does not mean that quantum mechanics presents us with a

“picture of reality”—no theory does—only that quantum mechanics has identified

salient aspects of reality, aspects that are missed by classical mechanics. Bohr is

supposed to have said: “There is no quantum world. There is only an abstract

quantum mechanical description.”5 From the perspective of the framework of

5 Petersen [11]. Thanks to Hilary Putnam for bringing this remark to my attention.
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effects, the situation is rather that there is no classical world, only an abstract

classical mechanical description.

Appendix: Itamar on Locality as a Special Case

of Non-contextuality

This paper was close to its final form when I sent it to Itamar for his reaction to it. I

had intended to incorporate a suggestion of his into the paper before submitting the

final version for publication. With his death, it occurred to me to simply quote from

an e-mail in which he commented at some length on the paper. I think the e-mail

conveys some of the remarkable mix of warmth and generosity—greatness of

soul—that were characteristic of him and that were so highly valued by his friends.

The context of Itamar’s letter is my discussion of contextuality and locality which

begins on p. 207. Toward the conclusion of this discussion (beginning on p. 208)

I give an argument, based on Kochen and Specker’s proof of their principal theorem,

for why effects rather than propositions should be understood as the proper subject of

the probability assignments of quantum mechanics. Itamar’s letter supplements this

argument with another which he traces to a thought experiment of Vaidman. Our two

arguments are linked by the connection Itamar draws between what I call

“propositions belonging to particles” and EPR’s elements of reality. Itamar and

I argue that both notions should be rejected in favor of effects.

I am very much indebted to Jeffrey Bub for an extended e-mail correspondence

which led to the clarification of Itamar’s argument and to the suggestion that

Vaidman [12] is a plausible choice for the paper of Vaidman’s that Itamar had in

mind. What we think is the relevant passage from Vaidman is quoted after Itamar’s

letter. In quoting from Itamar’s letter, I have made some very minor stylistic

changes which I’ve left invisible. More significant changes which correct or slightly

elaborate Itamar’s remarks are enclosed in square brackets.

From Itamar, September 28, 2009:

. . .Back to your paper and to the discussion of locality as a special case of [non-]

contextuality, I think that’s exactly right and it brings into focus the question about the

relation between EPR’s “elements of reality” and the concepts of proposition and effect. As

you recall, something is an element of reality if its existence can be predicted with certainty.

The EPR argument is built upon assigning elements of reality, by this criterion, to

properties whose existence is never actually measured. They never leave a trace, and

that’s where they fail. I think that EPR’s criterion is at best necessary but insufficient,

and proper elements of reality should also be required to leave a trace that can in principle

be retrodicted, at least for a short time after the effect (in fact according to quantum

mechanics if there is an effect the wave function changes, while unmeasured “elements”

don’t change the wave-function). So EPR’s mistake is like what you describe for the

Kochen-Specker case of assigning truth values to propositions, in particular the value

“true” to a contradiction. GHZ’s (or Mermin’s) version of EPR shows that the two

arguments, Kochen-Specker and Bell’s, are the same in this respect. The lesson of EPR

is not about locality but about how their criterion of reality is insufficient.
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There is a paper by Vaidman who shows the shortcomings in the EPR criterion (although

Vaidman does not see it that way and does not use the result for this purpose). He creates

a simple thought experiment with a system that has no locality issues (no tensor products),

and considers a measurement on the system at t1 and a subsequent measurement (of some

other observable) at t2. Now he considers a hypothetical measurement of property A at

a t between t1 and t2 and asks: If we measured A at t, would we have discovered that

the system had property A? By construction the results of the [measurements at t1 and t2]
force the answer YES with certainty. However if we use [the measurement at t1 and] the
later measurement at t2 and ask the same question about a hypothetical measurement [of B

at the earlier time t, the answer is also YES with certainty. But A and B are contrary

propositions, and therefore cannot be true together. Hence the answer to whether A is true]

is NO with probability one. So the property A cannot be assigned a truth value that will be

consistent across time.

From (Vaidman [12], pp. 134–135):

A peculiar example of time symmetric counterfactuals is the three box paradox [. . .].
Consider a single particle prepared at time t1 in a superposition of being in three separate

boxes:

jC1i ¼ 1=
p
3ðjAi þ jBi þ jCiÞ:

At a later time t2 the particle is found in another superposition:

jC2i ¼ 1=
p
2ðjAi þ jBi � jCiÞ:

For this particle, a set of counterfactual statements, which are elements of reality
according to the . . . definition,

[If we can infer with certainty that the result of measuring at time t of an observable O
is o, then, at time t, there exists an element of reality O ¼ o,]

is:

PA ¼ 1;

PB ¼ 1:

Or, in words: if we open box A, we find the particle there for sure; if we open box B

(instead), we also find the particle there for sure.6

6 The definition given in square brackets is from Vaidman [12, p. 133]. The italics are Vaidman’s

and are intended to emphasize that the definition depends on the atemporal notion of inferring

rather than the temporally directed notion of predicting. The three box paradox goes back at least

as far as [13]. It is discussed in several other of Vaidman’s papers. See for example Vaidman [14]

for a more elaborate discussion and for an explicit statement of the principle which underlies this

reasoning, namely, the Aharonov-Bergmann-Lebowitz rule for calculating probabilities for the

results of an intermediate measurement performed on a pre- and post-selected system.
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Chapter 14

Infinitely Challenging: Pitowsky’s Subjective

Interpretation and the Physics

of Infinite Systems

Laura Ruetsche and John Earman

Abstract On Itamar Pitowsky’s subjective interpretation of quantum mechanics,

“the Hilbert space formalism of quantum mechanics [QM] is just a new kind of

probability theory” (2006, 213), one whose probabilities correspond to odds ratio-

nal agents would accept on the outcomes of gambles concerning quantum event

structures. Our aim here is to ask whether Pitowsky’s approach can be extended

from its original context, of quantum theories for systems with an finite number of

degrees of freedom, to systems with an infinite number of degrees of freedom, such

as quantum field theory and quantum statistical mechanics in the thermodynamic

limit. An impediment to generalization is that Pitowsky adopts the framework of

event structures encoded by atomic algebras, whereas the algebras typical of QM

for infinitely many degrees of freedom are usually non-atomic. We describe

challenges to Pitowsky’s approach deriving from this impediment, and sketch and

assess strategies Pitowsky might use to meet those challenges. Although we offer

no final verdict about the eventual success of those strategies, a testament to the

worth of Pitowsky’s approach is that attempting to extend it engages us in provoc-

ative foundational issues.

14.1 Introduction

For Itamar Pitowsky, “the Hilbert space formalism of quantum mechanics [QM] is

just a new kind of probability theory” [1, 213]. Understanding a probability theory

to consist in (1) an algebra encoding the structure of events to be assigned
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probabilities, and (2) a measure over that algebra providing those probabilities,

Pitowsky argues that the algebra encapsulating the structure of quantum events is

the lattice PðBðHÞÞ of subspaces of a Hilbert space H. To introduce a measure

over this event structure, Pitowsky considers what odds rational agents would

accept on the outcomes of “quantum gambles” concerning events so structured,

and discovers that measure to be one corresponding to standard quantum

probabilities. On Pitowsky’s view probability is degree of belief and, thus, there

is no “BIG” measurement problem. The BIG problem, he contends, arises only for

those who think that the quantum state is a real physical state, and consists in

identifying a real physical reason for the sui generis change of state that is

measurement collapse. Asserting the quantum state to be a bookkeeping device

for subjective degrees of belief, Pitowsky brands the BIG measurement problem

illusory.

Let us observe parenthetically that we are skeptical of the degree of belief

interpretation of quantum probabilities and the dismissal of the BIG measurement

problem. Pitowsky’s general thesis, however, is interesting and attractive. Our aim

here is to ask whether Pitowsky’s approach can be extended from its original

context, of quantum theories for systems with an finite number of degrees of

freedom, to systems with an infinite number of degrees of freedom, such as

quantum field theory (QFT) and quantum statistical mechanics (QSM) in the

thermodynamic limit. Let us lump these latter theories together under the heading

of “QM1.” An obvious impediment to generalization is that Pitowsky adopts the

framework of event structures encoded by atomic algebras, whereas the algebras

typical of QM1 are usually non-atomic. Section 14.2 explicates this impediment;

Sect. 14.3 assuages the immediate worries it suggests. Section 14.4 identifies,

lurking in atomless algebras, deeper challenges to Pitowsky’s approach, and sketch

strategies Pitowsky might use to meet those challenges. We offer no final verdict

about the eventual success of those strategies. But a testament to the worth of

Pitowsky’s approach is that assessing it as an approach to QM1 engages us in some

of the most provocative foundational issues that theories of QM1 have to offer.

Section 14.5 contains some critical remarks on Pitowsky’s proposed resolution of

the small measurement problem that remains after the BIG problem has been

dissolved.

14.2 Atomlessness

The crux of Pitowsky’s interpretation is the move from the characteristic quantum

event structure provided by PðBðHÞÞ to standard Born rule probabilities under-
stood as degrees of belief. Pivotal to this move is a rational agent, presented with

“quantum gambles” in the form of sets of possible bets on the outcomes of

measurements performed on a system subject to a public preparation procedure.

Given an algebra of events with the logical structure PðBðHÞÞ, Pitowsky argues,

Gleason’s theorem forces the rational agent’s hand. According to Gleason’s
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theorem, provided dim(HÞ > 2, there is a one-to-one correspondence between

countably additive measures m : PðBðHÞÞ ! 0; 1½ � and density operators W on

H such that Tr(WE) ¼ m(E) for all E ∈ PðBðHÞÞ. Supposing the gambler’s

probability assignments to PðBðHÞÞ satisfy prima facie reasonable constraints,

Pitowsky shows that they must take the form of measures characterized by

Gleason’s theorem. Her betting odds conform to the Born rule, as expressed by

the trace prescription. He comments, “The remarkable feature exposed by Gleason’s

theorem is that the event structure dictates the quantum mechanical probability

rule” (222).

For later purposes it will be helpful to restate this seminal result in the language

of von Neumann algebras and lattices of projection operators. A von Neumann
algebraM acting on a Hilbert spaceH (assumed here to be separable) is a *-algebra

of bounded operators with the defining property that M is closed in the weak

topology or, equivalently, M ¼ ðM0Þ0:¼ M00 (where ‘0’denotes the commutant)

(see Sunder [2] for an overview of von Neumann algebras). Corresponding to M
there is a lattice PðMÞ of projections; in fact this lattice is a complete orthomodular

lattice. Conversely, a von Neumann algebra is generated by its projections, i.e.

M ¼ P00. A state on a von Neumann algebra M is an expectation value functional,

i.e. a normed positive linear mapping o : M ! C. A state o is pure iff it cannot
be written as a non-trivial convex linear combinationo ¼ lo1 þ (1 � l)o2 where

0 < l < 1 and o1 6¼ o2. A mixed state is a non-pure state. A vector state is

a state for which there is a jci 2 H such that oðAÞ ¼ hcjAjci for all A 2 M.

Vector states are among the normal states, i.e. states o generated by a density

operator W, i.e. o(A) ¼ Tr(WA) for all A 2 M.

Ordinary QM is the case where M ¼ BðHÞ—the full algebra of bounded

operators— and PðBðHÞÞ is the full lattice of projections onto all of the closed

subspaces of H. For this special case Gleason’s theorem is the result that,

when dimðHÞ > 2, any countably additive probability measure m on PðBðHÞÞ
has a unique extension to a normal state om on BðHÞ. Below we will consider

generalizations of Gleason’s theorem to more general types of von Neumann alge-

bras encountered outside of ordinary QM.

One of the axioms by which Pitowsky characterizes the quantum event structure

requires it to include “maximally informative propositions” which “in the quantum

case, . . . correspond to one-dimensional subspaces of the Hilbert space” (218). To

appreciate the correspondence Pitowsky draws here, consider a von Neumann

algebra M. If a subalgebra N of M is abelian (that is, commutative) then the

elements of the associated lattice PðNÞ, understood as propositions, can be

assigned truth values obedient to classical truth tables. If N is maximal abelian—

that is, such that M has no abelian algebra of which N is a proper subset—then

PðNÞ corresponds to a largest set of propositions in M that can be attributed

classical truth values simultaneously.

An atom of a projection lattice PðMÞ is a projection operator E 2 PðMÞ with
the property that no non-zero projection operator in PðMÞ has a range that’s

a proper subspace of E’s range. In other words, the atoms of a projection lattice
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are its minimal elements. Now each atom (if such exists!—see below) of a maximal

abelian N � M determines a truth evaluation on the lattice PðNÞ.1 It is in this

sense that an atom is a maximally informative proposition (see Bell and Machover

[3] for details). WhenM ¼ BðHÞ, its atoms are projection operators whose ranges

are one-dimensional. Hence, taking PðBðHÞÞ to give the quantum event structure,

Pitowsky takes maximally informative propositions to correspond to one-dimensional

subspaces of H. The axiom on the quantum event structure imposing this demand

he names “atomicity.”

We come now to a provocative fact. The von Neumann algebras BðHÞ of

ordinary QM are the natural setting of Pitowsky’s interpretation. But in QM1,

one encounters von Neumann algebras not isomorphic to BðHÞ, algebras whose

projection lattices aren’t isomorphic to PðBðHÞÞ Indeed, one encounters von

Neumann algebras that lack atoms. We will call such algebras “atomless.” (Atomless

algebras often appear in the literature under different descriptions. In terms of the

Murray and von Neumann classification of von Neumann algebras,BðHÞ is a Type I
factor algebra; Types II and III factor algebras are atomless. It follows that every

maximal abelian subalgebra of a Type II or III factor algebra is also atomless.)

A fairly homely and intuitive example of an atomless von Neumann algebra, an

example to which Sect. 14.4 returns, is the algebra of continuous functions on the

closed interval [0,1]. Let H be the separable Hilbert space L2([0,1]) of square

integrable functions on the unit interval [0,1] equipped with the Lebesgue measure.

Where f is a bounded measurable function on [0,1], let Mf be the operator on L2
corresponding to multiplication by f. The collection fMf g ¼ DQ (with addition

and multiplication defined pointwise) is a von Neumann algebra acting on H
[4, Example 5.1.6]. DQ is atomless.

To see why, begin with a characterization of the projection operators in DQ. For

each Borel subset X of [0,1], the characteristic function wX : wX(p) ¼ 1 if p ∈ X;
wX(p) ¼ 0 otherwise, is a projection in DQ, and every projection in DQ is the

characteristic function for some Borel subset of [0,1] (see Kadison and Ringrose

1997, Ex. 2.5.12, 117). DQ is atomic only if it contains a non-zero wS such that

no non-zero projection has as its range a proper subspace of wS’s range. Now,

consider what it takes for wS to be different from the zero operator. If S is a set of

measure 0, the vector norm of wsjci for an arbitrary c ∈ L2([0,1]) is given by

jwsjcij ¼
Z 1

0

c�ðxÞwscðxÞdx ¼
Z
s

c2ðxÞdx ¼ 0 (14.1)

If S is a set of measure 0, wS maps every element of L2([0,1]) to the zero vector.2

Thus wY is a non-zero projection operator only if the set Y is measurable. But if Y is

1 The truth evaluation determined by E maps PðNÞ to TRUE if EF ¼ F; and to FALSE otherwise.
2 It turns out that DQ

0s projection lattice is isomorphic to Bð½0; 1�=NÞ, the Boolean algebra of

equivalence, up to measure 0, classes of Borel subsets of [0,1]. See Halvorson 2001 for details and

an illuminating discussion of their significance.
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measurable, wY can’t be an atom in DQ. Every measurable set Y has a measurable

proper subset. Let X be a measurable proper subset of Y. wX 6¼ 0, because X is

measurable. And wX has as its range a proper subspace of wY’s range. This spoils
wY’s claim to be an atom.

As straightforward as the foregoing example may seem, it conceals a remarkable

fact. If M is atomless, none of its pure states are normal and perforce none of its
pure states correspond to countably additive measures on PðMÞ! It may be

tempting to ignore this remarkable fact on the grounds that atomless von Neumann

algebras are idle mathematical curiosities. But they are not. Rather, atomless von

Neumann algebras are typical of quantum theories of systems with infinitely many

degrees of freedom. Here are some examples.

One version of axiomatic algebraic QFT (see [5]) associates a von Neumann

algebra MðOÞ of observables with each open bounded region of O � M of

Minkowski space-time M. This association is assumed to have the net property

that if O1 � O2 then MðO1Þ is a subalgebra of MðO2Þ. The algebra of obser-

vables for entirety of Minkowski space-time is the quasilocal algebra MðMÞ,
obtained as the closure of the union over subregions of their local algebras. For

the Minkowski vacuum state of the mass m � 0 Klein-Gordon field, ifO is a region

with non-empty space-like complement, the standard axioms for algebraic QFT

imply thatMðOÞ is an atomless von Neumann algebra, indeed a Type III factor [6].

Results by Buchholz et al. [7] indicate that the Type III character of local algebras

holds not only for free scalar fields but quite generically for quantum fields of

physical interest.

Atomless von Neumann algebras are also typical for the thermodynamic limit of

QSM, which one reaches by letting the number of constituents of the system and its

volume tend to infinity while its density remains finite. In this limit the so-called

KMS condition explicates the notion of equilibrium (for a brief exposition, see

Sewell [8, pp. 49–51]). In the thermodynamic limit of QSM, KMS states at finite

temperatures correspond to Type III (and so atomless) factors for a wide variety

of physically interesting systems, including Bose and Fermi gases, the Einstein

crystal, and the BCS model (see [9, pp. 139–140]; Bratelli and Robinson [10], Corr.

5.3.36). The exceptions are KMS states at temperatures at which phase transitions

occur (if there are any for the systems in question); then the relevant algebras are

direct sums/integrals of Type III factors. Systems in equilibrium at infinite tem-

peratures are also of interest in QSM. Such systems occupy chaotic states. Chaotic

states in the thermodynamic limit of QSM correspond to Type II1 factors, which

are also atomless (see [11, Vol. III, Sec. XIV. 1]).

14.3 The Initial Worry Addressed

We have framed an initial impediment to generalizing Pitowsky’s approach beyond

ordinary QM, whose observable algebras take the richly atomic form BðHÞ. The
projection lattices and observable algebras encountered in QM1 may lack atoms.
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This impedes the extension of Pitowsky’s approach, because that approach appears

to require quantum event structures to contain atoms. But not to worry! The main

tools Pitowsky uses are Gleason’s theorem and L€uders’ Rule and, as we will see,

these can be extended to very general von Neumann algebras.

As noted above, Pitowsky uses Gleason’s theorem to reconstruct Born rule

probabilities in terms of rational odds for quantum gambles. And as intimated

above, Pitowsky uses L€uders’ Rule to dismiss the BIG measurement problem:

In our scheme quantum states are just assignments of probabilities to possible events, that

is, possible measurement outcomes. This means that the updating of the probabilities

during a measurement follows the Von Neumann-L€uders projection postulate and not

Schr€odinger’s dynamics. Indeed, the projection postulate is just the formula for conditional

probability that follows from Gleason’s theorem. So the BIG measurement problem does

not arise. (232)

Let us elaborate for the case of ordinary QM, i.e. in the language of von

Neumann algebras the case where the algebra is BðHÞ. Suppose that m :

PðBðHÞÞ ! [0,1] is a countably additive measure. By Gleason’s theorem if

dimðHÞ > 2 there is a unique density operator W on BðHÞ that extends m to

a normal state onBðHÞ. Let E2PðBðHÞÞ be such that m(E) 6¼ 0. Then the density

operator WE given by

WEðAÞ :¼ TrðWEAWEÞ
TrðWEÞ for all A 2 BðHÞ ½LR�

defines a normal state. This state has the property that

(L): For any F 2 PðBðHÞÞ such that F � E, WE(F) ¼ m(F)/m(E).
where F � E holds just in case the subspace onto which F projects is a subspace of

the subspace onto which E projects. Furthermore,WE is the unique density operator

with the property (L) (see [12]). These properties of WE are taken to motivate its

interpretation as giving a conditional quantum probability. The rule LR for quan-

tum conditionalization is commonly referred to as L€uders’ Rule.
Let E be a one-dimensional projection operator (that is, an atom) in PðBðHÞÞ.

Suppose we subject a system concerning which our degrees of belief are coded by

the normal state W to an E measurement, which yields the outcome 1. Invoking

L€uders’ Rule to update our degrees of belief conditional on this outcome, we find

that the L€uders conditionalized state WE coincides with E no matter what state
W was (provided, of course, Tr(WE) 6¼ 0, which is a condition for obtaining the

outcome 1 to begin with). The state encoding our updated degrees of belief is the

state E into which, on the postulate of measurement collapse, the measured system

collapses upon the occasion of an E measurement yielding the outcome 1. There is

no BIG measurement problem, Pitowsky claims, because on the subjective inter-

pretation of probability, the collapse of the wave function simply reflects rational

updating.

Gleason’s theorem and L€uders’ rule do the heavy lifting for Pitowsky’s interpre-
tation. Do their analogs hold for von Neumann algebras not isomorphic to BðHÞ,
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including the atomless von Neumann algebras of QFT and the thermodynamic limit

of QSM?3 And do their analogues hold when the probability measure on the

projection lattice of the algebra is merely finitely additive? In the case of Gleason’s

theorem the answer is positive. In fact the generalization is quite broad:

Generalized Gleason’s Theorem [14, 15, Ch. 5] LetM be a von Neumann algebra acting on

a separable Hilbert space H and let m : PðMÞ ! 0; 1½ � be a finitely additive probability

measure. If M does not contain any summands of Type I2,
4 there is unique state om on M

that extends m, i.e. om(E) ¼ m (E) for all E 2 PðMÞ. Moreover, om is a normal state iff m is

countably additive.5

In what follows we will concentrate on countably additive probability measures

and their corresponding normal states. But we add in passing that there does not

seem to us to be a good motivation for the tradition in the philosophical literature of

ignoring finitely additive probability measures and their corresponding non-normal

states, especially if probability is given a subjective interpretation (for why

shouldn’t degrees of belief be merely finitely additive?). One could push from the

other end by noting that, according to physics lore, it takes an infinite amount of

energy to prepare a non-normal state on the von Neumann algebra associated with

a finite, bounded region of spacetime.6 But such pushing seems to require treating

the quantum state as a real physical state, contrary to the subjective interpretation

favored by Pitowsky. In any case, what is important is the uniqueness of the

extension om of m, which makes it possible to think of om as a bookkeeping device.

That om is not implemented by a density operator when m is merely countably

additive and, thus, does not conform to the familiar form of the Born rule is neither

here nor there.

So much for generalizing Gleason’s theorem. As for L€uders’ Rule, its motivation

carries over to all von Neumann algebras for which the generalized Gleason

theorem applies. Indeed, the generalized L€uders’ Rule can be seen as an adjunct

of this theorem. Let om be the unique extension to a state on M of a probability

measure m on PðMÞ. Consider the measure mE that results from conditionalization

on E 2 PðMÞ such that m(E) 6¼ 0, i.e. mE(F) :¼ m(F ∧ E)/m(E) for any F 2 PðMÞ
such that EF ¼ F (in which case (F ∧ E) ¼ EFE). The unique extension of omE of

mE to a state on M is the natural candidate for the conditionalized state. But omE is

nothing other than the state obtained by L€uders’ Rule.

3 For a treatment of these issues more extensive than the one offered here, see Ruetsche and

Earman [13].
4 An exemplary Type I2 von Neumann algebra is the algebra of complex-valued 2 � 2 matrices.

A von Neumann algebra is of Type I2 just in case its identity I is the sum of 2 equivalent abelian

projections. For details, Kadison and Ringrose [4].
5 The proof is highly non-trivial. It proceeds in two stages. First, it is shown that a probability

measure on the projection lattice of a von Neumann algebra is uniformly continuous. Next,

continuity is used to show that the measure can be extended to a positive linear functional on

the algebra.
6 Ruetsche [16] discusses a quartet of other reasons to be normal.
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In sum, the tools essential to Pitowsky’s approach continue to function in the

setting of QM1, notwithstanding the absence from the algebras appropriate to that

setting of atoms. Perhaps this should not be a surprise: it is quantum mechanics

Pitowsky sets out to make sense of, and according to his analysis, the essential

ingredient of quantum mechanics, the axiom that separates classical from quantum

domains, is what he calls the irreducibility of the quantum event structure, that is,

the presence in that event structure of sets of events that aren’t all possible

outcomes of the same experiment (218). So for Pitowsky, shedding the axiom of

atomicity is consistent with maintaining a distinctly quantum event structure,

calling forth a new theory of probability.

14.4 A Further Worry: State Preparation

Having assuaged the initial worry that the very absence of atoms from the observ-

able algebras of QM1 derails Pitowsky’s approach to interpreting those theories,

we turn to other challenges atomless observable algebras pose for Pitowsky. One

challenge is to make sense of state preparation. Pitowsky faces the challenge

because the first step of the quantum bets central to his interpretation is the

production of “a single physical system . . . prepared by a method known to

everybody” (223). His key result is that the Born Rule should govern the degrees

of belief of agents considering such bets. But the Born Rule provides agents facing

quantum bets with rational guidance only if they are warranted in attributing a
particular quantum state to the system the bets are about. The challenge for

Pitowsky is to explain how a system comes to be in such a condition that a

particular quantum state o encode the odds rational agents would accept for

gambles on the outcomes of future measurements performed on the system. Put

more briefly, the challenge is to account for state preparation.

Although Pitowsky doesn’t address this challenge explicitly, the following

passage indicates how he might meet it. “If . . . we have formed a belief about the

state of the system at time t ¼ 0 (as a result of a previous measurement, say),” he

writes, “we automatically have a probability distribution over the set of all possible

outcomes of all possible measurements at each t” (236). We automatically have that

distribution because we are entitled to L€uders conditionalize on the outcome of the

measurement. As observed in the previous section, if that outcome corresponds to

an atom E 2 PðBðHÞÞ, L€uders conditionalization transforms the degrees of belief

encoded by an arbitrary pre-measurement state to degrees of belief corresponding

to the specific normal state encoded by the density operator E.
Successfully following Pitowsky’s preparation recipe, we start with a system

with respect to which an arbitrary, and generally unknown, quantum state f
(assumed to be normal) encodes rational degrees of belief, and wind up with a

system for which a specific, and known, quantum state o encodes rational degrees

of belief. L€uders’ rule is not the only ingredient essential to the preparation recipe.

Another is the presence in M of what we will call filters. In general, and to first
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approximation, a filter for a state o on Neumann algebraM is a projection operator

Eo 2 M such that for any normal state f on M that assigns Eo non-zero

probability, f L€uders conditionalized on Eo coincides with o on M. Pitowsky’s

preparation recipe works in the special case of M ¼ BðHÞ because normal pure

states on BðHÞ (which are, of course, vector states) have filters in the form of

atomic projections.

Generalizing from the particular von Neumann algebra BðHÞ, the question of

which states on an arbitrary von Neumann algebraM have filters is well-posed and

has a simple answer. Only pure normal states on M have filters.7 But it was

disclosed in Sect. 14.2 that if M lacks atoms, it lacks pure normal states as well.

Thus, if M is atomless, no state on it can be prepared by means of filtration. This

means that even if L€uders’ Rule holds in general, if M is atomless, an ingredient

crucial to Pitowsky’s state preparation recipe is missing.

The challenge for Pitowsky’s approach, then, is this: ifM lacks atoms, it stymies

an account of state preparation along familiar lines. Without an account of state

preparation, Pitowsky can’t forge a link, crucial to his account, between the betting

quotients of rational agents and Born rule probabilities implicit in specific quantum

states. If Pitowsky can’t forge this link, his project of explicating quantum

probabilities in the terms of quantum bets collapses.

One way Pitowsky can rise to the challenge is, when confronted with an atomless

von Neumann algebra, to justify changing the subject to a Type I von Neumann

algebra, an algebra with atoms. In particular, local relativistic QFT may have a way

to compensate for the atomlessness of its typical Type III algebras (Dieks 2000). As

Sect. 14.2 remarked, the local algebra MðOÞ associated with an open bounded

region O of space-time is generically Type III, therefore atomless, and so filterless.

Thus, there can be no local preparation procedure for a normal state on MðOÞ that
consists in measuring a filter in MðOÞ. Fortunately, however, the standard axioms

for local relativistic QFT imply that the funnel property holds for suitable space-

time regions in certain models. The net of local algebras MðOÞ have the funnel
property if and only if for any open bounded O there is another open bounded

region Ô 	 O and a Type I factor N such that MðÔÞ 	 N 	 MðOÞ. The
funnel property entails that normal states on MðOÞ which are the restriction to

that algebra of pure normal states on the Type I algebraN 	 MðOÞ have filters in
that Type I algebra. This guarantees that a local preparation procedure is possible,

albeit in an expanded sense of “local” (see [17]).

It is debatable whether it is desirable to thus expand our sense of “local”.8 Clifton

[18] furnishes grounds against: given nesting spacetime regions Ô 	 O and their

atomless von Neumann algebras MðÔÞ 	 MðOÞ, the choice of an interpolating

Type I factor is quite arbitrary. Rather than adjudicate this debate, we will indicate

how Pitowsky can weigh in. We’ll start with the sample atomless von Neumann

7 See Ruetsche and Earman [13] for a formal definition of ‘filter’ and an argument for this claim.
8 Earman and Ruetsche [23] convey a taste of the debate.
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algebra introduced in Sect. 14.2, the algebra DQ whose projections correspond to

events of being located in subsets D of the unit interval.

There is reason to think that the very feature of Pitowsky’s account that requires

he make sense of state preparation enables him to change the subject fromDQ to an

atomic algebra. The key point is that “a proposition describing a possible event in a

probability space is of a rather special kind. It is constrained by the requirement that

there should be a viable procedure to determine whether the event occurs, so that a

gamble that involves it can be unambiguously decided” (217). The outcomes

subject to quantum bets, that is, the elements of quantum event structure, have to

be the sort of thing we can resolve bets about. Given certain assumptions about our

perceptual limitations, events of being localized in arbitrarily small regions aren’t
the kinds of things we can place resolvable bets on: if D is so teeny that we are

incapable of determining whether a system’s position measurement locates it in D,
the event wD can’t be subject to a quantum bet. Because not every event in the non-

atomic algebra DQ can be the subject of a resolvable bet, DQ doesn’t give a

quantum event structure of the sort Pitowsky’s subjective interpretation requires.

Pitowsky can cite this as reason to concentrate instead on an algebra encoding an

event structure of discriminable events: events corresponding to, say, being located
in one of some set of finitely extended regions, where the extent of those regions is

keyed to the resolving capacity of our perceptual and technical apparatus. It is

plausible that an algebra of such events will be atomic—it may simply be the

algebra of eigenprojections of a discretized position observable. It is less plausible

that the directive to concentrate on discriminable events picks out a unique atomic

subalgebra of DQ, but we are not inclined to regard this non-uniqueness as a dire

problem. It comes with a handy explanation: any coarse-graining that issues in a set

of events on which we can wager will deliver the goods of an atomic event

structure; insofar as wagering is a practical activity constrained by the unavoidably

vague requirement that the objects of wagers be ‘recordable,’ we shouldn’t expect

every set of wagers to be indexed to the same coarse-graining.

We will note in passing that Halvorson (2001) makes a move similar to the one

we’ve just offered on Pitowsky’s behalf. Halvorson declines to regard every

elements of DQ as a ‘real’ event on broadly operationalist grounds conjoining the

claims that (1) quantum probabilities are probabilities for measurement results and

(2) measurements are typically approximate. What Pitowsky can add to this

maneuver is motivation for the operationalist orientation, in the form of a subjective
theory of probability requiring quantum events to be such as to settle bets rational

agents make.

Now, one can imagine the move being criticized for dismissing some quantum

probabilities from physical relevance. Where D is a region so subliminal as to be an

inappropriate object of a quantum bet, the criticism goes, and o a quantum state,

o(wD) is a legitimate quantum probability. But of o(wD) Pitowsky’s interpretation
gives no account. But Pitowsky can stand firm in the face of this criticism. He hasn’t

promised to explicate every expression anyone has ever regarded as a quantum

probability. He has rather offered a proposal about which sorts of things are
quantum probabilities. He takes this proposal to be part of a package that’s our
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best shot at making sense of the quantum world. According to the proposal, o(wD)
just isn’t a quantum probability. It’s a casualty of making the best progress we can

on interpreting QM.

We hope to have at least established that Pitowsky has a feasible strategy for

precipitating out of the atomless von Neumann algebra DQ a Type I von Neumann

algebra abounding in atoms, and so susceptible to accounts of state preparation by

filtration. Now let us return to the QFT case. Can the coarse-graining strategy be

adapted? What Pitowsky needs is an account of how the appeal to discriminable

events, the kind of events that might settle bets, justifies turning attention from

atomless local algebras to one (or even some) of the Type I factors interpolating

between them. Progress on this question awaits a cogent account of the nature of

measurements in QFT. As this is one of the most daunting and unsettled topics in

the interpretation of that theory, we take it to be an open, and significant, question

whether Pitowsky can account for state preparation in the context of QFT.

It is, however, clear that the QFT stratagem for securing preparation by filtration

cannot be adapted to the setting of the thermodynamic limit of QSM. What one

would like to be able to prepare is a state of a superconductor or a ferromagnet,

that is, a state of the entire quasi-local algebra itself. That algebra will typically be

atomless, and no funnel property can be invoked to embed it in a Type I algebra.

But perhaps in these cases, Pitowsky has another state preparation recipe available.

In QSM, the most interesting states are the equilibrium ones. And those we can

prepare by waiting.

14.5 The Small Measurement Problem

Believing his account to be proof against the BIG measurement problem, Pitowsky

thinks it nevertheless faces “The small measurement problem . . . why is it hard to

observe macroscopic entanglement, and what are the conditions in which it might

be possible?” (233). He gestures to decoherence as giving part—but only part—of

the answer.

Decoherence is a dynamical process and its exact character depends on the physics of the

situation. I would like to point to a possibly more fundamental, purely combinatorial reason

which is an outcome of the probabilistic structure: the entanglement of an average ray in a
multiparticle Hilbert space is very weak. (233)

We suspect that Pitowsky has asked the wrong question. The small measurement

problem should be: “Why is it hard to observe macroscopic superpositions (e.g.

superpositions of live and dead cats)?” The line offered by the decoherence mob is

that entanglement of the system we are observing with its environment gives the

answer. As it stands this answer is incomplete—entanglement must be combined

with the proper semantics of value assignments. For, even at its best, decoherence

delivers us Professor Schr€odinger’s cat described by a reduced density operator

WCAT diagonal in an eigenbasis of the cat bio-observable. WCAT is obtained from

the density operator WCAT+ENVIR for the composite CAT þ ENVIRONMENT
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system by “tracing out” the environmental degrees of freedom. If, as is typically the

case, WCAT+ENVIR is given by the projector onto the ray spanned by a vector that

fails to be an eigenstate of the cat bio-observable, the orthodox eigenvalue-

eigenstate link of conventional quantum semantics will decline to assign the cat

bio-observable a determinate value, no matter how diagonal WCAT is in its

eigenbasis. What is needed to rescue Professor Schr€odinger’s cat from the mea-

surement problem is not only a diagonalized WCAT delivered by (best-case) deco-

herence but also a semantic rule licensing us to understand a cat attributed WCAT

to be either determinately alive or determinately dead. And if this combination

works, it does provide not just part but the whole answer to the small measurement

problem. But this is not the place to go into details about whether decoherence

works the way it is supposed to.

It remains the case that the observability or detection of entanglement is an

interesting issue. But again, we are not convinced that Pitowsky has raised it in the

right form. He poses the issue in terms of witnesses—operators on the tensor

product space of a multiparticle system. For Pitowsky, an entanglement witness N
is an observable whose expectation value on non-entangled states is always strictly

less than 1, so that any state o such that o(N) > 1 is therefore entangled. The more

o(N) exceeds 1, the easier o’s entanglement is to detect; the closer o(N) is to 1, the
more likely it is that experimental noise will interfere with detecting its entangle-

ment. Pitowsky introduces a gauge of a state o’s entanglement in the form of o’s
best witness: the observable No in the collection N of witness for o for which

o(No) most exceeds 1. o’s best witness is the observable with the best shot of

establishing o’s entanglement, notwithstanding the vagaries of experimental noise.

Now consider the n-fold tensor product von Neumann algebra 
n BðHÞ where
eachH is the linear vector space C2 appropriate for describing a spin 1

2
system. The

maximum value a stateo on 
 n BðHÞ assigns its best witness is ffiffiffiffiffi
2n

p
. Roughly put,

Pitowsky’s weak entanglement conjecture—the conjecture with whose fate he takes

the fate of the small measurement problem to rest—is that, as n grows, states whose
best witnesses are this good shrink to a set of measure 0 in the space of pure states

on 
n BðHÞ. Pitowsky interprets this as a constraint on our capacity to observe

macroscopic entanglement: if macroscopic systems are such that entangled states

whose best witnesses are good enough to be detectable in spite of experimental

noise are exceedingly rare, evidence of macroscopic entanglement will be exceed-

ingly rare as well.

We are skeptical of Pitowsky’s witness approach to the question of whether

entanglement is observable because what we typically observe is not the multipar-

ticle system in its entirely but some subsystem. And what we would like to know is

whether subsystems carry signatures of their entanglement with the larger system.

The decoherence people would say that the classical appearance of a macro-

subsystem is a signature of their entanglement with the environment! But this is

contentious. Returning to QFT, we encounter less contentious signatures of entan-

glement, and encounter them everywhere. A QFT-adapted case that entanglement is

generally undetectable would, we contend, make it plausible that states on these

local algebras rarely, if ever, bear signatures of entanglement. But there is reason to
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despair of such a solution. In QFT, the correlations instituted across spacelike

separated regions by typical states have the capacity to violate Bell inequalities,

even maximally (for results, see [19, 21]; for an account aimed at philosophers, see

[20]). Just as restricting the entangled spin singlet state to the algebra of observables

pertaining to a single subsystem eventuates in a mixed state on the subsystem

algebra, so too restricting typically entangled global QFT states to local regions

results in mixed states. The local signature of the global entanglement is the Type

III character of the local algebras: all of their normal states are mixed states; none of

them are pure. That the global state restricted to appropriate sub-regions is a KMS

state at finite temperature (e.g. in the Unruh effect) can be taken as a signature of

entanglement.

It follows that, in the setting of QFT, to believe that the local state is a normal

state on the local algebra (which Pitowsky’s agents are presumably beholden to do)

is to believe that that state carries the signature of entanglement.

14.6 Conclusion

Pitowsky’s approach is nuanced and resourceful. While we believe the impediments

we’ve presented to extending it to QM1 are serious, we do not claim that they

are insurmountable. We do claim that the project of bringing Pitowsky’s subjective

interpretation into contact with theories of QM1 has a payoff that makes the project

worth betting on: the contact exposes features both of Pitowsky’s interpretation

and of these physical theories that deserve further attention.
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Chapter 15

Bayesian Conditioning, the Reflection Principle,

and Quantum Decoherence

Christopher A. Fuchs and R€udiger Schack

Abstract The probabilities a Bayesian agent assigns to a set of events typically

change with time, for instance when the agent updates them in the light of new data.

In this paper we address the question of how an agent’s probabilities at different

times are constrained by Dutch-book coherence. We review and attempt to clarify

the argument that, although an agent is not forced by coherence to use the usual

Bayesian conditioning rule to update his probabilities, coherence does require the

agent’s probabilities to satisfy van Fraassen’s [1984] reflection principle (which

entails a related constraint pointed out by Goldstein [1983]). We then exhibit the

specialized assumption needed to recover Bayesian conditioning from an analogous

reflection-style consideration. Bringing the argument to the context of quantum

measurement theory, we show that “quantum decoherence” can be understood in

purely personalist terms—quantum decoherence (as supposed in a von Neumann

chain) is not a physical process at all, but an application of the reflection principle.

From this point of view, the decoherence theory of Zeh, Zurek, and others as a story

of quantum measurement has the plot turned exactly backward.
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15.1 Introduction

At the center of most accounts of Bayesian probability theory [4] is the procedure of

Bayesian conditioning. By this we mean the following. Assume a Bayesian agent,

at some time t ¼ 0, has assigned probabilities P0(E), P0(D) and P0(E, D) to events

E and D and their conjunction. As long as P0(D) 6¼ 0, the conditional probability of

E given D is then

P0ðEjDÞ ¼ P0ðE;DÞ
P0ðDÞ : (15.1)

Now assume that, at a later time t ¼ t, the agent learns that D is true and updates

his probability for E. We denote the agent’s updated probability by Pt(E). Standard
Bayesian conditioning consists of setting

PtðEÞ ¼ P0ðEjDÞ: (15.2)

The rule Eq. 15.2 can be viewed as a possible answer to the general question of

how an agent’s probabilities at two different times should be related. We will

address this question from a personalist Bayesian perspective [4–9], according to

which probabilities express an agent’s uncertainty, or degrees of belief, about future

events and acquire an operational meaning through decision theory [4]. Although

they are not determined by agent-independent facts, personalist probability

assignments are not arbitrary. Dutch-book coherence [5, 8, 9] as a normative

principle requires an agent to try her best to make her numerical belief assignments

conform to the usual rules of the probability calculus. When coupled with the

agent’s overall belief system, this is a powerful constraint [10]. Personalist Bayes-

ian probability is at the heart of Quantum Bayesianism, a radical new approach to

the foundations of quantum mechanics developed by Caves, Fuchs, Schack,

Appleby, Barnum, and others. (See [11, 12] for an extensive reference list.) The

motivation for the present investigation is to explore the relevance of Bayesian

conditioning to the Quantum Bayesian program.

It was first pointed out by Hacking [13] that there is no coherence argument that

compels the agent to take into account the earlier probabilities P0ðEjDÞ when

setting the later probabilities Pt(E). Similar points have been made by other authors

(see, e.g., [14]). Hacking was writing about the standard synchronic Dutch book

arguments, but the above statement remains true even for the diachronic Dutch

book arguments, originally due to Lewis and first reported by Teller [15]. Without

further assumptions, diachronic coherence does not compel the agent, at t ¼ t, to
use the Bayesian conditioning rule (15.1).

The way diachronic coherence arguments connect probability assignments at

different times is more subtle. It is expressed elegantly through van Fraassen’s

reflection principle [16], which itself entails the related constraints of Shafer [17]
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and Goldstein [18]. The key idea behind the reflection principle is to consider the

agent’s beliefs about his own future probabilities, i.e., to consider expressions such

as P0(Pt(E) ¼ q). Shafer [17] put the point very nicely,

This interpretation is based on the assumption that a person has subjective probabilities for

how his information and probabilities may change over time. This means we are concerned

not with how the person should or will change his beliefs, but rather with what he believes

about how these beliefs will change. [Emphases added.]

The same idea underlies the approach this paper takes towards Bayesian condi-

tioning and quantum decoherence.

In the next section, we present a detailed example where the agent appears

justified to depart from the Bayesian conditioning rule. In Sect. 15.3 we review the

standard, synchronic, Dutch book arguments and show why they do not imply

Bayesian conditioning. Section 15.4 introduces diachronic coherence and presents a

derivation of the reflection principle. In Sect. 15.5 we show that the Bayesian

conditioning rule can be understood as a variant of the reflection principle valid

for a particular class of situations. Section 15.6 addresses an argument that has been

advanced against the reflection principle and shows that it is based on a misconcep-

tion of the role that coherence considerations have in probability assignments.

Finally, in Sect. 15.7 we give a natural application of the reflection principle to

decoherence in quantum mechanics from a Quantum Bayesian perspective.

15.2 Example: Polarization Data

Consider a physicist running an experiment to discover the linear polarization of

photons coming from a rather complicated optical device which he had built

himself. Perhaps he is convinced that every photon is produced the same way,

only that he has forgotten which orientation y he gave to a certain polarization filter
deep within the set-up. It might thus be easier to discover y and recalibrate than to

tear the whole thing apart and readjust. A statistical analysis is in order.

Our experimenter will measure polarization for a sequence of n individual

photons and carry out a Bayesian analysis of the outcomes consisting of a string,

sn, of zeros and ones. The zeros stand for horizontal polarization and ones for

vertical polarization. Before starting, the experimenter records his probabilistic

prior, which in the personalist approach to probability adopted in this paper,

represents his Bayesian degrees of belief about the measurement outcomes. To be

specific we assume that the prior is exchangeable, i.e., of the form [8, 19]

P0ðsnÞ ¼
ð1
0

q0ðxÞxkð1� xÞn�kdx ; (15.3)
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where k is the number of zeros in sn, and q0(x) is a probability density. If the

experimenter is completely ignorant of what orientation he had given the filter, he

might assume q0(x) to be the constant density, but the precise form of q0(x) is of no
great importance to the argument below.

The prior P0(sn) is a convex sum of binomial distributions {x, 1�x}, with
x ¼ cos2y. It is symmetric in the sense that it is invariant under permutations of

the bits in sn. By adopting this prior, the experimenter judges that the order in which

the photons arrive is irrelevant to his analysis. To a Bayesian, this is in fact the

operational meaning that all photons are “produced the same way.” A simple

consequence of this is that a posterior probability calculated from this prior by

Bayesian conditionalization after some number of trials will not depend on the

order of the zeros and ones found in those trials.

Suppose now that the experimenter observes 4,000 trials, and finds very nicely

that the number of zeros and ones is not very far from 2,000 each. Technically this

means that if the experimenter updates his prior to a posterior by Bayesian

conditionalization, the posterior for the next n bits will be

PposteriorðsnÞ ¼
ð1
0

q0ðxÞxkð1� xÞn�kdx ; (15.4)

where q0(x) is a function on the interval [0,1] peaked very near 1/2. If the experi-

menter were asked to bet on the next bit, this probability distribution would advise

him to bet at close to even odds.

But now consider the following fantastic scenario. Suppose the experimenter

becomes aware that the string sn he accumulated is identical to the first 4,000 bits of

the binary expansion of p! Any sane person would be flabbergasted. Even though

the experimenter built the device with his own hands, he would surely wonder what

was up. Perhaps one of his lab partners has played an immense joke on him?

The following question becomes immediate: If the experimenter is rational, how

should he bet now on the next bit? Sticking doggedly with Bayesian conditioning,

he would be advised to use near even odds, just as before. But the number p is too

significant to ignore: His heart says to bet with

PtðEÞ ¼ 0:99 (15.5)

on the event E that the next bit equals the 4001th bit of the binary expansion of p.
Our experimenter faces a stark choice: He can either ignore his heartfelt belief and

use the value Pt(E) � 1/2 obtained from the conditioning rule, or he can ignore the

conditioning rule and use the value Pt(E) ¼ 0.99 representing what he really feels.

Both choices are deeply problematical: the second one seems to be incoherent

because it is contradicted by the usual understanding of the formalism, whereas the

first one seems to be ignoring common sense to the point of being foolish.

Is the second choice really incoherent however? Does it violate a reasonable

normative requirement? We will see in the next sections that this is not the case.
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15.3 Synchronic Dutch Book

A simple way to give an operational meaning to personalist Bayesian probabilities

is through the agent’s betting preferences. When an agent assigns probability p to an
event E, she regards $p to be the fair price of a standard lottery ticket that pays $1 if
E is true. In other words, an agent who assigns probability p to the event E regards

both buying and selling a standard lottery ticket for $p as fair transactions; for her,

the ticket is worth $p.
In the following, we will call a set of probability assignments incoherent if it can

lead to a sure loss in the following sense: there exists a combination of transactions

consisting of buying and/or selling a finite number of lottery tickets which (i) lead to

a sure loss and (ii) the agent regards as fair according to these probability

assignments. A set of probability assignments is coherent if it is not incoherent.
We accept as a normative principle that an agent should aim to avoid incoherent

probability assignments.

The standard, synchronic, Dutch book argument [5, 8, 9] shows that an agent’s

probability assignments P0 at a given time are coherent if and only if they obey the

usual probability rules, i.e., 0 � P0(E) �1 for any event E; P0(S) ¼ 1 if the agent

believes the event S to be true; and P0(E∨D) ¼ P0(E) + P0(D) for any two events E
and D that the agent believes to be mutually exclusive.

In this approach, conditional probability is introduced as the fair price of a

lottery ticket that is refunded if the condition turns out to be false. Formally, let

D and E be events, and let $q be the price of a lottery ticket that pays $1 if both D
and E are true, and $q (thus refunding the original price) if D is false. For the agent

to make the conditional probability assignment P0(E|D) ¼ qmeans that she regards

$q to be the fair price of this ticket.

It is then a consequence of Dutch-book coherence that the product rule P0(E,
D) ¼ P0(E|D)P0(D) must hold [9]. In other words, conditional probability

assignments violating this rule are incoherent. If P0(D) 6¼ 0, we obtain Bayes’s

rule,

P0ðEjDÞ ¼ P0ðE;DÞ
P0ðDÞ : (15.6)

It is worth pointing out that Bayes’s rule emerges here as a theorem, combining

terms that are defined independently, in contrast to the common axiomatic approach

to probability theory where Eq. 15.6 is used as the definition of conditional

probability.

The above shows that a coherent agent must use Bayes’s rule to set the condi-

tional probability P0(E|D). The value of P0(E|D) expresses what ticket prices the
agent regards as fair at time t ¼ 0, i.e., before she finds out the truth value of either

D or E. It says nothing about what ticket prices she will regard as fair at some later

time t > 0.
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In particular, assume that, at some time t ¼ t > 0, the agent learns that D is true

and updates her probabilities accordingly. Denote by Pt(E) the agent’s updated

probability of E, meaning that she now regards $Pt(E) as the new fair price of a

ticket that pays $1 if and only if E is true. Nothing in the Dutch book argument

sketched above implies that Pt(E) should be equal to P0(E|D) [13]. All probabilities
used in the argument are the agent’s probabilities at time t ¼ 0; they are defined via

ticket prices for bets on E, D and their conjunction which the agent regards as fair at

t ¼ 0. The Dutch book argument leading to Eq. 15.6 is a synchronic argument. It

does not connect in any way the agent’s probability assignments at t ¼ 0 and t ¼ t.
In particular, it does not imply that the agent has to use Bayesian conditioning to

update her probabilities. In the next section we will see what connection between

the agent’s probability assignments at different times actually is implied by dia-

chronic Dutch book arguments.

15.4 Diachronic Dutch Book

To set the scene, we consider an investor who today buys 500 shares of some

company at a price of $20 each, which he regards as a fair deal. The next day, his

appreciation of the market has changed, and he sells his 500 shares at $18 each,

which now, given the new situation, he again regards as a fair deal. Despite the fact

that the investor makes a net loss of $1,000, he does not behave irrationally. By

selling his shares at a lower price on the next day, he simply cuts his losses.

But what if the investor is certain today that tomorrow he will regard $18 as the

fair price for a share? It would then be foolish for him to buy, today, 500 shares for

$20 each, because he is certain that tomorrow he would be willing to sell the shares

for $18 each, leading to a net loss of $1,000. As a matter of fact, buying shares at

any price above $18 today would be foolish in this situation, as would be selling

shares today at any price below $18.

In the above example, we have assumed that money has the same utility for the

investor today and tomorrow, i.e., we have assumed a zero interest rate. This is an

assumption we will make throughout the present paper. More precisely, we will

assume that the time at which she receives a sum of money is irrelevant to a

Bayesian agent.

In probability language, what we have just described is the following. Assume

P0(E) is an agent’s probability at t ¼ 0 of some event E. The agent buys a lottery
ticket that pays $1 if E is true, for $P0(E) which she regards as the fair price. At a

later time t ¼ t, she updates her beliefs. Her probability for E is now Pt(E), which
happens to be less than P0(E). At this point, the agent decides to cut her losses by

selling the ticket for $Pt(E). Despite the net loss, there is nothing irrational about

the agent’s transactions.

But now suppose that at t ¼ 0 the agent is certain that, at t ¼ t, her probability
of E will be q, where q 6¼ P0(E). In the case q < P0(E), this means that, at t ¼ 0,

she is willing to buy a ticket for $P0(E) although she already knows that later she
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will be willing to sell it for the lower price $q. In the case q > P0(E), it means that,

at t ¼ 0, she is willing to sell a ticket for $P0(E) although she already knows that

later she will be willing to buy the same ticket for the higher price $q. In both cases,
already at t ¼ 0 the agent is certain of a sure loss.

This simple scenario contains the main idea of van Fraassen’s diachronic Dutch

book argument. Similar to the synchronic case discussed in the previous section, we

call an agent’s probability assignments incoherent if there exists a combination of

transactions consisting of buying and/or selling a finite number of lottery tickets at

two different times such that (i) already at the earlier time, the agent is sure of a net
loss; and (ii) each transaction is regarded as fair by the agent according to her

probability assignments at the time the transaction takes place. We will continue to

accept as a normative principle that an agent should aim to avoid incoherent

probability assignments.

To turn our simple scenario into the full-fledged diachronic Dutch-book argu-

ment, we only need to relax the assumption that at t ¼ 0 the agent is certain that

Pt(E) ¼ q. Instead, we assume that

P0 PtðEÞ ¼ qð Þ>0 ; (15.7)

i.e., at t ¼ 0 the agent believes with some positive probability that at t ¼ t her

probability of E will be equal to q. We will now show that this implies the agent’s

probability assignments are incoherent unless

P0 E jPtðEÞ ¼ qð Þ ¼ q ; (15.8)

i.e., unless at t ¼ 0 the agent’s conditional probability of E, given that Pt(E) ¼ q,
equals q. This is van Fraassen’s reflection principle [16].

To derive the reflection principle, denote by Q the proposition Pt(E) ¼ q, i.e.,
the assertion that at time t ¼ t, the agent will regard $q as the fair price for a ticket
that pays $1 if and only if E is true. The inequality (15.7) thus becomes P0(Q) > 0.

To establish that coherence implies the reflection principle (15.8), one must show

that the assumption P0(E|Q) 6¼ q leads to a sure loss for an appropriately chosen set
of bets no matter what outcomes occur for the events considered.

As a warm-up to gain intuition, suppose that P0(E|Q) > q and thatQ is true. This

means that at t ¼ 0, the agent is willing to buy a ticket for $P0(E|Q) that pays $1 if

both Q and E are true, and refunds the ticket price if Q is false. But, because of Q’s
truth, this ticket will further be equivalent to a ticket that pays $1 if E is true.

Finally, the truth of Q also implies that at t ¼ t the agent will be willing to sell this
ticket for $q, which is less than what she paid for it. In other words, if Q is true, the

agent is sure to lose $d, where d ¼ P0(E|Q) � q.
But this simple argument—illustrative though it may be—is not a full-fledged

proof of incoherence. To get a full proof we need to show that the agent is sure of a

loss not only when Q turns out to be true, but also when Q turns out to be false. For

this it is sufficient to consider an alternate scenario where there is a side bet on Q,
such that the agent loses some amount ifQ is false, and wins less than $d ifQ is true.
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Such a side bet may be realized by a lottery ticket that pays $d/2 if Q is true, which

the agent is willing to buy for $P0(Q)d/2.
We have thus the following combination of transactions, each of which the agent

regards as fair at the time it takes place:

(i) to buy, at t ¼ 0, for $P0(E|Q), a ticket that pays $1 if bothQ and E are true, and

refunds the ticket price if Q is false;

(ii) to buy, at t ¼ 0, for $P0(Q)d/2, a lottery ticket that pays $d/2 if Q is true;

(iii) if Q is true (i.e., if Pt(E) ¼ q), to sell, at t ¼ t, for $q, a lottery ticket that pays
$1 if E is true.

Already at t ¼ 0, the agent knows that these transactions result in a net loss,

equal to $(P0(Q) + 1)d/2 if Q is true, and $dP0(Q)/2 if Q is false. We have thus

shown that the assumption P0(E|Q) > q implies that the agent’s probability

assignments are incoherent.

The final piece of a proof is to consider the case P0(E|Q) < q. By reversing the

signs of all transactions above, it is easy to see that this case leads to a sure loss in

exactly the same way. Putting these two cases together, this completes the full

derivation of the reflection principle.

The coherence condition of Shafer [17] and Goldstein [18] follows by a simple

application of synchronic coherence along with the reflection principle. Suppose

the agent instead of contemplating a single Q ¼ [Pt(E) ¼ q] for what she will

believe of E at t ¼ t, contemplates a range of mutually exclusive and exhaustive

propositions {Q} to which she assigns probabilities P0(Q). Then, straightforward
synchronic coherence requires

P0ðEÞ ¼
X
Q

P0ðQÞP0ðEjQÞ ¼
X
q

P0 PtðEÞ ¼ qð ÞP0 E jPtðEÞ ¼ qð Þ ; (15.9)

for which reflection in turn implies

P0ðEÞ ¼
X
q

P0 PtðEÞ ¼ qð Þ q : (15.10)

This implication of the reflection principle will turn out to be particularly

important for our exposition of quantum decoherence.

15.5 Bayesian Conditioning in Reflectional Terms

The reflection principle is a constraint on an agent’s present beliefs about her

future probability assignments. It does not directly provide an explicit rule for

assigning probabilities, either for the present ones or the future ones. An agent

whose probabilities violate the reflection principle is incoherent and should strive to
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remove this incoherence. The reflection principle does not provide a recipe for how

to do this.

One way in which the agent can achieve coherence is by adopting an “updating

strategy” [20] based on the Bayesian conditioning rule. We will now explore to

what extent the Bayesian conditioning rule follows for such a strategy in a way

analogous to the reflection principle—that is, in a way “concerned not with how the

person should or will change his beliefs, but rather with what he believes about how

these beliefs will change” [17].

Let E and D be events, and let P0(E), P0(D) and P0(D|E) denote the agent’s

respective probabilities at t ¼ 0. Assume that the truth value of D will be revealed

to the agent at t ¼ t. Suppose she now adopts the strategy that, if at t ¼ t she learns
that D is true, her updated probability of E, denoted by Pt(E), will be given by some

value q, 0 � q � 1.

The above can be phrased in terms of the agent’s probabilities at t ¼ 0. For her

to adopt this strategy simply means that she is certain that, if D turns out to be true,

she will make the probability assignment Pt(E) ¼ q, i.e.,

P0 PtðEÞ ¼ qjDð Þ ¼ 1 : (15.11)

This statement about the agent’s current belief about her future probability

captures the essence of Bayesian conditioning. Together with diachronic coherence

it implies that

q ¼ P0ðEjDÞ ; (15.12)

i.e., the Bayesian conditioning rule. Presented in this way, it can be regarded as a

variant of the reflection principle, valid whenever the condition (15.11) holds.

To derive Eq. 15.12, we consider again the combinations of bets introduced in

Sect. 15.4, but with the event D replacing Q throughout. We assume first that P0(E|
D) > q and define d ¼ P0(E|D) � q. The transactions are

(i) to buy, at t ¼ 0, for $P0(E|D), a ticket that pays $1 if bothD and E are true, and

refunds the ticket price if D is false;

(ii) to buy, at t ¼ 0, for $P0(D)d/2, a lottery ticket that pays $d/2 if D is true;

(iii) if D is true, to sell, at t ¼ t, for $q, a lottery ticket that pays $1 if E is true.

At t ¼ 0, the agent is certain that these transactions result in a net loss, equal to

$(P0(D) + 1)d/2 if D is true, and $P0(D)d/2 if D is false. At t ¼ 0, the agent regards

(i) and (ii) as fair transactions, and because of Eq. 15.11, she is certain that at

t ¼ t she will regard (iii) as a fair transaction. We have thus shown that the agent’s

probabilities are incoherent if P0(E|D) > q. The case P0(E|D) < q is similar. Thus

coherence implies that P0(E|D) ¼ q, as required.
The key assumption in this derivation, expressed by Eq. 15.11, is that the agent

can identify an event D that she expects to determine her future beliefs. There are

more general updating strategies that are not of this form. Jeffrey’s probability

kinematics [21] is such an example. Probability kinematics is a coherent updating
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strategy [20] which does not make use of the Bayesian conditioning rule, but it too

can be put in reflectional terms as we did with Bayesian conditioning.

Actually, one can go still further along these reflectional lines if one strengthens

the assumption in Eq. 15.11 to also make a direct identification between the

possible values for Pt(E) and the D, i.e., that there is bijection between them. In

such a case, one can say that Bayesian conditioning follows directly from the

reflection principle. For then,

P0ðEjDÞ ¼ P0ðEjD;QÞ ¼ P0ðEjQÞ (15.13)

by standard synchronic logic, and P0(E|Q) ¼ q by reflection.

The discussion above is entirely in terms of the agent’s beliefs at t ¼ 0. What if,

at t ¼ t, after learning that D is true, the agent re-analyses the situation, possibly

taking into account circumstances she was not aware of at t ¼ 0, and concludes that

her new probability, Pt(E), differs from P0(E|D). Does this imply that her proba-

bility assignment is incoherent? The answer is no. Coherence is a condition about

an agent’s current beliefs, including her beliefs about her future probability

assignments. In the above scenario, the agent’s beliefs at t ¼ t are coherent as

long as 0 � Pt(E) � 1. Nothing in the Dutch book argument implies that the

agent’s actual probabilities at t ¼ t are constrained by her probabilities at t ¼ 0,

which supports the conclusion of Sect. 15.2 that there is no conflict with coherence

for an experimenter who assigns Pt(E) ¼ 0.99 although the Bayesian conditioning

rule appears to mandate Pt(E) � 1/2.

15.6 Sirens, Car Keys, and Married Couples

We have seen in the previous section that one way of satisfying the reflection

principle and thereby avoiding incoherence is to set your future probabilities in

terms of your current probabilities via Bayesian conditioning. The form of the

reflection principle, however, suggests a different way of proceeding. Since

Eq. 15.8 expresses a constraint on a current probability, conditioned on a future

probability assignment, one could take the future probability as given and set the

current probability in terms of it, thus reversing the usual direction of Bayesian

updating. This can be a useful and legitimate procedure. An important application

will be given in Sect. 15.7 below.

If the reflection principle is taken as a rule to set future probabilities in terms of

current probabilities, it can lead to decisions that appear irrational [22–25].

A classic example [26] is provided by the story of Ulysses and the Sirens. Ulysses

knows that tomorrow, as soon as he is within earshot of the Sirens, he will make a

catastrophic decision. Does the reflection principle force him to endorse this

catastrophic decision today?

Since analysing this story would involve a discussion of utility, here is another

famous example [23]. I know that I will get drunk this evening and that I will assign
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probability 10�6 to the event E of my causing an accident while driving home late at

night. Does reflection imply that I must assign probability 10�6 to the event E now?

Examples like this have led, e.g., Christensen [23] to the conclusion that the

reflection principle is unsound. This conclusion stems from a confusion about the

role of coherence arguments, however. The reflection principle can be regarded as a

tool to detect incoherence. The Dutch book arguments show that incoherent proba-

bility assignments have the potential to lead to catastrophic consequences. This

justifies accepting a normative rule that an agent should adhere to the reflection

principle in order to avoid incoherence. The reflection principle does not, however,

give a prescription for setting probabilities, either today’s in terms of tomorrow’s or

vice versa. There is a range of options for the agent once she has detected an

incoherence, as we will now illustrate.

Suppose that, in the example above, my initial conditional probability for an

accident if I drive home drunk is 0.01. Suppose further that I am certain that I will

get drunk, and that my probability for an accident will then be 10�6. These

probabilities violate the reflection principle. My probability assignments are there-

fore incoherent. One way of avoiding this incoherence would be to decide not to get

drunk, which would mean assigning probability 0 to this event and therefore restore

coherence. There is another very practical solution, which is to give my car keys to

a trusted friend before I start drinking. My probability assignments will still be

incoherent, but I will be unable to act on them.

Ulysses’s solution, 3,000 years ago, was very similar. He ordered his men to

chain him to the mast of his ship. His men were to plug their ears. He accepted

incoherence, but prevented himself from acting on his incoherent probability

assignments. His men achieved coherence by reducing the probability of hearing

the Sirens to zero. Coherence is an ideal one should always strive for. Incoherent

probability assignments have the potential to lead to catastrophic consequences. If

one can’t achieve coherence, one should give up the car keys, plug one’s ears or

chain oneself to a mast.

In his article contra reflection, Christensen [23] pointed out that the reflection

principle is very similar to a related principle which he called solidarity. Consider
husband and wife who share a bank account. Denote the husband’s probabilities by

Ph and the wife’s by Pw, and consider some event, E. Solidarity is the principle that,
given that the wife’s probability of E is q, the husband’s probability must also be q,
i.e.,

Ph EjPwðEÞ ¼ qð Þ ¼ q : (15.14)

Violating solidarity leads to a sure loss for the joint bank account exactly like in

the diachronic Dutch book argument for the reflection principle.

Christensen argued that the solidarity principle is clearly absurd. This may be a

case of confusion between normative and descriptive rules. The solidarity principle

is a normative principle and does not claim that actual agents’ probability

assignments are always compatible with it. What it says instead is that, to avoid

potential catastrophic consequences for their common bank account, husband and
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wife must strive for coherence. The solidarity principle, or more generally, the

reflection principle, provides a tool to detect incoherence. It is then up to the agents

how to resolve the incoherence. The husband might give, the wife might give, or

they might compromise after debating all the relevant issues. The key point is that

deliberation is to their mutual benefit, and coherence is their goal.

15.7 Quantum Decoherence

In the last section, we described how the reflection principle can be used to detect

incoherence and thus to avoid catastrophic consequences. In this section, we will

see that there is a generic situation in quantum theory where the reflection principle

is used directly to set today’s probabilities in terms of tomorrow’s.

We will look at a standard quantum measurement situation [27] from the

perspective of Quantum Bayesianism, according to which all quantum states,

pure or mixed, represent an agent’s degrees of belief about future measurement

outcomes. Assume an agent has, at time t ¼ 0, assigned a quantum state (i.e.,

density operator) r0 to a quantum system. She intends to perform two

measurements on the system, the first one at time t ¼ t > 0, the second one at a

still later time t ¼ t0. She describes the first measurement by a collection of trace-

decreasing completely positive maps fF ig, each corresponding to a potential

outcome, i, for the first measurement. These completely positive maps determine

the agent’s probabilities P0ðiÞ ¼ tr½F i ðr0Þ�, at time t ¼ 0, for the outcomes i, but
they also determine the states she will assign to the system after the measurement: If

outcome i, then rt ¼ P0ðiÞ�1 F i ðr0Þ.
To describe the second measurement, it is enough to use a POVM, i.e., positive

operator valued measure, {Ej}, since we will not be considering any further

measurements after it. In this description each positive operator Ej corresponds to

a potential outcome, j, for the second measurement. If rt is the agent’s system state

at time t ¼ t, then her probabilities, at t ¼ t, for the outcomes j are given by

Pt(j) ¼ tr(Ejrt).
Now suppose our agent is confronted at time t ¼ 0 with a bet concerning the

outcome j at t ¼ t0. How should she gamble without having yet performed the

measurement at t ¼ t? We can read the answer straight off the reflection principle

as written in the form of Goldstein and Shafer, Eq. 15.10—remember here that Pt(j)
is implicitly dependent upon i:

P0ðjÞ ¼
X
i

P0ðiÞPtðjÞ ¼
X
i

tr½Ej F i ðr0Þ� : (15.15)

Cleaning this up a bit, we can write:

P0ðjÞ ¼ tr½Ej

X
i

F i ðr0Þ� ¼ trðEj r00Þ ; (15.16)
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where

r00 ¼
X
i

F i ðr0Þ: (15.17)

What we have shown here is that the reflection principle entails that the agent

can obtain her probabilities at t ¼ 0 for the outcomes of the second measurement

from the density operator r00 . The state r00 , which has the form of a “decohered”

state, is the agent’s quantum state at t ¼ 0 as far as the second measurement is
concerned.

These conclusions are valid for any pair of measurements, but a little more can

be said if the POVM {Ej} is informationally complete, i.e., if the state rt is fully
determined by the probabilities Pt (j). In this case r00 as defined in Eq. 15.17 is the

only density operator that gives rise to the probabilities P0 (j) required by the

reflection principle.

Equation 15.17 takes a perhaps more familiar form if the first measurement is a

von Neumann measurement and the updating is given by the L€uders rule. In this

case the action of the maps F i on the state r0 can be written as F i ðr0Þ ¼ Pir0Pi,

where the Пi are projection operators, and Eq. 15.17 becomes

r00 ¼
X
i

Pir0Pi: (15.18)

A common attitude about quantum measurement is that it is something that

demands a detailed physical explanation. Much of the folklore since the publication

of John von Neumann’s 1932 book Mathematical Foundations of Quantum
Mechanics is that a quantum measurement is something that occurs in two steps:

First, there is a kind of “pre-measurement” where the quantum system becomes

entangled with a measuring device. Secondly, there is a “selection” of one of the

entangled state’s components; this is what singles out a particular measurement

result.

The trouble with this description, however, is that the entangled wave function,

with its freedom to be expressed in any bipartite basis, does not have enough

structure to specify how it should be decomposed so that such a “selection” can

be effected. The theory of quantum decoherence, developed by Zeh, Zurek, and

others [28], attempts to overcome this deficiency in the von Neumann story by

supplementing it with a further story of interaction between the measuring device

and an environment: The idea is that the specific form of the interaction with the

environment specifies how the joint state of system plus device ought to be

decomposed. In this picture, the decoherence process preceding the “selection”

step leads to a state of the form (15.18), or more generally, (15.17). What remains

mysterious in this picture, however, is “the selection step” itself. Decoherence

theorists usually leave that question aside, implicitly endorsing one variety or

another of an Everettian interpretation of quantum mechanics.
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In contrast, the Quantum Bayesian view of quantum theory leaves most of the

usual von Neumann story aside: Instead of taking quantum states and unitary

evolution as the ontic elements to which the theory refers, it takes the idea of an

individual agent’s decisions and experience as the theory’s real subject matter. In

this view, the process called “quantum measurement” is nothing other than an agent

acting upon the world and experiencing the consequences of her actions. For a

Quantum Bayesian, the only physical process in a quantum measurement is what

was previously seen as “the selection step”—i.e., the agent’s action on the external

world and its unpredictable consequence for her, the data that leads to a new state of

belief about the system.

Thus, it would seem there is no foundational place for decoherence in the

Quantum Bayesian program. And this is true. Nonetheless, in the two-time mea-

surement scenario we described above, there is a coherent state assignment at time

t ¼ 0 for the second measurement that mimics a belief in decoherence. This is

simply a consequence of the implications of the reflection principle. The

“decohered” state r00 is not the agent’s state after she has made the first measure-

ment (that would have been one of the rt depending upon the i found). It is not the
state resulting from the measurement interaction before the selection step takes

place as the decoherence program would have it (nothing is so intricately modeled

here). It is simply a quantum state the agent uses at time t ¼ 0 before the first

measurement to make decisions regarding the outcomes of the second

measurement.

That is the story of decoherence from the Quantum Bayesian perspective.

Decoherence does not come conceptually before a “selection,” but rather is

predicated on a time t ¼ 0 belief regarding the possibilities for the next quantum

state at time t ¼ t. Decoherence comes conceptually after the recognition of the

future possibilities. In this sense the decoherence program of Zeh and Zurek [28],

regarded as an attempt to contribute to our understanding of quantum measurement,

has the story exactly backward.
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Chapter 16

The World According to de Finetti: On de

Finetti’s Theory of Probability and Its

Application to Quantum Mechanics

Joseph Berkovitz

Abstract Bruno de Finetti is one of the founding fathers of the subjectivist school

of probability, where probabilities are interpreted as rational degrees of belief. His

work on the relation between the theorems of probability and rationality is among

the corner stones of modern subjective probability theory. De Finetti maintained

that rationality requires that degrees of belief be coherent, and he argued that the

whole of probability theory could be derived from these coherence conditions. De

Finetti’s interpretation of probability has been highly influential in science. This

paper focuses on the application of this interpretation to quantum mechanics. We

argue that de Finetti held that the coherence conditions of degrees of belief in events

depend on their verifiability. Accordingly, the standard coherence conditions of

degrees of belief that are familiar from the literature on subjective probability only

apply to degrees of belief in events which could (in principle) be jointly verified;

and the coherence conditions of degrees of belief in events that cannot be jointly

verified are weaker. While the most obvious explanation of de Finetti’s

verificationism is the influence of positivism, we argue that it could be motivated

by the radical subjectivist and instrumental nature of probability in his interpreta-

tion; for as it turns out, in this interpretation it is difficult to make sense of the idea

of coherent degrees of belief in, and accordingly probabilities of unverifiable

events. We then consider the application of this interpretation to quantum mechan-

ics, concentrating on the Einstein-Podolsky-Rosen experiment and Bell’s theorem.
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16.1 The Background and Motivation

The foundations of this paper were laid in 1988/1989, when I worked on a seminar

paper for Itamar Pitowsky’s course in the philosophy of probability.1 The question

that motivated the paper was whether subjective probability, and more specifically

de Finetti’s subjectivist interpretation, could successfully be applied in quantum

mechanics (QM). This question, which was raised by Itamar, may seem a bit

anachronistic now that the subjective interpretation of quantum probabilities is

gaining popularity. But back then this interpretation was undeveloped.2

In de Finetti’s interpretation, probabilities have no objective reality. They are the

expressions of the uncertainties of individuals. Itamar’s question was not whether

such a radical subjective interpretation could constitute an adequate interpretation

of probabilities in quantum mechanics. Rather, it was the question whether de

Finetti’s interpretation could be reconciled with the apparent non-classical charac-

ter of these probabilities. We explain this concern in Sect. 16.1.3, and discuss it in

more detail in Sect. 16.2. To prepare the ground for this discussion, we now turn to

present Bell’s theorem and two different interpretations of it. In Sects. 16.3 and

16.4, we introduce the main ideas of de Finetti’s theory of probability, and in

Sects. 16.5–16.7 we discuss the application of this theory to the quantum realm.

16.1.1 Bell’s Theorem and Its Common Interpretation

Recall the Einstein-Podolsky-Rosen (EPR) experiment. Pairs of particles are emit-

ted from the source in opposite directions. When the particles are spacelike

separated, they each encounter a measurement apparatus that can measure their

position or momentum. The distant measurement outcomes are curiously

correlated. Einstein et al. [6] thought that this kind of correlation reflects the

incompleteness of QM rather than non-local influences. They argued that the QM

state-description is incomplete, and they believed that a more complete description

would render the distant measurement outcomes probabilistically independent. The

idea is that the correlations between such distant outcomes could be explained away

by a local common cause: the complete pair-state at the emission. Given this state,

the joint probability of the outcomes would factorize into their single probabilities

(see Factorizability below), and so the correlations between them would not entail

the existence of non-locality.

1 See Berkovitz [1, 2].
2 For applications of the subjective interpretation to QM, see for example, Caves, Fuchs and

Schack [3–5] and Pitowsky [59]. While these applications appeal to de Finetti’s subjective theory

of probability, both the interpretation of de Finetti and the focus of its application are substantially

different from the ones offered below.
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In his celebrated theorem, Bell [7–11] considers models of the kind EPR may

have had in mind, but he focuses on Bohm’s [12] version of the experiment

(henceforth, the EPR/B experiment), where the measured quantities are spins in

various directions. These models postulate the existence of “hidden variables”

that are supposed to constitute a (more) complete pair’s state, and this state is

supposed to determine the measurement outcomes or their probabilities in a

perfectly local way. Bell’s theorem demonstrates that such models are committed

to certain inequalities concerning the probabilities of measurement outcomes, the

so-called “Bell’s inequalities,” which are violated by the predictions of QM and

(granted very plausible assumptions) actual experimental results. In Clauser and

Horne’s [13] version, the inequalities are concerned with the probabilities of

measurement outcomes of spins in two different directions in each wing of the

EPR/B experiment, henceforth the “Bell/CH inequalities” (for details, see

Sect. 16.2).

The common view is that Bell’s theorem demonstrates that local hidden-

variables models cannot reproduce the predictions of QM [7–11, 13–16]. On this

view, the derivation of Bell/CH inequalities involves the following premises.

(i) The distribution of the complete pair-state is determined by the QM pair-state,

and is independent of the settings of the measurement apparatuses. That is, for

any QM pair-state c, complete pair-states l, and setting of the L- and

R-apparatus to measure spins in the directions x and y, respectively, we have:

ðl� independenceÞ rcxyðlÞ ¼ rcðlÞ;

where rcðlÞ and rcxyðlÞ are the probability distributions of l given c and given

c& x&y, respectively. Note that in our notation for conditional probabilities, we

place the conditioning events in the subscript rather than after the conditionalization

stroke. Unlike Kolmogorov’s [17] axiomatization, in this approach conditional

probability is not defined as a ratio of unconditional probabilities. Rather, condi-

tional probability may be thought of as a conditional, which does not necessarily

entail the corresponding conditional probability a la Kolmogorov (for more details,

see Sect. 16.3.7). In this concept of conditional probability, the conditioning events

c and c& x&y are not part of the probability spaces referred by rcð Þ and rcxyð Þ,
respectively. To highlight this fact, we place them in the subscripts. As we shall see

later, this alternative concept of conditional probability is in line with de Finetti’s

theory of probability. Arguably, it is also a more appropriate representation of the

basic idea of conditional probability in other interpretations of probability [18, 19].

Yet, while this representation is important for pedagogical reasons, it is not

essential for our analysis of Bell’s theorem and the feasibility of interpreting

probabilities in the quantum realm along de Finetti’s theory.

(ii) For each complete pair-state l and apparatus settings x and y, the model

prescribes probabilities of single and joint measurement outcomes:

PlxðOxÞ; PlyðOyÞ and PlxyðOx&OyÞ, where Ox is the outcome “up” in x-spin
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measurement on the L-particle; and similarly, mutatis mutandis, for the out-

come Oy in the R-wing.

(iii) The joint probability of distant outcomes given the complete pair-state and

apparatus settings factorizes into the single probabilities of the outcomes. The

idea here is that the correlation between the distant outcomes are explained by

a common cause, i.e. the complete pair-state, so that conditionalization on the

common cause renders the outcomes probabilistically independent. More

precisely, for any l; x; y; Ox and Oy:

Factorizabilityð Þ PlxyðOx&OyÞ ¼ PlxðOxÞ � PlyðOyÞ:

(iv) The QM probabilities of outcomes are reproduced as statistical averages over

the model probabilities of outcomes – namely, as sum-averages over the model

probabilities according to the distribution of the complete pair-state. That is,

granted l-independence, for any c; x and y, we have:

PcxðOxÞ ¼
ð
l
PlxðOxÞ drðlÞ; PcyðOyÞ ¼

ð
l
PlyðOyÞ drðlÞ; PcxyðOx&OyÞ

¼
ð
l
PlxyðOx&OyÞ drðlÞ:

Bell’s theorem demonstrates that in any model that satisfies (i)-(iv), the

probabilities of measurement outcomes in the EPR/B experiment are

constrained by the Bell/CH inequalities (see Sect. 16.2). Thus, granted the

plausibility of l-independence and the overwhelming evidence for the empiri-

cal adequacy of QM (in its intended domain of application), the consensus has

it that Factorizability fails in this experiment. The failure of this condition is

commonly thought of as indicating some type of non-locality (for a recent

review of quantum non-locality, see [20] and references therein).

16.1.2 Fine’s Interpretation of Bell’s Theorem

Following Bell [10], the above analysis of Bell’s theorem relies on a principle of

causal inference which is similar to Reichenbach’s [21] principle of the common

cause. That is, it is assumed that non-accidental correlations have causal explana-

tion, and the kind of explanation is as spelled out in (iii) and (iv) above. While this

kind of inference is common, there are dissenting views. Fine [22–24] denies that

non-accidental correlations must have causal explanation, and he argues that the

correlations between the distant measurement outcomes in the EPR/B experiment

do not call for causal explanation; and Cartwright [25, Chaps. 3 and 6] and Chang

and Cartwright [26] challenge the assumption that common causes must render

their joint effects probabilistically independent.
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More important to our consideration, Fine [27, p. 294] argues that

(F) What hidden variables and the Bell/CH inequalities are all about are the

requirements that make “well defined precisely those probability distributions

for non-commuting observables whose rejection is the very essence of quantum

mechanics.”

The idea is that Bell’s theorem focuses onmodels that presuppose the existence of

joint probability over non-commuting spin observables in the EPR/B experiment – a

distribution that does not exist according to standard QM. In more detail, Fine [27]

argues that:

I. (Corresponding to “Proposition 1”) “The existence of a deterministic hidden-

variables model is strictly equivalent to the existence of a joint distribution

probability function PðAA0BB0Þ for the four observables of the experiment, one
that returns the probabilities of the experiment as marginals.” [27, p. 291]

II. (“Proposition 2”) “Necessary and also sufficient for the existence of a determin-

istic hidden-variables model is that Bell/CH inequalities hold for the

probabilities of the experiment.” [27, p. 293]

III. (“Proposition 3”) “There exists a factorizable stochastic hidden-variables model

for a correlation experiment if and only if there exists a deterministic hidden-

variables model for the experiment.” [27, p. 293]

Fine believes that (I)–(III) entails (F), and this suggests that the common

interpretation of Bell’s theorem – namely, that (granted the very plausible assump-

tion of l-independence) the violation of Bell/CH inequalities entails quantum non-

locality – is misguided.

16.1.3 Subjective Probability, Joint Distributions and Verifiability

De Finetti held that for degrees of belief to be coherent they have to be probabilities,

i.e. they have to satisfy the probability axioms. It is commonly presupposed, albeit

implicitly, that a person’s coherent degrees of belief concerning all the propositions

she considers are to be represented by a joint probability distribution, which returns

these degrees of belief as marginals; for notable examples, see Lewis’s [28]

“A Subjectivist’s Guide to Objective Chance” and Carnap’s [29] “On Inductive

Logic.” If the subjectivist interpretation were committed to such an assumption, and

the view that the Bell/CH inequalities follow from the assumption of a joint

distribution over non-commuting observables in the EPR/B experiment were cor-

rect, followers of this interpretation would be bound to have probabilities that are

constrained by Bell/CH inequalities, and accordingly incompatible with the

predictions of QM.

Indeed, followers of the subjectivist interpretation may agree with Fine’s analy-

sis of Bell’s theorem, yet reject the view that a person’s degrees of belief are to be
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represented by a single probability distribution. The question is whether they have

non-ad hoc reasons to reject this view. Based on a reconstruction of de Finetti’s

probability theory in Sects. 16.3 and 16.4, we shall argue in Sect. 16.5 that followers

of de Finetti have such reasons in the context of the EPR/B experiment and Bell’s

theorem. That is, we shall argue in Sect. 16.4 that de Finetti’s notion of coherent

degrees of belief embodies a certain verifiability condition. Consequently: (a)

Degrees of belief in events that are not verifiable have no definite coherence

conditions, and accordingly have no probability. (b) There are no joint probability

distributions over events that are not jointly verifiable. (c) The coherence conditions

of degrees of belief in events that are not jointly verifiable are weaker than they

would have been had the events been jointly verifiable. Thus, the coherence

conditions of degrees of belief in events that are not jointly verifiable are weaker

than the familiar coherence conditions discussed in the literature on subjective

probability. Accordingly, the inequalities that constrain the probabilities of such

events are weaker than those that constrain the probabilities of events that are

jointly verifiable.

In Sects. 16.5 and 16.7, we shall consider the implications of these consequences

for the structure of probabilities in models of the EPR/B experiment in which

probabilities are interpreted along de Finetti’s theory of probability. These sections

reflect the implications of de Finetti’s theory, as reconstructed in Sects. 16.3 and

16.4. De Finetti himself struggled to understand the nature of the QM probabilities

and their relation to “classical” probabilities. In Sect. 16.6, we shall briefly look at de

Finetti’s own analysis of the QM probabilities. But first we turn to present the Bell/

CH inequalities and to consider Fine’s claim that these inequalities follow from, and

are equivalent to the assumption of a joint distribution over non-commuting

observables in the EPR/B experiment.

16.2 Joint Distributions, Probabilistic Inequalities

and Bell’s Theorem

The term “Bell/CH inequalities” is ambiguous. It refers to different kinds of

inequalities. The first kind is a theorem of probability theory:

Bell=CH � probð Þ
� 1 � PlðX&YÞ þ PlðX0&YÞ þ PlðX&Y 0Þ � PlðX0&Y 0Þ � PlðXÞ � PlðYÞ � 0:

Indeed, this inequality obtains for any joint probability distribution over any four

events X; X0; Y; Y0 (or propositions about them). In the context of the hidden-

variables models of the EPR/B experiment, it is natural to think about l as the

complete pair-state, and X ðYÞ and X0 ðY0Þ as referring to spin properties of the

particles, or properties that determine their dispositions to spin in measurements.

For example, X ðYÞ may be the event of the L- (R-) particle spinning “up” in the
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direction x ðyÞ, or some other property that determines the disposition of the L- (R-)

particle to spin “up” along the direction x ðyÞ in a spin measurement along this

direction.

The second and third kinds of Bell/CH inequalities are not theorems of proba-

bility theory:

(Bell/CH - phys - lÞ � 1 � PlxyðOx&OyÞ þ Plx0yðOx0&OyÞ þ Plxy0 ðOx&Oy0 Þ
�Plx0y0 ðOx0&Oy0 Þ � PlxðOxÞ � PlyðOyÞ � 0

(Bell/CH - phys - cÞ � 1 � PcxyðOx&OyÞ þ Pcx0yðOx0&OyÞ þ Pcxy0 ðOx&Oy0 Þ
�Pcx0y0 ðOx0&Oy0 Þ � PcxðOxÞ � PcyðOyÞ � 0

where, as before, c is the QM pair-state, x (y) is the setting of the L- (R-) apparatus
to measure spin in the direction x (y), andOx (Oy) is the outcome “up” in x- (y-) spin
measurement on the L- (R-) particle; and similarly, mutatis mutandis, for x0 (y0) and
Ox0 (Oy0 ). (Bell/CH – physics – l) is an inequality of probabilities of the hidden-

variables model, whereas (Bell/CH – physics – c) is an inequality of QM

probabilities. The latter inequality is derived from the former by integrating over

all the complete pair-states l while assuming l-independence.
In (Bell/CH – prob) all the probabilities belong to the same probability space,

whereas in (Bell/CH – phys – l) and (Bell/CH – phys – c) each of the probabilities
belongs to a different probability space. This should be clear from the fact that each

of the probabilities in these latter inequalities has a different subscript. Thus, unlike

the former inequality, these inequalities cannot be derived purely on the basis of

considerations of coherence or consistency.

Indeed, (Bell/CH – phys – l) and (Bell/CH – phys – c) are sometimes

represented in terms of conditional probabilities a la Kolmogorov with the condi-

tioning events placed after the conditionalization stroke rather than in the subscript,

where in each inequality all the probabilities are embedded in one “big” probability

space:

(Bell/CH –phys – l – big)

�1 � PðOx&Oy=l&x&yÞ þ PðOx0&Oy=l&x0&yÞ þ PðOx&Oy0=l&x&y0Þ
�PðOx0&Oy0=l&x0&y0Þ � PðOx=l&xÞ � PðOy=l&yÞ � 0

(Bell/CH – phys – c – big)

�1 � PðOx&Oy=c& x&yÞ þ PðOx0&Oy=c&x0&yÞ þ PðOx&Oy0=c& x&y0Þ
�PðOx0&Oy0=c&x0&y0Þ � PðOx=c&xÞ � PðOy=c&yÞ � 0:

Yet, these inequalities are not theorems of probability theory. Unlike (Bell/CH –

prob), they cannot be derived from the assumption of a joint distribution over the

measurement outcomes, the (QM or complete) pair-state and apparatus settings.
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We shall discuss the relationships between (Bell/CH – prob) and (Bell/CH – phys –

l) below and in Sect. 16.3.7.

In hidden-variables models of the EPR/B experiment that postulate the existence

of definite values for all the four spin quantities that are involved in the Bell/CH

inequalities, it is natural (though not necessary) to suppose a joint probability over

these probabilities.3 Thus, in such models, it is plausible to expect (Bell/CH – prob).

But (Bell/CH – prob) is neither necessary nor sufficient for (Bell/CH – phys – c) or
(Bell/CH – phys – c – big). Indeed, unless we make some assumptions about the

relationships between the probabilities of the spin quantities in (Bell/CH – prob)

and the probabilities of their measurement outcomes, the assumption of joint

probability over these quantities will do little to constrain the probabilities of

their measurement outcomes. Two natural assumptions are l-independence and

the assumption that the probabilities of spin-measurement outcomes “mirror” the

probabilities that the particles’ spins have before the measurements: for any spin

properties X and Y, apparatus settings x and y to measure these properties, and the

corresponding measurement outcomes Ox and Oy,

(Mirror) PlxðOxÞ ¼ PlðXÞ; PlyðOyÞ ¼ PlðYÞ; PlxyðOx&OyÞ ¼ PlðX&YÞ:

Although these assumptions may seem natural, models of the EPR/B experiment

that postulate joint probability over the values of the particles’ spin in various

directions violate at least one of these assumptions; and their violation bears

directly on the question whether the quantum realm involves some kind of non-

locality. l-independence fails in models of the experiment that postulate retro-

causal influences from the measurement events to the source at the emission, so that

the distribution of the complete pair-state depends on the measured quantities (for

recent discussions of such models, see [31–35], and references therein). In such

models, the QM statistics may be accounted for by such retro-causal influences

rather than non-locality.

Mirrormay be violated in various “hidden-variables” theories. For example, it is

violated in Bohmian mechanics, if X and X0 (Y and Y0) are respectively the positions
of the L- (R-) particle relative to planes aligned along the directions x and x0 (y and
y0) at the emission. In Bell’s [36] “minimal” Bohmian mechanics spins are not

intrinsic properties of the particles, and the positions of the particles at the emission

influence their spin dispositions, i.e. their behavior in spin measurements: X ðYÞ
determines the spin disposition of the L- (R-) particle in the direction x (y) in a

measurement of spin x (y), if the L- (R-) measurement occurs first; and similarly for

X0 ðY 0Þ and x0 y0ð Þ. Yet, due to non-local influences, the distribution of these

dispositions is different from the distribution of the outcomes of the corresponding

spin measurements. If, for example, at the emission both particles are disposed to

spin “up” in a z-spin measurement, and the L-measurement occurs first, this

3 Svetlichny et al. [30] argue that if probabilities are interpreted as infinitely long-run frequencies

in random sequences, such a joint probability distribution need not exist.
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measurement will change the z-spin disposition of the R-particle: after the L-

measurement, it will be disposed to spin “down” on z-spin measurement ([36,

37], Chap. 7, [20], Sect. 5.3.1).

While the joint distribution over the spin quantities of the particle-pair in the

EPR/B experiment (the “hidden variables”) is neither necessary nor sufficient

condition for (Bell/CH – physics – c) or (Bell/CH – physics – c – big), the question

arises whether some other joint distributions are. The most comprehensive, relevant

joint probability distribution in the context of these inequalities is a distribution

over the QM and complete pair-state, the various relevant apparatus settings and

the corresponding measurement outcomes,4 and such distribution is neither neces-

sary nor sufficient for these inequalities. (Bell/CH – phys – c) follows from

Factorizability and l-independence [13],5 and as it is not difficult to see these

conditions do not presuppose a joint distribution over the pair-state, apparatus

settings and measurement outcomes. Similarly, (Bell/CH – phys – c - big) follows

from factorizability and l-independence expressed in terms of conditional

probabilities a la Kolmogorov – for any QM and complete pair-states, l and c,
apparatus settings x and y to measure the particles’ spins along the directions x
and y, and the corresponding measurement outcomes Ox and Oy,

(Factorizability*) PðOx&Oy=l&x&yÞ ¼ PðOx=l&xÞ � PðOy=l&yÞ

ðl - independence*) rðl=c&x&yÞ ¼ rðcÞ

– and these conditions do not presuppose such a joint distribution. Indeed, each

particular case of Factorizability* presupposes a joint distribution over the com-

plete pair-state, two measurement outcomes (Ox and Oy) and two apparatus settings

(x and y), and each particular case of l-independence* presupposes a distribution

over the QM and complete pair-state and two apparatus settings. But these

conditions do not presuppose a joint distribution over the QM and the complete

pair-state and all the four apparatus settings and four corresponding measurement

outcomes that are involved in (Bell/CH – phys – c – big). Thus, a joint probability

over the QM and complete pair-state, apparatus settings and measurement

outcomes is not a necessary condition for (Bell/CH – phys – c – big). It is also

4 In fact, one may also add to this list the complete states (the “hidden variables”) of the apparatus

settings. While such a distribution will be even more comprehensive, it will not change the

conclusion of the analysis below.
5 The derivation of (Bell/CH – phys – c) from Factorizability and l-independence is straightfor-
ward. � 1 � a � bþ a0 � bþ a � b0 � a0 � b0 � a� b � 0 obtains for any real numbers

0 � a; a0; b; b0 � 1. Substituting a ¼ PlxðOxÞ; a0 ¼ Plx0 ðOx0 Þ; b ¼ PlyðOyÞ; b0 ¼ Ply0 ðOy0 Þ and

applying Factorizability we have (Bell/CH – phys – l), and integrating over l while assuming

l-independence we obtain (Bell/CH – physics – c).
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not sufficient for (Bell/CH – phys – c – big), as it is easy to construct such a

distribution that violates the inequality.6

Fine [27] discusses a fourth kind of Bell/CH inequality, where the probabilities

are supposed to be “the observed distributions for each of the four observables

involved in the EPR/B experiment plus the joint observed distributions for each of

the four compatible pairs” of these observables. (Fine [27], p. 291)

(Bell/CH – Fine)

�1 � PðOx&OyÞ þ PðOx0&OyÞ þ PðOx&Oy0 Þ
�PðOx0&Oy0 Þ � PðOxÞ � PðOyÞ � 0;

where, presumably, P is a probability function that depends on the QM pair-state

c. (Bell/CH - Fine) follows from the assumption of a joint probability over the

measurement outcomes. The question is what could motivate such an assumption.

Surely, the probabilities in this inequality need to depend on the apparatus

settings, so that they either belong to different spaces (each characterized by

different apparatus settings), as in (Bell/CH – phys - c), or are in the same

probability space but are conditional on the QM pair-state and apparatus settings,

as in (Bell/CH – phys - c - big). In the first case, the motivation for (Bell/CH –

Fine) should probably include assumptions like Mirror and l-independence, and
as we have seen the violation of such assumptions is relevant to the question

whether the quantum realm involves non-locality. In the second case, one may

assume a joint distribution for the QM pair-state, apparatus settings and measure-

ment outcomes, but as we argued above such a distribution would not entail

(Bell/CH – phys - c - big). So in either case, (Bell/CH – Fine) has to be motivated

by assumptions about the physical nature of the systems involved in the EPR/B

experiment – in particular, assumptions about the state of the particles at the

source, the causal relations between this state and the state of the measurement

apparatuses during the measurements, and the causal relations between

measurements in the two distant wings of the experiment. And granted such

assumptions, the violation of (Bell/CH – Fine) will have bearings on the causal

relations in the EPR/B experiment in general, and the question of quantum non-

locality in particular.

It is also noteworthy that in the derivation of the Bell/CH inequalities, or more

precisely (Bell/CH – Fine), Fine [27] in fact presupposes l-independence and some

factorizability conditions. That he presupposes l-independence is clear from the

6 For example, (Bell/CH – phys – c – big) fails for any joint distribution that returns the

following probabilities as marginals for apparatus settings that satisfy jx� yj ¼ jx0 � yj ¼ jx�
y0j ¼ 60� and jx0 � y0j ¼ 180�: Pðc&x&yÞ ¼ Pðc&x0&yÞ ¼ Pðc&x&y0Þ ¼ Pðc&x0&y0Þ ¼ 1=4,
Pðc&xÞ ¼ Pðc&yÞ ¼ 1=2, PðOx&Oy&c&x&yÞ¼PðOx0&Oy&c&x0&yÞ¼PðOx&Oy0& c&x&y0Þ¼
1=32, PðOx0&Oy0&c&x0&y0Þ¼1=8, PðOx&c&xÞ¼PðOy&c&yÞ¼1=4.
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fact that he takes the distribution of l to be the same for all spin measurements;

and as it is not difficult to see from equations (2) and (11) in his paper, his

characterization of hidden-variables models embody factorizability conditions.

Recalling footnote 5, it is not difficult to show that l-independence and these

factorizability conditions are sufficient for the derivation of Bell/CH inequalities.

So the question arises as to the role that the assumption of joint distribution plays in

Fine’s derivation of these inequalities. It may be tempting to argue that such an

assumption is necessary for the physical plausibility of the hidden-variables

models. But, first, this argument is not open to Fine, who holds that the rejection

of such an assumption is the very essence of QM. Second, even if we suppose that

the assumption of joint distribution were important for the ontological status of the

hidden-variables models (an assumption that Bell, Clauser and Horne and many

others reject), the violation of this assumption per se is not sufficient to vindicate

Fine’s claim that “what the hidden-variables models and the Bell/CH inequalities

are all about are the requirements that make well defined precisely those probability

distributions for non-commuting observables.” [27, p. 291] Since factorizability

fails in the EPR/B experiment, Fine has to appeal to the view that the violation of

this condition has no implications for the question of non-locality [22–24]. For if we

suppose that the failure of factorizability involves some kind of non-locality, as a

broad consensus has it, then the fact that factorizability fails in standard QM as well

as in any alternative interpretation or hidden-variables model in which l-indepen-
dence obtains, will entail that the common interpretation of Bell’s theorem is on the

right track.

In any case, as we shall see in Sect. 16.5, if probabilities are interpreted along

de Finetti’s probability theory, (Bell/CH – Fine) cannot be derived from the

assumption of joint probability distribution over the measurement outcomes

since such distribution does not exist. Similarly, l-independence and Mirror do
not entail (Bell/CH – phys – c) since (Bell/CH – prob) does not hold; for the joint

probability distribution over the spin quantities in this latter inequality does not

exist. But before turning to discuss the application of de Finetti’s theory to the

quantum probabilities, we introduce the highlights of this theory in Sects. 16.3

and 16.4.

16.3 De Finetti’s Theory of Probability

Our aim here is to offer a new reading of de Finetti’s theory of probability and,

assuming that quantum probabilities are interpreted along this theory, to study their

logical structure – i.e. the inequalities that constrain them. Thus, for lack of space,

the presentation of de Finetti’s theory will be uncritical.
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16.3.1 The Probability Axioms Are Not Merely Formal
Conventions

De Finetti held that “probability theory is not merely a formal, merely arbitrary

construction, and its axioms cannot be chosen freely as conventions justified only

by mathematical elegance or convenience. They should express all that is necessar-

ily inherent in the notion of probability and nothing more.” [38, pp. xiii–xiv] He

thought of probability as a guide of life under uncertainty. Having been influenced

by positivism, he held that probability, like other notions of great practical impor-

tance, should have an operational definition, namely “a definition based on criterion

which allows us to measure it.” [39, p. 76] Also, being a guide of life under

uncertainty, de Finetti maintained that probability should be closely related to

rational decisions under uncertainty. ([38], pp. xiii–xiv, Chaps. 1 and 2; [39],

76–89) The decision framework that he had in mind is Bayesian, where a person’s

degrees of belief reflect her uncertainty concerning the things she cares about, her

utilities reflect her subjective preferences, and the outcomes of rational decisions

are actions that maximize her expected utility.7 De Finetti thought of probability as

reflecting rational degrees of belief, and of coherence as a necessary condition for

degrees of belief being rational, and he argued that all the theorems of probability

theory could be derived from the coherence conditions of degrees of belief. ([39],

pp. x, 72–75, 87–89; [38], Chaps. 1 and 2)

16.3.2 The Domain of Probability Is the Domain of Uncertainty

De Finetti made a distinction between the domain of certainty, i.e. that which one

takes as certain or impossible, and the domain of uncertainty, i.e. the range over

which one’s uncertainty extends. The distinction between these domains is very

important and fundamental to de Finetti’s philosophy of probability, as his long and

detailed discussion of this topic demonstrates [39, Chap. 2]. The domain of uncer-

tainty depends on one’s (actual and/or hypothetical) background knowledge

[39, pp. 27, 47] and one’s reasoning, and thus it may include events that are

logically impossible or certain, e.g. complicated contradictions or tautologies that

one fails to recognize. The domain of probability is the domain of uncertainty. This

domain is supposed to include all the atomic uncertain events (or the propositions

that such events occur) and their logical combinations, which may be certain

(for example, if A is an uncertain event, the domain of uncertainty will also include

the certain event A or not-A). Whether an event is atomic is a pragmatic matter,

which does not depend on metaphysical questions. It is noteworthy that for de

7 It is noteworthy that unlike Frank Ramsey [40], another founding father of the modern school of

subjective probability, de Finetti held that probability is not strictly related to rational preferences.
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Finetti, there is a sharp distinction between being certain about an atomic event, and

having a degree of belief one in it. The former belongs to the domain of certainty,

whereas the latter belongs to the domain of uncertainty.

16.3.3 Probabilities Are Subjective and Instrumental

Many friends of the subjective interpretation of probability think that coherence is a

necessary but not sufficient condition for the rationality of degrees of belief. They

hold that for degrees of belief to be rational, they also have to be constrained by

knowledge of objective facts about the world. In particular, it is frequently

maintained that when objective probabilities are available, they should constrain

the corresponding subjective probabilities. Thus, many hold that rationality

requires that a person’s subjective probability of E given that the objective proba-

bility of E is p, and she assumes, believes or knows nothing else about the prospects

of E, should be p. An influential expression of this idea is Lewis’s [28] “principal

principle.”

De Finetti rejected the idea that subjective probabilities are supposed to be

guesses, predictions or hypotheses about the corresponding objective probabilities,

or based on such probabilities or any other objective facts. Indeed, he argued that

probabilities are inherently subjective, and that none of the objective interpretations

of probability makes sense. He held that objective probability does not exist, and

that recognition of its inexistence would constitute a progress in scientific thinking.

“The abandonment of superstitious beliefs about the existence of Phlogiston, the

Cosmic Ether, Absolute Space and Time, . . . , or Fairies and Witches, was an

essential step along the road to scientific thinking. Probability, too, if regarded as

something endowed with some kind of objective existence, is no less misleading

misconception, an illusory attempt to exteriorize or materialize our true [i.e. actual]

probabilistic beliefs.” [39, p. x]8

De Finetti [39, pp. x–xi] argued that probability and probabilistic reasoning

should always be understood as subjective. Probability only reflects uncertainty,

and accordingly no fact could prove or disprove a degree of belief. He did not deny,

however, the psychological influence that facts may have on degrees of belief. “I

find no difficultly in admitting that any form of comparison between probability

evaluations (of myself, or of other people) and actual events may be an element

influencing my further judgment, of the same status as any other kind of informa-

tion . . . But, as with any other experience, these modifications would not be

governed by a mechanical rule; it is, in each case, my personal judgment that is

responsible for giving a weight to the facts (for instance, according to my feelings

8 The addition of the word “actual” in the square brackets is mine, as the translation from Italian

seems incorrect. The word “vero” could be translated as “actual” or “true”, and it is clear that in

this context it should be translated as “actual.”
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about the success of the other person being due to his skill and competence or

merely due to a meaningless chance).” [38, p. 21]

The source of uncertainty is immaterial. “It makes no difference whether the

uncertainty relates to unforeseeable future, or to an unnoticed past, or to a past

doubtfully reported or forgotten; it may even relate to something more or less

knowable (by means of a computation, a logical deduction, etc.) but for which we

are not willing or able to make the effort; and so on. . . . The only relevant thing is

uncertainty – the extent of our knowledge and ignorance. The actual fact of whether

or not the events considered are in some sense determined, or known by other

people, and so on, is of no consequence.” [39, pp. x–xi] The important thing for de

Finetti is that in all these different states of uncertainty, subjective probability could

be useful as a guide. The role of probability is purely instrumental, and its value

should be determined solely on the basis of its potential to serve as a guide in

everyday and science. De Finetti went to great pains in his attempt to show that his

subjective theory of probability could serve as such a guide.

As de Finetti’s Philosophical Lectures on Probability suggest, he was instru-

mentalist about probabilistic theories [41, pp. 53–54], interpreting their

probabilities as subjective, representing nothing but degrees of expectations.

[41, p. 52] And he held that distributions brought to us by probabilistic theories,

such as Statistical Mechanics and Quantum Mechanics, “provide more solid

grounds for subjective opinions.” [41, p. 52]

Like other instrumental views, de Finetti thought that subjective probability

could play its role as a guide, independently of our metaphysical assumptions

about the world. “[P]robabilistic reasoning is completely unrelated to general

philosophical controversies, such as Determinism versus Indeterminism, Realism

versus Solipsism – including the question of whether the world ‘exists’, or is simply

the scenery of ‘my’ solipsistic dream.” [39, p. xi]

16.3.4 Intuition, Prudence and Learning from Experience

It is common to portray probability in de Finetti’s radical subjective interpretation

as unconstrained, too permissive and possibly whimsical (see, for example, [42,

Sect. 3.5.4]. On the other hand, de Finetti held that assigning or “evaluating”

probabilities is an inductive reasoning, and as such it is based on learning from

experience; and “to speak about inductive ‘reasoning’ means, however, to attribute

a certain validity to that mode of learning, to consider it not as a result of a

capricious psychological reaction, but as a mental process susceptible of an analy-

sis, interpretation and justification.” [38, p. 147] Indeed, he warned against superfi-

ciality in assigning probabilities, which is frequently associated with subjective

probability. In particular, he warns against two common patterns of superficiality.

“On the one hand You may think that the choice, being subjective, and therefore

arbitrary, does not require too much of an effort in pinpointing one particular value

rather than a different one; on the other hand, it might be thought that no mental
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effort is required, since it can be avoided by the mechanical application of some

standardized procedure.” [39, p. 179] He recommended various features that must

underlie each probability evaluation, like for example to “think about every aspect

of the problem. . .try to imagine how things might go. . .encompass all conceivable

possibilities; and also take into account that some might have escaped

attention. . .identify those elements which, compared to others, might clarify or

obscure certain issues. . .enlarge one’s view by comparing a given situation with

others. . .attempt to discover the possible reasons lying behind those evaluations of

other people. . .” [39, pp. 183–4]. This is not surprising given that de Finetti held

that “the (subjectivistic) theory of probability is a normative theory, not a descrip-

tive one,” and the value of probability theory is “precisely as an aid to the avoidance

of plausible and frequently serious shortcomings and errors.” [38, p. 151]

De Finetti’s philosophy of probability presupposes that people have the intuitive

faculty to form reasonable opinions about uncertain events and, with the aid of

probability theory, the capacity to form reasonable probabilistic opinions. De

Finetti held that people need to develop and refine this faculty, and apply reason

to learn to guard it against the tendency to form superficial probabilistic opinions.

Yet, he cautioned against the misunderstanding of the role of reason. In particular,

he warned that “the tendency to overestimate reason – often in an exclusive spirit –

is particularly harmful. Reason, to my mind, is invaluable as a supplement to the

other psycho-intuitive faculties, but never a substitute for them. Figuratively,

reason is a pole that may keep the plant of intuitive thought from growing crooked,

but it is not itself either a plant or a valid substitute for a plant.” [38, pp. 147–8]

Learning from experience is important for assigning both “prior” and posterior’

probabilities. De Finetti held that every probability is conditional “not only on the

mentality or the psychology of the individual involved, at the time in question, but

also, and essentially, on the state of information in which he finds himself at the

moment,” though in many cases there is no need to mention explicitly the back-

ground information, and accordingly it is suppressed [39, p. 134]. So both prior and

posterior probabilities are conditional probabilities. The prior probabilities are

conditional on some prior background information, and they are updated according

to the increase or change in background knowledge/beliefs/assumptions. De Finetti

makes a distinction between updating and changing opinions. When one

conditionalizes on new information, one keeps the same opinion yet updates it to

a new situation [41, p. 35]. And when one revises one’s probability function, one

changes one’s opinion. Change of opinion could result from reconsideration of

neglected, inaccurate or ambiguous information, or change of mind about the

relevance of information, or superficial or careless evaluations, etc. Thus, de Finetti

held that realistically the evolution of one’s subjective probabilities involves both

updating and changing opinions [41, pp. 39–40].

Due to the disparity in subjective evaluations, prior probabilities are expected to

vary significantly. Yet, de Finetti held that the effects of “the disparity between the

initial judgments of people or of vagueness in the initial judgments of one person

are often largely eliminated,” if the additional information gathered between the
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prior and the posterior evaluations is sufficiently revealing and the prior probabilities

are “sufficiently gentle or diffuse,” i.e. not too opinionated [38, p. 145].

16.3.5 Probabilities Are Coherent Degrees of Belief

Probabilities are not just any degrees of belief. They are coherent degrees of belief

in (propositions about) events that belong to the (agent’s) domain of uncertainty.

The notion of coherent degrees of belief is commonly understood in terms of Dutch

books, i.e. bets that results in loss come what may. The idea is that incoherent

degrees of beliefs are subjected to Dutch books. ([39, 40, 60], Chaps. 3 and 4)

Coherence is thus characterized in a betting framework, where a person is subjected

by a clever bookie to series of bets. The person assigns certain odds to these bets

according to her degrees of belief, and the bookie prescribes the possible gains and

losses according to these odds.

In his later work, de Finetti preferred a different decision-theoretic framework

(for the motivation, see Sect. 16.3.6). ([38], Chaps. 1 and 2; [39], Chaps. 3 and 4) In

this alternative framework, there is no bookie. Individuals express their degrees of

belief, and they are subjected to fixed gains and variable monetary losses, the so-

called “loss functions,” which are functions of their degrees of belief about events

and the occurrence of these events. That is, letting E being any verifiable event, d a

degree of belief in E, and E an indicator function denoting whether E occurs (E ¼ 1

if E occurs, and E ¼ 0 otherwise), the loss L that the individual is subjected to is:

(L1) L ¼ ðE� dÞ2
k

;

where k is an arbitrary constant which is fixed in advance and which may differ from

one case to another. In the case of multiple degrees of belief, the total loss is the sum

of the losses incurred by each degree of belief. For example, the loss function for the

degrees of belief d1; d2; d3 in the events E1; E2; E3, respectively, is:

(L2) L ¼ ðE1 � d1Þ2
k1

þ ðE2 � d2Þ2
k2

þ ðE3 � d3Þ2
k3

:

In this alternative decision-theoretic scheme, coherent degrees of belief are

explicated in terms of admissible decisions. The “decisions” are the individual’s

degrees of belief in various events, and they are admissible if they are not

dominated by any other decisions, i.e. by any other degrees of belief in the same

events; where a set of degrees of belief in events is dominated by another set of

degrees of belief in the same events, if it leads to higher losses come what may.

A set of degrees of beliefs is coherent just in case it is not dominated by any other

set of degrees of belief in the same events.
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16.3.6 Measurements of Degrees of Belief

De Finetti assigned a great importance to the measurement of degrees of belief. He

thought that since probability is supposed to be a guide of life, it should have a

meaning that renders it effective as such. Being influenced by positivism, he held

that “in order to give an effective meaning to a notion – and not only an appearance

of such in a metaphysical-verbalistic sense – an operational definition is required.”

By operational definition, he meant “a definition based on a criterion which allows

us to measure it.” [39, p. 76] His inspiration came from early twentieth century

physics. “The notion of probability, like other notions of practical significance,

ought to be operationally defined (in the way that has been particularly stressed in

physics following Mach, Einstein, and Bridgman), that is, with reference to

observations, in experiments that are at least conceptually feasible. In our case,

the experiments concern the behavior of an individual (real or hypothetical) facing

uncertainty.” [38, p. xiv]

The main reason why de Finetti preferred the loss-functions decision-theoretic

scheme is that the Dutch-book framework involves a bookie, an “opponent,” the

presence of whom may intrude with the measurement of degrees of belief. In

particular, de Finetti mentioned the possibility that the bookie or the individual

take advantage of differences of information, competence or shrewdness [39, p. 93].

The presuppositions of this scheme are that individuals strive to maximize their

expected utility, and that utility is linear with money, where k is supposed to

warrant this linearity. Granted these assumptions, it is not difficult to show that it

is in the best interest of individuals to express their actual degrees of belief; for any

other degrees of belief will lower their (subjective) expected utility.

Since de Finetti defines probability in terms of betting or measurement contexts,

it may be tempting to interpret him as behaviorist about degrees of belief, holding

that degrees of belief, and accordingly probabilities, do not exist outside these

contexts [43, 185–9]. This interpretation is particularly suggestive given the inspi-

ration that de Finetti took from Bridgman’s [44] operationalism, where theoretical

terms are defined in terms of the operational procedures of their measurements. Yet,

de Finetti did not intend the betting and the loss-function decision-theoretic

frameworks as Bridgman-like operational definitions of degrees of belief. Indeed,

he held that degrees of belief exist independently of the contexts of their measure-

ment. “The criterion, the operative part of the definition which enables us to

measure it, consists in this case of testing, through the decisions of individual

(which are observable), his opinions (previsions, probabilities), which are not

directly observable.” [39, p. 76] Moreover, as Eriksson and Hájek [43, p. 190]

point out, de Finetti’s worries about the relation between utility and money and

about agents who care too much or too little about their bets, do not make sense if

degrees of beliefs are interpreted along Bridgman’s operationalism. The operational

procedure is supposed to provide a reliable measurement of degrees of belief, not a

definition of them. Yet, as we shall see in Sect. 16.4, the operational procedure
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plays an important role in explicating the coherence conditions of degrees of belief

and to that extent it plays an important role in defining subjective probabilities.

16.3.7 Conditional Probability

Following Kolmogorov’s [17] influential axiomatization of probability, it is com-

mon to define conditional probability in terms of unconditional probabilities:

PðB=AÞ � PðB&AÞ=PðAÞ. De Finetti rejected this axiomatic approach. He thought

that probability theory should be derived from the analysis of the meaning of

probability. He held that every probability is conditional “not only on the mentality

or the psychology of the individual involved, at the time in question, but also, and

essentially, on the state of information in which he finds himself at the moment,”

though in many cases there is no need to mention explicitly the background

information, and accordingly it is suppressed [39, p. 134]. Thus, he maintained

that conditional probability is the fundamental object of probability theory, and

unconditional probability does not make sense (except when it is a conditional

probability in disguise).9

In introducing the concept of conditional probability, de Finetti says that “we shall

writePðEjHÞ for the probability ‘of the event E conditional on the event H’ (or even the

probability ‘of the conditional event EjH’), which is the probability that You attribute to

E if You think that in addition to your present information, i.e. the H0 which we

understand implicitly, it will become known to You that H is true (and nothing else).”
[39, p. 134] This characterization is ambiguous. On the one hand, conditional probabil-

ity is characterized as a conditional with a probabilistic consequent, whereas on the

other it is likened to unconditional probability of a “conditional event.”

The association of conditional probability with a “called-off” bet in the betting

decision-theoretic framework, and the loss function for conditional probability in the

loss-function decision-theoretic framework both suggest the first interpretation. The

loss function for the probability of E given H and the background knowledge H0 is:

(L3) L ¼ H0HðE� dÞ2
k

where d is a degree of belief in E,E andH are indicator functions, denoting the truth

value of E and H, and H0 is an indicator function denoting the truth value of H0.

Based on (L3), the proposition that the conditional probability of E given H and H0

equals p may be characterized by the following conditional:

(CP1) If you have the background knowledge H0 and you come to know H (and

nothing else), then your degree of belief in E will be p.

9 In fact, the idea that conditional probability is the fundamental object of probability theory could

also be defended in other interpretations of probability. [18, 19, 45]
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The idea is that a person with such a conditional probability is subjected to a loss

of ðE� pÞ2=k on the condition that she has the background knowledge/beliefs H0

and she comes to know H and nothing else; and the loss is zero, if she does not have

the knowledge/beliefs H0 or does not come to know H. This is very similar to the

idea of a called-off bet, where the probability of E given H&H0 being p is

explicated by a bet in which a person pays pS dollars on the condition that she

knows H&H0 for the opportunity to earn S dollars if E occurs and zero otherwise,

and the bet is called off if she does not know H&H0.

The notion of conditional probability applies not only to cases where one knows

H0 and H, but also to cases where one assumes or believes H0 and H. We may thus

extend the meaning of conditional probability as follows:

(CP2) If you know, believe or assume H0 and you come to know, believe or assume

H (and nothing else), then your degree of belief in E will be p.

Further, the conditioning event and the background knowledge may be counter-

factual rather than actual. In such cases, conditional probability may be

characterized by the following counterfactual conditional:

(CP3) If you had the background knowledge or beliefs H0 and you had come to

know, believe or assume H (and nothing else), then your degree of belief in E
would have been p.

Beware! (CP2) is neither the material nor the strict conditional. It is true if one

knows, believes or assumesH and nothing else beside one’s background knowledge

H0, and one’s degree of belief in E is p; it is false when one has the background H0

and comes to know, believe or assume H but one’s degree of belief in E is not p; and
it is indeterminate when one does not have the background H0 or does not come to

know, believe or assume H. (CP3) is not the Stalnaker–Lewis counterfactual

conditional, though it may be interpreted as being true in case one’s degree of

belief in E is p in the most similar relevant worlds or scenarios in which one holds

H0 and H. For a more detailed discussion of these conditionals, see Berkovitz [45].

In order to distinguish the above notion of conditional probability from that of

Kolmogorov, we shall place the conditional event in the subscript: PH0HðEÞ will
denote the conditional probability of E given H and the background knowledge H0.

De Finetti ([38], Chap. 2, [39], Chap. 4) demonstrates that coherence entails that:

(C1) PH0HðEÞ � PH0
ðHÞ ¼ PH0

ðE&HÞ;

where PH0
ðHÞ and PH0

ðE&HÞ are respectively the probability of E givenH0 and the

probability of E&H given H0. When PH0
ðHÞ is definite and non-zero, we obtain

Kolmogorov’s definition of conditional probability as a coherence condition on

degrees of belief.

Recall (Sect. 16.2) the two different ways of representing the Bell/CH

inequalities: in terms of conditional probabilities with the conditions (namely, the
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pair-state and the apparatus settings) in the subscript, as in (Bell/CH – phys – c);
and in terms of conditional probabilities a la Kolmogorov, where the conditions are

placed after the conditionalization stroke, as in (Bell/CH – phys – c – big). (C1)

suggests a way to relate these different representations.

De Finetti’s proposal that the probability of E given H may be seen as the

probability of the “conditional event” EjH suggests another interpretation of condi-

tional probability. Conditional events (or “tri-events”) are in effect three-valued

propositions about events, the truth-value of which depends on the condition

([39], p. 139, [46], Appendix, pp. 307–11). In particular, EjH is the proposition

that E occurs, but its truth-value depends on whether H occurs. If H occurs, then

EjH is true if E occurs and false if E does not occur; and if H does not occur, then

EjH has indeterminate truth-value. The idea is then to assign probabilities only to

conditional events that are true or false, so that indeterminate conditional events

have no probabilities.

We shall return to consider the implications of the two different interpretations

of de Finetti’s concept of conditional probability in our discussion of his

verificationism in Sect. 16.4, and in the application of his theory of probability to

QM in Sect. 16.5.

16.3.8 Symmetry and Exchangeability

Judgments of equally probable events, and accordingly of symmetries, are central

to all interpretations of probability. In objective interpretations of probability, the

symmetries concern the way things are. For de Finetti, the relevant symmetries

concern one’s opinions and judgments. De Finetti held that any evaluation of

equally probable events is based on subjective judgments, and that the notion of

exchangeability is central to such judgments. A collection of events is said to be

exchangeable if the probability ph that h of them occur depends only on h and is

independent of their order of appearance [38, p. 229]. Followers of de Finetti’s

interpretation and friends of the Bayesian interpretation of quantum probabilities

attribute a great importance to exchangeability. Indeed, the notion of exchangeabil-

ity, and the related notion of partial exchangeability are bound to play a central role

in the interpretation of the quantum probabilities along de Finetti’s probability

theory. For example, Caves et al. [4] apply de Finetti’s work on exchangeability to

the interpretation of the notion “unknown quantum states” and the related notion of

“unknown quantum probabilities” from a subjectivist Bayesian perspective. Yet, as

the notion of exchangeability is not central to our main focus – the study of the

coherence conditions of degrees of belief in the context of QM – we postpone its

discussion to another opportunity.
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16.4 Verifiability, Coherence and Contextuality

De Finetti [39, p. 34] held that the events in probability assignments have to be

verifiable. “In general terms, it will always be a question of examining, if, and in

which sense, a statement really constitutes an ‘event,’ permitting in a more or less

realistic acceptable form, and in unique way, the ‘verification’ of whether it is ‘true’

or ‘false’. . . A and B are events (observables), but it is not possible to observe both

of them, and, therefore, it is not possible to call the product AB an event

(observable).”

An important implication of this view is that the constraints on probabilities

of events that are not jointly verifiable are weaker. For example, if A and B are

jointly verifiable, their probabilities are subjected to the inequality P(A)þP(B)�
P(A&B)�1. But if A and B are not jointly verifiable, they have no joint probability,

and accordingly their probabilities are not subjected to this inequality.

De Finetti [46, p. 260] acknowledged that verifiability is “a notion that is often

vague and illusive” and thought that it is necessary “to recognize that there are

various degrees and shades of meaning attached to [it].” He took a pragmatic

attitude toward the kind and degree of verifiability that is actually required for

events to have a definite probability [46, Appendix]. To simplify things, we shall

focus on verifiability in principle, and by “verifiable events” we shall mean events

that are verifiable in theory according to one’s beliefs.

Unlike probabilities, de Finetti was not antirealist about events. Yet, he held that

notions of great practical importance should have “operational definitions,” namely

definitions based on criteria that render them measurable. If events are not verifiable,

they cannot have such an operational definition. Further, the prospects of adequate

measurements of degrees of belief in such events are dim, thus undermining the idea

that probability should also have an operational definition. The most obvious expla-

nation for de Finetti’s verificationism is the influence of positivism. De Finetti [39,

p. 76] was worried that events that are not verifiable may appear to be sensical but in

fact be meaningless, and accordingly degrees of belief in such events will be useless.

In the context of de Finetti’s philosophy of probability, there is a different reason

to motivate his verificationism. It is difficult to make sense of the idea of coherent

degrees of belief in, and accordingly probabilities of unverifiable events. This is

clear in the betting decision-theoretic framework. Bets on events that are in

principle unverifiable could never be concluded. Accordingly, no Dutch book

could be based on such bets, and the idea that Dutch book could be used to explicate

the notion of “coherent degrees of belief” collapses. Things are not so obvious in

the loss-function decision-theoretic framework, as this framework appears to pro-

vide a way to explicate this notion even in the case of unverifiable events; for the

notion of “admissible decision,” which is used to explicate coherence in this

framework, seems applicable even in the case of unverifiable events. But a little

reflection on the nature of probabilities in de Finetti’s theory suggests that this

appearance is deceptive. In this theory, there are no objectively correct probability

assignments. Probabilities are subjective opinions that only reflect uncertainty
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about things. The value of probabilities reside solely in their instrumental role as a

guide for decisions under uncertainty, and this role could only be measured in terms

of verifiable “gains” and “losses,” or more generally verifiable consequences. In the

case of unverifiable events, the instrumental value of probabilities vanishes because

the consequences of probability assignments are in principle unverifiable. This lack

of instrumental value reflects on the prospects of explicating the notion of coherent

degrees of belief. Incoherent degrees of belief in unverifiable events have no

verifiable harmful consequences, and so radical subjectivists about degrees of

belief, like de Finetti, who deny the existence of objective probabilities, have no

incentive to have coherent degrees of belief in such events. Accordingly, like in

the betting decision-theoretic framework, the idea that the loss-function decision-

theoretic framework could be used to explicate the notion of coherent degrees of

belief collapses in the case of unverifiable events.

De Finetti proposes to make the verifiable nature of events explicit by assigning

probabilities to “conditional events” EjH (see Sect. 16.3.6) rather than to the events

themselves; where H is an observation that enables to verify the event E [46, pp.

266–7, 307–313]. The idea is to assign probabilities only to conditional events EjH
with determinate truth-values, so that unverifiable events E have no probabilities.

This idea is easily generalized to complex “conditional events,” i.e. logical

combinations of conditional events. Consider, for instance, E12jH12, the conjunc-

tion of the conditional events E1jH1 and E2jH2; where Hi is an observation that

enables to verify whether Ei is true, and E12 is the event that denotes the conjunction

of the events E1 and E2. E12jH12 is true if H12 and E12 are both true, false if H12 is

true and E12 false, and has indeterminate truth-value if H12 is false. By restricting

probabilities to conditional events, “complex” conditional events (like E12) may fail

to have definite probabilities, even when the “atomic” events that constitute them

(E1 and E2) do. In this approach, a person’s probabilities are represented by a “big”

probability space with “gaps” in the place of some complex events (henceforth, DF-

big-space). The logic and probability of conditional events seem to require some

kind of three-valued logic, and indeed de Finetti discussed various three-valued

logics that could serve as a basis for such probability theory [46, Appendix, pp.

302–313]. For de Finetti’s early thoughts about conditional events and their logic,

see De Finetti [47] and Mura [48].

De Finetti also entertained the idea of representing probabilities of verifiable

events in terms of classical, two-valued logic. In fact, as we shall see in Sect. 16.6,

he preferred such an approach. This alternative approach is in line with our proposal

in Sect. 16.3.7 that conditional probability a la de Finetti may be characterized as a

conditional with a probabilistic consequent. Indeed, this interpretation of de Finetti

suggests a natural way of representing probabilities of verifiable events in terms of

two-valued events. The main idea is to suppose that the “unconditional” probability

of an event E being p has in effect a logical structure of a conditional with a

probabilistic consequent: if an observation H that enables to verify E occurs

(occurred), the probability of E is (would be) p. Recall (Sect. 16.3.7) that in our

suggested notation, this conditional is represented as PHðEÞ ¼ p, i.e. as a condi-

tional probability with the conditioning event in the subscript; and probabilities
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with different subscripts, i.e. conditionals with different antecedents, correspond to

different probability spaces. That is, we could represent de Finetti’s verificationism

by supposing that a person’s subjective probabilities are represented by multiple

probability spaces, in each of which probabilities of events are conditional (implic-

itly) on an observation that enables to jointly verify all the events in the space.

On this view, a person’s coherent degrees of belief are represented by many

“smaller” probability spaces (henceforth, DF-many-spaces), each contains events

that could be jointly verified.

Although the two approaches are different, in de Finetti’s philosophy of proba-

bility they are closely related. In both approaches, probabilities of events are

conditional on observations that enable to verify them. This is not obvious in the

DF-big-space, where probabilities appear to be unconditional. But recall

(Sect. 16.3.7) that for de Finetti probabilities of “conditional events” are closely

connected, if not equivalent, to the corresponding conditional probabilities. The

similarity between conditional probability, represented as a conditional with prob-

abilistic consequent, and the corresponding probability of conditional event is

hindered by de Finetti’s formal notation, which is similar to the common notation

for conditional probability a la Kolmogorov. Yet, in both cases only verifiable

events E have probabilities, and the observations H that enable their verification

have no probability, as they are not events in the probability space. To highlight this

feature, in our representation of conditional probability as a conditional with a

probabilistic consequent, we have placed the conditioning events H in the subscript

rather than after the conditionalization stroke, PHðEÞ; and, as de Finetti [38, p. 104]
remarks, the conditional event EjH “must be considered as a whole,” and accord-

ingly H is not part of the probability space. Indeed, the inclusion of H in the

probability space while maintaining de Finetti’s verificationism would lead to an

infinite regress, where H would have to be a conditional event, the condition of

which would have to be represented by a conditional event, and so forth.

Finally, as represented above de Finetti’s verificationism is very stringent.

Conditionalizing probabilities of events on observations that enable to verify

them would severely restrict the range of events that have probabilities. First, this

brand of verificationism restricts probabilities to observational contexts. Second, in

various cases the required observations are actually impossible to carry out. Third,

it threatens to render de Finetti’s philosophy of probability extremely operational-

ist, as the probability of an event may vary according to the kind of observation that

enables to verify it. Yet, it is possible to sustain the main thrust of de Finetti’s

verificationism while avoiding the above undesired consequences by conditio-

nalizing probabilities of events on the proposition that the events are verifiable in

principle, rather than on the proposition that observations that enable to verify them

have been performed. In fact, this weaker version of verificationism is what de

Finetti seemed to have in mind. We shall discuss the implications of the weaker and

the stronger versions of verificationism in the next section.
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16.5 Coherent Degrees of Belief for the EPR/Bohm

Experiment

The most important implication of de Finetti’s verificationism is that the coherence

conditions on degrees of belief in events that are not jointly verifiable are weaker

than they would have been had the events been jointly verifiable. Let’s consider

again (Bell/CH – prob) (see Sect. 16.2). In de Finetti’s theory, (Bell/CH – prob) is a

necessary condition for coherent degrees of belief in, and accordingly for

probabilities of X; Y; X&Y; X0&Y; X&Y0 and X0&Y0 only when these events

(propositions) are jointly verifiable. But in various hidden-variable models of the

EPR/B experiment, X and X0 (Y and Y0) are values of non-commuting spin

observables, which are not jointly verifiable. Similarly, the measurement outcomes

in (Bell/CH – Fine) are not jointly verifiable, and so they are not necessary

conditions for coherent degrees of belief, and accordingly for probabilities of the

measurement outcomes involved in this inequality. Thus, if probabilities are

interpreted along de Finetti’s theory, (Bell/CH – prob) and (Bell/CH – Fine) do not

apply to the EPR/B experiment.

Recalling (Sect. 16.4) that de Finetti formalizes his verificationism in terms of

conditional probabilities, the failure of these inequalities can be manifested in two

different ways, corresponding to the two different interpretations of de Finetti’s

concept of conditional probability. Consider, for example, (Bell/CH – prob).

In the DF-big-space approach, probabilities are assigned only to conditional events.

In our case, the relevant conditional events are X=HX, Y=HY , X
0=HX0 , Y0=HY0 ,

X&Y=HXY , X0&Y=HX0Y , X&Y 0=HXY0 , X0&Y 0=HX0Y0 , X&X0=HXX0 and Y&Y0=HYY0 ;

where, as before, Hi is either a measurement that enables to verify the event i, or
the proposition that the event i is verifiable (we shall consider below the differences

between these two interpretations of Hi). Since it is impossible in principle to

jointly observe X and X0 (Y and Y0), individuals who are familiar with this feature

of the quantum realm will not assign a determinate truth-value to

X&X0=HXX0 ðY&Y0=HYY 0 Þ, and so X&X0=HXX0 ðY&Y0=HYY 0 Þ and any conjunction

that includes it has no probability. Consequently, a (Bell/CH - prob)-like inequality

is not a necessary condition for the probabilities of the conditional events

X=HX, Y=HY , X&Y=HXY , X0&Y=HX0Y , X&Y0=HXY0 and X0&Y0=HX0Y0 . In the

DF-many-spaces approach, the assumption that X and X0 (Y and Y0) are not jointly
verifiable entails that the events X, X0, Y and Y0 are not in the same probability

space. There are four smaller probability spaces, each contains two of these events:

fX; Yg; fX0; Yg; fX; Y0g and fX0; Y 0g. So (Bell/CH - prob) is not a necessary

condition for coherent degrees of belief in, and accordingly for the probabilities

of the events X; Y; X&Y; X0&Y; X&Y0 and X0&Y 0. The upshot is that followers of
de Finetti, who assume that the spins of a particle in different directions are not

jointly verifiable, are not committed to (Bell/CH – prob). Thus, they may assume

Mirror (e.g. that the probability distribution of spin-measurement outcomes reflects

the probability distribution of the particles’ spins before the measurements) and

l-independence (e.g. that the distribution of the particles’ spins is independent of
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the measurements), yet assign probabilities that are not constrained by (Bell/CH –

phys – c). Similarly, followers of de Finetti will not see (Bell/CH – Fine) as a

necessary constraint on the probabilities of the four spin-measurement outcomes

involved in each of the Bell/CH inequalities.

Two challenges may be posed for de Finetti’s verificationism. The first is for the

DF-many-spaces approach. In this approach, the same event may have different

probabilities in different spaces: e.g. event X may have the probability p1 in the

probability space S1 that is constituted by the “atomic” events X and Y, and p2,
p2<p1, in the space S2 that is constituted by the “atomic” events X and Y0. For
recall that the probabilities in S1 are conditionalized on a measurement HXY that

enables to verifywhetherX and Y occur, and the probabilities in S2 are conditionalized
on a measurementHXY0 that enables to verify whether X and Y0 occur. IfHXY andHXY0

are incompatible measurements, there is no Dutch-book argument to dictate that the

probability of X should be the same in both probability spaces.

Things are different, however, in our suggested interpretation of de Finetti’s

verificationism, where events are conditionalized on their verifiability rather than

on measurements that enable their verification (see Sect. 16.4). In this version, the

probability of X has to be the same in S1 and in S2 on pain of a Dutch book, where a
bookie offers to sell a bet on X for $p1 and buy it back for $p2, thus “pumping”

money out of any individual who holds that the probability of X in S1 is different
from the probability of X in S2. The reasoning is as follows. An individual who

holds the above probabilities should consider as fair a bookie’s offer to (i) sell a

conditional bet on X given that X and Y are jointly verifiable at the price of $p1, and
(ii) buy a conditional bet on X given that X and Y0 are jointly verifiable at the price

of $p2. Since in each of these cases the bet is conditional on the relevant events

being verifiable, rather than on actually being verified by measurements, the two

bets could be jointly realized. Thus, if the individual accepts both bets as fair, she is

destined to lose money come what may.

The second challenge is for both approaches, and it is related to the Kochen and

Specker’s (1967)’s no-go theorem. Due to its verificationism, de Finetti’s theory of

probability prescribes weaker constraints on probabilities in the EPR/B experiment.

This provides followers of de Finetti’s theory with some flexibility that is lacking in

other interpretations of probability. Thus, for example, hidden-variables models of

this experiment in which probabilities are interpreted along de Finetti’s theory may

postulate the existence of definite values for non-commuting spin observables, i.e.

values of spins in various directions, even if they assume Mirror and l-indepen-
dence. Yet, Kochen and Specker’s theorem and other similar theorems impose

heavy constraints on assignments of definite values to such non-commuting

observables (for a review of these theorems, see [49]), which substantially limit

the scope of such flexibility. The reasoning is as follows.

In their theorem, Kochen and Specker consider a spin-1 particle and triples of the

square values of spins in three orthogonal directions, S2x ; S
2
y ; S

2
z . The observables

S2x ; S
2
y ; S

2
z commute and accordingly their values are jointly verifiable (though the

observables Sx; Sy; Sz do not commute and so their values are not jointly verifiable).
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Kochen and Specker demonstrate that granted the following assumptions, there is

no coherent way of distributing the values of spins in 117 directions.

Values: All physical quantities of a quantum system, i.e. all the observables that

pertain to it, have definite values at all times.

Non-contextuality: Properties that a system possesses, i.e. the values of the

observables that pertain to it, are non-relational to other properties or the

measurement context.

More recently proofs involving less observables have been given (for references,

see [49]). The upshot is that any “hidden-variables” model that satisfies these

assumptions cannot provide a coherent assignment to a particle’s spins in more

than a limited number of directions. Indeed, the challenge that Kochen and

Specker’s theorem raises is not particular to the interpretation of probabilities

along de Finetti’s theory; it is posed for any interpretation of the probabilities of

“hidden-variables” models. Yet, these theorems substantially restrict the

advantages that de Finetti’s interpretation provides.

De Finetti was also verificationist about events (see Sect. 16.4), and his

verificationism may provide a way around Kochen and Specker’s theorem. The

proof of the theorem requires a truth-value assignment to propositions about events

that are not jointly verifiable, and given de Finetti’s verificationism about events the

assignment of truth values to propositions about events that are not jointly verifiable

may be more flexible, so as to avoid a Kochen and Specker-like contradiction; for

such an assignment may violate Non-contextuality. Recall (Sect. 16.4) that de

Finetti argued for verificationism on the grounds that the instrumental value of

notions depends on their verifiability, and that this reasoning relies heavily on a

positivist philosophy. Recall also that in the case of probabilities of events, de

Finetti’s verificationism can be motivated on different grounds – namely, by the

radical subjectivist and instrumental nature of probability in his theory; for due to

this nature, it is difficult to make sense of the notion of coherent degrees of belief,
and accordingly of probabilities of unverifiable events. Such a motivation does not

seem to exist in the case of events per se, as Finetti was not antirealist about events.
Followers of de Finetti’s interpretation of probability who do not wish to adhere

to de Finetti’s positivism may circumvent Kochen and Specker’s theorem by

rejecting Values. They may for example follow the orthodox interpretation and

accordingly reject Values; for recall that in this interpretation, the particles in the

EPR/B experiment have no definite spins before the measurements. While the

rejection of Values does not entail the failure of Mirror, it is more difficult to

motivate the later premise when the former fails. Alternatively, followers of de

Finetti may hold Values but reject Non-contextuality. For instance, they may hold

that the values of spin quantities are relational to the values of other spin

quantities,10 so that the value of the particle’s spin along the direction x relative

10 For an example of interpretation of QM that postulates such relationalism, see Berkovitz and

Hemmo’s [50] relational modal interpretation.
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to the values of its spins in the (mutually) orthogonal directions y and z is different
from its value relative to the values of its spins in different (mutually) orthogonal

directions y0 and z0. Given such contextuality, there exist coherent assignments for

the values of all the spin quantities that are involved in the Kochen and Specker

theorem. The question whether such contextuality is compatible with Mirror is

rather delicate and go beyond the scope of our current discussion. But, in any case,

the above reasoning seems to suggest that the challenges that the Kochen and

Specker theorem poses limit the advantage that de Finetti’s interpretation of

probability may have over other interpretations of probabilities.

16.6 De Finetti on the Nature of Quantum Probabilities

De Finetti found QM both fascinating and challenging. He dedicated a substantial

part of the long appendix of his Theory of Probability to the analysis of QM

probabilities [46, pp. 302–333]. Unlike his analysis of the foundations of probabil-

ity, the discussion of the nature of QM probabilities lacks incisiveness and clarity.

De Finetti refers frequently to von Nenumann’s [51] Mathematical Foundations of
Quantum Mechanics, Bodieu’s [52] Theorie dialectique des probabilities and

Reichenbach’s [53] Philosophic Foundations of Quantum Mechanics. He models

his analysis as a simplified version of Bodieu’s and Reichenbach’s. Like Bodieu, de

Finetti believes that quantum probabilities are a special case of a general calculus of

probability. Yet, he thinks that Reichenbach presents “the questions most lucidly

from the logical and philosophical point of view,” and he thus uses Reichenbach’s

comments as guidelines for developing his own analysis of the QM probabilities.

The aim of de Finetti’s analysis is “finding the logical constructions which will

prove suitable for resolving the difficulties we find ourselves” in trying to interpret

QM. He believes that “the correct path is straightforward and simple” and “it is

obscured precisely by preconceived ideas about what it is that constitutes a neces-

sary prerequisite for any logic,” and the key for resolving the difficulties is to

recognize that the logic of events should be three-valued [46, p. 303, 305–9].

Reichenbach presented the three truth-values in reference to observations: E is

true if the observation H has given the result E; E is false if the observation H has

given the result not-E; and E is indeterminate or meaningless if the observation H
has not been made. De Finetti [46, p. 307] thinks that Reichenbach’s presentation

corresponds to his conditional three-valued events, the only difference being that in

his framework the third value is called “void.” Following Reichenbach, he seems to

favor the view that the third truth value lies between true and false; for “[t]his is, in

fact, the requirement that must be satisfied if something is to be called a mathemat-

ical structure or, in particular, a logical structure.” Yet, later, in his philosophical

lectures on probability, he [41, p. 169] explicitly rejects this view when he says that

denoting the third truth-value by “1=2” instead of “;” “is not appropriate because it
somewhat suggests that it is an intermediate value between true and false.” This

later view of the indeterminate truth-value is more in line with our interpretation of
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de Finetti, where indeterminate conditional events have no determinate truth-value

and accordingly have no probability.

In any case, de Finetti [46, p. 308] thinks that all the logical construction of

Reichenbach’s three-valued logic “could be expressed in terms of two-valued

logic”, so as to avoid “creating a number of symbols and names of operations and

consequent rules (which are difficult to remember and sort out, and difficult to use

without confusion arising). Above all, one avoids creating the tiresome and

misleading impression that one deals with mysterious concepts which transcend

ordinary logic.” De Finetti thinks that the conceptual scheme of the three-valued

event, expressed in ordinary binary logic, could account for the quantum puzzles. In

particular, he argues that this framework could serve as the basis for understanding

the problem of complementarity in QM. He characterizes complementarity in terms

of indeterminate three-valued events – two events are complementary if at least one

of them “remains certainly indeterminate (but it is not known which. . .)”
[46, p. 311] – and then proceeds to argue that complementary events also arise in

classical phenomena though “the most celebrated example is undoubtedly that of

complementarity in quantum mechanics.” [46, p. 312]

We argued above that de Finetti’s theory of probability could serve as a basis for

interpretation of the quantum probabilities. Yet, we believe that de Finetti’s discus-

sion of QM probabilities and their relationships to classical probabilities does not

do justice to the difficulties that are involved in such an endeavor. In particular, de

Finetti seems to be unaware of Bell’s and Kochen and Specker’s theorems and the

heavy constraints they impose on assignments of probabilities in the quantum

realm.

16.7 Conclusions

De Finetti held that a theory of probability has to express what is inherent in the

notion of probability and nothing more. Probability is a rational guide of life under

uncertainty. Probabilities are coherent degrees of belief in verifiable events, and the

theorems of probability are supposed to follow from the coherence conditions of

degrees of belief. Unlike other subjective interpretations, probability is not sup-

posed to be ignorance about objective probabilities. Probability reflects only sub-

jective uncertainty, and its value is purely instrumental. We argued that in de

Finetti’s instrumental philosophy of probability, coherence embodies a certain

kind of verificationism, and accordingly the coherence conditions of degrees of

belief in events depend on their verifiability. Indeed, in the context of this philoso-

phy it is difficult to make sense of coherent degrees of beliefs in events that are

unverifiable.

We argued that de Finetti’s verificationist conception of coherence has important

implications. A common view has it that in the subjective interpretation,

probabilities are coherent degrees of belief and in principle every event (or propo-

sition about it) may have a probability. In de Finetti’s theory, there are many
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degrees of belief that have no corresponding probability; for degrees of belief in

unverifiable events have no coherence conditions, and accordingly no probability.

The restriction of probabilities to verifiable events also entails that the coherence

conditions of degrees of belief in events that are not jointly verifiable are weaker

than the (familiar) coherence conditions that such events would have had, had they

been jointly verifiable.

The idea that verifiability is relevant for probability was also highlighted in

Pitwosky’s [54, 55] discussion of George Boole’s [56] “conditions of possible

experience.” Boole thought of probabilities as relative frequencies in a finite

sample, and of the conditions of possible experience as inequalities concerning

such probabilities. Pitowsky [55, p. 105] notes that “none of Boole’s conditions of
possible experience can ever be violated when all the relative frequencies involved
have been measured in a single sample. The reason is that such a violation entails a
logical contradiction . . . But sometimes, for various reasons, we may choose or be

forced to measure the relative frequencies of (logically connected) events, in

several distinct samples. In this case a violation of Boole’s conditions may occur.”

We proposed that the restriction of probabilities to verifiable events in de

Finetti’s theory entails that the probability space of these events is “non-classical”

(see de Finetti’s big-space approach in Sect. 16.4), or that probabilities are

represented by multiple, smaller probability spaces, each of which contains events

that are jointly verifiable (see de Finetti’s many-spaces approach in Sect. 16.4). In

either case, the implication is that the inequalities that constrain the probabilities of

the values of spin observables in the EPR/B experiment are different from the

inequalities that would have obtained had these events been jointly verifiable; and

similarly, mutatis mutandis, for spin-measurement outcomes. This different proba-

bility structure provides followers of de Finetti’s theory with some extra flexibility.

Thus, for example, their probability assignments for the values of spin observables

in “hidden-variables” models for the EPR/B experiment will not be constrained by

(Bell/CH – prob) (see Sect. 16.2). Accordingly, they may suppose that the

probabilities of spin-measurement outcomes in the EPR/B experiment “mirror”

the probabilities of the corresponding spin observables before any measurement

occur (Mirror) and that the distribution of the values of these spin observables is

independent of the measurement settings (l-independence) (see Sect. 16.2), yet

their probabilities of spin-measurement outcomes will not be subjected to the (Bell/

CH – phys - c) or (Bell/CH – phys - c - big) (see Sects. 16.2 and 16.5). However,

the heavy constrains that Kochen and Specker’s and similar theorems impose

substantially limit the scope of such advantages (see Sect. 16.5).

Finally, it is noteworthy that in the context of de Finetti’s theory of probability it

is more difficult to reconstruct Bell’s argument for non-locality. First, in this

context it is more difficult to relate probabilities to causality, and accordingly it is

hard to motivate the violation of Factorizability (see Sect. 16.1.1) as a locality

condition. Second, it may be impossible to formulate l-independence, another main

premise of Bell’s theorem; for if probability is interpreted along de Finetti’s theory,

in some hidden-variables theories the probability of the complete pair-state in the

EPR/B experiment will not exist because this state is unverifiable. Whether this is
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the case will depend on both the nature of the complete pair-state, which varies

from one hidden-variables theory to another, and the concept of verifiability one has

in mind. Yet, that it is more difficult to reconstruct Bell’s argument in the context of

such radical subjective theory of probability should not be surprising, as

probabilities in this theory are purely subjective and instrumental and accordingly

are not supposed to reflect objective facts about the world. In de Finetti’s interpre-

tation, quantum probabilities are not supposed to reflect the ontological nature of

the quantum realm; they only serve as a guide for policing uncertainty and forming

anticipations about events in this realm.
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Chapter 17

Four and a Half Axioms for Finite-Dimensional

Quantum Probability

Alexander Wilce

Abstract It is an old idea, lately out of fashion but now experiencing a revival, that

quantum mechanics may best be understood, not as a physical theory with a

problematic probabilistic interpretation, but as something closer to a probability

calculus per se. However, from this angle, the rather special C*-algebraic apparatus

of quantum probability theory stands in need of further motivation. One would like

to find additional principles, having clear physical and/or probabilistic content, on

the basis of which this apparatus can be reconstructed. In this paper, I explore one

route to such a derivation of finite-dimensional quantum mechanics, by means of a

set of strong, but probabilistically intelligible, axioms. Stated very informally, these

require that systems appear completely classical as restricted to a single measure-

ment, that different measurements, and likewise different pure states, be equivalent

(up to the action of a compact group of symmetries), and that every state be the

marginal of a bipartite non-signaling state perfectly correlating two measurements.

This much yields a mathematical representation of (basic, discrete) measurements

as orthonormal subsets of, and states, by vectors in, an ordered real Hilbert space –

in the quantum case, the space of Hermitian operators, with its usual tracial inner

product. One final postulate (a simple minimization principle, still in need of a clear

interpretation) forces the positive cone of this space to be homogeneous and self-

dual and hence, to be the state space of a formally real Jordan algebra. From here,

the route to the standard framework of finite-dimensional quantum mechanics is

quite short.
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17.1 Introduction

It is an old idea that Quantum Mechanics is best seen, not as a dynamical theory

with a problematic probabilistic interpretation, but as something like a probability

calculus per se. Certainly, in its C*-algebraic formulation, QM exhibits some

striking formal similarities to classical probability theory, with the latter actually

emerging as the special case of the former in which all observables commute, that

is, are simultaneously measurable. However, this C*-algebraic apparatus is not

something one wants to swallow whole: it requires some further motivation.

Ideally, one might hope to derive it from a set of well-motivated axioms having

clear physical, operational or probabilistic interpretations. This possibility animates

von Neumann’s book [1], and is made both explicit and programmatic in Mackey’s

work in the late 1950s [2]. There is a small literature of attempts at such

a derivation, including the seminal papers of von-Neumann and Birkhoff [3],

Zierler [4], and Piron [5], framing the quantum-logical approach to the problem,

and the work of Ludwig [6], Gunson [7], Mielnik [8], Araki [9] and others,

approaching the problem in terms of ordered linear spaces.

In recent years, this view of quantum theory has fallen far out of fashion. This

owes in part to the rhetorical success of various attacks on “merely instrumentalist”

readings of QM. The prevailing opinion, articulated with great force by John Bell

[10], has been that terms such as “measurement” have no place among the

primitives of a self-respecting physical theory. Lately, however, attitudes towards

this older, probabilistic view of quantum mechanics have begun to thaw, and there

has been a resurgence of interest in the problem of characterizing (or deriving, or

reconstructing) quantum theory in operational/probabilistic terms. Much of the

newer work in this vein is influenced by quantum information theory. Thus,

where most of the earlier work cited above focussed on the structure of

single systems, and aimed to obtain the full apparatus of infinite-dimensional

(non-relativistic) quantum mechanics, the newer work [11–18, 40] has focussed

on characterizing finite-dimensional quantum mechanics, and has a distinctive

emphasis on properties of composite systems.

Many of these last-cited works do manage to obtain, or come very close to

obtaining, the probabilistic apparatus of finite-dimensional QM from various

packages of simple, plausible postulates. The diversity of approaches taken in

these papers is noteworthy, and lends support to the idea that QM is an especially

natural example of a probabilistic theory. This paper explores, in a preliminary way,

yet another, and possibly a less arduous, route towards such a probabilistic axi-

omatization of finite-dimensional quantum theory, or of something reasonably

close to it. The main ideas are that (i) both classical and quantum systems are

very symmetrical; (ii) irreducible finite-dimensional systems with homogeneous,

self-dual cones are pretty close to being quantum, thanks to the Koecher-Vinberg

Theorem. Therefore, (iii) if we can somehow use symmetry assumptions to ground

homogeneity and self-duality, we’ll be heading in the right direction.
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In a bit more detail: the Koecher-Vinberg Theorem [19, 20] classifies homoge-

neous self-dual cones in finite dimensions as the positive cones of formally real

Jordan algebras. It follows from the Jordan-von Neumann-Wigner classification of

such algebras that, with the single exceptional example of the cone of positive

3 � 3 matrices over the octonions, all physical systems having an irreducible,

homogeneous, self-dual cone of (un-normalized) states, are either quantum-

mechanical,1 or arise as so-called spin factors, i.e., their normalized state spaces

are n-dimensional balls. Evidently, then, one path towards deriving the mathemati-

cal framework of QM from first principles goes by way of supplying an operational

motivation for homogeneity and self-duality. It will then remain either to dismiss,

or to make room for, spin factors and the exceptional octonionic example as

physical models.2

Working in a standard framework in which a probabilistic model consists of a set

of basic observables, together with a finite-dimensional compact, convex set of states

[11, 24], I propose four strong, but probabilistically intelligible (and not unreason-

able), axioms. These yield a representation of basic observables as orthonormal

subsets of a finite-dimensional ordered real Hilbert space, of states, as vectors therein,

and of symmetries, as unitaries acting thereon. In the quantum case, the space in

question is the space of Hermitian operators with its usual tracial inner product.

A single additional postulate – the “half-axiom” of my title, a simple and natural

minimization principle, for which one hopes to find a compelling interpretation –

forces the positive cone of this ordered Hilbert space to be homogeneous and self-

dual with respect to the given inner product. It is worth mentioning that these axioms

all deal with the structure of a single system; no assumption is made concerning how

systems combine. This is in marked contrast to much of the recent work mentioned

above, relative to which the approach taken here is rather old-fashioned.

Two disclaimers are in order before proceeding, one historical, and the other

programmatic. First, the general line of attack taken here is not entirely new. The

possibility of using the Koecher-Vinberg theorem is mentioned by Gunson [7] as

long ago as 1967, but the suggestion seems not to have been followed up (perhaps

owing to the then-prevailing focuss on infinite dimensional systems). An exception is

the work of Kummer [25], which, in the context of a quite different set of axioms,

also exploits the Koecher-Vingberg Theorem. Secondly, it should be stressed that the

postulates discussed below are not advanced as possible “laws of thought”: the aim

here is not to derive QM as the uniquely reasonable non-classical probability theory

1Allowing here real or quaternionic cases as “quantum”.
2 In fact, there is a fairly direct route from Jordan algebras to complex QuantumMechanics, at least

in finite dimensions. A theorem of Hanche-Olsen [21] shows that the only Jordan algebras having a

Jordan-algebraic tensor product with M2 Cð Þ – that is, with a qubit � are the Jordan parts of C�-
algebras. Since the structure of qbits can be reasonably well-motivated on directly operational

grounds, the only irreducible systems in a Jordan-algebraic theory supporting a reasonable tensor

product, will be full matrix algebras. Requiring that ipartite states be uniquely determined by the

joint probabilities they assign to the two component systems � a condition sometimes called local
tomography – then forces the scalar field to be C [9, 22, 23].
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(though that would of course be very nice!), but only to find simple and transparent

characterizations of quantum probability theory in autonomously probabilistic or

information-theoretic terms, even if still as a theory with contingent elements.

Dedication. I wish to dedicate this paper to the memory of Itamar Pitowsky. In two

of his last papers [26, 27], Itamar defended a view of quantum theory very much in

harmony with the one taken here. I would very much have enjoyed the chance to

discuss these ideas with him, and keenly regret that this will now be impossible.

17.2 Preliminaries

In order even to advance the problem of characterizing QM as a probabilistic

theory, we need first to establish a general framework for probability theory that

is at the same time general enough to include quantum theory as a special case, and

as transparent and uncontroversial as possible. Accepting that the basic elements of

finite classical probability theory — that is, the concept of a finite, exhaustive set E
of mutually exclusive alternative outcomes, and probability weights thereon — are

about as close to this state of grace as one is going to get, but jettisoning the tacit,

and surely contingent, classical assumption that any pair of tests can be represented

as coarse-grainings of some third test, we are left the following machinery

(described at much greater length in, e.g., [11, 23, 28–30]).

Definition. A test space is a collection A of non-empty sets E, F, . . ., each
considered as the outcome-set of some experiment, measurement, or test. Subsets
of tests are termed events.

We allow the possibility that distinct tests may overlap, so that one outcome may

belong to several tests. We write X ¼ XðAÞ for the total outcome space of A, i.e.,
X ¼ [A. Outcomes x, y ∈ X are termed orthogonal, and we write x⊥y, if they are

distinct, but belong to a single test. Note that this language is only suggestive, since

at present, there is no linear structure, let alone an inner product, in view. (Note, too,

that we do not assume that every pairwise-orthogonal set is an event.)

Definition. A state on a test space A is a mapping a : X ! [0,1] such thatP
x2E aðxÞ ¼ 1 for every test E 2 A. We take a(x) to represent the probability

that x will occur in any test to which it belongs. In other words, a state is a “non-

contextual” assignment of a probability to every outcome of every test.

Examples The simplest case is that in which A comprises just a single test, say

A ¼ fEg. In this case, states on A are simply probability weights on E, and we

recover discrete classical probability theory.3 Discrete quantum probability theory

3Measure-theoretic classical probability theory is also subsumed by this framework: if (S,S) is a
measurable space, then the collection B S;ð S) of countable partitions of S by non-empty

measurable sets in S is a test space, and the states on B S;ð S) are exactly probability measures

on (S,S).
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arises as the special case in which A is the collection FðHÞ of all frames, or
unordered orthonormal bases, of a Hilbert space H. Here the outcome-set X is the

unit sphere of H. Gleason’s Theorem tells us that states on A are all of the form

aðxÞ ¼ rxh ; xi ¼ TrðrpxÞwhere r is a density operator onH and px is the projection
operator pxðyÞ ¼ yh ; xix associated with a unit vector x ∈ X.

The set OðAÞ of all states on a test space A is obviously a convex subset of the

space ℝX of all real-valued functions on A’s outcome-space X. If A is locally finite,
meaning that every test E 2 A is a finite set, then OðAÞ is closed, hence, compact in

the product topology (that is, the topology of pointwise-convergence) on ℝX.

In particular, then, OðAÞ has a plentiful supply of extreme points, which we call

pure states. It will be convenient, from this point on, to adopt the standing con-

vention that all test spaces are locally finite.
In many contexts, it is reasonable to consider a restricted set of states. This

suggests the following

Definition. A probabilistic model is a pair ðA;OÞ, where A is a test space with

outcome-space X and Ω is a pointwise-closed (hence, compact) convex subset of

the set OðAÞ of all states on A.
Linearization A probabilistic model ðA;OÞ has a natural representation in terms of

a dual pair of ordered real vector spaces, as follows. Let V, or occasionally VðA;OÞ,
denote the span of Ω in ℝX (where X is A’s outcome-space, as usual), ordered

pointwise on X; let V+ denote the cone of non-negative functions in V. Then Ω is

a base for V+, in the sense that every element of V+ is uniquely a scalar multiple of

a state in Ω. The dimension of a model is the linear dimension of the space V. The
dual space V* of V is ordered pointwise on Ω; equivalently, a 2 V�

þ iff a(a) � 0 for

all a ∈ V+. It will be convenient, if a trifle sloppy, to identify each outcome x ∈ X
with the corresponding evaluation functional, so that if a ∈ V, we may write x(a)
for a(x). (This amounts to the benign assumption that Ω is outcome-separating, i.e,
that outcomes having the same probability in every state are identical.) Writing u
for the order unit in V* — that is, the unique functional taking value 1 identically on

Ω — we have
P

x2E x ¼ u for every test E 2 A.
To illustrate these constructions, consider again the case in which A ¼ FðHÞ, the

frame manual of a Hilbert spaceH. Then, as a corollary to Gleason’s Theorem, V ¼
VðF;OðFÞÞ is the space of (quadratic forms associated with) trace-class Hermitian

operators, while V� ’ Lh ðHÞ, the space of all bounded Hermitian operators on H.

Of course, where H is finite-dimensional (equivalently: where A has finite rank),

V and V* are both isomorphic to the space of all Hermitian operators onH. Note that

here Ω is not outcome-separating: identifying an outcome-qua-unit vector x ∈ X
with the corresponding evaluation functional in V* amounts to replacing x with the

corresponding rank-one projection operator.

Composite Systems Probabilistic models can be combined in a great variety of

ways. Here, we need only a few basic ideas. If A andB are any test spaces, A�B
denotes the space of product tests E � F with E 2 A and F 2 B. A state on A�B
is non-signaling iff the marginal states o1ðxÞ ¼

P
y2F oðx; yÞ and
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o2ðyÞ ¼
P

x2E oðx; yÞ are well-defined, i.e., independent of E 2 A and F 2 B. In

this case we have conditional states o2jx;o1jy defined by

o2jxðyÞ ¼ oðx; yÞ=o1ðxÞ ando1jyðxÞ ¼ oðx; yÞ=o2ðyÞ

(where these make sense, and defined to be 0 if not). Note that we have laws of total

probability: for any test E 2 A,

o2ðyÞ ¼
X
x2E

o2jxðyÞo1ðxÞ; (17.1)

and similarly for o1ðxÞ.
Classical Representations Notwithstanding the very great generality of the proba-

bility theory just sketched, there is a sense in which any probabilistic model ðA;OÞ
can be given a more-or-less classical description. One way to do this, which will be

useful below, is as follows. First, note that every state is the barycenter of a (Baire)

probability measure on the set S ¼ Oext of pure states (via the Bishop-deLeauw

theorem [31]); also, every outcome x defines a random variable on S by evaluation,
with xðaÞdmðaÞ ¼ rðxÞ where r ¼ Ð

S admðaÞ 2 O. Since 0 � x̂ � 1, we can regard

x̂ as a “fuzzy” version of an indicator function, and the set fx̂jx 2 Eg, as a “fuzzy”
partition of S. This gives us an interpretation of ðA;OÞ as a kind of impoverished

probability space, in which we have a set A of “fuzzy” partitions on S, insufficiently
rich to discriminate amongst all possible statistical ensembles of states in S;Ω is the

quotient of the simplex of all such ensembles by the relation of indistinguishability

relative to A.4 (Of course, this kind of representation does not play nicely with the

formation of non-signaling composite systems, but this is not our concern here.)

17.3 Symmetry, Minimization, Sharpness and Self-Duality

From this point forward, I make the standing assumption that all test spaces are
locally finite, and all probabilistic models are finite-dimensional. In this section, I

introduce two axioms governing such models, each having a reasonably transparent

operational meaning, plus one simple (but much less transparent) minimization

condition. From these, I deduce that V+
* is self-dual.

The first axiom requires that systems be highly symmetrical in that (i) all

outcomes of any given test look alike; (ii) all tests look alike; (iii) all pure states

look alike. This axiom is satisfied by both (discrete) classical and pure quantum

systems, and, as we’ll see in a moment, already leads to some surprisingly strong

consequences. To make this precise, let us agree that a symmetry of a system ðA;OÞ

4 This kind of classical representation has been discussed by various authors. I first encountered it

in the book [32] of Holevo.
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with outcome space X is a homeomorphism g : X ! X such that (i) gE 2 A for

every test E 2 A, and (ii) g�ðaÞ ¼ a � g�1 belongs to Ω for every state o 2 O. An
action of a group on ðA;OÞ is an action by symmetries. We say that A is fully
symmetric [30] under such an action if (i) all tests have the same cardinality, and (ii)

for any bijection f : E ! F between tests E;F 2 A, there exists some g ∈ G with f
(x) ¼ gx for all x ∈ E. Notice that any symmetry g of A also determines an affine

automorphism of OðAÞ by ðgaÞðxÞ ¼ aðg�1xÞ. We say that g is a symmetry of the

model ðA;OÞ iff ga 2 O for all a 2 O and all g 2 G. It is easy to see that g takes

extreme points of Ω to extreme points of Ω. We shall say that an action of G on

ðA;OÞ is continuous iff, for every a 2 O and every outcome x 2 X, g 7!aðg�1xÞ is
continuous as a function of G.

Axiom 1 (Symmetry). There is a compact group G acting continuously on ðA;OÞ,
in such a way that (i) G acts fully symmetrically on A, and (ii) G acts transitively

on Oext.

A classical test space A ¼ fEg satisfies Axiom 1 trivially with G ¼ SðEÞ, the
symmetric group on E. A quantum test space ðFðHÞ;OHÞ satisfies Axiom 1 with

G ¼ UðHÞ, the unitary group of H.

Call an inner product on V* positive5 iff a; bh i � 0 for all a; b 2 V�
þ. Note that

the trace inner product on V� ¼ Lh ðHÞ is positive in this sense.

Lemma 1. Subject to Axiom 1, there exists a positive, G-invariant inner product on V*.

Proof. Since G acts transitively on S :¼ Oext, we can represent the latter as G/K
where K is the stabilizer of some (any) pure state ao. This carries an invariant

measure (induced by the Haar measure on G), giving the space C(S) of continuous
Real-valued functions on S a canonical G-invariant inner product, namely

fh ; gi ¼ R
a2S f ðaÞgðaÞda. Note that this is positive in sense defined above. As

discussed in Sect. 17.1, we have a natural order-preserving embedding of V* in C
(S) obtained by restricting each a 2 V� to S � V. The restriction of the natural

translation-invariant inner product on C(S) to V* gives us a positive, G-invariant
inner product on the latter. □

Let’s agree to call the specific inner product arising from C(G) the canonical
inner product on V*. This is related to the classical representation of V* as a space of

random variables on the space S ¼ Oext by

ah ; bi ¼ covðâ; b̂Þ þ ah ; ui uh ; bi:

Note that, relative to this inner product, we have k u k¼ 1, so we can alterna-

tively write

covðâ; b̂Þ ¼ P0
uah ;Pu0bi

5 As opposed to positive-definite, which every inner product is.
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where P0
u is the orthogonal projection onto the subspace of V* orthogonal to u.

Lemma 2 [33]. Let, ;h i be any positive, G-invariant inner product on V*. There is
an embedding x 7!vx of the outcome-space X into the unit sphere of V* with x⊥y
implying hvx; vyi ¼ 0.6

Proof. For each x 2 X, set

qx ¼ x� xh ; uiu;

so that

qxh ; ui ¼ 0: (17.2)

Note that
P

x2E qx ¼ 0 for all E 2 A. Notice, too, that L�aqx ¼ qax for all a 2 G
and all x 2 X. Since L is unitary and G acts transitively on X, the vectors qx have
a constant norm k qx k¼ r. Moreover, since G takes any orthogonal pair of out-

comes to any other, qxh ; qy
�
is constant for any pair x?y in X. Call this value sq. If sq

¼ 0, we are done: simply set vx ¼ qx= k qx k . If not, we have

0 ¼ qxh ; 0i ¼ qx;
X
y2E

qy

* +
¼ r2 þ ðn� 1Þsq:

In particular, sq ¼ � r2

n�1
<0. In this case, set vx ¼ qx þ cu where c ¼ r=

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
(so that sq ¼ �c2). Then, using (2), we have vxh ; vy

� ¼ 0. Normalizing if necessary,

we can take each ux to be a unit vector. Obviously, the mapping x 7!qx is injective
xh ; ui is constant on X; hence, so is x7!vx. □
In order to get maximum mileage out of this, we impose a very simple, but very

strong condition. To set the stage, we need the following observation.

Lemma 3. Let S denote the constant value of xh ; yi where x?y. With notation as in
Lemma 3, we have, for all outcomes x and y, that

vxh ; vy
� ¼ xh ; yi � s:

Proof. Letting m denote the (constant) value of xh ; ui, we set qx ¼ x� mu as in the
proof of Lemma 3, so that qxh ; ui ¼ 0 for all x. Recall that vx ¼ qx þ cu where

� c2 ¼ sq, the constant value of qxh ; qy
�
when x?y. Thus, we have

vxh ; vy
� ¼ qxh ; qy

�þ c2 ¼ qxh ; qy
�� sq:

6 I remind the reader that here, x⊥y means only that the outcomes x, y ∈ X are distinct and belong

to a common test; this does not (yet) imply that x; yh i ¼ 0.
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Now

qxh ; qy
� ¼ x� muh ; y� mui ¼ xh ; yi � m xh ; ui � m uh ; yi þ m2 ¼ xh ; yi � m2:

Considering the case where x?y, this yields

sq ¼ s� m2:

Hence,

vxh ; vy
� ¼ xh ; yi � m2 � sq ¼ xh ; yi � s;

as promised. □

Definition. Call a G-invariant, positive inner product on V* minimizing iff the

constant S of Lemma 3 is in fact the minimum value of xh ; yi on X � X.
Note that this is certainly the case for the trace inner product on Lh ðHÞ, where

S ¼ 0!

Lemma 4. For a minimizing inner product, the vectors ux of Lemma 2 lie in the
positive cone of V*.
Proof. Immediate from Lemma 3. □

Provisional Axiom 2 (Minimization). There exists a minimizing G-invariant,
positive inner product on V*.

As we’ll see in Sect. 17.3, all positive inner products on V� ¼ Lh ðHÞ invariant
under the unitary group of H, are in fact minimizing. In any case, one would like to

have an operational interpretation for minimization. At present, I do not have one to

offer; however, it may be useful to note that, in terms of the classical representation

of effects as random variables on S ¼ Oext, discussed in the previous section, we

have x; yh i ¼ covðx̂; ŷÞ þ 1=n2. Thus, the canonical inner product is minimizing iff

“orthogonal” (that is, distinguishable) pairs of outcomes are precisely those that

minimize covariance.

There is one important class of examples in which the existence of a minimizing

inner product does follow from the previous axioms. Call a test spaceA 2-connected
iff every pair of outcomes x; y 2 X there exist tests E;F 2 A with x 2 E; y 2 F and

E \ F 6¼ ;. Equivalently, A is 2-connected iff, for all outcomes x, y there exists an
outcome z with x?z?y. Example: the frame manual of a Hilbert space.

Lemma 5. If A is a fully-symmetric, rank-three, 2-connected test space, then any
invariant, positive inner product is minimizing.
Proof. Let x 6?y. By 2-connectedness, we can find an outcome z with x?z?y. As A
has rank three, we have tests E ¼ fx; a; zg and F ¼ fz; b; yg. Now, as all outcomes

have the same norm in V* (here, I conflate an outcome with the corresponding
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evaluation functional in V*), we see that x; th i is maximized over outcomes t by
t ¼ x. Let s be the common value of e; fh i where e and f are outcomes with e? f .
Noting that xþ aþ z ¼ u ¼ zþ bþ y, we have

k xk2 þ 2s ¼ x; uh i ¼ sþ x; bh i þ x; yh i:

This yields x; bh i þ x; yh i ¼ sþ k xk2. Since s< k xk2 and neither x; bh i and

x; yh i can exceed k xk2, it follows that both must exceed s. □

Remark. 2-connectivity is close to requiring the sets x⊥, x ranging over outcomes,

to form a projective geometry. See [33] for more on this.

Lemma 6. Subject to Axiom 1 and Provisional Axiom 2, For every x 2 X, axðyÞ :¼
vxjvy
� �

defines a state on A.

Proof. By Lemma 4, vx; vy
� � � 0 for all y. Since ux and uy are unit vectors, we also

have vx; vy
� � � 1 for all y. Finally, letting x 2 E 2 A, we have, by Lemma 2, and

with v :¼ P
y2E vy, a multiple of u,7 that

vx; vh i ¼
X
y2E

vx; vy
� � ¼ vx; vxh i ¼ 1

We now impose another axiom that, while decidely strong, has a clear physical

meaning: it says that if we know for certain that a particular outcome will occur,

then we know the system’s state. In this rough sense, the measurements belonging

to A are maximally informative.

Axiom 3 (Sharpness). To every outcome x 2 X, there corresponds a unique state
ex 2 O with exðxÞ ¼ 1.

Note that ex is necessarily a pure state. Note, too, that both (discrete) classical

and non-relativistic QM satisfy this postulate. For some further discussion of, and

motivation for, Axiom 3, see Appendix A.

Proposition 1. Subject to Axioms 1–3, V*
+ is self-dual.

Proof. Let ;h i be a minimizing, G-invariant positive inner product. Positivity gives
us V�

þ � V�þ ’ Vþ. Letting ux be defined as in Lemma 2, Lemma 7 tells us that

exðyÞ :¼ vxh ; vy
�
defines a state making x certain (since vxh ; vxi ¼k vx k¼ 1). By

Axiom 3, there is but one such state, which, by virtue of its uniqueness, is pure. It

follows from Axiom 2 that every pure state has the form gex ¼ egx for some g 2 G.
Thus, every pure state is represented in the cone V+

*, so that V�þ � V�
þ. □

An alternative proof of self-duality, based on slightly different assumptions, is

presented in Appendix C.

7 Since vy ¼ qy þ cu, and
P

y2E qy ¼ 0, we have
P

y2E vy ¼ ncu, where n ¼ Ej j is independent of
E by virtue of A’s being fully symmetric.

290 A. Wilce



17.4 Correlation, Filtering and Homogeneity

Having secured the self-duality of V+
*, the next order of business is to secure its

homogeneity. To this end, we introduce two further axioms. The first of these tells

us that all states of a single system are consistent with that system’s being part of

a larger composite in a state of perfect correlation between some pair of obser-

vables. To be more precise, call a bipartite non-signaling state correlating iff, for

some tests E;F 2 A, and some bijection f : E ! F, oðxyÞ ¼ 0 for all ðx; yÞ 2 E�
F with y 6¼ f ðxÞ.
Axiom 4 (Correlation). Every state is the marginal of a correlating non-signaling

state.

Again, this is satisfied by both classical and quantum systems: trivially in the

first case, and not-so-trivially (i.e., by the Schmidt decomposition) in the second.

Lemma 6 [34]. Subject to Axioms 3 and 4, for every m 2 Vþ there exists a test E
such that

P
x2E mðxÞex.

Proof. Suppose first that a is a normalized state on A. By Axiom 4, there exists

a test space B and a correlating, non-signaling state o 2 OðA�BÞ with a ¼ o1.

Suppose o correlates E 2 A with F 2 B along a bijection f : E ! F. The bipartite
law of total probability [35] tells us that

o1ðxÞ ¼
X
y2F

o2ðyÞo1jy ¼
X
x2E

o2ðf ðxÞÞo1jf ðxÞ;

where o1jy ¼ o1jf ðxÞ is the conditional state on A given outcome y ¼ f ðxÞ 2 F.
Since oðx; yÞ ¼ 0 for y 6¼ f ðxÞ, we have o1jf ðxÞðxÞ ¼ 1 if y ¼ f ðxÞ 2 F; thus,

o2jf ðxÞ ¼ ex, and a ¼ P
x2E aðxÞex as promised.

Now suppose m 2 Vþ. Then m ¼ ra for some a 2 O and real constant r � 0.

Expanding a as above, we have m ¼ P
x2E raðxÞex ¼

P
x2E mðxÞex. □

The following postulate completes the set.

Axiom 5 (Filtering). For every test E and every f : E ! ð0; 1	, there exists an

order-isomorphism f : V� ! V� with fðxÞ ¼ f ðxÞx.
This says that the outcomes of a test can simultaneously and independently be

attenuated by any (non-zero) factors we like by a reversible physical process. This

is equivalent to saying that, for any test E, any outcome x 2 E, and any 0<c � 1,

there exists an order-automorphism f such that fðxÞ ¼ cx and fðyÞ ¼ y for all

y 2 E n fxg. This is clearly the case in both classical and quantum probability

theory, and corresponds to the operationally natural idea that an outcome is always

represented by a physical process, which can be subjected to a filter reducing its

intensity by any specified factor.
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Proposition 2. Subject to Axioms 1–5, the cone V*+ is homogeneous.8

Proof. Let a, b be interior points of V*
+. By Proposition 1, V*

+ is self-dual; hence,

ah and bhj j are (un-normalized) states. Let us write a(x) for a; xh i and similarly for b.
By Lemma 6, ah and bhj j have decompositions ah j ¼ P

x2E aðxÞex and

bh j ¼ P
y2F bðyÞey for some pair of tests E;F 2 A. As ex ¼ xh j, we have

ah j ¼ P
x2E aðxÞ xh j, or, more simply, a ¼ P

x2E aðxÞx, and similarly for b. Since

a and b are interior points, a(x) and b(y) are non-zero for all x, y. Let g be a bijection
matching E with F (courtesy of Axiom 4), and set tðxÞ ¼ bðgxÞ=aðxÞ. Then, by
Axiom 5, there is an order-automorphism f of V* taking x to tðxÞx for every x 2 E.
Hence, fðaÞ ¼ P

x2E aðxÞfðxÞ ¼ P
x2E aðxÞtðxÞx ¼ P

x2E bðgxÞx. Applying g,
we have

gfðaÞ ¼
X
x2E

bðgxÞgx ¼
X
y2F

bðyÞy ¼ b

It now follows from the Koecher-Vinberg theorem that the positive cone VðAÞþ
is the set of positive elements in a formally real Jordan algebra. It is possible that

there is a more direct route to this conclusion – certainly, I have not made use of all

of the available structure. For example, the full power of the assumption that A is

fully G-symmetric (as opposed to merely 2-symmetric) is not really exploited.

Neither is it at all obvious that every self-dual homogeneous cone has a representa-

tion as VðAÞ with A satisfying all of the foregoing axioms – again, full symmetry

seems rather strong, as does Axiom 4 on correlation. It is possible that these axioms

constrain the set of models much more severely.

17.5 Summary and Open Questions

Axioms 1, 3 and 4 seem natural, or at any rate, intelligible: one understands what
they say about a system. Although strong (and certainly, not “laws of thought”),

they do identifying a natural class of especially simple and tractable systems that we

might expect to find well represented in nature. Axiom 5 seems natural in a slightly

more restricted context, in which the measurements we make involve sending

systems through filters that they may or may not pass, with probabilities that can

be attenuated at our discretion. (The idea of a filter also shows up prominently in the

work of Ludwig [6] and others following in the same path, e.g., [7, 8, 25].) In

a broader sense, Axioms 1, 3 and 5 capture, in part, the idea that a system should

look completely classical, as restricted to a single measurement. In particular,

a reversible process allowable in classical probability theory should be implement-

able by a reversible “physical” process acting on VðAÞ.

8 A different route to homogeneity, via slightly different axioms, is discussed in Appendix A.
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Provisional Axiom 2 is obviously more problematic, but on the evidence, seems

likely to be satisfied by a wide range of systems. In order better to understand the

scope and significance of this postulate, one would like to endow the canonical

invariant, positive inner product onV� —or, more broadly, any such inner product—
with some operational, perhaps information-theoretic meaning. It would doubtless

be very instructive to find a model satisfying the remaining axioms, for which this

product is not minimizing. (Even better, of course, would be to prove no such

example exists.)

Another interesting issue is that of how one can construct (by hand, as it were)

tensor products compatible with the foregoing axioms. As mentioned in the intro-

duction, the axioms considered here deal with the structure of individual models,

imposing no condition at all on how these combine (the correlation condition of

Axiom 4, as I’ve formulated it, is plainly a constraint on the structure of the model).

Nevertheless, it is interesting to ask under what conditions systems satisfying

axioms 1–5, or any subset of these, have non-signalling tensor products (containing

all product states!) that also satisfy these axioms. Where this desideratum is met, we

would seem to come within hailing distance of Hardy’s axioms [16]. See [24] for

some further discussion of the problems involved in constructing a class of test

spaces closed under such a tensor product.

Acknowledgement I wish to thank Howard Barnum for reading and commenting on an earlier

draft of this paper, and, more especially, for introducing me to the papers of Koecher and Vinberg,

on which the present exercise depends. Thanks also to C. M. Edwards for pointing out the paper

[21] of Hanche-Olsen.

Appendix A: Entropy and Sharpness

The following considerations may offer some independent motivation for Axiom 1.

There are two natural ways to extend the definition of entropy to states on a test space. If

a is a state on a locally finite, finite-dimensional test space A, then Minkowsky’s

theorem tells us that a has a finite decomposition as a mixture a ¼ P
i tiai of pure

states a1; :::; an. Define the mixing entropy of a, SðaÞ, to be the infimum of

Hðt1; :::; tnÞ ¼ �P
i tilogðtiÞ over all such convex decompositions of a. Alternatively,

one can consider the local entropy HEðaÞ ¼ HðajEÞ ¼ �P
x2E aðxÞlogðaðxÞÞ. Define

the measurement entropy of a, HðaÞ,to be the infimum value of the local measurement

entropies HE over all tests E.
Suppose now that the group G figuring in Axiom 2 is compact. One can then

endow A with the structure of a compact topological test space in the sense of [30].

Assuming that all states in O are continuous as functions X ! R, it follows [36,
Lemma 6] then the infimum defining H is actually achieved, i.e., HðaÞ ¼ HEðaÞ for
some test E 2 A. An easy consequence is that HðaÞ ¼ 0 iff aðxÞ ¼ 1 for some

x 2 XðAÞ. One can also show [36] that SðaÞ ¼ 0 iff a is a limit of pure states.

Consequently, if the set of pure states is closed, we have SðaÞ ¼ 0 iff a is pure.
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In both classical and quantum cases, S ¼ H. One might consider taking this as

a general postulate:

Postulate A: HðaÞ¼ SðaÞ for every state a 2 O:

An immediate consequence is that, subject to the topological assumptions

discussed above, a pure state (with mixing entropy SðaÞ ¼ 0) must have local

measurement entropy HEðaÞ ¼ 0 for some test E, whence, there must be some

outcome x 2 E with aðxÞ ¼ 1. Conversely, for every x 2 X, if aðxÞ ¼ 1, then

HEðaÞ ¼ 0 for any E containing outcome x, whence, HðaÞ ¼ 0. But then SðaÞ ¼ 0

as well, and a is therefore pure. If A is unital, meaning that every outcome has

probability 1 in at least one state, then it follows that A is actually sharp. Moreover,

we see that every pure state has the form ex for some x In this case, the second half

of Axiom 2 follows automatically from the first. Further discussion of Postulate

A can be found in the paper [36], where theories satisfying it are termed

monoentropic.

Appendix B: An Alternative Route to Homogeneity

We say that the space V is weakly self-dual iff there exists an order-isomorphism –

that is, a positive, invertible linear map with positive inverse – f : V� ! V. Note
that such a map corresponds to a positive bilinear form o : V� � V� ! R via

oðx; yÞ ¼ fðxÞðyÞ, hence, to a non-signaling bipartite state on A. We call a bipartite

state o an isomorphism state iff the positive linear map ô : V� ! V given by

ôðxÞðyÞ ¼ oðx; yÞ is invertible. One can show [37] that any such state is pure.

Note that as u belongs to the interior of V�
þ, if o is an isomorphism state, we must

have o1 ¼ ôðuÞ in the interior of Vþ. This suggests the following alternative to

Axioms 5:

Postulate B: Every interior state is the marginal of an isomorphism state

Lemma [37]. Subject to Postulate B alone, V is weakly self-dual and
homogeneous.
Proof. For there to exist an isomorphism state, V must be weakly self-dual. For

homogeneity, let a and b belong to the interior of Vþ. Then Postulate B implies that

there exist isomorphism states o and m with a ¼ ôðuÞ and b ¼ m̂ðuÞ. Thus,

b ¼ ðm � o�1ÞðaÞ. As m � o�1 is an order-automorphism of V, it follows that the
cone is homogeneous. □

Postulate B is similar in flavor to Axiom 4, but seems somewhat awkward in its

reference only to states in the interior of Vþ. It would be desirable to find a single,

natural principle implying both of these axioms. Further work in this direction can

be found in [37]
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Appendix C: An Alternative Route to Self-Duality

An alternative proof of Proposition 1 (the self-duality of Vþ) appeals to the fact [38,
Lemma 1.0] that a finite-dimensional ordered space A is self-dual w.r.t a given inner

product iff every vector a 2 A has a unique Jordan decomposition a ¼ aþ � a�
with aþ; a�h i ¼ 0. We’ll need the following

Lemma. Suppose A carries a positive inner product, with respect to which every
element of A has an orthogonal Jordan decomposition. Then Aþ is self-dual.
Proof. It suffices to show that the orthogonal Jordan decomposition is unique.

Suppose aþ � a� ¼ bþ � b� are two orthogonal Jordan decompositions of an ele-

ment a 2 A, and that the inner product is positive. We aþ � bþ ¼ a� � b� ¼: x 2 A,
so that

0 �k xk2 ¼ aþ � bþ; a� � b�h i ¼ �ð bþ; a�h i þ aþ; b�h iÞ:

But since the inner product is positive, this last quantity is non-positive: evi-

dently, we must have

aþ; b�h i ¼ a�; bþh i ¼ 0;

whence, x ¼ 0, whence, aþ ¼ bþ and a� ¼ b�: the decomposition is unique,

as advertised. □
Let us say that a model ðA;OÞ is spectral iff it satisfies the conclusion of Lemma

6— that is, if every state m 2 O can be expanded as
P

x2E mðxÞex where E 2 A and,

for each x 2 E, ex is a state with exðxÞ ¼ 1.

Theorem A. Suppose VðA;OÞ is spectral, that A is 2-symmetric, and that Provi-
sional Postulate 2 holds. Then VðAÞ is self-dual.
Proof. If f : E ! R, where E 2 A, let af ¼

P
x2E f ðxÞx. Note that this gives us

a positive linear mapping RE ! VðAÞ�. That A is spectral implies that every

positive element of V� has a representation as af for some fr0 on some E 2 A.
Notice that u ¼ a1 for the constant function 1 : E ! R on any test E 2 A.

Now let vx ¼ qx þ cu, where qx ¼ x� x; uh iu ¼ ð1� x; uh iÞx, as in Lemma 2,

so that vx?vy for x 6¼ y in E. If f 2 RE, let vf ¼
P

x2E f ðxÞvx. Note that

vf ¼
X
x2E

f ðxÞvx ¼
X
x2E

f ðxÞð1� x; uh i þ ncÞx:

Setting g 
 1� x; uh i þ nc (noting that this is constant!), we have

vf ¼
P

x2E f ðxÞgx ¼ afg. In particular, ag ¼ v ¼ ncu, so that g 6¼ 0. Thus, we have

af ¼ af=gg ¼ vf=g. Thus, if g 6¼ 0, every a ¼ af in V� has an orthogonal resolution

with respect to an orthonormal set fvxjx 2 Eg for some E 2 A. Finally, since (by our
provisional Postulate 2) we have vx � 0 for every x 2 E, every vector with an
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orthogonal resolution relative to the set fvxjx 2 Eg has an orthogonal Jordan

decomposition. □

Appendix D: Invariant Positive Inner Products on LhðHÞ

Let H be a complex Hilbert space of dimension n, with frame manual F and unit

sphere X. We seek to classify the unitarily invariant inner products on LhðHÞ that
are positive on the positive cone of the latter, and to show that all of these are

automatically minimizing.

As remarked above, Gleason’s Theorem provides an isomorphism between the

space VðFÞ of signed weights on F, and the space Lh ðHÞ of Hermitian operators on

H: for every a 2 VðFÞ, there is a unique Wa 2 Lh ðHÞ with aðxÞ ¼ Wax; xh i for all
x 2 X. We also have a dual isomorphism V�ðFÞ ’ Lh ðHÞ, sending each a 2 V�ðFÞ
to an Hermitian operator Aa with TrðAaWaÞ ¼ aðaÞ for all a 2 VðFÞ. Note that in

this representation, the order unit is represented by the identity operator 1 onH. IfU
is a unitary operator on H, understood as acting on X, then the natural action on

VðFÞ is given by UðaÞðxÞ ¼ aðU�1xÞ for all a 2 VðFÞ and all X 2 X. Thus, we have

WUax; xh i ¼ WaU
�1x;U�1x

� �
, whence, WUa ¼ UWaU

� for all states a. In other

words, the natural representation of U(H) on VðFðHÞÞ ’ Lh ðHÞ is exactly its usual
adjoint action. It follows that the dual action of U(H) on V�ðFÞ is again the adjoint

action A 7!U�AU. Noting that 1 and 1⊥, the space of trace-0 Hermitian operators,

are both invariant under this action, it follows that the two are orthogonal with

respect to any unitarily invariant inner product on V�ðFÞ. Also, since the adjoint

representation of U(H) on 1⊥ is irreducible [39, p. 20], it follows from Schur’s

Lemma that up to normalization, there is only one unitarily invariant inner product

on the latter – in other words, any invariant inner product on 1⊥ has the form

a; bh i ¼ l
nTrðabÞ for some l > 0, with l > 1 corresponding to the normalized trace

inner product. Hence, an invariant inner product on V ¼ 1h i � 1? is entirely

determined by the normalization of 1 and the choice of l. Taking ||1|| ¼ 1, we

have that, for any a ¼ s1þ ao and b ¼ t1þ bo, where ao; bo 2 1? and s; t 2 R, we
have

s1þ ao; t1þ boh i ¼ stþ l
n
TrðaoboÞ:

We require that a; bh i � 0 for all positive a; b 2 V�. The spectral theorem tells

us that this is equivalent to requiring that px; py
� � � 0 for all rank-one

projectionsPx;Py ðx; y;2 XÞ. Writing Px ¼ 1
n1þ ðPx � 1

n1Þ, and similarly for Py,

we have
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Px;Py

� � ¼ 1

n2
þ lTr Px � 1

n
1

� �
Py � 1

n
1

� �� �
¼ 1

n2
þ l
n
Tr PxPy � Px þ Py

n
þ 1

n2
1

� �
¼ 1

n2
þ l
n

TrðPxPyÞ � 2

n
þ 1

n

� �
¼ 1

n2
þ l
n

j x; yh ioj2 �
1

n

� �
¼ 1� l

n2
þ l
n
j x; yh ioj2;

where ;h i is the inner product onH. This will be non-negative for all choices of unit

vectors x and y (in particular, for x and y orthogonal) iff 0<l � 1 – in which case,

the minimum value of Px;Py

� �
occurs exactly when x?y, so such an inner product

is automatically minimizing.
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Chapter 18

Probability in the Many-Worlds Interpretation

of Quantum Mechanics

Lev Vaidman

Abstract It is argued that, although in the Many-Worlds Interpretation of quantum

mechanics there is no “probability” for an outcome of a quantum experiment in the

usual sense, we can understand why we have an illusion of probability. The

explanation involves: (a) A “sleeping pill” gedanken experiment which makes

correspondence between an illegitimate question: “What is the probability of an

outcome of a quantum measurement?” with a legitimate question: “What is

the probability that ‘I’ am in the world corresponding to that outcome?”; (b)

A gedanken experiment which splits the world into several worlds which are iden-

tical according to some symmetry condition; and (c) Relativistic causality,

which together with (b) explain the Born rule of standard quantum mechanics.

The Quantum Sleeping Beauty controversy and “caring measure” replacing

probability measure are discussed.

18.1 Introduction

Itamar and I shared a strong passion for understanding quantum mechanics. We did

not always view it in the same way but I think we understood each other well. In

fact I am greatly indebted to Itamar. Being a physicist working on foundations of

quantum mechanics I always thought that philosophical arguments are crucial for

understanding quantum mechanics. However, my first philosophical work [1] was

rejected over and over by philosophical journals and philosophers. While Hillary

Putnam, Abner Shimony, Michael Redhead and others did not see the point I was

making, it was Itamar who first appreciated my contribution and opened for me the

way to the philosophy of science [2].
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There are three conceptually different scenarios of what happens in the process

of quantum measurement. The first option is that there is a genuinely random

(chance) event which makes one outcome happen without any possibility to know

which one prior to the measurement. This is the case of collapse: the von Neumann

type II evolution of the quantum wave, or the stochastic event in a theory of

dynamical collapse [3, 4]. The second option is that the quantum wave description

of the system is deterministic, there is no collapse, but it is incomplete. There are

hidden variables specifying the outcome prior to the measurement, which, however,

we cannot know in principle. The most successful proposal of this kind is causal

interpretation [5]. The third option is that the evolution is deterministic, there is no

collapse of the quantum wave and the quantum wave is the complete description of

the system. Then, all outcomes take place and this is the many-worlds interpretation

(MWI) [6].

The concept of probability is directly applicable in the first scenario. There is

genuine chance and genuine uncertainty. If, say, A is a possible outcome, then we

can talk about the probability that A will happen. Indeed, A might or might not

happen. At the end of the process we will definitely know if A took place.

In the second scenario there is no random chance. Prior to experiment Nature

knows the outcome, it is encoded in some (hidden) variable. There are no several

options, only one. However, since the theory postulates that “hidden variables”

cannot be known to the experimentalist, he has an ignorance-type probability: he

does not know the value of the hidden variable which specifies the outcome of the

experiment. His concept of probability is: the probability that A will happen is the

probability that the hidden variables now are such that A will take place.

The situation is the most difficult in the third scenario. There is no randomness,

there is no chance: A happens with certainty, but other non compatible outcomes

happen with certainty too, so a standard concept of probability addressing the

dilemma A or not A is not applicable here. We have no uncertainty, everything is

known. We have a complete description prior to the measurement and the process

of measurement is some known deterministic evolution; so we know the complete

description now and forever. These leads us to the conclusion that we do not have

probability here in the usual sense. But this can be expected since the picture of

multiple worlds is rather unusual. I will argue that we have here an illusion of

probability, an illusion behaving very much like the usual probability.

18.2 The “Tale of a Single-World Universe”

Before starting the analysis of probability in the MWI I have to clarify exactly what

is the MWI since it has numerous, sometimes contradictory, presentations in the

literature. The MWI, as I understand it [7], is the claim that All is the Universal

Wave Function evolving according to the laws of standard quantum mechanics

without collapse, together with the explanation of the correspondence between the

Wave Function and our experience.
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In order to explain our experience I find it useful to introduce the “Tale of a

single-world Universe”. Let us assume that we are the only civilization and that we

live under a very strong dictatorship which has laws against quantum

measurements. It is forbidden to perform quantum experiments in which there is

a nonzero probability for more than one outcome. Manufacture of Geiger counters

is banned, quantum random number generators [8] are forbidden, and a special

police prevents world splitting devices of the kind that can be found in Tel-Aviv

university [9]. There are even laws that under the threat of death enforce disposal of

neon light bulbs after 6 months of operation, to avoid operating an old bulb, which,

when flicking, splits our world.

In this tale Nature does not arrange quantum experiments accidentally: no

macroscopically different superpositions of a macroscopic object ever develop. In

such a Universe there is no difference between the MWI and the textbook interpre-

tation: in both, the wave function evolves according to the Schr€odinger equation
since collapse takes place in the measurement-type situations, but in our tale these

situations never take place. The wave functions of all macroscopic objects remain

well localized all the time.

The connection of the Wave Function to our experience in such a Universe is

through a three dimensional picture which is generated by the Wave Function.

Indeed, the three dimensional map of the density of wave functions of all particles

will form a familiar picture of macroscopic objects around us as well as our bodies

moving in time in a classical manner.

I am aware that there are claims that the Wave Function cannot describe the

reality because it is defined in configuration space [10]. In classical mechanics

a similar complaint is easily rejected because we can consider each particle

separately in three dimensional space, instead of one point in the configuration

space of all N particles. In quantum mechanics it is more difficult, since we cannot

neglect entanglement. Although in our tale macroscopic bodies are never entangled,

electrons are surely entangled with nuclei in atoms and atoms entangled in

molecules. Still, the picture is in three dimensions. Even if an electron in my finger

is entangled with nuclei and other atoms in the molecule of my skin, its density in

three dimensions is well localized. This picture in three dimensional space is what

corresponds to our observations. What makes the representation of the Wave

Function in space special, relative to some abstract Hilbert space representation,

is that the interactions in Nature are local. Since our observations are also kind of

interactions, they are local too.

18.3 Illusion of Probability

Once we understand the link between the Wave Function and experience in

a single-world Universe, we can proceed to analyze a Universe in which quantum

measurements are not forbidden. The quantum measurements will lead to a super-

position of branches of the Wave Function, each one of them corresponding to what
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we experience as a “world”. Until the next measurement, the link with our

observations works in each branch as in a single-world Universe. The locality

and strength of interactions in Nature ensure that parallel branches do not interfere

(decoherence). Given the information we have at present, we can follow our branch

to the past before the last quantum measurement, but we can follow it to the future

only until the next measurement. In our branch we remember past events of

performing quantum measurements and obtaining particular results. It seems to

us that the outcomes came out randomly, although we know that there were no

random evolution in Nature. The branch was split deterministically to two or more

branches. We now experience only one of them and it seems to us that there was

a random outcome of the quantum measurement.

If we imagine a hypothetical theory in which the wave function collapses every

time a macroscopic object evolves into a superposition of macroscopically different

states such that all macroscopic objects (whatever “macroscopic” means) remain

well localized, then the memory and experience of the observers in the single world

described by such a theory will be identical to the experience of observers in one

branch of the many-world universe. In the Universe with collapse there is a genuine

probability concept of random chancy events. In the MWI universe there is deter-

ministic evolution, and no objective “chancy” probability. But the experiences in

a particular branch (we can follow the branch in the MWI backwards in time) are

identical to the experiences of genuine probability of the observers living in the

physical universe with collapses of the quantum wave. This explains the illusion of

probability in the MWI.

So, one approach to introducing “probability” to the MWI is to point out that the

observer in a branch of the Universe in the framework of the MWI and the observer

in the single-world Universe with collapse postulate are described by the same

mathematical object and thus have the same experience. Since in the theory with

collapse, the probability concept is clear, we can associate the same concept in the

branch of the MWI with the observer who is planning to perform a quantum

experiment.

Although I do not think that the probability can be derived in the framework of

the MWI as Deutsch advocates [11], I do think that one can argue more why the

illusion of probability in the MWI works so well. To illustrate this let us consider

two gedanken experiments. The experiments will include steps which seem

technologically unimaginable, yet they do not require changes in any physical law.

18.4 Gedanken Experiment I: Complete Symmetry

Three identical space stations A, B and C were built and put on the same orbit

around Earth in a symmetrical way, see Fig. 18.1. Bob wants to travel to space and

he arranges an automatic device which will send him to one of these stations after

he goes to sleep. The device consists of a spin-1 particle in the state
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1ffiffiffi
3

p ðj1i þ j0i þ j � 1iÞ; (18.1)

measuring device of the spin component and the spaceship which will move him,

while he is asleep, to one of the stations according to the outcome of the spin

measurement. Bob, who accepts the MWI of quantum mechanics is certain that, at

a later time, there will be three Bobs. The quantum state will be

1ffiffiffi
3

p ðjAij1i þ jBij0i þ jCij � 1iÞ; (18.2)

where jAi signifies the quantum state of Bob in A as well as the state of spaceship

which brought him to A and everything else which interacted with Bob and

his spaceship and became correlated to his wave function in A, and similarly for

Fig. 18.1 Bob’s descendants in symmetric state in three space stations
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jBi| and jCi. Bob in A will know that there will be yet other two Bobs at that time,

one in B and another in C.
While this is a very expensive experiment, it is by no means technologically

unthinkable. What makes the experiment more difficult is the requirement of

complete identity (apart from their symmetric location on the orbit) of the states

jAi, jBi and jCi. Given this symmetry, each waking Bob will have a genuine

concept of probability of being in A equal to one-third. They will have the

probability concept in spite of the fact that they will know everything about the

world, or at least everything about the spaceship, satellites and their bodies and that

the complete description of these systems has no random elements. The only thing

they will be ignorant about is their identity.

These three Bobs will be in a privileged situation, as only they have a meaning-

ful concept of probability. Due to symmetry between the three Bobs, the probability

of being Bob A is one-third. Insofar as everyone else is concerned, the probability

for a particular Bob to be in A is either 1 or 0, since the only possibility to identify

a particular Bob is according to his location.

Albert [12] was arguing that the probability I constructed here appears too late.

He claims that we need to assign probability before performing the experiment,

while descendants of the experimentalist obtain their ignorance probability only

after the experiment. Indeed, the probability concept of Bob’s descendants is not the

probability concept for the outcome of the experiment for Bob before the experi-

ment. There is no meaning for Bob, before the experiment, to the question: “What is

the probability that Bob will reach space station A?”, since he will reach all stations.

In my opinion, the criticism of Albert falls short because I do not claim that there

is a genuine probability in the MWI. There is only an illusion, and all what I am

trying to say is that this illusion behaves exactly as if there was a real concept of

probability. If we adopt an approach for probability as the value of an “intelligent

bet” [13], then Bob makes bets understanding that the consequences of the bet will

be relevant for his descendants (Bobs after the experiment). They will get the

reward of the bet (and they will have initially less money if Bob spent money on

the bet). They will have an ignorance concept of probability, so they will be pleased

to find out that the bet was placed. The Bob before the experiment cared about Bobs

after the experiment, due to symmetry of the situation, in an equal way. This,

together with the fact that all Bobs like to bet, provide the rational for his betting.

18.5 Gedanken Experiment II: Derivation of the Born Rule

The sleeping pill trick [1] provides the way to talk about probability in the MWI,

which, in my view is the main difficulty to be resolved. In recent years, however,

even more attention was given to the issue of the Born rule in the framework of the

MWI, i.e. not just to justifying the probability concept when all outcomes of the

experiment are realized, but also assigning the correct values of probability for
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different outcomes. In the above idealized symmetric setup we do get the correct

probability, one-third, but we need to work much more for a general case.

Let us note that even in Experiment I there is no complete symmetry: I gave

names to Bob’s (identical) stations, one of them is “A” and others are not. In

a completely symmetrical situation there cannot be different names. So, the sym-

metry is not complete. We only assume that all relevant aspects of the three stations

are completely identical, but we accept a possibility, and in fact a necessity, that

there are other properties of the stations, like pictures on their surface which are

different. In a scientific theory we have an idea as to what is relevant and what is

not. A hypothesis that a different text drawn on otherwise identical space stations

will change the outcome of the experiment described above does not seem to be

scientific. So, we have to make our setup symmetric only in relevant details.

Let us modify the above setup trying to keep relevant aspects symmetric, in

a way which will lead us to the Born rule. We still have our three identical space

stations, but now, the observer, Bob, is moved only to space station A. We also send

Charlie and John to stations B and C and perform similar operations there to keep at

least partially the symmetry between the stations, see Fig. 18.2. While Bob is asleep

(as well as Charlie and John), a device of the type described above causes a particle

to be in a superposition in all three stations. Then, in all three stations automatic

devices perform measurements of the presence of the particle there. According to

the outcome of such measurement in station A, Bob is moved to a room “yes” if the

particle is found in A and to a room “no” if the particle is not found there. Similar

operations are performed in stations B and C. Now, upon awakening, each Bob will
have a genuine ignorance probability concept regarding the question: “In which

room am I?” Each Bob will have a reason to declare probability one-third for being

in the room “yes”, because there are three worlds and only in one of them this Bob

is in the room “yes”.

The statement that “there are three worlds” needs clarification. In one world Bob

cannot view himself in a superposition, so, it was clear in Experiment I that there

are three worlds: in the first Bob is in A, in the second he is in B, and in the third he is
in C. In Experiment II, in the first world, A, Bob is in room “yes”; in the worlds

B and C he is in the room “no”. If we follow Everett’s original “‘Relative state’

formulation of quantum mechanics” [6], we might say that for Bob there are

only two worlds: in one of them he is in the “yes” room and in another he is

in the “no” room. In my approach [7] macroscopic objects and especially people

cannot be in a superposition of macroscopically different states in one world.

So, the measurements of Charlie and John in stations B and C ensure that there

are three worlds: A, B, and C, with Bob, Charlie, and John, in their “yes” rooms

correspondingly, while the others are in “no” rooms. The symmetry argument here

is suggestive but not rigorous. We need three worlds which are symmetric in all

relevant aspects. It is not obvious that the fact that in two of the worlds (B and C)
there is one and the same Bob, while in the world A there is another Bob, is not

relevant for our analysis.
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Accepting the suggestive symmetry argument that gives Bob probability one

third to find himself in room “yes”, provides the Born rule for this case:

pyes ¼ 1
3
¼ hPAi. Now we can add to the MWI the locality and causality postulates.

The MWI yields: There is nothing but the wave function.
Locality provides:Outcomes of local experiments depend only on local values of

the wave function.
Causality of relativistic quantum theory yields: Any action in a space-like

separated region cannot influence an outcome of local experiment.
From this it follows that Bob should assign probability pyes ¼ 1

3
for all states

which can be obtained from (2) through actions at regions which are space-like

separated from the measurement in A. For example, if Charlie and John in stations B
and C do not perform measurements of the presence of the particle, the symmetry is

broken: there will be two worlds instead of three, but the probability to find the

particle in A remains one-third. This gedanken experiment shows that the

Fig. 18.2 Bob’s descendant in room “yes”, while Charlie’s and John’s descendants are in rooms

“no” in superposition with two other similar options
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probability of finding the particle in A for a quantum state which allows “symme-

trization”, i.e., there exists symmetric state with N parts with the same density

matrix at location A, is 1
N.

A more general question is the probability of an outcome of any quantum

measurement in a particular location, not just the measurement of projection

operator of a particle on this location. A celebrated example is a Stern Gerlach

measurement of a spin component. To cover this case we can consider unitary

evolution which creates a spin state via absorption of a photon. Then, the spin

component measurement is equivalent to a photon projection measurement [14].

The concept of “symmetrization” becomes: existence of a symmetric situation with

identical systems in symmetrically located N locations with the same density matrix

at location A.
Generalizing the argument for an arbitrary state a la Deutsch [11] or by using

Gleason theorem [15] we can derive the Born rule. However, I do not see how to

make this derivation rigorous. If we could make a similar argument for Experiment

I, in which symmetry is robust, this could provide a rigorous derivation of the

probability in the MWI. However, the locality argument cannot be applied there.

Bob is not localized in this experiment. When he is asked what is the probability

that he is in A, the situation in B and C matters. For example, if Bob knows that

nobody will ask this question in B and C, he should give the answer 1 instead of 1
3
.

(Note that when Charlie and John refrain from making measurements in B and C it

changes nothing in Experiment II.)

So, although the Born rule fits the MWI very well, I do not see how to derive it
without some (plausible) assumptions of what is relevant for the probability of an

outcome of a quantum measurement. But then, similar, if not simpler, symmetry

arguments yield the Born rule also in the framework of collapse interpretations, so I

do not think that the MWI has an advantage relative to this question. I adopt the

MWI because it removes randomness and nonlocality from physics.

18.6 Quantum Sleeping Beauty

It is harder to approach the probability issue in the framework of the MWI than in

other interpretations of quantum mechanics and I found only one situation in which

the MWI helps to analyze a probabilistic question. This is the story of “Sleeping

Beauty” [16].

Some researchers put Beauty to sleep. During the 2 days of her sleep they will briefly wake

her up either once or twice, depending on the toss of a fair coin (Heads: once; Tails: twice).

After each waking, they will put Beauty back to sleep with a drug that makes her forget that

waking. Every wakening the Beauty is asked: What is your credence for the outcome

Heads?

This problem raised a great controversy: is the answer one-third or one half?

Although I believe that one can argue convincingly that the answer is one-third
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without help of quantum mechanics [17], the MWI provides an even more con-

vincing argument [18]. I implement the fair coin toss via quantum experiment with

probability half, which is an ultimate fair coin. Then one can unambiguously

describe the situation as the unitary evolving quantum wave of Beauty and quantum

measuring device. This makes the problem easier to analyze than in the case of

a “chancy” fair coin. For simplicity I will add to the story that before wakening,

the Beauty is moved to the room “Heads” or “Tails” according to the result of

the quantum measurement. The rooms are identical inside, so, when she is asked the

question she is in one of three different locations in space and time, but she will

have the same memory state and identical environment. For the case of the quantum

measurement, the question: “Is it Heads or Tails?” is senseless, since both options

are realized. The actual question is: “Is it Heads or Tails in the world the Beauty is

asked the question?” (Compare with Groisman’s [19] approach to resolve the

Sleeping Beauty controversy for the classical coin.) Beauty knows that in the

Universe there are three events in which she is asked this question. The measures

of existence of worlds in all these events are equal. Since only one of these events

corresponds to Heads, she assigns probability one-third for Heads.

The Quantum Sleeping Beauty also generated a considerable controversy. To

my surprise the answer one-third is not in the consensus. Peter Lewis [20] claimed

that quantum coin tossing leads to the Beauty’s answer of one half. He insisted,

especially, that it has to be one half in the framework of the MWI [21]. Very

recently Bradley [22] also claimed (but did not show) that the MWI approach leads

to the answer one half, adding that in his view this is good news for the MWI.

Papineau and Dura-Vila [23] criticized Lewis, but argued that accepting my

approach to probability in the MWI strengthens Lewis’s claim for one half.

Most of Lewis’s arguments rest on assigning pre-branching uncertainty in the

MWI advocated by Saunders [24] and Wallace [25] which I strongly deny. Lewis

briefly mentions that one half is obtained in my approach too, arguing that there is

an analogy with a process with two consecutive coin tosses. (I just learned that

Peterson [26] argued against this analogy.) I could not see such an analogy: the only

second coin toss in the Sleeping Beauty story I can imagine is her guess about

which wakening, out of three, is now. I cannot understand the rational for Lewis’s

coin toss between the two Tail wakening. The answer one half seems to follow from

an error similar to the Bertrand Box paradox [27].

18.7 Caring Measure Instead of Probability

In the MWI there is no genuine probability. Instead of probability measure, I

introduced “measure of existence” of a world. Measure of existence, apart from

its relation to probability, describes the ability of a particular world to interfere with

other worlds [2]. I defined a “behavior principle” [1, 7] according to which an

experimenter performing quantum experiments cares about his descendants

according to their measures of existence. This principle answers the (naive)
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criticism that a believer in the MWI would agree to play “Russian Quantum

Roulette” [28]. “Measure of existence” is a philosophically problematic term, so

“caring measure” is frequently used instead of “measure of existence” [29].

Albert [12] recently criticized this approach, providing deliberately ridiculous

alternative measure (proportional to the measure of existence of the branch times

fatness of the observer in this branch) and arguing that this caring measure is as

good as the other one. Albert’s criticism might apply if caring measure is consid-

ered as a standing alone proposal. In my approach the foundation of the caring

measure is the post-measurement genuine probability of the descendants of the

experimentalist. In a typical quantum experiment, splitting of worlds (creation of

superposition of macroscopically different wave packets of macroscopic systems)

happens before the time the experimentalist (i.e. all of his versions) will become

aware of the outcome. So, there will be a stage with genuine probability concept. At

that moment all the descendants will be happy if actions according to the behavior

principle have been performed.

I am encouraged by recent support coming from Tappenden [30], who approved

attaching post-measurement uncertainty to (the illusion) of pre-measurement prob-

ability naming it the Born-Vaidman Rule. Tappenden uses it for the analysis of

confirmation of the MWI; see also Greaves and Myrvold [31]. I might agree with

these arguments, but for me, the strongest confirmation of the MWI lays in the non-

probabilistic consequences of quantum theory, such as spectrum of a hydrogen

atom. Experiments confirming this type of predictions are so successful that only

extreme deviation from the Born-Vaidman rule might question the MWI.

18.8 Conclusions

I have argued that there are two main issues related to probability in the MWI. First

is how to talk about the probability of an outcome in a measurement when all

outcomes are actualized, and the second is what is the status of the Born rule.

If we disregard the first problem, then the second is simple: The MWI tells us

that All is the Wave Function. Locality tells us that the result of any experiment in

one location can depend only on the property of the Wave Function in this location.

The expectation value of the projection of the Wave Function on this location is the

only property which cannot be changed by actions elsewhere, so causality tells us

that the probability is the function of this projection. Then, from a symmetry

argument and/or Gleason theorem the Born rule is derived.

The resolution of the first problem is the statement that there is no genuine

probability concept in the MWI, and the “sleeping pill” argument explains well why

we have an illusion of probability which is essentially indistinguishable from real

probability. The combination of two arguments would solve the whole problem, but

unfortunately, it requires additional, although very plausible, assumptions regard-

ing what might influence the probability of an outcome. Note, however, that with
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such an assumption the Born rule can be derived in the framework of other

interpretations of quantum theory as well.

I understand that Itamar and I viewed the problem of the Born rule in a similar

way, i.e. that some assumptions are necessary in order to prove the Born rule using

the Gleason theorem [32]. On the other hand, Itamar and Meir Hemmo were

sceptical about resolution of the first issue. I believe that the reason why I do not

see the difficulties they encountered is that I consider a direct connection between

the Wave Function and our experience without insisting on giving values to various

observables, the topic which was at the center of Itamar’s research. His view on the

MWI was according to the lines of the many minds interpretation [33] in which the

situation is very different, since, a priori, pre-measurement uncertainty seems to be

possible and it is a non-trivial fact that actually it is not. Since I never tried to

introduce the pre-measurement uncertainty in the first place, I had no reason to be

discouraged by this result.

This work has been supported in part by the Israel Science Foundation Grant

No. 1125/10.
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