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Preface

This book has its origins in courses for graduate and undergraduate students at
the Moscow Institute of Physics and Technology (MPhTI). It is the result of over
forty years of the author’s work in the Laboratory of Geophysical Hydrodynamics
founded by A.M. Obukhov in the Institute of Atmospheric Physics (IAP) of the
Russian Academy of Science. The first four sections (Part I) are devoted to the ba-
sic principles and laws of motion of ideal incompressible and compressible fluids.
Particular attention is given to the first integrals of the hydrodynamic equations, and
in particular, to the Kelvin invariant and its analogs in stratified incompressible and
compressible fluids, the Rossby–Obukhov and Ertel invariants.

In Part II, we discuss what geophysical fluid dynamics is with its unusual prop-
erties of fluid motion along isobars and with its suppressed vertical velocity compo-
nent (the Proudman–Taylor theorem). In deriving the quasi-geostrophic equations
of motion we used the axiomatic approach to streamline the presentation. Namely,
the whole space of inviscid global geophysical flows is in a sense spanned by the
four-dimensional Obukhov–Charney basis, which is defined by the conditions of
quasi-hydrostatic and quasi-geostrophic equilibria, as well as the Lagrangian invari-
ance of potential temperature and potential vorticity. The problem of filtering fast
motions and adaptation of meteorological fields to the above mentioned equilibria is
discussed merely by illustrations and physical reasoning. We introduce the concepts
of Rossby waves, their resonant interaction, thermal wind, available potential en-
ergy, singular Helmholtz and Obukhov vortices, we derive the Kirchhoff equations
for such vortices and demonstrate their applications in geophysical setting.

Part III discusses the problem of the barotropic and baroclinic stability of global
geophysical flows. It is preceded by a summary of the classical results in the the-
ory of hydrodynamical stability, which is easily generalized to the case of a rotating
fluid. When choosing the material I enjoyed a short and very intelligible book Hy-
drodynamical stability and atmosphere dynamics by L.A. Dikii whose line I fol-
lowed with minor changes in this book. Our exposition is supplemented by the
consideration (following E. Lorenz) of oversimplified nonlinear equations of atmo-
spheric dynamics, which illustrate the evolution of motion after the stability loss
by the primary flow. We draw the reader’s attention to the mechanism of baroclinic

v



vi Preface

instability and its relation to the available potential energy. In my opinion, the best
physical interpretation of this complex phenomenon was given by its discoverer
Eady, and a modern account of his work is included in that section.

Viscous geophysical flows and the general atmospheric circulation are discussed
in Part IV; its content and exposition differ most of all from the traditional approach
to these issues. After deriving the Navier–Stokes equations the reader’s attention
is focused on describing the geophysical boundary layers, namely, the Ekman and
Proudman–Stewartson layers, responsible for the dissipation of kinetic energy of
global flows. We derive the quasi-geostrophic equation for the transformation of the
potential vorticity of a quasi-two-dimensional barotropic atmosphere taking into ac-
count the planetary boundary layer. Starting with this equation we study in detail the
linear stability of the Kolmogorov zonal flow (with the sine velocity profile) on the
infinite f -plane. In this exceptional case the linear stability problem can be solved
analytically. This clearly illustrates the crucial role of exterior friction created by
the planetary boundary layer for the stability characteristics of global atmospherical
flows. The results of solving this problem are formulated in terms of internal and ex-
ternal Reynolds numbers and then extended to flows with arbitrary velocity profiles.
These results point to the structural instability of strictly two-dimensional flows
with respect to the inclusion of friction. On the other hand, omitting internal fric-
tion has practically no effect on the results of quasi-two-dimensional theory. Thus,
it becomes apparent that the crucial parameter of the barotropic atmosphere is the
Reynolds number defined by the external friction, rather than the usual Reynolds
number reaching astronomical values for global motions. Self-similarity with re-
spect to the internal Reynolds number and the relatively low supercritical response
of global movements on the exterior Reynolds number is exactly what explains the
relatively quiet nature of general atmospheric circulation, which is not captured by
the developed large-scale turbulence.

The final Part V treats the general circulation of the atmosphere with the help
of its mechanical prototype, the Euler–Poisson equations of motion of a rigid body,
generalized to the case of a rotating system. It is worth mentioning yet one more
distinctive feature of this course. Based on the concept of a generalized rigid body
introduced by Arnold and the concept of a generalized heavy rigid body introduced
by the author, we draw the following analogy. On the one hand, one has the hydro-
dynamical Euler equations of motion of an ideal fluid and the Oberbeck–Boussinesq
equations of motion of a heavy fluid, while on the other hand we deal with the Euler
equations of a classical gyroscope and the Euler–Poisson equations for motion of
a heavy top. As a consequence, such mechanical invariants as the square of angu-
lar momentum and projection of angular momentum to the direction of gravity are
treated as the Kelvin and Ertel invariants, respectively. The mechanical prototype
of general atmospheric circulation, which has the fundamental symmetry properties
of the original, is obtained by introducing linear friction, simulating the effect of
the planetary boundary layer and the Newton heat sources, which are proportional
to temperature deviations from the background. As a result, based upon analytical
calculations and numerical integration of few-component dynamical systems, one
can view atmospheric action as a heat engine with its Hadley and Rossby funda-
mental modes, its reverse meridional circulation cell, its characteristic energy cycle,
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few-component stochastization, and therefore the weather unpredictability for long
periods, as well as its transitions from one long-term metastable weather state to
another that are not externally motivated.

For better understanding, each chapter is equipped with exercises, hints, and usu-
ally solutions. The literature citation in each chapter is minimal and focuses mainly
on the widely available publications where the reader can find more details. The
references in the text are given only by the author’s name and the publication year
and listed at the end of the corresponding section. We give more details on difficult-
to-find publications, which are not (yet) included in the well-known editions. The
book contains both theoretical and experimental results obtained over years in
the Laboratory of Geophysical Hydrodynamics of the IAP RAS by A. Batchaev,
V.A. Dovzhenko, V.A. Krymov, D.Yu. Manin, and Yu.L. Chernousko.

I am using this opportunity to express my sincere gratitude to V.P. Dym-
nikov for his encouragement of both my teaching activity and faster comple-
tion of the manuscript. Numerous consultations and the accompanying construc-
tive criticism of my colleagues G.S. Golitsyn, V.P. Goncharov, V.I. Klyatskin, and
I.G. Yakushkin were invaluable in preparing this material. I am particularly indebted
to A.E. Gledzer, E.B. Gledzer, and V.M. Ponomarev for our productive discussions,
proofreading of the manuscript and the preparation of illustrations.

F. Dolzhansky
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Translator’s Note

The second edition of this book appeared in Russian already after Felix Dolzhan-
sky’s untimely death. That edition was prepared thanks to the invaluable help of
A.E. Gledzer1 and E.B. Gledzer, who corrected misprints of the first Russian edi-
tion and saw the new edition through all stages of the editorial process. Their help
was also pivotal in the preparation of the English translation of the book.

I am indebted to A.E. Gledzer and E.B. Gledzer, to the Dolzhansky family, and to
the Springer office in Heidelberg for their kind support and for making the English
edition possible. I am particularly grateful to Ann Kostant for her thorough editing
of the text. Special thanks go to Masha V.Z. Khesin for her generous help with this
translation project.

Boris Khesin

1The present version of the book was finalized by June 2009 (e-mail: lgg@ifaran.ru).
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Part I
Main Principles and Laws of Motion

of an Ideal Fluid



Chapter 1
Equations of Motion of an Ideal Incompressible
Fluid; Kelvin’s Circulation Theorem

Fluid motion as a physical process is associated with the Euler or Navier–Stokes
equations in hydrodynamics. These equations describe an immense set of qualita-
tively different phenomena—from the simplest small oscillations of a continuum,
such as the propagation of sound in a homogeneous fluid (gas), to the mysterious
phenomenon of turbulence observed in a vast majority of natural and technological
flows. This “comprehensive nature” of the equations means that it is impossible (at
least, as of today) to construct their general solutions. Consequently, it also means
that there is a need for an appropriate reduction of these equations based on both
observations and on the physical nature of the class of motions under study. For this
reason, by now individual areas of hydrodynamics, such as the theory of sound, vor-
tex dynamics, hydrodynamical stability theory, magnetohydrodynamics, convection
theory, aerodynamics and many others, have all taken on the status of independent
domains of science with their own physical features, applications, and often with a
specially developed mathematical toolbox, as is the case in nonlinear wave theory.

Geophysical hydrodynamics has also become an independent science, encom-
passing a rather wide range of phenomena observed in rotating fluids. These include,
in particular, the oceans and Earth’s atmosphere, their laboratory counterparts, at-
mospheres of other revolving planets, the Sun and other stars, and even galaxies
whose evolution takes place under general rotation.

In order to better understand what geophysical hydrodynamics is and what place
it occupies among other hydrodynamical sciences, it is worth recalling the funda-
mental principles and laws of motion in fluids, as it is forbidden to violate them in
any kind of simplified formulation of problems.

1.1 What is an Incompressible Fluid?

Let us start with an ideal, i.e., inviscid and non-thermo-conducting, incompressible
fluid. Incompressibility means that during motion the density ρ = ρ(t,x) of an arbi-
trarily isolated fluid parcel, regarded as a function of time t and location x, remains
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4 1 Equations of Motion of an Ideal Incompressible Fluid

constant. Since the radius-vector x = x(t) of the location of a moving particle in
turn depends on time, the constancy condition of ρ is expressed mathematically by
the equation

dρ

dt
≡ ∂ρ

∂t
+ (u∇)ρ = 0, (1.1)

where u(t,x) = ẋ(t) is by definition the velocity of the flow at a point x at the
moment t . The operator

d

dt

.= ∂

∂t
+ u∇ (1.2)

is called the substantial (or individual) derivative and it reflects the fact that a change
of some characteristics of a moving fluid parcel is not only caused by its explicit
time dependency, but also by the spatial nonhomogeneity of this quantity. Its rate of
change in the direction of the flow is given by the derivative u∇ in the direction of
the velocity vector u. A symbol

.= stands for “by definition is equal to”.
We shall call the quantities characterizing the state of a fluid, e.g. its weight and

velocity, at any point of the space occupied by the fluid as field characteristics or
simply fields. Scalar field characteristics satisfying Eq. (1.1) are called Lagrangian
invariants. As we shall see below, they play a crucial role in geophysical fluid dy-
namics. Let us emphasize yet one more time the main property of a Lagrangian
invariant, which follows from its definition: it is passively transported by fluid mo-
tion, i.e., its value remains constant for each individual particle, and it is only its
location that changes.

1.2 Equations of Motion of an Ideal Incompressible Fluid

The single physical characteristic describing an ideal incompressible fluid at a com-
plete rest is its density, a local measure of inertia of a continuum. Therefore, the
motion of such a system has to be governed exclusively by mechanical principles.
As a source, one can use any two independent principles, for instance, the law of
conservation of mass and Newton’s second law, which provide a foundation for for-
mulating the equations of balance for energy, momentum, and angular momentum.
For an arbitrary fixed fluid volume V , mass conservation is expressed by the equa-
tion

∂

∂t

∫

V

ρdV = −
∮

∂V

ρu · dσ = −
∫

V

div(ρu)dV . (1.3)

It expresses the fact that the rate of change of mass of the fixed volume is equal to
the mass flux through the closed surface ∂V which bounds it. (The minus sign on
the right-hand side of Eq. (1.3) indicates that the direction of the exterior normal n is
chosen to be the positive direction of the fluid flux through an element dσ = ndσ of
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the surface ∂V . As applied to an individual fluid parcel of a unit volume this means
that

∂ρ

∂t
+ div(ρu)≡ dρ

dt
+ ρ div u = 0. (1.3′)

Due to (1.1), for an incompressible medium Eq. (1.3′) splits into two equations:

dρ

dt

.= ∂ρ

∂t
+ (u∇)ρ = 0, div u = 0, (1.4)

i.e., the motion of an incompressible fluid is described by divergence-free velocity
vector fields. Such fields are often called solenoidal.

Newton’s second law, as applied to an individual fluid parcel of the unit volume,
can be written as follows:

ρ
du
dt

.= ρ

(
∂u
∂t

+ (u∇)u
)

= F, (1.5)

where F is a constraint reaction, i.e., the total of all forces of the surrounding
medium acting on the particle.

However, the system of (1.4) and (1.5) is not yet closed, as the number of the un-
knowns ρ, u = (u1, u2, u3) and F = (F1,F2,F3) exceeds the number of equations
by two. Sometimes to close up the system (1.4) and (1.5) one takes a somewhat
inconsistent step that involves using the notion of pressure. Pressure, strictly speak-
ing, belongs to the realm of thermodynamics and thus moves us outside of the scope
of a purely mechanical point of view of the medium being considered. This can be
avoided by the following reasoning.

For the sake of simplicity let us assume that fluid’s density is constant throughout
and equals ρ0. In this case we can transform the system (1.4) and (1.5) into the form

div u = 0, (1.6)

∂u
∂t

= −(u∇)u + F
ρ0

. (1.7)

Since there are no other independent principles of motion for studying a fluid
within a strictly mechanical framework besides those mentioned above, one has to
assume that there exists a scalar function p = p(t,x) determined by the equations
of motion. This function defines F in the only invariant way by the relation

F = −∇p, (1.8)

where the logic behind the choice of the minus sign will become clear below.
The quantity p can be regarded as a gauge function that provides the divergence-

free (solenoidal) property of the right-hand side of Eq. (1.7) and satisfies the Poisson
equation

�p = −ρ0

∑
i,k

∂ui

∂xk

∂uk

∂xi
, (i, k = 1,2,3). (1.9)

(Apply the operator div to (1.7) while keeping in mind (1.8).)
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Further, take into account that the force acting on an individual particle of volume
V is equal to

∫

V

FdV ≡ −
∫

V

∇p dV = −
∮

∂V

p dσ

(dσ is an area element of the closed surface ∂V which bounds the volume V ). We
conclude that p is numerically equal to the force acting at point x on a unit area of
arbitrary orientation, i.e., the value p can be identified with the pressure arising in
the fluid due to its motion. Now the choice of the minus sign in (1.8) becomes clear:
positive acceleration of the fluid should be pointing in the direction of the decrease
in pressure, i.e., opposite to its gradient.

The above arguments remain valid for an incompressible fluid of variable density,
with the only difference that instead of (1.9), the pressure in this case satisfies the
equation

�p − ∇p · ∇(lnρ)= −ρ
∑
i,k

∂ui

∂xk

∂uk

∂xi
. (1.9′)

Thus, the equations of motion of an ideal incompressible fluid assume the form

du
dt

.= ∂u
∂t

+ (u∇)u = − 1

ρ
∇p, (1.10)

div u = 0,
dρ

dt

.= ∂ρ

∂t
+ (u∇)ρ = 0. (1.11)

The first equation is called the Euler equation of motion of an ideal fluid (L. Eu-
ler, 1755). By using the well-known formula of vector calculus

1
2 (∇u)2 = u × rot u + (u∇)u, (1.12)

the Euler equation is often more conveniently rewritten in the Bernoulli or
Gromeko–Lamb form:

∂u
∂t

− u × rot u = − 1

ρ
∇p − 1

2
∇(u)2. (1.10′)

Note an important distinctive feature of the Euler equation for a fluid of constant
density: its right-hand side is the gradient of a scalar function. In the case of variable
density this could only take place if p = p(ρ), i.e., if the pressure were a function
of density (the case of a so-called barotropic fluid). For an incompressible medium,
this would mean overdetermined equations of motion, as well as the fact that the
pressure would move along with the fluid. The latter is impossible because of the
physical nature of this quantity. This distinction is rather essential and, as we will see
below, it affects the properties of solutions of hydrodynamical equations, especially
when the fluid is placed in an external potential field.
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1.3 Kelvin’s Circulation Theorem

The notion of vorticity and Kelvin’s theorem (Lord Kelvin, 1869) are fundamental
in understanding and describing the motion of a fluid of constant density (ρ = ρ0).

A curve L is said to be liquid if it moves along with the fluid, i.e., any point on
the curve L moves together with the fluid particle located at that point initially. The
circulation of velocity along a closed liquid contour C is defined by the integral

K
.=
∮

C

uδr, (1.13)

where δr is an infinitesimal element of the contour C, equal to the difference of
radius vectors of its endpoints. Since the contour C is deformed while moving with
the fluid, the substantial derivative of the quantity K can be found from the equality

dK

dt
=
∮

C

du
dt

δr +
∮

C

uδ
(
dr
dt

)
, (1.14)

where by definition dr/dt = u. Hence∮

C

uδ
(
dr
dt

)
=
∮

C

uδu = 1

2

∮

C

d
(
u2)= 0 (1.15)

as an integral of a complete differential over a closed contour. Now substitut-
ing (1.10) into (1.14) and employing the constancy of ρ = ρ0 and (1.15), for the
same reason we find that

dK

dt
=
∮

C

du
dt

δr = − 1

ρ0

∮

C

∇pδr = − 1

ρ0

∮

C

dp = 0. (1.14′)

This proves Kelvin’s circulation theorem. According to this theorem K is a La-
grangian invariant, i.e.,

dK

dt

.= d

dt

∮

C

uδr = 0. (1.16)

Another formulation of Kelvin’s theorem is based on the application of the Stokes
theorem ∮

C

Aδr =
∫

S

rot Adσ , (1.17)

which holds for an arbitrary sufficiently smooth vector field A and an arbitrary con-
tractible liquid contour C. Here dσ is an infinitesimal area element of a surface S

bounded by a closed contour C. A contour is called contractible if it can be smoothly
deformed into a point without leaving the domain occupied by the fluid.

According to the Stokes theorem,

K
.=
∮

C

uδl =
∫

S

�dσ , �
.= rot u,
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Fig. 1.1 Contractible and
non-contractible contours in a
two-dimensional fluid filling
a non-simply connected
domain around a solid body

while for an infinitesimal closed contour C the value of K can be written as

K
.=
∮

C

uδl = �dσ . (1.18)

This shows that velocity circulation along a closed contractible liquid contour C
can be interpreted as a vorticity flux given by the vector field � across the surface
bounded by the contour C.

The equalities (1.16) and (1.18) imply that the above-mentioned vorticity flux is
a Lagrangian invariant, and so in that regard one can consider a transfer of vortic-
ity by the fluid. As it becomes clear from the above proof, the velocity circulation
is preserved along any closed liquid contour, including non-contractible ones, for
example, the one encompassing a solid body in a multiply-connected region (see
Fig. 1.1). Therefore one needs to remember that the velocity circulation is a broader
concept than the vorticity one, and it is used, for example, in the theory of flow of
an ideal homogeneous incompressible fluid around solids.

The Lagrangian invariance of the quantity (1.18) can be also interpreted in terms
of vortex tubes constructed as follows. Let us introduce the notion of a vortex line,
which by definition is tangent to the vorticity vector � at any point. Vortex lines are
defined by a family of solutions of differential equations

dx

Ωx

= dy

Ωy

= dz

Ωz

. (1.19)

A set of vortex lines passing through points of a closed contractible curve forms a
cylindrical surface that is called a vortex tube (see Fig. 1.2(a)). This tube, by virtue
of its construction, is such that on its surface � · n = 0 (n is the unit normal to
the surface). Consequently, the vorticity flux through any of its cross-sections δσ

is constant along the tube and is called the intensity of the vortex tube. Therefore,
the vorticity transport by the fluid now means that the vortex tube is liquid, i.e., it
moves along with the fluid. Indeed, according to the Kelvin theorem, the intensity
of a moving tube remains constant.

For better understanding that a vorticity field is stationary relative to the fluid or,
equivalently, that its force lines are liquid themselves apply the rotor operator to the
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Fig. 1.2 A vortex tube (a)
and an infinitesimal volume
element (b)

Eq. (1.10′) using the following formulas of vector calculus

rot(A × B)= (B∇)A − (A∇)B + A div B − B div A, (1.20)

rot(ϕA)= (∇ϕ × A)+ ϕ rot A. (1.21)

Taking into account the divergence-free property of the velocity field u = u(t,x),
we obtain the vortex equation

∂�

∂t
− rot(u × �)≡ ∂�

∂t
+ (u∇)� − (�∇)u = 0, (1.22)

named after Helmholtz (1858). The Helmholtz equation can be reformulated as

d�

dt
= (�∇)u. (1.22′)

According to Cochin, Kibel and Rose (1955) for the force lines of a divergence-
free vector field to be liquid, it is necessary and sufficient that the vector field itself
be governed by the Helmholtz equation.

Proving the necessity is straightforward. Let δl be an infinitesimal element of a
liquid line (i.e., its tangent element), that is, it connects the vectors l and l+ δl. Then
the rate of change of this element is equal to the length’s difference of that element
at close moments, divided by the corresponding difference in time:

dδl
dt

= δl(t + dt)− δl(t)
dt

.

A fluid parcel with vector l at time dt will travel into vector l+dt ·u. Accordingly, a
fluid parcel with vector l + δl in time dt will travel into vector l + δl + dt · (u + δu).
Therefore, one obtains the new value of the vector δl(t + dt) which connects new
positions of the same fluid parcels:

δl(t + dt)= δl(t)+ dt · (u + δu)− dt · u = δl(t)+ dt · δu.

And since the velocity difference δu at time t of two fluid parcels distanced by
vector δl is defined as (δl∇)u, we obtain

dδl
dt

= (δl∇)u or
∂δl
∂t

= (δl∇)u − (u∇)δl, (1.23)
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which is equivalent to (1.22′) or (1.22).
To prove sufficiency, note that the incompressibility of the fluid implies La-

grangian invariance of the volume element δμ = δl·δσ , where δl is a linear fluid
element and δσ is the area of an element of an oriented surface transversal to δl
(Fig. 1.2(b))

dδμ

dt
= d

dt
(δl·δσ )= 0. (1.24)

Being a linear liquid element, δl satisfies the Helmholtz equation. Hence from (1.23)
and (1.24) it follows that δσ is described by the equation

dδσ

dt
= −δσ

∂u
∂r

,

or, in tensor notation by

dδσi

dt
= −δσk

∂uk

∂xi
. (1.25)

Indeed, substituting (1.23) into (1.24) and using the tensor notation we obtain the
equality

δli

(
δσk

∂uk

∂xi
+ dδσi

dt

)
= 0,

which is equivalent to (1.25) due to the arbitrary nature of δl.
Now it is easy to prove that the force lines of a divergence-free vector field are

liquid, provided that the vector field satisfies the Helmholtz equation. Indeed, by the
definition of force lines (1.19) a length element δl is also governed by the Helmholtz
equation. At some initial moment consider a volume element δμ = δl · δσ , where
δσ is an element of a liquid surface transversal to the element δl at their intersection
point. Then since δl and δσ satisfy (1.23) and (1.25) respectively, one has that δμ
is a Lagrangian invariant, i.e., it is a liquid volume element, and hence δl is a liquid
length element.

In passing, note that a necessary and sufficient condition for a selected surface to
stay at rest relative to the fluid (i.e., that the surface is also liquid) is the condition
that every element of the surface δσ satisfies equation (1.25).

1.4 Exercises

1. Show that the vorticity at a point x is equal to the double angular velocity of the
local rotation of the fluid at the point x.

2. Consider a two-dimensional irrotational (i.e., everywhere � = 0) flow of an in-
compressible homogeneous fluid in an infinite plane containing a solid body.
Assume that the circulation of the flow velocity along the boundary of the solid
is nonzero and equals Γ0. Show that the velocity circulation over an arbitrary
contour encompassing the solid is also nonzero and equals Γ0.
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3. Let a fluid be in a potential field Φ (where ∇Φ is a force acting on a unit mass)
and rotate as a whole with a constant angular velocity �0. Show that in the
coordinate system rotating with angular velocity �0 the Euler equations can be
written in the form

du
dt

+ 2�0 × u = − 1

ρ
∇p + ∇

(
1

2
(�0 × r)2 +Φ

)
.

Hint: Use the transformation formula for the time derivatives

dA
dt

=
(
dA
dt

)
R

+ �0 × A,

where the index R stands for the time derivative in the rotating coordinate system.
4. Assume that we do not know the equations of motion for an ideal incompressible

homogeneous fluid, but we do know that Kelvin’s circulation theorem holds (e.g.,
as an empirical fact). Show that this theorem and the condition of the medium
incompressibility together imply the Euler equations of fluid motion. (Newton’s
Second Law could have been discovered using Kelvin’s theorem.)
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Chapter 2
Potential Vorticity and the Conservation Laws
of Energy and Momentum for a Stratified
Incompressible Fluid

2.1 Potential Vorticity of a Stratified Incompressible Fluid

For an incompressible but stratified fluid, for which ρ = ρ(t,x) �= ρ0, the Kelvin
theorem is not valid in general. The reason is that the right-hand side −ρ−1∇p of
the Euler equation (1.10) might not be the gradient of a scalar function any longer,
and hence ρ−1∇pδr might not be a complete differential. The latter condition was
exactly what provided the vanishing of the right-hand side of (1.14′).

Note, however, an important feature of the motion of a stratified fluid: it is fibered
into surfaces of constant density (isopycnic or iso-density surfaces) and remains
such in the process of evolution: every fluid particle belonging to such a surface at
the initial moments remains on the same surface due to the Lagrangian invariance of
density. (This is why stratified fluid is also often called fibered.) In turn, the motion
along any iso-density surface ρ(t,x)= ρ0 = const is the motion of a homogeneous
incompressible fluid, for which the Kelvin theorem holds. In particular,

K0
.=
∮

C0

uδl = �dσ 0 (2.1)

is a Lagrangian invariant (dK0/dt = 0), where C0 is an infinitesimal closed contour
on the iso-density surface, while dσ 0 is an element of this surface bounded by the
contour C0 (Fig. 2.1).

Consider a fluid tube intersecting surfaces of constant density, such that one of
the tube sections is a marked contour C0. Two such surfaces corresponding to close
density values ρ0 and ρ0 + δρ cut out a cylindrical element of the tube, whose
volume is equal to

δμ= dσ 0 · nδh, (2.2)

where δh is the height of the cut-out cylinder and n is the unit normal to the iso-
density surface. The normal direction coincides with the density gradient ∇ρ =
|∇ρ| · n. The value of δρ in turn can be written as

δρ = |∇ρ| · δh. (2.3)
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Fig. 2.1 The ends of a liquid
cylinder situated on isopycnic
(or iso-density) surfaces
ρ = ρ0 and ρ = ρ0 + δρ at the
initial moment will remain on
them during the evolution

Now by comparing (2.2) and (2.3) we find that

dσ 0 = δμ

δh
n = δμ

δρ
· δρ
δh

· n = δμ

δρ
∇ρ,

while

K0 = � · dσ 0 = δμ

δρ
� · ∇ρ.

The invariance of K0 implies the invariance of the value of

Π ≡ � · ∇ρ (2.4)

(and vice versa) when taking into account that the values of δμ and δρ are conserved
during the evolution process, respectively, by our construction and in view of the in-
compressibility of the medium. The quantity Π is called the potential vorticity (PV)
of an incompressible fluid. In other words, the conservation of the potential vortic-
ity exactly means applicability of the Kelvin theorem to contractible liquid contours
lying on surfaces of constant density. (The notion of potential vorticity was inde-
pendently introduced to hydrodynamics by C.-G. Rossby (1939) in relation to the
ocean, by H. Ertel (1942) in its most general form, and by Obukhov (1949) in rela-
tion to the atmosphere. In the following chapters we are going to return repeatedly
to various manifestations of this notion or, more precisely, of the Kelvin invariance
theorem.)

Formally one can prove the invariance of Π in the following way. Let us apply
the curl operator to the Euler equation (1.10′) in the Bernoulli form and use the for-
mulas (1.20) and (1.21). As a result we obtain the vorticity equation for a stratified
incompressible fluid, which is named after A.A. Fridman. By taking incompress-
ibility into account, this equation assumes the form

∂�

∂t
− rot(u × �)≡ ∂�

∂t
+ (u∇)� − (�∇)u = 1

ρ2
∇ρ×∇p. (2.5)

For a fluid of constant density it becomes the Helmholtz equation (1.22) or
(1.22′). We would like to make the following two remarks in this regard. First,
even for motion of a homogeneous incompressible fluid, the vorticity tubes undergo
stretching and squeezing, since the elements of the vortex lines are governed by
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the same Helmholtz equation dδl/dt = (δl∇)u and hence are not preserved in time.
Secondly, by comparing (2.5) and (1.22) we see that inhomogeneous density of the
fluid generates fluid vorticity. Therefore, a potential vorticity-free flow (described
by a scalar function ϕ, u = ∇ϕ) of a stratified medium is an exceptional rather than
a typical phenomenon. On the contrary, in a homogeneous fluid if its vorticity van-
ishes at the initial moment, such a flow remains potential forever.

Now let us consider the inner product with ∇ρ of the hydrodynamical equations
in Fridman’s form (2.5):

∂�

∂t
+ (u∇)� − (�∇)u = ∇ρ × ∇p

ρ2
. (2.6)

The right-hand side vanishes in this case. For the left-hand side we use straightfor-
ward transformations

∇ρ · [(u∇)�
]= (u∇)

[
(� · ∇ρ)

]− � · [(u∇)∇ρ
]
,

∇ρ · [(�∇)u
]= (�∇)

[
(u∇)ρ

]− u · [(�∇)∇ρ
]
,

and hence their difference gives the second and third terms on the left-hand side:

(u∇)(� · ∇ρ)− � · (u∇)∇ρ − (�∇)(u∇)ρ + u · (�∇)∇ρ.

The incompressibility condition implies that (u∇)ρ = −∂ρ/∂t , and hence the third
term can be transformed further as follows:

−(�∇)(u∇)ρ = (�∇)
∂ρ

∂t
= � · ∂∇ρ

∂t
.

Thus we come to the equation

+∇ρ · ∂�
∂t

+ (u∇)(� · ∇ρ)+ � · ∂∇ρ

∂t
= +�(u∇)∇ρ − u(�∇)∇ρ.

The right-hand side of the latter equality vanishes. Indeed, the simplest way to see
it is to rewrite it in tensor notation:

+Ωiuk
∂2ρ

∂xk∂xi
− ukΩi

∂2ρ

∂xi∂xk
= 0

(where the same indices assume summation).
Furthermore,

∇ρ · ∂�
∂t

+ � · ∂∇ρ

∂t
≡ ∂

∂t
(� · ∇ρ).

Hence by introducing the potential vorticity of an incompressible fluid Π =
� · ∇ρ, one can pass from Fridman’s hydrodynamical equations to the following
conservation law:

dΠ

dt
≡ d

dt
(� · ∇ρ)= 0. (2.7)
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2.2 The Bernoulli Equation

One of the most curious integrals of motion of an ideal incompressible fluid is the
Bernoulli integral (Daniel Bernoulli, 1738). It is also called the Bernoulli equation
and it characterizes steady flows along trajectories of its fluid particles. One should
emphasize that solutions of the Euler equation describe not trajectories, but rather
stream lines defined as such curves, whose tangents at any moment coincide with the
velocity directions of points on the curves. Stream lines at a moment t are defined
as solutions of the equations

dx

u(x, t)
= dy

v(x, t)
= dz

w(x, t)
(2.8)

(u = (u, v,w) are velocity components in the directions of the x-, y-, and z-axes
respectively) and they coincide with the trajectories of motion of the fluid particles
only in the stationary case. Indeed, tangents to stream lines coincide with the veloc-
ity directions of different particles at a fixed moment in time, while tangents to the
trajectory coincide with the velocity directions for the motion of a fixed particle at
different moments: the equation for the trajectory of a fluid particle which at t = 0
was located at the point x = a has the form dX(t,a)

dt
= u(X(t,a), t). In the stationary

case all particles on one and the same stream line move along one and the same
trajectory.

The observation that trajectories and stream lines coincide in steady fluid flows
allows one to integrate the Euler equation along its trajectories. First, we would
like to stress the following important fact. If an incompressible fluid is stratified,
then during its motion a fluid particle never leaves the corresponding iso-density
surface. In steady flows iso-density surfaces do not change their location in space as
time goes by. Therefore for each fluid particle on an iso-density surface the normal
(to the surface) component of the particle velocity must vanish. This implies that
in stationary flows of a stratified incompressible fluid the trajectory of each fluid
particle, and hence the corresponding stream line, entirely belongs to the surface of
constant density.

Now it is not difficult to find a first integral for a steady Euler equation along the
stream line. For this we use the Bernoulli form (1.10′) of the equation, and take its
inner product with an arbitrary element of the arc dl of a stream line

(u × rot u) · dl =
(

1

ρ
∇p + 1

2
∇u2

)
· dl. (2.9)

The left-hand side of (2.9) vanishes, since the directions of dl and u coincide. The
right-hand side is a complete differential in the direction of dl, since the integration
is carried over a curve belonging to an iso-density surface, and ρ−1 can be taken
under the gradient sign as a constant. Hence, along the trajectory of a fluid particle
the following equality holds:

p

ρ
+ u2

2
= const(x0), (2.10)
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Fig. 2.2 A constant flow of
an incompressible fluid past a
narrow wing

where the integration constant depends on the trajectory and it is determined
uniquely by any point x0 on it.

The equality (2.10) is called the Bernoulli equation and it holds for an arbitrary
steady flow of an incompressible stratified fluid (and in particular, even when rot u �=
0). In the case of a potential flow of a stratified fluid (u = ∇ϕ) the left-hand side
of (2.9) vanishes for any element dl (not necessarily tangent to the stream line).
Therefore the integration constant in the Bernoulli equation should be replaced by
const(ρ), i.e., by a constant depending on the choice of an iso-density surface only,
but not on the trajectory of the fluid particle. Finally, for stationary potential flows
of a homogeneous fluid, the integration constant is universal for the whole fluid
domain.

2.3 Why do Planes Fly?

This is a classical example for an application of the Bernoulli integral. Let a nar-
row wing have a profile as depicted in Fig. 2.2. Suppose that it is immersed in a
fluid which has constant density ρ = ρ0 and is approaching this wing with constant
velocity u = u0. Assume also that at the initial moment the velocity circulation

K =
∮
C

u · dl

over a closed fluid contour C encompassing the wing arbitrarily close to its bound-
ary is nonzero. Since the normal component of velocity to the wing surface is zero,
the fluid contour C will preserve the above properties for an arbitrary long time.
The value of K at any moment will be equal to its initial value due to its Lagrangian
invariance.1

Employing the Bernoulli integral, one obtains

p1 − p2 = 1

2
ρ0
(
u2

2 − u2
1

)= 1

2
ρ0(u1 + u2)(u2 − u1),

1In a viscous fluid the velocity circulation around the wing is forced, e.g., by a propeller.
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where the values with indices 1 and 2 refer to the bottom and top edges of the wing
respectively. Since the wing is narrow (the ratio of its width to its length is much
smaller than 1) and due to the conservation of mass one has (u1 +u2)/2 = u0. Hence

p1 − p2 = ρ0u0(u2 − u1),

while the vertical component of the resulting force is equal to

F = ρ0u0

l∫

0

(u2 − u1)dx,

where l is the wing’s length. The above-mentioned circulation is

K =
∮

C

u · dl =
l∫

0

u1dx +
0∫

l

u2dx = −
l∫

0

(u2 − u1)dx

(here the positive direction is counterclockwise). Whence one has

F = −ρ0u0K, (2.11)

which is the Kutta–Zhukovsky theorem on the lifting force on the wing. The force
is indeed lifting provided that K < 0, i.e., if the circulation happens to be clockwise.
In the opposite case the wing is pressed to the ground. In the latter case it is called
anti-wing and it is used, e.g., in Formula One racing cars to strengthen their traction
with the road. The required direction of circulation is achieved by the attack angle
and the wing profile in the direction along the flow.

2.4 Conservation Laws for the Momentum and Energy
of an Incompressible Fluid

For an ideal incompressible fluid the Lagrangian invariance of a quantity θ =
θ(t,x), i.e., dθ

dt
= 0, implies conservation of the integral

Θ(t)=
∫

V

θdμ,
dΘ

dt
= 0, (2.12)

provided that the fluid fills a bounded volume V and there are no exterior forces
acting on it. Indeed, the Lagrangian invariance of θ along with the incompressibility
property div u = 0 can be written in the form

∂θ

∂t
= −u∇θ = −div(uθ). (2.13)
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Integrate (2.13) over the fluid domain and use the Gauss–Ostrogradskii formula:

∂

∂t

∫

V

θdμ≡ dΘ

dt
= −

∫

V

div(uθ)dμ= −
∮

∂V

θu · dσ , (2.14)

where ∂V is the closed surface which bounds the domain V , and dσ is an oriented
area element of this surface. This implies the statement of the conservation law
(2.12), since there is no flux across the boundary ∂V (u · dσ = 0) and hence the
right-hand side of (2.14) vanishes.

The converse statement is not true in general. For instance, under the above as-
sumptions the total kinetic energy of an ideal incompressible fluid must be con-
served due to the absence of dissipation and other types of energy. However, simple
physical reasoning shows that this is not true locally because an individual fluid par-
ticle interacts with the surrounding medium and can lose or gain energy as a result
of the constraint reaction forces, i.e., the hydrodynamical pressure.

The following question arises: what is the form of local conservation laws for
quantities whose total integrals are preserved? In this relation it is interesting to de-
rive local conservation laws for momentum and energy directly from the equations
of motion (1.10) and (1.11) and to verify with their help the invariance of the corre-
sponding integral quantities. This is all the more so since a priori nothing indicates
that the Euler equations would imply the conservation of total momentum and total
energy.

2.4.1 The Local Momentum Conservation Law

In this case it is convenient to write the equations of motion (1.10), (1.11) in tensor
notation:

ρ
∂ui

∂t
+ ρuk

∂ui

∂xk
= − ∂p

∂xi
, (2.15)

∂uk

∂xk
= 0,

∂ρ

∂t
+ uk

∂ρ

∂xk
= 0. (2.16)

Now, based on (2.15) and (2.16), we find the rate of change for the momentum
of an individual fluid particle of unit volume to be

∂ρui

∂t
= −uiuk

∂ρ

∂xk
− ρuk

∂ui

∂xk
− ∂p

∂xi
= −uk

(
ui

∂ρ

∂xk
+ ρ

∂ui

∂xk

)
− ∂p

∂xi

= −uk
∂ρui

∂xk
− ∂p

∂xi
= −∂ρuiuk

∂xk
− ∂p

∂xi
,

where the last equality is due to ∂uk
∂xk

= 0. It follows that the local momentum con-
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servation law can be written in the form

∂ρui

∂t
= −∂Γik

∂xk
, (2.17)

where

Γik = ρuiuk + δikp (2.18)

is the density tensor for the momentum flux, whose components describe the flux of
the ith component of the momentum of a fluid parcel of unit volume in the direction
of the kth component of the velocity. The latter becomes evident if one integrates
(2.17) over any closed fluid domain V and applies the Gauss–Ostrogradskii formula

∂

∂t

∫

V

ρuidμ= −
∫

V

∂Γik

∂xk
dμ= −

∮

∂V

Γiknkdσ. (2.19)

Here dμ is a volume element, ∂V is the closed surface which bounds the volume V ,
nkdσ is an area element of the surface, which is oriented by the exterior normal nk .
(The application of the Gauss–Ostrogradskii formula consists of the replacement
dμ∂/∂xk → nkdσ .) Now equality (2.19) complemented by (2.18) can be rewritten
in the vector form

∂

∂t

∫

V

ρudμ= −
∮

∂V

[
ρu(u · n)+ pn

]
dσ . (2.20)

It follows that the vector whose components are Γiknk and which is equal to

� = ρu(u · n)+ pn (2.21)

defines the momentum flux in the direction n, i.e., across a surface element of the
unit area orthogonal to n.

Note that it is convenient to use the vector � when posing the boundary con-
ditions, since according to (2.21) the momentum flux in the velocity direction is
equal to ρu2 + p, while this flux in any normal to the velocity direction is merely
p. Therefore, in particular, on the boundary between two non-mixing media the
pressure must be continuous, while the velocity may have a jump.

Now let V be the whole fluid domain. Then the right-hand side of (2.20) vanishes
since there is no fluid flux across any surface element ∂V and since the total pressure
acting on ∂V vanishes. Thus the invariance of the total integral of the momentum
follows from the local momentum conservation law (2.17), (2.18).

2.4.2 The Local Energy Conservation Law

The local energy conservation law can be derived in a similar way by computing
the rate of change for the density of the kinetic energy ρu2/2 with the help of the
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equations of motion (1.10) and (1.11) (the reader may want to do it as a useful
exercise). Here we present the result based on physical reasoning, which is often
useful to undertake before a formal mathematical consideration.

Let V be an arbitrary fluid domain bounded by a closed surface ∂V . Then the
rate of change for the kinetic energy of the fluid inside this domain is composed of
the flux of the energy through the surface ∂V and the work done by the constraint
reaction forces, i.e., by the pressure, over the given fluid volume in the unit time.
Mathematically this is expressed as the following equality:

∂

∂t

∫

V

1

2
ρu2dμ= −

∮

∂V

(
1

2
ρu2

)
u · dσ −

∮

∂V

pu · dσ . (2.22)

The minuses on the right-hand side of (2.22) mean that dσ is directed as the exterior
normal to the surface ∂V .

By applying the Gauss–Ostrogradskii formula to the right-hand side of (2.22)
and making equal the integrands of the left-hand and right-hand sides, we conclude
that the local energy conservation law is given by the equality

∂

∂t

(
1

2
ρu2

)
= −div

[
u
(

1

2
ρu2 + p

)]
. (2.23)

This implies the conservation of the total kinetic energy of the flow. One can easily
see this by setting ∂V in (2.22) to be the boundary of the whole flow domain, and
using that the normal component of the velocity vanishes on ∂V .

2.5 Exercise

1. Derive the local energy conservation law (2.23) directly from the equations of
motion (1.10) and (1.11).
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Chapter 3
Helicity; Equations of Gas Dynamics; The Ertel
Invariant

3.1 The Helicity Invariant

The notion of helicity

χ
.= u · � (�

.= rot u), (3.1)

although being less widely known, is rather important for the description of such
phenomena as tornadoes and typhoons. Unlike stream lines, the vortex lines are
frozen into the fluid, according to the Kelvin theorem. Hence for non-stationary
processes, the mutual location of vortex and stream lines, i.e., the structure and
topology of the flow, change in time. The value of χ serves as a measure of this
local structure change. On the other hand, intuition suggests that if the vortex lines
are knotted or linked, the total number of such linkings should not change during
the evolution, at least for an unbounded volume of fluid, since according to the
Kelvin theorem the vortex lines are never born and never disappear. This is why it
is interesting to derive the evolution equation for helicity to resolve the question on
the existence of an integral topological invariant. For this purpose we are going to
use the Euler equation in the Bernoulli form (1.10′):

∂u
∂t

= u × � − ∇p

ρ
− ∇

(
u2

2

)
, (3.2)

while the vorticity equation can be put in the following form:

∂�

∂t
= rot(u × �)− rot

∇p

ρ
. (3.3)

By multiplying (3.2) and (3.3) by � and u respectively and adding them together
we get on the left-hand side:

∂(u · �)/∂t = ∂χ/∂t, χ = u · �.
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On the right-hand side we make a note of the term (u × �)�, which vanishes iden-
tically. Then the expression u · rot(u × �) can be rewritten by using the formulas

div(A × B)= B · rot A − A · rot B, (3.4)

(A × B)× C = B(A · C)− C(A · B). (3.5)

(Here A, B, C are arbitrary sufficiently smooth vector fields.) Thus we obtain the
following expression: u · rot(u × �)= div[�(u · u)− u(u · �)].

The right-hand side of the equation for the helicity evolution assumes the form

div
[
�(u · u)− u · χ]− div

[(
p

ρ
+ (u · u)

2

)
· �

]

− � · ∇p

ρ
+ ∇

(
p

ρ

)
· � − u · rot

(∇p

ρ

)
. (3.6)

Further, we use the vector identity

rot(αA)= ∇α × A + α rot A, (3.7)

(where α is any scalar field) to transform the term (u · rot(∇p
ρ
)).

Then the right-hand side simplifies to

−div

[
u · χ + � ·

(
p

ρ
− (u · u)

2

)]
− p

ρ2
· (� · ∇ρ)+ u ·

(∇ρ

ρ2
× ∇p

)
. (3.8)

We see that the right-hand side contains the by-now-familiar to us potential vor-
ticity Π = � · ∇ρ of an incompressible stratified fluid. We now obtain the evolution
equation for helicity χ :

∂χ

∂t
= −div

[
u · χ + � ·

(
p

ρ
− (u · u)

2

)]
− p

ρ2
·Π + u ·

(∇ρ

ρ2
× ∇p

)
.

By taking into account the easily derivable relation

+div

[
p

ρ2
· (∇ρ × u)

]
= − p

ρ2
·Π + ∇p

ρ2
· (∇ρ × u),

one obtains the evolution equation for local helicity:

∂χ

∂t
= −div

[
u · χ + � ·

(
p

ρ
− (u · u)

2

)
+ p

ρ2
· (∇ρ × u)

]
− 2p

ρ2
Π

+ ∇p

ρ2
· (∇ρ × u)+ u · ∇ρ

ρ2
× ∇p.

Using the formulas

A · (B × C)= C · (A × B)
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one has

∇p · (∇ρ × u)= u · (∇p × ∇ρ)= −u · (∇ρ × ∇p),

which eliminates the last two terms from the right-hand side of the expression for
the helicity evolution and brings it to the divergent form

∂χ

∂t
= −div

{
u · χ + � ·

(
p

ρ
− (u · u)

2

)
+ p

ρ2
· (∇ρ × u)

}
− 2p

ρ2
Π. (3.9)

This expression establishes that the source of helicity is the potential vorticity
of the fluid. If the latter is absent, i.e., in the case of a homogeneous medium, the
right-hand side of (3.9) has the divergent form. In turn, this means that the total
helicity

H =
∫

V

χdV (3.10)

satisfies

dH

dt
= −

∫

V

div

[
u · χ + �

(
p

ρ0
− 1

2
u2
)]

dμ

= −
∮

∂V

[
u · χ + �

(
p

ρ0
− 1

2
u2
)]

dσ

and is preserved, provided that not only the stream lines but also the vortex lines are
tangent to the surface ∂V which bounds the flow domain V .

The value of H, which is called the helicity invariant (discovered by J.J. Moreau
in 1961 and rediscovered by H.K. Moffatt in 1969) characterizes the degree of knot-
tedness or linking of the vortex lines. Note here without proof that, for instance, in
the case of two simply linked vortex rings with strengths Γ1 and Γ2 (see Fig. 8.3a)
the value of helicity is H = ±|Γ1Γ2|, where the sign depends on whether or not
each of the rings moves in the direction of the vorticity of the other. This statement
will be proved in Chap. 8, where we introduce the notion of singular vortex lines
and discuss their behavior.

3.2 Equations of Gas Dynamics or Equations of an Ideal
Compressible Fluid

Recall that an ideal incompressible fluid in a steady state is described by the only
physical quantity, i.e., density, which measures the degree of inertia of the medium.
This is why the equations of motion of an incompressible fluid can be formulated
solely within the mechanical framework, where the pressure in such a medium is
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understood as the constraint reaction and it vanishes when there is no relative mo-
tion.

In the case of a compressible fluid the situation changes drastically. The density
alone is not enough to describe the local physical state of the fluid, since under
uniform stretching or squeezing the density and pressure can assume various values
even when there is no relative motion. The momentum and energy conservation laws
form an incomplete system of equations, and to close it up one needs additional
considerations.

Taking the above into account, an ideal compressible fluid can be thought of as a
thermodynamical system. More precisely, it is a collection of thermo-isolated ther-
modynamical systems that are fluid parcels whose macroscopic state is described
by two independent parameters, for instance, pressure p and density ρ. (This is
true provided that there are no chemical reactions or phase transitions. Otherwise
the chemical potential must be added to the list of independent parameters.) Such a
consideration is possible if the time required to come to a thermodynamic equilib-
rium is much smaller than the characteristic time for medium macroscopic changes.
This is one of the fundamental assumptions on which N.N. Bogolyubov based his
derivation of the hydrodynamical equations from the Boltzmann equation, see e.g.,
(Uhlenbeck and Ford, 1965). In the latter case the laws of equilibrium thermody-
namics are applicable locally and to close up the equations of motion one can use
the second law of thermodynamics. According to this law, the entropy of a thermo-
isolated system remains constant (and the energy exchange between particles takes
place only due to the work of the forces of pressure). This means that the entropy of
an individual particle of an ideal compressible fluid is a Lagrangian invariant. Then
the equations of motion can be written in the form

du
dt

.= ∂u
∂t

+ (u∇)u = − 1

ρ
∇p, (3.11)

dρ

dt

.= ∂ρ

∂t
+ (u∇)ρ = −ρ div u, (3.12)

ds

dt

.= ∂s

∂t
+ (u∇)s = 0, (3.13)

s = s(ρ,p). (3.14)

Here s = s(ρ,p) is the specific entropy, i.e., the entropy of an individual fluid parcel
of the unit mass. It is assumed to be a known function of ρ and p as a function of
the state of a thermodynamic equilibrium system. The system (3.11)–(3.14) is also
called the equations of an ideal gas dynamics.

Sometimes it is convenient to write the adiabatic motion condition (3.13) in the
form of the local mass conservation law

∂ρs

∂t
+ div(ρs u)≡ dρs

dt
+ ρs div u = 0, (3.13′)
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while the Euler equation (3.11) can be written in the Bernoulli form (see (1.12) and
(1.10′))

∂u
∂t

− u×rot u = − 1

ρ
∇p − ∇

(
1

2
u2
)
. (3.11′)

In general, it is useful to remember that the quantity ϕ = ϕ(t,x) is a Lagrangian
invariant of the gas dynamics if and only if the equation for the quantity Φ = ρϕ

can be written as the local mass conservation law.

3.3 Isentropic Motion of a Compressible Fluid

One of the important cases of motion of a compressible fluid is its isentropic motion,
where by definition the entropy has the same value at all points of the fluid. This
process is physically possible, since if at the initial moment the entropy has the
same value for all fluid particles, so will it be for the whole motion due to entropy’s
Lagrangian invariance (3.13). The condition of entropy’s constancy

s(ρ,p)= const (3.15)

determines the density ρ, and hence any other thermodynamical quantity, as a func-
tion of pressure p only. (Recall that we do not consider here processes related to
phase transitions or chemical reactions.) The motion for which the density is a func-
tion of the pressure only is called barotropic. Thus isentropic motion is barotropic.
The converse is also true. Indeed, the dependence ρ = ρ(p) implies the dependence
s = s(p), and according to (3.13)

ds

dt
= ds

dp
· dp
dt

= 0 ⇒ ds

dp
= 0 ⇒ s(p)= const,

since p is physically not a passive scalar, and hence dp/dt �= 0.
Now for the function f (p)≡ 1/ρ(p), we introduce its primitive

W(p)=
∫

f (p)dp =
∫

dp

ρ
,

dW

dp
= 1

ρ
, (3.16)

which allows us to represent the right-hand side of the Euler equation (3.11) in the
form

− 1

ρ
∇p = −dW

dp
∇p = −∇W.

Therefore for an isentropic or barotropic motion of a compressible fluid the equa-
tions of gas dynamics assume a much simpler form:

∂u
∂t

+ (u∇)u = −∇W,
∂ρ

∂t
+ div(ρu)= 0, W =W(p), (3.17)
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where W is supposed to be a known function of the pressure p and is called the
specific enthalpy or the heat function of the fluid unit mass. (Recall that, generally
speaking, enthalpy of a thermodynamical system of the unit mass is defined by the
equality dW = T ds + ρ−1dp, which for an isentropic process coincides with the
definition of the primitive (3.16). Here T is the absolute temperature of the medium.)

Equations (3.17) are called the equations of motion for a barotropic fluid and
they possess a number of remarkable properties. In particular, the Kelvin theorem
on the conservation of circulation over any closed fluid contour holds for them, as
well as does the Bernoulli equation hold for stationary trajectories of fluid particles,
which can be written in this case in the following form:

1

2
u2 +W(p)= const. (3.18)

(Let us remind the reader that if the flow is not potential, the choice of the constant
in (3.18) is determined by the trajectory along which we integrate.)

The above mentioned properties directly follow from the fact that the right-hand
side of Eq. (3.17) becomes a complete differential after taking its inner product with
an element δr of the integration curve (see Chap. 2, Sect. 2.2). From this point of
view a barotropic fluid is analogous to a homogeneous incompressible fluid. Note
that the latter formally satisfies the definition of a barotropic fluid, for which W =
p/ρ0, and it is the only incompressible barotropic fluid (why?).

3.4 The Kelvin Theorem and the Bernoulli Integral in Gas
Dynamics

For non-isentropic, also called baroclinic, motion of an ideal compressible fluid the
Kelvin theorem does not hold in general. However, similar to the fibration of an
ideal nonhomogeneous fluid into isopycnal surfaces, an ideal compressible fluid is
fibered into non-intersecting isentropic surfaces. Indeed, a fluid particle belonging
initially to one of such surfaces remains sitting on it during the whole evolution due
to the Lagrangian invariance of the quantity s. For the same reason the same happens
with a closed fluid contour initially belonging to a surface of constant entropy. By
taking into account that the motion along such surfaces is barotropic, according
to the preceding section, one can apply to this motion the Kelvin theorem and the
Bernoulli equation. In other words, the following statements hold.

I. During a baroclinic motion of an ideal compressible fluid the velocity circulation
over a closed fluid contour lying on an isentropic surface is preserved.

II. For stationary flows of an ideal compressible fluid the quantity B = 1
2u

2 +
W(p, s0) is preserved along the trajectories of fluid particles, where the value of
W(p, s0) = ∫

dp/ρ(p, s0) depends on s(ρ,p) = s0 as a parameter defining the
surface to which this trajectory belongs.
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Being applied to an infinitesimally small closed contour C0, belonging to an
isentropic surface s(ρ,p)= s0, the statement I means that the quantity

K0 =
∮

C0

u·dr = rot u · dσ 0 (3.19)

is a Lagrangian invariant. Here dσ 0 is an oriented area element of the isentropic
surface bounded by the contour C0. In addition to the surface s(ρ,p) = s0, let us
consider infinitesimally close to it the isentropic surface s(ρ,p)= s0 + δs. Through
the contour C0, we draw a liquid cylindrical surface, whose intersection with the
additional isentropic surface is also a closed contour (see Fig. 2.1). The ends of the
constructed cylindrical element will remain on the corresponding isentropic surfaces
during the evolution. Then the mass of the fluid parcel under consideration can be
found according to the formula

M = ρhn · dσ 0, (3.20)

where n is the normal to the surface s0 whose direction coincides with ∇s and h is
the cylinder height. Because of the infinitesimal proximity of the isentropic surfaces,
the value of δs can be written as

δs = ∇s · nh. (3.21)

By comparing (3.20) and (3.21) we conclude that

dσ 0 = M

δs
· ∇s

ρ
. (3.22)

Plug (3.22) into (3.19) and recall that δs and M do not change during the evolution:
the former is preserved according to the definition of δs, while the latter does not
change as the mass of the given fluid volume which consists of the same particles
at any moment. This allows us to conclude that the invariance of K0 implies the
invariance of the quantity

ΠE = rot u · ∇s

ρ
. (3.23)

The latter quantity is called the potential vorticity of the equations of gas dynamics
or the Ertel invariant. H. Ertel (1942) proved the invariance of ΠE for the first time
directly from the equations of motion (3.11)–(3.14) by vector calculus methods (see
Exercise 2). The discussed above elegant and physically transparent derivation of the
invariance of ΠE , as well as its direct relation to the Kelvin theorem, was proposed
by F. Moran (1942) the same year, and then, apparently independently, reconstructed
by J.G. Charney (1948) in his famous work on the dynamics of global geophysical
flows.
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3.5 Exercises

1. Why can a barotropic fluid of nonhomogeneous density not be incompressible?
2. The balance equation for the helicity of a homogeneous rotating fluid in a poten-

tial field Φ has the form

∂

∂t

[
u(rot u + 4�0)

]

= −div

{
u
[
u(rot u + 2�0)

]+
(
p

ρ0
+Φ − 1

2
u2
)

rot u + 4�0

(
p

ρ0
+Φ

)}
.

Show this by using the equations of motion written in a rotating coordinate sys-
tem (see Sect. 1.4 in Kurgansky 1993)
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Chapter 4
The Rossby–Obukhov Potential Vortex;
Energy and Momentum of a Compressible
Fluid; Hydrodynamic Approximation
of Equations of Gas Dynamics

4.1 The Rossby–Obukhov Potential Vortex in Shallow-Water
Theory

The notion of a potential vortex is of crucial importance for geophysical fluid dy-
namics and dynamic meteorology. So in addition to its formal expressions Π ≡
� ·∇ρ (see (2.4)) and ΠE = rot u·∇s

ρ
(see (3.23)), we would like to provide the reader

with its expression for the equations of shallow-water theory. The latter are equa-
tions describing a two-dimensional motion of a thin layer of an ideal incompressible
fluid of constant density ρ0 with a free surface in a gravitational field (Fig. 4.1). The
layer thinness condition means that the characteristic horizontal scale L of the flow
is much greater than the layer thickness H . This allows one to neglect vertical ac-
celerations of particles in comparison with both the gravity acceleration g and the
dependence of the horizontal components of velocity on the vertical coordinate z.
In this case, the pressure p satisfies the quasi-hydrostatic relation

∂p

∂z
+ gρ0 = 0, p = ρ0g

(
H(x,y, t)− z

)
, (4.1)

while the equations of motion assume the form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂H

∂x
, (4.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂H

∂y
, (4.3)

dH

dt
+H

(
∂u

∂x
+ ∂v

∂y

)
≡ ∂H

∂t
+ ∂(Hu)

∂x
+ ∂(Hv)

∂y
= 0. (4.4)

Here u = u(x, y, t), v = v(x, y, t) are z-independent velocity components in the
directions of x- and y-axes respectively. Equation (4.4) is obtained by integrating
in z the divergence-free condition for the three-dimensional velocity field ∂u/∂x +
F.V. Dolzhansky, Fundamentals of Geophysical Hydrodynamics,
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Fig. 4.1 The shallow-water
theory describes a
two-dimensional motion of
vertical liquid columns in a
layer of fluid of constant
density ρ = ρ0 with a free
surface in the field of gravity

∂v/∂y + ∂w/∂z = 0, given that w(z = 0) = 0 (the layer rests on an impermeable
surface) and that w(z =H)= dH/dt by definition.

Equations (4.2)–(4.4) have a beautiful interpretation in terms of gas dynamics.
Namely, they describe barotropic motion of a two-dimensional compressible fluid
whose pressure and density are constrained by the polynomial relation (polytropic
gas)

p = 1

2
αgρ2,

where α is a dimensional constant. Substituting this relation into (3.11) and making
the change αρ =H in (3.11) and (3.12), one obtains the shallow-water equations.

Now one can proceed with a formal approach and apply the Kelvin theorem to the
barotropic motion of a two-dimensional gas. According to this theorem, the value

K =Ωzdσ

is a Lagrangian invariant. Here Ωz
.= ∂v/∂x − ∂u/∂y is the vertical component of

vorticity (all other components vanish because of the two-dimensionality of the mo-
tion) and dσ is the area of any horizontal cross-section of a liquid column. This
area is bounded by an infinitesimal closed contour C (see Fig. 4.1) contained en-
tirely in the plane (x, y). Note that dσ =m/ρ0H , where the mass m of the column
comprised of the same particles remains unchanged during the motion. Then the
Lagrangian invariance of K implies Lagrangian invariance of the quantity

ΠRO =Ωz/H. (4.5)

This quantity is called the potential vorticity for shallow-water equations. It was
in this form that the concept of potential vorticity was introduced into geophysical
hydrodynamics by Rossby (1939) for the ocean and, independently, by Obukhov
(1949) for the atmosphere. The reader can easily verify the invariance of this quan-
tity by means of a direct calculation (Exercise 1).

Recall (see Exercise 1 in Chap. 1) that Ωz = 2ω, where ω is the angular velocity
of local rotation of the fluid. One should note that the invariance of ΠRO in the
shallow-water theory is equivalent to the conservation of angular momentum of the
liquid cylinder, whose base is the element dσ , and H is its height (Fig. 4.1). Indeed,
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the momentum of inertia of the cylinder is

I = 1

2
mr2 = 1

2π
mdσ = 1

2π
m
V

H
= 1

2π

m2

ρ0

1

H
,

where r is the cylinder radius and V = dσH is its volume. Then its angular mo-
mentum is

M = Iω = 1

4π

m2

ρ0

Ωz

H
. (4.6)

This implies that the singled out cylindrical element behaves similarly to a balle-
rina or figure skater who, by stretching upwards and raising their arms can speed up
their rotation and, vice versa, by “flattening”, i.e., by squatting and spreading their
arms can slow it down.

The theorem on conservation of potential vorticity also provides some insight
into the behavior of an inhomogeneous fluid, whether it is a gas or an incompress-
ible inhomogeneous fluid, which splits into disjoint isentropic or isopycnic surfaces
that are intersected by vortex tubes. Besides, due to relation (4.5), areas of higher
concentration of the above-mentioned surfaces (i.e., area of smaller values of H ) are
characterized by lower vorticity (smaller values of Ωz), and vice versa. This results
in alternating higher and lower local twists of the fluid. Areas of higher vorticity can
cause turbulence to appear. Therefore, it is possible that turbulent spots observed in
both the atmosphere and in the ocean, and chaotically arranged at different heights
or depths are formed under the influence of the irregular stratification of compress-
ible or inhomogeneous incompressible fluid.

4.2 Conservation Laws and Fluxes of Energy and Momentum in
Compressible Fluids

There is a fundamental distinction between a gas and an incompressible fluid. As a
thermodynamical object any gas particle, along with the kinetic energy of its macro-
scopic motion, possesses an internal energy that serves as a measure of the total
kinetic energy of all the molecules forming that particle. The following considera-
tions point to the possibility that while a particle is in motion one type of energy
transforms into another. The first law of thermodynamics for a fixed mass system is
expressed as follows:

δε = T δs − pδV = T δs + p

ρ2
δρ, (4.7)

where ε, T , s, p and V are, respectively, internal energy, absolute temperature,
entropy, pressure and volume of the medium considered.
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According to (3.12) and (3.13), in the application to an adiabatic motion δs of an
individual gas particle of a unit mass, the formula (4.7) can be rewritten as

dε

dt
= p

ρ2

dρ

dt
= −p

ρ
div u. (4.8)

It follows that if div u �= 0, then the macroscopic motion of a fluid can cause
changes in its internal energy, and vice versa, a change in internal energy inevitably
generates a macroscopic current. Therefore, for gases the equation of balance of
local energy has to be written for the value

E = ρ

(
1

2
u2 + ε

)
, (4.9)

which expresses the total energy per unit volume of the fluid.
Now let us compute ∂E/∂t using the equations of gas dynamics (3.11)–(3.14).

According to (4.7)

δ(ρε)= εδρ + ρT δs + p

ρ
δρ =

(
ε + p

ρ

)
δρ + ρT δs.

This implies that

∂ρε

∂t
=
(
ε + p

ρ

)
∂ρ

∂t
+ ρT

∂s

∂t
.

Employing now (3.12) and (3.13) to calculate ∂ρ/∂t and ∂s/∂t , one obtains

∂ρε

∂t
= −

(
ε + p

ρ

)
div(ρu)− ρT (u∇)s. (4.10)

Again apply the first law of thermodynamics (4.7) and with u∇ replacing a rather
arbitrary differential operator δ in front of the quantities ε, s and ρ on both the left-
and right-hand sides of the equation. This way we find T (u∇)s and plug it into the
expression (4.10). Finally, we have

∂ρε

∂t
= −div

{
ρu
(
ε + p

ρ

)}
+ u∇p. (4.11)

Similarly, (3.11) and (3.12) can be used to compute

∂

∂t

(
1

2
ρu2

)
= ρu

∂u
∂t

+ 1

2
u2 ∂ρ

∂t
= −ρu(u∇)u − 1

2
u2 div(ρu)− (u∇)p

= −div

(
u

1

2
ρu2

)
− (u∇)p.
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Adding the latter equality with (4.11) we can express the energy conservation
law for a compressible fluid by the equality

∂

∂t

[
ρ

(
1

2
u2 + ε

)]
= −div

{
ρu
(

1

2
u2 + ε + p

ρ

)}
, (4.12)

where ε + p/ρ =W is an enthalpy per unit mass of the fluid. Its appearance on the
right-hand side of (4.12) is due to the work of the pressure forces (cf. (2.23)).

As for the local law of momentum conservation, it assumes the same form for a
gas as for an incompressible fluid, i.e., by formulas (2.17) and (2.18) (why?). This
can be easily verified by a direct calculation using the equations of motion (3.11)–
(3.14). (We encourage the reader to do this as a useful exercise.)

4.3 The Speed of Sound

We observed that a gas medium accumulates two kinds of energy, internal and ki-
netic, along with the possibility of their transformation into each other. This points
to the fact that a gas, unlike an incompressible fluid, can perform free, or so-called
eigen, oscillations, i.e., oscillations in the absence of any external influence. These
oscillations can be induced by initially creating a domain of higher (or lower) den-
sity by a local adiabatic compression (stretching). Because of this work, an excess
(or a deficit) of pressure that forms in such a domain prevents further compression
(or stretching) and creates, in turn, a reciprocal force. As a result, the areas of com-
pression and stretching will spread throughout the fluid (like circles on the water
surface) generating longitudinal (in contrast to the water surface) oscillations of the
fluid particles in the vicinity of their original location. This process is known as
sound, and its propagation speed is one of the fundamental physical characteris-
tics of a compressible fluid. In particular, this characteristic allows one to formulate
sufficient conditions in order to ignore medium’s compressibility, thus materializing
the seemingly rather abstract concept of an ideal incompressible fluid. In this regard,
it is worth recalling the formula for the speed of sound.

If the equilibrium state of a compressible medium is defined by the constant
values u = 0, p = p0, ρ = ρ0 and s(ρ0,p0)= s0, then with pinpoint accuracy, small
oscillations of this medium can be described by linear hydrodynamic equations:

∂u′

∂t
= − 1

ρ0
∇p′, (4.13)

∂ρ′

∂t
= −ρ0∇u′, (4.14)

where u′, p′ and ρ′ are small perturbations with zero mean value, and besides

s
(
ρ0 + ρ′,p0 + p′)= s0, (4.15)
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because the motion of an ideal compressible medium is adiabatic. (We ignore non-
linear terms as quantities of a higher order of magnitude in comparison with pertur-
bations.)

Now regarding the pressure as a function of thermodynamical quantities s and
ρ and keeping in mind (4.15), it is easy to see that p′ and ρ′ are connected by the
following relation:

p′ =
(
∂p

∂ρ

)
s=s0

ρ′. (4.16)

Obviously, (∂p/∂ρ)s=s0 = const > 0 since the excess/deficit of the pressure leads to
an increase/decrease of the density. Let us then set

(
∂p

∂ρ

)
s=s0

= c2. (4.17)

By substituting expressions (4.16) and (4.17) into Eq. (4.13) we get

∂u′

∂t
= − c2

ρ0
∇ρ′. (4.18)

Now eliminating ∇u′ from (4.14) and (4.18) we obtain the wave equation for ρ′

∂2ρ′

∂t2
− c2�ρ′ = 0, (4.19)

where c =√
(∂p/∂ρ)s=s0 is the propagation speed of acoustic waves.

Essentially, the speed of sound characterizes the degree of compressibility of the
medium: the higher the c, the less compressible is the medium. As a rule, variations
in entropy are small compared to its background value s0 = 〈s〉, so the quantity√
(∂p/∂ρ)s depends rather weakly on the space-time coordinates. Taking that into

account, the speed of sound should be regarded as a fundamental physical parameter
of a continuum, although it does not explicitly enter the equations of motion.

Expression (4.17) determines the speed of sound by the adiabatic compressibility
of the medium. Since in applications one uses absolute temperature T instead of
entropy s to describe a thermodynamical system, it is more convenient to rewrite the
expression for the speed of sound in terms of isothermal compressibility, applying
the following well-known thermodynamic relation:

(
∂p

∂ρ

)
s

= Cp

Cv

(
∂p

∂ρ

)
T

, (4.20)

where Cp and Cv are specific heat capacities of the medium at constant pressure
and constant volume, respectively.

In particular, for an ideal gas (from a thermodynamical point of view), whose
state is described by the Mendeleev–Clapeyron equation

p = ρR0T/μ= ρRT (4.21)
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(where R0 is the universal gas constant, μ is the molecular weight, and R is the
universal gas constant), the speed of sound is given by

c =√
γRT (whereγ = Cp/Cv). (4.22)

In this formula the value of γ is usually weakly dependent on the temperature.
Consequently, the speed of sound in a gas is c ∼ √

T and it is almost pressure-
independent at a fixed temperature.

4.4 Hydrodynamic Approximation of the Equations of Gas
Dynamics

From a formal thermodynamical perspective the incompressibility of a medium
means that

c2 =
(
∂p

∂ρ

)
s

= ∞.

Indeed, let us fix an arbitrary volume V of the medium bounded by a closed sur-
face S, and subject it to an adiabatic compression by a fixed excessive pressure δp.
The less compressible the medium, the smaller is the change of volume δV , and
hence, the less is the density change δρ ∝ −ρδV/V . Thus, in the limit for an in-
compressible fluid one has (δp/δρ)s = ∞. From the physics point of view it makes
no sense to assume the speed of sound to be arbitrarily large, as that would mean the
existence of such media in which perturbations (or information) propagate instanta-
neously. Intuitively it is clear that the physical interpretation of incompressibility of
a medium should be related to describing such flows whose velocities satisfy u� c,
or, as it is called, whose Mach numbers satisfy

Ma
.= u/c � 1.

Indeed, for stationary flows (∂/∂t = 0) according to either the Euler or the
Bernoulli equation a characteristic pressure change is δp ∝ ρu2. On the other hand,
from relation (4.16) we obtain

δρ = 1

(∂p/∂ρ)s
δp ∼ ρ

u2

c2
, (4.23)

i.e., the condition of weak compressibility δρ/ρ � 1 is equivalent to Ma2 � 1. In
this case for a stationary flow, from the equation

divρu = ρ div u + (u∇)ρ = 0

it follows that

div u = −u
∇ρ

ρ
∼ U

L

δρ

ρ
= U

L
O
(
Ma2), (4.24)
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where U and L are the characteristic velocity and linear scale of the flow.
Let τ be a characteristic time for changes of a field φ(x, t) at a fixed point x in

space, let U be the transport velocity, and let L be a typical linear scale of the field
change. Then the condition | ∂φ

∂t
| � |u · ∇φ| assumes the form 1/τ �U/L, that is

τ ≥ L

U
� L

c
. (4.24′)

The latter inequality in (4.24′) means that the time L/c required by an acous-
tic signal to travel the distance L is small compared to the time τ of a noticeable
change in the fluid’s motion. In that sense, the signal propagation takes place almost
instantaneously, while slow, substantially subsonic flows of a compressible fluid are
asymptotically precisely described by the equations of an incompressible fluid up
to the order of magnitude O(Ma 2). We would like to emphasize yet again that this
is the one and only meaning in which a real fluid is idealized as an incompressible
medium.

4.5 Exercises

1. Show by a direct calculation that the quantity Ωz/H is a Lagrangian invariant
for the shallow-water equations of motion.

2. Formulate a local law for energy conservation for the equations of motion of
shallow-water and provide its physical interpretation.

Answer:

∂

∂t

[
H

(
1

2
u2 + 1

2
gH

)]
= −div

[
Hu

(
1

2
u2 + gH

)]
,

div = ∂/∂x + ∂/∂y.

(4.25)

3. What is the speed of sound in shallow-water theory? Formulate the conditions
of a hydrodynamical approximation of Eqs. (4.2)–(4.4), i.e., conditions under
which the motion of thin layers of a fluid with a free surface can be considered
two-dimensionally divergence-free.

Answer:

c =√
gH ; |u| � c. (4.26)

Solution: Formally, based on a gas-dynamical interpretation of equations
(4.2)–(4.4), for a two-dimensional barotropic gas with p = 1

2αgρ
2 and αρ = H ,

“the speed of sound” by definition is c = √
dp/dρ = √

gαρ = √
gH . In fact,

however, it is the speed of gravitational waves related to oscillations of the free
surface of a fluid in a gravity field. Indeed, the small oscillations of a fluid’s free
surface are described by the linearized equations (4.2)–(4.4)

∂u′

∂t
= −g∇h,

∂h

∂t
+H0∇u′ = 0,
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where h is a deviation of the free surface from the equilibrium state H =H0 for
which u = 0. Eliminating u′, one obtains a wave equation on h:

∂2h

∂t2
− c2

0�h= 0,

where c0 = √
gH0.

Next, let H =H0 + h and rewrite (4.2)–(4.4) in vector form:

∂u
∂t

+ (u∇)u = −g∇h, (4.27)

∂h

∂t
+ (u∇)h = −H∇u. (4.28)

Assume that a characteristic time for a flow change is τ � L/U (where U is
a typical speed and L is a typical geometric scale). This means that ∂/∂t � u∇ ,
i.e., the result of application of the first operator is less than or comparable in the
order of magnitude with the application result of the second one. Then, according
to (4.27) and (4.28),

gh∝U2, div u ∝ U

L
· h

H
= U

L
· gh

gH
= U

L
· U

2

c2
= U

L
Ma2 .

When Ma � 1 the motion of thin layers of a fluid with a free surface is two-
dimensionally divergence-free up to the square of “the Mach number”, which is
determined by the propagation speed of gravitational waves. In hydrodynamics
this number is known as the Froude number.
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Part II
Quasi-geostrophic Approximations

of the Equations of Motion of Rotating
Barotropic and Baroclinic Fluids



Chapter 5
Equations of Motion of a Rotating Fluid;
The Notion of a Geophysical Flow

5.1 Preliminary Remarks

Before going further let us summarize the preceding material and clarify the termi-
nology. The division of continuous media into incompressible fluid and gas (com-
pressible fluid) discussed above is physically natural since the two substances con-
sist of different physical elements. Recall that parcels of an incompressible fluid are
characterized just by their mechanical property, inertia, measured by their density.
This is why the equations of motion of an incompressible fluid can be formulated
solely within a mechanical framework by interpreting pressure as the constraint re-
action coming from the interaction of a fluid particle with the surrounding medium.
On the other hand, the gas elements are thermodynamic equilibrium systems whose
description requires one to use entropy in addition to density. As a consequence, the
corresponding equations of motion for a compressible fluid are formulated using the
laws of thermodynamics.

From the hydrodynamical point of view it is more natural and more convenient
to divide continuous media into barotropic and baroclinic which, to a large extent,
differ by their vorticity dynamics. Strictly speaking, these terms should be used not
for the media, but for their motions, since, e.g., motions of the same gas could be
both isentropic (barotropic) and non-isentropic (baroclinic). Taking into account this
reservation, we recall that a fluid is called barotropic if its density is a function of
only pressure. A homogeneous (constant density) incompressible fluid whose flow
is divergence-free also belongs to this class and this is the only exception among
barotropic fluids. In all other cases a barotropic fluid is compressible since other-
wise, as we mentioned above, the pressure would be transported as a passive scalar,
while the system of equations of motion would be overdetermined.

The main feature of the vorticity dynamics of a barotropic fluid is that the Kelvin
theorem holds for an arbitrary closed liquid contour, i.e., vorticity tubes can have
any configuration and can be arbitrarily located in space. On the other hand, the
fluid itself does not have its own sources of vorticity because of the alignment of
isobaric and isopycnic (i.e., iso-density) surfaces. Indeed, in this case ∇ρ×∇p ≡ 0
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(see Friedman’s equation (2.5)). This is why a potential flow of a barotropic fluid
can continue for an indefinitely long time.

A characteristic feature of a baroclinic fluid, compressible or not, is its stratifi-
cation into isentropic or isopycnic surfaces along which the particles flow. A closed
liquid contour belonging to an isentropic or isopycnic surface at the initial moment
will remain on it for all time. This allows the Kelvin theorem to hold for such a con-
tour and, as a consequence, the potential vorticity is a Lagrangian invariant. This
in turn creates the stratification according to the potential vorticity, i.e., a baroclinic
fluid has a natural time-dependent tube structure, formed by intersections of isen-
tropic (isopycnic) surfaces and surfaces of constant potential vorticity. The mass
confined inside each tube between a pair of isentropic (isopycnic) surfaces which is
cut by a pair of surfaces of constant potential vorticity will remain constant during
the evolution, since fluid particles lying on such surfaces never leave them. Note also
that according to the Friedman equation (2.5), deviation of isobaric and isopycnic
surfaces is a generator of vorticity for a barotropic fluid. Such a deviation implies
that ∇ρ×∇p �= 0.

Apparently the reader will already have noted that in the discussion of the main
principles of fluid motion I mostly concentrated on, so to speak, the “genetic” prop-
erties of its dynamics, not taking into account the impact of the “social environ-
ment,” that is exterior fields, boundary conditions, etc. We devoted our main atten-
tion to conservation laws for the following reasons. First, motion invariants reveal
fundamental symmetry properties of fluid motion and point to processes that are
impossible. For instance, it is impossible to create perpetual motion or to break the
momentum or mass conservation laws. However, in spite of the evidence above,
such violations occasionally happen in some studies constructing reductions or dis-
crete analogs of hydrodynamical equations. Secondly, during numerical modeling
of inviscid hydrodynamical equations, the conservation laws allow one to formulate
important criteria for obtaining precise numerical algorithms. And finally, thirdly, in
many cases which we discuss below conservation laws help find solutions to hydro-
dynamical equations and formulate fundamental stability criteria for fluid motions.

5.2 Equations of Motion for a Rotating Fluid

Historically, geophysical hydrodynamics has its origins in dynamical meteorology,
the science of the Earth’s weather. It was gradually realized that the laws formu-
lated in the latter science have wider applications. So it naturally turned out that the
main objects of study in geophysical fluid dynamics, at its initial development stage,
were large-scale motions of the atmosphere, the ocean, Earth’s inner liquid core and
their laboratory counterparts. Later these directions were complemented by the at-
mospheric motions of other planets, circulations on the Sun and other stars, and
even by the evolution of galaxies. The common element for all these objects which
greatly influences their behavior is the rotation of the whole system. Therefore, it is
appropriate to begin the study of such flows with the formulation of hydrodynamical
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equations in a rotating frame, which is natural for these objects. Denote the angular
velocity of this rotation by �0. Both its magnitude (angular speed) and its direction
can vary. The unit basis vectors defining the axes of this rotating rectangular coordi-
nate system also rotate with this angular velocity. Their time derivatives are defined
by the formulas

di
dt

= �0 × i,
dj
dt

= �0 × j,
dk
dt

= �0 × k.

To find the time derivative of any vector A in its representation via vectors i, j,
k, we need to differentiate both the coordinates and these basis vectors. Then we
obtain the well-known relation

dA
dt

=
(
dA
dt

)
r

+ �0 × A. (5.1)

Here �0 is the angular velocity of the whole system, while the index r stands
for the time derivative in the rotating frame. Since u .= dr/dt , according to (5.1) we
have

u = ur + �0 × r, (5.2)

where u and ur are respectively velocities of the motion relative to the inertial and
rotating coordinate systems. Now differentiating equality (5.2) and again applying
formula (5.1), we arrive at the well-known result of classical mechanics:

du
dt

= dur

dt
+ �0 × u =

(
dur

dt

)
r

+ 2�0 × ur + �0 × (�0 × r), (5.3)

according to which the “absolute” acceleration of a fluid particle is a combination of
its relative acceleration (the first term on the right-hand side of (5.3)), the Coriolis
acceleration (the second term), and centripetal acceleration (the last term).

Furthermore, it is easy to show (see Exercise 1) that the individual time derivative
of the scalar quantity is invariant with respect to the inertial and rotating coordinate
systems, i.e.,

dα

dt
=
(
dα

dt

)
r

. (5.4)

For instance, the temperature of a person on a moving carousel is the same as the
person’s temperature in a queue to that carousel if we exclude the adrenaline effect
coming from overload.

Now plugging (5.3) and (5.4) into (3.11)–(3.14) and omitting the index r , one
can write the equations of motion for a rotating ideal compressible fluid in the form

du
dt

+ 2�0 × u .= ∂u
∂t

+ (u∇)u + 2�0 × u = − 1

ρ
∇p − ∇Φ, (5.5)

dρ

dt

.= ∂ρ

∂t
+ (u∇)ρ = −ρ div u, (5.6)
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ds

dt

.= ∂s

∂t
+ (u∇)s = 0, (5.7)

s = s(ρ,p). (5.8)

Here Φ = Φc + Φg is the total potential of centrifugal forces and the exterior
gravitational field. (After substituting (5.3) into (3.11), the last term in (5.3) moved
to the right-hand side of (5.5) changes sign and hence can be interpreted as the
centrifugal acceleration.) From this moment on the gravitational field is going to
be included in our consideration as one of the main factors defining properties of
geophysical flows. The potential of centrifugal forces is defined by the equality (see
Exercise 2)

Φc = −1

2
(�0 × r)2, −∇Φc = (�0 × r)× �0.

For rotating planets the quantity g′ = −∇Φ = g+ (�0 ×r)×�0 (where g = −∇Φg

is the gravitational acceleration) is sometimes called effective gravitational accel-
eration, which does not coincide with the vertical direction. We recall the Foucault
pendulum (J.B.L. Foucault, Pantheon in Paris, 1851) in this relation.

Strictly speaking, the expression “the equation of motion of a rotating fluid” em-
ployed above is not quite appropriate since both systems (3.11)–(3.14) and (5.5)–
(5.8) describe one and the same motion but in different coordinate frames. But ac-
cording to the well-known relativity principle the latter should not matter. However,
from the point of view of a mathematical description of physical phenomena and
their interpretation, the choice of a natural coordinate system is of utmost impor-
tance. The classical illustration of this is the coordinate systems of Ptolemy and
Copernicus. On the one hand, the system of Claudius Ptolemy (2nd century AD)
was in effect just short of one and a half thousand years. On the other hand, the
system of Nicolaus Copernicus (Nicolai Copernici, “On rotation of the celestial
spheres,” Nuremberg, 1543) overturned fundamental concepts of the universe and
encouraged the construction of fundamentally new physical concepts.

Einstein pointed out that although the question of whether the Sun revolves
around the Earth or vice versa is not solvable from the formal position of the rela-
tivity principle, it is not a problem from a physical point of view, since the center of
gravity for the Sun–planets system belongs to the Sun. Therefore, the above men-
tioned coordinate system only emphasizes that the adopted form of equations is
most natural for the observer who is rotating along with the fluid, and knows about
this (for example, for all of us, located on the ground and watching the weather).

Let us write the main law of geophysical hydrodynamics, the conservation of
potential vorticity for an isentropic fluid motion, that is for Eqs. (5.5)–(5.8). By
definition of enthalpy W , we have (see Chap. 3):

T · ds = dW − dp

ρ
.
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This implies that

−∇p

ρ
= −∇W + T∇s.

First, let us obtain the vorticity equation from the equations of fluid motion in a
rotating frame. For this we apply the operator rot to Eq. (5.5) in the Bernoulli form

∂u
∂t

− u × rot u + 2�0 × u = − 1

ρ
∇p − ∇Φ − ∇

(
u2

2

)
.

As the result we obtain

∂(� + 2 · �0)

∂t
+ (u,∇)(� + 2 · �0)

− (� + 2 · �0,∇)u + (� + 2 · �0) · ∇u

= ∇T × ∇s.

The way to derive this law is similar to the one we used in Chap. 2 for a stratified
incompressible fluid, but now the role of the quantity conserved along a trajectory
is played by the entropy density s. Take the inner product of this equation with ∇s,
unlike (2.6). All other analytical calculations described in Chap. 2 remain the same.
Note only the presence of the term div u, which did not appear in Chap. 2 in view
of the divergence-free property of the velocity field. Eventually, we obtain

∂(� + 2 · �0)∇s

∂t
+ (u,∇)

[
(� + 2 · �0)∇s

]

= +(� + 2 · �0)
[
(u∇)∇s

]− u
[
(� + 2 · �0,∇)∇s

]
− (� + 2 · �0)∇s · div u + (∇T × ∇s) · ∇s.

The same computations as in Chap. 2 allow us to conclude that the first two terms
on the right-hand side give zero. Then by using the expression (5.6) for div u instead
of the incompressibility equation, i.e., div u = − 1

ρ
· dρ
dt

, we conclude that

d

dt

[
(� + 2�0) · ∇s

ρ

]
= 0.

5.3 Notion of a Geophysical Flow as a Hydrodynamical Object

However paradoxical it may look, in the theory of rotating fluids, as well as in any
other part of hydrodynamics, the basic equations of fluid motion are used merely
for preliminary analysis of fundamental properties of solutions rather than for their
direct integration in specific problems, even in the corresponding numerical sim-
ulations. The set of exact nontrivial solutions of nonlinear hydrodynamic equa-
tions (see, for example, textbooks by H. Lamb, Hydrodynamics (1932, reprinted
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in 1993), L.M. Milne-Thompson, Theoretical Hydrodynamics (1968, reprinted in
1996), G.K. Batchelor, An Introduction to Fluid Dynamics (1973), etc.) is quite
scarce and the discovery of a new exact solution so far is perceived, albeit with
some skepticism, as a serious scientific achievement. The point is that when posing
precise initial and boundary conditions which provide the uniqueness of a solution
to the original equations of motion, such a solution usually contains a vast variety
of different scales of motion. Any attempt to describe in detail all these scales is
somewhat similar to an attempt to describe the state of a gas by means of all the
trajectories of its particles.

In fact, this means that it is necessary to reduce the initial hydrodynamical equa-
tions. Such a reduction is often possible to implement, based on the fundamental
properties of the desired class of solutions, which are known from observations or
experimental results. In our case, we are going to take an even more radical step.
Taking into account not only observational data, but also the results of the above
theoretical studies, we introduce the concept of a geophysical flow and formulate
axiomatically its main properties. In the future this will allow us to bypass prelim-
inary work and immediately begin deriving simplified equations of motion which
constitute the mathematical basis of geophysical fluid dynamics. We first introduce
the notion of a geophysical flow for a barotropic atmosphere.

A relative motion of an inviscid rotating barotropic fluid in a gravitational field
is called geophysical if the following conditions are satisfied:

∂

∂t
≤ u∇, Ma

.= U

c
� 1,

ε
.= U

2Ω0L
=O

(
ω

2Ω0

)
� 1, δ

.= Ω2
0L

g
� 1.

(5.9)

Here c is the speed of sound, U and L are the characteristic speed and typical
geometric scale of the flow, and g is the gravitational acceleration. The smallness of
the dimensionless parameter δ means that centrifugal forces entering the equations
of motion in the same way as gravitational forces have virtually no effect on the
behavior of geophysical flows, i.e., with respect to this parameter the motions under
consideration are almost self-similar.

The quantity ε is equal to the typical value of the ratio of the advective accel-
eration |(u∇)u| to the Coriolis acceleration |2�0 × u| or, which is the same, the
ratio of relative vorticity to the double velocity of the total rotation. This quantity
is called the Rossby–Kibel number and it is the main small parameter used for the
expansion of the original equations of motion. The smallness of the Rossby–Kibel
number implies, in particular, that the characteristic scale of a geophysical flow is
L�Uτ/4π , where τ is the rotation time for one revolution of the system, one day.
It means that this scale substantially exceeds the typical distance covered by a fluid
particle over the time of about one tenth of a day. For the Earth’s atmosphere where
typical wind speed is about 10 m/s this distance is of the order of magnitude of
about 100 km and more. Therefore the Earth’s geophysical flows (pardon the neces-
sary tautology) have the characteristic scale of order 1000 km and more, comparable
with the planet’s radius.
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Now note that among the external physical parameters Ω0, g and c which deter-
mine the behavior of the rotating fluid (one has to add the speed of sound c to this
list as the measure of medium compressibility, see Chap. 4) one can construct two
natural geometric scales:

Lc = g

Ω2
0

, L0 = c

2Ω0
. (5.10)

The former is of no interest to us, since it is the flow size in which the cen-
trifugal accelerations are comparable to gravitational ones (substitute Lc into the
expression for δ), which contradicts the conditions (5.9). We also note in passing
that in the Earth’s conditions, Lc attains the “astronomical” value ≈10 × 108 m =
106 km (Ω0 = 2π/(24 × 3600) s−1 ≈ 7.3 × 10−5 s−1).

The scale of L0 is called the Rossby–Obukhov radius, and it is among the funda-
mental parameters of geophysical hydrodynamics. Jumping ahead we mention that
this is a typical scale of vortices, cyclones and anticyclones that are observed in
fast rotating fluids and satisfy condition (5.9), and this scale is usually comparable
with the exterior sizes of corresponding geophysical objects. For the Earth’s atmo-
sphere, for instance, L0 ≈ 1500 km, which is of a scale comparable to the Earth’s
radius a ≈ 6378 km. Summarizing the above we come to the conclusion that inviscid
geophysical flows are large-scale, slowly changing in time, and noticeably subsonic
motions of rotating fluids that are characterized by small values of the Rossby–Kibel
number.

The concept of a geophysical flow as a hydrodynamical object should not be
identified with the physical understanding of geophysical flows, that covers a much
wider class of motions. The latter includes, in particular, such mesoscale processes
as Rayleigh convection and the formation of cumulus clouds, virtually the entire
spectrum of wave motions, including internal, surface, and tidal waves, the appear-
ance and propagation of fronts, as well as dangerous but intriguing for scientists
phenomena such as storms and tornadoes. The total rotation of the fluid certainly
imposes its own features on all these processes, but they can exist as well without
it, and therefore they should be regarded as general hydrodynamical objects rather
than geophysical ones.

The situation is fundamentally different for the flows defined by (5.9), which
constitute the main object of study in geophysical fluid dynamics. The expedience
of singling them out is necessitated for the following reasons. First, they are the main
atmospheric elements determining the weather since they carry the lion’s share of
the energy and vorticity of the rotating fluid. Secondly, this distinguished class of
flows in the hydrodynamical realm forms some kind of “state within a state”, some
kind of Vatican if you like, which develops according to its own laws that are binding
only for the priests, and it exists only as long as the Earth rotates.

Finally, most importantly, as a consequence of the second item above, this cho-
sen class of flows is governed by special equations of motion, which can be obtained
from the original system of asymptotically sharp hydrodynamical equations by fil-
tering out the corresponding fast components. In contrast to (5.5)–(5.8), these equa-
tions are applicable to the description of geophysical flows only and do not allow
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taking the limit as Ω0 → 0. This means that we are not talking about fluid flows that
are well-known from classical hydrodynamics and that are modified by the rotation
of the fluid as a whole, but rather about new features of solutions to hydrodynamical
equations generated by this rotation, and this justifies the introduction of this key
concept of geophysical fluid dynamics.

5.4 Exercises

1. Try and prove without reference to the solution below that

dα

dt
=
(
dα

dt

)
r

.

Proof : The relation between the individual time derivatives of a scalar field in
inertial and rotating frames can be written in the following form by using (5.2):

dα

dt
=
(
∂α

∂t

)
r
+ u∇α =

(
∂α

∂t

)
rr

+
(
∂rr

∂t

)
r
∇α + (ur + �0 × r)∇α

or

dα

dt
=
(
∂α

∂t

)
rr

+ ur∇α +
[(

∂rr

∂t

)
r
+ �0 × r

]
∇α.

Here the indices r and rr denote, respectively, the time derivatives for constant
space coordinates in the laboratory and rotating frames. Now, according to (1),
(∂rr/∂t)r + �0 × r = 0.

2. Prove that gc = −∇Φc = (�0 × r)× �0 if Φc = − 1
2 (�0 × r)2.

Hint: Use the formula

∇(A · B)= A × rot B + B × rot A + (A∇)B + (B∇)A, (5.11)

which at some point everyone should derive on one’s own.
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Chapter 6
What is Geophysical Hydrodynamics?

6.1 The Obukhov–Charney Basis

In this chapter I will attempt to describe the main features and characteristics of
global geophysical flows, which are sometimes rather unusual for a classical hydro-
dynamist, and which constitute the peculiarity of the general atmospheric circula-
tion. Below we confine ourselves to those geophysical systems in which one of the
two conditions holds. Either the rotation direction of the fluid as a whole coincides
with the direction of the gravity acceleration g = −∇Φg , as is the case in laboratory
experiments on modeling atmospheric and ocean flows. Or one can neglect the in-
fluence of the components of the vector �0 that are orthogonal to the vector g, by
virtue of certain physical reasons. The latter, for example, holds for the Earth’s at-
mosphere in areas remote from the equator, because of the smallness of the vertical
velocity components in comparison with its horizontal components and because of
the smallness of the vertical components of the Coriolis acceleration as compared
to the gravity acceleration. In this case, the vector �0 in the equations of motion
is replaced by kΩ0 sinϕ (where k is the unit vector in the direction opposite to g,
while ϕ is the latitude of the observation point, see Fig. 6.1). In fact, here one is
dealing with the so-called beta-effect, that is the differential rotation of the fluid,
whose angular velocity depends on spatial coordinates.

Recall that the Rossby–Kibel number ε = U/(2Ω0L) (5.9) is small for global
geophysical flows. In such circumstances, the principal feature of large-scale dy-
namics of an ideal rotating fluid is that this dynamics is almost completely deter-
mined by only four fundamental properties. This was first noted in relation to atmo-
spherical motions of synoptic scale by outstanding meteorologists A.M. Obukhov
and J.G. Charney. These properties are the following.

(I) Geophysical flows are quasi-hydrostatic, and the hydrostatic relation for them
holds up to o(ε):

∂p

∂z
+ gρ = o(ε). (6.1)

F.V. Dolzhansky, Fundamentals of Geophysical Hydrodynamics,
Encyclopaedia of Mathematical Sciences 103,
DOI 10.1007/978-3-642-31034-8_6, © Springer-Verlag Berlin Heidelberg 2013

51

http://dx.doi.org/10.1007/978-3-642-31034-8_6


52 6 What is Geophysical Hydrodynamics?

Fig. 6.1 A schematic
representation of the meridian
section of the Earth’s northern
hemisphere. The coordinates
x, y and z are measured,
respectively, to the east, north
and up, ϕ is the latitude. The
horizontal component Ω0y in
the expression for the Coriolis
force is not taken into account

Here z is the vertical coordinate, measured in the direction opposite to the vector
of the gravity acceleration.

(II) The currents are in the so-called quasi-geostrophic equilibrium, i.e., the Cori-
olis force with accuracy of order ε is balanced by the horizontal 2D-gradient of
pressure (recall that the vertical component of the Coriolis force is not taken into
account):

2�0 × v = − 1

ρ
∇p +O(ε)

(
∇ = i

∂

∂x
+ j

∂

∂y

)
, (6.2)

where v =ui + vj is the horizontal wind.

(III) The potential vorticity of individual fluid parcels is preserved. In the rotating
reference frame it can be written as

Π = (� + 2�0) · gradΘ

ρ

(
�

.= rot u, grad = ∇ + k
∂

∂z
,
dΠ

dt
= 0

)
, (6.3)

where u = ui+vj+kw = v+kw, Θ is the potential temperature, playing the role
of the specific entropy (see below).

(IV) The potential temperature of individual fluid parcels is preserved:

Θ
.= T

(
p0

p

)k

, k = R

Cp

,
dΘ

dt
= 0. (6.4)

Here p, ρ and T are, respectively, the pressure, density, and absolute temperature
of the fluid parcels, R is the gas constant entering the equation of state p = ρRT

(the Mendeleev–Clapeyron equation), Cp is the specific heat capacity at constant
pressure. For many reasons in geophysical hydrodynamics the thermodynamical
characteristic Θ of an individual fluid parcel is used more often than the specific
entropy s, related to Θ by a one-to-one (up to an additive constant) correspon-
dence s = Cp lnΘ . According to formula (6.4), the value of Θ coincides with the
temperature, which the fluid parcel would have under its adiabatic compression
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to the value of the “surface” pressure p = p0 (hence the term of the potential
temperature).
Conditions (6.1), (6.2), rewritten as a single vector equation

G .= 2�0 × u + ρ−1 gradp − g =O(ε), (6.5)

can be treated, with the use of physical terminology, as adiabatic invariance, an ap-
proximate “persistence” of the zero value of the vector G. Recall that in physics an
adiabatic invariant is a quantity I (t), for which the difference I (t)− I (0) remains
small for all considered t . In hydrodynamics the term of an adiabatic invariant
stands for first integrals of the equations of motion of an ideal compressible fluid,
i.e., for quantities that are preserved in the absence of dissipation and external
sources of energy. Examples of such are, in particular, the potential vorticity and
the potential temperature.

In this relation it is appropriate to emphasize that although the properties (III) and
(IV) hold for any flow of an ideal compressible fluid, it is especially for geophysical
flows that the potential vorticity and potential temperature along with the approx-
imate invariance of the zero value of the vector G are of particular importance as
comprehensive characteristics of the motion. Therefore it is of no coincidence that
in recent years successful attempts were carried out to diagnose the atmospheric
processes of synoptic scale in terms of the above-mentioned fundamental adiabatic
invariants (see, for example, Kurgansky, 1993). Figuratively speaking, properties
(I)–(IV) form a peculiar “four-dimensional basis,” which spans the entire space
of geophysical flows and which can be used as a launching pad for studying their
structure and reductions of the original 3D equations. Therefore we are not going
to dwell on the mathematical rigor related to such delicate issues of the rotating
fluid theory as to why the system is in the vicinity of a geostrophic balance, how the
hydrodynamical fields adapt to it, what the role is of small scales and various wave
processes that do not satisfy the conditions (I)–(IV), etc. These, and if necessary,
other related issues will be touched upon only at the level of simple illustrations,
analogies, and the physical interpretation to help with their understanding, but with-
out providing the proofs. For the latter I address the reader to the vast traditional
literature in geophysical fluid dynamics, mentioned in the bibliography to chapters.

6.2 Fundamental Properties of Geophysical Flows

Already the first two frames in the Obukhov–Charney basis, expressed by the equal-
ity (6.5), allow one to emphasize distinctive features of geophysical flows, which at
first glance contradict the classical picture of fluid behavior.

(1) Indeed, let us start with the question Where does the wind blow? To answer
this question, we write down the horizontal components of Eq. (6.5), bearing in
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Fig. 6.2 The geostrophic
wind, contrary to common
sense, blows not across, but
along the isobars. L and H

are centers of low- and
high-pressure areas,
respectively

mind that gx = gy = 0:

−2Ω0v + 1

ρ

∂p

∂x
= 0,

+2Ω0u+ 1

ρ

∂p

∂y
= 0,

where Ω0 = Ωz is the vertical component of the vector �0, as shown in Fig. 6.1. It
implies that

u= − 1

2Ω0ρ

∂p

∂y
+O(ε), v = + 1

2Ω0ρ

∂p

∂x
+O(ε). (6.6)

The precise relation, equivalent to (6.6),

vg = 1

2Ω0ρ
k × ∇p (6.7)

is called the geostrophic wind. It follows that the wind is blowing, at first glance,
contrary to common sense (Fig. 6.2), not in the direction of pressure deficit, i.e., not
across but along the isobars. If you turn your back to the wind, then to your left there
will be the low pressure area, while on the right will be the high one. (In practice,
this rule should be applied by orienting yourself via the cloud movement because as
we shall see below, in the vicinity of the Earth’s surface the wind direction is signif-
icantly different from the geostrophic one due to the influence of surface friction.)
The air masses in the Earth’s atmosphere near the center of a low (or high) pressure
revolve around the center along helices converging to (or diverging from) it, and
form a large-scale vortex, cyclone (or anticyclone).

(2) The criterion of incompressibility of a rotating fluid. In Chap. 4 using the
formula

δρ = 1

(∂p/∂ρ)s
δp = δp

c2
, (6.8)

it was shown that the criterion of weak compressibility δρ/ρ � 1 holds for essen-
tially subsonic flows. Moreover, relatively slowly evolving flows (∂/∂t � u∇) are



6.2 Fundamental Properties of Geophysical Flows 55

divergence-free up to the square of the Mach number. The situation is different in
a fluid rotating as a whole. According to (6.2) or (6.5) the variations in pressure
caused by the relative fluid motion δp ∼ 2Ω0ULρ, where U and L are the char-
acteristic wind velocity and the horizontal scale of its change. (Pressure variations
due to vertical currents can be safely neglected since the hydrostatic relation (6.1) is
satisfied with high accuracy.) Then, making the substitution of this estimate in (6.8),
we have

δρ

ρ
∼ 2Ω0UL

c2
= 2Ω0L

c

U

c
= L

c/2Ω0
Ma = L

L0
Ma,

where L0 = c/2Ω0 is the Rossby–Obukhov scale introduced above. It follows (see
Chap. 4) that for geophysical flows the 3D-divergence satisfies

Div u = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= U

L
O

(
L

L0
Ma

)
. (6.9)

Since the characteristic linear scale of geophysical flows is of the order L0, as was
already mentioned, then according to (6.9), a rotating fluid is less incompressible to
the next order of magnitude in comparison with a non-rotating fluid.

(3) Quasi-two-dimensionality of geophysical flows. For a barotropic atmosphere,
the formula (6.6) can be rewritten in the form

v = 1

2Ω0
k × ∇W +O(ε), W(p)=

∫
dp

ρ(p)
, (6.10)

where W(p) is a primitive of the function f (p) = ρ−1(p) (see Chap. 3). Then
according to the formula div(A × B)= B rot A − A rot B (or simply differentiate the
first equation of (6) in x, differentiate the second in y, and add them together)

div v =O(ε). (6.11)

Comparing (6.11) to (6.9), we find that ∂w/∂z = O(ε) and since one has w(z =
0)= 0 on the bottom solid boundary of the atmosphere,

w(x,y, z)=O(ε). (6.12)

In Chap. 5, we wrote down the result of acting on (6.5) by rot. Since �0 =
(0,0,Ω0) we have

−2Ω0
∂u
∂z

+ 2�0 Div u =O(ε).

Whence, by taking into account (6.9),

∂u
∂z

=O(ε)=⇒ ∂v
∂z

=O(ε),
∂w

∂z
=O(ε), (6.13)
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because as a rule, the number Ma is somewhat less than the Rossby number ε (for
example, for the atmosphere Ma ≈ 1/30, while ε ≈ 0.1).1 The statements (6.12)
and (6.13) are sometimes referred to as the Proudman–Taylor theorem, according
to which the general rotation suppresses the vertical velocity of barotropic geophys-
ical flows, as well as the dependence of their horizontal velocity component on the
vertical coordinate. Later we will show that statement (6.12) under certain condi-
tions holds for baroclinic geophysical flows as well. In other words, geophysical
flows are quasi-two-dimensional.

(4) The thermal wind. For baroclinic geophysical flows the application of the
operation rot to (6.5) gives

−2Ω0
∂u
∂z

+ 2�0Div u + rot

(
1

ρ
gradp

)
=O(ε),

or, given (6.9) and rot(ϕA)= (gradϕ × A)+ ϕ rot A,

2Ω0
∂u
∂z

+ 1

ρ2
(gradρ × gradp)=O(ε).

Now take into account that the characteristic vertical scale of a geophysical flow
is much smaller than the horizontal one, due to its quasi-two-dimensionality. Then
according to (6.1), grad p = gρ +O(ε) and the latter formula can be written as

∂u
∂z

= − 1

2Ω0ρ
(gradρ × g)+O(ε)≡ − 1

2Ω0
(grad lnρ × g)+O(ε), (6.14)

or in the coordinate form

∂u

∂z
= g

2Ω0ρ

∂ρ

∂y
+O(ε)= g

2Ω0

∂ lnρ

∂y
+O(ε), (6.14′)

∂v

∂z
= − g

2Ω0ρ

∂ρ

∂x
+O(ε)= − g

2Ω0

∂ lnρ

∂x
+O(ε). (6.14′′)

In laboratory experiments of modeling baroclinic geophysical flows, one typically
uses the Oberbeck–Boussinesq fluid, in which the distributions of density and tem-
perature are given by the equalities ρ = ρ0 + ρ′(x, y, z, t) T = T0 + T ′(x, y, z, t),
where ρ0 and T0 are the average values of density and temperature independent of
the coordinates and time, while the deviations are related by

ρ′

ρ0
= −T ′

T0
. (6.15)

Then (6.14) in the component form is written as

∂u

∂z
= − g

2Ω0T0

∂T

∂y
+O(ε),

∂v

∂z
= g

2Ω0T0

∂T

∂x
+O(ε). (6.16)

1In (6.11), (6.12), and (6.13) we omitted the corresponding dimensional factors. This is also done
below if it does not cause confusion.
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Here the prime is omitted, since T0 does not depend on the coordinates. Formulas
(6.16) are applied to the ocean. Below it will be shown that for a baroclinic atmo-
sphere formulas (6.16) are replaced by the following:

∂u

∂z
= − g

2Ω0Θs

∂Θ

∂y
+O(ε),

∂v

∂z
= g

2Ω0Θs

∂Θ

∂x
+O(ε), (6.17)

where Θs = Θs(z) is the vertical distribution of potential temperature for the so-
called standard atmosphere, obtained at each level by averaging over the horizontal
coordinates. In fact, these formulas reveal one of the main mechanisms of external
energy drive, which feeds on the general circulation of the atmosphere and ocean.

Relations (6.16) and (6.17), called the thermal wind, show that the vertical wind
shear is induced by the horizontal temperature gradient, which, in turn, is generated
by the pole-equator temperature difference created by the uneven solar heating of
the atmosphere and the Earth’s surface.

Remark on Further Notation Given the quasi-two-dimensional specifics of geo-
physical flows, we shall repeatedly switch between the 3D and 2D descriptions.
Therefore, to avoid any confusion we adopt the following rule to refer to commonly
used differential operators. We will denote the three-dimensional individual time
derivative, divergence, and gradient operators, respectively, by D/Dt , Div and grad,
while their two-dimensional counterparts by d/dt , div and ∇ . So in the Cartesian
coordinate system

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, div A = ∂Ax

∂x
+ ∂Ay

∂y
, ∇ = i

∂

∂x
+ j

∂

∂y
;

D

Dt
= d

dt
+w

∂

∂z
, Div A = div A + ∂Az

∂z
, grad = ∇ + k

∂

∂z
.

We will also agree that the vertical z-axis always points upwards, i.e., opposite
to the gravity vector, and that the horizontal axes x and y together with z form a
right-hand coordinate system. So if the x-axis points to the east, the y-axis faces
north (see Fig. 6.1).

6.3 “Shallow-Water” Theory for a Rotating Ideal Fluid of
Constant Density

One way to simplify the description of large-scale dynamics of a rotating fluid is
to employ expansion in a small parameter of the original 3D equations of motion.
It was already mentioned above that the main small parameter used in such an ex-
pansion is the Rossby–Kibel number ε = U/2Ω0L. The zero approximation cor-
responds to the strictly zero value of the vector G, i.e., to the precise hydrostatic
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Fig. 6.3 A layer of a
constant-density fluid with a
free surface and uneven
bottom, rotating in a gravity
field with constant angular
velocity

equilibrium and the strict relation of the geostrophic wind. These relations are uni-
fied by the following equality (cf. (6.5)):

2(�0 × u)= − 1

ρ
gradp + g. (6.18)

Equality (6.18) replaces the Euler equation. At first glance it might seem that the
zero approximation (6.18) along with the divergence-free property of the 2D veloc-
ity field (6.11) and w = 0 describe a certain stationary climate state of a barotropic
atmosphere, which could be taken as a basis for simplifying the initial equations of
motion. However, this is not the case, since zero divergence of the wind field, as
stated earlier, directly follows from (6.18) and consequently, the above-mentioned
system is not closed. Vector G, in physics terminology, is merely an adiabatic invari-
ant that can correspond to various solutions of hydrodynamical equations, including
different climate states of the atmosphere.

However, the original formulation of the problem based on 3D hydrodynamical
equations can be substantially simplified by using the Obukhov–Charney basis. This
can be illustrated by an example of a layer of an ideal fluid of constant density
ρ = ρ0, of variable depth, and with a free surface that rotates about the vertical axis
z with constant angular velocity Ω0 (Fig. 6.3). The bottom relief is defined by a
smooth function z = h1(x, y)�H0 of horizontal coordinates.

Using (I) and (II), one can obtain a nondegenerate approximation as follows.
First, based on (6.12) and (6.13) in the Euler equation

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂z

+ 2�0 × v = − 1

ρ
∇p (6.19)

for the horizontal velocity v we can neglect the term w∂v/∂z as a quantity of second
order in ε, while keeping only terms of order O(1) and O(ε).

Secondly, note that relation (6.1) implies a more precise validity of the quasi-
statics condition, as compared to the condition of quasi-geostrophic equilibrium
(6.2). This is indeed the case, and thus it is not by chance that the quasi-static equi-
librium is used even for mesoscale (of about 100 km) processes with the help of
so-called primitive equations of motion. The latter differ from the original ones in
that they use a sharp equality (6.1) instead of the equation on the vertical veloc-
ity component. We will do the same and in the context of our system rewrite the
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above-mentioned condition as

p = ρ0g
(
H(x,y, t)− z

)
. (6.20)

According to this equation the hydrodynamic pressure component is given by the
deviation h(x, y, z, t) = H(x,y, z, t)−H0 + h1(x, y) of the height of the free sur-
face from its equilibrium value (Fig. 6.3). Now after substituting (6.20) into (6.19),
the equation for the horizontal velocity v = ui + vj of the flow takes the form

dv
dt

.= ∂v
∂t

+ (v∇v)+ 2Ω0 × v = −g∇H(x,y, t). (6.21)

We should, however, keep the continuity equation in its original form, corre-
sponding to the 3D incompressibility of the medium:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

since, according to our agreement, such small terms of the order O(ε) as ∂w/∂z are
not excluded from consideration.

A way to close the resulting system of equations comes out of the observation
that the right-hand side of (6.21) does not depend on z (recall the Proudman–Taylor
theorem). Therefore assuming u = u(x, y, t) and v = v(x, y, t) and integrating the
last equation along the layer height with w(z = h1) = 0 and w(z = H)

.= dH/dt ,
one can rewrite the equation of mass conservation as follows:

dH

dt
+Hdivv ≡ ∂H

∂t
+ div (Hv)= 0. (6.22)

Let us write the condition of conservation of the potential vorticity for Eqs. (6.21)–
(6.22). The simplest way to do this is to break the system (6.21) into two equations.
Then, by differentiating the first equation in y and the second one in x and taking
the difference, we get an equation for vorticity Ωz. Then we use Eq. (6.22). Finally,
we obtain

d

dt

(
Ωz + 2Ω0

H

)
= 0,

(
Ωz = ∂v

∂x
− ∂u

∂y

)
. (6.23)

Thus, the fundamental properties (I) and (II) of geophysical flows allow one to
reduce the problem of describing three-dimensional motions of an incompressible
fluid to the study of two-dimensional motions of a barotropic gas with the help of
equations (6.21) and (6.22), which are called the equations of a rotating shallow wa-
ter (cf. (4.2)–(4.4)). In this regard, it is worth noting that, in contrast to the classical
shallow-water theory (see Chap. 4), application of a shallow-water approximation
of a rotating fluid is not limited by the condition H/L � 1 (where L is a typical
horizontal scale of the flow). The reason is that in this case the two-dimensionality
of the motion is a consequence of rotation rather than of the layer thinness. In other
words, Equations (6.21) and (6.22) “work” for deep water as well, which is partic-
ularly important for laboratory modeling of geophysical flows. A special note is in



60 6 What is Geophysical Hydrodynamics?

order for the atmosphere of the Earth and of other revolving planets. For spherical
layers the restriction mentioned above is rather significant because of the smallness
of the Coriolis parameter f = 2Ω0 sinϕ in the vicinity of the equator.

6.4 Exercises

1. Why does the wind twist inwards in a cyclone and outwards in an anticyclone?
2. Explain why the weather mostly comes from the west by using the formulas for

thermal wind?
3. Why does the wind of Atlantic cyclones arrive at the Moscow region from the

south?
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Chapter 7
The Obukhov–Charney Equation; Rossby
Waves

The equations of rotating shallow-water (6.21) and (6.22) should not be considered
as a completed next step in the expansion of the original equations in parameter ε
with respect to the initial approximation (6.18). In fact they exceed the precision
O(ε), which was basic for this expansion, as can be seen already from the fact that
these equations describe the propagation of long gravitational-gyroscopic waves for
which the smallness condition for the Mach and Rossby–Kibel numbers is not valid.
For the Earth’s atmosphere, for instance, the group velocity of their propagation
nearly coincides with the speed of sound, which corresponds to ε ≈ 1 already for
the wave length of one and a half thousand kilometers (see Sect. 7.4 below).

For the further reduction according to Sect. 6.1 we need to turn to the property
(III) of geophysical flows, i.e., the conservation equation for the potential vorticity,
which singles out the vorticity component of the motion. This will allow us to get
rid of “extra” fast processes (e.g., gravitational-gyroscopic waves), for which the
potential vorticity vanishes and concentrate on slow geophysical flows, which are
naturally vortical (we discuss this question in more detail in Sect. 7.4).

7.1 Quasi-geostrophical Approximation of the Conservation
Equation for Potential Vorticity

For a rotating shallow-water the conservation equation for the potential vorticity can
be written in the form (see (6.23)):

dΠ

dt
= 0, Π = Ωz + f0

H

(
Ωz = ∂v

∂x
− ∂u

∂y

)
. (7.1)

Here we use the notations f0 = 2Ω0, H =H0 +h(x, y, t)−h1(x, y). Recall that
the function h1(x, y) defines the surface orography and it is assumed that there is no
orographic impact at the zero approximation for the velocity field. Thus the relations
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for the geostrophic wind for Eqs. (6.21) and (6.22) are defined by the formulas

u= − g

f0

∂h

∂y
+O(ε), v = + g

f0

∂h

∂x
+O(ε). (7.2)

Then one obtains the following estimate on the values of h for a free surface:

h

H0
∝ f0UL

gH0
= U

f0L

L2

gH0/f
2
0

= ε
L2

L2
0

, L0
.=

√
gH0

f0
, (7.3)

where the Rossby–Obukhov radius L0 is determined by the propagation speed of
gravitational waves, which plays the role of the speed of sound in shallow-water
theory.

Now one can see that the smallness of the Rossby–Kibel number implies the
smallness of the same order for the ratio h/H0, provided that the linear size of
the flow L varies in a neighborhood of the characteristic scale of global vorticity
formations (cyclones and anticyclones), as was mentioned above.

Take into account that Ωz/f0 ∝ U/2Ω0L = ε, and now for the first approxima-
tion of the potential vorticity one can write

H0

f0
Π = H0

f0

(
Ωz + f0

H

)
= 1 + Ωz

f0
− h

H0
+ h1

H0
+O

(
ε2), (7.4)

and the remainder is estimated by using the equality (7.3).
By renormalizing, i.e., by taking the quantity Ω̃ =H0Π for the potential vortic-

ity and introducing the notation ψ
.= gh/f0, one can note that Ωz =�ψ , f0

H0
h= ψ

L2
0
.

Combining this with (7.2)–(7.4) we obtain the so-called quasi-geostrophic expres-
sion for the potential vorticity

Ω̃ = f0

(
1 + h1

H0

)
+�ψ −L−2

0 ψ +O
(
ε2), (7.5)

where � = ∂2/∂x2 + ∂2/∂y2. We would like to emphasize that the term L−2
0 ψ is

implied by the term h/H0, entering the formula (7.4). Further, taking into account
that according to (7.2)

u= −∂ψ

∂y
, v = ∂ψ

∂x
, (7.2a)

the conservation equation for the potential vorticity in a quasi-geostrophic approxi-
mation is written in the form

dΩ̃

dt
= ∂

∂t

(
�ψ −L−2

0 ψ
)+ [ψ,�ψ] + β

∂ψ

∂x
− γ

∂ψ

∂y
= 0, (7.6)

β = f0

H0

∂h1

∂y
, γ = f0

H0

∂h1

∂x
. (7.7)



7.2 Generalization to the Case of a Barotropic Fluid 63

This equation was first introduced by Charney (1948) and, independently by
Obukhov (1949).

The nonlinear terms in Eq. (7.6) are present in the form of the term [ψ,�ψ],
where [A,B] = ∂A

∂x
∂B
∂y

− ∂A
∂y

∂B
∂x

.
The linear terms in Eq. (7.6) with coefficients β and γ describe the so-called

beta-effect that is responsible for dispersion of large-scale wave processes. These
terms arise from the term f0

h1
H0

, i.e., the first term of the right-hand side of (5) after

the action of the operator d
dt

. A similar effect also occurs in the case of a differen-
tial rotation of the system. Recall that for the Earth’s atmosphere the crucial local
parameter is the doubled projection of the angular velocity of the planet rotation to
the normal to its surface, i.e., the quantity f = 2Ω0 sinϕ (where ϕ is the latitude,
see Chap. 6), which is called the Coriolis parameter. In this case the coordinates x
and y, used in the derivation of the equation for conservation of the potential vor-
ticity in quasi-geostrophic approximation, are measured in longitude and latitude to
the east and north, respectively. The Coriolis parameter, varying only in latitude, has
the derivative in the y coordinate only. The expression for Ω̃ itself assumes the form
f +�ψ −L−2

0 ψ +O(ε2), where f = f0(1 + βy), β = df/dy.
In any case the quasi-geostrophic approximation for equations of the theory of a

rotating shallow-water can be written in the form

d

dt

(
f +�ψ −L−2

0 ψ
)= 0, (7.8)

u= −∂ψ

∂y
, v = ∂ψ

∂x
. (7.9)

Being applied to the spherical Earth, they correspond to the shallow-water approx-
imation, similar to (6.21) and (6.22), with the only difference that 2�0 is replaced
by kf .

One should remember that in the definition ψ
.= gh/f0 the quantity f0 cannot be

already replaced by f since the beta-effect is a quantity of the order of magnitude
O(ε). For the atmosphere, one usually takes for f0 the value of f at ϕ = 45◦.

7.2 Generalization to the Case of a Barotropic Fluid

One needs a somewhat more subtle approach to reduce the 3D equations of motion
to a two-dimensional conservation equation for the potential vorticity of a barotropic
fluid, in which by definition, the pressure, and therefore other thermodynamic fea-
tures, depend only on the density. The upshot is that in such a system the surfaces
of constant pressure, density, and temperature coincide. This is exactly the reason
why in order to simplify the equations of motion one does not need to invoke the
fourth “frame” of the Obukhov–Charney basis, the conservation equation for poten-
tial temperature (6.4). By averaging over verticals the problem can be reduced to
a description of a two-dimensional motion governed by Eqs. (7.8) and (7.9). This
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motion takes place over a certain effective surface which can be assigned fixed val-
ues of density, pressure, and temperature. In this case, for calculating the parameter
L0 = √

gH0/f0 entering the Obukhov–Charney equation, one takes the so-called
height of the homogeneous atmosphere H0 = p0/gρ0 as the effective thickness of
the layer. Here p0 and ρ0 are the standard (i.e., related to the static state of the at-
mosphere) “near-surface” values of the pressure and density. The propagation speed
of gravitational waves cg = √

gH0 corresponding to this altitude coincides with the
speed of sound cs = √

γp0/ρ0 up to a numerical factor of order one (where γ is
the ratio of heat capacities, see Chap. 4, (4.22)). This speed of sound, of course, had
to enter determining the scale L0. For the Earth’s atmosphere, for example, p0 ≈ 1
bar, ρ0 ≈ 1.3 kg/m3 and the effective height of its barotropic model is H0 ≈ 8 km,
while the speed of sound is cs ≈ 280 m/s.

A detailed derivation of the Obukhov–Charney motion of a barotropic atmo-
sphere can be found in any textbook cited in the bibliography. However, I recom-
mend the reader at some point to turn to the originals, Charney (1948) and Obukhov
(1949), an acquaintance with which is not only useful but also brings aesthetic plea-
sure to follow and compare the reasoning of the two classics.

For a baroclinic fluid, in which the thermodynamical quantities are related only
by the Mendeleev–Clapeyron relation (p = ρRT ), the above mentioned procedure
is impossible. Otherwise, it would mean the loss of so-called available potential en-
ergy of the fluid, that is that part of the internal energy which is accumulated in
the fluid due to uneven temperature distribution and which has the ability to trans-
form into the kinetic energy of large-scale flows. The angle between the isobars and
isotherms serves as a local measure of this available potential energy. The problem
of describing baroclinic geophysical flows is discussed in Chap. 9.

7.3 Fundamental Invariants of Motion

One of the criteria that the reduction of the hydrodynamical equations is well-
defined is, as we mentioned above, the existence of first integrals related to the
fundamental conservation laws. It is not difficult to show that the Obukhov–Charney
equation satisfies this criterion, i.e., it has the following invariants of motion in the
integral form. The invariant

1

2

∫ ∫ [
(∇ψ)2 +L−2

0 ψ2]dxdy = const (7.10)

corresponds to the energy conservation law (here the first term under the integral
sign of (7.10) is the density of the fluid kinetic energy, while the second term is the
density of its potential energy);

∫ ∫ (
�ψ −L−2

0 ψ
)
dxdy = const (7.11)
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means that the total potential vorticity of the fluid is invariant;
∫ ∫

ψdxdy = const (7.12)

stands for the mass conservation law;
∫ ∫ (

i
∂ψ

∂x
+ j

∂ψ

∂y

)
dxdy = const (7.13)

corresponds to the conservation of the total momentum of the medium.

7.4 Rossby Waves

The relations (6.1) and (6.2), used in the derivation of the Obukhov–Charney equa-
tion, serve as some kind of filter, which catches fast sound and gravity waves. These
waves virtually do not affect the development of global processes, but significantly
impede the “big game hunting.” To get a feeling how it works, consider the problem
of small oscillations of a rotating fluid in a shallow approximation. The complete
formulation of this problem reduces to a solution of the tidal Laplace equation, see
its detailed study in e.g., L.A. Dikii (1969).

After linearization with respect to the steady state (in the rotating coordinate
system) Eqs. (6.21) and (6.22) of the shallow-water theory are written in the form

∂v
∂t

+ f0(k × v)= −g∇h, (7.14)

∂h

∂t
+H0divv = 0, (7.15)

where, for the sake of simplicity, the Coriolis parameter is assumed to be constant
and equal to f0, and the fluid depth is H(x,y, t)=H0 + h(x, y, t).

Instead of (7.14) and (7.15) it is more convenient to consider the system of equa-
tions with respect to Ωz = ∂v/∂x − ∂u/∂y and h:

∂Ω̃

∂t
= 0, Ω̃

.=Ωz − f0
h

H0
, (7.16)

∂2h

∂t2
+H0f0Ωz = gH0�h. (7.17)

By using the formula for rot(A × B), it is easy to derive Eq. (7.16) by excluding
divv from (7.15) and from the vorticity equation, where the latter is obtained by
applying the operator rotz to (14). For the derivation of (7.17), apply the operator
div to (14), differentiate Eq. (7.15) in time, and eliminate div v.

In fact, Ω̃ can be interpreted as the potential vorticity (cf. formulas (7.4) and
(7.5)) of the linear problem (7.14) and (7.15), and in the case under consideration
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this vorticity becomes an invariant. From (7.16) and (7.17) one immediately obtains
the existence of two types of solutions to the linear problem:

(a) The motions for which the potential vorticity vanishes, Ω̃ = 0, i.e., Ωz =
f0h/H0. This gives the telegraph equation for h:

∂2h

∂t2
+ f 2

0 h= c2
g�h, cg =√

gH0, (7.18)

which describes the propagation of fast gravitational-gyroscopic waves in the
rotating medium (plug in h∝ exp[i(k · r −ωt)], k = (kx, ky), r = (x, y), where
i is the imaginary unit, to (7.18)). These waves have the dispersion relation

ω2 = f 2 + k2c2
g, k2 = k2

x + k2
y. (7.19)

Their group velocity

C
.= dω

dk
= cg√

1 + (f/kcg)2
(7.20)

in the Earth’s conditions already for the wave length L = 2π/k = 1500 km
almost coincides with cg ≈ 280 m/s.

Note that in the linear problem framework the wave motions Ω, h0 ∝
exp(−iωt) are possible only for Ω̃ ≡ 0, as follows from substituting Ω ∝
exp(−iωt) into (7.16), which gives iωΩ̃ ≡ 0.

(b) The motions whose field Ω̃ �= 0 is nonvanishing and depends on the space co-
ordinates only. Then the height of the free surface h will also be stationary,
and hence div v = 0 (see (7.15)). This means that one can introduce the stream
function

ψ = gh

f0
, u= −∂ψ

∂y
, v = ∂ψ

∂x
. (7.21)

Then from Eq. (7.8) we have

�ψ −L−2
0 ψ = Ω̃0(x, y). (7.22)

The velocity field (7.21) satisfies the relation of geostrophical wind.
In the nonlinear formulation of the problem the case (b) corresponds to the

Obukhov–Charney equation (7.6) with zero beta-effect (β = γ = 0). Suppose that
the beta-effect is different from zero, by setting, for example, γ = 0 and β = const >
0 (this case is called the beta-plane approximation, which is obtained from (7.8) for
f = f0 + βy). Then by direct substitution into (7.6) it is easy to verify that the
functions

ψkl =A exp
{
i(kx + ly −ωt)

}
, (7.23)

(where A is an arbitrary constant, k and l are the longitudinal and transverse
wave numbers, respectively) are exact particular solutions of the Obukhov–Charney
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equation describing the dispersing waves that propagate to the west (i.e., in the di-
rection opposite to the fluid rotation as a whole) with the phase velocity

cR = ω

k
= − β

k2 + l2 +L−2
0

. (7.24)

The wave solutions with such a dispersion relation are called the Rossby waves
(Rossby, 1939), and sometimes, in relation to the spherical Earth, Rossby–Haurwitz
waves (B. Haurwits). In this case they can be expressed in terms of spherical func-
tions, see Comment to Exercise 2. To estimate the magnitude of their phase ve-
locity it is useful to recall that by definition the beta-effect is of the order ε, i.e.,
L/R = O(ε), where L is the flow characteristic size and R is the characteristic
linear scale for which there is a noticeable change in the Coriolis parameter f .
Therefore

|cR| = f

R

L2
0L

2

L2 +L2
0

∝ 1

2
f
L2

0

R
= 1

2
f

√
gH0

f

L0

R
= 1

2
cg
L0

R
= cgO(ε), (7.25)

since L=O(L0). It follows that the stationary solutions of the linear problem with
nonvanishing Ω̃ correspond to slow processes in the nonlinear case. The propaga-
tion speed of slow processes is much less than the propagation speed of gravitational
waves, which are not described by Eq. (7.6).

In studying the interaction of Rossby waves (see, for example, Longuet-Higgins,
Gill, 1967) it is convenient to divide them into the “short” planetary waves for which
L < L0 (L

−1 .= √
k2 + l2) and “long” planetary waves with L > L0. According to

(10) the density of the kinetic and potential energies of the Rossby waves (7.23) are
equal to A2/4L2 and A2/4L2

0, respectively. So in short planetary waves the kinetic
energy dominates, while in longer waves the energy is concentrated mainly in the
potential component. This component can be measured by the deviation of the free
surface of the fluid from its equilibrium level.

The Rossby waves or, as they are often called, planetary waves are typical repre-
sentatives of geophysical flows which have no analogues in the non-rotating fluid.
They constitute an important element of the general circulation of the ocean and
atmosphere and have a significant effect on characteristics of the large-scale tur-
bulence and instability of global motions. In this relation it is worth mentioning
the so-called Rossby solitons. They belong to the family of Rossby waves, but are
not covered by the Obukhov–Charney equation because their typical size exceeds
L0 by the order of magnitude. Their role is apparently important in the cyclogene-
sis processes in the atmospheres of giant planets, whose radius greatly exceeds the
Rossby–Obukhov scale. This issue was studied in an article by M.V. Nezlin (1986),
in which, in particular, one can find a detailed description of the methods and re-
sults of laboratory simulations of such vortex structures, as well as a comparison
with observations from nature.

The scale L0 serves, as we mentioned before, as a natural “watershed” between
Rossby solitons and the waves and vortex structures considered here. The point is
that when the flow scale exceeds L0 in the order of magnitude the estimate (7.3)
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becomes invalid. (Recall the trend noted above: the longer the Rossby wave, the
greater the deviation h0 of the free surface from its equilibrium level.) The latter
necessitates taking into account subsequent terms in the expansion in (7.4). This
in turn leads to the appearance of an additional nonlinear term in the approxima-
tion equation, generalizing the Obukhov–Charney equation for the conservation of
the potential vorticity. This additional term comes from a more precise control of
the “horizontal compressibility” related to the change of height of the free surface.
This nonlinearity can compensate for the dispersing impact of the beta-effect on
the wave packet. As a result, solitary anticyclonic vortices, the Rossby solitons, can
form in the fluid (compensating for the dispersion by non-linearity is impossible
in cyclonic vortices, which implies the cyclone-anticyclone asymmetry observed at
such scales).

From the point of view of problems discussed below, this limitation of possible
applicability of the equations of dynamic meteorology is not fundamental, but it
allows one to avoid additional technical difficulties.

7.5 Exercises

1. Prove that the expressions defined by the left-hand sides of equalities (7.10)–
(7.13) are indeed invariants of the Obukhov–Charney equation. For the sake of
simplicity, put β = const �= 0, γ = 0 in (7.6) (this is the beta-plane approxima-
tion, widely used in dynamic meteorology).

Solution: To prove the equality (7.10) one can multiply it by ψ and group the
terms. One obtains

1

2

∂

∂t

[(
∂ψ

∂x

)2

+
(
∂ψ

∂y

)2

+L−2
0 ψ2

]

= ∂

∂x

(
ψ
∂2ψ

∂x∂t
+ψ

∂ψ

∂y
�ψ + β

2
ψ2
)

+ ∂

∂y

(
ψ
∂2ψ

∂y∂t
−ψ

∂ψ

∂x
�ψ

)
. (7.26)

Now integrate (7.26) over some bounded domain S filled by the fluid and
apply the Gauss–Ostrogradskii formula

∫ ∫

S

div Adxdy =
∫

∂S

A · ndl

to the right-hand side (here n is the exterior normal to the boundary ∂S). Then
taking into account regular behavior of the function ψ , send S to infinity. When
integrating over such a large domain, the integral of the right-hand side increases
with the same rate as the boundary perimeter of the domain S, while the integral
of the left-hand side increases as the area of S. Hence we obtain

∫ ∫

S

[
1

2

(
∂ψ

∂x

)2

+ 1

2

(
∂ψ

∂y

)2

+ 1

2
L−2

0 ψ2
]
dxdy = 0. (7.27)
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Here the first two terms under the integral sign represent the density of the
kinetic energy, while the third one stands for the density of the potential energy.

Proofs for (7.12) and (7.13), as well as the conservation law for the total po-
tential vorticity

∫∫
S
[�ψ−L−2

0 ψ] dxdy = 0 can be given by a similar reasoning;
we refer the interested reader to the paper by Longuet-Higgins, Gill (1970).

2. Show that the planetary waves on a spherical surface in a two-dimensional in-
compressible medium (L−1

0 = 0) propagate westward with the angular velocity

ωR = 2Ω0

n(n+ 1)
, (7.28)

where n is any positive integer (see Longuet-Higgins, Gill (1970) and Comment
below).

Comment to Exercise 2: On a spherical surface the Obukhov–Charney equa-
tion in the dimensionless form is written as follows:

∂

∂t

(
�ψ −L−1

0s ψ
)+ 1

sin θ

(
∂ψ

∂θ

∂�ψ

∂λ
− ∂ψ

∂λ

∂�ψ

∂θ

)
+ 2Ω0

∂ψ

∂λ
= 0,

(7.29)

vθ = − 1

sin θ

∂ψ

∂λ
, vλ = ∂ψ

∂θ
. (7.30)

Here θ = 1
2π − ϕ is the complement to the latitude ϕ, the parameter λ is the

longitude, L0s is the Rossby–Obukhov parameter, and

�ψ = 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

sin2 θ

∂2ψ

∂λ2
.

Recall that for flows on the sphere the Coriolis parameter is f = 2Ω0 cos θ .
Furthermore, local Cartesian coordinates in a neighborhood of the observation
point are related to spherical coordinates by dx = a sin θ , dy = −adϑ , where a is
the Earth’s radius. Therefore, the linear term β∂ψ/∂x in the Obukhov–Charney
equation preserves its sign and is replaced by 2Ω0∂ψ/∂λ.

If the value of L0s is less than or equal to one by the order of magnitude (i.e.,
the effect of two-dimensional compressibility of the medium is not small, as,
for example, in the Earth’s atmosphere), planetary waves are approximately de-
scribed by spheroidal wave functions (see the literature cited in Longuet-Higgins,
Gill, 1967). Otherwise (in the ocean, for example) one can neglect the value
of L−2

0s ψ in comparison with �ψ in the Obukhov–Charney equation. Then the
spherical harmonic is a spherical analog of a plane Rossby wave

ψ =AYm
n (θ,λ)=APm

n (cos θ) cos(mλ+ωt), (7.31)

where m and n are integers related to the wave numbers by m = ak sin θ ,
n = a

√
k2 + l2. This implies, in particular, that m is the number of wavelengths

which fit the latitude circle; Pm
n (z) is the associated Legendre function of the

first kind of degree n and order m.
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Show that for ω = ωR (formula (7.28)) function (7.31) satisfies the nonlinear
equation

∂�ψ

∂t
+ 2Ω0

∂ψ

∂λ
= 0. (7.32)

The exact solution to the nonlinear equation (7.29) for L−1
0s = 0, which de-

scribes the wave propagation westward is expressed via the spherical function of
degree n

ψ(θ,λ, t)= Yn(θ,λ+ωt), (7.33)

Yn(θ,λ)=A0Pn(cos θ)+
n∑

m=1

Am
n P

m
n (cos θ) cos

(
mλ+ λmn

)
, (7.34)

where A0, A
m
n , λ

m
n are constants.

Show that function (7.33) is an exact solution to the nonlinear vorticity equa-
tion only for ω = ωR .

Hint: The spherical function (7.34) is the eigenfunction of the Laplace opera-
tor, i.e., �Yn = −n(n+ 1)Yn.
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Chapter 8
Resonant Interaction of Rossby Waves;
Helmholtz and Obukhov Singular Vortices;
The Kirchhoff Equations

8.1 Group Velocity of Rossby Waves

The theory of wave processes tells us that the energy of waves of any nature propa-
gates not with the phase velocity but with the group velocity

Cgr = ∇kω, ω = ω(k), (8.1)

where ω(k) is the dispersion relation for waves of this nature, and ∇k is the gradient
operation in the k-space of wave numbers. The waves whose phase velocity does
not coincide with the group velocity are called dispersion waves. So, for instance,
are gravitational-gyroscopic waves with the dispersion relation (7.20), according to
which they isotropically propagate in space.

This is not the case for planetary waves because the dispersion relation

cR = ω

k
= − β

k2 + l2 +L−2
0

(8.2)

implies that

CRX = ∂ω

∂k
= cR

(
1 − 2k2

k2 + l2 +L−2
0

)
, (8.3)

CRY = ∂ω

∂l
= −cR

2kl

k2 + l2 +L−2
0

, (8.4)

where CRX and CRY are the components of the group velocity CR .
Thus, in contrast to the phase velocity which is always directed to the west, the

group velocity has two non-vanishing components, and its meridional component is
always directed to the north, while the zonal component changes sign at k2/(l2 +
L−2

0 ) = 1 (Fig. 8.1). It is important to emphasize that, unlike the energy which
can propagate by Rossby waves both in the western and the eastern directions, the
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Fig. 8.1 The group velocity
of Rossby waves in the zonal
direction

vorticity

�ψ ∼ exp
{
i(kx + ly −ωt)

}
is transported by these waves westwards only, i.e., in the direction opposite to the
total rotation.

8.2 Resonant Interaction of Planetary Waves

The resonant interaction of planetary waves is the following important element of
the general atmospheric circulation. Write the Obukhov–Charney equation on the
beta-plane in the form

∂

∂t

(
�ψ −L−2

0 ψ
)+ β

∂ψ

∂x
= [�ψ,ψ] = ∂�ψ

∂x
· ∂ψ
∂y

− ∂�ψ

∂y
· ∂ψ
∂x

. (8.5)

Assume that at the initial moment the flow is described by two Rossby waves:

ψ1 = a1 cos(k1x −ω1t), ψ2 = a2 cos(k2x −ω2t),

where k1 = k1i + l1j, k2 = k2i + l2j, and each pair (ki ,ωi) (i = 1,2) satisfies rela-
tion (8.2).

Plug in the expressions for the stream function ψ = ψ1 + ψ2 to the Obukhov–
Charney equation. It is not difficult to see that each of the waves separately makes
the Jacobian vanish. Then the right-hand side of the equation assumes the form

a1a2 sin{k1x + l1y −ω1t} sin{k2x + l2y −ω2t} · (k1l2 − k2l1)

× [−(k2
1 + l21

)+ (
k2

2 + l22
)]
.

The left-hand side of Eq. (8.5) vanishes due to the fact that each wave satisfies the
dispersion relation. The product of two sines can be expressed as the difference of
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cosines of the sum and the difference of the sine arguments. Thus, the right-hand
side of (8.5) can be regarded as a periodic external force acting on the linear system.

The system response to this forcing will be small as long as there is no resonance,
i.e., until the wave vector and frequency of the external force do not coincide with
the wave vector k3 and frequency ω3 of any eigenmode of the linear operator on
the left-hand side of Eq. (8.5). In fact, the following equalities can be considered as
conditions for the resonant interaction:

k1 + k2 + k3 = 0, ω1 +ω2 +ω3 = 0. (8.6)

To find the equations for the resonant interaction of three waves, following
M.S. Longuet-Higgins and A.E. Gill (1970), we will be looking for a solution to
Eq. (8.5) in the form

ψ = a1 cos θ1 + a2 cos θ2 + a3 cos θ3, (8.7)

where the ai (i = 1,2,3) are slowly changing functions of time, while

θi = kix + liy −ωit + φi (i = 1,2,3). (8.8)

Here the waves numbers and frequences satisfy the dispersion relations

ωi

(
k2
i + l2i +L−2

0

)+ β · ki = 0 (i = 1,2,3) (8.9)

and the resonance conditions

k1 + k2 + k3 = 0, l1 + l2 + l3 = 0, ω1 +ω2 +ω3 = 0, (8.10)

while the initial phases are related by

ϕ1 + ϕ2 + ϕ3 = 0. (8.11)

Again recalling the formula for sine products, we write

sin θ1 · sin θ2 ≡ −cos(θ1 + θ2)− cos(θ1 − θ2)

2
.

Substitute (8.7) into Eq. (8.5) by taking into account the dispersion relations (8.9).
The terms containing sin θi (i = 1,2,3) cancel out thanks to the dispersion rela-
tions. As to the remaining terms, we already mentioned that the right-hand side is
represented by the sine product, while the left-hand side contains (time) derivatives
of ai (i = 1,2,3) as well. So we have

(
κ

2
1 +L−2

0

)
ȧ1 cos θ1 + (

κ

2
2 +L−2

0

)
ȧ2 cos θ2 + (

κ

2
3 +L−2

0

)
ȧ3 cos θ3

= C1a2a3
[+ cos(θ2 + θ3)− cos(θ2 − θ3)

]
+C2a3a1

[+ cos(θ3 + θ1)− cos(θ3 − θ1)
]

+C3a1a2
[+ cos(θ1 + θ2)− cos(θ1 − θ2)

]
, (8.12)
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where κ

2
i = k2

i + l2i (i = 1,2,3), while the interaction coefficient is

C1 = 1

2

(
κ

2
2 −κ

2
3

)
(k2l3 − k3l2)= 1

2

(
κ2

2 − κ2
3

) · (z · k2 × k3), (8.13)

and z is the unit vector directed vertically upwards. The other coefficients are ob-
tained by cyclic index permutations. Making use of the resonance conditions (8.10)
one easily obtains

+k3l1 − k1l3 = +k1l2 − k2l1, +k2l3 − k3l2 = +k1l2 − k2l1. (8.14)

Then in view of (8.11) we have θ1 +θ2 +θ3 = 0, while the three terms on the left-
hand side of (8.12) are balanced by the three terms on the right-hand side provided
that

(
L−2

0 +κ

2
1

)
ȧ1 = Γ

(
κ

2
2 −κ

2
3

)
a2a3,(

L−2
0 +κ

2
2

)
ȧ2 = Γ

(
κ

2
3 −κ

2
1

)
a3a1, (8.15)

(
L−2

0 +κ

2
3

)
ȧ3 = Γ

(
κ

2
1 −κ

2
2

)
a1a2,

up to non-resonant terms on the right-hand side of (8.12), which, as one could ex-
pect, have a weak response. The quantity Γ stands for the following:

z · k2 × k3 = z · k3 × k1 = z · k1 × k2 = 2Γ. (8.16)

A comparison of the amplitudes of non-resonant waves that are generated by
the right-hand side of (8.12) with the amplitudes of the resonant waves shows (see
Exercise 4) that this is indeed the case, if the nonlinearity is weak, i.e.,

κ

2a � ω (8.17)

(here κ, a and ω are typical values of the wave number, amplitude, and frequency
of the waves involved in the resonant interaction). In this case, the nonlinear terms
in (8.5) are small when compared with the linear ones, and Eqs. (8.15) can be viewed
as the result of an expansion in a small parameter ε = κ

2a/ω, which is called the
degree of interaction. Its smallness means that κa � ω/κ, i.e., that the velocity of
a fluid particle is small in comparison with the phase velocity of the Rossby wave.
Another equivalent interpretation of the resulting approximation is that it can also
be seen as the result of averaging Eq. (8.12) over the “fast” time, on the assumption
that the wave amplitudes are functions of slow time.

By an appropriate change of time t and coefficients κi (i = 1,2,3), the system
(8.15) can be reduced to the Euler equations for the motion of the classical gyro-
scope (see Chap. 12). Then one can write the following two quadratic invariants of
the system (8.15):

E = 1

2

[(
L−2

0 +κ

2
1

)
a2

1 + (
L−2

0 +κ

2
2

)
a2

2 + (
L−2

0 +κ

2
3

)
a2

3

]
, (8.18)
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Π2 = (
L−2

0 +κ

2
1

)2
a2

1 + (
L−2

0 +κ

2
2

)2
a2

2 + (
L−2

0 +κ

2
3

)2
a2

3, (8.19)

which correspond to the kinetic energy of a gyroscope and the square of its angular
momentum. In our case, (8.18) corresponds to the full, i.e., the kinetic plus potential
energy

1

2

∫ ∫ [(
∂ψ

∂x

)2

+
(
∂ψ

∂y

)2

+L−2
0 ψ2

]
dxdy, (8.20)

while (8.19) is related to the integral of the square of the potential vorticity
∫ ∫ [

�ψ −L−2
0 ψ

]2
dxdy (8.21)

of the flow governed by Eq. (8.5).

8.3 The Helmholtz Singular Vortex and the Obukhov
Geostrophic Vortex

In classical hydrodynamics, strictly two-dimensional vortex flows of an incompress-
ible fluid are described by a stream function ψ . In terms of this function the vorticity
equation has the form (cf. (8.5))

∂�ψ

∂t
+ [ψ,�ψ] = 0. (8.22)

In this case the velocity components are expressed by the equalities

u= −∂ψ

∂y
, v = ∂ψ

∂x
, (8.23)

which automatically provide the divergence-free property of the velocity field,
whose vorticity is Ω = rotz v = ∂v/∂x − ∂u/∂y =�ψ . Therefore the velocity field
of a two-dimensional flow can be reconstructed from its vorticity field by solving
the Poisson equation

�ψ =Ω(x,y, t). (8.24)

Its Green function for the unbounded integration domain and regular boundary con-
ditions at infinity is given by

ψH = κ ln r, �ψH = 2πκδ(r). (8.25)

Here r = xi+yj is the radius vector of the observation point in the plane of the flow,
r =√

x2 + y2, δ(r) is the two-dimensional Dirac delta-function.
In other words, the Green function (8.25) describes a two-dimensional fluid flow

induced by a singular vortex tube whose intensity is 2πκ and whose vorticity is
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concentrated on the infinite straight line, orthogonal to the plane of motion and
passing through the origin. This Green function is called the Helmholtz singular
vortex, after Helmholtz who first introduced this concept in fluid dynamics.

A singular vortex tube is sometimes called a vortex filament which, given the
two-dimensional nature of the motion, can be identified with a point on the plane
and assigned a characteristic κ to this point. The quantity κ is called the strength
of the singular vortex and is determined as follows. For an infinitesimal vortex tube
κ = Ωπa2/2π = 1

2Ωa2, where a is the tube’s radius, while Ωπa2 is its intensity,
which is an invariant of motion by the Kelvin theorem. Now by sending a to zero
and Ω to infinity so that the product Ωa2 remain constant, we find the strength of
the vortex filament. In the presence of N such vortex filaments in the fluid, each of
them moves along with the fluid at the speed induced at its location by the other
N − 1 singular vortices. Taking into account that this speed is equal to the vector
sum of the velocities induced by the N − 1 vortices at the given point, we derive the
equations of motion for the N -vortex system.

Indeed, first consider two singular vortices with strengths κ1 and κ2, which are
located at points r = r1(t) = x1(t)i + y1(t)j and r = r2(t) = x2(t)i + y2(t)j, and
which induce the velocity fields described by the stream functions ψ1 = κ1 ln |r−r1|
and ψ2 = κ2 ln |r − r2|, respectively. It is easy to check by a direct calculation that
the movement of the first vortex in the velocity field of the second vortex is described
by the equations

u1
.= ẋ1(t) = −∂ψ2

∂y
(r = r1)= −κ2

∂ ln |r − r2|
∂y

(r = r1)

= − 1

κ1

(
κ1κ2

∂ ln |r1 − r2|
∂y1

)
,

v1
.= ẏ1(t) = ∂ψ2

∂x
(r = r1)= κ2

∂ ln |r − r2|
∂x

(r = r1)

= 1

κ1

(
κ1κ2

∂ ln |r1 − r2|
∂x1

)
.

Similarly,

u2
.= ẋ2(t) = − 1

κ2

(
κ1κ2

∂ ln |r2 − r1|
∂y2

)
,

v2
.= ẏ2(t) = 1

κ2

(
κ1κ2

∂ ln |r2 − r1|
∂x2

)
.

In terms of the function

Ψ = κ1κ2 ln |r1 − r2|,
these equations are written in the Hamiltonian form

ẋi = − 1

κi

∂Ψ

∂yi
, ẏi = + 1

κi

∂Ψ

∂xi
, (8.26)
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where i = 1,2.
Now it is easy to foresee that in the case of N vortices, the Hamiltonian function

has the form

Ψ =
∑
i �=j

κiκj ln |ri − rj |, (8.27)

where in both equations (8.26) and expression (8.27) the indices i and j assume
values from 1 to N .

The system (8.26) and (8.27) is called the Kirchhoff equations (G.R. Kirchhoff,
1824–1887) of the motion of N singular vortices. It is worth mentioning that Kirch-
hoff wrote these equations in terms of complex variables, introducing complex coor-
dinates zn = xn + iyn (where i is the imaginary unit) and the complex Hamiltonian

HK = i
∑
m �=n

κmκn ln(zn − zm) (Ψ = ImHK). (8.28)

Then the equations of motion assume the form

ż∗ = ẋn − ẏn = 1

κn

∂HK

∂zn
, (8.26′)

where star means the complex conjugate.
It is easy to see that due to the Kirchhoff equations the following equalities hold:

N∑
i=1

κi ẋi = 0,
N∑
i=1

κi ẏi = 0,
dΨ

dt
= 0, (8.29)

i.e., the “mass center”, which is the vorticity center of the system

r0 =
N∑
i=1

κiri/
N∑
i=1

κi, (8.30)

does not move, while the Hamiltonian Ψ is a first integral of the system.
The system of two vortices (Fig. 8.2) is already interesting enough and, as we

shall see, has a geophysical application. In particular, the vortex pair (κ1 = κ2 = κ ,
i.e., the vortex strengths are the same in sign and magnitude) rotates around its
vorticity center with constant angular velocity (Fig. 8.2a)

ω = 2κ

L2
z, (8.31)

where L is the constant in time (why?) distance between the vortices, and z is the
unit vector in the direction of the z-axis. This shows that the pair of cyclones of pos-
itive vorticity rotates counterclockwise, while a pair of anticyclones rotates clock-
wise.
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Fig. 8.2 Systems of two
vortices: (a) a pair of singular
vortices of equal strengths
rotates about the center with
angular velocity ω = 2κ/L2;
(b) a dipole consisting of a
cyclone and anticyclone
moves with velocity V = κ/L

in the zonal direction

The vortex dipole (κ1 = κ = −κ2, i.e., the vortex strengths are equal in magnitude
but of opposite signs) is moving along a straight line with constant velocity

V = κ

L2
L × z, (8.32)

where L = r+ − r− (Fig. 8.2b).
In geophysical hydrodynamics the two-dimensional field of geostrophic wind can

be reconstructed not from its vorticity but from its potential vorticity, which in
the quasi-geostrophic approximation and after subtracting the Coriolis parameter
is equal to Ω̃ = �ψ − L−2

0 ψ . Hence, the geostrophic singular vortex, which was
first introduced by Obukhov, is defined as the Green function for the equation

�ψ −L−2
0 ψ = Ω̃(x, y, t) (8.33)

with the regular boundary conditions at infinity. This fundamental solution has the
form

ψO = −κK0(r/L0), �ψO −L−2
0 ψO = 2πκδ(r). (8.34)

Here K0(x) is the Macdonald function, whose values for small and large argu-
ments are expressed by the following asymptotic formulas:

K0(r/L0)≈ − ln(r/L0), for r/L0 � 1, (8.35)

K0(r/L0)≈ −1

2

κ√
2πr/L0

exp

(
− r

L0

)
. (8.36)

The motion of N singular geostrophic vortices, as can be easily seen, is also
governed by the Kirchhoff equations (8.26) (or (8.26′)) with the only difference that
in the Hamiltonian (8.27) (or (8.28)), the logarithmic function is replaced by the
Macdonald function, for instance,

Ψ =
∑
i �=j

κiκjK0

( |ri − rj |
L0

)
. (8.37)
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The principal difference between the geostrophic vorticity filaments and the
Helmholtz vortices is that the former are screened, i.e., due to (8.36) they have a
finite interaction radius L0, beyond which they virtually do not interact. This im-
poses certain features for the motion of such vortices. For example, if at the ini-
tial moment, the collection of vortices can be divided into clusters, the distances
between which are much greater than L0, then within the framework of applica-
bility of inviscid hydrodynamical equations, each such cluster will evolve virtually
independently. On the other hand, at short distances geostrophic singular vortices
essentially do not differ from the Helmholtz vortices (see (8.35)).

Consider in this regard the behavior of the geophysical vortex dipole cyclone-
anticyclone. In the northern hemisphere, the cyclonic circulation, i.e., the rotation
around a low-pressure zone, has the same direction as the Earth’s rotation and there-
fore is positive. The anticyclone vorticity is negative. Imagine that such a dipole is
located in the zonal atmospheric flow, which is directed from west to east (recall that
according to meteorological forecasts, the weather usually comes from the west). In
the typical situation, where the cyclone is located to the north of the anticyclone,
according to (8.32), the dipole moves to the east, ahead of the zonal transport. Oth-
erwise, which is a rare phenomenon, the dipole is moving against the flow. Under
certain conditions, the velocities of the zonal flow and dipole movement may be
close with respect to the magnitude and opposite with respect to the direction. Then,
for an observer on the Earth’s surface, a vortex dipole is almost motionless, and the
weather service does not change its short-term weather forecast for a long time.
This phenomenon is called blocking, and in various regions of the world it is related
to the setting of prolonged droughts in the summer and steady frosts in the winter.
(Anticyclone is accompanied by fair weather.) It is no accident, therefore, that de-
spite the tentative character of the application of the theory of dipolar geostrophic
vortices to the description of real atmospheric processes, the appearance of the pair
“a cyclone in the south and an anticyclone in the north” on the synoptic chart is for
the weather forecaster one of the precursors of long-term fair weather.

It is worth noting that for over a century the theory of singular vortices has been
attracting the attention of specialists, including such outstanding hydrodynamists
as N.E. Zhukovsky, Th. von Karman, etc. First, this is related to the purity in for-
mulating the problem, the rigor and elegance of mathematical approaches used to
address specific related tasks, and secondly, with the ability of such a theory to ex-
plain a number of important hydrodynamical phenomena, such as the behavior of
vortex structures in the trails behind the bodies moving in a fluid. (Recall Karman
vortex street, the vorticity breakaway from the edge of the wing, vortex shedding
past a cylinder, etc.). This theory also explains features of two-dimensional turbu-
lence simulated with a large number of singular vortices. In particular, based on this
approach to the geophysical hydrodynamics, there have been attempts to describe
trajectories of tornadoes and even tropical cyclones. The reader can find a fairly
complete picture of the progress in this area in the review by Aref et al. 1988, see
Bibliography.
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8.4 Exercises

1. What is the phase velocity of the Rossby wave evolving on the beta-plane in
the presence of zonal flow u = (U0,0), U0 = const? For what values of U0 is
the Rossby wave stationary with respect to the Earth or does it propagate west-
wards? We set the characteristic scale for the variation of the Coriolis parameter
and length of the Rossby wave equal to (5–10) × 103 km and 3 × 103 km, re-
spectively.

Answer:

cR =U0 − β +U0L
−2
0

k2 + l2 +L−2
0

, U0 ≥ 5–10 m/s.

Hint: Look for the solution of the equation

∂

∂t

(
�ψ −L−2

0 ψ
)+ [ψ,�ψ] + β

∂ψ

∂x
= 0

in the form

ψ = Ψ0 + ϕ(x, y, t),

where Ψ0 = −U0y, ϕ =A exp{i(kx + ly −ωt)}.
2. Calculate the maximum and minimum of the zonal group velocity as a function

of k, and find the corresponding values of k2 for which they are assumed.

Answer:

minCRX = − β

l2 +L−2
0

= cR(k = 0), for k = 0,

maxCRY = β

8(l2 +L−2
0 )

= −1

8
cR(k = 0), for

k2

l2 +L−2
0

= 3.

3. The term on the right-hand side of (8.12) proportional to cos(θ1 − θ3), induces
the non-resonant wave a′

1 sin(θ1 − θ3). Show by a direct computation that

a′
1 = C1

(k2 − k3)− (1 −κ
′2)(ω2 −ω3)

a2a3,

where κ

′ = |k2 − k3|, while C1 is given by formula (8.13). Starting with this
formula, and assuming that the condition (8.17) holds, verify that a′

1/a � 1 for
short (κ � 1), as well as for long (κ � 1), planetary waves.

4. Use the Euler theorem on the instability of the rigid body rotation around the
middle axis of the inertia tensor in order to specify the conditions under which
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Fig. 8.3 Two simply linked closed vortex filaments

the Rossby wave with amplitude a1 and the wave number k1 splits into two
waves that are resonant to the initial one.

Answer: κ3 ≷ κ1 ≷ κ2.

5. Describe the behavior of two vortices with strengths equal and opposite in sign by
using the Kirchhoff equations and their integrals of motion. Prove the formulas
(8.31) and (8.32). How do the solutions change if |κ1| �= |κ2|? What can one say
about the behavior of N singular vortices of equal strength initially located at
the vertices of a regular polyhedron? (Start with three vortices.) This problem
has practical application. It is known that in nature and laboratory experiments,
one can observe regular vortex formations whose vorticity centers are located on
a circle. However, more than seven vortices are not observed in practice. It is
no coincidence, since it is proved that if N > 7 then the corresponding vortex
structure is unstable.

6. By using the concept of a singular vortex, try and calculate the helicity of two
simply linked closed infinitesimally narrow vortex tubes–filaments (see Fig. 8.3).

Answer: In this case we present the helicity as

H =
∫ ∫ ∫

u · rot u · dμ= 2Γ1Γ2,

where dμ is the volume element, Γi = 2πκi (i = 1,2) are the filament strengths.

Solution: The helicity characterizes knottedness, or the degree of entangle-
ment of the vorticity lines, and it cannot change under a smooth deformation of
the vortex filaments. By using stretching and squeezing we deform the configu-
ration shown in Fig. 8.3a, in such a way that the first filament would be a straight
line, i.e., it would close at infinity, while the second filament would surround the
first along a circle of radius r =R2 which is lying in the plane orthogonal to the
line 1 (Fig. 8.3b). According to (8.25), line 1 creates an azimuthal velocity field
in the space

vϕ = ∂ψ1

∂r
= κ1

r
= Γ1

2πr
,
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parallel to this plane. The vorticity outside of the filaments is zero, while Γ2
.=

rot u·δσ 2, where δσ 2 is the area of the oriented cross-section of the filament 2.
Therefore, the contribution into the integral H of the configuration shown in
Fig. 8.3b is

Γ1

2πR2
· 2πΓ2R2 = Γ1Γ2.

The configuration in which vortices are interchanged gives exactly the same con-
tribution.

References

H. Aref et al., Point vortex dynamics: recent results and open problems, Fluid Dyn. R., Vol. 3,
p. 63, 1988.

A.E. Gill, Atmosphere-Ocean Dynamics, Academic Press, San Diego, 1982.
M.V. Kurgansky, Introduction to the Large-Scale Dynamics of Atmosphere, Hydrometeoizdat, St.-

Petersburg, 1993 (in Russian). In English: Adiabatic Invariants in Large-Scale Atmospheric
Dynamics, Taylor and Francis Ltd, 2002.

L.D. Landau and E.M. Lifschitz, Mechanics, Nauka, GRFML, Moscow, 1973 (in Russian). In
English: 3rd edn., Elsevier, 1976.

M.S. Longuet-Higgins and A.E. Gill, Resonant interaction of planetary waves, in: Nonlinear The-
ory of Wave Propagation, G.I. Barenblatt (ed), Mir, Moscow, 1970 (in English: M.S. Longuet-
Higgins, A.E. Gill, K. Kenyon, Resonant interactions between planetary waves, Proc. R. Soc.
Lond. A, 1967, vol. 299, No. 1456, 120–144).

L.M. Milne-Thompson, Theoretical Hydrodynamics, Dover, New York, 1996.
J. Pedlosky, Geophysical Fluid Dynamics, Springer, Berlin, 1987.
R. Salmon, Lectures on Geophysical Fluid Dynamics, Oxford University Press, Oxford, 1998.



Chapter 9
Equations of Quasi-geostrophic Baroclinic
Motion

9.1 Equilibrium State of a Rotating Baroclinic Medium

As we mentioned above, in a moving baroclinic medium isobaric and isopycnic
(or iso-density) surfaces usually do not match. Recall that in the case of an in-
compressible baroclinic fluid its density and pressure are independent quantities,
while the density of the baroclinic gas depends not only on pressure, but on yet one
more thermodynamical quantity, for instance on the potential temperature Θ , i.e.,
ρ = ρ(p,Θ). (I would like to emphasize yet again that for the sake of simplicity,
the possibility of phase transitions in the medium is not considered here, so there are
only two independent thermodynamical variables.) Denote by the index s equilib-
rium distributions of thermodynamical quantities, which describe the medium state
in the absence of relative motions, and use them as the background characteristics
of the medium, while its motion is a deviation from this background.

It is worth mentioning that the choice of the background state of the medium
is a rather delicate question, which, strictly speaking, should be resolved based on
the spatial and time scales of the studied processes and by taking into account the
influence of motions excluded from consideration. The latter remark is important,
in particular, in order to compare specific calculations with data from observations.
At this stage, it is sufficient to formulate the following typical constraints for the
Earth’s atmosphere and oceans that are imposed on the background characteristics
selected above.

1. The equilibrium values of the thermodynamical quantities depend only on the
height z and precisely satisfy the Mendeleev–Clapeyron equation

ps =RρsTs (9.1)

and the hydrostatic relation

dps

dz
+ gρs = 0. (9.2)
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2. The background state of the medium corresponds to a statically stable vertical
distribution of the equilibrium potential temperature for the gas, i.e.,

Θs = Ts

(
p0

ps

)R/Cp

(9.3)

dΘs

dz
> 0, (9.4a)

and density for the fluid

dρs

dz
< 0. (9.4b)

3. The dimensionless parameter

η
.= N2H0

g
� 1. (9.5)

Here g is the acceleration of gravity, H0 is the typical depth of the medium, while
N is the D. Brunt–V. Väisälä frequency, given by the formulas:

for baroclinic gas (atmosphere) N =
(

g

Θs

dΘs

dz

)1/2

, (9.6a)

for stratified fluid (ocean) N =
(

− g

ρs

dρs

dz

)1/2

. (9.6b)

The physical meaning of N is that this is the frequency of small oscillations
of a fluid parcel about its equilibrium position in a statically stable environment.
Indeed, suppose, for example, that the atmosphere is in a static equilibrium state,
described by the distributions of density ρ = ρs(z) and pressure p = ps(z). At an
arbitrary level z = z0 we choose a fluid parcel of mass δm and density ρs(z0) and
which is also under pressure ps(z0), and displace this particle adiabatically to a level
z = z0 + δz (Fig. 9.1). Let ρ(z0 + δz) be the density of the displaced fluid parcel to
this new level. Then the volume displaced by this particle is equal to δm/ρ(z0 + δz)

and the displaced mass of the surrounding atmosphere is ρs(z0 + δz)δm/ρ(z0 + δz).
Therefore the total of the gravity force directed downwards and the Archimedes
force directed upwards is

F = −gδm+ ρs(z0 + δz)

ρ(z0 + δz)
gδm.

Then the acceleration d2δz

dt2
of the displaced mass δm can be found from Newton’s

law

δm
d2δz

dt2
= F.
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Fig. 9.1 A fluid parcel of
mass δm moves adiabatically
from level z = z0 to an
infinitesimally close level
z = z0 + δz. Its potential
temperature at this level is
Θ(z0 +δz)=Θ(z0)=Θs(z0)

�=Θs(z0 + δz); here Θs is the
potential temperature of the
surrounding medium

Whence, after the expansion ρs(z) and ρ(z) in a neighborhood of z = z0 and taking
into account that ρ(z0) = ρs(z0) by definition, the resulting equality can be written
as follows, modulo terms O(δz2):

d2δz

dt2
= −g

[
+ 1

ρ

dρ

dz

∣∣∣∣
z=z0

· δz− 1

ρs

dρs

dz

∣∣∣∣
z=z0

· δz
]
. (9.7)

Now compute dρ/dz, given that the density ρ(z) of the chosen particle changes
only with pressure. The formula

Θ = T

(
p0

p

)R/Cp

(9.8)

can be rewritten in terms of ρ and p (where Cv = Cp −R is the specific thermoca-
pacity for constant volume) by the Mendeleev–Clapeyron relation p =RρT :

Θ = p0

Rρ

(
p

p0

)Cv/Cp

. (9.9)

Then

ρ(z)= p0

RΘ(z0)

(
p(z)

p0

)Cv/Cp

.

Differentiating this equality in z and using (9.8) we obtain

dρ

dz
= Cv

Cp

1

RΘ(z0)

(
p0

p(z)

)R/Cp dp

dz
= Cv

Cp

1

RT (z)

Θ(z)

Θ(z0)

dp

dz
.

Setting z = z0 and using the Mendeleev–Clapeyron formula once more, we have

dρ

dz
= Cv

Cp

ρs

ps

dps

dz
at the point z = z0,
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and Eq. (9.7) is written in the form

d2δz

dt2
= −g

[
Cv

Cp

1

ps

dps

dz
− 1

ρs

dρs

dz

]
z=z0

δz.

But, according to (9.9), the expression in square brackets is the derivative in z of
lnΘs = − lnρs + (Cv/Cp) lnps + const. Therefore, the equation of motion of the
chosen particle can be written as

d2δz

dt2
+ g

Θs

dΘs

dz
δz = 0. (9.10)

This implies that for

N2 = g

Θs

dΘs

dz
> 0, (9.10′)

the equilibrium state of the atmosphere is stable, while the particle makes harmonic
oscillations with frequency (9.10′).

It is also pertinent to note that equalities (9.1)–(9.3) imply the relation

dΘs

dz
= Θs

Ts

(
dTs

dz
+ g

Cp

)
, (9.11)

according to which the medium preserves statistical stability even for dTs/dz < 0 if

−dTs

dz
<

g

Cp

. (9.12)

The quantity γa
.= g/Cp is called the dry adiabatic gradient of temperature,

that for the Earth’s atmosphere, for example, assumes the value 10 deg/km (Cp ≈
1000 J/(kg deg)), whereas the real fall in the absolute temperature with height in the
troposphere is approximately 6 deg/km.

The smallness of the parameter η becomes evident when we note that the quantity
g′ = N2H0 can be interpreted as the effective acceleration of gravity of a fluid par-
cel under the influence of the total for the buoyancy and gravitational forces. For the
Earth’s atmosphere, for example, η =O(0.1), whereas for the ocean η =O(10−3).
This distinction is due to the fact that the stratification of the ocean environment is
caused not by its compressibility, but by the density stratification due to the nonho-
mogeneous salinity of water.
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9.2 Quasi-geostrophic Approximation of the Equations
of Motion of a Baroclinic Fluid

With regard to the baroclinic geophysical flows, in addition to the smallness of the
Rossby–Kibel parameter and of η:

ε
.= U

f0L
� 1 and η

.= N2H0

g
=O(ε), (9.13)

we will also assume that the following parameter is small:

ξ
.= f 2

0 L
2

gH0
=O(ε). (9.14)

Generally speaking, the parameters ε, ξ and η are independent and the restric-
tions are typical, for instance, for the Earth’s atmosphere. One can also use other
constraints without altering structural properties of the final result. This is the case
for the ocean, where η = o(ε) (see the above estimates for η). Furthermore, the
analysis below can be easily modified or generalized to the case of less restrictive
conditions than (9.13) and (9.14), provided that the above-mentioned parameters
remain small.

The smallness of the parameter ξ means that the linear velocity induced by the
absolute vorticity of the medium f0 is also noticeably “subsonic”, i.e., it is at least
half of the order of magnitude less than the propagation speed of long gravitational
or internal waves. In fact this is the condition of weak 3D-compressibility of a ro-
tating baroclinic gas.

Up until now we used a shortened Obukhov–Charney basis for deriving simpli-
fied “inviscid” equations of motion and we ignored the equation of conservation
of potential temperature. According to the discussion above, for a baroclinic fluid
both of the conserved quantities Π and Θ should be taken into account. The exact
formulation of their Lagrangian invariance can be written in the form

DΠ

Dt
= D

Dt

(� + 2�0) · ∇Θ

ρ
= 0, (9.15)

DΘ

Dt
= 0

(
D

Dt
= d

dt
+w

∂

∂z

)
. (9.16)

It is convenient to represent nonequilibrium thermodynamic variables of the
moving medium as follows:

p = ps(z)+ p′(x, y, z, t), ρ = ρs(z)+ ρ′(x, y, z, t),

Θ =Θs(z)+ θ(x, y, z, t), T = Ts(z)+ ϑ(x, y, z, t),

where the second terms on the right-hand side of each of the equations describe
small deviations of the corresponding quantity from its equilibrium value. Let us
estimate the order of their smallness.
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According to the geostrophic wind equation (6.7) and hydrostatic relations (6.1)
and (9.2), [p′] = f0L[ρs]U , and [ps] = [ρs]gH0, where the square brackets stand
for typical values of the encompassed quantities. Hence by (9.14)

p′

ps
∼ f0LU

gH0
= U

f0L
· f

2
0 L

2

gH0
=O(εξ)=O

(
ε2). (9.17)

According to the assumption (6.1) the hydrostatic relation approximately holds
for the quantity p = ps + p′ as well. Therefore [p′] = [ρ′]gH0 and

ρ′

ρs
=O

(
p′

ps

)
=O

(
ε2). (9.18)

By using the equation of state (9.1) and the formula for potential tempera-
ture (9.9), which also hold for both equilibrium and nonequilibrium quantities, it is
easy to show that the relative deviations ϑ/Ts and θ/Θs are connected with p′/ps
and ρ′/ρs by the following approximate relations:

ϑ

Ts
≈ p′

ps
− ρ′

ρs
,

θ

Θs

≈ Cv

Cp

p′

ps
− ρ′

ρs
. (9.19)

Hence, according to (9.18),

ϑ

Ts
=O

(
ε2), θ

Θs

=O
(
ε2). (9.20)

Now we move to the direct derivation of the quasi-geostrophic equation for po-
tential vorticity. Single out in the expression for potential vorticity the main part
associated with the vertical derivatives, since the vertical scale of global geophysi-
cal flows is much less than the horizontal one. Consequently, it is natural to assume
that the derivatives related to the vertical scale will prevail. In addition, take into
account the smallness of the Rossby number Ro and obtain that the relative vorticity
Ωz is much smaller than the Coriolis parameter f = 2Ω0 sinφ. Thus,

Π = ( �Ω + 2 �Ω0) · ∇Θ

ρ
≈ (Ωz + f ) · ( dΘs

dz
+ ∂θ

∂z
)

ρs

= (Ωz + f )

ρs
· dΘs

dz
+ f

ρs
· ∂θ
∂z

. (9.21)

Since |Ωz| � |f | and |θ ′| � |Θs |, we can approximately write down the main part
of the substantial derivative of the potential vorticity:

0 = dΠ

dt
= ∂Π

∂t
+ u · ∂Π

∂x
+ v · ∂Π

∂y
+w · ∂Π

∂z

=
(
∂

∂t
+ u · ∂

∂x
+ v · ∂

∂y

)[
(Ωz + f )

ρs
· dΘs

dz
+ f

ρs
· ∂θ
∂z

]
+w · d

dz

[
f

ρs
· dΘs

dz

]
.
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Note that the part w ∂
∂z

of the substantial derivative which comes from the vertical
velocity is taken into account here.

The equation for conservation of the potential temperature has the form
(
∂

∂t
+ u · ∂

∂x
+ v · ∂

∂y

)
θ +w · dΘs

dz
= 0. (9.22)

Since the quantity 1
ρs

· dΘs

dz
is a function of variable z only, the operator ( ∂

∂t
+

u · ∂
∂x

+ v · ∂
∂y
) does not act on it. Therefore, transform the derivative dΠ

dt
as fol-

lows:

dΠ

dt
= 1

ρs
· dΘs

dz
·
(
∂

∂t
+ u · ∂

∂x
+ v · ∂

∂y

)[
Ωz + f + f

dΘs/dz
· ∂θ
∂z

]

+w · d

dz

[
f

ρs
· dΘs

dz

]
= 0.

Now recall the value of the frequency N2 defined in (9.10′), and use the following
identity, whose validity is easy to verify:

g

f · ρs · ∂

∂z

[
f 2 · ρs
N2

· θ

Θs

]

≡ f

ρs
· ∂

∂z

[
ρs

dΘs/dz
· θ
]

= f

ρs
· ρs

dΘs/dz
· ∂θ
∂z

− f

ρs
· ρs · θ
(dΘs/dz)2

· d

dz

dΘs

dz
+ f

ρs
· θ

dΘs/dz
· dρs
dz

= f

ρs
· ρs

dΘs/dz
· ∂θ
∂z

− ρs · θ
(dΘs/dz)2

· d

dz

[
f

ρs
· dΘs

dz

]

= f

dΘs/dz
· ∂θ
∂z

− ρs · θ
(dΘs/dz)2

· d

dz

[
f

ρs
· dΘs

dz

]
.

Here we substitute the expression f
dΘs/dz

· ∂θ
∂z

into that for dΠ
dt

, which we divide by
1
ρs

· dΘs

dz
in advance:

(
∂

∂t
+ u · ∂

∂x
+ v · ∂

∂y

)[
Ωz + f + g

ρs · f · ∂

∂z

(
f 2

N2
· ρs · θ

Θs

)]

+
(
∂

∂t
+ u · ∂

∂x
+ v · ∂

∂y

)[
ρs · θ

(dΘs/dz)2
· d

dz

(
f

ρs
· dΘs

dz

)]

+ w · ρs
dΘs/dz

· d

dz

[
f

ρs
· dΘs

dz

]
= 0. (9.23)

Now introduce the constant Coriolis parameter f0 = 2Ω0 sinφ0 and use it to replace
the variable quantity f in the equation above. We use the equation for the conser-
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vation of potential temperature (9.22), and this allows one to cancel out the two last
terms, since the quantity ρs

(dΘs/dz)2
· d
dz
(
f0
ρs

· dΘs

dz
) depends on z only, and the operator

( ∂
∂t

+ u · ∂
∂x

+ v · ∂
∂y
) does not act on it. Finally, we have

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)[
Ωz + f0 + g

ρs · f0

∂

∂z

(
f 2

0

N2
ρs

θ

Θs

)]
= 0. (9.24)

In order to formulate this equation in terms of only one unknown function, one
needs to have a relation of θ with the hydrodynamical component of the pressure
p′ = p′(x, y, z, t) which defines the geostrophic velocity field through the relation
(6.7). For this purpose use the second formula (9.19), which is transformed into the
form

θ

Θs

= 1

gρs

∂p′

∂z
−
(
Cv

Cp

1

ps

dps

dz

)
p′

gρs
(9.25)

by the hydrostatic relations (9.2) and (6.1) for the background and perturbed flows.
To compare the terms on the right-hand side of (9.25), it is more convenient to
formulate the obtained relation in terms of the frequency N (9.10′), which serves as
the main measure of medium stratification in the theory of motion of stratified fluids.
By using the equation of state (9.1), formula (9.3) for the potential temperature can
be rewritten in terms of ρs and ps :

Θs = p0

Rρs

(
ps

p0

)Cv/Cp

. (9.26)

Its logarithmic derivative gives the equality

Cv

Cp

1

ps

dps

dz
= 1

Θs

dΘs

dz
+ 1

ρs

dρs

dz
. (9.27)

After substituting (9.27) into (9.25) the desired relation assumes the form

θ

Θs

= 1

g

∂

∂z

(
p′

ρs

)
− N2

g2

p′

ρs
,

which allows one to compare the terms on the right-hand side of the latter equality
with the help of (9.13):

N2

g2

p′

ρs
= N2H0

g
O

(
1

gH0

p′

ρs

)
= ηO

(
1

g

∂

∂z

(
p′

ρs

))
� 1

g

∂

∂z

(
p′

ρs

)
O(ε).

As a result, the required relation between θ and p′ with the desired degree of
accuracy is given by the formula

θ

Θs

= 1

g

∂

∂z

(
p′

ρs

)
. (9.28)
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The latter formula, together with the geostrophic wind relations (6.7), which in this
case can be written as

u= − 1

f0

∂

∂y

(
p′

ρs

)
, v = + 1

f0

∂

∂x

(
p′

ρs

)
, (9.29)

allows one to close up Eq. (9.24). In terms of the geostrophic stream function

ψ(x, y, z, t)= p′

f0ρs
(9.30)

the quasi-geostrophic equation of the potential vorticity can be written as

d

dt

[
�ψ + f + 1

ρs

∂

∂z

(
f 2

0 ρs

N2

∂ψ

∂z

)]
= 0

(
�ψ = ∂2

∂x2
+ ∂2

∂y2

)
, (9.31)

u= −∂ψ

∂y
, v = +∂ψ

∂x
. (9.32)

It is easy to show (do it as a useful exercise) that for the ocean, for which in
contrast with the atmosphere η � ε, while the role of Θ is played by ρ, the quasi-
geostrophic equation of vorticity has a similar form. Here one merely needs to use
the formula (9.6b) to calculate N .

One should note that the information on the baroclinic stream function ψ =
ψ(x, y, z, t) allows one to recover the vertical component of the flow velocity as
well. Indeed, by excluding the pressure pulsation p′ from (9.28) and (9.30), we
obtain the relation

θ

Θs

= f0

g

∂ψ

∂z
. (9.33)

After its substitution into (9.22), the vertical velocity can be written in the form

w = − f0

N2

d

dt

(
∂ψ

∂z

)
. (9.34)

Remark We emphasize that, unlike (9.32), the formula (9.34) is valid only for adi-
abatic processes, i.e., in the absence of thermal conductivity and external sources
of heat. Otherwise, the right-hand side of (9.22) will be different from zero, and
denoting it by Q, we obtain

w = f0

N2

[
− d

dt

(
∂ψ

∂z

)
+ g

f0

Q

Θs

]
(9.35)

instead of (9.34).

Thus, geophysical flows of a baroclinic fluid in the quasi-geostrophic approxi-
mation are also described in terms of the stream function, although in this case, it
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explicitly depends on the vertical coordinate z. The latter is due to the presence in
a baroclinic fluid of the so-called available potential energy. Such an energy comes
from horizontally inhomogeneous distribution of buoyancy forces, or, which is prac-
tically the same, of the potential temperature. We will discuss more details of this
later. In the meantime, we note that the influence of the horizontal inhomogeneity in
the distribution of potential temperature on the dynamics of geophysical flows can
be seen directly from relations of the thermal wind

∂u

∂z
= − g

f0Θs

∂θ

∂y
,

∂v

∂z
= + g

f0Θs

∂θ

∂x
, (9.36)

which are easily obtained from (9.28) and (9.29) by eliminating the pressure. The
relation of the thermal wind can be written as a single vector equality (cf. (6.16) and
(6.17)):

∂v
∂z

= g

f0Θs

k × ∇Θ, (9.37)

where k is the vertical unit vector, while the deviation θ is replaced by Θ , since the
equilibrium quantities depend only on the vertical coordinate.

According to (9.37), the horizontal gradient of the potential temperature causes
a systematic vertical wind shear. We recall (see Chap. 6) that for the Earth’s atmo-
sphere this means that the temperature difference between the poles and the equator
is one of the main reasons for the motion instability of synoptic scale (the vertical
velocity shear causes vortex formation). Therefore, in geophysical hydrodynamics,
instability and cyclogenesis induced by the vertical wind shear are referred to as
baroclinic processes, thus emphasizing their convective origin. This goes in contrast
to the barotropic vortex formation, which is caused by a purely hydrodynamical
instability of horizontal shear flows.

9.3 Exercises

1. Specify the stability conditions for a static equilibrium of a stratified incom-
pressible fluid in the gravitational field. Show that in a stably stratified medium
a fluid parcel that is slightly deviated from its equilibrium position will perform
harmonic oscillations with the Brunt–Väisälä frequency N , given by the for-
mula (9.6b).

2. Derive the quasi-geostrophic equation for the potential vorticity of the ocean,
assuming the parameters ε, η and ξ small, but independent.
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Chapter 10
The Energy Balance, Available Potential Energy,
and Rossby Waves in a Baroclinic Atmosphere

10.1 The Energy Conservation Law and the Concept
of Available Potential Energy

In order to compare barotropic and baroclinic flows it is worth recalling the formula-
tion of the local energy conservation law (7.26) for the Obukhov–Charney equation,
which in the beta-plane approximation (f = f0 + βy, β = const) can be written as
follows:

∂

∂t

[
1

2
(∇ψ)2 + 1

2

ψ2

L2
0

]
= −div Sbt (x, y, t)

(
ψ =ψ(x, y, t)

.= gh

f0

)
, (10.1)

Sbt = i
(

−ψ
∂2ψ

∂x∂t
− 1

2
βψ2 +ψ

∂ψ

∂y
Ω̃bt

)
+ j

(
−ψ

∂2ψ

∂y∂t
−ψ

∂ψ

∂x
Ω̃bt

)
, (10.2)

where Ω̃bt
.= �ψ − L−2

0 ψ is the relative quasi-geostrophic potential vorticity for
barotropic flows. Unlike the formula (7.26), here instead of �ψ one has �ψ −
L−2

0 ψ . This is justified, because the contribution of the additional term into the
divergence is equal to zero:

+ ∂

∂x

[
−ψ

∂ψ

∂y
L−2

0 ψ

]
+ ∂

∂y

[
−ψ

∂ψ

∂x
L−2

0 ψ

]
= 0.

Having completed Exercise 1 in Chap. 7, the reader will easily derive that for
baroclinic flows on the beta-plane governed by Eqs. (9.31) and (9.32), the local
conservation law for the energy is formulated in the following form (multiply (9.31)
by −ρsψ and regroup the terms):

∂

∂t

[
1

2
ρs(∇ψ)2 + 1

2
ρs

f 2
0

N2

(
∂ψ

∂z

)2]
= −div Sbc(x, y, t), (10.3)
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Sbc = i
(

−ρsψ
∂2ψ

∂x∂t
− 1

2
ρsβψ

2 + ρsψ
∂ψ

∂y
Ω̃bc

)

+ j
(

−ρsψ
∂2ψ

∂y∂t
− ρsψ

∂ψ

∂x
Ω̃bc

)
+ k

(
−ρs

f 2
0

N2
ψ
∂2ψ

∂z∂t

)
. (10.4)

Here

ψ = ψ(x, y, z, t)
.= p′

f0ρs
,

Ω̃bc = �ψ + 1

ρs

∂

∂z

(
ρs

f 2
0

N2

∂ψ

∂z

)

is the relative quasi-geostrophic potential vorticity of the baroclinic flow.
If there is no mass flux across the boundary of the domain occupied by a baro-

clinic fluid, i.e., the velocity normal component on the boundary vanishes, one can
show (see Chap. 11) that (10.3) and (10.4) imply the invariance of the total energy

Ebc
.=
∫ ∫

V

∫ [
1

2
ρs(∇ψ)2 + 1

2
ρs

f 2
0

N2

(
∂ψ

∂z

)2]
δμ

(
dEbc

dt
= 0

)
, (10.5)

where δμ = dxdydz is a volume element of a fluid parcel and V is the total fluid
volume.

The expression for the total energy can be rewritten in terms of velocity and
thermodynamical characteristics of the fluid by using (9.33):

Ebc
.=
∫ ∫

V

∫ [
1

2
ρs(∇ψ)2 + 1

2
ρs

g2

N2

θ2

Θ2
S

]
δμ. (10.5′)

The physical meaning of the second term on the right-hand side of (10.5′) is easy
to understand by recalling that we are discussing those motions whose impact on
thermodynamical characteristics of fluid parcels, and hence on their vertical coor-
dinates, produces only slight deviations from their equilibrium values. Recall (see
Chap. 9) that for a fluid parcel of unit volume, deviating along the vertical by an
infinitesimal distance δz from its static equilibrium position, the total of the grav-
itational and buoyant forces which acts on this particle is equal to F = −ρsN

2δz.
Therefore the potential energy (relative to the equilibrium position) corresponding
to this force is

δPbc = 1

2
ρsN

2(δz)2. (10.6)

The potential temperature of a displaced fluid parcel differs from the equilibrium
potential temperature at its new position by the value θ = (dΘs/dz)δz. Now ex-
pressing δz via θ and substituting it into (10.6) subject to (9.6a), we find that the
second term of the integrand on the right-hand side of (10.5′) (and hence of (10.5))
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coincides with the potential energy of a fluid parcel of unit volume relative to its
static equilibrium position, i.e.,

δPbc = 1

2
ρs

g2

N2

θ2

Θ2
s

= 1

2
ρs

f 2
0

N2

(
∂ψ

∂z

)2

. (10.7)

The quantity

Pbc
.= (APE)bc =

∫ ∫

V

∫
1

2
ρs

g2

N2

θ2

Θ2
s

δμ=
∫ ∫

V

∫
1

2
ρs

f 2
0

N2

(
∂ψ

∂z

)2

δμ, (10.8)

equal to the potential energy of the entire fluid minus the potential energy corre-
sponding to its equilibrium state, is called the available potential energy. This con-
cept was first introduced by a prominent American meteorologist E. Lorenz (1955).
Its meaning is that it is this fraction of the potential energy that can be converted into
kinetic energy of the geophysical motions, whereas the potential energy correspond-
ing to the equilibrium state of the fluid turns out to be inaccessible for generating
motions of the scale studied and therefore it is excluded from consideration.

From the point of view of this concept it is useful to compare the energy invari-
ants for equations of the shallow-water theory (6.21) and (6.22) and their quasi-
geostrophic approximation, that is the Obukhov–Charney equation (7.8). According
to the local laws of energy conservation (4.25) (see Exercise 2 in Chap. 4, taking into
account that the Coriolis forces do not perform work) and (10.1), the corresponding
integral energy invariants can be represented in the form:

Esw =
∫ ∫

D

ρ0

(
1

2
Hv2 + 1

2
gH 2

)
δσ, (10.9)

Ebt =
∫ ∫

D

ρ0

[
1

2
(∇ψ)2 + 1

2

ψ2

L2
0

]
δσ =

∫ ∫

D

ρ0

(
1

2
v2 + 1

2
gh2

)
δσ, (10.10)

where H = H(x,y, t) is the current height of the free surface of the fluid, H0 is
the equilibrium thickness of the “shallow water” layer, h = H(x,y, t)−H0, δσ =
dxdy is an area element of the two-dimensional integration domain D and ρ0 is the
constant density of the fluid. (Here sw stands for shallow water.)

The quantity

Pbt = 1

2

∫ ∫

D

ρ0gh
2δσ = 1

2

∫ ∫

D

ρ0g(H −H0)
2δσ, (10.11)

that is equal to

1

2

∫ ∫

D

ρ0gH
2δσ − 1

2

∫ ∫

D

ρ0gH
2
0 δσ
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(the integral of the linear in h term vanishes due to the mass conservation (7.12)),
is the available potential energy of barotropic geophysical flows, according to the
above definition. Indeed, the potential energy ρ0H0dσ · g · 1

2 ·H0 of a fluid column
of the height H0 and of the area dσ cannot be converted into fluid motion (unless,
of course, one allows it to flow out somewhere). The portion of this available en-
ergy from the full potential energy of the layer, is measured by the ratio 〈h2〉/〈H 2〉
(where 〈. . .〉 is the average over the fluid volume) and according to (7.3) is equal
by the order of magnitude to the quantity ε2(L2/L2

0)
2. When applied to the Earth’s

atmosphere, for example, this value has the order of 10−2. A similar estimate also
holds for the baroclinic component of the available potential energy. This charac-
terizes the efficiency of the atmospheric heat engine, i.e., essentially coincides with
the estimate of its efficiency coefficient equal to a few percent.

This analysis allows one to answer the question that naturally arises when com-
paring the barotropic and baroclinic quasi-geostrophical models of geophysical
flows. The point is that the result of the limiting procedure in Eq. (9.31) as N → 0,
corresponding to the transition from the motion description of a stratified fluid to the
motion description of a homogeneous fluid, does not coincide with the Obukhov–
Charney equation (7.8). (This limit can be found in the book by L.A. Dikii.) This is
easy to show by the following reasoning without resorting to formal mathematical
calculations. Suppose the contrary, that is, assume that in the limit N = 0 Eq. (9.31)
coincides with (7.8). This would mean that as N → 0 one has

1

ρs

∂

∂z

(
f 2

0 ρs

N2

∂ψ

∂z

)
−→ −L−2

0 ψ.

But then according to (10.1), which is a consequence of (7.8), as N → 0 the avail-
able potential energy of an individual fluid parcel of unit volume (see (10.3), (10.7))
would be

δPbc = 1

2
ρs

f 2
0

N2

(
∂ψ

∂z

)2

−→ 1

2
ρ0

ψ2

L2
0

.

However, according to (10.6) δPbc −→ 0 as N → 0. This means that in deriv-
ing (9.31), unlike (7.8), one did not take into account the barotropic component of
the available potential energy, related to height changes of the fluid’s free surface,
cf. (10.11). This deficiency can be corrected by formulating the baroclinic model, for
instance, in the so-called p-coordinates, in which one uses the pressure p instead of
z for the vertical coordinate, based on the quasi-hydrostatic relation. This approach
along with its advantages and disadvantages is discussed in the next chapter.

We note one more important conclusion which follows from comparison of the
energy relations. The ratio of the available potential energy to the kinetic one has
the order of magnitude L2/L2

0 for barotropic flows and L2/L2
R for baroclinic ones,

where the quantity

LR
.= NH0

f
=
√
g′H0

f

(
g′ =N2H0

)
(10.12)
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of the length dimension is called the internal Rossby deformation radius. In the sta-
bility theory of baroclinic flows this fundamental parameter plays the role which is
as important as that of L0 = √

gH0/f in the stability theory of barotropic motions.
In particular, LR is the typical size of cyclones and anticyclones generated by insta-
bility of the vertical shear of the wind, i.e., by the instability of an inhomogeneous
horizontal distribution of buoyancy forces, according to the thermal wind relation
(9.37). Note that for L = LR , the kinetic and potential energies of the vortex have
the same order of magnitude. For the Earth’s atmosphere (or ocean) LR and L0 are
quantities of the same order of magnitude, equal to 1000 km (or 100 km respec-
tively), although the square of their ratio (LR/L0)

2 is usually assumed to be equal
to 0.1 with some reservations. This circumstance is related to one of the main dif-
ficulties in constructing an analytical theory of the general atmosphere and ocean
circulation.

10.2 Baroclinic Rossby Waves

The baroclinic property of the environment affects the behavior of planetary waves
as well. The background density changes at the characteristic scale given by the
formula

D−1 = − 1

ρs

dρs

dz
(10.13)

for the ocean and isothermal atmosphere, and one can set it to be constant. Accord-
ing to (9.6b) this also holds for the Brunt–Väisälä frequency in the ocean, but to a
much lesser extent in the atmosphere. Note that for the ocean one has H0/D � 1
because of the substantial smallness of the parameter η =N2H0/g (see Eq. (9.13)),
whereas in the atmosphere, this ratio is of order one. Assuming values N and D

to be constant as a reasonable approximation in both cases, Eq. (9.31) for the beta-
plane (f = f0 + βy) can be written in the form

d

dt

(
�ψ + f 2

0

N2

(
∂2ψ

∂z2
− 1

D

∂ψ

∂z

))
+ β

∂ψ

∂z
= 0. (10.14)

For the operator ∂2/∂z2 − D−1∂/∂z the eigenfunction corresponding to the
wave-like perturbation along the z axis with nodes at the distances that are mul-
tiples of the value H0/m (m is an arbitrary multiple of π ), has the form

ψm = exp

(
z

2D

)
Ψ (x, y, t) exp

(
imz

H0

)
, (10.15)

where Ψ (x, y, t) is so far an arbitrary function of horizontal coordinates and time.
The eigenvalue corresponding to the function (10.15) is equal to

λm = −
(

1

4D2
+ m2

H 2
0

)
, (10.16)
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i.e., ψm satisfies the equation

∂2ψm

∂z2
− 1

D

∂ψm

∂z
= −

(
1

4D2
+ m2

H 2
0

)
ψm. (10.17)

Now by making the substitution (10.17) and (10.15) into (10.14) for finding the
function Ψ (x, y, t), we obtain the Obukhov–Charney equation

d

dt

[
�Ψ −

(
H 2

0

4D2
+m2

)
Ψ

L2
R

]
+ β

∂Ψ

∂x
= 0, (10.18)

in which the role of L0, up to a positive multiplicative constant, is played by the
Rossby inner radius of deformation LR = NH0/f0. Therefore, the family of exact
partial solutions of Eq. (10.14), describing baroclinic modes of planetary-scale gy-
roscopic waves in a layer of stratified fluid of thickness H0, is described by the
functions

ψklm =A exp

(
z

2D

)
exp

{
i

(
kx + ly + mz

H0
− σ t

)}
, (10.19)

where A is an arbitrary constant, while

σ = − βk

k2 + l2 + (m2 +H 2
0 /4D2)L−2

R

. (10.20)

Hence, in particular, it follows that for H0/D � 1 (for instance, in the ocean)
and m = 0 solutions (10.19) and (10.20) degenerate into the family of barotropic
modes, since according to (9.34) the vertical velocity almost vanishes and, conse-
quently, equilibrium isopycnic surfaces remain unperturbed due to the lack of buoy-
ancy forces.

In this regard, it is appropriate to mention the misunderstanding that could have
arisen from the energy analysis that the baroclinic model (9.31) and (9.32) does not
describe barotropic effects. In fact, the specified model does not take into account
only the barotropic component of the available potential energy which is involved
in the energy balance, while it maintains a mutual exchange of the kinetic energy
between different barotropic modes, and this exchange is a key element of the mech-
anism of barotropic instability of geophysical flows.

10.3 Exercises

1. Derive the local conservation law of energy (10.3) and (10.4) for a baroclinic
atmosphere by using the experience in deriving such a law for a barotropic
medium.

2. Try and prove the energy invariance (10.5) using the conditions of fluid imper-
meability across the boundary of the integration domain and conservation of the
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velocity circulation over any horizontal closed contour belonging entirely to the
vertical part of the boundary. Assume that the integration domain is a cylinder
with the vertical axis.

3. By using the dispersion relation (10.20) calculate the group velocity of the baro-
clinic Rossby wave and show that the wave energy and phase propagate in op-
posite vertical directions.
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Chapter 11
Important Remarks on the Description
of Baroclinic Geophysical Flows

11.1 On p-Coordinates

Using the quasi-hydrostatic relation, atmospheric motion can be described in a co-
ordinate system where the pressure p is chosen to be an independent vertical coor-
dinate, while the height z = z(x, y,p, t) of an isobaric surface p = const becomes
a dependent variable. Without going into technicalities of calculations (see Thomp-
son, 1962), let us write the equations of a rotating compressible baroclinic fluid in
these new independent variables x, y, p, t :

dv
dt

+w∗ ∂v
∂p

+ k × f v = g∇pz, (11.1)

∂z

∂p
= − 1

gρ
, (11.2)

∂u

∂x
+ ∂v

∂y
+ ∂w∗

∂p
= 0, (11.3)

dΘ

dt
+w∗ ∂Θ

∂p
= 0, (11.4)

which are closed up by relation (9.9)

Θ = p0

Rρ

(
p

p0

)Cv/Cp

. (11.5)

Here w∗ = dp/dt plays the role of the vertical velocity, v = ui + vj, d/dt =
∂/∂t +u∂/∂x + v∂/∂y, ∇p = i∂/∂x + j∂/∂y, and all the derivatives with respect to
horizontal coordinates and time are taken at constant pressure p.

This shows that the advantage of p-coordinates is in that Eq. (11.1) for horizontal
velocity and the continuity equation (11.3) are written in the form as if the atmo-
sphere were incompressible. The geostrophic wind in the p-coordinates is given by
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the formula

v = g

f0
k × ∇pz, (11.6)

or, in the coordinate form,

u= − g

f0

∂z

∂y
, v = + g

f0

∂z

∂x
, (11.6′)

while the quasi-geostrophic equation for conservation of potential vorticity can be
written as follows:

d

dt

[
�ψ + f + ∂

∂p

(
p2

L2
R

∂ψ

∂p

)]
= 0. (11.7)

Here ψ = gz/f0, LR is the inner radius of the Rossby deformation, defined above
by formula (10.12), and according to (11.6′)

u= −∂ψ

∂y
, v = +∂ψ

∂x
. (11.8)

It is worth noting that the simplification of the equations of motion do not come
for free: difficulties hidden in the change of variables arise in setting the boundary
conditions because, for example, the vertical velocity

w = dz

dt
+w∗ ∂z

∂p
(11.9)

vanishes at the Earth’s surface, which is not isobaric. Therefore, precise bound-
ary conditions are replaced by approximate ones, which are posed on the “bound-
ary” isobaric surfaces p = 0 and p = p0, simulating the upper and lower horizontal
boundaries of the atmosphere, respectively. One can show (see, for example, Kur-
gansky 1993) that for the quasi-geostrophic approximation (11.7) and (11.8), the
vanishing of w∗ on the upper horizontal boundary of the atmosphere and of w on
the lower one is approximately expressed by the relations

d

dt

(
p2 ∂ψ

∂p

)
−→ 0 as p −→ 0, (11.10)

d

dt

(
p
∂ψ

∂p
+ α2ψ

)
= 0 for p = p0. (11.11)

Here α2 is the so-called baroclinicity parameter defined by the equality

α2 = R(γa + γs)

g

Ts

T0s
, (11.12)
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where γa = g/Cp is the dry-adiabatic temperature gradient defined above, γs and Ts
are the background or the equilibrium temperature gradient and the temperature cor-
responding to the level of the isobaric surface in question, while T0s is the average
temperature over the Earth’s surface.

Lateral vertical boundaries ∂D of the integration domain D are usually equipped
with impermeability conditions, i.e., vanishing of the horizontal velocity component
normal to the boundary:

vn = −∂ψ

∂l
= 0 on ∂D (11.13)

and the circulation conservation

Γ
.=
∮

dp

vlδl =
∮

dp

∂ψ

∂n
δl

(
dΓ

dt
= 0

)
, (11.14)

for each pressure level, i.e., for each closed contour dp formed by intersection of
the lateral border ∂D with an isobar p = const. Here ∂/∂l and ∂/∂n denote differ-
entiation in the directions of the horizontal tangent and normal to ∂D respectively
(cf. (11.8)).

Subject to the conditions (11.10), (11.11) and (11.13), (11.14), the energy invari-
ant of the system (11.7), (11.8) can be expressed as

Ebc = 1

2

∫ ∫

D

∫ [
(∇ψ)2 +L−2

R

(
p
∂ψ

∂p

)2]
dxdydp

+ 1

2

∫ ∫

S

α2

L2
R

p0ψ
2dxdy, (11.15)

where S is a two-dimensional area on the isobaric surface p = p0 bounded by the
contour dp0 (derivation of this formula can be found in the book by A. Monin and
A. Yaglom, p. 90).

This shows that in p-coordinates the energy integral includes both baroclinic and
barotropic components of the available potential energy, the latter being described
by the double integral in (11.15). Compare it with the expression (10.10) for the
available potential energy of a barotropic atmosphere. Expression (11.12) for the
baroclinicity parameter α2 using the already known formulas

dΘs

dz
= Θs

Ts
(γa + γs), L2

R = N2H 2
0

f 2
0

, L2
0 = gH0

f 2
0

,

N2 = g

Θs

dΘs

dz
, ps = ρsRTs
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(recall that H0 is the height of a homogeneous atmosphere, i.e., of the same weight
as the baroclinic atmosphere in question) can be rewritten as

α2 = k
L2
R

L2
0

(
k = ps

gρsH0

Ts

T0s
=O(1)

)
. (11.16)

The coefficient k can be regarded as an adjusting parameter. Its unit value provides
precise consistency of (10.10) with the double integral in the formula (11.15). There-
fore, it makes sense to interpret the baroclinicity parameter as a squared ratio of
the internal radius of the Rossby deformation to the Rossby–Obukhov scale of the
barotropic atmosphere, which is also handy for memorizing.

Thus, while the limit in Eq. (11.7) as N −→ 0 is not at all obvious, the energy
integral demonstrates that this equation, unlike (9.31), with a well-defined approx-
imation of the boundary conditions does describe the energy cycle involving both
types of available potential energy. Actually, it is for this reason that I have chosen
the p-coordinates. We will not employ them further to avoid complications of the
analysis by having to adjust the boundary conditions and by comparing the results
of the theory of the hydrodynamic stability of classical and geophysical flows. All
the more so in that the properties of the former in many cases can be easily extended
to the latter.

11.2 On Computing Integral Invariants

In the third part of this course we will use integral invariants to study stability of
geophysical flows. In this regard, let us consider an example of their calculations and
show how the local energy conservation law (10.3) and (10.4) for baroclinic flows
implies invariance of the total energy (10.5), provided that the normal component of
the velocity is zero on the boundaries of the fluid domain. As the integration domain
V we take a cylindrical annular tank with flat horizontal ends positioned at fixed
heights z = z1, z2. (This is the most common domain of integration that is used to
study the stability of zonal atmospherical flows and their laboratory counterparts.)

Use the relation of geostrophic wind v = k × ∇ψ , i.e., u = − ∂ψ
∂y

, v = + ∂ψ
∂x

to
express the conditions for the vanishing of the velocity normal component on the
side walls of the annular channel and for conservation of circulation Γ in terms of
the stream function:

v · n = 0 =⇒ n × ∇ψ = 0 on ∂VS, (11.17)

d

dt

∮

C

v · δl = 0 =⇒ d

dt

∮

C0

v · δl = 0. (11.18)

Here ∂VS stands for the lateral boundary of integration, n and k are, respectively,
the unit normal to ∂VS and the vertical unit vector, while the integration is performed
over the closed contours C and C0 entirely belonging to the lateral boundary.
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Let us integrate (10.3) over the volume V taking (10.4) into account. To convert
the right-hand side of (10.3) we use the Gauss–Ostrogradskii formula

−
∫ ∫

V

∫
div Sbcδμ = −

∫ ∫

∂VS

Sbc · δσ

=
∫ ∫

∂VS

ρSψ
∂2ψ

∂y∂t
dxdz+

∫ ∫

∂VS

ρSψ
∂ψ

∂x
Ω̃bcdxdz

+
∫ ∫

∂VH

f 2
0

N2
ρSψ

∂2ψ

∂z∂t
dxdy. (11.19)

Contribution of the i-component of (10.4) into (11.19) is zero due to the periodicity
in the x coordinate directed along the parallel. In (11.19) ∂VH is the horizontal
boundary of the domain of integration.

The second term in (11.19) is zero due to the boundary condition (11.17): v =
+ ∂ψ

∂x
|∂VS = 0. For the same reason the function ψ on the lateral boundary ∂VS

does not depend on x. Hence, for the first term in (11.19), the integral over the x

coordinate can be written as follows:∮
ρSψ

∂

∂t

∂ψ

∂y
dx = ρSψ

∂

∂t

∮
∂ψ

∂y
dx = −ρSψ

d

dt

∮

∂VS

u · dx = 0. (11.20)

The last expression is zero, assuming the no-slip condition on the boundaries. An-
other way to make the right-hand side of (11.20) vanish is to use the conservation
of velocity circulation over the boundary ∂VS , Γ = ∮

∂VS
udx, dΓ

dt
= 0 (see Ap-

pendix A).
Employing the relations (9.10′) and (9.33) the last term on the right-hand side

of (11.19) can be written as
∫ ∫

∂VH

f 2
0

N2
ρSψ

∂2ψ

∂z∂t
dxdy = (dΘs/dz)

−1f0ρs

∫ ∫

∂VH

ψ
∂θ

∂t
dxdy. (11.21)

Let us now turn to Eq. (9.22). Multiplying it by ψ and making some straight-
forward transformations with the zero divergence of geostrophic wind u = − ∂ψ

∂y
,

v = + ∂ψ
∂x

in mind, we get

ψ
∂θ

∂t
= −div(ψθv)−ψw

dΘs

dz
.

Substituting the latter equation into the integrand of the right-hand side of (11.21)
and again using the Gauss–Ostrogradskii formula we obtain

∫ ∫

∂VH

ψ
∂θ

∂t
dxdy = −

∮
ψθv · ndl − dΘs

dz

∫ ∫

∂VH

ψwdxdy. (11.22)
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The right-hand side of this equation equals zero due to the vanishing of the velocity
normal component on ∂V . That proves the invariance of the total energy given by
formula (10.5). It is useful, however, to bear in mind that in those cases when the
vertical velocity on the horizontal boundaries is non-zero, according to (11.22) the
last term on the right-hand side of (11.19) can be expressed in the form

∫ ∫

∂VH

f 2
0

N2
ρsψ

∂2ψ

∂z∂t
dxdy = −f0ρs

∫ ∫

∂VH

ψwdxdy = −
∫ ∫

∂VH

p′wdxdy. (11.23)

The latter describes the work of the pressure forces at the ends of the annular
channel. As we shall see below, in the case of a viscous fluid this mechanism of the
energy loss provides an effective inhibition of the atmosphere against the Earth’s
surface due to the formation of Ekman boundary layers in its vicinity. We will elab-
orate on this inhibition mechanism in the study of viscous geophysical flows.

11.3 Exercise

1. Show that under assumptions of Sect. 11.2 the total potential vorticity is a first
integral of motion of the system (9.31), (9.32), i.e.,

d

dt

∫ ∫ ∫

V

[
�ψ + f + 1

ρs

∂

∂z

(
f 2

0 ρs

N2

∂ψ

∂z

)]
dxdydz= 0. (11.24)

Hint: Using (9.31), write the time partial derivative of the integrand of (11.24)
in the divergence form and integrate the resulting equation over the entire volume
taking into account the boundary conditions (11.17) and (11.18).
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Hydrodynamic Stability and Atmospheric

Dynamics



Chapter 12
The Notion of Dynamical Stability via
the Example of Motion of a Rigid Body
with a Fixed Point

12.1 Statement of the Problem

The scale of vortex motions ranges from regular laboratory flows to irregular leak-
age of water from the tap, to turbulent fluid flows in industrial machines and fast
rivers, to circulations in the ocean, in planetary atmospheres, on the stars and even
in the formation of galaxies. Emergence of such flows is usually associated with the
loss of stability of the so-called primary flow. Its configuration is specified by the
initial conditions in case of an ideal fluid or by external energy sources that sustain
the motion of a viscous fluid.

The known mechanisms of instability are very few. For instance, the global at-
mospheric and oceanic currents are mainly formed under the influence of barotropic
instability (i.e., due to the presence of horizontal shear of velocity), of baroclinic or
convective instability caused by the excess of potential energy of a stratified fluid
flow, and of orographic instability evoked by the underlying surface topography. It
is also possible that the resonant interaction of planetary waves mentioned in Part II
and so-called parametric instability may play a certain role here.

The stability of a solution can be understood in several ways. For example, Lya-
punov stability means that for any ε > 0, there is a δ > 0 such that if the initial
conditions change by no more than δ, then the solution at any moment will change
by no more than ε, i.e., this is stability with respect to perturbations of initial data.
However, this approach can be rigorously used only on the basis of the unreduced
(i.e., nonlinear) hydrodynamic equations and therefore it has limited analytical ap-
plicability, especially when dealing with viscous flows (see Part IV).

The main method of studying stability is based on the use of linearized hydro-
dynamic equations with respect to the considered state under the assumption that
the initial perturbations of this state are infinitesimal. In this case, instability implies
the existence of infinitely growing solutions of linear equations. As time increases,
perturbation reaches a certain critical value in which the linear equations cease to
be “working”. At this value, according to the exact equations, under the influence of
nonlinearity the system shifts into a new qualitatively different state, or, as physicists
say, there occurs a phase transition.
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Now let us consider a cloud of initial data in a small vicinity of an unstable
state. Every such perturbation will inevitably reach a value beyond which one has
to take into account the nonlinear terms, and the system will move into the same
secondary state regardless of the chosen initial conditions. However, each point of
the cloud reaches that critical value at a different moment. So, if we now make
each of the chosen initial perturbations tend to zero, the corresponding solutions for
any moment in time will also tend to zero, but nonuniformly in time. This implies
that there is no Lyapunov stability. In other words, a proof of instability in linear
approximation gives actual instability as well.

The converse is generally not true. In this case it is necessary to solve the prob-
lem in a nonlinear formulation. For an ideal fluid an effective method is that of
Lyapunov–Arnold, based solely on using first integrals of motion of hydrodynamic
equations rather than on their solutions. In order not to burden the reader with un-
necessary technical difficulties that inevitably arise when solving specific problems
of hydrodynamic stability and obscure the fundamental idea, at this initial stage both
approaches are illustrated below by the example of motion of a rigid body with a
fixed point.

12.2 Linear Theory

The choice of such an example is not accidental, but it is made for several reasons.
Firstly, the Euler equations of motion of a rigid body with a fixed point have two hy-
drodynamical interpretations: they describe both the flow of a homogeneous incom-
pressible fluid within a heteraxial ellipsoid in the class of spatially linear velocity
fields (see Part V below) and the resonant interaction of three dispersing waves, such
as Rossby waves (see Sect. 8.2 of Chap. 8). Therefore, the Euler theorems proved
below also have hydrodynamical applications. We shall see that again in studying
global atmospheric motions and the Kolmogorov flow. Secondly, the Euler theorems
turn out to be a mechanical analog of the hydrodynamic Rayleigh theorem on the
stability of a plane shear flow of a homogeneous incompressible fluid, as discussed
in Chap. 16.

The Euler equations (see Landau and Lifschitz 1973) in a mechanical interpreta-
tion are expressed in the coordinate system frozen into the body and take the form

ṁ = m × ω, m = Iω. (12.1)

Here ω is the vector of angular velocity of the rotation, m is the angular momen-
tum, I is the inertia tensor, i.e., the tensor of inertia momenta, which in the principal
axes has a diagonal matrix with the diagonal elements I1, I2, I3.

In the coordinate form Eq. (12.1) becomes

I1ω̇1 = (I3 − I2)ω2ω3,

I2ω̇2 = (I1 − I3)ω1ω3, (12.2)

I3ω̇3 = (I2 − I1)ω1ω2.
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Let us study the stability of the following fixed points

ωi = ω0 = const �= 0, ωj = ωk = 0 (i �= j �= k �= i),

i.e., stationary fluid rotations about the principal axes of the ellipsoid. Let ω′
i (i =

1,2,3) be an infinitesimal perturbation, say of the state ω0 = (0,0,ω0).
We will look for a solution of the linearized equations of motion

I1
dω′

1

dt
= (I3 − I2)ω0ω

′
2,

I2
dω′

2

dt
= (I1 − I3)ω0ω

′
1, (12.3)

I3
dω′

3

dt
= O

(
ω′

1ω
′
2

)

in the form of harmonic oscillations

ω′
1 =Ae−iλt , ω′

2 = Be−iλt .

This substitution results in the following system of linear algebraic equations on the
coefficients A and B:

iI1λA+ (I3 − I2)ω0B = 0,

(I1 − I3)ω0A+ iI2λB = 0.

This system has nonzero solutions provided that its determinant vanishes:
∣∣∣∣ iI1λ (I3 − I2)ω0
(I1 − I3)ω0 iI2λ

∣∣∣∣= 0.

Therefore

λ2 = ω2
0(I3 − I1)(I3 − I2)/I1I2.

Since the roots of the characteristic equation are complex conjugate, the stability
conditions imply that Imλ= 0. Otherwise, there is a root with a positive imaginary
part corresponding to the exponentially growing solution. Hence, in linear approxi-
mation the considered solution is stable, provided that

(a) I3 > I1, I2 or

(b) I3 < I1, I2.

These results can be expressed as the Euler theorems.

Theorem 1 Rotations of a rigid body with a fixed point about the minor and major
axes of the inertia tensor are stable.
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Theorem 2 Rotations of a rigid body with a fixed point about the middle axis of the
inertia tensor are unstable.

Remark The linear system (12.3) can be rewritten in the form

dω′

dt
= L(ω0)ω

′,

where ω′ = (ω′
1,ω

′
2,ω

′
3), ω0 = (0,0,ω0) and

L(ω0)=
⎛
⎜⎝

0 I3−I2
I1

ω0 0
I1−I3
I2

ω0 0 0
0 0 0

⎞
⎟⎠ .

Then −iλ1,2 = σ1,2 are eigenvalues of the matrix L(ω0) corresponding to the eigen-
modes (eigenvectors) ω′

1 = (exp(−iλ1t),0,0) and ω′
2 = (0, exp(−iλ2t),0) in the

vicinity of the dynamic equilibrium of the system, i.e.,

L(ω0)ω
′
1,2 = σ1,2ω

′
1,2.

Thus, the above procedure for studying linear stability of stationary solutions is
reduced to finding eigenvalues and eigenvectors of the linear operator obtained by
linearizing the nonlinear equations at the equilibrium position. This also holds for
fixed points of an arbitrary dynamical system ẋ =N(x) (where N(x) is a nonlinear
operator and x = (x1, x2, . . . , xn)) of order n, which after linearization at its fixed
point x = X0 (Ẋ0 = 0) reduces to a system of linear equations dx′

dt
= L(X0)x′ for

infinitesimal perturbations x′ = x − X0. At this stage it is already worth noting that
as opposed to dynamical systems with a finite number of degrees of freedom, in
hydrodynamics, the linearized operator has not only discrete but also a continuous
spectrum of eigenvalues. This gives rise to an algebraic (polynomial) instability,
often substantially complicating the study.

12.3 Nonlinear Theory: The Lyapunov–Arnold Method

The Euler equations (12.1) have two positive definite first integrals of motion. Those
are the kinetic energy and the square of the angular momentum:

E = 1

2
ω · m = m2

1

2I1
+ m2

2

2I2
+ m2

3

2I3
, (12.4)

m2 = m · m =m2
1 +m2

2 +m2
3. (12.5)

In terms of mi (i = 1,2,3) the Euler equations assume that form:

ṁ1 =
(

1

I2
− 1

I3

)
m2m3,
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ṁ2 =
(

1

I3
− 1

I1

)
m3m1, (12.3′)

ṁ3 =
(

1

I1
− 1

I2

)
m1m2.

The idea of the Lyapunov–Arnold method is to find such a linear combina-
tion of invariants of motion that would serve as a Lyapunov function F , with its
vanishing first variation at the fixed point m0 = (0,0,m0) (m0 = I3ω0). Then if
δF (m0) = 0 and δ2F(m0) is a positive definite quadratic form of variations δmi

(i = 1,2,3) (the negative definiteness can always be changed to the positive one
by changing the sign of the Lyapunov function). This implies that the point m0
is a minimum of the Lyapunov function, and the second variation itself can be
taken as a measure of deviation of the solution from the stationary solution by set-
ting ‖m − m0‖2

(1) = δ2F(m0) by definition. As the second measure, one can take

the quantity ‖m − m0‖2
(2) = F(m)− F(m0)= δ2F(m0)+ o(δm2). Due to the lat-

ter equality the two measures are equivalent, i.e., there are such positive constants
C1 and C2 that

C1‖m − m0‖(1) ≤ ‖m − m0‖(2) ≤ C2‖m − m0‖(1). (12.6)

Suppose now that initially the deviation δm from the fixed point m0 is small.
Then, the measure ‖m − m0‖(1) is also small, and because of the second inequality
of (12.6), so is the measure ‖m−m0‖(2). However, this second measure is an invari-
ant of motion that will remain small at all times. According to the first inequality of
(12.6), the measure ‖m − m0‖(1) will remain small as well, its positive definiteness
implies smallness of the deviation δm at all times. Let us illustrate the above by
specific calculations.

We will look for a Lyapunov function using the method of Lagrange multipliers,
assuming

F =E + λm2 = m2
1

2I1
+ m2

2

2I2
+ m2

3

2I3
+ λ

(
m2

1 +m2
2 +m2

3

)
,

where λ is a constant determined by the condition δF (m0)= 0.
First, let us compute the first and second variations of F :

δF =
(

1

I1
+ 2λ

)
m1δm1 +

(
1

I2
+ 2λ

)
m2δm2 +

(
1

I3
+ 2λ

)
m3δm3,

δ2F =
(

1

I1
+ 2λ

)
(δm1)

2 +
(

1

I2
+ 2λ

)
(δm2)

2 +
(

1

I3
+ 2λ

)
(δm3)

2.

The requirement δF (m0)= 0 implies that 2λ= −1/I3. Hence,

F = 1

2

(
1

I1
− 1

I3

)
m2

1 + 1

2

(
1

I2
− 1

I3

)
m2

2,
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δ2F =
(

1

I1
− 1

I3

)
(δm1)

2 +
(

1

I2
− 1

I3

)
(δm2)

2.

Then the stability conditions (the definiteness of δ2F ) mean that

(a) I3 > I1, I2 or

(b) I3 < I1, I2,

which gives the same results as those of the linear theory.
Obviously, whenever I1 > I3 > I2 or I1 < I3 < I2, the quadratic form δ2F is

sign-indefinite. In the context of nonlinear theory this just means a necessary con-
dition for instability, and hence the proof of instability in general requires further
study. However, in this case the instability of the rotation around the middle axis is
proved by the linear theory, which as mentioned above implies actual instability.

12.4 Geometric Interpretation

In the space of kinetic moments mi (i = 1,2,3) trajectories of the top are obtained
as the intersections of the “energy” ellipsoids (12.4), whose major axes are

√
2EIi

(i = 1,2,3), and the “circulation” spheres (12.5) of radius |m| centered at the ori-
gin. This is illustrated in Fig. 51 in Landau and Lifschitz (1973), which we refer
to for more details. The intersection of the sphere and the ellipsoid is nonempty
provided that the quantity |m|2 lies between the minimum and maximum values of
2EIi . When |m| is only slightly greater than the shortest semi-axis of the ellipsoid,
the sphere intersects it along two small closed curves surrounding the correspond-
ing ellipsoid axis. As the value of |m| (i.e., the sphere radius) increases, these curves
expand, and when this radius coincides with the middle semi-axis of the ellipsoid,
the corresponding curves degenerate into two ellipses that intersect each other at the
points of the ellipsoid’s middle axis. As |m| increases further, there again two sepa-
rate closed curves appear, but this time they are surrounding the longest axis of the
ellipsoid. Thus, in a neighborhood of the fixed points belonging to the shortest and
longest principal axes of the ellipsoid, the top is doing small rotational oscillations.
In other words, these fixed points are of the center type and are stable.

On the other hand, for the intersection of the ellipsoid with the sphere whose
radius is equal to the middle semi-axis, one has a saddle point. It is the intersection
point of two separatrices, such that nearby trajectories are attracted to the fixed point
along one of the separatrices and are repelled from it along the other.

12.5 Exercises

1. The equations of motion of a rigid body with a fixed point in the field of the
Coriolis forces can be written as follows (their derivation is given in Chap. 24,
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Eq. (24.18)):

ṁ = (m + m0)× ω, m = Iω, m0 = Iω0. (12.7)

By replacing here ω0 −→ 2ω0 and formally setting ω −→ −ω in Eq. (12.7) we
obtain

ṁ = ω × (m + 2m0), m = Iω, m0 = Iω0. (12.8)

Let the rotational motion of a rigid body be around its principal axis x3 with
constant angular velocity ω0 = (0,0,ω0), while ω = (0,0,Ω) is a stationary
solution of Eq. (12.8). Using the methods of linear and Lyapunov–Arnold theory,
try to formulate conditions for stability of this solution for each (shortest, middle,
and longest) of the principal axes of the ellipsoid in terms of the Rossby number
Ro =Ω/2ω0.

Hint: The roots of the characteristic equation are determined from the expres-
sion

λ2 =
(
I3 − I1

I2
Ω + 2

I3

I2
ω0

)(
I3 − I2

I1
Ω + 2

I3

I1
ω0

)
.

Sketch the results graphically in the plane of parameters (Ro, λ2) and show
that the Coriolis forces have a dual effect: they destabilize stable solutions and
stabilize unstable ones. Here the situation resembles the behavior of the Kapitza
pendulum, the standard physical pendulum with a vibrating suspension point.
Under certain conditions, the upper equilibrium position of the pendulum be-
comes stable, while the bottom one becomes unstable. The Coriolis force has a
similar effect on global geophysical flows.
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Chapter 13
Stating the Linear Stability Problem
for Plane-Parallel Flows of Ideal Homogeneous
and Nonhomogeneous Fluids

13.1 Choosing the Initial Model

In the previous chapter we used the motion of a rigid body with a fixed point to
get acquainted with two methods of studying linear and nonlinear stability of fixed
points of a system. Those methods were based on linearization of the equations of
motion and on the use of the first integrals of motion, respectively. The subject of
the next few chapters will be the development and use of these methods in studying
the stability of two-dimensional stationary flows of an ideal fluid. According to the
theorem of H.B. Squire (see Lin, 1958) the most unstable modes develop along the
plane of the flow, so one can ignore the three-dimensional perturbations and remain
within the two-dimensional formulation of the problem.

We have already mentioned that stratification of a fluid rather than its compress-
ibility plays the decisive role in the formation of baroclinic global atmospheric
flows. So let us first study the linear stability of two-dimensional flows of an incom-
pressible stratified fluid in a gravity field without taking into account the Coriolis
forces. The results, as we shall see below, can be easily generalized to the global
baroclinic geophysical flows. As a bonus, assuming the fluid density to be constant,
we will obtain results on barotropic flows, and also generalize them to global geo-
physical flows.

The equations of motion of an incompressible stratified fluid can be written as
follows:

R
du
dt

= −∇P + Rg
(
d

dt
= ∂

∂t
+ u∇

)
, (13.1)

dR

dt
= 0, div u = 0. (13.2)

Such a non-traditional notation R for the density is chosen because we are going to
use a further simplification, assuming a weakly stratified fluid, i.e.,

R(r, t)= ρ0 + ρ(r, t), P (r, t)= P0(z)+ p(r, t),
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where ρ0 = const, P0(z) is the hydrostatic pressure corresponding to the density ρ0:

dP0(z)

dz
+ ρ0g = 0

and ρ/ρ0 =O(p/P0)� 1.
Make the substitution of the last three equations into (13.1) and (13.2). Now

we omit the excess of the dynamic pumping ρ du/dt as compared to the buoyancy
forces ρ g, since we are talking about convective flows, for which |du/dt | � |g|.
This way we obtain the equations named after A. Oberbeck (1879) and J. Boussinesq
(1903):

du
dt

= − 1

ρ0
∇p + ρ

ρ0
g,

dρ

dt
= 0, div u = 0. (13.3)

Such an approximation does not qualitatively affect the results and conclusions of
the linear stability theory, but it somewhat simplifies the cumbersome formulas in
formulating the problem precisely.

13.2 Linearization of the Equations of Motion

In the vertical plane (x, z), Eq. (13.3) can be written in the form

∂u

∂t
+ u

∂u

∂x
+w

∂u

∂z
= − 1

ρ0

∂p

∂x
,

∂w

∂t
+ u

∂w

∂x
+w

∂w

∂z
= − 1

ρ0

∂p

∂z
− g

ρ

ρ0
, (13.4)

∂ρ

∂t
+ u

∂ρ

∂x
+w

∂ρ

∂z
= 0,

∂u

∂x
+ ∂w

∂z
= 0.

Recall that here ρ and p are deviations of density and pressure from their back-
ground values ρ0 and P0 defined above.

We study for stability the steady motion of a fluid of density ρ0 + ρ̄(z) with
the horizontal velocity u = U(z), w = 0. According to (13.4), pressure p̄(z) in this
case satisfies the hydrostatic relation dp̄/dz+gρ̄ = 0. We impose infinitesimal per-
turbations on this steady motion assuming u = U(z) + u′(x, z, t), w = w′(x, z, t),
ρ = ρ0 + ρ̄(z) + ρ′(x, z, t) and p = p0 + p̄(z) + p′(x, z, t) and linearize the sys-
tem (13.4). In other words, when substituting these expressions into the equations
of motion we omit products of small quantities. Then the linear system of equations
of motion with respect to perturbations u′, w′, ρ′, and p′ takes the form

(
∂

∂t
+U

∂

∂x

)
u′ + dU

dz
w′ = − 1

ρ0

∂p′

∂x
,

(
∂

∂t
+U

∂

∂x

)
w′ = − 1

ρ0

∂p′

∂z
− g

ρ′

ρ0
, (13.5)
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(
∂

∂t
+U

∂

∂x

)
ρ′
x + dρ̄

dz
w′ = 0,

∂u′

∂x
+ ∂w′

∂z
= 0.

According to the last equation of the system (13.5), we introduce the stream
function ψ for velocity perturbations

u′ = −∂ψ

∂z
, w′ = ∂ψ

∂x
.

Then the only nonzero component of vorticity of the perturbed component of mo-
tion, which is normal to the plane (x, z), is equal to

∂w′

∂x
− ∂u′

∂z
=�ψ.

Now applying the operation rot to the first two equations, i.e., differentiating the first
equation in z, the other in x, and subtracting the first from the second, we obtain

(
∂

∂t
+U

∂

∂x

)
�ψ −U ′′ψx = −g

ρ′
x

ρ0
.

To eliminate the ρ′
x we apply the operator ∂/∂t + U∂/∂x to the last equality and

use the third equation of system (13.5). As a result, we obtain the main equation of
linear stability theory of plane-parallel flows of a heavy stratified fluid, written only
in terms of the stream function of velocity perturbations:

(
∂

∂t
+U

∂

∂x

)2

�ψ −U ′′
(
∂

∂t
+U

∂

∂x

)
ψx = −gβψxx

(
β = − 1

ρ0

dρ̄

dz

)
. (13.6)

The parameter β is defined in such a way that its positive values correspond to a
stable stratification of the initial state, i.e., to density decreasing with altitude.

13.3 Reduction of Boundary Conditions

If a fluid’s motion is bounded by a solid horizontal wall, then one has w′ = ∂ψ/∂x =
0 or ψ = const on this wall. For smooth profiles of velocity and density for the
primary flow this completes the formulation of the boundary value problem, except
for the regularity conditions at infinity if the fluid occupies a half-space or even the
whole space.

A more complicated case is when the primary flow has a discontinuous velocity
or density at some level of z = z0, separating, for example, two immiscible liquids
of different densities. Perturbations of the primary flow induce fluctuations of the
surface of discontinuity, or interface, whose equation z = z0 + ζ(x, t) now involves
an unknown function ζ(x, t). This function, in general, is determined by solving the
boundary problem: two conditions have to be satisfied in this interface. One of them
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is kinematical: continuity of the velocity component normal to the interface, which is
equal to the velocity dζ/dt of the interface itself. The other condition is dynamical:
continuity of the pressure. Note that both conditions are imposed on the surface
of discontinuity, whose shape is unknown in advance. Because of the infinitesimal
character of the initial perturbations of velocity and density, it is natural to assume
that deviations ζ(x, t) from the level z = z0 are small. Then the situation can be
greatly simplified by linearization of the conditions at the surface of discontinuity,
by expanding them in powers of ζ in the vicinity of the level of z = z0. As a result,
conditions at the surface of discontinuity will be replaced by approximate conditions
at z = z0. In this case distortions, which are inevitably introduced into the motion
in the vicinity of the discontinuity because of the linearization procedure, will only
slightly manifest themselves in the regions that are remote from the interface. For
the vertical velocity we have

w′(x, z0 + ζ, t)=w′(x, z0, t)+O(ζ),

where the second term on the right-hand side has the next order of smallness, since
the vertical velocity itself is infinitesimally small. Therefore, the value w′ at the
discontinuity will be replaced by its value at z = z0.

It is not a good idea to replace the pressure P(x, z0 + ζ, t) = P0(z0 + ζ ) +
p̄(z0 + ζ )+p′(x, z0 + ζ, t) at the discontinuity by P(x, z0, t), due to the loss of the
buoyancy forces arising from the invasion of the heavy fluid into the region of the
light fluid, or vice versa. In fact, one can write the equation of the interface motion
in a rigorous formulation of the problem, i.e., without resorting to the Oberbeck–
Boussinesq approximation (recall that at the surface of discontinuity w′ = dζ/dt):

R
d2ζ

dt2
= −∂P

∂z
− Rg.

Multiply both sides of this equation by ζ . Since ζ is infinitesimal, the equation can
be rewritten in the form

P(x, z0 + ζ, t)= P(x, z0, t)− gRζ − Rζd2ζ/dt2. (13.7)

This means that the pressure at level z0 differs from the pressure at level z0 + ζ

by the sum of two terms. The first is the weight of the fluid column concluded be-
tween the levels and whose cross-section is of the unit area, while the second is
the dynamic pumping equal to the product of the mass of this column and the ac-
celeration. It should be emphasized, however, that in the presence of perturbations,
the discontinuity interface is no longer the level z = z0. On the other hand, in the
absence of perturbations the pressure on the unperturbed boundary z = z0 is equal
to the hydrostatic one, i.e., P(z0) = P0(z0)+ p̄(z0). Therefore, in order to find the
relation between the pressure perturbations at the perturbed interface, and pertur-
bations at level z = z0, from both sides of the equality (13.7) one should subtract
P(z0) and linearize the product gRζ . As a result, we find that for these pressure
perturbations the following estimate holds:

p′(x, z0 + ζ, t)= p′(x, z0, t)− gR̄(z0)ζ +O
(
ζ 2), (13.8)
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(
R̄(z0)= ρ0 + ρ̄(z0)

)
,

because the last term on the right-hand side of (13.7) is a product of quantities of
the same order of smallness. Thus, in linear stability theory the dynamic condition
on the perturbed interface z = z0 + ζ of two fluids is replaced by the continuity
condition for the quantity p′(x, z, t) − gR̄(z)ζ at level z = z0, while when setting
the kinematic conditions, the value of the vertical velocity w′(x, z0 + ζ, t) on the
perturbed boundary is replaced by its value w′(x, z0, t) at level z = z0.

The kinematic condition means that the fluid particle located at the discontinuity
will always remain on it. Therefore one has z = z0 + ζ(x, t) for this particle. Hence
at the discontinuity w′ = dz/dt = dζ/dt . Linearizing this we find that on both sides
of the interface

w′± =
(
∂

∂t
+U± ∂

∂x

)
ζ(x, t), (13.9)

where the indices + and − refer to the upper and lower fluids, respectively. By
excluding ζ(x, t) from the top and bottom kinematic conditions (13.9), we obtain

(
∂

∂t
+U− ∂

∂x

)
w′+ =

(
∂

∂t
+U+ ∂

∂x

)
w′−,

or (
∂

∂t
+U− ∂

∂x

)
ψ+
x =

(
∂

∂t
+U+ ∂

∂x

)
ψ−
x . (13.10)

This is the desired form of the kinematic condition at the discontinuity surface for
the linear stability problem. In the absence of jump of the horizontal velocity U , the
condition (13.10) implies the continuity of w′ or

ψ+
x =ψ−

x . (13.10′)

In order to formulate the dynamic condition in terms of ψ , we first apply the
operator −∂/∂x to the identity

p′+(x, z0, t)− gR̄+(z0)ζ = p′−(x, z0, t)− gR̄−(z0)ζ

and employ the first equation of the system (13.5) to eliminate the pressure. Then
we obtain

ρ+
0

[(
∂

∂t
+U+ ∂

∂x

)
u′+ + dU+

dz
w′+ + gR̄+ ∂ζ

∂x

]

= ρ−
0

[(
∂

∂t
+U− ∂

∂x

)
u′− + dU−

dz
w′− + gR̄− ∂ζ

∂x

]
.
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Denote by the symbol {}+− the corresponding jump at the discontinuity. Then intro-
ducing the stream function one can rewrite the last equality as follows:

{
ρ0

[
−
(
∂

∂t
+U

∂

∂x

)
ψz + dU

dz
ψx

]}+

−
+ {gR̄}+−

∂ζ

∂x
= 0.

Now, to exclude the ζ we apply to this equation the operator ∂/∂t +U+∂/∂x. As a
result, in view of (13.9) the dynamic condition at the discontinuity is expressed in
terms of one unknown function ψ :

(
∂

∂t
+U+ ∂

∂x

){
ρ0

[(
∂

∂t
+U

∂

∂x

)
ψz − dU

dz
ψx

]}+

−
− {gR̄}+−ψ+

xx = 0. (13.11)

Remark 1 One should mention that conditions (13.10) and (13.11) are weaker than
the original ones because of the application of one more differentiation. Therefore,
in order to satisfy the original conditions one should take care while recovering the
velocity field from the stream function ψ . In addition, the condition equivalent to
(13.11) can be obtained by applying the operator ∂/∂t +U−∂/∂x to exclude ζ , but
they both are asymmetrical with respect to the interface:

(
∂

∂t
+U− ∂

∂x

){
ρ0

[(
∂

∂t
+U

∂

∂x

)
ψz − dU

dz
ψx

]}+

−
− {gR̄}+−ψ−

xx = 0. (13.11′)

Condition (13.11) can be symmetrized by additionally applying the operator ∂/∂t +
U−∂/∂x to it, but then it will become even weaker.

For homogeneous fluids (R = const, β = 0) Eq. (13.6) is replaced by the equa-
tion of lower order: (

∂

∂t
+U

∂

∂x

)
�ψ −U ′′ψx = 0, (13.12)

while instead of (13.11) at the interface, one assumes continuity of pressure pertur-
bations, i.e., p′+(x, z0, t) = p′−(x, z0, t). After differentiation in x and taking into
account the first equation in (13.5), this gives the relation at the discontinuity:

{(
∂

∂t
+U

∂

∂x

)
ψz − dU

dz
ψx

}+

−
= 0. (13.13)

13.4 Exercises

1. Formulate the linear boundary value problem of stability for a stationary plane-
parallel flow of an inhomogeneous fluid on the basis of the exact Eqs. (13.1),
(13.2).
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Answer: The equation

(
∂

∂t
+U

∂

∂x

)2

(�ψ − βψz)− (
U ′′ − βU ′)( ∂

∂t
+U

∂

∂x

)
ψx = −gβψxx

(13.14)
(β = − 1

R̄
dR̄
dz
) with the boundary conditions formulated above (see Dikii 1976).
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Chapter 14
The Method of Normal Modes and Its Simplest
Applications in the Theory of Linear Stability
of Plane-Parallel Flows

14.1 Reduction of the Problem by the Method of Normal Modes

Let us sum up the essence of the previous chapter. Namely, the boundary value
problem for linear stability of a stationary plane-parallel flow of an Oberbeck–
Boussinesq heavy fluid is defined by the equation

(
∂

∂t
+U

∂

∂x

)2

�ψ −U ′′
(
∂

∂t
+U

∂

∂x

)
ψx = −gβψxx

(
β = − 1

ρ0

dρ̄

dz

)
(14.1)

with boundary conditions

(a) on the horizontal solid wall

∂ψ

∂x
= 0 (ψ = const), (14.2)

(b) on the surface of discontinuity of velocity and/or density

(
∂

∂t
+U− ∂

∂x

)
ψ+
x =

(
∂

∂t
+U+ ∂

∂x

)
ψ−
x , (14.3)

(
∂

∂t
+U+ ∂

∂x

){
ρ0

[(
∂

∂t
+U

∂

∂x

)
ψz − dU

dz
ψx

]}+

−
−{gR̄}+−ψ+

xx = 0. (14.4)

Here ψ = ψ(x, z, t) is the stream function for velocity perturbations u′ =
−∂ψ/∂z and w′ = ∂ψ/∂x, U =U(z) is the velocity of the primary horizontal flow,
and R̄(z)= ρ0 + ρ̄(z) is the density corresponding to the hydrostatic state.

Coefficients of Eq. (14.1) and of boundary conditions (14.2)–(14.4) are indepen-
dent of the horizontal coordinate x and of time t . Thus one can look for a solution
in the normal mode form, namely, as a running wave

ψ(x, z, t)=ψ(z) exp
{
iα(x − ct)

}
, (14.5)
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which is a hydrodynamical analog of the harmonic oscillations of a mechanical
system. Here α is a longitudinal wave number and c is the phase velocity.

After substituting (14.5) into (14.2)–(14.4) and keeping in mind the mappings
∂/∂t =⇒ −iαc, ∂/∂x =⇒ iα, (∂/∂t + U∂/∂x) =⇒ −iα(U − c), the boundary
value problem for the amplitude ψ(z) is defined by equation

(U − c)2(ψ ′′ − α2ψ
)−U ′′(U − c)ψ = −gβψ (14.1′)

with boundary conditions

(a) on the horizontal solid wall

iαψ = 0, (14.2′)

(b) on the surface of discontinuity
(
U− − c

)
ψ+ = (

U+ − c
)
ψ−, (14.3′)

(
U+ − c

){
ρ0
[
(U − c)ψz −U ′ψ

]}+
− − g{R̄}+−ψ+ = 0. (14.4′)

Now the problem is stated as follows. For each α find the value of c for which
there exists a solution to the reduced boundary value problem. Real values of c pro-
vide stability. Otherwise the flow is unstable, because the eigenvalue spectrum of c
consists of complex conjugate pairs (a consequence of the absence of viscosity) one
of which has a positive imaginary part, which corresponds to the exponential growth
of perturbations. A natural question is whether the unstable modes that are found ex-
haust the entire set of unstable perturbations. In other words, can any solution of the
original problem be represented as a Fourier series

ψ(x, z, t)=
∑
k,l

Akl exp
{
iαk(x − ckl t)

}
ψkl(z), (14.6)

i.e., do eigenfunctions form a complete system of solutions?
In our case the situation is complicated by the fact that for U = c the equation has

a singularity point (the main term vanishes). The analysis shows (see Dikii 1976)
that the solution has a discontinuity at the point z, where U(z)= c, and one requires
some additional considerations to glue the pieces of the solution on both sides of
the interface. But even after the gluing conditions are defined, these solutions are
too few. As a rule, the set of eigenvalues c consists of a finite number of elements.
Therefore, the assumption that ψ(x, z, t) can be expanded into a Fourier series is
not true.

The reason is that so far we discussed only the discrete part of the spectrum of
eigenvalues of the linear operator of stability which, similar to the quantum mechan-
ical operators, also has a continuous spectrum. This can be most easily illustrated
by the Rayleigh equation, which is valid for flows of homogeneous fluids (β = 0,
R = ρ0 = const):

(U − c)
(
ψ ′′ − α2ψ

)−U ′′ψ = 0. (14.7)
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Let us denote by �̃ the operator d2/dz2 − α2 with boundary conditions ψ = 0 at
the endpoint of the interval a ≤ z ≤ b at which the solid walls are positioned. Then
for ϕ = �̃−1ψ we obtain equation

(
U −U ′′�̃−1)ϕ = cϕ

with zero boundary conditions. In that case c must be an eigenvalue of the operator
that represents the sum of the so-called compact operator −U ′′�̃−1 and the oper-
ator of multiplication by the function U(z). The latter has a continuous spectrum
comprised of all the values c =U(α) contained in the interval [U(a),U(b)]. These
spectral values correspond to eigenfunctions ϕα(z) = δ(z − α) (α ∈ [a, b]) satis-
fying the “orthogonality” condition (recall the properties of quantum-mechanical
operators corresponding to continuously varying physical quantities)

∫
ϕα(z)ϕβ(z)dz = δ(α − β).

From the theory of linear operators it is well known that the addition of a com-
pact operator does not affect the continuous spectrum but only changes the discrete
spectrum. Therefore, the continuous spectrum of the Rayleigh equation also fills the
entire segment [U(a),U(b)]. Unfortunately, unlike the quantum-mechanical oper-
ators, the Rayleigh operator is not self-adjoint. This circumstance does not allow
one to use the theory of spectral decomposition to represent the solution as a sum
of the Fourier series over the discrete spectrum and the Fourier integral over the
continuous spectrum instead of (14.6).

And yet, in certain important cases, the method of normal modes turns out to
be exhaustive. The reason is that the integration is performed along the real axis of
variable z. So a singular point occurs for real values of c, i.e., for neutral oscillations.
The continuous spectrum filling interval [Umin,Umax] also belongs to the real axis,
and thus it does not give rise to unstable oscillations. Real eigenvalues c of the
discrete spectrum can cause instability only if they are repeated. Then there are
“secular” perturbations, linearly increasing in time, as a consequence of the non-
self-adjoint property of the operator of linear stability. Let us state without proof the
following theorem (Dikii 1976).

A two-dimensional plane-parallel flow of a homogeneous incompressible fluid
with a monotonic velocity profile, whose boundary values U(a) and U(b) are not
eigenvalues of the reduced operator of stability can be unstable only if the problem
has either non-real eigenvalues in the discrete spectrum or repeated ones.

However, one should not get carried away by the method of normal modes. Re-
turning to the original formulation of the problem, we can encounter solutions that
are not covered by the reduced problem and that grow over time not exponentially
but polynomially (the so-called algebraic instability). This may either modify or
supplement the conclusions drawn on the basis of the reduction. Such an example
is studied in the next chapter.
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14.2 Examples

Example 14.1 Let the half-spaces z < 0 and z > 0 be occupied by an incompressible
homogeneous fluid of densities R1 = ρ01 and R2 = ρ02, respectively.

In this case U = 0, β = 0 and the boundary value problem is defined by the
equation

c2(ψ ′′ − α2ψ
)= 0

with regularity conditions at ±∞, and on the interface z = 0

c
(
ψ+ −ψ−)= 0,

c2(ρ02ψ
+
z − ρ01ψ

−
z

)= g(ρ02 − ρ01)ψ
+,

(a) c = 0 is an eigenvalue of infinite multiplicity: for ψ(z) one can take any function
satisfying the condition ψ+(0)= 0.

(b) Let c �= 0. Then according to the regularity conditions at ±∞ there is a unique
eigenfunction ψ(z) equal to

ψ+(z) = A exp(−αz) at z > 0

ψ−(z) = B exp(αz) at z < 0.

The kinematic condition at z = 0 implies A= B , and according to the dynamic
condition,

c = ±
√
g

α

ρ01 − ρ02

ρ01 + ρ02
. (14.8)

Thus, for any α there are two corresponding nonzero eigenvalues c. Physically the
obvious result is that when ρ01 > ρ02 (the heavy fluid is on the bottom) fluctuations
are neutral, and such a state is stable. Otherwise, one of the eigenvalues has a posi-
tive imaginary part and instability develops. Note that the instability caused by the
density increasing with altitude is called the Taylor instability.

Example 14.2 A steady Oberbeck–Boussinesq fluid layer is bounded by solid hor-
izontal walls at the levels of z = 0 and z = H . Fluid density is distributed in a
linear fashion ρ̄ = −ρ0βz (β = −ρ−1

0 dρ̄/dz). It is worth noting that in the rigor-
ous formulation of the problem (see (13.14)) this distribution corresponds to the
exponential distribution R̄ = ρ0 exp(−βz).

The boundary problem is given by equation

ψ ′′ +
(
gβ

2
− α2

)
ψ = 0
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with zero boundary conditions, since c = 0 is not an eigenvalue. Hence

ψ =A exp(λ1z)+B exp(λ2z),

where λ1,2 are the roots of the equation

λ2 +
(
gβ

2
− α2

)
= 0.

According to the boundary conditions

A+B = 0, exp(λ1H)− exp(λ2H)= 0 or exp(λ1 − λ2)H = 1.

This last equality implies that

(λ1 − λ2)H = i2πN (N is any nonzero integer).

By Vieta’s theorem

λ1 + λ2 = 0, λ1λ2 = gβ

2
− α2,

whence

λ1 = −λ2 = iπN

H
, λ1λ2 =

(
πN

H

)2

= gβ

c2
− α2

and therefore

c2 = gβ

(πN
H

)2 + α2
,

where the sign of c2 coincides with the sign of β .
Thus, there is a countable set of eigenvalues c, which are real for positive β (den-

sity decreases with altitude) and purely imaginary for negative β (Taylor instability).
Neutral oscillations at β > 0 are called cellular waves.

Example 14.3 A fluid of constant density R = ρ0 (β = 0) occupies the entire space
and moves with constant velocity U1 for z < 0 and with constant velocity U2 >U1
for z > 0.

Passing to a coordinate system moving with the average velocity of the flow, we
can define

U =U0 = U2 −U1

2
for z > 0,

U = −U0 = U1 −U2

2
for z < 0.

Then Eq. (14.1′) for ψ+ ψ− assumes the form

(U0 − c)2(ψ ′′+ − α2ψ+
)= 0 for z > 0,
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(U0 + c)2(ψ ′′− − α2ψ−
)= 0 for z < 0

with conditions at the interface z = 0

(U0 + c)ψ+ = −(U0 − c)ψ−,

(U0 − c)
[
(U0 − c)ψ ′+ + (U0 + c)ψ ′−

]= 0,

(a) c = ±U0 are eigenvalues of infinite multiplicity with the corresponding eigen-
functions

• for c =U0 :
for z ≥ 0 function ψ = ψ+(z) is an arbitrary function vanishing at z = 0, for
z < 0 function ψ =ψ−(z)≡ 0;

• for c = −U0 :
for z > 0 function ψ = ψ+(z) ≡ 0, at z ≤ 0 function ψ = ψ−(z) is an arbitrary
function vanishing at z = 0.

(b) For c �= ±U0 we get

ψ+ =A exp(−αz), ψ− = B exp(αz).

According to the jump conditions

(U0 + c)A+ (U0 − c)B = 0, (U0 − c)A− (U0 + c)B = 0.

Equations are compatible provided that

(U0 + c)2 + (U0 − c)2 = 0.

Hence

c = ±iU0.

The flow is unstable, but not because of the inhomogeneous density distribution, but
because of the velocity shear. Such instability is called the Helmholtz instability.

14.3 Exercises

1. How will the results of Example 2 change, if the problem is addressed in the
rigorous formulation (13.14)?

Answer:

c2 = gβ

(πN
H

)2 + α2 + β2

4

.

2. Consider the combined case, i.e., a flow with a jump in both density and velocity.
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Chapter 15
The Taylor Problem of Stability of Motion
of a Stratified Fluid with a Linear Velocity
Profile

This problem deserves special attention as it demonstrates incompleteness of the
study using the normal modes method, while to achieve completion of the study, it
is necessary to resort to the original equations.

15.1 Solution of the Reduced Problem

A fluid of density R̄(z)= ρ0 + ρ̄, ρ̄ = −ρ0βz (β = −ρ−1
0 dρ̄/dz) occupies the half-

space z > 0 bounded by a solid wall, and moves with velocity U = kz. Recall that
the chosen vertically linear distribution of density in a precise formulation of the
problem (see (13.14)) corresponds to the exponential distribution.

The reduced problem is given by equation

(kz− c)2(ψ ′′ − α2ψ
)+ gβψ = 0 (15.1)

with the boundary conditions of ψ = 0 at z = 0 and of regularity at ∞.
Let us make a substitution

ξ =
(
z− c

k

)
α.

Now Eq. (15.1) takes the form

ψξξ +
(

gβ

k2ξ2
− 1

)
ψ = 0

with the boundary condition of ψ = 0 at ξ = −cα/k. The dimensionless parameter

Ri = gβ

k2
= − gdρ̄/dz

ρ0(dU/dz)2

is called the Richardson number and characterizes the degree of stratification of the
fluid.
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Let us make another substitution ψ = ξ1/2f and introduce a parameter ν2 =
1/4 − Ri instead of Ri. Then f satisfies the differential equation for the modified
Bessel functions (Abramowitz and Stegun 1979):

fξξ + fξ

ξ
−
(

1 + ν2

ξ2

)
f = 0.

Its fundamental solutions are cylindrical functions Iν(ξ) and Kν(ξ) of index ν.
However only the latter one, the Macdonald function, is regular at +∞, which is
precisely what we need from the function ψ(ξ). Therefore,

ψ(ξ)= C
√
ξKν(ξ) (C is an arbitrary constant).

Attention: ψ(ξ) = 0 at ξ = −cα/k. Hence, in order to solve the problem one
has to find zeros ξn of the function ψ(ξ). Those zeros determine the eigenvalues
cn = −kξn/α. The Macdonald function Kν(ξ) has a branch point at the origin. The
cut should be done along the half-line (−∞,0), i.e., one should look for the zeros
on the leaf | arg ξ | < π in order for the function Kν(ξ) to decay along the half-line
from the root to infinity. When passing to the original variable, this ray becomes the
semi-axis [0,∞).

Let ξn be one of such roots; then

ψn =
√
α

(
z− cn

k

)
Kν

(
α

(
z− cn

k

))

is an eigenfunction corresponding to the eigenvalue cn = −kξn/α.
Let us first consider the case

(a) Ri >
1

4
, ν =

(
1

4
− Ri

) 1
2 = iμ is purely imaginary.

In the area | arg ξ | < π the Macdonald function of imaginary index has a countable
set of zeros on the real axis, and no other zeros. The asymptotic behavior of these
zeros in the neighborhood of ξ = 0 can be obtained by using the principal terms
in the power expansion of ξ . We need the following properties of the fundamental
solutions of the modified Bessel equation (see, e.g., Abramowitz and Stegun 1979;
Whittaker and Watson, 1963):

Kν(ξ)=K−ν(ξ), Kν(ξ)= π

2

I−ν(ξ)− Iν(ξ)

sin(νξ)
.

For |ξ |< 1 one has

Iν(ξ)= (ξ/2)ν

Γ (1 + ν)
, ν �= −1,−2, . . . .
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Recall that on the complex half-plane Re z > 0 the function Γ (ν) is defined by the
Euler integral

Γ (ν)=
∞∫

0

tν−1e−t dt

and analytically continues onto the entire complex plane, except for ν = 0,−1,−2,
. . . , where it has simple poles.

Therefore for |ξ | � 1,

Kν(ξ)≈ π

2

1

sin(νξ)

[(
(ξ/2)−ν

Γ (1 − ν)
− (ξ/2)ν

Γ (1 + ν)

)]
.

We use the following property of the gamma function:

Γ (1 + iμ)Γ (1 − iμ)= ∣∣Γ (1 ± iμ)
∣∣2.

By purely formal calculations,

Kiμ(ξ)∝
(ξ/2)−iμ

Γ (1 − iμ)
− (ξ/2)iμΓ (1 − iμ)

|Γ (1 − iμ)|2
= exp

{−iμ ln(ξ/2)− ln
∣∣Γ (1 − iμ)

∣∣− i argΓ (1 − iμ)
}

− exp
{
iμ ln(ξ/2)+ ln

∣∣Γ (1 − iμ)
∣∣+ i argΓ (1 − iμ)− 2 ln

∣∣Γ (1 − iμ)
∣∣}.

Hence zeros of the function

Kiμ(ξ)∝ −∣∣Γ (1 − iμ)
∣∣−1 sin

[
μ ln(ξ/2)+ argΓ (1 − iμ)

]

are roots of the equation

μ ln(ξ/2)+ argΓ (1 − iμ)= −πn.

This yields a countable sequence of positive roots

ξn = 2 exp
{−[πn+ argΓ (1 − iμ)

]
/μ
}
,

and the eigenvalues of the problem are given by the asymptotic formula

cn ∼ −2k

α
exp

{−[πn+ argΓ (1 − iμ)
]
/μ
}
.

They are all real. Consequently, the flow is stable, but as Ri → 1/4 (μ → 0) the
eigenvalues contract to zero, which indicates a decrease in stability. Note that as α
increases, all cn also shrink to zero, while frequencies α · c remain approximately
constant. The eigenfunctions ψn significantly differ from zero only in the neighbor-
hood of z = 0 of order 1/α, i.e., with an increase of α they are pressed against the
solid wall.
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Now consider the case

(b) Ri <
1

4
, ν =

(
1

4
− Ri

) 1
2

is real and <1/2.

In the latter case one can show (Whittaker and Watson, 1963) that the function
Kν(ξ) has no roots in the area | arg ξ |< π , i.e., there exists no such c for ϕ(kz− c)

to satisfy the equation and the boundary conditions of the problem. In other words,
at Ri < 1/4 the problem has no solution in the form of normal modes.

15.2 An Approximate Solution of the Nonreduced Problem

Stability of the Taylor flow diminishes with a decrease of the Richardson number, so
the latter can be regarded as a measure of stability. This also naturally suggests that
for Ri < 1/4 instability will occur. Prandtl was inclined to think this way. Strictly
speaking, to clarify this question one should refer to the definition of Lyapunov sta-
bility (see Chap. 12) and to investigate stability of the Cauchy problem with respect
to perturbations of the initial data. This rather complex investigation of the Taylor
flow was made on the basis of the Cauchy problem using the Laplace transform. It
turned out that for Ri < 1/4 the flow is stable. Below we confine ourselves to less
rigorous reasoning pointing in favor of this result. The lack of rigor is related to our
consideration of the problem over the whole two-dimensional space and to discard-
ing the boundary condition at z = 0. But the further considerations are rigorous.

Since the method of normal modes does not work here, one needs to return to the
original Eq. (13.6), which, for U = kz, can be written as follows:

(
∂

∂t
+ kz

∂

∂x

)2

�ψ = −gβψxx

(
β = − 1

ρ0

dρ̄

dz

)
. (15.2)

The coefficients of this equation depend on z, which does not allow separation
of the variables. But for a linear velocity profile this difficulty can be avoided by
passing to the semi-Lagrangian coordinate system:

t → t, z → z, x1 = x − kzt.

In the new variables, Eq. (15.2) assumes the form in which the coefficients depend
on t instead of z:

∂2

∂t2

[
∂2

∂x2
+
(
∂

∂z
− kt

∂

∂x1

)2]
ψ + gβ

∂2ψ

∂x2
1

= 0.

So now one can use harmonic dependence on the spatial variables

ψ(x1, z, t)= ϕ(t) exp(lx1 + nx).
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Then ϕ(t) satisfies the equation

d2

dt2

[
l2 + (n− lkt)2]ϕ + gβl2ϕ = 0.

Since we are interested in the behavior of solutions to this equation as t → ∞,
the constants in the first coefficient can be neglected, i.e., asymptotics of solutions
are described by the equation

t2ϕtt + 4tϕt +
(

2 + gβ

k2

)
ϕ = 0.

Its solution is

ϕ(t)= C1t
m1 +C2t

m2,

where m1 and m2 are the roots of the algebraic equation

m(m− 1)+ 4m+ (2 + Ri)= 0,

whence

m1,2 = −3

2
±
√

1

4
− Ri.

For Ri ≤ 1/4 the roots are real and negative, while for Ri > 1/4 their real part is
negative, i.e., in all cases, the solutions are damped. In relation to the results obtained
it is worth comparing the above with the following problem.

15.3 On Stability of a Flow of a Homogeneous Fluid with a
Linear Velocity Profile

By setting β = 0 in (15.2), in order to solve the problem one can use the equation
(
∂

∂t
+ kz

∂

∂x

)
�ψ = 0

with regularity conditions as z → ±∞. By keeping the harmonic dependence on
x, i.e., ψ(x, z, t) = ϕ(z, t) exp(iαx), we get the Cauchy problem defined by the
equation (

∂

∂t
+ iαkz

)(
ϕzz − α2ϕ

)= 0 (15.3)

with the initial condition ϕ(z,0)= ϕ0(z) and the boundedness conditions for ϕ(z, t)
as z → ±∞. After integration over t we obtain

ϕzz − α2ϕ = f (z) exp(−iαkzt),
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where f (z) is defined by the initial condition

f (z)= (ϕ0)zz − α2ϕ0.

It remains to solve the second-order linear differential equation with a prescribed
right-hand side. The general solution can be found using variation of parameters:

ϕ(z, t) = −
∞∫

z

1

α
f (ζ ) sinh

{
α(z− ζ )

}
exp(−iαkζ t)dζ

+C1 exp(αz)+C2 exp(−αz).

Taking into account the conditions at ±∞, the constants C1 = 0 and C2 = 0, and
the solution have the form

ϕ(z, t)= −
∞∫

z

1

α
f (ζ ) sinh

{
α(z− ζ )

}
exp(−iαkζ t)dζ.

Under natural physical assumptions on the finiteness of the energy of initial per-
turbations, e.g., f (z) �= 0 only for a finite domain of z, it is obvious that ϕ(z, t) is
bounded as t → ∞ since

∣∣ϕ(z, t)∣∣≤
∞∫

z

∣∣∣∣ 1

α
f (ζ )

∣∣∣∣ ·
∣∣sinh

{
α(z− ζ )

}∣∣dζ.

The exceptional simplicity of the solution of this problem is due to a degenerate
form of Eq. (15.2). In the general case (U ′′ �= 0) the equation gains the terms pro-
portional to ϕ, which are natural to deal with using the Laplace transform method.

15.4 Exercises

1. Solve the Taylor problem for Ri < 1/4 in the framework of the rigorous problem
formulation (13.14), assuming exponential (rather than linear) density distribu-
tion with altitude (R̄ = R0 exp(−βz)), and show that the result remains the same.

Hint: After passing to the semi-Lagrangian coordinate system make the sub-
stitution ψ = ϕ exp(βz/2).

2. Solve the stability problem for a flow of a homogeneous fluid with a linear veloc-
ity profile, assuming that the fluid occupies the half-plane z > 0 and is bounded
by a solid wall at the level z = 0.

Answer (see also Dikii 1976):

ϕ(z, t) = −
∞∫

z

1

α
f (ζ ) sinh

{
α(z− ζ )

}
exp(−iαkζ t)dζ
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−
∞∫

0

1

α
f (ζ ) sinh{αζ } exp

{−(iαkζ t + αz)
}
dζ.
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Chapter 16
Applications of Integral Relations and
Conservation Laws in the Theory
of Hydrodynamic Stability

16.1 General Theorems Based on Integral Relations

In order to describe the spectrum (or eigenvalues) of the reduced operator of stability
(14.1′), (14.2′) in the complex plane, it is usually useful to study the properties of its
quadratic form, a well-known method in the theory of linear operators in a Hilbert
space. In the framework of linear theory we begin with a rigorous proof of the Miles
stability criterion for a flow of a stratified fluid.

Theorem 16.1 (Miles 1961) A plane-parallel flow of a stratified fluid with its
Richardson number

Ri = − gdρ̄/dz

ρ0(dU/dz)2
≡ gβ

(U ′)2
everywhere >

1

4
,

is stable.

Recall that the value of Ri gives a local criterion. Hence the requirement every-
where. In addition, in the rigorous formulation of the problem (13.14) both quan-
tities ρ̄ and ρ0 in the definition of the Richardson number are to be replaced by
R̄.

Proof We consider the boundary value problem given by the equation

(U − c)2(ψ ′′ − α2ψ
)−U ′′(U − c)ψ = −gβψ

(
β = − 1

ρ0

dρ̄

dz

)

with conditions ψ = 0 on the solid walls or the regularity at ±∞. Since the eigen-
values of the boundary value problem are complex conjugate, one has to prove that
nonreal eigenvalues do not exist. Assume the contrary, i.e., that c = cr + ici (ci �= 0)
and make the change

W(z)=U(z)− c, ψ(z)= √
Wϕ(z).
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Function ϕ satisfies the equation

(
Wϕ′)′ −

[
1

2
U ′′ + α2W + 1

W

(
1

4

(
U ′)2 − gβ

)]
ϕ = 0.

Multiply by ϕ∗ (that is the function complex conjugate to ϕ) and integrate over the
entire cross-section of the flow taking into account the boundary conditions:

b∫

a

(
Wϕ′)′ϕ∗dz = (

Wϕ′)ϕ∗∣∣
z=b

− (
Wϕ′)ϕ∗∣∣

z=a
−

b∫

a

Wϕ′ϕ∗′dz

= −
b∫

a

W
∣∣ϕ′∣∣2dz.

Then the integrated equation can be written as follows:

b∫

a

{
W
(∣∣ϕ′∣∣2 + α2|ϕ|2)+ 1

2
U ′′|ϕ|2

}
dz

+
b∫

a

W ∗
(

1

4

(
U ′)2 − gβ

) |ϕ|2
|W |2 dz= 0.

Its imaginary part gives the equality (U − c =U − cr − ici , ci �= 0)

ci

b∫

a

{∣∣ϕ′∣∣2 + α2|ϕ|2 −
(

1

4

(
U ′)2 − gβ

) |ϕ|2
|W |2

}
dz= 0.

However for (gβ − 1
4 (U

′)2) > 0, i.e., for Ri > 1/4, this is impossible. The theorem
is proved. �

Physical Interpretation of the Miles Criterion (Heuristic Derivation) At first
glance the mysterious critical value of the Richardson number equal to 1/4 becomes
clear after the following reasoning. First, consider a physical pendulum (Fig. 16.1a)
of mass m, oscillating in a gravity field g. Let l be the distance from its suspen-
sion point O to the pendulum center of mass, and let V be its speed in the lower
equilibrium position O ′. Then the pendulum keeps oscillating while its kinetic en-
ergy E = mV 2/2 in the lower equilibrium position does not exceed the excess
�Π = 2mgl of the potential energy at the upper equilibrium O ′′ relative to the
lower one, i.e., provided that

2mgl

mV 2/2
> 1 or

gl

V 2
>

1

4
.
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Fig. 16.1 (a) A physical
pendulum oscillates relative
to its lower equilibrium
position, provided that
4gl/V 2 > 1. (b) The shear
flow of a stratified fluid in a
gravity field. For each particle
located at the level
z = z0 − δz in the coordinate
system moving with constant
velocity V =U(z0), the role
of l is played by δz, the role
of g belongs to g′ =N2δz,
while V =U(z0 − δz)−
U(z0)= δU . The flow is
stable provided
that 4g′δz/(δU)2 =
4N2/(δU/δz)2 .= 4Ri > 1

Otherwise the oscillations of the pendulum turn into its rotating movements.
Now let U = U(z) be the velocity profile of a fluid flow with density stratifica-

tion R̄ = R̄(z) (Fig. 16.1b). Make the coordinate change to a system moving with
constant velocity U(z0) corresponding to an arbitrary level z = z0. Then in this co-
ordinate system the kinetic energy of a fluid parcel of the unit volume located at the
level z = z0 − δz is equal to

K = 1

2
R̄(z0 − δz)

[
U(z0 − δz)−U(z0)

]2
.

The potential energy of this particle shifted to the level z = z0 + δz is equal to the
product of the total of gravity and buoyancy forces by δz, i.e.,

�Π = g
[
R̄(z0 − δz)− R̄(z0 + δz)

]
δz.

Therefore, the condition that the motion of the fixed particle will not become rota-
tional relative to the particle located at the level z = z0 (i.e., by the arbitrariness of
the choice of z = z0 the condition that none of the particles can destroy the density
stratification of the fluid due to the appearance of local vorticity) can be written as
follows:

�Π

K
= g[R̄(z0 − δz)− R̄(z0 + δz)]δz

R̄(z0 − δz)[U(z0 − δz)−U(z0)]2/2
> 1.

Now dividing the numerator and denominator by δz2 and letting δz tend to zero, we
obtain a sufficient condition for stability of the flow of a stratified fluid

− 4gdR̄/dz

R̄(dU/dz)2
= 4N2

(dU/dz)2
.= 4Ri > 1, (16.1)
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which must be fulfilled at any level of z. Recall that

− g

R̄

dR̄

dz
=N2

is the square of the Brunt–Väisälä frequency for an incompressible stratified fluid
(see Chap. 9).

In other words, 4Ri(z) is the ratio of the potential and kinetic energies of the
fluid layer, defined by an infinitesimal neighborhood of the level z, calculated in a
coordinate system moving with constant velocity U(z) with respect to the laboratory
coordinate system. This way the Miles criterion becomes physically transparent.

Theorem 16.2 (Howard 1961) All nonreal eigenvalues of the boundary value prob-
lem for β > 0 and all real ones at β = 0 lie inside a circle whose diameter is given
by the interval [Umin,Umax].

It is convenient to do our consideration in a coordinate system moving with the
mean velocity Umean = (Umin + Umax)/2. Then the above-mentioned segment is
[−U0,U0], where U0 = (Umax −Umin)/2. This transformation is equivalent to sub-
stituting U(z)=Umean +U1(z), c =Umean + c1 into (16.1).

Assume the contrary to the assertion of Theorem 16.2 and introduce the substi-
tution ψ(z)= (U − c)f (z). By assumption, the function (U − c) does not vanish in
the interval of integration, while f satisfies the equation

[
(U − c)2f ′]′ − α2(U − c)2f = −gβf.

Multiply this by f ∗ and integrate over z. Then, after integrating the first term by
parts and taking into account the boundary conditions, we obtain

∫
(U − c)2{∣∣f ′∣∣2 + α2|f |2}dz= g

∫
β|f |2dz. (16.2)

This shows that for β = 0, i.e., for a homogeneous fluid, c cannot be real. For non-
real values of c we first consider the imaginary part of Eq. (16.2):

ci

∫
(U − cr)

{∣∣f ′∣∣2 + α2|f |2}dz= 0. (16.3)

Since ci �= 0, this equality is only possible provided that −U0 < cr < U0.
The real part of the equality (16.2) gives

∫ [
(U − cr)

2 − c2
i

]{∣∣f ′∣∣2 + α2|f |2}dz= g

∫
β|f |2dz. (16.4)

Since (U − cr)
2 − c2

i = [U2 − (c2
r + c2

i )] − 2cr(U − cr), then from (16.4) and by
using (16.3) it follows that

∫ (
U2 − |c|2){∣∣f ′∣∣2 + α2|f |2}dz ≥ 0.



16.1 General Theorems Based on Integral Relations 145

Hence |c|2 ≤U2
0 , which completes the proof of the theorem.

Theorem 16.3 (Rayleigh 1880) A plane-parallel flow of a homogeneous ideal in-
compressible fluid is stable if its velocity profile has no inflection points.

In this case the boundary value problem for the eigenvalues is given by the
Rayleigh equation

(U − c)
(
ψ ′′ − α2ψ

)−U ′′ψ = 0

with zero conditions on solid boundaries. Again we assume that c = cr +ci (ci �= 0).
Divide the equation by U − c, multiply it by ψ∗ and integrate over the flow cross-
section. Taking into account the boundary conditions, one has

∫
ψ ′′ψ∗dz = −

∫ ∣∣ψ ′∣∣2dz.
As a result we obtain

∫ (∣∣ψ ′∣∣2 + α2|ψ |2 + U ′′

U − c
|ψ |2

)
dz= 0. (16.5)

The imaginary part of the latter equation gives

ci

∫
U ′′

(U − c)2
|ψ |2dz = 0. (16.6)

But this is possible if U ′′ changes its sign, i.e., if the flow has an inflection point (a
necessary condition for instability).

Since in this case the quantity U ′ = dU/dz (W = 0) is the vorticity of the two-
dimensional flow, the Rayleigh theorem can be reformulated as follows.

For stability of the above-mentioned flow it suffices that its vorticity changes
monotonically from one wall to the other.

Theorem 16.4 (Fjortoft 1950) A plane-parallel flow of a homogeneous incompress-
ible fluid is stable if there exists such a constant K that (U −K)U ′′ ≥ 0.

As before, we assume c = cr + ci (ci �= 0). The real part of Eq. (16.5) gives
∫

U ′′(U − cr)

|U − c|2 |ψ |2dz= −
∫ (∣∣ψ ′∣∣2 + α2|ψ |2)dz < 0.

By (16.6) one can take any constant K for cr , since cr is a coefficient at the zero
integral. Then ∫

U ′′(U −K)

|U − c|2 |ψ |2dz < 0,

which is possible if there exists a point at which U ′′(U − K) < 0. Hence, the as-
sumption that ci �= 0 is incorrect. The theorem is proved.



146 16 Conservation Laws in the Stability Theory

The Fjortoft theorem includes two special cases. Namely, it includes (a) the
Rayleigh theorem if we assume that U ′′ does not change sign, and we take K >

|Umax|, while the sign of K coincides with the sign of the quantity −U ′′. The other
special case is where (b) the flow has one inflection point, i.e., U ′′(zc) = 0 and
[U(z)−U(zc)]U ′′ > 0. Then K =U(zc) .

16.2 Proof of the Rayleigh Theorem by the Lyapunov–Arnold
Method

Up until now we studied hydrodynamic stability in a linear formulation. Following
the program outlined in Chap. 12, we now use the first integrals of motion to con-
struct a Lyapunov function and study the stability of the shear plane-parallel flows
of a homogeneous fluid.

Recall that in terms of stream function ψ = ψ(x, z, t), the equations for a two-
dimensional flow of an ideal homogeneous incompressible fluid can be written as
follows:

∂�ψ

∂t
+ u

∂�ψ

∂x
+w

∂�ψ

∂z
≡ ∂�ψ

∂t
+ [ψ,�ψ] = 0, (16.7)

u= −∂ψ

∂z
, w = ∂ψ

∂x
. (16.8)

Under the conditions that at the boundary C of the flow domain

ψ |C=const (an impermeable boundary), (16.9)

∮

C

uδl =
∮

C

∂ψ

∂n
δl = const (n is an exterior normal), (16.10)

Eqs. (16.7) and (16.8) have the two first integrals of motion (see solutions of Exer-
cises 2 and 3)

E = 1

2

∫ ∫
(∇ψ)2dxdz, I =

∫ ∫
Φ(�ψ)dxdz. (16.11)

They express the conservation of energy and total vorticity, respectively (here Φ

is an arbitrary function of one variable). Note that the latter boundary condition
follows from Kelvin’s theorem applied to the liquid contour directly adjacent to the
border. Any fluid particle of such a contour would never leave the border due to the
vanishing normal component of velocity. Therefore, the above-mentioned contour
can be regarded as coinciding with the boundary itself.

Recall the main idea of the Lyapunov–Arnold method. Let ψ = ψ0(x, z) be the
stream function of a stationary flow whose stability we are testing. Choose an ar-
bitrary function Φ(�ψ) entering the functional I in such a way that the conserved
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functional

F [ψ] =E[ψ] + I [ψ] =
∫ ∫ [

1

2
(∇ψ)2 +Φ(�ψ)

]
dxdz

has an extremal value at ψ = ψ0 as compared with its values at all other ψ close to
ψ0. Then the sign-definiteness of its second variation at ψ =ψ0 implies stability of
the flow considered.

As noted above, the Rayleigh condition, which is the absence of inflection points
in the velocity profile U(z) of the flow, means a monotonic change of its vortic-
ity U ′ from one wall to the other, i.e., from one streamline ψ0 = const to another.
We therefore assume that the vorticity �ψ0 is a monotone function of ψ0. Since a
monotonic function is invertible, the stream function ψ0 = Ψ (�ψ0) is a monotonic
function of �ψ0.

Now let ψ(x, z, t)=ψ0 + δψ(x, z, t) be the stream function of a perturbed flow.
We find the difference F [ψ] − F [ψ0] up to second-order variations:

F [ψ] − F [ψ0] =
∫ ∫ [∇ψ0∇δψ +Φ ′(�ψ0)δ�ψ

]
dxdz

+ 1

2

∫ ∫ [
(∇δψ)2 +Φ ′′(�ψ0)(δ�ψ)2]+ · · · .

Integrate by parts the first term on the right-hand side:

∫ ∫
∇ψ0∇δψdxdz= ∇δψ |

∮

C

∂ψ0

∂n
δl −

∫ ∫
ψ0�δψdxdz.

Therefore, in view of the boundary conditions, the first variation

δF [ψ0] =
∫ ∫ [−ψ0 +Φ ′(�ψ0)

]
�δψdxdz

vanishes for ψ0 = Ψ (�ψ0) = Φ ′(�ψ0) (a necessary condition for an extremum).
Then

F [ψ] − F [ψ0] = 1

2

∫ ∫ [
(∇δψ)2 +Ψ ′(�ψ0)(δ�ψ)2]dxdz+ · · · .

Furthermore,

U = −∂ψ0

∂z
= − ∂

∂z
Ψ (�ψ0),

and a for plane-parallel flow �ψ0 = −U ′. Hence Ψ ′ =U/U ′′ and

F [ψ] − F [ψ0] = 1

2

∫ ∫ [
(∇δψ)2 + U

U ′′ (δ�ψ)2
]
dxdz+ · · · .
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So far nothing implies that the integral on the right-hand side is positive definite.
Therefore we use the following argument. Note that our consideration can be done
in any coordinate system moving with respect to the original one with constant
velocity K . If ψ is the stream function in this new coordinate system, the latter
formula can be rewritten as

F [ψ] − F [ψ0] = 1

2

∫ ∫ [
(∇δψ)2 + U(z)−K

U ′′ (δ�ψ)2
]
dxdz+ · · · (16.12)

The value of K can always be chosen to make the coefficient (U(z)−K)/U ′′ posi-
tive. In this case, δ2F [ψ0] is a positive definite quadratic form of δψ , which can be
taken as a measure of deviation of ψ from ψ0:

‖ψ −ψ0‖2
1 = 1

2

∫ ∫ [
(∇δψ)2 + U(z)−K

U ′′ (δ�ψ)2
]
dxdz.

As a second measure one can take

‖ψ −ψ0‖2
2 = F [ψ] − F [ψ0].

Since in (16.12) dots stand for the remainder terms of an order higher than (δψ)2,
then both measures are equivalent, i.e., there exist constants C1 > 0 and C2 > 0 such
that

C1‖ψ −ψ0‖1 ≤ ‖ψ −ψ0‖2 ≤ C2‖ψ −ψ0‖1. (16.13)

Let the velocity deviation ∇δψ and vorticity deviation δ�ψ be small at the initial
moment, and hence the norm ‖ψ − ψ0‖1 is small. Then, by (16.13), at the initial
moment, the measure ‖ψ − ψ0‖2 is small as well. But the latter is an invariant,
which will remain this small during the entire motion. Again, by (16.13) the measure
‖ψ − ψ0‖1 will remain small too. Because of the positive definiteness of the latter
the values of the velocity ∇δψ and vorticity �δψ will also remain small in the
mean square sense. Thus, now the Rayleigh theorem is proved here in the nonlinear
formulation of the problem, i.e., for finite perturbations.1

16.3 Exercises

1. For which of the flow profiles shown in Fig. 16.2 is the Fjortoft theorem applica-
ble or non-applicable?

1V.P. Dymnikov drew the author’s attention to the following circumstance. In fact, the so-called
formal stability of a shear flow proved above is based on the formal application of the stability
criterion for finite-dimensional dynamical systems to systems with infinite number of degrees of
freedom. The vanishing of the first variation and the positivity of the second variation, generally
speaking, do not provide the minimum of the Lyapunov function (A.N. Filatov, Stability Theory,
INM RAS, Moscow, 2002).
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Fig. 16.2 (a) Is the Fjortoft criterion applicable? (b) Is the Fjortoft criterion non-applicable?

2. Prove that under the conditions (16.9) and (16.10) the kinetic energy E

(see (16.11)) is a first integral of Eqs. (16.7) and (16.8).

Proof :

dE

dt
=
∫ ∫

∇ψ∇ψtdxdz

=ψ |C
∮

C

∂ψt

∂n
δl −

∫ ∫
ψ�ψtdxdz (integration by parts)

=ψ |C d

dt

∮

C

∂ψ

∂n
δl −

∫ ∫
ψ�ψtdxdz (since the contour C does not move)

=
∫ ∫

ψ[ψ,�ψ]dxdz (
according to (16.10) and the equations of motion

)

=
∫ ∫ {

(ψ�ψψx)z − (ψ�ψψz)x
}
dxdz (straightforward verification)

=
∮

C

ψ�ψ
∂ψ

∂l
δl (by the Stokes theorem)=

∮

C

ψ�ψdψ

= 0
(
according to (16.9)

)
.

3. Prove that under the conditions (16.9) and (16.10) the quantity I (see (16.11)) is
a first integral of Eqs. (16.7) and (16.8).

Proof :

dI

dt
=
∫ ∫

Φ ′(�ψ)�ψtdxdz= −
∫ ∫

Φ ′(�ψ)[ψ,�ψ]dxdz

=
∫ ∫ [

Φ(�ψ),ψ
]
dxdz=

∫ ∫ {(
Φ(�ψ)ψx

)
z
− (

Φ(�ψ)ψz

)
x

}
dxdz

=
∮

C

Φ(�ψ)
∂ψ

∂l
δl =

∮

C

Φ(�ψ)dψ = 0.
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Chapter 17
Stability of Zonal Flows of a Barotropic
Atmosphere; The Notion of Barotropic
Instability

17.1 The Kuo Theorem

Now we turn to the study of stability of global atmospheric flows. It is worth re-
calling the filtered equations of motion of a rotating fluid, which allow for an easy
generalization of the classical stability theory of strictly two-dimensional flows of
a nonrotating fluid to the case at hand. The motion of a barotropic atmosphere in
quasi-geostrophic approximation is described by the Obukhov–Charney equation

d

dt

(
f +�ψ −L2

0ψ
)≡ ∂

∂t

(
�ψ −L2

0ψ
)+ [ψ,�ψ] + β

∂ψ

∂x
= 0, (17.1)

u= −∂ψ

∂y
, v = +∂ψ

∂x
. (17.2)

Here the coordinates x and y are measured in the east and north directions, respec-
tively. The geostrophic stream function ψ = gh/f0, where h= z(x, y, t)− zp is the
deviation of the height z(x, y, t) of an arbitrary isobaric surface p(x, y, z, t)= const
from its equilibrium hydrostatic value z(p) = zp (recall that in a barotropic atmo-
sphere isobars, coinciding with isochores, vary in a similar way to one another). The
value f0 is the average value of the Coriolis parameter f = 2Ω0 sinϕ (ϕ is latitude),
L0 = c/f0 is the Rossby–Obukhov scale and β = df/dy. In the approximation of
shallow water theory h is the height of deviation of a free surface from its equi-
librium level H∗(x, y) = H0 − h1(x, y), L0 = √

gH0/2Ω0, while the beta-effect
β = 2Ω0H

−1
0 dh1/dy is provided by nonuniform bottom topography (see Fig. 6.3

in Chap. 6).
The system (17.1) and (17.2) has three first integrals of motion (see Chap. 7)

E = 1

2

∫ ∫ [
(∇ψ)2 +L−2

0 ψ2]dxdy (17.3)

I =
∫ ∫

Φ(Π)dxdy, 〈ψ〉 =
∫ ∫

ψdxdy, (17.4)
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where Φ(Π) is an arbitrary function of the quasi-geostrophic potential vorticity
Π = f +�ψ −L−2

0 ψ .

Kuo Theorem (Hsiao-Lan Kuo, 1949) A zonal flow of an ideal barotropic atmo-
sphere is stable if the potential vorticity changes monotonically from one pole to the
other.

Proof Let ψ0 = Ψ0(y) be the stream function of such a stationary zonal flow, so
that the corresponding potential vorticity Π0 = f +�ψ0 − L−2

0 ψ0 is a monotonic
function of the latitude coordinates y. Then Π0 can be taken for a new latitude
coordinate, i.e., one can assume that ψ0 = Ψ0(Π0).

We calculate the variation of the functional F =E + I :

δF =
∫ ∫ {∇ψ0δ∇ψ +L−2

0 ψ0δψ +Φ ′(Π0)δΠ
}
dxdy

(after integration by parts)

=
∫ ∫ {−ψ0δ∇ψ +L−2

0 ψ0δψ +Φ ′(Π0)δΠ
}
dxdy

=
∫ ∫ [−Ψ0(Π0)+Φ ′(Π0)

]
δΠdxdy,

since ψ0δ∇ψ −L−2
0 ψ0δψ = δΠ .

A necessary condition for an extremum is Φ ′(Π0)= Ψ0(Π0). The second varia-
tion is

δ2F =
∫ ∫ {

(δ∇ψ)2 +L−2
0 (δψ)2 +Φ ′′(Π0)(δΠ)2}dxdy

=
∫ ∫ {

(δ∇ψ)2 +L−2
0 (δψ)2 +Ψ ′(Π0)(δΠ)2}dxdy.

For positive definiteness of δ2F one needs to have Ψ ′(Π0) > 0. In the Earth’s con-
ditions, exactly the opposite is true. The zonal velocity U = −∂ψ0/∂y is directed
from west to east, i.e., ψ0 increases from north to south (recall that the axes 0x
and 0y are directed, respectively, to the east and north). But the potential vorticity,
whose sign is determined by a transported vorticity f , on the contrary, increases
from south to north. Hence Ψ ′(Π0) < 0. It is important, however, that this quantity
be sign-definite. Therefore one can do the following. Pass to a coordinate system
that rotates relative to the original one with angular velocity Ω1. In this coordinate
system the new stream function ψ1 = ψ − φ, where φ = a2Ω1 sinϕ is the time-
independent stream function corresponding to the rotation with constant angular ve-
locity Ω1 (ϕ is the latitude). In terms of ψ1 the evolution equation for the potential
vorticity can be written as follows:

d

dt

(
f1 +�ψ1 −L−2

0 ψ1 −L−2
0 φ

)= 0. (17.5)
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Here f1 = 2(Ω + Ω1) sinϕ. Thus, in Eq. (17.5), as compared to (17.1), there ap-
pears the parameter feff = f1 − L−2

0 φ instead of the Coriolis parameter f , which
does not violate the law of energy conservation. The above expressions for varia-
tions remain valid. Therefore, all the above considerations hold in this coordinate
system as well. In the coordinate system, moving ahead of the atmospheric mo-
tion, the wind is blowing from east to west, and then Ψ ′(Π0) > 0. The theorem is
proved. �

17.2 The Barotropic Instability Mechanism via an Example of
the Utmost Simplistic Equations of Atmospheric Dynamics

According to the Kuo theorem, a necessary condition for the instability of a zonal
flow is latitudinal nonmonotonicity of its vorticity. To understand possible conse-
quences that this may cause and to describe, at least qualitatively, the development
of instability, if any, we subject the equations of barotropic atmospheric dynamics
to the maximum simplification, following E. Lorenz (1960). This will allow us to
avoid numerical integration and to perform an analytical study of the mechanism of
nonlinear instability.

In the first place, the simplification is that we do not take into account the two-
dimensional compressibility of the medium (L−2

0 = 0), while a two-dimensional
doubly-periodic flow is considered on the f -plane instead of the sphere, i.e., with-
out taking the beta-effect into account. Then the vortex dynamics of the system is
described by the usual two-dimensional vorticity equation

∂(�ψ)

∂t
+ [ψ,�ψ] = 0 (17.6)

with periodicity conditions

ψ(x + 2π/k, y + 2π/l)=ψ(x, y). (17.7)

Here k and l are certain fixed nonzero real numbers that specify the maximum spatial
periods in the directions of the axes x and y, respectively.

The trigonometric functions cos(mkx + nly) and sin(mkx + nly), where m and
n are nonzero integers, are eigenfunctions of the Laplace operator in this geometry.
Expansion in these eigenfunctions gives the following Fourier representation for the
vorticity:

�ψ =
∞∑

m=−∞

∞∑
n=−∞

[
Amn cos(mkx + nly)+Bmn sin(mkx + nly)

]
,

(A00 = B00 = 0). (17.8)

It can be rewritten in the form

�ψ =
∑
M

CM exp{iMR}, (17.9)
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where M = imk + jnl, R = ix + jy, while CM = 1
2 (Amn − iBmn), i and j are unit

vectors in the directions x and y.
The Fourier series for ψ corresponding to the expansion (17.9) has the form

ψ =
∑
M

(M · M)−1CM exp{iMR}. (17.10)

Replacing the summation index M by L in (17.9), and similarly M by H in (17.10),
and then substituting (17.9) and (17.10) in the Jacobian of [ψ,�ψ], we obtain its
Fourier representation:

[ψ,�ψ] =
∑
H,L

(k · H × L)(H · H)−1CHCM exp
{
i(H + L) · R

}
. (17.11)

After replacing in (17.11) the summation index M by H + L and substituting (17.9)
and (17.11) into (17.6) we obtain an infinite system of ordinary differential equa-
tions for the coefficients CM, the Fourier representation (17.6) in the wavenumber
space:

dC−M

dt
=
∑

H

k · H × M
H · H

CHCM−H. (17.12)

Similar equations are obtained for a sphere, if one does the expansion in spherical
harmonics, eigenfunctions of the spherical Laplace operator.

Equation (17.6) is known to have two first integrals of motion, the kinetic energy
E = 1

2

∫∫
(∇ψ)2dxdy and the total vorticity squared I = ∫∫

(�ψ)2dxdy. In the
space of wavenumbers these integrals are written as follows:

E = 1

2

∑
M

CMC−M

M · M
, I =

∑
M

CMC−M. (17.13)

Now note that each of the time derivatives of E and I is the sum of a series whose
elements are the products of CHCM−HC−M with the corresponding coefficients.
The sum of such a series can be represented as a sum of blocks, each of which
is the sum of six terms obtained by permutations of the vector indices H, M − H,
and −M. Any such block is identically equal to zero. Therefore, by applying the
Galerkin method, the system can be maximally simplified so that in the nonlinear
interaction only modes corresponding to the fixed three vectors H, M − H, and
−M were involved. If we assume that at the initial moment all the coefficients CM
vanish except for those corresponding to the above-mentioned vectors, we find that
the values of E and I , represented by finite sums of pairwise products of these
nonzero coefficients, are first integrals of the reduced system. Of course, due to the
convergence of the Galerkin method, this approach would be the more accurate, the
bigger the number of fixed triples of vectors is taken into account.

In the simplest case, we can confine ourselves to a single triple, in which each
index m and n takes the value 1, 0, −1, which corresponds to considering the non-
linear interaction of modes of the largest scale. In spite of the crudeness of this ap-
proach, this example, first of all, allows one to describe the behavior of the system
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at some initial stage if we use the above initial conditions, and secondly and most
importantly, allows one to clarify the instability mechanism in terms of energy.

For chosen values of m and n, the expansion (17.8) assumes the form:

�ψ = A10 coskx +A01 cos ly +A11 cos(kx + ly)+A1−1 cos(kx − ly)

+B10 sin kx +B01 sin ly +B11 sin(kx + ly)+B1−1 sin(kx − ly).

Further simplification is related to the following observation. If at the initial moment
A1−1 = −A11, while B10 = B01 = B11 = B1−1 = 0, then they will remain so at any
time t . Now, once we set A01 = √

2A1, A10 = √
2A2 and A1−1 =A3, the maximally

shortened expansions for the vorticity and the stream function can be written as

�ψ = √
2A1 cos ly + √

2A2 coskx + 2A3 sin ly sin kx,

ψ = −
√

2A1

l2
cos ly −

√
2A2

k2
coskx − 2A3

k2 + l2
sin ly sin kx.

They correspond to the following maximally simplified equations for the dynamics
of global geophysical flows:

Ȧ1 = −
(

1

k2
− 1

k2 + l2

)
klA2A3,

Ȧ2 = +
(

1

l2
− 1

k2 + l2

)
klA3A1, (17.14)

Ȧ3 =
(

1

k2
− 1

l2

)
klA1A2.

They have two positive definite quadratic first integrals of motion:

E = 1

2

(
A2

1

l2
+ A2

2

k2
+ A2

3

k2 + l2

)
,

I = A2
1 +A2

2 +A2
3.

According to the Obukhov theorem, any quadratically nonlinear dynamical system
of the third order, which has two positive definite quadratic first integrals of motion,
is equivalent to the Euler equations of motion of a rigid body with a fixed point.
In this particular case this is easy to verify by making a formal change of variables
dτ = kldt , l2 = I1, k2 = I2, k2 + l2 = I3. Then the dynamical system (17.14) can
be rewritten in the form of the above-mentioned Euler equations in terms of the
components of the angular momentum Mi ≡Ai , i = 1,2,3 (see Chap. 12):

Ṁ1 =
(

1

I3
− 1

I2

)
M2M3,

Ṁ2 =
(

1

I1
− 1

I3

)
M3M1,
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Ṁ3 =
(

1

I2
− 1

I1

)
M1M2.

From the point of view of dynamic meteorology, Eqs. (17.14) describe evolu-
tion of the shear zonal flow with velocity profile U = −∂ψ/∂y ∝ sin ly and non-
monotonic vorticity �ψ ∝ cos ly, which is subjected to wave-like large-scale non-
zonal perturbations with latitudinal wavenumber k. In the absence of perturbations,
the zonal flow is described by a stationary solution (A1 = const, A2 = A3 = 0) of
the system (17.14). According to the analysis in Chap. 14, such a zonal flow is un-
stable for k2 < l2, i.e., with respect to perturbations whose scale exceeds the linear
dimension of the shift. From the physical point of view, this is not surprising since
in the limiting case of very small-scale nonzonal perturbations (k2 � l2) they will
not “notice” the presence of shear at all.

Solutions of the Euler equations are known to be given by the corresponding
elliptic functions, describing nonlinear oscillations of all three components of the
system. In this connection it is instructive to note that the exponential growth of
nonzonal perturbations, observed at the initial stage, is due to the kinetic energy
of the zonal flow. Later this growth slows down because of the nonlinearity effect.
The resulting motion presents a strictly periodic interchange of the kinetic energies
between perturbations and the zonal flow. It is with this process one associates fluc-
tuations of the circulation index observed in the atmosphere, which are fluctuations
of angular velocity relative to the zonal rotation of air in the middle latitudes.

17.3 Exercises

1. Try to derive the maximally simplified equations for the dynamics of a barotropic
atmosphere, taking into account the beta-effect described by the equation

∂

∂t

(
�ψ − α2ψ

)+ [ψ,�ψ] + β
∂ψ

∂x
= 0, (17.15)

where α2 = L−2
0 .

Hint: Following Lorenz, in the expansion of ψ over trigonometric functions
keep the following terms:

ψ(x, y, t) = A10(t) cos(kx)+A01(t) cos(ly)+B10(t) sin(kx)

+B01(t) sin(ly)+A11(t) cos(kx + ly)+A1−1(t) cos(kx − ly)

+B11(t) sin(kx + ly)+B1−1(t) sin(kx − ly).

After substituting this expansion into (17.15) and equating coefficients at the
same harmonics, introduce the notations

A1m =A11 −A1−1, A1p =A11 +A1−1,



References 157

B1m = B11 −B1−1, B1p = B11 +B1−1.

Finally, one finds out that the resulting dynamical system admits partial solu-
tions for A1p = 0, B1p = 0, B01(0) = 0, which are described by the following
equations (A.E. Gledzer, unpublished):

Ȧ10 = σkB10 +NkA01A1m, Ȧ01 = −Nl(A10A1m +B10B1m),

Ȧ1m = σB1m +NA10A01, (17.16)

Ḃ10 = −σkA10 +NkA01B1m, Ḃ1m = −σA1m +NA01B10.

Here

σ = βk

k2 + l2 + α2
, σk = βk

k2 + α2
,

N = kl(l2 − k2)

k2 + l2 + α2
, Nk = (1/2)k3l

k2 + α2
, Nl = (1/2)kl3

l2 + α2
.

Thus, the maximally simplified equations of motion for a barotropic atmo-
sphere with the beta-effect taken into account are defined by the dynamical sys-
tem of order 5.
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Chapter 18
The Concept of Baroclinic Instability; The Eady
Model

18.1 Stating the Problem

Recall that global movements of a baroclinic atmosphere is described by the quasi-
geostrophic equation for potential vorticity (see Chap. 9):

d

dt

[
f +�ψ + 1

ρs

∂

∂z

(
f 2

0

N2
ρs

∂ψ

∂z

)]
= 0,

(18.1)(
d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, �ψ = ∂2

∂x2
+ ∂2

∂y2

)
.

Here the expression in square brackets is the baroclinic quasi-geostrophic poten-
tial vorticity, ψ =ψ(x, y, z)= p′/f0ρs is the quasi-geostrophic stream function, p′
is the pressure deviation from its background hydrostatic value, ρs = ρs(z) is the
background density distribution, N2 = g · d(lnΘs)/dz is the square of the Brunt–
Väisälä frequency, Θs =Θs(z) is the background distribution of potential tempera-
ture, f = 2Ω sinϕ is the Coriolis parameter (ϕ stands for the latitude) and f0 is its
average. Finally, u and v are zonal and meridional components of the geostrophic
wind, which in terms of the stream function are given by the equalities

u= −∂ψ

∂y
, v = ∂ψ

∂x
. (18.2)

The condition of impermeability of the lower boundary can be written in terms
of the stream function as

w = − f0

N2

d

dt

∂ψ

∂z
= 0 for z = 0. (18.3)

Recall also two important relations:

θ

Θs

= f0

g

∂ψ

∂z
, (18.4)
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establishing the relationship between the variation θ = θ(x, y, z, t) of the potential
temperature and the stream function, and the thermal wind:

∂v
∂z

= g

f0Θs

k × ∇Θ

(
Θ =Θs + θ, ∇ = i

∂

∂x
+ j

∂

∂y

)
, (18.5)

or in the coordinate form

∂u

∂z
= − g

f0Θs

∂θ

∂y
,

∂v

∂z
= g

f0Θs

∂θ

∂x
. (18.5′)

According to the latter relations the vertical shear of horizontal velocity is gen-
erated by the horizontal gradient of the potential temperature. Instability induced
by vertical shear of the velocity is called baroclinic instability, because, unlike the
barotropic instability, in this case the source of the kinetic energy of perturbations
is the baroclinic available potential energy, whose local measure is the horizontal
inhomogeneity of temperature. In this relation it is pertinent to recall first integrals
of motion for Eq. (18.1), which will be used in formulating the stability conditions
of baroclinic zonal flows. Here we are talking on the energy invariant

E = 1

2

∫ ∫ ∫

V

ρs

(
(∇ψ)2 + f 2

0

N2

(
∂ψ

∂z

)2)
dxdydz (18.6)

and the generalized integral potential vorticity

I =
∫ ∫ ∫

V

Φ(Π,z)dxdydz, (18.7)

where Φ(Π,z) is an arbitrary function of the potential vorticity Π and z. One can
add here the invariant

G=
∫ ∫

z=0

Γ

(
∂ψ

∂z

)
dxdy (18.8)

(Γ is an arbitrary function of one argument), which follows from the lower boundary
condition (18.3).

The energy integral with the help of (18.2) and (18.4) can be written in terms of
the horizontal velocity and potential temperature (see Chap. 10):

E = 1

2

∫ ∫ ∫

V

ρsv2dxdydz+ 1

2

∫ ∫ ∫

V

ρs
g2

N2

θ2

Θ2
s

dxdydz, (18.6′)

where the second term, denoted by Pbc
.= (APE)bc is exactly the baroclinic avail-

able potential energy of the atmosphere. Recall for comparison that the available
potential energy of a barotropic atmosphere is given by

(APE)bt = 1

2

∫ ∫
L−2

0 ψ2dxdy.
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Both types of energy, as discussed in Chap. 11, can be taken into account within one
model by passing to the p-coordinates.

It should be noted, however, that (APE)bc in the form in which it is defined is
not a universal expression for the baroclinic available potential energy, but, in gen-
eral, depends on the particular formulation of the problem. Such an expression, in
particular, is not suitable if the background is taken to be an equilibrium state cor-
responding to a steady neutrally-stratified atmosphere. For example, this is justified
if we are discussing quasi-geostrophic motions of a weakly-stratified incompress-
ible fluid. In this case N2 ≈ 0, while the available potential energy is determined
by the horizontal stratification of the medium. The simplest example of this kind is
discussed in one of chapters below. A rigorous approach to the calculation of APE
can be found in the monograph by Kurgansky (1993). Here it is only important for
us to show the role of (APE)bc in the mechanism of baroclinic instability.

18.2 The Charney–Stern Theorem

The Charney–Stern Theorem (1962) If the near-surface temperature is constant,
then for the stability of a baroclinic geostrophic flow it is sufficient that for any fixed
level z = const, the potential vorticity of the zonal motion decreased monotonically
in the pole-equator direction.

Remark It is worth noting that Charney and Stern, unlike us, were using the p-
coordinate representation of the equations of motion and therefore required the
constant near-surface density rather than temperature. Both assumptions are rather
rough and to some extent they are valid only in the mid-latitudes, which are suffi-
ciently remote from the equator and poles.

Proof The value of G (see (18.8)) is constant by virtue of the theorem’s assump-
tions. Therefore as a Lyapunov function one can use the functional F = E + I ,
i.e.,

F =
∫ ∫ ∫

V

[
1

2
ρs(∇ψ)2 + 1

2
ρs

f 2
0

N2

(
∂ψ

∂z

)2

+Φ(Π,z)

]
dxdydz.

Then

δF =
∫ ∫ ∫

V

[
ρs∇ψ0δ∇ψ + ρs

f 2
0

N2

∂ψ0

∂z
δ
∂ψ

∂z
+ ∂Φ

∂Π
δΠ

]
dxdydz

(after integration by parts)

=
∫ ∫ ∫

V

{
−ρsψ0δ�ψ −ψ0δ

[
∂

∂z

(
ρs

f 2
0

N2

∂ψ

∂z

)]}
dxdydz
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+
∫ ∫ ∫

V

{
∂Φ

∂Π
δΠ(y, z)

}
dxdydz

=
∫ ∫ ∫

V

(
−ρsψ0 + ∂Φ

∂Π

)
δΠdxdydz,

since

δ�ψ + δ

[
1

ρs

∂

∂z

(
ρs

f 2
0

N2

∂ψ

∂z

)]
= δΠ.

Here ψ0 =ψ0(y, z) is the stream function of the zonal baroclinic flow that is studied
for stability.

By virtue of the theorem’s assumptions one can take Π to be the latitudinal co-
ordinate instead of y, i.e., one can assume that ψ0(y, z) = Ψ (Π,z). Then δF = 0
implies ρsΨ = ∂Φ/∂Π . Calculate the second variation:

δ2F =
∫ ∫ ∫

V

ρs

[
(δ∇ψ)2 + f 2

0

N2

(
δ
∂ψ

∂z

)2

+ ∂Ψ

∂Π
(δΠ)2

]
dxdydz.

Positive definiteness of δ2F requires that ∂Ψ/∂Π > 0. Further arguments are sim-
ilar to those used in the proof of the Kuo theorem, i.e., one needs to consider the
motion in the frame, rotating ahead of the wind. �

18.3 The Eady Model

I would like to complete the description of the elements of inviscid stability theory of
global geophysical flows by presenting the work of Eady. Published back in 1949 in
the famous Swedish meteorological journal Tellus, this work has long since become
classic and is described in almost every textbook on geophysical fluid dynamics or
dynamic meteorology. The reason is that Eady not only for the first time revealed
the mechanism of baroclinic instability, i.e., the cause of the birth of vertical vortic-
ity (cyclones and anticyclones) because of inhomogeneous horizontal distributions
of density or entropy. But he also explained this mechanism in such a physically
transparent way that all subsequent work on the subject, even in a nonlinear formu-
lation of the problem, only quantitatively develops this idea without introducing any
new qualitative explanations. The Eady model is the result of Eady’s doctoral the-
sis, and during its preparation he could not yet have known the fundamental quasi-
geostrophic equations of global motions. Apparently for this reason, there is no list
of references in his article, thus emphasizing the lack of precursors, even though in
conclusion he mentions the work of Charney (1947), “. . . which in many (but not
all) respects is consistent with his own.” For the same reason, Eady formulates the
boundary value problem not for the equation of potential vorticity, but for the evo-
lution equation of vertical velocity, where in order to simplify it he uses essentially



18.3 The Eady Model 163

the same assumptions as in the derivation of quasi-geostrophic equations mentioned
above. Below we present a modern exposition of the work by Eady, i.e., in terms of
potential vorticity, which is more concise than the original.

18.3.1 Formulation of the Problem

For this problem we assume that the quantity f 2
0 N

−2ρs is a slowly varying function
of the vertical coordinate, which allows one to take it out of the differentiation in
z in Eq. (18.1). It is pertinent to note that this assumption, although being valid
for the Oberbeck–Boussinesq fluid, is rather arguable for the real atmosphere. This
procedure is usually used when working with the p-coordinates (in the latter case
under the vertical differentiation one has the quantity L−2

R p2, where LR = NH/f0
is the internal radius of deformation, see (11.7)), but even then it does not look more
convincing.

However, from a physical point of view, we have not committed a big sin by
slightly changing the spatial distribution of the available potential energy. Therefore
the results obtained below are suitable for estimates of the real characteristics of
linear stability. It is also important to note that in the vertical direction the medium
is assumed to be stably stratified (N > 0). A three-dimensional wind field at the
middle and high latitudes of the Earth’s atmosphere is approximately described by
formulas (18.2) and (18.3), where the horizontal components of the wind velocity
u and v are measured in the directions toward east and north, respectively, while a
positive vertical velocity is directed upward.

The problem is considered on the f -plane (df/dy = 0) in the region bounded
only by vertical solid surfaces at the levels z = 0,H . We are studying stability of
a strongly zoned (along circles of latitude) motion of the atmosphere, which has a
vertical shear or, equivalently, vorticity in the direction opposite to the latitudinal
gradient of potential temperature:

u=U(z)= −∂Ψ

∂y
, v =w = 0. (18.9)

18.3.2 Solution Using the Method of Normal Modes

The stream function and potential vorticity corresponding to the ground state (18.9)
are, respectively, equal to

Ψ (x, y)= −U(z)y + F(z), (18.10)

Π(x,y)= − f 2
0

N2

(
U ′′y + F ′′)+ f, (18.11)

since ∂2Ψ/∂z2 = −U ′′y + F ′′, �ψ = 0.
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Then Eq. (18.1), linearized with respect to the primary flow, and by taking into
account the above assumptions, can be written as follows:

d

dt
(Π + χ)=

(
∂

∂t
+U

∂

∂x

)
χ + ∂ψ

∂x

∂Π

∂y
= 0,

where ψ = ψ(x, y, z, t) is the stream function of infinitesimal perturbations u, v
and w of the primary flow, while

χ =�ψ + f 2
0

N2

∂2ψ

∂z2

represents the potential vorticity corresponding to them.
Further, recalling the Squire theorem one can assume that the perturbations do

not depend on the coordinate y orthogonal to the plane (x, z), i.e., ψ = ψ(x, z, t).
The thermal wind Ωy = dU/dz for simplicity is set to be constant along the vertical.
Then U ′′ = 0, ∂Π/∂y = 0, and the linear stability problem is defined by the equation

(
∂

∂t
+U

∂

∂x

)(
∂2ψ

∂x2
+ f 2

0

N2

∂2ψ

∂z2

)
= 0 (18.12)

with the boundary conditions

w = − f0

N2

d

dt

∂(Ψ +ψ)

∂z
= 0 for z = 0,H.

After linearization the latter can be written in the form
(
∂

∂t
+U

∂

∂x

)
∂ψ

∂z
−Ωy

∂ψ

∂x
= 0 for z = 0,H. (18.13)

Coefficients in Eq. (18.12) and boundary conditions (18.13) depend only on z.
Therefore, turning to the method of normal modes, we seek the solution in the form

ψ(x, z, t)=ψ(z) exp
{
ik(x − ct)

}
.

After substituting this in (18.12) and (18.13) and taking into account ∂/∂x =⇒
ik, ∂/∂t =⇒ −ikc and (∂/∂t + U∂/∂x) =⇒ ik(U − c), we obtain the following
eigenvalue problem:

(U − c)

(
−k2ψ + f0

N2
ψ ′′

)
= 0, (18.14)

(U − c)ψ ′ −Ωyψ = 0 for z = 0,H. (18.15)

It is clear that the continuous spectrum of the problem belongs to the interval
[Umin,Umax] and it does not contribute to instability. In what follows we assume
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that Umin = U(0) = 0, and Umax = U(H) = ΩyH = U0. Then for c �= U the gen-
eral solution of Eq. (18.14) can be written as follows:

ψ(z)=A cosh{λz} +B sinh{λz}, λ= Nk

f0
.

Here, according to the boundary conditions (18.15), the coefficients A and B satisfy
the following homogeneous system of linear equations:

ΩyA+ cλB = 0,[
λ(U0 − c) sinh{λH } −Ωy cosh{λH }]A

+ [
λ(U0 − c) cosh{λH } −Ωy sinh{λH }]B = 0.

Its solvability condition means that c must be a root of the quadratic equation:

c2 −U0c+
(
U0

Ωy

λ
coth{λH } − Ω2

y

λ2

)

≡ c2 −U0c+
(
U2

0

λH
coth{λH } − U2

0

λ2H 2

)
= 0. (18.16)

The discriminant of this equation

D =U2
0

[
1 − 4α−2(α coth(α)− 1

)]
, α = λH =NkH/f0,

by the identity

coth(α)= 1

2

(
tanh

α

2
+ coth

α

2

)

can be presented in the form

D = 4

α2
U2

0

(
α

2
− coth

α

2

)(
α

2
− tanh

α

2

)
.

And then 2c =U0 ±√
D. Since α/2 ≥ tanh(α/2) for all α, then the critical value of

α is the root of the equation

α

2
= coth

α

2
, αcr ≈ 2.399.

For α > αcr one has D < 0 and the zonal flow is stable (the solution described by
a superposition of two neutral modes). It is interesting to estimate the wavelength
of the critical mode, by setting for this that N ≈ 10−2 s−1, H ≈ 10 km and f0 ≈
10−4 s−1. Then

Lcr = 2π

kcr
= 2πNH

f0αcr
≈ 2π10−2 · 10

10−4 · 2.4
≈ 2.6 × 103 km.
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Thus, the baroclinic instability is of a long-wave nature: the modes with wavelength
L>Lcr (α < αcr) exponentially grow at a rate

k Im c = k

α
U0

[(
α

2
− coth

α

2

)(
α

2
− tanh

α

2

)]1/2

,

where the maximum of the growth rate is for the value αm ≈ 1.75. It corresponds
to the wave length Lm = 2πNH

f0αm
≈ 3.6 × 103 km, whose quarter is exactly com-

parable with the characteristic size of cyclones and anticyclones observed in the
atmosphere. With regard to this problem, the characteristic size of cyclones or anti-
cyclones should match exactly a quarter of the above length since the discussed so-
lutions divide the entire integration domain into alternating subregions of cyclonic
and anticyclonic vorticity each of size L/2. It is also easy to show that the minimum
time of development of vertical vorticity (the time during which the amplitude of a
maximally unstable perturbation increases e-fold) is equal to

τm ≈ Lm

U0

αm

0.3 · 2π
≈ 4 days.

This is also consistent with the data observed.
From this analysis it becomes clear that the source of the instability under con-

sideration is precisely the available potential energy, entering as the second term
in the expression for the total energy (18.6). Indeed, according to (18.16), in the
absence of thermal wind (Ωy = 0) unstable modes do not exist, while subject to
the simplification made, the general solution of Eq. (18.1) satisfying the boundary
conditions w = 0 at z = 0,H can be written in the form

Ψ (x, y, z, t)=ψ(x, y, t)+ F(z).

Here ψ(x, y, t) is a solution of the equation

d

dt
(f +�ψ)= 0,

and F(z) is an arbitrary function of z independent of time and being a symbol of the
inaccessible potential energy (e.g., the potential energy of the background distribu-
tion of potential temperature). Indeed, the quantity ∂Ψ/∂z = dF/dz only formally
corresponds to nonvanishing potential energy in Eq. (18.6). Being an invariant of
motion, the latter is not converted into the kinetic energy and, consequently, it can
be excluded from our consideration. Therefore it is exactly the nonvanishing thermal
wind Ωy = dU/dz that provides a vertical shear of the stream function. This vertical
shear corresponds to potential energy which is converted into kinetic energy and is
generating a large-scale vertical vorticity, i.e., which is one of the principal reasons
for cyclogenesis. Eady gives the following explanation for baroclinic instability: as
in the Rayleigh–Bernard convection, the negative vertical gradient of temperature
causes the fluid to turn over in the vertical plane (“vertical overturning”), one has a



18.4 Exercises 167

similar effect in the atmosphere. Namely, the difference in the atmosphere temper-
atures in the pole-equator direction generates the air overturning in the horizontal
plane (“horizontal overturning”), and in both cases the process proceeds in the di-
rection of decreasing the system’s potential energy.

From the analysis in Chaps. 16–18 it is useful to extract, understand, and memo-
rize the following important feature of global geophysical flows. However paradox-
ical it sounds, both types of shifts of horizontal velocity, i.e., the horizontal shear
and vertical shear, due to their instability generate large-scale vertical vorticity. The
difference is that in the first case the source of cyclogenesis is the kinetic energy
of the main flow, whereas in the second case that is its available potential energy.
Both mechanisms, the barotropic and baroclinic instabilities, play a decisive role in
shaping the general circulation of the Earth’s atmosphere. The latter circumstance
is one of the principal obstacles in constructing a general circulation theory.

18.4 Exercises

1. Complete the proof of the Charney–Stern theorem.
2. Show that the above estimate for τm indeed holds.
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Part IV
Friction in Geophysical Boundary Layers
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Chapter 19
Equations of Motion of a Viscous Fluid;
The Boundary Conditions

So far we considered the motions of an ideal fluid which reflect, so to speak, ge-
netic features of a real fluid’s behavior and are not aggravated by the influence of
irreversible thermodynamic processes. The latter, however, are always present due
to internal friction (viscosity) and thermal conductivity of the medium. With regard
to global geophysical flows, the situation is complicated by the fact that the role of
irreversible non-adiabatic factors is assumed not only (or rather to a much lesser
degree) by molecular viscosity and thermal conductivity, but rather by small-scale
motions that are not taken into account by quasi-geostrophic approximation.

As we shall see below, the Earth’s surface has a very special and crucial influ-
ence on the formation of general atmospheric circulation. Without friction on this
surface the weather and climate on the Earth would have been totally unsuitable
for human civilization. Irreversible diabatic processes start to noticeably affect the
behavior of global atmospheric motions already on the third day after observations
begin. Therefore, one cannot avoid including these irreversible processes in weather
predictions for longer terms and for climate descriptions. We are going to start our
consideration with a derivation of the equations of motion of a viscous fluid.

19.1 Derivation of the Navier–Stokes Equations

The content of this chapter is based on the material of Sections 15, 16 and 49, 50
of the textbook by Landau and Lifschitz (1986). Recall that the Euler equations of
motion of an ideal fluid in terms of the specific impulse and tensor notations can be
written as follows:

∂ρui

∂t
= −∂Πik

∂xk
, (19.1)

where the density tensor of the momentum flux

Πik = δikp + ρuiuk (19.2)

F.V. Dolzhansky, Fundamentals of Geophysical Hydrodynamics,
Encyclopaedia of Mathematical Sciences 103,
DOI 10.1007/978-3-642-31034-8_19, © Springer-Verlag Berlin Heidelberg 2013

171

http://dx.doi.org/10.1007/978-3-642-31034-8_19


172 19 Equations of Motion of a Viscous Fluid

describes the completely reversible transfer of momentum caused by the influence
of pressure and by the movements of various parts of the fluid from one place to
another.

Viscosity, or internal friction, manifests itself in a fluid by the presence of an
additional, irreversible transfer of momentum in the direction of decreasing velocity.
It can be taken into account in (19.2) with an additional term σ ′

ik , which irreversibly
consumes a fraction of the “ideal” momentum flux:

Πik = δikp + ρuiuk − σ ′
ik = ρuiuk − σik. (19.3)

The tensor σ ′
ik is called the viscous stress tensor, while the tensor

σik = −δikp + σ ′
ik (19.4)

is the stress tensor distinguishing that portion of the momentum flux, which is not
related to the transfer of momentum of the fluid’s moving mass.

The following considerations help establish the general form of the tensor σ ′
ik .

(a) Internal friction in the fluid occurs only when there is movement of portions of
the fluid relative to one another. Therefore, σ ′

ik should depend on the deriva-
tives of velocity in spatial coordinates. If the velocity gradients are not very
large, then one can confine oneself to only the first derivatives in this relation-
ship, while the very dependence of σ ′

ik on ∂ui/∂xk in this approximation can be
assumed to be linear.

(b) Terms independent of ∂ui/∂xk should not appear in the expression for σ ′
ik , since

σ ′
ik = 0 for u(x, t)≡ const.

(c) Evidently, σ ′
ik = 0 for an eddy rotation of the fluid with constant angular veloc-

ity �, which corresponds to the velocity field u = � × r. Linear combinations
of the derivatives ∂ui/∂xk , vanishing for u = � × r, are ∂ui/∂xk + ∂uk/∂xi ,
which must determine σ ′

ik .

The most general form of a rank-two tensor satisfying (a)–(c) is

σ ′
ik = η

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3
δik

∂us

∂xs

)
+ ζ δik

∂us

∂xs
, (19.5)

with coefficients η and ζ independent of the velocity. (The last statement follows
from the fluid’s isotropy as a medium whose properties are described merely by
scalar quantities, in our case by η and ζ .) Terms in (19.5) are grouped in such a
way that the convolution of the tensor appearing in the brackets, i.e., the sum of its
diagonal terms (the tensor trace), vanishes. The quantities η and ζ are called the
viscosity coefficients, and ζ is often called the coefficient of the second viscosity.
Below we show that they are both positive.

The equations of motion of a viscous fluid are now obtained by adding expression
∂σ ′

ik/∂xk to the right-hand side of (19.1), which, given the continuity equation

∂ρ

∂t
+ ∂ρus

∂xs
≡ dρ

dt
+ ρ

∂us

∂xs
= 0, (19.6)



19.1 Derivation of the Navier–Stokes Equations 173

can be written in the form

ρ

(
∂ui

∂t
+ us

∂ui

∂xs

)
= − ∂p

∂xi
+ ∂

∂xk
η

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3
δik

∂us

∂xs

)

+ ∂

∂xi

(
ζ
∂us

∂xs

)
. (19.7)

This is the most general form of the equations of motion of a viscous fluid, in which
the quantities η and ζ , in general, depend on pressure and temperature, and therefore
they cannot be taken out of the differentiation. However, in most cases one can
neglect this dependency. Then (19.7) can be rewritten in the vector form

ρ

[
∂u
∂t

+ (u∇)u
]

= −∇p + η�u +
(
ζ + η

3

)
∇ div u. (19.8)

This is the famous Navier–Stokes equation, which is used in an overwhelming num-
ber of cases to describe the motion of a viscous fluid (C.R. Navier, 1827, and
G.G. Stokes, 1845).

In the description of essentially subsonic flows, the fluid can be regarded as in-
compressible, and then the last term on the right-hand side of (19.8) can be ne-
glected. In this case, the Navier–Stokes equation is usually written as

∂u
∂t

+ (u∇)u = − 1

ρ
∇p + ν�u, (19.9)

where the quantity ν = η/ρ is called kinematic viscosity. To a large extent the kine-
matic viscosity determines the dissipation rate of the kinetic energy of the fluid, i.e.,
the efficiency of its internal friction. The quantity η itself is described as the dy-
namic viscosity. In this relation we present the comparison table of the quantities η
and ν for some liquids and gases (at the temperature of 20 ◦C):

η (g/s·cm) ν (cm2/s)
Water 0.010 0.01
Air 1.8 × 10−4 0.15
Alcohol 0.018 0.022
Glycerin 8.5 6.8
Mercury 0.0156 0.0012

In particular, this shows that although the dynamic viscosity of water is greater than
the dynamic viscosity of air by almost two orders of magnitude, the effective internal
friction of water is over an order of magnitude smaller than the internal friction
of air, all other things being equal. Note also that the dynamic viscosity of gases
at a given temperature is independent of pressure, while the kinematic viscosity,
respectively, is inversely proportional to pressure.

The Poisson equation for a homogeneous incompressible ideal fluid (ρ = ρ0 =
const)

�p = −ρ0
∂ui

∂xk

∂uk

∂xi
= −ρ0

∂2(uiuk)

∂xk∂xi
(19.10)
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is used to reconstruct the pressure from the velocity field. It remains valid for a
viscous fluid as well since it is obtained by applying the operator div to (19.9) for
ρ = ρ0 = const.

19.2 Formulation of Boundary Conditions

We confine ourselves to considering boundary conditions for flows of an incom-
pressible fluid (div u = 0). In this case the viscous stress tensor and the stress tensor
itself take the following simple form:

σ ′
ik = η

(
∂ui

∂xk
+ ∂uk

∂xi

)
, (19.11)

σik = −δikp + σ ′
ik = −δikp + η

(
∂ui

∂xk
+ ∂uk

∂xi

)
. (19.12)

The most typical examples of boundary conditions are those of (a) a solid wall,
(b) an interface between two immiscible liquids, and (c) free surface of a fluid. In
the case (a) the fluid sticks to the wall due to the forces of molecular cohesion.
Therefore, the fluid velocity at the solid wall is equal to the velocity of the wall
itself, and on an immobile wall one has u = 0. Thus, unlike the case of an ideal
fluid, in this case not only the normal, but also the tangential components of the
fluid velocity on the wall must vanish. This is related to an increase in the order of
spatial derivatives in the equations of motion. Consider these boundary conditions
in more detail.

(a) The force acting on a surface element ds is nothing but the momentum flux
across this element:

Πik = (ρuiuk − σik)dsk,

where dsk = nkds, while n is the unit normal vector to the surface. To determine
the force exerted by the fluid on the solid wall, one needs to pass to a coordinate
system in which the wall is at rest: the force is merely equal to the momentum
flux only in the case of an immobile wall. Therefore, setting u = 0 in the last
formula, we find that the force F applied to a unit area of the solid surface is

Fi = −σiknk = pni − σ ′
iknk. (19.13)

The first term is the usual pressure of the fluid, while the second is the force of
friction over the surface due to the fluid’s viscosity. It should be emphasized that
the vector n in (19.13) is the unit normal to the surface that is external relative
to the fluid, i.e., internal relative to the solid surface.

(b) At the interface between two immiscible fluids, the velocities of both fluids
must be equal, while the forces with which they act upon each other are equal
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in magnitude and opposite in direction. The second condition means that

σ
(1)
ik n

(1)
k + σ

(2)
ik n

(2)
k = 0.

The normal vectors n(1) and n(2) to the surfaces of fluids 1 and 2 have mutually
opposite directions. Therefore, setting n(1) = −n(2) = n, the second boundary
condition can be rewritten in the form

σ
(1)
ik nk = σ

(2)
ik nk. (19.14)

(c) At the free surface the tension vanishes, i.e.,

σiknk = σ ′
iknk − pni = 0. (19.15)

19.3 Dissipation of Kinetic Energy in an Incompressible Fluid

The total kinetic energy of an incompressible fluid (div u = 0) is equal to

Ekin = 1

2

∫

V

ρu2dV,

where V is the total volume occupied by the fluid. If the fluid occupies an unbounded
space, it is assumed that the fluid is at rest at infinity. Using the Navier–Stokes
equation in the form

∂ui

∂t
= −uk

∂ui

∂xk
− 1

ρ

∂p

∂xi
+ 1

ρ

∂σ ′
ik

∂xk

and the equation of mass conservation

∂ρ

∂t
+ uk

∂ρ

∂xk
= 0,

we calculate the time derivative of the kinetic energy per unit volume of the fluid:

∂

∂t

(
1

2
ρu2

)
= ρui

∂ui

∂t
+ 1

2
u2 ∂ρ

∂t
.

As a result we obtain (complete Exercise 1)

∂

∂t

(
1

2
ρu2

)
= −div

[
ρu
(

1

2
u2 + p

ρ

)
− u ∗ σ ′

]
− σ ′

ik

∂ui

∂xk
, (19.16)

where u ∗ σ ′ stands for the vector with components uiσ ′
ik .

The first term in the square brackets coincides with the energy flux of an ideal
fluid (see Chap. 2), created by the usual mass transfer of the fluid during its motion.
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But the second term u ∗ σ ′ is the energy flux due to the internal friction, since the
presence of viscosity leads to the appearance of momentum flux σ ′

ik (see (19.3)),
while the momentum transfer entails the transfer of energy which is equal to the
product of the momentum flux by the velocity. And finally, the last term in the right-
hand side of (19.16) describes the kinetic energy dissipation per unit volume, i.e., its
conversion into heat.

Integrating (19.16) over the entire volume of the fluid and employing the bound-
ary conditions (a) or vanishing of the velocity at infinity, we obtain the dissipation
rate of the entire kinetic energy of the fluid or, equivalently up to sign, the rate of
heat generation due to viscosity:

Ėkin = −
∫

V

σ ′
ik

∂ui

∂xk
dV = −1

2

∫

V

σ ′
ik

(
∂ui

∂xk
+ ∂uk

∂xi

)
dV

(the tensor σ ′
ik is symmetric). Substituting (19.11) into the latter formula we find

that the dissipation rate of kinetic energy of all the fluid is given by the formula

Ėkin = −η

2

∫

V

(
∂ui

∂xk
+ ∂uk

∂xi

)2

dV. (19.17)

This implies that η > 0, since the dissipation Ėkin < 0.

19.4 Heat Transfer in a Compressible Fluid

The system consisting of the Navier–Stokes equation (19.8) for a compressible fluid
and the continuity equation

∂ρ

∂t
+ div(ρu)≡ dρ

dt
+ ρ div u = 0 (19.18)

closes up by the heat transfer equation. The latter can be derived from the following
considerations. Let dQ = ρT ds be the heat influx per unit volume of fluid during
the time dt , where s is the specific entropy, i.e., the entropy per unit mass of the fluid,
T is the absolute temperature. Then the equation of heat transfer can be written in
the form

ρT
ds

dt
= dQ

dt
,

where on the right-hand side one has the heat source generated by the dissipation of
kinetic energy together with the molecular thermal conductivity of the fluid itself.
The dissipation term, according to (19.16), is equal to σ ′

ik∂ui/∂xk . The density of
the heat flow transferred via thermal conductivity according to the Fourier law is
equal to q = −κ∇T . The positive quantity κ is called the thermal conductivity



19.4 Heat Transfer in a Compressible Fluid 177

coefficient or simply thermal conductivity. Then div q = −div(κ∇T ) is the heat
outflux of a fixed unit volume per unit time, and the heat balance equation becomes

ρT
ds

dt
= σ ′

ik

∂ui

∂xk
− div q

or

ρT

(
∂s

∂t
+ (u∇)s

)
= σ ′

ik

∂ui

∂xk
+ div(κ∇T ). (19.19)

Equation (19.19) is called the general equation of heat transfer.
The heat generation from internal friction with the help of (19.5) can be written

as

σ ′
ik

∂ui

∂xk
= η

∂ui

∂xk

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3
δik

∂us

∂xs

)
+ ζ

∂ui

∂xk
δik

∂us

∂xs
.

It is easy to check that the first term on the right-hand side of this equation is iden-
tical to the expression

η

2

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3
δik

∂us

∂xs

)2

,

while the second one is

ζ
∂ui

∂xk
δik

∂us

∂xs
= ζ

(
∂us

∂xs

)2

= ζ(divu)2.

As a result, Eq. (19.19) takes the form

ρT

(
∂s

∂t
+ (u∇)s

)
= div(κ∇T )+ η

2

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3
δik

∂us

∂xs

)2

+ ζ(div u)2. (19.20)

With the help of (19.18) and (19.20) it is easy to show (do Exercise 3) that

∂(ρs)

∂t
= −div(ρsu)+ 1

T
div(κ∇T )

+ η

2T

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3
δik

∂us

∂xs

)2

+ ζ

T
(div u)2. (19.21)

Let us consider an unbounded volume of fluid at rest (u = 0) and uniformly heated
(∇T = 0) at infinity. Integrating the latter equation over the entire volume of the
fluid, after passing to the integral over the surface at infinity, we find that the con-
tribution of the first term on the right-hand side vanishes. The integral of the second
term is transformed as follows:

∫
1

T
div(κ∇T )dV =

∫
div

(
κ∇T

T

)
dV +

∫
κ(∇T )2

T 2
dV,
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and by the second condition at infinity the first term vanishes. As a result we obtain

∂

∂t

∫
ρsdV =

∫
κ(∇T )2

T 2
dV +

∫
η

2T

(
∂ui

∂xk
+ ∂uk

∂xi
− 2

3
δik

∂us

∂xs

)2

dV

+
∫

ζ

T
(div u)2dV. (19.22)

The total entropy of the system which does not undergo any exterior influence can
only increase, i.e., the right-hand side of (19.22) must be positive. In addition, in
each term of this sum the integrand may be different from zero even when the other
two integrals vanish. Therefore, each of these integrals must always be positive.
Hence, this implies positivity of the second viscosity coefficient, as well as the pos-
itivity of η and κ already known to us.

19.5 Heat Transfer in an Incompressible Fluid

If the fluid velocity is small compared to the speed of sound, then the pressure
changes resulting from the fluid’s movement are so small that one can neglect
changes in density (and other thermodynamical quantities) caused by them, unless
we are talking about global flows of a rotating fluid. However, the nonuniformly
heated fluid is not quite incompressible at the same time. One cannot ignore the
density changes due to changes in temperature, even if the speed of a nonuniformly
heated fluid is small, and, consequently, the density cannot be assumed to be con-
stant. Therefore, in this case, the pressure must be regarded as constant in determin-
ing the derivatives of the thermodynamic quantities.

Then

∂s

∂t
=
(
∂s

∂T

)
p

∂T

∂t
, ∇s =

(
∂s

∂T

)
p

∇T ,

and since T (∂s/∂T )p = Cp is the specific heat at constant pressure, then

T
∂s

∂t
= Cp

∂T

∂t
, T∇s = Cp∇T .

Equation (19.19) now assumes the form

ρCp

(
∂T

∂t
+ (u∇)T

)
= div(κ∇T )+ σ ′

ik

∂ui

∂xk
. (19.23)

Assume further that ρ = ρ0 + ρ′, T = T0 + T ′, where ρ0 and T0 are average val-
ues of density and temperature, while their fluctuations, which are small compared
with the mean values, are connected by the linear relation ρ′/ρ0 = −T ′/T0. The
quantity ρ in (19.22) can be replaced by ρ0 and the fluid is assumed incompress-
ible (div u = 0, see the Oberbeck–Boussinesq approximation in Chap. 13). Now by
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substituting formula (19.11) into (19.23), we obtain the heat transfer equation in an
incompressible fluid:

∂T

∂t
+ (u∇)T = k�T + ν

2Cp

(
∂ui

∂xk
+ ∂uk

∂xi

)2

, (19.24)

where ν = η/ρ0 is the kinematic viscosity, and instead of κ it involves the tempera-
ture conductivity coefficient k = κ/ρ0Cp . Since the temperature appears in (19.23)
and (19.24) only under the differentiation, T is not replaced by T ′. In practical
calculations the last term in (19.24) is generally not accounted for because of its
smallness in comparison with the effect of molecular heat transfer.

In conclusion, it is worth noting that the Navier–Stokes equations were derived
by Bogolyubov by expanding the Liouville equation, the basic equation of statis-
tical mechanics (more precisely, the system of Bogolyubov equations equivalent
to it). First, at the kinetic stage it was done by expansion in the small parameter
ε = τ/t0 (where τ is the interaction time of molecules, t0 is the time spent by a
molecule for the mean free path). Later, at the hydrodynamical stage, this was done
by expansion in the parameter θ = t0/t∗ (where t∗ is the characteristic time for
changes in the macroscopic motion). In the first-order expansion in θ , one obtains
the Euler equations of motion of an ideal fluid, while in the second-order one gets
the Navier–Stokes equations with two viscosity coefficients and the Fourier thermal
conductivity law q = −κ∇T . These issues are discussed in detail in the monograph
(Uhlenbeck and Ford, 1963).

19.6 Exercises

1. Derive (19.16) from the equations of motion of an incompressible fluid.
2. Formulate the local energy conservation law for a compressible fluid through

its equations of motion (19.6), (19.7) and (19.19), by using the thermodynamic
relation (the first law of thermodynamics) dε = T ds−pdV = T ds+ (p/ρ2)dρ,
where ε is the internal energy per unit mass of the fluid.

Hint: see Section 49 of the above-mentioned book by Landau and Lifschitz
(1986).

Answer:

∂

∂t

(
ρu2

2
+ ρε

)
= −div

[
ρu
(

1

2
u2 + p

ρ

)
− u ∗ σ ′ −κ∇T

]
. (19.25)

3. Derive (19.21) from (19.18) and (19.20).

References

L.D. Landau and E.M. Lifschitz, Fluid Mechanics, Nauka, GRFML, Moscow, 1986 (in English:
2nd edn., Reed Educ. Prof. Publ., 1987).

G.E. Uhlenbeck and G.W. Ford, Lectures in Statistical Mechanics, AMS, Providence, 1963.



Chapter 20
Friction Mechanisms in Global Geophysical
Flows; Quasi-geostrophic Equation
for Transformation of Potential Vorticity

One of the main features of the dynamics of viscous global geophysical flows is
that the dissipation of their kinetic energy is mainly due to friction of free atmo-
sphere over so-called geophysical boundary layers (GBL). Under free atmosphere
one understands the atmosphere’s areas that are remote from solid boundaries or
from sharp fluctuations of horizontal velocity. The friction is caused by the ex-
change of momentum between these boundary layers and the free atmosphere. In
the GBL themselves velocity gradients are intensified, and hence the internal friction
is strengthened. This leads to disruption in quasi-hydrostatic and quasi-geostrophic
equilibria. Moreover, the effects of internal friction manifest differently in neighbor-
hoods of the horizontal and vertical GBLs. Based on this it is convenient to adopt
the following definition of GBLs. A geophysical boundary layer (GBL) is a region
in which the conditions of quasi-hydrostatic and quasi-geostrophic equilibria are
violated under the influence of viscosity forces.

This allows one to avoid a somewhat cumbersome procedure of expanding the
original hydrodynamical equations in the Rossby parameter, which is usually used
for reduction of the problem, and to immediately formulate the required equations
of motion. The GBL effect manifests itself in the most transparent way in the mo-
tion of a homogeneous incompressible fluid. Therefore, our further considerations
are related to laboratory analogues of global geophysical flows that are modeled
in rotating annular tanks filled with water. In this case the equations of motion are
formulated in vector notation as follows:

2� × u = −∇p

ρ
+ fν, (20.1)

∇u ≡ ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (20.2)

Here � is the angular velocity of the general rotation of a fluid of constant density
ρ, u is the velocity field of the flow in the GBL, p is a pressure deviation from
its hydrostatic value, and fν = ν�u are viscosity forces (� = ∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2), where ν is the kinematic viscosity of the fluid.
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Fig. 20.1 (a) Vertical cross-section of the “laboratory atmosphere” and the profile of the longitu-
dinal velocity component U in the plane (x, z), where the x axis coincides with the direction of the
geostrophic wind Vg . (b) The wind rotation with the altitude: the Ekman spiral in the horizontal
plane

20.1 Ekman Planetary Boundary Layer

In the vicinity of the horizontal boundary of a laboratory atmosphere (Fig. 20.1a),
the characteristic horizontal scale for velocity changes is much greater than its ver-
tical scale. Therefore, in the expression for the viscous forces fν = ν(∂2u/∂x2 +
∂2u/∂y2 + ∂2u/∂z2) one can neglect the first two terms. In addition, as we shall see
below, since the thickness of the horizontal GBL is much less than the atmosphere’s
height, the geostrophic wind vg(x, y, t) = ug(x, y, t)i + vg(x, y, t)j, satisfying the
relation

2� × vg = −∇p

ρ

(
∇ = i

∂

∂x
+ j

∂

∂y

)
,

can be assumed to be independent of the vertical coordinate. Then, by subtract-
ing the last equation from (1), for the horizontal velocity component v(x, y, z, t) =
u(x, y, z, t)i + v(x, y, z, t)j, we obtain the equation

2� × (v − vg)= ν
∂2v
∂z2

(20.3)

with the boundary conditions of adhesion at the lower boundary of GBL and turning
v into the geostrophic wind at the upper boundary:

v|z=0 = 0, v|z=∞ = vg. (20.4)

The top condition is posed at infinity, since the main contribution to the integral∫∞
0 div vdz, which we are interested in below, comes from the actual thickness of

the horizontal boundary layer.
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By taking into account � = (0,0,Ω), the solution of the boundary problem
(20.3) and (20.4) can be written in the form (do Exercise 1):

v(x, y, z, t) = vg(x, y, t)
[
1 − exp(−z/δE) cos(z/δE)

]
+ k × vg(x, y, t) exp(−z/δE) sin(z/δE), (20.5)

where k is the vertical unit vector, while δE = √
ν/Ω is the actual thickness of the

horizontal GBL, called the Ekman layer, or planetary boundary layer (PBL). Note
that wind in the free atmosphere controls the time dependence of the horizontal wind
in the Ekman layer.

Finally, make the substitution (20.5) in the condition of zero divergence of the
three-dimensional flow in the Ekman layer which is integrated over the height, i.e.,

wE = −
∫ ∞

0

(
∂u

∂x
+ ∂v

∂y

)
dz.

We obtain the expression for the velocity vertical component at the upper boundary
of the PBL:

wE = δE

(
∂vg

∂x
− ∂ug

∂y

)
. (20.6)

Precisely because of the presence of such a nonzero vertical flux at the upper bound-
ary of PBL there is an exchange of horizontal momentum between the PBL and the
free atmosphere, which leads to slowing down the motion of the latter. We discuss
this in more detail in Sect. 20.3. Now we only mention two points.

First, in laboratory experiments with water as the working fluid ν = 0.01 cm2/s,
while Ω = 0.1–1.0 s−1. Therefore, the thickness of the laboratory Ekman lay-
ers has a range within a few mm. Formally putting for the real atmosphere that
ν = 0.15 cm2/s and Ω ∼ 10−4 s−1, we obtain δE ≈ 40 cm. This is the thickness
of the so-called laminar Ekman layer, which is observed in laboratory experiments.
The PBL of a real atmosphere is dominated by fully developed three-dimensional
small-scale turbulence, i.e., chaotic vortex motions whose scale ranges from cen-
timeters to tens of meters. These vortices are fed by the kinetic energy of large-scale
currents, whose inhibition is far more effective than under the influence of molecu-
lar viscosity. The simplest, although somewhat naive but natural way of accounting
for such an inhibition is to replace the molecular viscosity ν by the so-called co-
efficient of turbulent viscosity νturb, which in the atmosphere exceeds ν by six to
seven orders of magnitude, according to various empirical estimates. In this case,
depending on the intensity of the small-scale turbulence in the planetary boundary
layer, its thickness ranges from several hundred meters to one kilometer.

Secondly, as shown in Fig. 20.1b, which presents the Ekman spiral, i.e., the hodo-
graph of the velocity vector (20.5), in a PBL there is a wind rotation with height, and
where rotation angle α = 45◦ provided that νturb = const, i.e., it does not depend on
the height (do Exercise 2).
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Fig. 20.2 A schematic
presentation of the
experimental setup for the
simulation of vertical GBLs.
The cylindrical tank with a
fluid rotates with constant
angular velocity Ω around
the vertical axis of symmetry.
The interior and exterior ends
rotate in the opposite
directions

20.2 The Praudman–Stewartson Layers

In the vicinity of the vertical walls, Eqs. (20.1) and (20.2) describe a different mech-
anism for the dissipation of kinetic energy. Following Stewartson (see Praudman
1956; Stewartson 1957; Greenspan 1968; Dolzhansky 1999), in order to understand
this, let us consider the problem of motion of a viscous incompressible homoge-
neous rotating fluid between two horizontal planes, which is induced by the strictly
antisymmetric motion of each of the half-planes towards each other (Fig. 20.2). It
is assumed that the horizontal half-planes, located on the same side of the verti-
cal plane of symmetry y = 0, move in the same direction with the same velocity
u0 = u0(y). In this case, the flow characteristics are independent of the longitudinal
(azimuthal) coordinate x, and the boundary value problem is given by equations

−2Ωv = ν

(
∂2u

∂y2
+ ∂2u

∂z2

)
, (20.1′)

2Ωu= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂y2
+ ∂2v

∂z2

)
, (20.1′′)

0 = − 1

ρ

∂p

∂z
+ ν

(
∂2w

∂y2
+ ∂2w

∂z2

)
, (20.1′′′)

0 = ∂v

∂y
+ ∂w

∂z
(20.2′)

with the conditions of sticking to the horizontal walls and regularity at y = ±∞, p
is the deviation from the hydrostatic pressure.

Obviously, the problem is antisymmetric with respect to the vertical plane y = 0
and symmetric with respect to the horizontal plane z = 0, located midway between
the moving planes. Let the latter distance be equal to 2H . Then exclude p from
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(20.1′′) and (20.1′′′), and introduce in (20.2′) the “vertical” stream function Ψ ac-
cording to the relations

v = ∂Ψ

∂z
, w = −∂Ψ

∂y
.

Now by making the equation dimensionless with the help of the length scale H and
the characteristic velocity U , the boundary value problem for the unknown functions
u(y, z) and Ψ (y, z) can be defined by equations

2E−1 ∂u

∂z
=�2Ψ, (20.7)

−2E−1 ∂Ψ

∂z
=�u (20.8)

with the boundary conditions

∂Ψ

∂y
= ∂Ψ

∂z
= 0 for z = ±1, (20.9)

u= u0(y) for z = ±1. (20.10)

Here we do not introduce new notation for the dimensionless quantities, while the
constant E = ν/ΩH 2 = δ2

E/H
2, called the Ekman number, is a small parameter

due to the above estimates.
To simulate the vertical wall located in the plane y = 0, take as an external drive

the step-type velocity u0(y) = y/|y| (0 < |y| < ∞). The problem is solved by the
method of discrete-continuous Fourier expansions in trigonometric and hyperbolic
functions, which requires a rather cumbersome calculation procedure. We present
below without proof Stewartson’s formulas, describing the flow away from the hor-
izontal walls and which are of the main interest to us:

u(y, z)= FSt (y, z), Ψ (y, z)= ΨSt (y, z), (20.11)

where

FSt (y, z) = sign(y)
[
1 − exp

(−|y|/E1/4)−E1/6Φ(y, z)
]
, (20.12)

Φ(y, z) = 2

3

∞∑
n=1

(−1)n cos(nπz)

(2πn)2/3

×
[

exp
(−γn|y|)− 2 exp

(−γn|y|
2

)
cos

(√
3

2
γn|y| − π

3

)]
, (20.13)

ΨSt (y, z) = sign(y)E1/2
[

1

2
z exp

(−|y|/E1/4)+ Γ (y, z)

]
, (20.14)

Γ (y, z) = 1

3π

∞∑
n=1

(−1)n sin(nπz)

n
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Fig. 20.3 The transverse circulation (a), the vertical profile of the longitudinal component of the
velocity u far away from the discontinuity plane y = 0 (b), and the horizontal profile of the longi-
tudinal component of the velocity away from the horizontal walls (c)

×
[

exp
(−γn|y|)+ 2 exp

(−γn|y|/2
)

cos

(√
3

2
γn|y|

)]
. (20.15)

Here γn = (2πn/E)1/3.
The pattern for transverse and longitudinal flows is shown in Fig. 20.3. Cross-

linking of the horizontal and vertical GBL is made in Dolzhansky (1999). The for-
mulas presented indicate that in the vicinity of the vertical wall two Praudman–
Stewartson layers are formed: the outer one of thickness δSt = E1/4H = √

δEH

and the inner one of thickness δin = E1/3H = 3
√
δ2
EH . In these layers there are in-

tensive transverse circulation cells of opposite directions, providing smoothing of
the step shear of the longitudinal velocity component. In essence, this result means
that the shear width of the horizontal viscous geophysical flows cannot be smaller
than the thickness of the Praudman–Stewartson outer layer. In the atmosphere, the
Praudman–Stewartson layers are formed in the vicinity of fronts that are boundaries
of large-scale air masses with very different dynamical and thermodynamical char-
acteristics. The formation of strong vertical flows in such areas makes it rather diffi-
cult to describe their dynamics since the motion is no longer quasi-two-dimensional.
Therefore, it is also inadmissible to consider fronts as singular solutions of two-
dimensional hydrodynamic equations, as it is occasionally done.

20.3 The Quasi-geostrophic Equation for Transformation of
Potential Vorticity of a Barotropic Viscous Atmosphere

Now, having learned the features of kinetic energy dissipation in a viscous atmo-
sphere, we can easily derive the equations for its global barotropic motions. To de-
scribe the behavior of the free atmosphere we again use the shallow water approxi-
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mation of the hydrodynamic equations of a rotating fluid, which after including the
viscosity can be written as

du

dt
− f v = −g

∂H

∂x
+ ν�u, (20.16)

dv

dt
+ f u= −g

∂H

∂y
+ ν�v, (20.17)

dH

dt
+H

(
∂u

∂x
+ ∂v

∂y

)
=wE. (20.18)

Recall that here u and v are the longitudinal (zonal) and transverse (meridional)
components of horizontal velocity of the free atmosphere, f = f (y) is the Corio-
lis parameter, and H = H(x,y, t) is the height of the free surface of a barotropic
atmosphere, measured from the top of the Ekman layer. Equation (20.18) of mass
conservation for the free atmosphere is written by taking into account the fact that
at its lower boundary the vertical velocity is wE �= 0.

Subtracting now Eq. (20.16) differentiated in y from Eq. (20.17) differentiated
in x, we obtain the equation for the vertical vorticity ω = ∂v/∂x − ∂u/∂y:

dω

dt
+ (f +ω)

(
∂u

∂x
+ ∂v

∂y

)
+ df

dy
v = ν�ω.

After getting rid of the divergence in the horizontal velocity by using (20.18) we
have

dω

dt
− (f +ω)

H

dH

dt
+ df

dy
v = ν�ω− wE

H
. (20.19)

Now, use the relations of the geostrophic wind

v = g

f0

∂H

∂x

.= ∂ψ

∂x
, u= − g

f0

∂H

∂y

.= −∂ψ

∂y
(ψ

.= gH/f0), (20.20)

where f0 is the average value of the Coriolis parameter. Then by formula (20.6) and
using (20.20) we have

wE = δE�ψ, (20.21)

and find that the quasi-geostrophic equation of evolution (or transformation) of the
potential vorticity of a viscous barotropic atmosphere is written as (cf. (7.6)):

d

dt

(
�ψ − f 2

0

gH0
ψ

)
+ β

∂ψ

∂x
= ν�2ψ − f0δE

H0
�ψ.

Here β = df/dy. In addition, for deriving this equation we have also taken into
account that δE � H0, where H0 is the average height of the atmosphere, so that if
H is not differentiated, it can be replaced by H0.
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Now recalling that
√
gH0/f0 = L0 is the Obukhov scale, δEH0 = δ2

St and δE =√
2ν/f0, we obtain the traditional form of the required equation:

∂

∂t

(
�ψ −L−2

0 ψ
)+ [ψ,�ψ] + β

∂ψ

∂x
= ν�2ψ − λ�ψ, (20.22)

where [a, b] = ∂a/∂x · ∂b/∂y − ∂a/∂y · ∂b/∂x is the Jacobian of the scalar func-
tions a = a(x, y) and b = b(x, y), while λ = 2ν/δ2

St is called the effective friction
coefficient of the atmosphere over the underlying surface. It is worth mentioning
that in its most general form the equation for transformation of potential vorticity
was derived in Obukhov (1962).

Thus, in the framework of the assumptions made, by means of the Ekman bound-
ary layer the Earth’s surface inhibits the quasi-two-dimensional geophysical mo-
tions according to the dry friction law. The coefficient of this friction is linear in ve-
locity and is determined by the thickness of the Praudman–Stewartson outer layer.
As we shall see below, this very friction exhibits a decisive influence not only on
dissipation of the kinetic energy, but also on the mechanisms of barotropic insta-
bility and formation of cyclones and anticyclones in the atmosphere. Note that the
effect of the Ekman layer on a baroclinic atmosphere can be accounted for by using
formula (20.21) as the lower boundary condition for the quasi-geostrophic equation
of the potential vorticity of the baroclinic atmosphere (see (9.31)) and taking into
account the internal viscosity of the environment.

20.4 Exercises

1. Solve the boundary value problem (20.3) and (20.4) taking into account that
� = (0,0,Ω).

Hint: introduce a complex dependent variable W = u+ iv and point the axis
Ox in the direction of the geostrophic wind.

2. Construct the hodograph of the horizontal wind velocity within the Ekman layer
and show that the wind turns with height up to 45◦. In what direction is this
rotation going on?
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Chapter 21
Kolmogorov Flow and the Role of Surface
Friction

21.1 Formulation of a Linear Stability Problem

The influence of planetary boundary layers (PBLs) on barotropic instability of
global atmospheric flows in its purest form can be identified by considering an
extremely idealized stability problem for a spatially periodic plane flow of an in-
compressible fluid with a sinusoidal velocity profile. This problem was proposed by
A.N. Kolmogorov in 1960 in his seminar and was already solved the next year in
the paper (Meshalkin and Sinai, 1961) in the strictly two-dimensional setting.

Following those authors, we will consider this problem in the quasi-two-
dimensional setting. In other words, we will take into account external friction
that is linear in velocity and simulates the influence of the bottom on the motion
of shallow water, while in atmospheric applications it simulates the PBL impact on
quasi-geostrophic flows. (This generalization was done in the work of Bondarenko
et al. (1979). Later it turned out to be fundamental and it is described in detail in
Gledzer et al. (1981) and Dolzhansky et al. (1990).) To avoid extra complications
in dealing with the problem, we will not take into account the Coriolis force, since
on the f -plane, i.e., in the absence of the beta-effect, the vorticity flows that we are
interested in are described by the usual two-dimensional vorticity equation. In this
case the following equations can be taken as the initial ones:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν�u− λu+ f, (21.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ν�v − λv, (21.2)

∂u

∂x
+ ∂v

∂y
= 0. (21.3)

Here, the fluid density is set to be equal to one, ν and λ are the coefficients of internal
and external tensions, respectively, and f = a sin(y/ l) is an external force creating
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the initial sinusoidal velocity profile. Others notations are standard. The periodicity
conditions in the y-coordinate with period 2πl and the absence of the total mass
transport in the longitudinal direction, i.e.,

∞∫

−∞
u(x, y, t)dy = 0 (21.4)

are taken as the boundary conditions.
After making the variable dimensionless by using the natural scales of length l

and velocity U = √
al, as well as by introducing the stream function according to

the equations

u= −∂ψ

∂y
, v = ∂ψ

∂x
, (21.5)

the vorticity equation for �ψ = ∂v/∂x − ∂u/∂y, corresponding to the system (1)–
(3) with the above-mentioned force f can be written as

∂�ψ

∂t
+ [�ψ,ψ] = ν̂�2ψ − λ̂�ψ − cosy. (21.6)

For the dependent and independent dimensionless variables we do not introduce
new notations. Note that the inverse dimensionless kinematic viscosity and the co-
efficient of external friction

ν̂−1 = Ul

ν

.=Rν, λ̂−1 = U

λl

.=Rλ (21.7)

are well-known similarity criteria characterizing the ratios between the nonlinear
terms and the forces of internal and external friction, respectively, and are called
the Reynolds numbers of internal and external friction. The higher the values of
the Reynolds numbers, the closer the flow of a viscous fluid to an ideal fluid flow.
Note also by comparing (21.6) with (20.22) that Eq. (21.6) can be interpreted as
the quasi-geostrophic vorticity equation for an incompressible (L−1

0 = 0) viscous
atmosphere on the f -plane (β = 0), where the atmosphere undergoes the action of
the zonal force of the sinusoidal profile.

The primary flow of the system at hand is given by the equalities:

u0 = 1

ν̂ + λ̂
siny, �ψ0 = − 1

ν̂ + λ̂
cosy, ψ0 = 1

ν̂ + λ̂
cosy. (21.8)

Now let ψ =ψ0 +ϕ(x, y, t), where ϕ is an infinitesimal perturbation of the primary
flow. Then the result of the linearization of Eq. (21.6) can be written as

∂�ϕ

∂t
+ 1

ν̂ + λ̂
siny

∂(�ϕ + ϕ)

∂x
= ν̂�2ϕ − λ̂�ϕ. (21.9)
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The periodicity condition of ϕ in y allows one to use the Fourier expansion, i.e., to
seek a solution in the form

ϕ(x, y, t)= eσ t
∞∑

−∞
cn exp

{
i(αx + ny)

}
. (21.10)

After substituting (21.10) into (21.9) and grouping similar terms for the coefficients
cn, we obtain the system of equations

2(̂ν + λ̂)

α

(
α2 + n2)[σ + λ̂+ ν̂

(
α2 + n2)]cn

+ [
α2 − 1 + (n− 1)2]cn−1 − [

α2 − 1 + (n+ 1)2]cn+1 = 0. (21.11)

We are interested in the sign of the real part of those values of σ , for which there
exists a nontrivial solution of system (21.11) decaying to zero as |n| → ∞. A study
of system (21.11) and a description of its critical curves of stability are given in
Appendix A. One of approximate expressions for the critical stability curve will be
used in the next chapter.

21.2 Application to a Stability Study of Rossby Waves

In connection with barotropic atmospheric instability, Lorenz (1972) examined the
stability problem of the elementary Rossby wave

ψ0 =A0 cosk0(x + c0t), (21.12)

satisfying the quasi-geostrophic equation of barotropic potential vorticity without
taking into account two-dimensional compressibility (L−1

0 = 0):

∂�ψ

∂t
+ [ψ,�ψ] + β

∂ψ

∂x
= 0. (21.13)

To clarify the effect of the Ekman layer on such instability in the work of Dolzhan-
sky (1985) this problem was considered for Eq. (20.22) describing transformation
of the potential vorticity

∂�ψ

∂t
+ [ψ,�ψ] + β

∂ψ

∂x
= ν�2ψ − λ�ψ + q, (21.14)

in the same approximation in which λ = 2ν/δ2
St , while q = q0 cosk0(x + ct) is the

source of vorticity moving in the negative direction of the x-axis with speed c. If
c = c0, the source generates the wave (21.12) with amplitude A0 = q0/(λk

2
0 + νk4

0).
Passing to the coordinate system moving with the speed −c0, i.e., making the

change X = x + c0t , and then making Eq. (21.14) dimensionless, we obtain the
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Fig. 21.1 The critical curves
for the planetary wave with
longitudinal wavenumber
n0 = 6: 1 is for the inviscid
Lorenz theory and 2 is for the
influence of the Ekman layer
taken into account

Kolmogorov problem, but already for the equation

∂�ψ

∂t
+ [ψ,�ψ] +C0

∂

∂X
(�ψ + n0ψ)= κ�2ψ − γ�ψ +R cosn0X. (21.15)

Here C0 = c0/λr , r should be interpreted as the average radius of a circle of latitude,
then n0 = k0r is the number of wavelengths of the function ψ0 which fit into the
average latitudinal circumference 2πr , κ = ν/λr2, R = q0/λ

2, while γ = 1 or γ =
0 depending on whether or not the Ekman layer is taken into account.

As described in Appendix A, the procedure for finding the critical curve can be
applied to Eq. (21.15) as well. The necessary convergence criteria were formulated
and proved in Dolzhansky (1985). The critical curve determined from the first ap-
proximation is given by the formula

A2
cr = 2(γ +κl2)[(l2 + n2

0)
2(γ +κ(l2 + n2

0))
2 +C0n

2
0l

2]
n2

0l
2(n4

0 − l4)(γ +κ(l2 + n2
0))

, (21.16)

where l is the meridional wavenumber of the infinitesimal perturbation

ϕ = eiσ t
∞∑

n=−∞
cne

i(nX+ly),

imposed on the main flow.
Critical curves of the “inviscid” and “viscous” Rossby waves when the influ-

ence of the PBL is taken into account are shown in Fig. 21.1 in the parameter plane
ς2 = l2/n2

0 and Vcr = n0rλAcr. This figure shows the drastic change in shape of the
critical curve once the external friction is taken into account (see also Fig. B.1 in
Appendix B). In particular, according to Lorenz (1972) a typical wave with n0 = 6
and amplitude V = 12 m/s is unstable. Furthermore, the perturbation with merid-
ional wavenumber l = 0.5n0 has the largest increment. According to the inviscid



21.3 Conclusions 193

Fig. 21.2 Snapshot of a
supercritical regime (a) and
the streamlines calculated by
the Galerkin method (b) for
the Kolmogorov flow

and viscous theories for such a value of l

6.6 m/s ≈ VL < 12 m/s <VD ≈ 17.7 m/s,

where VL and VD are the critical values of velocity according to the inviscid and
viscous theories. Note also that the inclusion of only internal viscosity does not
stabilize the wave under consideration, although it gives the finite nonzero threshold
for the amplitude value which still does not change the shape of the critical curve.

21.3 Conclusions

A comparison of the critical curves of the Kolmogorov flow and planetary waves for
λ= 0 and λ �= 0 implies that the external friction suppresses the most unstable long
wavelength modes of a strictly two-dimensional flow, which results in a fundamen-
tal change in the shape of the critical curve. Moreover, according to the nonlinear
theory (Klyatskin 1972; Yudovich 1973; Nepomniaschy 1976) all stationary and
oscillatory modes that mathematically exist in the supercritical region of a strictly
two-dimensional flow turn out to be unstable. This indicates the birth of a chaotic
turbulent regime immediately after the loss of stability of the primary regime.

The situation is different in the quasi-two-dimensional Kolmogorov flow. The
most unstable mode with a nonvanishing wavenumber α0, corresponding to the min-
imum of the critical curve, at low and moderate supercritical values form secondary
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steady flows, shown in Fig. 21.2 as a result of both nonlinear theory and laboratory
experiments. In the next chapter we will see that these conclusions are of a general
nature, i.e., they are valid for a two-dimensional flow of an arbitrary velocity profile.
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Chapter 22
Stability of Quasi-two-dimensional Shear Flows
with Arbitrary Velocity Profiles

22.1 New Interpretation of the Results in Linear Stability
Theory for the Kolmogorov Flow

Equation (B.10) of Appendix B for the critical curve of the Kolmogorov flow, writ-
ten in terms of the inverse Reynolds numbers ν̂ =R−1

ν and λ̂=R−1
λ ,

ν̂ =
√

α2(1 − α2)

2(1 + λ̂/̂ν + α2)(̂λ/̂ν + α2)(1 + α2)
(22.1)

in the parameter space (α, λ̂, ν̂) can be regarded as a critical surface, or the surface of
neutral stability of the Kolmogorov flow on which the increments σ of infinitesimal
perturbations (21.10) vanish. It is easy to construct such a surface, as shown in
Fig. 22.1, by taking into account that the critical curves in the planes λ̂ = 0 and
ν̂ = 0 are defined, respectively, by equations

ν̂ = 1√
2

√
1 − α2

1 + α2
, (22.2)

λ̂ = α√
2

√
1 − α2

1 + α2
. (22.3)

The figure shows that the critical curve (22.2) is not a uniform limit of func-
tion (22.1) as λ̂→ 0, since each plane section of the critical surface has a horseshoe
shape with the exception of the plane section λ̂= 0. On the other hand, for the same
reason the curve (22.3) is the uniform limit of the function λ̂ = λ̂(α, ν̂), implicitly
defined by (22.1) as ν̂ → 0.

Thus one can conclude the following: the linear stability theory of the strictly
two-dimensional Kolmogorov flow, i.e., constructed without taking into account
external friction, is structurally unstable with respect to the inclusion of the lat-
ter and, conversely, the linear theory of the quasi-two-dimensional flow, i.e., con-
structed by taking into account external friction, qualitatively is not sensitive to
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Fig. 22.1 The surface of
neutral stability of a
quasi-two-dimensional
Kolmogorov flow in the space
of parameters
(α,1/Reλ,1/Reν)

the inclusion or exclusion of internal viscosity. Moreover, it is easy to see that for
λ0 = λ̂/̂ν = Rν/Rλ � 1, the results in the quasi-two-dimensional linear theory are
almost self-similar in Rν . What is most important is that this conclusion holds for
the nonlinear stability theory, as we shall see below.

Is the situation described above an exclusive feature of the Kolmogorov flow, or
is it typical for shear flows with arbitrary profiles? To answer this seemingly very
difficult question, we will give a new interpretation of the results in the preced-
ing chapter, which will allow us to draw certain conclusions regarding the stability
of quasi-two-dimensional shear flows, using the well-developed stability theory of
strictly two-dimensional flows.

The critical surface (22.1) is the result of solving system (21.11), in which, by
virtue of the Lin stability principle, the value of σ was assumed to be zero. Now set
λ̂= 0 and try to solve the problem of finding the dependence of the growth rate σ of
the perturbation (21.10) on the wavenumber α for an arbitrarily given positive value
of ν̂. In other words, we are interested in finding the dispersion relation σ = σ(α, ν̂).
To do this, one should set λ̂ instead of σ equal to zero in (21.11). But the problem
(21.11) at λ̂= 0 and σ �= 0 up to replacing λ̂ with σ coincides with (21.11) at σ = 0
and λ̂ �= 0. Therefore, the desired solution is implicitly given by the expression

ν̂ =
√

α2(1 − α2)

2(1 + σ/̂ν + α2)(σ/̂ν + α2)(1 + α2)
. (22.4)

In particular, as ν̂ → 0 we obtain the dispersion relation for an inviscid Kolmogorov
flow:

σ = α√
2

√
1 − α2

1 + α2
. (22.4′)
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Thus, if one knows the dispersion relation σ = σ(α, ν̂) for the linear problem of
the strictly two-dimensional Kolmogorov flow, then the critical curve of the quasi-
two-dimensional Kolmogorov flow is defined by the relation

λ̂= σ(α, ν̂), (22.5)

which essentially means the equality of the increment of the growing mode of the
strictly two-dimensional flow and its decrement related to the influence of the exter-
nal friction.

22.2 Results in Linear Stability Theory for Strictly
Two-Dimensional Shear Flows and Their New
Interpretation

It is obvious from physical considerations that the construction principle for the
critical surface of the Kolmogorov flow is applicable to an arbitrary shear flow.
To make this statement convincing, we formulate the classical problem of linear
stability, which we considered in Chap. 14, for the equation of transformation of
potential vorticity (20.22):

∂

∂t

(
�ψ −L−2

0 ψ
)+ [ψ,�ψ] + β

∂ψ

∂x
= ν�2ψ − λ�ψ + q, (22.6)

where the source of potential vorticity q depends only on the transverse (meridional)
coordinate y. Then (22.6) has a stationary solution ψ = Ψ (y), which describes the
main flow U(y) = −dΨ/dy in the direction of the x-axis and depends only on
y. It is required to study the stability of this solution with respect to infinitesimal
perturbations.

In the absence of the beta-effect and two-dimensional compressibility (β = 0,
L−1

0 = 0), whose role is not crucial, the dimensionless linear stability problem re-
duced by the method of normal modes narrows down to the eigenvalue problem for
the Orr–Sommerfeld equation (see Lin, 1958):

{
U −

[
cr + i

(
ci + λ̂

α

)]}(
ϕ′′ − α2ϕ

)−U ′′ϕ

= i
ν̂

α

(
ϕIV − 2α2ϕ′′ + α4ϕ

)
(22.7)

with the boundary conditions of adhesion at the lateral boundaries αϕ = ϕ′ = 0
at y = y1, y2 and the regularity at |y| → ∞, if the domain of integration is not
bounded. Here ϕ is the dimensionless amplitude of the harmonic perturbation

ψ = ϕ(y) exp
{
iα(x − ct)

}
, c = cr + ici , (22.8)
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Fig. 22.2 The dispersion
relation σ = σ(α) for
U = sin(y) (curve s), erf(y)
(curve e), tanh(y) (curve t )
and a piecewise-linear profile
(curve l) in the inviscid case

α is the dimensionless longitudinal wavenumber, αci = σ is the growth rate that
assumes a positive value for unstable modes. Recall that the Squire theorem allows
one to be confined to the two-dimensional problem setting. According to this theo-
rem the most dangerous perturbations are located in the plane of the main flow.

Now we see that problem (22.7) with these boundary conditions and λ̂ = 0 is
equivalent to the same problem, but at ci = 0 and λ̂ �= 0 and, consequently, for-
mula (22.5) holds, where σ = σ(α, ν̂) is the dispersion dependence of the increment
on the wavenumber at different ν̂ for strictly two-dimensional flows.

Consider in this regard the results in classical linear stability theory of two-
dimensional shear flows, most of which are related to the special case of inviscid
motions (ν = 0), i.e., to the Rayleigh equation (16.7):

[
U − (cr + ici)

](
ϕ′′ − α2ϕ

)−U ′′ϕ = 0. (22.9)

Recall that equation (22.9), unlike (22.7), is invariant with respect to the operation
of complex conjugation up to the sign change of ci . Therefore, the existence of
solutions with negative ci implies the existence of a complex conjugate solution
with positive ci . Consequently, any ci �= 0 implies instability in the inviscid theory,
a property which the Orr–Sommerfeld solutions do not have. In this connection
it is appropriate to mention the important result of Vazov and Lin (see Lin, 1958),
according to which among growing (ci �= 0) solutions of the Rayleigh equation, only
the ones with ci > 0 are the limits of solutions of the Orr–Sommerfeld equation as
ν → 0.

Typical dispersion curves obtained by different authors for the inviscid problem
are shown in Fig. 22.2. Curve (l) in this figure corresponds to a piecewise linear
profile

U = y for |y| ≤ 1, U = y

|y| for |y| ≥ 1, (22.10)

and it is described by the formula whose derivation goes back to Rayleigh, see
Betchov and Kriminale (1971), Dolzhansky et al. (1990)

σ = 1

2

[
e−4α − (1 − 2α)2]1/2

. (22.11)
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Fig. 22.3 (a) The dispersion relation γ = σ(α,Rν) for U = tanh(y). (b) Critical curves for
U = sin(y) (curve s) and tanh(y) (curve t ) without an external friction

The curve (s) refers to the Kolmogorov flow and it is described by formula (22.4′).
Dispersion curves (e) and (t) for profiles U = erf(y) and U = tanhy are obtained by
numerical integration (see Drazin and Reid 1981). Note that with rare exceptions,
the Rayleigh equation does not admit an exact analytical integration. Asymptotics
for the dispersion relations and eigenfunctions in the vicinity of the neutral points
α = 0 and α = αs �= 0 (at which σ = 0) can be found in (Betchov and Kriminale
1971) and (Drazin and Reid 1981).

Figure 22.3a shows dispersion curves of the viscous problem in the plane
(α,σ (α,Rν)) that are obtained by numerical integration at different Reynolds num-
bers (see Betchov and Kriminale 1971). The pattern shown is typical for the differ-
ent profiles of shear flows, i.e., invariant with respect to changes in the shape of the
profile, which do not significantly affect the magnitude and location of maxima and
zeros of the dispersion curves. Critical curves for viscous shear flows with profiles
U = siny and U = tanhy are presented for comparison in Fig. 22.3b. Their shapes
are also typical for the different profiles. However, focus on the difference in the sta-
bility thresholds equal to zero and

√
2 for tanhy and siny, respectively. The profiles

of (e) and (l) also have zero stability thresholds. This is easy to understand, since
in the vicinity of α = 0 the long wavelength modes perceive the current as a step-
shaped Helmholtz flow U = y/|y| (the ratio of shear width to the wavelength tends
to zero as α → 0), which is exponentially unstable with respect to any wave-like
perturbation. Its dispersion curve in dimensional values of the increment γ and the
wavenumber k is shown in Fig. 22.4a (see Chap. 14, Example 3). For comparison,
Fig. 22.4b presents the dependence γ = γ (k) for a “smeared” jump of width D,
which shows that the elimination of the velocity jump leads to stabilization of the
current relative to small-scale perturbations.

22.3 Surface of Neutral Stability of Typical
Quasi-two-dimensional Shear Flows

Now using formula (22.5), we replace in Fig. 22.3a the letter σ by λ̂. To plot the
values of ν̂ = R−1

ν , we direct the corresponding coordinate axis orthogonally to the
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Fig. 22.4 (a) The velocity
profile and dispersion curve
of a tangential discontinuity.
(b) Same as in (a) but for a
“smeared” discontinuity

Fig. 22.5 The curves of
neutral stability for
U = sin(y) at Reν/Reλ = 1
(curve 1) and at
Reν/Reλ = ∞ (curve 2)

plane of the drawing. As a result, in the space (α, λ̂, ν̂) we obtain the same surface of
neutral stability of the quasi-two-dimensional flow with velocity profile U = tanhy,
as we saw in Fig. 22.1. This surface is typical for all such viscous flows, subjected
to external friction. Consequently, all the conclusions drawn about the Kolmogorov
flow are carried over to almost arbitrary quasi-two-dimensional shear flows.

We would like to mention two important points. First, when discussing geo-
physical boundary layers (GBLs, see Chap. 20) we emphasized that one of the
applicability criteria for the quasi-two-dimensional approximation is that the char-
acteristic horizontal scale of the flow, the width of its velocity shear should be
much larger than the thickness of the outer Praudman–Stewartson layer. The lat-
ter, on the contrary, has large vertical velocities, and hence the motion is three-
dimensional. For geophysical flows this condition is satisfied by definition, and since
δSt � H � L0 and λ = ν/δ2

St (δ2
St = HδE), then Rν/Rλ = (UL0/ν)/(U/L0λ) =

L2
0/δ

2
St = L2

0/δEH = O(105) � 1. But in the latter case, as follows from the re-
sults obtained, at least the linear stability theory is self-similar in Rν . Compare, for
example, critical curves in Fig. 22.5. This conclusion is quite nontrivial and it indi-
cates the possibility of neglecting internal viscosity, i.e., the term with the highest
derivative in the equations of motion, which, generally speaking, might be rather
dangerous without an adequate reason for doing so.

Secondly, self-similarity in Rν makes it possible to simulate global atmospheric
flows in laboratory conditions, in which the huge real values of Rν are not achiev-
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able. Note that this unattainability of very large values of Rν was often used by
skeptics as one of the main arguments that a comparison of natural and laboratory
flows is not proper. On the contrary the self-similarity conditions are easily achieved
in the laboratory. In particular, in both the experiments of Hide and Mason (1975)
and the Laboratory of geophysical hydrodynamics of IAP RAS, the width of the
rotating annular channels and the depth of the fluid (water) contained therein was
about 10 cm, while the thickness of the Ekman layer was about 1 mm. These exper-
iments reproduce the fundamental regimes of general atmospheric circulation. (Re-
call that the quasi-two-dimensionality is provided not by the shallow depth of the
fluid, but by the rotation of the system, see the Praudman–Taylor theorem, Chap. 6).
Therefore, Rν/Rλ =O(102), which is quite sufficient for self-similarity in Rν .

Here is another example: in experiments on modeling, the instability of shear
flows in thin layers of electrically conducting fluid by the MHD method (see
Dolzhansky at al. 1990), the characteristic horizontal (L) and vertical (H ) scales
are of the order of a few centimeters and millimeters, respectively. In the shallow-
water approximation of a viscous fluid, the bottom friction coefficient is λ= 2ν/H 2,
and then again Rν/Rλ = 2L2/H 2 =O(102).

22.4 On Nonlinear Stability Theory of Quasi-two-dimensional
Shear Flows

Given the limited scope of this book, we would not like a discussion of the physical
nature of phenomena that accompany the formation of supercritical regimes to be
overshadowed by other topics, such as a detailed description of technical difficulties
in constructing the nonlinear stability theory for flows and the mathematical meth-
ods that allow one to overcome these difficulties. Therefore, I will only mention
briefly the key points of the problem considered.

In exceptional but important cases the problem can be reduced by the Galerkin
method to studying a nonlinear dynamical system of low order. The success of this
approach is associated, first of all, with a good choice of basis functions used in the
expansion of the required solutions, which provides the method’s fast convergence.
Secondly, often the data observed or the results of laboratory measurements indicate
that secondary flows are generated by only a very few modes. The canonical exam-
ple of this kind is the Kolmogorov flow, whose instability and secondary modes are
described with a high degree of precision by a dynamical system of the third order.
In particular, the critical curve corresponding to this model coincides with (22.4).
I strongly recommend verifying this by doing Exercise 1. The basic principles for
constructing finite-dimensional and discrete analogs of the hydrodynamic equations
are formulated in the monograph (Gledzer et al. 1981).

An effective approach to the study of soft regimes of stability loss, which are ob-
served in these flows, is associated with the Stewart–Watson method (see Drazin and
Reid 1981). The following idea of this method goes back to the works of Poincaré
and Landau. The linear stability problem is the first term of the expansion in powers
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of perturbations of small amplitude A (the soft loss of stability means the smallness
of A for weak supercriticalities). Continue this expansion and obtain the Landau
equation for the amplitude

Ȧ= σA+KL|A|2A, A� 1, (22.12)

where the constant KL is called the Landau constant.
The linear part of this equation describes the growth of perturbations due to lin-

ear instability, i.e., due to the interaction of perturbations with the main flow, while
the nonlinear term describes self-interaction of perturbations that slows down or
enhances the growth of their amplitude depending on the sign of KL. Physically,
self-interaction arises because of the nonlinearity of hydrodynamic equations: a har-
monic perturbation generates its second harmonic, distorts the average profile of
longitudinal velocity, and then interacts with the deviation from this average profile.

Technically, the problem reduces to deriving and solving the equations for per-
turbations of up to the second order of smallness inclusively. The linear part of the
operator of these equations for Rν � 1 coincides with the operator of the Rayleigh
equation. After that, the evolution equation for amplitude is derived from the solv-
ability condition of the third-order equation. Its coefficients, including the Landau
constant, are expressed as certain integrals of perturbations of the first and sec-
ond orders. It is interesting to note that according to the studies of Romanova and
Annenkov (2005), the linear instability of shear flows under certain conditions is
inhibited by quadratic, rather than cubic, nonlinearity.

The main technical problem of the Stuart–Watson method in its classical form
(λ = 0) is related to regularization of the critical layer. From a mathematical point
of view, the critical layer is a neighborhood of the singular point y = yc of the
Rayleigh equation

{
U −

[
cr + i

(
ci + λ̂

α

)]}(
ϕ′′ − α2ϕ

)−U ′′ϕ = 0,

in which the coefficient at the highest derivative vanishes. At λ̂ = 0 in a neighbor-
hood of the curve of neutral stability (αci = σ = 0), the critical point is close to the
real axis. And although for traditionally considered antisymmetric velocity profiles
U(y) = −U(−y) the quantity U ′′ also vanishes, the singularity still appears in the
following orders of the expansion. In order to glue the solutions of the Rayleigh
equation on the left and on the right from the singularity, one constructs special ex-
pansions in the critical layer, whose form depends on which of the terms dominates
the equation: the viscous, nonlinear, or nonstationary term.

External friction eliminates the problem of the critical layer, first, because λ̂ �= 0
and the singular point shifts to the complex plane. Secondly, the minimum of the
curve of neutral stability Rλ =Rλ (α,R

−1
ν = 0), at which one takes the expansion, is

assumed at the value α = α0 �= 0. This method was used in calculating the secondary
modes for different velocity profiles of the main flow. As it turned out, the nature
of supercritical regimes is extremely sensitive to small changes in the profile of the
primary flow.
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So we found that for Rν/Rλ � 1 the linear and weakly nonlinear stability theo-
ries of quasi-two-dimensional shear flows are self-similar in Rν . Taking into account
that under natural and laboratory conditions the supercriticality of shear flows in Rλ

is rather small, we arrive at the following conclusions in relation to general atmo-
spheric circulation.

(1) One of the defining criteria of self-similarity of the general circulation of the
atmosphere is the Reynolds number that is defined by external friction, and not
by internal viscosity.

(2) A relatively quiet nature of general atmospheric circulation is due to a mod-
erate supercriticality in Rλ and self-similarity in Rν , assuming in the atmo-
sphere the astronomical values (Rν = UL0/ν = O(1012) for molecular vis-
cosity ν = 0.15 cm2/s and Rν = O(106) for turbulent viscosity, whereas the
transition to turbulence in the absence of friction occurs at Rν =O(103)).

(3) One of the reasons for unpredictability of weather over long periods may be
related to the barotropic instability of global shear flows due to the strong sen-
sitivity of the secondary modes to small changes in the profile of the main flow.

Finally, we mention that the conclusion about the structural instability of the
results in the classical theory of strictly two-dimensional flows is of a general nature.
A similar situation occurs if the influence of exterior friction on the fluid is replaced,
for instance, by that of a stratification, a magnetic field (in the case of an electrically
conducting fluid), or rotation of the system as a whole.

22.5 Exercises

1. Applying the usual Galerkin procedure to Eq. (21.6) and confining the expansion
of the stream function to the most unstable modes n= 0,±1, i.e., setting

ψ = Ψ (t) cosy +
[

exp(iα0x)

1∑
−1

ϕn exp(iny)+ compl. conjugate

]
,

derive the nonlinear dynamical system for the variables Ψ (t), z0 = ϕ0(t) and
z1 = [ϕ1(t)−ϕ−1(t)]/2α0, where α0 is the value of the wavenumber, which cor-
responds to the imaginary one for the critical curve of the quasi-two-dimensional
Kolmogorov flow at a fixed value of Rν . Find stationary solutions and show that
stability conditions of the primary mode coincide with the first approximation of
the stability criterion for the quasi-two-dimensional Kolmogorov flow, obtained
from its linear stability theory.

2. Try to solve the stability problem for the flow with a piecewise linear velocity
profile (22.10) by the Stuart–Watson method. It is a very instructive task, showing
that nonlinearity is not always able to suppress linear instability. (If your attempt
fails, refer to the work Manin 1989.)
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Chapter 23
Friction in a Turbulent Boundary Layer

We return now to the equations of motion of a viscous fluid described in Chap. 19,
and consider briefly an approach to the description of turbulent flows in the frame-
work of an incompressible fluid. The basis of a statistical approach to the theory of
turbulence is the passage from considering a single turbulent flow (an implemen-
tation) to considering a statistical ensemble of possible implementations for fixed
external conditions. In other words, velocity, temperature and other characteristics
of a turbulent flow are now to be considered as random fields. Because of the un-
certainty in the probability distribution in the space of realizations, we approach the
very delicate issue of calculating the average values in a way that is common in
turbulence theory. Under the average value 〈f (r, t)〉 of a random field f (r, t) we
mean the average over the set of possible implementations (or, in other words, “the
ensemble average”), which in practical applications is replaced by the average over
time, based on the ergodic hypothesis. In this case the quantity f (r, t) itself can
be written as f (r, t) = 〈f (r, t)〉 + f ′(r, t), where f ′(r, t) are fluctuations, pulsa-
tions, deviations from the mean-field, 〈f ′(r, t)〉 = 0. Taking into account the above
definitions and using the medium incompressibility (ρ = ρ0 = const) the averaged
Navier–Stokes equations are written as follows:

∂〈ui〉
∂t

+ 〈uj 〉∂〈ui〉
∂xj

= − 1

ρ0

∂〈p〉
∂xi

− ∂〈u′
iu

′
j 〉

∂xj
+ ν�〈ui〉, (23.1)

where 〈u′
i〉 = 0 (i = 1,2,3), while the quantity

τij = 〈
u′
iu

′
j

〉
(23.2)

is called the Reynolds stress tensor.
Let us follow the analogy by introducing the concepts of the viscous stress

tensor and viscosity coefficients in the derivation of the Navier–Stokes equations
(Chap. 19). The traditional phenomenological method of closing up Eq. (23.1), sub-
ject to the dissipative effect of velocity fluctuations u′

i on the average flow 〈ui〉,
consists in interpreting the Reynolds stress tensor as the stress tensor for turbulent
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viscosity:

τij = −νturb

(
∂〈ui〉
∂xj

+ ∂〈uj 〉
∂xi

)
, (23.3)

where turbulent viscosity νturb ∼ �UL0 is defined by the dimension of the outer
scale L0 and the velocity amplitude �U .

Obviously, in the practical use of the closure hypothesis (23.3), the choice of val-
ues for turbulent viscosity depends on spatial and time scales over which the motion
is averaged. As a rule, νturb exceeds the kinematic viscosity by several orders of
magnitude, which allows us to neglect the last term on the right-hand side of (23.1).
For example, in describing the atmospheric Ekman layer, based on the observations
that the height of the planetary atmospheric boundary layer δE = (νturb/Ω)1/2 is of
the order of several hundred meters, the value of the turbulent viscosity coefficient
is assumed to be 105–106 cm2 s−1, exceeding the value of the kinematic viscosity
of air by six to seven orders of magnitude.

One of the noticeable features of atmospheric turbulence is that regions of influx
and outflux of kinetic energy are separated not only in spaces of scales or wavenum-
bers, but also in the real physical space. Dissipation of the kinetic energy takes place
mainly in the planetary boundary layer, including a surface layer of several tens of
meters in height, which is dominated by friction with the underlying surface which
spreads its influence to the whole layer because of turbulent mixing. We consider
these two layers from the point of view of turbulence theory.

23.1 Turbulence in the Atmospheric Surface Layer

For the sake of simplicity we confine ourselves to studying a neutrally stratified
layer, free from the influence of buoyancy forces. Since near the Earth’s surface,
the pressure and Coriolis forces are small as compared to the forces of friction,
the neutrally stratified surface boundary layer is defined as the region in which the
friction stresses are balanced by the Reynolds stresses τij = 〈u′

iu
′
j 〉.

It is obvious that the characteristic horizontal scale of averaged motions in the
surface layer is much greater than its height. Hence for lack of a specified horizontal
direction, all averaged characteristics of motion can be assumed to depend only on
the height z, while the turbulent momentum flux is assumed to be directed vertically.

Let the x-axis coincide with the direction of the mean wind velocity vector 〈u〉, so
that 〈ux〉 .= u(z), 〈uy〉 .= v = 0, 〈uz〉 .=w = 0. Then, by virtue of the above assump-
tions and symmetry considerations, one has τ12 = τ21 = τ23 = τ32 = 0. Moreover,
the vertical flux of the horizontal momentum 〈w′u′〉 = τ31 is equal to the horizontal
flux of the vertical momentum 〈u′w′〉 = τ13 (why?). These fluxes balance the friction
tension and are constant. It is clear that the value of this constant is negative (the
atmosphere gives away its momentum to the Earth), which we denote by

−u2∗ = 〈
u′w′〉= τ13, (23.4)
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bearing in mind its dimension of velocity squared.
The velocity derivative, as well as the velocity itself, in the surface layer depends

only on z, and for dimensional reasons it is uniquely expressed in terms of the
parameters z and u∗:

du

dz
= u∗

κz
, (23.5)

where the numerical constant κ is called the Karman constant, and its experimental
value is approximately equal to 0.4.

According to formula (23.3), where we set i = 1 and j = 3,

−u2∗ = −νturb
u∗
κz

.

This implies the expression for the turbulent viscosity coefficient:

νturb = κu∗z, (23.6)

depending on the altitude. This example shows that while using the closure hypoth-
esis (23.3) in turbulent boundary layers, it is not sufficient to know the value of the
turbulence coefficient at one point. One should keep in mind its possible dependence
on the spatial coordinates, which is defined by the specific balance of forces inherent
in the boundary layer under consideration.

By making the substitution (23.3) into (23.1) it is easy to calculate (see the deriva-
tion of formula (19.17)) the specific (per unit mass) dissipation rate of the kinetic
energy

ε = νturb

(
∂〈ui〉
∂xj

+ ∂〈uj 〉
∂xi

)
∂〈ui〉
∂xj

= 1

2
νturb

(
∂〈ui〉
∂xj

+ ∂〈uj 〉
∂xi

)2

. (23.7)

In this case, taking into account 〈u〉 = (u(z∗),0,0) and formulas (23.5) and (23.6),
one has

ε = u3∗
κz

. (23.8)

Sometimes, using the estimate νturb ∼ L0�U = L2
0�U/L0, the turbulence coef-

ficient is written in the form

νturb = L2
0

∣∣∣∣dudz
∣∣∣∣,

that allows one to estimate the outer scale of turbulence in the surface layer:

L0 = κz. (23.9)

Integrating Eq. (23.5), we obtain the logarithmic law of the wind distribution in
height, known from observations in the surface layer:

u(z)= u∗
κ

ln
z

z0
. (23.10)
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The integration constant z0 is interpreted as the height of roughness, which de-
pends on the structure of the underlying surface. It was not taken into account in
formulating Eq. (23.5), and therefore the law obtained is valid only for z � z0. For-
mula (23.10) is employed, in particular, to determine u∗ and, hence the Reynolds
stresses in the surface layer by using relatively simple measurements of the mean
wind velocity at different altitudes.

23.2 Turbulent Planetary Boundary Layer (PBL) and Its Impact
on Motions of Global Scale

The influence of the planetary boundary layer on large-scale motions of the atmo-
sphere is carried out by the vertical flows at its upper border.1 Such flows materialize
the exchange of horizontal momentum between the free atmosphere and the bound-
ary layer, which ultimately leads to slowing down the global flows. This mecha-
nism of inhibition in its most explicit form manifests itself in the derivation of the
quasi-geostrophic equation of transformation of the potential vorticity of a viscous
barotropic atmosphere. It can be written (see Chap. 20) in the form

∂

∂t

(
�Ψ −L−2

0 Ψ
)+ [Ψ,�Ψ ] + β

∂Ψ

∂x
= − f0

H0
wE + q,

Ux = −∂Ψ

∂y
, Uy = +∂Ψ

∂x
.

(23.11)

(Indeed, use Eq. (20.19) and pass to the description in terms of the stream function
Ψ , while keeping intact the term containing the vertical velocity wE at the upper
boundary of the Ekman layer.) Here q denotes the sum of the external source of
vorticity and its dissipation ν�2Ψ due to viscosity. Unlike in Chap. 20, the velocity
components and the stream function related to the free atmosphere are denoted here
by the capital letters Ux , Uy and Ψ , respectively. The expression for the vertical
velocity

wE = δE�Ψ, (23.12)

valid in the case of a laminar (laboratory) Ekman layer was also extended in
Chap. 20 to the case of a turbulent atmospheric planetary boundary layer upon re-
placing the kinematic viscosity ν by the turbulent viscosity νturb. As was already
mentioned above, the latter can be estimated from the condition that the height of
the PBL (planetary boundary layer), known from observations and ranging from a
few hundred meters to one kilometer, is set to be equal to δEturb = (2νturb/f0)

1/2.
Practically, this means that the estimates can vary by more than an order of magni-
tude.

1In this section we follow Dolzhansky and Manin (1993), Danilov et al. (1993).
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This already indicates that the straightforward replacement of kinematic viscos-
ity by the empirical coefficient of turbulent viscosity in order to describe the real
planetary layer and its impact on global motions is a rather naive oversimplification.
To convince ourselves about this, we consider a less idealized, but still a rather re-
mote from a reality situation in which the movement of the PBL is a developed tur-
bulence according to the Richardson–Kolmogorov–Obukhov scenario (see Monin
and Yaglom 1992). More precisely, we are talking about satisfying the following
conditions.

1. The planetary boundary layer is a domain of a developed three-dimensional tur-
bulence.

2. The characteristic linear scale λ of vortices located in the PBL is much smaller
than the height δEturb of the PBL (λ� δEturb).

3. The characteristic times τ for vortices in the PBL are much smaller than the
characteristic time of the weather change (τ � f−1

0 ).
4. The characteristic scale of inhomogeneities in the PBL in horizontal directions

greatly exceeds the scale of its inhomogeneities in the vertical direction.
5. Planetary boundary layer (PBL) is neutrally stratified.

The proposed idealization takes into account neither the vertical temperature
stratification of a real PBL nor the presence of so-called coherent structures in it.
Such structures consist of ordered systems of vortices whose size is of the order of
the layer thickness and swirled around the horizontally-oriented axes. Our goal is to
clarify the influence of “fine-seed” three-dimensional turbulence with vortex scales
of the order of 0.1–10 m on the dynamics of global flows whose size is of order 1000
kilometers or more.

These assumptions allow us to consider turbulence in the PBL as a steady hori-
zontally homogeneous process, almost instantly adjusting to changes in the motion
of the free atmosphere. Dependence on time and the horizontal coordinates x and
y is taken into account only parametrically through the horizontal wind velocity
U(x,y, t) on the upper boundary of the PBL and the Coriolis parameter f (x, y).
Here the average characteristics of the PBL under consideration are self-similar
in νturb. This drastically distinguishes the turbulent planetary boundary layer from
the laminar Ekman layer or its turbulent “opponent” with the turbulent viscosity
coefficient νturb.

It follows that the vertical dependence of the characteristics of the boundary
layer is reduced to the functions of the dimensionless vertical coordinate ζ = zf/U ,
uniquely determined by dimensionality considerations for U and f , the two exter-
nal parameters of the PBL. Then in the coordinate system whose x-axis coincides
with the direction of the quasi-geostrophic wind U(x, y, t) on the upper boundary
of the layer, the averaged horizontal components of the velocity inside the PBL can
be written as follows:

u=U(x,y, t)ϕ1(ζ ), v =U(x,y, t)ϕ2(ζ ), U = |U|. (23.13)
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Fig. 23.1 Schematic
representation of laminar and
turbulent planetary boundary
layers

Here ϕ1(ζ ) and ϕ2(ζ ) are universal dimensionless functions of the dimensionless
vertical coordinate ζ , satisfying the natural boundary conditions

ϕ1(0)= ϕ2(0)= ϕ2(∞)= 0, ϕ1(∞)= 1. (23.14)

In the more general case, when the wind U has two components U = (U1,U2), we
have

u=U1ϕ1 −U2ϕ2, υ =U1ϕ2 +U2ϕ1. (23.13′)

As it is usually done in the theory of boundary layers, the upper boundary is con-
ventionally moved to infinity, and ϕ2(ζ ) does not vanish identically because of the
wind turning with height, already familiar to us (see Chap. 20). Note also that the
influence of the surface layer on the vertical distribution of the horizontal wind is
not marked here explicitly. However it is taken into account in further estimates of
the function values ϕ1(ζ ) and ϕ2(ζ ) (which cannot be determined from dimensional
or similarity considerations) by using measurements in independent laboratory ex-
periments.

One of the major and fundamental differences between a turbulent PBL and a
laminar one, schematically illustrated in Fig. 23.1, is that even for f = f0 = const
its thickness δEturb ∼ U/f defined by two, rather than three (ν, U and f ), external
parameters is a function of coordinates and time. As we shall see, this has quite
unexpected consequences. In what follows, for the sake of simplicity we consider
PBL without taking into account the dependence of f on the coordinates.
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23.2.1 Vertical Velocity at the Upper Boundary of a Turbulent PBL

We assume the medium to be incompressible and homogeneous in the boundary
layer. Integrating the continuity equation over the height of this boundary layer we
obtain

wE = −
δEturb∫

0

div u · dz,
(

div u = ∂u

∂x
+ ∂v

∂y

)
. (23.15)

In subsequent arguments the unknown quantity δEturb is required only to be much
less than the height of the atmosphere.

Formulas (23.13′) for the horizontal wind field can be rewritten in the form

u =A(ζ )U(x, y, t), A(ζ )=
(
ϕ1(ζ ) −ϕ2(ζ )

ϕ2(ζ ) ϕ1(ζ )

)
, (23.16)

whence

div u =Aik

∂Uk

∂xi
− ζ

U

∂U

∂xi
A′
ik(ζ )Uk. (23.17)

The second term on the right-hand side appeared as a result of differentiation of
the quantity ζ = zf/U(x, y, t) in x, y. Here Aik are matrix entries of A, Uk are

components of the vector field U, whose modulus is denoted by U =
√
U2

1 +U2
2 ,

the prime denotes differentiation in ζ , while the same indices imply summation.
After substituting (23.17) into (23.15) and integration by parts we have

wE = 1

f
Bik

∂(UUk)

∂xi
, B =

(
κ1 κ0

−κ0 κ1

)
, (23.18)

where

κ0 =
∞∫

0

ϕ2(ζ )dζ, κ1 =
∞∫

0

[
1 − ϕ1(ζ )

]
dζ (23.19)

are positive constants (see below). Now using the easily verifiable identities

div(UU)= rotz(k × UU), rotz(UU)= div(k × UU), (23.20)

we obtain the following dual representation for wE :

wE = κ0

f
rotz(UU)+ κ1

f
rotz(k × UU)

= κ0

f
div(k × UU)+ κ1

f
div(UU). (23.21)

Here k is the vertical unit vector and rotz(UU)= ∂(UUy)/∂x − ∂(UUx)/∂y. In the
derivation of (23.21) we used the boundary conditions (14) under the assumption
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that the functions [1 − ϕ1(ζ )] and ϕ2(ζ ) decay at infinity faster than 1/ζ . The hy-
drodynamic meaning of the dual representation (23.21) becomes obvious if we re-
call that wE in Eq. (23.11) plays the role of a source (or sink) of vorticity, while in
Eq. (20.18) of the mass conservation of the free atmosphere it plays the role of the
source of mass.

Positivity of the constants κ0 and κ1 follows from the fact that the wind in the
PBL turns in the direction of the pressure deficit, and therefore, the components of
the wind velocity in the above special coordinate system inside the layer are strictly
positive. In addition, one can show that the constants κ0 and κ1 are small and have
the same order of magnitude. Therefore, one can set κ1 = ακ0, where α = O(1)
and κ0 � 1. Note also that since the functions ϕ1 and ϕ2 are of order one, then κ0
can be regarded as the dimensionless thickness of the PBL, i.e., measured in units
of U/f .

23.2.2 Equations of Global Flows Under the Influence of the
Turbulent Planetary Boundary Layer

Formally, Eq. (23.11) for L−1
0 = 0 can be interpreted as the vorticity equation for a

strictly two-dimensional atmosphere with an external source of vorticity, which is
obtained by applying rotz to the two-dimensional hydrodynamic equations written
in terms of velocity. Then

− f

H0
wE = rotz F,

where F, according to the first formula in (23.21) can be written as

F = − 1

D0
(UU + αk × UU)+ ∇Φ. (23.22)

Here Φ = Φ(x,y, t) is an arbitrary scalar function of horizontal coordinates and
time, while D0 =H0/κ0.

Restoring now the equation for the velocity field of the hypothetically strictly
two-dimensional atmosphere under consideration, we obtain the hydrodynamic
equations with quadratic friction and differential rotation:

dU
dt

+
(

1 + α
U

D0f

)
f k × U = − 1

ρ
∇p − 1

D0
UU + Fq,

d

dt
= ∂

∂t
+Ux

∂

∂x
+Uy

∂

∂y
.

(23.23)

Here Fq is the force that creates an external source of vorticity q = rotz Fq , while
Φ is included in the pressure. For L−1

0 �= 0, substituting (23.21) into (23.11) and
taking into account the identities

rotz(UU)≡ div(k × UU)≡ |∇Ψ |�Ψ + ∇Ψ∇|∇Ψ |, (23.24)
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rotz(k × UU)≡ div(UU)≡ [
Ψ, |∇Ψ |] (23.25)

gives the quasi-geostrophic equation for transformation of the potential vorticity for
a barotropic atmosphere with a turbulent PBL:

∂

∂t

(
�Ψ −L−2

0 Ψ
)+

[
Ψ,

(
�Ψ + f + α

D0
|∇Ψ |

)]

= − 1

D0

(|∇Ψ |�Ψ + ∇Ψ∇|∇Ψ |)+ q. (23.26)

The gyroscopic term in (23.26) can be rewritten in the form

f + α

D0
|∇Ψ | = f

(
1 + ακ0|∇Ψ |

H0f

)
= f

(
1 + α

δE

H0

)
.

Here δEturb = κ0|∇Ψ |/f = κ0U/f is the above-mentioned evolving height of the
turbulent PBL, creating a nonlinear orographic beta-effect defined by the α-term in
Eq. (23.26).

Thus, in contrast to the laminar Ekman layer, a turbulent planetary boundary
layer inhibits the free atmosphere according to the nonlinear friction law, creat-
ing an additional nonlinear orographic beta-effect. The physical interpretation of
this phenomenon is quite simple: in contrast to a laminar PBL, in a turbulent PBL
not only translational but also rotational degrees of freedom are excited, while the
thickness of the PBL, which varies in space and time, is equivalent to the orographic
effect.

In the bibliography below one can find further developments of the material pre-
sented here, including taking into account specifics of the atmospheric turbulence.
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Part V
Mechanical Prototypes of Equations

of Motion of a Rotating Stratified Fluid and
a Toy Model of Atmospheric Circulation



Chapter 24
Hydrodynamic Interpretation of the Euler
Equations of Motion of a Classical Gyroscope
and Their Invariants

24.1 A Hydrodynamical Top

In 1879, a prominent English hydrodynamist A.G. Greenhill made an observation
whose theoretical value was recognized almost a century later (see Sect. 24.3 be-
low). He observed that the Euler equations for a rigid body with a fixed point de-
scribe the flow of an ideal homogeneous incompressible fluid (whose equations of
motion are also named after Euler) inside a triaxial ellipsoid within the class of lin-
ear velocity fields. This discovery was used, in particular, by such classics of science
as N.E. Zhukovskii, S.S. Hough, and H. Poincaré to study the motions of solids with
cavities filled with a fluid (see Moiseev and Rumyantsev 1965).

Consider the motion of an ideal homogeneous incompressible fluid inside a tri-
axial ellipsoid

S ≡ x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

− 1 = 0,

assuming that the coordinate axes coincide with the directions of its principal axes,
while the center of the ellipsoid is at the origin. Generally speaking, such a motion
is described by the Euler equations:

∂u
∂t

+ (u∇)u = − 1

ρ0
∇p, div u = 0, (24.1)

or the Helmholtz equation

∂�

∂t
= {�,u} = (�∇)u − (u∇)�, (24.2)

where

{A,B} .= (A∇)B − (B∇)A
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is the Poisson bracket of vector fields A and B. In this case we are talking about
strictly solenoidal flows satisfying the impermeability condition on the boundary

(u∇)S = 0 for S = 0. (24.3)

Here the density is ρ0 = const, and � = rot u.
The divergence-free vector fields

W1 = −a2

a3
x3j + a3

a2
x2k,

W2 = −a3

a1
x1k + a1

a3
x3i, (24.4)

W3 = −a1

a2
x2i + a2

a1
x1j

(here i, j, k are vectors in the directions of coordinate axes) are particular stationary
solutions of the differential equations (24.1) and (24.2) satisfying the boundary con-
ditions (24.3), and they describe fluid “elliptical” rotations around the corresponding
principal axes of the ellipsoid. In the space of vector fields where the metric is given
by inner product

〈A,B〉 =
∫ ∫

D

A · Bdxdydz

(here the symbol · means the standard local inner product, D is the volume bounded
by the ellipsoid), the above vector fields are orthogonal to each other

〈Wi ,Wj 〉 = 0 for i �= j. (24.5)

Therefore, in the space of linear divergence-free vector fields tangent to the bound-
ary of D, the set Wk (k = 1,2,3) can be regarded as an orthogonal basis. One can
look for a general nonstationary solution of the hydrodynamical equations in such a
space in the form

u(r, t)=
3∑

k=1

ωk(t)Wk(r). (24.6)

The coefficients ωk(t) (k = 1,2,3) depending on time only are called the Poincaré
parameters and are expressed via components of the vorticity � by the formulas:

ωk = a1a2a3

akIk
Ωk (k = 1,2,3). (24.7)

Here Ik =∑3
s=1 a

2
s − a2

k (k = 1,2,3) are nonvanishing entries of the diagonal ma-
trix I (see (24.9)).

Now making the substitution (24.6) in the first Eq. (24.1), multiplying it by each
of the basis vectors Wk and integrating over the volume D, and also taking into
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account the orthogonality (24.5) and boundary conditions (24.3), we obtain the fol-
lowing system of equations for the vector components ω = ω1i +ω2j +ω3k:

I1ω̇1 = (I3 − I2)ω2ω3,

I2ω̇2 = (I1 − I3)ω3ω1, (24.8)

I3ω̇3 = (I2 − I1)ω1ω2.

In vector form this can be rewritten as

ṁ = ω × m, m = Iω. (24.8′)

Here I is the above-mentioned diagonal matrix whose components are expressed
through the principal axes of the ellipsoid:

I =
⎛
⎝I1 0 0

0 I2 0
0 0 I3

⎞
⎠=

⎛
⎝a2

2 + a2
3 0 0

0 a2
3 + a2

1 0
0 0 a2

1 + a2
2

⎞
⎠ . (24.9)

Equations (24.8) or (24.8′) coincide with the Euler equations of motion of the
classical gyroscope (or rigid body with a fixed point, see (12.2)) and, therefore,
have two quadratic positive first integrals of motion:

Em = 1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)≡ 1

2

(
m2

1

I1
+ m2

2

I2
+ m2

3

I3

)
, (24.10)

m2 = I 2
1ω

2
1 + I 2

2ω
2
2 + I 2

3ω
2
3 ≡m2

1 +m2
2 +m2

3. (24.11)

The origin of the first invariant (24.10) is straightforward: by making the substi-
tution (24.6) in the expression for the kinetic energy of the fluid contained inside the
ellipsoid, we obtain

E = 1

2
ρ0

∫ ∫

D

u2dxdydz= 1

5
μEm, μ= 4

3
ρ0πa1a2a3.

In other words, the invariance of Em, as in the case of a mechanical gyroscope,
means the conservation of the kinetic energy of the fluid top.

Consider the origin of the second invariant (24.11). The vorticity satisfying the
Helmholtz equation (24.2) is the vector field that characterizes the motion of an
ideal incompressible homogeneous fluid. As a consequence, one obtains the Kelvin
theorem, whose infinitesimal formulation can be written as follows:

d

dt
(� · δσ )≡ d�

dt
δσ + �

dδσ

dt
= 0

(
d

dt
= ∂

∂t
+ u∇

)
, (24.12)
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where � · δσ = K is the Kelvin invariant, while δσ is the area of an element of an
oriented surface bounded by a contractible closed liquid contour. Recall (see (1.25))
that the motion of this element is described by the equation

dδσ

dt
= −δσ

∂u
∂r

((
δσ

∂u
∂r

)
i

=
3∑

k=1

δσk
∂uk

∂xi

)
. (24.13)

For the flow under consideration, take δσ to be an element of the plane P , pass-
ing through the origin, the ellipsoid’s center (see Dolzhansky 2005). Since we are
dealing with a flow which does not move the fluid particle located at the origin, the
chosen element, regarded as a liquid surface, will only deform and rotate in space
without changing its center location. This means that δσ = δσ (t) is a function of
time only and it does not depend on spatial coordinates. Then, by substituting (24.6)
and (24.7) into (24.12) and (24.13), we obtain

d

dt
(m · l)= 0, li = ai

a1a2a3
δσi (i = 1,2,3), (24.14)

l̇ = ω × l. (24.15)

From this it follows that the Kelvin invariant for this class of flows can be written in
the form

K = m · l,

where l satisfies the Poisson equation (24.15).
Since m is described by Eq. (24.8′), which is formally identical to Eq. (24.15),

then substituting m instead of l in (24.14) we get:
The invariant m2 for the hydrodynamic gyroscope is a direct consequence of

Kelvin’s theorem, and its mechanical prototype is the conservation law of angular
momentum.

24.2 Mechanical and Fluid Gyroscopes in the Field of Coriolis
Forces

From the point of view of geophysical fluid dynamics, the influence of Coriolis
forces on the motion of fluid and mechanical tops is of particular interest. With re-
gard to the mechanical top one only has to specify which rotating coordinate system
is actually under consideration. Since the Euler equations for the hydrodynamic gy-
roscope are written relative to the space, while for the mechanical top relative to
the body, then the rotation axis of the new coordinate system for the mechanical top
must be chosen to be stationary relative to the body, and not relative to the space.
Otherwise, the equations of the mechanical and fluid gyroscopes will not be equiv-
alent because the total angular velocity, measured relative to the body will already
depend on time.
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Thus, let �0 be the constant angular velocity for the rotation of a new coordinate
system relative to the body. Employ the well-known formula for transformation of
the time derivatives for an arbitrary vector A relative to the stationary and rotating
coordinate systems (see Landau and Lifschitz 1973):

dA
dt

=
(
dA
dt

)
R

+ �0 × A, (24.16)

where the index R stands for the time derivative relative to the rotating coordinate
system.

Let ω and m be the angular velocity and kinetic moment of the body relative
to the space, while ωr and mr are the angular velocity and angular momentum
for the new coordinate system, where ω = ωr + �0, m = mr + m0 (m0 = I�0).
Applying formula (24.16) and taking into account that dm/dt = 0 (conservation of
the angular momentum), we have

(
d(mr + m0)

dt

)
R

+ (ωr + �0)× (mr + m0)= 0. (24.17)

We now consider the coordinate system fixed relative to the body, which rotates
relative to the originally chosen one with the angular velocity −�0. Then, according
to (24.16),

(
d(mr + m0)

dt

)
R

=
(
d(mr + m0)

dt

)
C

− �0 × (mr + m0),

where the index of C denotes the time derivative in a coordinate system that is fixed
relative to the body. After substituting the last formula in (24.17) and by taking
into account that in the chosen coordinate system one has ṁ0 = 0, the equations of
motion for a rigid body with a fixed point in a field of Coriolis forces can be written
in the form (the indexes R and C are omitted):

ṁ = (m + m0)× ω, m = Iω, m0 = I�0, (24.18)

where ω and m stand for the angular velocity of the body and its kinetic momentum
relative to the rotating coordinate system, but measured relative to the system fixed
in the body.

The equations of motion of the fluid gyroscope in the field of Coriolis forces can
be easily obtained by applying to the equations of motion of a rotating fluid

du
dt

+ 2�0 × u = − 1

ρ0
∇p, div u = 0, (24.19)

the same operation that was used above for Eq. (24.1). As a result, we obtain that
within the class of linear velocity fields, the motion of an ideal homogeneous in-
compressible fluid inside an ellipsoid rotating with constant angular velocity �0 is
described by the equations:

ṁ = ω × (m + 2m0), m = Iω, m0 = Iω0. (24.20)
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Here, ω and ω0 are the vorticity � and the angular velocity of the total rotation
�0 (see (24.7)) upon the affine transformation. The equations (24.20) up to trivial
changes ω −→ −ω and 2ω0 −→ −�0 coincide with (24.18). The need for such
changes is related, first to the fact that in the Eulerian description the hydrodynamic
equations are written not with respect to “the body” (fluid), but relative to the space,
and secondly, Eq. (24.20) are written in terms of vorticity, equal to the doubled
angular velocity of the local rotation of the fluid.

Equations (24.20) have two quadratic first integrals of motion:

E = 1

2
ω · m, K2 = (m + 2m0)

2, (24.21)

which correspond to the kinetic energy and the Kelvin invariant. In particular, this
means that Eq. (24.20), as well as the mechanical Euler equations, are integrable in
quadratures.

24.3 A Historical Note

The Greenhill result mentioned earlier in this chapter suggests that the mechanical
and hydrodynamical Euler equations share common fundamental symmetry prop-
erties, which should be manifest in common characteristics of their solutions. The
decisive step in this direction was made by V.I. Arnold, who formulated a group-
theoretical notion of a rigid body whose configuration space (the space of general-
ized coordinates) is an arbitrary Lie group. This construction, called the generalized
rigid body (GRB) by Arnold, includes both the mechanical and hydrodynamical
Euler equations as special cases. They are obtained if for a configuration space one
takes, respectively, SO(3), the group of isometric rotations of the three-dimensional
Euclidean space, and SDiff(D), the group of smooth mappings of a bounded do-
main D of the three-dimensional Euclidean space into itself that preserve the vol-
ume element. Thus, the Euler equations of motion of the classical gyroscope can
be regarded as mechanical prototypes of the Euler equations of motion of an ideal
incompressible fluid. In addition, Arnold discovered that mechanical analogs of the
Kelvin circulation theorem and Rayleigh’s theorem (see Chap. 16) on the stability
of motion of an ideal fluid, whose velocity profile has no inflection points are, re-
spectively, the conservation laws for angular momentum and Euler’s theorem on the
stability of the gyroscope rotations about the minor and major axes of its inertia
tensor.

The next step was made by the author of this book, who generalized Arnold’s
construction to the cases of the GRB motion in external force fields with a scalar
or vector potential. As a result, the group-theoretic concepts of a generalized heavy
top (GHT) and the generalized magnetohydrodynamical system (GMHD) were in-
troduced. These concepts include the Euler–Poisson equations of motion of a heavy
top and the Oberbeck–Boussinesq equations of motion of an incompressible strat-
ified fluid in the gravity field and respectively the equations of motion of an ideal
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solid conductor in a magnetic field and the magnetohydrodynamics equations. On
this basis, mechanical prototypes for other known fundamental hydrodynamical in-
variants, such as the potential vorticity and the MHD Woltjer invariants were found.
Some of these results related to homogeneous and stratified incompressible fluids
are illustrated here in an elementary way (while the rigorous proof is possible only
on the basis of the group-theoretic approach) by using the hydrodynamical treatment
of the mechanical Euler and Euler–Poisson equations. This will help us construct a
toy model of the general atmospheric circulation that reproduces the fundamental
properties of the global motions of the real atmosphere. More details on these issues
and rather accessible treatment can be found in Dolzhansky (2005).

24.4 Exercises

1. Try to draw the phase portrait of a mechanical or fluid gyroscope in the space
of angular momentum or of its hydrodynamical counterpart, using the invari-
ants (24.10), (24.11). Find the fixed points (stationary solutions). How do the
phase trajectories behave in the vicinity of fixed points?

2. Express the pressure inside the fluid gyroscope via the Poincaré parameters.

Answer:

p(r, t)= ρ0

3∑
i=1

3∑
j=1

Pijωiωj ,

where

Pii = 1

2

3∑
s=1

x2
s − x2

i , Pij = − aiaj

a2
i + a2

j

xixj .

3. By using the invariants (24.21) try to sketch the phase portrait of a gyroscope in
the field of Coriolis forces, depending on the number Ro = |ω/2ω0|, provided
that the total rotation occurs around one of the principal axes of the ellipsoid.

Hint: Trajectories are the intersection of the “energy ellipsoid”

m2
1

2EI1
+ m2

2

2EI2
+ m2

3

2EI3
= 1

with the “circulation sphere” of radius K and centered at −2m0. In general,
the solution of this problem should be computer-assisted, but for small Rossby
numbers the result is easy to imagine. For small Rossby numbers describe the
motion in an analytical form. What does it remind you of?
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Chapter 25
Mechanical Interpretation
of the Oberbeck–Boussinesq Equations
of Motion of an Incompressible Stratified Fluid
in a Gravitational Field

25.1 A Baroclinic Top

The Oberbeck–Boussinesq equations are of particular interest in connection with
their extensive use in the studies of convection of an incompressible fluid, including
convection of a rotating fluid, and mechanisms of baroclinic instability. In Part I we
already noted that stratification of the fluid, rather than its compressibility, plays a
decisive role in the mechanism of baroclinic instability. That is why in theoretical
studies it does not make sense to complicate the problem by taking compressibility
into account, if one does not consider near- or super-sonic motions. The Oberbeck–
Boussinesq equations are written in the form

∂u
∂t

+ (u∇)u = − 1

ρ0
∇p + ρ

ρ0
g, (25.1)

∂ρ

∂t
+ (u∇)ρ = 0, div u = 0. (25.2)

Here g is the acceleration of gravity, ρ = ρ(r, t) is the density deviation from the
average background value ρ0 = const, p is the deviation of pressure from the equi-
librium hydrostatic distribution P0 = P0(z) (dP0/dz+ gρ0 = 0). In deriving (25.1)
one ignores the excess of hydrodynamical pressure ρdu/dt as compared with the
Archimedean forces, while (ρ/ρ0)g is the total of both gravity and Archimedes
forces (see Landau and Lifschitz 1986).

In terms of the vorticity � and q = ∇ρ/ρ0, the equations of motion assume the
form

∂�

∂t
− {�,u} = −g × q, (25.3)

∂q
∂t

+ (u∇)q = −q
∂u
∂r

. (25.4)
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They conserve the full energy of the fluid

E = 1

2
ρ0

∫ ∫
D

u2dxdydz−
∫ ∫

D

ρg · rdxdydz (25.5)

and have two Lagrangian invariants: potential vorticity

Π = � · ∇ρ (25.6)

and density ρ (by definition).
An elliptic rotation of such a stratified fluid inside an ellipsoid, arbitrarily ori-

ented in space, can be described in the class of spatially linear velocity fields (24.4),
(24.6) and density

ρ(r, t)= r · ∇ρ = ∂ρ

∂x1

∣∣∣∣
0
x1 + ∂ρ

∂x2

∣∣∣∣
0
x2 + ∂ρ

∂x3

∣∣∣∣
0
x3, ρ(0, t)= 0, (25.7)

where ∇ρ = ∇ρ(t) depends only on time. Substituting (24.6) and (24.7) into (25.3)
and (25.4), one obtains the system

ṁ = ω × m + gσ × l0, (25.8)

σ̇ = ω × σ , m = Iω, (25.9)

where components of the vector σ are relative differences in densities on the major
semiaxes of the ellipsoid:

σ = 1

ρ0

(
a1

∂ρ

∂x1

∣∣∣∣
0
i + a2

∂ρ

∂x2

∣∣∣∣
0
j + a3

∂ρ

∂x3

∣∣∣∣
0
k
)
.

The vector l0 is a constant vector having the dimension of length. This vector is
defined by the ellipsoid’s orientation in space:

l0 = a1 cosα1i + a2 cosα2j + a3 cosα3k,

where quantities cosαi (i = 1,2,3) are cosines of the corresponding angles of the
gravity acceleration vector g with the principal ellipsoid axes.

According to (25.9), σ 2 = const. Therefore, by introducing the unit vector γ =
σ/σ and making the changes ω → −ω and σ → −σ , the system (25.8) and (25.9)
can be rewritten in the form

ṁ = m × ω + gσγ × l0, (25.10)

γ̇ = γ × ω, m = Iω. (25.11)

And this is precisely the Euler–Poisson equations of motion of a heavy top, written
in a coordinate system that is fixed relative to the body. In this case m and ω are
the angular momentum and angular velocity of the body, σ is the mass of the top,
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γ is the unit vector in the gravity direction, and l0 is the radius vector of the body’s
center of mass. The Euler–Poisson equations have three first integrals of motion:

Em = 1

2
m · ω + gσ l0 · γ , (25.12)

Πm = m · γ , γ 2 = γ 2
1 + γ 2

2 + γ 2
1 . (25.13)

The former integral is the total kinetic and potential energy of the mechanical sys-
tem. The second one is the projection of angular momentum in the direction of the
gravitational field, which, according to E. Noether’s theorem, is preserved because
of invariance of the Hamiltonian (i.e., energy) with respect to rotations around the
vertical axis. The invariance of γ 2 is a consequence of gravity’s immobility relative
to the space.

From the hydrodynamical point of view, Em remains the energy, whereas Πm

can now be regarded as the potential vorticity of flows. The latter can be easily ver-
ified by a direct substitution of (24.7) and (25.7) into (25.6). It is remarkable, how-
ever, that the invariance of potential vorticity is also a consequence of E. Noether’s
theorem. Indeed, in the dynamics of an incompressible stratified fluid, the role of
equipotential surfaces is played not by horizontal levels, as in the mechanical case,
but by surfaces of constant density: any map of such a surface into itself does not
change the total potential energy of a stratified fluid. Therefore, to obtain a hydro-
dynamical analogue of the mechanical invariant Πm, one has to project not in the
vertical direction, but in the direction that is normal to the surface of constant den-
sity, i.e., in the direction of ∇ρ. Thus, there is almost a literal analogy between the
mechanical and hydrodynamical invariants Πm and Π .

The described analogy between the equations of motion for a heavy fluid and
a heavy top and between their invariants remains valid for motions in the field of
Coriolis forces, provided that in the case of a mechanical system, the reference frame
is rotated relative to the body rather than relative to the space. In this case, one has
mechanical prototypes for the equations of motion of a rotating stratified fluid,

∂u
∂t

+ (u∇)u + 2�0 × u = − 1

ρ0
∇p + ρ

ρ0
g, (25.14)

∂ρ

∂t
+ (u∇)ρ = 0, div u = 0 (25.15)

with the integral invariant

E = 1

2
ρ0

∫ ∫

D

u2 dxdydz−
∫ ∫

D

ρg · r dxdydz (25.16)

and Lagrangian invariants

Π = (� + 2�0) · ∇ρ and ρ. (25.17)
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The equations of these mechanical prototypes are

ṁ = ω × (m + 2m0)+ gσ × l0, (25.18)

σ̇ = ω × σ , m = Iω, m0 = Iω0. (25.19)

By substituting ω → −ω, 2ω0 → −ω0 and σ/σ → −γ these equations can be
reduced to the heavy top equations in the Coriolis force field,

ṁ = (m + m0)× ω + gσγ × l0, (25.20)

γ̇ = γ × ω, m = Iω, m0 = Iω0 (25.21)

with the first integrals of motion

Em = 1

2
m · ω + gσ l0 · γ , (25.22)

Πm = (m + m0) · γ , γ 2 = γ 2
1 + γ 2

2 + γ 2
1 = 1. (25.23)

Below we shall use the following terminology taking into account the hydrody-
namical interpretation (24.20) for equations of the classical gyroscope. We will call
a barotropic top the equations of motion for the classical gyroscope in the Cori-
olis force field (24.18), while the name baroclinic top will stand for Eqs. (25.18)
and (25.19) taking into account the stratification of the fluid medium.

25.2 Quasi-geostrophic Approximation of a Baroclinic Top

Having in mind the above analogies, from the point of view of geophysical hy-
drodynamics it is of special interest to construct a mechanical prototype of quasi-
geostrophic equations of motion of a baroclinic atmosphere and to understand its
hydrodynamical interpretation. To do this we have the perfect tool, a baroclinic top
with its invariants, emphasizing fundamental symmetry properties of the equations
of a rotating baroclinic fluid. First, we note that the atmospheric circulation and its
laboratory analogues are convective processes. For their description, the Oberbeck–
Boussinesq equations are written in terms of temperature fluctuations that are related
to density fluctuations having the ratio T/T0 = −ρ/ρ0. In this case, one needs to
replace the quantity σ in Eqs. (25.18) and (25.19) by

−σ = q = 1

T0

(
a1

∂T

∂x1

∣∣∣∣
0
i + a2

∂T

∂x2

∣∣∣∣
0
j + a3

∂T

∂x3

∣∣∣∣
0
k
)
, (25.24)

in terms of which the invariants assume the form

Em = 1

2
m · ω + gl0 · q, (25.25)
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Πm = (m + 2m0) · q, q2 = q2
1 + q2

2 + q2
1 . (25.26)

To derive the desired approximation, we use exactly the same scheme which was
used in Part II with respect to the equations of motion of the baroclinic atmosphere.
Recall that our approach was as follows.

I. The Rossby number ε = U/f0L = Ωz/f0, together with the dimensionless pa-
rameters

ξ = f 2
0 L

2

gH
=O(ε), η = N2H

g
=O(ε) (25.27)

are assumed to be small. Note that the same order of smallness is not necessary,
and it was used only to simplify the reasoning. Here f0 is the averaged Corio-
lis parameter, L and H are typical horizontal and vertical scales of the global
atmospherical flows, U and Ωz are their characteristic horizontal velocity and
vertical vorticity, while N2 = −gρ−1

0 ∂ρ/∂z = gT −1
0 ∂T /∂z is the square of the

Brunt–Väisälä frequency, provided that ∂T /∂z > 0.
II. The motion is assumed to be quasi-hydrostatic and quasi-geostrophic, i.e., rela-

tions for the thermal wind are satisfied up to O(ε).
III. The desired approximation is obtained by expanding the equations for conser-

vation of potential vorticity and temperature transport in parameter ε with ac-
curacy up to the terms O(ε2).

Let g be directed in the negative direction of the axis x3, around which the ellip-
soid rotates with angular velocity �0. For the system (25.18)–(25.19) the parameters
ε, L2 and H are defined by

ε = ω

2ω0

(
ω =

√
ω2

1 +ω2
2 +ω2

3

)
, 2L2 = a2

1 + a2
2, H = a3. (25.28)

Then

ξ = 2ω2
0(a

2
1 + a2

2)

ga3
=O(ε), (25.29)

N2 = g

T0

∂T

∂x3
= gq3

a3
, η = N2a3

g
= q3 =O(ε). (25.30)

For the hydrodynamical equations (25.14) and (25.15) the thermal wind is defined
by

−(2�0∇)u = 1

T0
g × ∇T +O(ε) (25.31)

or in the coordinate form

∂u

∂z
= − g

2Ω0T0

∂T

∂y
+O(ε),

∂v

∂z
= + g

2Ω0T0

∂T

∂x
+O(ε). (25.32)
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The model equations (25.18) and (25.19) are associated with the following vector
relation for the thermal wind, which follows from (25.18) and (25.24):

ω × 2m0 + gl0 × q =O(ε) (25.33)

or in the coordinate form l0 = (0,0,−a3) and

ω2 = −a3gq2

2I3ω0
+O(ε), ω1 = −a3gq1

2I3ω0
+O(ε). (25.32′)

With the help of (24.4), (24.6), (25.32) and (25.32′) it is not difficult to show that
ω2 ∝ ∂u/∂z ∝ −∂T /∂y and ω1 ∝ −∂v/∂z ∝ −∂T /∂x. Therefore ω2 and ω1 can
be regarded as affine transformed components of the thermal wind.

According to (25.29), (25.30), and (25.32′),
ω2

ω0
∝ ω1

ω0
∝O(ε)∝ q2

O(ε)
∝ q1

O(ε)
,

and hence

q1 ∝ q2 ∝O
(
ε2). (25.34)

The model equations (25.18) and (25.19) can be represented in the coordinate
form

I1ω̇1 = (I3 − I2)ω2ω3 + 2I3ω0ω2 + ga3σ2,

I2ω̇2 = (I1 − I3)ω1ω3 − 2I3ω0ω1 − ga3σ1,
(25.35)

I3ω̇3 = (I2 − I1)ω2ω3,

σ̇1 = ω2σ3 −ω3σ2,

σ̇2 = ω3σ1 −ω1σ3,

(25.36)

σ̇3 = ω1σ2 −ω2σ1, (25.37)

where in comparison with (25.18) and (25.19) one replaced σ → −σ , i.e., instead
of q in (25.33) and (25.32′) one uses σ = −q.

The system (25.35)–(25.37) has, in particular, the following families of fixed
points describing the stationary states of rotations about the principal axes:

(i) ω1 = ω2 = 0, σ1 = σ2 = 0, ω3 = ω30, σ3 = σ30;
(ii) ω1 = ω3 = 0, σ1 = σ3 = 0, ω2 = ω20, σ2 = σ20,

2I3ω0ω20 + ga3σ20 = 0;

(iii) ω2 = ω3 = 0, σ2 = σ3 = 0, ω1 = ω10, σ1 = σ10,

2I3ω0ω10 + ga3σ10 = 0.
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The variables marked by the index 0 can assume arbitrary real values (these vari-
ables are not to be confused with the external parameter ω0). It is easy to see that any
representative of the family (ii) or (iii) is a nontrivial strictly geostrophic stationary
regime of motion for any ω0 �= 0. From Eq. (25.18), according to estimate (25.33)
and relations of thermal wind (25.32′), as well as (25.29), it follows that σ̇3 = o(ε3).
Consequently, σ3 = σ30 is constant with a high degree of accuracy, and the last two
equations of system (25.36) with the required accuracy can be rewritten as follows:

σ̇1 = ω2σ30 −ω3σ2, σ̇2 = ω3σ1 −ω1σ30. (25.38)

Now eliminating from (25.36) the quantities σ1 and σ2 and using (25.32′), we obtain
the system

σ̇1 = −
(
ga3σ30

2I3ω0
+ω3

)
σ2, σ̇2 =

(
ga3σ30

2I3ω0
+ω3

)
σ1, (25.39)

which can be interpreted as an analogue of the equation for “potential” temperature
(more precisely, the equation for its gradient, see Chap. 9), written in terms of the
components of thermal wind and reduced by expansion in the parameter ε.

Now it remains to find out what the potential vorticity is in quasi-geostrophic
approximation. By the above estimates, the expression for potential vorticity
(see (25.26))

Π = (m + 2m0) · σ = I1ω1σ1 + I2ω2σ2 + I3ω3σ3 + 2I3ω0σ3

can be rewritten in the form

Π = I3(2ω0 +ω3)σ30 +O
(
ε3).

Therefore, the quasi-geostrophic potential vorticity is

ΠG = I3(2ω0 +ω3)σ30, Π̇G = I3σ30ω̇3, (25.40)

and its evolution is described by the first equation of system (25.36).
Thus, the quasi-geostrophic approximation of system (25.35)–(25.37) of the sixth

order describing the motion of a baroclinic top is reduced to the dynamical system
of order three:

I3ω̇3 = (I2 − I1)ω1ω2,

ω̇1 = −
(
ga3σ30

2I3ω0
+ω3

)
ω2, (25.41)

ω̇2 =
(
ga3σ30

2I3ω0
+ω3

)
ω1,

in which one employs equations (25.39) and, for uniformity of notation, one makes
a formal substitution σ1 → ω1, σ2 → ω2. System (25.41) corresponds to equations
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for slow variables in the theory of relaxation oscillations (see, e.g., Arnold et al.
1986), and in this case it describes the slow evolution of the principal components
of global geophysical flows, namely, the vertical vorticity ω3 and the thermal wind
(ω1,ω2).

The system is written in terms of the defining characteristics of global geophys-
ical flows: namely, the vertical vorticity, the components of the thermal wind, and
the vertical stratification. Note that the latter is invariant in this approximation and
it enters the equations of motion as an a priori given parameter. This is similar to the
case of the quasi-geostrophic approximation for the equations of motion for the real
baroclinic atmosphere.

After dividing each of Eqs. (25.41) by ω2
0 and introducing slow time and new

dependent variables

τ = ω0t, X = ω1

ω0
, Y = ω2

ω0
, Z = S + ω3

ω0
,

system (25.41) can be written in the exceptionally simple form:

Ẋ = −YZ, Ẏ = ZX, Ż = ΓXY, (25.42)

Γ = I2 − I1

I3
= a2

1 − a2
2

a2
1 + a2

2

, S = ga3σ30

2I3ω
2
0

. (25.43)

Here S is nothing but the stratification parameter S known in geophysical fluid
dynamics (see Pedlosky, 1987) and it is related to the parameter of baroclinicity
α2 = L2

R/L
2
0 (see Chap. 11) as follows:

S = N2H 2

f 2
0 L

2
= L2

R

L2
= α2L

2
0

L2
. (25.44)

Here, L0 is the Rossby–Obukhov scale and LR is the Rossby internal deformation
radius.

Below, without loss of generality, one can set a1 > a2. System (25.42) has two
quadratic first integrals of motion:

EG = 1

2

(
ΓX2 +Z2), ΘG =X2 + Y 2, (25.45)

which can be treated as full energy and entropy when S = 0 (neutral stratification).
As we shall see below, S �= 0 characterizes the degree of deviation from a quasi-
geostrophic motion. According to the Obukhov theorem (Gledzer et al. 1981), sys-
tem (25.42) having two quadratic positive invariants is equivalent to the Euler equa-
tions of motion for the classical gyroscope.

Thus, we obtained the following somewhat unexpected result:
The quasi-geostrophic approximation of the equations of motion for a heavy fluid

top in the field of Coriolis forces is the Euler equation of motions of a rigid body
with a fixed point, formulated in terms of the defining characteristics of global geo-
physical flows, i.e., in terms of its vertical vorticity and components of thermal wind.
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25.3 Exercises

1. Find the fixed points of system (25.35)–(25.37). How do they correspond to the
fixed points of system (25.41)? What stationary motions do they describe?

2. Sketch the phase portrait of system (25.42) in the space (X,Y,Z), using the
invariants (25.45).

3. Study stability of the regimes (i)–(iii) in the framework of the original and trun-
cated systems (25.35)–(25.37) and (25.41), respectively. What is the impact of
the vertical stratification σ30?

4. Find the first integrals of the system (25.41). What is their physical meaning
and how do they relate to the first integrals of the quasi-geostrophic equations of
motion of a baroclinic atmosphere?
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Chapter 26
Motion of Barotropic and Baroclinic Tops
as Mechanical Prototypes for the General
Circulation of Barotropic and Baroclinic
Inviscid Atmospheres

26.1 Motion of a Barotropic Top

The equation of motion of a barotropic top (24.20)

ṁ = ω × (m + 2m0) (26.1)

in terms of ma = m + 2m0 can be written in the form

ṁa = ω × ma. (26.2)

Taking the scalar product of (26.1) with ω and of (26.2) with ma, we obtain two first
integrals of motion:

2E = ω · m = I1ω
2
1 + I2ω

2
2 + I3ω

2
3, (26.3)

m2
a = (m1 + 2m01)

2 + (m2 + 2m02)
2 + (m3 + 2m03)

2. (26.4)

Their existence for the considered class of solutions means the conservation of
kinetic energy and validity of the Kelvin circulation theorem, respectively (see
Chap. 24).

Using the invariants (26.3) and (26.4), similar to the case �0 = 0 (see Chap. 12),
one can get an idea about the behavior of a barotropic top without integrating its
equations of motion. In the space of angular momenta, the top trajectories are ob-
tained as the intersections of the “energy” ellipsoids

m1

2EI1
+ m2

2EI2
+ m3

2EI3
= 1

with the “circulation” spheres

(m1 + 2m01)
2

m2
a

+ (m2 + 2m02)
2

m2
a

+ (m3 + 2m03)
2

m2
a

= 1

of radius ma = |m + 2m0| centered at the point −2m0.
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Fig. 26.1 Phase portraits of a
barotropic top in the space of
angular momenta for various
Rossby numbers

Figure 26.1 shows typical phase portraits of the dynamical system (26.1) for var-
ious values of the Rossby parameter ε = |m|/|2m0|. These pictures are of interest
from the hydrodynamical point of view because they illustrate the process of grad-
ually disappearing complicated elements of motion as the Coriolis force increases.
One can see that as ε decreases starting with ε = ∞, hyperbolic points disappear in
a consecutive way one after another. Global geophysical flows correspond to small
Rossby numbers, for which the trajectories of a barotropic top become almost the
intersections of the energy ellipsoid with a family of planes orthogonal to the vec-
tor m0.

This leads to two conclusions: (a) the phase portrait of geophysical motions of
a barotropic top consists of closed elliptic trajectories and does not contain hyper-
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bolic points, (b) at small Rossby numbers the projection of angular momentum of
the barotropic top to the direction of m0 is almost preserved (up to O(ε2)).

Motion along the closed trajectories can be easily described under the assump-
tion that the direction of m0 coincides with the direction of one of the ellipsoid’s
principal axes, for example, the z-axis or, equivalently, x3-axis. In this case, (26.1)
in the coordinate form becomes (see (25.35)–(25.37)):

I1ω̇1 = (I3 − I2)ω2ω3 + 2I3ω0ω2,

I2ω̇2 = (I1 − I3)ω1ω3 − 2I3ω0ω1, (26.5)

I3ω̇3 = (I2 − I1)ω1ω2.

For ε � 1 one has that ṁ3 = O(ε2), m3 = m30 + O(ε2), m30 = const = O(ε).
Then the equations of motion in the variables X = √

I2m1 and Y = √
I1m2 with an

accuracy of order ε2 can be written as follows:

Ẋ = +2
I3√
I1I2

ω0Y, Ẏ = −2
I3√
I1I2

ω0X. (26.6)

This implies that the endpoint of the vector m, or equivalently ma, rotates along an
elliptical trajectory m2

1/I1 +m2
2/I2 = const with the angular velocity

σ = −2
I3√
I1I2

ω0 = −2
a1a2√
I1I2

Ω0, (26.7)

i.e., in the direction opposite to the rotation of the reference frame.
Given the dual interpretation of the equations of motion of a rigid body with a

fixed point, these precessions of a barotropic top can be regarded as a mechanical
prototype of the process of propagation of planetary waves that carry away the an-
gular momentum of the atmosphere in the direction opposite to the Earth’s rotation.
In turn, the approximate invariance of the projection of its angular momentum to
the direction of m0 can be thought of as a mechanical prototype of the approximate
Lagrangian invariance of the vertical vorticity of global atmospheric movements,
expressed by the Obukhov–Charney equation.

26.2 Motion of a Baroclinic Top

In Chap. 25 we obtained the simplest three-mode system (25.41):

Ẋ = −YZ, Ẏ = ZX, Ż = ΓXY, (26.8)

where Γ = (I2 − I1)/I3 = (a2
1 − a2

2)/(a
2
1 + a2

2) with two positive definite first inte-
grals of motion:

2EG = ΓX2 +Z2, ΘG =X2 + Y 2. (26.9)
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Recall that according to the Obukhov theorem (see Gledzer et al. 1981), this means
that the quasi-geostrophic approximation for the equations of motion of a baroclinic
top is equivalent to the Euler equations of motion for a classical gyroscope, written
in terms of the main characteristics of general atmospheric circulation, namely, the
vertical vorticity, the components of thermal wind, and the stratification parameter.
It is worth mentioning in this relation that the quasi-geostrophic approximation of
the reduced equations of motion of a rotating shallow water also coincides with the
mechanical Euler equations and it describes the slow evolution of the Rossby waves
(Lorenz, 1980).

The families (i)–(iii) (see Chap. 25) of stationary solutions of the complete sys-
tem of equations (25.35)–(25.37) exhaust the set of fixed points of the reduced sys-
tem (26.8) and in the new variables they can be written as follows:

(i) X = Y = 0, Z = Z0;
(ii) X = Z = 0, Y = Y0;
(iii) Y = Z = 0, X =X0.

Here the quantities with the zero subscript can assume any real value. Note that the
trivial solution X = Y = Z = 0 for S �= 0 describes circulation around the vertical
axis, and in fact it also is a nontrivial representative of the family (i).

The above-mentioned first integrals of motion (26.9) should be interpreted as the
total energy and an analogue of the Lagrangian invariance for the potential temper-
ature. The second term in the energy expression for S = 0 is the kinetic energy of
the vertical vorticity, whereas the first term, defined by one of the components of the
thermal wind, should be interpreted as a measure of the available potential energy
of the system. And here is why.

The kinetic energy of the horizontal vorticity, which is not taken into account in
a quasi-geostrophic approximation, is generated by the horizontal inhomogeneity of
the potential temperature and therefore it is attributed to the potential energy of the
quasi-geostrophic system. (This statement is a general provision, which is relevant
for any global geophysical flows.) A steady state of system (26.8)

X =X0 �= 0, Y = Z = 0 (26.A)

with a nonvanishing X-component of the thermal wind corresponds, in dimensional
variables, to the horizontal vorticity ω10 ∝ −∂T /∂x. Then the kinetic energy of this
vorticity is

KX = 1

2
I1ω

2
10 = 1

2

(
a2

2 + a2
3

)
ω2

10.

The same vorticity in Y -direction corresponds to the stationary solution

X = 0, Y =X0 �= 0, Z = 0, (26.B)

but with the kinetic energy

KY = 1

2
I2ω

2
10 = 1

2

(
a2

1 + a2
3

)
ω2

10.
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Fig. 26.2 Phase portrait of a
quasi-geostrophic motion of a
baroclinic top in the space of
the dimensionless coordinates
X,Y,Z, illustrating the
mechanism of the Eady
baroclinic instability

Now note that the integrals of motion do not forbid the transition from state (26.A)
to the nonstationary state

X = 0, Y =X0 �= 0, Z = √
ΓX0,

in which the components of X and Y are exchanging roles, but prohibit the reverse
transition due to the violation of the energy conservation law. The difference between
the kinetic energies of states (26.A) and (26.B)

�K =KY −KX = 1

2

(
a2

1 − a2
2

)
ω2

10

is exactly the measure of the excess of potential energy, which state (26.A) has with
respect to state (26.B), i.e., the available potential energy, which generates vertical
vorticity. In dimensionless variables this energy is equal to

Pbc = 1

2

(a2
1 − a2

2)ω
2
10

I3ω
2
0

= 1

2
ΓX2. (26.10)

The phase portrait of system (26.8) is shown in Fig. 26.2. It follows from the
portrait that the fixed point (ii) is stable, while (iii), being a hyperbolic point, is
unstable. In fact, Fig. 26.2 illustrates Eady’s pioneering result, which we discussed
in Chap. 18. It was shown that a flow with vanishing vertical vorticity and nonzero
thermal wind ∂u/∂z = −(gβ/2Ω0)∂T /∂y turns out to be unstable due to an excess
of available potential energy that having been converted into the kinetic energy of
vertical vorticity generates atmospheric cyclogenesis. This is exactly the mechanism
described by the model (26.8).

In the case of S �= 0 the quantity Z2 already cannot be interpreted as a mea-
sure of the kinetic energy of the system. Therefore, as we shall see below, it is no
accident that accurate and quasi-geostrophical solutions achieve the greatest consis-
tency for S = 0: the more S differs from zero, the greater the discrepancy between
the exact and quasi-geostrophic trajectories. Therefore, the stratification parameter,
in a sense, can be regarded as a measure of deviation of trajectories of the original
model from the slow manifold described by the system (26.8).
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Remark It is worth mentioning that solutions of quasi-geostrophical and original
atmospheric equations of motion reach the best agreement for S = O(1), but not
at zero. In this relation we recall (see Chap. 9) that quasi-geostrophic atmospheric
equations of motion are formulated for deviations from the static equilibrium with a
stable vertical profile of potential temperature, which corresponds to a positive value
of N2. In our case, however, we started from an equilibrium state with N2 = 0,
which was related to the choice of the Oberbeck–Boussinesq approximation for
deviations from the state of static equilibrium with a uniform profile of the mean
temperature T0 = β−1 = const.

26.3 Comparison of Quasi-geostrophic and Exact Motions of a
Baroclinic Top Depending on the Stratification Parameter
at Small Initial Rossby Numbers

In the case of spherical (a1 = a2 = a3) or cylindrical (the Lagrange top) symme-
tries, the analytical solutions of the quasi-geostrophic triplet could be compared with
known analytical solutions of the initial model equations. For a spherically symmet-
ric top, such a comparison was done in the paper by Glukhovsky and Dolzhansky
(1980). However, these examples are less interesting, since they completely or par-
tially excluded the hydrodynamical mechanism of the nonlinear interaction of ω-
components, which is responsible for generating the ageostrophic component of the
motion (see (25.35)). To avoid such a simplification, I shall present the results of
numerical integration of the approximate and original model equations, which were
performed by A.E. Gledzer and V.M. Ponomarev, and published in the papers by
Dolzhansky and Ponomarev (2002), A.E. Gledzer (2003), Dolzhansky (2005). (The
proof of non-integrability of an asymmetric heavy top goes back to S. Kowalewski.
A modern proof is presented in Ziglin 1980.) All numerical experiments regarding
the comparison of solutions to quasi-geostrophic and original model equations were
carried out for the ellipsoid with semiaxes a1 = 3, a2 = 1, a3 = 2. For the initial data
one used the unstable steady state of the quasi-geostrophic triplet ω/ω0 = (0.1,0,0)
with initial perturbation ω′/ω0 = (0,0,10−5), while the corresponding values of the
components σ1 and σ2 were calculated using the thermal wind formulas (25.32′).
From one variant to another one altered only the stratification parameter S.

The results of computation are presented in Fig. 26.3 in the form of the pro-
jections of phase trajectories of the approximate and original models to the two-
dimensional (X,Y ) subspace for various positive and negative initial values of S
(recall that S is an invariant for the quasi-geostrophic model only). The parameter S
was varied within the range 0 ≤ |S| ≤ 1.

First, let us note that for |S| � 1 the phase portraits of the approximate and orig-
inal models are almost the same. This points to the existence of the so-called slow
manifold, an invariant set in the space of solutions to the inviscid equations of mo-
tion of a rotating fluid in whose neighborhood the solutions are quasi-geostrophic,
or in physical terms, the set defined as the hypersurface of the adiabatic invariant
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Fig. 26.3 Phase portraits of quasi-geostrophic and “exact” motions of a baroclinic top in the plane
X,Y for different values of the parameter S: the numbering is left-to-right and top-to-bottom for
S = 0.2, −0.2, 0.6, −0.6, 0.65, −0.65. Boldfaced curves correspond to quasi-geostrophic trajecto-
ries, while thin lines correspond to exact trajectories
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(6.5). The problem of existence and stability of a quasi-geostrophic manifold, first
mentioned by A.M. Obukhov (1949), is intensely discussed in modern hydrodynam-
ical literature (see, e.g., Lorenz 1980, 1986; Lorenz and Krishnamurthy 1987, and
references therein).

For small and moderate values of |S| the “exact” trajectories are reflected from
the slow manifold either inside or outside of it depending on the sign of S, as if
it were some kind of distorting mirror. The higher the value of |S|, the greater the
amplitude of deviation. We emphasize that this feature is observed even when the
ageostrophic amplitude becomes in magnitude comparable to (or even exceeding)
the geostrophical component for positive changes in the stratification parameter up
to S = 1 and |S| ≈ 0.64 for its negative changes. The breakdown of the “mirror”
happens from the outside with S ≈ −0.65, and a trajectory fills the previously inac-
cessible space within a finite time interval �τ ∼ 102, which is apparently accompa-
nied by an appearance of chaos.

A hierarchy of models occupying an intermediate position between the quasi-
geostrophic and original equations of motion of a baroclinic top and which allow
an analytic description of its behavior at moderate values of S was constructed by
A.E. Gledzer (2003). In this paper, in particular, one considered a system of equa-
tions for the next approximation after that of thermal wind (25.32′). In this approx-
imation one sets the sum of the second and third terms on the right-hand sides of
Eq. (25.35) to zero (the geostrophic balance). The system, which includes both slow
and fast oscillations, demonstrated in Fig. 26.3, is obtained from (25.35) and (25.36)
by neglecting the nonlinear terms in the equations for ω1, ω2 and setting ω3 = 0,
σ3 = const = σ30 in the equations for σ1, σ2:

I1ω̇1 = +2I3ω0ω2 + ga3σ2,

I2ω̇2 = −2I3ω0ω1 − ga3σ1, (26.11)

σ̇1 = +ω2σ3, σ̇2 = −ω1σ3

where

I1 = a2
2 + a2

3, I2 = a2
1 + a2

3, I3 = a2
1 + a2

2 .

We transform this system to the dimensionless time

τ = ω0
a2

1 + a2
2

a1a2
t

and new thermal variables instead of σ1, σ2, σ3:

qi = − ga3

2(a2
1 + a2

2)ω0
σi, i = 1,2, q3 = −σ3

ga3a1a2

2[(a2
1 + a2

2)ω0]2
. (26.12)

Then Eqs. (26.11) assume the form

dω1

dt
= + 2a1a2

a2
2 + a2

3

(ω2 − q2),
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dω2

dt
= − 2a1a2

a2
1 + a2

3

(ω1 − q1), (26.13)

dq1

dt
= +ω2q3,

dq2

dt
= −ω1q3.

From (26.12) and (25.42) it follows that

S = −a2
1 + a2

2

a1a2
q3.

Thermal wind approximation (25.32′) in (26.13) corresponds to the equalities ω1 =
q1, ω2 = q2.

The solution of linear system (26.13) for ω1|t=0 = ω10 � 1, ω2|t=0 = ω20 � 1,
q1(0)= ω10, q2(0)= ω20, q3 =A3 = const has the form

ω1(t) = ω10 cos (λ1t)+ ω10

λ2
2 − λ2

1

(
A3

r1
+ λ2

1

)(
cos (λ1t)− cos (λ2t)

)

+ ω20

λ2
2 − λ2

1

A3

r2r1

(
sin (λ1t)

λ1
− sin (λ2t)

λ2

)
,

(26.14)

ω2(t) = ω20 cos (λ1t)+ ω20

λ2
2 − λ2

1

(
A3

r2
+ λ2

1

)(
cos (λ1t)− cos (λ2t)

)

− ω10

λ2
2 − λ2

1

A3

r2r1

(
sin (λ1t)

λ1
− sin (λ2t)

λ2

)
,

where

r1 = b2 + c2

2ab
, r2 = a2 + c2

2ab
.

For the chosen parameters a1 = 3, a2 = 1, a3 = 2, r1 = 5/6, r2 = 13/6. Solution
(26.14) describes the trajectories shown in Fig. 26.3. In formulas (26.14) there are
two frequencies λ1 and λ2:

λ2
1,2 =

(1 − (r1 + r2)A3)∓
√
(1 − (r1 + r2)A3)2 − 4A2

3r1r2

2r1r2
, (26.15)

where the frequency λ1 ≈ (A2
3 + (r1 + r2)A

3
3)

1/2 is slow.
The oscillating nonincreasing solution, according to (26.15), exists for

A3 <
1

(
√
r1 + √

r2)2
,

which for the selected parameters r1 and r2 in terms of the stratification parameter
S corresponds to the values of S >−0.65 discussed above. Using formulas (26.14)
one can also prove (see Gledzer 2003) the “mirror” property of the slow manifold:
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for S < 0 (A3 > 0) trajectories lie outside of the circles corresponding to the thermal
wind (see the right images in Fig. 26.3), while for S > 0 (A3 < 0) they lie inside the
circles (the left images in Fig. 26.3).

It is interesting to note that the results described in this chapter are very
similar to those of E. Lorenz (1980), who compared the exact solutions of the
Galerkin-reduced atmospheric equations of motion with the solutions to their quasi-
geostrophic approximation. In the Lorentz model the roles of slow and fast motions
are respectively played by the planetary and inertia-gravity waves. In our case, with
S �= 0 the slow evolutions of vertical vorticity and thermal wind are accompanied
by high-frequency inertia-gravity fluctuations, which periodically move the phase
trajectories away from the slow manifold (see Fig. 26.3).

Let us summarize. The simplest dynamical system, having the principal symme-
tries of the equations of motion for an ideal rotating fluid reflects the fundamen-
tal elements of general atmospheric circulation. These elements include the Rossby
waves that carry angular momentum (vorticity) to the west, an approximate invari-
ance of the vorticity projection to the rotation direction, the baroclinic mechanism
of the Eady instability, the slow quasi-geostrophic manifold, and its influence on
ageostrophic motions. I emphasize that the model is indeed simplest in the sense
that any of its reductions will imply a loss of at least one of these fundamental sym-
metries.
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Chapter 27
Toy Model for General Circulation of a Viscous
Atmosphere

27.1 Consideration of Friction and External Heating

The reader already knows (see Chap. 20) that in geophysical hydrodynamical sys-
tems dissipation of kinetic energy mostly occurs in the planetary boundary layer.
This layer slows down the motion of a free atmosphere according to an approxi-
mately linear friction law. External heating can be accounted for by Newton’s for-
mula, as it is often done in theoretical studies. According to this formula, specific
heat fluxes are directly proportional to the temperature deviation from its back-
ground value. The background temperature distribution is usually taken to be the
temperature field which is settled in a stationary fluid due to external nonuniform
heating and thermo-conductivity of the medium. Then, following the above assump-
tions, the viscous motion of a baroclinic top is described by the equations

ṁ = ω × (m + 2m0)+ gl0 × σ − λm, σ̇ = ω × σ +μ(σB − σ ). (27.1)

Equations (27.1) correspond to (25.18) and (25.19) after replacing σ → −σ , which
is related to transition to the temperature (25.24). In (27.1) σB corresponds to the
spatially linear distribution of the background temperature, while the quantities λ

and μ should be interpreted as the effective viscosity and thermo-conductivity coef-
ficients. They have dimension reciprocal to time and are determined by the physical
parameters of the medium. Recall that, for example, for the atmosphere one has
λ� 2ν/δ2

St (see Chap. 20, after formula (20.22)) and we use this approximation for
making quantitative estimates. Other notations are the same as above.

27.2 Toy Circulation of Hadley and Rossby

Consider a typical geophysical situation in which the motion of a viscous baroclinic
top occurs under the influence of horizontally inhomogeneous heating. Let us as-
sume, as before, that a1 > a2, while vectors g and �0 are in opposite directions and
parallel to the x3-axis. In order to activate the mechanism of baroclinic instability,
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we direct the gradient of the background temperature along the axis x1. In this case,
σB = (σB1,0,0).

Using the procedure described in Chap. 25, we obtain the quasi-geostrophic ap-
proximation of system (27.1):

I3ω̇3 = (I2 − I1)ω1ω2 − λI3ω3,

ω̇1 = −ω2ω3 −μω1 −μga3σB1/2I3ω0, (27.2)

ω̇2 = ω3ω1 −μω2.

Note that the quantity σ3 does not enter system (27.2), either parametrically (cf.
(25.41)) or in the form of an equation for it, since σ3 eventually decays because of
the homogeneity of the vertical distribution of the background temperature (this is
the result of numerical integration).

In dimensionless variables

X = ω1

μ
, Y = ω2

μ
, Z = ω3

μ
, τ = μt, ζ = λ

μ

system (27.2) assumes the form

Ẋ = −YZ −X −D, Ẏ = ZX − Y, Ż = ΓXY − ζZ. (27.3)

This choice of the slow time is dictated by the fact that for geophysical systems
one usually has μ−1 � λ−1 � Ω−1

0 (for example, the characteristic time of radia-
tive cooling of the Earth’s atmosphere is about 10 days, while you can try to es-
timate the value of λ−1 yourself by setting ν = νT = 105 cm2/s, see Chap. 23).
The quantity ζ = λ/μ can be interpreted as an effective Prandtl number and
D = ga3σB1/2I3ω0μ as a dimensionless thermal drive.

Let the vector σB be directed towards the negative side of the axis x1, so that
D = −|D|. In this case, the natural convection excited by external heat sources
corresponds to positive values of ω2. System (27.3) has two types of stationary
solutions:

(H) X = |D|, Y = Z = 0, (27.4)

(R+,−) X =D0 ≡ (ζ/Γ )1/2, Y = ±D
1/2
0

(|D| −D0
)1/2

,
(27.5)

Z = ±D
−1/2
0

(|D| −D0
)1/2

.

The meaning of these solutions becomes clear if we compare them with regimes
of general atmospheric circulation according to the action mechanisms of toy and
real systems as heat engines. First, we note that according to the analysis of solutions
in the initial model (see Dolzhansky and Pleshanova 1980; Gledzer et al. 1981)
in the regime H both quantities Y and Z are negligible, but strictly positive for
any D �= 0 which does not violate the quasi-geostrophic balance. The smallness
and positivity of Y means that the natural convection that occurs in cross-sections
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Fig. 27.1 Schemes of general atmospheric circulation: according to (a) Hadley (1735) and (b)
Ferrel (1859)

orthogonal to the axis x2 is very ineffective for the heat transfer from heater to
cooler. An intense circulation around the axis x1 does not increase the effectiveness
of this regime. As a result, the temperature distribution that settled in the fluid is
almost identical with the background one (according to the thermal wind relations,
X = −D and Y = 0 means that ∇T = ∇TB ). From an energy point of view, the
Hadley regime, which is observed in nature, as well as in laboratory and numerical
modeling of general atmospheric circulation (GAC), is characterized by similar
properties. Namely, it features a powerful but ineffective zonal flow, orthogonal to
the pole-equator direction, and a feeble natural convection in the meridional (radial)
plane (see Figs. 27.1a and 27.2a). The intensity of the meridional circulation is two
orders of magnitude weaker than that of the zonal flow (Lorenz, 1967).

In the regimes R the situation changes drastically. Now the intensity of the cir-
culation around the axis x1 and, according to thermal wind relations, the temper-
ature difference on this axis already does not depend on D, i.e., on the power of
an external heat source. If �T is this temperature difference, one has �T/�TB =
|D0/D| < 1, and hence in the R regimes the considered heat engine becomes sig-
nificantly more efficient. The intensity of fluid rotations around the axes orthogonal
to ∇TB increases with an increase of D according to the law

√|D| −D0. However,
while in the mode R+, both of these rotations contribute to the heat transfer from
heater to cooler, in the mode R− the circulation around the axis x2 goes in the di-
rection opposite to the natural convection. This phenomenon, which is observed in
both natural and laboratory conditions (see Figs. 27.1b and 27.2b), was once linked
to the effect of so-called negative viscosity (Starr, 1968). Again, from an energy
point of view, the situation described is similar to the atmospheric and laboratory
Rossby regimes. Indeed, have a look at Fig. 27.2b, which schematically presents
the results of laboratory experiments on modeling of GAC (see Lorenz 1967; Hide
and Mason 1975). It shows that the negative effect of “unnatural” convection in the
radial (meridional) plane is compensated by an intense horizontal jet current. The
latter comes in contact alternately with the heater and the cooler and enacts the heat
transfer in the correct direction. Large-scale vortices enveloped by the jet current
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Fig. 27.2 A schematic illustration of the Hadley and Rossby regimes observed in experiments
with rotating annuli filled with a fluid which is heated in the periphery and cooled in the center.
The top and side views are presented. In radial sections not shown are the compensatory cells
which provide a near-surface zonal counter-flow to comply with the conservation law of angular
momentum

also facilitate it. In toy Rossby regimes the vertical vorticity ω3 plays the role of
such large-scale vortices. A similar pattern is observed in the atmosphere.

27.2.1 Stability Diagram of the Hadley and Rossby Regimes

In relation to the above-mentioned properties of the H and R regimes, it is of in-
terest to study their regions of existence and stability for comparison with similar
regions of the corresponding regimes for nature or laboratory global geophysical
flows. According to (27.5), the value of |D| =D0 is the lower boundary for the ex-
istence of R modes. In geophysical hydrodynamics, a convection of a rotating fluid
is usually described in terms of the thermal Rossby number and the Taylor number

RoT = 1

2

gHβ�T

Ω2
0L

2
, Ta = 4Ω2

0H
4ν−2,

where H is the fluid depth, L is the characteristic horizontal scale (the width of the
annular channel in laboratory experiments or the Earth’s radius for natural flows), β
is the coefficient of thermal expansion, and �T is the difference of the heater and
cooler temperatures (either of the equator and poles temperatures for the atmosphere
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or those for the inner and outer walls of the annular channel in laboratory experi-
ments). For the value of ν one takes the molecular kinematic viscosity in laboratory
experiments or the turbulent viscosity for atmospherical currents, which is greater
than the molecular one by six to seven orders of magnitude.

Being applied to the model under consideration, it is natural to define these quan-
tities by the following formulas:

RoT = ga3|σB1|
2I3ω

2
0

, Ta = ω2
0

λ2
. (27.6)

In terms of these parameters

|D| = RoT Ta1/2ζ. (27.7)

Then in the plane of external similarity criteria (Ta,RoT ) the above-mentioned
lower boundary is given by the curve:

RoT = (ζΓ Ta)−1/2. (27.8)

In the quasi-geostrophic approximation this curve coincides with the lower bound
of stability of the R regimes, which is not surprising. What is actually surprising is
that this curve coincides with the asymptotic of the lower bound for the existence and
stability of Rossby regimes in annular channels, which was theoretically obtained
by Lorenz (1962) on the basis of a truncated two-layer model of a baroclinic flow.

A detailed study carried out in the works by Dolzhansky and Pleshanova (1980)
and E.B. Gledzer et al. (1981), based on the unreduced equations (27.1) and ad-
justed in Dolzhansky (2005) by additional calculations, shows that the regions of
existence and stability of Rossby regimes have a shape similar to that shown in
Fig. 27.3, where the upper branch behaves asymptotically as RoT ∼ T a1/2. This
does not mean that the regions of existence and stability for the R+ and R− regimes
coincide. In particular, the solid curve in Fig. 27.3 reproduces the stability boundary
of the regime R−, whereas the regime R+ is stable not only within the area bounded
by this curve, but also in its outer neigbourhood.

The stability curve of Rossby regimes in annuli which was found in the cited
paper by Lorenz (1962) differs from the one presented in Fig. 27.3 by the behavior of
its upper branch. In the Lorenz case it asymptotically tends to a constant. It would be
somewhat daring to give a rigorous explanation of this distinction, since the models
studied are different. Just note that in contrast to Lorenz, in our case construction of
the upper branch did not involve the quasi-geostrophic approximation.

Now if we compare theoretical stability boundaries for Rossby regimes with
the experimental critical curve shown in Fig. 27.4, we see that, although all such
curves have the anvil shape, the lower branch of the experimental curve behaves as
RoT ∼ Ta−1, rather than as RoT ∼ Ta−1/2. (One does not have sufficient experimen-
tal data with respect to the upper branch of the curve.) The reason for this discrep-
ancy remained unclear until recently. We will return to this issue in Sect. 27.3.
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Fig. 27.3 The critical curve
of the R− regime in the plane
of external similarity
parameters (Ta,RoT ); the
asymptotics of the lower
branch coincides with the
asymptotics for the lower
bound of stability of Rossby
modes in annuli, which was
theoretically obtained by
Lorenz (1962)

Fig. 27.4 Experimental
diagram of instability of
convection regimes for a
horizontally nonuniformly
heated fluid in rotating
channels (Hide and Mason,
1975). The square of the
angular velocity Ω2 is
proportional to the Taylor
number, while the parameter
θ , equal to the ratio of the
horizontal density difference
to Ω2, is proportional to the
thermal Rossby number

Note the following two points in conclusion of this section. First, the critical
curve of the mode R+ was not built because of difficulty in distinguishing this
regime from the regime H in the vicinity of the upper branch. Secondly, although
in the quasi-geostrophic approximation the R± regimes are equal from the stability
point of view, the transition H −→R+ dominates over H −→R− in the framework
of the original model.

27.2.2 Efficiency of Toy Regimes of Hadley and Rossby

Now it is interesting to compare quantitatively the effectiveness of the Hadley and
Rossby regimes in terms of the heat transfer from heater to cooler and the production
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of kinetic energy. In the absence of rotation (Ω0 = 0) the H regime is a common
room convection, whose effectiveness can be evaluated as follows.

(a) Efficiency of the room convection of a nonrotating fluid. If one points σB

in the positive direction of the axis x1, then for the adopted configuration (l0 =
(0,0,−a3)) the room convection according to (27.1) (see also (25.35)–(25.37)) is
described by the system of equations:

I2ω̇2 = −ga3σ1 − λI2ω2,

σ̇1 = ω2σ3 −μσ1 +μσB1,

σ̇3 = −ω2σ1 −μσ3,

ω1 = ω3 = 0, σ2 = 0.

(27.9)

Its stationary solutions in terms of dimensionless variables

x = σ1

σB1
, y = ω2

μ
, z = σ3

σB1

satisfy the equations

Rax + y = 0, yz− x + 1 = 0, xy + z = 0, (27.10)

Ra = ga3σB1

I2λμ
. (27.11)

Here Ra is the Rayleigh number (in terms of effective coefficients of viscosity and
thermal conductivity), which is usually used to characterize the convection of a
nonrotating fluid.

It is easy to show that the system (27.10), which in the variable y can be reduced
to the incomplete cubic equation

y3 + y +Ra = 0,

has a unique real solution. For Ra � 1, typical for natural and laboratory flows, this
solution with good accuracy can be represented in the form

x =R
−2/3
a , y = −R

1/3
a , z =R

−1/3
a . (27.12)

The convection efficiency is the ratio

η = speed of the KE generation = K̇

solar radiation, i.e.,pumping =Q
, (27.13)

where KE is the kinetic energy. Now we need to find out what Q is in this model.
The energy conservation law for system (27.9) can be written as follows:

Ė = −λI2ω
2
2 +μga3σ3, (27.14)
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where the total energy is

E = 1

2
I2ω

2
2 − ga3σ3. (27.15)

The quantity Q is a constant, independent of the dynamical variables of the problem.
Therefore, the energy conservation law in the form of (27.14) gives us no informa-
tion on Q. However, in terms of γ = σB1 − σ3, ω2, and σB1, it can be rewritten
as

Ė = −λI2ω
2
2 −μga3γ +μga3σB1, (27.14′)

where for the total energy one can now take the value

E = 1

2
I2ω

2
2 + ga3γ. (27.15′)

By making the above substitution we have explicitly introduced the temperature
difference between heater and cooler as a measure of the external heat pump:

Q= μga3σB1. (27.16)

Since in (27.13) for stationary regimes the value of K̇ is equal to minus the dissipa-
tion rate of the kinetic energy, then according to (27.11) and (27.12) we have

η = K̇

Q
= λI2ω

2
2

μga3σB1
=
(
ga3σB1

I2λμ

)−1ω2
2

μ2
=R

−1/3
a . (27.17)

A straightforward computation shows that the rate of conversion of potential energy
P = ga3γ into kinetic energy measured in Q units, i.e., Ṗ /Q, is also equal to R−1/3

a .
For the atmosphere we assume the vertical scale to be H = a3 = 10 km, the hor-

izontal scale L = √
I2 = 5 × 103 km, λ−1 = μ−1 = 10 days, and σB1 = �T/T0 =

60/300 (here 60 K is the temperature difference between the equator and pole), we
obtain the estimate

η ≈ 12 %. (27.18)

This quantity is clearly overestimated, but considering reservations in the use of
formula (27.17) to the real atmosphere, it can be found suitable for comparison with
the efficiency of toy regimes of Hadley and Rossby, other conditions being the same.

(b) The efficiency of the Hadley and Rossby regimes. Let us now consider the ef-
fectiveness of Hadley and Rossby regimes in the quasi-geostrophic approximation.
In this case the energy conservation law for system (27.3) has the form

Ė = −ζZ2 − ΓX2 + Γ |D|X, (27.19)

and the sum of the kinetic (KE) and available potential energy (APE) of the toy
general atmospheric circulation is

E = 1

2
Z2 + 1

2
ΓX2. (27.20)
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To find the pump we rewrite the energy balance (27.19) in the form

Ė = −ζZ2 − Γ

(
X2 − |D|X + 1

4
|D|2 − 1

4
|D|2

)

= −ζZ2 − Γ

(
X − 1

2
|D|

)2

+ 1

4
Γ |D|2,

whence

QG = 1

4
Γ |D|2, (27.21)

while the energy and its balance in variables Z, Θ =X − |D|/2 assume the form

E = 1

2
Z2 + 1

2
Γ

(
Θ + 1

2
|D|

)2

, (27.20′)

Ė = −ζZ2 − ΓΘ2 +QG.

Now, using (27.4) and (27.5), one can find the entire energy cycle:

production of APE

QG

= conversion rate of APE into KE

QG

= generation rate of KE

QG

= ζZ2

QG

= ηG,

where in the regimes (27.4) and (27.5)

(H) ηG = 0; (R) ηG = 4

Λ

(
1 − 1

Λ

)
, (27.22)

Λ= |D|
D0

= (ζΓ Ta)1/2RoT .

Thus, in the framework of quasi-geostrophic approximation, the effectiveness
of the regime H is zero (the incoming radiation energy converts into ageostrophic
component and reradiates into space). On the other hand, in the regimes R, the Oort
cycle is realized (see Lorenz 1967) with the efficiency

ηG ≈ 17 %,

if we take for the atmosphere ζ = λ/μ ≈ 1, and typical values for RoT ≈ 0.03 and
Ta = 106, adjusted for the fact that the Taylor number, which we defined above, is
about four times less than the traditional one. On the diagram shown in Fig. 27.3, the
point with the chosen values of Ta and RoT is located in the region of the existence
and stability of Rossby regimes. Furthermore, in the computation of Γ , the temper-
ature difference �T = 60 K in the pole-equator direction is set at the distance of
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a quarter of the equatorial circumference. The characteristic horizontal scale in the
longitude direction corresponds to the most unstable baroclinic mode, for which the
number of wavelengths fitting into the average latitudinal circle is equal to 6. This
corresponds to Γ ≈ 0.6 and Λ≈ 24.

The zero efficiency of regime H in practice means that the efficiency of the
Hadley regime does not exceed one percent, since in the quasi-geostrophic approxi-
mation the kinetic energy is calculated up to the Rossby number squared. Thus, the
transition from regime H to regime R the effectiveness of a heat engine considered
increases almost by an order of magnitude. However, one should pay attention to
one important distinction in the energy cycles of the toy and real general circula-
tions. The toy Rossby mode depletes the reservoir of the APE almost completely:

APE

KE
= Γ

X2

Z2
= ζ [Λ− 1]−1 ≈ 4 %,

whereas in the real atmosphere this ratio is approximately equal to 3.7 % (Lorenz,
1967).

Apparently, this discrepancy can be explained by the lack of the zonal component
of the APE in the interpretation of the model under consideration. Therefore, this
discrepancy should be viewed as inevitable retribution for simplifications made.

It is noteworthy that this estimate of “quasi-geostrophic” efficiency is close to the
maximal thermodynamically permissible value (TE − TP )/TE ≈ 20 % (where TE
and TP are temperatures of the equator and poles, respectively). Moreover, accord-
ing to (27.22) on the curve Λ = 2 = (ζΓ T a)1/2RoT one has ηG = 1. In this case
this value is not forbidden by thermodynamical laws, since by its very construction
the quasi-geostrophic approximation selects only the part QG of the external drive
power. This is the part which produces only the available potential energy (see the
first equation of (27.3)), whose measure is the quantity ΓX2/2 in the model consid-
ered. In dimensionless variables we accepted above the energy balance equation of
the unreduced model can be written in the form

Ė = −ζ

(
I1

I3
X2 + I2

I3
Y 2 +Z2

)
− ga3

I3μ2
γ +Q,

where γ = |σB1| − σ3, while the dimensionless power of the external drive is

Q= ga3|σB1|
I3μ2

= 2ζ 2TaRoT .

According to the formula (27.21)

QG = 1

4
Γ |D|2 = 1

4
Γ ζ 2TaRo2

T .

It follows that the actual efficiency of the vertical vorticity

η = ζZ2

Q
= QG

Q
ηG = 1

8
Γ RoT ηG
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Fig. 27.5 Two orientations
of the ellipsoid relative to
nonparallel directions of
gravity and general rotation,
which create the same sloping
effect in quasi-geostrophic
approximation

constitutes only a fraction of a percent.

27.3 Influence of the Inclination Angle of the Axis of General
Rotation Relative to the Gravity Direction

The experimental diagram in Fig. 27.4 shows that in the region bounded by the crit-
ical curve of Rossby regimes, along with stationary modes one also observes strictly
periodic and irregular oscillations. However, within the above problem formulation,
no oscillations were found in system (27.1). The reason is that we missed an impor-
tant factor, which is the beta-effect. Global baroclinic geophysical flows are nothing
but an inclined convection of a rotating fluid, which emerges under the condition
when the axis of general rotation is not parallel to the total gravity force, and which
is what leads to the emergence of the beta-effect.

Not being able to mimic the beta-effect, let us restrict ourselves to the convection
“inclination”, i.e., its sloping effect (or, sloping convection). Let ω0 and −g form an
angle ϕ, as shown in Fig. 27.5 for two orientations of the ellipsoid with respect to
gravity and general rotation. The angle is assumed to be sufficiently small in order
not to affect thermal wind relations (25.32′).

Given the smallness of ϕ, the quasi-geostrophic approximation of system (27.1)
for both of the orientations in terms of X, Y and Z can be written as follows:

Ẋ = −YZ −X −D, Ẏ =XZ − Y, Ż = ΓXY − βY − ζZ, (27.23)

where β = β0T a
1/2ζ and β0 = 2(a1/a3)ϕ or β0 = 2(I1/I3)ϕ depending on the ori-

entation (a) or (b) in Fig. 27.5.
For Γ = 0 (a1 = a2) by changing the variables

X = (ζ/β)z−D, Y = −(ζ/β)y, Z = x,

system (27.23) reduces to the well-known stochastic dynamical Lorenz system of
the third-order (Lorenz, 1963b):

ẋ = ζ(y − x), ẏ = −xz− y + rx, ż = yx − bz, (27.24)
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where b = 1 and r = (β/ζ )D = sign(σB1)β0ζRoT Ta.
This means that under certain conditions discussed below, system (27.23) de-

scribes stochastic regimes of toy global geophysical flows. Note that in the geo-
physical interpretation, Eqs. (27.24) describe the slow quasi-geostrophical manifold
in the reduced system of interacting planetary and inertia-gravity waves (Lorenz,
1980).

Systems (27.23) and (27.24) are invariant under the changes D → −D, β → −β

(σB1 → −σB1, ϕ → −ϕ). Therefore, we define the sloping effect to be positive
(respectively, negative) if Dβ or σB1ϕ > 0 (respectively, Dβ or σB1ϕ < 0). Since
the sloping effect breaks the symmetry of the initial configuration of forces, there
are two types of Rossby regimes depending on the sign of this effect. As before,
we assume that σB1 < 0. So for a positive sloping effect, i.e., for D < 0 and β < 0,
stationary Hadley and Rossby regimes are described by the formulas:

(H) X = |D|, Y = Z = 0,

(R+,−) X =D1 ≡
√
β2/4Γ 2 + ζ/Γ − |β|/2Γ,

Y = ±D
1/2
1

(|D| −D1
)1/2

, Z = ±D
−1/2
1

(|D| −D1
)1/2

.

For a negative sloping effect, i.e., for D < 0 and β > 0,

(H) X = |D|, Y = Z = 0,

(R+,−) X =D2 ≡
√
β2/4Γ 2 + ζ/Γ + |β|/2Γ,

Y = ±D
1/2
2

(|D| −D2
)
, Z = ±D

−1/2
2

(|D| −D2
)1/2

.

It follows that the equations of lower branches of the existence region of Rossby
modes are given by equalities |D| =D1,2. In the plane of external similarity criteria
(Ta,RoT ) they are described by the following curves (use (27.6) and the correspond-
ing expression for β):

RoT =
√
β2

0/4Γ 2 + 1/ζΓ T a ∓ |β0|/2Γ, (27.25)

which asymptotically for Ta → ∞ behave as RoT = (ζ |β0|Ta)−1 and RoT =
β0/Γ = const respectively, for positive and negative sloping effects. For more de-
tails about these asymptotes, see A.E. Gledzer et al. (2006).

27.4 Conclusions

Thus, under the influence of the sloping effect, the behavioral asymptotics of the
lower branch of the critical curve change from RoT ∼ Ta−1/2 to RoT ∼ Ta−1 or
RoT = const , depending on positivity or negativity of the sloping effect, respec-
tively. These changes appear at an angle |ϕ| = 1◦ and at quite realistic values of
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the Taylor number, i.e., typical for most laboratory experiments discussed in the
papers by Lorenz (1967) and by Hide and Mason (1975) (see also the diagram in
Fig. 27.4). Experiments were carried out with rotating annular tanks with a free-
surface fluid filling them. The distortion of the free surface under the influence of
centrifugal forces creates a positive sloping effect, corresponding to small but finite
values of ϕ. It is likely that the smallness of this angle led Lorenz (1962; 1963a) to
neglect the beta-effect created by centrifugal forces while constructing the 8- and
12-component models, which gave the asymptotics RoT ∼ Ta−1/2. It was shown
above, that accounting for the small inclination angle �0 relative to −g yields a
result consistent with the experiment (see Gledzer et al. 2006; Gledzer 2008).

The sloping effect is also a cause of regular and chaotic oscillations in the con-
sidered model, which are really observed in laboratory experiments. A number of
results obtained via numerical experiments, including the diagram with the asymp-
totics (27.25), are presented in the author’s paper (Dolzhansky, 2005), published in
the UFN.

Thus, a heavy top in the field of Coriolis forces can be regarded as a mechan-
ical prototype of the atmospheres of rotating planets: it reproduces the baroclinic
mechanism of the Eady instability, the energy framework and stability regions of the
fundamental regimes of Hadley and Rossby, the reverse convective Ferrel cell, the
few-component turbulence and unpredictability of global geophysical flows. It also
reproduces the coexistence of fundamentally different modes of motion and nonzero
probability of mutual transitions from one metastable dynamical state to another,
which are unmotivated from outside (the latter phenomenon is of particular interest
to climatologists).
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Appendix A
On a Certain Boundary Condition

When integrating strictly two-dimensional hydrodynamical equations on a finite re-
gion D (Fig. A.1a) one uses the following conservation of the velocity circulation
along the boundary ∂D as one of the boundary conditions:

dΓ

dt
= 0, Γ

.=
∮
∂D=C

vδl. (A.1)

This condition is precise, since the liquid contour C which initially belonged to ∂D

will remain so at any time due to vanishing of the velocity normal component to the
boundary. According to the Kelvin theorem, the value of Γ is preserved since C is
a liquid contour.

The integration region V of baroclinic geophysical flows is three-dimensional.
For instance, it is shown in Fig. A.1b in the form of a vertical cylinder with hori-
zontal solid ends and solid lateral surface ∂VS . The liquid contour C belonging to
it initially will also remain on ∂V , because of the impenetrability condition. Hence
the Kelvin theorem is also applicable to it. However, in this case condition (A.1) is
not constructive, since C does not remain at rest and it occupies an unknown posi-
tion on the surface ∂V . The help comes from the quasi-two-dimensionality property
of baroclinic geophysical flows satisfying (9.13) and (9.14). It turns out that in this
case the circulation

Γ0
.=
∮
C0

vδl0 (A.2)

along any contour C0 formed by the intersection of the horizontal plane z = z0 with
the lateral cylinder surface ∂VS is preserved up to O(ε).

Indeed, consider the isentropic surface Θ(x,y, z, t) = Θs(z0), where z = z0 is
the level at which the contour C0 is located. The circulation along the contour C,
formed by the intersection of this surface with ∂V is precisely conserved. The equal-
ity Θ(x,y, z, t)=Θs(z0) can be rewritten as

θ(x, y, z, t)=Θs(z0)−Θs(z), (A.3)
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Fig. A.1 (a) The liquid contour C, adjacent to the boundary δD of a two-dimensional integration
domain D at the initial moment will always remain adjacent because of impenetrability conditions.
(b) A three-dimensional integration domain: C0 is a contour formed by the intersection of a hori-
zontal surface z = z0 with the lateral surface of the cylinder, C is a contour formed by an isentropic
surface and the lateral surface of the cylinder

where θ(x, y, z, t) = Θ(x,y, z, t) − Θs(z) is a deviation of potential temperature
from its equilibrium value at level z, induced by the fluid motion. Expanding (A.3)
in powers of δz = z− z0 and taking into account (9.20), we obtain the following es-
timate on vertical distances between points of the contour C from the corresponding
points of the contour C0:

δz =O

[(
1

Θs

dΘs

dz

)−1

z=z0

θ(x, y, z0, t)

Θs(z0)

]
= g

N2
O
(
ε2). (A.4)

It is convenient to rewrite this formula in accordance with (9.13) in the form

δz =H0
g

N2H0
O
(
ε2)=H0

O(ε2)

η
=H0O(ε). (A.5)

Then the angle ϕ between the elements δl and δl0 of contours C and C0 is estimated
by the equality

ϕ =O

(
δz

L

)
= H0

L
O(ε), (A.6)

where L is the characteristic horizontal scale of the baroclinic flow. Consequently,

δl = δl0
cosϕ

= δl0

(
1 + H 2

0

L2
O
(
ε2)). (A.7)

Furthermore, v(z) = v(z0 + δz) = v(z0) + (∂v/∂z)z=z0δz + O[(δz)2], and ac-
cording to the thermal wind relations (9.36)

∣∣∣∣∂v
∂z

∣∣∣∣=O

(
g

f0L

θ

Θs

)
= g

f0L
O
(
ε2).
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Therefore, given the relations (9.13) and (9.14) we have
∣∣∣∣∂v
∂z

δz

∣∣∣∣= gH0

f0L
O
(
ε3)= gH0

f 2
0 L

2

f0L

U
UO

(
ε3)= ξ−1ε−1UO

(
ε3)=UO(ε).

As a result, we obtain the estimate v(z) = v(z0 + δz)= v(z0)+UO(ε), the substi-
tution of which into Γ = ∮

C
vδl gives

Γ = Γ0
(
1 +O(ε)

)
. (A.8)

This fact allows one to use the preservation of Γ0 as a boundary condition in
integrating the quasi-geostrophic equations of baroclinic motions in the ocean, since
in this case, the flow velocities are determined with the same accuracy.

Note that for barotropic geophysical flows the invariance of Γ0 is precise be-
cause in this case there is no vertical velocity shear and fluid particles move along
horizontal surfaces. Verify this yourself by integrating the shallow water equations
written in the Gromeka–Lamb form along a horizontal closed contour lying on the
boundary of the flow domain.



Appendix B
Stability of the Kolmogorov Flow
with an External Friction

B.1 Derivation of the Equation for σ

Introduce the notation:

an = an(̂ν, λ̂, σ )= 2(̂ν + λ̂)

α
· (α

2 + n2)[σ + λ̂+ ν̂(α2 + n2)]
α2 − 1 + n2

,

dn = dn(̂ν, λ̂, σ )= (
α2 − 1 + n2)cn.

Then system (21.11) can be rewritten as

andn + dn−1 − dn+1 = 0. (B.1)

Suppose that system (B.1) has a solution satisfying the above requirements. Then
there is no value k, for which dk = 0. Indeed, if dk = 0 and k > 0, then for k′ �= k

one has dk′ �= 0. Otherwise the solution according to (B.1) would be trivial because
of the regularity condition at infinity. Therefore, for n > k+ 1 one can introduce the
quantity ρn = dn/dn−1 and rewrite (B.1) as follows:

an + 1

ρn
= ρn+1, n > k + 1. (B.2)

A solution of system (B.2) can be written as follows:

ρn = an−1 + 1

an−2 + 1

an−3 + 1
an−4+

. . .

ak+1 + 1

ρk+1
.
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Assume that σ is real and σ > −̂λ. Then an > 0 for n > 0 and ρn > an−1 → ∞,
which contradicts the requirement that cn tends to zero as n→ ∞. If σ is complex,
system (B.2) can be considered separately for real and imaginary coefficients an.
For the real part of an, the same arguments give the same result. The case dk = 0 for
k < 0 is similar.

So, dk �= 0 for any k, and for arbitrary n one can set

ρn = ρn(̂ν, λ̂, σ )= dn

dn−1
(n > 0),

ρ∗
n = dn−1

dn
(n≤ 0).

(B.3)

Introduce the following notation for the infinite continued fraction

a0 + 1

a1 + 1

a2 + 1

a3+
. . .

ak + 1

ak+1
.= [a0;a1, a2, . . . , ak, . . .].

The key statement is as follows. If

ρ1 = −[0;a1, a2, . . . , ak, . . .], (B.4)

then ρn → 0 for n→ ∞. If equality (B.4) does not hold, then |ρn| → ∞.
Indeed, from (B.2) it follows that for Reσ > −λ̂, if Reρn ≥ 0, then also

Reρn+k ≥ 0 for k > 0, or Reρn+k > Rean → ∞ as n → ∞, which is impossi-
ble. It is therefore necessary to have Reρn < 0 for all positive n. For any fixed σ

there exists such a value k, that Rean > 1 for n > k, since Rean → ∞ as n → ∞.
For n > k the condition Reρn+1 < 0 along with Eq. (B.2) means that ρn in the com-
plex plane is located inside a circle of radius 1/Rean, tangent to the imaginary axis
and lying in the left half-plane (complete Exercise 1). By using Eq. (B.2) again one
can show that ρn−1 is located inside a certain circle of radius less than 1/Rean, and
lying in the left half-plane, and so on. It follows that ρk lies in a circle in the left
half-plane, having a radius less than 1/Rean. The intersection of circles constructed
for ρk for various n cannot contain more than one point, since their the radii tend to
zero as n→ ∞ (why this point does not belong to the imaginary axis?).

One can show (do Exercise 2) that the value ρk , given by the formula

ρk = −[0;ak, ak+1, . . . , ak+l , . . .],
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lies inside of all these circles and therefore it is the only possible value for ρk .
Using (B.2) we obtain formula (B.4).

For n≤ 0 using similar arguments we find that the only value of ρ∗
0 that is mean-

ingful for this problem is given by the formula

ρ∗
0 = [0;a−1, a−2, . . . , a−n, . . .] = [0;a1, a2, . . . , an, . . .]. (B.5)

From (B.1) for n= 0 it follows that

a0 + ρ∗
0 = ρ1,

whence, due to (B.4) and (B.5),

−a0

2
= [0;a1, a2, . . . , ak, . . .]. (B.6)

Thus we have proved the following theorem (Meshalkin, Sinai, 1961): For sys-
tem (B.1) in order to have a solution that tends to zero as n → ∞, it is necessary
and sufficient for σ to satisfy Eq. (B.6).

B.2 Critical Curves

An analysis of Eq. (B.6) allows one to draw some conclusions about stability
conditions of the Kolmogorov flow. Denote the right-hand side of (B.6) by D =
[0;a1, a2, . . . , ak, . . .], while Dk = [0;a1, a2, . . . , ak] stands for the continued frac-
tion D, truncated at the k-th term. First, we note that for α > 1 Eq. (B.6) has no
solutions σ , for which Reσ > 0, i.e., the Kolmogorov flow is stable with respect
to perturbations with this longitudinal wavenumber. Indeed, for α > 1 the value
Re(−a0/2) < 0. On the other hand, for any positive k and Reσ > −̂λ, the quantity
Dk has positive real part and therefore equality (B.6) is impossible.

A refinement of this argument shows that for α < 1, Eq. (B.6) with Reσ > −λ̂

has only real solutions. Indeed, to fix ideas, suppose that Imσ ≥ 0. Then

arg

(
−a0

2

)
≥ arga1, (B.7)

and argan ≥ argan+1 for any n ≥ 1, where the equalities are possible only for
argσ = 0. The latter inequalities imply that | argDk+1| ≤ | argDk| for any k ≥ 1
and therefore

| argDk| ≤ | argDk−1| ≤ · · · ≤ | argD1| = | arga1|.
Hence the equality

−a0

2
=Dk (B.8)
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Fig. B.1 (a) The critical curve of a strictly two-dimensional Kolmogorov flow. (b) The critical
curve of a quasi-two-dimensional flow (when taking an external friction into account) is located
between curves 1 and 2, corresponding to the first (k = 1) and the second (k = 2) approximations
according to formula (B.8)

for any k ≥ 1 is possible only provided that | arg(−a0/2)| ≤ | arga1|. Comparing
this inequality with (B.7), we conclude that Imσ = 0. By similar arguments we
obtain the same result under the assumption that Imσ ≤ 0. It follows that the roots
of Eq. (B.6) for which Reσ > −λ̂ are necessarily real. In this case the principle of
the Lin stability change is valid, according to which the critical curve can be found
from the condition σ = 0.

Approximate critical curves that are the stability boundaries for λ= 0 and λ �= 0
are given in Fig. B.1. The graph plotting is based on the inequalities

D2 <D <D1. (B.9)

Here it is not difficult to show that for λ = 0 the critical Reynolds number ν̂−1
cr =

Rνcr → ∞ as α → 1 and Rνcr ≈ √
2 for α = 0, while for λ �= 0 the value Rνcr →

∞ for α → 1 and α → 0. In particular, an approximate critical curve defined by
equality (B.8) for k = 1, is described by the formula

R2
νcr ≈ 2(1 + λ0 + α2)(λ0 + α2)(1 + α2)

α2(1 − α2)
, (B.10)

λ0 = λl2

ν
= Rν

Rλ

= λ̂

ν̂
,

which is used in the beginning of Chap. 22.
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B.3 Exercises

1. Prove that for n > k the condition Reρn+1 < 0, together with Eq. (B.2), means
that ρn in the complex plane is located inside a circle of radius 1/Rean, tangent
to the imaginary axis and lying in the left half-plane.

Hint: According to the condition Reρn+1 < 0 and Eq. (B.2)

Rean + Re

(
1

ρn

)
< 0.

Let ρn = rne
iϕ . Then Rean + r−1

n cosϕ < 0 (−π/2 ≤ ϕ ≤ π/2), while rn =
− cosϕ is a circle of radius 1 tangent to the imaginary axis.

2. Show that the value ρk , given by the formula

ρk = −[0;ak, ak+1, . . . , ak+l , . . .],
lies inside of all the circles having radius less than 1/Rean, and located in the
left half-plane.

3. Try and derive the first approximation (21.16) for the critical curve of the Rossby
wave, without trying to prove the convergence of continued fractions in the com-
plex plane.
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