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The non-equilibrium statistical mechanics
is of more recent development and is one
of the frontier fields of research today.
The special case of dilute gases was
investigated about a century ago by
Maxwell, Boltzmann, and others, using
somewhat special methods. With these
latter techniques is customarily associated
the name “kinetic theory”.

J. O. Hirschfelder, C. F. Curtiss, R. Byron Bird
fromChap. 2 of MolecularTheory of Gases and Liquids





Preface

In this book we develop basic and advanced concepts of plasma transport for
LTE (local thermodynamic equilibrium) plasmas starting from the famous
monograph of Hirschfelder, Curtiss and Bird (HCB).1 The HCB monograph,
while being essential in developing the Chapman–Enskog method for the
solution of the Boltzmann transport equation as well as the basic quantum
mechanical approaches for deriving interaction potentials, presents problems
when applied to ionized gases.

In a thermal plasma a lot of collisions involving molecule–molecule, atom–
molecule, atom–atom, atom–ion, electron–atom, electron–electron, electron–
ion and ion–ion do coexist so that refined formulations of interaction poten-
tials need to get the input data, i.e. the collision integrals, in the transport
equations. In addition in these last years it has been shown that the col-
lision integrals of electronically excited states can play an important role
in affecting the transport properties of thermal plasmas, due to their dra-
matic dependence on the principal quantum number. In this case charge-
and excitation-exchange cross sections need to be calculated implying the
knowledge of a huge number of potential curves, today still a prohibitive
task despite the enormous progress of quantum chemistry. This problem can
be solved by using the asymptotic theory that allows a reliable estimation of
the gerade–ungerade potential pair differences avoiding the exact quantum
mechanical calculation. This problem will be widely discussed in this book
by presenting different examples of diffusion-type collision integrals involving
(1) excited hydrogen atoms colliding with protons and (2) excited helium
atoms colliding with He+. This theory is also extended to the calculation of
diffusion-type collision integrals for low- and high-lying electronically excited
states for atoms and ions relevant to air plasmas. A similar problem is consid-
ered for the viscosity-type collision integrals, not affected by charge-exchange
cross sections, derived in the frame of a phenomenological approach, avoid-

1 Refers to 2nd edition in Structure and Matter Series of Hirschfelder et al. (1966) of
Chap. 1.
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viii Preface

ing the computationally expensive multi-potential quantum approach. Two
chapters of this book are dedicated to these topics. On the other hand other
important topics are discussed, in particular dealing with (1) the failure of
the Eucken approximation in the presence of non-Boltzmann vibrational dis-
tributions under shock wave and expanding flow situations, (2) the analysis
of the numerous approaches developed in the literature for two-temperature
plasmas, emphasizing the role of non-uniqueness of two-temperature Saha
equations in affecting the corresponding transport coefficients, and (3) the
role of the magnetic field in transforming the corresponding transport equa-
tions in tensorial form.

The different applications, all discussed by means of several examples, are
preceded by theoretical chapters illustrating the Chapman–Enskog method
in his modern formulation as well as the quantum and classical approaches for
calculating the transport cross sections. Finally the last chapter presents ac-
curate tables of transport coefficients for high-temperature planetary (Earth,
Jupiter, Mars) atmospheres, which can be directly used in fluid dynamics
applications.

Some overlaps occur in the different chapters to keep part of them self-
consistent, allowing undergraduate and Ph.D. students as well researchers to
construct a personal road in the understanding of the relevant topics. It is
worth noting that the structure of the book can be considered complementary
to our book on thermodynamics (Capitelli et al., 2011 of Chap. 3). recently
published, so that appropriate selections of chapters from both books can be
used for courses on thermodynamics and transport of plasmas addressed to
undergraduate and Ph.D. students in physics, chemistry, and engineering.



Introduction

Transport properties (thermal conductivity, diffusion coefficients, viscosity
and electrical conductivity) of ionized gases are important topics of plasma
technology because these quantities determine the heat flux from plasma
to different samples of materials which can be heated during the plasma-
material interaction. The experimental determination of transport properties
of ionized gases is very difficult to be achieved so that one demands to the
theory the availability of these quantities.

Transport properties can be obtained once known the velocity distribution
functions (vdf) of the different species, which in turn can be obtained by the
solution of coupled Boltzmann transport equations. In this book we consider
plasmas in which the deviation of vdf from the Maxwell behavior is small
so that the Chapman–Enskog solution of the Boltzmann equation can be
considered adequate for solving the problem.

The corresponding equations have been worked out many years ago by dif-
ferent authors and are being used in many applications of thermal plasmas
including plasma treatment of materials, plasma waste destruction, aerospace
reentry problems, including meteorite impact with the atmosphere, inductive
coupled plasma (ICP) and laser induced plasma spectroscopy (LIBS) analyt-
ical techniques.

Nowadays a renewed interest in the transport properties of thermal plas-
mas is appearing in the literature so that one can use the well-established
theory for discussing many problems, which still require further studies. We
refer in particular to a better description of transport cross sections as well
as to the influence of electronically and vibrationally excited states on the
different transport coefficients. Multi-temperature plasma transport proper-
ties, being a topic largely discussed by the thermal plasma community, still
need a more basic approach for their complete understanding.

The first two chapters give the possibility to the reader to understand the
theories at the basis of the development of transport coefficients mixing very
sophisticated statistical mechanics approaches and simplified intuitive meth-
ods. Chapter 1 introduces the transport phenomenology and illustrates the

ix



x Introduction

kinetic theory formalism adopted in its study, with emphasis on the coeffi-
cients of internal and reactive thermal conductivities. In Chapter 2 explicit
expressions are derived for the transport coefficients and they are shown to
reduce to the popular Hirschfelder and Devoto formulas under suitable ap-
proximations. Then follow three chapters dealing with accurate calculations
of transport cross-sections (collision integrals) involving in particular open-
shell atoms and ions. Chapter 3 introduces the reader to the calculation of
collision integrals of the different interactions acting in a plasma either by
using the multi-potential approach or by using phenomenological approaches
for reducing the multi-potential approach to a single potential. Chapter 4
is devoted to the resonant charge-exchange cross sections, a process playing
an important direct and indirect role in affecting the transport properties of
the plasma. The rigorous quantum mechanical approach is developed to this
end, while large use is made of the asymptotic theory developed in the last
50 years by the Russian school to get accurate values of the relevant cross
sections. Two case studies are discussed involving the charge transfer cross
sections of N–N+ and O–O+ collisions; particular attention is devoted to
the quantum mechanical description of the gerade–ungerade potential pairs
arising in the interaction. The good agreement of the charge-exchange cross
sections based on the quantum mechanical gerade–ungerade pairs and the
corresponding values from the asymptotic theory is a clear indication of the
possibility of using the last theory for very complicated systems.

Chapter 5 reports the transport cross sections of electronically excited
states taking into account also the resonant charge- and excitation-exchange
processes. Particular emphasis is given to the dependence of diffusion-type
collision integrals on the principal quantum number for the interactions of the
so-called high-lying excited states (i.e. states with principal quantum number
different from the ground state) as well as to the corresponding values for
the low-lying excited states i.e. electronic states arising from the ground state
electronic configuration by rearrangement of valence electrons.

The next four chapters discuss in detail the transport properties of equilib-
rium and non-equilibrium systems. In particular Chap. 6 discusses the role of
non-equilibrium vibrational distributions of diatomic species in affecting the
transport of the vibrational energy under shock waves and expansion flows.
In this case the difference with the Eucken approximation derives from the
non-Boltzmann vibrational distributions of the diatom rather than from the
dependence of collision integrals on the vibrational quantum number.

Chapter 7 presents in detail the influence of electronically excited states on
the transport coefficients of an LTE hydrogen plasma. Different approaches
are presented either by using an appropriate Brokaw equation or by using
a more compact model. The partial equivalence of the two methods is also
discussed. In the same chapter a new model is presented to study the role of
electronically excited states in a nitrogen plasma.

Chapter 8 reports the transport coefficients of two-temperature plasmas
discussing the theories and the non-uniqueness of the two-temperature Saha
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equation and their role in affecting the input data in the relevant transport
equations. Numerous numerical examples are reported to shed light on this
topic.

Chapter 9 treats the influence of the magnetic field on the transport coef-
ficients of LTE plasmas emphasizing the tensorial character of the different
transport coefficients in the presence of magnetic field.

Chapter 10, that can be regarded as a bridge between formal theory
and applications, discusses several problems including the convergence of
the Chapman–Enskog method and the selection of existing collision integral
databases. It also includes a new discussion on inelastic and quantum effect in
affecting transport cross sections ending with the comparison between theory
and experiments.

Finally in Chap. 11 the collision integral database for interactions relevant
to high-temperature planetary atmosphere (Earth, Mars, Jupiter) mixtures
is reported together with corresponding transport coefficients, in tabular for-
mat, in a wide range of temperature and pressure.

Bari, Italy Mario Capitelli
Domenico Bruno

Annarita Laricchiuta
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Chapter 1

Transport Processes in Dilute Polyatomic
Gases

In this chapter, the general theoretical framework needed to describe the
transport properties of a reactive gas mixture will be introduced.

Starting from a semiclassical transport kinetic equation, kinetic theory
tools are applied for the determination of the transport coefficients. This
formal derivation is required, in particular, for an in-depth discussion of the
role of internal degrees of freedom and of chemical energy in affecting the
thermal conductivity of a reactive medium.

First, however, a rough estimation of the transport coefficients is given,
based on a simplified picture. This serves the purpose of introducing the
transport phenomenology and the underlying physics.

1.1 Mean Free Path Theory of Transport

In this section, formulas are derived for the transport coefficients based on a
simple physical model (Hirschfelder et al. 1966). The idea is that molecules
transport physical properties (mass, momentum, energy, electric charge, etc.)
and release them in a different point in space when a collision occurs. As
we shall see in the following, this simple picture allows to estimate at the
same time the main transport properties (diffusion, viscosity and thermal
conductivity) of low-pressure gases. More subtle effects (e.g. thermal diffusion,
bulk viscosity, relaxation pressure) need a rigorous kinetic theory derivation.

Consider, therefore, a gas of hard spheres of diameter σ and of mass m.
The macroscopic state of the gas is described by the number density, n, the
average velocity, v, and temperature, T . The macroscopic properties may
have spatial variations. We shall assume the following simplifications:

• All molecules have the same speed with respect to the average velocity:

C ≡ ‖c− v‖ =
√

8kBT
πm .

• Macroscopic gradients are considered only in one spatial direction, call it z.

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics,
Springer Series on Atomic, Optical, and Plasma Physics 74,
DOI 10.1007/978-1-4419-8172-1 1, © Springer Science+Business Media, LLC 2013
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2 1 Transport Processes in Dilute Polyatomic Gases

• Only the y-component of the fluid average velocity, vy is nonuniform.
• The number density, n, is uniform.

The collision frequency per particle is readily evaluated:

ν = nπσ2C = nπσ2

√
8kBT

πm
(1.1)

The mean free path, lc, i.e. the average distance between two successive
collisions, is obtained as the ratio of the distance travelled in the time Δt
(i.e. CΔt) to the number of collisions undergone in the same time (i.e. νΔt)

lc =
CΔt

νΔt
=

1

nπσ2
(1.2)

In addition, in order to deal with the diffusion phenomenon, we shall tag
a fraction of all particles with subscript i. When moving, particles transport
physical quantities like mass, momentum and energy. For each, we can define
a property density and a corresponding flux. In turn, the flux will be shown to
be proportional to the gradient of some macroscopic quantity, the transport
coefficient being the proportionality constant (Table 1.1).

Table 1.1 Definition of physical properties and related densities, fluxes and trans-
port properties

Property Density Flux Gradient Coefficient
mi ρi Jiz ρi D
mCy ρvy Pyz vy η
1
2
mC2 ncVT qz T λ

where cV = 3
2kB is the (translational) constant volume specific heat.

x

y

z

0

B

A

lc

lc

Fig. 1.1 Pictorial view of the net flux of the property in the z-direction through the
plane 0, after last collision at distance lc from the 0 plane

With reference to Fig. 1.1, we are assuming that particles crossing the
z = 0 plane had their last collision a distance lc away where they acquired
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the molecular velocity c. For each property density P , we can then write

PA = P0 − lc
dP

dz
(1.3)

PB = P0 + lc
dP

dz
(1.4)

Since the gas is assumed to be locally isotropic, 1
6 of all particles will travel

in each direction. The net flux of the property, ΦP , across z = 0 is therefore

ΦP = 1
6C(PA − PB) = − 1

3Clc
dP

dz
(1.5)

For each physical property we then get

Jiz = − 1
3Clc

dρi
dz

= −D
dρi
dz

(1.6)

Pyz = − 1
3Clc

dρvy
dz

= − 1
3Clcρ

dvy
dz

= −η
dvy
dz

(1.7)

qz = − 1
3Clc

dncVT

dz
= − 1

3ClcncV
dT

dz
= −λ

dT

dz
(1.8)

The transport coefficients are then given by

Diffusion: D = 1
3Clc =

√
πmkBT

πσ2

1

ρ
(1.9)

Viscosity: η = 1
3Clcρ =

√
πmkBT

πσ2
(1.10)

Thermal conductivity: λ = 1
3ClcncV =

√
πmkBT

πσ2

cV
m

(1.11)

The transport coefficients thus obtained are not all independent and obey
instead:

D =
λm

ρcV
(1.12)

η = ρD (1.13)

λ =
ηcV
m

(1.14)

This simple theory ignores the distribution of particle velocities and is
limited to the simplest hard sphere model for the description of the collision
process; inclusion of these effects requires a rigorous theory of transport that
will be presented in Sect. 1.2. Also, the model is not able to provide an expla-
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nation to more subtle transport phenomena like thermal diffusion and bulk
viscosity.

Nonetheless the model captures correctly the dependence of the transport
coefficients on gas density: the diffusion coefficient is inversely proportional to
gas density whereas viscosity and thermal conductivity do not depend on it.
Additionally, it gives indications on the dependence on temperature, collision
cross sections and particle properties like mass and specific heat.

Before turning to the exposition of the kinetic theory of transport, we
briefly introduce the concepts of internal degrees of freedom and the associ-
ated transport phenomena that are very important in the description of the
transport properties of molecular gases.

1.1.1 Transport of the Energy of Internal Degrees
of Freedom

The mean free path model approach can be used to estimate the transport
of the energy stored in the internal degrees of freedom of the gas parti-
cles (Hirschfelder et al. 1966). Let Eint be the energy density of the internal
degrees of freedom of the gas. We assume that this energy relaxes to its
equilibrium value, E∗

int, according to a linear law:

dEint
dt

=
E∗
int − Eint
τcZint

(1.15)

where τc is the mean collision time and Zint is the average number of col-
lisions needed for the relaxation of the internal energy of a particle to its
equilibrium value. Three different cases arise, according to the value of Zint.

(a) Zint = 1
In this case, one collision is sufficient, on average, to relax the internal energy
of the particle to the equilibrium value, i.e. the mean free path for energy
exchange lint is equal to the collision mean free path lc.

The derivation proceeds as in Sect. 1.1. The density of internal energy to
be transported in the temperature gradient is

P = ncintT (1.16)

where cint = ∂
∂T (

Eint

n ) is the internal specific heat (assumed constant).
As in Eqs. (1.3) and (1.4), we now have

PA = P0 − lc
dT

dz
(1.17)

PB = P0 + lc
dT

dz
(1.18)
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The relevant flux is given by

qint =
1
6C(PA − PB) = − 1

3Clcnc
int
dT

dz
(1.19)

We then define the internal thermal conductivity:

λint =
1
3Clcnc

int = ρD cint

m
= η

cint

m
(1.20)

This result is very similar to Eq. (1.11), describing the transport of trans-
lational energy, the only difference being in the nature of the specific heat.
Equation (1.20) can describe qualitatively the transport of rotational energy
of nonpolar molecules.

(b) Zint � 1
In this case, many collisions are necessary to exchange a quantum of internal
energy, i.e. the mean free path for energy exchange lint is much larger than
the collision mean free path lc. At the same time, the average velocity to be
used in Eq. (1.5), C′, decreases. It can be shown that

lint =
√
Zintlc (1.21)

C′ =
C√
Zint

(1.22)

so that, again,

λint = η
cint

m
(1.23)

(c) Zint < 1
Less than one collision is necessary to exchange an internal quantum, i.e. the
mean free path for energy exchange lint is smaller than the collision mean free
path lc, whereas the average velocity does not change:

lint = Zintlc (1.24)

C′ = C (1.25)

In this case we obtain, after some algebraic manipulations,

λint = Zintη
cint

m
(1.26)

The internal thermal conductivity decreases by a factor Zint as compared
to the previous cases. The transport of rotational energy of polar molecules
follows this result.
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1.2 Kinetic Theory of Transport Processes in Dilute
Polyatomic Gases

Kinetic theory of transport processes in dilute polyatomic gases has been
discussed in several fundamental monographs (Chapman and Cowling 1970;
Hirschfelder et al. 1966; Ferziger and Kaper 1972; McCourt et al. 1990).
More recently, a number of studies have given an exposition of the theoret-
ical framework while addressing more in detail thermal non-equilibrium
(Nagnibeda and Kustova 2009) or the mathematical properties of the
transport linear systems and the derivation of efficient computational al-
gorithms (Ern and Giovangigli 1994). Complementary to these works, the
book by Zhdanov (2002) discusses transport phenomena in multicomponent
plasmas in the framework of the Grad method (Grad 1949).

Here, we consider a semiclassical framework in which the translational
motion is treated classically and the internal motion quantum mechani-
cally (Chang and Uhlenbeck 1970).

In the derivation, a symmetry condition on the quantum cross sections
arises, analogous to the classical assumption of the existence of inverse
collisions, which is satisfied by the use of degeneracy-averaged cross sec-
tions (Waldmann 1958; Mason and Monchick 1962).

The same results can be obtained from the quantum mechanical
Waldmann–Snider (Waldmann 1957; Snider 1960) equation by pre-averaging
the cross sections over all magnetic quantum numbers (McCourt and Snider
1964; Millat et al. 1988). This isotropic approximation is valid in the ab-
sence of polarisation effects (McCourt and Snider 1964; Viehland et al. 1978;
Millat et al. 1988); therefore, it cannot describe the effects of magnetization
or electrical polarization of the gas medium on transport properties.

The extension of the semiclassical theory to dilute polyatomic gas mix-
tures was given by Waldmann and Trübenbacher (1962) and by Monchick
et al. (1963). Both formulations yield identical transport coefficients, the dif-
ference being in the structure of the linear systems. The former treatment
yields constrained singular symmetric forms that are inverted at lower com-
putational cost and lend themselves to simpler analytic approximations (Ern
and Giovangigli 1994).

The original equation is generalized to reactive mixtures with the introduc-
tion of chemical source terms (Ludwig and Heil 1960; Grunfeld 1993; Alexeev
et al. 1994; Ern and Giovangigli 1998).

As we will see in Chap. 9, this approach can be extended to treat ion-
ized mixtures as long as the electromagnetic fields are not strong enough to
perturb the collision dynamics.

For a reactive gas mixture composed of ns chemical species having internal
degrees of freedom, the state of the system is described in terms of single-
particle distribution functions fi(t, r, c, I) where i is the index of the species,
t the time, r the spatial coordinate, c the velocity and I is a set of quantum
numbers describing the internal energy state.
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The form of the Boltzmann equation is

Di(f) = Si(f) + Ci(f), i = 1, . . . ns (1.27)

Di is the streaming operator describing the advection of particles under
the action of the external fields:

Di(f) = ∂tfi + ci · ∂rfi + bi · ∂cfi (1.28)

where bi is any volume force acting on species i.
The nonreactive collision integral Si takes the form (Giovangigli and

Graille 2003):

Si(f) =
∑
j

∑
I′JJ′

∫ (
f ′
if

′
j

αiIαjJ

αiI′αjJ′
− fifj

)
W IJI′J′

ij dcjdc
′
idc

′
j (1.29)

where αiI is the degeneracy of the quantum state identified by the set I
of quantum numbers and W IJI′J′

ij the transition probability. The following
reciprocity relations hold for transition probabilities:

αiIαjJW
IJI′J′
ij = αiI′αjJ′W I′J′IJ

ij (1.30)

Transition probabilities can be expressed in terms of cross sections via:

gσIJI′J′
de′ = W I′J′IJdc′idc

′
j (1.31)

where g is the relative speed of the particles before collision and e′ the direc-
tion of the relative velocity after the collision.

The reactive source term Ci(f) results from chemical reactions between
species in the mixture. We consider an arbitrary reaction mechanism, includ-
ing, in particular, bimolecular and trimolecular chemical reactions. Explicit
expressions for the collision integrals are reported in Giovangigli and Graille
(2003) and Nagnibeda and Kustova (2009).

1.2.1 Conservation Equations

Given the set of species indices S = {1, . . . , ns} and two families of functions
ξ = (ξi)i∈S and ζ = (ζi)i∈S , we follow Giovangigli and Graille (2009) and
define the scalar product:

〈〈ξ, ζ〉〉 =
∑
i,I

∫
ξi : ζ̄idci (1.32)
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where ξi : ζ̄i denotes the maximum contracted product between the tensor ξi
and the complex conjugate of tensor ζi.

Let φ be an arbitrary function of the molecular properties. The average
value is defined as

φ̄ = 〈〈f, φ〉〉 (1.33)

The flux of the quantity is defined by

Φ = 〈〈f, φC〉〉 (1.34)

where C = c − v is the peculiar velocity, i.e. the molecular velocity relative
to the hydrodynamic velocity.

Taking the scalar product of the Boltzmann equation (1.27) with respect
to φ provides an equation for the rate of change of φ̄.

Of particular importance is the rate of change for properties that do not
change during collision (collisional invariants).

The scalar collisional invariants of the nonreactive collision operator form
a linear space spanned by ψl, l ∈ {1, . . . , ns + 4} with

ψl =

⎧
⎪⎨
⎪⎩

(δil)i∈S l ∈ S

(miciv)i∈S l = ns + v, v ∈ {1, 2, 3}
(12mic

2
i + EiI)i∈S l = ns + 4,

(1.35)

where civ is the component of ci in the vth spatial coordinate and EiI is the
energy of the internal state of species i with quantum numbers I. On the
other hand, the collisional invariants of the complete collision operator are
constituted by the momentum and energy invariants together with the ele-
ment invariants. These latter invariants are associated with the conservation
of elements in chemical reactions (Ern and Giovangigli 1998).

The macroscopic properties, in particular, are written as

〈〈f, ψl〉〉 =

⎧
⎪⎨
⎪⎩

nl l ∈ S

ρvv l = ns + v, v ∈ {1, 2, 3}
1
2ρv

2 + ρu l = ns + 4

(1.36)

where ni is the number density of the ith species, ρ the mixture mass density,
v the mixture velocity and ρu the internal energy per unit volume.

For the collisional invariants, the contribution to the rate of change due
to the collision operator vanishes and the equations turn into conservation
equations for mass, momentum and energy, respectively:
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∂tρi + ∂r · ρiv + ∂r · ρiV i = miωi, i ∈ S (1.37a)

∂tρ+ ∂r · ρv = 0 (1.37b)

∂t(ρv) + ∂r · (P+ ρvv) =
∑
i∈S

ρibi (1.37c)

∂t(ρu+ 1
2ρv

2) + ∂r · [q + (ρu+ 1
2ρv

2)v + P : v
]
=
∑
i∈S

ρibi · (v + V i)

(1.37d)

where V i,P and q are the fluxes of chemical species, total momentum and
total internal energy, respectively, and miωi is the macroscopic mass produc-
tion rate for species i.

Note that the set of conservation Eqs. (1.37) is not closed until explicit
expressions are provided for the fluxes.

Additional collisional invariants may be allowed by the particular choice
of the collision integrals for each specific system of interest. This point will be
discussed at length in the context of the treatment of systems out of thermal
equilibrium (Chap. 8).

1.2.2 The Chapman–Enskog Method of Solution

A solution to the Boltzmann equation (1.27) is obtained by the perturbative
Chapman–Enskog method (Ferziger and Kaper 1972).

The foundation of the method is the assumption that a hydrodynamic
description is possible, i.e. that the equations governing the dynamics of the
macroscopic variables depend explicitly on the macroscopic variables them-
selves and their spatial derivatives. In particular, they do not depend ex-
plicitly on time and on higher moments of the distribution function. This is
equivalent to assuming that the characteristic timescale of the flow is much
larger than the molecular timescale. It is therefore possible to introduce the
ratio of the two as a small parameter, ε. Since the collisional invariants do
not change in collision, the collisions do not affect the macroscopic variables
directly and we can formally rewrite Eq. (1.27) as:

Di(f) =
1

ε
Si(f) + Ci(f) i ∈ S (1.38)

Solutions are then sought in the form

fi = f0
i (1 + εφi +O(ε2)) i ∈ S (1.39)

The perturbation analysis of Eq. (1.38) assumes the characteristic chemical
times are larger than the mean free times of the molecules. In this scenario,
called the tempered reaction regime, a frozen local equilibrium is achieved at
the zeroth order and the chemical reactions act as a first-order perturbation:
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the pressure tensor is modified with a relaxation pressure effect and the
chemistry source terms in the species conservation equations are modified
by first-order corrections. First discussed in Prigogine and Xhrouet (1949)
these corrections have been worked out in detail in Kustova and Giordano
(2011).

Different regimes can also be tackled by weighting differently different
contributions in the transport kinetic Eqs. (1.27) (Alexeev et al. 1994; Ern
and Giovangigli 1998; Nagnibeda and Kustova 2009).

1.2.3 Zero Order

Substituting the expansion (1.39) in the kinetic equations (1.38) we get to
the lowest order in ε:

Si(f
0) = 0 i ∈ S (1.40)

It can be shown that the solution of this equation must be in the form

log (βiIf
0
i ) = αi − β ·mici − γ(12mic

2
i + EiI) (1.41)

where βiI = hP
3

αiIm3
i

and hP is the Planck constant. The parameters

in Eq. (1.41) are arbitrary functions of space and time. They are defined
by requiring that f0 yields the local macroscopic properties:

〈〈f0, ψl〉〉 = 〈〈f, ψl〉〉 l ∈ {1, . . . , ns + 4} (1.42)

As a result,

f0
i =

ni

βiIQi
exp

(
− mi

2kBT
C2

i − EiI

kBT

)
(1.43)

where T is the temperature and Qi the full partition function per unit volume
of the ith species:

Qi = Qint
i Qtr

i (1.44)

Qtr
i =

(
2πmikBT

hP
2

)3/2

(1.45)

Qint
i =

∑
I

αiI exp

(
− EiI

kBT

)
(1.46)

Using this solution, the fluxes of mass, momentum and energy can be
evaluated to give
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V i = 0, i ∈ S (1.47)

q = 0 (1.48)

P = pI, p = nkBT (1.49)

and the corresponding conservation equations are the inviscid Euler equa-
tions:

∂tρi + ∂r · ρiv = miω
0
i , i ∈ S (1.50a)

∂tρ+ ∂r · ρv = 0 (1.50b)

∂t(ρv) + ∂r · (pI+ ρvv) =
∑
i

ρibi (1.50c)

∂t(ρu+ 1
2ρv

2) + ∂r · [(ρu+ 1
2ρv

2 + p)v
]
=
∑
i

ρibi · v (1.50d)

The zeroth-order chemistry production terms are given by

ω0
i = 〈〈ψi,C (f0)〉〉 =

∑
I

∫
Ci(f

0)dci, i ∈ S (1.51)

and they are compatible with the law of mass action and classical thermo-
chemistry.

1.2.4 First Order

The first-order kinetic equations for the unknowns φ = (φi)i∈S are:

FS
i (φ) = −Di(log f

0
i ) +

Ci(f
0)

f0
i

≡ Ψi i ∈ S (1.52)

where the linearized Boltzmann operator is defined as:

FS
i (φ) =

∑
j∈S

∑
I′JJ′

∫
f0
j (φi +φj −φ′

i −φ′
j)W

IJI′J′
ij dcjdc

′
idc

′
j i ∈ S (1.53)

This operator has the important property of being rotationally invariant
(isotropic), i.e. it converts a tensor constructed from (ci)i∈S into another
tensor of the same type.

The RHS of the equation is evaluated from the zero-order conservation
equations (1.50).

Explicit evaluation gives

Ψi = Ψf
i + Ψr

i (1.54)
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The first term is a frozen, i.e. nonreactive, term:

Ψf
i = −Ψη

i : ∇v − 1
3Ψ

κ
i ∇ · v − p

∑
j∈S

Ψ
Dj

i · dj − Ψλ′
i ∇ 1

kBT
(1.55)

where

Ψη
i = 2(wiwi − 1

3w
2
i I) (1.56)

Ψκ
i = 2

cint

cV
(wi ·wi − 3

2 ) + 2
ctr

cV
(ε̄i − εiI) (1.57)

ΨDi =
1

pi
(δil − yi)Ci (1.58)

Ψλ′
i = kBT (

5
2 − w2

i + ε̄i − εiI)Ci (1.59)

and we have used the following definitions:

di = ∇
(ni

n

)
+

(
ni

n
− ρi

ρ

)
∇ log p+

ρ

p

∑
j∈S

yiyj(bj − bi) (1.60)

yi =
ρi
ρ

(1.61)

wi =

√
mi

2kBT
Ci (1.62)

εiI =
EiI

kBT
(1.63)

ε̄i =

∑
I αiIεiIe

−εiI

Qint
i

(1.64)

and the specific heats are as follows:

ctr = 3
2kB (1.65)

cinti =
∂Ēi

∂T
(1.66)

cint =
∑
i∈S

ni

n
cinti (1.67)

cV = ctr + cint (1.68)

Ψr
i is due to chemical reactions:

Ψr
i =

Ci(f
0)

f0
i

− ω0
i

ni
−
∑

j∈S (32 + ε̄j + hfj)ω
0
j

ncV/kB

(32 − w2
i + ε̄i − εiI) (1.69)

where hfi =
Hfi

kBT is the reduced formation energy of species i.
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Equation (1.52) is then a inhomogeneous Fredholm integral equation of
the second kind. Its solubility is guaranteed by the requirement that the
Eqs. (1.50) be satisfied and the solutions are determined uniquely from the
constraints:

〈〈f0φ, ψl〉〉 = 0 l ∈ {1, . . . , ns + 4} (1.70)

From Eqs. (1.50)–(1.52) with the constraints Eq. (1.70), making use of the
linearity and isotropy properties of the linear Boltzmann operator, it follows
φi can be cast in the form

φi = φf
i − φr

i (1.71)

φf
i = −φη

i : ∂rv − 1
3φ

κ
i ∂r · v − p

∑
j∈S

φ
Dj

i · dj − φλ′
i · ∂r

(
1

kBT

)
(1.72)

Equation (1.52) therefore splits into separate equations for the different
φμ
i :

FS
i (φμ) = Ψμ

i (1.73)

with the constraints

〈〈f0φμ, ψl〉〉 = 0 (1.74)

With the expressions (1.71) and (1.72), we can formally evaluate the fluxes:

V i = −
∑
j∈S

Dj
idj −DT

i ∇ logT, i ∈ S (1.75)

P = (p− κ∂r · v − prel)I− 2ηS (1.76)

where S = 1
2 (∂rv + ∂̃rv)− 1

3∂r · v and Ã is the transpose of matrix A.

q = −λ′∇T − p
∑
i∈S

DT
i di +

∑
i∈S

niHiV i (1.77)

with Hi =
5
2kBT + Ēi + Hfi and where the transport coefficients are given

by1

Dj
i = 1

3pkBT [[φ
Di , φDj ]] (1.78a)

DT
i = − 1

3 [[φ
Di , φλ′

]] (1.78b)

1 Note that different symbols are found in literature for multicomponent and thermal
diffusion coefficients, i.e. Dij ≡ Dj

i and DTi ≡ DT
i .
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λ′ = 1
3

1

kBT 2
[[φλ′

, φλ′
]] (1.78c)

η = 1
10kBT [[φ

η, φη]] (1.78d)

κ = 1
9kBT [[φ

κ, φκ]] (1.78e)

prel = 1
3kBT [[φ

κ, φr]] (1.78f)

where the bracket operator is defined by

[[a, b]] = 〈〈f0a,FS (b)〉〉 (1.79)

where a = (ai)i∈S and b = (bi)i∈S . The bracket operator is hermitian, posi-
tive semi-definite and its kernel is spanned by the collisional invariants, i.e.
[[a, a]] = 0 implies a is a collisional invariant.

Note also that the perturbed distribution function φr that depends on the
reactive source term Ci only enters the calculation of the relaxation pressure,
Eq. (1.78f) and the chemical production rates, ωi, in Eq. (1.37a).

1.2.5 True Thermal Conductivity

Rewrite here Eq. (1.77) for the heat flux:

q = −λ′∇T − p
∑
i∈S

DT
i di +

∑
i∈S

niHiV i (1.80)

Performing a direct experimental measurement of λ′ in a gas mixture is
impossible since a temperature gradient induces thermal diffusion and thus
concentration gradients. The coefficient is therefore termed partial thermal
conductivity.

It is useful to define the thermal diffusion ratios, kT = (kTi )i∈S ,

∑
j∈S

Dj
i k

T
j = DT

i , i ∈ S (1.81)

∑
i∈S

kTi = 0 (1.82)

and the true thermal conductivity

λ = λ′ − p

T

∑
i∈S

DT
i k

T
i (1.83)

so that the heat flux and the diffusion velocities can be rewritten as
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V i = −
∑
j∈S

Dj
i

(
dj + kTj ∇ logT

)
, i ∈ S (1.84)

q = −λ∇T +
∑
i∈S

(
pkTi + niHi

)
V i (1.85)

λ is now directly measurable in a heat conduction experiment at steady state,
where all diffusion velocities vanish. Also, note that λ = λ′ for a pure gas.

It is, however, desirable to have a means to directly evaluate λ and the
thermal diffusion ratios without the intermediate calculation of Dj

i , λ
′ and

DT
i . Defining

φλ = φλ′
+ pkBT

∑
i∈S

kTi φ
Di (1.86)

Ψλ = Ψλ′
+ pkBT

∑
i∈S

kTi Ψ
Di (1.87)

it is easy to show, by linearity, that

FS
i (φλ) = Ψλ

i (1.88)

〈〈f0φλ, ψl〉〉 = 0 (1.89)

that, using Eqs. (1.78), yields

λ =
1

3kBT 2
[φλ, φλ] (1.90)

kTi =
mi

3pkBT
[ϕi, φλ], i ∈ S (1.91)

where ϕi ≡ (Ciδij)j∈S .

The difference between λ and λ′ is accounted for by thermal diffusion
effects. These are usually very small except for the case of electrons.
Figure 1.2 shows the λ and λ′ thermal conductivities of equilibrium air
at atmospheric pressure. Differences between the two coefficients appear
only when the electron contribution becomes substantial.

1.2.6 Electric Current

Define the electric charge density

ρe =
∑
i∈S

niei (1.92)

where (ei)i∈S are the species electric charges, and the electric current density
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Fig. 1.2 Translational thermal conductivities of equilibrium air plasma at p=1 atm.
Solid line: λ; dashed line: λ′

je =
∑
i∈S

nieiV i (1.93)

Assuming that there are only electromagnetic forces,

bi =
ei
mi

E′ (1.94)

where E′ = E+ v×B is the electric field in the frame moving with the gas.
Substituting from Eq. (1.75)

je = −
∑
i,j∈S

σj
i d

′
j −
∑
i∈S

ϕT
i ∇T (1.95)

where

d′
i ≡

p

ρi

[
ei
mi

− ρe
ρ

]−1

di

=
p

ρi

[
ei
mi

− ρe
ρ

]−1 [
∇
(ni

n

)
+

(
ni

n
− ρi

ρ

)
∇ log p

]
−E′, i ∈ S (1.96)

and the electrical conductivities and electrothermal coefficients are, respec-
tively,

σj
i =

niei
p

Dj
i ρj

(
ej
mj

− ρe
ρ

)
(1.97)
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ϕT
i =

niei
T

DT
i (1.98)

For the particular case of a quasineutral plasma in equilibrium (i.e. without
macroscopic gradients) we have

ρe = 0 (1.99)

d′
i = −E′, i ∈ S (1.100)

and the electric current density is given by

je = σeE
′ (1.101)

with

σe =
∑
i,j∈S

σj
i =

1

p

∑
i,j∈S

nieiD
j
injej (1.102)

1.2.7 Transport Linear Systems

The linearized Boltzmann equation (1.73) is solved approximately with a
variational procedure using polynomial expansions.

The transport coefficients are then generally obtained as

μ = 〈〈f0φμ, Ψμ〉〉 (1.103)

Given the basis set (ξrk), the distribution functions φμ are expanded in the
form

φμ =
∑

αμ
rkξ

rk (1.104)

The variational procedure applied to the integral Eq. (1.73) then yields the
system

[[ξrk, φμ]] = 〈〈ξrk, Ψμ〉〉 (1.105)

which must be solved under the constraints (1.74). The relations (1.105) yield
a linear system:

∑
sl

Grs
klα

μ
sl = βμ

rk (1.106)

where
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Grs
kl = [[ξrk, ξsl]] (1.107)

βμ
rk = 〈〈f0ξrk, Ψμ〉〉 (1.108)

The n+ 4 tensorial constraints (1.74) yield scalar constraints.
The basis functions ξrk are generally chosen as linear combinations of the

functions φa0cdk:

φa0cdi(ci, I) = Sc

a+
1
2

(w2
i )W

d
i (εiI)T

a (1.109)

where a, c and d are integers, Sc

a+
1
2

the Sonine polynomial (Whittaker and

Watson 1990) of order c with parameter a+ 1
2 ; W

d
i the Waldmann–Trüben-

bacher polynomials (Waldmann and Trübenbacher 1962) of order d for the
ith species, and T

a is a tensor of rank a:

T
0 = 1 (1.110)

T
1 = wi (1.111)

T
2 = wiwi − 1

3w
2
i I (1.112)

Therefore, in the notation φa0cdi, a refers to the rank order, b = 0 refers to
the absence of polarization effects, c is the order of the Sonine polynomial, d
is the order of the Waldmann–Trübenbacher polynomials and i is the species.

The polynomials used for expanding φμ are the Sonine polynomials (Whit-
taker and Watson 1990) for the dependence on the molecular velocity and the
Waldmann–Trübenbacher polynomials (Waldmann and Trübenbacher 1962)
for the dependence on the internal energies. The former are chosen since,
for the particular case of Maxwell molecules, they are eigenvectors of the
linearized (nonreactive) collision operator (Burnett 1935a,b). A detailed dis-
cussion of the merits of this particular choice has been done in Kumar (1966).

The transport linear systems are derived from a variational procedure used
to solve constrained systems of linearized Boltzmann integral equations. They
have a general mathematical structure inherited from the properties of Boltz-
mann linearized collision operators and the properties of usual variational
approximation spaces associated with the transport linear systems. These
features have been analysed in detail in Ern and Giovangigli (1994) where it
has been shown that:

• The transport linear systems are well posed (i.e. admit a unique solution).
• The transport coefficients can be expanded as convergent series which yield

approximate expressions by truncation.
• The real symmetric constrained singular semi-definite systems arising from

multicomponent transport can be inverted very efficiently via iterative,
conjugate gradient-type methods.

The results of this study have also been extended to the study of the
anisotropic transport properties of magnetized plasmas (Giovangigli 2010).
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The transport coefficients of dilute polyatomic gas mixtures have thus
been expressed in terms of the solution of appropriate linear systems. These
linear systems relate the transport coefficients to a series of collision cross
sections describing the dynamical interaction between polyatomic molecules.
However, solving these linear systems by direct methods (such as Gaussian
elimination) presents two serious drawbacks. First, it does not provide ex-
pressions for the transport coefficients that can be written explicitly in a
tractable manner for an arbitrary number of species in the mixture. Second,
this approach is extremely expensive in computational models of multicom-
ponent flows since the size of the linear systems can be relatively large and
since transport properties have to be evaluated at each computational cell
in space and time. Numerical algorithms devoted to solve the nonlinear dis-
cretized equations governing these flows may also proceed by iteration, such
as Newton method, and this even increases the number of transport property
evaluations. In this context, iterative methods offer an interesting alternative
since they provide a rigorous way to define approximate transport coeffi-
cients by truncating convergent series. A general theory of iterative methods
for evaluating transport coefficients in dilute polyatomic gas mixtures has
been developed in Ern and Giovangigli (1994). Convergence theorems were
presented in a rigorous mathematical framework that was extracted from
the Boltzmann equation and from the variational procedure used to expand
the species perturbed distribution functions. For a detailed discussion of the
mathematical foundations and of the implementation of iterative methods for
the determination of transport coefficients in reactive gas mixtures the reader
is referred to the original work (Ern and Giovangigli 1994). These algorithms
have also been extended to the case of plasmas with anisotropy effects caused
by external magnetic fields (Giovangigli 2010).

1.2.8 Direct Evaluation of Heat and Mass
Diffusion Fluxes

According to Eqs. (1.75) and (1.77), the evaluation of diffusion velocities and
heat flux entails the calculation of the partial thermal conductivity, λ′, the
thermal diffusion coefficients,

(
DT

i

)
i∈S

, and of the multicomponent diffusion

coefficients,
(
Dj

i

)
i,j∈S

.

When the goal is the calculation of the fluxes, e.g. in a fluid dynamic simu-
lation, and the explicit evaluation of the transport coefficients is of no interest,
the algorithm developed by Kolesnikov (2002) can be applied successfully.

The first-order perturbation responsible for diffusion and thermal conduc-
tion is expanded:
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φθ
i = −p

∑
j∈S

φ
Dj

i · dj − φλ′
i · ∂r

(
1

kBT

)
=
∑
c

αθ
ciφ

10c0i (1.113)

Substituting this expansion in the definition of the diffusion velocities

V i =〈〈f, (δij)j∈S C〉〉 =
∫

φθ
iCidci

=
∑
c

αθ
ci

∫
Sc

3
2

(w2
i )Cidci =

1
2

√
2kBT

mi
αθ

0i (1.114)

where the properties of the Sonine polynomials have been used. Analogously,
the translational heat flux vector due to the ith species is

∫
φθ
i

(
miC

2
i

2

)
Cidci =

5
2nikBT ·

(
V i − 1

2

√
2kBT

mi
αθ

1i

)
(1.115)

The integral equation for φθ is

FS
i (φθ) = Ψθ

i i ∈ S (1.116)

where
Ψθ
i = −p

∑
j∈S

Ψ
Dj

i · dj − Ψλ′
i ∇ 1

kBT
i ∈ S (1.117)

Applying the methods of Sect. 1.2.7, the coefficients αθ
ci, and therefore

the diffusion velocities and the translational heat flux, are obtained from the
solution of a single linear system:

∑
dj

Gcd
ij ξ

θ
dj = βθ

ci (1.118)

where

Gcd
ij = 25

4 nkB

2
√
mimj

3p
[[φ10c0i, φ10d0j ]] (1.119)

βθ
ci = −δc0di + δc1

5
2

ni

n

∇T

T
(1.120)

ξθci =
1
2

√
2kBT

mi
αθ

ci (1.121)



1.2 Kinetic Theory of Transport Processes in Dilute Polyatomic Gases 21

1.2.9 Onsager Reciprocal Relations and Alternative
Formulations of the Transport Linear Systems

The Onsager relations are symmetry constraints which must hold between
the transport coefficients. In the case of gases, these symmetry properties can
directly be deduced from the kinetic theory of gases (de Groot and Mazur
1984). For an isotropic system, i.e. a gas mixture without magnetization, the
Onsager reciprocal relations reduce to

Dj
i = Di

j (1.122)

Note, however, that the vectors φ
Dj

i are not uniquely determined by
Eqs. (1.73) and (1.74). For μ = Dj we get, from Eq. (1.73) multiplied by
ρj

ρ and summed over j,

∑
j

ρj
ρ

FS
i (φDj ) =

∑
j

ρj
ρ
Ψ

Dj

i = 0 (1.123)

This implies that
∑

j(
ρj

ρ )φ
Dj

i is a summational invariant and there is free-

dom to set a linear combination of the φ
Dj

i , j ∈ S to a constant value.
Waldmann and Trübenbacher (1962) chose to set

∑
j

(
ρj
ρ

)
φ
Dj

i = 0, i ∈ S (1.124)

This choice leads to symmetric diffusion coefficients that are formally com-
patible with Onsager reciprocal relations, Eq. (1.122):

Dj
i = Di

j (1.125)

Di
i > 0 (1.126)

This, together with Eq. (1.124), implies the diffusion coefficients and ther-
mal diffusion coefficients are not linearly independent:

∑
i

ρi
ρ
Dj

i = 0 (1.127)

∑
i

ρi
ρ
DT

i = 0 (1.128)

Symmetric diffusion coefficients have also been considered by Waldmann
(1958), Chapman and Cowling (1970), Ferziger and Kaper (1972), and Curtiss
(1968).
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Some authors, however, opted for a different definition that destroys the
natural symmetry of the diffusion coefficients. Among others, Monchick et al.
(1963), Curtiss and Hirschfelder (1949), and Hirschfelder et al. (1966) have
set

φDi

i = 0, i ∈ S (1.129)

that leads to

Di
i = 0 (1.130)

The symmetric formalism is to be preferred on grounds of theoretical
consistency (Van de Ree 1967), critical for the treatment of reactive and
polyatomic gas mixtures, and computational efficiency (Ern and Giovangigli
1994). The alternative formalism has been, however, very popular among
users, therefore, it is worth pointing out that it gives completely equal results
for the transport coefficients. In Chap. 2 we provide the necessary expressions
that allow to link the two descriptions. Both formulations have been shown
to yield completely equal results for the transport coefficients (Ern and Gio-
vangigli 1994).

1.3 Internal Thermal Conductivity

In this section we discuss the contribution of the internal degrees of freedom to
the thermal conductivity. We start by introducing the Eucken approximation
before proceeding to a formal derivation from kinetic theory.

1.3.1 The Eucken Approach

For molecules possessing no internal degrees of freedom, viscosity and thermal
conductivity are related by

λ = 5
2

cV
m
η (1.131)

Eucken (1913) suggested to extend the above expression to polyatomic
gases as

λ =

(
5
2

ctr

m
+

cint

m

)
η (1.132)

In the framework of the Chapman–Enskog method, the Eucken formula,
Eq. (1.132), can be justified and further improved. A simple polyatomic gas
is considered as a mixture of molecules in different internal quantum states,
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whereas the interaction between molecules is assumed to be independent of
their internal state. Since the thermal diffusion term of a mixture of compo-
nents with same mass and same intermolecular forces is zero, the heat flux
vector q for such a mixture is

q = −λtr∂rT +
∑
i

niHiV i (1.133)

where the sum on i runs on the internal states of the molecule, ni, Hi and V i

are number density, enthalpy and diffusion velocity, respectively, of the ith
internal state. The thermal conductivity coefficient, λ′ = λ, has been given
the superscript tr to emphasize that it describes the transport of kinetic
energy exchanged in (elastic) collisions.

The enthalpy per particle can be written as

Hi =
5
2kBT + Ei (1.134)

i.e. the sum of translational and internal energy.
The diffusive term can be split in two parts:

∑
i

niHiV i =
5
2kBT

∑
i

niV i +
∑
i

niEiV i (1.135)

The first term for a mixture of quantum states of the same species (same
mass and same intermolecular forces) is zero:

∑
i

niV i =
∑
i

ni(vi − v)

=
∑
i

nivi − nv

=
∑
i

nivi − n

ρ

∑
j

njmjvj

=
∑
i

nivi − nm

ρ

∑
j

njvj = 0

The diffusion velocities can be obtained from the general expression,
Eq. (1.75), using the relation, Eq. (1.127), among diffusion coefficients:

V i = −
(

n

ni

)
D∇

(ni

n

)
(1.136)

D = ni

n Di
i being the self-diffusion coefficient. The main Eucken approxima-

tion is to consider the internal levels at equilibrium at the local temperature.

V i = −
(

n

ni

)
D ∂

∂T

(ni

n

)
∂rT (1.137)
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so that

∑
i

niHiV i = −
∑
i

niEi

(
n

ni

)
D ∂

∂T

(ni

n

)
∂rT

= −nD
∑
i

Ei
∂

∂T

(ni

n

)
∂rT

Noting that the specific heat for internal energy is

cint =
∂Ēi

∂T
=
∑
i

Ei
∂

∂T

(ni

n

)
(1.138)

we arrive at

∑
i

niHiV i = −nDcint∂rT (1.139)

The total heat flux can be therefore written as

q = −λ∂rT (1.140)

with

λ = λtr + λint = 5
2

ctr

m
η + ρD cint

m
(1.141)

so that Eq. (1.132) is generalized as

λ =

(
5
2

ctr

m
+

ρD
η

cint

m

)
η (1.142)

The improvement comes from considering the Chapman–Enskog value for
ρD
η instead of the mean free path value of unity.

To summarize, the result (1.142) has been obtained under the following
assumptions:

• The internal states are in thermal equilibrium at the local temperature.
• All molecules interact via the same force law, irrespective of their internal

state.
• Inelastic collisions have been completely neglected.

The first assumption can be relaxed by providing a kinetic theory of gases
in thermal non-equilibrium: this will be done in Chap. 8; the second assump-
tion is reasonable for molecules with rotational or vibrational excitation so
that the Eucken approach still gives satisfactory results for vibrational and
rotational degrees of freedom. It does not work for the electronic degree of
freedom since electronically excited states have transport cross sections dra-
matically increasing with the principal quantum number (see Chap. 7 and
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Capitelli and Lamanna 1974); finally, in order to discuss the role of inelastic
collisions on transport we have to resort to a full semiclassical kinetic theory
to which we turn in the next section. This will also allow us to obtain a
general expression of the internal thermal conductivity for gas mixtures.

1.3.2 Kinetic Theory Approach

The equations that determine the transport coefficients in the general case
are Eq. (1.73) supplemented by the constraint, Eq. (1.74), that we rewrite
here, specialized for μ = λ′:

FS
i (φλ′

) = Ψλ′
i , i ∈ S (1.143)

〈〈f0φλ′
, ψl〉〉 = 0 (1.144)

with

Ψλ′
i =

(
5
2kBT − 1

2miC
2
i + ε̄i − εiI

)
Ci

=

√
2(kBT )3

mi
(φ1010i + φ1001i)

(1.145)

And the partial thermal conductivity is given by

λ′ =
1

3kBT 2
[[φλ′

, φλ′
]]

=
1

3kBT 2
〈〈f0φλ′

,FS (φλ′
)〉〉

=
1

3kBT 2
〈〈f0φλ′

, Ψλ′〉〉

Applying the variational procedure described above, Sect. 1.2.7, the un-
known function φλ′

is expanded as

φλ′
i =

√
2mikBT

∑
pq

αλ′
pqiφ

10pqi i ∈ S (1.146)

and the coefficients αλ′
pqk are determined from

∑
j

∑
rs

Gpq,rs
ij αλ′

rsj = βλ′
pqi (1.147)
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where

Gpq,rs
ij =

2
√
mimj

3p
[[φ10pqi, φ10rsj ]] (1.148)

βλ′
pqi =

√
2mi

3p
√
kBT

〈〈f0φ10pqi, Ψλ′〉〉

=
ni

n

ctrp
kB

δpq10 +
ni

n

cinti

kB

δpq01 (1.149)

The constraint, Eq. (1.144) now reads

∑
i

ρi
ρ
αλ′
00i = 0 (1.150)

and, finally,

λ′ =
p

T

〈
αλ′

, βλ′〉

=
p

T

(〈
αλ′
10, β

λ′
10

〉
+
〈
αλ′
01, β

λ′
01

〉)

=
∑
i∈S

ni(c
tr

p α
λ′
10i + cinti αλ′

01i) (1.151)

In order to compare with the results of the previous section, Eq. (1.142),
we perform an explicit evaluation to lowest order in the polynomials for a
pure polyatomic gas:

φλ′
=
√
2mkBT [α

λ′
00φ

1000 + αλ′
10φ

1010 + αλ′
01φ

1001] (1.152)

which is easily solved:

αλ′
00 = 0 (1.153)

αλ′
10i =

ctrp
kB

G01,01 − cinti

kB
G10,01

G10,10G01,01 −G10,01G01,10
(1.154)

αλ′
01i =

cinti

kB
G10,10 − ctrp

kB
G01,10

G10,10G01,01 −G10,01G01,10
(1.155)

In order to determine the thermal conductivity, the following collision
integrals have to be evaluated:

G10,10 =
2m

3p
[[φ1010, φ1010]] (1.156)

G01,01 =
2m

3p
[[φ1001, φ1001]] (1.157)

G10,01 = G01,10 =
2m

3p
[[φ1010, φ1001]] (1.158)
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Explicitly, each of these bracket integrals is a multiple integral:

[[ξ, ζ]] =
∑

I,I′,J,J′

∫
f0(ci)f

0(cj)(ξi + ξj − ξ′i − ξ′j) : (ζi + ζj − ζ′i − ζ′j)

σIJI′J′
ij gdΩdcidcj (1.159)

where the sum runs over all possible transitions. With the standard reduction
methods, explained, for example, in Chapter 7 of Ferziger and Kaper (1972),
these integrals are expressed as

G10,10 =
1

2D
(
4A+ 25

12


(Δε)2�
Ω(1,1)

)
(1.160)

G01,01 =

(
cint

kBDint
+ 3

8


(Δε)2�
Ω(1,1)D

)
(1.161)

G10,01 = G01,10 = − 5
8


(Δε)2�
Ω(1,1)D (1.162)

where

D =
3kBT

8nmΩ(1,1)
(1.163)

Dint =
3kBT

8nmΩ
(1,1)
int

(1.164)

A =
Ω(2,2)

2Ω(1,1)
(1.165)

Ω(1,1) = 
γ2 − γγ′ cosχ� (1.166)

cint

kB

Ω
(1,1)
int = 
ε0I((ε0I − ε0J)γ

2 − (ε0I′ − ε0J′)γγ′ cosχ)� (1.167)

ε0I = εI − ε̄I (1.168)

Δε = εI′ − εI + εJ′ − εJ (1.169)

where the averaging operator 
.� is defined by


a� =
√

kBT

πm

∑
I,I′,J,J′

αIαJ

Q2

∫
aγ3e−(γ2+εI+εJ )σIJI′J′

dΩdγ (1.170)

γ = g

√
m

4kBT
(1.171)

Explicit expressions can only be obtained from the knowledge of the cross
sections for the relevant inelastic collisions. For illustration purposes, we
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assume that Δε is a small quantity and derive the first two approximations.
Assuming Δε = 0,

G10,10 =
2A

D (1.172)

G01,01 =
cint

kBD (1.173)

G10,01 = G01,10 = 0 (1.174)

so that

λ′ = 75
32

kB
2T

mΩ(2,2)
+ 3

8

kBT

mΩ(1,1)
cint (1.175)

This result is exactly equivalent to Eq. (1.142). A better approximation,
due to Mason and Monchick (1962), assumes a hard sphere scattering for
inelastic collisions:

(Δε)2 sin2 χ = 2
3 (Δε)2 (1.176a)

g(εI − εJ) = g′(εI′ − εJ′) (1.176b)

so that

G10,10 =
2ρ

3kBT

(
4Ω(2,2) + 25

12

cint

kB

1

nτ

)
(1.177)

G01,01 =
2ρ

3kBT

(
4Ω(1,1) c

int

kB

+ 25
12

cint

kB

1

nτ

)
(1.178)

G10,01 = G01,10 = − 2ρ

3kBT
5
4

cint

kB

1

nτ
(1.179)

where the relaxation time, τ , is defined as

1

nτ
= kB

ctr + cint

ctrcint

(Δε)2� (1.180)

and, finally, Eq. (1.142) is generalized:

λ′ = λ′
tr + λ′

int (1.181)

λ′
tr = 5

2

ctr

m
η

(
1− cint

ctr

5
2η − ρD
2pτ

)
(1.182)

λ′
int = ρD cint

m

(
1 +

5
2η − ρD
2pτ

)
(1.183)
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The new terms in the brackets account for the contribution of inelastic
collisions. They have been evaluated, for example, in Bruno and Giovangigli
(2011) for a simple model gas.

Figure 1.3 shows the value of the second term in the bracket in Eq. (1.183).
This is to be compared to unity. Note that this term does not depend on
gas density. It can be a substantial contribution to the thermal conductivi-
ties, increasing as pτ decreases. It is also apparent that the approximations,
Eqs. (1.176), break down when the inelastic collisions are fast enough. In order
to put this results in context, Fig. 1.4 reports the value of pτ corresponding
to the different values of the transition probability, p0: most vibrational tran-
sitions lay above the p0 = 0.01 curve, whereas most rotational transitions lay
above the p0 = 0.1 and only very fast transitions have smaller values for pτ .

Fig. 1.3 Inelastic collision contribution to the internal thermal conductivity in
Eq. (1.183). For the details of the physical model, refer to the original work (Bruno
and Giovangigli 2011). The different curves refer to different values for the transi-
tion probability of inelastic collisions: p0=0.01, 0.1, 0.2, 0.5, in increasing order. The
symbols refer to the same conditions, but the collision integrals have been evaluated
exactly

The transport of internal energy is a topic of current interest. Nowadays
from the macroscopic point of view, one tends to abandon the local equi-
librium distribution hypothesis by calculating the spatial gradients of the
quantum states (see Chap. 6 and Nagnibeda and Kustova 2009). From the
microscopic point of view a large effort is dedicated to understand the role of
inelastic collisions in affecting the distribution function and therefore the
transport coefficients. This calls for an estimation of the inelastic collision
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Fig. 1.4 pτ values corresponding to different values for the transition probability of
inelastic collisions: p0=0.01, 0.1, 0.2, 0.5. Increasing p0 corresponds to smaller pτ

integrals, Eqs. (1.160), (1.161), and (1.162). The Mason and Monchick hy-
pothesis, Eqs. (1.176), amounts to assuming that the particles’ trajectory in
inelastic collisions is the same as for elastic encounters. While this is a rea-
sonable assumption for rotationally inelastic transitions, the same cannot be
said for vibrationally inelastic collisions. These cross sections are however
much smaller than the elastic cross sections so that their effect should be not
essential (Billing and Wang 1992).

1.4 Reactive Thermal Conductivity

In mixtures of gases in chemical equilibrium the thermal conductivity may be
considerably higher than in “frozen” (nonreacting) mixtures. The mechanism
responsible for the increased conductivity of reacting mixtures is as follows.
In a pure gas, heat is conducted principally by molecular collisions, and the
heat flux vector is directly proportional to the negative gradient of the tem-
perature field: q = −A∇T . The proportionality constant A is the thermal
conductivity of the gas. In a mixture of gases which do not react, heat is also
transferred by thermal diffusion; however, the quantity of heat transferred in
this fashion rarely exceeds a few percent of that carried by molecular colli-
sions. In practical cases it is usually neglected. When the components of a
gas mixture react with one another, however, additional heat is transported
as chemical enthalpy of molecules which diffuse in as much as concentration
gradients exist in the mixture. These concentration gradients arise since the
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equilibrium gas composition varies with temperature. For example, in a gas
which absorbs heat by dissociating as the temperature is raised, heat is trans-
ferred when a molecule dissociates in the high-temperature region and diffuses
towards the low-temperature region (since there is a lower concentration of
dissociated molecules at low temperature). In the low-temperature region the
gas recombines, releasing the heat absorbed from the high-temperature dis-
sociation. This phenomenon was perhaps first recognized by Nernst (1904)
who suggested that the high thermal conductivity of nitrogen dioxide be as-
cribed to this effect. Nernst further derived an expression for the thermal
conductivity of a dissociating gas.

1.4.1 The Butler–Brokaw Theory

In order to estimate the reactive thermal conductivity we follow Butler and
Brokaw (1957) and make the following assumptions:

1. The gas mixture is in thermal and chemical equilibrium.
2. Total pressure is uniform.
3. Thermal diffusion is negligible.
4. There are no external forces.
5. Diffusion is described by binary diffusion coefficients.

While the first two assumptions reflect the actual experimental conditions,
the remaining are valid to a good extent for neutral gases only and will have
to be improved.

The derivation proceeds as follows. Assume a mixture of ns components
(Xi)i∈S . The convective heat flux describing the transport of enthalpy due
to diffusion is defined by:

qconv =
∑
i∈S

niHiV i (1.184)

where Hi is the enthalpy carried by i-type particles and V i is the diffusion
velocity. For each component, the enthalpy is the sum of translational energy,
internal energy and formation enthalpy:

Hi =
5
2kBT + Ēi +Hfi (1.185)

Among the reactions taking place in the gas, we now select a linearly
independent set and order the components (Xi)i∈S such that the first ne

appear in a single reaction. We can then write the reactions as

Xk =

ns∑
i=ne+1

bikXi, k = 1, . . . , ne (1.186)
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From the equilibrium assumption, we also derive that the net flux of each
component must vanish:

niV i +

ne∑
k=1

biknkV k = 0, i = ne + 1, . . . , ns (1.187)

Making use of this relation, we now rewrite the convective heat flux:

qconv =
∑
i∈S

niHiV i

=

ne∑
i=1

niHiV i +

ns∑
i=ne+1

niHiV i

=

ne∑
i=1

niV i

(
Hi −

ns∑
k=ne+1

Hkb
k
i

)
= −

ne∑
i=1

niV iΔHi

(1.188)

where ΔHi is the heat of the ith reaction, Eq. (1.186).
Next step is to evaluate the diffusion velocities. They are related to the

spatial gradient of the concentrations:

∇xi =
∑
j �=i

xixj

Dj
i

(V j − V i) , i = 1, . . . , ns (1.189)

where xi =
ni

n and Dj
i = 3kBT

16nmijΩ
(1,1)
ij

are the binary diffusion coefficients and

mij is the reduced mass for the (i, j) pair.
The gradients of the species concentrations are in turn expressed in terms

of the equilibrium constant for each of the reactions (1.186) via van’t Hoff
isochore:

d logKpk

dT
=

ΔHk

kBT 2
(1.190)

so that

ns∑
i=ne+1

bik
1

xi
∇xi − 1

xk
∇xk =

ΔHk

kBT 2
∇T, k = 1, . . . , ne (1.191)

Using Eqs. (1.187) and (1.189) the last equation reads:
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ΔHk

kBT 2
∇T =

ne∑
p=1

xpV p

⎡
⎣

ns∑
i=ne+1

⎛
⎝ bik
Dp

i

+
bip
Di

k

+ bik
bip
xi

ns∑
j=1

xj

Dj
i

− bik

ns∑
j=ne+1

bjp

Dj
i

⎞
⎠− 1

Dp
k

⎤
⎦

+ V k

⎡
⎣

ns∑
j=1

xj

Dj
k

⎤
⎦ , k = 1, . . . , ne

(1.192)

which can be put in the form:

ne∑
p=1

Ap
knpV p =

ΔHk

kBT 2
∇T, k = 1, . . . , ne (1.193)

Inverting this system, we obtain (V p)p=1,...,ne that are then substituted

in Eq. (1.188) to give

qconv = −λr∇T (1.194)

with

λr = − 1

kBT 2

∣∣∣∣∣∣∣∣

0 ΔH1 . . . ΔHne

ΔH1 A1
1 . . . A1

ne

. . . . . . . . . . . . . . . . . . . . .
ΔHne Ane

1 . . . Ane

ne

∣∣∣∣∣∣∣∣
|A| (1.195)

The Ai
j have complicated expressions (Butler and Brokaw 1957). The for-

malism presented here is the starting point for the discussion of reactive
thermal conductivity in thermal non-equilibrium conditions (see Chap. 8 and
Bonnefoi et al. 1985).

For LTE plasmas, the formulas can be simplified rewriting the independent
chemical reactions as (Brokaw 1960)

∑
i∈S

ni
kXi = 0 k = 1, . . . , ne (1.196)

The corresponding equations are reported in Chap. 7.

1.4.2 Extension to Ionized Mixtures

The above derivation has some important limitations if it is to be applied
to ionized mixtures. In this case, strong volume forces manifest in the form
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of ambipolar electric fields and, as we shall see in Chap. 9, the binary diffu-
sion coefficient is not a good approximation for the multicomponent diffusion
coefficients when electrons are present.

We therefore consider the case that (Meador, Jr. and Staton 1965):

1. The gas mixture is in thermal and chemical equilibrium.
2. Total pressure is uniform.
3. Thermal diffusion is negligible.
4. There are only electromagnetic forces acting on the plasma.
5. The plasma is quasineutral.
6. The total current density equals zero (i.e. the ambipolar diffusion regime

has been established, as in all actual experiments).

The derivation proceeds as before by selecting a set of linearly indepen-
dent chemical reactions so that Eq. (1.188) still holds, but now the diffusion
velocities are

V i = −
∑
j

Dj
idj , i = 1, . . . , ns (1.197)

where

di = ∇xi − xi
eiE

′

kBT
, i = 1, . . . , ns (1.198)

and E′ is the ambipolar electric field.
Again, the concentration gradients can be related to the equilibrium con-

stant:

ns∑
i=ne+1

bik
di

xi
− dk

xk
=

ΔHk

kBT 2
∇T, k = 1, . . . , ne (1.199)

In the above derivation we have used the property of electric charge con-
servation in chemical reactions. Recall that the diffusion driving forces are
related to the diffusion velocities by (see Sect. 1.2.8)

V i = β0
i , i = 1, . . . , ns (1.200a)

di

xi
= − 25

4 nkB

ns∑
j=1

na∑
q=0

A0q
ij β

q
j , i = 1, . . . , ns (1.200b)

5
2δp1

∇T

T
= 25

4 nkB

ns∑
j=1

na∑
q=0

Apq
ij β

q
j ,

i = 1, . . . , ns

p = 1, . . . , na
(1.200c)

where βq
j =

1
2

√
2kBT
mj

αq
j and Apq

ij = 1
xi
Λpq
ij . Using these relations, Eq. (1.199),

can be recast as
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25
4 nkB

ns∑
j=1

na∑
q=0

[
A0q

kj −
ns∑

i=ne+1

bikA
0q
ij

]
βq
j =

ΔHk

kBT 2
∇T, k = 1, . . . , ne (1.201)

whereas the condition, Eq. (1.187) can be written as

xiβ
0
i +

ne∑
k=1

bikxkβ
0
k = 0, i = ne + 1, . . . , ns (1.202)

Finally, the ambipolar diffusion assumption reads

je ≡
ns∑
i=1

einiV i = 0 (1.203)

Equations (1.202), (1.201), (1.200c), and (1.203) form a linear system of
ns(na +1)+ 1 equations required to solve for the diffusion velocities and the
ambipolar electric field in terms of ∇T .

1.4.3 Transport of Dissociation Energy

In this section we apply the formalism developed in Sect. 1.4.1 above to the
case of a dissociating gas. We then have ns = 2 and a single chemical reaction

A2 = 2A (1.204)

whose heat of reaction is ΔH = 2HA − HA2
. The stationary condition,

Eq. (1.187), then reads

nAV A + 2nA2
V A2

= 0 (1.205)

and the convective heat flux is

qconv = −ΔHnA2
V A2

(1.206)

We also have mA2
= 2mA so that

V A = −2
nA2

nA
V A2

(1.207)

The diffusion velocity of the molecular species is therefore

V A2 =
n2

nA2(n+ nA2)
DA2

A ∇xA (1.208)

The gradients of the species concentrations are related to the heat of
reaction as in Eq. (1.191):
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∇xA2 = −∇xA (1.209)

2
∇xA

xA
− ∇xA2

xA2

=
ΔH

kBT 2
∇T (1.210)

Using Eqs. (1.206), (1.208) and (1.209) we then have

qconv = −λdiss∇T (1.211)

with

λdiss =
xA(1 − xA)

(2 − xA)2

(
ΔH

kBT

)2
p

T
DA2

A (1.212)

The reactive thermal conductivity depends not only on the thermodynamic
and transport properties of the system but also on the composition. The

term Z = xA(1−xA)
(2−xA)2 modulates the reactive thermal conductivity so that it

is interesting to study its behaviour. Figure 1.5 shows Z as a function of the
molar fraction of the atomic species.

Fig. 1.5 The factor Z = xA(1−xA)

(2−xA)2
as a function of the atom concentration, xA
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1.4.4 Transport of Ionization Energy

In this case the gas mixture is composed of the species A, A+ and e−. They
are connected via the ionization reaction

A = A+ + e− (1.213)

and the heat of the reaction can be written:

ΔH = Hi +He −Ha ≈ I (1.214)

where I is the ionization potential and translational and internal contribu-
tions to the species’ enthalpies have been neglected as they are usually much
smaller; also, we use subscripts i, e and a to indicate the ion, the electron and
the atom, respectively.

Equation (1.188) now reads

qconv = −naV aI (1.215)

In order to estimate the diffusion velocity, however, we cannot use the
binary diffusion approximation, Eq. (1.189). The conditions of quasineutrality
and ambipolar regime read

ne = ni (1.216)

V e = V i (1.217)

Together with Eqs. (1.197) and (1.198), these relations imply

eE′

kBT
=

(2Di
a −Di

i)− (2De
a −De

e)

2De
i −De

e −Di
i

∇xe

xe
(1.218)

On the other hand, Eq. (1.191) leads to

∇xe =
xe(1 − 2xe)

2(1− xe)

ΔH

kBT 2
∇T (1.219)

Putting all together,

λion =
xe(1− 2xe)

2

2(1− xe)

(
I

kBT

)2
p

T
ζD (1.220)

where

ζD ≡
[
(2Da

a −Di
a −De

a) + (De
a −Di

a)
(2De

a −De
e)− (2Di

a −Di
i)

2De
i −De

e −Di
i

]
(1.221)
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The above formula can be simplified by noting that Di
a, depending on the

large charge-exchange cross section, is much smaller than De
a:

(2De
a −De

e)− (2Di
a −Di

i)

2De
i −De

e −Di
i

≈ 1 (1.222)

De
a −Di

a +Da
e −Da

i

De
i +Di

e

≈ 1 (1.223)

(2De
a −De

e)− (2Di
a −Di

i)

2De
i −De

e −Di
i

=
(De

e −Da
e )− (Di

i −Da
i ) + (Da

a −De
a)− (Da

a −Di
a)

(De
e −Di

e) + (Di
i −De

i )

≈ (De
e −Da

e ) + (Da
a −De

a)

(De
e −Di

e) + (Di
i −De

i )
≈ 1 (1.224)

so that

ζD ≈ 2(Da
a −Di

a) = 2DH
ai

min
2

naρ
(1.225)

and, finally (mi ≈ ma),

λion =
xexa

(xa + xe)2

(
I

kBT

)2
p

T
DH

ai (1.226)

1.4.5 Transport of Rearrangement Energy

Consider the reaction:

A = B (1.227)

The heat of reaction is

ΔH = HB −HA (1.228)

and the diffusion velocities are related by

nAV A + nBV B = 0 (1.229)

The convective heat flux is

qconv = −ΔHnAV A (1.230)
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The diffusion velocity is

V A = (DB
A −DA

A)∇xA =
DB

A

xA
∇xA = −DB

A

xA
∇xA (1.231)

and

∇xB

xB
− ∇xA

xA
=

ΔH

kBT 2
∇T (1.232)

or

∇xA = −xAxB
ΔH

kBT 2
∇T (1.233)

and, finally,

λr = xAxB

(
ΔH

kBT

)2
p

T
nkBDB

A (1.234)

Appendix A: Simple Derivation of the
Boltzmann Equation

In this Appendix, we present a simple derivation of the Boltzmann transport
equation for a pure gas of unstructured particles. The particles’ motion is
described in terms of their mass, m, velocity, c and specific volume force,
b. The gas is described in terms of the particle distribution function, f =
f(r, c, t). The transport equation is a balance equation for f .

Neglecting collisions, the changes in f during a small time step, dt, are
due to particles’ motion only:

f(r + cdt, c + bdt, t+ dt) = f(r, c, t) (1.235)

so that

dt (c · ∂rf + b · ∂cf + ∂tf) = 0 (1.236)

It is customary to define the streaming operator

D = ∂t + c · ∂r + b · ∂c (1.237)

so that Eq. (1.236) can be rewritten:

D(f) = 0 (1.238)

The distribution function, however, can change also as a consequence of
particles’ collisions. The following assumptions are required:
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1. The collision event is point-like in space and time.
2. Only binary collision events are considered.
3. Particles are uncorrelated before each collision.

The first assumption means the resulting equation cannot deal with angu-
lar momentum exchanging collisions or nonideal gases. Lifting this require-
ment entails the derivation of the full quantum Waldmann–Snider transport
equation (Waldmann 1957; Snider 1960) whose transport theory has been
developed in McCourt et al. (1990). The second assumption restricts the ap-
plicability to dilute gases. The third assumption, also known as the molecular
chaos or Stosszahlansatz assumption, brings in the kinetic equation the time
asymmetry needed for it to satisfy the second principle of thermodynamics.
The meaning of this assumption and its generalizations in the derivation of
a quantum Boltzmann equation from the BBGKY hierarchy are discussed in
the work of Snider (Snider et al. 1995).

When two particles, i and j, collide, the particles’ velocities change:

ci + cj → c′i + c′j (1.239)

The collision dynamics is specified by the relative speed before collision,
g ≡ |ci − cj |, the impact parameter, b, and the scattering solid angle, Ω. Let
us also define

fi ≡ f (r, ci, t) (1.240)

From the molecular chaos assumption, we derive that the number of colli-
sions involving particle pairs with velocities ci and cj colliding per unit time
according to Eq. (1.239) is

fifjgbdbdΩ (1.241)

Integrating this expression over all collisions (i.e. impact parameter and scat-
tering angle) and over all collision partners (i.e. cj) yields the loss term of
the collisional contribution to the distribution function balance equation.

The gain term is given by collisions in which the final velocity of particle
i is ci:

c′i + c′j → ci + cj (1.242)

The collision in Eq. (1.242) is called the inverse collision of that in
Eq. (1.239). The number of inverse collisions is thus

f ′
if

′
jg

′b′db′dΩ′ (1.243)

where f ′
i ≡ f (r, c′i, t).
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From the kinematics of elastic collisions, it follows that direct and inverse
collisions are related by

g′ = g (1.244)

b′db′dΩ′dc′j = bdbdΩdcj (1.245)

Putting all together we can write the balance equation for the particle
distribution function as

D(f) = S (f) (1.246)

where the collision integral, S , has the form

S (f) =

∫ (
f ′
if

′
j − fifj

)
gbdbdΩdcj (1.247)

Equation (1.246) is the Boltzmann transport equation (Boltzmann 1872).
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Chapter 2

Transport Coefficient Evaluation

In this chapter, we summarize the expressions for the linear systems that
need to be solved for the explicit calculation of the transport coefficients.
These expressions are used in many chapters of this book together with the
corresponding expressions derived by Devoto (1967a), extending the formu-
lation of Hirschfelder et al. (1966). The two approaches are equivalent as it
will be shown in this chapter.

2.1 Thermal Conductivity and Thermal Diffusion

The integral equation for φλ′
is

FS
i (φλ′

) = Ψλ′
i , i ∈ S (2.1)

with

Ψλ′
i =

√
2(kBT )3

mi
(φ1010i + φ1001i) (2.2)

The unknown function is expanded as

φλ′
i =

√
2mikBT

∑
pq

αλ′
pqiφ

10pqi i ∈ S (2.3)

so that the elements of the linear system, Eq. (1.106), read

Gpq,rs
ij =

2
√
mimj

3p
[[φ10pqi, φ10rsj ]] (2.4)

βλ′
pqi =

√
2mi

3p
√
kBT

〈〈f0φ10pqi, Ψλ′〉〉

=
ni

n

(
ctr
p

kB

δp1δq0 +
cinti

kB

δp0δq1

)
(2.5)
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The calculation of the bracket integrals , [[φ10pqi, φ10rsj ]], is detailed in the
Appendix A. The system is to be solved under the constraints Eq. (1.74) that
in this case amount to ∑

i∈S

yiα
λ′
00i = 0 (2.6)

The partial thermal conductivity coefficient is given by

λ′ =
p

T

〈
αλ′

, βλ′〉

=
p

T

(〈
αλ′
10, β

λ′
10

〉
+
〈
αλ′
01, β

λ′
01

〉)

=
p

kBT

∑
i∈S

ni

n
(ctr

p
αλ′
10i + cint

i
αλ′
01i)

(2.7)

and the thermal diffusion vector is given by

DT
k = −

〈
αλ′

, βDk

〉

= −
〈
αλ′
00, β

Dk
00

〉

= −αλ′
00k, k ∈ S

(2.8)

For practical calculations, the infinite expansion, Eq. (2.3), must be trun-
cated. The ζth Chapman–Enskog approximation is obtained retaining the
first ζ terms. Also, note that the linear system of Eqs. (2.4) and (2.5) becomes
singular in the limit of vanishing molar fraction of any of the constituents of
the mixture. This problem can be circumvented noting that both Gpq,rs

ij and

βλ′
pqi depend linearly on ni

n so that the same results are obtained with a new
system defined by

G′pq,rs
ij =

n

ni
Gpq,rs

ij (2.9)

β′λ′
pqi =

n

ni
βλ′
pqi (2.10)

α′λ′
pqi = αλ′

pqi (2.11)

2.2 Diffusion

The integral equation for φDk , k ∈ S is

FS
i (φDk ) = ΨDk

i , i ∈ S (2.12)
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with

ΨDk
i =

√
2

mikBT

1

ni
(δik − yi)φ

1000i (2.13)

The unknown function is expanded as

φDk
i =

√
2mi

p
√
kBT

∑
pq

αDk
pqiφ

10pqi (2.14)

so that the elements of the linear system, Eq. (1.106), read

Gpq,rs
ij =

2
√
mimj

3p
[[φ10pqi, φ10rsj ]] (2.15)

βDk
pqi =

√
2mikBT

3
〈〈f0φ10pqi, ΨDk〉〉

= (δik − yi) δp0δq0 (2.16)

The constraints read

∑
i∈S

yiα
Dk

00i = 0, k ∈ S (2.17)

The diffusion coefficients are given by

Dk
i =

〈
αDi , βDk

〉

=
〈
αDi
00 , β

Dk
00

〉

= αDi

00k = αDk

00i

(2.18)

A linear system valid for vanishing molar fractions is obtained, in this case,
by setting

G′pq,rs
ij =

n

nj
Gpq,rs

ij (2.19)

β′Dk

pqi = βDk

pqi (2.20)

α′Dk
pqi =

ni

n
αDk
pqi (2.21)

2.3 Shear Viscosity

The integral equation for φη is

FS
i (φη) = Ψη

i , i ∈ S (2.22)
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with
Ψη
i = 2φ2000i (2.23)

The unknown function is expanded as

φη
i =

2

p

∑
pq

αη
pqiφ

20pqi (2.24)

so that the elements of the linear system, Eq. (1.106), read

Gpq,rs
ij =

2

5np
[[φ20pqi, φ20rsj ]] (2.25)

βη
pqi =

1

5n
〈〈f0φ20pqi, Ψη〉〉

=
ni

n
δp0δq0

(2.26)

The constraints are automatically satisfied and the shear viscosity coeffi-
cient is

η = 〈αη, βη〉
= 〈αη

00, β
η
00〉

=
∑
i∈S

ni

n
αη
00i

(2.27)

A linear system valid for vanishing molar fractions is obtained by setting

G′pq,rs
ij =

n

ni
Gpq,rs

ij (2.28)

β′η
pqi =

n

ni
βη
pqi (2.29)

α′η
pqi = αη

pqi (2.30)

2.4 Bulk Viscosity

The integral equation for φκ is

FS
i (φκ) = Ψκ

i , i ∈ S (2.31)

with

Ψκ
i = −2

cint

cV
φ0010i + 2

ctr

cV
φ0001i (2.32)

The unknown function is expanded as

φκ
i = −3

p

∑
pq

ακ
pqiφ

00pqi (2.33)
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so that the elements of the linear system, Eq. (1.106), read

Gpq,rs
ij =

1

np
[[φ00pqi, φ00rsj ]] (2.34)

βκ
pqi = − 1

3n
〈〈f0φ00pqi, Ψκ〉〉

=
ni

n

(
cint

cV
δp1δq0 − cinti

cV
δp0δq1

)
(2.35)

The constraints read
∑
i∈S

ni

n
(ctrακ

10i + cint
i
ακ
01i) = 0 (2.36)

The bulk viscosity coefficient is then

κ = 〈ακ, βκ〉
= 〈ακ

10, β
κ
10〉+ 〈ακ

01, β
κ
01〉

=
∑
i∈S

ni

n
ακ
10i

(2.37)

As before, a linear system valid for vanishing molar fractions is obtained
by setting

G′pq,rs
ij =

n

ni
Gpq,rs

ij (2.38)

β′κ
pqi =

n

ni
βκ
pqi (2.39)

α′κ
pqi = ακ

pqi (2.40)

2.5 Chemistry Source Terms

The integral equations for φr is

FS
i (φr) = Ψr

i , i ∈ S (2.41)

〈〈f0φr, ψl〉〉 = 0 (2.42)

Ψr
i is given in Eq. (1.69). Note that, unlike previous cases, this expression

contains also the collision integral of chemical reaction processes, Ci(f
0).

Explicit expressions for the matrix elements of the linear systems will
therefore not be given here (Nagnibeda and Kustova, 2009).

The unknown function is expanded as

φr
i =

1

n

∑
pq

αr
pqiφ

00pqi (2.43)
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The constraints read
∑
i∈S

ni

n
(ctrαr

10i + cint
i
αr
01i) = 0 (2.44)

The relaxation pressure is obtained from

prel = kBT
∑
i∈S

ni

n
αr
10i (2.45)

The macroscopic chemical production rates appearing in Eq. (1.37a) can
be written as

ωi = ω0
i + ω1

i (2.46)

The zero-order terms are given in Eq. (1.51). In order to evaluate the first-
order terms we first decompose the production terms as a sum over all re-
actions (Ern and Giovangigli, 1994; Nagnibeda and Kustova, 2009). Writing
the reactions as ∑

i∈S

νir,fXi =
∑
i∈S

νir,bXi, r ∈ R (2.47)

we have

ωi =
∑
r∈R

Kr
fτr (2.48)

where τr acts as a driving force and is given by

τr =
∏
i∈S

n
νi
r,f

i − 1

Kr,eq

∏
i∈S

n
νi
r,b

i (2.49)

and Kr,eq is the equilibrium constant for the reaction.
The chemical reaction rates Kr

f can, in turn, be expressed as

Kr
f = K

r(0)
f +K

r(1)
f ∇ · v +K

r(2)
f (2.50)

K
r(1)
f and K

r(2)
f are evaluated from the knowledge of φκ and φr, respectively.

The relaxation pressure and the first-order chemical production rates are
believed to be small under many circumstances and they will not be discussed
further.

Explicit calculations of first-order chemical reaction rates are reported
in Kustova and Giordano (2011) whereas a discussion of the extent to which
chemical reactions can perturb the distribution function is contained in Bruno
et al. (2003) where a Monte Carlo method is used to solve the full Boltzmann
equation for a gas mixture undergoing fast chemical reactions.

As an example, we report model calculations for the dissociation of trace
H2 in Xe (Bruno et al., 1998). Figure 2.1a shows that the chemical reaction is
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Fig. 2.1 (a) Temporal evolution of H2 concentration. (b) Relative kinetic energy
distribution for the pair Xe+H2. (Full lines) DSMC, (dashed line) thermal behaviour

slower than that predicted by a thermal equilibrium model. This is a conse-
quence of the depletion of the tail of the velocity distribution function, shown
in Fig. 2.1b caused by the (fast) chemical reaction that is not compensated
by elastic collisions.

In addition a Test Particle Monte Carlo (TPMC) method, derived from
the collision kernel of the transport equation, has been recently used for
calculating the transport of one component in a thermal bath of the second
one, including anisotropic scattering effects (Panarese et al. 2011).

2.6 Alternative Formulations of the Transport
Linear Systems

Alternative formulations of the transport linear systems exist, which give
completely equivalent results for the transport coefficients. In particular, the
approach due to Hirschfelder and co-authors (Hirschfelder et al. 1966) has
known widespread use in the literature.

This approach has some important drawbacks:

• The transport linear systems are modified in order to explicitly account
for the constraints, thus breaking the symmetry of the system. This has
implications on the mathematical properties of the linear systems that
eventually prevent the application of fast iterative solution algorithms (Ern
and Giovangigli 1994).

• As discussed in Sect. 1.2.9, the formulation of the multicomponent diffusion
coefficients fails to satisfy Onsager reciprocal relations and is therefore
unsatisfactory from a conceptual point of view.
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It is, however, useful to derive relationships among the coefficients
discussed in this book and those derived in Hirschfelder et al. (1966) (here
denoted with the superscript H).

In this approach, the structure of the linear systems is modified in order
to explicitly account for the constraints, thus breaking the symmetry of the
system, and the transport coefficients are expressed as ratios of determinants
by applying Cramer rule to the lowest order linear systems. For simplicity, we
restrict the discussion to mixtures of ν species not possessing internal degrees
of freedom.

These formulas are for the first non-vanishing approximation. Higher
approximations are required in the case of partially ionized gas mixtures
and have been derived by Devoto (1966, 1967a,b) and Devoto and Li (1968)
in a series of papers where working equations can be found (see also Bonnefoi
1975). Some of these expressions are reported in the chapters of this book.

2.6.1 Multicomponent Diffusion Coefficients

DH
ij =

∑ν
k=1 xkmk

mj

Kji −Kii

|K| (2.51)

where:

Kij =
2

3p

(
mj

xi
[[φ1000i, φ1000i]]−

√
mimj

xj
[[φ1000i, φ1000j ]]

)
(2.52)

and Kji are the minors obtained from K excluding the jth row and the ith
column.

2.6.2 Thermal Diffusion and Partial Thermal
Conductivity Coefficients

(DT
i )

H = − 8
5

mi

kB

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L00
11 . . . L00

1ν L01
11 . . . L01

1ν 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L00
ν1 . . . L00

νν L01
ν1 . . . L01

νν 0
L10
11 . . . L10

1ν L11
11 . . . L11

1ν x1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L10
ν1 . . . L10

νν L11
ν1 . . . L11

νν xν

x1δ1i . . . xνδνi 0 . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|L| (2.53)
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(λ′)H =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L00
11 . . . L00

1ν L01
11 . . . L01

1ν 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
L00
ν1 . . . L00

νν L01
ν1 . . . L01

νν 0
L10
11 . . . L10

1ν L11
11 . . . L11

1ν x1

. . . . . . . . . . . . . . . . . . . . . . . . . .
L10
ν1 . . . L10

νν L11
ν1 . . . L11

νν xν

0 . . . 0 x1 . . . xν 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
|L| (2.54)

where

Lpq
ij =

1

n2
[[φ10p0i, φ10q0j ]] (2.55)

2.6.3 Viscosity Coefficient

ηH = −

∣∣∣∣∣∣∣∣∣∣

H11 H12 . . . H1ν x1

H21 H22 . . . H2ν x2

. . . . . . . . . . . . . . . . . . .
Hν1 Hν2 . . . Hνν xν

x1 x2 . . . xν 0

∣∣∣∣∣∣∣∣∣∣
|H | (2.56)

with

Hij =
1

n2
[[φ2000i, φ2000j ]] (2.57)

The transport coefficients so defined are related to those used in this
book by

DH
ij =

ni

mj

ρ

n2
(Di

i −Dj
i ) (2.58)

(DT
i )

H = ρiD
T
i (2.59)

(λ′)H = λ′ (2.60)

ηH = η (2.61)

Appendix A: Evaluation of the Bracket Integrals

The matrix elements needed for the calculation of the transport coefficients
are

[[φabpqi, φabrsj ]] = δij
∑
k∈S

nink[[φ
abpqi, φabrsi]]

′
ik +ninj[[φ

abpqi, φabrsj ]]
′′
ij (2.62)
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where

[[F,G]]
′
jk =

1

2njnk

∫
f
(0)
j f

(0)
k (Gj −G′

j)(Fj − F ′
j)gσdΩdcjdck

[[F,G]]
′′
jk =

1

2njnk

∫
f
(0)
j f

(0)
k (Gj −G′

j)(Fk − F ′
k)gσdΩdcjdck (2.63)

These eightfold integrals can be reduced by a standard procedure to linear
combinations of elastic collision integrals as follows:

[[S
(p)
3/2(w

2)w, S
(q)
3/2(w

2)w]]
′
jk

= 8
∞∑

�,r=0

A′
pq�rΩ

(�,r)
jk (2.64)

[[S
(p)
3/2(w

2)w, S
(q)
3/2(w

2)w]]
′′
jk

= 8ν
p+1/2
k ν

q+1/2
j

∞∑
�,r=0

Apq�rΩ
(�,r)
jk (2.65)

[[S
(p)
5/2(w

2)(ww − 1

3
w2

I), S
(q)
5/2(w

2)(ww − 1

3
w2

I)]]
′

jk

=
16

3

∞∑
�,r=0

B′
pq�rΩ

(�,r)
jk (2.66)

[[S
(p)
5/2(w

2)(ww − 1

3
w2

I), S
(q)
5/2(w

2)(ww − 1

3
w2

I)]]
′′

jk

=
16

3
ν
p+1/2
k ν

q+1/2
j

∞∑
�,r=0

Bpq�rΩ
(�,r)
jk (2.67)

where the elastic collision integrals are defined as

Ω
(�,r)
jk =

√
kBT

2πmjk

∞∫

0

exp (−γ2)γ2r+3 Q
(�)
jk dγ (2.68)

Q
(�)
jk = 2π

∞∫

0

(1− cos� χjk)bdb (2.69)

and

m−1
jk = m−1

j +m−1
k (2.70)

γ =

√
mjk

2kBT
g; g = cj − ck (2.71)

νj =
mj

mj +mk
(2.72)
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The coefficients Apq�r and Bpq�r are universal constants, whereas A′
pq�r

and B′
pq�r are linear combinations of νj , νk with universal coefficients. The

equations needed for the actual calculations can be obtained by following
Chapman and Cowling (1970).

Appendix B: Approximations in Chapman–Enskog
Theory

Table 2.1 Correspondence between approximation orders for transport coefficients
in Chapman–Enskog theory and in Devoto formulation

Chapman–Enskog Devoto

Viscosity First non-vanishing First
Diffusion First non-vanishing First
Thermal diffusion First non-vanishing Second
Electrical conductivity First non-vanishing First
Partial thermal conductivity – First

First non-vanishing Second
Second non-vanishing Third

True thermal conductivity – First
First non-vanishing Second

Second non-vanishing Third

Possible lack in congruence could depend on the assumption in Devoto
formulation [λ′]1=[λ]1=[λ]2 (Table 2.1).
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Chapter 3

Transport Cross Sections: Classical
and Quantum Approaches

3.1 Transport Cross Sections and Collision Integrals:
The Classical Approach

The heart of the Chapman–Enskog theory lies on some assumptions on the
nature of elementary collisions, which are postulated to be binary, elastic,
characterized by isotropic interparticle force field, and adequately described
through classical mechanics. The collisional dynamics enters the transport

equations through the so-called collision integrals, Ω
(�,s)
ij , associated to the

(i, j) interaction pair, characterized by the order (�, s)1 and depending on
the temperature. The calculation of collision integrals usually is performed in
the frame of the classical mechanics of elastic collisions. The dynamics of the
two colliding particles i and j, without internal structure, moving under the
action of the interaction potential ϕ(r), only depending on the interparticle
distance, can be straightforwardly reduced to the deflection of a particle of
reduced mass μ = mimj/(mi +mj), confined in a plane of polar coordinates
(r,θ), under the action of an effective potential field

ϕeff = ϕ(r) + L2

2μr2 (3.1)

the second term being the centrifugal potential and representing the repul-
sive contribution to the interaction, with L the angular momentum. Simple
geometrical considerations in Fig. 3.1 lead to the definition of the deflection
angle

ϑ = π − 2θc (3.2)

1 Traditionally the orders (1,1) and (2,2) are defined as diffusion-type and viscosity-
type collision integrals, respectively, due to a direct dependence of binary diffusion
and viscosity coefficients from the Ω(1,1) and Ω(2,2) values, when calculated in the
first Chapman–Enskog approximation.
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the angle θc being the value of the angular coordinate at the distance of closest
approach rc. Recalling that the total energy E and the angular momentum
L are invariant along the trajectory

⎧
⎨
⎩

E = 1
2μ
[
(drdt )

2 + r2(dθdt )
2
]
+ ϕ(r) = 1

2μ(
dr
dt )

2 + ϕeff

L = μr2 dϑ
dt

(3.3)

the time variation of r and θ can be easily derived as well as the equation of
the trajectory

dθ

dr
=

dθ

dt

dt

dr
= ± L

r2 [2μ(E − ϕeff)]
1/2

(3.4)

where the negative sign corresponds to the inward part of the trajectory
(r decreasing, θ increasing), while the positive to the outward, being the
trajectory symmetric. It is convenient to introduce the impact parameter b
through the relation with the value of the angular momentum, evaluated
with respect to the initial value of the velocity vi, this last related to the
total energy (E = 1

2μv
2
i )

L(t → −∞) = μrvi sinϑ = μvib = b
√
2μE (3.5)

The integration of the trajectory equation leads to the expression for the
deflection angle (Hirschfelder et al. 1966):

ϑ(b, E) = π − 2b

∞∫

rc

[
1− b2

r2
− ϕ(r)

E

]−1/2
dr

r2
(3.6)

Fig. 3.1 Pictorial view of the classical trajectory in the central-field problem
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Some limiting cases should be considered for a qualitative analysis. b=0
corresponds to ϑ = π, the so-called head-on collision, while as the b value
approaches the infinity the deflection angle tends to zero, corresponding to
a weak interaction not deflecting the atom trajectories. In the most com-
mon case the interaction potential possesses a short-range repulsive region,
an attractive long-range part and a more or less deep “well” characterized by
position and depth (re,ϕ0) and by the parameter σ corresponding to the dis-
tance where attractive and repulsive forces balance (see Fig. 3.2). High-energy
(E3) collisions are dominated by the repulsive interaction and increasing the
impact parameter b from zero to ∞ the deflection angle monotonically de-
creases from π to zero, typical trajectories being shown in Fig. 3.2. At medium
values of the collision energy both repulsive and attractive parts play a role,
governing the dynamics at low- and high-impact parameter values, respec-
tively, as it can be appreciated in Fig. 3.2 for E2. The deflection angle profile
decreases, assuming also negative values for trajectories dominated by the
attractive forces. Some special features appear corresponding to:

• ϑ=0, the glory angle
• dϑ

db=0, the rainbow angle
• ϑ approaching to −∞, the orbiting angle

The orbiting occurs at low collision energies (E1) and corresponds to the
formation of a quasi-bound state entrapped in the centrifugal potential bar-
rier; thus, the trajectory spends a long time near the deflection point and
then departs with negative deflection angle.

re

r

ϕ(r)

σ

ϑ

b

π

RAINBOW

GLORY

ORBITING

E1

E3
E2

≈

≈

≈b

b

b

E1

E2

E3

GLORY

ORBITING

ϕ0

Fig. 3.2 Typical trajectories for an interaction potential with attractive and
repulsive regions for different values of the collision energy E1 < E2 < E3 and
corresponding dependence of the deflection angle on the impact parameter. Special
features are also emphasized
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dS=2  bdb

d =2  sin( )d

db
db

Fig. 3.3 Parameters for the cross section in a central-field problem

The differential cross section is defined as the ratio of the flux of particles
deflected in the solid angle dΩ = 2π sinϑdϑ to the incident flux crossing the
cylindrical section dS = 2π bdb (Fig. 3.3). In the case of elastic scattering the
fluxes are equal:

dσ

dΩ
(ϑ) =

fluxout
dΩ

dS

fluxin
=

∣∣∣∣∣
b

sinϑdϑ
db

∣∣∣∣∣ (3.7)

It should be noted that the glory and rainbow angles represent singularities
in the differential cross section, associated with angle-specific deflected beam
of high intensity experimentally detected.

The total elastic cross section results from the angular integration

σ = 2π

∫ π

0

dσ

dΩ
(ϑ) sinϑdϑ = 2π

∫ ∞

0

bdb (3.8)

Actually the quantity relevant to transport is the so-called momentum
transfer cross section

σ = 2π

∫ ∞

0

(1 − cosϑ)bdb (3.9)

the term (1 − cosϑ) modulates the angular integration, cancelling the con-
tribution to integral elastic cross section due to non-deflected trajectories.
The general definition of transport cross section Q(�) corresponds to the �th
moment

Q(�)(E) = 2π

∞∫

0

db b(1− cos� ϑ) (3.10)
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Finally the collision integral Ω(�,s) is defined as an integral on the reduced
energy γ2 = E/kBT (Hirschfelder et al. 1966) giving a thermal averaged cross
section depending on the temperature

Ω(�,s)(T ) =

√
kBT

2πμ

∞∫

0

dγ γ2s+3Q(�)e−γ2

(3.11)

It is worth to note that the energetic distribution of particle becomes broad
as the temperature increases; therefore, usually the low-energy behaviour of
transport cross section affects the low-temperature values ofΩ(�,s), while high
temperatures are dominated by high-energy collisions.

3.1.1 Rigid Sphere Model

The rigid sphere model, despite its roughness in the description of elementary
collision processes, is very instructive and allows the introduction of reduced
transport quantities.

Fig. 3.4 Pictorial view
of rigid sphere model, i.e.
interaction potential has
the form ϕ(r)=0 for r > σ
and ϕ(r)=∞ for r ≤ σ

σ
b

ϑ

α

α

The collision geometry, depicted in Fig. 3.4, leads to the following relations:

ϑ = π − 2α = π − χ
b = σ sinα ⇒ db = σ cosα dα

b db = σ2 sinα cosα dα = σ2

4 sinχ dχ

Q
(�)
rs = 2π

∞∫

0

db b(1− cos� ϑ) = πσ2

2

π∫

0

(1− cos� ϑ) sinχ dχ (3.12)
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Keeping in mind that the integral

π∫

0

(1− cos� ϑ) sinχ dχ
cosϑ=x
=

+1∫

−1

(1−x�)dx =
(
x− x�+1

�+1

) ∣∣∣∣
+1

−1

=
[
2− 1+(−1)�

1+�

]

Q
(�)
rs (E) = πσ2

2

[
2− 1+(−1)�

1+�

]
(3.13)

By introducing the cross section in Eq. (3.11) we get the rigid sphere col-
lision integral

Ω
(�,s)
rs =

√
kBT
2πμQ

(�)
rs

∞∫

0

dγ γ2s+3e−γ2

=
√

kBT
2πμ

(s+1)!
2 Q

(�)
rs (3.14)

Recalling that the integral, it results

∞∫

0

dγ γ2s+3e−γ2 x=γ2

= 1
2

∞∫

0

dx x(s+2)−1e−x = 1
2Γ (s+ 2) = (s+1)!

2

In literature reduced transport quantities have been introduced, represent-
ing the dimensionless deviation of the actual values of the transport cross
section and of the collision integral from the rigid sphere model

Q(�)� = Q(�)

Q
(�)
rs

= 4
σ2

[
2− 1+(−1)�

1+�

]−1 ∞∫
0

db b(1− cos� ϑ)

Ω(�,s)� = Ω(�,s)

Ω
(�,s)
rs

= 4(�+1)
(s+1)! [2�+1−(−1)�]πσ2

∞∫
0

dγ γ2s+3Q(�)e−γ2

Three combinations of reduced collision integrals frequently occur in the
transport coefficient expressions for low approximation and are here intro-
duced with special symbols

A� =
Ω(2,2)�

Ω(1,1)�
B� =

[5Ω(1,2)� − 4Ω(1,3)�]

Ω(1,1)�
C� =

Ω(1,2)�

Ω(1,1)�
(3.15)

Increasing the order of the Chapman–Enskog approximation requires
higher-order collision integrals. The calculation of higher-� orders entails the
integration in Eq. (3.10), while (s+1)-order collision integrals can be obtained
also through the recurrence relation

Ω(�,s+1)� = Ω(�,s)� +
T

s+ 2

∂Ω(�, s) 

∂T
(3.16)
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Throughout the book, reduced collision integrals in the form σ2Ω(�,s)� will
be considered, thus having the dimensions of a squared length.

3.2 The Quantum Approach

The treatment of the central-field scattering in the quantum frame entails
the solution of the Schrödinger equation

[
− �

2

2μ∇2(r) + ϕ(r)
]
ψ(r) = Eψ(r) (3.17)

assuming the physically sound boundary condition

ψ(r)
r→∞−→ eıκz + f(ϑ)

eıκr

r
(3.18)

where the first term represents the incident plane wave propagating in the
direction of the z axis, with wavenumber κ2 = (2μ/�2)E, and the second is
the spherical wave resulting from the scattering process, whose anisotropic
angular pattern is described by the so-called scattering amplitude, f(ϑ).

In the frame of the partial wave analysis in scattering problems (Geltman
1969) the wavefunction can be expanded in spherical harmonics

ψ(r) = 1
r

∞∑
n=0

Anψn(r)Pn(cosϑ) (3.19)

ψn(r) is the radial function associated with the n partial wave, solution of
the radial second-order differential equation

[
d2

dr2 + κ2 − n(n+1)
r2 − 2μϕ(r)

�2

]
ψn(r) = 0 (3.20)

In the asymptotic region, where the interaction potential can be neglected,
the general solution assumes the form

ψn = A sin (κr + ηn) (3.21)

where ηn is a phase depending on κ, n and on the interaction potential. The
phase shift is thus defined as the shift produced, in the asymptotic region, by
the interaction with the potential, the sign of the shift being related to the
attractive or repulsive nature of the potential (see Fig. 3.5).

The partial wave expansion allows to express the scattering amplitude as

f(ϑ) =
1

2ıκ

∑
n=0

(2n+ 1)
(
e2ıηn − 1

)
Pn(cosϑ) (3.22)
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REPULSIVE POTENTIALATTRACTIVE POTENTIAL

ψ(r) = A sin (κr + η) ψ(r) = A sin (κr − η )

ψ(r)= A sin (κr)
r → ∞

ψ

Fig. 3.5 Pictorial view of wavefunction phase shift in the asymptotic region due
to the action of a repulsive (negative phase shift) or attractive (positive phase shift)
potential

and recalling the general definition of differential cross section, given in the
classical approach, it can be derived a quantum equivalent that leads to

dσ

dΩ
(E,ϑ) = |f(ϑ)|2 =

1

4κ2

∑

n,n′
(2n+ 1)(2n′ + 1)

(
eı(ηn−ηn′)

)
Pn(cos ϑ)Pn′(cos ϑ) (3.23)

It is worth to note that in this quantum expression the cross section includes
terms due to the interference between partial waves n and n′, connected to the
abandon of a classical view in the scattering. The second main consequence
is that due to the uncertainty principle every value of the impact parame-
ter should contribute to scattering at all angles, thus resulting in a loss of
definiteness for the classical angles associated to singularities and orbiting
resonances.

Equation (3.10) is rewritten as

Q(�)(E) = 2π

π∫

0

dϑ sin (ϑ)
dσ

dΩ
(E, ϑ)(1− cos� ϑ) =

π

2κ2

∑

n,n′
(2n + 1)(2n′ + 1)

(
eı(ηn−ηn′)

) π∫

0

dϑ sin (ϑ)(1− cos� ϑ)Pn(cos ϑ)Pn′(cos ϑ) (3.24)

Considering the relations of integrals of Legendre polynomials the low-order
transport cross sections are defined in terms of phase shifts

Q(1)(E) =
4π

κ2

∑

n

(n+ 1) sin2 (ηn − ηn+1) (3.25)

Q(2)(E) =
4π

κ2

∑

n

(n + 1)(n + 2)

2n + 3
sin2 (ηn − ηn+2) (3.26)

Q(3)(E) =
4π

κ2

∑

n

n+ 1

2n + 5

[
(n + 3)(n + 2)

2n + 3
sin2 (ηn − ηn+3)

+
2(n2 + 2n − 1)

2n− 1
sin2 (ηn − ηn+1)

]
(3.27)
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and in general (Meeks et al. 1967)

Q� =
4π

κ2

∑

n,n′

ξ(�)∑

j,k=0

(2n + 1)(2n′ + 1)

2n+n′
(−1)j+k(2n − 2j)!(2n′ − 2k)!

j!k!(n− 2j)!(n − j)!(n′ − 2k)!(n′ − k)!

·
[

1 − (−1)n+n′+1

n + n′ + 1− 2j − 2k
− 1− (−1)n+n′+1+�

n+ n′ + �+ 1− 2j − 2k

]
eı(ηn−ηn′ ) sin ηn sin ηn′

ξ(�) = �
2 for � = 0, 2, 4, . . .

ξ(�) = �−1
2 for � = 1, 3, 5, . . . (3.28)

The WKB approximation allows the estimation of phase shifts in the ef-
fective potential energy (Mott and Massey 1965)

ηWKB
n = lim

rmax→∞

⎡

⎢⎣
rmax∫

rc

√

2μE − (n+ 1
2
)2

r2
− 2μϕ(r) dr −

rmax∫

rc′

√

2μE − (n+ 1
2
)2

r2
dr

⎤

⎥⎦

(3.29)

Convergency is ensured by the inclusion of a large number of partial waves.
The quantum approach to elastic collisions imposes the further consider-

ation of symmetry effects in colliding systems with identical particles, thus
limiting the series in Eqs. (3.25) and (3.26) to even or odd partial waves,
respectively, depending on the appropriate statistics (Bose–Einstein, BE, or
Fermi–Dirac, FD)

Bose–Einstein

Q
(1)
BE(E) = 24π

κ2

∞∑

n=0,2,4

(2n + 1) sin2(ηn)

Q
(2)
BE(E) = 24π

κ2

∞∑

n=0,2,4

(n+1)(n+2)

(2n+3)
sin2(ηn+2 − ηn) (3.30)

Fermi–Dirac

Q
(1)
FD(E) = 24π

κ2

∞∑

n=1,3,5

(2n + 1) sin2(ηn)

Q
(2)
FD(E) = 24π

κ2

∞∑

n=1,3,5

(n+1)(n+2)

(2n+3)
sin2(ηn+2 − ηn) (3.31)
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These expressions are valid for particles with zero spin. For particles with
s different from zero the cross sections are given by

[
Q

(n)
BE

](s)
= s+1

2s+1Q
(n)
BE + s

2s+1Q
(n)
FD

[
Q

(n)
FD

](s)
= s+1

2s+1Q
(n)
FD + s

2s+1Q
(n)
BE (3.32)

The Q
(n)
BE and Q

(n)
FD without superscript s are those calculated by

Eqs. (3.30) and (3.31).

3.3 Interaction Potentials

The calculation of collision integrals is fundamentally connected to the na-
ture of the forces governing the interaction between chemical species, i.e.
interaction potential ϕ.

The interaction potential curves, or surfaces, result in principle from accu-
rate ab initio electronic structure calculations; however in the past, when the
required computational effort was prohibitive, differentmodel potentials were
considered, whose parameters were determined either by theoretical consid-
erations or by spectroscopy. These potentials were thought to reproduce the
general features of electronic states, bound states characterized by a potential
well with a short-range repulsive region or purely repulsive states, monotoni-
cally increasing as the internuclear coordinate approaches to zero. The great
advantage of these potential forms lies in the “full-range” character, ensuring
the physically correct behaviour in the asymptotic regions and allowing the
potential integration to transport cross sections in a wide energy range.

The analytical forms, referenced in Sect. 3.3.1, are constructed including
exponentially decaying or inverse power terms for the repulsive interactions,
while the attractive long-range asymptotic region can be expressed in the
form a multipole expansion

ϕ(r) =
∑
j=2

C2j

r2j

The terms in the expansion are reciprocal of the internuclear distance with
powers that depends on the nature of the interacting particles, r−4 cor-
responding to the electrostatic point-charge-induced-dipole interaction the
so-called polarization interactions, r−6 representing the interaction of a per-
manent dipole with induced dipole (induction) or mutually induced dipoles
(dispersion) and higher even powers r−8, r−10 accounting for the higher-order
induction or dispersion forces due to quadrupole and multipole terms (van
der Waals interactions).
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3.3.1 Model Potentials

In the following a list of the most widely used model potentials is reported.
The integration of these potentials in a quantum, semiclassical or classical
frame results in transport cross section evaluation:

• Inverse power (Kihara et al. 1960)

ϕ(r) =
d

rδ

{
d > 0 repulsive
d < 0 attractive

(3.33)

A special case of the general inverse power potential is the attractive
polarization potential

ϕ(r) = −ze2αpol

8πε0r4
(3.34)

being z the ion charge and αpol the polarizability of neutral collider, with

δ=4 and d = − ze2αpol

8πε0
. In this case collision integrals assume a closed

form (Kihara et al. 1960)

σ2Ω(�,s)� =
4(�+ 1)

(s+ 1)![2�+ 1− (−1)�]
A(�)(δ)

√
dδ

kBT
Γ

(
s+ 2− 2

δ

)
(3.35)

where Γ is the Gamma function and A(�) is a temperature-free coefficient
correlated to the transport cross section.
The A�(4) values have been estimated by Smith (1967) for �=1, 2 and 3 in
the attractive case (A1(4)=0.5523, A2(4)=0.3846, A3(4)=0.6377), leading
to simple relations

σ2Ω(1,1)� = 424.443z

√
αpol

T

σ2Ω(1,2)� = 0.833 σ2Ω(1,1)� σ2Ω(2,2)� = 0.870 σ2Ω(1,1)�

σ2Ω(1,3)� = 0.729 σ2Ω(1,1)� σ2Ω(2,3)� = 0.761 σ2Ω(1,1)�

σ2Ω(1,4)� = 0.656 σ2Ω(1,1)� σ2Ω(2,4)� = 0.685 σ2Ω(1,1)�

σ2Ω(1,5)� = 0.602 σ2Ω(1,1)� σ2Ω(3,3)� = 0.842 σ2Ω(1,1)� (3.36)

• Exponential repulsive (Monchick, 1959; Kalinin and Dubrovitskii 2000)

ϕ(r) = Ae−ρr (3.37)

• Morse (Smith and Munn 1964)

ϕ(r) = ϕ0

[
exp

(
−2C

σ
(r − re)

)
− 2 exp

(
−C
σ
(r − re)

)]
(3.38)
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where the potential parameters fulfill the relation

σ =
Cre

C + ln 2
(3.39)

• Lennard-Jones (Neufeld et al. 1972)

ϕ(r) = 4ϕ0

[(
σ

r

)12

−
(
σ

r

)6]
(3.40)

• Modified Buckingham (Mason 1954)

ϕ(r) =
ϕ0

1− 6/α

[
6

α
eα(1−r/re) −

(
re

r

)6]
(3.41)

• Hulburt–Hirschfelder (Rainwater et al. 1982)

ϕ(r) = ϕ0

{
exp

[
−2αHH

(
r

re
− 1

)]
− 2 exp

[
−αHH

(
r

re
− 1

)]

+βHH

(
r

re
− 1

)3 [
1 + γHH

(
r

re
− 1

)]
exp

[
−2αHH

(
r

re
− 1

)]}
(3.42)

This model is nowadays widely employed due to its flexibility in accom-
modating different features like the presence of a long-range minimum or
short-range shoulder in the potential energy curve.

Also more complex functions should be mentioned, characterized by a
large number of parameters and allowing the accurate description of realistic
interaction potentials.

• Tang and Toennies (2003)

ϕ(r) = A exp (−br)−
J∑

j=3

f2j(br)
C2j

r2j
(3.43)

being C2j the dispersion coefficients and

f2j(x) = 1 − e−x

2j∑

k=0

xk

k!
= 1− Γ (2j + 1, x)

(2j)!
(3.44)

• Aziz and Slaman (1990)

ϕ(r) = ϕ0A exp

⎡

⎣−α
(
r

re

)
+ β

(
r

re

)2

− F (r/re)
2∑

j=0

c2j+6

(r/re)2j+6

⎤

⎦ (3.45)

with

F (x) =

{
exp [−(D/x− 1)2] x < D
1 x > D

(3.46)
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In principle it is possible to use suitable combination of the above-
referenced potential forms to construct a function with a full-range character,
guided by the experimental information on the interaction, considering that
in different experimental conditions, different regions of the interparticle po-
tential are actually probed (Hirschfelder and Eliason 1957).

Tabulations of reduced collision integrals, as a function of the reduced tem-
perature T � = kBT

ϕ0
, do exist in literature for the listed potentials, expressed

in a reduced form, ϕ�(r�) = ϕ
ϕ0

, with r� = r
σ . ϕ

�(r�) represents the most
general form of the potential function, depending only on potential parame-
ters, varied in a parametric way and in a suitable range. Once the potential
parameters for the actual systems are known, both the physical parameters
(σ,re,ϕ0) and those associated with the selected representation of the inter-
action and derived through a best-fitting procedure, σ2Ω(�,s)� values could
be straightforwardly estimated.

However, it should be pointed out that nowadays several numerical codes
are available, based on the quantum phase shift or the classical trajectory
approaches, for the direct integration of the interaction potential. The new
algorithms, overcoming the limits of past codes (O’Hara and Smith 1971), can
deal with potentials regardless the number of extrema and the complexity of
the adopted analytical form (Rainwater et al. 1982; Colonna and Laricchiuta
2008), also considering the anisotropy of the interaction potential involving
linear molecules treated as rigid rotors (Heck and Dickinson 1996).

3.3.1.1 Screened Coulomb Potential for Charged-Particle
Interactions

Particular attention has to be devoted to the screened Coulomb potential,
being the model for interactions involving charged particles, dominating the
high-temperature region due to the onset of ionization equilibria. The poten-
tial has the form

ϕ(r) =
ZiZje

2

r
e−r/λD =

ϕ0

r/λD

e−r/λD (3.47)

with Zi and Zj the charges of the ions i and j and λD the Debye length,
defined as

λD =

√
kBT

4πe2(ne +
∑

i niZ2
i )

(3.48)

i.e. including both electron, ne, and ion, ni, densities. This model corresponds
to the one recently adopted in André et al. (2007), where the Debye length
has been calculated accounting of the screening effect of ions. However, a
different choice has been proposed in literature (Mason et al. 1967; Devoto
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1968; Hahn et al. 1971; Murphy 2000) accounting only for the screening due to
electrons. The choice can have no-negligible effects at very high temperature,
when multi-charged ions become the predominant species (see Chap. 10).

Closed forms for collision integrals were derived by Liboff (Liboff 1959;
Devoto 1967) having a general form

σ2Ω(�,s)� = f(�, s)b20

[
ln 2λD

b0
−O(1)

]

O(1) representing higher-order correction terms.
Expressions for � ≤4 are reported in the following:

σ2Ω(1,s)� =
[

4
s(s+1)

]
b20

[
ln 2λD

b0
− 1

2
− 2γ + ψ(s)

]

σ2Ω(2,s)� =
[

12
s(s+1)

]
b20

[
ln 2λD

b0
− 1− 2γ + ψ(s)

]

σ2Ω(3,s)� =
[

12
s(s+1)

]
b20

[
ln 2λD

b0
− 7

6
− 2γ + ψ(s)

]

σ2Ω(4,s)� =
[

16
s(s+1)

]
b20

[
ln 2λD

b0
− 4

3
− 2γ + ψ(s)

]
(3.49)

where b0 =
ZiZje

2

2kBT , γ the Euler constant and ψ(s) =
∑s−1

1 (1/n), [ψ(1) = 0].
Results by Hahn et al. (Hahn et al. 1971) have been interpolated with the
formula

(T �)2Ω(�,s)� =
�N�

s(s+ 1)
ln

[(
4T �

γ2

)
exp (As − C�) + 1

]
(3.50)

C� =
(
1 + 1

3 + 1
5 + . . .+ 1

�

)− 1
2� � odd

C� = 1 + 1
3 + 1

5 + . . .+ 1
�−1 � even (3.51)

A1 = 0, As = 1 + 1
2 + 1

3 + . . .+ 1
s−1 (3.52)

This interpolation neglects the difference between repulsive and attractive
potentials and any quantum correlation effect and it is practically equivalent
to the Kihara results (Kihara and Aono 1963) except that it behaves better
at low temperatures.

Recently accurate collision integrals by Mason (Mason et al. 1967; Hahn
et al. 1971) have been fitted by the following equation (D’Angola et al. 2008):

ln (Ω�) =

6∑
j=0

cj ln
j T � (3.53)

with cj coefficients reported in Table 3.1 for attractive an repulsive interac-
tions.
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Corrections to shielded Coulomb transport cross sections from accurate
ion–ion interaction potentials have been estimated in Stallcop et al. (1992)
for N+–N+, N+–O+ and O+–O+ relevant to high-temperature and high-
pressure plasmas.

3.3.2 Potentials from Experiments

3.3.2.1 Molecular Beam Experiments

The treatment shown above provides the theoretical tools for the evaluation of
differential and integral cross section given the interaction potential; however
from the experimental point of view, the investigation of elastic scattering
represents the mean to gain fundamental information on the nature of the
intermolecular forces and on the features of the interaction potential. This
is the inversion problem, having a more general character in physics, and
in this case it should be pointed out that though offering an insight in the
collisional dynamics, actually it is quite difficult to determine the potential
from measurements unless some assumptions are made about the analytical
form of the potential, allowing the estimation of potential parameter.

Centrepiece of this investigation is the development of the molecular beam
techniques. The scheme of an experimental apparatus is reported in Fig. 3.6.
The attenuation of the velocity-selected beam Io by a target species, confined
in a scattering chamber, is measured, analysing the angular pattern of the
emerging beam I by a suitable detector.

BEAM
SOURCE

VELOCITY
SELECTOR

INCIDENT
BEAM

DETECTOR
SCATTERING

CHAMBER

Fig. 3.6 Schematic view of components in the apparatus a molecular beam experi-
ment

The intensity of the scattered beam is related to the incident beam through
the Lambert–Beer-type relation

I = Ioe−nσd (3.54)

where n represents the density of particles in the scattering chamber, d the
chamber linear dimension and σ accounts for the attenuation power and is
fundamentally connected to the scattering cross section and depends on the
velocity of particles in the incident beam. A crossed beam configuration is
used for differential cross section measurements, with a rotating detector
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able to capture the particles scattered in any elementary solid angle dΩ =
dφ sinϑdϑ.

σ(E)

E ϑ

dσ(ϑ)

dΩ
GLORY

RAINBOW

supernumerary
RAINBOWS

Fig. 3.7 Pictorial view of structures in measured integral and differential elastic cross
sections, also classical differential cross sections, with the singularity at the rainbow
angle, is reported (dashed line)

Structures appear in the profile of integral and differential cross sections
(see Fig. 3.7) determined by the quantum nature of scattering. Glory oscilla-
tion arises in the energy profile of σ due to the interference of different waves
in the forward scattering (ϑ=0), i.e. in the classical view those trajectories
characterized either by high-impact parameters or by low-impact parame-
ters but not deflected due to the balance of repulsive and attractive forces
at glory angles. The differential profile exhibits oscillations associated to the
rainbow singularity, originating a maximum where the classical approach
predicts a discontinuity, as depicted in Fig. 3.7, and additional maxima are
observed, called supernumerary rainbows due to quantum interference. The
rainbow structure gives information about the depth of potential well; in fact
as shown by Mason (1957) the rainbow angle is mainly correlated to the ratio
of collision energy to ϕ0.

Measurements of absolute total scattering cross sections, in the thermal
energy range, have been considered in a multiproperty analysis, together
with other experimental data such as molecular vibrational energy spacing
and virial coefficients, yielding a very accurate estimation of the van der
Waals interaction potentials for a number of neutral colliding pairs (Brunetti
et al. 1978, 1981, 1983; Beneventi et al. 1991). Using a highly flexible spheri-
cally symmetric potential model, i.e. exponential-spline–Morse-spline–van der
Waals (ESMSV), an analysis on O2–O2, O2–N2, O–N2 systems has been per-
formed (Brunetti et al. 1981), deriving position and depth of the attractive
minimum and dispersion coefficients in the long-range potential expansion
(3.3) through best-fitting procedure of glory structure and of the absolute
value of the elastic cross section (see Table 3.2).

The repulsive part of the potential characterized by high-energy
collisions, determining the high-temperature transport properties, is less
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Table 3.2 ESMSV parameters for the different interactions (Brunetti et al. 1981)

Parameters O2–O2 O2–N2 O–N2

ϕ0 [×10−15 erg] 18.3 17.0 14.7
re [Å] 3.94 3.69 3.41

C6 [×10−12 erg Å6] 74.7 70.5 40.4

C8 [×10−12 erg Å8] 418.3 394.6 209.8
C10 [×10−12 erg Å10] 3,041.0 2,869.0 1,415.0

accessible experimentally. In this case ion beams are accelerated and neutral-
ized by charge exchange, yielding high-energy neutral beams (with kinetic
energies ∼1,000eV). Energetic beams interact with the target and the ex-
perimental set-up is suitable to detected small-angle differential scattering.
This kind of technique pionerized by Amdur (1961), Amdur et al. (1975) and
by Leonas et al. (1971), Kalinin et al. (1976) has given useful experimental
information on the repulsive part of many interaction pairs, also success-
fully fitting experimental data with exponential-repulsive (Monchick 1959;
Leonas et al. 1971; Leonas 1972) Eq. (3.37) and inverse-power-law (Amdur
1961; Amdur and Mason 1958) Eq. (3.33) potential functions. Parameters for
different neutral-pair repulsive interactions are reported in Table 3.3.

Table 3.3 Potential parameters for exponential-repulsive, Eq. (3.37), and inverse-
power-law, Eq. (3.33), functions fitting experimental data of repulsive interaction for
different neutral pairs

Eq. (3.37) Ref. (Leonas 1972) Eq. (3.33) Ref. (Amdur 1961)

Interaction A [eV] ρ [Å−1] Interaction d [eV] δ ΔR [Å]
N2–N2 2,290 3.160 He–He 2.884 1.79 0.52–1.02
N2–N 620 3.310 4.712 5.94 1.27–1.59
N2–O2 1,430 3.020 Ne–Ne 312.075 9.99 1.76–2.13
N2–O 11,350 5.120 Ar–Ar 28.773 4.33 1.37–1.84
N2–NO 5,780 3.610 848.845 8.33 2.18–2.69
N–O2 3,870 4.130 Kr–Kr 159.158 5.42 2.42–3.14
N–NO 5,333 4.210 Xe–Xe 7,052.906 7.97 3.01–3.60
O2–O2 820 2.850 He–Ar 62.103 7.25 1.64–2.27
O2–O 10,250 4.850 Ne–Ar 630.392 9.18 1.91–2.44
O2–NO 7,620 3.780 H–He 2.341 3.29 1.16–1.71
O–NO 3,140 3.950 He–N2 74.274 7.06 1.79–2.29
NO–NO 2,160 3.260 Ar–N2 755.223 7.78 2.28–2.83

3.3.2.2 Potentials from Spectroscopy

Accurate bound region of potential energy curves for molecular systems can
be reconstructed by the Rydberg–Klein–Reese (RKR) procedure (Singh and
Jain 1962; Vanderslice 1962). No special assumptions are done about the form
of the potential and the energies of levels from vibrational spectroscopy are
used to determine very accurately pairs of values on the potential correspond-
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ing to the points of the classical inversion for the nuclear motion. However,
the accessible information is limited by the highest vibrational level experi-
mentally known, while the repulsive portion results from hypothesis on the
potential form, smoothly joined to the well region.

In literature the Hulburt–Hirschfelder model potential (Rainwater et al.
1982; Biolsi et al. 1982) [Eq. (3.42)] is nowadays widely used for the flex-
ibility of this functional form to the description of special features in the
potential curve, such as the presence of secondary minima, barriers or short-
range shoulders. Moreover semi-empirical relations have been proposed for
the direct derivation of potential parameters (αHH, βHH, γHH) from the spec-
troscopic constants of the given molecular state (Biolsi et al. 1982)

αHH =
ωe

2
√
Beϕ0

βHH = dα3 γHH = bα (3.55)

with

a0 =
ω2

e

4Be
a1 = −1− αeωe

6B2
e

a2 = 5
4a

2
1 − 2ωeχe

3Be

d = 1 + a1
√

ϕ0

a0
b = 2−

7
12−ϕ0

a2
a0

d

ϕ0 is the well depth [cm−1] and ωe and ωeχe the fundamental vibrational
frequency and the first anharmonic constant, respectively, while Be and αe

represent the rotational and the ro-vibrational coupling constants. The reli-
ability of this approach has been demonstrated (Biolsi et al. 1982) by direct
comparison with RKR potentials for some electronic terms of the C2 molecule,
and, relying on the existence of accurate compilations of spectroscopic data
of electronic terms of molecular systems in literature2, it could regarded as
a tool providing a reasonable short-range description of the interaction po-
tential. Obviously in this frame repulsive states are completely missed, being
not spectroscopically detected.

3.4 Collision Integrals

3.4.1 Multi-potential Approach

The above model potentials apply to interactions evolving along a single
potential energy curve, describing the change of electronic energy in the ap-
proaching of the partners, as in the case of collisions of noble gas (closed
shell) atoms. In the majority of realistic systems under investigation however
the interaction involves open-shell atoms that instead of a single potential en-
tangles a number of potential energy curves, i.e. all the molecular electronic

2 Database is available on-line at the National Institute of Standards and Technology
(NIST) website http://webbook.nist.gov/chemistry/

http://webbook.nist.gov/chemistry/
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terms arising in the coupling of the (spin and orbital) angular momenta of
colliding atomic pair, theoretically predicted by the Wigner–Witmer rules
(see Appendix A in Capitelli et al. 2011).

In this case the collision integral results from the weighted average of the
contributions of each state, i.e.

Ω(�,s)�
av =

∑
iwiΩ

(�,s)�
i∑

i wi
(3.56)

wi represents the statistical weight of the corresponding molecular electronic
term. Dealing with diatomic molecules, the generic electronic term symbol
for homonuclear diatomic molecule is written (2S+1)Λ, where (2S + 1) is the
spin multiplicity (1 for singlet, 2 for doublet, 3 for triplet, etc.) and Λ is the
magnitude of the projection of the total electronic angular momentum on
the molecular axis (Λ = 0 ↔ Σ, 1 ↔ Π, 2 ↔ Δ, . . .); electronic terms
are twofold degenerate with the exception of nondegenerate Σ states (for
details see Landau and Lifshitz 1981). The weight, w, is defined as (spin
multiplicity)×(total angular momentum multiplicity).

The multi-potential approach, in either a classic or quantum frame, has
been widely used in literature (Yun and Mason 1962; Capitelli and Fico-
celli 1972, 1973; Rainwater et al. 1982; Biolsi et al. 1982; Levin et al. 1990;
Stallcop et al. 2000, 2001; Sourd et al. 2006) and the reliability of derived
collision integrals is completely determined by two elements, i.e. the accuracy
of the relevant potential energy curves and the completeness of the electronic
manifold. The relative weight of each term is the result of the strength of
the interaction and of the degeneracy of the corresponding electronic term,
thus leading to dominant contributions to the collision integral. It is wor-
thy of note that the electronic terms associated to higher statistical weights
are usually excited repulsive states, whose features could not be investigated
spectroscopically, thus requiring ab initio approaches.

The C(3P )–O(3P ) system could be, for example, considered. Collision in-
tegrals were derived in Capitelli and Ficocelli (1973) from accurate potential
energy curves of all the electronic terms arising in the interaction, by fitting
ab initio results with model potential, namely, the Morse function (Smith
and Munn 1964) for bound and exponential decaying function (Monchick
1959) for purely repulsive states. The relevant potential parameters and the
corresponding partial collision integrals are reported in Tables 3.4 and 3.5,
respectively.

This approach, using model representations of states that are quite rigid
and unable to reproduce special features of the interaction potentials (sec-
ondary minima or shoulders in the repulsive branch), could affect the col-
lision integral accuracy in definite temperature ranges and therefore in the
more recent literature more flexible functions have been introduced as the
Hulburt–Hirschfelder (HH) model potential (Rainwater et al. 1982), used,
for example, in the derivation of accurate collision integrals for binary col-
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Table 3.4 Potential parameters for electronic terms in C(3P )–O(3P ) interac-
tion (Capitelli and Ficocelli 1973)

Repulsive states [Eq. (3.37)] Bound states [Eq. (3.38)]

Term A [eV] ρ [Å−1] Term C ϕ0 [eV] σ [Å]

21Σ+ 2,388.0 4.83 X1Σ+ 2.15 8.19 0.93

23Σ+ 5,172.0 4.81 a′ 3Σ+ 2.71 3.13 1.17

25Σ+ 881.0 3.28 a3Π 3.38 2.97 1.10
15Σ− 1,306.0 3.41 d3Δ 3.34 2.13 1.24

21Π 65.0 1.66 T ≥ 18,000K e3Σ− 3.53 1.81 1.26

1,180.0 3.34 T > 18,000K I1Σ− 3.55 1.53 1.29
23Π 72.0 2.62 T ≥ 11,000K D1Δ 3.48 1.44 1.30

355.0 2.90 T > 11,000K A1Π 5.52 1.11 1.20
25Π 964.0 3.35 15Π 5.92 0.44 1.45

15Δ 1,226.0 3.40 15Σ+ 4.63 0.40 1.65

Table 3.5 Diffusion- and viscosity-type collision integrals as a function of tempera-
ture for C(3P )–O(3P ) interaction (Capitelli and Ficocelli 1973)

T [K] σ2Ω(1,1)� [Å2] σ2Ω(2,2)� [Å2]
2,000 6.487 7.056
4,000 5.290 5.869
6,000 4.564 5.172
8,000 4.077 4.691

10,000 3.701 4.304
15,000 3.021 3.570
20,000 2.656 3.175

lision of ground-state carbon atoms (Biolsi et al. 1982). The C(3P )–C(3P )
interaction evolves along 18 potential energy curves of the molecule C2, i.e.
21,5Σ+

g , 1,5Σ−
u , 23Σ+

u ,
3Σ−

g , 1,3,5Πgu,
1,5Δg, and

3Δu; out of them, five states
are purely repulsive: 5Σ−

u , 5Πu,
5Δg, the second state of symmetries 3Σ+

u and
5Σ+

g . In Biolsi et al. (1982) authors performed a comparison, in a wide tem-
perature range, between two series of collision integrals, one set obtained
by using Hulburt–Hirschfelder (HH) model potential for bound states, with
potential parameters derived from accurate spectroscopic constants, and by
fitting the ab initio results for repulsive states, the second set consisting of
older results obtained by using the less accommodating Morse potential func-
tion (Biolsi and Biolsi 1979) for state with an attractive well and neglecting
the contribution of 3Σ+

u and 5Σ+
g repulsive states.

In Table 3.6 the viscosity-type collision integrals in the two different calcu-
lation schemes are reported. The deviations of the averaged collision integral
could be ascribed to the interplay of the different factors while considering
only bound states. An almost temperature-independent relative error is found
that indicates, for this system, an overestimation of collision integrals in the
Morse-function model. The inclusion of missing repulsive terms accounts for
a positive contribution, more effective in the high-temperature region. This
analysis clarifies the critical aspects in the derivation of collision integrals
in the multi-potential approach, having large effects in open-shell system in-
teractions, characterized by a significant number of contributing terms and
expected to be even larger for colliding pairs involving excited species.
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Table 3.6 Viscosity-type collision integrals as a function of temperature for C(3P )–
C(3P ) interaction obtained with a complete electronic manifold and HH potentials for
bound states (Biolsi et al. 1982) (a), compared with older results obtained with Morse
function fitting of bound states and missing some repulsive electronic terms (Biolsi
and Biolsi 1979) (b)

T [K] σ2Ω(2,2)� [Å2] (a) σ2Ω(2,2)� [Å2] (b)
Total Only bound Total Only bound

1,000 9.5400 5.0091 10.9550 6.7198
5,000 6.3116 3.4455 7.3393 4.8704

10,000 5.1913 2.9241 5.9610 4.1437
15,000 4.5207 2.5688 5.0620 3.6872
20,000 3.9958 2.2518 4.3663 3.2889
25,000 3.5765 1.9860 3.8553 2.9640

Moving to the interactions involving molecular partners, the electronic
terms of the molecular system actually become potential energy surfaces,
depending on an ensemble of coordinates related to the degrees of freedom of
the system; however, it is still possible the use of ϕ(r), i.e. a function of the
coordinate along the approaching direction, thus neglecting the anisotropy
of the potential due to the dependence on the relative orientation of the
molecular partners, as demonstrated in Sect. 3.4.3.

3.4.2 Average Potential Approaches: Mixing Rules
and Phenomenological Potential

The multi-potential approach could lead to very accurate results but for a
limited number of colliding systems. Thus in literature alternative approaches
have been proposed to describe in a satisfactory way the average potential
energy curve of the unknown or exotic interactions.

This is the case of the so-called mixing rules, early suggested by
Hirschfelder et al. (1966), modelling the average interaction with the
Lennard–Jones potential, in Eq. (3.40), with parameters (σ, ϕ0) obtained
for asymmetrical interactions through simplified expressions involving well-
known parameters for symmetrical colliding pairs, i.e. arithmetic mean of
collision diameter and a geometric mean of the potential well depth

σij =
1
2 (σii + σjj) (ϕ0)ij =

√
(ϕ0)ii(ϕ0)jj (3.57)

Also slightly complex relations do exist, known as the Waldman–Hagler and
Halgren rules (Rat et al. 2008).

In this frame the phenomenological approach, developed by Pirani et al.
(2004, 2006), has to be considered. The model potential can be regarded as
an improvement of the Lennard–Jones potential, able to predict intermolec-
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ular interactions in a variety of systems (neutral–neutral and neutral–ion).
Fundamental interaction features, i.e. binding energy and equilibrium dis-
tance, enter the relevant equations as parameters and their values are de-
termined on the basis of correlation formulas of the physical properties of
colliding partners (polarizability, charge, number of electrons effective in po-
larization) (Liuti and Pirani 1985; Cambi et al. 1991; Cappelletti et al. 1991;
Aquilanti et al. 1996).

The proposed “full-range” phenomenological potential simulating the aver-
age interaction could allow direct evaluation of internally consistent complete
sets of collision integrals for different atmospheres. The validity of this ap-
proach was demonstrated in Capitelli et al. (2007) by comparing, for some
benchmark systems, results obtained using the model potential with those
calculated with more accurate methods (Stallcop et al. 1991, 2000, 2001;
Levin and Wright 2004).

The potential has the form

ϕ = ϕ0

[
m

n(x)−m

(
1

x

)n(x)

− n(x)

n(x) −m

(
1

x

)m
]

(3.58)

where x = r/re, n(x) = β+4x2. For neutral–neutral and neutral–ion cases the
parameterm has the value of 6 and 4, respectively. The value of β parameter,
ranging from 6 to 10 depending on the hardness of interacting electronic
distribution densities, could be estimated through the following empirical
formula (Capitelli et al. 2007):

β = 6 + 5
(s1+s2)

(3.59)

where the subscripts 1 and 2 identify the colliding partners. The softness s,
entering Eq. (3.59), is defined as the cubic root of the polarizability. For open-
shell atoms and ions a multiplicative factor, which is the ground-state spin
multiplicity, should be also considered.

For neutral–neutral systems, the phenomenological method represents the
binding energy, ϕ0, and the equilibrium distance, re, in terms of polarizabili-
ties of the interacting partners, α, by the following correlation formulas (Liuti
and Pirani 1985; Cambi et al. 1991; Pirani et al. 2001):

re = 1.767
α
1/3
1 + α

1/3
2

(α1α2)0.095
(3.60)

ϕ0 = 0.72
Cd

r6e
(3.61)

where re is given in Å, α in Å3 and ϕ0 in eV. The Cd constant (eV Å6) is an
effective long-range London coefficient
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Cd = 15.7
α1α2[√

α1/N1 +
√
α2/N2

] (3.62)

where N is the effective number of electrons which contribute to the polar-
ization of the neutral species. Previous formulas have been also extended to
neutral–ion systems (Cappelletti et al. 1991; Aquilanti et al. 1996), intro-
ducing the parameter ρ, representative of the relative role of dispersion and
induction attraction components in proximity to the equilibrium distance:

re = 1.767
α
1/3
i + α

1/3
n

(αiαn[1 + 1/ρ])0.095
(3.63)

ϕ0 = 5.2
z2αn

r4e
[1 + ρ] (3.64)

ρ =
αi

z2[1 + (2αi/αn)2/3]
√
αn

(3.65)

where αn and αi are the neutral and ionic polarizability, respectively.
In the case of phenomenological potential σ (ϕ(σ)=0) corresponds to x0 =

σ/re, solution of the transcendental equation

x
(m−n(x0))
0 =

n(x0)

m
(3.66)

In order to set results available and to favour their inclusion in trans-
port codes, collision integrals have been fitted as a function of β with the
expression

lnΩ(�,s)� = [a1(β) + a2(β)x]
e(x−a3(β))/a4(β)

e(x−a3(β))/a4(β) + e(a3(β)−x)/a4(β)
+ (3.67)

a5(β)
e(x−a6(β))/a7(β)

e(x−a6(β))/a7(β) + e(a6(β)−x)/a7(β)

where x = lnT � and parameters ai are polynomial functions of β

ai(β) =
2∑

j=0

cjβ
j (3.68)

Parameters entering Eq. (3.68) are presented in Tables 3.7 and 3.8 for
neutral–ion (m=4) and neutral–neutral (m=6) interaction, respectively
(Laricchiuta et al. 2007).
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3.4.3 Comparison Between Multi-potential
and Phenomenological Approaches

A wide literature does exist on the exact multi-potential treatment of ground-
state interactions relevant to hydrogen and air plasmas. The O(3P )–O(3P )
can be a suitable example. The momentum coupling of atomic electronic
terms originates 18 molecular states (21,5Σ+

g ,
1,5Σ−

u , 23Σ+
u , 3Σ−

g , 1,3,5Πgu,
1,5Δg,

3Δu) and the collision integral is defined as the weighted average of
contributions from each term [see Eq. (3.56)].

The results by Yun and Mason (1962), dated 1962, were based on accu-
rate force laws and the advancement in the theoretical study of electronic
structure of O2 molecule has been followed by an increasing accuracy in the
calculation of corresponding collision integrals. The commonly adopted ap-
proach is the fitting of ab initio data using model potentials, whose Ω(�,s)�

values are known, though quantum mechanical approaches can be also found
in literature (Levin et al. 1990).

It is possible to trace the improvements either moving from a rigid classifi-
cation of Morse and exponential decaying potentials, for bound and repulsive
states, respectively (Capitelli and Ficocelli 1972; Laricchiuta et al. 2008) to
functional forms able to accommodate peculiar potential features like dou-
ble minima (Hulburt–Hirschfelder potential) (Sourd et al. 2006; André et al.
2007) or using re-evaluated ab initio potential energy curves.

In Table 3.9 theoretical diffusion- and viscosity-type collision integrals for
ground-state oxygen–oxygen interaction by different authors (Yun and Ma-
son 1962; Capitelli and Ficocelli 1972; Levin et al. 1990; André et al. 2007;
Laricchiuta et al. 2008) are reported, considering the temperature interval
relevant to the existence of atomic oxygen in an LTE plasma. An excellent
agreement is found among the results of Capitelli and Ficocelli (1972); André
et al. (2007), both based on analytical fits and the ones by Levin et al. (1990)
based on quantum mechanically derived potential energy surfaces, with de-
viations below 4% in the whole temperature range. Instead discrepancies
within 20% are observed in the low-temperature region with collision in-
tegrals by Laricchiuta et al. (2008), obtained following the same approach
used in Capitelli and Ficocelli (1972) with updated interaction potentials.
The relative difference decreases with temperature, reaching about 10% at
20,000K. It should be noted that different sets show quite similar values
(10% at T =2,000K) for the relative distance from the old results by Yun
and Mason (1962), this agreement being also due to compensation effects be-
tween the contributions coming from the 18 potential curves (Capitelli and
Ficocelli 1972).

The case of O(3P)–O(3P) interaction clarifies the critical point of the tradi-
tional approach, i.e. the availability of reliable curves for the ensemble of elec-
tronic terms. Thus recently a phenomenological approach has been proposed,
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Table 3.9 Diffusion- and viscosity-type collision integrals for O(3P)–O(3P) interac-
tion from different authors

T[K] σ2Ω(1,1)� σ2Ω(2,2)�

(a) (b) (c) (d) (e) (b) (c) (d) (e)
2,000 5.27 4.69 4.84 4.81 6.01 5.45 5.58 5.57 6.97
4,000 4.39 3.98 4.00 4.07 4.88 4.66 4.67 4.74 5.74
6,000 3.90 3.58 3.57 3.63 4.26 4.21 4.20 4.26 5.06
8,000 3.58 3.30 3.27 3.33 3.84 3.90 3.88 3.94 4.59

10,000 3.34 3.09 3.05 3.11 3.53 3.67 3.64 3.69 4.24
12,000 3.15 2.93 2.87 2.94 3.28 3.49 3.44 3.50 3.97
14,000 3.00 2.79 2.72 2.79 3.08 3.34 3.28 3.34 3.74
16,000 2.68 2.59 2.67 2.91 3.21 3.14 3.20 3.55
18,000 2.58 2.48 2.56 2.77 3.10 3.02 3.08 3.38
20,000 2.49 2.38 2.47 2.64 3.00 2.91 2.98 3.24

(a) Yun and Mason (1962), (b) Capitelli and Ficocelli (1972), (c) Levin et al. (1990), (d) André
et al. (2007), (e) Laricchiuta et al. (2008) (for results of André et al. (2007) tabulated values
have been obtained by using the fitting formula in the paper by Andrè et al.)

overcoming this difficulty by considering the description of the average inter-
action through a modified Lennard–Jones potential (3.58).

The investigation on the applicability of the proposed methodology can
proceed through the analysis of benchmark systems, such as N(4S)–N(4S).
According to the Witmer–Wigner rules the interaction occurs along four dif-
ferent potential curves corresponding to 1Σ+

g , 3Σ+
u ,

5Σ+
g , 7Σ+

u electronic
terms. Following the pair valency theory we can rationalize the increase of
the unbound character of the state with spin multiplicity. So while the sin-
glet state is characterized by a strong chemical bond, the septet exhibits a
repulsive potential, as can be appreciated in Fig. 3.8a, where relevant poten-
tial energy curves are reported. In the same figure the curve < ϕ > is shown,
resulting from the statistical average of the four potentials. This kind of aver-
aging emphasizes the role of the repulsive states in smoothing the attractive
parts of chemical bonds. The curve < ϕ > for the N2 system is compared, in
Fig. 3.8b, with the one obtained with the phenomenological procedure. The
comparison shows that the wells are quite similar, with a depth three or-
ders of magnitude lower than that of the ground singlet state, and located
approximately in the same internuclear distance range.

In Table 3.10 diffusion-type collision integrals, obtained integrating the
classical deflection angle on the averaged and phenomenological potentials,
are reported. In the same table a comparison with results from litera-
ture (Capitelli et al. 2000; Levin et al. 1990), obtained with the standard
procedure, i.e. adiabatically averaging the contributions coming from the
four different states, is also performed. In particular, collision integrals by
Capitelli et al. (2000) result from a Morse fitting of experimental potential
curves for the bound states and an exponential-repulsive function reproduc-
ing a Heitler–London calculation of septet state (Capitelli et al. 1983), while
in the low-temperature region (T <1,000K) a Lennard–Jones potential has
been used. Levin et al. (1990) results are derived on the base of accurate ab
initio calculations.
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Fig. 3.8 The interaction potential energy in the N2 system. (a) Potential energy
curves for the electronic states correlating with N(4S)–N(4S); (b) detail of averaged
potential < ϕ > (full line) and of phenomenological potential [Eq. (3.58)] (dotted line)

Table 3.10 Diffusion-type collision integrals, σ2Ω(1,1)� [Å2], as a function of tem-
perature for N(4S)–N(4S) interaction obtained with different approaches, compared
with accurate theoretical results from Capitelli et al. (2000) and Levin et al. (1990)

T[K] (a) < ϕ > (b) (c)
500 7.34 5.54 7.76 7.03

1,000 6.30 4.82 6.79 5.96
2,000 5.42 4.25 5.25 5.15
4,000 4.64 3.74 4.50 4.39
5,000 4.40 3.58 4.27 4.14
6,000 4.21 3.45 4.09 3.94
8,000 3.93 3.26 3.79 3.61

10,000 3.72 3.11 3.55 3.37
15,000 3.36 2.84 3.12 2.92
20,000 3.13 2.66 2.82 2.62

(a) Capitelli et al. (2007), (b) Capitelli et al. (2000), (c) Levin et al. (1990)

We note a substantial agreement between data sets in literature (Capitelli
et al. 2000; Levin et al. 1990). Agreement is also found when data in litera-
ture are compared with the collision integrals obtained by using the Pirani
potential (column a in Table 3.10). In this case the differences increase with
temperature, not exceeding 20% below 15,000K. Such behaviour indicates
that the phenomenological approach describes accurately the potential well
which plays a major role in the low-temperature region. The results obtained
by integration of the average potential < ϕ > underestimate the relevant
collision integrals.

The models discussed above have been developed for isotropic inter-
action between colliding partners. This approach seems to be valid only
for atom–atom and atom–atomic ion encounters; in fact atom–diatom
dynamics develops on multidimensional surfaces and the interaction po-
tential should take into account all the involved channels. Some authors
have used classical trajectory calculation on ab initio surfaces for collisions
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involving molecules (Viehland et al. 1996; Maclagan et al. 1999), consider-
ing anisotropic potentials. However, for small molecules, rapidly rotating,
an isotropic potential can be assumed, as demonstrated in Stallcop et al.
(2001), where ab initio multireference configuration-interaction calculations
have been performed, deriving an effective angle-averaged potential for the
estimation of transport cross sections of O–O2 and N–N2, thus reducing to
a monodimensional problem.

Table 3.11 Diffusion- and viscosity-
type collision integrals for O(3P)-
O2(X3Σ−

g ) interaction from different
authors

T [K] σ2Ω(1,1)� σ2Ω(2,2)�

(a) (b) (c) (a) (b) (c)
100 13.96 13.68 13.51 15.60 15.31 14.92
200 10.46 10.32 9.99 11.60 11.49 10.91
300 9.20 9.10 8.77 10.24 10.13 9.60
400 8.52 8.39 8.15 9.53 9.39 8.93
600 7.75 7.58 7.47 8.74 8.61 8.23
800 7.28 7.09 7.08 8.26 8.13 7.83

1,000 6.95 6.74 6.81 7.92 7.78 7.56
2,000 6.03 5.70 4.59 6.96 6.71 5.31
3,000 5.54 5.15 4.24 6.44 6.09 4.93
4,000 5.22 4.78 4.00 6.09 5.67 4.67
6,000 4.78 4.29 3.68 5.60 5.13 4.31
8,000 4.48 3.96 3.45 5.27 4.78 4.07

10,000 4.26 3.71 3.29 5.02 4.50 3.88
20,000 3.63 2.80 4.30 3.33
30,000 3.29 2.53 3.91 3.03

(a) Capitelli et al. (2007),
(b) Stallcop et al. (2001),
(c) Capitelli et al. (2000)

Table 3.12 Diffusion- and viscosity-
type collision integrals for N(4S)-
N2(X1Σ+

g ) interaction from different
authors

T [K] σ2Ω(1,1)� σ2Ω(2,2)�

(a) (b) (c) (a) (b) (c)
100 15.03 15.04 16.31 16.76 16.56 17.99
200 11.15 11.41 12.10 12.38 12.58 13.24
300 9.75 10.10 10.65 10.86 11.21 11.65
400 9.00 9.39 9.90 10.08 10.47 10.86
600 8.16 8.57 9.08 9.21 9.68 10.02
800 7.65 8.08 8.62 8.69 9.17 9.53

1,000 7.29 7.70 8.29 8.33 8.81 9.20
2,000 6.30 6.65 5.29 7.29 7.76 6.34
3,000 5.78 6.06 4.75 6.73 7.16 5.73
4,000 5.43 5.65 4.38 6.35 6.73 5.32
6,000 4.96 5.05 3.89 5.83 6.18 4.76
8,000 4.65 4.61 3.56 5.48 5.74 4.38

10,000 4.41 4.25 3.31 5.21 5.36 4.09
20,000 3.74 2.61 4.44 3.27
30,000 3.38 2.23 4.03 2.83

(a) Capitelli et al. (2007),
(b) Stallcop et al. (2001),
(c) Capitelli et al. (2000)

For the O(3P )–O2(X
3Σ−

g ) system the potential parameters suggested by

this accurate procedure (σ= 3.205 [Å], ϕ0/k = 80.7 [K]), which are relevant
to the potential well and affect the collision integrals in the low-temperature
region, are in satisfactory agreement with the phenomenological Pirani po-
tential (Capitelli et al. 2007) (σ= 3.21 [Å], ϕ0/k = 92.5 [K]) and also in
reasonable agreement with experimental results (Morgan and Schiff 1964;
Brunetti et al. 1981). This aspect is confirmed by the vanishing differences
reported in Table 3.11 between diffusion- and viscosity-type collision inte-
gral results obtained from the phenomenological potential and from Stallcop
et al. (2001) for T <5,000K. The high-temperature region is dominated by
the repulsive branch of the interaction potential and a great uncertainty ex-
ists on the behaviour of the potential for small interparticle distances. The
potential proposed by Stallcop et al. (2001) is, in this region, less repulsive
than the Pirani potential, explaining the increase of discrepancy between
corresponding calculated collision integrals with temperature. The relative
difference reaches the maximum value of 15% for T=10,000K. In the same
table results from Capitelli et al. (2000), obtained for T <1,000K using a
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Lennard–Jones interaction potential and for T > 2,000K an experimental
exponential-repulsive curve (the two data sets have been smoothly joined in
the interval [1,000–2,000]K), have been reported, finding in general a satis-
factory agreement. A good agreement is found between the present results
and the corresponding ones from Stallcop et al. (2001), while it becomes
less satisfactory when compared with data of Capitelli et al. (2000) for T >
2,000K.

An even better agreement is found in the case of the N(4S)–N2(X
1Σ+

g )
system (Table 3.12) between accurate results of Stallcop et al. (2001) and
those obtained modelling the average interaction with the phenomenological
potential, the relative differences remaining below 6% in the whole temper-
ature range. Again larger deviation is observed with respect to the collision
integrals by Capitelli et al. (2000), especially in the high-temperature region
(T >2,000K) where differences reach about 30%.

The procedure for estimation of elastic collision integrals in the case of
neutral–ion interactions is the same already outlined for neutral–neutral
collisions, thus characterized by the same drawbacks. Additionally in atom-
parent-ion collisions the contribution coming from the resonant charge-
transfer channel to odd-order terms should be estimated (for a detailed
treatment see Chap. 4).

Also for this class of interactions the phenomenological approach has been
validated for the derivation of viscosity-type and of inelastic contribution to
diffusion-type collision integrals, considering benchmark systems (Capitelli
et al. 2007), for example, the N(4S)–N+(3P ) system interacting along the 12
related electronic states 2,4,6Σg,u,

2,4,6Πg,u.
In Table 3.13 the viscosity-type collision integrals, not affected by

the charge-transfer process, calculated with the phenomenological poten-
tial (Capitelli et al. 2007) are reported together with data in Gupta et al.
(1990), Capitelli et al. (2000), Stallcop et al. (1991). Collision integrals cal-
culated according to the Pirani potential show a reasonable agreement with
Stallcop et al. (1991) and Capitelli et al. (2000) results, specially in the
temperature range (5,000–20,000K) in which N and N+ are major species.
The results in Gupta et al. (1990) are, on the contrary, higher with maximum
relative difference of about 35%.

The behaviour, in the considered temperature range, of the absolute er-
ror of data obtained with the phenomenological approach with respect to
the accurate calculations, based on ab initio potentials for each interaction
channel, is displayed the same by Levin et al. in Fig. 1 of Levin and Wright
(2004). Levin used the effective potential in the Tang–Toennies form, which
is actually a more complex function than the Pirani potential. However, it
should be noted that in Levin and Wright (2004) the binding energy and the
equilibrium distance, the two basic potential parameters, have been obtained
using the methodology outlined above.

Same considerations apply to the case of O(3P)–O+(4S) collision. Atom
and parent ion can interact originating 2,4,6Σg,u,

2,4,6Πg,u electronic molec-
ular states and the corresponding σ2Ω(2,2)� are presented in Table 3.14 and
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Table 3.13 Viscosity-type collision in-
tegrals, σ2Ω(2,2)� [Å2], as a function
of temperature for the N(4S)–N+(3P)
interaction obtained with different ap-
proaches

T[K] (a) (b) (c) (d)
500 16.41 13.25 18.54

1,000 13.27 11.32 11.65
2,000 10.50 9.55 7.88
4,000 8.33 7.85 6.09
5,000 9.32 7.74 7.32 5.72
6,000 8.64 7.26 6.90 5.45
8,000 7.67 6.48 6.26 5.09

10,000 6.99 5.84 5.79 4.83
15,000 5.91 4.66 4.99 4.41
20,000 5.25 3.87 4.46 4.13

(a) Gupta et al. (1990), (b) Stallcop et al.

(1991), (c) Capitelli et al. (2000),

(d) Capitelli et al. (2007)

Table 3.14 Viscosity-type collision in-
tegrals, σ2Ω(2,2)� [Å2], as a function
of temperature for the O(3P)–O+(4S)
interaction obtained with different ap-
proaches

T[K] (a) (b) (c)

500 14.78 10.19 15.22
1,000 11.14 8.73 9.58
2,000 8.72 7.40 6.50
4,000 6.94 6.09 5.05
5,000 6.39 5.65 4.74
6,000 5.95 5.29 4.53
8,000 5.26 4.73 4.23

10,000 4.75 4.31 4.02
15,000 3.92 3.61 3.67
20,000 3.41 3.18 3.45

(a) Stallcop et al. (1991),
(b) Capitelli et al. (2000),

(c) Capitelli et al. (2007)

compared with data in literature, still giving a satisfactory agreement, espe-
cially when compared with data in Capitelli et al. (2000) and Stallcop et al.
(1991) in the temperature range of interest (5,000–20,000K) and confirming
that an effective potential, not directly connected with details of the inter-
acting system in different electronic states, can be used for transport cross
section prediction.

3.4.4 Electron–Neutral Interactions

In the case of electron–neutral collisions the quantum nature of the interac-
tions is not negligible and manifests itself in the features of the energy profile
of the cross section, as the low-energy peaks, due to resonances in the elec-
tron scattering, or the Ramsauer minimum (Gryzinski 1970). Therefore the
quantum approach is required and the collision integrals are evaluated by in-
tegration of theoretical or experimental differential elastic electron-scattering
cross sections (3.24).

The case of electron scattering by atomic argon could be illustrative, ex-
hibiting a low-energy Ramsauer minimum. This system has been deeply stud-
ied and, combining theoretical results in the low-energy region (Bell et al.
1984) and measured elastic differential cross sections (Gibson et al. 1996;
Panajotovic et al. 1997), completed at low and high scattering angles with
theoretical cross sections (Nahar and Wadehra 1987), a wide energy range
can be explored, allowing accurate estimation of transport cross sections and
high-order collision integrals, displayed in Fig. 3.9.

A second example is represented by the elastic scattering by molecular
nitrogen, exhibiting a peak structure in the energy region between 1 and 4 eV
due to the capture of the electron in the resonant state 2Π of the molecular
ion N−

2 .
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Fig. 3.9 (a) Differential cross sections for electron elastic scattering from Ar atoms at
different electron impact energies, E=1 eV (markers) experimental data and (dotted
line) results from phase-shift analysis from Gibson et al. (1996), E = 10.3 and 50.5 eV
experimental data from Panajotovic et al. (1997). (b) Diffusion and viscosity trans-
port cross sections for e-Ar system. (markers) (Rat et al. 2002) (solid lines) (Bruno
et al. 2006). (c) Diffusion- and viscosity-type collision integrals for e-Ar interactions
from Laricchiuta et al. (2009) (solid lines), compared with recommended data in
Wright et al. (2005) (open diamonds)
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Fig. 3.10 (a) Recommended momentum transfer cross section (Itikawa 2006), Q(1),
for e–N2. (b) Diffusion-type collision integral as a function of temperature for e–N2.
(solid line) Laricchiuta et al. (2009) (close diamonds) recommended values from
Wright et al. (2005)

The recommended values for the momentum transfer cross section, Q(1),
displayed in Fig. 3.10, have been reviewed in Itikawa (2006) considering only
an envelope of the resonance cross sections in the resonance region. The
integration of transport cross sections allows the derivation of corresponding
diffusion-type collision integral, presented in Fig. 3.10, where also the values
recommended by Wright et al. (2005) are reported.
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However, the critical point still remains the knowledge of the differen-
tial cross sections. In fact experimental data are usually available for few
collision energy values, also missing extreme values of the scattering angle,
and accurate theoretical results are also difficult to be retrieved for all the
interactions. On the contrary the integral transport cross sections, elastic
term Q(0) and momentum transfer Q(1) are found in literature for a number
of systems (Itikawa 2002; Brunger and Buckman 2002; Itikawa 2006, 2009),
allowing the straightforward derivation of diffusion-type collision integrals
Ω(1,s), but again for the higher-order viscosity-type collision integrals the
Q(2) is not always readily available.

Fig. 3.11 Diffusion- and
viscosity-type collision
integrals for e–CO2 inter-
actions from Laricchiuta
et al. (2009) (solid lines),
compared with recom-
mended data in Wright
et al. (2007) (close dia-
monds)
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These difficulties could be overcome by using different techniques to es-
timate this last from basic models or additional information. In Laricchiuta
et al. (2009) the ratio Q2/Q1 has been determined from the known Q1/Q0

assuming a model angular dependence of the differential cross section:

1

(1− h(E) cosϑ)2
(3.69)

where h is here an adjustable parameter, which depends on the electron
energy, obtained from the Q1/Q0 ratio. In extreme cases where the Q0 cross
section is also not available, according to Born scattering for a Coulomb
screened potential, the h value has been fixed to

1

(2 · 10.9Z2/3

E + 1)
(3.70)

The approach has been demonstrated for the e–CO2 interaction, taking
the elastic and momentum transfer cross section from Itikawa (2002), giving
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a satisfactory agreement with recommended data in literature as shown in
Fig. 3.11.

Note that this approach can be considered as an extension of the model
proposed in Longo and Capitelli (1994) for the treatment of anisotropy in
elastic collisions in Monte Carlo simulations.
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Chapter 4

Resonant Charge Exchange
in Ion-Parent–Atom Collisions:
The Inelastic Contribution to Odd-Order
Collision Integrals

Resonant charge-exchange cross sections are of paramount importance in
affecting the diffusion-type, or more exactly the odd-order, collision integrals
of ion-parent–atom collisional pairs. This process can be considered as an
inelastic channel, however characterized by very high values of the cross sec-
tion and therefore not negligible in the calculation of transport properties
of thermal plasmas. Other kind of inelastic processes have been discussed
in Chap. 1, their role being usually negligible at low temperatures (see also
Chap. 10).

Some general considerations can follow from the classical-trajectory formu-
lation. As a result of charge exchange, colliding species appear to be scattered
through an angle of (π − ϑ), so as to lead to the expression

Q(�) = 2π

∞∫

0

(1−Pex)[1− cos� (ϑ)]bdb+2π

∞∫

0

Pex[1− cos� (π − ϑ)]bdb (4.1)

It is straightforward that

cos� (ϑ) = cos� (π − ϑ) for � even (4.2)

thus demonstrating that resonant charge-transfer processes do not affect even
orders (Mason et al. 1959). Instead for � odd, Eq. (4.1) reduces to

Q(�) = 2π

∞∫

0

[1− (1− 2Pex) cos
� (ϑ)]bdb (4.3)

The probability of the process exponentially decays for large impact parame-
ter values, while rapidly oscillates between 0 and 1 at small b. It is a common
approximation (random phase approximation) in this case to replace Pex by
its average value, 1

2 , in the range of impact parameters smaller than a critical
value, b�:
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Q(�) = 2π

b�∫

0

[1− (1 − 2Pex) cos
� (ϑ)]bdb

+2π

∞∫

b�

[(1− cos� (ϑ)(1 − 2Pex) + 2Pex]bdb

Q(�) = 2

⎡

⎣ 1
2
π(b�)2 + 2π

∞∫

b�

Pexbdb

⎤

⎦+ 2π

∞∫

b�

[(1− cos� (ϑ)(1 − 2Pex)]bdb

Q(�) = 2σex + 2π

∞∫

b�

[(1− cos� (ϑ)(1− 2Pex)]bdb (4.4)

The integral appearing in the last expression, accounting for the occur-
rence of elastic collisions, could be considered a negligible contribution to the
transport cross section in the high-energy region, assessing the dominant role
of resonant processes in transport. However, as already pointed out in the
past (Knof et al. 1964), the low-temperature behaviour of the diffusion-type
collision integral is actually governed by the polarization interaction, requir-
ing the estimation of this elastic contribution. In the more recent literature,
effective odd-order collision integrals are considered resulting by the geomet-
rical mean of elastic and inelastic resonant contributions (Murphy 1995)

Ω(�,s)� =

√
(Ω

(�,s)�
el )2 + (Ω

(�,s)�
ex )2 (4.5)

Fig. 4.1 Diffusion-type
collision integrals (solid
line) for C–C+ inter-
action, resulting from
elastic (dashed line) and
resonant charge-exchange
(dotted line) contributions
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In Fig. 4.1 the two contributions are displayed in a wide temperature range for
the C–C+ interaction together with the effective collision integral, confirming
the qualitative considerations done.
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Though the inelastic contribution to the collision integral results, in
principle, by the integration of the transport cross section [Eq. (3.11)], even
nowadays it is widely diffuse the use of the closed forms derived in Devoto
(1967). In fact if the resonant charge-exchange cross section [Å2] shows a
dependence on the relative velocity g [cm s−1] of the type

√
2σex = C −D ln (g) (4.6)

the collision integral assumes the form

σ2Ω(�,s)�
ex = 1

π

{
C2 − CDx+

[
1
2
Dx
]2

+ D2

4

{
π2

6
−

s+1∑

n=0

1
n2 +

[ s+1∑

n=0

1
n
− γ

]2}

+ 1
2
Dξ[Dx− 2C] + D

2
[D(x+ ξ)− 2C] ln

(
T
M

)
+
[
D
2
ln
(

T
M

)]2
}

(4.7)

M is the molecular weight, x = ln (4R) with R constant of perfect gas, γ is the
Euler constant. Eq. (4.7) allows an accurate and straightforward estimation

of Ω
(�,s)
ex by a simple algebraic formula, once known, through linear regression

algorithms, the C and D values.
Thus the problem reduces to the estimation of the charge-exchange cross

section obtained either by crossed-beam experiments (Rutherford and Vroom,
1974; Belyaev et al. 1968) or through quantum or semiclassical approaches.

4.1 Theory of Resonant Charge-Exchange Processes

4.1.1 Quantum Approach

The resonant charge exchange in ion-parent–atom collisions is a quantum
process of non-adiabatic transition between resonant states, characterized
by high probability at large separation between colliders, compared to their
dimension

Ã + A+ → Ã
+
+A (4.8)

The rigorous quantum coupled-channel approach accounting for all open
channels entails the solution of a complex system of coupled differential equa-
tions, requiring an high computational load and furthermore loosing the infor-
mation on the mechanism. Thus usually the system is transformed in a basis
of states so that the interaction is localized within a small region of distances.
In this scheme the interaction is restricted to two states strongly coupled in
a localized non-adiabatic region, the so-called two state approximation, and
the resonant charge-exchange process can occur through the interaction of
two distinct pathways owing to the symmetry of the quasi-molecule states.

In fact, while at large distances, the molecular arrangements ÃA+ and Ã
+
A

are degenerate, as the particles approach, the exchange interaction splits the
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molecular states into a pair of symmetric gerade and antisymmetric ungerade
terms, with respect to the exchange of nuclei.

The wavefunction of the system can be constructed as

ψ(R, r) = ψg(R; r)Fg(R) + ψu(R; r)Fu(R) (4.9)

where R denotes the relative positions of the two atoms, r the complex of
electronic coordinates, ψg and ψu the wavefunctions of the two adiabatic
electronic states of the molecule and the Fg,u satisfy the radial Schrödinger
equations (in atomic units)

(∇2
R + κ2 − 2μϕg,u)Fg,u(R) = 0 (4.10)

ϕg and ϕu represent the gerade and ungerade electronic terms, which in the
long-range-interaction region can be expressed in the form

ϕg,u(R) = εo + Ulr ± 1
2Δ(R) (4.11)

with εo the electronic energy component at infinite separation between nuclei,
Ulr the long-range interaction, polarization and higher-order charge-induced-
quadrupole interactions, and Δ(R) the exchange interaction potential, due
to overlap of electron shells,

Δ(R) = ϕg(R)− ϕu(R) =
〈ψg|H |ψg〉
〈ψg|ψg〉 − 〈ψu|H |ψu〉

〈ψu|ψu〉 (4.12)

The charge-exchange differential cross sections can be written, assuming the
nuclei distinguishable, in terms of the scattering amplitudes associated to the
collisional pathways along gerade and ungerade interaction potentials

dσex

dΩ
= |fex(ϑ)|2 = 1

4 |fg(ϑ)− fu(ϑ)|2 (4.13)

However being the particles, or better ionic cores, identical a different treat-
ment is required. The total differential cross section, accounting for the proper
nuclear spin statistics, has the form (Krstic̀ and Schultz 1999; Cohen and
Schneider 1975)

dσel

dΩ
= 1

4

[
x|fg(ϑ) + fg(π − ϑ) + fu(ϑ)− fu(π − ϑ)|2

+(1− x)|fg(ϑ)− fg(π − ϑ) + fu(ϑ) + fu(π − ϑ)|2] (4.14)

with x = (s+ 1)/(2s+ 1) for nuclear spin s integer and x = s/(2s+ 1) for s
semi-integer.

Expanding the scattering amplitudes in partial waves and performing the
angular integration it leads to the total scattering cross section as

σ = σd + σex + σi (4.15)
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σd and σex represent the cross sections due to direct elastic scattering and
to charge exchange, respectively, while σi is the term due to the interference.
At relatively high collision energies the scattering amplitudes are peaked at
ϑ=0, the interference is minimal and the classical limit is attained (Krstic̀
and Schultz 1999). In this frame the charge-exchange cross sections could
be expressed in terms of the phase shifts, as done for elastic transport cross
sections in the case of neutral collisions [Eqs. (3.25) and (3.26)]

σd =
π

κ2

∞∑
n=0

(2n+ 1)[2 sin2 ηng + 2 sin2 ηnu − sin2 (ηng − ηnu)] (4.16)

σex =
π

κ2

∞∑
n=0

(2n+ 1) sin2 (ηng − ηnu ) (4.17)

The phase shifts can be obtained using the semiclassical Wentzel–Kramers–
Brillouin (WKB) approximation (3.29).

In colliding systems involving open-shell atoms, the resonant charge-
exchange process usually occurs through more than one pair of gerade–
ungerade states and the relevant cross section can be obtained by averaging
the partial contributions with suitable statistical weights.

4.1.2 Asymptotic Approach

Considering the nature of the resonant (and quasi-resonant) processes at
low collision energies, characterized by low probability of transitions among
states adiabatically correlated with initial and final states and occurring at
large separation between colliders, an alternative theoretical approach has
been developed many years ago by soviet scientists (Smirnov 1973; Nikitin
and Smirnov 1978; Firsov 1951), i.e. the asymptotic approach. The method
is fundamentally based on the idea of expanding the cross section in terms
of small parameter connected to the geometry of the collision.

The wavefunction of the system is expressed, in a semiclassical time-
dependent frame, in the basis of the electronic states of the quasi-molecule

Ψ(t) = ag(t)ψg exp

[
− ı

�

∫ t

−∞
ϕgdt

′
]
+ au(t)ψu exp

[
− ı

�

∫ t

−∞
ϕudt

′
]

(4.18)

ı�
dag

dt
= cguau exp

[
− ı

�

∫
t

(ϕg − ϕu)dt
′
]

ı�
dau

dt
= cugag exp

[
− ı

�

∫ t

(ϕu − ϕg)dt
′
]

(4.19)
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cgu = 〈ϕg − ıh∂/∂t|ϕu〉 represents the matrix element of the non-adiabatic
coupling operator and ag,u are the probability amplitudes.

Fig. 4.2 Electron in the
field of two identical ionic
cores. Reflection in the
symmetry plane corre-
sponds to the transforma-
tion of ψ1 → ψ2 and vice
versa

1

2

2

1
ψ1

ψ2

In the region of large separation between the ionic cores the gerade and
ungerade terms can be obtained by linear combination of the wavefunctions
corresponding to the electron located in the field of one of the two ionic cores
(Fig. 4.2)

ϕgu = 1√
2
(ψ1 ± ψ2) (4.20)

The initial condition, before the interaction, is chosen to correspond to the
electron located in the field of the first nucleus Ψ(t = −∞) = ψ1. After
the interaction the probability of electron transition to the state ψ2, i.e. the
probability of resonant charge exchange, is given by Bates et al. (1953)

Pex = lim
t→∞

|〈Ψ(t)|ψ2〉|2 = sin2

∫ +∞

−∞

(ϕg − ϕu)

2�
dt (4.21)

σex = 2π

∫ ∞

0

Pex(b)bdb = 2π

∫ ∞

0

sin2 ζbdb with ζ =

∫ +∞

−∞

Δ(R)dt

2�
(4.22)

The laws governing the classical motion of nuclei in the collision [Eq. (3.3)]
allow to transform the time integral to a spatial integration along the tra-
jectory, further simplified considering that the process takes place at large
internuclear distances where the interaction potential is rather ineffective in
deflecting straight-line trajectories

ζ(b) =
1

�

∫ +∞

Rc

(ϕg − ϕu)

g
√

1− ϕg,u

E
− b2

R2

dR =
1

�

∫ +∞

b

Δ(R)

g
√
R2 − b2

RdR (4.23)

Due to the fact that the exchange interaction potential has a decreasing
exponential character at large distances, the integral in Eq. (4.22) can be
estimated in the random phase approximation

σex = 2π

[∫ b�

0

sin2 ζ(b)bdb+

∫ ∞

b�
sin2 ζ(b)bdb

]
(4.24)

In the early Firsov approach (Firsov 1951) the exchange cross section results
from the relations
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σex = 1
2πb

�2 with ζ(b�) = 1
π (4.25)

The exchange interaction potential expressed in the functional form Δ =
A exp (−αR) allows the condition on the phase ζ to be reduced to the solution
of a transcendental equation

ζ(b�) =
1

�g

∫
+∞

b�

Δ(R)RdR√
R2 − (b�)2

=
1

�g

(
πb�

2α

) 1

2

Δ(b�) =
1

π
(4.26)

Therefore it could be concluded that, once the accurate energy values for
the g–u pairs are known, the exchange interaction can be straightforwardly
derived as the energy difference of these electronic terms in the asymp-
totic region approaching the molecular-ion-system dissociation [Eq. (4.12)].
Unfortunately, despite the large advances achieved in computational quantum
chemistry, this region of internuclear separation is still accessible at high
level of accuracy only using perturbative approaches to include corrections
(Møller–Plasset method (Szabó and Ostlund 1996)). These considerations
justify the deviations observed in results obtained in the past, following this
approach, with respect to more recent accurate ones (see next section for a
detailed comparison in benchmark systems), and also the further formulation
due to Smirnov (1973) and Nikitin and Smirnov (1978), to give an accurate
expression to the exchange interaction potential, based on the asymptotic
form of the wavefunction for the electron transferred in the resonant process.

The g–u splitting is demonstrated to be expressed by a surface inte-
gral (Nikitin and Smirnov 1978)

Δ = ϕg − ϕu = �
2

2m

∫

V

ϕg∇2ϕu − ϕu∇2ϕgdr = �
2

m

∫

S

ψ2
∂ψ1

∂z
− ψ1

∂ψ2

∂z
ds (4.27)

the surface S coincides with the symmetry plane perpendicular to the z axis
joining the nuclei. Moving to cylindrical coordinates (ρ,φ,z) with origin at the
inversion point of the molecular system and considering spherically symmetric
electron wavefunctions

ψ1 = ψ(r) = ψ

(√
(z + R

2
)2 + ρ2

)
ψ2 = ψ(r) = ψ

(√
(z − R

2
)2 + ρ2

)
(4.28)

it leads to Nikitin and Smirnov (1978)

Δ = �
2

m

∫ 2π

0

dφ

∫ ∞

0

ρdρψ

(√
(z − R

2
)2 + ρ2

)
∂
∂z
ψ

(√
(z + R

2
)2 + ρ2

)

−ψ
(√

(z − R
2
)2 + ρ2

)
∂
∂z
ψ

(√
(z − R

2
)2 + ρ2

)
= π�

2

m
Rψ2

(
R
2

)
(4.29)

The resonance interaction is therefore determined by the wavefunction
of the electron in the quasi-molecule, in the field of action of one of the
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two ionic cores, and, being the distance between the nuclei large, it can be
conveniently expressed in terms of the atomic wavefunction in its asymptotic
form (rγ � 1)

�(r) = A r(
1
γ −1) e−γr (4.30)

− γ2

2 is the binding energy of the valence electron (in atomic units), and A
is the so-called asymptotic parameter. The most accurate way to evaluate
the A parameter is tailoring the long-range asymptotic representation of the
electron wavefunction with that calculated by the Hartree–Fock method, de-
scribing the behaviour of the electron in the vicinity of the parent nucleus.

The general expression for that depends on the scheme of orbital and
spin angular momentum summation in atom and ion core. The most proper
scheme for light atoms is LS coupling: in this frame the fine-structure split-
ting for an ion and the parent atom is negligible in comparison to the energy
difference for various angular momentum projections of the valence electron
onto the molecular axis. This allows, also neglecting transitions among dif-
ferent terms, the separate consideration of states with different total spin
of a quasi-molecule. Then the quantum numbers of the molecular ion are
the atomic quantum numbers L, S, ML, and MS and the relevant quantum
numbers of the ion core are �, s, m, and ms. In such a scheme the orbital
and spin angular momenta of the valence electron �e and 1/2 are summed
up with the corresponding angular momenta of the ion core � and s into the
atomic angular momenta L and S; thereafter the atomic spin S and the spin
of the ion core s are summed into the total spin of the molecular ion SM . Due
to neglecting of the spin–orbit interaction the exchange interaction potential
does not depend on the total spin of a quasi-molecule SM . In the frame of
this scheme the general expression for the exchange interaction potential has
the following form (Smirnov 1973; Nikitin and Smirnov 1978):

Δ(�eμ, �m,LML)=ne(G
LS
�s )2

SM+ 1
2

2s+1

[
�e � L
μ m m+ μ

] [
�e � L
μ ML − μ ML

]
Δ�eμ

(4.31)

ne is the number of valence electrons,GLS
�s (�e, ne) is the genealogical or Racah

coefficient (Smirnov 2001), which is responsible for formation of the atom
from the parent ion and electron, the expression in the squared brackets is the
Clebsch–Gordan coefficient, which is responsible for summation of electron
and ion angular momenta into the atom orbital angular momentum, μ is the
projection of the orbital angular momentum of the valence electron on the
axis of the quasi-molecule and Δ�eμ is the partial single-electron exchange
interaction potential, determined by the following relation:

Δ�eμ = A2R( 2
γ −1) e(−Rγ− 1

γ ) (2�e + 1)(�e + |μ|)!
(�e − |μ|)!|μ|!(Rγ)|μ|

(4.32)
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A remarkable consequence of the exchange interaction potential expressed
in Eq. (4.31), i.e. in the frame of the one-electron approximation, is the onset
of selection rules, governing the process

|L− �| ≤ �e; |S − s| ≤ 1
2 (4.33)

thus predicting zero probability for transitions violating conditions in
Eq. (4.33). For these transitions the process could be possible only through
different mechanisms involving the simultaneous exchange of two electrons,
characterized by a relatively low probability.

In the further formulation (Smirnov 1973; Nikitin and Smirnov 1978) the
critical impact parameter is obtained requiring that in the expansion of the
integral in the asymptotic region [b�,∞] in Eq. (4.24), the terms linear in
b� must vanish (Nikitin and Smirnov 1978). This results in the following
transcendental equation:

ζ(b�) = 1
2e

−γ = 0.28 (4.34)

and in the case of an s-electron (�e=0,μ=0) transferred between two struc-
tureless cores

ζ(b�) =
1

�g

(
πb�

2γ

) 1
2

Δ(b�)

=
1

�g

(
π

2γ

) 1
2

A2(b�)
2
γ − 1

2 e−γb�−1/γ = 0.28 (4.35)

Extensive calculations have been done by Smirnov (2001) on the resonant
charge exchange in parent-atom-ion systems for all the elements in the pe-
riodic table (see Fig. 4.3). For oxygen and nitrogen systems more recent cal-
culations have been performed (Kosarim and Smirnov, 2005; Kosarim et al.
2006) accounting also for different momentum-coupling schemes in the anal-
ysis of the interaction hierarchy and resulting in lower absolute values of the
resonant cross sections. Data reported in Table 4.3 could be regarded as upper
limits to more accurate values and could be particularly useful in absence of
other information on the relevant cross sections.

4.2 N(4S)–N+(3P ) and O(3P )–O+(4S) Charge-Exchange
Cross Sections: Two Case Studies

The independent treatment of resonant charge-exchange channels, associated
to the different g–u pairs of electronic terms arising in the interaction of open-
shell atoms, can be illustrated considering the case of N(4S)–N+(3P ) system,
widely investigated in literature by different authors in different theoretical
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frames. The Wigner–Witmer rules predict for the ground-state parent-atom-
ion interaction six pairs, i.e. 2,4,6Σ+

gu and 2,4,6Πgu. The effective resonance
cross section results from the averaging of partial contributions due to differ-
ent channels, with the statistical weight of the electronic terms

σex =
∑
n

wnσ
n
ex

wn
(4.36)

In the pioneering paper by Knof et al. (1964) the cross section was estimated
in the semiclassical Firsov approach [Eqs. (4.25) and (4.26)] and the g–u split-
tings were estimated from accurate RKR experimental energy curves, where
available, and from ab initio results obtained in the frame of the valence-bond
formalism, deriving the ratios of splittings for the different pairs. Later on,
Stallcop (1971), by improving the Knof approach and by neglecting the mul-
tiple exchange integrals in the Heitler–London scheme, was able to produce
the following equations linking the potential splittings of the N+

2 potentials:

ΔEgu =

⎧
⎨
⎩

2
3W1 for 2Σ+

gu and 2Πgu
4
3W1 for 4Σ+

gu and 4Πgu

2W1 for 6Σ+
gu and 6Πgu

(4.37)

where

W1(Σ) = 〈π+
Aπ

+
Bπ

−
Aπ

−
BσA|H |π+

Aπ
+
Bπ

−
Aπ

−
BσB〉

−E∞Sσ − 4�3 − 2g2Sσ + 2q1Sπ (4.38)

W1(Π) = 〈σAσBπ+
Aπ

+
Bπ

−
A |H |σAσBπ+

Aπ
+
Bπ

−
B 〉

−E∞Sπ − 2(�1 + �2)− (2g1 − q2)Sπ + q1Sσ (4.39)

H is the hamiltonian operator defined as

H = −
∑

i

1
2
∇2

i +
ZA

riA
+
ZB

riB
+
∑

j>i

1

rij
+
ZAZB

RAB

(4.40)

where ZA=ZB=3 (i.e. only p-electrons are considered). The orbitals σ and π
represent combination of 2p atomic orbitals, i.e. σ=pz and π±=2−1/2(px±py),
while other symbols are associated to overlap and two-electron integrals

Sσ = 〈σA|σB〉 Sπ = 〈π+
A |π+

B〉
�1 = 〈π+

Aπ
−
A |r−1

12 |π−
Aπ

+
B〉 �2 = 〈π+

AσA|r−1
12 |σAπ

+
B〉 �3 = 〈π+

AσA|r−1
12 |σBπ

+
A〉

g1 = 〈π+
AσA|r−1

12 |σAπ
+
A〉 g2 = 〈π+

Aπ
−
A |r−1

12 |π−
Aπ+

A〉
q1 = 〈π+

AσB|r−1
12 |σAπ

+
B〉 q2 = 〈π+

Aπ
−
B |r−1

12 |π−
Aπ+

B〉
E∞ = −6.255952au represents the sum of the energies of the free atom
and ion that, in turn, have been calculated as the difference of the energy
corresponding to the complete atom (or ion) and the energy of the core
configuration, E(1s2 2s2) = −50.89545au.
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Capitelli and Devoto (1973) used relations (4.37), in combination with
the experimental splittings for doublet Σ and Π electronic terms, to ob-
tain charge-transfer cross sections. Their values were much lower than the
charge-transfer cross sections derived from molecular beam experiments and
of unpublished Yos (1965) results based on the ab initio Heitler–London
method, i.e. the valence-bond approach. It was then decided to perform an
ab initio Heitler–London calculation of the Σ states of N–N+ potentials. The
following wavefunctions were written (Capitelli et al. 1977b):

|2Σgu〉 = 1√
6
|0, 0, 154 ,− 1

2 〉NA |1, 0, 2, 1〉N+
B
− 1√

3
|0, 0, 154 , 1

2 〉NA |1, 0, 2, 0〉N+
B

+ 1√
2
|0, 0, 154 , 32 〉NA

|1, 0, 2,−1〉N+
B
±
[

1√
6
|0, 0, 154 ,− 1

2 〉NB
|1, 0, 2, 1〉N+

A

− 1√
3
|0, 0, 154 , 1
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A
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(4.41)
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(4.42)

|6Σgu〉 =
√
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N+
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]

(4.43)

The ± sign refers to symmetric (gerade) or anti-symmetric (ungerade) states,
while the ket atomic states, | 〉NA

, centred on the nuclei A and B, are eigen-
functions of the operators (L2, Lz , S2, Sz), associated to the squared modulus
and the axial component of the orbital angular and spin momenta.

The determinantal wavefunctions | . . .〉N are described in terms of a mini-
mal STO (Slater-type orbital) basis set, obtaining energies for ground-state
configuration of the nitrogen atom and ion, N(4S) = −54.26512au and
N+(3P ) = −53.78174au, leading to a value for the ionization potential of
13.5 eV, to be compared with the experimental value of 14.54 eV.

The energy associated with each molecular state should, in general, be
obtained by solving a secular problem. In the present case, however, the
problem is trivial, because, for symmetry reasons, the secular matrix factor-
izes in unidimensional blocks. The energy of a given state is, therefore, simply
given by the expression
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E(R) =
< Ψ |H |Ψ >

< Ψ |Ψ >
(4.44)

where Ψ represents the wavefunction of the electronic molecular state given
in Eqs. (4.41)–(4.43) and H is the complete hamiltonian operator

H = −1
2

∑

i∈A

∇2
i −

∑

i∈A

ZA

riA
+ 1

2

∑

i,j∈A

1

rij
− 1

2
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i∈B

∇2
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riB

+1
2
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i,j∈B

1

rij
−
∑

i∈B

ZA

riA
−
∑

i∈A

ZB

riB
+ 1

2

∑

i∈A,j∈B

1

rij
(4.45)

The algebra involved in the development of the matrix elements between
determinantal wavefunctions can be found in classical textbooks (McWeeny
and Sutcliffe 1969). All relevant integrals, including multiple-exchange inte-
grals, were calculated by Gauss and Gauss–Laguerre quadrature formulae.
The splittings for Σgu states were found to fulfill the relation

[ΔEgu]sextet =
3
2 [ΔEgu]quartet = 3[ΔEgu]doublet (4.46)

as put in evidence by Stallcop (1971) and Yos (1965) on a semi-empirical
base.

Also the splitting ofΠ pairs were evaluated by using the Stallcop approach
(Stallcop 1971) and a quantum mechanical calculation of the W1 energy. At
the same time this approximation was also used for the Σ states. The results
of complete Heitler–London calculation, case (a), ofΣ states and approximate
Heitler–London calculation, case (b), for Σ and Π states are reported in
Table 4.1 in the form of exponential representation of g–u splittings.

The corresponding charge-transfer cross sections, obtained through
Eqs. (4.25) and (4.26), are reported in Fig. 4.4 and compared with the
experimental molecular beam results. We can note that the ab initio Heitler–
LondonΣ contributions averaged with the approximateΠ state contributions
are still below the experimental charge-exchange cross sections, while a bet-
ter agreement was found with the approximate calculations for Σ and Π
splittings.

Due to the relevance of N–N+ resonant charge-exchange process in
affecting the transport properties of air plasmas, the NASA group decided
to calculate all electronic molecular terms arising in the interaction, of
N+

2 potentials by using the complete-active-space self-consistent field
(CASSCF) approach with a (4s3p1d) Gaussian basis set (Stallcop et al. 1985).
A comparison of the CASSCF g–u splittings for Σ and Π pairs with the
approximate Heitler–London calculations shows large differences in the two
sets of results (Fig. 4.5). These discrepancies however do not propagate in
the charge-exchange cross section, being the differences below 15%, as ap-
preciable in Fig. 4.5. It should be noted that CASSCF results were found in
closer agreement with experiments (Belyaev et al. 1968) and the comparison
is even better including a tail energy-dependent correction, accounting for
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Table 4.1 Parameters, A[eV] and α[Å−1], of exponential decay functional form of

g–u splitting for Σ and Π pairs of N+
2 system, by different authors

Reference 2Σg,u
4Σg,u

6Σg,u
2Πg,u

A α A α A α A α

(a) 372.0 2.428 646.0 2.429 977.0 2.430
(b) 1,660.0 2.577 703.0 2.990
(c) 1,890.0 3.650 104.0 2.486
(d) 81.6 1.778 31.0 2.026
(e) 42.1 1.920 296.0 3.140
(f) 25.1 1.586 111.0 2.510

(a) Accurate results in Capitelli et al. (1977b), (b) Approximate results in Capitelli
et al. (1977b), (c) Capitelli and Devoto (1973), (d) Yos (1965), (e) Andersen and

Thulstrup (1973) and Thulstrup and Andersen (1975), (f) Cartwright and Dunning
(1975)
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Fig. 4.4 Resonant charge-exchange cross section as a function of energy from
Capitelli et al. (1977b). (Thick solid line) calculated with the potentials of Yos
(1965), (short-dashed line) calculated with the potentials of Capitelli and Devoto
(1973), (dashed–dotted line) calculated with the potentials of Andersen and Thul-
strup (1973); Thulstrup and Andersen (1975), (long-dashed line) calculated with the
potentials of Cartwright and Dunning (1975), (cyan diamonds) case (a) Σ pairs, (blue
diamonds) case (b) Σ + Π pairs, (orange diamonds) (Knof et al. 1964), (pink dia-
monds) (Duman and Smirnov 1974), (red bars) experimental results (Belyaev et al.
1968)

the estimation of resonant cross section in the random phase approxima-
tion [see Eq. (4.24)]. In a subsequent paper by the NASA group (Stallcop
et al. 1991) calculated a new complete set of potential curves by combining
available experimental data with accurate potentials at a CASSCF level.
Authors presented arguments about the accuracy of their potential en-
ergy curves, not significantly improved by high-order ab initio approaches,
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Fig. 4.5 (a) g–u splitting for Σ and Π pairs. (dashed and full lines) Σ pairs, case
(a) (Capitelli et al. 1977b); (dashed and full with markers) Σ and Π pairs, CASSCF
approach (Stallcop et al. 1985). (b) Resonant charge-exchange cross sections as a
function of energy. (lines) (Capitelli et al. 1977b), (lines with markers) CASSCF
approach including a tail correction (Stallcop et al. 1985), (red bars) experimental
results (Belyaev et al. 1968)

i.e. multi-reference configuration interaction plus quadruples corrections
(MRCI+Q). The charge-exchange cross sections were obtained in a quan-
tum frame from WKB phase shifts (3.29). The new charge-exchange cross
sections are again reported in Fig. 4.6. They are in agreement with the ex-
perimental results presenting also an increase of the cross section at very
low energy this behaviour being absent in all other results. This behaviour
was ascribed to the role of polarizability (Knof et al. 1964) not present in all
other calculations.

Apparently the last calculation of charge-exchange cross sections and
the corresponding diffusion-type collision integrals tabulated by the NASA
group (Stallcop et al. 1991) can be considered as benchmark values for similar
calculations. In this context two series of data recently obtained in the frame
of the asymptotic approach (Kosarim et al. 2006; Eletskii et al. 2004) should
be also referenced. The asymptotic resonant charge-exchange cross sections
differ by the choice of the scheme of orbital and spin momentum coupling.
Again we note a satisfactory agreement with the results of the NASA group
thus emphasizing that this approach can be used with a fair amount of confi-
dence for the calculation of charge-exchange cross sections involving excited
states (see Chap. 5).
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Fig. 4.6 Comparison of the cross section for the resonant charge-exchange process
in N(4S)–N+(3P) collisions, as a function of collision energy, by different authors.
(Continuous line) (Kosarim et al. 2006), (dashed line) (Eletskii et al. 2004), (dot-
ted line) (Stallcop et al. 1991). Experimental results (Belyaev et al. 1968) are also
reported with error bars

The diffusion-type collision integrals, obtained by integration of reso-
nant charge-exchange cross sections calculated with different theoretical ap-
proaches (Capitelli et al. 1977a; Stallcop et al. 1991; Eletskii et al. 2004;
Kosarim et al. 2006) or from experiments (Belyaev et al. 1968), are reported
in Table 4.2.

Inspection of the results shows a satisfactory agreement between the
reported calculations emphasizing also that the asymptotic approach can
be considered as an upper limit to the value of the transport cross sections.
It should be also noted that the pioneering results by Knof et al. (1964) and of
Capitelli and Devoto (1973) underestimate the corresponding diffusion-type
collision integrals.

The second case study is the O(3P )–O+(4S) system. The first attempts
made by Knof et al. (1964) ended in the underestimation of charge-
exchange cross sections as compared with the more recent results by NASA
group (Stallcop et al. 1991). As in the case of nitrogen, the potential energy
curves of all the electronic terms arising in the interaction of ground-state
O–O+ collisional pair were derived by mixing experimental information
and the CASSCF method, while phase shifts were estimated in the WKB
approximation for the calculation of the charge-exchange cross section.

A comparison of these values with two series of results obtained in the
asymptotic approach (Eletskii et al. 2004; Kosarim and Smirnov 2005) is
shown in Fig. 4.7. The asymptotic cross sections are higher than the NASA
results especially in the case of the more recent series (Kosarim and Smirnov
2005), with discrepancies up to 40%. Experimental results by Rutherford and
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Table 4.2 Inelastic contribution to diffusion-type collision integrals, σ2Ω
(1,1)�
ex [Å2],

as a function of temperature for the N(4S)–N+(3P) interaction obtained with different
approaches

T[K] (a) (b) (c) (d) (e)

500 38.17 40.6 38.88 40.61
1,000 34.27 37.5 36.52 38.17
2,000 22.62 31.39 34.5 34.24 35.81
3,000 29.95 32.8 32.94 34.46
4,000 21.42 29.00 31.6 32.03 33.52
5,000 28.30 30.7 31.34 32.80
6,000 20.74 27.73 30.0 30.78 32.22
8,000 20.26 26.86 28.9 29.90 31.31

10,000 19.90 26.19 28.1 29.23 30.61
14,000 19.35 25.20 26.8 28.23 29.58
18,000 18.95 24.48 25.9 27.50 28.50
20,000 18.78 24.18 25.5 27.19 28.50
30,000 23.05 24.0 26.04 27.30
40,000 22.28 23.0 25.23 26.46
50,000 21.70 22.3 24.61 25.82

(a) Capitelli et al. (1977a) based on Heitler–London potentials in Capitelli et al.
(1977b), (b) Stallcop et al. (1991), (c) Results in Capitelli et al. (2000) from

experiments (Belyaev et al. 1968), (d) Eletskii et al. (2004), (e) Kosarim et al.
(2006)
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Fig. 4.7 Comparison of the cross section for the resonant charge-exchange pro-
cess in O(3P)–O+(4S) collisions, as a function of collision energy, by different au-
thors. (Dashed–dotted line) (Knof et al. 1964), (dashed line) (Kosarim and Smirnov
2005), (continuous line) (Eletskii et al. 2004), (dotted line) (Stallcop et al. 1991).
Experimental results (Rutherford and Vroom 1974) are also reported

Vroom (1974) are also reported, showing that different approaches seem to
converge for relatively high collision energies, results by Kosarim and Smirnov
(2005) still overestimating the resonant charge-exchange cross section.
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Table 4.3 Inelastic contribution to diffusion-type collision integrals, σ2Ω
(1,1)�
ex [Å2],

as a function of temperature for the O(3P)–O+(4S) interaction obtained with different
approaches

T[K] (a) (b) (c) (d) (e)

500 21.25 29.64 28.88 33.43 41.27
1,000 20.17 26.96 27.16 31.08 38.98
2,000 19.11 24.88 25.49 28.82 36.76
4,000 18.07 23.11 23.87 26.64 34.60
5,000 17.75 22.60 23.36 25.96 33.92
6,000 17.48 22.21 22.95 25.41 33.37
8,000 17.07 21.60 22.31 24.55 32.51

10,000 16.75 21.13 21.82 23.89 31.85
20,000 15.78 19.72 20.33 21.91 29.84
30,000 15.22 18.90 19.48 20.80 28.70
40,000 14.83 18.32 18.89 20.02 27.90
50,000 14.53 17.89 18.43 19.43 27.29

(a) Knof et al. (1964), (b) Stallcop et al. (1991), (c) Results in Capitelli et al. (2000)
from experiments (Rutherford and Vroom 1974), (d) Eletskii et al. (2004),

(e) Kosarim and Smirnov (2005)

The corresponding diffusion-type collision integrals are reported in
Table 4.3, showing deviations of the asymptotic results up to 35% with
respect to quantum ones (Stallcop et al. 1991).
This last point merits some comments. The asymptotic results of Kosarim
and Smirnov (2005) are more accurate than the corresponding ones in Eletskii
et al. (2004), the reverse being true when comparing the theoretical results
with the experimental ones (Rutherford and Vroom 1974). However, more
recent experimental results (Lindsay et al. 2001; Lindsay and Stebbings 2005)
in the energy range 0.5–5keV, extrapolated to the low-energy region, yield
a value of charge-exchange cross section of 71 Å2 at 0.1 eV, very close to
the value by Smirnov and Kosarim at the same energy (66 Å2). A further
theoretical study should be welcome to shed light on the actual value for the
cross section of this important process.

Before ending this section it is important to point out that the resonant
charge-exchange processes should be taken into account in principle in each
symmetric collision involving an ionic species encountering its neutral parent,
i.e. sharing the same ionic core, as in the case of O2(

3Σ−
g )–O+

2 (X
2Πg) and

N2(
1Σ+

g )–N+
2 (

2Σ+
g ) systems, experimentally investigated by different au-

thors (Berry 1948; Stebbings et al. 1963; Moran et al. 1974; Kobayashi
1975). A full multi-state impact parameter model has been developed
(Flannery et al. 1973; Moran et al. 1974), accounting for the anisotropy of
the potential surface due to the orientation of molecules in different colliding
geometries and for the vibrational energy content of the molecule in its
ground electronic state. This approach was shown to be predictive, as shown
in Fig. 4.8, where also the theoretical results obtained in the asymptotic
approach, successfully extended to the case of diatomic collisions in Yevseyev
et al. (1982), are displayed.
In Table 4.4 inelastic contribution to diffusion-type collision integrals, due
to resonant process, is reported for interactions relevant to the Earth atmo-
sphere. These results have been derived in Capitelli et al. (2000) through
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Fig. 4.8 Resonant charge-exchange cross sections in molecular systems by different
authors. (a) O+

2 –O2 (solid line) asymptotic approach (Yevseyev et al. 1982), (dashed–
dotted line) low-energy approximation (Moran et al. 1974), (short-dashed line) multi-
state approach (Moran et al. 1974), compared with experimental results (dia-
monds) (Kobayashi 1975), (squares) (Moran et al. 1974), (long-dashed line) (Steb-

bings et al. 1963), (dotted line) fit in (Capitelli et al. 2000). (b) N+
2 –N2 (solid line)

asymptotic approach (Yevseyev et al. 1982), (dashed–dotted line) low-energy ap-
proximation (Flannery et al. 1973), (short-dashed line) multi-state approach (Flan-
nery et al. 1973), compared with experimental results (diamonds) (Kobayashi 1975),
(squares) (Berry 1948), (long-dashed line) (Stebbings et al. 1963), (dotted line) fit in
(Capitelli et al. 2000)

a closed form (Devoto 1967) fitting theoretical (Yevseyev et al. 1982) and
experimental (Rutherford and Vroom 1974) cross sections.

4.3 Resonant Exchange
in Multiply-Charged-Ion–Parent-Atom Collisions

Cross sections for multiple resonant charge exchange, i.e. the process

Ã + Aq+ → Ã
q+

+A (4.47)

have been evaluated in the frame of the asymptotic approach [Eq. (4.35)]
estimating the exchange interaction potential with the expression

Δ(b�) = 8
eIb

� exp (−γb�) (4.48)

setting in place of ionization potential, I, the corresponding values for double
and triple ionizations, as suggested in Miller et al. (2002).
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Table 4.4 Inelastic contribution to diffusion-type collision integrals, σ2Ω
(1,1)�
ex [Å2],

as a function of temperature for molecular-ion–parent-molecule interactions from
Capitelli et al. (2000)

T[K] O2–O
−
2 O+

2 –O2 N+
2 –N2 NO+–NO

100 19.62 44.18 55.85 43.63
500 17.38 37.62 49.07 37.31

1,000 16.46 34.95 46.28 34.74
2,000 15.57 32.39 43.58 32.27
4,000 14.70 29.92 40.96 29.88
6,000 14.20 28.52 39.46 28.53
8,000 13.85 27.55 38.42 27.59

10,000 13.59 26.81 37.62 26.87
20,000 12.78 24.56 35.18 24.70
30,000 12.31 23.30 33.80 23.47
40,000 11.99 22.42 32.83 22.62
50,000 11.74 21.75 32.09 21.97
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Fig. 4.9 (a) Double resonant charge-exchange cross section for rare-gases collisional
pairs, i.e. Xe2+–Xe and Kr2+–Kr. (solid lines) Asymptotic approach, (open dia-
monds) experimental results (Okuno et al. 1978)). (b) Single to multiple resonant
charge-exchange cross section for Neq+–Ne. (solid lines) Asymptotic approach com-
pared with experimental results, (close diamonds) (Latypov et al. 1969), (open dia-
monds)(Flaks and Solv’ev 1958), (close squares) (Latypov et al. 1969), (open squares)
(Flaks and Solv’ev 1958), (open circles) (Latypov et al. 1969), (closed circles) (Flaks
and Filippenko 1960), (open triangles) (Kaneko et al. 1981)

In the low collision energy domain σex should be corrected for the
contribution of elastic scattering to the resonant charge-transfer processes:
the polarization interaction potential acts modifying the particle trajecto-
ries and the cross section should be evaluated as half of the probability of
orbiting (Duman et al. 1982). The correction, negligible for a single-electron
process, could be relevant at low temperatures, for atom-multiply charged



References 119

Fig. 4.10 Diffusion-
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ion interactions, due to a square dependence of the capture cross section
on the ion charge (Okuno et al. 1978). The asymptotic results have been
compared with experiments for rare-gas colliding systems in Fig. 4.9, showing
the reliability of this approach.

In the estimation of diffusion-type collision integrals, actually the elastic
contribution already accounts for the strong polarization interaction and
correction terms have not been included. The resonant inelastic contribution
decreases with the ion charge, as the ionization potential for the removal
of two or more electrons increases, becoming negligible for q >3, while
the polarization term becomes dominant, as appreciable in Fig. 4.10, where
results for Nq+–N interactions are reported.
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Chapter 5

Collision Integrals for Interactions
Involving Excited Species

The role of electronically excited states (EES) in affecting transport
coefficients started with the pioneering paper (Hirschfelder and Eliason
1957), where it was predicted a significant increase of the collision integral
with the principal quantum number, based on the semi-empirical relation for
the collision diameter

σ = 2r̄ + 1.8 r̄ = n�

2
2n�+1
Z−S a0

r̄ being the mean electron radius, n� the effective principal quantum number,
Z the atomic number and S the screening constant in the Slater orbital
wavefunction.

This analysis, while overestimating the transport cross section, does not
account for the resonant processes of excitation- and charge-exchange in col-
lisions involving excited atoms or ion-parent atoms that actually have been
demonstrated to be dramatically affected by the quantum state of colliding
partners.

The excited state issue is still an open problem, being the dependence of
collision integrals on the quantum state of chemical species largely unknown.
In the following the construction of a consistent collision integral database
for interactions relevant to atomic hydrogen plasma is demonstrated, consid-
ering H�(n) excited species up to n = 12, thus allowing the investigation on
transport coefficient from atmospheric to high-pressure regimes with a suit-
able cutoff criterion for the truncation of internal partition function and for
the inclusion of excited states in the reaction scheme (see Chap. 7). Diffusion-
and viscosity-type collision integrals have been fitted with suitable analytical
functions in the temperature range [10,000–25,000K], where excited atomic
species do exist in an LTE plasma, while higher orders, i.e. (�, s) with s > �
were derived through recurrence relation in Eq. (3.16).

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics,
Springer Series on Atomic, Optical, and Plasma Physics 74,
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A collision-integral database for interactions involving electronically
excited atoms, relevant to LTE atomic air plasma, is far from being complete;
however, a review of the acquired results on both low- and high-lying excited
states for nitrogen and oxygen is presented.

5.1 Electronically Excited H�(n) Atom Interactions

5.1.1 The Symmetric H(n)–H(n) Interactions

Diffusion- and viscosity-type collision integrals for the symmetric H(n)–H(n)
interactions, up to n = 5, have been obtained by integrating the correspond-
ing momentum transfer and viscosity cross sections obtained, in a quantum
phase-shift approach, by integration of accurate ab initio CI potential energy
curves (Celiberto et al. 1998) of a limited number of electronic terms. Data
have been extrapolated up to n = 12 modelling the dependence on the prin-
cipal quantum number, in a reduced energy scale, i.e. n′ = 2 − 1

n2 , with the
equation

Ω
(�,�)�
H(n)−H(n) = exp (a1 + exp (−a2n

′ + a3)) (5.1)

Collision integrals have been fitted against temperature with the simple
equation

Ω
(�,�)�
H(n)−H(n)(T ) = b1 T b2 (5.2)

The relevant parameters, bi, have been reported in Tables 5.1 and 5.2.

Table 5.1 Fitting coefficients, bi, for
temperature dependence of diffusion-
type collision integrals [Eq. (5.2)] for
H(n)–H(n) interactions up to n = 12

(n,n) b1 b2
(1,1) 1.886 (3)� −7.312 (−1)
(2,2) 7.144 (4) −1.013 (0)
(3,3) 3.218 (4) −8.561 (−1)
(4,4) 5.808 (4) −8.992 (−1)
(5,5) 6.983 (4) −9.114 (−1)
(6,6) 4.767 (4) −8.584 (−1)
(7,7) 4.579 (4) −8.493 (−1)
(8,8) 4.452 (4) −8.431 (−1)
(9,9) 4.364 (4) −8.388 (−1)

(10,10) 4.299 (4) −8.356 (−1)
(11,11) 4.251 (4) −8.332 (−1)
(12,12) 4.214 (4) −8.314 (−1)

�(3) ≡ 103

Table 5.2 Fitting coefficients, bi, for
temperature dependence of viscosity-
type collision integrals [Eq. (5.2)] for
H(n)–H(n) interactions up to n = 12

(n,n) b1 b2
(1,1) 4.976 (2) −5.688 (−1)
(2,2) 3.471 (4) −9.033 (−1)
(3,3) 4.385 (4) −8.664 (−1)
(4,4) 3.854 (4) −8.246 (−1)
(5,5) 3.384 (4) −7.963 (−1)
(6,6) 3.216 (4) −7.828 (−1)
(7,7) 2.976 (4) −7.691 (−1)
(8,8) 2.961 (4) −7.655 (−1)
(9,9) 2.804 (4) −7.572 (−1)

(10,10) 2.759 (4) −7.537 (−1)
(11,11) 2.786 (4) −7.538 (−1)
(12,12) 2.690 (4) −7.489 (−1)
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5.1.2 Excitation Exchange

The study of the excitation exchange in collisions of excited hydrogen atoms,
i.e. the process

H̃(n) + H(2S) → H̃(2S) + H(n),

has been investigate in the past by different authors (Watanabe 1965; Naka-
mura and Matsuzawa 1967; Matsuzawa and Nakamura 1967; Capitelli et al.
1974), focusing on (n = 2, 3 � = 0, 1, 2) states.

In Capitelli et al. (1974) the electronic terms arising in the interaction
H(3�)–H(1s) were calculated in the frame of the Heitler–London method and
improving the estimation of correlation energy in the asymptotic region of dis-
sociation, through a configuration interaction procedure among states of the
same symmetry. The resonant excitation-exchange cross sections, governed by
the exchange interaction potential, were estimated for each gerade–ungerade
pair in the Firsov approach, already illustrated in Chap. 4, and reported in
Table 5.3, together with corresponding values for H(2n)–H(1s) and
H(3n)–H(1s) interactions, obtained with the PSS (perturbed stationary
state) method in Nakamura and Matsuzawa (1967) and Matsuzawa and
Nakamura (1967).

Table 5.3 Partial resonant excitation-exchange cross sections for each g − u pair in
H(3�)–H(1s) interaction

Collision pair Term A [eV] α [Å−1] σ(n�)
ex [Å2](E = 0.1 eV) 1 eV 5 eV 10 eV Multiplicity

H(3s)–H(1s) 1Σg,u 85.25 1.725 52.4 40.4 32.8 29.8 1
3Σg,u 20.92 1.307 70.8 52.4 41.1 36.6 3

H(3p)–H(1s) 1Σg,u 10.81 1.251 66.1 47.5 36.2 31.8 1
3Σg,u 11.48 1.505 44.2 31.6 23.9 20.9 3
1Πg,u 52.92 1.568 58.4 44.6 35.8 32.3 2
3Πg,u 25.09 1,307 74.0 55.1 43.5 38.9 6

H(3d)–H(1s) 1Σg,u 7.19 1.392 46.4 32.4 24.0 20.8 1
3Σg,u 17.28 1.596 43.1 31.3 24.1 21.3 3
1Πg,u 13.40 1.338 60.0 43.5 33.4 29.4 2
3Πg,u 18.99 1.505 50.3 36.9 28.6 25.3 6
1Δg,u 85.17 1.779 48.9 37.7 30.6 27.8 2
3Δg,u 77.58 1.734 50.8 39.0 31.7 28.7 6

H(3n)–H(1s) 〈σex〉 56.2 41.8 32.8 29.3

H(2n)–H(1s) 〈σex〉 722.0 229.0 96.0 70.0

Average values for H(3n)–H(1s) (Capitelli et al. 1974) and H(2n)–H(1s) (Nakamura
and Matsuzawa 1967; Matsuzawa and Nakamura 1967) interactions are also reported

These results showed interestingly that in the case of exchange of excitation,
differently from charge exchange, increasing the principal quantum number
of the excited atomic partner reduces the process probability and this aspect
could be better appreciated in inspection of Fig. 5.1 where results obtained in
Capitelli et al. (2002) for the complete matrix of asymmetric interactions, up
to n = 11, m = 12, are displayed. It is evident that the processes characterized
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by higher cross sections are those corresponding to mono-quantum excitation,
while the values decrease for multi-quantum transitions (n → m = n + 2,
n + 3, . . .).
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Fig. 5.1 Resonant excitation-exchange diffusion-type collision integrals for H(n)–
H(m) interactions, as function of the principal quantum number of atomic partner
(in the reduced energy scale n′) at T = 10, 000K (Capitelli et al. 2002) (orange
diamonds) (Capitelli et al. 1974; Nakamura and Matsuzawa 1967; Matsuzawa and
Nakamura 1967)

Actually in Capitelli et al. (2002) the approach for the cross section estima-
tion was different, recalling the equation for s − p (allowed) transitions in
Watanabe (1965)

σex = 3.36πμ2
spe

2 1

�g
(5.3)

where g is the relative velocity of colliding atoms, related to collision energy,
and μsp the dipole moment matrix element between s and p electronic states.
Mean excitation transfer cross sections for other kinds of allowed interactions
(p− d, d − f , f − g, . . .) were estimated using a scaling procedure, through
G functions (Hirschfelder et al. 1966)

σ1s−2p

G1s−2p
=

σnd−mf

Gnd−mf
(5.4)

G(n, �; m, �− 1) =
1

a20

⎡
⎣

∞∫

0

dr r3Rn,�Rm,�−1

⎤
⎦
2

(5.5)
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where R is the radial wavefunction for atomic hydrogen. The allowed
transitions, coupling different atomic states characterized by different values
assumed by the orbital quantum number �, which give a contribution to
the H(n)–H(m) interaction, have been weighted in an averaging procedure,
where the statistical weight was the number of molecular electronic states
correlating with specified asymptotic atomic states

σnm
ex =

∑
i ωiσi∑
i ωi

(5.6)

The temperature dependence of the excitation transfer contribution to the

diffusion-type collision integral σ2Ω
(1,1)
ex is reproduced using a logarithmic

relation
σ2Ω(1,1)�(T ) = d1 + d2 ln (T ) (5.7)

The elastic contribution to diffusion-type collision integrals is estimated by
arithmetic average of the corresponding contributions for symmetric H(n)–
H(n) and H(m)–H(m) interactions, not affected by resonant excitation-
exchange processes, according to the simple formula

σ2Ω
(1,1)�
H(n)−H(m) =

1
2

(
σ2Ω

(1,1)�
H(n)−H(n) + σ2Ω

(1,1)�
H(m)−H(m)

)
(5.8)

In general excitation transfer process dominates the diffusion-type collision
integrals; the elastic contribution starts being predominant for large differ-
ences in the i–j values.

Equation (5.8) is extended also to the estimation of viscosity-type collision
integrals, whose temperature behaviour is described through the simple power
relation

σ2Ω(2,2)�(T ) = e1T
e2 (5.9)

Fitting parameters entering Eqs. (5.7) and (5.9) are reported in Tables 5.4
and 5.5, respectively.

5.1.3 Resonant Charge Exchange

The resonant charge-exchange process in hydrogen–proton collisions involv-
ing excited atomic partners

H̃(n) + H+ → H̃
+
+H(n)

has been deeply investigated in literature since from the past (Dalgarno and
Yadav 1953; Bates and Reid 1968, 1969; Malaviya 1970) due to its funda-
mental relevance in many fields from astrophysics to transport.

Resonant cross sections in H+–H(n) interactions, up to n = 5, were
obtained, in the frame of the Firsov approach (see Chap. 4), estimating the
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Table 5.4 Fitting coefficients, di,
entering Eq. (5.7) for temperature
dependence of diffusion-type collision

integrals, σ2Ω
(1,1)�
ex , for single quan-

tum excitation transitions in H(n)–
H(m) interactions

(n,m) d1 d2

(1,2) 3.709 (2) −3.178 (1)
(2,3) 3.913 (3) −3.353 (2)
(3,4) 1.460 (4) −1.251 (3)
(4,5) 3.829 (4) −3.281 (3)
(5,6) 8.256 (4) −7.074 (3)
(6,7) 1.568 (5) −1.344 (4)
(7,8) 2.720 (5) −2.330 (4)
(8,9) 4.411 (5) −3.780 (4)

(9,10) 6.758 (5) −5.814 (4)
(10,11) 1.000 (6) −8.573 (4)
(11,12) 1.425 (6) −1.221 (5)

Table 5.5 Fitting coefficients, ei,
entering Eq. (5.9) for temperature
dependence of viscosity-type collision
integrals, σ2Ω(2,2)�, for single quan-
tum excitation transitions in H(n)–
H(m) interactions

(n,m) e1 e2
(1,2) 2.947 (3) −6.690 (−1)
(2,3) 4.002 (4) −8.832 (−1)
(3,4) 3.953 (4) −8.403 (−1)
(4,5) 3.532 (4) −8.076 (−1)
(5,6) 3.332 (4) −7.905 (−1)
(6,7) 3.090 (4) −7.758 (−1)
(7,8) 2.937 (4) −7.662 (−1)
(8,9) 2.910 (4) −7.624 (−1)

(9,10) 2.817 (4) −7.569 (−1)
(10,11) 2.717 (4) −7.514 (−1)
(11,12) 2.744 (4) −7.515 (−1)

g–u splittings from accurate potential energy curves of relevant electronic
terms (Capitelli and Lamanna 1974). Partial contributions for different g–u
pairs are reported in Table 5.6.

The comparison of the average cross sections, retaining the dependence
on the principal quantum number n, with those obtained, for n = 2 and 3,
by Bates (Bates and Reid 1968, 1969), by using a two-state approach, also
reported in Table 5.6, shows a substantial agreement, confirming the relia-
bility of the asymptotic approach when the accurate long-range behaviour of
potential energy curves for gerade and ungerade electronic terms is available.
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Fig. 5.2 Resonant charge-exchange diffusion-type collision integrals for H(n)–H+

interactions, as function of the principal quantum number of atomic partner (in the
reduced energy scale n′) at T = 10, 000K (Capitelli et al. 2002)
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Table 5.6 Resonant charge-exchange cross sections, partial contributions due to
different (gu) pairs with statistical weight and average values, in H(n)–H+ collisions

State A [eV] α [Å−1] Δr [a0] σi
ex(E) [Å2] ωi (n�)

E = 0.1 eV 1.0 5.0 10.0
2Σgu 111.4 1.65 6–15 60.7 47.3 38.8 35.4 1 1s
2Σgu 6.5 0.77 5–24 170 123 94 82 2 2s
2Σgu 40.7 0.50 13–20 675 528 438 398 2 2p
2Πgu 16.5 0.62 7–20 347 262 208 187 4 2p

〈σex〉n=2 384.8 293.8 237.0 213.5

〈σex〉(a)
n=2 380 248 208 191

2Σgu 2.4 0.58 8–36 254 176 128 111 2 3s
2Σgu 5.8 0.30 9–30 1,403 1,045 823 739 2 3p
2Σgu 26.8 0.27 18–60 2,524 1,990 1,648 1,508 2 3d
2Πgu 4.8 0.43 10–30 577 422 326 286 4 3p
2Πgu 13.5 0.30 10–54 1,638 1,257 1,020 927 4 3d
2Δgu 10 0.40 10–48 852 641 514 459 4 3d

〈σex〉n=3 1,146.1 872.3 702.1 633.6

〈σex〉(a)
n=3 1,033.0 845.0 716.0 662.0

2Σgu 0.79 0.43 1–36 353 226 156 129 2 4s
2Σgu 1.41 0.20 1–40 2,512 1,814 1,375 1,204 2 4p
2Σgu 6.3 0.19 16–80 3,784 2,875 2,315 2,091 2 4d
2Σgu 87.3 0.20 40–112 5,576 4,527 3,862 3,587 2 4f
2Πgu 1.4 0.32 1–40 852 590 433 372 4 4p
2Πgu 3.4 0.22 8–72 2,499 1,847 1,450 1,293 4 4d
2Πgu 11.5 0.18 24–106 4,941 3,846 3,151 2,862 4 4f
2Δgu 1.42 0.22 1–28 2,057 1,460 1,094 957 4 4d
2Δgu 4.5 0.19 12–80 3,662 2,756 2,196 1,967 4 4f
2Φgu 2.6 0.23 6–64 2,160 1,567 1,213 1,069 4 4f

〈σex〉n=4 2,785.4 2,098.4 1,673.9 1,503.2
2Σgu 0.38 0.35 1–40 448 273 176 140 2 5s
2Σgu 0.77 0.17 1–50 3,067 2,126 1,557 1,347 2 5p
2Σgu 1.38 0.13 10–90 6,450 4,783 3,693 3,264 2 5d
2Σgu 7.1 0.13 40–120 9,823 7,693 6,231 5,652 2 5f
2Σgu 89.4 0.14 70–160 12,435 10,048 8,690 8,094 2 5g
2Πgu 0.73 0.25 1–40 1,161 780 555 470 4 5p
2Πgu 0.57 0.09 1–35 11,612 8,831 6,633 5,841 4 5d
2Πgu 5.1 0.15 27–120 6,430 4,923 3,925 3,617 4 5f
2Πgu 19.6 0.13 50–140 11,078 8,831 7,367 6,777 4 5g
2Δgu 0.79 0.19 1.25–50 2,267 1,558 1,144 981 4 5d
2Δgu 1.19 0.12 11.25–80 6,818 5,101 3,925 3,468 4 5f
2Δgu 5.2 0.12 35–120 9,798 7,475 6,035 5,465 4 5g
2Φgu 0.88 0.16 1.25–60 3,816 2,639 2,034 1,710 4 5f
2Φgu 1.13 0.11 8.75–100 8,831 6,633 5,101 4,578 4 5g
2Γgu 1.18 0.15 1.25–90 4,245 3,039 2,267 2,034 4 5g

〈σex〉n=5 6,573.4 4,981.7 3,932.8 3,535.2

(a)Results of Bates and Reid (1968, 1969) for n = 2, 3 are also reported

The contribution of resonant charge exchange to diffusion-type collision
integrals was estimated in Capitelli and Lamanna (1974) and Capitelli et al.
(2002) through Eq. (4.7) and the dependence on temperature (see Fig. 5.2),
in the interval [10,000–25,000K], and on the principal quantum number is
described with the following analytical function:

σ2Ω(1,1)�(T, n) = exp [f1(n
′)f2(T ′)f3 + exp (f4n

′ − f5)] (5.10)
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with T ′ = T/1, 000 and parameters f1 = 3.519, f2 = 0.77, f3 = −2.732 ×
10−2, f4 = 15.9 and f5 = 30.3.

The elastic contribution is estimated with a polarization model potential,
characterized by closed form for corresponding collision integrals [Eqs. (3.36)],
which can be straightforwardly extended to interactions of proton with
excited atomic partners, considering the dependence of the polarizability,

α
H(n)
pol on the principal quantum number

αpol =
1
8a

3
0n

4[17n2 − 3(n1 − n2)
2 − 9m2 + 19] (5.11)

n1 and n2 being the parabolic quantum numbers, defined as

{
n1 = n− �− 1
n2 = �− |m| ⇒ n1 − n2 = n− 2�− 1− |m| (5.12)

The resonant charge-exchange collision integral dominates the effective
diffusion-type collision integral, derived with Eq. (4.5), the polarization con-
tribution not exceeding 10%.

In Capitelli and Lamanna (1974) also viscosity-type collision integrals for
interaction H+–H(n) up to n = 5 were calculated, these results being extrap-
olated to n = 12 with a suitable function of the principal quantum number
and of the temperature, having the same form adopted for diffusion-type
collision integrals

σ2Ω(2,2)�(T, n) = exp [g1(n
′)g2 (T ′)g3 + exp (g4n

′ − g5)] (5.13)

with T ′ = T/1, 000 and parameters g1 = 4.0349, g2 = 0.9, g3 = −0.3442,
g4 = 15.6 and g5 = 30.25.

5.1.4 Electron-H(n) Interactions

In the case of electron interaction with excited atomic hydrogen, diffusion-
type collision integrals for different values of the principal quantum number
have been derived by direct integration [Eq. (3.11)] of corresponding momen-
tum transfer cross sections for elastic electron scattering by H(n) atoms, in
Ignjatović and Mihajlov (1997), calculated in the frame of the partial wave
method. Cross sections [a20] have been fitted as a function of energy E [eV]
and of the principal quantum number n by the following expression:

Q(1) =
A

E
ln
[
1 +Bn4E2

] [
1 + C exp (−D

√
E)
]

(5.14)

the relevant parameters being reported in Table 5.7.
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The temperature dependence of diffusion-type collision integrals Fig. 5.3 has
been fitted with a power function

σ2Ω(1,1)�(T ) = h1T
h2 (5.15)

the relevant parameters being reported in Table 5.8.
Viscosity-type collision integrals for e-H(n) interactions would require the

calculation of higher momenta of elastic scattering cross section, not available
when the database was created. Thus the equality σ2Ω(1,1)� = σ2Ω(2,2)� was
assumed.

Table 5.7 Fitting coefficients, enter-
ing Eq. (5.14) for temperature depen-
dence of elastic cross section in e-H(n)
interactions

n A B C D
1 528.6 0.019 18.68 0.73
2 755.6 0.038 34.04 1.51
3 757.2 0.047 32.04 7.81
4 772.7 0.037 23.73 8.60
5 798.6 0.030 11.08 7.58
6 821.3 0.026 5.43 6.39
7 846.6 0.022 4.00 4.93
8 861.5 0.021 3.56 6.41
9 862.3 0.020 3.28 5.43

10 862.3 0.019 3.28 5.43

Table 5.8 Fitting coefficients, hi,
entering Eq. (5.15), for temperature
dependence of diffusion-type collision
integrals for e-H(n) interactions

n h1 h2

1 4.946 (3) −0.721
2 8.347 (5) −1.129
3 7.317 (6) −1.279
4 2.858 (7) −1.386
5 7.561 (7) −1.462
6 1.611 (8) −1.520
7 3.440 (8) −1.582
8 4.105 (8) −1.590
9 6.952 (8) −1.634

10 9.519 (8) −1.658
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Fig. 5.3 Diffusion-type collision integrals for e-H(n) interactions, as function of the
principal quantum number of atomic partner (in the reduced energy scale n′) at
different temperatures “(Capitelli et al. 2004)” T = 10,000 K, “T=20,000 K”
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5.2 Electronically Excited He(n)–He+ Interactions

Very recently the charge-exchange process

He� +He+(2S) → He+(2S) + He�

involving singlet and triplet helium excited states up to n = 5 has been inves-
tigated, estimating cross sections in the frame of classical theory and quantum
asymptotic approach (Kosarim et al. 2012). The classical and asymptotic
approaches correspond to a different character of the process, so that the
classical approach assumes, in the course of the collision, effective transitions
between states close in energy, whereas the asymptotic approach ignores these
transitions.

According to the asymptotic theory (Chap. 4), the cross sections of res-
onant charge exchange is averaged over the momentum projection of the
electron onto the molecular axis at closest approach of nuclei in collision

σn� =
σn�0 + 2

∑
μ σn�μ

2�+ 1
(5.16)

where σn�μ is the cross section for indicated quantum numbers of the
transferring electron. Evidently, for a strongly excited atom, the elliptic
electron quantum numbers describe the process better than the spherical
ones. Table 5.9 gives the averaged values for different collision energies.

Further averaging over the different electronic states of excited helium
atoms characterized by the same principal quantum number, properly
accounting for statistical weight of different terms, allows to study the
dependence on n of resonant charge transfer cross sections, reported in
Table 5.10.

It is worth noting that the present He�–He+ averaged cross sections are
close to the corresponding values for the H�(n)–H+ interaction pair, as it can
be appreciated in Fig. 5.4, where results for helium system obtained in the
asymptotic approach have been compared with results for hydrogen (Capitelli
et al. 1974), derived with the Firsov approach (Firsov 1951). Note also that
the charge-exchange cross sections for interaction involving excited H� atoms
are in close agreement with the two-state quantum approach by Bates (Bates
and Reid 1968) and multistate results for n = 2 by Malaviya (1970) (see
Sect. 5.1.3).

Diffusion-type collision integrals are governed in the high-temperature
region by resonant processes, as it can be appreciated in Table 5.11 where
values, obtained from the average resonant charge transfer cross sections in
Table 5.10, are reported for He(n)–He+ interactions.

The classical approach can be used also to estimate the dependence of
resonant charge transfer cross sections on principal quantum number of He+ �

for the process
He+ � +He2+ → He2+ +He+ �
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Table 5.9 Averaged values of asymptotic cross sections of resonant charge exchange
in He�–He+ collisions

Electron shell σex [Å2]
E = 0.1 eV 1 eV 10 eV

1s2 (1S0) 33 26 20
1s2s(23S) 300 250 200
1s2s(21S) 400 330 270
1s2p(23P ) 370 310 240
1s2p(21P ) 420 350 280
1s3s(33S) 1,300 1,100 950
1s3s(31S) 1,600 1,400 1,200
1s3p(33P ) 1,500 1,300 1,100
1s3p(31P ) 1,700 1,400 1,200
1s3d(31,3D) 1,400 1,200 950
1s4s(43S) 3,900 3,400 2,900
1s4s(41S) 4,500 4,000 3,400
1s4p(43P ) 4,300 3,800 3,200
1s4p(41P ) 4,600 4,000 3,500
1s4d(41,3D) 4,100 3,600 3,100
1s4f(41,3F ) 3,400 2,900 2,400
1s5s(53S) 9,100 8,100 7,200
1s5s(51S) 10,200 9,200 8,200
1s5p(53P ) 9,800 8,700 7,700
1s5p(51P ) 10,400 9,300 8,200
1s5d(51,3D) 9,500 8,400 7,500
1s5f(51,3F ) 8,400 7,500 6,600
1s5g(51,3G) 7,000 6,100 5,200

Table 5.10 Resonant charge transfer cross section [Å2] for ion–parent-atom inter-
actions involving excited helium atoms, with principal quantum number n = 2–5

n E = 0.1 eV 1 eV 10 eV
1 33 26 20
2 390 320 260
3 1,400 1,200 1,000
4 3,800 3,300 2,800
5 8,400 7,400 6,500

Table 5.11 Inelastic contribution to diffusion-type collision integrals, due to reso-
nant charge transfer, for He(n)–He+ interactions, with principal quantum number n

T σ2Ω
(1,1)�

He(n)−He+
[Å2]

n = 1 n = 2 n = 3 n = 4 n = 5
1,000 18.1 219.9 807.7 2,210.9 4,942.6
2,000 16.9 207.2 768.7 2,113.4 4,758.2
4,000 15.6 194.8 730.6 2,018.1 4,577.2
6,000 14.9 187.8 708.8 1,963.4 4,473.0
8,000 14.5 182.9 693.5 1,925.1 4,399.8
10,000 14.1 179.1 681.7 1,895.6 4,343.4
20,000 13.0 167.7 645.9 1,805.4 4,170.6
30,000 12.3 161.1 625.4 1,753.7 4,071.2
40,000 11.9 156.6 611.0 1,717.4 4,001.3
50,000 11.5 153.1 600.0 1,689.6 3,947.6
100,000 10.5 142.5 566.4 1,604.5 3,782.9
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Fig. 5.4 Asymptotic resonant charge transfer cross section as a function of prin-
cipal quantum number of excited atomic partner in He�(n)–He+(2S) interactions,
at collision energy E = 1 eV, compared with corresponding theoretical results for
H�(n)–H+ (Capitelli et al. 1974)

which can be considered as a benchmark system for comparison with Coulomb
interactions. In the diabatic limit the temperature-independent cross section
can be estimated through the n scaling relation

σct =
32πn4

Z2
a2o, (5.17)

Ze being the charge of the multi-charge ionic cores interacting.
Usually for interactions involving ionic species only the elastic Coulomb

contribution is considered. However in this scheme the inelastic contribution
could be estimated as σ2Ω(1,1)� = 2σct

π , and inspection of Fig. 5.5, where the
diffusion-type collision integrals for excited states in He+(n)–He2+ interac-
tions are compared with the Coulomb collision integral, shows that it could
significantly affect the actual value of σ2Ω(1,1)�. These results open to ques-
tion the impact of including inelastic resonant charge-exchange channels in
the estimation of transport coefficients in highly ionized regimes.

5.3 Electronically Excited N(n)–N+(n)
and O(n)–O+(n) Interactions

For air species, namely, oxygen and nitrogen atoms and ions, the investiga-
tion was focused on the so-called low-lying excited states, i.e. states sharing
the same electronic configuration of the ground term (Capitelli and Ficocelli
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Fig. 5.5 Diffusion-type collision integrals, Ω(1,1) =
√

[kBTπ/2μ]σ2Ω(1,1)�, for
He+(n)–He2+ interactions. Inelastic contributions due to resonant charge-transfer
for excited states (dotted lines) and elastic contribution (markers)

1972; Sourd et al. 2007a,b; Laricchiuta et al. 2008). Collision integrals have
been estimated as weighted averages of different electronic states, consider-
ing also the contribution due to inelastic channels which affect the odd-order
terms (Kosarim and Smirnov 2005; Kosarim et al. 2006). The dependence
on electronic excitation of colliding partners was actually weak; however,
the paper by Eletskii (Eletskii et al. 2004), estimating the charge-exchange
contribution in highly excited state interactions, demonstrated that greater
effects are to be expected increasing the principal quantum number.

Reference should be done to the early work in this field by different authors
(Nyeland and Mason 1967; Capitelli and Ficocelli 1972, 1973; Capitelli 1975;
Capitelli et al. 1977), attempting the accurate calculation of diffusion and
viscosity-type collision integrals for interactions involving the ground and
the low-lying excited states of nitrogen and oxygen atoms [N(4S,2P,2D),
O(3P,1D,1S)] and ions [N+(3P,1D,1S), O+(4S,2P,2D)]. Recently a complete
revision of old results for oxygen system has been performed (Laricchiuta
et al. 2008), based on accurate ab initio interaction potentials for valence
states. The inelastic contribution to odd-order collision integrals due to reso-
nant charge-exchange processes in ion–parent-atom collisions has been eval-
uated from the corresponding cross sections recalculated in the framework
of the asymptotic theory (Eletskii et al. 2004; Kosarim and Smirnov 2005;
Kosarim et al. 2006) considering different momentum coupling schemes. An
attempt to study the effects of excited species in an LTE nitrogen plasma can
be found in recent papers by Aubreton et al. (Sourd et al. 2007a,b), however
restricted to dissociative regime, i.e. neutral atom interactions.

In the cited references, collision integrals have been obtained in the
traditional multi-potential approach, thus requiring the accurate knowledge
of a huge number of electronic terms increasing the quantum state of colliding
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partners. In the case of N�
2 and N+�

2 excited systems only some electronic
terms are available from ab initio calculations or from spectroscopic data
models, reflecting the theoretical and experimental limits in studying excited
states.

In this context the phenomenological approach could represent a valu-
able tool, allowing the derivation of complete and internally consistent sets
of collision integrals. The potential functional form is the same adopted for
describing the interaction between not excited species, this choice is justified
considering that low-lying excited states are characterized by physical prop-
erties quite similar to the ground state and by small energy separation (Lar-
icchiuta et al. 2009). In the next sections we will discuss more in details the
previous considerations.

5.3.1 Low-Lying Excited States

The phenomenological approach (Chap. 3), already validated in the case of
ground-state interactions (Capitelli et al. 2007), has been used for estimating
the elastic collision integrals for N�–N+� and O�–O+� low-lying interactions.

Table 5.12 Polarizability values [Å3] for nitrogen and oxygen atoms and ions in
ground and electronically excited states

Atom αpol Ion αpol

N(4S) (a) 1.1 N+(3P ) (a) 0.55

N(2D) (b) 1.1657 N+(1D) (c) 0.527
N(2P ) (b) 1.2232 N+(1S) (c) 0.585

O(3P ) (a) 0.80 O+(4S) (a) 0.279
O(1D) (b) 0.8039 O+(2D) (c) 0.352

O(1S) (b) 0.8371 O+(2P ) (c) 0.371

(a) Miller and Bederson (1977), (b) Nesbet (1977), (c) Fraga and Saxena (1972)

In Table 5.12 polarizability values for relevant species, needed in the estima-
tion of potential parameters through correlation formulas, are reported.

Reduced collision integrals,Ω(�,s)�, have been calculated, up to order (4,4),
over a wide range of reduced temperatures and fitted as a function of both
temperature and β parameter (Laricchiuta et al. 2007), allowing the estima-
tion of collision integrals on the base of the tuplet (re,ϕ0,β,m) completely
characterizing the physical system.
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Table 5.13 Parameters of phenomenological potential for interactions relevant to
nitrogen and oxygen excited states

Interaction ϕ0 [meV] re [Å] β Interaction ϕ0 [meV] re [Å] β m

N(4S)
N(4S) 6.432 3.583 6.605

O(3P)
O(3P) 5.763 3.423 6.898 6

N(2D) 6.550 3.598 6.802 O(1D) 5.772 3.424 7.346 6
N(2P) 6.646 3.611 6.798 O(1S) 5.846 3.434 7.341 6

N(2D)
N(2D) 6.675 3.613 7.188

O(1D)
O(1D) 5.781 3.425 8.689 6

N(2P) 6.777 3.625 7.178 O(1S) 5.855 3.435 8.671 6
N(2P) N(2P) 6.884 3.638 7.169 O(1S) O(1S) 5.933 3.445 8.653 6

N+(3P)
N(4S) 94.581 2.956 6.759

O+(4S)
O(3P) 93.447 2.689 6.926 4

N(2D) 98.213 2.969 7.096 O(1D) 93.736 2.690 7.411 4
N(2P) 101.31 2.981 7.088 O(1S) 96.162 2.699 7.406 4

N+(1D)
N(4S) 95.687 2.943 7.013

O+(2D)
O(1D) 87.540 2.754 8.135 4

N(2D) 99.344 2.957 7.717 O(3P) 87.264 2.753 7.191 4
N(2P) 102.46 2.968 7.697 O(1S) 89.861 2.763 8.124 4

N+(1S)
N(4S) 93.006 2.975 7.007

O+(2P)
O(3P) 85.922 2.768 7.184 4

N(2D) 96.603 2.988 7.700 O(1D) 86.195 2.769 8.112 4
N(2P) 99.670 2.999 7.681 O(1S) 88.494 2.778 8.101 4

N(4S)
O(3P) 5.989 3.507 6.723

N(2P)
O(3P) 6.133 3.537 7.015 6

O(1D) 6.001 3.508 6.988 O(1D) 6.146 3.538 7.629 6
O(1S) 6.098 3.517 6.986 O(1S) 6.252 3.547 7.623 6

N(2D)
O(3P) 6.069 3.523 7.023 6
O(1D) 6.081 3.524 7.648 6
O(1S) 6.184 3.533 7.641 6

O+(4S)
N(4S) 113.879 2.764 6.742

N+(3P)
O(3P) 76.475 2.886 6.954 4

N(2D) 117.956 2.779 7.060 O(1D) 76.729 2.887 7.476 4
N(2P) 121.427 2.791 7.052 O(1S) 78.870 2.895 7.470 4

O+(2D)
N(4S) 106.835 2.827 6.902

N+(1D)
O(3P) 77.451 2.873 7.392 4

N(2D) 110.746 2.841 7.422 O(1D) 77.707 2.874 8.878 4
N(2P) 114.077 2.853 7.408 O(1S) 79.864 2.882 8.857 4

O+(2P)
N(4S) 105.308 2.841 6.898

N+(1S)
O(3P) 75.084 2.905 7.381 4

N(2D) 109.183 2.855 7.412 O(1D) 75.336 2.906 8.831 4
N(2P) 112.485 2.867 7.398 O(1S) 77.454 2.915 8.811 4

In Table 5.13 parameters of phenomenological potential for interactions
relevant to atomic and ionic nitrogen and oxygen excited states are reported,
exhibiting a regular trend, dominated by the increase of polarizability corre-
sponding to electronic excitation, with the exception of the β value, strongly
influenced by the change in spin multiplicity of excited states.

Viscosity-type collision integrals for O–O� interactions are plotted in
Fig. 5.6 together with two series of data available in literature (Capitelli
and Ficocelli 1972; Laricchiuta et al. 2008), based on the traditional multi-
potential approach. Being the (2,2) term not affected by resonant excita-
tion exchange in asymmetric collisions, the observed deviations could give
indication of the accuracy of the proposed procedure. In general a satisfac-
tory agreement is found between data sets in the considered temperature
range [2,000–20,000K], being the percentage relative error confined below
25% with respect to Laricchiuta et al. (2008). The error analysis should also
take into account that the traditional multi-potential procedure, including
all electronic-term contributions, is based in Capitelli and Ficocelli (1972)
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and Laricchiuta et al. (2008) on a rigid classification of repulsive (decaying
exponential function) and bound (Morse function) states that could affect
data accuracy.

The proposed phenomenological approach does not account for the
contributions to odd-� collision integrals coming from inelastic channels,
represented by the resonant charge-exchange and excitation-exchange pro-
cesses occurring in ion–parent-atom and asymmetric atom–atom interactions,
respectively.
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Fig. 5.6 Viscosity-type collision integrals for O–O� interactions (continuous lines)
from phenomenological approach, compared with results in Capitelli and Ficocelli
(1972) (dashed lines) and Laricchiuta et al. (2008) (dotted lines)

Diffusion-type transport cross sections for different interactions involving
low-lying (ll) excited states have been derived from accurate resonant charge-
exchange cross sections, calculated in the frame of the asymptotic approach,
reconsidering the hierarchy of interactions and averaging over momentum
projections with appropriate momentum coupling scheme (Kosarim and
Smirnov 2005; Kosarim et al. 2006). As it can be appreciated in Fig. 5.7, the
diffusion-type collision integrals for interactions involving ll states present
peculiar features. The values corresponding to 2D−3P and 2P −3P interac-
tions are lower than those involving the ground state, i.e. 4S−3P , the reverse
being true for other interactions, although in general a weak dependence is
observed on the excitation energy of the collisional pair. It is worth noting
that the asymptotic approach is a one-electron-transfer theory, thus predict-
ing a null probability for some resonant processes involving low-lying excited
atoms, i.e. N(4S)–N+(1D), N(4S)–N+(1S) and N(2D)–N+(1S), classified as
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forbidden. This results in collision integrals for these interactions retaining
only the elastic contribution and thus characterized by much lower values.

Older results, obtained in Capitelli (1977) in the Firsov approach and also
reported in Fig. 5.7, though underestimating the resonant charge-exchange
contribution due to the poor accuracy of the gerade–ungerade splitting at
large distances, correctly predict the significant reduction of cross section
corresponding to forbidden one-electron transitions in the asymptotic frame.
Moreover the comparison of theoretical charge-exchange cross sections for
oxygen system with measurements by Lindsay (Lindsay et al. 2001) for the
ground-state interaction O(3P )–O+(4S) and for the average interaction with
low-lying excited states of the O+� ion shows clearly that the ratio of the
corresponding values is largely satisfactory (see Fig. 5.8).
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Fig. 5.7 Resonant charge-exchange diffusion-type collision integrals for interaction
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10, 000K, compared with results in Capitelli (1977) (solid line–close markers)
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Fig. 5.8 Resonant charge-exchange cross sections for interactions involving ground
and ll excited states of oxygen ion (Kosarim and Smirnov 2005) in O(3P )–O+� (close
circles) compared with high-energy experimental results in Lindsay et al. (2001) (the
dotted line represents the low-energy extrapolation of the fit given by Lindsay)

Resonant contribution to odd-order collision integrals for relevant interac-
tions has been fitted with the following equation:

σ2Ω(�,s)�
ex = d1 + d2x+ d3x

2 (5.18)

with x = ln(T ). di coefficients are presented in Table 5.14, with reference in
literature to corresponding resonant charge-exchange cross sections.

Concerning excitation-exchange processes, few references can be found
in literature (Nyeland and Mason 1967; Sourd et al. 2007a; Capitelli and
Ficocelli 1972, 1973) and new calculations have been performed, based on
the estimation of gerade–ungerade energy splitting between electronic terms
of the same symmetry, Δϕ = ϕg − ϕu, within an asymptotic approach.

The excitation exchange cross section is defined as

σex =
πR2

0

2
(5.19)

R0 is the solution of the transcendental equation

1

g

√
πR0

2γ
Δϕ = 0.28 (5.20)

where γ = αi + βi, −α2
i /2 and −β2

i /2 being the binding energies of the two
valence electrons transferring from one atomic core to the other.

The electronic exchange interaction with excitation transfer, in atomic
transitions forbidden via electric dipole, is found in literature with an ana-
lytical form (Hadinger et al. 1994)
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Δϕ = (2�1 + 1)(2�2 + 1)A2B2R(2/αi)+(2/βi)−1/(αi+βi)−1 exp (−(αi + βi)R)I(αi, βi)

I(αi, βi) =
(αi + βi)

(1/αi)+(1/βi)−1/(αi+βi)

α
1+1/βi
i β

1+1/αi
i 2(1/αi)+(1/βi)+1/(αi+βi)+2

exp

[
− 1

2

(
1

αi
+

1

βi

)]
Γ

[
1

(αi + βi)

]

∫ 1

0

dx (1 − x)(1/αi)+(1/βi)−1/(αi+βi)(1 + x)1/(αi+βi) exp

[
1

2
x

(
1

αi

+
1

βi

)]
(5.21)

|�1,m1 > e |�2,m2 > are the quantum numbers associated with the eigen-
value of angular momentum and to the axial projection for the two electrons
undergoing exchange. A and B are the coefficients entering the asymptotic
formula of electronic wavefunctions for valence orbitals (Eletskii et al. 2004)
and Γ is the Gamma function.

Cross sections are obtained including in Eq. (5.21) terms with null axial
projection (� = 1, m = 0), representing the main contribution (Chibisov
and Janev 1988). Excitation-exchange contribution to odd-order collision in-
tegrals has been fitted again with Eq. (5.18), with di coefficients given in
Table 5.15.

Table 5.15 Fitting coefficients, entering Eq. (5.18), for σ2Ω
(�,s)�
ex in asymmetric

atom–atom collisions
(�, s) d1 d2 d3 (�, s) d1 d2 d3

N(4S)–N(2D)

(1,1) 31.5961−1.8580 2.7332(−2)

N(4S)–N(2P)

(1,1) 32.9761−1.9830 2.9808(−2)
(1,2) 30.9767−1.8396 2.7314(−2) (1,2) 32.3161−1.9634 2.9824(−2)
(1,3) 30.5173−1.8261 2.7322(−2) (1,3) 31.8263−1.9487 2.9842(−2)
(1,4) 30.1516−1.8150 2.7319(−2) (1,4) 31.4361−1.9367 2.9840(−2)
(1,5) 29.8486−1.8057 2.7301(−2) (1,5) 31.1130−1.9267 2.9830(−2)

N(2D)–N(2P)

(1,1) 35.7731−2.1781 3.3162(−2)

O(3P)–O(1D)

(1,1) 27.8104−1.8819 3.1851(−2)
(1,2) 35.0466−2.1558 3.3155(−2) (1,2) 27.1844−1.8610 3.1874(−2)
(1,3) 34.5087−2.1396 3.3178(−2) (1,3) 26.7188−1.8449 3.1861(−2)
(1,4) 34.0787−2.1257 3.3138(−2) (1,4) 26.3499−1.8322 3.1860(−2)
(1,5) 33.7258−2.1151 3.3164(−2) (1,5) 26.0439−1.8215 3.1855(−2)

O(3P)–O(1S)

(1,1) 33.7682−2.1791 3.5187(−2)

O(1D)–O(1S)

(1,1) 39.3236−2.4460 3.8046(−2)
(1,2) 33.0403−2.1553 3.5161(−2) (1,2) 38.5091−2.4209 3.8066(−2)
(1,3) 32.5011−2.1375 3.5144(−2) (1,3) 37.9035−2.4017 3.8058(−2)
(1,4) 32.0735−2.1235 3.5151(−2) (1,4) 37.4222−2.3862 3.8038(−2)
(1,5) 31.7202−2.1119 3.5160(−2) (1,5) 37.0237−2.3733 3.8018(−2)

The asymptotic approach predicts higher values than those obtained by
the evaluation of gerade–ungerade splitting from potential energy curves
(Nyeland and Mason 1967; Sourd et al. 2007a; Capitelli and Ficocelli 1972,
1973); however, the direct estimation could be affected by the lower accuracy
characterizing the region of large internuclear distances, where the process
takes place favourably.

As generally observed, the inelastic contribution is significantly higher with
respect to the elastic one, especially in the high-temperature region, dominat-
ing the temperature dependence of the diffusion-type collision integral and,
consequently, also its dependence on the electronic excitation of colliding
partners.



5.3 Electronically Excited N(n)–N+(n) and O(n)–O+(n) Interactions 143

5.3.2 High-Lying Excited States

The only attempt to estimate the charge-exchange cross sections in ion-
parent–atom collisions involving nitrogen and oxygen atoms in highly excited
(hl) states (n >2) is in Eletskii et al. (2004), where the theoretical frame is
the asymptotic approach and results show an n4 − n5 dependence on the
principal quantum number of the atomic valence shell.

The state-selected results are reported in Tables 5.16 and 5.17.
Corresponding diffusion-type collision integrals for interactions involving

hl states, exhibit an n5 dependence on the principal quantum number as
shown in Fig. 5.9, where the interactions O(hl)–O+(4S) and N(hl)–N+(3P )
are displayed as a function of the excitation of the atomic partner.

Table 5.16 The partial and averaged magnitudes of the resonant charge-exchange
cross section (10−16 cm2), calculated for excited states of nitrogen

State Λ I E [eV]
0.1 1.0 10.0
g [105 cm/s]

1.66 5.24 16.6
0 1/2 65.9 52.7 40.8

3/2 73.3 60.0 47.8
5/2 79.5 65.2 52.1

N(4S) 1 1/2 47.0 36.7 27.9
(γ = 1.034) 3/2 53.8 43.0 33.0

5/2 57.9 46.6 36.4
σex 61.5 49.5 39.0

0 1/2 62.2 50.8 39.5
3/2 72.0 56.0 43.8

N(2D3/2,5/2) 1 1/2 36.3 23.3 15.9
(γ = 0.945) 3/2 42.9 28.5 20.0

σex 50.0 36.1 27.2
0 1/2 65.7 53.9 38.4

3/2 75.7 61.9 46.7
N(2P1/2,3/2) 1 1/2 39.0 29.3 18.7
(γ = 0.898 ) 3/2 44.6 33.4 23.6

σex 52.8 41.2 29.0
0 1/2 404 332 265

N(2p23s 2P ) 3/2 438 374 307
(γ = 0.53) σex 426 361 293

0 1/2 2,690 2,400 2,130
N(2p24s 2P ) 3/2 2,870 2,580 2,270
(γ = 0.344) σex 2,800 2,520 2,220

0 1/2 4,900 4,300 3,710
N(2p25s 2P ) 3/2 5,290 4,670 4,090
(γ = 0.25) σex 5,160 4,540 3,970

0 1/2 201 149 100
3/2 233 179 129

N(2p23s 4P ) 5/2 274 216 161
(γ = 0.556) σex 249 192 140

0 1/2 1,770 1,520 1,300
3/2 1,910 1,660 1,440

N(2p24s 4P ) 5/2 2,000 1,750 1,520
(γ = 0.35) σex 1,930 1,690 1,460

0 1/2 4,310 3,780 3,260
3/2 4,680 4,090 3,590

N(2p25s 4P ) 5/2 4,850 4,290 3,760
(γ = 0.26) σex 4,710 4,140 3,620
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Table 5.17 The partial and averaged magnitudes of the resonant charge-exchange
cross section (10−16 cm2), calculated for excited states of oxygen

State Λ I E (eV)
0.1 1.0 10.0
g (105 cm/s)

1.55 4.9 15.5
0 1/2 56.7 44.8 32.6

3/2 63.8 51.3 39.5
5/2 69.8 56.1 43.8

O(3P ) 1 1/2 39.0 29.0 21.1
(γ = 1.0) 3/2 45.2 35.3 25.7

5/2 49.8 38.7 28.8
σex 52.9 41.1 30.8

0 1/2 308 255 207
3/2 344 286 233

O(2p33s 5S) 5/2 365 306 254
(γ = 0.573) 7/2 381 320 268

σex 367 312 261
0 1/2 1,890 1,640 1,390

3/2 2,060 1,800 1,530
O(2p34s 5S) 5/2 2,160 1,890 1,630
(γ = 0.34) 7/2 2,240 1,970 1,700

σex 2,150 1,870 1,620
0 1/2 4,240 3,710 3,200

3/2 4,590 4,000 3,520
O(2p35s 5S) 5/2 4,780 4,170 3,690
(γ = 0.26) 7/2 4,940 4,290 3,840

σex 4,750 4,150 3,660
0 1/2 360 300 246

3/2 400 336 276
O(2p33s 3S) 5/2 423 357 298
γ = 0.549) σex 412 350 291
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Fig. 5.9 Dependence on principal quantum number (reduced energy scale) of inelas-
tic contribution to diffusion-type collision integrals in N�–N+(3P ) and O�–O+(4S)
interactions, involving excited atomic partner, at T = 10, 000K. Different electronic
states of N and O atoms arising from the same electronic configuration have been
considered
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Chapter 6

Vibrational Excitation and Transport
Properties of Reacting Gases: Beyond
the Eucken Approximation

In Chap. 1 we have introduced the Eucken approximation as a useful tool
to calculate the thermal conductivity contribution of the internal states of
molecules. In the case of vibration a closed form appears as a result of the
following hypotheses:

1. All the vibrational excited states have the same elastic cross sections in-
dependently of the vibrational quantum number of the molecule.

2. The vibrational distribution is well described by a Boltzmann law at a
given temperature.

3. Inelastic energy exchange processes play a minor role.

The most critical point is the assumption (2) due to non-equilibrium vi-
brational distributions existing under different conditions which include cold
plasmas, shock wave, nozzle and boundary layer flows. In these reacting mix-
tures, in fact, the coupling between chemical and vibrational kinetics pro-
duces strong non-equilibrium vibrational distributions, which can modify the
transport coefficients. A generalized formulation of the Enskog expansion
can be used to describe this situation (Nagnibeda and Kustova 2009; Brun
2009). The model assumes that the relaxation times for the chemical and
vibrational modes are much longer than the relaxation times for the transla-
tional and rotational ones. Therefore, the chemical composition of the system
and the populations of the vibrational levels of the molecules are treated as
macroscopic parameters on the same ground as temperature and hydrody-
namic velocity: their evolution on a macroscopic timescale is governed by
kinetic equations coupled with the system of fluid dynamic equations. As a
consequence, the transport coefficients derived in this way depend on all
these macroscopic parameters so that the method allows the explicit inclu-
sion of the non-equilibrium situation in the calculation. In these conditions
a state-to-state approach is necessary in order to get the information on the
concentrations and the gradients of the different vibrational levels entering
the transport equations. In this chapter we will present different numerical
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Springer Series on Atomic, Optical, and Plasma Physics 74,
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examples (Bruno et al. 1999, 2001; Kustova et al. 2002) illustrating the state
of the art on these topics. A more detailed discussion is contained in the
recent book by Nagnibeda and Kustova (2009).

6.1 Theory

We use the model developed by Kustova and Nagnibeda (1998), with par-
ticular attention to the evaluation of the heat flux and corresponding trans-
port coefficients. To lowest-order approximation, the distribution functions
are the equilibrium Maxwell–Boltzmann distribution over velocities and ro-
tational energy and a non-equilibrium distribution over vibrational energy
and chemical species. To this order of approximation, the equations for the
macroscopic parameters nci, v and T (the level populations, the hydrody-
namic velocity and gas temperature, respectively), are the nonviscous Euler
equations. The diffusion velocity is written as

V ci = −
∑
dk

Ddk
ci ddk −DT

ci∇ ln T

(Ddk
ci , diffusion coefficients; DT

ci, thermal diffusion coefficients)
and the heat flux

q = −λ′∇T − p
∑
ci

DT
cidci +

∑
ci

(
5
2kBT+ < Eci

j >rot +Ec
i + Ec

)
nciV ci

(λ′, thermal conductivity), where < Eci
j >rot is the average rotational energy

associated with molecules of species c in the vibrational level i, Ec
i is the

vibrational energy of molecules of species c in the vibrational level i and Ec

is the formation energy for molecules of species c.
The quantity

dci = ∇
(nci

n

)
+

(
nci

n
− ρci

ρ

)
∇ln p

involves the gradients of the vibrational level populations (the subscript c
refers to the chemical species and i refers to the vibrational level). In this way,
the system of transport coefficients is enlarged to include diffusion coefficients
for every vibrational level.

The transport coefficients in these formulas are expressed in terms of the
macroscopic parameters and the collision integrals.

If we suppose that the collision integrals do not depend on the vibrational
level of the particles, the system of transport coefficients is further simplified:
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Dci
ci different for every vibrational level

Dc
c = Dck

ci i �= k

Dd
c = Ddk

ci c �= d

DT
c different for every chemical species

For a binary mixture of molecules and their atoms, taking into account
that the diffusion driving forces satisfy (1 refers to molecules, 2 to atoms)

∑
i

d1i + d2 = d1 + d2 = 0 (6.1)

we get the following final expression for the diffusion velocities and the heat
flux:

V 1i = −D1i
1id1i −D1

1

∑
k �=i

d1k −D2
1d2 −DT

1 ∇ log p

= (D1
1 −D1i

1i)d1i + (D1
1 −D2

1)d2 −DT
1 ∇ log p

V 2 = −D2
2d2 −D1

2d1 −DT
2 ∇ log p

q = −λ′∇T − p(DT
1 d1 +DT

2 d2)

+
∑
ci

(
5
2kBT+ < Eci

j >rot +Ec
i + Ec

)
nciV ci = −λtot∇T (6.2)

Assuming that thermal diffusion is a small effect, we can distinguish two
contributions to the heat flux: the flux due to conduction, i.e. the Fourier
term, describes the transport of energy due to the collisions of the rapid
type. Due to our assumption that these collisions are independent of the
vibrational level, this term does not depend on the particular vibrational
distribution of the molecules but only on the chemical composition of the
gas mixture; the second term describes the convective contribution, due to
the diffusion of all vibrational levels. As we will see, this term is strongly
modified by the vibrational non-equilibrium and cannot be described by an
internal thermal conductivity coefficient as in the usual Eucken description
of polyatomic gases (Hirschfelder et al. 1966).

6.2 Cooling Flow

We have applied the model to the calculation of the transport properties in
a model flow. The macroscopic parameters are derived by a direct simula-
tion Monte Carlo method (DSMC) simulation of an N–N2 mixture (Bruno
et al. 1998); we use just a rough model of the system that gives a qualita-
tive insight into the dynamics of the vibrational distributions. The model
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implements a state-to-state vibrational kinetics with simple rate coefficients.
The particles are treated as hard spheres as far as the total cross section
is concerned; no difference between atoms and molecules in this respect is
considered; the dissociation process is described by a simple ladder-climbing
model (Capitelli and Molinari 1980; Capitelli 1986). The initial situation
is strongly non-equilibrium: the vibrational levels are distributed according
to the Boltzmann distribution at Tvib = 8, 000K, the gas temperature is
Tgas = 1, 000K, and the gas is in steady flow at v = 105 cm/s and is con-
sidered to be made only by molecules; the relaxation is followed for a time
Δt = 1.4ms. In Fig. 6.1 we show the behaviour of the temperatures Tgas,
Tvib. The latter is defined by

Tvib =
1

kB

E1
1 − E1

0

ln (n10/n11)
(6.3)

The gas has a high-energy content stored in the vibrational degrees of free-
dom; during relaxation, due to the anharmonicity of the molecule vibrations
and to the low gas temperature, the vibration–vibration (VV) energy ex-
changes are much faster than vibration–translation (VT) ones so that high-
lying plateau in the vibrational distribution function (VdF) builds up (see
Fig. 6.2).

The long plateau present at location (3), i.e. x = 0.5 m, is therefore the
result of the VV up pumping model (Capitelli and Molinari 1980; Capitelli
1986) followed at location (4), x = 1.4 m, by VT relaxation from atomic
nitrogen.
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In Fig. 6.3 we report the evolution of the composition of an N2/N mixture,
in particular the behaviour of the molar fraction of atomic nitrogen is reported
as a function of the distance along the flow. These data are used as input for a
calculation of the heat flux in the flow. We report the different contributions
to the total heat conductivity as they appear in Eq. (6.2). We thus distinguish
a Fourier term, due to the energy exchanges during rapid collisions; a term
due to the thermal diffusion; and a convection term due to particle diffusion.
The latter can be further split in the sum over molecules plus the term
concerning the diffusion of atoms.

Figure 6.4 shows that there is a great contribution to the conductivity due
to molecular diffusion, this term being directly influenced by vibrational non-
equilibrium. In Fig. 6.5 we compare the latter quantity from the calculations
for the same quantity obtained when considering vibrational distributions
at the vibrational temperature Tvib. We see that with this assumption the
theory completely fails to reproduce the correct behaviour.

It is interesting to show how the different vibrational levels contribute to
the total convective term of molecular diffusion. According to Bruno et al.
(1999) this term can be re-written as

−Dmol

∑
mol

Hci∇(nci) = −∇T
∑
mol

λi (6.4)

We now analyse the different contributions of all levels to this term; we can
roughly distinguish two regions in the flow. In the beginning, at distances less
than 0.5 m, the plateau in the distribution builds up; in Fig. 6.6 we show the
comparison between terms of the form

∑i2
i=i1

λi, calculated for the two cases.
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The contribution coming from the 0–8 levels (Fig. 6.6a) presents the same
qualitative trend for the equilibrium and non-equilibrium cases. A different
behaviour is presented by the intermediate levels i = 9–22 (Fig. 6.6b), which
in one case are populated and in the other depopulated following the decreas-
ing vibrational temperature; also, the upper-lying levels (Fig. 6.6c), which
do not contribute to the flux in the Boltzmann-like case, give a substantial
contribution in the non-equilibrium case. In the second region, the relaxation
slows down as the established quasi-stationary distribution slowly relaxes due
to VT energy transfers (in particular, those due to collisions with atoms). In
this case, the level kinetics can be better approximated by a Boltzmann-like
behaviour for levels 0–8 (Fig. 6.6a′). The intermediate levels (9–22) present
large differences for equilibrium and non-equilibrium cases (Fig. 6.6b′).
Finally the high-lying levels (23–45), in the non-equilibrium case, still give
an important contribution to the thermal conductivity, being practically
zero for the equilibrium case (Fig. 6.6c′). Therefore, the transport coefficients
essentially depend on the shape of the VdF and on the level kinetics so that
only a “state-to-state” approach that explicitly takes into account the details
of the VdF can give the correct results.

The results reported in the different figures are a clear example of the
inadequacy of the second hypothesis of Eucken approach in estimating the
vibrational contribution to the heat flow in the presence of strongly non-
equilibrium conditions. It is also interesting to note that the results reported
in Fig. 6.6a-c′ are a little affected by the introduction of the transport cross
sections depending on the vibrational quantum number (Gorbachev et al.
1997) as shown by Bruno et al. (1999).
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Fig. 6.6 Selected level contributions to the heat conductivity in the first (a, b, c) and
second (a′, b′, c′) regions of the flow, considering non-equilibrium vibrational (full
lines) and Boltzmann-like distributions (dashed lines) at Tvib. (a and a′) contribution
of levels i = 0–8, (b and b′) i = 9–22 and (c and c′) i = 23–45
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6.3 Nozzle Flow

As a second case study we present the transport properties in a model nozzle
flow (Bruno et al. 2001), considering three different reservoir conditions:

• Nitrogen mixture, pressure p = 1bar, temperature T = 8, 000K
• Nitrogen mixture, pressure p = 100bar, temperature T = 8, 000K
• Oxygen mixture, pressure p = 1bar, temperature T = 6, 000K

The nozzle flow calculations were performed by Colonna et al. (1999) for
one metre long, parabolic nozzle having cylindrical symmetry and the nozzle
profile dependence

r(x) = 3.5x2 − 3.5x+ 1 (6.5)

with x in metres (xthroat = 0.5m). The nozzle flow equations were solved
in a quasi-one-dimensional approximation, with no consideration of vis-
cous effects. Besides the simplified modelling of the fluid dynamics, the
model included a detailed description of the state-to-state vibrational ki-
netics (Colonna et al. 1999).

In Fig. 6.7a–c we show the behaviour of the temperatures Tgas, Tvib along
the nozzle in the three cases: we see that the gas temperature suddenly drops
to low values after the throat of the nozzle, due to the rapid expansion into
the vacuum; but the vibrational temperature lags behind since the relaxation
of the vibrational modes is much slower. During relaxation, recombination of
atomic species pumps vibrational quanta on the top of the vibrational ladder.
These quanta are redistributed (especially at low translational temperatures)
by VV (vibration–vibration) and VT (vibration-translation) energy transfer
processes, leading to the strong non-equilibrium vibrational distributions.
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This can be seen in Fig. 6.8a–c.
In Fig. 6.9a–c we show the evolution of the system composition for the cases
discussed, as compared to the composition of a system in chemical equilibrium
at the same temperature. Before the expansion the gas has a high degree of
dissociation. After the expansion, due to the low gas temperature, the atoms
slowly recombine through the upper vibrational levels; however, the pressure
after the nozzle throat (x = 0.5m) is very low and the global recombination
is very inefficient. In all cases we see that the chemical reactions are nearly
frozen shortly after the nozzle throat. We note however that the small recom-
bination is sufficient to create the non-equilibrium vibrational distributions
reported in Fig. 6.8.

In particular we can see that the first vibrational levels of the distributions
cool down as a function of the nozzle coordinate, presenting overpopulated
tails as a result of the recombination process. Note also that the high pressure
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decreases the initial concentration of atomic nitrogen in the first two cases,
while this species is dominant in the oxygen case. As a consequence we should
observe a major role of the diffusion of vibrational levels for case b as com-
pared with the corresponding results for case a and case c. This point can
be appreciated by looking at Fig. 6.10a–c where the different contributions
to the heat flux have been reported as a function of the nozzle coordinate.
In general the atom diffusion term dominates the other contributions spe-
cially for case c. On the other hand for case b the diffusion of vibrational
energy is as important as the Fourier term. It should be also noted that in
the three cases the results obtained by assuming a Boltzmann distribution
at Tvib are close to the corresponding state-to-state results due to the fact
that the tails of the distributions are in any case strongly underpopulated
as compared with the first few vibrational levels in all cases. The differences
between Boltzmann and state-to-state results reach a maximum value of 3%
for case b.

6.4 Boundary-Layer Flow

As a third example we report the heat transfer contributions in the boundary
layer of a re-entering body in an O2(i)/O mixture (Kustova et al. 2002;
Armenise et al. 2006).

To evaluate state-to-state distributions in the boundary layer around a
re-entering body, the equations for the vibrational level populations and
atomic number density have been coupled with fluid dynamic equations, and
some simplifications have been carried out. A stationary flow in the vicinity
of the stagnation point has been considered, and boundary-layer equations
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have been obtained using the Lees–Dorodnitsyn coordinate transformation
(Kustova et al. 2002):

ξ =

x∫

0

ρevedx η =
ve√
2ξ

y∫

0

ρdy.

Introducing these variables, one can write the boundary-layer equations in
the one-dimensional form:

c′′i + f�Sc�c′i = Si, i = 0, . . . , 33 (6.6)

ϑ′′ + f�Pr�ϑ′ = ST (6.7)

where Eq. (6.6) for i = 0, . . . , 32 is the equation for the mass fractions of vi-
brationally excited O2 molecules, i = 33 corresponds to atomic mass fraction
cO, Eq. (6.7) is the energy conservation equation (ϑ = T/Tgas, Tgas being the
gas temperature at the boundary layer edge, the definition of ϑ should not
be confused with symbol used in Chap. 8) and f� is the stream function that,
in the vicinity of the stagnation point, can be approximated by a polynomial
in η (Armenise et al. 1996). The derivatives have been done with respect to
the surface normal coordinate η.

In Eqs. (6.6) and (6.7) the left-hand side describe the diffusive and
convection terms. The Schmidt and Prandtl numbers are supposed to be
constant: Sc� = 0.49 and Pr� = 0.71. The source terms Si and ST describe,
respectively, vibrational energy exchanges and dissociation–recombination
processes in the gas phase as well as at the surface. Among vibrational energy
exchanges only the single quantum ones have been retained (Armenise et al.
2000)

O2(i) + O2(k) � O2(i− 1) + O2(k + 1)

O2(i) + O2 � O2(i− 1) + O2

O2(i) + O � O2(i− 1) + O

O2(i) + wall → O2(i− 1) + wall

According to the ladder-climbing model (Kustova et al. 2002), the pseudo-
level located just above the last bound level of a molecule has been introduced,
and it has been supposed that dissociation and recombination proceed only
through this level. Finally, dissociation and recombination reactions in the
gas phase are treated as VV and VT energy exchange processes involving
the pseudo-level. Recombination and dissociation at the catalytic surface are
described by two main mechanisms (Cacciatore et al. 1999; Armenise et al.
2000):

• Eley–Rideal mechanism

O +O@wall � O2(i) + wall (6.8)
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• Langmuir–Hinshelwood mechanism

O@wall+O@wall � O2(i) + wall (6.9)

where O@wall is an atom adsorbed at the surface.
Another possible mechanism

O2(i) + wall � O+O (6.10)

has also been taken into account.
To solve the problem we need appropriate boundary conditions for

Eqs. (6.6) and (6.7). At the external edge of the boundary layer, the gas
temperature is fixed as a parameter Tgas, and the level populations are
supposed to follow the thermal equilibrium Boltzmann distribution with
the gas temperature Tgas. On the surface the gas temperature is also fixed
at T = Tw. In the present case study Tgas = 7, 000K, Tw = 1, 000K and
p = 0.01 bar.

The corresponding equation for ci and cO at the wall read (Armenise et al.
2000)

∂ci
∂η

∣∣∣∣
w

= −γi
D

√
kBT

2πm
cO+γdissci−γdeactci+γdeactci+1 i = 0, . . . , 32 (6.11)

∂cO
∂η

∣∣∣∣
w

=

∑
i γi
D

√
kBT

2πm
cO −

∑
i

γdissci (6.12)

where recombination coefficient γi represents the ratio of the flux of atoms
recombining on the surface to the flux of atoms impinging the surface; the
diffusion coefficient D is assumed to be independent of the vibrational level
number. Note that in the right-hand sides of Eqs. (6.11) and (6.12) the first
term is from recombination at the surface, the second one is due to hetero-
geneous dissociation, and the third and fourth ones in Eq. (6.11) are caused
by deactivation at the wall. Details for the homogeneous and heterogeneous
rates are discussed in Kustova et al. (2002).

Equations (6.6) and (6.7) for ci, cO, ϑ with boundary conditions in
Eqs. (6.11) and (6.12) have been solved numerically using a finite difference
method (Armenise et al. 2000). The variables ci, cO, ϑ as well as their gra-
dients have been found along the coordinate η. Then, this solution has been
inserted into the kinetic transport theory algorithm (Kustova and Nagnibeda
1998) to compute the diffusion and heat conductivity coefficients and the to-
tal heat flux.

First, let us consider the reduced O2 level populations ni/n versus vi-
brational quantum number i for different values of coordinate η (η = 0
at the surface, η = 8 at the external edge of the boundary layer) (see
Fig. 6.11). The selective pumping of high-lying vibrational levels by hetero-
geneous recombination is well evident near the surface (η = 0, 0.1, 0.2), the
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discontinuity of level population at η = 0 being due to the molecular dynamic
data used in the model. The overpopulation of vibrational levels is reflected
on the different components of heat flux reported in Fig. 6.12a.
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Fig. 6.11 Reduced level populations ni/n as functions of the vibrational quantum
number at different η
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Again, among the diffusion processes, one can distinguish thermal diffusion,
mass diffusion of chemical species and diffusion of vibrational energy by ex-
cited molecules. Inspection of Fig. 6.12a shows that the heat flux is scarcely
affected by thermal diffusion (its maximum contribution does not exceed 6%
in the vicinity of the surface and then decreases to 3%). The influence of
mass diffusion of atoms is also small, and the main role in the heat trans-
fer belongs to heat conductivity (Fourier term) and diffusion of vibrational
energy. Near the wall a competition of these two processes is observed. The
diffusion of vibrational energy becomes more important when the influence of
processes (6.9) and (6.10) are neglected in the model as it can be appreciated
in Fig. 6.12b.

Similar results are found for non-catalytic surfaces when the plateaux are
formed by the gas-phase recombination even though in this case, depending
on the initial conditions, the concentration of molecules is rather small to
affect the heat flux.
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Chapter 7

Electronically Excited States and
Transport Properties of Thermal Plasmas

In this chapter we try to elucidate the role of electronically excited states
(EES) in affecting the transport properties of high-temperature high-pressure
thermal plasmas. This topic started many years ago when one of us showed
the dependence of transport coefficients on the cutoff criterion used in trun-
cating the electronic partition function of atomic species with large conse-
quences in the equilibrium composition and thermodynamic properties to
be inserted in the transport equations (Capitelli 1972). Soon after it was
recognized that electronically excited states affect the transport properties
not only acting on the plasma composition but also through their transport
cross sections, dramatically depending on the principal quantum number.
These cross sections were then inserted in the Butler–Brokaw equation for
calculating the role of excited states in the transport of internal and reactive
contribution to the thermal conductivity (Capitelli 1974). In this case an un-
usual effect was discovered, i.e. the role of excited states, while very important
in affecting the internal and reactive contributions when the excited states
were considered as inert species in the relevant equation, tends to disappear
when a more complex model was inserted in the Butler–Brokaw equation.
These ideas were then extended to the calculation of translational thermal
conductivity and of viscosity of hydrogen thermal plasma once obtained a
set of viscosity-type collision integrals for the relevant interactions involv-
ing excited states (Capitelli and Lamanna 1974). Recently a more complete
set of transport cross sections of electronically excited states (see Chap. 5)
of atomic hydrogen has been used in combination with different transport
equation approaches to better understand the EES role (Capitelli et al. 2002,
2003, 2004).

These ideas are being also extended to nitrogen and oxygen plasmas.
In this case a large effort has been devoted to the excitation-transfer and
charge-transfer cross sections of low-lying and high-lying electronically ex-
cited states (Capitelli 1975; Eletskii et al. 2004; Kosarim et al. 2006) (see
Chap. 5), which allows us to estimate the role of excited states on these more
complicated systems making use of the lessons learned for hydrogen plasmas.

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics,
Springer Series on Atomic, Optical, and Plasma Physics 74,
DOI 10.1007/978-1-4419-8172-1 7, © Springer Science+Business Media, LLC 2013
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These points will be widely exposed in this chapter which is subdivided into
five sections, the first three dedicated to atomic hydrogen plasmas, the other
ones to air plasmas. In particular Sect. 7.1 is dedicated to the dependence
of transport coefficients on electronically excited states, whose concentra-
tion is taken in a parametric form. Section 7.2 focusses on the influence of
electronically excited states on the internal and reactive contributions, while
Section 7.3 investigates the role of adopted cutoff criterion.

Finally Sects. 7.4 and 7.5 introduce new models to take into account ex-
cited states in the transport equations trying to avoid the state-to-state ap-
proach. Numerical examples for complex plasma systems are discussed, while
Section 7.3 investigates the role of adopted cutoff criterion.

7.1 EES and Transport Properties of Hydrogen Plasma:
A Parametric Study

In this section we investigate the role of electronically excited states in affect-
ing the transport properties of H2 plasmas in the temperature range 10,000–
30,000K and in the pressure range 1–1,000atm. The main species are H(n)
(n ≤ 12), H+and electrons, being H2 and H+

2 species important only in a
restricted temperature range at p=1000atm. Saha and Boltzmann laws have
been used for calculating the equilibrium plasma composition and the concen-
tration of excited states of atomic hydrogen with different principal quantum
number n (see Capitelli et al. 2002, 2003, 2004). In general we have con-
sidered up to n=12 electronically excited states; at high pressure we have
reduced the number of excited states to seven to partially take into account
the decrease of the number of electronically excited states with increasing the
pressure as discussed in Capitelli et al. (2002, 2003, 2004).

Transport coefficients have been calculated by using the third approxi-
mation of the Chapman–Enskog method for the electron component and the
first non-vanishing approximation for heavy components (i.e. the first approx-
imation for viscosity and the second one for the contribution of the heavy
components to the thermal conductivity) (Devoto 1968), while an extension
of Butler–Brokaw equation is used for calculating the internal and reactive
contributions to the thermal conductivity (Butler and Brokaw 1957; Brokaw
1960; Hirschfelder et al. 1966).

7.1.1 Thermal Conductivity

The total thermal conductivity λtot of an LTE plasma has been calculated
by adding the different contributions, i.e.

λtot = λh + λe + λint + λr (7.1)
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where the members on the right-hand side of the equation represent in the
order the translational contribution of heavy particles, the translational con-
tribution of electrons, the contribution of internal degrees of freedom and the
reactive thermal conductivity.

The first term can be expressed in the second approximation of the
Chapman–Enskog method according to the following equation (Hirschfelder
et al. 1966)

λh = 4
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where xi and mi are, respectively, molar fraction and molar mass of the ith
species, A�

ij and B�
ij are given in Eq. (3.15) and

λij = 0.0832

√
T (mi +mj)/(2mimj)

σ2
ijΩ

�(2,2)
ij

[W m−1K−1] (7.4)

The order of the determinant is controlled by the number of chemical
species (ν) considered in the calculation. In the present case we consider up
to 15 species (H2, H

+, e, H(n)).
Figure 7.1a reports the ratio λa

h/λ
u
h i.e. the ratio between the translational

thermal conductivity values calculated with the abnormal (a) cross sections
(λa

h) and the corresponding results calculated with the usual (u) cross sections
(λu

h) as a function of temperature for different pressures.
The abnormal cross sections include the dependence of transport cross sec-

tion on the quantum state of interacting atomic species, i.e. on the principal
quantum number, while in the usual case the ground-state transport cross
section values are used also for describing the interaction involving excited
species (see Chap. 5).

The small effect observed at p=1atm is due to a compensation effect be-
tween diagonal and off-diagonal terms in the whole representation of the
translational thermal conductivity of the heavy components [see Eq. (7.2)],
this compensation disappearing when considering only the diagonal terms in
Eq. (7.2). In this case in fact the relative error reaches a value of 160% when
comparing the translational thermal conductivity calculated with the two
sets of collision integrals. This compensation disappears at high pressure as
a result of the shifting of the ionization equilibrium towards higher tempera-
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tures where excited states are more easily populated. The results of Fig. 7.1a
have been obtained by considering in all cases 12 excited states. However as
already pointed out the number of excited states to be considered in the par-
tition function should decrease with increasing the pressure. As in Capitelli
et al. (2002, 2003, 2004), applying a very simple cutoff criterion, i.e. the con-
fined atom approximation, we have estimated to n=7 the maximum principal
quantum number to be considered at 100 atm. As expected the differences
in λa

h/λ
u
h strongly decrease when reducing the total number of excited states

(see the dotted line in Fig. 7.1a).
Let us now consider the effect of excited states on the translational thermal

conductivity of free electrons. In this case we have used the third approxima-
tion of the Chapman–Enskog method. The relevant equation can be written
as (Devoto 1967a; Capitelli et al. 2004)
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8 n
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where me, Te, and ne represent the electron mass, the temperature and the

density of electrons respectively, and Q
(�,s)�

ij = πσ2Ω
(�,s)�
ij .

In this case the presence of excited states affects only the interaction of
electrons with H(n). Figure 7.1b reports the ratio λa

e/λ
u
e calculated with

the two sets of collision integrals as a function of temperature at different
pressures, showing a minor effect of EES due to the weak dependence of
e-H(n) collision integrals on the principal quantum number.

Let us now examine the reactive thermal conductivity. The reactive ther-
mal conductivity, which describes the transport of chemical enthalpy through
temperature gradients, can be calculated by the general theory of the diffu-
sion fluxes (Hirschfelder et al. 1966) assuming a compact form under the
hypothesis of local chemical equilibrium along the temperature gradient. For
a system of μ independent chemical (dissociation, ionization) reactions and
ν chemical species, the Brokaw equation assumes the form (Brokaw 1960;
Hirschfelder et al. 1966).
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Fig. 7.1 Ratio between transport coefficients calculated by using abnormal (a) and
usual (u) collision integrals, as a function of temperature, at different pressures and
for different number of atomic levels. (a) Translational thermal conductivity of heavy
particles; (b) translational thermal conductivity of electrons; (c) reactive thermal
conductivity; (d) total thermal conductivity
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where:
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(7.7)

ΔHi represents the variation of enthalpy associated with ith reaction, p is
the total pressure, T the temperature in Kelvin, Dj

i is the binary diffusion
coefficient of the ij pair, xi is the molar fraction of ith component in the
mixture and aij is the stoichiometric coefficient of jth species in the ith
reaction.

The first 12 electronic states have been included in the ionization scheme
as well as the dissociation reaction (i.e. we consider μ = 13 independent
chemical (1 dissociation, 12 ionizations) reactions and ν = 15 independent
chemical species), i.e.
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H(1) � H+ + e

H(2) � H+ + e

...

H(n) � H+ + e

Again we compare the abnormal and usual results. Before the analysis we
want to point out that Eq. (7.6) represents indeed the transport of reactive
and internal contributions. The internal term in fact can be considered in
this approach as the result of excitation reactions

H(1) � H(2)

H(2) � H(3)

...

H(11) � H(12)

which are not independent for the state-to-state ionization reactions (see also
the end of Sect. 7.1).

We start our analysis by considering in Eq. (7.6) only the diagonal terms,
an approximation which is known to work very well for reactive neutral gases,
when transport cross sections of different species are similar. In this case the
reactive thermal conductivity for an atmospheric hydrogen plasma strongly
depends on the choice of cross sections. This behaviour disappears at p=1atm
when we calculate Eq. (7.6) inserting also the off-diagonal terms. In this case
a sort of compensation between diagonal and off-diagonal terms arises having
as a consequence the practical coincidence of the two cases, confirming the
results of Capitelli (1974).
This kind of compensation disappears with increasing pressure (see Fig. 7.1c).
For the higher pressure examined in the present study, using the complete
Eq. (7.6) and the same number of electronically excited states (again up to
n = 12), a difference up to factor 2 in the results can be appreciated. At
high pressure this difference decreases if seven excited states (nmax=7) are
considered.

Total thermal conductivity calculated according to the two sets of colli-
sion integrals is reported in Fig. 7.1d as the ratio λa

tot/λ
u
tot as a function of

temperature for different pressures. The relative error in this case assumes
the values of 3%, 15% and 60% for p=1, 10, 100 atm, respectively, the last
error becomes 18% when inserting seven excited states.
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7.1.2 Viscosity

The influence of electronically excited states on the viscosity has been ob-
tained by using the first approximation of the Chapman–Enskog method
which assumes a form very similar to Eq. (7.2) (Hirschfelder et al. 1966).

η = −
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The elements of the determinant assume the following form (Hirschfelder
et al. 1966):
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The results are in line with those discussed for the heavy-particle trans-
lational contribution to the total thermal conductivity. In particular Fig. 7.2
reports the ratio ηa/ηu as a function of temperature for different pressures.
As in the case of translational thermal conductivity the viscosity values

Fig. 7.2 Ratio between the viscosity values calculated by using abnormal (a) and
usual (u) collision integrals, as a function of temperature, at different pressures and
for different number of atomic levels
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calculated with the abnormal cross sections are less than the corresponding
values calculated with the usual cross sections. The maximum relative error in
this case assumes the values of 9%, 48% and 250% for p=1, 10, and 100 atm,
respectively, the last error becoming 18% when inserting seven excited states.

Again we observe larger deviations when the off-diagonal terms in the
viscosity equation are neglected in the calculation. As an example at 1 atm
the maximum error increases from 9% to 100% (Capitelli et al. 2004).

7.1.3 Electrical Conductivity

The electrical conductivity (Fig. 7.3) has been calculated by using the
third approximation of the Chapman–Enskog method which can be written
as (Devoto 1967a)
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It should be noted that Eq. (7.11) completely neglects the ion contribution
to the electrical conductivity, which indeed are accounted for in the general
theory reported in this book.

The presence of electronically excited states can affect σe through the
collisions e-H(n). The trend of the electrical conductivity follows that one
described for the contribution of electrons to the thermal conductivity as can
be appreciated in Fig. 7.3 where we have reported σa

e /σ
u
e . The relative error

calculated as before increases from 1% at 1 atm to 45% at 100 atm. The last
error reduces to 10% when only seven states are considered. The results at
1 atm are similar to those reported by Ignjatović and Mihajlov (1997), being
however different at 10 atm. This is probably due to the simplified equation
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Fig. 7.3 Ratio between the electrical conductivity values calculated by using abnor-
mal (a) and usual (u) collision integrals, as a function of temperature, at different
pressures and for different number of atomic levels

used in Ignjatović and Mihajlov (1997) for the calculation of the electrical
conductivity.

The accuracy of the presented results depends on the adopted set of col-
lision integrals for excited states as well as on the number of excited states
existing in the plasma.

These points need some comments. Let us consider first the most impor-
tant interactions which affect our results. In the case of heavy-particle com-
ponents (translational thermal conductivity and viscosity) the viscosity-type
collision integrals for the interaction H(n)–H+ have a large role in affecting
the results. These collision integrals have been obtained by extrapolating to
n >5 the collision integrals calculated in Capitelli and Lamanna (1974) by
adiabatically averaging the contribution coming from the different potential
curves arising in a particular collision. In turn the potential curves of H+

2

are exact being the hydrogen molecular ion one of the few examples treated
exactly by quantum mechanics. The problem in this case is the extrapolation
of the results to higher n. A different way to calculate the viscosity-type colli-
sion integrals should be by using the polarizability model taking into account
the dependence of the polarizability on the principal quantum number. The
corresponding viscosity-type collision integrals are much higher than those
based on the H+

2 potential energy curves, having large effects on the plasma
viscosity, as reported in Capitelli et al. (2004).

The contribution of electrons to the thermal and electrical conductivity
depends on the collision integrals for the interaction e-H(n). The quantum
mechanical calculation of the momentum transfer cross sections performed
by Ignjatović and Mihajlov 1997 seems adequate to the present aim.
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In this case however we have neglected in the transport cross sections the
effects due to inelastic and reactive collisions which strongly increase with n.

In the reported cases the translational thermal conductivity of heavy par-
ticles and the viscosity have been derived in the first non-vanishing approxi-
mation of the Chapman–Enskog method, while for the translational thermal
conductivity of electrons and the electrical conductivity the third approxima-
tion has been used. Higher approximations, also accounting for the presence
of excited states, have been extensively discussed in Singh et al. (2008, 2010)
and Sharma et al. (2011) and reported in Chap. 8.

7.2 The Transport of Internal and Reactive
Contributions: A Decoupled Scheme

The starting point of this approach (Bruno et al. 2007a,b) is the convective
heat flux describing the transport of enthalpy due to diffusion. It is defined by:

q =
∑
i

niHiV i = −(λr + λint) · ∇T (7.13)

where Hi is the enthalpy carried by i-type particles, V i the diffusion velocity
and λr, λint are the reactive and internal thermal conductivity, respectively.
It is further assumed that (Meador, Jr. and Staton 1965):

• Thermal diffusion is negligible.
• Total pressure is uniform.
• There are not non-electromagnetic forces acting on the plasma.
• The plasma is quasi neutral.
• The plasma is in thermal and chemical equilibrium.
• The total current density equals zero (i.e. the ambipolar diffusion regime

has been established).

Under these assumptions, the diffusion velocities read

V i = −
∑
j

Dj
idj (7.14)

where
dj = ∇ (ni

n

)− ni

n
eiE

′
kBT (7.15)

and E′ is the ambipolar electric field. In particular, in Eq. (7.14) the sum
over atomic levels read

nmax∑
n=1

Dn
i dH +

nmax∑
n=1

nn

n Dn
i
En−EH

kBT 2 ∇T. (7.16)
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The gradients of the species concentrations are then expressed in terms
of the equilibrium constant and the ambipolar electric field in terms of the
gradient of the temperature (Meador, Jr. and Staton 1965). Now, the second
term on the RHS of Eq. (7.16) does not vanish also in the case that no chem-
ical reaction occurs and it is therefore recognized as the term producing the
internal thermal conductivity.

In Sect. 7.1 the internal and reactive contributions were mixed together
and the overall effect was barely noticeable, especially at low pressure. We
wish to show that, indeed, the effect of EES is by no means negligible and
that it produces in the two coefficients modifications of opposite signs that
compensate in the thermal equilibrium case.

The plasma composition is obtained under a global equilibrium assumption
of the H(n), H+ and e system:

1. The concentration of the species present (H, H+, e) is obtained by solving
the Saha equation.

2. The concentration of EES satisfies a Boltzmann distribution.
3. H2 and H+

2 species are neglected.

The maximum number of allowed EES is determined by the confined atom
(CA) model:

a0n
2
max ≤ n−1/3 (7.17)

where a0 is the Bohr radius, nmax the maximum allowed principal quan-
tum number and n the particle density. The number of EES actually used in
calculations, however, never exceeds 12. This restriction only affects calcula-
tions at p=1atm where nmax=12 is used throughout. Calculations are carried
out to the second non-vanishing approximation in Sonine polynomials (see
Chap. 1).

In order to understand how the EES cross sections affect these coefficients
rewrite the convective heat flux, Eq. (7.13),

qr+int = ne
5
2kBTV e + ne

[
5
2kBT + 1

]
V e

+
∑
n

nn

[
5
2kBT + En

]
V n (7.18)

∑
n

nn

[
5
2kBT + En

]
V n =

[
5
2kBT + EH

] · nHV H

+
∑
n

nn [En − EH]V n (7.19)

The diffusion velocities are made up of two contributions

V j = −De
jde −DH+

j dH+ −DH
j dH

nmax∑
n=1︸ ︷︷ ︸

zj

−
nmax∑
n=1

nn

n Dn
j
En−EH

kBT 2 ∇T

︸ ︷︷ ︸
yj

(7.20)
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Recalling that
V i ≡ V ion = V electrons ≡ V e (7.21)

and ∑
n

nnV n = nHV H ≈ −neV e (7.22)

we arrive at:

qint = neye
5
2kBT

nmax∑
n=1︸ ︷︷ ︸

i1

+neyH+(I − EH)

nmax∑
n=1︸ ︷︷ ︸

i2

+
∑
n

nn(En − EH)yn

︸ ︷︷ ︸
i3

(7.23)

qr = neze
5
2kBT

nmax∑
n=1︸ ︷︷ ︸

r1

+nezH+(I − EH)

nmax∑
n=1︸ ︷︷ ︸

r2

+
∑
n

nn(En − EH)zn

︸ ︷︷ ︸
r3

(7.24)

7.2.1 Internal Thermal Conductivity

If equal cross sections are considered for all EES:

nmax∑
n=1

nn

n Dn
i
En−EH

kBT 2 =

⎧
⎨
⎩

0 i = H+, e

(Di
i −Dj

i )
ni

n
Ei−EH

kBT 2

i = n; n = 1, . . . , nmax,
j = m;m �= n

(7.25)

that gives for the internal thermal conductivity:

λint =
nH

n (DH
H −Dm

n )nHc
int

{
n = 1, . . . , nmax

m �= n
(7.26)

where cint = [Ē2 − E2
H]/kBT

2 is the internal specific heat per particle.
Equation (7.26) is the extension of Eucken formula to a multicomponent

mixture. In the usual case, therefore, the internal thermal conductivity is
proportional to the internal specific heat.

Figure 7.4 shows the internal thermal conductivity of equilibrium hydro-
gen plasma at different pressures, calculated with (abnormal) and without
(usual) different cross sections for EES. It increases with increasing pressure
as the population of EES increases and it becomes of comparable value as
the reactive term at high pressure. Note that the effect of EES cross sec-
tions on this coefficient can be dramatic. Figure 7.4, however, shows also
some puzzling features: the increase of some cross sections should decrease
the diffusion coefficients. According to Eq. (7.26), the abnormal internal ther-
mal conductivity should be correspondingly smaller. The effect of EES cross
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Fig. 7.4 Internal thermal conductivity of equilibrium hydrogen plasma at different
pressures. (solid lines) abnormal, (dashed lines) usual

sections, instead, is to reduce the coefficient below the usual value at low
temperatures and above it at high temperatures.
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Fig. 7.5 Contributions to internal thermal conductivity of equilibrium hydrogen
plasma at different pressures. (a) p=1atm, (b) p=1,000 atm. For the definition of
the different terms, see text, Eq. (7.23). (solid line) abnormal, (closed circles) i1 + i2,
(crosses) i3, (dashed line) usual

In order to understand these features we rewrite Eq. (7.23) for the usual
case:

qint =
∑
n

nn(En − EH)yn (7.27)
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This is obviously equivalent to Eq. (7.26): the internal thermal conductivity
corresponds to the Eucken formula (i.e. self diffusion times internal specific
heat). In the abnormal case this term is lower due to the large EES cross
sections that make the diffusion velocities of high EES smaller. This effect is
however counterbalanced by the presence of the terms i1 and i2 in Eq. (7.23),
which are absent in the usual case. These additional terms read

neye
5
2kBT + neyH+ (I − EH)

=
ne

n

∑
n

(En − EH)
Dn

e
5
2kBT+Dn

H+ (I−EH)

kBT 2 ∇T (7.28)

In this formula, all diffusion coefficients are negative and low-lying levels
(En < EH) give a positive contribution; the diffusion coefficients of higher
levels are smaller (in absolute value) with respect to the usual case so that
overall the term increases the internal conductivity: the electronic energy of
high levels, not being diffused away, acts as if the internal specific heat had
increased. At high temperature, when the ionization fraction is large, this
effect can become dominant and the abnormal coefficient is greater than the
usual one. The different contributions to the internal thermal conductivity
of equilibrium hydrogen plasma are reported in Fig. 7.5a, b for two plasma
pressures.

7.2.2 Reactive Thermal Conductivity

Figure 7.6 shows the reactive thermal conductivity of equilibrium hydrogen
plasma at different pressures. The two sets of curves refer to usual and ab-
normal values.

We note that:

• The reactive thermal conductivity decreases with increasing pressure. This
happens because at higher pressure ionization shifts to higher tempera-

tures where the term ΔH
kBT 2 =

I+ 5
2kBT−EH

kBT 2 is lower.
• Although the EES cross sections are larger than the ground state ones,

the abnormal coefficient can be larger than the usual one.
• The coefficient is not dramatically dependent on EES cross sections even

at high pressure, when the population of EES is significant.
• Overall, the curves follow the behavior predicted by equation

λr = p
ΔH2

kB
2T 3

nenH

(ne + nH)2
DH

H+ (7.29)

and peak when the reaction has the maximum temperature gradient.
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Fig. 7.6 Reactive thermal conductivity of equilibrium hydrogen plasma at different
pressures. (solid lines) abnormal, (dashed lines) usual

In the usual case, ye = yH+ = 0, ze = V e = V H+ = zH+ and r3 = 0 so
that

qr = neV eΔH (7.30)

The reactive thermal conductivity can therefore be seen as the reaction
enthalpy carried by the ion diffusion, in accord with Butler and Brokaw ex-
pression. In the abnormal case this term is suppressed due to the increase of
atom–proton cross sections. From inspection of Eq. (7.20) we also note that,
for each given species j, zj has a weaker dependence on EES compared to
yj . In zj , in fact, atomic diffusion enters through

DH
j =

nmax∑
n=1

nn

n
Dn

j (7.31)

In yj , instead, atomic diffusion is weighted with the energy content of
each state: the importance of high-lying levels is therefore increased. In the
abnormal case, in addition, the term r3 does not vanish and balances the
previous effect so that the overall effect is small. This latter term describes
the difference of the actual atomic diffusion with respect to the average term
nHEHzH = −neEHzH+ . Higher levels diffuse with lower velocity, since they
have higher cross sections and their contribution to r3 is smaller than in the
usual case. This unbalance causes the sum not to vanish.

As a result, an effective atomic energy is transported, which is less than
the actual one (and the transported reaction enthalpy thus bigger). At its
maximum, this effect can be more important than the decrease due to smaller
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Fig. 7.7 Contributions to reactive thermal conductivity of equilibrium hydrogen
plasma at different pressures. (a) p=1atm, (b) p=1,000 atm. For the definition of
the different terms see text, Eq. (7.24). (solid line) abnormal, (closed circles) r1 + r2,
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ionic diffusion and the abnormal coefficient is bigger than the usual one. At
high temperature, when the atomic fraction becomes small, the first effect
dominates again. Figure 7.7a, b illustrates this by comparing the different
contributions to the reactive thermal conductivity for the abnormal and usual
cases at two different pressures.

The extent to which EES cross sections affect the calculation of the convec-
tive contribution (internal and reactive) to the thermal conductivity in atomic
hydrogen thermal plasmas is summarized in Fig. 7.8 that reports the percent-
age relative difference between abnormal and usual values of this quantity,
normalized to the abnormal value, for different plasma pressures.

The results of the present work can be therefore summarized as follows:

• The internal thermal conductivity due to atomic electronic energy is a
considerable fraction of the convective thermal conductivity, this ratio in-
creasing with pressure.

• EES cross sections affect in a dramatic and nontrivial way both the internal
and reactive thermal conductivities.

• The changes produced by EES cross sections affect the two coefficients in
opposite ways so that the changes on their sum are somewhat reduced.
This, in particular, explains the partial compensation apparent in the re-
sults of Capitelli (1974).

It is worth noting that the sum of λr+λint yields values in close agreement
with those reported in Sect. 7.1, obtained by using the Brokaw equation (see
Fig. 7.9). The Brokaw results have been calculated by including nmax levels,
with nmax chosen to be close to the value predicted with the CA model as
done in this section (i.e. nmax=12, 7 and 4 at p=1, 100 and 1,000 atm, respec-
tively). The differences in the usual values at p=1,000atm can be ascribed
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to small differences in nmax selected in the parametric study with respect to
the CA model.

7.3 EES and Transport Coefficients: The Dependence
on the Cutoff Criterion

The results reported in Sects. 7.1 and 7.2 have been obtained either by
parametrizing the number of excited states or by using the confined atom
approximation for calculating the number of EES. In this section we want to
show how the most used models of equilibrium thermodynamics affect the
reported results (Bruno et al. 2008), emphasizing the central role played by
the adopted cutoff criterion for the truncation of electronic partition function
of atomic species (atomic hydrogen for the considered system).

We report data obtained by the following models:

1. The ground-state model (GS), completely disregarding the EES presence
as well as any perturbation of the ionization energy, i.e. the so-called low-
ering of the ionization potential.

2. The confined atom approximation (CA), considering only EES with a clas-
sical radius not exceeding the inter-particle distance (as before the lowering
of ionization potentials is neglected).

3. The Debye–Hückel theory (SSCP ≡ static screened Coulomb potential),
truncating the series for the internal partition functions to the term
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Fig. 7.9 Internal plus reactive contributions to thermal conductivity of equilibrium
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corresponding to electronically excited levels of atoms with energy above
the corrected ionization potential predicted by the same theory (in this
case the lowered ionization potentials enter the equations for equilibrium
constants, becoming an important factor in determining the ionization
degree of the equilibrium plasma, especially at high pressure).

The presentation of results is made by considering two groups of values
coming from:
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(i) GS and CA models either using usual or abnormal cross sections
(ii) CA and SSCP models either using usual or abnormal cross sections

The differences of the results in the (i) category are due to the number
of excited states introduced in the atomic hydrogen partition function (0 for
GS), without any compensation due to the inclusion of the lowering of the
ionization potential (absent in both cases). On the other hand the differences
of the results in the (ii) category come from the different number of electronic
states inserted in the CA and SSCP models as well as in the presence of the
lowering of the ionization potential in the SSCP model.

We limit our analysis to plasma viscosity, electrical conductivity and the
sum of reactive and internal contributions to the thermal conductivity. The
translational thermal conductivity of heavy components behaves like the vis-
cosity while the electron thermal conductivity behaves like the electrical con-
ductivity.

Values of the viscosity for two extreme conditions (p=1 and 1,000 atm)
have been reported in Fig. 7.10a–d for the different adopted models. Com-
parison of the results reported in Fig. 7.10a, c shows the differences between
GS and CA models using usual (Fig. 7.10a) and abnormal (Fig. 7.10c) trans-
port cross sections.

The differences between GS and CA models in the first case (Fig. 7.10a)
are well evident at p=1,000 atm, practically disappearing at 1 atm. At high
pressure the ionization reaction is slowed down and the differences can be at-
tributed to the increase of atom concentration in the CA model. This in turn
is due to the dependence of the electronic partition function on the adopted
cutoff model. The use of abnormal cross sections (Fig. 7.10c) while being un-
effective on GS values strongly alters the CA values as a consequence of the
large increase of transport cross sections as a function of principal quantum
number. It is worth noting that the use of abnormal cross sections reverses
the behaviour of GS and CA values, in particular CA values become much
lower than the corresponding GS values. The insensitivity of the 1 atm values
is due to the predominance of the ionization reaction over the excitation of
electronic states.

Let us now compare CA and SSCP values calculated by using usual
(Fig. 7.10b) and abnormal (Fig. 7.10d) transport cross sections. In the first
case (Fig. 7.10b) large differences can be observed at p=1,000 atm due to the
combined effect of the increase of the atom concentration due to the higher
number of excited levels in the CA model as compared with the SSCP one
and to neglecting of the lowering of the ionization potential in the CA model.
Use of abnormal cross sections (Fig. 7.10d) reduces the differences between
CA and SSCP models because they act preferentially on CA values which
present higher electronic state concentrations.

Let us consider now the dependence of electrical conductivity on the dif-
ferent models. Figure 7.11a–d reports the corresponding results in the same
order as the viscosity. To understand these results we must remind that the
electrical conductivity depends on the electron density and on the interaction
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Fig. 7.10 Viscosity of equilibrium hydrogen plasma at different pressures. (solid line:
GS; dashed line: CA; dotted line: SSCP)

of free electrons with themselves and with H(n) and protons H+. Concern-
ing the electron density we can say that it increases with the decrease of
electronic partition function and with the increase of the lowering of the ion-
ization potential. In the case of usual cross sections we should expect the
following hierarchy:

(σe)CA < (σe)GS < (σe)SSCP

This hierarchy is well reproduced in the results of Fig. 7.11a, b especially at
high pressure. On the other hand the introduction of abnormal cross sections
is such to decrease the CA model electrical conductivity acting on the e-H(n)
transport cross sections having a minor effect on SSCP values and a null
effect of GS values. This explains the differences in the models reported in
Fig. 7.11c, d.
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Fig. 7.11 Electrical conductivity of equilibrium hydrogen plasma at different pres-
sures. (solid line: GS; dashed line: CA; dotted line: SSCP)

Finally we analyse the quantity λr + λint reported in Fig. 7.12a–d cal-
culated according to the different thermodynamic models. Keeping in mind
the results reported in the previous section we can say that λr values do
not depend too much on the model used, contrary to the situation for λint.
Moreover in this last case in the atomic hydrogen plasma λint=0 for GS
model so that one can expect that the GS λr + λint values will represent
the lower limit of the quantity, the CA results representing the upper limit.
This behaviour is largely satisfied when comparing the different results using
the usual transport cross sections (Fig. 7.12a, b). The use of abnormal cross
sections (Fig. 7.12c, d) not only produces a large decrease of λr + λint values
but also a different role of the various cutoff criteria in affecting the relevant
values.
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Fig. 7.12 Internal plus reactive contributions to thermal conductivity of equilibrium
hydrogen plasma at different pressures. (solid line: GS; dashed line: CA; dotted line:
SSCP)

7.4 The Role of Electronically Excited States in
Complicated Mixtures: Beyond the State-to-State
Approach

In the previous sections we have discussed the role of electronically excited
states in affecting the transport properties of hydrogen plasmas. Both models
presented are based on a state-to-state approach, i.e. each electronic state of
the atomic hydrogen is considered as a new species with its own transport
cross sections.

Extension of these ideas to more complicated systems (e.g. planetary at-
mospheres) presents some difficulties, especially for the presence of two kinds
of electronically excited states in these media, i.e. low-lying excited states
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and high-lying excited states, with electronic configurations characterized by
principal quantum number higher than the ground state. In this last case the
coupling of angular and spin angular momenta yields a multitude of electronic
states, whose behaviour can be different with respect to the hydrogen-like sys-
tems. Simplified models urge to be developed to take into account the role of
electronically excited states in affecting the transport properties of planetary
plasmas, with particular attention to air plasmas. Such models have been re-
cently developed for the reactive thermal conductivity of LTE nitrogen and
helium plasmas (Capitelli et al. 2012; Kosarim et al. 2012).

The reactive thermal conductivity was calculated by using a closed form
(Brokaw equation) with a diffusion-type cross section for the interactions N–
N+ obtained by averaging in a parallel scheme the relevant transport cross
sections, i.e.

〈
1
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〉
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=
1

Qint
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[
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]
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N 〉 (7.32)

E and g being the energy and the degeneracy of electronic levels, respectively.
Considering a system like helium, with no low-lying excited states, the

large increase of diffusion-type collision integrals, due to the effectiveness
of resonant charge-transfer processes, makes the contribution to the average
vanishingly small, thus leading to an oversimplified form for the reactive
thermal conductivity of the first ionization reaction (Kosarim et al. 2012)

λr � p

kBT
DHe+

He(n=1)

xHe(n=1)xHe+

(xHe(n=1) + xHe+)
2

ΔH2

kBT 2
(7.33)
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This approach gives results in agreement with the corresponding ones
obtained by the state-to-state approach (Capitelli et al. 2012). On the other
hand the averaging of diffusion-type collision integrals in a serial scheme, i.e.

〈Ω(1,1)�〉serial = 1

Qint
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(7.34)
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+
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g�nΩ
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N�−N+(3P )
e−E(N�)/kBT

]
(7.35)

is such to completely destroy the reactive thermal conductivity, contrary to
what is observed in the state-to-state approach. These considerations lead
to the conclusion that the parallel approach to the diffusion transport coeffi-
cients is equivalent to completely disregard the presence of high-lying excited
states in the reactive thermal conductivity. These points, here considered
only qualitatively, will be further analysed in the next section, where results
for the internal and reactive thermal conductivities of nitrogen plasmas ob-
tained in the frame of different models are reported. On the other hand in the
last section of this chapter serial-averaging models will be discussed, for the
estimation of the role of electronically excited states in determining the vis-
cosity, the translational thermal conductivity of electrons and the electrical
conductivity of plasmas.

7.4.1 The Reactive and Internal Thermal
Conductivities of a Nitrogen Plasma

The nitrogen plasma is composed of the following species: N2, N
+
2 , N(

4S),
N(2D), N(2P ), N(hl), N+(3P ), N+(1D), N+(1S), N+(hl), N2+, N3+, N4+,
N5+ and e. Chemical equilibrium is established via the following set of reac-
tions:

⎧
⎪⎪⎨

⎪⎪⎩

N2 � 2N (r1) N+
2 � 2N − e (r2)

N(2D) � N(4S) (r3) N(2P ) � N(4S) (r4) N(hl) � N(4S) (r5)
N+(3P ) � N(4S)− e (r6) N+(1D) � N(4S)− e (r7) N+(1S) � N(4S)− e (r8)

N+(hl) � N(4S)− e (r9)

N(hl) and N+(hl) represent lumped excited states, which include
the population of excited states with principal quantum number n� 3.
The population of all excited states follows a Boltzmann distribution at
the given temperature, while the equilibrium composition is calculated by
statistical thermodynamics. To this end the electronic partition functions
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of atomic species are obtained adopting a self-consistent pressure- and
temperature-dependent cutoff criterion, in high-ionization-degree regimes
determined by the Griem method (D’Angola et al. 2008; Capitelli et al.
2011).

7.4.1.1 Transport Coefficient Calculation

The internal and reactive thermal conductivities have been obtained in the
frame of the Chapman–Enskog method of solution of the Boltzmann equa-
tion (Hirschfelder et al. 1966). The internal thermal conductivity is usually
calculated using the Eucken correction (Ferziger and Kaper 1972) and the
reactive thermal conductivity following (Butler and Brokaw 1957).

Both formulations, however, correspond to lowest order Chapman–Enskog
approximations. In order to overcome this limitation, a more general approach
to the calculation of these quantities has been derived based on the state-to-
state kinetic theory of transport (Nagnibeda and Kustova 2009) and on the
extension to high Chapman–Enskog approximations of the Stefan–Maxwell
relations (Kolesnikov and Tirskiy 1984).

The main ideas of the derivation are described here.
Consider a mixture of nC species Xc, c = 1, . . . , nC , each with a set of

internal energy levels i = 1, . . . , Lc. A state-to-state approach considers each
internal level as a separate species and the heat flux reads

q = −λ′∇T − p
nC∑
c=1

Lc∑
i=1

DT
cidci +

nC∑
c=1

Lc∑
i=1

(
5
2kBT + Ec

i + Ec

)
nciV ci (7.36)

where Ec
i is the energy of the internal level and Ec is the formation energy.

Assume now that the plasma is in thermal and chemical equilibrium.
The convective part of the heat flux vector will then be shown to be pro-
portional to the temperature gradient:

qconv ≡
nC∑
c=1

Lc∑
i=1

(
5
2kBT + Ec

i + Ec

)
nciV ci = −(λint + λr)∇T (7.37)

We start by writing the expression for the diffusion velocities:

V ci = −
nC∑
d=1

Ld∑
k=1

Ddk
ci ddk −DT

ci∇ lnT (7.38)

where Ddk
ci and DT

ci are diffusion and thermal diffusion coefficients,
respectively. The diffusion driving forces, dci, are
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dci = ∇
(nci

n

)
+

(
nci

n
− ρci

ρ

)
∇ ln p− ρci

p

(
bci −

∑
dk

ρdk
ρ

bdk

)
(7.39)

where bci are external forces per unit mass. We then assume that these
forces are restricted to the action of the electric field and that the plasma
is electrically neutral (the ambipolar diffusion case is discussed in Meador,
Jr. and Staton 1965). Since each chemical species in different internal levels
has the same mass and electric charge and internal level populations are
constrained by the thermal equilibrium assumption, the above expression
simplifies to

dci =
nci

n
dc +

nci

n

[
Ec

i

kBT

]′
∇ lnT (7.40)

where

dc = ∇
(nc

n

)
+

(
nc

n
− ρc

ρ

)
∇ ln p− nc

n

ecE

kBT
(7.41)

[
Ec

i

kBT

]′
≡ Ec

i

kBT
− 〈 Ec

j

kBT
〉j (7.42)

and 〈. . . 〉j means thermal average over internal levels.
Since our aim is to lump together species in different internal states that

share the same collision integrals (and to treat internal states with different
collision integrals as separate species) we assume that the collision integrals
involving a chemical species c are independent of the internal state of that
species. As a consequence, the diffusion and thermal diffusion coefficient sets
can be simplified:

DT
ci = DT

c , i = 1, . . . , Lc (7.43)

Ddk
ci = Dd

c , c �= d (7.44)

Dcj
ci = D̃c

c, i �= j (7.45)

D̃c
c

(
1− nci

nc

)
+Dci

ci

nci

nc
= Dc

c, i = 1, . . . , Lc (7.46)

After some algebra, the convective heat flux, Eq. (7.37), can be written as

qconv =
nC∑
c=1

(
5
2kBT + 〈Ec

i 〉i + Ec

)
ncV c − λint∇T (7.47)

λint =
nC∑
c=1

nc

n

(
Dc

c − D̃c
c

)
ncc

int
c (7.48)
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where V c =
∑Lc

i=1
nci

nc
V ci and cintc are internal specific heats:

cintc

kB

= 〈
(

Ec
i

kBT

)2

〉i − 〈 Ec
i

kBT
〉2i (7.49)

The linear systems required for the calculation of the diffusion coefficients
in Eq. (7.48) can easily be derived and are completely analogous to those
required for the calculation of diffusion and thermal diffusion coefficients,
involving the knowledge of collision integrals for the species in the plasma. To
the lowest Chapman–Enskog approximation, this approach yields the usual
Eucken correction to the translational thermal conductivity.

The first sum in Eq. (7.47), instead, gives rise to the reactive thermal
conductivity and is discussed in the following section.

Concerning the reactive thermal conductivity, first, we write the elemental
conservation laws as

nC∑
c=1

ascxcV c = 0 s = 1, . . . , nS (7.50)

where Xs, s = 1, . . . , nS are the elements (including electrons) that com-
pose each chemical species via

Xc =
nS∑
s=1

ascXs c = 1, . . . , nC (7.51)

Now, among the chemical reactions that keep the system in chemical equi-
librium, choose a linearly independent set:

nC∑
c=1

brcXc = 0 r = 1, . . . , nR (7.52)

so that nC = nS + nR.
For each of these reactions, the van’t Hoff equation can be used to link the

concentration gradients to the temperature gradient:

nC∑
c=1

brc∇ lnxc =
ΔHr

kBT 2
∇T, r = 1, . . . , nR (7.53)

where

ΔHr =

nC∑
c=1

brcHc, r = 1, . . . , nR (7.54)

Hc =
5
2kBT + 〈Ec

i 〉i + Ec, c = 1, . . . , nC (7.55)
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From Eq. (7.41), we express∇xc in terms of dc and substitute in Eq. (7.53)
to obtain

nC∑
c=1

brc
dc

xc
−∇ ln p

nC∑
c=1

brc

(
1− mc

m

)
+

E

kBT

nC∑
c=1

brcec =
ΔHr

kBT 2
∇T, r = 1, . . . , nR

(7.56)
We further assume that the pressure is constant, i.e. ∇p = 0, and use the

property of chemical reactions to conserve electric charge:

nC∑
c=1

brcec = 0, r = 1, . . . , nR (7.57)

We can then write Eqs. (7.50) and (7.53) as

nC∑
c=1

ascxcV c = 0 s = 1, . . . , nS (7.58)

nC∑
c=1

brc
dc

xc
=

ΔHr

kBT 2
∇T, r = 1, . . . , nR (7.59)

The diffusion driving forces are related to the diffusion velocities via the
diffusion and thermal diffusion coefficients. These are the extension of the
Stefan–Maxwell relations to any Chapman–Enskog order (Kolesnikov and
Tirskiy 1984). The full system to be solved is thus

nC∑
c=1

ascxcg
0
c = 0 s = 1, . . . , nS (7.60)

nC∑
c=1

∑
q

gq
c

⎛
⎝

nC∑
d=1

brdA
0q
dc

⎞
⎠ = − 4

25

ΔHr

kBT

∇T

p
, r = 1, . . . , nR (7.61)

nC∑
d=1

∑
q

Apq
cdg

q
d = 2

5δp1
∇T

p
, c = 1, . . . , nC , p � 1 (7.62)

V c = g0
c , c = 1, . . . , nC (7.63)

The reactive thermal conductivity can then be obtained from the defining
relation:

− λr∇T =

nC∑
c=1

ncHcV c (7.64)
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It is worth pointing out that, in this scheme, each chemical species con-
tributes to λint, Eq. (7.48), with its own internal specific heat and to λr ,
Eq. (7.64), with its enthalpy and average internal energy. For the plasma
under study, this means λint will show the transport of rotational and vi-
brational energy of molecular N2 and N+

2 species, whereas the transport of
electronic excitation energy of low- and high-lying N and N+ species will go
into λr.

7.4.1.2 Internal and Reactive Thermal Conductivities

Several calculations have been performed (Bruno et al., 2012) according to
different assumptions on the relevant transport cross sections:

• Usual: transport cross sections for the interactions with excited states are
set equal to those with the ground state, i.e. ΩN(hl)−N(4S) =ΩN(2P )−N(4S)

=ΩN(2D)−N(4S) =ΩN(2D)−N(2P ) =ΩN(4S)−N(4S) (see also Kustova and
Puzyreva (2009)) and ΩN(2P )−N+(3P ) =ΩN(2D)−N+(3P ) =ΩN(4S)−N+(3P ).

• Abnormal 1 (without high-lying states): In this approach all the above
equalities are relaxed introducing the actual values of the transport cross
sections for low-lying states. The transport cross sections involving high-
lying excited states are set equal to the corresponding values involving the
highest low-lying state, i.e. ΩN(hl)−N+(3P ) =ΩN(2P )−N+(3P ).

• Abnormal 2 (with high-lying states): In this scheme the high-lying collision
integrals due to the inelastic contribution of the resonant charge-exchange
processes have been increased by a factor 100, simulating the expected
dramatic dependence of diffusion-type collision integrals on the principal
quantum number of excited atomic collisional partner, i.e. ΩN(hl)−N+(3P )

=100×ΩN(2P )−N+(3P ). Among the calculations in this work, this is the
only case where an estimation of the transport cross sections involving
high-lying states is required.

• Abnormal 3 (simplified): The molar fraction of high-lying excited states
of both N and N+ is set to zero, in the hypothesis that their effect on the
reactive thermal conductivity could be reproduced through the reduction
of the molar fraction of the ground state.

Figure 7.13a, b reports the internal and thermal conductivities calculated
according to the four models above, at the pressure of 1,000bar in the tem-
perature range 5,000–30,000K. It is useful, at this stage, to recall that the
internal thermal conductivity contains only the contribution due to the vi-
brational and rotational degrees of freedom since the transport of electronic
energy is contained in the reactive term (see also Capitelli (1975, 1977)). In
particular the transport of the electronic states N(2D), N(2P ) and N (hl)
is directly accounted for in reactions (r3)–(r5), while the transport of the
internal energies of N+ ions (i.e. (1D), (1S) and (hl) states) is indirectly
accounted for in reactions (r6)–(r9).
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Fig. 7.13 (a) Internal and (b) reactive thermal conductivities as a function of tem-
perature for LTE nitrogen plasma at p=1,000 bar obtained by different approaches.
(thin solid line) usual, (dotted line) abnormal 1, (close diamonds) abnormal 2, (thick
solid line) abnormal 3

Let us first consider the internal thermal conductivity in Fig. 7.13a. In this
case the peak at about 10,000K is due to the excitation of the internal de-
grees of freedom of molecular nitrogen, while the strong decrease of λint from
10,000K is the consequence of the progressive transformation of molecules
in atoms. After 20,000K the internal contribution is practically zero because
the transport of electronic excitation goes into the reactive contribution. It
should also be noted that the internal thermal conductivity does not depend
in this scheme on the adopted model, i.e. the results from usual and abnor-
mal models are practically the same. For the reactive thermal conductivity
(Fig. 7.13b) we can note that the usual values are higher than the abnormal
values up to the onset of the ionization regime, at T ≈ 17, 000K. The differ-
ences in this case are due to the transport of the low-lying excited states of
the nitrogen atom (i.e. reactions (r3)–(r5)). The transport cross sections of
the N(2D) and N(2P ) states with N(4S) in the usualmodel are lower than the
corresponding values adopted in the abnormal 1 model: in the former case, in
fact, the excitation transfer contribution to the diffusion-type collision inte-
grals has been neglected. As a consequence, the usual approach overestimates
the reactive thermal conductivity by about 10% in the dissociation regime.

In the ionization regime plasma equilibrium is governed by reactions (r5)–
(r8) that include also the contribution of EES of both atoms and ions. In this
temperature range the usual approximation yields much lower (up to 30%)
λr values than those obtained from the abnormal 1 model.

The large discrepancy is attributed to differences in the transport of low-
lying excited atoms in the two models. While the abnormal 1 model correctly
accounts for the different transport cross sections of ground and low-lying ex-



7.4 The Role of Electronically Excited States in Complicated Mixtures. . . 195

cited atoms, in the usual model all the nine interactions among the ground
and ll states of the nitrogen atom and ion are dominated by the resonant
charge-exchange process, determining an underestimation of the correspond-
ing reactive contributions.

The abnormal 1 model properly takes into account the role of low-lying
electronically excited states and is therefore superior to the usual model.
Nonetheless, high-lying excited states are not well described because the ac-
tual diffusion-type cross sections of high-lying states enormously increase as
a function of principal quantum number (Capitelli et al. 1974; Eletskii et al.
2004; Kosarim et al. 2012). In order to account approximately for the in-
crease of charge-exchange cross sections with the principal quantum number,
we assume that the high-lying excited states colliding with N+(3P ) have
diffusion-type collision integrals 100 times higher than those used in the ab-
normal 1 model. This choice (abnormal 2) leads to λr values between the
usual and abnormal 1 results.

Finally, the results from the abnormal 3 model practically coincide with
those of abnormal 2 model thus confirming that neglecting high-lying excited
states in the transport equations reproduces with sufficient accuracy the re-
sults of more sophisticated models. The latter that explicitly account for the
dramatic dependence of charge-exchange cross sections with the principal
quantum number obviously require the knowledge of a larger set of transport
cross sections.

This conclusion is confirmed by the results obtained at different pressures
(1–1,000bar). Figure 7.14a, b display the λint and λr values at p=1bar. The
results follow the same trends discussed above, the discrepancy between the
abnormal 1 and the usual approaches reaching 15% in the ionization regime.
This is due to a smaller population of excited species. Note however that at
T = 10, 000K, the more correct abnormal 1 model gives values of λr 23%
lower than the usual values, reflecting the effect of the transport cross sections
in reactions (r3)–(r4).

Internal and reactive thermal conductivities for the abnormal 3 model are
reported in Table 7.1 for different pressures. The temperature range explored
is limited to the regions of the first ionization equilibrium, where informa-
tion on transport cross sections for interactions involving excited species is
available.

These results can be regarded as an improvement in the vast literature
on the estimation of the reactive and internal contributions to the thermal
conductivity of nitrogen plasma (Wang et al. 2011, 2012; Aubreton et al.
1998; Murphy 1995; Capitelli et al. 2012).

Note also that the reported effect will increase if use is made of the
Fermi criterion for truncating the electronic partition functions of the atomic
species. In the latter case, in fact, a larger concentration of high-lying excited
states is expected and therefore a bigger role of electronically excited states
in affecting λr (Bruno et al. 2008).
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Fig. 7.14 (a) Internal and (b) reactive thermal conductivities as a function of tem-
perature for LTE nitrogen plasma at p=1bar obtained by different approaches. (thin
solid line) usual, (dotted line) abnormal 1, (close diamonds) abnormal 2, (thick solid
line) abnormal 3

7.5 Further Simplified Models

Different models can be proposed for the reactive and internal thermal con-
ductivities of a nitrogen plasma. The model that takes into account, to a
given extent, both low-lying and high-lying excited states is the one that,
while considering as independent species the low-lying excited states of nitro-
gen atoms and ions, completely disregards the presence of high-lying excited
states. However this model fails in describing the translational thermal con-
ductivities of both heavy particles and electrons, the viscosity and the electri-
cal conductivity. In fact for these transport coefficients the parallel averaging
of viscosity-type cross sections yields unsatisfactory results as demonstrated
in the following.

7.5.1 Electrical Conductivity

It has been already shown that the reactive thermal conductivity of an LTE
plasma, including the role of electronically excited states, can be reduced, in
the case of the first ionization equilibrium, to the usual Brokaw equation with
the only prescription of entering the molar fraction of atoms in the ground
state, instead of the total molar fraction for the atomic species (Eq. (7.33)).
Analogously in the temperature region of the second ionization equilibrium
a similar expression can be written, entering the molar fraction of the ion in
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Table 7.1 Internal and reactive thermal conductivities as a function of temperature
for LTE nitrogen plasma at different pressures, obtained with the model abnormal 3

p=1bar 10 bar 100 bar 1,000 bar
T [K] λint λr λint λr λint λr λint λr

5,0001.124(−01)3.759(−01)1.141(−01)1.203(−01)1.146(−01)3.817(−02)1.148(−01)1.209(−02)
5,2001.145(−01)5.593(−01)1.173(−01)1.802(−01)1.182(−01)5.731(−02)1.185(−01)1.816(−02)
5,4001.159(−01)8.036(−01)1.203(−01)2.615(−01)1.217(−01)8.344(−02)1.221(−01)2.646(−02)
5,6001.164(−01)1.114(+00)1.229(−01)3.688(−01) 1.251(-01)1.182(−01)1.257(−01)3.752(−02)
5,8001.157(−01)1.501(+00)1.252(−01)5.065(−01)1.284(−01)1.633(−01)1.293(−01)5.193(−02)
6,0001.134(−01)1.952(+00)1.270(−01)6.786(−01)1.315(−01)2.205(−01)1.330(−01)7.032(−02)
6,2001.095(−01)2.452(+00)1.282(−01)8.882(−01)1.345(−01)2.918(−01)1.366(−01)9.337(−02)
6,4001.036(−01)2.962(+00)1.287(−01)1.137(+00)1.374(−01)3.790(−01)1.402(−01)1.218(−01)
6,6009.580(−02)3.429(+00)1.283(−01)1.423(+00)1.400(−01)4.836(−01)1.438(−01)1.562(−01)
6,8008.617(−02)3.779(+00)1.268(−01)1.742(+00)1.423(−01)6.069(−01)1.474(−01)1.974(−01)
7,0007.518(−02)3.942(+00)1.242(−01)2.084(+00)1.443(−01)7.500(−01)1.511(−01)2.461(−01)
7,2006.353(−02)3.873(+00)1.204(−01)2.435(+00)1.460(−01)9.132(−01)1.548(−01)3.028(−01)
7,4005.204(−02)3.580(+00)1.152(−01)2.772(+00)1.472(−01)1.096(+00)1.584(−01)3.681(−01)
7,6004.232(−02)3.156(+00)1.087(−01)3.068(+00)1.479(−01)1.296(+00)1.622(−01)4.426(−01)
7,8003.234(−02)2.593(+00)1.010(−01)3.295(+00)1.480(−01)1.512(+00)1.659(−01)5.265(−01)
8,0002.484(−02)2.075(+00)9.227(−02)3.425(+00)1.475(−01)1.739(+00)1.696(−01)6.201(−01)
8,2001.893(−02)1.619(+00)8.285(−02)3.438(+00)1.462(−01)1.971(+00)1.732(−01)7.233(−01)
8,4001.438(−02)1.253(+00)7.344(−02)3.334(+00)1.440(−01)2.200(+00)1.768(−01)8.358(−01)
86001.094(−02)9.719(−01)6.350(−02)3.120(+00)1.410(−01)2.418(+00)1.804(−01)9.571(−01)
8,8008.365(−03)7.657(−01)5.437(−02)2.828(+00)1.371(−01)2.614(+00)1.837(−01)1.089(+00)
9,0006.433(−03)6.197(−01)4.601(−02)2.492(+00)1.323(−01)2.778(+00)1.869(−01)1.222(+00)
9,2004.990(−03)5.210(−01)3.858(−02)2.146(+00)1.274(−01)2.887(+00)1.898(−01)1.364(+00)
9,4003.899(−03)4.578(−01)3.217(−02)1.818(+00)1.201(−01)2.969(+00)1.923(−01)1.509(+00)
9,6003.074(−03)4.220(−01)2.673(−02)1.524(+00)1.130(−01)2.984(+00)1.945(−01)1.654(+00)
9,8002.441(−03)4.071(−01)2.219(−02)1.273(+00)1.053(−01)2.941(+00)1.961(−01)1.798(+00)

10,0001.945(−03)4.084(−01)1.843(−02)1.066(+00)9.732(−02)2.845(+00)1.971(−01)1.938(+00)
10,5001.148(−03)4.674(−01)1.169(−02)7.151(−01)7.727(−02)2.427(+00)1.964(−01)2.245(+00)
11,0006.926(−04)5.832(−01)7.604(−03)5.443(−01)5.905(−02)1.901(+00)1.906(−01)2.451(+00)
11,5004.300(−04)7.400(−01)5.053(−03)4.828(−01)4.418(−02)1.421(+00)1.792(−01)2.519(+00)
12,0002.965(−04)9.275(−01)3.423(−03)4.908(−01)3.276(−02)1.057(+00)1.631(−01)2.437(+00)
13,0009.228(−05)1.316(+00)1.632(−03)6.247(−01)1.804(−02)6.644(−01)1.316(−01)1.991(+00)
14,0002.995(−05)1.572(+00)9.522(−04)8.512(−01)1.010(−02)5.575(−01)8.570(−02)1.392(+00)
15,0008.575(−06)1.519(+00)4.904(−04)1.092(+00)5.697(−03)5.934(−01)5.593(−02)9.784(−01)
16,0002.336(−06)1.183(+00)2.198(−04)1.281(+00)3.300(−03)6.919(−01)3.666(−02)7.686(−01)
17,0006.911(−07)7.838(−01)8.951(−05)1.353(+00)1.865(−03)8.252(−01)2.331(−02)6.812(−01)
18,0005.152(−07)4.757(−01)3.516(−05)1.277(+00)1.043(−03)9.585(−01)1.483(−02)6.756(−01)
19,0001.196(−06)2.816(−01)9.466(−06)1.079(+00)1.102(−03)1.082(+00)9.368(−03)7.146(−01)
20,0003.649(−06)1.696(−01)5.188(−06)8.443(−01)5.761(−04)1.137(+00)5.943(−03)7.747(−01)
22,000 – – – –1.371(−04)1.076(+00)2.871(−03)8.558(−01)
24,000 – – – –4.067(−05)8.517(−01)4.287(−03)1.055(+00)
26,000 – – – – – –1.551(−03)1.016(+00)
28,000 – – – – – –6.188(−04)9.358(−01)
30,000 – – – – – –4.133(−04)8.377(−01)

the ground state. This choice is reasonable in absence of low-lying excited
states, i.e. for high-temperature helium plasmas. Extension of these ideas to
other transport coefficients can be problematic. As an example the electri-
cal conductivity of a partially ionized gas, taking into account electronically
excited states, cannot be reduced to the simple form of reactive thermal con-
ductivity, i.e. by considering only the ground-state concentration of neutral
atoms in the electron–atom operator.

Figure 7.15 reports the electrical conductivity of atomic hydrogen plasma
calculated by using three assumptions, i.e. (1) usual approximation, i.e. the
transport cross sections for e-H interactions are independent of the princi-
pal quantum number; (2) the approximation abnormal 1, i.e. transport cross
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Fig. 7.15 Electrical conductivity as a function of temperature for LTE hydrogen
plasma, at p=1,000 bar, obtained by different approaches. (thick solid line) usual,
(dotted line) abnormal 1, (thin solid line) abnormal 3

sections for e-H�(n) interactions dependent on the principal quantum number
of the excited atom; (3) the approximation abnormal 3, where the density
of excited atomic species is set equal to zero. Inspection of Fig. 7.15 shows
that the last hypothesis overestimates the electrical conductivity as compared
with the results coming from the other two models. Although reported results
have been obtained in the third approximation of the Chapman–Enskog ap-
proximation, a rationalization of the observed trend could be obtained from
a simple mathematical treatment dealing with the equation of σe in the first
approximation (Sharma et al. 2011)

σe =
3
2e

2n2
e

[
2π

mekBTe

]1/2
1

q00
(7.65)

with

q00 = 8ne

ν−1∑
j=1

njπσ
2Ω

(1,1)
ej (7.66)

where the index ν moves on heavy species, i.e. H and H+.
In the frame of the three models the term q00 can be rewritten in different

forms

qusual00 = 8ne(nHπσ
2Ω

(1,1)
eH + nH+πσ2Ω

(1,1)

eH+ ) (7.67)
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qabnormal1
00 = 8ne(nH(1)πσ

2Ω
(1,1)
eH(1) + nH(2)πσ

2Ω
(1,1)
eH(2) + . . .

+nH(nmax)πσ
2Ω

(1,1)
eH(nmax)

+ nH+πσ2Ω
(1,1)

eH+ ) (7.68)

qabnormal3
00 = 8ne(nH(1)πσ

2Ω
(1,1)
eH(1) + nH+πσ2Ω

(1,1)

eH+ ) (7.69)

We can understand that the following inequalities hold

qabnormal3
00 < qusual00 < qabnormal1

00 (7.70)

thus generating the trend reported in Fig. 7.15.
To avoid the state-to-state formulation of the electrical conductivity,

qabnormal1
00 can be written as

qabnormal1
00 = 8nenH

(
nH(1)

nH
πσ2Ω

(1,1)
eH(1) +

nH(2)

nH
πσ2Ω

(1,1)
eH(2) + . . .

+
nH(nmax)

nH
πσ2Ω

(1,1)
eH(nmax)

+
nH+

nH
πσ2Ω

(1,1)

eH+

)

= 8ne(nH〈πσ2Ω
(1,1)
eH 〉serial + nH+πσ2Ω

(1,1)

eH+ ) (7.71)

The quantity 〈πσ2Ω
(1,1)
eH 〉serial represents an averaged transport cross sec-

tion which can be calculated once the transport cross sections of each quan-
tum state and the relevant Boltzmann factors are known. When the state-
selected information is not available a simplified two-level system could be
considered, consisting of the ground state and a lumped excited state, whose
transport cross section can be set, to a first approximation, equal to Coulomb
cross section. A better approximation can be obtained by scaling ground cross
sections with the known dependence of transport cross sections on the prin-
cipal quantum number for the atomic hydrogen system. Difficulties in any
case will arise when trying to extend these considerations to higher approxi-
mations of the Chapman Enskog method for the electrical conductivity.

7.5.2 Viscosity

Plasma viscosity depends to a given extent on the presence of electronically
excited states through their higher viscosity transport cross sections as com-
pared with the ground state. Abnormal and usual values of the viscosity of
a high-pressure plasma have been reported in Fig. 7.16 as a function of tem-
perature. These values have been obtained by using the first approximation
of the Chapman–Enskog method. The Fermi criterion (CA model) has been
used for the cutoff of the partition function. Inspection of Fig. 7.16 clearly
shows the role of excited states in reducing the plasma viscosity. In the same
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figure we have reported viscosity values calculated by eliminating the concen-
tration of electronically excited states in the viscosity equation. Qualitatively
the new viscosity values follow the trend of abnormal 1 viscosity, the maxi-
mum deviation being of the order of 27%.

To understand the results we use the Wilke equation (Wilke 1950) for the
viscosity of a mixture, even though this equation is only a crude representa-
tion of the first-order Chapman–Enskog results:

η =

ν−1∑
i=1

xiηi
φi

(7.72)

with φi expressed in terms of the coefficient A� (Eq. (3.15)), i.e.

φi =
6
5A

�
ij

kBT

pmi

ηi

Dj
i

(7.73)

Setting φH(1)=φH(2)=φH(nmax)=φH+=1 the viscosity can be written as a
Dalton law

η = xH(1)ηH(1) + xH(2)ηH(2) + . . .+ xH(nmax)ηH(nmax) + xH+ηH+ (7.74)

The approximation to the abnormal 3 viscosity, i.e. the cancellation of
the contribution of excited states, can be considered satisfactory due to the
decrease of the viscosity with the increase of i. This means that a good
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approximation to the estimation of excited states in affecting the plasma
viscosity is to eliminate them from relevant equations. A further simplification
could be the reduction of the electronic manifold to a two-level system, the
ground and a lumped excited state,

η = xH(1)ηH(1) + xH�(n)ηH�(n) + xH+ηH+ (7.75)

assigning to the lumped electronic state either the transport cross section

corresponding to the Coulomb interaction, i.e. ηH�(n) ∝ 1/Ω
(2,2)�
H�(n)−H�(n) ∼

1/Ω
(2,2)�

H+−H+ , or using the scaling relations that hold for atomic hydrogen.

7.5.3 Translational Thermal Conductivity

In a plasma the translational thermal conductivity can be separated into two
contributions one due to free electrons and the other due to heavy compo-
nents. The form of the thermal conductivity due to electrons mimes the corre-
sponding equation for the electrical conductivity. The consideration made for
the first approximation of electrical conductivity can be applied to the first
non-vanishing equation for the electron thermal conductivity. In this case no
simple way to take into account the excited states can be found. Only an
average transport cross section of the type previously discussed can be used
to avoid the state-to-state calculations. At the same time the translational
thermal conductivity due to heavy components can be manipulated as in the
case of the viscosity by eliminating the electronically excited states in the
relevant equation.
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Chapter 8

Transport Properties
of Multi-temperature Plasmas

The rigorous kinetic theory developed in Chap. 1 could be extended to
multi-temperature plasmas. This approach however has several disadvan-
tages when applied to concrete situations. An alternative is to use simpli-
fied approaches based on decoupling the Boltzmann equation for the electron
component from the corresponding ones describing the heavy particles. This
approach, due in particular to the pioneering work of Devoto (1967a,b), uses
the same equations developed in Chap. 1 for the electron thermal conduc-
tivity, λe, and the electrical conductivity, σe, of the plasma as well as the
translational thermal conductivity of the heavy particles and the viscosity.
The electron component is calculated at the electron temperature, Te, while
the heavy-particle translational temperature, Th, must be used for λh and η.
The reactive and internal contributions on the other hand are calculated by
modifying the Butler–Brokaw and Eucken approaches. In particular the reac-
tive contribution, λr, has been reformulated by adapting the Butler–Brokaw
to two-temperature plasmas (Bonnefoi 1983; Bonnefoi et al. 1985; Aubreton
et al. 1986).

A problem in any case arises, in the theory reformulation, linked to the
definition of the composition and of the thermodynamic properties to be
inserted in the relevant transport equations. This is due to the numerous ex-
isting Saha equations coming from the different thermodynamic constraints
used for defining the multi-temperature equilibrium (Giordano and Capitelli
1995, 2001; Capitelli et al. 2011). It is in fact well known that the applica-
tion of the Gibbs potential for obtaining the multi-temperature equilibrium
gives results different from those obtained by using the entropy maximiza-
tion as equilibrium criterion. This point will be widely analysed in Sect. 8.1
discussing the relevant results obtained in different formulations of Saha equi-
librium. In Sect. 8.2 recent attempts are reported to a new formulation of
transport equations for multi-temperature plasmas by using essentially the
maximization of entropy to get the equilibrium composition as well as the
temperature derivatives of the partial pressures of the relevant species enter-
ing the reactive contribution.

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics,
Springer Series on Atomic, Optical, and Plasma Physics 74,
DOI 10.1007/978-1-4419-8172-1 8, © Springer Science+Business Media, LLC 2013
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8.1 The Devoto and Bonnefoi Approaches

The transport properties of multi-temperature plasmas have been for long
time calculated according to theories first developed by Devoto and then
extended by Bonnefoi (Bonnefoi 1983; Bonnefoi et al. 1985; Aubreton et al.
1986) to non-equilibrium plasma. The original idea was to decouple the Boltz-
mann equation for free electrons from the corresponding ones for heavy par-
ticles. In this case the translational thermal conductivity is given by the sum
of the contributions due to electrons and to heavy components, i.e.

λ = λh + λe (8.1)

The corresponding equations have been reported in Chap. 7. A different
level of approximation is used for the calculation of the two terms; in general
the second approximation of the Chapman–Enskog method is used for λh and
the third one for λe. A similar approach is used for calculating the viscosity
and the electrical conductivity of the multi-temperature plasma. In particular
the viscosity which depends on heavy particles is calculated by the first non-
vanishing Chapman–Enskog approximation while the third approximation is
used for σe, which in turn depends on the electron component (see Chap. 7
for the relevant equations).

The reactive thermal conductivity for two-temperature plasmas was
worked out by Bonnefoi starting from the total heat flux vector for a multi-
temperature plasma, resulting from the reactive flux of electrons and of
heavy particles

qr = qe
r + qh

r = −λe
r · ∇Te − λh

r · ∇Th (8.2)

being the gradients of the two temperatures connected by the relation

∇Te = ϑ∇Th

where ϑ = Te/Th is the ratio of electron and heavy-particle temperatures.
It follows

qr = −
[
λe
r +

λh
r

ϑ

]
∇Te = −λr∇Te (8.3)

Let us consider a system of ν chemical components and define j the number
of elementary components, i.e. the minimal basis of chemical species that
allows to derive all other components throughM independent reactions, being
M = ν − j.

The stoichiometric coefficient of the ith component in the mth reaction,
ami, entering the balance relation with chemical potential μi

ν∑
i=1

amiμi = 0 m = 1, . . . ,M (8.4)
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could be redefined in the minimal chemical basis as

j∑
i=1

αmiμi − μm = 0 m = 1, . . . ,M (8.5)

where the index i runs over the independent chemical components and the
index m, running over independent chemical reactions, represents also the
non-independent chemical component generated in the reaction.

To clarify this point a practical example is considered here of an atomic
nitrogen plasma system of ν=5 components, i.e. e, N, N+, N2+, N3+, with
M=3 independent chemical reactions of ionization:

⎧
⎨
⎩

N ↔ N+ + e
N+ ↔ N2+ + e

N2+ ↔ N3+ + e

(8.6)

The system of Eq. 8.4 has the form

⎧
⎨
⎩

aNμN − aN+μN+ − aeμe = μN − μN+ − μe = 0
aN+μN+ − aN2+μN2+ − aeμe = μN+ − μN2+ − μe = 0
aN2+μN2+ − aN3+μN3+ − aeμe = μN2+ − μN3+ − μe = 0

(8.7)

with stoichiometric coefficients ami assuming values±1 or 0 for the considered
ionization equilibria. Moving to the minimal chemical basis representation, we
have j = ν−M=5-3=2 independent chemical components that are naturally
chosen to be {e,N}, leading to equilibria rewritten in the form

⎧
⎨
⎩

N− e ↔ N+

N− 2e ↔ N2+

N− 3e ↔ N3+
(8.8)

and to a new system of balancing equations

⎧
⎨
⎩

αNμN − αeμe − αN+μN+ = μN − μe − μN+ = 0
αNμN − αeμe − αN2+μN2+ = μN+ − 2μe − μN2+ = 0
αNμN − αeμe − αN3+μN3+ = μN2+ − 3μe − μN3+ = 0

(8.9)

Coming back to the general approach, the Bonnefoi treatment allows to
write the M equations in the form

am1ϑ∇ln p1 +

j∑
�=2

am�∇ln p� +

M∑
i=1

ami∇ln pi =
ϑΔH�

m

kBT 2
e

∇Te m = 1, . . . ,M

(8.10)

with pi and ΔH�
m the partial pressure of the ith component and the en-

thalpy variation in the mth reaction (the subscript 1 refers to electrons).
It should be pointed out that this equation comes from the differentiation
of the equilibrium constant of a two-temperature plasma described by the
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Potapov method (i.e. minimization of the free energy). The reactive thermal
conductivity assumes the form

λr(Te) = − ϑ

kBT 2
e

∣∣∣∣∣∣∣∣∣

0 n1ΔH1 . . . nMΔHM

ΔH�
1 A11 . . . A1M

...
...

. . .
...

ΔH�
M AM1 . . . AMM

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

A11 . . . A1M

...
. . .

...
AM1 . . . AMM

∣∣∣∣∣∣∣

−1

(8.11)

The variation of enthalpy ΔH�
m and ΔHm, entering the determinants in

Eq. (8.11), is associated to the reaction schemes in the natural and in the
minimal chemical basis representations, i.e. recalling the nitrogen plasma
example:

⎧⎨
⎩

ΔH�
1 = aNHN − aN+HN+ − aeHe = HN −HN+ −He

ΔH�
2 = aN+HN+ − aN2+HN2+ − aeHe = HN+ −HN2+ −He

ΔH�
3 = aN2+HN2+ − aN3+HN3+ − aeHe = HN2+ −HN3+ −He

(8.12)

⎧
⎨
⎩

ΔH1 = αNHN − αeHe − αN+HN+ = HN −He −HN+

ΔH2 = αNHN − αeHe − αN2+HN2+ = HN+ − 2He −HN2+

ΔH3 = αNHN − αeHe − αN3+HN3+ = HN2+ − 3He −HN3+

(8.13)

The systems in Eqs. (8.12) and (8.13) can be expressed in a compact form

ΔH�
m =

ν∑
i=1

amiHi and ΔHm =

j∑
i=1

αmiHi −Hm (8.14)

The Amn coefficients have the form

Amn =
an1ϑ

De
e

αm1
xn

x1

+

j∑
i=2

ani
xn

Dn
i

+

j∑
i=2

ν∑
k=2

aniαmi
xn

xi

xk

Dk
i

−
j∑

i=2

ν∑
k=2

ankαmk
xn

Dk
i

+

ν∑
i=j+1

ani
xn

Dn
i

−
ν∑

i=j+1

ν∑
k=2

aniαmk
xn

Dk
i

−
ν∑

k=2

ann
xk

Dk
n

(8.15)

where xi represents the molar fraction of the ith component and Dj
i the

binary diffusion coefficients.
Results obtained basically with this method (i.e. Devoto and Bonnefoi)

have been reported for atmospheric N2, H2 and O2 plasmas (Casavola et al.
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1998; Capitelli et al. 2001, 2002). For all these systems we have considered
only the dissociation and the first ionization reactions

A2 ⇔ 2A

A ⇔ A+ + e

We apply the Gibbs criterion to a two-temperature plasma, Th charac-
terizing translational and internal degrees of freedom (molecules, atoms and
ions) and Te characterizing the translational energy of free electrons. Under
these conditions we obtain for the equilibrium constants of the dissociation
and ionization reactions the following equations:

Kn =
n2
A

nA2

=

[
(πmAkBTh)

3/2

(2)3/2hP
3

(Qel
A)

2

Qrot
A2

Qvib
A2

Qel
A2

]
exp

(
− ED

kBTh

)
(8.16)

[
nA+

nA

] 1
ϑ
ne =

(2πmekBTe)
3/2

hP
3 Qint

e

[
Qint

A+(Th)

Qint
A (Th)

] 1
ϑ

exp

(
− EI

kBTe

)
(8.17)

where ED and EI represent the dissociation and ionization energies and
ϑ = Te/Th is the ratio between translational temperature of free electrons
and the temperature of heavy particles (including ions). To get the composi-
tion we must couple Eqs. (8.16),(8.17) with the conservation equation for the
total pressure and with the electro-neutrality condition. Once obtained the
composition we can get through the methods of statistical thermodynamics
the properties of the mixture. In the present example, as already anticipated,
the thermodynamic properties of single species (translational and internal)
are calculated at the gas temperature Th, while the free electron properties
are calculated at Te. Before examining the results (Casavola et al. 1998)
we want to remind that for one temperature plasma ϑ=1 the dissociation
process is well separated from the ionization, while increasing the param-
eter ϑ we should observe a shift of the ionization equilibrium towards the
dissociation one.

This point can be better appreciated by looking at Fig. 8.1 where we have
reported the electron density as a function of translational temperature for
different ϑ values. We can see that the maximum of electron density shifts
towards lower translational temperatures with the increase of ϑ. For ϑ=2.5
the maximum of electron density occurs at about Th=7,000K. On the other
hand the maximum of the atom number density tends to disappear with
increasing ϑ, i.e. the atomic ionization equilibrium is such to transform the
chemical reactions into

N2 ⇔ 2N+ + 2e,

i.e. the dissociation reaction practically disappears.
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Fig. 8.2 Total specific heat versus Th

of N2 plasma at different ϑ values

This is well evident looking at the behaviour of the total specific heat
as a function of the translational temperatures at different ϑ values (see
Fig. 8.2). Looking at the equilibrium curve for ϑ=1 we easily recognize two
well-separated peaks, the first one due to the dissociation reaction and the
second one due to the ionization reaction. The increase of ϑ is such to shift
the ionization peak towards lower translational temperatures as well as to
destroy the peak due to the dissociation reaction. At ϑ=2.5 we observe only
one peak due to the ionization reaction. These simple considerations will help
in the understanding of transport properties of two-temperature plasmas. We
can write as usual the total thermal conductivity as

λtot = λtr + λint + λr (8.18)

In turn the translational term can be split, as anticipated according to the
well-known Devoto treatment, in two components, one due to free electrons
(λe) and the other one to heavy particles (λh), i.e.

λtr = λe + λh (8.19)

The results we are showing have been calculated by using the second ap-
proximation of the Chapman–Enskog method for λh and the third approx-
imation for λe. Moreover the collision integrals entering in λh have been
calculated at the gas temperature, while those entering in λe at Te. λint have
been calculated by using the Eucken approximation with the relevant colli-
sion integrals entering in it calculated at Th. Finally λr has been calculated
by the Bonnefoi equation inserting in it collision integrals calculated at Th. In
this equation electron–heavy-particle collision integrals have been calculated
at Te.

All the contributions will depend on the behaviour of the concentrations of
the different species as a function of ϑ. So the shift of the ionization reaction as
a function of ϑ will propagate its effects on λh by anticipating its maximum as
a consequence of the higher concentrations of ions with their strong Coulomb
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Fig. 8.3 Heavy-particle translational
thermal conductivity versus Th of N2

plasma at different ϑ values
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Fig. 8.4 Electron translational ther-
mal conductivity versus Th of N2

plasma at different ϑ values
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Fig. 8.5 Reactive thermal conductiv-
ity versus Th of N2 plasma at different
ϑ values
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ity versus Th of N2 plasma at different
ϑ values

cross sections. On the other hand we can expect an anticipation of the onset
of the importance of λe due to the corresponding trend of electron density.
These points can be understood by looking at Figs. 8.3 and 8.4 where we have
reported λh and λe for a nitrogen plasma as a function of Th at different ϑ
values.

Figures 8.5 and 8.6 report the trend of the reactive thermal conductivity
λr and of λint. The behaviour of the reactive thermal conductivity closely
follows the overlapping of the ionization reaction with the dissociation one;
in particular passing from ϑ=1 to 2.5 we can observe the progressive dis-
appearance of the dissociation peak which is substituted by the ionization
one. To understand the trend of the internal contribution we must remind
that in the present results this contribution comes from the rotational and
vibrational contributions of nitrogen molecules as well as from the low-lying
excited states of atomic nitrogen. Keeping in mind this point we can un-
derstand the trend of λint for the equilibrium case, i.e. ϑ=1. We see that
in this case λint increases up to T=10,000K presenting an abrupt decay
from T=10,000K on. In this temperature range we observe the progressive
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substitution of the ro-vibrational energy transport with the transport of low-
lying excited states of atomic nitrogen. The increase of ϑ accelerates the
ionization equilibrium, thus destroying the transport of internal energy of
both atomic and molecular nitrogen.

Let us consider the behaviour of the viscosity of multi-temperature plas-
mas reported in Fig. 8.7. The mixture viscosity depends on heavy-particle
collisions (electrons due to their mass are not a viscous fluid) and as such
presents a trend very similar to λh. On the same arguments the electrical
conductivity trend is very similar to λe strongly depending on the behaviour
of electron density (see Fig. 8.8). A good agreement is found with the vis-
cosity results by Aubreton et al. (1998) (Fig. 8.7), while the agreement of
λtot with the corresponding results in the same reference is less satisfactory
(Fig. 8.9). Discrepancies are probably due to the differences in the calculation
of electronic partition function (at Th in Casavola et al. 1998, while at Te in
Aubreton et al. 1998).

The results reported in the previous pages have been plotted as a func-
tion of translational temperature of heavy components. The same results can
be plotted as a function of electron temperature getting similar trends (see
Fig. 8.10). In particular Fig. 8.10a reports the reactive thermal conductivity
of the nitrogen plasma as a function of Te for different ϑ values. We can
note that the peak due to the dissociation present at ϑ=1 and 1.25 disap-
pears from ϑ=2 on merging itself with the corresponding ionization peak.
This behaviour is reflected on the total thermal conductivity (in Fig. 8.10b),
which presents only one peak for ϑ=2 and 3, as a result of the convolution
of dissociation and ionization peaks. Finally Fig. 8.10c reports the viscosity
as a function of Te, whose trend tends to merge to the same values after the
relevant maxima.
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Fig. 8.9 Total thermal conductivity of nitrogen plasma at atmospheric pressure, as
a function of Th, for ϑ=2 (solid lines) compared with results by Aubreton et al.
(1998), at p=1bar (markers)

As a second example we report results for hydrogen plasmas comparing
them with those by Boulos et al. (1994), the last obtained by using the same
method with some differences in the temperature at which is calculated the
internal partition function of atomic and molecular species. The relevant re-
sults are reported as a function of electron temperature in Fig. 8.11a–c for an
atmospheric two-temperature hydrogen plasma composed by the following
species: H2, H

+, H and electrons. In particular Fig. 8.11a reports the differ-
ent contributions of the total thermal conductivity as a function of electron
temperature for ϑ =2 compared with the results by Boulos et al. 1994. The
agreement between the results is rather satisfactory with the exception of the
internal thermal conductivity which is much larger in the case of Boulos et
al. results. This is probably due to the fact that our results have been ob-
tained by using the Eucken approximation and imposing the diffusion cross
sections of excited states calculated by the charge-transfer cross sections of
ground state. Moreover the internal partition function is calculated at Th in
Capitelli et al. (2001, 2002) while at Te in Boulos et al. (1994). Inspection
of the figure shows the net distinction between the peak due to the disso-
ciation process from that one of the ionization. Dissociation peak occurs at
about Te=7,000 K (i.e. Th=3,500K) while the ionization peak occurs at about
Te=15,000K. The mutual influence between the reactive thermal conductiv-
ity of the dissociation and ionization peaks can be observed from Fig. 8.11b
where we report λr as a function of Te for ϑ=1,2,3. The dissociation peak is
shifted at higher electron temperatures passing from ϑ=1 to 3 presenting also
a strong decrease in its maximum. On the other hand the ionization peak is
also shifted at higher Te with the increase of ϑ presenting however higher
values of the corresponding ionization peak. Also in this case a satisfactory
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agreement is found with the Boulos et al. results. The situation drastically
changes when comparing the present electrical conductivity values with the
corresponding ones of Boulos et al. (Fig. 8.11c). In this case only a qualita-
tive agreement is present in the two sets of results probably due also to the
insertion of H+

2 ion in the Boulos results as well as to different transport cross
sections used in these cases.
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Fig. 8.12 Total thermal conductivity of hydrogen plasma at atmospheric pressure, as
a function of Th, for ϑ=2. Collision integrals for electron–heavy-particle interactions
evaluated at Te (solid line) and (TeTh)1/2 (dashed–dotted line)

Before ending this section we want to show the dependence of the to-
tal thermal conductivity of a two-temperature H2 plasmas on the choice of
the temperature at which the collision integrals between electrons and heavy
particles are calculated. The results as far reported have been calculated at
Te; an alternative choice could be (TeTh)

1/2. This last choice increases the
corresponding e–e and e–ion Coulomb collision integrals decreasing at the
same time the corresponding transport properties (in particular λe and σe).
Figure 8.12 reports the total thermal conductivity calculated with the two
choices of collision integrals at ϑ=2. We can see a large dependence of the cor-
responding total thermal conductivity on the choice of temperature at which
the electron–atom, electron–ion and electron–electron collision integrals are
calculated.

The reported results have been obtained by inserting in the relevant trans-
port equations the thermodynamic properties (composition and partial pres-
sure derivatives) obtained minimizing the Gibbs potential. Alternative meth-
ods however are used in the literature to get the thermodynamic properties
depending on the thermodynamic criterion (minimization of Gibbs potential,
maximization of entropy) and on the constraints used in the different meth-
ods. We report in the following the transport coefficients for two-temperature
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H2 plasmas obtained by using different two-temperature Saha equations in
the Bonnefoi and Devoto approach. In particular we consider the following
different Saha equations for the ionization reaction of atomic hydrogen, Tel

being the temperature characterizing the distribution of electronic levels:

• Minimization of Gibbs potential with Th = Tel �= Te

[
nH+

nH

] 1
ϑ
ne =

(2πmekBTe)
3/2

hP
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e

[
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exp
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)
(8.20)

• Minimization of Gibbs potential with Th �= Tel = Te
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• Maximization of entropy with Th �= Tel = Te
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• Maximization of entropy with Th = Tel �= Te
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(8.23)

where Qint
e =2 and Qint

H+=1, the nuclear partition function of H+ is not consid-
ered, cancelling with the corresponding one for H. Comparison of the different
equilibrium equations for our case study (i.e. H2 plasmas) shows differences
in both the exponential ϑ factor disappearing in the equations, which derive
from the maximization of entropy as well as on the different temperatures
appearing in the partition function and in the exponential term. Again we
note that all exponential terms contain the electron temperature with the
exception of Eq. (8.23) which contains the heavy-particle temperature. This
difference should have strong consequences in the relevant results. It should
be noted that Eq. (8.22) is nowadays the most used equation for the two-
temperature plasmas based on the “kinetic” idea that electrons are responsi-
ble of the ionization equilibrium as well as of the excitation one, i.e. mixing
thermodynamic and kinetic concepts being a little contradictory (Capitelli
et al. 2011). Before illustrating the results we want to warn the reader that
we will present them in a different way as compared with our previous case
study. The presentation of results taken from Capitelli et al. (2001) is made
either as a function of Th (in the range 2,500–10,000K) keeping constant
Te=10,000K or as a function of Te (in the range 8,000–30,000K) at constant
Th=8,000K, thus meaning that the different plots are made at different ϑ
values rather than at fixed ϑ as done in the previous presentation.
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In the first case only the electron density is strongly affected by the choice
of the different equations while atomic and molecular hydrogen densities
scarcely depend on this choice (Capitelli et al. 2011). In any case electron
and ion densities keep values well below the corresponding values for atomic
and molecular hydrogen (at Th=Te=10,000K the electron density is a factor
100 less than atom density). As a consequence only the transport coefficients
which depend on the electron density (i.e. λe and electrical conductivity σe)
will be affected by the choice of the equilibrium constants. This is indeed the
case as can be appreciated by looking at Fig. 8.13a, where we have reported σe

versus Th at Te=10,000K for an atmospheric hydrogen plasma calculated in-
serting in the transport equations the compositions coming from Eqs. (8.20)-
(8.23). No appreciable change is observed by using Eqs. (8.20),(8.21), while
the use of Eq. (8.22) strongly increases the electrical conductivity. On the
other hand use of Eq. (8.23) is such to strongly underestimate the electri-
cal conductivity as a consequence of the exponential factor calculated at Th

(see Eq. (8.23)). All the σe curves converge to the same values for the one-
temperature case, i.e. Th=Te=10,000K.

Let us consider now the results obtained as a function of Te for Th=8,000K.
In this case the influence of Te can play an important role when Te ≥ 2Th,
i.e. from 15,000K on. This is indeed the case as shown in Fig. 8.13b, where
we have reported the total thermal conductivity calculated by inserting in
the transport equations the different compositions coming from Eqs. (8.20)–
(8.23). Inspection of the results shows that Eqs. (8.20) and (8.21) give practi-
cally the same results, while an appreciable change is observed when using the
maximization of entropy in the form of Eq. (8.22). Again we note that use of
Eq. (8.23) does not allow the onset of the ionization reaction yielding a total
thermal conductivity basically given by the atomic hydrogen contribution.

The results reported in Fig. 8.13b suffer to some extent the fact that the use
of Bonnefoi theory for λr is correct only when use is made of Eq. (8.20). This
point will be analysed in the next section when other theoretical approaches
for the reactive thermal conductivity will be introduced and used.

8.2 Beyond the Devoto and Bonnefoi Approaches

The results reported in the previous pages have been obtained by essentially
decoupling the electron component from the heavy ones as well as by cal-
culating the reactive thermal conductivity by using the Bonnefoi approach.
This last approach has been derived by following the old Butler–Brokaw ap-
proach, inserting in it composition and partial pressure derivatives from the
minimization of the Gibbs potential. More recently other schemes have been
proposed to improve these results. We refer in particular to the Rat et al.
(2002c, 2008) approach for calculating diffusion coefficients, viscosity, electri-
cal conductivity and translational thermal conductivity and to the theory of
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Fig. 8.13 Transport coefficients of H2 plasma, corresponding to different Saha equa-
tions. (1) Eq. (8.20), (2) Eq. (8.21), (3) Eq. (8.22), (4) Eq. (8.23). (a) Electrical con-
ductivity versus Th at Te=10,000 K, (b) total thermal conductivity versus Te at
Th=8,000K

Chen and Li (2003) (Li and Chen 2001) for the reactive thermal conductivity
(see also Bose et al. 1985).

8.2.1 The Rat Approach

Following the approach by Rat et al. (2002c, 2008) no decoupling between
electrons and heavy particles is allowed so that the diffusion velocity is written
as

V i =
n

niρkBTi

N∑
j=1

mj(D
j
idj +Dϑ,j

i gj∇ lnϑ)− DT
i

nimi
∇ lnTh − Dϑ�

i

nimi
∇ lnϑ

(8.24)

From this one can build up a set of new expressions for transport coeffi-
cients and coupling terms in the mass, momentum and energy flux definitions.
These equations have been applied to an Ar/H2 plasma for different ϑ val-
ues and compared with the Bonnefoi results based on the Devoto approach.
Large differences were found both in the electrical conductivity and in the
electron translational thermal conductivity pushing the authors to conclude
that the Devoto approach cannot be used. The reported differences are prob-
ably due to the different two-temperature equilibrium compositions used by
Rat et al. and by Bonnefoi. The first in fact used the maximization of the
entropy contrary to the Bonnefoi approach based on the minimization of
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Gibbs potential. This point becomes clear when comparing the results of
the two approaches (Devoto 1967a; Rat et al. 2002a) using the same two-
temperature equilibrium composition as recently shown by Colombo et al.
(2008, 2009, 2011). In this case in fact the comparison of the transport values
obtained by the two transport methods, i.e. Devoto and Rat approaches, are
made by using the same two-temperature equilibrium composition derived
from entropy maximization. In this case an excellent agreement (Colombo
et al. 2011) has been reported for the total thermal conductivity, for the
viscosity and the electrical conductivity (Fig. 8.14) for a CO2 plasma in a
wide temperature range. Note also the two methods also produce an ex-
cellent agreement in the viscosity values because this quantity depends on
heavy particles rather than on electrons. Some differences are found in some
multicomponent diffusion coefficients. These results indicate that the Devoto
approach, i.e. the decoupling between heavy particles and electron distribu-
tion functions can be used with a fair amount of confidence in the calculation
of two-temperature plasma transport coefficients(λe, λh and σe) once selected
the appropriate two-temperature Saha equation.

Note also that Colombo et al. (2011) calculate the total thermal conduc-
tivity by using the Devoto approach for λe and λh and the Rat approach
for λr.

8.2.2 The Reactive Thermal Conductivity: The Chen
and Li Approach

The thermal conductivity values reported in the previous sections have been
obtained by using the Devoto approach for all quantities but the reactive
thermal conductivity obtained by Bonnefoi method which uses the non-
equilibrium composition from the Potapov method (i.e. the minimization of
Gibbs potential) (Potapov 1966). Basically the same approach is followed by
Chen and Li (2003) (Li and Chen 2001), who however use the maximization
of entropy to get the equilibrium compositions and their derivatives entering
the transport equation. The theory was first applied to the case of an argon
plasma composed by four components (Ar, Ar+, Ar2+ and electrons, with the
index j moving from 1 to 4) and two independent reactions (r=2) describing
the first and second ionization process, i.e.

Ar ⇔ Ar+ + e
Ar+ ⇔ Ar2+ + e
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Fig. 8.14 Transport coefficients of two-temperature CO2 mixture for different val-
ues of ϑ = Te/Th. (a) Total thermal conductivity, (b) electrical conductivity and (c)
viscosity. For ϑ=2 and 3 results obtained with simplified Devoto approach (mark-
ers) (Devoto 1967a) and with non-simplified theory by Rat et al. (2002a) are com-
pared
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The heat flux was then written as
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where pj is the partial pressure of the jth species, ΔH�
r and Da

rj are, respec-
tively, the reaction enthalpy change, for the rth reaction, and the ambipolar
diffusion coefficient defined in terms of ordinary diffusion coefficients (Li and
Chen 2001). The gradient of each partial pressure can be expressed as
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Equation (8.25) therefore becomes
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can be defined as the reactive thermal conductivity due to electrons and to
the heavy particles. The reactive thermal conductivity defined with respect
to the gradient of heavy-particle temperature can be then written as

λr = (λrh + ϑλre) (8.30)

The partial derivatives appearing in Eqs. (8.28)–(8.29) can be obtained by
the set of Saha equations, by the Dalton law and by the quasi-neutrality
condition. These quantities strongly depend on the selected Saha equations.
An alternative method to get the partial pressure derivatives is to obtain
them by numerical differentiation of the non-equilibrium composition.
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Equations (8.28)–(8.29) are nowadays widely used in the literature in com-
bination with the maximization of entropy to get all the necessary thermody-
namic quantities (Ghorui et al. 2007a, 2008; Colombo et al. 2008, 2009, 2011;
Wang et al. 2011, 2012). The reason can be ascribed to the easy insertion
of the equations in the fluid dynamics of two-temperature plasmas (Ghorui
et al. 2007b).

Let us now discuss the most important results obtained by Chen and Li
on the reactive thermal conductivity of a two-temperature argon plasma.
Figure 8.15 reports the relevant results for ϑ=5 calculated with the following
hypotheses:

Case 1. Two-temperature Saha equation from the minimization of the Gibbs
potential [Potapov equation (Potapov 1966), i.e. Eq. (8.20)] and reactive
thermal conductivity from Hsu (1982)

Case 2. Two-temperature Saha equation from the minimization of the Gibbs
potential (Potapov equation) and reactive thermal conductivity from λr =
(λrh + ϑλre)

Case 3. Two-temperature Saha equation from the entropy maximization of
the Gibbs potential [van de Sanden equation (van de Sanden et al. 1989),
i.e. Eq. (8.22)] and reactive thermal conductivity from Hsu (1982)

Case 4. Two-temperature Saha equation from the entropy maximization of
the Gibbs potential (van de Sanden equation) and reactive thermal con-
ductivity from λr = (λrh + ϑλre)
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Fig. 8.15 Comparison of the calculated values of the reactive thermal conductivity
of the two-temperature argon plasma at atmospheric pressure for the four different
cases reported in the text (Chen and Li 2003)
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Inspection of the Fig. 8.15 shows strong differences in the values obtained
in the four examined cases, the more reliable results according to Chen and
Li are those calculated for case 4. The results reported for cases 1 and 3 can
be ruled off because they are obtained by using a reactive transport equa-
tion which is valid only for one-temperature plasma (i.e. the Butler–Brokaw
one). The differences in the results of cases 2 and 4, obtained by using the
same correct reactive transport equation, derive from a different choice of
the two-temperature Saha equation (minimization of Gibbs potential against
maximization of the entropy). This choice introduces large differences in the
λr results, these differences tending to decrease at low values of the ϑ pa-
rameter. Similar results have been recently derived by Wang et al. (2012)
for the reactive thermal conductivity of a nitrogen plasma. These authors
basically extend the Chen and Li theory to nitrogen plasmas comparing the
results with the corresponding ones obtained by using the Potapov crite-
rion (Potapov 1966). Inspection of Fig. 8.16 emphasizes the differences of the
relevant values. In particular the use of Potapov equilibrium (case B) under-
estimates the values of λr as compared with the van de Sanden theory (case
A) (van de Sanden et al. 1989), confirming the results reported by Chen and
Li for argon.
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Fig. 8.16 Comparison of the calculated values of the reactive thermal conductivity
of the two-temperature nitrogen plasma at atmospheric pressure for ϑ=2 and 3 in
cases A and B (see text for details) (Wang et al. 2012)

The Chen and Li approach is presently used by different authors. Ghorui
et al. (2008) in fact have reported an extended study of the transport co-
efficients of two-temperature N2–O2 plasmas for different N2/O2 ratios and
different pressures. The results were obtained by using:
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(i) The van de Sanden equation for the two-temperature Saha equation (i.e.
the maximization of entropy)

(ii) The Devoto approach for the viscosity, the translational thermal conduc-
tivity of heavy particles and of electrons, and the electrical conductivity

(iii) The Bose approach for calculating the reactive thermal conductivity
(i.e. the same approach used by Chen and Li)

This last term differs, as already pointed out, from the Bonnefoi ap-
proach for the calculation of the relevant pressure gradients derived from
the van de Sanden approach rather than from the Potapov one. The reac-
tive thermal conductivity from the dissociation process is indeed the same.
A sample of results are reported in Fig. 8.17, which respectively show the
behaviour of the total thermal conductivity, the viscosity and the electrical
conductivity for a N2–O2 80/20% atmospheric air mixture for different ϑ
values. The trends of the different quantities follow those already discussed
in the previous sections. A peculiarity is however present in the case of N2–
O2 mixture linked to the O2/O dissociation peak. This peak moves with the
increase of ϑ without merging with the ionization peak as observed in the
case of N2/N system.

In particular the viscosity and the electrical conductivity are very simi-
lar to those reported for CO2 in Fig. 8.14c, thus meaning that the CO2 and
air plasmas should behave in a similar way (see Capitelli et al. 2011). The
behaviour of the total thermal conductivity is indeed different for CO2 and
N2–O2 plasmas, being the results by Ghorui et al. lower than the correspond-
ing ones by Colombo et al.

The same problem occurs when comparing the total thermal conductivity
calculated by Ghorui et al. (2008) with the corresponding results reported
by Wang et al. (2011) for nitrogen. The differences are probably due to the
fact at Ghorui et al. define their total reactive thermal conductivity without
ϑ, i.e.

λr = (λrh + λre) (8.31)

8.3 Concluding Remarks and Perspectives

We have reported in this chapter results of transport coefficients of two-
temperature plasmas obtained according to different approaches. The results
strongly depend on the thermodynamic model used in the calculation of
the multi-temperature equilibrium composition to be inserted in the trans-
port equations. Nowadays the method first developed by van de Sanden
et al. (1989), i.e. the maximization of entropy, seems to be preferred by the
literature even though we want to remind the still open problem associ-
ated with the multiplicity of Saha equations coming from a correct use of
thermodynamics (Giordano and Capitelli, 1995, 2001; Capitelli et al., 2011).
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An alternative could be to use a kinetic approach to calculate the compo-
sition of two-temperature plasmas, as described by Rat and Aubreton (Rat
et al. 2002b, 2008) with results largely different from the corresponding ones
obtained by the two-temperature Saha equation especially in the ionization
regime.

The stationary kinetic calculation (Rat et al. 2002b; Richley and Tuma
1982; Hingana 2010) solves a set of differential equations for the relevant
forward and reverse processes occurring in the plasma (Ar–H2 in this case).
The kinetic coefficients entering the kinetic equations are expressed in an
Arrhenius-type form with different temperatures (Te, Th, Texc, i.e. electron,
heavy-particle and excitation temperatures) entering the forward reactions,
while the reverse process coefficients are calculated by micro-reversibility us-
ing a two-temperature Saha equation (maximization of entropy). Details can
be found in Rat et al. (2002b) (see also Hingana 2010). As an example
Fig. 8.18 reports the total thermal conductivity calculated according the sta-
tionary kinetic model (λkin

T ) with the corresponding ones calculated with the
two-temperature thermodynamic model (λth

T ) for ϑ=1.6 and 2. For ϑ=1.6
a good agreement is found in the two approaches in the dissociation region,
while for ϑ=2 the two theories give a different dissociation peak. Furthermore
for a temperature range 8,000–11,000K the kinetic method leads to an ion-
ization delay of argon atoms, λkin

T < λth
T , while for Te >11,000K an avalanche

phenomenon of the argon ionization is such to reverse the calculated values,
i.e. λkin

T > λth
T .
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mixture with electron temperature using compositions calculated by the stationary
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The kinetic approach has been also used by Nemchinsky (2005) to sep-
arate the electron and heavy-particle contributions of the reactive thermal
conductivity in the dissociation regime of a non-equilibrium nitrogen plasma.
At the same time the reactive thermal conductivity obtained by Eqs. (8.28)–
(8.29) are nowadays preferred to the Bonnefoi approach even though an accu-
rate comparison between the relevant equations is still lacking. An accurate
comparison of the Bonnefoi approach and that one of Chen and Li should be
welcome also to shed light on the different reactive transport equations in the
literature which in some cases are the same equations with different names.

Finally we want to remind that the results reported in this section have
calculated the internal thermal conductivity with the Eucken approxima-
tion introducing in the relevant equations diffusion coefficients in the usual
approximation for the transport cross sections. Of course the problems asso-
ciated with the insertion of the abnormal cross sections discussed in Chap. 7
should be taken into account also in the two-temperature situations. This
is more and more true at high ϑ values when the ionization equilibrium
is shifted at very high temperatures allowing the excitation of electronic
states of atoms without losing them in the ionization process. This point
has been reported by Wang et al. (2011), which have shown that for ϑ=20
the internal contribution to the thermal conductivity dominates all the other
contributions implying the importance of a correct treatment of the inter-
nal thermal conductivity as in Chap. 7. In this case however caution should
be exercised when using two-temperature transport theories because we can
meet situations typical of cold plasmas where the electron energy distribution
function is far from being Maxwellian, as well as the vibrational and in some
cases rotational distributions are far from the Boltzmann ones. In this case
the Chapman–Enskog method for solving the Boltzmann equation can give
erroneous results.
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températures : application à l’argon et l’air (in french). PhD thesis, Uni-
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Chapter 9

Transport Properties in the Presence
of Magnetic Fields

The presence of the magnetic field breaks the isotropy of the gas system
because velocities in a plane normal to the field are modified, while velocities
parallel to it are not. As a result, the transport coefficients turn into tensors
with three (five in the case of viscosity) independent components. In a frame
of reference where the x axis has the direction of the magnetic field the
transport coefficients (but the viscosity) are written as:

A =

⎛
⎝

A‖ 0 0
0 A⊥ −At

0 At A⊥

⎞
⎠ (9.1)

where A‖, A⊥ and At denote the parallel, perpendicular and transverse
components of the relevant transport coefficient, respectively.

A‖ does not depend on the magnetic field; A⊥ reduces to the parallel
component when B →0; At vanishes when B →0. The electron Hall parame-
ter is the governing parameter that controls the extent to which the magnetic
field effectively perturbs the electron trajectories. This is defined as

βe = ωeτe (9.2)

where ωe = eB/me is the electron Larmor frequency and τe is the mean colli-
sion time for electron collisions. When βe is of order 1 the electron transport
properties are mainly controlled by the magnetic field and the importance of
the collisions decreases. At high field strengths the plasma behaves like an
inviscid fluid and the components affected by the field vanish. Due to their
masses, the heavy components are affected at much larger field strengths.
At the field strengths considered, up to several Tesla, the effect on the charged
heavy components is barely noticeable, except at very low pressures.

Many papers are available in literature on the introduction of the
magnetic field in the Boltzmann equation (Devoto 1969; Montgomery and
Tidman 1964; Balescu 1963; Braginskii 1965; Schweitzer and Mitchner 1967;

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics,
Springer Series on Atomic, Optical, and Plasma Physics 74,
DOI 10.1007/978-1-4419-8172-1 9, © Springer Science+Business Media, LLC 2013
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Chmieleski and Ferziger 1967a, b; Kolesnikov and Tirskiy 1984; Zhdanov
2002). In this chapter we limit to recent results obtained in our lab in thermal
plasmas, while the recent work by Colonna and Capitelli 2008 can be used
as a guide to understand the role of magnetic fields in affecting the transport
properties of electrons under non-equilibrium conditions.

To this end, a complete computational scheme has been developed for the
calculation of transport coefficients of partially ionized gas under the action
of the magnetic field. The tensorial transport coefficients can be calculated to
any desired level of approximation, provided the required collision integrals
are available. Also, ionization non-equilibrium can be taken into account in a
straightforward manner. However, we recall that this formalism is applicable
only when thermal equilibrium can be assumed, so that, in particular, the
electron and heavy-particle average kinetic energies are equal.

9.1 Theory

The transport coefficients in the presence of a magnetic field follow the lines
discussed in Chap. 1 (see also Bruno et al. 2008; Giordano 2002) with the
introduction of the magnetic field in the relevant equations. The following
transport coefficients have been considered:

• Diffusion coefficients
• Thermal diffusion coefficients
• Thermal conductivity
• Viscosity

In terms of these coefficients, the flux vectors of mass, electric charge, and
energy are written as follows:

1. Mass Diffusion Fluxes
Taking into account the properties of diffusion and thermal diffusion
coefficients, Eq. (1.127), and the expression for the diffusion velocities,
Eq. (1.75), the mass diffusion fluxes, J j = ρjV j , can be conveniently
written as

J j = −ρj
p

∑
k∈S

Dk
j · xk − 1

T
ρjD

T
j · ∇T j = 1, . . . , ns (9.3)

where the diffusion driving force is expressed as

xj = ∇pj − ej
mj

ρj(E + v ×B) j = 1, . . . , ns (9.4)

In Eqs. (9.3) and (9.4) ρ, p, pj, ej, mj and ρe denote, respectively, total
mass density, pressure, partial pressure of the jth component, electric
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charge of the jth component, molecular mass of the jth component and
electric charge density.
Dk

j and DT
j represent the diffusion and thermal diffusion coefficients.

These are tensors of rank 3:

Dk
j =

⎛
⎜⎜⎜⎝

(Dk
j )

‖ 0 0

0 (Dk
j )

⊥ −(Dk
j )

t

0 (Dk
j )

t (Dk
j )

⊥

⎞
⎟⎟⎟⎠ (9.5)

DT
j =

⎛
⎜⎜⎜⎝

(DT
j )

‖ 0 0

0 (DT
j )

⊥ −(DT
j )

t

0 (DT
j )

t (DT
j )

⊥

⎞
⎟⎟⎟⎠ (9.6)

2. Conduction Current Density
Conduction current density, in Eq. (1.93), can be written as

je = −
∑
j∈S

σe
p
j · ∇pj + σe · (E + v ×B)− σe

T · ∇T (9.7)

where we have defined

Presso-electrical conductivity coefficients:

σe
p
j =

1

p

∑
k∈S

nkekD
k
j (9.8)

Electrical conductivity coefficients:

σe =
1

p

∑
j,k∈S

njejD
k
j nkek (9.9)

Thermo-electrical conductivity coefficients:

σe
T =

1

T

∑
j∈S

njejD
T
j (9.10)

3. Heat Flux
The heat flux, in Eq. (1.80), can be written as

q =
∑
j∈S

Hj

mj
J j −

∑
j∈S

DT
j · xj − λ′ · ∇T

= −
∑
j∈S

λp
j · ∇pj + λE · (E + v ×B)− λ · ∇T (9.11)
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where the partial thermal conductivity is

λ′ =

⎛
⎝

(λ′)‖ 0 0
0 (λ′)⊥ −(λ′)t

0 (λ′)t (λ′)⊥

⎞
⎠ (9.12)

and we have defined
True thermal conductivity:

λ = λ′ +
1

T

∑
j∈S

njHjD
T
j (9.13)

Presso-thermal conductivity coefficients:

λp
j = DT

j +
1

p

∑
k∈S

nkHkD
k
j (9.14)

Electrothermal conductivity coefficients:

λE =
∑
j∈S

[
njejD

T
j +

1

p
njHj

∑
k∈S

nkekD
k
j

]
(9.15)

4. Pressure Tensor

The pressure tensor, Eq. (1.76), is now given by

P = (p− κ∂r · v − prel)I− 2η : S (9.16)

The viscosity coefficient η is a 4th-rank tensor with five independent com-
ponents (de Groot and Mazur 1984; McCourt et al. 1990).
Note that the bulk viscosity, κ, vanishes when the internal structure

of particles is neglected. The linear dependence of the components of the
pressure tensor on those of the traceless symmetric part of the velocity
gradient (S) is explained in de Groot and Mazur (1984).

9.2 Results

9.2.1 Argon Plasma

Equations in the theoretical Sect. 9.1 have been used to calculate the trans-
port properties of argon plasmas as a function of the magnetic field for two
extreme conditions, i.e. fully ionized and weakly ionized gases (Bruno et al.
2006, 2008).
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It is the electron component that is affected by the magnetic field at the
considered field strengths (B ≈ 1T). Therefore, the transverse component is
non-negligible only if the ionization degree is substantial. The electron-argon
collision cross sections are smaller than the Coulomb cross sections at the
same temperature, so that, for a given magnetic field strength, the electron
Hall parameter is larger and the effect of the magnetic field correspondingly
enhanced when these collisions contribute to transport. In Fig. 9.1 the ratio
of transverse-to-parallel components of the true thermal conductivity as a
function of magnetic field is reported for the two cases. For weakly ionized
plasma, the Hall parameter does not significantly change with temperature
and the maximum effect (βe ∼1) is attained for B ∼ 0.1T. The transverse
component stays very much smaller than the parallel one for this case. On
the contrary, in the fully ionized case, the cross sections are larger and de-
crease strongly with increasing temperature. The curves are shifted to higher
B values but, because the electron component is large enough, the effect in
absolute values is much stronger in this case.
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Fig. 9.1 Ratio of transverse to parallel components of the true thermal conductivity
as a function of magnetic field at p = 1atm for different temperature values (Bruno
et al. 2008). Fully ionized (lines) and weakly ionized gas (symbols)

As clearly noted, the magnetic field affects mainly the electron component;
therefore, we shall expect a much bigger effect on the electrical conductivity,
that is essentially due to electron diffusion.

The absolute values of the transverse components of the electrical conduc-
tivity in the two cases, reproduce the behaviour of the transverse components
of the true thermal conductivity and the same considerations apply. However,
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the effect of the magnetic field is for σe relatively stronger as can be
appreciated in Fig. 9.2. Even at low ionization degrees, the transverse com-
ponent is comparable to the parallel component.
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Fig. 9.2 Ratio of transverse to parallel components of the electrical conductivity of
argon plasma as a function of magnetic field at p = 1atm, for different temperature
values (Bruno et al. 2008). Fully ionized (lines) and weakly ionized gas (symbols)

The convergence of the transverse components shows a similar qualitative
trend as that of the parallel component. The presence of the magnetic field
speeds up the approach to convergence for the equilibrium case (Bruno
et al. 2008). When the electron Hall parameter is large enough to affect
the transport coefficients appreciably, the role of the collisions decreases
correspondingly and the convergence in enhanced, as it can be appreciated
in Fig. 9.3 (Bruno et al. 2006).

9.2.2 Air Plasma

Figure 9.4 shows the transverse-to-parallel ratio for the thermal conduc-
tivity coefficients as a function of temperature for equilibrium air plasma
at p=1atm, B = 1T (Bruno et al. 2011). This ratio is significant for the
translational coefficient as soon as the electron contribution becomes impor-
tant. It increases around 10,000K even if the Hall parameter is decreasing in
this zone. Then, the electron contribution dominates and the transverse-to-
parallel ratio follows the Hall parameter. The internal thermal conductivity,
instead, is due to heavy particle diffusion and is therefore less sensitive to
the magnetic field. Note also that, since the internal thermal conductivity
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Fig. 9.3 Percentage error of the first approximation of the transverse component
of the electrical conductivity with respect to the fifth one for argon plasma as a
function of the electron Hall parameter for the fully ionized plasma (continuous line)
at T=20,000 K and for the weakly ionized plasma (dashed line) at T=2,000 K (Bruno
et al. 2006)

is mainly contributed by positive ion diffusion, its transverse component has
the opposite sign as compared to the translational coefficient. This is best
seen in Fig. 9.5 that reports the transverse-to-parallel ratio for the thermal
conductivity coefficients as a function of magnetic field for equilibrium air
plasma at p = 1atm, T = 25, 000K. While the ratio for the translational
coefficient shows the usual behaviour and peaks at about 0.5 for B ≈2T,
the corresponding value for the internal and reactive thermal conductivities
requires much stronger fields and is negative.

Figure 9.6 reports the components of the electrical conductivity of equilib-
rium air plasma at p = 1 atm, B = 1T. For this coefficient, which is mainly
due to electron transport, the magnetic field is very effective and anisotropy
effects are very strong. The figure also reports the approximations obtained by

σ⊥
e = σ‖

e

1

1 + β2
e

(9.17)

σt
e = σ‖

e

βe

1 + β2
e

(9.18)

The figure shows that, while the approximations work at very low tem-
perature (when the Hall parameter is small enough), they give completely
wrong results in the general case. The effect of the magnetic field is shown
in Fig. 9.7, where the transverse-to-parallel ratio is shown in equilibrium air
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Fig. 9.4 Transverse-to-parallel ratio of thermal conductivities for equilibrium air
plasma as a function of temperature, at p = 1atm, B=1T (Bruno et al. 2011). True
thermal conductivity (solid line), internal thermal conductivity (dashed line) and
reactive thermal conductivity (dotted line)
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Fig. 9.5 Transverse-to-parallel ratio of thermal conductivities for equilibrium air
plasma as a function of magnetic field, at p = 1atm, T = 25, 000K (Bruno et al.
2011). True thermal conductivity (solid line), internal thermal conductivity (dashed
line) and reactive thermal conductivity (dotted line)
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Fig. 9.6 Electrical conductivity components for equilibrium air plasma as a function
of temperature, at p = 1atm, B = 1T (Bruno et al. 2011). Parallel component
(solid line), perpendicular component (dashed line) and transverse (dotted line). (full
symbols) Eq. (9.17), (open symbols) Eq. (9.18)
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Fig. 9.7 Transverse-to-parallel ratio of electrical conductivity for equilibrium air
plasma as a function of magnetic field, at p = 1atm (Bruno et al. 2011). T=4,600K
(solid line), T=10,000 K (dashed line) and T=25,000 K (dotted line)
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plasma at p = 1 atm and at three different temperatures. Irrespective of the
plasma composition, the electrical conductivity is produced by the electrons,
so that the behaviour of the transverse-to-parallel ratio is the same in all
cases. The differences are due to differences in the electron Hall parameter.

Figure 9.8 reports the transverse-to-parallel ratio of the shear viscosity
of equilibrium air plasma at p = 1atm, B = 1T. Since viscosity is due to
heavy particles, the effect of the magnetic field is negligible reaching 2%
at 50,000K. Since in this case the governing Hall parameter is very small,
the transverse components can be determined with sufficient accuracy from
first-order approximations, similar to Eqs. (9.17) and (9.18).

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0 100 1 104 2 104 3 104 4 104 5 104

4
/

1

T, K

Fig. 9.8 Transverse-to-parallel ratio of shear viscosity for equilibrium air plasma as
a function of temperature, at p = 1atm, B = 1T (Bruno et al. 2011)

9.2.3 Hydrogen Plasma

In Fig. 9.9 the transverse component of the multicomponent diffusion coef-

ficient, DH+

H , is plotted as a function of the magnetic field strength for a
hydrogen plasma at p = 1 atm and T = 50, 000K. The two curves report
the results for the usual and abnormal coefficients, respectively (Bruno et al.
2007) (see also Chapt. 7). As expected, both curves increase as the magnetic
field increases. As the electron Hall parameter becomes of order 1, however,
the contribution due to electron collisions vanishes and the effect is much
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stronger when the EES cross sections are taken into account. This is due
to the fact, already mentioned, that H(n)–H+ transport cross sections have
a stronger dependence on principal quantum number than H(n)–e ones. It
can also be noticed that the presence of EES cross sections slows down the
effect of the magnetic field. This will become more evident in the discus-
sion of the electrical conductivity, where electron transport is the dominant
phenomenon.

Let us now consider the influence of EES on another diffusion coefficient.
Figure 9.10 reports the parallel component of the DH+

H+ diffusion coefficient
for equilibrium hydrogen plasma at p = 1 atm. Without excited states, this
coefficient, after a maximum, strongly decreases with increasing temperature.
Increasing the pressure shifts this behaviour to higher temperatures. The
decrease of the coefficient with the increase of gas temperature is mainly due
to the increase of the proton concentration; the decrease of the coefficient is
therefore due to the very effective, as compared to H(1)–H+ ones, Coulomb
collisions. The coefficient must reach the limiting value of 3.3×10−6 [m2/s] of
the fully ionized gas in both cases. However, the presence of EES is such to
dramatically affect the decrease of the coefficient as a result of the increase of
the diffusion cross sections H(n)–H+. Small concentrations of excited states
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Fig. 9.9 Transverse component of the atom-proton diffusion coefficient as a function
of the magnetic field. Equilibrium hydrogen plasma at p = 1atm, T=50,000 K (Bruno
et al. 2007). Abnormal (solid line) and usual (dotted line)
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Fig. 9.10 Parallel component of the proton-proton diffusion coefficient as a function
of the temperature. Equilibrium hydrogen plasma at p = 1atm, (Bruno et al. 2007).
Abnormal (solid line) and usual (dotted line) Fully ionized case (dashed line)

combined with their enormous cross sections (see Chap. 5) are able to obscure

the role of Coulomb collisions in affecting the DH+

H+ diffusion coefficient.
At variance from the diffusion coefficients discussed so far, the electron-

electron diffusion coefficient, De
e, is dominated by interactions of the plasma

constituents with the electron component. The particular property of the
De

e diffusion coefficient to depend only on electron collision processes allows
us to discuss in more detail the effect of the magnetic field in the whole
range of the relevant Hall parameter. To this end, we remind that the plasma
electrical conductivity is expressed in terms of the multicomponent diffusion
coefficients as follows:

σe =
1

p

∑
j,k∈S

njejD
k
j nkek ≈ nee

2

kBT
De

e (9.19)

The last equality neglects terms of order me/mH and is therefore accurate
for our purposes. When a magnetic field is present, the scenario is modified in
different ways depending on the value of the electron Hall parameter. Focus-
ing on the transverse component of the electrical conductivity, we recall that
this component vanishes for very small and very strong magnetic fields, i.e.

σt
e ∼

{
σ
‖
e · βe βe � 1

σ
‖
e · β−1

e βe � 1
(9.20)
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Fig. 9.11 Abnormal-to-usual ratio for the parallel and the transverse components
of the electrical conductivity as a function of the magnetic field for two plasma equi-
librium conditions (p = 1atm, T=16,500 K; p = 10 atm, T=20,000 K) (Bruno et al.
2007)

Figure 9.11 reports the ratio of abnormal-to-usual values for the parallel
and transverse components of the electrical conductivity for two cases: (i)
p = 1atm, T=16,500K, and (ii) p = 10 atm, T=20,000K. At each pressure,
the temperature is such to maximize the effect of the EES cross sections. Now,
pressure and temperature being assigned, the composition of the plasma and
the populations of EES are determined by the equilibrium condition, as well
as the values of the collision integrals and of the mean collision times for each
species. The first consequence is that the difference on the parallel component
between the abnormal and usual values is a constant, independent of the
magnetic field strength. Another consequence is that, for the same value of
the magnetic field, the abnormal electron Hall parameter is smaller than the
corresponding usual value, i.e.

β
(a)
e

β
(u)
e

=
τ
(a)
e

τ
(u)
e

= f(p, T ) ≤ 1 (9.21)

This fact, together with Eq. (9.20), explains the curves of Fig. 9.11 . At
small fields, where the transverse component has a linear increase with βe,
the abnormal-to-usual ratios have a fixed value, smaller than the correspond-
ing value relative to the parallel component. As the effect of the magnetic field
becomes noticeable (the abnormal electron Hall parameter is 1 at B = 10.5T
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in case (i) and at B = 48T in case (ii), respectively) the transverse elec-
trical conductivity has a more complicated dependence on the electron Hall
parameter. After a maximum at βe ≈ 1 the transverse component starts
decreasing and tends towards the asymptotic behaviour of Eq. (9.20). As a
consequence, the abnormal transport coefficients have a slower decrease and
the abnormal-to-usual ratios increase with increasing magnetic field, reaching
values greater than 1.

References

Balescu R (1963) Statistical mechanics of charged particles. Interscience,
New York

Braginskii SI (1965) Transport processes in a plasma. In: M. Leontovich (ed)
Reviews of plasma physics, vol 1. Consultants Bureau, New York

Bruno D, Catalfamo C, Laricchiuta A, Giordano D, Capitelli M (2006)
Convergence of Chapman-Enskog calculation of transport coefficients of
magnetized argon plasma. Phys Plasmas 13(7):072307

Bruno D, Laricchiuta A, Capitelli M, Catalfamo C (2007) Effect of electronic
excited states on transport in magnetized hydrogen plasma. Phys Plasmas
14:022303

Bruno D, Laricchiuta A, Capitelli M, Catalfamo C, Giordano D (2008) Trans-
port properties of partially ionized argon in a magnetic field. J Thermophys
Heat Transf 22:424–433

Bruno D, Capitelli M, Catalfamo C, Giordano D (2011) Transport properties
of high-temperature air in a magnetic field. Phys Plasmas 18(1):012308

Chmieleski RM, Ferziger JH (1967a) Transport properties of a nonequilib-
rium partially ionised gas. Phys Fluids 10(2):364

Chmieleski RM, Ferziger JH (1967b) Transport properties of a nonequilib-
rium partially ionised gas in a magnetic field. Phys Fluids 10(12):2520

Colonna G, Capitelli M (2008) Boltzmann and Master Equations for mag-
netohydrodynamics in weakly ionized gases. J Thermophys Heat Transf
22(3):414–423

Devoto RS (1969) Heat and diffusion fluxes in a multicomponent ionized gas
in a magnetic field. I. general expressions. Zeitschrift für Naturforschung
A (Astrophysik, Physik und Physikalische Chemie) 24:967

Giordano D (2002) Hypersonic-flow governing equations with electromagnetic
fields. AIAA paper pp 2002–2165

de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. In: Dover
Books on Physics. Dover, New York

Kolesnikov AF, Tirskiy GA (1984) The Stefan-Maxwell equations for
diffusion fluxes in a magnetic field. Fluid Dynamics (translated from
Russian) Plenum 19:643



References 245
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Chapter 10

Some Problems in the Calculation
of Transport Properties of Partially
Ionized Gases

In this chapter we discuss several problems to be taken into account when
trying to calculate the transport coefficients of thermal plasmas to reach
an adequate accuracy of the results. Some problems are discussed in other
chapters of this book, dealing in particular with the different methods used in
the calculation of transport cross sections (Chaps. 3 and 4), with the role of
electronically excited states in affecting the transport properties (Chap. 5) as
well as the different Saha equations in affecting the results in two-temperature
plasmas (Chap. 8).

The first problem we consider in this chapter is the selection of the order
of approximation of the Chapman–Enskog method to be used in the relevant
applications. This problem, after the pioneering papers of Devoto (1967a,b),
has been recently reexamined by Bruno et al. (2006) and by Singh et al.
(2009) (Singh and Singh 2006; Sharma et al. 2011), where also the conver-
gence in two-temperature plasmas is studied. In this context, the selected
transport cross sections are important in determining the convergence of the
method. The second problem is linked to the selection of a consistent database
of transport cross sections especially for the calculation of transport proper-
ties of plasma mixtures for which an appropriate data set of transport cross
sections does not exist. A case study of air plasmas, based on the transport
cross sections presented in Chaps. 3 and 4, is discussed here, with the aim to
understand if the so-called phenomenological approach can be used for un-
known mixtures. The third problem deals with the role of inelastic processes
in affecting the transport coefficients, with particular attention to rotational
and vibrational energy exchange processes. In addition we briefly examine
the role of quantum effects, a problem which can become very important
at low temperature and high pressure, ending with a comparison of present
results with existing experiments.
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Springer Series on Atomic, Optical, and Plasma Physics 74,
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10.1 The Convergence of the Chapman–Enskog Method

10.1.1 Translational Thermal Conductivity

The convergence of the Chapman–Enskog method has been recently re-
examined by Bruno et al. (2006) for an LTE argon plasma up to the fifth
approximation by including both electron and heavy-particle components.

0.00

0.10

0.20

0.30

0.40

0.50

0 5000 10000 15000 20000

i =2
i =3
i =4
i =5

0%

10%

20%

30%

40%

50%

( 
i -

 
1 

) 
/ 

1

TEMPERATURE  [K]

Fig. 10.1 Relative deviation of translation thermal conductivity, λ, calculated in the
ith approximation with respect to the first non-vanishing approximation

The results have been reported in Fig. 10.1 in the form ([λ]i − [λ]1)/[λ]1,
i.e. the difference between the translational thermal conductivity values cal-
culated according to the ith approximation and the corresponding ones cal-
culated according to the first non-vanishing approximation, the differences
being normalized to the first approximation values. Appreciable ionization
starts at T >8,000K, and, therefore, we can ideally divide the temperature
axis in a region where neutral species prevail (300< T <8,000K) and a sec-
ond region, for T >8000 K, where electrons start becoming the majority
species. In the first region, dominated by neutrals, convergence is reached
quickly, with the exception of a narrow zone 5,000< T <8,000K, where the
fifth approximation is required. This behaviour is due to the Ramsauer effect
in the electron scattering from argon atoms, which dramatically affects the
convergence of electron component distribution function. This effect is in any
case very small because the total translational thermal conductivity in this
temperature range is dominated by the neutral component which does not
present convergence problems. The small Ramsauer effect disappears in the
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ionization region where electron–electron and electron–ion collisions domi-
nate the translational thermal conductivity. In this case however we have
serious convergence problems due to the difference in the electron–heavy-
particle masses which slows down the convergence of the Chapman Enskog
method. In this case we should use at least the second approximation of the
Chapman–Enskog method (the third one in Devoto formulation). Inspection
of Fig. 10.1 shows that no differences between the approximations i=2 to 5 do
exist far from the Ramsauer effect region, implying that this approximation
can be used with a fair amount of confidence with the gases which do not
present the Ramsauer effect. The shown results treat electrons and heavy
particle at the same level even though, as it will appear soon, electrons are
the main reason of the slow convergence of the Chapman–Enskog method in
the partial ionization range so that a possible decoupling of distribution func-
tions for electrons and neutrals generates a different level of approximation
in the two components.

10.1.2 Viscosity

The convergence of the Chapman–Enskog method for viscosity in equilibrium
and non-equilibrium argon plasmas has been investigated by Bruno et al.
(2006) up to the sixth approximation. The results have been reported in
Fig. 10.2 again in the form (ηi − η1)/η1.
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Keeping in mind that only for T >8,000K ionization equilibrium starts,
we can understand that in the neutral region the first approximation gives
results very similar to the sixth one, while for higher temperatures the first
approximation gives values within 7% of the sixth one. In this case no dif-
ferences between the approximations i=2 to 6 can be noted. As a result for a
partially ionized gas the second approximation should be used to obtain very
accurate viscosity values, while the first approximation is excellent for calcu-
lating viscosity values for a neutral gas. This statement is confirmed also for
strong non-equilibrium conditions characterized by weakly and fully ionized
situations in the whole temperature range 500–20,000K (Bruno et al. 2006).
These conclusions are in line with the pioneering work of Devoto (1967a).
Note also that the previous results contain both electrons and heavy-particle
components. Neglecting electrons in the viscosity equation yields differences
not higher of 0.9% so that the viscosity of a plasma can be written as

η = ηe + ηh � ηh (10.1)

This conclusion also explains that the Ramsauer effect practically does
not affect the viscosity dominated by heavy-particle collisions. Nowadays the
most used formula for the calculation of the viscosity of a partially ionized
LTE plasma is the first approximation which reads, for a ν-component mix-
ture, in the Hirschfelder et al. (1966) formalism as

η1 = −

∣∣∣∣∣∣∣∣∣

H11 . . . H1ν x1

...
...

Hn1 . . . Hνν xν

x1 xν 0

∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

H11 . . . H1ν

...
...

Hν1 . . . Hνν

∣∣∣∣∣∣∣

−1

(10.2)

Hii =
x2i
[ηi]1
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2xixj

(mi +mj)

kBT

p[Dj
i ]1
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1 + 3

5

mj

mi

A�
ij

]
(10.3)

Hij = − 2xixj

(mi +mj)

kBT

p[Dj
i ]1

[
1− 3

5
A�

ij

]
(10.4)

Equation 10.2 can be expanded as

η1 =

ν∑
i=1

x2
i

Hii
−

ν∑
i=1

ν∑
j=1,j �=i

xixjHij

HiiHjj
+ . . . (10.5)

The first term, which can be derived by assuming all off-diagonal elements
null, Hij=0, i.e. A�

ij =
5
3 , will be referred to as the first approximation to the

actual first approximation of the Chapman–Enskog method, while the first
two terms as the second approximation (first and second approximations here
defined should not be confused with previous definitions).
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Thus

[ηf ]1 =

ν∑
i=1

x2
i

Hii
(10.6)

[ηs]1 =

ν∑
i=1

x2
i

Hii
−

ν∑
i=1

ν∑
j=1,j �=i

xixjHij

HiiHjj
(10.7)
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Fig. 10.3 Relative deviations of viscosity values calculated with Eqs. (10.6) (solid
lines) and (10.7) (dashed lines) with respect to Eq. (10.2) for different atmospheric
plasmas (Capitelli 1972)

In Fig. 10.3 the percentage relative deviation of Eqs. (10.6) and (10.7) with
respect to Eq. (10.2) have been plotted as a function of the temperature for
different plasmas. It can be seen that the convergence for mixtures is gener-
ally better than for the single-component plasmas. In order to explain this
behaviour, let us consider the range of the first ionization, where the largest
deviations are observed (Capitelli 1972). The main reason of the slow conver-
gences of Eqs. (10.6) and (10.7) with respect to Eq. (10.2) can be ascribed,
for both pure and mixed plasmas, to the fact that the off-diagonal elements
Hij cannot be neglected as compared with diagonal ones Hii, when the ij
pair represents an ion–parent-atom interaction, A–A+. In fact in this case
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the resonant charge-exchange mechanism increases diffusion-type collision
integrals, without affecting the viscosity-type ones, thus leading to small A�

ij

values in Eq. (10.2) for A–A+ interactions (see Chap. 4).
The charge-exchange contribution is negligible in atom–ion hetero-

interactions, i.e. A–B+, B–A+, having a non-resonant character, so that
for mixed plasmas off-diagonal elements are less important in determining
the convergence of the approximations.

10.1.3 Electrical Conductivity

The convergence of the Chapman–Enskog method of the electrical conduc-
tivity can be understood by looking at Fig. 10.4, where we have reported, for
an LTE atmospheric argon plasma, the quantity ([σe]i − [σe]1)/[σe]1, i.e. the
differences of the electrical conductivity values calculated according to the ith
approximation and the corresponding ones calculated according to the first
approximation, the differences being normalized to the first approximation
values.
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Fig. 10.4 Relative deviation of argon plasma electrical conductivity calculated in
the ith approximation with respect to the first non-vanishing approximation

Inspection of the figure shows two distinct regions, the first one from room
temperature to approximately 7,000K dominated by e-Ar collisions, the sec-
ond region, from 7,000K on, dominated by e-Ar+ and e-e collisions. In the
low-temperature region, affected by the quantum mechanical Ramsauer ef-
fect, we recover the slow convergence of the Chapman–Enskog method for
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the electron properties (Devoto 1967a). In this case in fact also the sixth
Chapman–Enskog approximation is still far from a complete convergence.
On the other hand in the region of partial and total ionization the second
approximation (the third in Devoto formulation) seems sufficient to yield
accurate results. Again the non-equilibrium situations confirm these conclu-
sions (Bruno et al. 2006).

10.1.4 The Separation Between Electron
and Heavy-Particle Contributions

Devoto 1967a showed that the translational thermal conductivity of an argon
plasma could be written as the sum of two components, one due to the
electrons (λe) and the other one due to the heavy components (λh), i.e.

λ = λe + λh (10.8)

A comparison between exact λ values, i.e. values obtained treating electron
and heavy particle as a coupled system as those shown in the previous section,
and approximate values, i.e. those obtained by using Eq. (10.8), shows differ-
ences not larger than 0.1%, when use is made of the third approximation.
The decoupling scheme is a very useful tool because it allows a high-order
approximation for the electron component and a lower one for the heavy par-
ticles. Nowadays it is common to use the third approximation for the electron
component and the second one (the first non-vanishing approximation) for
heavy particles, i.e.

λ = [λe]3 + [λh]2 (10.9)

In the case of argon plasmas the Ramsauer effect demands a higher ap-
proximation for the electron contribution, while for gases not presenting this
effect, Eq. (10.9) well describes the translational thermal conductivity. This
point can be understood from Fig. 10.5a where the Devoto results (Devoto
1967a) for λe have been plotted in the form ([λe]i − [λe]i−1)/[λe]i−1 as a
function of temperature. The Ramsauer effect and the inadequacy of the
third approximation for the calculation of the contribution of electrons to
the thermal conductivity are well evident especially in the low-temperature
region.

Values from Eq. (10.9) depend to a given extent also on the used transport
cross sections for charged–charged collisions. Figure 10.5b reports the ratio
([λe]3+[λh]2)/[λ]2 for an atmospheric nitrogen plasma (Capitelli 1970, 1977;
Capitelli et al. 1996), obtained by calculating the transport cross sections of
charged-particle interactions with the closed forms of Liboff (1959), includ-
ing and neglecting the O(1) terms in the relevant equations (see Chap. 3). We
can see that the differences between the third and the second approximations
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Fig. 10.5 (a) Relative deviation of translational thermal conductivity of electrons
for argon plasma at p=1atm, calculated in the ith approximation with respect to
the i-1th approximation (Devoto 1967a). i=4 (open markers), i=3 (close markers).
(b) Ratio of the third approximation of thermal conductivity to the second, ([λe]3 +
[λh]2)/[λ]2 as a function of temperature for an LTE nitrogen plasma at p=1atm, ne-
glecting (close markers) or including (open markers) O(1) terms in Coulomb collision
integrals (Capitelli 1977; Capitelli et al. 1996)

strongly increase when the O(1) terms of the Liboff equations are neglected,
thus warning on the importance of using the same cross sections when dis-
cussing the convergence of the Chapman–Enskog method.

Attempts also to reduce the complexity of [λh]2 follow the same lines
discussed for the viscosity, obtaining also similar results (Capitelli 1972).
These approximations work better as compared with the viscosity because the
translational thermal conductivity of heavy components presents values lower
than the corresponding contribution of electrons and of the reactive thermal
conductivity in the temperature range where the relevant approximations to
[λh]2 are open to criticism.

10.1.5 Singh et al. Results

In a recent series of papers Singh et al. (2009) (Singh and Singh 2006; Sharma
et al. 2011) have studied the convergence problems of [λe]i and [σe]i for
equilibrium and non-equilibrium conditions. They used a formalism, that
can be reduced to the Devoto one, presenting also the possibility of further
simplifications for complicated systems. Basically they write the following
equations:
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Fig. 10.6 (left) Thermal conductivity versus electron temperature for both ground-
state (GS) (solid lines) and excited state (ES) (dashed lines) hydrogen thermal plasma
at p = 100 atm, for different values of the non-equilibrium parameter ϑ. (right) Vari-

ation of third-order contribution to thermal conductivity f
(3)
λe

with electron temper-

ature for the ground state (GS) and for the excited state (ES) hydrogen thermal
plasma at p = 100 atm (Sharma et al. 2011)

[λe]i = [λe]1f
i
λe

(10.10)

[σe]i = [σe]1f
i
σe

(10.11)

i.e. the ith approximation is seen equal to the first one times a factor f ac-
counting for the deviation to the first approximation for both the translational
thermal conductivity of electrons and the electrical conductivity. Closed forms
for these factors can be found in Sharma et al. (2011). They apply their
method to atomic hydrogen plasmas considering different effects due to

• The presence of excited states (see Chap. 7)
• non-equilibrium multi-temperature plasmas (see Chap. 8).

Interesting results have been obtained at p=100atm for the third approxima-
tion of the translational thermal conductivity of free electrons calculated at
different values of ϑ, the ratio of electron–heavy-particle temperatures, in the
presence excited state (ES) and in the absence (GS) of excited states. The
results, derived using the maximization of entropy, i.e. van de Sanden equa-
tion (Eq. (8.22)) (van de Sanden et al. 1989), are reported in Fig. 10.6. This
figure shows the effect of excited states in affecting the translational thermal
conductivity passing from ϑ=1 to ϑ=3 and the corresponding third-order
corrections for the three cases in the GS approximation showing the strong
dependence of this factor on the ϑ values. This factor also depends on the
presence of excited states which smooth the maximum present in the previous
figure, thus emphasizing the role of the different interactions in the conver-
gence problem. Comparison of these results with the corresponding ones at
p=1atm shows that non-equilibrium factor strongly increases with decreasing
pressure.
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The second example we want to show is the dependence of the third-order
coefficient to electrical conductivity on the adopted Saha equation and on the
presence of excited states. This quantity is reproduced in Fig. 10.7 for ϑ=1.5
and 3.0. In general, excited states do not change the convergence factor in
all the reported cases with the exception of non-equilibrium Saha equation
described by Eq. (8.23). Moreover we can see that in the three cases the con-
vergence factor decreases with ϑ changing from 1.5 to 3. On the other hand
the use of Saha equation (8.23) has a large role in affecting the convergence
factor in the presence of electronically excited states, this role becoming ex-
tremely important for ϑ=3.

10.2 Transport Cross Section Data Set

Transport properties of thermal plasmas strongly depend on the selection
of accurate and reliable sets of transport cross sections to be inserted in
the transport equations. Several papers do exist in literature devoted to the
sensitivity analysis of transport coefficients to transport cross sections and
presenting comparisons of results obtained by using different set of collision
integrals (Capitelli and Devoto 1973; Murphy 1995; Capitelli et al. 2000c;
Murphy 2000; Capitelli et al. 2000a; D’Angola et al. 2008; Rat et al. 2008).
In this section a systematic comparison is reported of air plasma transport
coefficients obtained with two sets of collision integrals, the first one based on
multi-potential approach (Capitelli et al. 2000c), while the second constructed
on a phenomenological approach, recently proposed in literature (Laricchiuta
et al. 2009; Capitelli et al. 2007).
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The translational thermal conductivity of free electrons, λe, and the elec-
trical conductivity, σe, have been evaluated in the third approximation of the
Chapman–Enskog method, while the first non-vanishing approximation has
been used for the translational thermal conductivity of heavy particles, λh,
and of the viscosity, η. The Eucken approximation and the Butler–Brokaw
equation have been used for the calculation of the internal thermal conduc-
tivity, λint, and of the reactive one, λr. The thermodynamic properties of
air thermal plasmas entering in the transport equations have been obtained
by using the statistical thermodynamics (Capitelli et al. 2011), i.e. by an
accurate determination of partition functions of relevant species. In particu-
lar the electronic partition functions of atomic (neutral and ionized) species
have been obtained by applying a suitable cutoff criterion to complete sets of
energy levels (observed plus missing). Basically the Fermi criterion has been
adopted at low ionization degrees, switching to the Griem criterion when the
electron density becomes sufficiently high (Capitelli et al. 2000a; D’Angola
et al. 2008, 2011).
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Fig. 10.8 Total thermal conductivity (left) and reactive thermal conductivity (right)
of air plasma as a function of temperature, at different pressures. Collision integral
data set (a)(dashed lines) and (b)(solid lined)

Figure 10.8 reports the total thermal conductivity (λ = λh+λe+λint+λr)
and its reactive component (λr) obtained by using the code in D’Angola et al.
(2011, 2008), including in the transport equations the collision integrals of the
older data set (a) (Capitelli et al. 2000c), compared with transport coefficients
recently re-evaluated in the phenomenological approach (b) (Laricchiuta et al.
2009). A general satisfactory agreement is observed, though non-negligible
differences arise, also in the different contributions, always less than 25%
except for the onset of the translational thermal conductivity, where higher
deviations are found at T=7,000K.
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The reactive thermal conductivity has been calculated by the rigorous
Butler–Brokaw equation (Brokaw 1960; Butler and Brokaw 1957). Inspection
of the results at p=1bar shows three different maxima: the first one due
to the dissociation reaction of O2 (i.e. O2 ↔2O), the second one due the
molecular nitrogen dissociation (N2 ↔2N) and the third one due the convo-
lution of the ionization reactions of atomic nitrogen and atomic oxygen (i.e.
N↔N+ + e and O↔O+ + e). These maxima shift to high temperature with
the increase of the pressure. To rationalize the differences (less than 25%)
arising in the results by using the two data sets, we remind that, to a first ap-
proximation, the reactive thermal conductivity is determined by the diffusion
coefficients, related to the corresponding diffusion-type collision integrals by

an inverse dependence, i.e. Dj
i ∝ 1/Ω

(1,1)�
ij . Thus, the first maximum depends

on Ω
(1,1)�
O−O2

, the second maximum on Ω
(1,1)�
N−N2

and the third one on Ω
(1,1)�

O−O+ and

Ω
(1,1)�

N−N+ . In all these cases the diffusion-type collision integrals, reported in

Capitelli et al. (2000c), are lower than the corresponding ones reported in
the more recent compilation (Laricchiuta et al. 2009) generating the differ-
ences of Fig. 10.8. Note however that the N–N+ and O–O+ interactions of
Capitelli et al. (2000c) were based on the high-energy experimental charge-
transfer cross sections of Belyaev et al. (1968), while the most recent data
are based on theoretical values from the asymptotic theory (Kosarim et al.
2006; Kosarim and Smirnov 2005) (see Chap. 4).
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Fig. 10.9 Viscosity (left) and electrical conductivity (right) of air plasma as a func-
tion of temperature, at different pressures. Collision integral data set (a)(dashed lines)
and (b)(solid lined)

In Fig. 10.9 viscosity and electrical conductivity are displayed. Deviations
less than 20% are observed in the viscosity, either in the dissociation or par-
tial ionization regimes, being the values calculated with the transport cross
sections from the phenomenological approach lower than the corresponding
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values obtained by using the database of Capitelli et al. (2000c). In this
last case the neutral–neutral interaction were obtained by using an experi-
mental repulsive potential for T >2,000K and a Lennard-Jones potential for
T <1,000K. On the other hand the corresponding N–N2 and O–O2 trans-
port cross sections, calculated by using ab initio potentials (Stallcop et al.
2001), are close to the corresponding value from phenomenological approach.
A similar situation holds for the viscosity-type collision integrals for N–N+

and O–O+ interactions, i.e. the collision integrals for the set (a) are lower
than the corresponding ones for the set (b), thus generating the differences
reported in Fig. 10.9.

To rationalize the behaviour of the electrical conductivity it must be re-
minded that it mainly depends on electron–neutral interactions, i.e. e-N2,
e-O2, e-N, e-O, as well as on electron–electron and electron–ion interactions.
The Coulomb interactions tend to dominate as soon as the concentration of
electrons becomes about one order of magnitude lower than the correspond-
ing ones for neutral species. This condition rapidly occurs for p=1–10bar,
while at very high pressures, p=102-103 bar, neutral species keep their role in
a wider temperature range. As a result, at high temperature, for p=1bar, we
observe differences less than 5% in the values of translational thermal con-
ductivity of electrons calculated with the two sets of transport cross sections,
because these results are determined by the electron–electron and electron–
ion transport cross sections, evaluated with the same shielded Coulomb po-
tential. On the other hand, at p=103 bar, differences of 20% can be observed
due to the corresponding deviations in the e-N2, e-O2, e-N, e-O transport
cross sections between the two databases.

This analysis could be extended also to the components of the thermal
conductivity, not reported here, just recalling that the internal thermal con-
ductivity behaves like the reactive thermal conductivity, the translational
thermal conductivity of heavy particles like the viscosity and the transla-
tional thermal conductivity of free electrons like the electrical conductivity
(see D’Angola et al. 2012).

Transport coefficients tend to converge for high values of the electron den-
sity (T >20,000K) regardless the database used for heavy-particle interac-
tions, due to the dominant role of Coulomb interaction between charged par-
ticles. Actually in the high-temperature region, other sources of discrepancy
are connected to the adopted values for Coulomb collision integrals. Nowadays
the accurate Hahn and Mason (Hahn et al. 1971) transport cross sections are
widely used; however, a problem still exists in the practical application linked
to the definition of the Debye length, in fact including or neglecting ion den-
sity yields different results as can be observed in Fig. 10.10 where the effect
on the electrical conductivity is shown. Differences could arise also when the
well-known Liboff formulae (Liboff 1959) are used, in fact Coulomb collision
integrals, estimated including high-order corrections O(1) in Eq. (3.49), are
lower than values by Hahn and Mason, thus resulting in higher values for de-
rived transport coefficients, as it can be appreciated in Fig. 10.10, for electrical
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Fig. 10.10 (left) Electrical conductivity of air plasma as a function of temperature,
at different pressures, including (solid lines) or neglecting (dotted lines) the ion density
in the calculation of Debye length (collision integral data set (right)). (right) Electrical
conductivity of air plasma as a function of temperature, at p=1bar, by using different
values for the Coulomb interaction collision integrals. (solid line) (Hahn et al. 1971),
(dashed-dotted line) Liboff formulae (Liboff 1959)

conductivity of air plasmas, and expected for the total thermal conductivity.
On the other hand we can note that use of the Liboff formulae without taking
into account the O(1) terms leads to an increase of the corresponding cross
sections, producing a corresponding decrease of transport coefficients. There-
fore use of Liboff formulae (Liboff 1959) truncated to the dominant ln [ 2λD

b0
]

term yields transport cross sections in better agreement with the more accu-
rate Hahn and Mason numerical results. Moreover the fourth approximation
of the Chapman–Enskog method in combination with Liboff transport cross
sections for Coulomb interactions, not including O(1) terms, reproduces, in
the completely ionized gas regime, the Spitzer and Härm results (Spitzer and
Härm 1953) based on the Fokker–Planck equation (Devoto 1967b).

This point, exalted when two-temperature plasmas are considered, should
be further investigated in light of the numerous efforts done in the past on
the topic (Devoto 1968).

10.3 Inelastic Processes

The study of the influence of inelastic processes on the transport properties of
atomic and molecular gases began with the formal description of the kinetic
problem by Chang and Uhlenbeck (1951). Later, Mason and Monchick
(1962) put the equations in a more compact form, trying to emphasize the
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close connection of the collision integrals calculated by taking into account
inelastic processes with the familiar ones, obtained considering only elastic
processes.

Let us denote with
dσkl

ij

dΩ (g → g′, ϑ, φ) the differential scattering cross sec-
tion for the process

g = v − v1 → v′ − v′
1 = g′ Eq

i → Eq
k Eq′

j → Eq′
l (10.12)

i.e. for the process involving species q and q′ initially in the internal states i
and j and after the collision in internal states k and l. g and g′ are the relative
velocities before and after the collision, and ϑ and φ are, respectively, the
polar and azimuthal angles, describing the relative orientation of the relative-
velocity vectors. After different manipulations the diffusion- and viscosity-
type collision integrals can be written as

Ω(�,s) =
1

QqQq′

∑
ijkl

∞∫

0

dγ

2π∫

0

dφ

π∫

0

sinϑdϑγ3e(−γ2−εi+εj)
dσkl

ij

dΩ
A(�,s) (10.13)

with

A(1,1) = (γ2 − γγ′ cosϑ) (10.14)

A(2,2) = [γ4 sin2 ϑ+ 1
3 (Δε)2 − 1

2 (Δε)2 sin2 ϑ] (10.15)

where γ2 = (mqq′g
2)/(2kBT ), εi = Eq

i /kBT , Δε = εk + εl − εi − εj and Qq is
the internal partition function of q-th species. The Eq. (10.13) reduces, in the
limit of elastic collision, to Eq. (3.11). In fact in this case we have γ = γ′ and
Δε=0 and we retrieve exactly the elastic collision expressions provided that
all internal states have the same elastic cross section, that is, σkl

ij = σel for

all i, j. If σkl
ij varies with i, j the classical expression is still obtained provided

each quantum state is counted as a different molecular species. This last
procedure has been adopted to estimate the influence of electronically excited
states on transport properties. In this case both the diffusion- and viscosity-
type collision integrals depend on the specific quantum number so that we
are obliged to consider them as a separate species in the mixture. The elastic
cross section involving vibrational states depends on the vibrational quantum
number. As an example, the total elastic cross section for e-N2(υ) interaction
strongly decreases (Chandra and Temkin 1976) with the vibrational quantum
number υ.

Let us now consider the effect of inelastic cross sections on transport cross
sections (see also Chap. 1). A lot of work has been done in this field, es-
pecially concerning the rotational degree of freedom (Chandra and Temkin
1976; Gianturco et al. 1991, 1994; Dickinson and Lee 1986; Parker and Pack
1978; Billing and Wang 1992; Wang and Billing 1992).

Classical and quantum scattering theories have been used for calculating
the differential scattering cross sections for the process
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Fig. 10.11 Thermal conductivity of N2 as a function of temperature. (solid line)
semiclassical, (dashed line) classical rigid rotor, and (open squares) classical vibrating-
rotor results, compared with experimental results (down triangles) (Touloukian 1970),
(up triangles) (Shashkov et al. 1985), (close diamonds) (Haarman 1973)

M2(i) +M2(j) → M2(k) +M2(l)

where i, j, k, l denote quantum states (rotational levels). These cross sections
are then averaged in the collision integrals according to Eq. (10.13). In gen-
eral, the use of the inelastic rotational cross sections does not change dra-
matically the collision integrals. A difference up to 6% has been observed
between viscosity-type collision integrals calculated with and without inser-
tion of inelastic processes, the latter being larger. More important in this
kind of calculation is the dependence of the collision integrals on the poten-
tial energy surface used in the scattering problem, as shown by Nyeland
and Billing (1988). The effect of inelastic vibrational collisions in the cal-
culation of the transport properties of air components is more complicated.
Nyeland and Billing (1988) have tried to estimate this effect by using the
same semiclassical treatment used for rotational states. The results show
that the viscosity-type collision integrals for the rigid rotor are larger than
the corresponding values for the vibrating rotor. In this case the two nitrogen
molecules were allowed to have 1/2�ω energy each one. This result, however,
gives greater values of transport coefficients, in disagreement with the exper-
imental results (Touloukian 1970; Shashkov et al. 1985; Haarman 1973) (see
Fig. 10.11).
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A large effort has been also dedicated to understand the contribution of
rotational states by using quantum scattering theories. The problem of us-
ing vibrational inelastic processes remains of great actuality, especially when
the vibrational distribution of molecules is far from the Boltzmann one (see
Chap. 6). The effect of inelastic vibrational collisions on the thermal conduc-
tivity of nitrogen has been studied by Billing and Wang (1992), in the frame
of coupled semiclassical vibro-rotational treatment. The differences are in any
case small. It should be noted the Eucken approximation gives approximately
the same results.

Fox (1970) considered the role of the first electronic excitation of argon
and lithium in affecting the diffusion coefficients of e-Ar, e-Li pairs. Insertion
of inelastic cross section decreases the diffusion coefficient by approximately
15% for argon and 8% for lithium (see Fig. 10.12), in a temperature range
where these collisions lose their importance as compared to electron–electron
and electron–ion collisions. As a consequence the electrical conductivity for
LTE argon and lithium plasmas was only affected by these collisions for no
more than 1%.
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Fig. 10.12 Binary diffusion coefficient for electrons in neutral argon (a) and lithium
(b) vapour at p=1atm (Fox 1970). (solid lines) elastic collisions, (dashed lines) in-
cluding inelastic electronic excitation channel

These results however can change for systems characterized by processes
with low-energy threshold such as resonant vibrational excitation. In this
case one should expect an important role of inelastic collisions in affecting
the transport coefficients similarly of what happens in cold plasmas (Capitelli
et al. 2000b).
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10.4 Quantum Effects

The effectiveness of quantum effects can be estimated considering a model
potential for the collisional-pair interaction, e.g. the well-known Lennard-
Jones (12-6) potential (see Chap. 3). The diffusion-type cross section can be
written in reduced form as (Imam-Rahajoe et al. 1965)

Q(1)� =
Q(1)

πσ2
=

(
Λ�2

π2E�

)∑
�

(� + 1) sin2 (η�+1 − η�) (10.16)

where Λ� = hP/σ(2μϕ0)
1/2 is the quantum parameter which governs the

magnitude of the quantum effects, E� = E/ϕ0 is the reduced energy, and
� is the angular momentum quantum number. In turn the phase shifts are
obtained by the solution of the radial wavefunction equation describing the
scattering problem. The diffusion-type collision integrals are then obtained
by integrating the cross sections on Maxwell distribution functions of the
velocity. The classical behaviour is obtained in the limit Λ� = 0. As shown
in Imam-Rahajoe et al. (1965), quantum effects are important for a reduced
temperatures T � = kBT/ϕ0 < 4 and for Λ� > 1. As an example in the
case of H2–D2 collisions Λ� = 1.5 and the corrections are very small for
all reduced temperature range, while in the case of He–He Λ� = 2.9 and
the quantum corrections are well evident for T < 100 K. In the interaction
among air components the reduced mass and the depth of the attractive
potentials reduce the Λ� values, thus reducing the importance of quantum
effects in this kind of collisions (Levin et al. 1994). Note, however, that in
the electron–atom and electron–molecule cases the reduced mass corresponds
to that one of the electron and the quantum corrections are very important
because of the increased values of Λ�. Quantum corrections for attractive and
repulsive screened Coulomb potentials have been considered by Hahn et al.
(1971). These corrections increase with increasing E�Λ�2 values, being in any
case small for thermal plasma conditions.

10.5 Comparison with Experiments

A comparison of theoretical and experimental transport coefficients of plas-
mas suffers to some extent from the fact that no experiments have been at-
tempted recently that could improve the measurements done forty years ago.
On the other hand the theoretical results, while constantly improved in these
last years, do not differ significantly with respect to old values, mainly be-
cause compensation effects occur in the different approaches. As a result the
comparison between theory and experiments follows qualitatively the same
lines discussed in the early papers (Capitelli and Devoto 1973; Capitelli et al.
1977). The situation however from the point of view of theory is nowadays
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well assessed so that the differences between theoretical and experimental
values can be ascribed to the partial lack of LTE (local thermodynamic equi-
librium) conditions in the so-called thermal plasmas as well as in the possible
errors in the measurements. Keeping in mind these considerations, different
case studies, namely, hydrogen, nitrogen and air equilibrium plasmas, are
here examined in detail.

Figure 10.13 reports a comparison of the theoretical transport coeffi-
cients (Bruno et al. 2010) with available experimental values, i.e. the total
thermal conductivity and the electrical conductivity obtained in Popović
and Konjević (1976) correcting for the radial temperature distribution.
The agreement for both quantities can be considered satisfactory even
though the comparison of the theoretical results with older experimen-
tal values (Plantikow and Steinberger 1970; Morris et al. 1970) reviewed in
Bauder and Maecker (1971) is less satisfactory
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Fig. 10.13 Comparison of theoretical total thermal conductivity and electrical con-
ductivity for equilibrium hydrogen plasma, at p=1bar, with experiments. (solid
line) (Bruno et al. 2010), (close diamonds) (Popović and Konjević 1976)

Figure 10.14 reports a comparison of the theoretical results calculated with
the potentials derived as a subsystem of Mars database and the experimental
results obtained by different authors. All the measurements have been cor-
rected in some way for the transport of energy via radiation in the arc-heated
gas. The corrective method employed by Asinovsky et al. (1971) appears to
be the best: they measured the effective conductivity in arcs of different radii
and extrapolated to zero radius where the effect of radiation vanishes. The
agreement between theoretical and experimental results is indeed satisfac-
tory especially taking into account the error bars reported in Capitelli and
Devoto (1973) for the thermal conductivity and those of Schreiber et al.
(1971) for the viscosity. The agreement is indeed very good for the electrical
conductivity.
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Fig. 10.14 Comparison of theoretical total thermal conductivity, electrical conduc-
tivity and viscosity for equilibrium nitrogen plasma, at p=1bar, with experiments.
(solid line) (Bruno et al. 2012), (close diamonds) (Hermann and Schade 1970, (close
squares) (Schreiber et al. 1972, 1971), (open squares) (Asinovsky et al. 1971)

Finally, Fig. 10.15 compares theoretical and experimental thermal conduc-
tivity and electrical conductivity values for equilibrium air plasmas. Two se-
ries of theoretical results (D’Angola et al. 2008, 2012) are reported, obtained
including two sets of transport cross sections discussed in Sect. 10.2.

A good agreement is found for the experimental electrical conductivity
with both data sets of transport cross sections. The agreement between exper-
imental and theoretical results seems to privilege the use of the old database
of transport cross sections than the more recent calculations. This is more and
more true in the region of nitrogen dissociation. We can see in fact that the
largest difference occurs at about 7,000K, dominated by the reactive thermal
conductivity of nitrogen. In this case the results depend on the σ2Ω(1,1)� of
the N–N2 interaction pair, which, according to our analysis, should be better
described by our recent calculations. These data in fact are in good agree-
ment with the quantum mechanical calculations of Stallcop et al. (2001),
as it can be appreciated in Fig. 10.16. Probably the two sets of theoretical
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Fig. 10.15 Comparison of theoretical total thermal conductivity and electrical
conductivity for equilibrium air plasma, at p=1bar, with experiments. (solid
line) (D’Angola et al. 2012) with transport cross section data set in Laricchiuta
et al. (2007), (dashed line) (D’Angola et al. 2008) with transport cross section data
set in Capitelli et al. (2000c), (open squares) (Asinovsky et al. 1971)

results become compatible with the experimental ones once taken into ac-
count possible error bars of the experimental values. Note that the present
status of theoretical and experimental results seems to definitively rule out
older theoretical values (Yos 1965; Bacri and Raffanel 1987, 1989; Hansen
1960), which however are still widely used in fluid dynamics codes.
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Chapter 11

Transport Properties of High
Temperature Planetary Atmospheres

In this chapter we report in graphical and tabular form the transport
properties of high-temperature planetary atmospheres (Earth, Mars and
Jupiter) in a wide range of temperature and pressure.1 We are using the basic
equations for the transport equations illustrated in Chap. 1 as well as trans-
port cross sections databases calculated according to the methods reported
in Chaps. 3 and 4. We limit our transport data to LTE (local thermodynamic
equilibrium) situations leaving to future editions extensive tables including
several important features discussed in the present volume (two-temperature
plasmas, inclusion of vibrational and electronically excited states, magnetic
field role). The relevant data together with the corresponding thermodynamic
data (Capitelli et al. 2011) can be used with a fair amount of confidence in
several applications of plasma and laser–plasma dynamics. It should be noted
that we have also reported tables of thermodynamic properties of planetary
atmospheres at 1,000bar, missing in Capitelli et al. (2011).

11.1 Basic Equations

Transport coefficients of high-temperature planetary atmospheres have been
calculated according to the following hypotheses (Devoto 1967; Capitelli et al.
1976; Capitelli 1977; Capitelli et al. 2000a; D’Angola et al. 2008):

• The translational thermal conductivity of the plasma is considered as
the sum of the contributions due to heavy particles and free electrons,
i.e. λtr = λh + λe. λh is calculated in the first non-vanishing approxima-
tion of the Chapman–Enskog (CE) method, while the third approximation
is used for λe.

1 The pressure is given in bar, though throughout the book, also atm units are used
for results taken from literature, the conversion factor being 1 bar=0.987 atm.

M. Capitelli et al., Fundamental Aspects of Plasma Chemical Physics,
Springer Series on Atomic, Optical, and Plasma Physics 74,
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• The viscosity of the plasma is decoupled in the sum of heavy particle
and free electron contributions, the last term being neglected. The heavy-
particle viscosity is calculated according to the first CE approximation.

• The electrical conductivity is limited to the electron contribution and cal-
culated in the third CE approximation.

• The compact Brokaw approximation has been used for the calculation of
the reactive thermal conductivity.

• The Eucken approximation in the form

λint =
1

T

ν∑
j=1

xj
(cpint)j

kB∑ν
i=1

xi

pDj
i

(11.1)

is used for the calculation of the internal thermal conductivity. This ap-
proach is used for the calculation of transport properties of Earth and
Mars atmospheres. On the other hand for Jupiter the results have been
obtained with the equivalent approach described in Chaps. 1 and 2, how-
ever not separating electron and heavy-particle contributions in the trans-
lational thermal conductivity and viscosity. Moreover in the Jupiter case
both electrons and ions are inserted in the calculation of the Debye length.
In particular the second non-vanishing approximation has been used for λ
and η (i.e. the third and the second approximations in the Devoto formu-
lation, respectively).

Once selected the transport equations, appropriate transport collision
integrals and thermodynamic properties of the species forming the high-
temperature mixture must be entered. The recent database of Mars atmo-
sphere (Laricchiuta et al. 2009) has been also used for air (Bruno et al. 2011;
D’Angola et al. 2012), the Earth atmosphere components being a sub-system
of Mars atmosphere. Collision integrals relevant to Jupiter component inter-
actions have been recently reviewed in Bruno et al. (2010).

Finally equilibrium compositions and thermodynamic properties entering
in the transport equations are those tabulated in the recently published
book by Capitelli et al. (2011) (here results for the three atmospheres at
p=1,000bar are reported also to complete the database of thermodynamic
properties). Briefly these data have been obtained by accurate values of
internal partition functions; in the case of monatomic species (neutral and
ionized) a self-consistent cutoff criterion, based on the interplay of Griem
and Fermi criteria, has been used over complete sets of energy levels (observed
and missing) of the relevant atomic species (Capitelli et al. 2000a; D’Angola
et al. 2008). Accurate values of equilibrium compositions and thermodynamic
properties of the species forming the mixture are inserted in the transport
equations overestimating the role of electronic excitation in affecting the
transport coefficients, calculated inserting the ground-state transport cross
sections. This decision can be justified with the still poor existence of com-
plete databases including the dependence of the transport cross sections on
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the quantum state of the colliding species, despite the efforts done in this
book. The progress in this direction is increasing and we hope to report more
accurate values, including the role of electronically excited states, possibly in
a second edition of the book. Note also that some caution should be exercised
when using these data at very high pressure and low temperature when the
concept of binary collision is open to criticism (D’Angola et al. 2012).

11.2 Collision Integrals

11.2.1 Mars and Earth Interactions

Collision integrals for neutral–neutral and ion–neutral interactions involving
atomic and polyatomic species and multiply-charged ions have been cal-
culated, modelling the interactions in the frame of the phenomenological
approach (see Chap. 3).

Polarizabilities have been taken from literature (Hirschfelder et al. 1966;
Miller and Bederson 1977; Das et al. 1992; Hati and Datta 1995, 1996)
or estimated through an empirical formula (Alagia et al. 2004) for neu-
tral and unstable ionic gaseous species, for which no experimental and/or
theoretical information is available. For polyatomic species an “effective
atomic polarizability-in-molecule” approach (van Duijnen and Swart 1998;
Ewig et al. 2002; Gavezzotti 2003) has been adopted. In Table 11.1 the
polarizability values for Mars atmosphere species have been reported. In
Tables 11.2–11.4 the parameters for the phenomenological potential in neu-
tral and neutral–ion interactions have been presented, whose values allow
the direct estimation of the corresponding collision integrals through fitting
relations Eqs. (3.67) and (3.68) (see Sect. 3.4.2).

Inelastic contributions to odd-order collision integrals due to resonant
charge-exchange processes in ion–parent-neutral interactions have been fit-
ted with the following formula:

σ2Ω(�,s)�
ex = d1 + d2x+ d3x

2 (11.2)

where x = ln (T ). Table 11.5 reports fitting parameters for different sys-
tems, together with the references in literature for resonant charge-exchange
cross sections. For ion–parent-atom interactions results obtained in the
framework of the asymptotic theory (Nikitin and Smirnov 1978; Smirnov
2001) have been considered and parameters listed, in the table, as well as
those for oxygen and nitrogen systems, for which cross sections data have
recently been updated (Kosarim and Smirnov 2005; Kosarim et al. 2006). In
Capitelli et al. (2000b) σ2Ω(1,s)� values were derived, from multi-state im-
pact parameter cross sections (Flannery et al. 1973; Moran et al. 1974), for
molecule–molecular-ion systems relevant to Earth atmosphere, i.e. N2–N

+
2 ,
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O2–O
+
2 , O2–O

−
2 , NO–NO+ (see Table 9 of Capitelli et al. 2000b). CO–CO+

interaction has been included, using resonant cross sections by Yevseyev
et al. (1982), obtained by extending the asymptotic theory to diatoms, while
for C2–C

+
2 and CN–CN+ collision integrals have been assumed equal to C–

C+ and CO–CO+, respectively. Resonant charge-transfer processes involving
triatomic species have not been considered yet.

In Table 11.4 parameters for atom–multiply-charged ion interactions, mod-
eled with the phenomenological potential, are reported. The depth of the
potential well was found to be of the order of eV or even tens of eV in
some cases, due to the strength of induction fields, which characterize these
kinds of interactions. As for singly charged ions, the contribution of inelas-
tic resonant processes has been estimated. Corresponding cross sections for
multiple resonant charge exchange have been evaluated in the framework of
the asymptotic approach (see Section 4.3). Adopting the functional form of
Eq. (11.2), fitting coefficients for considered colliding systems are reported in
Table 11.6.

In the case of electron–neutral species interactions, the approaches outlined
in Section 3.4.4 have been used, in particular:

• CO2 momentum transfer and elastic cross sections from Itikawa (2002)
(for energies lower than 1 eV the elastic cross section is considered equal
to the momentum transfer one).

• CO elastic and momentum transfer from Chandra (1977).
• C elastic cross section from Thomas and Nesbet (1975b) and Coulomb

screening with Z = 6 for the calculation of Q2.
• N2O elastic and momentum transfer from Winstead and McKoy (1998)

for energies greater than 1.5 eV due to the better resolution of the reso-
nance region, while for lower energies data are from Biagi (2012) and the
momentum transfer cross section is considered equal to the elastic one.

• O3 elastic momentum transfer from Biagi (2012) and Coulomb screening
with average Z for the calculation of Q2.

For air species, i.e. N, O, N2, O2 and NO, new calculations have been per-
formed that represent an extension of the database for electron–neutral col-
lisions for Earth atmosphere species (Capitelli et al. 2000b):

• As regards the nitrogen molecule, the momentum transfer cross section is
the one by Itikawa (2006), whereas the correctionsQ2/Q1 and Q3/Q1 have
been obtained by integrating the differential cross sections recommended
by Brunger and Buckman (2002). From 0.55 to 10 eV the differential cross
sections were taken from Sun et al. (1995), while for energies above 10 eV
from Gote and Ehrhardt (1995).

• For the e–O2 interaction we used the momentum transfer cross section
from Phelps (2007) below 0.5 eV, while above 0.5 eV we used the one from
Itikawa et al. (1989). For the DCS data, we used the ones of Sullivan et al.
(1995), recommended by Brunger and Buckman (2002), below 30 eV, while
above 30 eV we used the ones of Shyn and Sharp (1982).
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• For the e–NO interaction the momentum transfer is the one of Hayashi
(1989), while the Q2/Q1 and Q3/Q1 corrections were obtained by inte-
grating the DCS of Mojarrabi et al. (1995), again following the recom-
mendations of Brunger and Buckman (2002).

• As regards the e–O collision, we have used the Q2 and Q1 cross sections
of Thomas and Nesbet (1975a). Additional points at 20, 45 and 100 eV
were obtained by integrating the differential cross sections of Blaha and
Davis (1975). The Q3/Q1 ratio was deduced from the known Q2/Q1 by
assuming the model angular dependence of the differential cross section in
Eq. (3.69).

• The e–N collision integrals were calculated using the total and differential
elastic cross section of Thomas and Nesbet (1975c) with Δ = 0.575 eV
below 2 eV and the results of Blaha and Davis for higher energies (Blaha
and Davis 1975).

For electron–argon interaction high-order collision integrals have been
derived by integration of experimental differential elastic scattering cross
sections (see Bruno et al. 2006).

Electron–molecule systems, whose transport cross sections are not avail-
able, have been modeled considering the corresponding collision integrals
equal to known interactions. Collision integrals have been fitted, as a func-
tion of x = ln (T ), using the following formula, which is slightly different
from the one proposed in the previous work (Capitelli et al. 2000b) due to
the additional parameter g10:

σ2Ω(�,s)� =
g3xg6 exp [(x− g1)/g2]

exp [(x− g1)/g2] + exp [−(x− g1)/g2]

+g7 exp

[
−
(
x− g8

g9

)2]
+ g4 + g10x

g5 (11.3)

Fitting coefficients gj , entering Eq. (11.3), are presented in Table 11.7, for
relevant interaction in the Mars atmosphere.

Table 11.1 Polarizability values (Å3) for Mars atmosphere species

Ar (1S) 1.64 N2+ (2P) 0.284 N2 1.75 C3 3.60

Ar+ (2P) 0.919 N3+ (1S) 0.209 N+
2 1.75 N3 2.70

Ar2+ (3P) 0.391 N4+ (2S) 0.201 N−
2 7.00 O3 3.21

Ar3+ (4S) 0.231 N− (3P) 4.41 O2 1.60 O−
3 6.42

Ar4+ (3P) 0.294 O (3P) 0.80 O+
2 0.80 C2N 3.3

C (3P) 1.76 O+ (4S) 0.279 O−
2 6.40 CO2 2.91

C+ (2P) 0.79 O2+ (3P) 0.228 CN 2.1 CO+
2 1.46

C2+ (1S) 0.368 O3+ (2P) 0.182 CN+ 1.05 CO−
2 11.64

C3+ (2S) 0.289 O4+ (1S) 0.164 CN− 4.20 C2O 3.2
C4+ (1S) 0.003 O− (2P) 3.256 CO 1.95 NO2 3.02
C− (4S) 5.13 C2 2.4 CO+ 0.98 N2O 3.03

N (4S) 1.1 C+
2 1.2 NO 1.70 N2O+ 1.52

N+ (3P) 0.55 C−
2 4.8 NO+ 0.85 CNO 2.9
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11.2.2 Jupiter Interactions

11.2.2.1 H–H, H–H2, H2–H2

For these systems accurate collision integral calculations have been performed
by Stallcop et al. (1996, 1998) based on ab initio potential energy surfaces,
considering an angular averaged potential for anisotropic atom–diatom and
diatom–diatom collisions. For H–H2 and H2–H2 data have been tabulated
up to T = 20, 000K; therefore, in the high-temperature region, dominated
by the short-range interaction, collision integrals have been calculated by
integration of a repulsive potential used in Gorse and Capitelli (2001) and
based on experimental data.
A full-range fitting expression [Eq. (11.4)], merging the low- and high-
temperature data sets, has been used. The sigmoidal form is the same
already used for the phenomenological case, though in this case, the dimen-
sional σ2Ω(�,s)� is obtained directly as a function of x = ln (T ):

σ2Ω(�,s)� = [a1 + a2x]
exp [(x− a3)/a4]

exp [(x− a3)/a4] + exp [(a3 − x)/a4]

+a5
exp [(x− a6)/a7]

exp [(x − a6)/a7] + exp [(a6 − x)/a7]
(11.4)

Fitting coefficients ai are reported in Table 11.8.

11.2.2.2 H–He, He–He, H−–He, H–He+, He–He+

The existence of weakly bound states of H−–He molecular ion, where the H–
He neutral molecule itself is either unbound or barely bound, has been theo-
retically investigated (Li and Lin 1999; Olson and Liu 1980). The interaction
potentials, merging short-range repulsive and long-range weakly attractive ab
initio results by different authors (Li and Lin 1999; Meyer and Frommhold
1994; Olson and Liu 1980), have been fitted with Hulburt–Hirschfleder func-
tions. Optimised potential parameters are (ϕ0 = 6.14 10−4 eV, re = 3.524 Å,
αHH = 6.2613, βHH = 3.6046, γHH = 0.8732) for the H–He system and
(ϕ0 = 6.22 10−4 eV, re = 6.15 Å, αHH = 3.8, βHH = 7.9166, γHH = 3.2832)
for H−–He.

The potential for the He–He interaction has been taken from accurate
theoretical results in literature, also providing a fitting formula, combining
repulsive and attractive components (Hurly and Mehl 2007).

For the H–He+ interaction the Hulburt–Hirschfelder fitting of the accurate
ab initio potential by Aubreton et al. (2004a) has been considered (ϕ0 =
2.040 eV, re = 0.7743 Å, αHH = 2.1243, βHH = −0.3528, γHH = −1.7676) and
collision integrals derived by integration.
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The accurate ab initio potential energy curves for the 2Σgu electronic
terms, arising in the He–He+ interaction have been fitted by Hulburt–
Hirschfelder potential (ϕ0 = 2.4730eV, re = 1.081 Å, αHH = 2.23, βHH =
0.2205, γHH = 4.3890) and modified repulsive potential (ϕ0 = 359.0 eV,
a = 4.184 Å−1, b = −0.649 Å−2, c = 0.08528 Å−3) in Aubreton et al. (2004b).
The effective collision integrals results from the usual averaging procedure
[Eq. (3.56)].

In Table 11.8 the fitting coefficients, ai, entering Eq. (11.4) are reported.

11.2.2.3 He2+–He, He2+–H, He2+–H2

Collision integrals for interactions involving the He2+ dication have been
derived in the framework of a polarization model (Chap. 3), polarizability
values being reported in Table 11.9.

11.2.2.4 H+–H, H+–H2, H
+–He

Accurate potential energy curves are available for the two electronic terms,
2Σ+

g and 2Σ+
u , of the H+

2 system (Sharp 1970) correlating with H(2S)-H+,
allowing the rigorous multi-potential procedure. The gerade term has been
fitted with the Hulburt–Hirschfelder potential (ϕ0 = 2.791 eV, re = 1.060 Å,
αHH = 1.28, βHH = −0.5, γHH = −2.0) while the modified Morse po-
tential proposed in Sourd et al. (2006) (ϕ0 = 3.018 eV, re = 1.058 Å,
β0 = 1.3870 Å−1, β1 = 0.0135, β2 = 0.0117) has been adopted for the unger-
ade state.

The H+–H2 and H+–He systems have been studied by Krstic̀ and Schultz
(1999, 2003) within the frame of a quantum approach, obtaining accurate dif-
fusive and viscosity transport cross sections in the energy range [0.1–20eV]
and [0.1–100eV], respectively. The derivation of collision integrals is straight-
forward by integration in Eq. (3.11) however, the lower energy limit does not
allow the σ2Ω(�,s)� estimation at low temperatures.

In order to estimate the transport cross sections, Q(�), for E ≤ 0.1 eV,
the long-range potential for the H+–He, has been described by a polarization
model [Eq. (3.34)], while the potential surface for H+

3 in the limit of H+–H2

dissociation (Krstic̀ 2002) has been fitted with a Hulburt–Hirschfelder po-
tential (ϕ0 = 4.78 eV, re = 0.73291 Å, αHH = 1.3767, βHH = −0.590, γHH =
−1.653). The σ2Ω(3,3)� values, required by the adopted approximation in the
Chapman–Enskog method, for H+–H2 have been calculated by the Hulburt–
Hirschfelder potential and in the case of H+–He interaction have been set
equal to σ2Ω(1,1)�. Collision integrals have been fitted by using the expres-
sion in Eq. (11.4) and ai coefficients given in Table 11.10.
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Table 11.9 Polarizability values (Å3) for Jupiter atmosphere species

He 0.205
H2 0.81
H 0.6668
He+ 0.03
H− 27.0

H+
2 0.424

H+
3 0.4663

11.2.2.5 Phenomenological Interactions

The phenomenological approach has been adopted for the other interactions
relevant to Jupiter atmosphere. Polarizability values for Jupiter species, taken
from literature (Miller and Bederson 1977; Magnasco and Ottonelli 1999; Ol-
ney et al. 1997; Gorfinkiel and Tennyson 2004) or estimated through an em-
pirical formula (Alagia et al. 2004) as for H−, have been reported in Table 11.9
and potential parameters for different interactions, needed for bi-dimensional
fit, presented in Table 11.11.

Table 11.12 reports fitting parameters entering Eq. (11.2) for σ2Ω
(�,s)�
ex

in different systems, together with the references in literature for resonant
charge-exchange cross sections. For ion–parent-atom interactions experimen-
tal results have been considered (Rundel et al. 1979; Huels et al. 1990).
The cross section for the double charge transfer in He–He2+ collisions has
been theoretically derived in Janev et al. (1987). In the case of H–H+ accu-
rate charge-transfer cross sections have been obtained by Krstic̀ and Schultz
(1999) by quantum approach. H2–H

+
2 interaction has been included, using

resonant cross sections by Yevseyev et al. (1982), obtained by extending the
asymptotic theory to diatoms. For H–H− interaction the experimental cross
sections by Huels et al. (1990) have been used, which compares well with theo-
retical results obtained in the framework of the asymptotic theory (Davidović
and Janev 1969) and with a perturbed-stationary-states approach (Dalgarno
and McDowell 1956).

Collision integrals for electron–neutral species interactions have been cal-
culated by straightforward integration based on the corresponding transport
cross sections, Q�(E) as functions of electron energy.

Electronic scattering from hydrogen atoms has been deeply investigated
theoretically (Bray et al. 1991; Gupta and Mathur 1980) finding an excellent
agreement with absolute crossed-beam measurements (Williams 1975b,a).
The diffusion-type collision integral has been calculated here by integra-
tion of the momentum transfer cross section by Gorse and Capitelli (2001),
whereas the corrections Q(2)/Q(1) and Q(3)/Q(1) have been obtained by in-
tegrating the elastic differential cross sections by Bray et al. (1991) for the
low-energy range [0.582–30eV] and by Gupta and Mathur (1980) for energies
above 50 eV.
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Table 11.11 Parameters of phenomenological potential for interactions relevant to
Jupiter atmosphere

β ϕ0 (meV) re (Å) m
He–H2 9.29 1.865 3.189 6

He–H+
2 9.73 30.664 2.574 4

He–H+
3 9.66 29.471 2.606 4

H–H− 7.05 15.151 4.975 4

H–H+
2 8.00 73.104 2.769 4

H–H+
3 7.98 70.982 2.797 4

H2–H− 7.27 18.896 4.962 4
H2–He+ 9.22 177.500 2.223 4

H2–H
+
2 8.97 83.283 2.809 4

H2–H
+
3 8.93 80.981 2.838 4

The momentum transfer cross section Q(1) for e–H2 interaction by Brunger
and Buckman (2002) has been integrated, including low-(E < 0.01 eV) and
high-energy (E > 25 eV) data by Biagi (2012). The corrections to higher
momentum transport cross sections, Q(2)/Q(1) and Q(3)/Q(1), have been ob-
tained by integrating the elastic differential cross sections by Shyn and Sharp
(1981); Brunger and Buckman (2002).

For e–He interaction the momentum transfer and elastic cross sections were
taken from Biagi (2012) and the Q2/Q1 and Q3/Q1 ratios were deduced from
the knownQ1/Q0 by assuming a model angular dependence of the differential
cross section (see Chap. 3).

Electron–neutral interaction collision integrals have been fitted, as a func-
tion of x = ln (T ), using a slightly different formula with respect to that given
in Eq. (11.3), i.e.

σ2Ω(�,s)� =
g3xg5 exp [(x− g1)/g2]

exp [(x− g1)/g2] + exp [−(x− g1)/g2]
+ g6 exp

[
−
(
x− g7

g8

)2]
+ g4

(11.5)

Fitting coefficients gj, entering Eq. (11.5), are presented in Table 11.13, for
relevant interaction in the Jupiter atmosphere.

11.3 Transport Coefficients

11.3.1 Earth

The thermodynamic model considered for Earth atmosphere (xN2
:xO2

=
80:20) includes 19 chemical species, i.e. N, O, N2, O2, NO, N+, N2+, N3+,
N4+, O+, O2+, O3+, O4+, O−, N+

2 , O
+
2 , O

−
2 , NO

+ and electrons, (see Capitelli
et al. 2011). The transport cross section database for relevant interactions
is derived from the Mars one (Laricchiuta et al. 2009). We have already
compared the relevant transport coefficients with the corresponding ones ob-
tained some years ago (Capitelli et al. 2000b), finding a satisfactory agree-
ment (D’Angola et al. 2012) (see also Chap. 10). The present data should
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Fig. 11.1 Total thermal conductivity of Mars plasma as a function of temperature,
at different pressures

compare satisfactory also calculating the transport properties by using the
transport cross sections from NASA database (Wright et al. 2005). The trans-
port properties of air have been extensively discussed in Chap. 10, so that here
we limit to numerical values as a function of temperature at different pres-
sures. Tables 11.14–11.17 report numerical values of transport coefficients for
different pressures, while Table 11.18reports thermodynamic properties of air
mixture at p=1,000bar.

11.3.2 Mars

The thermodynamic model used for the high-temperature Mars atmosphere
(xCO2

:xN2
:xAr:xO2

=95.3:2.7:1.6:0.4) has been discussed in detail in Capitelli
et al. (2011, 2005) and used by Bruno et al. at 1 bar (Bruno et al. 2011)
and either by d’Angola et al. at different pressures (Colonna et al. 2013).
Fifty-three species, including C, N, O, C2, N2, O2, CN, CO, NO, C3, N3,
O3, C2N, CO2, C2O, NO2, N2O, CNO, Ar, C+, C2+, C3+, C4+, C−, N+,
N2+, N3+, N4+, N−, O+, O2+, O3+, O4+, O−, C+

2 , C
−
2 , N

+
2 , N

−
2 , O

+
2 , O

−
2 ,

CN+, CN−, CO+, NO+, O−
3 , CO

+
2 , CO

−
2 , N2O

+, Ar+, Ar2+, Ar3+, Ar4+ and
electrons, have been considered in the transport calculations. The transport
cross sections database has been previously discussed. A sample of results for
the total thermal conductivity is reported in Fig. 11.1. The different peaks
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Table 11.18 Thermodynamic properties for Earth atmosphere at p = 1, 000 bar

T (K) ρ (kg/m3) h (kJ/kg) cp (J/kg.K)
100 3.465(+03) 1.008(+02) 1.009(+03)
200 1.733(+03) 2.018(+02) 1.011(+03)
300 1.155(+03) 3.029(+02) 1.015(+03)
400 8.663(+02) 4.045(+02) 1.027(+03)
500 6.930(+02) 5.074(+02) 1.045(+03)
600 5.775(+02) 6.122(+02) 1.068(+03)
700 4.950(+02) 7.193(+02) 1.093(+03)
800 4.331(+02) 8.288(+02) 1.117(+03)
900 3.850(+02) 9.406(+02) 1.140(+03)

1,000 3.465(+02) 1.055(+03) 1.159(+03)
1,500 2.310(+02) 1.651(+03) 1.270(+03)
2,000 1.733(+02) 2.296(+03) 1.346(+03)
2,500 1.386(+02) 2.982(+03) 1.437(+03)
3,000 1.155(+02) 3.712(+03) 1.537(+03)
3,500 9.874(+01) 4.492(+03) 1.670(+03)
4,000 8.590(+01) 5.337(+03) 1.834(+03)
4,500 7.556(+01) 6.261(+03) 2.005(+03)
5,000 6.696(+01) 7.267(+03) 2.140(+03)
6,000 5.358(+01) 9.451(+03) 2.309(+03)
7,000 4.399(+01) 1.181(+04) 2.698(+03)
8,000 3.674(+01) 1.462(+04) 3.676(+03)
9,000 3.071(+01) 1.843(+04) 5.213(+03)

10,000 2.545(+01) 2.372(+04) 6.802(+03)
11,000 2.096(+01) 3.052(+04) 7.529(+03)
12,000 1.745(+01) 3.806(+04) 6.993(+03)
13,000 1.491(+01) 4.516(+04) 5.921(+03)
14,000 1.312(+01) 5.122(+04) 5.110(+03)
15,000 1.181(+01) 5.641(+04) 4.924(+03)
16,000 1.078(+01) 6.131(+04) 5.125(+03)
17,000 9.911(+00) 6.636(+04) 5.549(+03)
18,000 9.148(+00) 7.170(+04) 6.172(+03)
19,000 8.488(+00) 7.724(+04) 6.666(+03)
20,000 7.843(+00) 8.355(+04) 7.049(+03)
22,000 6.695(+00) 9.793(+04) 7.824(+03)
24,000 5.749(+00) 1.136(+05) 8.668(+03)
26,000 4.959(+00) 1.311(+05) 8.746(+03)
28,000 4.322(+00) 1.486(+05) 8.547(+03)
30,000 3.809(+00) 1.660(+05) 8.011(+03)
35,000 2.938(+00) 2.056(+05) 7.849(+03)
40,000 2.385(+00) 2.456(+05) 9.600(+03)
45,000 1.962(+00) 2.977(+05) 1.232(+04)
50,000 1.630(+00) 3.607(+05) 1.472(+04)
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refer to the dissociation of CO2, followed by the convolution of the dissocia-
tion processes of N2 and CO, and then appear the first ionization of the C,
N, O components occurring in the same temperature range followed by the
second, third and fourth ionization processes of the same components. A fair
amount of confidence of the transport coefficients can be expected as can be
deduced by the different comparisons made in Catalfamo et al. (2009); André
et al. (2010). Note also that despite the initial small concentration of N2 in
the mixture this species can not be neglected in accurate calculations of the
Mars atmosphere (Catalfamo et al. 2009). Tables 11.19–11.22 report numer-
ical values of transport coefficients for different pressures, while Table 11.23
reports the Mars thermodynamics at p = 1, 000bar.

11.3.3 Jupiter

The thermodynamic model considered for Jupiter (xH2 :xHe=89:11) contains
He, He+, He++, H, H+, H−, H2, H

+
2 , H+

3 and electrons, all of them being
considered in the calculations (Capitelli et al. 2011; Pagano et al. 2008). The
transport cross section database in Bruno et al. (2010) has been validated
against existing values in literature. Figure 11.2 reports the total thermal
conductivity of the Jupiter atmosphere at different pressures. The different
peaks refer, in the order, to the dissociation of hydrogen, to the ionization
of atomic hydrogen followed by the first and second ionization reactions of
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Fig. 11.2 Total thermal conductivity of Jupiter plasma as a function of temperature,
at different pressures
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Table 11.23 Thermodynamic properties for Mars atmosphere at p = 1, 000 bar

T (K) ρ (kg/m3) h (kJ/kg) cp (J/kg.K)
100 5.295(+03) −8.554(+03) 6.954(+02)
200 2.648(+03) −8.484(+03) 7.908(+02)
300 1.765(+03) −8.405(+03) 8.886(+02)
400 1.324(+03) −8.316(+03) 9.684(+02)
500 1.059(+03) −8.219(+03) 1.034(+03)
600 8.826(+02) −8.116(+03) 1.088(+03)
700 7.565(+02) −8.007(+03) 1.133(+03)
800 6.619(+02) −7.894(+03) 1.170(+03)
900 5.884(+02) −7.777(+03) 1.202(+03)

1,000 5.295(+02) −7.657(+03) 1.228(+03)
1,500 3.530(+02) −7.024(+03) 1.308(+03)
2,000 2.647(+02) −6.358(+03) 1.392(+03)
2,500 2.106(+02) −5.609(+03) 1.722(+03)
3,000 1.716(+02) −4.630(+03) 2.371(+03)
3,500 1.400(+02) −3.280(+03) 3.195(+03)
4,000 1.136(+02) −1.538(+03) 3.853(+03)
4,500 9.263(+01) 4.591(+02) 4.128(+03)
5,000 7.657(+01) 2.527(+03) 4.096(+03)
6,000 5.525(+01) 6.491(+03) 3.693(+03)
7,000 4.284(+01) 9.905(+03) 2.976(+03)
8,000 3.538(+01) 1.268(+04) 2.661(+03)
9,000 3.016(+01) 1.560(+04) 3.622(+03)

10,000 2.555(+01) 2.008(+04) 6.328(+03)
11,000 2.118(+01) 2.692(+04) 8.305(+03)
12,000 1.761(+01) 3.476(+04) 7.218(+03)
13,000 1.510(+01) 4.161(+04) 5.698(+03)
14,000 1.337(+01) 4.697(+04) 4.399(+03)
15,000 1.210(+01) 5.145(+04) 3.975(+03)
16,000 1.108(+01) 5.567(+04) 4.262(+03)
17,000 1.021(+01) 5.996(+04) 4.553(+03)
18,000 9.438(+00) 6.462(+04) 4.986(+03)
19,000 8.742(+00) 6.973(+04) 5.250(+03)
20,000 8.102(+00) 7.507(+04) 6.048(+03)
22,000 6.969(+00) 8.784(+04) 6.706(+03)
24,000 6.008(+00) 1.024(+05) 7.895(+03)
26,000 5.199(+00) 1.185(+05) 7.913(+03)
28,000 4.534(+00) 1.352(+05) 7.824(+03)
30,000 3.996(+00) 1.519(+05) 8.089(+03)
35,000 3.061(+00) 1.918(+05) 7.795(+03)
40,000 2.475(+00) 2.328(+05) 9.255(+03)
45,000 2.031(+00) 2.848(+05) 1.206(+04)
50,000 1.680(+00) 3.500(+05) 1.436(+04)

helium. Tables 11.24–11.27 report numerical values of transport coefficients
for different pressures, while Table 11.28 reports the Jupiter thermodynamics
at p = 1, 000bar.

As already anticipated, the translational thermal conductivity and the
viscosity contain the contribution of both heavy particles and electrons.
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Table 11.28 Thermodynamic properties for Jupiter atmosphere at p = 1, 000 bar

T (K) ρ (kg/m3) h (kJ/kg) cp (J/kg.K)
100 2.670(+02) 1.376(+03) 1.230(+04)
200 1.335(+02) 2.490(+03) 1.237(+04)
300 8.901(+01) 3.724(+03) 1.263(+04)
400 6.676(+01) 4.992(+03) 1.272(+04)
500 5.341(+01) 6.267(+03) 1.275(+04)
600 4.451(+01) 7.544(+03) 1.280(+04)
700 3.815(+01) 8.825(+03) 1.286(+04)
800 3.338(+01) 1.011(+04) 1.295(+04)
900 2.967(+01) 1.141(+04) 1.307(+04)

1,000 2.670(+01) 1.271(+04) 1.322(+04)
1,500 1.780(+01) 1.949(+04) 1.413(+04)
2,000 1.335(+01) 2.669(+04) 1.500(+04)
2,500 1.068(+01) 3.432(+04) 1.613(+04)
3,000 8.881(+00) 4.258(+04) 1.830(+04)
3,500 7.565(+00) 5.200(+04) 2.220(+04)
4,000 6.525(+00) 6.338(+04) 2.797(+04)
4,500 5.650(+00) 7.756(+04) 3.517(+04)
5,000 4.887(+00) 9.517(+04) 4.285(+04)
6,000 3.625(+00) 1.410(+05) 5.429(+04)
7,000 2.713(+00) 1.958(+05) 5.346(+04)
8,000 2.122(+00) 2.483(+05) 4.346(+04)
9,000 1.752(+00) 2.912(+05) 3.377(+04)

10,000 1.510(+00) 3.249(+05) 2.806(+04)
11,000 1.338(+00) 3.531(+05) 2.586(+04)
12,000 1.208(+00) 3.790(+05) 2.613(+04)
13,000 1.102(+00) 4.050(+05) 2.826(+04)
14,000 1.014(+00) 4.322(+05) 3.191(+04)
15,000 9.370(−01) 4.632(+05) 3.687(+04)
16,000 8.692(−01) 4.970(+05) 4.183(+04)
17,000 8.081(−01) 5.364(+05) 4.826(+04)
18,000 7.523(−01) 5.818(+05) 5.512(+04)
19,000 7.007(−01) 6.342(+05) 6.207(+04)
20,000 6.531(−01) 6.924(+05) 6.876(+04)
22,000 5.688(−01) 8.170(+05) 7.994(+04)
24,000 4.967(−01) 9.681(+05) 8.712(+04)
26,000 4.319(−01) 1.125(+06) 9.030(+04)
28,000 3.783(−01) 1.305(+06) 9.018(+04)
30,000 3.339(−01) 1.489(+06) 8.728(+04)
35,000 2.572(−01) 1.938(+06) 7.314(+04)
40,000 2.091(−01) 2.292(+06) 6.052(+04)
45,000 1.768(−01) 2.596(+06) 5.100(+04)
50,000 1.543(−01) 2.851(+06) 4.547(+04)
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dynamic and transport properties of a ternary Ar-H2-He mixture out of
equilibrium up to 30,000 K at atmospheric pressure. J Phys D: Appl Phys
37(16):2232–2246

Aubreton J, Elchinger M, Rat V, Fauchais P (2004b) Two-temperature trans-
port coefficients in argon-helium thermal plasmas. J Phys D: Appl Phys
37(1):34–41

Biagi S (2012) http://consult.cern.ch/writeup/magboltz/ or
http://rjd.web.cern.ch/rjd/cgi-bin/cross

Blaha M, Davis J (1975) Elastic scattering of electrons by oxygen and nitro-
gen at intermediate energies. Phys Rev A 12(6):2319–2324

Bray I, Konovalov D, McCarthy IE (1991) Coupled-channel optical calcula-
tion of electron-hydrogen scattering: Elastic scattering from 0.5 to 30 eV.
Phys Rev A 43(11):5878–5885

Brunger MJ, Buckman SJ (2002) Electron-molecule scattering cross-sections.
I. experimental techniques and data for diatomic molecules. Phys Rep
357(3–5):215–458

Bruno D, Catalfamo C, Laricchiuta A, Giordano D, Capitelli M (2006) Con-
vergence of Chapman-Enskog calculation of transport coefficients of mag-
netized argon plasma. Phys Plasmas 13(7):072307

Bruno D, Catalfamo C, Capitelli M, Colonna G, De Pascale O, Diomede P,
Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F (2010) Transport
properties of high-temperature Jupiter atmosphere components. Phys Plas-
mas 17(11):112315

Bruno D, Capitelli M, Catalfamo C, Giordano D (2011) Transport properties
of high-temperature air in a magnetic field. Phys Plasmas 18(1):012308

Capitelli M (1977) Transport coefficients of partially ionized gases. Journal
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Waldmann-Trübenbacher polynomial,

18


	Fundamental Aspects of
Plasma Chemical Physics
	Preface
	Introduction
	Acknowledgements
	Contents
	Chapter:
1 Transport Processes in Dilute Polyatomic Gases
	1.1 Mean Free Path Theory of Transport
	1.1.1 Transport of the Energy of Internal Degreesof Freedom

	1.2 Kinetic Theory of Transport Processes in Dilute Polyatomic Gases
	1.2.1 Conservation Equations
	1.2.2 The Chapman–Enskog Method of Solution
	1.2.3 Zero Order
	1.2.4 First Order
	1.2.5 True Thermal Conductivity
	1.2.6 Electric Current
	1.2.7 Transport Linear Systems
	1.2.8 Direct Evaluation of Heat and Mass DiffusionFluxes
	1.2.9 Onsager Reciprocal Relations and Alternative Formulations of the Transport Linear Systems

	1.3 Internal Thermal Conductivity
	1.3.1 The Eucken Approach
	1.3.2 Kinetic Theory Approach

	1.4 Reactive Thermal Conductivity
	1.4.1 The Butler–Brokaw Theory
	1.4.2 Extension to Ionized Mixtures
	1.4.3 Transport of Dissociation Energy
	1.4.4 Transport of Ionization Energy
	1.4.5 Transport of Rearrangement Energy

	Appendix A: Simple Derivation of the Boltzmann Equation
	References

	Chapter:
2 Transport Coefficient Evaluation
	2.1 Thermal Conductivity and Thermal Diffusion
	2.2 Diffusion
	2.3 Shear Viscosity
	2.4 Bulk Viscosity
	2.5 Chemistry Source Terms
	2.6 Alternative Formulations of the Transport Linear Systems
	2.6.1 Multicomponent Diffusion Coefficients
	2.6.2 Thermal Diffusion and Partial Thermal Conductivity Coefficients
	2.6.3 Viscosity Coefficient

	Appendix A: Evaluation of the Bracket Integrals
	Appendix B: Approximations in Chapman–Enskog Theory
	References

	Chapter:
3 Transport Cross Sections: Classical and Quantum Approaches
	3.1 Transport Cross Sections and Collision Integrals: The Classical Approach
	3.1.1 Rigid Sphere Model

	3.2 The Quantum Approach
	3.3 Interaction Potentials
	3.3.1 Model Potentials
	3.3.1.1 Screened Coulomb Potential for Charged-Particle Interactions

	3.3.2 Potentials from Experiments
	3.3.2.1 Molecular Beam Experiments
	3.3.2.2 Potentials from Spectroscopy


	3.4 Collision Integrals
	3.4.1 Multi-potential Approach
	3.4.2 Average Potential Approaches: Mixing Rules and Phenomenological Potential
	3.4.3 Comparison Between Multi-potential and Phenomenological Approaches
	3.4.4 Electron–Neutral Interactions

	References

	Chapter:
4 Resonant Charge Exchange in Ion-Parent–AtomCollisions
	4.1 Theory of Resonant Charge-Exchange Processes
	4.1.1 Quantum Approach
	4.1.2 Asymptotic Approach

	4.2 N(4S)–N+(3P) and O(3P)–O+(4S) Charge-Exchange Cross Sections: Two Case Studies
	4.3 Resonant Exchange in Multiply-Charged-Ion–Parent-Atom Collisions
	References

	Chapter:
5 Collision Integrals for Interactions Involving Excited Species
	5.1 Electronically Excited H(n) Atom Interactions
	5.1.1 The Symmetric H(n)–H(n) Interactions
	5.1.2 Excitation Exchange
	5.1.3 Resonant Charge Exchange
	5.1.4 Electron-H(n) Interactions

	5.2 Electronically Excited He(n)–He+ Interactions
	5.3 Electronically Excited N(n)–N+(n) and O(n)–O+(n) Interactions
	5.3.1 Low-Lying Excited States
	5.3.2 High-Lying Excited States

	References

	Chapter:
6 Vibrational Excitation and Transport Properties of Reacting Gases: Beyond the Eucken Approximation
	6.1 Theory
	6.2 Cooling Flow
	6.3 Nozzle Flow
	6.4 Boundary-Layer Flow
	References

	Chapter:
7 Electronically Excited States and Transport Properties of Thermal Plasmas
	7.1 EES and Transport Properties of Hydrogen Plasma: A Parametric Study
	7.1.1 Thermal Conductivity
	7.1.2 Viscosity
	7.1.3 Electrical Conductivity

	7.2 The Transport of Internal and Reactive Contributions: A Decoupled Scheme
	7.2.1 Internal Thermal Conductivity
	7.2.2 Reactive Thermal Conductivity

	7.3 EES and Transport Coefficients: The Dependence on the Cutoff Criterion
	7.4 The Role of Electronically Excited States in Complicated Mixtures: Beyond the State-to-State Approach
	7.4.1 The Reactive and Internal Thermal Conductivities of a Nitrogen Plasma
	7.4.1.1 Transport Coefficient Calculation
	7.4.1.2 Internal and Reactive Thermal Conductivities


	7.5 Further Simplified Models
	7.5.1 Electrical Conductivity
	7.5.2 Viscosity
	7.5.3 Translational Thermal Conductivity

	References

	Chapter:
8 Transport Properties of Multi-temperature Plasmas
	8.1 The Devoto and Bonnefoi Approaches
	8.2 Beyond the Devoto and Bonnefoi Approaches
	8.2.1 The Rat Approach
	8.2.2 The Reactive Thermal Conductivity: The Chen and Li Approach

	8.3 Concluding Remarks and Perspectives
	References

	Chapter:
9 Transport Properties in the Presence of MagneticFields
	9.1 Theory
	9.2 Results
	9.2.1 Argon Plasma
	9.2.2 Air Plasma
	9.2.3 Hydrogen Plasma

	References

	Chapter:
10 Some Problems in the Calculation of TransportProperties of Partially Ionized Gases
	10.1 The Convergence of the Chapman–Enskog Method
	10.1.1 Translational Thermal Conductivity
	10.1.2 Viscosity
	10.1.3 Electrical Conductivity
	10.1.4 The Separation Between Electron and Heavy-Particle Contributions
	10.1.5 Singh et al. Results

	10.2 Transport Cross Section Data Set
	10.3 Inelastic Processes
	10.4 Quantum Effects
	10.5 Comparison with Experiments
	References

	Chapter:
11 Transport Properties of High Temperature Planetary Atmospheres
	11.1 Basic Equations
	11.2 Collision Integrals
	11.2.1 Mars and Earth Interactions
	11.2.2 Jupiter Interactions
	11.2.2.1 H–H, H–H2, H2–H2
	11.2.2.2 H–He, He–He, H-–He, H–He+, He–He+
	11.2.2.3 He2+–He, He2+–H, He2+–H2
	11.2.2.4 H+–H, H+–H2, H+–He
	11.2.2.5 Phenomenological Interactions


	11.3 Transport Coefficients
	11.3.1 Earth
	11.3.2 Mars
	11.3.3 Jupiter

	References

	Index


