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Preface

The Boltzmann equation is a milestone of classical and quantum kinetic theory of
gases [1–6]. It describes the evolution of a dilute gas, initially prepared in a
nonequilibrium state, by means of a statistical approach which allows to disregard
the detailed knowledge of the motion of the single particles. In the absence of
external forces, the gas undergoes a process of relaxation to equilibrium, whose
mathematical essence is captured by the celebrated H-Theorem, which also
marked the first clear onset of irreversibility in classical particle systems. On the
other hand, a different perspective in the behaviour of a fluid is offered by the laws
of continuum physics, which found a self-contained settlement in the equations of
hydrodynamics. This work is concerned with the ambitious and long-standing task
of linking the two different levels of description, the kinetic and the hydrodynamic.
The question arises as to whether this is actually an original ambition. The Grad’s
moment method, for instance, which still spreads its influence on the modern
theory of Extended Irreversible Thermodynamics [7], dates back to the late 1940s
of the last century. Earlier attempts are represented by Hilbert’s procedure and by
the Chapman-Enskog expansion, which constitute an important success in kinetic
theory, as they allowed to derive the hydrodynamic laws from the Boltzmann
equation and provided consistent expressions for the transport coefficients. How-
ever, almost a century of effort to extend the hydrodynamic description beyond the
Navier–Stokes–Fourier approximation failed even in the case of small deviations
around the equilibrium, due to the onset of instabilities which prevent the use of
the hydrodynamic solutions [8, 9]. A different route, in kinetic theory, is repre-
sented by the recent Invariant Manifold method [10]. This technique, based on the
computation of a slow invariant manifold in the space of distribution functions,
provides hydrodynamic equations which are stable and remain valid also at short
length scales, provided that the condition of local equilibrium holds. Thus, the
purpose of this work is to offer a short survey over a field of active research, which
aims at bridging time and length scales, from the particle-like description inherent
in the Boltzmann theory up to the hydrodynamic setting. Our plan is to perform a
bottom-up approach, which steps from the statistical foundations of the Boltzmann
equation to the spectral properties of hydrodynamic fluctuations. Our natural
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inclination is to shape things as they were rooted and naturally emerging each from
the other: i.e., by showing, for instance, how typical kinetic equilibration rates
affect the normal modes of hydrodynamic fluctuations and, also, how the hydro-
dynamic setting may be successfully extended to length scales comparable with
the mean free path. A great scientist of our times, J. L. Lebowitz, expressed, in
[11], his own surprise in considering that, in spite of the hierarchical structure of
Nature, characterised by a variety of time and length scales, it is still possible, to
some extent, to discuss the various levels of description independently of one
another. ‘‘Thus, arrows of explanations between different levels always point from
smaller to larger scales, although the origin of higher level phenomena in the more
fundamental lower level laws is often very far from transparent’’. Our overall
impression, which we would like to share with the reader, is that a unifying
approach is finally starting to take shape.
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Chapter 1
Introduction

A certain number of techniques have been designed in the kinetic theory of gases
to derive macroscopic time evolution equations from the Boltzmann equation. Most
of these methods require the single-particle distribution function to be parameter-
ized by a set of distinguished fields, such as the hydrodynamic ones: the number
(or mass) density, momentum vector, and temperature. This is a plausible assump-
tion as long as the microscopic dynamics enjoys a vast separation of time scales and
local thermodynamic equilibrium exists. Moreover, the derivation of hydrodynamics
from kinetic theory is often concerned with the hydrodynamic limit of the Boltzmann
equation. Loosely speaking, one is interested, typically, in the scaling of the Boltz-
mann equation with respect to some reference macroscopic length and time scales,
which are expected to largely dominate the intrinsic kinetic scales. Nonetheless, it
makes sense to consider the extension of the hydrodynamic description beyond the
standard domain, considering reference scales comparable with the kinetic ones.
This is the subject dealt with by generalized hydrodynamics [1, 2]. There are several
delicate aspects hindering this line of investigation. A first, natural, objection points
to the fact that below a certain length scale, the notion itself of “local equilibrium,”
which is brought about by a sufficiently large number of particle collisions, is ques-
tionable. Moreover, from the technical side, one typically deals, in this context, with
perturbative methods, such as Hilbert’s procedure or the Chapman–Enskog (CE)
technique, which, at a certain order of truncation, may give rise to artificial instabil-
ities [3, 4]. In particular, the CE method introduces an expansion of the distribution
function in terms of a parameter, the Knudsen number, defined as the ratio of the mean
free path to a representative macroscopic length. For small values of the Knudsen
number, the CE method recovers the standard Navier–Stokes–Fourier (NSF) equa-
tions of hydrodynamics. In more refined approximations, referred to as the Burnett
and super-Burnett hydrodynamics, the hydrodynamic modes become polynomials
of higher order in the wave vector. In such an extension, the resulting hydrody-
namic equations may become unstable and violate the H-theorem, as first shown by
Bobylev [3] for a particular case of Maxwell molecules. This indicates that the CE
theory cannot be immediately trusted away from the hydrodynamic limit. Thus, while
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2 1 Introduction

the mathematical framework concerning the hydrodynamic limit of the Boltzmann
equation is well established [5, 6], there is no consolidated counterpart addressing
the short-wavelength domain. On the other hand, recent technological trends in the
emerging field of microfluidics [7, 8] demand an extension of hydrodynamics to the
short scales and enable the development of novel methods. In this work, we dis-
cuss the invariant manifold theory, which makes it possible to derive the equations
of exact linear hydrodynamics from the Boltzmann equation. The adjective “exact”
stems from the fact that the method leads to an exact summation of all the terms
occurring in the CE expansion. We will show, through the analysis of some solv-
able model, that the divergences of the hydrodynamic modes are actually removed
by additionally taking into account the very remote terms of the expansion. This is
made possible by solving a closed integral equation, called an invariance equation,
that connects the microscopic evolution of the distribution function with its dynamics
triggered by the set of hydrodynamic fields.
This work is structured as follows.
In Chap. 2, we will review the basic mathematical framework concerning the statis-
tical description of a classical many-particle system. We will also discuss a heuristic
derivation of the Boltzmann equation and some of its scaling forms relevant to our
approach.
In Chap. 3, we will outline some standard model reduction techniques, which allow
us to derive hydrodynamics from the Boltzmann equation.
In Chap. 4, we will introduce the correlation function formalism and discuss the role
of fluctuations in fluid systems from a macroscopic standpoint.
In Chap. 5, we will derive the equations of linear hydrodynamics from certain kinetic
models of the Boltzmann equation, thus providing the desired bridge between the
kinetic and the hydrodynamic descriptions, valid also at short length scales.
In Chap. 6, we will provide the explicit computation of the invariant manifold for
the Grad’s 13-moment system and illustrate the onset of a critical length scale below
which the hydrodynamic description fails.
Finally, conclusions are drawn in Chap. 7.
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Chapter 2
From the Phase Space to the Boltzmann
Equation

In this chapter, we will outline the general mathematical framework concerning the
statistical description of a many-particle system in the phase space. We will then
restrict our analysis to the single-particle space and will sketch the derivation of the
Boltzmann equation, which was originally derived by Ludwig Boltzmann (1872) for
a hard-spheres gas by merging mechanical concepts and statistical considerations.

2.1 The Phase Space Description

Let us consider a system of N identical particles, described by the coordinates
(qi ,pi ), with i = 1, . . . , N , which denote, respectively, the positions and the
momenta of the particles. For convenience, we will use the shorthand notation
(Q,P) to refer to the entire set of coordinates in a compact phase space U ⊂ R

6N .
The time evolution of this system is given by a flow St : U → U , with St denoting
a one-parameter group of diffeomorphisms. We focus hereinafter on conservative
dynamical systems whose dynamics is dictated by the Hamiltonian H(Q,P), with
an interaction term defined by a (smooth) pairwise potential Φ : R

3 → R, depend-
ing only on the distance |qi − q j | between the i th and j th particles. The dynamical
systems under consideration are, moreover, equipped with a probability measure
μ(dQdP), with support on U , absolutely continuous with respect to the Lebesgue
measure. Hence, we suppose that a phase space density F(Q,P), positive definite
and normalized, exists and is such that F(Q,P)dQdP represents the probability of
finding the system in the phase space element centered at the point (Q,P) ∈ U .
The trajectory of (Q,P) is determined by solving Hamilton’s equations

q̇i (t) = ∂H

∂pi
, ṗi (t) = −∂H

∂qi
, (2.1)

for each i = 1, . . . , N .
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4 2 From the Phase Space to the Boltzmann Equation

Let us introduce, then, the phase space functions, also called microscopic dynamical
functions, a(Q,P) : U → R, which, under the evolution in the phase space, are
transformed, at time t , into a(Q,P, t). It is useful to let the phase functions depend
also on a vector-valued parameter r, which in the sequel will denote the position
vector in the physical space. We restrict ourselves to smooth phase space functions,
which form a Lie algebra, given by the Poisson bracket {·, ·}, defined as

{a1, a2} =
N∑

i=1

(
∂a1

∂qi

∂a2

∂pi
− ∂a1

∂pi

∂a2

∂qi

)
.

From Eq. (2.1), the time evolution equation for a(Q,P, r, t) can be written in the
form

∂t a(Q,P, r, t) = {a, H}, (2.2)

where∂t denotes the partial derivative with respect to time. The values of (Q(t),P(t))
at time t , obtained by solving Eq. (2.1) for given initial values (Q,P), are expressed
by the following canonical transformations [1]:

(Q(t),P(t)) = St (Q,P), with St = eL t , (2.3)

where L [·] = {·, H} is the Liouville operator. The time-evolved phase function
a(Q,P, r, t) can be computed from Eq. (2.2) and also by exploiting the canonical
transformations (2.3). It attains the form

a(Q,P, r, t) = eL t a(Q,P, r) = a(eL t (Q,P), r), (2.4)

which holds under the assumption of smoothness of the phase functions a(Q,P, r, t).
In other words, under a canonical transformation, a (smooth enough) dynamical
function a(Q,P, r) goes over the same function of its time-evolved arguments. At the
macroscopic level, the relevant quantities are represented by continuous functions
in the physical space–time, which we denote by A(r, t). One of the basic tenets
of statistical mechanics claims that for any observable a(Q,P, r, t), there exists a
unique macroscopic function A(r, t), given by the ensemble average of a(Q,P, r, t),
with respect to the density F(Q,P):

A(r, t) = 〈a〉 =
∫

a(Q,P, r, t)F(Q,P)dQdP. (2.5)

It is worth remarking that the converse does not hold. There exist, in fact, certain
thermal quantities, which typically play an important role in thermodynamics, that
do not enjoy a mechanical definition and cannot be defined as shown in Eq. (2.5).
For instance, one such quantity is the entropy, which is not a property of a single
particle, but rather describes the overall “state of disorder” of the system. In this case,
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the corresponding dynamical function a(Q,P, r, t) is not a given, fixed microscopic
dynamical function, but it depends on the probability density F(Q,P) [1].
Using Eq. (2.4), we can rewrite Eq. (2.5) as

A(r, t) =
∫ [

eL t a(Q,P, r)
]

F(Q,P)dQdP, (2.6)

which therefore expresses the law of motion of a macroscopic quantity as induced
by the Hamiltonian dynamics of the corresponding observable in the phase space.
Equation (2.6) suggests an analogy with the Heisenberg representation of quantum
mechanics: the average is computed by keeping the state of the system fixed and
by letting the dynamical phase space variables evolve in time. Conversely, in the
Schrödinger-like picture, one may transfer the time dependence from the microscopic
dynamical function to the probability density by employing the time-evolved density

F(Q,P, t) = e−L t F(Q,P).

This allows us to rewrite Eq. (2.6) in the form

A(r, t) =
∫

a(Q,P, r)F(Q,P, t)dQdP, (2.7)

where the phase space density F obeys the celebrated Liouville equation

∂t F(Q,P, t) = −L F(Q,P, t). (2.8)

The solutions of Eq. (2.8) are time-independent densities satisfying the relation

{H, Feq} = 0. (2.9)

Every distribution of the form Feq = Feq (H(Q,P)) is readily seen to be a solution of
Eq. (2.9). We mention in particular the density pertaining to the equilibrium canonical
ensemble:

Feq(Q,P) = 1

Z
e−βH(Q,P), (2.10)

where β = 1/(kB T ), kB is Boltzmann’s constant, T is the temperature of the particle
system, kept fixed by an external heat bath, and Z denotes the canonical partition
function, which is related to the thermodynamic Helmholtz free energy [2].
In spite of its conceptual relevance, the Liouville equation (2.8) is intractable from a
practical point of view, due to the large number of particles. Thus, a more efficient
reduced description can be obtained by projecting Eq. (2.8) onto a subspace of the
whole phase space. To this end, we introduce the shorthand notation zi = (qi ,pi ).
We define the s-particle marginals Fs(z1, . . . , zs, t) as
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Fs(z1, . . . , zs, t) =
∫

F(z1, . . . , zN , t)
N∏

j=s+1

dz j , with j = 1, . . . , N , (2.11)

which denotes the probability density of the first s particles (or of any given group of
s particles) at time t . To find an equation for the marginal Fs , we integrate Eq. (2.8)
with respect to dzs+1, . . . , dzN , thus obtaining the so-called BBGKY hierarchy [3],
which reads

∂t Fs = Ls Fs + Cs+1 Fs+1, with s = 1, . . . , N ,

where

Ls Fs = −
s∑

i=1

pi · ∂Fs

∂qi
+

s∑

i=1

s∑

j=1

∂Φ(|qi − q j |)
∂qi

· ∂Fs

∂pi
,

Cs+1 Fs+1 = (N − s)
s∑

i=1

∫
dzs+1

∂Φ(|qi − qs+1|)
∂qi

· ∂Fs+1

∂pi
. (2.12)

The meaning of Eq. (2.12) is clear: the variation in time of Fs depends on the interac-
tion of the s particles among themselves (which is the contribution provided by the
operator Ls) and on the interaction of the first s particles with the rest of the system
(represented by the operator Cs+1).
Let us also inspect the microscopic dynamical functions more closely. We introduce
the one-point empirical distribution of the many-particle system, defined as

N∑

i=1

δ(r − qi )δ(ξ − pi ), (2.13)

where r and ξ are parameters corresponding, respectively, to the position and momen-
tum vectors in the single-particle space. In Sect. 2.2, we will clarify, in particular, in
what sense the expression (2.13) is “well represented” by the distribution function
entering the Boltzmann equation. Here it suffices to notice that the marginal F1 is
related to the phase space average (2.7) of the one-point empirical distribution (2.13),
as follows: 〈

N∑

i=1

δ(r − qi )δ(ξ − pi )

〉
= N F1(r, ξ, t). (2.14)

Furthermore, as we will see in Chap. 4, many phase functions of interest are obtained
by multiplying the phase space distribution (2.13) by some function of ξ (see, e.g.,
Eq. (2.44)) and by integrating over the momentum space [4]. For instance, the local
number density n(Q, r) reads

http://dx.doi.org/10.1007/978-1-4614-6306-1_4
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n(Q, r) =
N∑

i=1

δ(r − qi ). (2.15)

The macroscopic number density n(r, t), which, as discussed in Chap. 3, results from
a proper integration of the density F1 in the single-particle space, can also be derived
by taking the ensemble average of the highly discontinuous phase function (2.15)
with respect to the phase space density F(Q,P, t). Analogously, we define the two-
point empirical density as

N∑

i=1

N∑

j=1
j �=i

δ(r − qi )δ(ξ − pi )δ(r1 − q j )δ(ξ1 − p j ), (2.16)

whose phase space average yields N (N−1)F2(r, ξ, r1, ξ1, t). An integration over the
momenta leads to the two-point density function n(r, r1, t), which typically differs
from the product of the one-point densities n(r, t)n(r1, t) as long as the distance
|r−r1| is small. The deviation, which stems from the presence of particle interactions,
corresponds to the two-point correlation [1]. In particular, if we denote by V the
volume of the system, then the two-point function n(r, r1) for a homogeneous system
can be written as

n(r, r1) =
(

N

V

)2

g(2)(r, r1), (2.17)

where the correlation function g(2)(r, r1)measures the extent to which the structure
of a fluid deviates from complete randomness. If the system is also isotropic, then g(2)

depends only on the magnitude of the separation s = |r − r1|: in this case, the pair
correlation function is denoted by g(s) and is referred to as the radial distribution
function [5]. By taking the ensemble average of Eq. (2.16), in which the phase space
coordinates (qi ,pi ) and (q j ,p j ) are evaluated at two distinct times, say t and t1,

N∑

i=1

N∑

j=1

δ(r − qi (t))δ(ξ − pi (t))δ(r1 − q j (t1))δ(ξ1 − p j (t1)), (2.18)

one obtains the two-time joint probability distribution [1]

f2(r, ξ, t; r1, ξ1, t1) = N 2 F2(r, ξ, t; r1, ξ1, t1), (2.19)

which allows the computation of time correlation functions, whose properties will
be explored in Chap. 4.
Before concluding this section, it is instructive to outline some aspects concerning
the derivation of the Boltzmann equation for a hard-sphere gas from the hierarchy
(2.12). This can be done by taking a proper limit of the time evolution equation for
the marginal F1. To this end, it is common practice to replace the momentum ξ with

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_4


8 2 From the Phase Space to the Boltzmann Equation

the velocity v. We denote, then, by v, v1, v
′
, and v

′
1 the precollisional velocities of the

two particles in respectively the direct and inverse encounters (the explicit relations
between postcollisional and precollisional velocities will be made clear in Sect. 2.2).
Let r be the position of the center of the target particle equipped with velocity v. In
a reference frame centered on the target particle, the latter is at rest and is endowed
with twice the actual diameter δ. The colliding particle, which is regarded as a point
mass equipped with an incoming velocity v1 −v, hits the so-called protection sphere
[6] at the point r1 = δn, where n is a unit vector, and is contained within a volume
δ2dn|(v1 − v) · n|dt . The time evolution equation for F1 attains the form [3, 6]

∂F1

∂t
+ v · ∂F1

∂r
= (N − 1)δ2

∫

R3

∫

S−

[
F2(r, v

′
, r − δn, v

′
1, t)− F2(r, v, r + δn, v1, t)

]

× |(v1 − v) · n|dndv1, (2.20)

where the integration is over the hemisphere S− = {n ∈ S2|(v1 − v) · n < 0}. It is
worth noticing that the probability densities F2 in (2.20) are both expressed in terms
of the precollisional velocities pertaining respectively to the inverse and the direct
encounters. Here, then, is the Boltzmann argument. For a rarefied gas contained in
a box with volume 1 cm3 at room temperature and atmospheric pressure, we have
N 	 1020 and δ = 10−8 cm, so that (N − 1)δ2 	 Nδ2 = 1 m2; cf. [3]. The limit
N → ∞, δ → 0, with Nδ2 finite, is the so-called Boltzmann–Grad limit; see also
Sect. 2.3. In this limit, if each Fs tends to a limit and this limit is sufficiently smooth,
the BBGKY hierarchy (2.12) transforms into the so-called Boltzmann hierarchy
[3]. Furthermore, since the volume occupied by the particles corresponds to about
Nδ3 	 10−4 cm3, the collision between two particles is a rather rare event. Thus,
the two colliding particles may be thought of as completely uncorrelated before
the collision, and their joint probability density may be factorized (assumption of
molecular chaos, or Stosszahlansatz) as

F2(r, v, r1, v1, t) = F1(r, v, t)F1(r1, v1, t). (2.21)

Taking into account the remarks above, one obtains the Boltzmann equation for hard
spheres

∂F1

∂t
+ v · ∂F1

∂r
= Nδ2

∫

R3

∫

S−

[
F1(r, v

′
, t)F1(r, v

′
1, t)− F1(r, v, t)F1(r, v1, t)

]
|(v1 − v) · n|dndv1.

(2.22)

We are not going to dwell further here on the rigorous derivation of the Boltzmann
equation, which is beyond the scope of this work. Rather, we wish to outline the
heuristic argument that guided Ludwig Boltzmann in the derivation of the celebrated
kinetic equation bearing his name.



2.2 The Boltzmann Equation 9

2.2 The Boltzmann Equation

The Boltzmann equation is an evolution equation for the probability density of a
given particle, which we denote by f (r, v, t). This quantity should not be confused
in principle with the fraction of molecules located in the cell of size dr×dv around the
point r, v. Although there is no a priori relationship between the two concepts, it can
be shown that they are closely related. Let us reformulate this problem in the following
manner. As in Sect. 2.1, let us denote by z the pair (r, v). Then, given a system of
N identical particles whose physical state is given by the sequence z1 . . . zN , we
denote by FΔ(z1, . . . , zN ) the fraction of particles localized in a volume Δ of the
single-particle space, i.e.,

FΔ(z1, . . . , zN ) = 1

N

N∑

i=1

χΔ(zi ) =
∫

Δ

μ(dz), (2.23)

where χΔ is the indicator function and

μ(dz) = 1

N

N∑

i=1

δ(z − zi )dz

is a measure in the single-particle space. In the definition of μ(dz) in Eq. (2.2),
the reader will also recognize the structure of the empirical distribution, defined in
Eq. (2.13). Thus, one may wonder in which sense the random variable FΔ(z1, . . . , zN )

in Eq. (2.23) can be reasonably approximated by

∫

Δ

f (z, t)dz.

It is possible to prove [3] that if z1, . . . , zN are independent identically distributed
random variables with law f (z, t), thenμ(dz) is close to f (z, t)dz, in a sense specified
by the law of large numbers, when N diverges. That is, the Boltzmann equation refers
to the limiting situation such that the many-particle system specified by the sequence
z1, . . . , zN can be actually considered a large number of copies of independent single-
particle systems for which μ(dz) and f (z)dz can be regarded as the same object.
Moreover, it is common to rescale f (z, t) by setting

f (r, v, t) = N F1(r, v, t), (2.24)

cf. Eq. (2.14). The quantity f (r, v, t)drdv is to be regarded as the average number of
particles contained in the element dr dv at a given time t , when the fluctuations which
occur in a short time interval dt are neglected [7]. The definition of the function f
relies, hence, on probability concepts, and hereinafter, we will tacitly assume that the



10 2 From the Phase Space to the Boltzmann Equation

macroscopic variables computed from the knowledge of the distribution function f
at a certain time t result from an average over the time interval dt around t . We will
return in more detail to this issue in Sect. 3.1. It is worth mentioning that the role of
fluctuations in the single-particle space was the subject of a research investigation [8–
10] that led to the construction of a fluctuating Boltzmann equation that recovers the
standard Boltzmann equation on average and from which the macroscopic equations
of fluctuating hydrodynamics [11] can be derived.
Let us now outline some basic aspects concerning the geometry of an elastic collision
between two particles endowed with equal mass m.
We consider the scattering of a particle, labeled 2, equipped with velocity v1, induced
by the target particle labeled 1, with velocity v. The pre- and postcollisional velocities
are related by momentum and kinetic energy conservation:

v + v1 = v
′ + v

′
1,

v2 + v2
1 = v

′2 + v
′2
1 . (2.25)

Introducing the center-of-mass variables

G = 1

2
(v + v1),

g = v1 − v,

and the corresponding variables G
′

and g
′

for the postcollisional velocities (in the
direct encounter), the conservation equations (2.25) yield g = g′, where g ≡ |g|.
Hence, the relative velocity is changed by the collision only in direction and not in
magnitude.

We consider, then, a reference frame in which the target particle is at rest. In this
frame, the geometry of the scattering is determined by the collision (unit) vector
n, which forms an angle θ, called the collision angle, with the direction of g and
halves the angle between g and g

′
; cf. Fig. 2.1. Therefore, in the direct encounter, the

precollisional and postcollisional velocities, respectively g and g′, are related by

g − g
′ = 2(g · n)n. (2.26)

Using (2.26), it is possible to derive the following relations between pre- and post-
collisional velocities:

v′ − v = (g · n)n,

v′
1 − v1 = −(g · n)n. (2.27)

the relations (2.27) show that the dynamical effect of the encounter is known when
the direction of the unit vector n is also determined. Yet the latter vector cannot
be computed by relying only on the balance equation (2.25), because there are two

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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Fig. 2.1 Scattering kinemat-
ics for hard spheres, with
precollisional relative velocity
g, postcollisional velocity g

′
,

impact parameter b, collision
angle θ, and collision vector n
. χ

2

g
δ

n

δ

θ

1

g

b

b

Fig. 2.2 Collision cylinder
for particles with relative
velocity g that collide with the
target particle during a time
interval dt .

b
db

gdt

g

geometric variables to be specified. The first is the azimuthal angle ε, describing the
orientation of the plane containing g and g

′
(which lie in the same plane, as specified

below) with a reference plane; cf. Fig. 2.2.
The second geometric variable of the encounter is the impact parameter b, which

corresponds to the perpendicular distance between the center of the target particle 1
and the original line of motion of the scattered particle 2, identified by the relative
velocity g, as shown in Fig. 2.1. Moreover, the angle of deflection χ = π − 2θ is,
in general, a function of g and of b, with a specific functional relation χ(g, b) that
depends on the particle interaction potential (see below). Analogously, one may also
introduce the postcollisional impact parameter b′, defined with respect to the velocity
g

′
, as illustrated in Fig. 2.1. The conservation of the angular momentum entails that

the collision takes place in a plane, called the collision plane, and yields b = b′.
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Let us now focus on the statistics of the encounters. To this end, we use, for simplicity,
the abbreviations f ≡ f (r, v, t), f1 ≡ f (r, v1, t), f ′ ≡ f (r, v′, t), and f

′
1 ≡

f (r, v
′
1, t). The collision between the target particle 1 and an arbitrary particle 2

occurs if the latter is located within the cylinder with volume dV = (gdt)(bdbdε)
shown in Fig. 2.2. The (average) number of the particles 2 equipped with a velocity
in the range [v1, v1 + dv1] and located in any such cylinders is given by f1dv1dV .
We can imagine such a cylinder to be associated with any of the particles 1, so that
the total number of encounters, under the assumption of molecular chaos considered
by Boltzmann, is given by

f dvdr f1dv1(gdt)(bdbdε). (2.28)

The surface element bdbdε in Eq. (2.28) can be written in terms of the element
dn = sin θdθdε, using the relation

bdbdε = σ (g, b) dn. (2.29)

The quantity σ (g, b) in Eq. (2.29) is called the differential scattering cross section
and is defined by the relation

σ (g, b) = b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ . (2.30)

It contains all the detailed information on the particle interactions [3, 6, 7]. In par-
ticular, by assuming, as above, that the interaction potential Φ(s) depends only on
the magnitude of the relative distance s = |r − r1| between the particles, the specific
functional relation among θ, g, and b can be obtained from the general relation

θ(g, b) =
z∗∫

0

dz√
1 − z2 − 4Φ(b/z)

mg2

, with 1 − z∗2 − 4Φ(b/z∗)
mg2 = 0. (2.31)

Here z = b/s is a dimensionless inverse distance, and z∗ denotes its value at the
minimum particle distance smin. Equation (2.31) provides the fundamental relation-
ship θ(b, g). Inverting this relation, one obtains b(θ, g), which thus yields σ(g, θ)
as a function of g and θ. In particular, for hard spheres of diameter δ, as shown in
Fig. 2.1, the relation b = δ sin θ holds. This yields

σH S(g, θ) = δ2 cos θ, (2.32)

which hence shows that for a hard-sphere gas, the scattering cross section depends
only on θ. On the other hand, for power law potentials of the formΦ(s) = Φ0s(1−n),
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with Φ0 and n constants, we have

σn(g, θ) = β(θ)g− 4
n−1 , (2.33)

where β(θ) is a function of θ alone [6]. The case n = 5 occupies a distinct place in
the Boltzmann equation theory, since it allows a considerable simplification: in this
case, the product gσ(g, θ), which enters the expression of the collision operator (to
be made explicit below, cf. Eq. (2.41)) depends only on θ. This result was discovered
by Maxwell, whence the fictitious molecules interacting via such a purely repulsive
potential are called Maxwell molecules [6]. We will return to Maxwell molecules
in Chap. 5, to discuss the derivation of hydrodynamics from kinetic models of the
Boltzmann equation.
In the inverse encounters, characterized by pre- and postcollisional velocities given,
respectively, by v′, v′

1 and v, v1, the differential scattering cross section is a function
of g′ and b′. Using the relations g = g′ and b = b′, one immediately obtains

σ
(
g′, b′) = σ (g, b) , (2.34)

which reflects the time reversibility of the collisional event. In particular, we recall
that the scattering cross section σ is related to the conditional probability density

W
(

v
′
, v

′
1|v, v1

)
of a collision that, in the direct encounter, carries the two particles

from the velocities v and v1 into the velocities v
′
and v

′
1 [6, 12]. The explicit relation

between W and σ reads

W
(

v
′
, v

′
1|v, v1

)
= 2m4σ(g, θ)

cos θ
δ
(

v + v1 − v
′ − v

′
1

)
δ
(

v2 + v2
1 − v

′2 − v
′2
1

)
,

(2.35)

where the two delta functions ensure the conservation of the momentum and of the
kinetic energy. Moreover, from (2.34) and (2.35), it follows that

W
(

v
′
, v

′
1|v, v1

)
= W

(
v, v1|v′

, v
′
1

)
, (2.36)

which is another expression of the time reversibility of the collisional event. The
conditional probability density is also symmetric under the exchange of particles

W
(

v, v1|v′
, v

′
1

)
= W

(
v1, v|v′

1, v
′)
. (2.37)

Let us now consider the set of particles located within dr and with velocities in
the range [v, v + dv], and let us also denote by L and G the negative and positive
contributions to the variation of f due to the collisions. The loss term L can be
computed by considering the direct encounter in which the precollisional velocities
v, v1 transform, according to Eq. (2.27), into the postcollisional ones. Therefore,
using (2.28), one can write

http://dx.doi.org/10.1007/978-1-4614-6306-1_5
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L = f f1gσ(g, b)dndvdv1drdt. (2.38)

The gain term G can be found in a similar manner by considering inverse encounters.
The relation between pre- and postcollisional velocities in the inverse encounter
follows directly from Eq. (2.27) on interchanging v, v1 and v′, v′

1, and by replacing
n by (−n) and g by g′ [7]. Thus, one obtains

G = f ′ f
′
1g′σ(g′, b′)dndv

′
dv

′
1drdt. (2.39)

Since the Jacobian of the transformation from precollisional to postcollisional
velocities is unitary, i.e., dvdv1 = dv

′
dv

′
1, and because of Eq. (2.34), we can use

gσ(g, b)dvdv1 also in (2.39). Dividing both terms L and G by dvdrdt and perform-
ing the integration over the variables v1 and n, we obtain the Boltzmann equation in
absence of external forces:

∂t f (r, v, t)+ v · ∂ f

∂r
f = Q( f, f ), (2.40)

where

Q( f, f ) =
∫ ∫ (

f ′ f
′
1 − f f1

)
gσ(g, θ)dndv1 (2.41)

denotes a nonlinear integral collision operator. In particular, using the expres-
sion (2.32) of the scattering cross section for hard spheres, one readily recovers
Eq. (2.22). We recall that the integration over n corresponds to a double integration
over ε = [0, 2π] and θ = [0,π/2]; cf. Fig. 2.1. Alternatively, the collision opera-
tor can be expressed in terms of the conditional probability densities introduced in
Eq. (2.35), and using (2.36), it attains the form

Q( f, f ) =
∫ ∫ ∫ (

f ′ f
′
1 − f f1

)
W

(
v, v1|v′

, v
′
1

)
dv1dv

′
dv

′
1, (2.42)

which is sometimes referred to as the quasichemical representation.
A basic property of the operator (2.41), which will be employed in the sequel of
this work, concerns the conservation of mass, momentum, and kinetic energy of
the particles during the collisions. Defining the vector of the so-called elementary
collision invariants as

ψ(v) = [
Ψ1,ψ2, Ψ3

]
, (2.43)

with
Ψ1 = m, ψ2 = mv, Ψ3 = m

2
v2, (2.44)

and v ≡ |v|, one obtains the important relation

∫
Q( f, f )ψ(v)dv = 0, (2.45)
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which expresses the conservation of the mean values of mass, momentum, and kinetic
energy of the particles during the collisions; cf. Sect. 3.1. In general, any function
Φ(r, v, t) satisfying the relation

φ′
1 + φ′ = φ1 + φ (2.46)

is a collision invariant and can be written as a linear combination of the elements of
ψ(v).

2.2.1 H-Theorem and the Maxwellian Distribution

Let us consider a uniform gas in the absence of external forces. In this case, the
Boltzmann equation (2.40) reads

∂t f (r, v, t) =
∫ ∫

( f ′ f
′
1 − f f1)gσ(g, θ)dndv1. (2.47)

Furthermore, let H be the complete integral (i.e., the integral over all values of
velocities) defined by the equation

H(t) =
∫

f log f dv. (2.48)

By computing the time derivative of the H -function defined in Eq. (2.48) through
Eq. (2.47), one obtains

∂t H(t) = 1

4

∫ ∫ ∫
gσ( f

′
f

′
1 − f f1) ln

(
f f1

f ′ f
′
1

)
dvdv1dn. (2.49)

The structure of Eq. (2.49) leads to the following inequality, called the H-theorem:

∂t H(t) ≤ 0. (2.50)

Equation (2.50) shows that the function H(t) decreases monotonically over time.
Consequently, the particle system keeps no track of its initial distribution, and is
driven toward a final state described by the distribution f GM. The latter satisfies the
relation

f GM(v) f GM(v1) = f GM(v
′
) f GM(v

′
1). (2.51)

Taking the logarithm of both sides of (2.51), we obtain a relation of the form (2.46):
ln f G M is a collision invariant and hence can be written as a sum of the elementary
collision invariants (2.44):

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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ln f GM(v) = α1 +α2 · mv + α3
m

2
v2.

The coefficients α1,α2,α3 are determined by ensuring that the distribution f GM

yields the proper values for the mass density, momentum density, and internal energy
density, denoted respectively by ρ0,u0, T0, with ρ0 = mn0:

∫
f GMdv = ρ0,

∫
f GMvdv = ρ0u0,

m

2

∫
f GM(v − u)2dv = 3

2
n0kB T0. (2.52)

Therefore, the general equilibrium distribution attains the form

f GM(v) = n0

(
m

2πkB T0

) 3
2

e
− m(v−u0)

2

2kB T0 . (2.53)

If the macroscopic fields n,u, T depend on r and t , the corresponding equilibrium
distribution is then referred to as the local Maxwellian, and it reads

f LM(r, v, t) = n(r, t)

(
m

2πkB T

) 3
2

e
− m(v−u(r,t))2

2kB T (r,t) . (2.54)

The expression (2.54) represents an important reference distribution for describing a
gas’s behavior in close-to-equilibrium regimes.

2.3 Hydrodynamic Limit and Other Scalings

A point of remarkable interest in kinetic theory concerns the study of the scaling
properties of the Boltzmann equation. In particular, one may investigate the structure
of the solutions of the Boltzmann equation in the so-called hydrodynamic limit, which
is obtained by taking the limits N → ∞, V → ∞, with N/V finite, where N is
the total number of particles in a box Λε with volume V . Following the approach
given in [3], let us introduce a small parameter ε, and let the side of the box Λε

be proportional to ε−1. Let f ε(r, v, t), with r ∈ Λε, be the number density of the
particles in the box. Then we assume that the total number of particles is proportional
to the volume of the box

∫

Λε×R3

f ε(r, v)drdv = ε−3, (2.55)
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and introduce the following scaling:

r̂ = εr, τ = εt, (2.56)

with r ∈ Λ = [0, 1], and
f̂ (r̂, v, τ ) = f ε(r, v, t). (2.57)

It is readily seen that the rescaled distribution f̂ (r̂, v, τ ) can suitably describe the
particle system on the scale of the box and is normalized to unity:

∫

Λ×R3

f̂ (r̂, v)dr̂dv = 1. (2.58)

As discussed in [3], while the description in terms of the distribution f ε is called
microscopic, the description given by the rescaled distribution f̂ can be defined
as macroscopic, since it provides a statistical description of the particle system on
large length and time scales. From (2.56) and (2.57), the Boltzmann equation, in the
absence of external forces, attains the structure

∂τ f̂ (r̂, v, τ )+ v · ∇r̂ f̂ = 1

ε
Q( f̂ , f̂ ), (2.59)

which will be the starting point of the methods of reduced description treated in
Chap. 3. We expend a few words now on another scaling, in order to clarify the
nature of the Boltzmann–Grad limit, introduced earlier. As mentioned in Sect. 2.1,
the Boltzmann–Grad limit corresponds to taking the limits N → ∞, δ → 0, with
Nδ2 finite. If we now take ε = δ, we require the particle number to be of order ε−2,
i.e., it goes with the power 2/3 of the volume:

∫

Λε×R3

f ε(r, v)drdv = ε−2. (2.60)

Next, if we employ the scaling (2.56) and wish to keep the normalization of f̂ (r̂, v, τ )
to unity as in Eq. (2.58), we resort to a different scaling, given by

f̂ (r̂, v, τ ) = ε−1 f ε(r, v, t). (2.61)

Hence, the Boltzmann equation for the distribution f̂ reads

∂τ f̂ (r̂, v, τ )+ v · ∇r̂ f̂ = Q( f̂ , f̂ ). (2.62)

Equation (2.62) is invariant under the scalings (2.56) and (2.61). It is also clear why
the Boltzmann–Grad limit corresponds to a low-density limit: in this limit, in fact,
the ratio of the particle number to the volume tends to zero [3]. The introduction

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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of the parameter ε in the scaling (2.56) reflects the existence of different length
and time scales in a gas. In particular, the structure of the hydrodynamic equations
derived from the Boltzmann equation strongly depends on the magnitude of ε, which
determines the appropriate gas dynamic regime.
As will also be discussed in Chap. 3, the presence of a definite time scale separation
in an inhomogeneous gas allows us to construct the following representation of the
relaxation to equilibrium: starting from an arbitrary nonequilibrium initial state, the
sequence of collisions characterized by the time scale τm f (the mean time between
collisions) triggers the evolution of the system toward the local equilibrium regime,
which is reached in a “mesoscopic” time interval Δt . From then onward, one may
assign locally a value to the macroscopic fields ρ,u, T , which also then evolve
according to a characteristic time scale τmacro. Then in the final stage of the relaxation
process, the slow dynamics of the macroscopic variables drives the particle system
toward the final, homogeneous, equilibrium state (2.53).

2.4 Linearized Collision Integrals and Kinetic Models

One of the major shortcomings of the Boltzmann equation (2.40) concerns the
nonlinear nature of the integral collision operator, which is traced back to the assump-
tion of molecular chaos. The Maxwellian distributions introduced in Sect. 2.2.1 rep-
resent a first step in the description of a particle system: they describe equilibrium
states characterized by the absence of dissipation. In going beyond equilibrium, one
has to rely on approximation methods such as perturbation techniques: one typically
expands the distribution function f in powers of the aforementioned parameter ε,
which in certain favorable situations can be considered to be small. We focus here
on the properties of the collision operator Q( f, f ) under such perturbation theory.
Near global equilibrium, one can split the distribution function into the sum of two
contributions:

f (r, v, t) = f GM(v)+Δ f (r, v, t), (2.63)

where Δ f (r, v, t) = f GM(v)h(r, v, t) represents a “small” deviation from the
equilibrium distribution. By linearizing the Boltzmann collision operator around
equilibrium, one obtains the linearized collision operator L ,

Lh =2
(

f GM
)−1

Q( f GM,Δ f )=
∫

f GM(v1)
(

h
′
1 + h

′ − h1 − h)
)

gσ(g,θ)dndv1,

(2.64)

where σ(g, θ) contains, as seen above, the details of the particle interactions. Then,
by introducing the Hilbert space H endowed with scalar product 〈g|h〉 and norm
‖h‖ defined by

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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〈g|h〉 = 1

n0

∫
f GM(v)g(v)h(v)dv, ‖h‖2 = 〈h|h〉, (2.65)

one finds that the operator L in Eq. (2.64) is self-adjoint, i.e.,

〈g|Lh〉 = 〈Lg|h〉.

Moreover, by setting g = h in (2.64), one also obtains

〈h|Lh〉 = −1

4

∫
|h ′

1 + h
′ − h1 − h)|2gσ(g, θ)dndv1dv ≤ 0, (2.66)

where equality holds if and only if h is a collision invariant. A simple problem for
the linearized operator L concerns the asymptotic behavior of a homogeneous gas,
prepared in an initial state slightly deviating from equilibrium and described by a
distribution of the form (2.63). In this case, one studies the linearized Boltzmann
equation

∂t h = Lh. (2.67)

If h is such that ‖h‖ and 〈h|Lh〉 exist, then from (2.66), one obtains

∂t

[
1

2
‖h‖2

]
= 〈h|Lh〉 ≤ 0,

which entails that ‖h(t2)‖ ≤ ‖h(t1)‖ for t2 > t1, where equality holds if h is a
collision invariant. Moreover, if f is chosen to have the same density, bulk velocity,
and temperature of f GM as in Eqs. (2.52), then

〈ψ|h〉 = 0, (2.68)

and the only collision invariant that satisfies these relations is h = 0. Therefore,
‖h(t)‖ decreases until it vanishes for t → ∞. We also mention here that another
remarkable problem concerns the study of the spectrum of L [6], i.e., the set of
eigenvalues λ of L for which (L − λI )−1 is not a bounded operator in H or is not
uniquely determined. This aspect will be elaborated in Chap. 5.
A complementary strategy to simplify the complicated structure of the Boltzmann
equation consists in providing simpler expressions for the collision operator, which,
in spite of neglecting many details about the particle interactions, allow one to retain
the basic properties of the original collision operator. This is the philosophy behind
the wealth of kinetic models proposed in the literature. The simplest example is
represented by the BGK model [13–15], which reads

∂t f + v · ∇r f = −ν( f − f LM), (2.69)

http://dx.doi.org/10.1007/978-1-4614-6306-1_5
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where ν denotes the mean collision frequency, independent of the microscopic veloc-
ity v. The BGK collision operator in Eq. (2.69) is a nonlinear operator: the nonlin-
earity occurs because the local Maxwellian f LM is parameterized by the values of
the fields ρ,u, T , which are obtained by integrating the distribution function itself,
as also shown in Eqs. (2.52). In the applications, the linearized version of the BGK
operator is mostly used. Considering small deviations from global equilibrium char-
acterized by the values [ρ0,u0 = 0, T0], the linearized BGK collision operator attains
the form

LBGK = −ν
[
h − 〈ψ̃|h〉ψ̃(c)

]
, (2.70)

where c = v/vT is the dimensionless peculiar velocity and vT = √
2kBT0/m is the

equilibrium thermal velocity. The functions ψ̃(c) = [ψ̃1, ψ̃2, ψ̃3] read

ψ̃(c) =
[

1,
√

2c,

√
2

3

(
c2 − 3

2

)]
, (2.71)

and they are mutually orthonormal with respect to the scalar product defined in
Eq. (2.65). Equation (2.70) can also be formally written in the form

LBGK = −ν [1 − P0] h, (2.72)

where P0 denotes the projection operator onto the subspace of H spanned by the
functions ψ̃.
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Chapter 3
Methods of Reduced Description

In this chapter, we will review some analytical methods that make it possible to
determine approximate solutions of the Boltzmann equation. In particular, we will
discuss the structure of the Hilbert and Chapman–Enskog perturbation techniques
and will also outline the essential features of the invariant manifold method, which
stems from the assumption of time scale separation and, unlike the former methods, is
also applicable beyond the strict hydrodynamic limit. Before reviewing the wealth of
different techniques, it is worth investigating in greater depth the role of the different
time scales in a particle system, which is one of the main ingredients underlying the
onset of collective behavior.

3.1 The Bogoliubov Hypothesis and Macroscopic Equations

Let M f = [M1,M2,M3] denote the lower-order moments of the single-particle
distribution function f (r, v, t) (2.24), defined as

M f (r, t) =
∫
ψ(v) f (r, v, t)dv, (3.1)

where ψ(v) are the collisional invariants (2.43). Thus, we have

M1 = ρ(r, t) =
∫

f (r, v, t)dv,

M2 = ρ(r, t)u(r, t) =
∫

mv f (r, v, t)dv,

M3 = 1

2
ρ(r, t)u2 + ρ(r, t)e(r, t) =

∫
m

2
v2 f (r, v, t)dv, (3.2)

where ρ(r, t) = mn(r, t) is the mass density. The first of Eq. (3.2) indicates in
particular that the number density n(r, t), besides corresponding to the phase space
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average of the microscopic one-particle density (2.15), turns out also to be given by
the lowest-order moment of the single-particle distribution f (r, v, t) obtained from
Eqs. (2.14) and (2.24). Moreover, in (3.2), we introduced the quantity

e(r, t) = 3

2

kB

m
T (r, t),

which denotes the internal energy per unit mass. The hydrodynamic fields [ρ,u, T ],
which correspond to mass density, bulk velocity and temperature, are related to the
moments M f by

ρ = M1, u = M−1
1 M2, T = 2m

3kB M1
(M3 − 1

2
M−1

1 M2 · M2). (3.3)

We focus in this work on a special class of distribution functions called normal
solutions of the Boltzmann equation [1]. These are distribution functions whose
dependence on the variables (r, t) is parameterized by a set of fields x(r, t), which
typically correspond to the hydrodynamic fields themselves, but in certain cases may
also include higher-order moments of the distribution function, as in Grad’s moment
method [2–4]. Let us therefore begin by writing the single-particle distribution func-
tion in the form

f (r, v, t) = f (x(r, t), v). (3.4)

A physical rationale behind Eq. (3.4) can be traced back to the Bogoliubov hypothesis
[5–7], which assumes that three different time scales, labeled respectively τint, τmf ,
and τmacro, characterize the relaxation of a gas toward equilibrium. The time interval
τint is the time during which two molecules are in each other’s interaction domain;
τmf denotes the mean time between collisions, and τmacro corresponds to the average
time needed for a molecule to traverse the container in which the gas is confined.
The Bogoliubov hypothesis states that the time scale separation

τint � τmf � τmacro (3.5)

is a prerequisite for the onset of hydrodynamic behavior in a gas. In a similar
manner, it is possible to introduce three corresponding displacements, denoted by
λint,λmf ,λmacro. The displacement λint corresponds to the range of particle interac-
tion, λmf is the mean free path, and λmacro denotes a macroscopic reference length,
such as the edge length of the confining container. Typical values of these parameters
are listed in Table 3.1.

Using the notation introduced in Sect. 2.2, we denote by z the pair (r, v). The
Bogoliubov hypothesis therefore concerns the functional dependence of the phase
space density F(z1, . . . , zN , t) relevant to the three stages in the process of relaxation
of the gas toward equilibrium; cf. also Table 3.2.

In the initial interval, there is no collisional exchange between the particles, and
the gas experiences no equilibrating force. Bogoliubov conjectured that in such an

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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Table 3.1 Bogoliubov length and time intervals for a gas with mean molecular speed of 300 m/s
at standard condition (container edge length λmacro = 3 cm); cf. [5]

λint λmf λmacro

cm 3 × 10−8 3 × 10−5 3
s 10−12 10−9 10−4

Table 3.2 Epochs in the Bogoliubov hypothesis

t < τint Initial stage
τint < t < τmf Kinetic stage
t ∼ τmacro Hydrodynamic stage

In describing the particle system on time intervals t < τint , the full phase space description is
required. If the description is confined between τint and τmf , one can employ the framework of kinetic
theory, and the Boltzmann equation provides an efficient statistical description of the dynamics of a
sufficiently dilute particle system. Finally, for t � τmacro, the dynamics of the distribution function
is driven by the evolution of the hydrodynamic fields

initial stage, the full N-particle density is required to properly describe the state of
the gas. In the kinetic stage, the molecules experience a sequence of collisions, which
give rise to the onset of a local equilibrium in the gas. According to Bogoliubov’s
hypothesis, during this stage, all s-particle marginals introduced in Sect. 2.1 may be
expressed as functionals of the single-particle density, i.e.,

Fs = Fs(z1, . . . , zs, F(z1, t)), (3.6)

where the time dependence of Fs is entirely contained in F1(z1, t). For instance,
if the particles are statistically independent from each other, then Fs factorizes as
follows:

Fs =
s∏

i=1

F1(zi , t). (3.7)

Finally, in the hydrodynamic stage, the relevant time scale is τmacro, which charac-
terizes the time evolution of the macroscopic variables x(r, t). It is worth noticing
that in the course of the relaxation, a crucial loss of information occurs [5]: while
in the initial stage, the microscopic state of the particle system is described by the
full phase space density, close to equilibrium, the statistical description is suitably
afforded only in terms of the single-particle distribution function, parameterized by
the variables x.

We also remark that the condition τint � τmf is essential for writing the Boltzmann
equation in the form (2.40). As mentioned in Sect. 2.2, the distribution function
f (r, v, t) needs to be regarded as an average of the single-particle distribution in a
time interval dt , with

τint < dt < τmf . (3.8)

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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meso

τm f 

t

�

Δ

Fig. 3.1 The onset of local thermodynamic equilibrium in mesoscopic cells of size �meso taking
place after a time intervalΔt . Local equilibrium results from a large number of collisions occurring
on time scales of order τmf . The hydrodynamic fields attain a local value within each of the cells
and evolve on a time scale τmacro (not shown in the picture) much larger than Δt , according to the
time scale separation hypothesis.

This condition, in fact, allows us to disregard the variation experienced by the
distribution function of the hitting particle, f (r, v1, t), during the time τint of inter-
action with the target particle. If the condition (3.8) does not hold, one should use in
Eq. (2.40) the distribution function f (r, v1, t − τint) evaluated at an earlier time, and
the rate of change of f at time t would depend not only on the instantaneous value
of f , but also on its previous history [8]. This would make the Boltzmann equation a
non-Markovian process. We see, then, that the separation between τint and τmf allows
us to identify an intermediate scale dt , that guarantees the Markovian character of the
Boltzmann equation. Moreover, in Sect. 2.3, we also introduced the time intervalΔt ,
defined as the characteristic mesoscopic time scale characterizing the onset of local
equilibrium. A macroscopic description of a particle system based on the hydrody-
namic fields x(r, t) can be obtained by confining the description to time scales not
inferior to Δt , which is intermediate between τmf and the macroscopic scale τmacro.
The role of the time scale Δt can be better understood by introducing a partition of
the volume of the gas into mesoscopic cells of linear size �meso; cf. Fig. 3.1. Local
equilibrium is reached in the cells after the time intervalΔt . Therefore, although the
hydrodynamic variables may vary over macroscopic length and time scales, within
each cell they obey, after the time interval Δt , the usual relations of equilibrium
thermodynamics [9].

The dimensionless parameter ε, which we already encountered in Sect. 2.3, is the
Knudsen number [1, 10] and is defined as the ratio of λmf to λmacro. The aim of a
generalized hydrodynamic theory is to extend the macroscopic description to finite
Knudsen numbers, i.e., beyond the the hydrodynamic limit, corresponding to ε � 1.
This, in turn, requires a proper estimate, for the model under consideration, of the
magnitude of the length scale �meso below which the notion of local thermodynamic
equilibrium, and consequently the hydrodynamic formalism, is lost. The Maxwell-
molecules gas, in particular, is amenable to an investigation of the properties of the
short-wavelength fluctuations of the hydrodynamic fields. The numerical analysis
reported in Chap. 5 shows the presence of a critical length scale that marks the range
of validity of the hydrodynamic description at short scales and is consistent with the
discussed role of local equilibrium in the onset of collective behavior in a gas.

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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Thus, if we consider macroscopic length and time scales compatible, respectively,
with �meso andΔt , it makes sense to discuss the derivation of macroscopic equations
from the Boltzmann equation and to investigate their properties. To this end, we
integrate Eq. (2.40), multiplied by the collision invariants (2.43), over the velocity
space, and obtain

∂tρ = −∇r(ρu),

∂t (ρu) = ∇r · (ρuu + P) ,

∂t

[
ρ

(
1

2
u2 + e

)]
= −∇r ·

[
ρu

(
1

2
u2 + e

)
+ P · u + q

]
, (3.9)

where the nonhydrodynamic fields P and q, called the pressure tensor and heat flux,
are defined as

P =
∫

m(v − u)(v − u) f (r, v, t)dv, (3.10)

q =
∫

m(v − u)(v2 − 2v · u + u2) f (r, v, t)dv. (3.11)

The pressure tensor can be written as P = pI + σ, where I is the identity matrix;
the scalar p, defined as

p = 1

3
tr [P] = nkB T = 2

3
ρe, (3.12)

corresponds to the hydrostatic pressure; and σ (not to be confused with the differ-
ential scattering cross section introduced in Chap. 2) is a symmetric tensor (it is also
typically a traceless one, depending on the magnitude of the bulk viscosity, defined
below). Recalling the splitting, introduced in Eq. (2.63), of the distribution function
f into its equilibrium and nonequilibrium components, it is possible to show that in
general, p carries the contribution of the only local Maxwellian component, whereas
σ depends on the nonequilibrium contribution to the single-particle distribution func-
tion. Analogously, the heat flux vector q results only from the nonequilibrium com-
ponent of the single-particle distribution function. A visible feature of Eq. (3.9) is that
the equations are not closed, because of the presence of the nonhydrodynamic fields
σ and q. As discussed by C. Cercignani in [1], Eq. (3.9) “constitute an empty scheme,
since there are 5 equations for 13 quantities. In order to have useful equations, one
must have some expressions for σ and q in terms of ρ, u and e. Otherwise, one has
to go back to the Boltzmann equation (2.40) and solve it; and once it has been done,
everything is done, and Eq. (3.9) are useless!” This corresponds to the well-known
problem of seeking a suitable closure to the macroscopic equations. This problem
can be tackled either from the kinetic theory standpoint, i.e., by employing some
model reduction or coarse-graining techniques [3], or from a purely macroscopic

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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perspective, i.e., by employing macroscopic balance or phenomenological relations
that disregard the underlying particle-like picture. In particular, the following set of
constitutive equations written in component notation,

σi, j = 0, (3.13)

qi = 0, (3.14)

with i, j = 1, 2, 3, yields the so-called Euler equations of inviscid hydrodynamics,
which can also be derived from the Boltzmann equation by retaining only the
Maxwellian contribution to the distribution function. The Navier-Stokes–Fourier
(NSF) equations are instead obtained from the following constitutive equations:

σi, j = −η
(
∂ui

∂r j
+ ∂u j

∂ri

)
+

(
2

3
η − ζ

)
∂uk

∂rk
δi j , (3.15)

qi = −λ∂T

∂ri
, (3.16)

where we used the repeated index summation convention, and η, ζ,λ correspond to
the transport coefficients called respectively shear viscosity, bulk viscosity (usually
negligible), and thermal conductivity. The NSF equations deserve a special mention
in fluid dynamics, because Eqs. (3.15) and (3.16) may be derived not only from the
macroscopic principles of conservation of mass, momentum, and energy, but also,
rigorously, from kinetic theory [1, 10, 11]. The latter derivation can be performed
using some perturbative schemes, such as those discussed in the next section, which
refer to the hydrodynamic limit of the Boltzmann equation.

3.2 The Hilbert and the Chapman–Enskog Methods

We provide here an overview of the Hilbert and Chapman–Enskog (CE) methods of
solution of the Boltzmann equation in the hydrodynamic limit. The reader is referred
to [1, 12] for an exhaustive treatment of the subject. To simplify the notation, we
omit hereinafter in this section the hat over the single-particle distribution referring
to a rescaled Boltzmann equation of the form (2.59), introduced in Sect. 2.3.
In the Hilbert method, the normal solutions are expanded in powers of the Knudsen
number ε, i.e.,

f =
∞∑

i=0

εi f (i), (3.17)

which, substituted in Eq. (2.59), yields a sequence of integral equations

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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Q
(

f (0), f (0)
)

= 0, (3.18)

L f (1) = (∂t + v · ∇r) f (0), (3.19)

L f (2) = (∂t + v · ∇r) f (1) − 2Q
(

f (0), f (1)
)
, (3.20)

to be solved order by order. Here L denotes the linearized collision integral defined in
Eq. (2.64). From Eq. (3.18), it follows that f (0) corresponds to the local Maxwellian
(2.54). The Fredholm alternative applied to (3.19) results in the following [12]:

• Solvability condition,

∫
(∂t + v · ∇r) f (0)ψ(v)dv = 0, (3.21)

which corresponds to the Euler equations described by Eqs. (3.13) and (3.14).
• General solution f (1) = f (1),1 + f (1),2, where f (1),1 denotes the special solu-

tion to the linear integral equation (3.19), and f (1),2 is a yet undetermined linear
combination of the summational invariants.

• The solvability condition, when applied to Eq. (3.20), yields f (1),2, which is
obtained from solving the linear hyperbolic differential equations

∫
(∂t + v · ∇r)

(
f (1),1 + f (1),2

)
ψ(v)dv = 0. (3.22)

Hilbert showed that this procedure can be applied up to an arbitrary order n, so that the
function f (n) is determined from the solvability condition applied at the (n + 1)th
order [12]. Loosely speaking, the description provided by the Hilbert method is
essentially in terms of the Euler equations, but it is supplemented by corrections
that can by computed by solving linearized equations [1]. It is also worth remarking
that the Hilbert method cannot provide uniformly valid solutions, which it can be
understood by noticing the singular manner in which the Knudsen number enters
the rescaled Boltzmann equation (2.59). Nevertheless, a truncated Hilbert expansion
can reproduce, with arbitrary accuracy, the solution of the Boltzmann equation in a
properly chosen region of time–space, provided that ε is sufficiently small.
The CE approach, developed by D. Enskog and S. Chapman, is based instead on an
expansion of the time derivatives of the hydrodynamic variables, rather than seeking
the time–space dependence of these functions, as in the Hilbert method. Also the CE
method starts with the singularly perturbed Boltzmann equation (2.59), and with the
expansion (3.17). Nevertheless, the procedure of evaluation of the functions f (i) is
different, and reads as follows:

Q
(

f (0), f (0)
)

= 0, (3.23)

L f (1) = −Q
(

f (0), f (0)
)

+
(
∂(0)t + v · ∇r

)
f (0). (3.24)
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Equation (3.23) implies, as in the Hilbert method, that the function f (0) is the local
Maxwellian. The operator ∂(0)t is defined from the expansion of the right-hand side
of the hydrodynamic equations,

∂
(0)
t M f = −

∫
ψ(v)v · ∇r f (0)dv. (3.25)

Equation (3.25) corresponds to the inviscid Euler equations, and ∂(0)t acts on various
functions g(ρ, ρu, e) according to the chain rule

∂
(0)
t g = ∂g

∂ρ
∂
(0)
t ρ+ ∂g

∂(ρu)
∂
(0)
t ρu + ∂g

∂e
∂
(0)
t e, (3.26)

whereas the time derivatives ∂(0)t of the hydrodynamic fields are expressed using
the right-hand side of (3.25). Finally, the method requires that the hydrodynamic
variables obtained by integrating over the velocity space the function f (0) + ε f (1)

coincide with the parameters of the local Maxwellian f (0):

∫
ψ(v) f (1)dv = 0. (3.27)

Thus, one finds that the first correction, f (1), adds the terms

∂
(1)
t M f = −

∫
ψ(v)v · ∇r f (1)dv (3.28)

to the time derivatives of the hydrodynamic fields. These novel terms yield the dis-
sipative NSF hydrodynamics. However, higher-order corrections of the CE method,
which result in hydrodynamic equations with higher derivatives (the so-called Burnett
and super-Burnett hydrodynamics), are affected by severe difficulties, mainly related
to the onset of instabilities of the solutions [13–15].

3.3 Grad’s Moment Method

An alternative technique to solving the Boltzmann equation was proposed by H.
Grad, and is known as Grad’s moment method [4]. The essence of the method relies
on the time scale separation hypothesis, introduced in Sect. 3.1:

• During the fast evolution, which occurs on a time scale of the order of the meso-
scopic time scale Δt , a set of distinguished moments x, cf. Sect. 3.1, does not
change significantly in comparison to the rest of the higher-order “fast” moments
of f , denoted by y.



3.3 Grad’s Moment Method 31

• Toward the end of the fast evolution, the values of the moments y become deter-
mined by the values of the distinguished moments x.

• During a time interval of order τmacro, the dynamics of the distribution function is
governed by the dynamics of the distinguished moments, while the rest of moments
remain to be determined by the distinguished moments [12].

In Grad’s moment method, the distribution function is expanded as

f (x, v) = f LM(ρ,u, e, v)

[
1 +

N∑

k=1

ak(x)Hk(v − u)

]
, (3.29)

where Hk(v − u) are Hermite tensor polynomials, orthogonal with respect to a
weight given by the Maxwellian distribution f LM, whereas the coefficients ak are
known functions of the distinguished moments x. The fast moments y are assumed
to be functions of x, i.e., y = y(x). By inserting Eq. (3.29) into the Boltzmann
equation (2.40) and using the orthogonality of the Hermite polynomials with respect
to the Maxwellian distribution f LM, one can determine the time evolution of the
set of distinguished moments x. According to Grad’s argument, this approximation
can be refined by extending the set of distinguished moments x. The best known
approximation is perhaps Grad’s 13-moment approximation, which will be studied
in Chap. 6. It consists of a set of time evolution equations for the standard five
hydrodynamic ones, the five components of the symmetric traceless stress tensor
σ, and the three components of the heat flux vector q. It is also worth mentioning
that the pioneering contributions of H. Grad to kinetic theory paved the way for the
development of the theory of extended irreversible thermodynamics [2, 3, 12].

3.4 The Invariant Manifold Theory

The invariant manifold method can be considered a generalization of the theory
of normal solutions, which is inherent in the Hilbert and CE expansions [12]. The
method is based on a projector operator formalism [16–18] that confines the phase
space dynamics onto a manifold of slow motion and disregards the fluctuations of
the fast variables. The same approach is also at the basis of Haken’s slaving principle
and the procedure of adiabatic elimination of fast variables in stochastic processes
[19, 20]. We will restrict, hereinafter, the description to the space of single-particle
distribution functions. The time evolution of the system is assumed to resemble the
picture given in Sect. 3.3: from the initial condition, the system quickly approaches
a small neighborhood of the invariant manifold, and from then onward, it proceeds
slowly along such a manifold with a characteristic time scale of order τmacro. The main
geometric structures that characterize the invariant manifold theory are illustrated in
Fig. 3.2.

We summarize in the sequel the essential mathematical framework that will be
used in the next chapters. Let U be the phase space, andΩ ⊂ U an ansatz manifold
that corresponds to the current approximation to the invariant manifold to be sought.

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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Ω

dx/d t

F
F

U

x

w

Δ = (1−P)J(w)

w + kerP

J(w)

Tw

P J (w)

X

Fig. 3.2 The geometric structures of the invariant manifold method: U is the space of distribution
functions, J (w) is the vector field of the system under consideration,Ω is an ansatz manifold, X is
the space of macroscopic variables (coordinates on the manifold), the map F maps points x ∈ X
into the corresponding points w = F(x), Tw is the tangent space to the manifold Ω at the point w,
P J (w) is the projection of the vector J (w) onto the tangent space Tw, dx/dt describes the induced
dynamics on X ,Δ is the defect of invariance, and the affine subspace w + kerP is the plane of fast
motions [12]

We denote by J (w) the vector field

dw

dt
= J (w), w ∈ U, (3.30)

which generates the dynamics in U . Let X be the linear space of the macroscopic vari-
ables x, which act as coordinates on the manifoldΩ , described as the image of the map
F : X → U . We remark that the choice of the space X of macroscopic variables is a
crucial step of the method: the corrections of the current ansatz manifold correspond
to the images of various maps F for a given X . Let us also denote by

Dx F = ∂w

∂x
|w=F(x) (3.31)

the derivative of the map F with respect to the set of distinguished variables. We
indicate by Π : U → X a regular map that satisfies the condition

Π ◦ F = 1, (3.32)

with 1 the identity operator, and by DwΠ the functional derivative of the map x =
Π(w) computed at the point w. Thus, the time evolution of the distinguished variables
x reads

dx
dt

= DwΠ J (F(x)), (3.33)



3.4 The Invariant Manifold Theory 33

where dx/dt is an element of the tangent space to X . Therefore, joining Eqs. (3.31)
and (3.33), one obtains

dw

dt
|w=F(x) = Dx F · dx

dt
= [Dx F ◦ DwΠ ] J (F(x)) = P J (F(x)) , (3.34)

where the operator
P = Dx F ◦ DwΠ

projects J ( f ) onto Tw, which denotes the tangent space to the manifold Ω at the
point w. In particular, the projector P determines a decomposition of the motion near
Ω: w + ker[P] is the plane of fast motion and Tw the plane of slow motion. We use
the term slow invariant manifolds to describe those maps F that satisfy the condition
(3.32) and solve the invariance equation

Δ(F) = (1 − P)J (F) = 0, (3.35)

which is a differential equation for the unknown map F . The solutions of Eq. (3.35)
are “invariant” in the sense that the vector field J (F) is tangent to the manifold
Ω = F(X) for each point w ∈ Ω . A crucial aspect of the method concerns the defi-
nition of the projector P . A. N. Gorban et al. introduced, in [12], the thermodynamic
projector, which characterizes, in a thermodynamic sense, the plane of fast motion
w + kerP: the physical entropy grows during the fast motion, and the point w is the
maximum point of entropy along the plane w + kerP .

The geometric setting described above can be readily adapted to the Boltzmann
equation theory. To this end, one identifies w with the single-particle distribution
function f , x = Π( f ) denotes a set of distinguished fields that parameterize f , and
F becomes a “closure,” i.e., a distribution function parameterized by the variables
x. Moreover, the vector field J ( f ) attains the form

J ( f ) = −v · ∇r f + Q( f, f ),

whereas D fΠ reads

D fΠ [·] =
∫
ψ(v)[·]dv,

with ψ(v) defined in (2.44). Therefore, the thermodynamic projector P , which
depends on f , attains in this case the structure

P[·] = ∂ f

∂x
·
∫
ψ(v)[·]dv. (3.36)

The invariance Eq. (3.35) constrains the kinetic evolution of the distribution function
to coincide with its “macroscopic” evolution, ruled by the projector P (3.36) and

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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driven by the dynamics of the distinguished variables x. It should be noticed that the
method does not require the smallness of the parameter ε; hence it is not restricted to
the strict hydrodynamic limit. In particular, as discussed in Chap. 6, it is possible to
prove, for some models, that the solutions of (3.35) correspond to an exact summa-
tion of the corresponding CE expansion, hence provide a generalized hydrodynamic
description valid also at finite Knudsen numbers [12–14, 21, 22]. A straightforward
application of the formalism described above is obtained by considering an ansatz
manifoldΩLM given by the locally five-dimensional manifold of local Maxwellians
(2.54). We therefore take the set M f of moments (3.2) as the coordinates x on this
manifold. The manifoldΩLM is commonly referred to as the quasiequilibrium man-
ifold for the set of moments x, because f LM corresponds to the unique solution of
the variational problem

H( f ) → min,

with H( f ) given in (2.48). We define the projector Pf LM onto the tangent space T f LM

as

Pf LM J
(

f LM
)

= ∂ f LM

∂M f
·
∫
ψ(v)J

(
f LM

)
dv. (3.37)

Returning to the hydrodynamic variables [ρ,u, T ] via the transformations (3.3), one
obtains [12]

Δ
(

f LM (ρ,u, T )
)

= f LM (ρ,u, T )

[(
m(v − u)2

2kB T
− 5

2

)
(v − u)∇r(ln T )+

+ m

kB T

(
(v − u) (v − u)− 1

3
(v − u)2 I

)
∇ru

]
. (3.38)

Equation (3.38) reveals that the quasiequilibrium manifold is not an invariant man-
ifold of the Boltzmann equation, because temperature and bulk velocity gradients
drive the invariant manifold away from local equilibrium. We remark that the par-
ticle system actually never reaches local equilibrium, or if it accidentally starts in

that state, it moves away from it, due to the flow term
(

v · ∂ f
∂r f

)
in the Boltzmann

equation, whose effect is to smooth out the spatial inhomogeneities [8]. Yet for small
Knudsen numbers, the flow term acts on time scales much larger than the collisions.
Consequently, at all times, the instantaneous single-particle distribution function is
very close to the local equilibrium one, given in (2.54). The latter may hence be
regarded as a reference distribution in perturbation theories, such as those described
above, that address the hydrodynamic limit of the Boltzmann equation.

http://dx.doi.org/10.1007/978-1-4614-6306-1_6
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Chapter 4
Hydrodynamic Spectrum of Simple Fluids

In this chapter, we will focus on the statistical properties of a fluid from a macroscopic
perspective. To this end, we will discuss the properties of the linearized version of the
NSF equations of hydrodynamics and will introduce the correlation function formal-
ism, which allows us to characterize the spectrum of fluctuations of the hydrodynamic
variables. In particular, we will also clarify the structure of an experimentally acces-
sible quantity, the dynamical structure factor, that is related to the intensity of the
scattered radiation in both the hydrodynamic and free-particle limits. To fix the ideas,
let us consider a fluid at rest, in thermodynamic equilibrium, that is hit by a mono-
energetic beam of radiation, e.g., thermal neutrons. The intensity of the scattered
radiation turns out to be a function, characteristic of the fluid, that depends on the
angle of scattering and on the frequency of the outgoing beam. The scattering is
caused by the presence of spontaneous microscopic fluctuations, induced by thermal
excitations [1, 2], which can be described in terms of suitable correlation functions.
Interestingly, the same functions also make it possible to capture the mathematical
essence of the response of the system to a weak external field [3–5]. The reason
for this connection stems from the fact that the dynamical processes that govern the
spatial and temporal decay of the fluctuations also determine the linear response
of the system. In particular, close to equilibrium and under the assumption of time
reversibility, the Onsager–Machlup theory [6, 7] guarantees that a spontaneous fluc-
tuation most likely follows a path that is the time reversal of the relaxation path
induced by an external perturbation. The connection between spontaneous fluctua-
tions and linear response to an external perturbation explains the relevance of the
correlation function formalism in the study of transport phenomena in fluids and in
unveiling the molecular origin of transport coefficients, even at high frequencies and
large wave vectors [1]. The mathematical framework discussed in this chapter sets
the stage for the development of a generalized hydrodynamic theory that we will
pursue in the following chapters.
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4.1 Correlations in Space and Time

Let us consider two microscopic dynamical variables a(Q,P, r1, t1) and
b(Q,P, r2, t2), of the sort introduced in Sect. 2.1. We define the two-time correlation
function Ca,b between the phase functions a and b as

Ca,b(r1, r2, t1, t2) = 〈
δa(Q,P, r1, t1)δb(Q,P, r2, t2)

〉
, (4.1)

where the average is taken with respect to a given density F(Q,P); cf. Eq. (2.6). In
Eq. (4.1), we denoted by

δa(Q,P, r1, t1) = a(Q,P, r1, t1)− A(r1, t1)

the fluctuation of the dynamical variable a with respect to its ensemble average
A ≡ 〈a〉 (the same notation also applies to the variable b). The fluctuations can
be regarded as spontaneous random departures from the average. We also note in
passing that this standpoint is consistent with the deterministic evolution dictated
by Hamiltonian dynamics if one regards the stochastic character of the fluctuations
as induced by the unknown distribution of δa at time t = 0 [8]. As mentioned
in Sect. 2.1, most observables of interest are obtained by integrating the empirical
distribution function (2.13) over the momentum space:

a(Q,P, r1, t1) =
∫
ψa(ξ1)

N∑

i=1

δ
(
r1 − qi (t1)

)
δ
(
ξ1 − pi (t1)

)
dξ1, (4.2)

where ψa(ξ1) denotes some known function of the momentum variable ξ1 (e.g., the
elementary collision invariants, defined in Eq. (2.44)). From Eq. (4.2), we can rewrite
Eq. (4.1) in the form

Ca,b(r1, r2, t1, t2) = 〈
ψa(ξ1)ψb(ξ2)

〉
f2

− 〈
ψa(ξ1)

〉
f

〈
ψb(ξ2)

〉
f , (4.3)

where 〈. . .〉 f2 denotes an integration over the momenta ξ1 and ξ2, taken with the
distribution f2(r1, ξ1, t1; r2, ξ2, t2) given in Eq. (2.19). Instead, 〈. . .〉 f corresponds
to an average over the single momentum space ξ i , with i = 1, 2, taken with the
corresponding single-particle distribution f (ri , ξ i , ti ). Let us introduce the Fourier
transform of the fluctuation δa(Q,P, r, t):

ak(Q,P, t) =
+∞∫

−∞
δa(Q,P, r, t)e−ik·rdr. (4.4)

Correspondingly, the Fourier transform of Eq. (4.1) is given by [9]
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Ca,b(k1,k2, t1, t2) = 〈
ak1(t1)b−k2(t2)

〉
. (4.5)

The structure of the correlation function Ca,b considerably simplifies if the average
in Eq. (4.1) is taken with respect to an equilibrium phase density Feq(Q,P), such
as the one in (2.10). In this case, the correlation function enjoys the properties of
stationarity and of translational invariance, because it depends respectively only on
the time difference t = t1 − t2 and on the spatial distance r = r1 − r2. Thus, an
equilibrium time correlation function obeys the relation

Ca,b(r1, r2, t1, t2) = Ca,b(r, t), (4.6)

which is mirrored, in Fourier space, by

Ca,b(k1,k2, t1, t2) = Ca,b(k1, t)δk1,k2 , (4.7)

with Ca,b(k1, t) denoting the spatial Fourier transform of Ca,b(r, t). Therefore,
whenever any two-point function such as Ca,b(r1, r2, t1, t2) is translation-invariant
in real space, it corresponds to a two-point function that is diagonal in Fourier space,
i.e., it is nonzero only when k1 = k2. Under the hypothesis of translational invari-
ance, and denoting by k the wave vector, the further property of isotropy of the fluid
entails that Eqs. (4.6) and (4.7) then depend only on r ≡ |r| and k ≡ |k|. We will
focus in the remainder of this chapter on the structure of equilibrium time correlation
functions and will consider in particular the phase function given by the local number
density n(Q, r), given in (2.15). For a uniform fluid, the van Hove function is defined
as [9]

G(r, t) =
〈

1

N

N∑

i=1

N∑

j=1

δ
(
r − r j (t)+ ri (0)

)
〉
. (4.8)

This function can be endowed with a simple physical interpretation: G(r, t)dr is the
number of particles j in a region dr around r at time t , given that there was a particle
i centered at the origin at time t = 0. The function G(r, t), which reduces at t = 0 to
the static correlation function, can be split into two terms, referred to, respectively,
as the self part and the distinct part:

G(r, t) = Gs(r, t)+ Gd(r, t), (4.9)

with

Gs(r, t) =
〈

1

N

N∑

i=1

δ (r − ri (t)+ ri (0))

〉
, (4.10)

Gd(r, t) =
〈

1

N

N∑

i=1

N∑

j �=1

δ
[
r − r j (t)+ ri (0)

]
〉
. (4.11)
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Hence Gs(r, 0) = δ(r), and it can also be shown that Gd(r, 0) = (N/V ) g(r),
where, using the notation of Sect. 2.1, V is the volume of the system and g(r) denotes
the radial distribution function introduced after Eq. (2.17), whose spatial Fourier
transform corresponds to the static structure factor Sn,n(k). Let us introduce, then,
the intermediate scattering function, defined as

Fn,n(k, t) = 1

N

〈
nk(t)n−k

〉
, (4.12)

which is related to G(r, t) by

Fn,n(k, t) =
∞∫

−∞
G(r, t)e−ik·rdr. (4.13)

The time Fourier transform of the function (4.12) yields the dynamic structure factor
(or power spectrum) Sn,n(k, ω):

Sn,n(k, ω) =
∞∫

−∞
Fn,n(k, t)e−iωt dt, (4.14)

which is also related to the static structure factor Sn,n(k) by the relation

Sn,n(k) = Fn,n(k, 0) =
∞∫

−∞
Sn,n(k, ω)dω. (4.15)

The function Sn,n(k) can be directly measured from experiments of elastic scattering
of neutrons or x-rays by a fluid. The experiment consists in irradiating a fluid with a
beam of radiation with wave vector ki and frequency ω. If the energy of the quanta is
much larger than the characteristic excitation energy of the molecules, the scattering
occurs without any change in the wave frequency, so that the magnitude of the wave
vector is conserved (elastic scattering). We denote by k = k f − ki the momentum
transfer; in elastic scattering experiments, the intensity of the scattered radiation,
which is related to the differential scattering cross section, depends only on this
variable and is proportional to Sn,n(k) [8, 9]. On the other hand, experiments based
on inelastic scattering involve as well a transfer of energy �ω, and it can be proved
[9] that in this case, the differential scattering cross section at a given frequency
ω is related to the structure factor Sn,n(k, ω). Another relevant relation concerning
Sn,n(k, ω) is the detailed balance condition [1, 10]:

Sn,n(k, ω) = e−β�ωSn,n(−k,−ω), (4.16)

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2


4.1 Correlations in Space and Time 41

which describes the thermal equilibrium between the radiation and the fluid. Equation
(4.16) reveals in particular that the spectral distribution of a beam of radiation scat-
tered by the fluid is not symmetric with respect to the energy gain and energy
loss. Nevertheless, the symmetry is restored in the classical limit � → 0, in which
Sn,n(k, ω) = Sn,n(−k,−ω) holds [1]. Let us now discuss the form of the dynamic
structure factor in the free-particle limit, which corresponds to ε � 1 and pertains to
the regime, typical of an ideal gas, in which the particles move freely in the fluid at
constant velocity. Because in this limit the positions of the particles are uncorrelated,
the calculation of Sn,n(k, ω) reduces to the calculation of the self part Gs(r, t) of
the van Hove function (4.10). In particular, the probability that an ideal gas particle
covers a distance r in a time t is given by the Maxwellian distribution that a particle
has a velocity in the range du around u, where u = r/t . This leads to the expression

Gs(r, t) = 1√(
πv2

T t2
)3

e
− r2

(vT t)2 , (4.17)

where vT = √
2kB T/m is the thermal velocity introduced in Sect. 2.4. Therefore,

from (4.17), one obtains

Sn,n(k, ω) = 1√
πv2

T k2
e
−

(
ω

vT k

)2

, (4.18)

which gives an asymptotic expression for the dynamical structure factor Sn,n(k, ω) in
the domain of large wave vectors and high frequencies. By contrast, the structure of
Sn,n(k, ω) pertaining to the opposite regime of small wave vectors and low frequen-
cies, corresponding to the hydrodynamic limit, will be derived in Sect. 4.2. Before
concluding this section, it is worth discussing briefly the relevant role of the correla-
tion function formalism in the branch of statistical mechanics concerned with linear
response theory [3]. This theory focuses on the statistical properties of many-particle
systems weakly perturbed from equilibrium; it received a theoretical justification with
the formulation of the fluctuation–dissipation theorem (FDT) [11, 12]. The literature
reports, in fact, a variety of results referring to this theorem, which hold in rather
different contexts, e.g., in deterministic Hamiltonian systems (“FDT of the first kind”
[4, 12]), in stochastic dynamics (“FDT of the second kind”; see [13–15]), in determin-
istic dissipative systems (“generalized fluctuation–dissipation relations”; cf. [16]).
We restrict ourselves here to the FDT of the first kind. We consider a system that at
time t = t0 is at equilibrium with a (time-independent) Hamiltonian H(Q,P). We
also assume that the statistical properties of the system are described by the equilib-
rium density (2.10). Then at time t = 0, a perturbation h(t) is switched on, and it mod-
ifies the Hamiltonian of the system into H(Q,P) → H(Q,P)−h(t)a(Q,P), where
a(Q,P) is a phase function conjugate to the external field h(t). Correspondingly,
the ensemble average of an observable b(Q,P) is transformed by the perturbation
into 〈b〉eq → 〈b〉h(t) = 〈b〉eq + 〈Δb〉h(t), where the subscripts eq and h refer

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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respectively to the averages taken with respect to the equilibrium density (2.10) and
to the perturbed density induced by the external field. As long as the magnitude of the
perturbation is small, one may expand 〈b〉h around h = 0 (i.e., around equilibrium)
to obtain

〈b〉h(t) = 〈b〉eq +
t∫

0

δ〈b〉h(t)

δh(s)

∣∣∣∣
h=0

h(s)ds = 〈b〉eq +
t∫

0

Rb,a(t − s)h(s)ds, (4.19)

where δ〈b〉h(t)/δh(s) denotes the functional derivative of the ensemble average 〈b〉h

with respect to the perturbation h, and Rb,a(t − s) is the response function. The
FDT of the first kind states that the response function Rb,a(t − s), induced by a
perturbation h(s) occurring at the time s ≤ t is given by [3, 13]

Rb,a(t − s) = β
d

ds

〈
a(Q,P, s)b(Q,P, t)

〉
. (4.20)

Here
〈
a(s)b(t)

〉
is the equilibrium time correlation function between a(s) and b(t).

Equation (4.20) is a fundamental result in statistical physics. It reveals that the
response of a system to a weak external perturbation driving the system away from
equilibrium can be read off in terms of a suitable equilibrium time correlation func-
tion. In other words, the properties of a system pulled slightly out of equilibrium can
be inferred from the knowledge of the statistical properties of the system at equi-
librium. A seemingly similar relation holds also for the response of a system driven
away by a weak perturbation from a nonequilibrium steady state [5].

4.2 Linearized Hydrodynamics and Collective Modes

In this section we aim at deriving an expression for Sn,n(k, ω) in the hydrodynamic
regime. Our starting point will be the NSF equations of hydrodynamics, characterized
by the constitutive equations (3.15) and (3.16) for the stress tensor and the heat flux.
From the expression for the hydrodynamic fields introduced in Sect. 3.1, we can
define the fluctuations of these fields around equilibrium as follows:

ρ(r, t) = ρ0 + δρ(r, t),

u(r, t) = δu(r, t),

T (r, t) = T0 + δT (r, t), (4.21)

where we choose a reference frame in which the equilibrium bulk velocity u0 is zero.
The response of the system to the small perturbations resulting from the spontaneous
equilibrium fluctuations always present in the system can be described in terms of
the linearized hydrodynamic equations. That is, if we retain only the first power

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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of the fluctuations (4.21), the macroscopic equations (3.9), equipped with the NSF
constitutive equations (3.15) and (3.16), attain the structure [1]

∂tδρ = −ρ0∇r · u,

ρ0∂t u = η∇2
r u +

(
1

3
η + ζ

)
∇r (∇r · u)− c2

0γ
−1[∇rδρ + ρ0α∇rδT

]
,

∂tδT = λ

ρ0cv
∇2

r δT − γ − 1

α
∇r · u, (4.22)

where γ = cp/cv is the ratio of the specific heats at constant pressure and constant
volume respectively, α = ρ (∂V/∂T )p is the coefficient of thermal expansion, and
c0 = √

(∂p/∂ρ)s is the adiabatic speed of sound, with the subscript s denoting the
entropy per unit mass. When passing into Fourier space, we denote by

[
ρk,uk, Tk

]

the Fourier transforms of the fluctuations (4.21). It then proves convenient to split
the velocity into longitudinal and transversal components lying respectively in the
directions parallel and orthogonal to k:

uk(t) = u‖(k, t)k̂ + u⊥(k, t),

with k̂ denoting a unit wave vector in the direction of k. A relevant property of
the linearized NSF equations (4.22) concerns the fact that the time evolution of
the transversal components is decoupled from that pertaining to the longitudinal
components, as we will also see in Chap. 6. To see this, let us introduce first the
Laplace transform of nk(t), defined as

ρk(z) =
+∞∫

0

e−ztρk(t)dt.

By Laplace transforming equation (4.22), one obtains a set of algebraic equations,
which can be solved to second order in k. This procedure yields the roots [2]

z1 = −DT k2, (4.23)

z2,3 = ±ic0k − Γ k2, (4.24)

z4,5 = −ηt k
2, (4.25)

where
DT = λ/(ρ0cp)

is the thermal diffusivity,

Γ = 1

2

[
η� + (γ − 1)DT

]

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_6
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is the sound attenuation coefficient, ηt = η/ρ0 is the transverse kinetic viscosity, and
η� = (ζ + 4/3η) /ρ0 is the longitudinal kinetic viscosity. The roots (4.23)–(4.25)
are called hydrodynamic modes: they describe the evolution of collective fluctuations
in a fluid. The two degenerate roots (4.25) correspond to the shear modes, which
are decoupled from the other modes. The evolution equation of the two transverse
components of the velocity reads

u⊥
k (t) = u⊥

k (0)e
−ηt k2t . (4.26)

Equation (4.26) reveals that any transverse velocity fluctuations in the fluid decay in
time and cannot propagate in the fluid. Moreover, according to Eq. (4.26), the short-
wavelength disturbances decay faster than the long-wavelength ones. In contrast,
the roots (4.23) and (4.24) are longitudinal modes associated to fluctuations of the
density, temperature, and longitudinal component of the velocity. The evolution of
the fluctuations of the mass density is easily derived:

ρk(t) =
[(
γ − 1

γ

)
e−DT k2t + 1

γ
e−Γ k2t cos(c0kt)

]
ρk(0). (4.27)

From the structure of Eq. (4.27), one can interpret the mode (4.23) as entropy fluc-
tuations at constant pressure that do not propagate in the fluid and give rise to a
purely diffusive effect, whose characteristic decay time is

(
DT k2

)−1
. By contrast,

the two modes (4.24) correspond to sound waves, i.e., pressure fluctuations at con-
stant entropy propagating in the fluid at the speed of sound c0. Also, these fluctuations
fade off eventually, due to the combined effect of viscosity and thermal conduction,
with a characteristic time

(
Γ k2

)−1
. From the expression (4.27) for the mass density

ρk = mnk, one may formally use the procedure outlined in Sect. 4.1 to calculate
the dynamic structure factor in the hydrodynamic regime (corresponding to the NSF
equations).
A remark is in order here, however.
In the hydrodynamic regime, the phase function n(Q, r); in (4.1), must be replaced
by its average over a mesoscopic cell of linear size �meso [9]. That is, the fluctuations
of interest here are macroscopic fluctuations of the particle number density around
its thermodynamic equilibrium value. In particular, the length �meso is assumed to be
macroscopically small but still sufficiently large to ensure that inside each cell, local
equilibrium holds and the relative fluctuation of the number of particles is negligible.
It is also worth pointing out that in the hydrodynamic regime, the average (4.12) is
no longer an ensemble average, as in (4.1), but corresponds to an average over initial
conditions, weighted by the probability density of thermodynamic fluctuation theory
[2], which is given by

p ∝ eΔS/kB ,

whereΔS is the entropy change of the system due to the macroscopic fluctuation. It
can thus be shown [2] that in the hydrodynamic regime, Sn,n(k, ω) attains the form
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Sn,n(k, ω) = 1

2π
Sn,n(k)

[(
1 − 1

γ

)
2DT k2

ω2 + (
DT k2

)2 +

+ 1

γ

(
Γ k2

(ω − c0k)2 + (
Γ k2

)2 + Γ k2

(ω + c0k)2 + (
Γ k2

)2

)]
. (4.28)

Thus, Sn,n(k, ω) consists of three components: the Rayleigh line centered at ω = 0,
and the two Brillouin lines, located at ±c0k; cf. the left panel of Fig. 4.1. As mentioned
in Sect. 4.1, the power spectrum constitutes an important source of information for
experimentalists. The measure of the Brillouin–Rayleigh spectrum by light scattering
in a simple liquid makes it possible, in fact, to compute the speed of sound c0 (from the
position of the Brillouin peaks) as well as the lifetime of the thermal fluctuations and
that of the sound waves (from the knowledge of DT and Γ respectively). A further
characterization of the hydrodynamic regime can be obtained by looking at the self
part of the van Hove function. It is possible to show [1, 9] that in the limit of small
wave vectors and low frequencies, Gs(r, t) behaves as if the tagged particle were
undergoing a diffusive process. The evolution equation is hence of the form

∂t Gs(r, t) = −D∇2
r Gs(r, t), (4.29)

where D is the coefficient of self diffusion. Equation (4.29) admits the solution

Gs(r, t) = 1√
(4πDt)3

e
−

(
r2

4Dt

)

. (4.30)

By defining the self part S(s)n,n(k, ω) of the dynamic structure factor as the double
Fourier transform of Gs(r, t), we obtain from (4.30) the following expression [9]:

S(s)n,n(k, ω) = 1

π

Dk2

ω2 + (
Dk2

)2 . (4.31)

The self-diffusion coefficient D can hence be obtained from S(s)n,n using the
relation [10]

D = lim
ω→0

lim
k→0

πω2

k2 S(s)n,n(k, ω), (4.32)

where it is crucial that the limits be taken in the indicated order. Equations (4.17)
and (4.30) reveal that Gs(r, t) is a Gaussian function in both the free-particle and
hydrodynamic regimes. Consequently, the mean square displacement of the tagged
particle, defined as

〈
r2(t)

〉 ≡ 〈|r(t)− r(0)|〉 =
∫

r2Gs(r, t)dr, (4.33)



46 4 Hydrodynamic Spectrum of Simple Fluids

2DTk2

2Γk2

ω

c0k c0k

Sn,n(k , ω)

k2

ωΔ

2Dk2

2 log 2vT k

Fig. 4.1 Left panel. Dynamical structure factor Sn,n(k, ω) in the hydrodynamic regime
corresponding to the linearized NSF equations. The central peak represented in the figure is the
Rayleigh peak, which corresponds to thermal fluctuations, whereas the two side peaks are the Bril-
louin peaks, which originate from pressure fluctuations in the fluid. Right panel. Schematic behavior
of the full width at half maximum, Δω, of S(n)n,n(k, ω). The straight lines correspond, respectively,
to the hydrodynamic regime (left branch) and to the free-particle regime (right branch). The red
dashed line merely represents a possible smooth interpolation between the two limiting regimes [1]

takes, in the free-particle limit, the form

〈
r2(t)

〉 = 3

2
v2

T t2,

which corresponds to a ballistic-like transport, whereas in the hydrodynamic regime,
it reads 〈

r2(t)
〉 = 3

2
Dt,

which is the hallmark of a standard diffusion process.
Furthermore, Eq. (4.31) reveals that in the hydrodynamic regime, the full width at
half maximum of S(s)n,n , denoted by Δω, reads

Δω = 2Dk2, for k � 1,

Δω = 2
√

ln 2vT k, for k � 1.

Therefore, Δω is proportional to k2 for small wave vectors and is linear in k for
large wave vectors, as shown in the right panel of Fig. 4.1. Due to the asymptotic
expressions of the self part of the van Hove function for t → 0 (free-particle limit)
and for t → ∞ (hydrodynamic limit), it would be tempting to stipulate a Gaussian-
like behavior of Gs for all times. Nevertheless, molecular dynamics simulations for
argon-like liquids [9] reveal that in the intermediate regime, there are deviations of
about 10% from the assumed Gaussian behavior. Thus, the challenge of a generalized
hydrodynamic theory consists in providing a theoretical framework to interpolate
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between the two asymptotic regimes (represented by the red dashed line in the right
panel of Fig. 4.1). A traditional strategy is based on the introduction of nonlocal
hydrodynamic variables and nonlocal transport coefficients, which can be obtained,
in a somewhat empirical manner, by solving a generalized Langevin equation [1].
In the next chapter, we will instead learn how the invariant manifold method allows
us to extend the hydrodynamic description to the intermediate regime represented
in Fig. 4.1. To this end, we will investigate some models of the Boltzmann equation
and find an exact closure for the single-particle distribution function.
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Chapter 5
Hydrodynamic Fluctuations from
the Boltzmann Equation

Several solution techniques have been introduced in the literature to obtain
approximate solutions of the Boltzmann equation. In particular, the CE method
extends the hydrodynamics beyond the NSF approximation in such a way that
the decay rate of the next-order approximations (Burnett and super-Burnett) are
polynomials of higher order in k [1–3]. In such an extension, relaxation rates may
become completely unphysical (amplification instead of attenuation), as first shown
by Bobylev [4] for a particular case of Maxwell molecules. Therefore, several regu-
larization techniques have been proposed to restore the thermodynamic admissibility
of the generalized hydrodynamic equations [5–7]. A promising route, in particular,
is based on the notion of invariant manifold [1], introduced in Sect. 3.4. The method
requires a neat separation between hydrodynamic and kinetic (time and length) scales,
and postulates the existence of a stable invariant manifold in the space of distribu-
tion functions, parameterized by the values of the hydrodynamic fields. Following
the approach traced in [8], we will employ here the invariant manifold technique to
determine the hydrodynamic modes and the transport coefficients beyond the stan-
dard hydrodynamic regime. In particular, we expect to recover the asymptotic form of
the dynamic structure factor in the free-particle regime and to shed light on the prop-
erties of the hydrodynamic equations in the intermediate regime of finite Knudsen
numbers.
This chapter is structured as follows.
We will review, in Sect. 5.1, the eigenvalue problem associated with the linearized
Boltzmann equation. In Sect. 5.2, we will derive the invariance equation for the
Boltzmann equation equipped with an arbitrary linearized collision operator. In
Sect. 5.3, we will introduce a suitable coordinate system that allows us to high-
light the symmetries of the solutions of the invariance equation. In Sect. 5.4, we will
then solve the invariance equation for the linearized BGK model [9]. In Sect. 5.5, we
will investigate the properties of the solution of the invariance equation for a gas of
Maxwell molecules. We will therefore clarify the structure of the obtained hydro-
dynamic modes and cast the generalized transport coefficients in the Green–Kubo
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formalism [10]. Finally, we will determine the spectrum of the density fluctuations
and discuss some relevant features of the resulting short-wavelength hydrodynamics.

5.1 Eigenfrequencies of the Boltzmann Equation

In this section, we return to the eigenvalue problem for the linearized Boltzmann
equation, introduced in Sect. 2.4. Namely, for an inhomogeneous gas, the eigenval-
ues correspond to k-dependent frequencies (i.e., the inverse of characteristic collision
rates). The connection between the fluctuations of the macroscopic variables and the
underlying characteristic kinetic rates is a central problem in statistical mechanics
[11, 12], one that still lacks a conclusive settlement. In order to appreciate the prob-
lem, we anticipate that in the NSF approximations, the hydrodynamic modes are
quadratic in the wave vector [13], cf. Eqs. (4.23)–(4.25), and are unbounded. On
the other hand, Boltzmann’s collision term features equilibration with finite char-
acteristic rates. Hence, the “finite collision frequency” is strongly at variance with
the arbitrary decay rates in the NSF approximation: intuitively, the hydrodynamic
modes at large k cannot relax faster than the collision frequencies. In his seminal
work [14] on the eigenfrequencies of the Boltzmann equation, Resibois provided an
explicit connection between the generalized frequencies of the linearized Boltzmann
equation and the decay rate of the hydrodynamic fluctuations. He tackled the prob-
lem by solving, perturbatively, the eigenvalue problem associated to the Boltzmann
equation and to the NSF equations of hydrodynamics.
Let us rewrite the Boltzmann equation (2.40):

∂t f = −v · ∇ f + Q( f, f ). (5.1)

We introduce the dimensionless peculiar velocity c = (v − u0)/vT and the equi-
librium values of hydrodynamic fields: equilibrium particle number n0, equilibrium
mean velocity u0 = 0, and equilibrium temperature T0. The global Maxwellian reads
f GM = (n0/v3

T ) f0(c), where f0(c) = π−3/2e−c2
is a Gaussian in the velocity space

(c = |c|). We linearize (5.1) by considering only small disturbances from the global
equilibrium. Moreover, we write the nonequilibrium distribution function (cf. also
Table 5.1) as

f (r, c, t) = f LM + δ f, (5.2)

where f LM denotes the local Maxwellian, to be made precise in Sect. 5.2, and δ f
is the deviation from local equilibrium. An alternative notation is introduced via
δ f = f GMδϕ. We also consider a reference frame moving with the flow velocity
and linearize the collision operator around global equilibrium, as shown in Sect. 2.4.
When passing to Fourier space, we seek solutions of the form

f (r, c, t) = eωt eik·r f (k, c, ω),

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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Table 5.1 Notation used in this book

f = f LM + δ f
︷ ︸︸ ︷

= f GM + f GMϕ0 + f GMδϕ

= f GM + f GMX(0) · x + f GMδX · x

︸ ︷︷ ︸
= f GM + f GM�X · x
= f GM + � f

Terms have been grouped and abbreviated as depicted here f GM and f LM denote the global and local
Maxwellian, respectively, and� f and δ f their “distance” from f . The third row gives information
about the closure discussed in this book, while x is a set of distinguished (lower-order) moments
of f

where ω is a complex-valued frequency and k is a real-valued wave vector. Thus, the
Boltzmann equation (5.1) reduces to

1

vT
∂t f (k, c, ω) = −ik · c f + L̂δ f (k, c, ω), L̂ = 1

vT
L , (5.3)

where we made use of the fact that L f LM = 0. In the remainder of this section, we
will investigate the spectrum of the operator � ≡ L̂ − ik · c, which determines the
time evolution of the single-particle distribution function [15]. This is readily seen
by inspection of the inverse Laplace transform:

f (k, c, t) =
[

1

2π i

∮
ezt

(z −�)
dz

]
f (k, c, 0), (5.4)

where the closed path encircles the poles of the function inside the integral. According
to the spectral theorem, these poles correspond to the spectrum of �. The flow term
−ik · c f is treated here as a small perturbation [16] (this amounts to considering
small gradients in the real space). Equation (5.3) can be therefore written in the form

Λ f = ω f, (5.5)

which constitutes the starting point of our analysis. We can use here the mathematical
framework earlier developed in Sect. 2.4. Thus, we introduce a Hilbert space H
endowed with the scalar product 〈g|h〉 defined by Eq. (2.65). The analysis of the
spectrum of the full operator � in Eq. (5.5) requires a preliminary discussion about
the properties of the spectrum in the limit k → 0. In this limit, Eq. (5.5) reads

L̂Ψi (c) = λ
i
Ψi (c). (5.6)

The linear operator L̂ introduced in Sect. 2.4 is self-adjoint with respect to the
scalar product (2.65), whence the corresponding eigenfunctions are (or can be made)

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2
http://dx.doi.org/10.1007/978-1-4614-6306-1_2


52 5 Hydrodynamic Fluctuations from the Boltzmann Equation

orthogonal and constitute a complete set. In particular, a subset of them spanning a
five-dimensional subspace of H is related to the fivefold degenerate zero eigenvalue.
These functions correspond to the collision invariants f GMX(0), with X(0) denoting
a set of lower-order Sonine (or associated Laguerre) polynomials:

X(0) =
[

1, 2c,
(

c2 − 3

2

)]
. (5.7)

One also typically assumes that the eigenvalues of L̂ other than 0 have no accu-
mulation point at the origin. This assumption is always implicit in any calculation
of transport coefficients based on kinetic theory. Physically, it implies a separation
of the relaxation time scale λ−1

i and the hydrodynamic time scale corresponding to
(vt k)−1 occurring in Eq. 4.18. The lack of such a time scale separation can cause
the breaking of the hydrodynamic description, as will be discussed in Chap. 6, for a
Grad’s moment system. For finite values of k, there will be a set of eigenvalues ofΛ,
denoted by ωα , with α = 1, . . . , 5, which in the k → 0 limit, reduce to the afore-
mentioned degenerate zero eigenvalue. Hence, we briefly review here the results of a
perturbative method, outlined in [14], that allows us to determine the dependence of
the set ωα on k. If we denote by Ψα(k) the eigenfunctions corresponding to ωα(k),
the yet unknown eigenfunctions and eigenvalues can be expanded in powers of the
wave vector k:

Ψα = Ψ (0)
α + kΨ (1)

α + k2Ψ (2)
α + · · · ,

ωα = ω(0)α + kω(1)α + k2ω(2)α + · · · , (5.8)

where Ψ (0)
α are linear combinations of the collision invariants (5.7), whose detailed

expression is not relevant here (cf. [17] for details). The use of a Rayleigh–
Schrödinger perturbation theory leads to the following polynomial expression for
the set {ωα} [17]:

ω1 = ic0k − k2
〈
Ψ
(0)
1

∣∣∣∣

(
(cx − c0)

1

L̂
(cx − c0)

)
Ψ
(0)
1

〉
,

ω2 = −ic0k − k2
〈
Ψ
(0)
2

∣∣∣∣

(
(cx + c0)

1

L̂
(cx + c0)

)
Ψ
(0)
2

〉
,

ω3 = −k2
〈
Ψ
(0)
3

∣∣∣∣

(
cx

1

L̂
cx

)
Ψ
(0)
3

〉
,

ω4 = −k2
〈
Ψ
(0)
4

∣∣∣∣

(
cx

1

L̂
cx

)
Ψ
(0)
4

〉
,

ω5 = −k2
〈
Ψ
(0)
5

∣∣∣∣

(
cx

1

L̂
cx

)
Ψ
(0)
5

〉
, (5.9)

where c0 is the speed of sound, defined in Sect. 4.2.
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On the other hand, in Fourier space, the linearized NSF equations (4.22) read

ωnk = −in0 (k · uk) ,

ωuk = −ηk2uk −
(

1

3
η + ζ

)
(k · uk) k − ic2

0γ
−1ρ−1

0 knk − ic2
0γ

−1αkTk,

ωTk = − λ

ρ0cv
k2Tk − i

γ − 1

α
(k · uk) . (5.10)

The condition of nontrivial solvability of the linear system (5.10) with respect to the
variables [nk(ω),uk(ω), Tk(ω)] yields the dispersion relation ω(k), i.e., the normal
mode frequencies of the system. The roots of the dispersion relation enjoy the same
structure as that of the solutions (4.23)–(4.25). In particular, the real part of these
modes is quadratic in the wave vector [1, 14, 17]:

Re(ω) ∝ −k2,

which is a hallmark of the NSF approximation. Postulating the equivalence of the
hereby obtained hydrodynamic frequencies with the set of kinetic frequencies ωα
given by Eq. (5.9) leads to approximate expressions for the transport coefficients,
which can be shown to be equivalent to the reduced expressions determined by
many-body autocorrelation functions [14]. As also pointed out in [16], the result
obtained by Resibois based on the correspondence between hydrodynamic modes
and kinetic frequencies reveals that in the limit of long wavelengths, the possible
modes of motion of the gas correspond to rather ordered motions, such as propagation
of a sound wave. These modes are referred to in the literature as collective modes,
because they involve the coordinate action of a huge number of particles. The onset
of such an ordered motion as a result of the underlying chaoticness of the individual
motion of the particles is a striking feature of statistical mechanics. The reason for
this can be traced back to the effect of the collisions, which very quickly drive the
system toward the local equilibrium state, which is a highly organized one. From then
onward, the flow term produces slow variations in space and time of this basic state,
which reduce the local gradients of the hydrodynamic fields; cf. also the discussion
at the end of Chap. 3. In the sequel of this chapter, we will employ invariant manifold
theory to obtain a generalization of the pioneering approach developed by Resibois.

5.2 The Invariant Manifold Technique

Let us briefly recall some basic mathematical tools of the method introduced in
Chap. 3. We denote by U and x(r, t), respectively, the space of single-particle dis-
tribution functions f (r, v, t) and some of its distinguished moments. We define the
locally finite-dimensional manifoldΩ ⊂ U as the set of functions f (x(r, t), c)whose
dependence on the space–time variables (r, t) is parameterized through x(r, t). In this

http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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chapter, we will identify the distinguished moments x(r, t) with the hydrodynamic
fields. Moreover, P is the thermodynamic projection operator, which, as discussed
in Sect. 3.4, allows us to decompose the dynamics into a fast motion on the affine
subspace f + ker[P] and a slow motion, which occurs along the tangent space T f .
The use of the thermodynamic projector guarantees the persistence of dissipation: it
can be shown [1] that the entropy production rate is unaltered when the dynamic is
projected along the manifold of slow motion.
In order to derive exact hydrodynamic equations from the general eigenvalue problem
(5.3), we proceed as follows:

1. We determine the invariant manifold, i.e., the distribution function solving the
invariance equation

(1 − P)ΛΔ f = 0, (5.11)

where � f ≡ f − f GM (cf. also Table 5.1).
2. We derive the equations of linear hydrodynamics by integrating the kinetic equa-

tion (5.3), with f given by the solution of Eq. (5.11). By construction, the hydrody-
namic modes then coincide with the set ωα of eigenfrequencies of the Boltzmann
equation, which vanish in the limit k → 0.

We also denote by xk the Fourier components of the dimensionless hydrodynamic
fluctuations [ñ, ũ, T̃ ]: ñ ≡ (n − n0)/n0 (particle number perturbation), ũ ≡ u/vT

(velocity perturbation), and T̃ ≡ (T − T0)/T0 (temperature perturbation). Further,
we split the mean velocity ũ uniquely as ũ = u‖e‖ +u⊥e⊥, where the unit vector e is
parallel to k, and e⊥ is orthonormal to e‖, i.e., e⊥ lies in the plane perpendicular to k.
Due to isotropy, u⊥ alone fully represents the twice degenerated (shear) dynamics.
By linearizing around the global equilibrium, we write the local Maxwellian con-
tribution to f in (5.2) as f LM = f GM(1 + ϕ0), where ϕ0 takes a simple form,
ϕ0 = X(0) · x (linear quasiequilibrium manifold), where X(0)(c) was defined in
Eq. (5.7). It is conveniently considered a four-dimensional vector using the four-
dimensional version xk = [ñk, u‖, T̃k, u⊥], and is then given by (5.21). It proves
convenient to introduce a vector of velocity polynomials ξ(c), which is similar to X0

and defined below in Eq. (5.22), such that using the notation introduced in Eq. (2.65),

〈ξμ|X (0)ν 〉 = δμν.

Hence the fields xk are obtained as 〈ξ(c)〉 f LM = xk , where averages are defined
here as

〈ξ(c)〉 f = 1

n0

∫
ξ(c) f (c)dv. (5.12)

We introduce yet unknown fields δX(c,k) that characterize the part δ f of the distrib-
ution function. As long as deviations from the local Maxwellian are small, we seek a
nonequilibrium manifold that is also linear in the hydrodynamic fields x themselves.
Therefore, we set

δϕ = δX · xk . (5.13)

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_2


5.2 The Invariant Manifold Technique 55

The “eigen”closure (5.13), which formally and very generally addresses the fact that
we wish to not include other than hydrodynamic variables, implies a closure between
moments of the distribution function, to be worked out in detail below. If we use the
above form (5.13) for δ f = f GMδϕ, with L̂δ f = f GML[δX] · xk , and the canonical
abbreviations �X ≡ X0(c)+ δX(c,k), then Eq. (5.5) reads

ω f GM�X · xk = ΛΔ f = −ik · c f GM�X · xk + f GM L̂δX · xk . (5.14)

The microscopic projected dynamics is obtained through the projector P , which,
when acting on the vector field J ( f ) = ΛΔ f , gives

PΛ� f = Dxk� f ·
∫

ξ(c)ΛΔ f dv, (5.15)

where DxkΔ f ≡ ∂Δ f/∂xk and the quantity inside the integral in (5.15) represents
the time evolution equations for the moments xk . These are readily obtained by
integration of the weighted (5.5) as

ω〈ξ(c)〉 f = −ik · 〈ξ(c)c〉 f + 〈ξ(c)〉L̂δ f . (5.16)

Due to the eigenclosure (5.13), cf. also Table 5.1, one obtains DxkΔ f = f GM�X,
whereas (5.16) is linear in xk and can be written as

ωxk = M · xk . (5.17)

Equation (5.17) defines the matrix M of hydrodynamic coefficients, whose explicit
structure will be made clear in Eq. (5.27). Using (5.17), Eq. (5.15) can be cast in the
form

PΛΔ f = f GM�X · M · xk . (5.18)

In the derivation of (5.18), one needs to take into account the constraints 〈ξ(c)〉δ f = 0
(because the fields xk are defined through the local Maxwellian part of the distribution
function only) and 〈ξ(c)〉L̂δ f = 0 (conservation laws). The dependence of the matrix
elements of M on moments of δ f is explicitly given in Table 5.2. Combining (5.14)
and (5.18) and requiring that the result hold for every xk (invariance condition), we
obtain a closed, singular integral equation (the invariance equation) for complex-
valued δX,

ΔX · M = −ik · c�X + L̂δX. (5.19)

Notice that δX = ΔX − X(0) vanishes for k = 0, which implies that in the limit
k → 0, the invariant manifold is given by the set of local Maxwellians f LM. The
implicit Eq. (5.19) for δX (orΔX, since X(0) is known) is identical to the eigenclosure
(5.13), and is our main and practically useful result.



56 5 Hydrodynamic Fluctuations from the Boltzmann Equation

Fig. 5.1 Schematic drawing introducing an orthonormal frame e‖, e‖⊥, and e‖⊥ × e‖, which is
defined by the wave vector k ‖ e‖ and the heat flux q (not shown), which lies in the e‖– e‖⊥-plane.
Shown is the velocity vector c (5.20) relative to this frame (characterized by length c, coordinate z,
and angle φ) and its various components. The integration over dc = c2dcdzdφ is done in spherical
coordinates with respect to the local orthonormal basis

5.3 Coordinate Representation and Symmetries

In order to calculate the averages occurring in Sect. 5.2, we switch to spherical coordi-
nates. For each (at present arbitrary) wave vector k = ke‖, we choose the coordinate
system in such a way that its (vertical) z-direction aligns with e‖ and its x-direction
aligns with e⊥. The velocity vector was decomposed earlier as ũ = u‖e‖+u⊥e⊥. We
can then express c, over which we are going to perform all integrals, in terms of its
norm c, a vertical variable z, and plane vector eφ (azimuthal angle eφ · e⊥ = cosφ;
the plane contains e⊥) for the present purpose as

c/c =
√

1 − z2 eφ + ze‖, (5.20)

as shown in Fig. 5.1.
The local Maxwellian, linearized around the global equilibrium, takes the form

f LM/ f GM = 1 + ϕ0 = 1 + X(0) · xk , where the four-dimensional X(0) and the
related vector ξ employing four-dimensional xk = [ñk, u‖, T̃k, u⊥] are given by the
expressions

X(0)(c) =
(

1, 2c‖,
(

c2 − 3

2

)
, 2c⊥

)
, (5.21)

ξ(c) =
(

1, c‖,
2

3

(
c2 − 3

2

)
, c⊥
)
, (5.22)

which clearly resemble the expression given in (2.71). Here we have introduced, for
later use, the abbreviations

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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c‖ ≡ c · e‖, c⊥ ≡ c · e⊥, cφ ≡ c · eφ = c⊥
e⊥ · eφ

, (5.23)

such that ik · c = ikc‖. We can then rewrite (5.20) as c = cφeφ + c‖e‖ with
c‖ = cz and cφ = c

√
1 − z2. The latter two components, contrasted by c⊥ (and eφ),

do not depend on the azimuthal angle. We further introduced yet unknown fields
δX(c,k), which characterize the nonequilibrium part of the distribution function
δϕ = δ f/ f GM.
By analogy with the structure of the local Maxwellian, we postulate that close
to equilibrium, δϕ depends linearly on the hydrodynamic fields xk themselves.
Equation (5.13) can therefore be cast in the form

δϕ = δX · xk = δX1ñk + δX2u‖ + δX3T̃k + δX4u⊥. (5.24)

The functions δX1,2,3, which are associated with the longitudinal fields, inherit
the full rotational symmetry of the corresponding Maxwellian components, i.e.,
δX1,2,3 = δX1,2,3(c, z), whereas δX4 factorizes as δX4(c, z, φ) = 2δY4(c, z)∑∞

m=1 ym cos mφ. In this context, it is an important technical aspect of our derivation
to work with a suitable orthogonal set of basis functions to represent δ f uniquely.1

The matrix M in (5.18) contains the nonhydrodynamic fields: the heat flux qk ≡〈
c
(

c2 − 5
2

)〉

f
and the stress tensor σ k ≡ 〈 cc 〉 f , where s denotes the symmetric

traceless part of a tensor s [18], s = 1
2 (s + sT ) − 1

3 tr(s)I, where I is the identity
matrix. Using (5.13) and the above-mentioned angular dependence of the δX func-
tions (the only term in δX4 playing a role in our calculations is the first-order term

1 In the notation in [8, 18, 19], the distribution function is written as a sum over n-fold contracted
products of nth-rank tensors f (c) = f0(c)

∑∞
k,n=0

〈
φn

k

〉 
n φn
k (c) with

〈
φn

k

〉 = ∫ f (c)φn
k dc and

base functions φn
k (c) = ln

k Ln+1/2
k (c2) ⊗nc , where Ln

k are the associated Laguerre (kth-order)
polynomials [20], ⊗nc denotes the n-fold tensor product, and a denotes the irreducible part of

a tensor a. For the explicit construction of nth-rank irreducible tensors ⊗nc , see [18, p. 160].
The normalization coefficients evaluate as ln

k = (
√
πk!(1 + 2n)!!/[2(k + n + 1/2)!n!])1/2. The

base function φn
k (c) is thus a (2k + n)th-order polynomial in c. The lowest-order base functions

read φ0
0 = 1, φ1

0 = √
2c, φ0

1 = √
2/3(3/2 − c2), φ1

1 = (2/
√

5)(5/2 − c2)c, and φ2
0 = √

2 cc .
Density, velocity, temperature, heat flux, and stress tensor are related to the moments as follows:
ñ = 〈φ0

0

〉
, ũ = 〈φ1

0

〉
/
√

2, T̃ = 〈φ0
1

〉√
3/2, q = 〈φ1

1

〉
, and σ = 〈φ2

0

〉
/
√

2. The distribution function
is then split into (orthogonal) parts as f (c) = f LM(c) + δ f Grad(c) + δ f rest(c) with f LM(c) ≡
f0(c)(

〈
φ0

0

〉
φ0

0 + 〈φ1
0

〉
φ1

0 + 〈φ0
1

〉
φ0

1 ) and δ f Grad(c) ≡ f0(c)(
〈
φ1

1

〉
φ1

1 + 〈φ2
0

〉
φ2

0 ), while the sum in
δ f rest(c) =∑k,n

〈
φn

k

〉
n φn
k (c) extends over the remaining (k, n)-pairs. Number density, velocity,

and temperature are therefore determined by f LM alone, and δ f automatically obeys constraints
such as the orthogonality requirement

∫
δ f (c)φ0

1 dc = 0 and also
∫
δ f (c)ξ(c)dc = 0, as mentioned

in the text. These conditions become redundant if calculations are performed using the particular
basis φn

k . For Maxwell molecules, the dependence on the polar angle φ can be included by replacing
Pl(z) by eimφ Pm

l (z), involving the associated Legendre polynomials [20], and the eigenvalues are
independent of m. Then these base functions reduce to the eigenfunctions ψr,l (c, z) (5.29) of the
Maxwell gas.
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Table 5.2 Symmetry-adapted components of (nonequilibrium) stress tensor σ k and heat flux qk ,
introduced in (5.25) and (5.26)

σ
‖
1 σ

‖
2 σ

‖
3 σ4

〈λ‖δX1〉 〈λ‖δX2〉 〈λ‖δX3〉 〈c‖c⊥δY4〉
−k2 B ik A −k2C ik D
real, ⊕ imag., ⊕ real, ⊕ imag., �

q‖
1 q‖

2 q‖
3 q4

〈γ ‖δX1〉 〈γ ‖δX2〉 〈γ ‖δX3〉
〈(

c2 − 5
2

)
c⊥δY4

〉

ik X −k2 Z ikY −k2U
imag., � real, � imag., � real, ⊕
Row 2 Microscopic expression of these components (averaging with the global Maxwellian). Short-

hand notation used: λ‖ = c2‖ − c2

3 and γ ‖ =
(

c2 − 5
2

)
c‖. Row 3 Expression of the components

in terms of (as we show, real-valued) functions A–Z (see text). Row 4 Parity with respect to z—
symmetric (⊕) or antisymmetric (�)—of the part of the corresponding δX entering the averaging
in row 2, and whether this part is imaginary or real-valued (see Fig. 5.5). Row 3 is an immediate
consequence of row 4

cosφ, with y1 = 1),2 constraints such as the required decoupling between longitu-
dinal and transversal dynamics of the hydrodynamic fields are automatically dealt
with correctly in performing integrals over φ.
More explicitly, the stress tensor and heat flux uniquely decompose as follows:

σ k = σ ‖ 3

2
e‖e‖ + σ⊥ 2 e‖e‖ ⊥, (5.25)

qk = q‖ e‖ + q⊥ e‖⊥, (5.26)

with the moments σ ‖ = (σ
‖
1 , σ

‖
2 , σ

‖
3 ) · (ñk, u‖, T̃k) and σ⊥ = σ4u⊥, and similarly

for qk (see row 2 of Table 5.2).
The prefactors arise from the identities e‖e‖ : e‖e‖ = 2

3 and e‖e‖ ⊥ : e‖e‖ ⊥ = 1
2 .

We note in passing that while the stress tensor has, in general, three different eigen-
values, in the present symmetry-adapted coordinate system, it exhibits a vanishing
first normal stress difference. Since the integral kernels of all moments in (5.25) do

2 The integrals listed in Table 5.2 obey the following decoupling rules:

∫ (
c2‖ − 1

3
c2
)
δXndc ∝ 1 − δn,4,

∫
c‖c⊥δXndc ∝ δn,4,

∫
c‖
(

c2 − 5

2

)
δXndc ∝ 1 − δn,4,

∫
c⊥
(

c2 − 5

2

)
δXndc ∝ δn,4.
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not depend on the azimuthal angle, these are actually two-dimensional integrals over
c ∈ [0,∞] and z ∈ [−1, 1], each weighted by a component of 2πc2 f GMδX.
Stress tensor and heat flux can also be written in an alternative form, defined by
row 3 of Table 5.2, in terms of the functions A–Z , which correspond to moments of
the nonequilibrium distribution function and are related to the generalized transport
coefficients; see [8, 13, 21] and below.
Due to fundamental symmetry considerations, the generalized transport coefficients
A–Z introduced here are real-valued. To show this, we use the functions A–Z to split
M into parts as M = Re(M)− i Im(M),

M = k2

⎛

⎜⎜⎝

0 0 0 0
0 A 0 0
2
3 X 0 2

3 Y 0
0 0 0 D

⎞

⎟⎟⎠− ik

⎛

⎜⎜⎝

0 1 0 0
B̃ 0 C̃ 0
0 Z̃ 0 0
0 0 0 0

⎞

⎟⎟⎠ , (5.27)

with abbreviations B̃ ≡ 1

2
− k2 B, C̃ ≡ 1

2
− k2C , and Z̃ ≡ 2

3
(1 − k2 Z). The

checkerboard structure of the matrix M (5.27) is particularly useful for studying
properties of the hydrodynamic equation (5.18), such as hyperbolicity and stability
[2, 3], once the functions A–Z are explicitly evaluated. Moreover, we remind the
reader that we use orthogonal basis functions (irreducible moments; cf. Table 5.2)
to solve (5.19). In order to show how the above functions enter the definition of the
M matrix, we first notice that its elements are a priori complex-valued. We wish,
then, to make use of the fact that all integrals over z vanish for odd integrands.
To this end, we introduce abbreviations ⊕ (�) for a real-valued quantity that is
even (odd) with respect to the transformation z → −z. One notices that X(0) =
(⊕,�,⊕,⊕), and we recall that A–Z are integrals over either even or odd functions
in z, times a component of δX (see Table 5.2). Let us prove the consistency of
the specified symmetry of M and the invariance condition: start by assuming A–
Z to be real-valued functions. Then Mμν = ⊕ if μ + ν is even, and Mμν = i⊕
otherwise. This implies δX1 = ⊕ + i�, δX2 = � + i⊕, δX3 = ⊕ + i�, and
δX4 = ⊕ + i�, i.e., different symmetry properties for real and imaginary parts.
With these “symmetry” expressions for X(0), δX, and M at hand, and by noticing that
symmetry properties for δX carry over to L̂(δX) because the ψr,l are (i) symmetric
(antisymmetric) in z for even (odd) l and (ii) eigenfunctions of L̂ , we can insert into
the right-hand side of the equation L̂(δX) = (X(0) + δX) · (M + i � I), which
is identical to the invariance equation (5.19). There are only two cases to consider,
because M has a checkerboard structure, i.e., only two types of columns: columns
μ = 1 and μ = 3; here we have δXμ = ⊕ + i� because M1−3,4 = 0; columns
μ ∈ {2, 4}; here δXμ = ⊕+ i� if Mμ,1−3 = 0 (which is the case for column 4) and
� + i⊕ if Mμ,4 = 0 (which is the case for column 2). These observations complete
the proof.
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Fig. 5.2 Exact hydrodynamic modes ω of the Boltzmann–BGK kinetic equation as a function of
wave number k (two complex-conjugate acoustic modes ωac, twice degenerated shear mode ωshear ,
and thermal diffusion mode ωdiff ). The nonpositive decay rates Re(ω) attain the limit of collision
frequency (−1) in the k � 1 regime

5.4 The BGK Kinetic Model

The solution of the invariance equation (5.19) can be obtained in some simple cases
amenable to an analytic or numeric treatment. In this section, we focus on the lin-
earized version of the BGK kinetic model (cf. Eq. 2.69), which remains popular in
applications [22] and is characterized by a single collision frequency. The invariance
equation for this model is readily obtained from Eq. (5.19) by using L̂(δX) = −δX,
which therefore yields

δX = X(0) · (M + [ikc‖ + 1]I)−1 − X(0). (5.28)

Notice that δX vanishes for k = 0, and that (5.28) is supplemented with the basic
constraint 〈ξ〉δ f = 0, which, however, is automatically dealt with if we evaluate only
anisotropic (irreducible) moments with δ f , such as those listed in Table 5.2.
The nonperturbative derivation is made possible with an optimal combination of
analytic and numeric approaches to solve the invariance equation. The result for
the hydrodynamic modes is demonstrated in Fig. 5.2. It is clear from Fig. 5.2 that the
relaxation of none of the hydrodynamic modes is faster than ω = −1, which is the
collision frequency in the units adopted in this chapter. Thus, the result for the exact
hydrodynamics indeed corresponds to the following intuitive picture: the hydrody-
namic modes, at large k, cannot relax faster than the (single) collision frequency
itself.

We iteratively calculated (i)δX directly from (5.28) for each k in terms of M,
and (ii) subsequently calculated moments from δX by either symbolic or numeric

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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integration (both approaches produce the same results within machine precision; we
found simple numeric integration on a regular 500 × 100 grid in c, z-space with grid
spacing 0.01 on both axes sufficient to reproduce analytic results. Importantly, the
fixed point of the iteration (i)–(ii)–(i)– etc. is unique for each k, i.e., does not depend
on the initial values for moments A–Z .
In addition, two other computational strategies were implemented: First, we used
continuation of functions A–Z from their values at k = 0 to solve (5.28) with an
incremental increase of k, where the solution at k was used as the initial guess for
k + dk. Second, we also used a “backward” continuation in which the solution at
some k (obtained by convergent iterations with a random initial condition) was used
as the initial guess for a solution at k − dk. Both these strategies returned the same
values of functions A–Z as computed by iterations from arbitrary initial condition.

The solution δX allows us to calculate the whole distribution function f via
(5.13), as illustrated in Fig. 5.3. For the resulting moments A–Z , for a wide range of
k-values, see Fig. 5.4. With the result for the functions A–Z in hand, the extended
hydrodynamic equations are closed.
Let us briefly discuss the pertinent properties of this system. First, the generalized
transport coefficients are given by the nontrivial eigenvalues of −k−2Re(M): λ2 =
−A (elongation viscosity), λ3 = − 2

3 Y (thermal diffusivity), and λ4 = −D (shear
viscosity). All these generalized transport coefficients are nonnegative (see Fig. 5.4).
Second, in computing the eigenvalues of matrix M, we obtain the dispersion relation
ω(k) of the corresponding hydrodynamic modes already presented in Fig. 5.2. Third,
a suitable transform zk = T ·xk of the hydrodynamic fields, where T is a real-valued
matrix, can be established such that the transformed hydrodynamic equations read
∂t zk = M′ ·zk , where M′ = T ·M ·T−1 is manifestly hyperbolic and stable; Im (M′)
is symmetric, and Re(M′) is symmetric and nonpositive semidefinite. The corre-
sponding transformation matrix T can be easily read off from the results obtained in
[2] for Grad’s systems, since the structure of the matrix M (5.27) is identical to the
one studied in [2, 3]. We have explicitly verified that that matrix T (Eqs. (21)–(23) in
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Fig. 5.3 Sample distribution function f (c,k) at k = 1, fully characterized by the four quantities
δX1,2,3(c, z) and δY4(c, z). Shown here are both their real (left column) and imaginary parts (right
column). In order to improve contrast, we actually plot ln |1 + f GMδXμ| multiplied by the sign of
δXμ. The same color code for all plots, ranging from −0.2 (red) to +0.2 (blue)
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Fig. 5.4 Moments A–Z versus wave number k obtained with the solution of (5.28)

[2] and Eq. (13) in [3]) with the functions A–Z derived herein is real-valued and thus
renders the transformed hydrodynamic equations manifestly hyperbolic and stable.
We note that this result—hyperbolicity of exact hydrodynamic equations—strongly
supports a recent suggestion by Bobylev to consider a hyperbolic regularization of
the Burnett approximation [7]. Similarly, using the hyperbolicity, an H -theorem
is elementarily proven as in [3, 7]. Finally, using the accurate data for functions
A–Z , we can write analytic approximations for the corresponding hydrodynamic
equations in such a way that hyperbolicity and stability are not destroyed in such an
approximation [2].
In conclusion, we have derived exact hydrodynamic equations from the linearized
Boltzmann–BGK equation [13]. The main novelty is the numeric nonperturbative
procedure to solve the invariance equation. In turn, our highly efficient approach is
made possible by choosing a convenient coordinate system and establishing symme-
tries of the invariance equation. The invariant manifold in the space of distribution
functions is thereby completely characterized; that is, not only are equations of
hydrodynamics obtained, but also the corresponding distribution function is made
available.
The predicted smoothness and extendability of the spectrum to all k is expected
to have some implications for microresonators, where the quality of the resonator
becomes better at very high frequencies. This is compatible with our prediction.
The damping of all the modes saturates, while the imaginary part of the acoustic
modes frequency grows. The pertinent data can be used, in particular, as a much
needed benchmark for computation-oriented kinetic theories such as lattice Boltz-
mann models, as well as for constructing novel models [23].
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It is worth remarking that the above derivation of hydrodynamics is done under the
standard assumption of local equilibrium. However, the assumption itself is open to
further study [24].

5.5 The Maxwell Molecules Gas

In this section, we investigate another kinetic model for which an exact solution of
the invariance equation (5.19) can be obtained: the Maxwell-molecules gas, i.e., a gas
consisting of particles repelling each other with a force proportional to the inverse
fifth power of the distance. Chang and Uhlenbeck [25] provided an analytic solution to
the eigenvalue problem for the linearized collision operator L pertaining to this case.
As anticipated in Chap. 2, in the Maxwell molecules gas, the collision probability per
unit time, gσ(g, θ), is independent of the magnitude of the relative velocity g. Since
the collision operator is spherically symmetric in the velocity space, the dependence
of the eigenfunctions on the direction of c is expected to be spherically harmonic.
Indeed, the eigenvalue problem admits the following solutions:

L̂[ψr,l(c, z)] = λr,lψr,l(c, z),

ψr,l(c, z) =
√√√√r !(l + 1

2 )
√
π

(l + r + 1
2 )!

cl Pl(z)S
(r)
l+ 1

2
(c2), (5.29)

where S(r)l+1/2(x) are Sonine polynomials, and Pl(z) are Legendre polynomials that
act on the azimuthal component of the peculiar velocity c. The Legendre and Sonine
polynomials are each orthogonal sets, i.e.,

1∫

−1

Pl(z)Pn(z)dz = 2

2l + 1
δln,

2π

∞∫

0

c2e−c2
c2l S(r)

l+ 1
2
(c2)S(p)

l+ 1
2
(c2)dc = π(l + 1

2 + r)!
r ! δr p.

Accordingly, the ψr,l are normalized to unity with the weight factor f0(c):

δrr ′δll ′ = 2π−1/2

1∫

−1

∞∫

0

c2e−c2
ψr,l(c, z)ψr ′,l ′(c, z)dcdz

≡ π−3/2
∫

e−c2
ψr,l(c)ψr ′,l ′(c)dc. (5.30)

http://dx.doi.org/10.1007/978-1-4614-6306-1_2
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The corresponding eigenvalues for Maxwell molecules are given by

λr,l = 2π

π∫

0

sin(θ)F(θ)Trl(θ)dθ,

Trl(θ) ≡ cos2r+l
(
θ

2

)
Pl

(
cos

θ

2

)
+ sin2r+l

(
θ

2

)
Pl

(
sin

θ

2

)
− (1 + δr0δl0).

The collision operator L̂ is negative semidefinite, i.e., all eigenvalues are negative
except λ0,0, λ0,1, and λ1,0, which are zero and correspond to the elementary collision
invariants. As shown by Chang and Uhlenbeck [25], the spectrum of L̂ for Maxwell
molecules is discrete, and for r → ∞, the eigenvalues λr,l tend to −∞. Chang and
Uhlenbeck’s investigation of the dispersion of sound in a Maxwell-molecules gas
was based on writing the deviation from the global equilibrium as

(ϕ0 + δϕ) =
∞∑

{r,l}=0

a(r,l)ψr,l(c), (5.31)

so that (5.5) reduces to an algebraic equation for the coefficients a(r,l):

ωa(r,l) = −ik ·
∑

{r ′,l ′}=0

∞
Cr,l,r ′,l ′a

(r ′,l ′) + λr,la
(r,l), (5.32)

with
Cr,l,r ′,l ′ = 〈ψr,l |c ψr ′,l ′ 〉.

The hydrodynamic modes for the Maxwell-molecules gas are determined, as seen in
Sect. 5.1, from the condition of nontrivial solvability of the linear system (5.32). This
approach allows us to solve the eigenvalue problem (5.3) for an arbitrary number of
modes, which is made possible just by tuning the number of eigenfunctions taken
into account in (5.31).
Another approach [8] is based instead on the expansion of the functions [X(0), δX]
in terms of the orthonormal basis ψr,l = ψr,l(c, z):

X (0)μ (c, z) =
N∑

r,l

a(0)(r,l)μ ψr,l(c, z), (5.33)

δXμ(k, c, z) =
N∑

r,l

a(r,l)μ (k)ψr,l(c, z). (5.34)

The equilibrium coefficients a(0)μ are known, and can be determined by taking advan-
tage of the orthogonality of the eigenfunctions as follows:
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a(0)(r,l)μ = π− 3
2

∫
e−c2

ψr,l(c, z)X (0)μ (c, z)dc. (5.35)

Inserting (5.33) and (5.34) into the invariance equation (5.19), we obtain the following
nonlinear set of algebraic equations for the unknown coefficients a(r,l)μ (k):

b(r,l)μ Mμν = −ik ·
N∑

r ′,l ′
b(r

′,l ′)
ν L(r,l,r ′,l ′) +

N∑

r ′,l ′
a(r

′,l ′)
ν L(r,l,r ′,l ′), (5.36)

with ∀μ,r,l , b(r,l)μ =
(

a(0)(r,l)μ + a(r,l)μ

)
, and

L(r,l,r ′,l ′) = 〈ψr,l |L̂ ψr ′,l ′ 〉.

For any order of expansion, the solutions of (5.36) characterize an invariant manifold
in the phase space. The matrix elements L(r,l,r ′,l ′) can be easily evaluated in a few
kinetic models, such as the linearized BGK model [13] and Maxwell molecules [8].
In particular, the Maxwell-molecules case is recovered by setting

L(r,l,r ′,l ′) = λr,lδr,r ′δl,l ′ ,

whereas the linearized BGK model is recovered by setting all nonvanishing eigen-
values equal to λ = −1. The calculation of the coefficients a(r,l) via the reformulated
invariance equation (5.36) is easily achieved. The invariant manifold is fully char-
acterized through these coefficients: the distribution function is determined, and the
corresponding matrix M of linear hydrodynamics as well as moments A–Z are made
accessible.
Solving the invariance equation (5.19) and thus obtaining the distribution function
via the coefficients a(r,l), cf. Fig. 5.5, required minor computational effort [8]. The
components A–Z of M are related to the coefficients a(r,l) by the expressions

A = − ia(0,2)2√
3k

, B = − a(0,2)1√
3k2

, C = − a(0,2)3√
3k2

,

X = − i
√

5a(1,1)1

2k
, Y = − i

√
5a(1,1)3

2k
, Z = −

√
5a(1,1)2

2k2 ,

D = − i

k

N∑

r,l

a(r,l)4 〈c‖cφ |ψr,l〉, U = − 1

k2

N∑

r,l

a(r,l)4

〈(
c2 − 5

2

)
c⊥|ψr,l

〉
. (5.37)

In the regime of large Knudsen numbers, the coefficients a(r,l) may be used, e.g., to
directly calculate phoretic accelerations onto moving and rotating convex particles
[26], while in the opposite limit of small k, we recover the classical hydrodynamic
equations.
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Fig. 5.5 All contributions δX1−4(c,k) versus c (horizontal, c = |c|) and z ∈ [−1, 1] (vertical axis,
z is the cosine of the angle between k and peculiar velocity c) to the nonequilibrium distribution
function δ f = f GMδX · xk (5.13) at k = 1, obtained with the fourth-order expansion, N = 4.
Shown here are both their real (top row) and imaginary parts (bottom row)

5.5.1 Hydrodynamic Modes and Transport Coefficients

With M in hand, the hydrodynamic modes are obtained from the condition of non-
trivial solvability of the linear system (5.17). Figure 5.6 illustrates the damping rates
of the fluctuations given by the real part of the hydrodynamic modes, obtained by
truncating the series (5.33) and (5.34) at the fourth order. The picture does not quali-
tatively change on further increase of the order N . For any given order of expansion,
the modes extend smoothly over the entire wave-vector domain, and for large k, they
attain an asymptotic value, which is clearly in agreement with the asymptotic behav-
ior of the hydrodynamic modes obtained for the linearized BGK model discussed in
Sect. 5.4.
The generalized transport coefficients are obtained by the nontrivial eigenvalues of
−k2Re(M): λ2 = −A (elongation viscosity), λ3 = − 2

3 Y (thermal diffusivity), and
λ4 = −D (shear viscosity). In the limit k → 0, one recovers the hydrodynamic
limit. This limit had been worked out in detail in [2, 3]. In that limit, the generalized
transport coefficients A–Z become the classical transport coefficients. As can be seen
from Fig. 5.7, and also by inspecting the invariance equation (5.19), in the limit of
small k, all moments A–Z approach constant values. These constants are compatible
with those obtained in [2, 3] for the case of Navier–Stokes equations and the Burnett
correction [27].

The stress tensor and heat flux are given in terms of these moments in Table 5.2. For
example, the parallel component of the stress tensor related to density fluctuations,
σ

‖
1 , cf. Eq. (5.25), is given by −k2 B, so that it approaches −k2 for small k, as results

from the Burnett approximation [1].
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Fig. 5.7 Moments A−Z of the distribution function (see Table 5.2 and Eq. (5.37)) versus wave
number k obtained with the solution of (5.19). Non-triangles (black symbols): moments entering
only the longitudinal component of hydrodynamic equations. Triangles (blue symbols): moments
entering the transverse component of hydrodynamic equations

Moreover, under suitable assumptions, one may also cast the matrix of hydrodynamic
coefficients M in the structure of a Green–Kubo formula [10]; cf. Eq. (4.19). We
summarize below the main steps of the proof given in [28], to which we refer the
reader for an exhaustive derivation. From Eqs. (5.17) and (5.19), the time evolution
of the hydrodynamic fields can be formally written as

xk(τ ) = eMτxk(0) =
〈
ξ

∣∣∣∣e
Λτ δX

〉
xk(0), (5.38)

where we skipped, for brevity, the spatial dependence of the fields. In Eq. (5.38),
the time τ is of order τmacro, which denotes a characteristic time scale related to the
evolution of the hydrodynamic fields. As discussed in Sect. 3.1, the presence of a

http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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definite time scale separation in a particle system entails that τmacro � τmf , where
τmf denotes a kinetic time scale (i.e., the mean time between collisions). Hence, by
invoking the Bogoliubov hypothesis of time scale separation, the time τ becomes
large with respect to the characteristic time scale of the dynamics of the distribution
function (right-hand side of the second equality in (5.38)). Thus, from Eq. (5.38), we
can write the matrix of hydrodynamic coefficients in the form

M = lim
τ→∞

1

τ
log

〈
ξ

∣∣∣∣e
Λτ δX

〉
. (5.39)

Next, we use the operator identity

eΛτ = 1 +Λτ +Λτ

⎡

⎣1

τ

τ∫

0

(τ − t)eΛt dt

⎤

⎦Λ, (5.40)

and make the following assumptions:

(i) The underlying kinetic evolution is such that the term in square brackets in
Eq. (5.40) can be approximated, for large τ , by

∫∞
0 eΛt dt .

(ii) The expansion of the logarithm to first order in τ is a valid approximation before
the limit τ → ∞ is taken.

Thus, using the symmetry of the operatorΛ and neglecting, for simplicity, kinematic
contributions [28] of the form 〈ξ(0)|ΛδX(0)〉, Eq. (5.39) can be finally written in
the form

M =
∞∫

0

〈
ξ̇(0) ˙δX(t)〉 f GM dt. (5.41)

Equation (5.41) allows us to extend the Green–Kubo formalism, which relates the
response function to a suitable time correlation function, to the short-wavelength
domain. We should not forget, though, that the standard Green–Kubo response for-
mulas rely on the notion of local thermodynamic equilibrium [29, 30], and hence
they are not guaranteed, like the standard relation of equilibrium thermodynamics,
below the length scale �meso; cf. Sect. 3.1.
Moreover, it can be seen from an inspection of Fig. 5.7 that in the free-particle
regime, k → ∞, the transport coefficients vanish and dissipative effects fade off.
This observation finds a sound confirmation in [31]: “Operationally, of course, trans-
port coefficients cannot even be defined for a gas of non-interacting particles. A
measurement of the thermal conductivity, for example, is only possible if we can
apply, quasi-statically, a temperature gradient and maintain it while we measure the
heat current. However, only for a system with a finite mean free path can a temper-
ature gradient be maintained quasi-statically. A free gas would ‘run away,’ and the
standard measurements of transport coefficients cannot be performed. Still, it may

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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Fig. 5.8 a Damping spectrum, i.e., the negative imaginary part of k divided by frequency ω versus
the negative logarithm of ω. Results obtained in this work (by solving Eq. 5.19 and subsequently
Eq. 5.18 forw(k)with complex-valued k and real-valuedω) are compared with previous approaches
including Navier–Stokes (NS), regularized 13 moment (Reg13) [6], Grad’s 13 moment (Grad13),
and experimental data presented in [32]. b Phase spectrum, i.e., real part of k times velocity of sound
c0 divided by ω versus the negative logarithm of ω. Again, we compare with reference results

be satisfying for some that, in this case, the Kubo expressions give the most sensible
result: zero.”

5.5.2 Short-Wavelength Hydrodynamics

The existence of collective modes at short wavelengths in real fluids is a longstanding
issue in fluid dynamics [33]. In their seminal work [34], Ford et al. illustrated, on the
basis of a model kinetic equation approximating the linearized Boltzmann equation,
that the sound modes extend to length scales comparable with the mean free path
in the gas. Similarly, our analysis showed that hydrodynamic modes and the gener-
alized transport coefficients extend smoothly over the whole k domain. Therefore,
the invariant manifold technique allows us to refine the hydrodynamic description
beyond the strictly hydrodynamic regime. Our results also strengthen those previ-
ously reported in [35–37] on dense fluids, which revealed that the hydrodynamic laws
provide a sensible description of fluids even at length scales comparable with λmf .
It would therefore be interesting to investigate the features of the equations of gener-
alized hydrodynamics that we obtained in the regime of finite frequencies and wave
vectors. In Fig. 5.8, a comparison is shown about inverse phase velocity and damping
for acoustic waves between our results, former approaches [6, 38], and experimental
data performed by Meyer and Sessler [32]. As can be seen, our results are very close
to the predictions of the regularized 13 (Reg13) moments method [6] and closer
to experimental data than (Reg13) concerning the phase spectrum. Our theory also
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predicts a phase speed that remains finite also at high frequencies, a property that is
not enjoyed by any hydrodynamics derived from the CE expansion [5].
A further clue about the features of our model at finite frequencies and wave vectors
can be achieved by investigating the spectrum of density fluctuations Sñ,ñ ; cf. Eq. 4.14
in Sect. 4.1. From the knowledge of the functions A–Z , it is possible to compute the
coefficients DT and Γ , related respectively to the damping of thermal and pressure
fluctuations in fluids. In the limit of small k, and following standard textbooks [17],
they read

DT = 2

5
(X − Y ) ,

Γ = −
(

1

2
A + 1

5
X + 2

15
Y

)
.

It is worth pointing out that in contrast to standard treatments of hydrodynamic
fluctuations, the generalized transport coefficient X enters the expression of the
coefficients DT and Γ , even though its contribution, as is evident from Fig. 5.7, is
fairly small. The calculation of Sñ,ñ proceeds along the lines indicated in Chap. 4.
We thus give the final result:

Sñ,ñ(k, ω) = 1

2π
Sñ,ñ(k)

[
2

5

2DT k2

ω2 + (DT k2)2
+ 3

10

2Γ k2

(ω ± c0k)2+(Γ k2)2

]
. (5.42)

Representative plots of S(k, ω) are shown in Fig. 5.9a, b. For small k (hydrody-
namic limit), the obtained spectrum recovers the usual results of neutron (or light)
scattering experiments and consists of the three Lorentzian peaks previously illus-
trated in the left panel of Fig. 4.1. The one centered at ω = 0 is the Rayleigh peak,
which corresponds to the diffusive thermal mode. The two side peaks centered at
ω ± c0k are the Brillouin peaks, and represent the two propagating sound waves.
By increasing the wave vector, one enters the regime represented by the red dashed
line in the right panel of Fig. 4.1. In this intermediate regime, the structure of (5.42)
is unchanged, except that the generalized coefficients DT and Γ need to be replaced
by more complicated expressions [8]. The net effect observed is that sound waves get
damped and disappear, whereas the central Rayleigh peak decreases and broadens.
Density fluctuations are therefore driven only by a diffusive thermal mode for large
enough k. A deeper look into the behavior of the width at half maximum of the central
Rayleigh peak with increasing wave vectors allows us to bridge the gap between the
hydrodynamic and the free-particle regimes. As discussed in Sect. 4.2, for k � 1,
the width of the central peak increases with the square wave vector ∝ k2, whereas
in the opposite regime, k � 1, the width of the central peak is expected to grow
linearly in k.
Our results, see Fig. 5.9c, predict a width that is truly quadratic for small enough k,
reaches the regime of linear behavior for large k, and terminates, for some large k,
with a sublinear dependence on k. The onset of the terminal regime at k = k∗(N )
marks the range of validity that can be accessed at a given finite order of expansion

http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
http://dx.doi.org/10.1007/978-1-4614-6306-1_4
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Fig. 5.9 a Dynamic structure factor Sñ,ñ(k, ω) versus ω for small k = 0.4 and b large k = 100.
ωs = c0k denotes the hydrodynamic predicted sound mode of the spectrum, and the widths are
related to the moments A–Z (see Fig. 5.7). For small k, these are given by DT = 2

5 (X − Y ) and
Γ = − ( 1

2 A + 1
5 X + 2

15 Y
)
, where A is the generalized longitudinal kinetic viscosity, Y is the

generalized thermal diffusion coefficient, and X is a cross-coupling transport coefficient, relating
heat flux to density gradients. c Width DT k2 of the Rayleigh peak versus k (double-logarithmic). At
small k, DT k2 ∝ k2 as all moments A–Z , except X , reach a finite value in this limit. The inflection
point at k = k∗(N ) � 1 (shown to be increasing with the order of expansion N ) denotes the
onset of departure from the ideal Maxwellian behavior, where the width of the peak starts to behave
sublinearly in k and is used to quantify the range of validity for results obtained at finite order

N . Increasing N does not alter the overall picture obtained at a moderate order of
expansion, and more generally, results obtained with N + 1 will not change those
obtained with N below k∗(N ); cf. Fig. 5.9c.
In the spirit of Grad’s moments technique, cf. Sect. 3.3, varying the parameter N in
the expansions (5.33) and (5.34) corresponds to tuning the number of nonequilibrium
contributions to be included in the definition of distribution function. This leads to

http://dx.doi.org/10.1007/978-1-4614-6306-1_3
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an arbitrary level of refinement in the accuracy of the hydrodynamic description and
explains, intuitively, the observed dependence of k∗ on N [8].
The onset of a critical length scale marking the limit of the hydrodynamic description
is also reminiscent of the discussion in Chap. 3. Namely, we know that hydrodynam-
ics is founded on the notion of local thermodynamic equilibrium. Thus, for a given N ,
one may regard the length scale at which hydrodynamics breaks down,

[
k∗(N )

]−1,
as inherently related to the scale �meso below which local equilibrium is lost. Further
investigation is called for to shed light on this connection, which, if confirmed, would
endow the generalized hydrodynamic equations obtained via invariant manifold the-
ory with an even stronger thermodynamic character.

References

1. A.N. Gorban and I.V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics, Lect.
Notes Phys. 660 (Springer, Berlin, 2005).

2. M. Colangeli, I.V. Karlin and M. Kröger, From hyperbolic regularization to exact hydrody-
namics for linearized Grad’s equations, Phys. Rev. E 75, 051204 (2007).

3. M. Colangeli, I.V. Karlin and M. Kröger, Hyperbolicity of exact hydrodynamics for three-
dimensional linearized Grad’s equations, Phys. Rev. E 76, 022201 (2007).

4. A.V. Bobylev, Sov. Phys. Dokl. 27, 29 (1982).
5. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Meth-

ods in Kinetic Theory, (Springer-Verlag Berlin Heidelberg 2005).
6. H. Struchtrup and M. Torrilhon, H-theorem, regularization, and boundary conditions for lin-

earized 13 moment equations, Phys. Rev. Lett. 99, 014502 (2007).
7. A.V. Bobylev, Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equa-

tions, J. Stat. Phys. 124, 371 (2006).
8. M. Colangeli, M. Kröger and H. C.Öttinger, Boltzmann equation and hydrodynamic fluctua-

tions, Phys. Rev. E 80, 051202 (2009).
9. P.L. Bhatnagar, E.P. Gross and M. Krook, A Model for Collision Processes in Gases. I. Small

Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94, 511
(1954).

10. U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni and A. Vulpiani, Fluctuation-Dissipation:
Response Theory in Statistical Physics, Phys. Rep. 461, 111 (2008).

11. L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953).
12. J. L. Lebowitz, E. Presutti and H. Spohn, Microscopic Models of Hydrodynamic Behavior, J.

Stat. Phys. 51, 841 (1988).
13. I.V. Karlin, M. Colangeli and M. Kröger, Exact linear hydrodynamics from the Boltzmann

Equation, Phys. Rev. Lett. 100, 214503 (2008).
14. P. Resibois, On linearized hydrodynamic modes in statistical physics, J. Stat. Phys. 2, 1 (1970).
15. J. M. Blatt, Model equations in the kinetic theory of gases, J. Phys. A: Math. Theor. 8, 980

(1975).
16. R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, 1975).
17. L. E. Reichl, A modern course in statistical physics (University of Texas Press, Austin, 1980).
18. M. Kröger, Models for Polymeric and Anisotropic Liquids (Springer, Berlin, 2005).
19. S. Hess and W. Köhler, Formeln zur Tensor-Rechnung (Palm & Enke, Erlangen, 1980).
20. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions (National Bureau of

Standards, Washington, 1967).
21. J.P. Boon and S. Yip, Molecular Hydrodynamics (Dover, 1991).

http://dx.doi.org/10.1007/978-1-4614-6306-1_3


References 73

22. C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press,
Edinburgh, 1975).

23. S.S. Chikatamarla, S. Ansumali and I.V. Karlin, Entropic Lattice Boltzmann Models for Hydro-
dynamics in Three Dimensions, Phys. Rev. Lett. 97, 010201 (2006).

24. H. C.Öttinger and H. Struchtrup, The mathematical procedure of coarse graining: From Grad’s
ten-moment equations to hydrodynamics, Multiscale Model. Simul. 6, 53 (2007).

25. C. S. Wang Chang and G.E. Uhlenbeck, The kinetic theory of gases (Amsterdam, North-Holland
Pub. Co., 1970).

26. M. Kröger and M. Hütter, Unifying kinetic approach to phoretic forces and torques for moving
and rotating convex particles, J. Chem. Phys. 125, 044105 (2006).

27. D. Burnett, The distribution of velocities and mean motion in a slight nonuniform gas, Proc.
London Math. Soc. 39, 385 (1935).

28. A. N. Gorban and I. V. Karlin, Reconstruction lemma and fluctuation-dissipation theorem,
Revista Mexicana de Fisica 48, Suppl. 1, 238 (2002).

29. L. Rondoni and E. G. D. Cohen, On some derivations of irreversible thermodynamics from
dynamical systems theory, Physica D 341 168, (2002).

30. M. Colangeli and L. Rondoni, Equilibrium, fluctuation relations and transport for irreversible
deterministic dynamics, Physica D 241 681 (2012).

31. D. Forster, Hydrodynamic fluctuations, Broken Symmetry, and Correlation Functions (W. A.
Benjamin, New York, 1975).

32. E. Meyer and G. Sessler, Schallausbreitung in Gasen bei hohen Frequenzen and sehr niedrigen
Drucken, Z. Phys. 149, 15 (1947).

33. I. M. de Schepper and E. G. D. Cohen, Very-short-wavelength collective modes in fluids, J.
Stat. Phys. 27, 2 (1982).

34. J. D. Foch and G. W. Ford, in Studies in Statistical Mechanics (North-Holland, Amsterdam,
1970).

35. B.J. Alder and W.E. Alley, Generalized hydrodynamics, Phys. Today 37, 56 (1984).
36. B. J. Alder and W.E. Alley, Generalized transport coefficients for hard spheres, Phys. Rev. A 27,

3158 (1983).
37. T. R. Kirkpatrick, Short-wavelength collective modes and generalized hydrodynamic equations

for hard-sphere particles, Phys. Rev. A 32, 3130 (1985).
38. H. Grad, On the kinetic theory of rarefied gases, Comm. Pure and Appl. Math. 2, 331 (1949).



Chapter 6
Grad’s 13-Moments System

In this chapter, we will describe a procedure that allows us to reduce the description
from Grad’s moment system [1] to the hydrodynamic level.
We will also provide a comparison of our results with the standard CE procedure,
introduced in Sect. 3.2, which is based on a formal expansion of the stress tensor and
heat flux vector in terms of derivatives of the hydrodynamic fields. Truncating the
expansion to the first power of the Knudsen number yields the NSF equations, while
next-order approximations lead to the so-called Burnett [2] (ε2) and super-Burnett
(ε3) corrections.
It has long been conjectured that the inclusion of higher-order terms in the consti-
tutive relations for the stress tensor and heat flux may improve the predictive capa-
bilities of hydrodynamics formulations in the continuum–transition regime where
NSF equations fail. However, Bobylev’s investigation of Maxwell molecules [3]
proved that the Burnett and the super-Burnett hydrodynamics may violate the basic
physics behind the Boltzmann equation. Namely, sufficiently short acoustic waves
increase with time instead of decaying. Bobylev’s instability has been also studied by
Uribe et al. [4] for hard-sphere molecules. This instability contradicts the H -theorem,
since all near-equilibrium perturbations are expected to decay, and it creates difficul-
ties for an extension of hydrodynamics into a highly nonequilibrium domain where
the NSF approximation is inapplicable. For example, higher-order systems of hydro-
dynamic equations afforded a better description in certain situations such as shock
structures on coarse grids, but are prone to small-wavelength instabilities when grids
are refined.
Successes and drawbacks of the Burnett computations and a family of extended
Burnett equations aimed at achieving entropy-consistent behavior of the equations
have recently been summarized in [5]. As discussed in [6], the failure of the CE expan-
sion is a consequence of the truncation of the expansion. This question was studied
in some detail for a class of simple kinetic models—Grad’s moment systems—in
[6–11]. In these works, the CE expansion was summed up exactly, which revealed the
stability of the exact hydrodynamics, in contrast to its finite-order approximations.

M. Colangeli, From Kinetic Models to Hydrodynamics, SpringerBriefs in Mathematics, 75
DOI: 10.1007/978-1-4614-6306-1_6, © Matteo Colangeli 2013
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Alternative ways of approximating the CE solution have been also suggested. Very
recently, Bobylev suggested a different viewpoint on the problem of Burnett’s hydro-
dynamics [12]. Namely, violation of hyperbolicity can be seen as a source of instabil-
ity. We recall that Boltzmann’s and Grad’s equations are hyperbolic and stable due to
corresponding H -theorems. However, the Burnett hydrodynamics is not hyperbolic,
which leads to no H -theorem. Bobylev [12] suggested that one stipulate hyperboliza-
tion of Burnett’s equations, which can also be considered a change of variables. In
this way, hyperbolically regularized Burnett’s equations admit the H -theorem (in the
linear case, at least), and stability is restored.
Thus, we aim at studying the issue of hyperbolicity of higher-order hydrodynamics
in the case that the CE solution can be found exactly.
This chapter is organized as follows: In Sect. 6.1, we will briefly review the derivation
of the 13-moment system from the Boltzmann equation. In Sect. 6.2, we will then dis-
cuss the derivation of hydrodynamics from Grad’s moment system, linearized around
equilibrium and assuming unidirectional flow conditions (i.e., the so-called 1D13M
system, according to the notation introduced in [6, 13]). While simple enough, this
model is nontrivial for three reasons:

• Application of the CE method leads to rather involved nonlinear recurrence rela-
tions for the coefficients of the expansion.

• The Burnett approximation derived from Grad’s moment system is identical to the
one derived from the Boltzmann equation for Maxwell molecules and thus violates
hyperbolicity and exhibits Bobylev’s instability [3, 4].

• Even though the exact hydrodynamics can be derived following the lines of [6–11]
and is stable, the question remains whether this exact hydrodynamics is manifestly
hyperbolic.

We will also comment on the properties of the obtained hydrodynamic solutions. In
particular, we will focus on the onset of a critical value of the Knudsen number beyond
which the hydrodynamic description breaks down. Finally, the three-dimensional
extension of the model will be illustrated in Sect. 6.3.

6.1 Derivation of the 13-Moment System from the Boltzmann
Equation

Let us briefly sketch here the derivation of Grad’s 13-moment system from the
Boltzmann equation. We consider a set of distinguished fields defined as follows:

xG = x + x1.

The first term, x ≡ [ñ, ũ, T̃ ], denotes the set of dimensionless hydrodynamic fluc-
tuations introduced in Sect. 5.2. The second term is defined as x1 ≡ [σ̃, q̃], where
σ̃ = δσ/p0 and q̃ = q/(p0vT ) denote respectively the dimensionless stress tensor
and heat flux. Here p0 = n0kBT0 is the equilibrium hydrostatic pressure. Let X(0)

http://dx.doi.org/10.1007/978-1-4614-6306-1_5
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and ξ (0) be the vectors expressed by Eqs. (5.21)–(5.22). We also introduce the vectors
X(1) and ξ (1), defined as

X(1)(c) =
(

cc ,
4

5
c
(

c2 − 5

2

))
,

ξ (1)(c) =
(

2 cc , c
(

c2 − 5

2

))
.

The linearized Grad’s 13-moment distribution function fG can be written in the form

fG(r, c, t)= f GM(1 + ϕG) = f GM(1 + ϕ + ϕ1) = f GM
(
1+X(0) · x + X(1) · x1

)
;

(6.1)

cf., for analogy, Eq. (5.24). One can immediately verify that the nonhydrodynamic
fields are obtained via

x1 =
〈
ξ (1)(c)

〉

fG
. (6.2)

Inserting the ansatz (6.1) into the linearized Boltzmann equation (5.3), one obtains

∂tϕG = ΛϕG ,

whereΛ is the linear operator defined in Sect. 5.1. Next, we introduce the projection
operator PG = P + P1, where P is defined as in Eq. (5.15), whereas P1 reads

P1ΛϕG = Dx1ϕG ·
∫

ξ (1)(c)ΛϕGdv.

The resulting equation,

PG [ f GM∂tϕG] = PG [ f GMΛϕG ], (6.3)

expresses, in a compact form, Grad’s 13-moment system for the variables xG =
[ñ, ũ, T̃ , σ̃ , q̃].

6.2 Hydrodynamics from the Linearized One-Dimensional
Grad’s System

Equation (6.3) corresponds to the following set of equations in one spatial variable x :

∂t ρ̃ = −∂x ũ,

∂t ũ = −∂x ρ̃ − ∂x T̃ − ∂x σ̃ ,

http://dx.doi.org/10.1007/978-1-4614-6306-1_5
http://dx.doi.org/10.1007/978-1-4614-6306-1_5
http://dx.doi.org/10.1007/978-1-4614-6306-1_5
http://dx.doi.org/10.1007/978-1-4614-6306-1_5
http://dx.doi.org/10.1007/978-1-4614-6306-1_5
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∂t T̃ = −2

3
∂x ũ − 2

3
∂x q̃,

∂t σ̃ = −4

3
∂x ũ − 8

15
∂x q̃ − 1

ε
σ̃ ,

∂t q̃ = −5

2
∂x T̃ − ∂x σ̃ − 2

3ε
q̃. (6.4)

Here, ρ̃(x, t) = ñ(x, t)m, ũ(x, t), and T̃ (x, t) denote the reduced deviations of mass
density, average velocity, and temperature from their equilibrium values, whereas
σ̃ (x, t) and q̃(x, t) are reduced xx-components of the nonequilibrium stress tensor
and heat flux, respectively. The parameter ε > 0 denotes, as usual, the Knudsen
number. The system (6.4) provides the time evolution equations for the set x of
hydrodynamic (locally conserved) fields coupled to the set x1 of nonhydrodynamic
fields. The goal is to reduce the number of equations in (6.4) and to arrive at a closed
system of three equations for the hydrodynamic fields only.
Thanks to the linearity of the system (6.4), it proves convenient to look at the recip-
rocal space and seek solutions of the form ζ = ζk exp(ωt + ikx), where ζ is a
generic function [ρ, u‖, T, σ ‖, q‖]. In the sequel, we use rescaled variables t ′ = ε−1t ,
x ′ = ε−1x , and k′ = εk, cf. Eq. (2.56), and omit the prime and tilde to simplify nota-
tion. Application of the CE method, as illustrated in Sect. 3.2, to the reduction of
the system (6.4) results in the following series expansion of the nonhydrodynamic
variables:

σk =
∞∑

n=0

σ
(n)
k , qk =

∞∑

n=0

q(n)k , (6.5)

where the coefficients σ (n)k and q(n)k are obtained from a recurrence procedure,

σ
(n)
k = −

{
n−1∑

m=0

∂
(m)
t σ

(n−1−m)
k + 8

15
ikq(n−1)

k

}
,

q(n)k = −
{

n−1∑

m=0

∂
(m)
t q(n−1−m)

k + ikσ (n−1)
k

}
, (6.6)

and where the CE operators ∂(m)t act on the hydrodynamic fields as follows:

∂
(m)
t ρk =

{−ikuk ,m = 0
0 ,m ≥ 1

,

∂
(m)
t uk =

{−ik(ρk + Tk) ,m = 0
−ikσ (m−1)

k ,m ≥ 1
,

∂
(m)
t Tk =

{− 2
3 ikuk ,m = 0

− 2
3 ikq(m−1)

k ,m ≥ 1
. (6.7)
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It can be proven that the functions σk and qk have the following structure for all
n = 0, 1, . . .:

σ
(2n)
k = an(−k2)nikuk,

σ
(2n+1)
k = bn(−k2)n+1ρk + cn(−k2)n+1Tk,

q(2n)
k = xn(−k2)nikρk + yn(−k2)nikTk,

q(2n+1)
k = zn(−k2)n+1uk, (6.8)

where an, . . . , zn are numerical coefficients to be determined. Note the alternating
structure of expansion coefficients of odd and even orders. Substituting (6.8) into
. . ., the CE method is cast into the form of recurrence equations in terms of the
coefficients an, . . . , zn :

an+1 = bn + 2

3
cn + 2

3

n∑

m=1

cn−m zm−1 +
n∑

m=0

an−mam − 8

15
zn,

bn+1 = an+1 +
n∑

m=0

an−mbm + 2

3

n∑

m=0

cn−m xm − 8

15
xn+1,

cn+1 = an+1 +
n∑

m=0

an−mcm + 2

3

n∑

m=0

cn−m ym − 8

15
yn+1,

xn+1 = zn +
n∑

m=1

zn−mbm−1 + 2

3

n∑

m=0

yn−m xm − bn,

yn+1 = zn +
n∑

m=1

zn−mcm−1 + 2

3

n∑

m=0

yn−m ym − cn,

zn+1 = xn+1 + 2

3
yn+1 + 2

3

n∑

m=0

yn−m zm +
n∑

m=0

zn−mam − an+1. (6.9)

System (6.9) is solved recursively subject to the initial conditions

a0 = −4

3
, b0 = −4

3
, c0 = 2

3
, x0 = 0, y0 = −15

4
, z0 = −7

4
. (6.10)

The initial conditions are obtained by evaluating the functions σk and qk up to the
Burnett order (see Eq. (6.18) below) and identifying the coefficients a0, x0, and y0
from the Navier–Stokes approximation and the remaining coefficients b0, c0, and z0
from the Burnett correction. Equation (6.9) defines six functions,

A(k) =
∞∑

n=0

an(−k2)n, . . . , Z(k) =
∞∑

n=0

zn(−k2)n . (6.11)



80 6 Grad’s 13-Moments System

Thus, the CE solution amounts to finding functions A, . . . , Z (6.11). Note that by
the nature of the CE recurrence procedure, functions A, . . . , Z (6.11) are real-valued
functions. Knowing A, . . . , Z (6.11), we can express the nonequilibrium stress tensor
and heat flux as

σk = ikA(k)uk − k2 B(k)ρk − k2C(k)Tk, (6.12)

qk = ikX(k)ρk + ikY (k)Tk − k2 Z(k)uk . (6.13)

On substituting these expressions into the Fourier-transformed balance equation
(6.4), we obtain a closed system of hydrodynamic equations, which is conveniently
written in vector form,

∂t xk = Mxk, (6.14)

where xk ≡ (ρk, uk, Tk), and the matrix M has the form

M =
⎛

⎝
0 −ik 0

−ik(1−k2 B) k2 A −ik(1−k2C)
2
3 k2 X − 2

3 ik(1−k2 Z) 2
3 k2Y

⎞

⎠ . (6.15)

It is worth noticing that the matrix (6.15) obtained here from Grad’s moment sys-
tem (6.4) enjoys the same formal structure of the matrix (5.27) derived from the
Boltzmann equation. With M, we find the dispersion relation for the hydrodynamic
modes ω(k) by solving the characteristic equation

det (M − ωI) = 0, (6.16)

with I the unit matrix. The standard application of the CE procedure is to approximate
functions A, . . . , Z by polynomials with coefficients found from the recurrence pro-
cedure (6.9). The first nonvanishing contribution is the Newton–Fourier constitutive
relations

σ
(0)
k = −4

3
ikuk, q(0)k = −15

4
ikTk, (6.17)

which lead to the NSF hydrodynamic equations. Computing the coefficients σ (1)k and

q(1)k , we arrive at the Burnett level:

σk = −4

3
ikuk + 4

3
k2ρk − 2

3
k2Tk,

qk = −15

4
ikTk + 7

4
k2uk . (6.18)

The Burnett approximation (6.18) coincides with that obtained by Bobylev [3] from
the Boltzmann equation for Maxwell molecules. Unlike the NSF approximation,

http://dx.doi.org/10.1007/978-1-4614-6306-1_5
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Fig. 6.1 Dispersion relation.
Acoustic mode Re(ωac) for
NSF and Burnett hydrody-
namics

0 0.5 1 1.5 2 2.5 3

−7

−6

−5

−4

−3

−2

−1

0

1

2

k

R
e(

 ω
ac

 )

 

 

Navier−Stokes
Burnett

the Burnett constitutive relations (6.18) show instability of the acoustic mode; see
Fig. 6.1.

Thus, the difficulty of the CE method consists in the way the functions A, . . . , Z
are approximated. The standard polynomial approximations lead to unstable hydro-
dynamic equations. We shall now derive closed-form equations for these functions,
which amounts to summing the CE series exactly.

6.2.1 Invariance Equations

Summation of the CE series for the functions A, . . . , Z can be done directly from
the recurrence relations (6.9) following the approach outlined in [9]. Alternatively,
one can solve the invariance equation relevant to Grad’s system (6.3). Here, the set
of non-hydrodynamic moments x1,k ≡ {σk, qk} is still thought of as being in the
form (6.12) and (6.13), but the method makes no assumption about the power-series
representation of the functions A, . . . , Z . The time derivative of {σk, qk} can be
computed in two different ways. On the one hand, substituting (6.12) and (6.13) into
the moment system (6.4), we obtain

∂tσk = −4

3
ikuk − 8

15
ikq(X,Y, Z , k)− σk(A, B,C, k),

∂t qk = −5

2
ikTk − ikσk(A, B,C, k)− 2

3
q(X,Y, Z , k).

On the other hand, the time derivative of {σ, q} can be computed due to the closed
hydrodynamic equations by chain rule:
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∂tσk = ∂σk

∂uk
∂t uk + ∂σk

∂ρk
∂tρk + ∂σk

∂Tk
∂t Tk,

∂t qk = ∂qk

∂uk
∂t uk + ∂qk

∂ρk
∂tρk + ∂qk

∂Tk
∂t Tk .

Here, the derivatives ∂t uk and ∂t Tk are evaluated self-consistently using the functions
(6.12) and (6.13) on the right-hand side of (6.4). The two time derivatives coincide,
since the set {σk, qk} has to solve both the full Grad’s system and the reduced system.
We thereby obtain the invariance equation corresponding to Eq. (6.3) relating the six
functions A(k), . . . , Z(k):

−4

3
− A − k2

(
A2+B− 8Z

15
+ 2C

3

)
+ 2

3
k4C Z = 0,

8

15
X + B − A + k2 AB + 2

3
k2C X = 0,

8

15
Y + C − A + k2 AC + 2

3
k2CY = 0,

A + 2

3
Z + k2 Z A − X − 2

3
Y + 2

3
k2Y Z = 0,

k2 B − 2

3
X − k2 Z + k4 Z B − 2

3
Y X = 0,

−5

2
− 2

3
Y + k2(C − Z)+ k4 ZC − 2

3
k2Y 2 = 0. (6.19)

The same equations can be derived by summation of the CE expansion. Equations
(6.19) are a convenient starting point for evaluation of exact hydrodynamics. For
k = 0, one recovers the initial conditions (6.10).

6.2.2 Exact Hydrodynamic Solutions

The dispersion relationω(k)was found by simultaneously solving numerically (6.19)
and the characteristic equation (6.16).
The resulting hydrodynamic spectrum consist of two modes: the acoustic mode
ωac(k), represented by two complex-conjugate roots of (6.16), and the real-valued dif-
fusive heat mode ωdiff(k); cf. Fig. 6.2. Among the many sets of solutions {A(k), . . . ,
Z(k)} to the system (6.19), the relevant ones are continuous functions with the asymp-
totics limk→0 ω = 0. Remarkably, we find that the solution with these asymptotics
is unique and is represented by a pair of complex-conjugate sets {S, S∗}, shown in
Figs. 6.3 and 6.4.
Note that a qualitative change of dynamics arises when the diffusive mode couples
with one of the two nonhydrodynamic modes of Grad’s system at a critical wave
number kc ≈ 0.3023 (which is also the value where the Newton method diverges;
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see below). From the CE perspective, the hydrodynamics of the diffusive mode
stops at kc, since after that point, it becomes a complex-valued function coupled
with the conjugate nonhydrodynamic mode; see Fig. 6.2. Essentially, for k ≥ kc, the
CE method no longer recognizes the resulting diffusive branch as an extension of
a hydrodynamic branch. Also, the set of solutions {S, S∗}, real-valued for k ≤ kc,
continues on a complex manifold; cf. Fig. 6.3.
This feature has no correspondence with the behavior of the hydrodynamic modes
obtained in Chap. 5 from the Boltzmann equation and originates from the lack of
dynamical invariance of the underlying Grad’s system.
We observe that the occurrence of a pair of complex-conjugate sets of solutions is
very plausible due to symmetry: inserting S into the dispersion relation, we obtain
a pair of complex-conjugate acoustic modes [ωac(S, k), ω∗

ac(S, k)] plus one of the
complex modes resulting from the extension of the diffusive branch for k ≥ kc,
whereas through S∗, we obtain, symmetrically, the two latter conjugate modes, plus
one of the conjugate acoustic modes.
As further evidence of this close coupling, we also observe the occurrence of an
intersection between the real parts of the hydrodynamic modes Re(ωac) and Re(ωdiff)

after the critical point, at k = kcoupl ≈ 0.383. Therefore, the message extracted
from the study of Grad’s system (6.4) is that the set of hydrodynamic equations for
[ρ, u, T ] provides, as expected, stable solutions when one takes into account all the
orders of CE expansion—which corresponds to solving the system of invariance
equations (6.19).
Moreover, the other relevant observation is that there is no closed set of hydrody-
namic equations after kc, even though the acoustic mode extends smoothly beyond
kc, as is visible in Fig. 6.2. The presence of a coupling at a critical wave vector kc

between hydrodynamic and nonhydrodynamic modes can correspond to the loss of a
definite time scale separation, for k > kc, between slow and fast moments, which, in
the Bogoliubov theory outlined in Chap. 3, was one of the basic assumptions needed
to interpret the onset of collective behavior in a many-particle system. Thus, the exact
hydrodynamics as derived by the summation of the CE expansion (or equivalently,
from the invariance equations) extends up to a finite critical value kc. No stability vio-
lation occurs, in contrast to the finite-order truncations thereof [14, 15]. Furthermore,
from an inspection of Fig. 6.2, one notices that the obtained hydrodynamic modes
coincide with some of the modes of the original Grad’s moment system. This obser-
vation reflects one of the basic tenets of the theory of invariant manifolds, already
mentioned in this chapter, namely, that there is no loss of detail, i.e., of “information,”
in the transition from a microscopic to a projected, more macroscopic, description.
The analytical complexity of either the CE method or the invariance equations is
overwhelming when we regard systems other than the linearized Grad’s system or
some linearized model of the Boltzmann equation, like those studied in Chap. 5.
Approximate solutions are then the only feasible approach. We used, for instance,
Newton’s method, cf. Fig. 6.5, to solve iteratively Eqs. (6.19), taking as initial con-
dition the Euler approximation (corresponding to a nondissipative hydrodynamics:
A0 = . . . = Z0 = 0), which leads, after the first iteration, to the same result, achiev-
able alternatively through a technique of partial summation [6] of the CE expansion,

http://dx.doi.org/10.1007/978-1-4614-6306-1_5
http://dx.doi.org/10.1007/978-1-4614-6306-1_3
http://dx.doi.org/10.1007/978-1-4614-6306-1_5
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Fig. 6.3 Imaginary parts of coefficients A–Z solving (6.19). Shown is the unique solution leading
to hydrodynamic branches, cf. Fig. 6.2, which is symmetric about the real axis

essentially a sort of regularized Burnett approximation. It is seen in Fig. 6.5 that the
Newton iterations converge rapidly to the exact hydrodynamics in the domain of its
validity, k ≤ kc.
While we have evaluated the functions A–Z numerically, two questions remain open:
Is the stable exact hydrodynamics also hyperbolic? If so, how is it possible to retain
hyperbolicity in the approximations? In the next section, we shall answer these
questions.
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6.2.3 Hyperbolic Transformation for Exact Hydrodynamics

Equation (6.4) for the Fourier component vector xk ≡ (ρk, uk, Tk) reads ∂t xk = Mxk

with M given in (6.15). By explicitly reintroducing the Knudsen number ε, i.e., by
replacing k by kε in M and further distinguishing between the real and imaginary
matrix elements in M, we can write

∂t xk = [Re(M)− i Im(M)]xk, (6.20)

with

Re(M) =
∞∑

n=0

(−1)nR(n)ε2n+1 = εR(0) − ε3R(1) + O(ε5),

Im(M) =
∞∑

n=0

(−1)nI(n)ε2n = I(0) − ε2I(1) + ε4I(2) − O(ε6),

and rearrange such that the Knudsen number expansion coefficients become visible.
We find that the operators Re(M) (real part) and Im(M) (imaginary part) involve
the following real-valued operators (for all n ≥ 0, i.e., with the convention a−1 =
c−1 = z−1 ≡ 1 and Kronecker symbol δ),

I(n) = k2n+1

⎛

⎝
0 δn,0 0

bn−1 0 cn−1

0 2
3 zn−1 0

⎞

⎠ , R(n) = k2n+2

⎛

⎝
0 0 0
0 an 0

2
3 xn 0 2

3 yn

⎞

⎠ . (6.21)

The hydrodynamic equation (6.20) is hyperbolic and stable, provided that we can
find a transformation of hydrodynamic fields such that
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In the plots is also shown the approximation obtained through Bobylev’s hyperbolic regularization.
Newton iterations fail for k ≥ kc = 0.3023

(i) Re(M) and Im(M) are both real and symmetric,
(ii) Re(M) has negative semidefinite eigenvalues.

Therefore, we seek a transformation x
′
k = Txk that produces a symmetric matrix

M′ = TMT−1, and we wish to see whether Re(M′) = Re(TMT−1) is negative semi-
definite. We consider the equations of exact hydrodynamics, i.e., Eqs. (6.20), pro-
vided that functions A, . . . , Z (6.21) are solutions to the invariance equation (6.19).
After a little algebra, which we do not recapitulate here, we obtain a particular trans-
formation matrix T that solves the problem. It is a member of a whole class of
effectively equivalent transformations, and can be written as

T = 1

Tuu

⎛

⎝
Tρρ 0 TρT

0 Tuu 0
0 0 TT T

⎞

⎠ , (6.22)

with the nonvanishing components
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Tρρ = T 2
uu√

3X + 2Y [[Z ]] ,

Tuu = √
X [[3B − 2Z [[C]] − 2C]] + 2Y [[B]][[Z ]],

TρT = − 3[[C]]X√
3X + 2Y [[Z ]] ,

TT T = √
3[[C]] (Y [[B]] − [[C]]X), (6.23)

where we have introduced the following symbolic notation:

[[•]] ≡ 1 − (kε)2 • .

The transformation T (6.22) symmetrizes M and makes the system hyperbolic,
as can be verified by a straightforward computation of M′ from (6.22), (6.26). We
further notice that T contains only even powers of (kε), because the same is true for the
coefficients A–Z . Next we calculate the eigenvalues λ1,2,3 of Re(M′)—containing
transport coefficients—to obtain a remarkably simple result:

λ1 = 0, λ2 = k2εA, λ3 = 2

3
k2εY. (6.24)

From the analysis of the previous section, it follows that the nontrivial eigenvalues
(6.24) are negative semidefinite for all kε (see Fig. 6.4, which displays the exact
numerical solutions for A and Y ). Hence, the equation describing the hyperbolic
hydrodynamics attains the form

∂t x
′
k = M′x′

k, (6.25)

with
M′ = TMT−1 (6.26)

for the vector x
′
k of transformed hydrodynamic variables, and where M′ is symmetric

and has seminegative eigenvalues. To summarize,

Hyperbolicity:
(
M′)T = M′, (6.27)

Dissipativity:

{
Tr[Re(M′)] ≤ 0,
det[Re(M′)] ≥ 0.

(6.28)

Equation (6.26) with (6.22) and (6.15) satisfying (6.28) is the main result of this
section. The occurrence of negative eigenvalues in the exact solutions, together with
the existence of a transformation T that makes the equations hyperbolic, proves that
the exact hydrodynamics derived from (6.4), without approximations, is stable.
Finally, we shall make use of the hyperbolicity of the exact hydrodynamics in order
to establish approximate hydrodynamic equations that retain this property. In appli-
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cations, one is interested in using truncated hydrodynamic equations by taking into
account only lower orders of the Knudsen number ε. In this case, the functions
A–Z are replaced by their lower-order approximations, and they can be generally
written—as shown already in Eq. (6.11)—as polynomials truncated to an arbitrary
order n. Their coefficients are usually derived through the CE recurrence equations,
as outlined above. With the exact numerical solution in hand, we can also find, at
any given order of approximation, the optimal interpolating functions A–Z solving
Eq. (6.19), a method we wish to recommend and which has been worked out in [13].
The exact hydrodynamics, as described by Grad’s system (6.4), terminates at kc.
In this regime, one can perform a Taylor expansion, up to any order n, on the ele-
ments of all three matrices T, M, and T−1. Thus, the approximations are done on the
manifestly hyperbolic equation (6.25) in such a way as to retain hyperbolicity and
stability at each order of approximation. It is worthwhile noticing that the eigenval-
ues, on approximating Eq. (6.25) to a polynomial order n, transform in a canonical
manner:

λ
(n)
1 = 0, λ

(n)
2 = k2ε

(
a0 +

n∑

m=1

am(kε)
m

)
, λ

(n)
3 = 2

3
k2ε

(
y0 +

n∑

m=1

ym(kε)
m

)
,

and depending on the polynomial coefficients, and in particular depending on the
sign of the highest-order coefficients an , yn , the eigenvalues λ2,3 diverge to ±∞ for
kε → ∞, but stay negative for k ≤ kc if one uses the set of coefficients reported in
Table 1 of [13].

6.3 Exact Hydrodynamics from Three-Dimensional Linearized
Grad’s Equations

In this section, we extend the previous results to three-dimensional linearized Grad’s
equations [16]. The point of departure is the Fourier transform of the linearized
three-dimensional Grad’s 13-moment system

∂tρk = −ik · uk,

∂t uk = −ikρk − ikTk − ik · σ k,

∂t Tk = −2

3
ik · (uk + qk),

∂tσ k = −2i kuk − 4

5
i kqk − σ k,

∂t qk = −5

2
ikTk − ik · σ k − 2

3
qk . (6.29)

The goal is again to reduce the number of equations in (6.29) and to arrive at a closed
set of equations for the hydrodynamic fields [ρk,uk, Tk] only. To this end, we proceed
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as in Chap. 5 and decompose the vectors and tensors into parallel (longitudinal) and
orthogonal (lateral) parts with respect to the wave vector, because the fields are
rotationally symmetric around any chosen direction k. We introduce, as shown in
Fig. 5.1, a unit vector in the direction of the wave vector, e‖ = k/k, k = |k|, and

the corresponding decomposition uk = u‖
k e + u⊥

k , qk = q‖
k e‖ + q⊥

k , and σ k =
3
2σ

‖
k e‖e‖ + 2σ⊥

k , where e‖ · ũ⊥
k = 0, e‖ · q⊥

k = 0, and e‖e‖ : σ⊥
k = 0. On inserting

the above decomposition into (6.29) and using the identities e‖e‖ · e‖ = (2/3)e‖,
e‖e‖ : e‖e = e‖e‖ : e‖e‖ = 2/3, we obtain the following two closed sets of
equations for the longitudinal and lateral modes:

∂tρk = −ik u‖
k,

∂t u
‖
k = −ikρk − ikTk − ikσ ‖

k ,

∂t Tk = −2

3
ik(u‖

k + q‖
k ),

∂tσ
‖
k = −4

3
iku‖

k − 8

15
ikq‖

k − σ
‖
k ,

∂t q
‖
k = −5

2
ikTk − ikσ ‖

k − 2

3
q‖

k , (6.30)

and

∂t u⊥
k = −ik e‖ · σ⊥

k ,

∂tσ
⊥
k = −ik e‖u⊥

k − 2

5
ik e‖q⊥

k − σ⊥
k ,

∂t q⊥
k = −ik e‖ · σ⊥

k − 2

3
q⊥

k . (6.31)

Equations (6.30) and (6.31) are a convenient starting point to derive closed equations
for the hydrodynamic fields. To this end, the CE method amounts to eliminating the
time derivatives of the stress tensor and of the heat flux in favor of spatial derivatives
of the hydrodynamic fields of progressively higher order. As was shown in Sect. 6.1,
we can express the stress tensor and the heat flux vector linearly in terms of the locally
conserved fields by introducing six, as yet unknown, scalar functions A(k), . . . , Z(k)
for the longitudinal part,

σ
‖
k = ik Au‖

k − k2 Bρk − k2CTk, q‖
k = ik Xρk + ikY Tk − k2 Zu‖

k, (6.32)

and two functions D(k) and U (k) for the transversal component,

σ⊥
k = ik D e‖u⊥

k , q⊥
k = −k2Uu⊥

k , (6.33)

http://dx.doi.org/10.1007/978-1-4614-6306-1_5
http://dx.doi.org/10.1007/978-1-4614-6306-1_5
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where the expressions for the longitudinal components share their form with the
one-dimensional case, Eq. (6.4). Note that the functions introduced should be regarded
as an exact summation of the CE expansion, which amounts to expanding these
functions into powers of k2 and deriving expansion coefficients from a recurrent (non-
linear) system; cf. Eq. (6.9) and [6]. We do not dwell on this here, since we shall use
a more direct way to evaluate functions A, . . . , Z , D, U in the sequel. Finally, using
expressions (6.32) and (6.33) in (6.30), (6.31) and denoting by xk = (ρk, u‖

k, Tk,u⊥
k )

the vector of the hydrodynamic variables, the equations of hydrodynamics can be
written in a compact form using a block-diagonal matrix M:

∂t xk = M · xk, M =
(

M‖ 0
0 M⊥

)
, (6.34)

with

M‖ =
⎛

⎝
0 −ik 0

−ik(1−k2 B) k2 A −ik(1−k2C)
2
3 k2 X − 2

3 ik(1−k2 Z) 2
3 k2Y

⎞

⎠ , (6.35)

and

M⊥ = k2 D

(
1 0
0 1

)
, (6.36)

where the unit matrix is written in an (arbitrarily) fixed basis in the two-dimensional
subspace of vectors u⊥

k . The matrix M‖, providing the evolution of the longitudinal
modes, is exactly identical to the corresponding matrix M in (6.15) (relative to the
one-dimensional case, in which lateral modes are absent). The twice-degenerate
transversal (shear) mode is decoupled from the longitudinal modes. As a direct
consequence, the invariance equations, to be discussed next, which will provide us
with a set of nonlinear algebraic equations for the unknown functions A–Z , also
divide into two subblocks, which can be solved separately.
Following the procedure outlined in Sect. 6.2.2, we introduce here the invariance
equation for the 3D Grad’s system (6.30) and (6.31). We find that the first set (six cou-
pled quadratic equations for A, B,C and X,Y, Z ) is identical to the set of Eq. (6.19).
For the transversal modes, the invariance condition reads

∂σ⊥
k

∂u⊥
k

·
(
−ike · σ⊥

k

)
= ∂tσ

⊥
k ,

∂q⊥
k

∂u⊥
k

·
(
−ike · σ⊥

k

)
= ∂t q⊥

k , (6.37)

where the time derivatives on the left-hand sides of both equations in (6.37) are
evaluated by the chain rule using ∂t u⊥

k given in (6.31). Substituting the functions
(6.33) into (6.37), and requiring that the invariance condition be valid for every u⊥

k ,
we derive two coupled quadratic equations for the functions D and U , which can be
cast into the following form:
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Fig. 6.6 Real parts of coef-
ficients A–Z solving the
invariance equations (6.19)
supplemented with (6.38)
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15k4 D3 + 25k2 D2 + (10 + 21k2)D + 10 = 0, U = − 3D

2 + 3k2 D
. (6.38)

The solution of the cubic equation (6.38) with the initial condition D(0) = −1
matches the Navier–Stokes asymptotics and was found analytically for all k. This
solution is real-valued and is in the range D(k) ∈ [−1.04, 0], whereas U (k) ∈
[0, 2.72]. The functions corresponding to the longitudinal part of the system were
obtained numerically in Sect. 6.1. Because D and U are real-valued, we show in
Fig. 6.6 the real parts for all coefficients, while their nonvanishing imaginary parts
still coincide with those shown in Fig. 6.3.
The dispersion relations ω(k) for the five hydrodynamic modes are then calcu-
lated by inserting these coefficients into the roots of the characteristic equation
det (M − ωI) = 0, where I is a 5 × 5 unit matrix.
Analogously, the dispersion relations for the remaining nonhydrodynamic modes
follow from the eight (remaining) eigenvalues of (6.30), (6.31) with (6.32), (6.33). All
13 modes are presented in Fig. 6.7. The resulting hydrodynamic spectrum consists
of five modes: the acoustic mode ωac(k), represented by two complex-conjugate
roots; the real-valued thermal (diffusive) mode (both modes already occurring in the
one-dimensional case); and a twice-degenerate real-valued shear mode (cf. Fig. 6.7).
Just as in the one-dimensional case, a critical point in the hydrodynamic spectrum
occurs at kc ≈ 0.303, where the thermal mode intersects a nonhydrodynamic branch
of the original Grad’s system. Hence the same conclusions hold here: for k ≥ kc, the
CE method no longer recognizes the resulting diffusive branch as an extension of a
hydrodynamic branch.
Figure 6.7 further shows the eight (all degenerate) nonhydrodynamic modes, which
in contrast to the one-dimensional case (offering two nonhydrodynamic modes),
also exhibit a critical k at k′

c ≈ 0.2175. To summarize, the exact hydrodynamics as
derived from an invariance condition (or equivalently, by the complete summation
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Fig. 6.7 Dispersion relations ω(k) for the linearized Grad’s system using projected variables,
Eqs. (6.30) and (6.31). The five hydrodynamic modes (diffusive, twice-degenerate shear, and two
complex-conjugate acoustic modes), as well as the eight nonhydrodynamic modes, are presented as
a function of k. While the acoustic mode is complex-valued for all k, the remaining modes become
complex-valued beyond the two visible bifurcation points (at k′

c ≈ 0.2175 and kc ≈ 0.303).
For k < k′

c, the nonhydrodynamic (3D) modes are degenerate two and four times, respectively,
corresponding to the two and four components of q⊥

k and σ⊥
k

of the CE expansion) extends up to a finite critical value kc, in full agreement with
the one-dimensional case. No stability violation occurs, in contrast to the finite-order
truncations thereof.
Next, we tackle the question concerning the hyperbolicity of exact hydrodynamics
in the three-dimensional case.
Distinguishing between the real (Re(M)) and imaginary (Im(M)) parts of the matrix
M (6.34), we can write the equation of the hydrodynamics conveniently as

∂t xk = [Re(M)− iIm(M)] · xk (6.39)

Re(M) =
(

Re(M‖) 0
0 M⊥

)
, −Im(M) =

(
Im(M‖) 0
0 0

)
. (6.40)

The system (6.39) is hyperbolic and stable if, in analogy with the derivation outlined
in Sect. 6.2.3, we can find a transformation of the hydrodynamic fields, x

′
k = T · xk ,

where T is a real-valued matrix such that for the transformed matrices M′ = TMT−1,
we have that

(i) Re(M′) and Im(M′) are symmetric;
(ii) all eigenvalues of Re(M′) are nonpositive.

Due to the block-diagonal structure of (6.34) as well as to the fact that in Sect. 6.2.3
we solved the problem of finding a transformation with the desired properties for the
one-dimensional case, the transformation exists also in the three-dimensional case,
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and it has the following form:

T =
(

T‖ 0
0 T⊥

)
, (6.41)

where T‖ is explicitly given by Eqs. (6.22)–(6.23) in terms of k, A–C , and X–Z , and

T⊥ =
(

1 0
0 1

)
. (6.42)

Thus, the transformation T (6.41) symmetrizes M and renders the exact
hydrodynamic equations manifestly hyperbolic. Furthermore, the transform T con-
tains only even powers of k, because the same is true for the coefficients A–Z . The
five eigenvalues λ1−5 of Re(M′) (or equivalently, of Re(M)) are

λ1 = 0, λ2 = k2 A, λ3 = 2

3
k2Y, λ4,5 = k2 D. (6.43)

From the analysis of the previous section, where we solved for coefficients A, D,
and Y appearing in Eq. (6.43), cf. Fig. 6.6, it follows that all the eigenvalues λ1−5
are nonpositive for all k. Note that the matrix Re(M′) is diagonal with the diagonal
elements (6.43).
Finally, the hyperbolic structure straightforwardly implies an H -theorem for the
exact hydrodynamics. Note that due to the linearity of the system (6.4), the choice
of a proper H -functional is not unique. We follow Bobylev [12] and consider an
H -function—in terms of the transformed hydrodynamic fields—defined as

H = 1

2

∫ [
ρ′2(r, t)+ u′2(r, t)+ T ′2(r, t)

]
d3r. (6.44)

Here, the hydrodynamic fields x′(r, t) are defined through the inverse Fourier
transform of the fields x′

k . Note that x′(r, t) are real-valued because the real-valued
transformation T is an even function of k, T(k) = T(−k). Therefore,

H = 1

2

∫ [
ρ′

kρ
′−k + u′

k · u′−k + T ′
k T ′−k

]
d3k, (6.45)

which, using shorthand notation, we can abbreviate as H = 1
2

〈
x′

k, x′−k

〉
. Thus,

∂t H = 1

2

(〈
x′

k, ∂t x′−k

〉 + 〈
∂t x′

k, x′−k

〉)

= −1

2
i
(〈

x′
k, Im(M′(−k))x′−k

〉 + 〈
x′−k, Im(M′(k))x′

k

〉)

+ 1

2

(〈
x′

k,Re(M′(−k))x′−k

〉 + 〈
x′−k,Re(M′(k))x′

k

〉)
. (6.46)
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Since Im(M′) is an odd function of k, terms containing Im(M′) cancel, and we have,
owing to the fact that Re(M′) is an even function of k,

∂t H =
5∑

s=1

∫
λs |x ′

s,k |2d3k ≤ 0. (6.47)

Thus, we have demonstrated, by a direct computation, the H -theorem for the exact
hydrodynamics for k < kc (at k = kc, the eigenvalues λ2 and λ3 become complex-
valued) [16].
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Chapter 7
Conclusions

In this work, we employed the invariant manifold method to derive closed hydro-
dynamic equations from some kinetic models. The main novelty of our approach
stems from the use of a nonperturbative technique that allows us to sum exactly the
classical Chapman–Enskog expansion. The method postulates a separation between
slow and fast moments, and allows us to extract the slow invariant manifold in the
space of distribution functions.
A crucial aspect of our derivation that is not enjoyed by other techniques based
on systematic coarse-graining procedures [1–3] is that the entropy production rate
remains unaltered in the transition from the kinetic to the hydrodynamic level. The
use of the thermodynamic projector, introduced in Chap. 3, makes it possible, in
fact, to reduce the description without increasing the entropy production [4]. This
entails, in particular, that one cannot derive irreversible macroscopic equations from
reversible ones via the invariant manifold method. In this sense, the latter should be
regarded as a reduction (or solution) technique, that is, a tool to solve irreversible
equations obtained through coarse-graining methods.
The use of the thermodynamic projector leads to a refined description of the macro-
scopic evolution equations also at finite Knudsen numbers, and provides constitutive
relations for the nonhydrodynamic fields that extend and complete the Navier–
Stokes–Fourier model. While extending the description beyond the strictly hydro-
dynamic regime, one should not forget that our method relies on the notion of local
thermodynamic equilibrium. The proposed technique is based, in fact, on the theory
of normal solutions of the Boltzmann equation, introduced by Hilbert, which is a
sensible approximation as long as the description is confined to length and time scales
compatible with the existence of a local equilibrium. Interestingly, the computation
of the power spectrum of density fluctuations, in Chap. 5, revealed that the obtained
generalized hydrodynamic theory breaks down below a certain length scale of the
order of the mean free path, in agreement with earlier results reported in the literature
[5]. The equations of exact hydrodynamics, constructed by solving the invariance
equation for the nonequilibrium distribution function, are hyperbolic and admit an
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H-theorem. It is worth remarking that our solution of the invariance equation was
considerably simplified by considering linear deviations from global equilibrium.
In our opinion, the basic assumptions adopted in this work, such as the separation
of time and length scales, the existence of a local equilibrium, and the linearization
around equilibrium, do not affect the relevance of our results. On the contrary, they
rather witness that in simple enough models amenable to an analytic or numerical
treatment, one of the basic problems of statistical mechanics [6, 7], i.e., the compu-
tation of the slow invariant manifold, can attain an exact solution.
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