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More is different.

P. W. Anderson1

1 Quote from: P. W. Anderson. More Is Different. Science, 177, 393 (1972). Abbreviations: SF =
superfluid, MI = Mott insulator, AF = antiferromagnet.
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Supervisor’s Foreword

Over the past years, ultracold quantum gases have proven to be versatile model
systems, in which complex many-body effects can be studied in a very controlled
environment. One of the main research fields in this direction has been the real-
ization of artificial lattice structures made out of light, into which degenerate
bosonic or fermionic quantum gases are loaded. Such optical lattice structures can
be controlled in geometry, dimensionality, and strength by simply interfering
several laser beams of selected intensity. By loading a degenerate Bose or Fermi
gas into such optical lattices, one has been able to e.g., realize strongly correlated
Mott insulating phases of matter, which form the basis of many intriguing and
challenging condensed matter phenomena. Ultracold atoms in optical lattices
therefore hold the potential to shed new light on longstanding open questions in the
field of strongly correlated electronic materials, where interpretation of experi-
mental results is often complicated by the complex interplay of many effects and
undesired impurities in the system. The origin of high-Tc superconductivity, spin
orbit coupled many-body systems, non-equilibrium dynamics, and the realization
of strong effective magnetic fields are only a few of numerous topics that have
come into the focus of this novel interdisciplinary research field at the interface of
quantum optics, atomic, and condensed matter physics.

The thesis of Sebastian Will explores ultracold atomic quantum gases of bosons
and fermions in optical lattices. The highly controllable experimental settings
discussed in this work have enabled new insight into static and dynamical prop-
erties of interacting quantum matter. A crucial technical innovation demonstrated
in this thesis, is the implementation of an optical lattice that allows for independent
control of tunneling, interactions, and overall system size. This has paved the way
for new classes of experiments with interacting bosonic and fermionic atoms.

As one of the highlights of the thesis, the reader is introduced to quantum
revival spectroscopy. This novel time-resolved spectroscopic technique allows for
precision measurements of interactions and correlations in atomic quantum many-
body systems. By following the intriguing collapse and revival dynamics of a
bosonic many-body system after a quantum quench, Sebastian Will has shown
how the characteristic frequencies of the dynamics precisely reveal the energies of
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atom number states that play a crucial role in the underlying Hamiltonian. For
example, quantum revival spectroscopy has revealed the presence of multi-body
interactions in optical lattice systems and has been shown to yield information on
the bosonic number statistics on individual lattice sites. Extending the technique to
mixtures of bosonic and fermionic atoms, Sebastian has studied the interaction of a
single fermionic impurity with a coherent bosonic field. He observed how the
interactions among bosons can be modified by the presence of a single interacting
impurity.

The observation of emerging multi-body interactions in lattice structures has
triggered both experimental and theoretical investigations. In recent experiments,
Sebastian’s findings have been confirmed and multi-body interactions have been
used to manipulate individual lattice sites depending on the number of atoms
occupying them. Theoretical studies have explored the effects of multi-body
interactions on the phases of many-body quantum systems and led to predictions of
novel strongly correlated quantum phases, e.g., with topological order and exotic
ground-state properties.

Sebastian Will’s thesis not only contains exciting and topical results that are of
interest to a broad audience ranging from atomic physics over quantum optics to
condensed matter physics. It also concisely covers the fundamentals of ultracold
bosons and fermions in optical lattices, it is written in a very clear style, and is
accompanied by a series of excellent figures. This will allow even a reader from
outside the research field to rapidly learn about the exciting topics investigated in
this thesis.

Garching b. München, Germany, August 2012 Immanuel Bloch
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Chapter 1
Introduction

The first creation of atomic Bose-Einstein condensates in 1995 [1–5] was the starting
point for the research field of ultracold atoms, which since then has made advances at
a breathtaking pace. In the beginning, the experiments focussed on weakly interacting
Bose-Einstein condensates (BECs), in which up to several million atoms undergo
a quantum phase transition. They occupy a single macroscopic wavefunction and
form a quantum degenerate Bose gas. It was possible to confirm the predictions of
Bogoliubov’s mean-field theory [6, 7], to demonstrate the coherence properties via
matter wave interference [8] and to prove superfluidity via the creation of vortices
[9–11]. The first quantum degenerate gas of fermionic atoms was created in 1999
[12–14]. Spin-polarized fermions do not undergo a quantum phase transition on the
way to ultra low temperatures, but fermionic spin mixtures of two atomic hyperfine
states soon turned out to be a meaningful analog to spin up and spin down electrons
in condensed matter.

Reaching beyond mean-field physics, fast progress was made to enter the regime of
strong correlations with ultracold atoms. In this regime, many-particle systems are no
longer described by a single macroscopic wavefunction. Instead, strong interactions
between the particles lead to quantum mechanical correlations in the many-body
wavefunctions, which give rise to much richer physics and complex quantum phases.

The advent of Feshbach resonances [15, 16] made it possible to tune and enhance
the interactions between ultracold atoms over enormous ranges. With this novel tool,
in particular, degenerate Fermi gases started to unfold their full experimental poten-
tial. In a Feshbach resonance an external magnetic field is used to tune a molecular
level into resonance with the energy of the colliding atom pair [16]. This effectively
controls the interatomic scattering length and thereby the interaction between atoms.
However, it bears the risk of enhanced three-body losses in the vicinity of the res-
onance. Being a fortunate coincidence of nature, such losses proved to be strongly
suppressed for fermionic spin mixtures giving access to an extremely fruitful branch
of research: The study of the crossover between molecular Bose-Einstein condensa-
tion and Bardeen-Cooper-Shrieffer (BCS) superfluidity. The breakthroughs include
the creation of BECs of molecules on the repulsive side of interactions [17–20],
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2 1 Introduction

the observation of pairing on the BCS side [21, 22], the proof of BCS-superfluidity via
the creation of vortices [23] as well as studies of imbalanced Fermi mixtures [24–27].

For bosonic atoms the approach of strong correlations via Feshbach resonances
turned out to be hamperd by inelastic three-body losses. However, a different, but no
less successful route towards strong interactions and strongly correlated phases was
found: In 1998, Dieter Jaksch and collaborators [28] proposed to trap bosons in a so-
called optical lattice to experimentally realize the Bose-Hubbard Hamiltonian, which
was so far only known as a model system in condensed matter theory [29]. An optical
lattice is usually formed by the interference of counterpropagating laser beams, cre-
ating a regular array of intensity minima and maxima with simple cubic symmetry.
Based on the optical dipole force, atoms are trapped in this array that resembles the
structure of ions in a solid crystal [30]. When the intensity of the lasers is increased,
the tunneling of atoms through the artificial crystal is more and more suppressed. At
the point where the interaction energy dominates over the kinetic energy, the atoms
get localized at individual lattice sites and the many-body state corresponds to a
Mott insulating phase. Soon after the observation of number-squeezed states in an
one-dimensional optical lattice [31], the field had a seminal breakthrough in 2002.
Markus Greiner and collaborators [32] observed the quantum phase transition from
a bosonic superfluid to a Mott insulator in a three-dimensional (3D) optical lattice.
In the following years optical lattices have been used to create Mott insulators in
1D and 2D [33, 34], a Tonks-Girardeau gas [35, 36] as well as a band insulator of
spin-polarized fermions [37]. Recently, also more complex lattice geometries such
as superlattices [38–40] and hexagonal lattices [41] have been realized.

The enormous experimental progress that has been made with fermions at Fesh-
bach resonances and bosons in optical lattices has fueled the prospect that ultracold
atoms can be used to study problems of quantum many-body physics with high pre-
cision. This idea follows Richard P. Feynman’s vision of a quantum simulator, which
he presented in 1981 [42]. Feynman argued on general grounds that, on a classical
computer, the accuracy of simulations of quantum mechanical systems must have an
intrinsic limit. Therefore he proposed to use a well-controlled quantum system for
the simulation of quantum mechanical problems.

In this thesis I report on the realization, characterization and analysis of many-body
quantum states of ultracold atoms in an optical lattice. The studies with ensembles of
interacting bosonic 87Rb and fermionic 40K atoms are enabled by a versatile setup,
that integrates many of the aforementioned experimental concepts. A key innovation
is the first implementation of a so-called blue-detuned optical lattice. In combination
with a red-detuned dipole trap, this provides independent control of the lattice depth
and the underlying trapping potential. Thereby, it was possible to realize the first
homogeneous optical lattice. The combination of these unprecedented capabilities
with the interaction control offered by Feshbach resonances has opened the door to
new classes of equilibrium and nonequilibrium experiments.

The research of this thesis has lead to several important achievements: First, it
has been possible to implement the Fermi-Hubbard model in an optical lattice with
an ultracold spin mixture of fermionic atoms. Metallic and insulating phases have
been identified, including the fermionic Mott insulator. Second, a new atom optical
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technique has been developed to measure the on-site interactions of bosonic atoms
with high precision. This has allowed to demonstrate the presence of effective multi-
body interactions pointing towards important multi-band effects in optical lattices.
Third, the first lattice Bose-Fermi mixtures with tunable interspecies interactions
have been created. The influence of fermionic “impurities” on the bosonic superfluid
to Mott insulator transition has been studied and several nontrivial interaction effects
have been revealed. In the following, a brief motivation and outline of the specific
experiments is given:

1.1 Metallic and Insulating Phases of Fermionic Spin Mixtures

In condensed matter physics the Mott insulator phase is a paradigmatic manifestation
of strong correlations between electrons in solids [43, 44]. When interactions between
electrons are exceedingly strong, a Mott insulator can emerge in materials, in which
the unit cell of the crystal is on average occupied by one electron. Under these
circumstances individual electrons (either with spin up or spin down) get localized
at the atomic sites and the material is not able to conduct electrical current, although
the conduction band is only half-filled. For crystals with simple cubic symmetry
the electron spins in the Mott insulator are antiferromagnetically ordered, if the
temperature of the material is below the Néel-temperature TN. This temperature is
determined by the energy scale of the Heisenberg exchange interaction Jex , which
describes the energy cost for neighboring spins to exchange places. Up to this point,
the physics of Mott insulators is described by the famous Fermi-Hubbard model.
It is the simplest model system that captures the competition between interactions
and kinetic energy in electronic materials [45]. However, the known territory is
soon departed when Mott insulating materials are doped: Some of them quickly
turn into superconductors with surprisingly high transition temperatures. These are
the famous high-Tc superconductors [46], which are typically found in cuprates,
chemical compounds consisting of two-dimensional copper-oxide layers. It is a long-
standing open question, reaching back to the discovery of high-Tc materials in 1986
[47], whether the corresponding superconducting many-body state also emerges from
within the Fermi-Hubbard model. So far, conclusive explanations for the mechanism
of high-temperature superconductivity could not be given. This is — cast in simple
words — the reason, why quantum simulation of the Fermi-Hubbard Hamiltonian
in a clean and defect free model system is a highly relevant research topic.

In the experiment, we implement the Fermi-Hubbard model by loading an equal
mixture of fermionic spin up and spin down 40K atoms into a three-dimensional opti-
cal lattice. The quantum phases of the system are explored by changing the strength
of the external confining potential. Leaving the overall atom number fixed, this effec-
tively changes the system size and the local filling at the lattice sites. Such a procedure
is virtually impossible in real materials. The response of our model quantum system
is probed by monitoring the in-situ cloud size via phase-contrast imaging, which
allows to extract the compressibility of the quantum many-body state. We first show
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how a noninteracting spin mixture evolves from a dilute compressible metal into an
incompressible band insulating state with doubly occupied sites (one spin up and
one spin down atom) when the confinement is increased. For strong interactions
and intermediate confinement, we observe the emergence of an incompressible Mott
insulator state in the center of the trap. As an additional confirmation, we also observe
a strong suppression of doubly occupied lattice sites as a result of the localization of
single atoms.

Given the above outline of the status in condensed matter physics, it is the natural
next step to direct experimental efforts to the realization and detection of an anti-
ferromagnetically ordered Mott insulator. To reach this aim, the entropy per particle
should lie below kB ln(2), which corresponds to staying below the Néel-temperature.
Current experiments, including ours, lie a factor of two above this value. Schemes
for the reduction of entropy in optical lattices are intensely pursued with the prospect
of studying spin order and quantum magnetism with ultracold atoms.

1.2 Quantum Revival Spectroscopy and Multi-Body Interactions

When a Bose-Einstein condensate is loaded into a shallow optical lattice, the atoms
macroscopically occupy a quantum state that is delocalized across the whole system.
What happens when in this situation the lattice depth is abruptly increased? The atoms
will remain in the delocalized state, although it is not the ground state of the system.
If the lattice depth is chosen sufficiently deep, the tunnel coupling between lattice
sites is very small and the many-body quantum state does not equilibrate. Taking now
a glance at an individual lattice site, the on-site quantum state can be well described
as a coherent matter wave field that is formed by a Poissonian superposition of atom
number states (Fock states). Such coherent states have originally been introduced by
Glauber [48] to describe coherent fields of light formed by a Poissonian superposi-
tion of photon number states. Coherent states can show intriguing quantum dynamics
[49, 50]: When the phase evolution of the individual Fock states is nonlinear in the
particle number, the coherent state undergoes a series of collapses and revivals! For
atomic coherent states, this quantum evolution is induced by interatomic collisions
and the periodicity of the revivals is inversely proportional to the interaction energy of
a colliding atom pair. This direct conversion of the interaction energy into an observ-
able frequency makes the observation of quantum revivals a precise measurement
tool for atomic interactions.

For the experimental realization of this intriguing atom optical phenomenon, we
load a Bose-Einstein condensate of 87Rb atoms into a shallow optical lattice, giving
rise to an enormously large array of atomic coherent states. An abrupt, nonadia-
batic increase of the lattice depth initiates the quantum dynamics of all the coherent
states in parallel. Simultaneously with the increase of the lattice depth we cancel the
underlying confinement of the lattice. This minimizes mutual energy offsets between
lattice sites and boosts the coherence time of the quantum evolution by more than
a factor of ten compared to previous experiments [51, 52]. The atomic interference
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patterns after time-of-flight expansion show more than forty revival cycles in the
temporal evolution of the contrast of time-of-flight interference patterns.

The resulting high spectral resolution allows us to perform the most precise mea-
surements of atomic Fock state energies to date. The spectral analysis of the quantum
evolution reveals that the collisions of atoms in an optical lattice cannot be exclusively
described by two-body interactions. In fact, virtual transitions of atoms to excited
on-site orbitals generate effective multi-body interactions as higher-order corrections
to the single orbital two-body interaction. Our precision measurement of multi-body
interaction energies signifies the impact of multi-orbital effects in optical lattices and
provides crucial input for the comparison of optical-lattice quantum simulators with
many-body quantum theory.

The observation of quantum revivals additionally reveals information on the atom
number statistics at individual lattice sites. Due to the effect of multi-body interac-
tions, each Fock state appears with a characteristic frequency in the experimental
spectra. The corresponding spectral weight encodes the occupation of individual
Fock states, which allows to monitor how the on-site quantum state evolves from
coherent, for shallow lattice depths, to highly number-squeezed, for deeper lattices.
Underlining the intriguing analogies between quantum and atom optics, our tech-
nique is similar to foundational experiments in cavity quantum electrodynamics that
yield the statistics of the cavity photon field [53].

1.3 Equilibrium Phases of Bose-Fermi Mixtures
in Optical Lattices

Multi-component systems play an important role in quantum many-body physics.
From interacting atoms and photons to electrons and phonons the interplay of inter-
actions in binary mixtures gives rise to intriguing many-body phenomena such as
superradiance, BCS-superfluidity or polaronic effects. However, a scenario, in which
particles of different quantum statistics occupy the same lattice structure and interact
with each other, is somewhat unusual. A novel quantum system of this kind becomes
available when loading ultracold clouds of bosonic and fermionic atoms into an opti-
cal lattice. The complex interplay of Bose-Bose and Bose-Fermi interactions gives
rise to a physical richness that has inspired numerous theoretical investigations.
They led to the prediction of a plethora of intriguing quantum phases, including
exotic superfluids [54], charge-density waves [55] and polaron-like quasiparticles
[56]. Even a supersolid phase of the bosonic component has been conjectured [57].

Being an initial step on the way towards the creation of complex quantum phases,
we have realized the first lattice Bose-Fermi mixture with tunable interspecies inter-
actions using 87Rb and 40K. The investigation of the coherence of the bosonic species
shows that the superfluid to Mott insulator transition is shifted towards lower lattice
depths for negative interspecies scattering lengths. This shift can be attributed to an
effective deepening of the optical lattice owing to the presence of attractively inter-
acting fermions. The resulting renormalization of bosonic interactions and tunneling
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reaches beyond the single-band Hubbard model and requires the inclusion of higher
lattice bands. On the side of repulsive interspecies interactions we do not see a
notable shift of the Mott insulator transition suggesting that bosons and fermions
do not occupy the same lattice sites. This behavior is consistent both with a trivial
global phase separation and a local anticorrelation of the species, as expected for a
charge-density wave or a supersolid. However, with the present techniques we cannot
distinguish between these scenarios, yet.

1.4 Few-Body Bose-Fermi Systems on Individual Lattice Sites

In order to gain further insight into the interaction effects of Bose-Fermi mixtures in
optical lattices, we carried out the first application of quantum revival spectroscopy.
Specifically, we create an array of few-body systems, which consist of a single
fermion and a bosonic coherent state. In this ensemble of “microlabs” we induce
collapse and revival dynamics and deduce the interaction effects between the fermion
and the individual bosonic Fock states. For the first time, the absolute strength of
the Bose-Fermi interactions is directly measured as a function of the interspecies
scattering length. Furthermore, it is demonstrated that the presence of an interacting
fermion mediates a modification of the Bose-Bose interactions. Indeed, the data
shows an increase of the repulsion among the bosons when an attractively interacting
fermion is present, which is consistent with the observed shift of the superfluid to
Mott insulator transition.

Additionally, we have identified an intriguing interference effect in quantum
revival spectroscopy that allows us to selectively infer the mean fermionic filling
on those sites of the lattice array, in which bosons and fermions overlap. With this
method it is possible to show that the local fermionic filling indeed varies as a func-
tion of the interspecies interactions. We observe a marked increase of the on-site
fermion density for interspecies attraction, while for repulsive interactions again a
separation between bosons and fermions is detected.

Our studies on tunable Bose-Fermi mixtures in optical lattices constitute early
steps in the investigation of this extremely rich quantum system. In fact, we are
presented with a promising starting point to investigate tunable disorder [58], polaron
physics [59] and complex quantum phases [57]. On the few-body level, Bose-Fermi
systems on individual lattice sites may be a useful platform to study impurity physics
or effective field theories that are relevant in the description of atomic nuclei [60].

1.5 Outline

In Chap. 2 we give a brief overview of the physics of weakly interacting quantum
gases, which is followed by the description of the two main routes to enter the strongly
correlated regime: Optical lattice potentials and Feshbach resonances.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Chapter 3 is concerned with the description of Hubbard models for ultracold atoms
in optical lattices. We derive the Hubbard Hamiltonian and indicate the approxima-
tions that are made with respect to the full many-body Hamiltonian. This illustrates
that also physics beyond the usual single-band Hubbard model can be expected in
realistic lattice systems. The Bose- and Fermi-Hubbard models are discussed as well
as the expected phases in implementations of the models with ultracold atoms in
optical lattices.

Chapter 4 provides theoretical background on the methods for the detection of
ultracold atoms that are used in this thesis: Absorption imaging and phase-contrast
imaging. The latter is of crucial importance for the reliable detection of fermionic
in-situ density distributions in Chap. 6. Furthermore, we discuss relevant physical
observables that can be extracted from in-situ and time-of-flight images.

Chapter 5 gives a brief overview of the experimental apparatus focussing on the
main innovations that are crucial for the presented experiments. In particular, we
describe the phase-contrast imaging system as well as alignment and characterization
methods of the combined setup of blue-detuned optical lattice and red-detuned dipole
trap.

In Chap. 6 the experimental realization of the Fermi-Hubbard model with fermi-
onic spin mixtures is presented. We describe the experimental route towards the
observation of metallic and insulating phases in repulsively interacting mixtures,
including the demonstration of a fermionic Mott insulator. Furthermore, the obser-
vation of a counterintuitive effect, the anomalous expansion of attractively interacting
mixtures at finite temperature is briefly outlined. The outlook discusses strategies to
cool fermionic spin mixtures below the Néel-temperature as well as detection meth-
ods for antiferromagnetic order.

Chapter 7 reports on the observation of coherent multi-body interactions in a
bosonic lattice quantum gas by means of quantum revival spectroscopy. We introduce
the theory of collapse and revival dynamics of a matter wave field and show that it can
be used to measure the interaction energy of atomic Fock states. The experimental
part reports on long-lived quantum phase revival dynamics in a homogeneous lattice
and the resulting precision measurement of Fock state energies and effective multi-
body interactions. We further work out a proposal for the experimental detection of
a Schrödinger cat state that arises during the collapse of a matter wave field.

Chapter 8 outlines the realization of a Bose-Fermi mixture with tunable inter-
species interactions in a three-dimensional optical lattice. It is demonstrated that
the superfluid to Mott insulator transition shifts towards lower lattice depths for
attractive interspecies interactions, while evidence for phase separation is found for
interspecies repulsion.

Chapter 9 describes the application of quantum revival spectroscopy to few-body
systems consisting of a single fermion and a small coherent bosonic field. We report
on the direct measurement of absolute Bose-Fermi interaction energies and demon-
strate that the Bose-Bose interaction energy is modified by the presence of an inter-
acting fermion. Additional unpublished data shows the observation of collapse and
revival dynamics in the fermionic component.

http://dx.doi.org/10.1007/978-3-642-33633-1_3
http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_8
http://dx.doi.org/10.1007/978-3-642-33633-1_9


8 1 Introduction

1.6 Publications

Several papers have been published during my PhD work. The most relevant ones
for the content of this thesis are marked:

• M. Buchhold, U. Bissbort, S. Will, and W. Hofstetter, Creating Exotic Conden-
sates via Quantum-Phase-Revival Dynamics in Engineered Lattice Potentials,
Physical Review A, 84, 023631, (2011)

� S. Will, Th. Best, S. Braun, U. Schneider, and I. Bloch, Coherent Interaction
of a Single Fermion with a Small Bosonic Field, Physical Review Letters, 106,
115305, (2011)

• U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S. Braun, Th. Best,
I. Bloch, E. Demler, S. Mandt, D. Rasch, and A. Rosch, Fermionic Transport and
Out-of-Equilibrium Dynamics in a Homogeneous Hubbard Model with Ultra-
cold Atoms, Nature Physics, 8, 213-218, (2012)

� S. Will, Th. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, and I. Bloch,
Time-Resolved Observation of Coherent Multi-Body Interactions in Quantum
Phase Revivals, Nature, 465,197-201, (2010)

• L. Hackermüller, U. Schneider, M. Moreno-Cardoner, T. Kitagawa, Th. Best,
S. Will, E. Demler, E. Altman, I. Bloch, and B. Paredes, Anomalous Expan-
sion of Attractively Interacting Fermionic Atoms in an Optical Lattice, Science,
327,1621-1624, (2010)

• S. Will, B. Paredes, L. Hackermüller, U. Schneider, Th. Best, M. Moreno-
Cardoner, and I. Bloch, Strongly Correlated Bosons and Fermions in Optical Lat-
tices, Proceedings of the XIX International Conference on Laser Spectroscopy
(ICOLS), 191, World Scientific, (2009)

� Th. Best, S. Will, U. Schneider, L. Hackermüller, D.-S. Lühmann, D. van Oosten,
and I. Bloch, Role of Interactions in 87Rb-40K Bose-Fermi Mixtures in a 3D
Optical Lattice, Physical Review Letters, 102, 030408, (2009)

� U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch, T. Costi, R. Helmes,
D. Rasch, and A. Rosch, Metallic and Insulating Phases of Repulsively Inter-
acting Fermions in a 3D Optical Lattice, Science, 322, 1520-1525, (2009)

Earlier work:

• C. Christensen, S. Will, M. Saba, G.-B. Jo, Y.-I. Shin, W. Ketterle, and D. Pritchard,
Trapping of Ultracold Atoms in a Hollow-Core Photonic Crystal Fiber, Physical
Review A, 78, 033429, (2008)

• G.-B. Jo, Y.-I. Shin, S. Will, T. Pasquini, M. Saba, W. Ketterle, D. Pritchard,
M. Vengalattore, and M. Prentiss, Long Phase Coherence Time and Number
Squeezing of Two Bose-Einstein Condensates on an Atom Chip, Physical Review
Letters, 98, 030407, (2007)
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Chapter 2
Towards Strongly Interacting Bosons
and Fermions

This chapter sets the stage from which this thesis departs into the realm of strongly
interacting bosons and fermions. Several theoretical concepts that are needed for a
basic understanding of the experiments in later chapters are briefly summarized.

The first section introduces theoretical background on ultracold quantum gases.
After a fast journey through second quantization, quantum statistics and basics of sta-
tistical mechanics, ideal fermions and weakly interacting bosons are discussed in the
Thomas-Fermi limit. The consequences of interactions in ultracold quantum gases
are exemplarily illustrated in a mean-field analysis of an interacting Bose-Fermi mix-
ture in a harmonic trap. The section concludes with a discussion of possible routes
towards strongly interacting quantum systems. The second section is dedicated to
the theory of optical lattices. After discussing the landscape of experimental lattice
potentials, we turn to the band structure of a simple cubic lattice and introduce the
Wannier basis. In the third section, the concept of Feshbach resonances is presented.
After a brief summary of the basics of quantum mechanical scattering theory, reso-
nance scattering, the emergence of bound molecular states and the problem of two
interacting atoms in a tight harmonic potential are discussed. Finally, the specific
Feshbach resonances that are used in the experiments of this thesis are introduced.

2.1 Ultracold Quantum Gases

We start with a reminder of quantum statistics [1] and many-body quantum theory in
second quantization [2]. Second quantization is the language of choice to formulate
the many-body Hamiltonians for bosons and fermions in optical lattice potentials.
It is heavily used throughout the thesis. Then, basic formalisms for bosonic and
fermionic quantum gases in harmonic trapping potentials are introduced, includ-
ing the important Thomas-Fermi approximation [3–5]. The bosonic and fermionic
formalisms are both applied in a self-consistent mean-field calculation for an inter-
acting Bose-Fermi mixture in a harmonic trap, revealing a marked influence of inter-
species interactions on the phases of the mixture. Finally, we discuss under which

S. Will, From Atom Optics to Quantum Simulation, Springer Theses, 13
DOI: 10.1007/978-3-642-33633-1_2, © Springer-Verlag Berlin Heidelberg 2013
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conditions a quantum system can be regarded as strongly interacting [6, 7] and iden-
tify fundamental routes to reach this regime with ultracold atoms.

2.1.1 Bosons and Fermions

Indistinguishability of particles is a fundamental concept of quantum theory. We
consider a system of N indistinguishable particles. The single-particle states in the
system are described by a basis of single-particle wavefunctions {ψE (x)}, where x
denotes the collection of spatial and spin coordinates and E uniquely labels the state
by representing a complete set of single-particle quantum numbers. For example,
for free fermions in a box E denotes the momentum k and the z-component of the
spin, sz . Using the single-particle wavefunctions, the most general many-particle
wavefunction �(x1, . . . xN ) for the whole N -particle system can be constructed by

�(x1, . . . , xN ) =
∑

E1,...,EN

C(E1, . . . , EN ) ψE1(x1) · · ·ψEN (xN ), (2.1)

where each Ek in the sum runs over the complete set of quantum numbers. Because
quantum particles are fundamentally indistinguishable, a single-particle wavefunc-
tion cannot be strictly assigned to a certain particle. This implies the invariance of
observables under the exchange of particles. Particularly, the probability density |�|2
must be unchanged:

|�(. . . , xk, . . . , xl , . . .)|2 = |�(. . . , xl , . . . , xk, . . .)|2. (2.2)

From this we conclude that there are two possibilities for the sign of the many-particle
wavefunction when particle coordinates are exchanged:

�(. . . , xk, . . . , xl , . . .) = ±�(. . . , xl , . . . , xk, . . .). (2.3)

Therefore, the principle of indistinguishability suggests that quantum particles are
grouped into two fundamental classes: First, the bosons, for which the wavefunc-
tion transforms symmetrically (upper sign). Second, the fermions, for which the
wavefunction transforms antisymmetrically (lower sign). Indeed, the famous spin-
statistics theorem in quantum field theory states, that particles with integer spin are
bosons and particles with half-integer spin are fermions [8]. According to Eq. 2.3 two
fermions cannot occupy the same quantum state, because then � would be equal to
−� implying, that the wavefunction must vanish

�(. . . , xk, . . . , xk, . . .) = 0. (2.4)

This is Pauli’s exclusion principle for fermions.
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Quantum statistics has a profound impact on the construction of many-particle
wavefunctions. For the case of bosons, a single-particle quantum state can be occu-
pied by many particles. Accordingly, the general many-particle wavefunction for N
bosons is expanded in terms of a basis of completely symmetrized wavefunctions

�B
n1,...,n∞(x1, . . . , xN ) =

(
n1! · · · n∞!

N !
)1/2 ∑

E1,...,EN
(n1,...,n∞)

ψE1(x1) · · ·ψEN (xN ). (2.5)

Here, the sum runs over all possibilities, in which N particles are distributed over the
single-particle states, such that n1 particles are in state ψE1 , n2 particles are in state
ψE2 and so on. In total, there are N !/(n1! n2! · · · n∞!) possibilities, which explains
the normalization.

In the case of fermions, Pauli’s principle restricts the occupation of single-particle
states to either nk = 0 or 1. The basis states of the general many-particle wavefunction
for N fermions are given by the normalized Slater determinants

�F
n1,...,n∞(x1, . . . , xN ) = 1√

N !

∣∣∣∣∣∣∣∣∣

ψE1(x1) ψE1(x2) · · · ψE1(xN )

ψE2(x1) ψE2(x2) · · · ψE2(xN )
...

...
. . .

...

ψEN (x1) ψEN (x2) · · · ψEN (xN )

∣∣∣∣∣∣∣∣∣

. (2.6)

The mathematical properties of the determinant ensure, that the basis wavefunctions
transform antisymmetrically under exchange of any two particles.

Second Quantization

Second quantization offers a convenient way to capture the symmetry properties of
bosons and fermions without explicitly writing down the above many-particle basis
states during calculations. The underlying formalism implicitly takes care of main-
taining the appropriate symmetry of the many-particle wavefunctions. For exam-
ple the completely symmetrized bosonic N -particle state 2.5 is represented by an
occupation number state |�B

n1,...,n∞〉 = |n1, n2, . . .〉 ≡ |n1〉|n2〉 · · · |n∞〉 with the
occupation numbers ni as defined above.

For bosons, the whole range of integer occupation numbers is allowed, including
zero. In order to construct and manipulate the occupation number states, the creation
and annihilation operators â†

k and âk are introduced for each single-particle state k.
The operators obey the bosonic commutation relations

[âk, âl ]− = 0, [â†
k , â†

l ]− = 0 and [âk, â†
l ]− = δkl , (2.7)

where [A, B]− = AB−B A. These relations determine all properties of the operators.
They imply, that the creation operator â†

k raises and the annihilation operator âk
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Fig. 2.1 Bosonic and fermionic quantum statistics. At zero temperature bosons form a Bose-
Einstein condensate, while fermions arrange in a Fermi sea. The energy of the highest occupied
state in the Fermi sea is the Fermi energy εF. Green and red balls correspond to two spin states
(spin up and spin down). The color coding introduced in this figure is kept throughout the thesis:
blue balls indicate bosons, red and green balls indicate fermions

lowers the number of particles in the single-particle state ψEk by one according to
â†

k |nk〉 = √
nk + 1 |nk + 1〉, âk |nk〉 = √

nk |nk − 1〉, and especially âk |0〉 = 0,
where |0〉 is the vacuum state. Furthermore, it is easy to show that the eigenvalues
of the operator n̂k ≡ â†

k âk correspond to the number of particles occupying the
single-particle state ψEk , which suggests the name number operator for n̂k .

For fermions, the occupation numbers are restricted to nk = 0 or 1 and the many-
particle wavefunction must be antisymmetric. Those requirements are automatically
taken care of by defining the anticommutation relations for the fermionic creation
and annihilation operators c†

k and ck according to

[ĉk, ĉl ]+ = 0, [ĉ†
k , ĉ†

l ]+ = 0 and [ĉk, ĉ†
l ]+ = δkl , (2.8)

where [A, B]+ = AB + B A. With these relations one can show, that ĉ†
k ĉ†

k |0〉 = 0,
which prevents double occupation of a single quantum state (Pauli’s exclusion prin-
ciple), as well as c†

k |0〉 = |1〉, c†
k |1〉 = 0, ck |1〉 = |0〉 and ck |0〉 = 0.

Within the formalism of second quantization it is simple to write down many-
particle ground states. For N noninteracting, spinless bosons with the single-particle
ground state ψE0 , the many-particle ground state can be directly constructed via

|�B〉 = |N , 0, 0, . . .〉 ≡ 1√
N ! (â

†
0)

N |0, 0, 0, . . .〉. (2.9)

In this state, all particles occupy the same single-particle state, which is the defining
property of a Bose-Einstein condensate (see Fig. 2.1).

In a fermionic N -particle system each single-particle state can only be occupied
by a single fermion at most. Therefore, the zero-temperature many-particle ground
state is realized, when the N single-particle states with lowest energy are filled from
bottom up as expressed by
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|�F〉 = | 1, 1, . . . , 1︸ ︷︷ ︸
N times

, 0, 0, . . . , 0〉 =
∏

k≤kF

ĉ†
k |0, 0, 0, . . .〉. (2.10)

The indices are ordered in such a way, that a lower index corresponds to a lower
energy. The index kF is defined such, that

∑
k≤kF

= N . The energy EkF ≡ εF of the
highest occupied single-particle state is called the Fermi energy (see Fig. 2.1).

Operators in Second Quantization

As shown above, second quantization offers a concise way to express many-particle
states. However, the formalism unfolds its full potential, when it is used to rewrite
N -particle Hamiltonians in a way that allows for elegant diagonalization formalisms.
In real space, a N -particle Hamiltonian generally has the form

H =
N∑

k=1

T (xk) +
N∑

k �=l=1

V2(xk, xl)

+
N∑

k �=l �=m=1

V3(xk, xl , xm)+ . . . (2.11)

Here T (xk) denotes an operator acting on a single particle (e.g. kinetic or poten-
tial energy), V2(xk, xl) an operator acting on two particles (e.g. two-body interac-
tion between particles) and V3(xk, xl , xm) an operator acting on three particles (e.g.
three-body interaction between particles). Generally, also operators involving a larger
number of particles can play a role as indicated by the dots. We will see in Chap. 7
that higher particle terms can happen to be relevant not only theoretically, but also
experimentally. In second quantization the Hamiltonian takes the form [2]

Ĥ =
∑

i j

â†
i 〈i |T | j〉â j + 1

2

∑

i jkl

â†
i â†

j 〈i j |V2|kl〉âl âk

+ 1

6

∑

i jk
lmn

â†
i â†

j a
†
k 〈i jk|V3|lmn〉ânâmâl + . . . (2.12)

Here, only the case of bosonic operators is shown for brevity. The identical expression
holds for fermions, when the operators âk are replaced by ĉk . However, it is very
important to keep the ordering of the indices as changes affect the overall sign.
The matrix elements are complex numbers that are calculated by integration over
the generalized coordinate x , for example 〈i |T | j〉 = ∫ dx ψ∗

Ei
(x) T (x) ψE j (x). We

come across Hamiltonians of this kind several times in this thesis. Nevertheless, it is
often convenient to use Hamiltonian 2.12 in a slightly different form that is obtained
by introducing the field operators ψ̂(x) =∑k ψk(x)âk and ψ̂†(x) =∑k ψ

∗
k (x)â

†
k .

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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A simple calculation yields

Ĥ =
∫

dx ψ̂†(x) T (x) ψ̂(x)+ 1

2

∫
dx dx ′ ψ̂†(x)ψ̂†(x ′) V2(x, x ′) ψ̂(x ′)ψ̂(x)

+ 1

6

∫
dx dx ′ dx ′′ ψ̂†(x)ψ̂†(x ′)ψ̂†(x ′′) V3(x, x ′, x ′′) ψ̂(x ′′)ψ̂(x ′)ψ̂(x)+ . . .

(2.13)

2.1.2 Bose-Einstein and Fermi-Dirac Distribution

In the preceding section, we have derived the effects of quantum statistics on an
elementary level. However, in systems of practical importance the particle number
is often very large and, even more importantly, such systems generally have a finite
temperature. Therefore it is crucial to consider the impact of quantum statistics on
statistical mechanics and thermodynamics.

According to the fundamental postulate of statistical mechanics, a macroscopic
system in thermodynamic equilibrium is equally likely to be in any of the states that
satisfy the macroscopic conditions [1]. This means, that the system is a member of
an ensemble, in which the total energy E , the particle number N and the volume V
are fixed. It is called the microcanonical ensemble. Remarkably, those conditions are
quite closely met in experiments with ultracold atoms.1 However, for calculations it
is often more practical to consider the system being in contact with a large reservoir,
which allows for the exchange of particles and energy. The corresponding ensemble
is called the grand canonical ensemble, in which the temperature T = 1/(kBβ) and
the chemical potential μ, which is the energy cost to add a particle, are fixed. The
probability of the system to be in any state with particle number N and total energy
E is determined by the Boltzmann factor e−β(E−μN )/Z , where Z is the partition
function, which we are going to derive for ideal gases in the following. The partition
function has crucial importance for the calculation of ensemble averages of physical
observables (Fig. 2.2).

We assume an ideal gas consisting of noninteracting particles, where the eigenen-
ergies of the single-particle states are denoted by εi and the many-particle states are
given by |n1, . . . , n∞〉 with the total energy

∑
i εi ni . The grand canonical partition

function is then given by [2]

Z =
∞∏

i=1

Tri e−β(εi −μ)n̂i =
∞∏

i=1

∑

n

(
e−β(εi −μ)

)n
. (2.14)

1 This is true under the assumption that ultracold atom systems are truly in thermodynamic equi-
librium. In practice, an ultracold sample under investigation has typically undergone a sequence of
parameter changes, which can only be adiabatic to a certain degree. For example, changes of E and
V are induced by variation of the interparticle interactions or the trapping potential.
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Fig. 2.2 Fermi-Dirac distri-
bution for several dimension-
less temperatures T/TF as a
function of the dimension-
less energy of single-particle
quantum states ε/εF. Solid
curves indicate the quantum
degenerate regime
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We can further evaluate this expression by taking into account quantum statistics.
For bosons, the occupation numbers n are unrestricted and cover all integer numbers,
which yields

ZB =
∏

i

1

1 − e−β(εi −μ) (2.15)

and for fermions, n can either take the value 0 or 1, such that

ZF =
∏

i

(1 + e−β(εi −μ)). (2.16)

Now, statistics can be connected to thermodynamics via the fundamental relation [2]

�(T, V, μ) = − 1

β
ln Z = ± 1

β

∑

i

ln(1 ∓ eβ(μ−εi )), (2.17)

which is the grand canonical potential that allows to calculate all macroscopic ther-
modynamic properties in equilibrium. The upper (lower) sign refers to bosons (fermi-
ons) in this and the following equations. The mean total atom number of the ideal
gas is given by

〈N 〉 = −∂�
∂μ

=
∑

i

〈ni 〉 with 〈ni 〉 = 1

eβ(εi −μ) ∓ 1
= fB/F(εi ), (2.18)

which are the famous Bose-Einstein and the Fermi-Dirac distributions for the mean
occupation of individual quantum states in noninteracting systems. Additionally the
mean entropy is given by [1]

〈S〉 = −∂�
∂T

= kB

∑

i

β(εi − μ)

eβ(εi −μ)∓1
∓ kB ln

(
1∓e−β(εi −μ)

)
(2.19)
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It is important to note that the results derived here are generally valid for all systems of
noninteracting bosonic and fermionic particles. However, for practical calculations
it often proves useful to replace the discrete summations over the state index i , which
appears in Eqs. 2.17–2.19, by a continuous integral. This leads to the concept of the
density-of-states capturing the effects of the trapping potential on the energy levels.

2.1.3 Quantum Degenerate Fermionic Gases

A gas of fermionic atoms in a single spin state at low temperature is the “most
ideal” gas one can think of. As we will discuss later in this chapter, low energy
collisions between fermionic atoms are largely suppressed due to Pauli’s principle
(see Sect. 2.3). We consider the gas to be trapped in a three-dimensional harmonic
potential

V (r) = 1

2
m
(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
, (2.20)

where m is the mass of the particles and the ωα denote the trapping frequencies in
each direction α = x, y, z. The eigenenergies of the single-particle states are given
by [9]

εnx ,ny ,nz = �

∑

α

ωα

(
nα + 1

2

)
. (2.21)

This single-particle spectrum of the harmonic oscillator gives rise to the density-of-
states2

g(ε) = ε2

2(�ω̄)3
, (2.22)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies. With

Eq. 2.22 and the Fermi-Dirac distribution the total particle number N in the system
can be expressed by

N =
∫ ∞

0
dε

g(ε)

eβ(ε−μ) + 1
= −

(
kB T

�ω̄

)3

Li3(−eβμ)
β→ ∞−−−−→

∫ ∞

0
dε g(ε)�(μ−ε).

(2.23)
At a certain temperature T and total particle number N , this relation implicitly fixes
the chemical potential μ. When the temperature approaches zero, the Fermi-Dirac
distribution becomes a step function, indicating that the single-particle states are
filled from bottom up.3 Under these conditions the chemical potential is called the

2 The continuum approximation of the quantum mechanically discrete eigenenergies is strictly
speaking only valid, when the discreteness is not resolved, for example, due to finite temperature.
For the harmonic oscillator, the condition justifying the use of a density-of-states requires that
kB T 
 �ωα (α = x, y, z).
3 �(x) is defined as 0 for x < 0 and 1 for x ≥ 0.
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Fermi energy εF, denoting the energy of the highest occupied single-particle state.
Using Eq. 2.23 we obtain

εF = �ω̄(6N )1/3, (2.24)

which allows for the definition of the Fermi temperature TF = εF/kB and the Fermi
momentum kF = √

2mεF/�2. Furthermore, using the Eqs. 2.19 and 2.22 the total
entropy of the system can be calculated [10, 11], which to the lowest order in the
temperature reads

S

kB
= π2 N

T

TF
+ O

[(
T

TF

)2
]
. (2.25)

Thomas-Fermi Approximation

The calculation of finite temperature properties of an ideal Fermi gas, such as the
real space density distribution, is considerably simplified by taking a semi-classical
approach that is called the Thomas-Fermi approximation. This approach is quantum
in so far, that the Fermi-Dirac distribution is used, but classical in so far, that the
energies of the single-particle states ε are approximated by the classical Hamiltonian
H(r,p), according to

fF(r,p) = 1

e
β
(

p2
2m +V (r)−μ

)

+ 1

. (2.26)

The semi-classical approach is valid in the limit of large particle numbers and corre-
sponds to a local-density approximation [5]. The volume of a single quantum state
viewed in the classical phase space (r,p) is (2π�)3. Accordingly, the real-space
density distribution in an arbitrary potential V (r) is obtained by integration over all
momenta [4, 5]

nF(r) = 1

(2π�)3

∫
dp fF(r,p) = − 1

λ3
dB

Li3/2
(
−eβ(μ−V (r))

)
, (2.27)

where λdB = √2π�2/mkB T is the de Broglie wavelength. Lin(z) denotes the poly-
logarithm of nth order.4

4 The polylogarithm is defined by a series expansion Lin(z) =∑∞
k=1 xk/kn that can also be written

as [4]

Lin(z) = 1

πn

∫
d2nr

1

er2
/z − 1

,

where r denotes a vector in 2n dimensions. Note the limiting values Lin(z)
z�1−−→ z and

−Lin(−z)
z→∞−−−→ lnn(z)/�(n + 1), where �(n) is the Gamma function.
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Assuming a three-dimensional harmonic potential V (r) (see Eq. 2.20), it is
instructive to consider the Thomas-Fermi approximation in the limits of high and
zero temperature. In the first case, T → ∞, the classical Boltzmann distribution is
recovered

ncl(r) = N

π3/2σxσyσz
e−∑α α

2/σ 2
α with σ 2

α = kB T

mω2
α

, (2.28)

corresponding to a Gaussian distribution as expected for a harmonic potential (α =
x, y, z). In the second case, T → 0, we obtain the profile

nF(r) = (2m)
3
2

6π2�3 Re
[
(εF − V (r))

3
2

]

= 8

π2

N

RFx RFy RFz
Re

⎡

⎣
(

1 −
∑

α

α2

R2
Fα

) 3
2
⎤

⎦ , (2.29)

keeping in mind the definition of the Fermi energy εF as the zero temperature chemical
potential 2.24. The extension of the cloud in the directions of the harmonic potential
that is possible at the energy εF is called the Fermi radius

RFα =
√

2εF

mω2
α

=
√

�

mωα
(48N )1/6. (2.30)

The density profiles ncl(r) and nF(r) play an important role in the thermometry of
ultracold fermion clouds, which is discussed in Chap. 6 and Appendix C.

2.1.4 Quantum Degenerate Bosonic Gases

The behavior of an ideal gas of bosonic atoms differs fundamentally from the fermi-
onic case: When the temperature is lowered, an ideal Bose gas undergoes a phase
transition and the single-particle ground state of the system becomes macroscopi-
cally occupied. This phenomenon of Bose-Einstein condensation is fundamentally
rooted in quantum statistics and can be identified on general grounds by examining
the Bose-Einstein distribution (see Eq. 2.18)

fB(εi ) = 1

eβ(εi −μ) − 1
. (2.31)

Assuming without loss of generality, that the energy of the single-particle ground

state ε0 vanishes, fB(ε0)
β→∞−−−→ ∞ diverges, when the temperature approaches zero.

Note thatμ ≤ 0, because fB(εi )must assume nonnegative values. The divergence of

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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the Bose-Einstein distribution entails a macroscopic occupation of the single-particle
ground state.

Assuming a three-dimensional harmonic oscillator with the density-of-states 2.22,
we obtain for the total particle number

N − N0 =
∫ ∞

0
dε

g(ε)

eβ(ε−μ) − 1
=
(

kB T

�ω̄

)3

Li3(e
βμ) (2.32)

where it is crucial to separate out the ground state occupation N0 that is otherwise not
properly accounted for by the integral. The maximal particle number that could be
accommodated in the system at a fixed temperature without condensation, N0 = 0,
is reached for eβμ → 1 since Li3(z) is monotonically increasing and 0 ≤ eβμ ≤ 1.
Therefore, the chemical potential must beμ = 0 at this point. In turn, if a fixed num-
ber of particles is to be accommodated in the system, there is a critical temperature
Tc, below which a fraction of the atoms must occupy the ground state. The critical
temperature follows from Eq. 2.32 by setting N0 = 0 and μ = 0

kB Tc = �ω̄

(
N

Li3(1)

)1/3

≈ 0.94�ω̄N 1/3. (2.33)

Insertion of this result into Eq. 2.32 yields the fraction of condensed atoms as a
function of temperature

N0

N
= 1 −

(
T

Tc

)3

. (2.34)

Using a semi-classical approach analogous to Eq. 2.27, it turns out that condensation
sets in, when the density reaches nmax

B = Li3/2(1)/λ3
dB = 2.612/λ3

dB. This cor-
responds to the intuitive argument that Bose-Einstein condensation happens, when
the de Broglie wavelength reaches the same order of magnitude as the interparticle
spacing.

Weakly Interacting Bose Gas

Atomic Bose gases are not as ideal as spin-polarized Fermi gases, because inter-
actions are not suppressed at low temperatures. A realistic description needs to
include interparticle interactions and this has been successfully done using the Gross-
Pitaevskii Eq. (2.3) for the ground state of the many-particle system �(r, t). This is
a nonlinear Schrödinger equation

i�
∂

∂t
�(r, t) =

(
− �

2

2m
� + V (r)+ g|�(r, t)|2

)
�(r, t), (2.35)
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where the interactions are included by the parameter g = 4π�
2as/m with the scat-

tering length as (see Sect. 2.3 for further details). With the knowledge, that in a
pure Bose-Einstein condensate all atoms occupy an unique single-particle state, it
is plausible to make the ansatz �(r, t) = φ(r)e−iμt/�. Here, φ(r) is understood to
be normalized to the total particle number

∫
dr |φ(r)|2 = N and μ is the chemical

potential. Accordingly, the time independent Gross-Pitaevskii equation reads

(
− �

2

2m
� + V (r)+ g|φ(r)|2

)
φ(r) = μφ(r), (2.36)

allowing to calculate the real space wavefunctionφ(r) that is connected to the density
distribution via nB(r) = |φ(r)|2. In general, this equation must be solved numeri-
cally. However, it turns out that under most experimental conditions the contribution
of the kinetic energy term, proportional to �, is negligible compared to the potential
and interaction energy [3]. Omitting the kinetic energy, the real space density of the
weakly interacting Bose gas is simply given by

nB(r) = |ψ(r)|2 = max

[
μ− V (r)

g
, 0

]
. (2.37)

This approximation is also called Thomas-Fermi approximation due to the close
analogy to Eq. 2.29.

For the case of harmonic confinement (Eq. 2.20), it is straightforward to derive
for the chemical potential

μ = �ω̄

2

(
15Nas

�

)2/5

, (2.38)

where � = √
�/(mω̄) is the harmonic oscillator length corresponding to ω̄. The

Thomas-Fermi radius for weakly interacting bosons in a spherically symmetric trap
is given by

RB = �

(
15Nas

�

)1/5

. (2.39)

2.1.5 Interacting Bose-Fermi Mixtures in a Harmonic Trap

In the experiment, we realize interacting mixtures of quantum degenerate bosons
and fermions by sympathetic cooling in a harmonic trap. This technique requires
both interactions and good overlap of the two species to ensure proper thermaliza-
tion. However, when approaching the quantum degenerate regime, the densities can
become high enough that interactions considerably influence the density distribution
of both species inside the trap. In the case of repulsive interactions they can even
phase separate.
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In the following section, we will derive phases of a quantum degenerate interact-
ing mixture of bosons and fermions in a harmonic trap. We will see that in—what
is commonly called—the weakly interacting regime, interactions can still have a
dramatic influence on the quantum phases. We use a mean-field approach to iden-
tify phase separation (aBF 
 0), density enhancement (aBF < 0) and eventually
the collapse of the mixture (aBF � 0), as a function of the Bose-Bose and Bose-
Fermi interaction strength. We discuss this simple model here, first of all, because
it is experimentally important to understand the density distribution of harmonically
trapped Bose-Fermi mixtures prior to the lattice ramp-up. Additionally, it provides
intuition to effects that are also relevant for a Bose-Fermi mixture loaded into an
optical lattice. In the presence of an optical lattice the expected phases are even
richer and, consequently, much less accessible by simple theoretical means.

Self-Consistent Mean-Field Calculation

We calculate the density profiles of harmonically trapped Bose-Fermi mixtures at
T = 0 using a self-consistent mean-field theory [12–14]. Our model is based on
the Thomas-Fermi approximation both for the bosonic and the fermionic compo-
nent given in Eqs. 2.37 and 2.29, respectively. The interactions between bosons and
fermions are accounted for by adding to the external trapping potential VB/F(r), a
mean-field potential gBFnF(r) felt by the bosons and, analogously, gBFnB(r) felt
by the fermions. This results in a coupled pair of equations for the bosonic and the
fermionic real-space densities

nB(r) = max

[
μB − VB(r)− gBFnF(r)

gBB
, 0

]
, (2.40)

nF(r) = (2mF)
3
2

6π2�3 Re
[
(μF − VF(r)− gBFnB(r))

3
2

]
. (2.41)

The Bose-Bose and the Bose-Fermi interactions in the system are parametrized by
the respective scattering lengths:

gBB = 2π�
2aBB/μBB,

gBF = 2π�
2aBF/μBF,

where μBB = mB/2 and μBF = (mBmF)/(mB + mF) denote the reduced masses
of a colliding atom pair. The chemical potentials are implicitly determined by the
bosonic and fermionic atom numbers NB and NF by

NB/F =
∫

dr nB/F(r, μB/F). (2.42)
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The coupled equations are solved numerically by iteratively inserting the density
distributions into the respective other equation. Conveniently, the three-dimensional
problem can be reduced to one dimension in the case of a harmonic trapping potential
that is equally deep (in absolute units) for the bosons and the fermions. Indeed,
VB(r) = VF(r) is typically a good approximation for magnetically trapped alkali
atoms in the stretched hyperfine state or atoms in a far-detuned optical dipole trap
(see Sect. 2.2). Introducing rescaled units

x̃α =
√

mBω
2
Bα

2
xα =

√
mFω

2
Fα

2
xα, (2.43)

where α = x, y, z, the external trapping potential takes the convenient form VB(r̃) =
VF(r̃) = r̃2 = r̃2. In the new coordinates the problem is spherically symmetric and
therefore the density distributions solely depend on r̃ instead of a three-dimensional
vector r. The simplified coupled equations read

nB(r̃) = max

[
μB − r̃2 − gBFnF(r̃)

gBB
, 0

]
, (2.44)

nF(r̃) = (2mF)
3
2

6π2�3 Re
[
(μF − r̃2 − gBFnB(r̃))

3
2

]
(2.45)

and Eq. 2.42 takes the form

NB/F = 4π

(
2

mFω̄
2
F

) 3
2 ∫ ∞

0
dr̃ r̃2 nB/F(r̃ , μB/F). (2.46)

After rescaling, the density distributions merely depend on the geometrical mean
of the trapping frequencies ω̄F = (ωFxωFyωFz)

1/3 and the aspect ratio of the trap
does not enter. Note that the results that are obtained from this set of equations are
only valid within the requirements of the Thomas-Fermi approximations (see the
preceding sections).

We solve the coupled equations by means of numerical iteration to obtain the
density distributions nB(r̃) and nF(r̃). The following steps are performed in this
procedure:

• Initialization: The starting point (i = 0) is the Thomas-Fermi profile of the pure
Bose-Einstein condensate nB,0(r̃). It is calculated using Eq. 2.44 with vanish-
ing interspecies interactions (gBF = 0) and the chemical potential μB,0 being
implicitly given by Eq. 2.46.

• Start of the iteration loop: nB,i (r̃) is inserted into Eq. 2.45. The resulting fermi-
onic density profile is used to calculate the corresponding chemical potential
μF,i+1 for NF fermions using Eq. 2.46. This yields the correctly normalized
fermionic density nF,i+1(r̃).
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• End of iteration loop: This new fermionic density nF,i+1(r̃) leads to a new
bosonic density distribution nB,i+1(r̃) as a result of the interspecies interactions.
It is obtained by inserting nF,i+1(r̃) into Eq. 2.44 and matching of the bosonic
chemical potential μB,i+1 to the number of bosons NB using Eq. 2.46.

The last two steps are iteratively repeated several times (typically i = 1 up to 4).
The iteration can yield different outcomes: Either the procedure converges and the
resulting density distributions constitute the self-consistent solutions of the problem,
or the procedure diverges corresponding to an increasing central density for each
iteration. The latter case can happen for attractive interspecies interactions and cor-
responds to a collapse of the mixture [15]. Figure 2.3 shows a summary of results
obtained both for attractively and repulsively interacting Bose-Fermi mixtures at
typical experimental parameters.

2.1.6 Routes Towards the Strongly Interacting Regime

The ratio between the interaction energy and the kinetic energy per particle deter-
mines, whether a degenerate quantum system is in the weakly or strongly interacting
regime. At quantum degeneracy the de Broglie wavelength approximately corre-
sponds to the interparticle spacing. Therefore, the de Broglie wavelength relates to
the particle density via λdB ∼ n−1/3 and the density dependent kinetic energy can be
approximated by εkin = h2n2/3/(2m). The density dependent interaction εint = |g|n
has already been introduced in the preceding sections, where the interaction strength
reads g = 4π�

2as/m and as is the scattering length (see Sect. 2.3). Accordingly, the
ratio between interaction and kinetic energy per particle is given by the parameter [6]

γ = εint

εkin
= |g|n

h2n2/3/(2m)
≈ n1/3|as |. (2.47)

We note, that γ corresponds to the parameter kF|as | used to characterize fermionic
quantum systems, because the Fermi momentum kF coincides with n1/3 in the quan-
tum degenerate regime [4, 5].

When γ < 1, the quantum system is regarded as weakly interacting. In this regime
interparticle correlations need not be taken into account. For example, weakly inter-
acting bosonic quantum gases are remarkably well described within the effective
single-particle theory of the Gross-Pitaevskii equation 2.35. This relatively simple
framework has been successfully employed to describe exciting phenomena, such as
interfering condensates or vortices [3, 6].

However, strongly correlated many-body quantum phases only arise, when γ
exceeds unity. Equation 2.47 shows the possibilities to reach this regime: Either
one increases the mass m or the interaction strength g. While these options may
rather be called “impossibilities” in solid state physics, the remarkable techniques
and control of atomic physics renders them possible for ultracold quantum gases.
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Fig. 2.3 Real space density profiles of an interacting mixture of 87Rb and 40K in a three-
dimensional harmonic trap at four interactions. The mean-field calculation has been performed
assuming NB = 3 × 105 bosons and NF = 3 × 105 fermions and trap frequencies of ωFx =
ωFy = 2π × 40 Hz in the horizontal and ωFz = 2π × 200 Hz in the vertical direction, similar to
the experimental situation of Chap. 8. Black (gray) lines indicate bosonic (fermionic) profiles and
rxy = √

x2 + y2. Note the factor of ten between the units of nB and nF. Dashed lines show the
profiles at vanishing interactions. Strikingly, the fermionic cloud is much larger than the bosonic
cloud with the same atom number; the volume of the clouds differs by a factor of about twenty!
This is a remarkable manifestation of the different quantum statistics. a At attractive interspecies
interactions the atomic density accumulates in the center until the system undergoes a mean-
field collapse, when the interspecies attraction is increased beyond aBF ≈ −450 a0. Note that
aBF = −185 a0 approximately corresponds to the background scattering length between 87Rb and
40K (see Sect. 2.3.5). b In the case of repulsive interactions the fermions are pushed out from the
trap center. The bosonic cloud is compressed by the surrounding fermions and shows an increased
density in the trap center. When the interspecies repulsion is raised beyond aBF = +415 a0 the
central fermionic density vanishes. At this point the central bosonic density is enhanced by about
20 %

We discuss in the next two sections, how, on the one hand, an optical lattice potential
can be employed to change the effective mass of atoms, and how, on the other hand,
Feshbach resonances can serve as a direct control knob of the interaction strength g
via the scattering length as .

Those two approaches have led to wonderful studies in ultracold atom physics
within the last ten years. Seminal results have been the realization of the superfluid

http://dx.doi.org/{10.1007/978-3-642-33633-1_8}
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to Mott insulator transition in an optical lattice [16, 17] or the investigation of the
BEC-BCS crossover in quantum degenerate fermionic spin mixtures [18–21]. The
experiments in this thesis utilize both techniques simultaneously.

2.2 Optical Lattice Potentials

This section briefly reviews the theory of optical lattice potentials [7]. After an
introduction to optical dipole forces [22], we explain how optical standing waves
can be employed to create simple cubic lattice potentials for ultracold atoms. We
analyze, compare and model the landscape of realistic lattice potentials, in particular
focussing on the differences of using red- or blue-detuned laser light to create the
underlying optical standing waves. The section concludes with a discussion of the
band structure in simple cubic lattices [23].

2.2.1 Optical Dipole Potentials

A light field can act on neutral atoms both in a dissipative and a conservative way. A
dissipative force arises from the absorption and subsequent reemission of photons.
This process can transfer net momentum on the atoms and creates a force that is often
called radiation pressure. It is used for laser cooling and magneto-optical traps, where
temperatures down to 100 µK can be achieved with Doppler cooling techniques. Sub-
Doppler techniques even allow to reach the microkelvin regime, at least theoretically
[22, 24].5 A conservative force, the so-called optical dipole force, originates from
the interaction of a light field with the electric dipole moment that is induced in the
atom by the very same light field. This interaction results in a shift of the atomic
energy levels, the AC-Stark shift, that is proportional to the intensity of the field.

When neutral atoms are exposed to light generally both of the aforementioned
forces are present. However, we will show in this section that the conservative part
can play the dominating role, when the light field is far detuned from all atomic
resonances. The large detuning suppresses scattering of photons more strongly than
the interaction with the self-induced dipole. As the optical dipole potential is propor-
tional to the intensity of the light field, an appropriately engineered intensity distri-
bution allows for the creation of optical dipole traps [25] or optical lattice potentials
[7, 23]. Typical depths of optical dipole potentials reach several microkelvin. There-
fore, they are well suited to capture atoms that have been cooled by radiation pressure
in a first step.

5 The Doppler temperature is given by the energy scale defined by the natural linewidth � of the
transition that is used for cooling, TD = ��/(2kB). The minimal temperature that can principally
be reached with sub-Doppler techniques is set by the recoil energy, corresponding to the recoil
temperature TSD = (�k)2/(2mkB).
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Oscillator Model

We assume an atom to be exposed to a monochromatic light field E that oscillates at a
frequencyω. This induces an electric dipole moment proportional to the electric field
d(ω) = α(ω)E. The proportionality constant α(ω) is called the polarizability. It is a
function of the frequency ω and generally takes a complex value, i.e. it also contains
information on a phase shift between the electric field and the induced dipole. The
potential energy of the self-induced dipole is given by

Vdip∝ − 〈d · E〉∝ − Re[α(ω)] · I, (2.48)

where 〈. . .〉 denotes the temporal average over the fast oscillation of the light field.
This is the conservative dipole potential that is proportional to the intensity I =
ε0cE2/2, where the amplitude of the electric field is given by E = |E| and c is the
speed of light. The real part of the polarizability indicates that the in-phase component
of the oscillating dipole moment is responsible for the dipole force. Conversely, the
imaginary part of the polarizability denotes the out-of-phase component that gives
rise to the spontaneous scattering rate

�sc ∝ Im[α(ω)] · I. (2.49)

An expression for the polarizability can be derived using classical [26], semi-
classical or fully quantized theories [27–29]. However, it turns out that for a two-level
system in the limit of low saturation, also the quantum mechanical approaches yield
the polarizability

α(ω) = 6πεoc3 �/ω2
0

ω2
0 − ω2 − i(ω3/ω2

0)�
, (2.50)

which is conveniently derived for a classical damped oscillator [25]. Here,ω0 denotes
the optical transition frequency of the atom and � the damping rate associated with
the spontaneous decay rate of the excited level (corresponding to the line width of the
transition). The limit of low saturation, i.e. negligible population in the excited level,
is reached at far detuning6 � = ω−ω0, which is typically the case for dipole traps,
and also implies that �sc � � as we will see below. While the classical derivation
yields an accurate description for α(ω), this is not the case for the damping rate �.
In a semi-classical derivation it turns out that the damping rate is determined by the
dipole matrix element between the ground and excited state � ∝ |〈e|d|g〉|2.

Based on the above expressions, it is possible to derive the dipole potential and
the scattering rate in the limit of large detuning and negligible saturation:

Vdip(r) = −3πc2

2ω3

(
�

ω0 − ω
+ �

ω0 + ω

)
· I (r), (2.51)

6 In the picture of the Bloch sphere this corresponds to a Bloch vector that only oscillates close to
the ground state.
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(a) (b)

6w0

4zR

2zR

Fig. 2.4 The lower pictures schematically show the dipole potential in the focus of a round red-
(a) and blue-detuned (b) Gaussian laser beam. The envelope area of the upper images is defined
by the beam radius w(z). A red-detuned beam can act as a trap for ultracold atoms, while the blue
beam creates a repulsive potential

�sc(r) = 3πc2

2�ω3
0

(
ω

ω0

)3 (
�

ω0 − ω
+ �

ω0 + ω

)2

· I (r). (2.52)

For the case of large, but not too large detuning |�| � ω0, one may neglect the
terms proportional to 1/(ω0 +ω) corresponding to the often employed rotating wave
approximation [26, 28]. This yields the simplified formulas

Vdip(r) = 3πc2

2ω3
0

�

�
· I (r), (2.53)

�sc(r) = 3πc2

2�ω3
0

(
�

�

)2

· I (r). (2.54)

Those two expressions contain the physics of optical dipole potentials in a concise
form. We see that Vdip is proportional to I/�, while the scattering rate �sc scales as
I/�2. The sign of the detuning determines, whether the dipole potential is repulsive
(� > 0, blue detuning) or attractive (� < 0, red detuning). Furthermore, we note that
�sc is proportional to Vdip/�. This shows that inelastic scattering can be efficiently
suppressed by choosing a large detuning�. When optical dipole forces are employed
for ultracold atoms, it is crucial to minimize inelastic scattering; the recoil energy
of a single scattering process corresponds to a temperature of several 100 nK and
creates strong heating compared to the motional ground state energy of the atoms.
Therefore, the detuning should generally be chosen as large as possible within the
limits of available laser power to ensure a conservative potential.

Although being conceptually appealing, the approximate Eqs. 2.53 and 2.54 must
be taken with a grain of salt, when it comes to actual calculations. Considering the
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case of rubidium, the error originating from the rotating wave approximation for
the dipole potential depth amounts to 3 % for λ = 738 nm (used for the optical
lattice in this thesis) and even 12 % for λ = 1030 nm (used for the dipole trap in
this thesis). Therefore, in most cases the rotating wave approximation must not be
applied. Furthermore, for 40K and 87Rb, which are used in the experiment, the fine
structure splitting due to the spin-orbit coupling must be taken into account [25]
leading to the D1 and D2 line doublet, which is present in all alkali atoms. For
linearly polarized light, the resulting formula for the dipole potential reads

Vdip(r) = πc2

2

[
2�D2

ω3
D2

(
1

�D2

− 1

�D2 + 2ωD2

)

+ �D1

ω3
D1

(
1

�D1

− 1

�D1 + 2ωD1

)]
· I (r), (2.55)

where �x denotes the line width and �x = ω − ωx the detuning of the laser fre-
quency ω from the respective resonance frequency ωx of the x = D1, D2 line. The
corresponding data for 40K and 87Rb are provided in the Appendices A.1 and A.2.
For circularly polarized light, the dipole potential is also sensitive to the hyperfine
splitting and depends on the quantum numbers F and m F of Zeeman sublevels in
the ground state [25]. However, using linear polarization the optical dipole force
offers an elegant way to create identical potentials for different Zeeman sublevels
without differential shifts. This is particularly relevant for the experiments using spin
mixtures of 40K reported in Chap. 6.

Red-Detuned Dipole Trap

It is conceptually simple to create a trap for ultracold atoms based on the optical
dipole force discussed above. For red detuning the force is attractive and atoms are
drawn towards the intensity maximum. Therefore, the focus of a single red-detuned
Gaussian laser beam can be used to create a three-dimensional trapping potential
for atoms (see Fig. 2.4). The intensity distribution of an elliptical Gaussian beam
propagating along the z-axis, can be written as [30]

I (r) = 2P

πwx (z)wy(z)
e
− 2x2

w2
x (z)

− 2y2

w2
y (z) , (2.56)

where P is the total power of the beam, giving rise to a peak intensity I0 =
2P/(πw0xw0y). The beam radius wα(z) (α = x, y) denotes the distance from the
beam center at which the intensity has dropped by a factor 1/e2. It is given by

wα(z) = w0α

√

1 +
(

z

zRα

)2

, (2.57)

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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where w0α is the beam waist along the directions α = x, y and zRα = πw2
0α/λ

defines the Rayleigh length; λ is the wavelength of the laser light. The trapping
potential that is created by a Gaussian beam profile can be approximated in the
vicinity of the focus by

Vdip(r) ≈ −V0

[
1 − 2

(
x

w0x

)2

− 2

(
y

w0y

)2

− 1

2

(
z

zRx

)2

− 1

2

(
z

zRy

)2
]
.

(2.58)
This corresponds to a harmonic trap with radial and axial trap frequencies

ωx =
√

4V0

mw2
0x

, ωy =
√

4V0

mw2
0y

and ωz =
√

V0

m

(
1

z2
Rx

+ 1

z2
Ry

)
, (2.59)

where m denotes the atomic mass. For typical parameters the radial trap frequencies
ωx and ωy are about two orders of magnitude larger than the axial trap frequency ωz .
Therefore a Gaussian single beam trap is highly anisotropic and hard to handle
experimentally without additional axial confinement.

2.2.2 Optical Lattice Potentials

Optical lattice potentials for ultracold atoms are created by interfering counterprop-
agating Gaussian laser beams. Using one, two or three of such standing waves 1D,
2D and 3D optical lattices can be formed. For blue or red detuning the atoms are
either trapped in the intensity minima or maxima, respectively, which has a subtle
influence on the details of the global potential landscape.

1D Optical Lattice Potential

When a Gaussian beam with a wavelength λ is retroreflected into itself, an optical
standing wave with a periodicity of λ/2 forms (see Fig. 2.5). Such a standing wave
can be used as a one-dimensional (1D) optical lattice potential for atoms. Typically,
the axial extend of the atom cloud is much smaller than the Rayleigh length zR , such
that the axially dependent beam radius can be approximated by the constant beam
waist wz .7 The resulting periodic potential is given by

V1D (r) = Vz e
−2

r2
xy

w2
z cos2(kz) � Vz

(
1 − 2

r2
xy

w2
z

)
cos2(kz), (2.60)

7 From now on we use the convention that the index of the beam waist denotes the propagation
direction of the rotationally symmetric lattice beam, i.e.wz is the waist of a round beam propagating
in z-direction.
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Fig. 2.5 An optical standing wave formed by retroreflection of a Gaussian laser beam creates a
one-dimensional optical lattice potential. Generally, the electric field amplitude of the returning
beam is reduced by a factor, which we call the effective reflection coefficient ρ

where k = 2π/λ is the wavevector of the laser light, rxy = √x2 + y2 is the radial
coordinate and Vz is the depth of the optical lattice potential. We note that the depth of
the lattice Vz is four times larger compared to the potential depth of the bare Gaussian
beam without retroreflection. This enhancement is caused by constructive interfer-
ence, which becomes obvious, when the counterpropagating beams are viewed on
the level of electric fields. Usually, the depth of an optical lattice is given in units of
the recoil energy Erec = �

2k2/(2m). In the following, we also use the dimensionless
lattice depth sz = Vz/Erec.

In the above description of a 1D optical lattice, we have made the implicit assump-
tion that the retroreflected beam has the same electric field amplitude as the incoming
part. In experimental realizations, however, the returning part has passed through
several additional optical elements reducing the field amplitude. We account for this
by introducing an effective reflection coefficient ρz that quantifies the ratio of the
returning and the incoming electric field amplitudes at the position of the atoms. For
0 � ρz < 1 the standing wave is not fully modulated anymore and reads

V1D (r) = Vz

4
e
−2

r2
xy

w2
z

(
1 + ρ2

z + 2ρz cos
(
2kz
))

(2.61)

� Vz

4

(
1 − 2

r2
xy

w2
z

) (
1 + ρ2

z + 2ρz cos
(
2kz
))
. (2.62)

For perfect reflectivity (ρz = 1) Eq. 2.60 is recovered using cos(2kz)=2 cos2(kz)−1.

External Potential of a 1D Optical Lattice

The Gaussian beam shape and finite modulation of the standing wave give rise to
a transverse underlying potential in addition to the axial modulation of the optical
lattice. We aim at an effective description of the lattice potential according to

V1D (r) = V ′
z cos2(kz)+ 1

2
mω2

xyr2
xy . (2.63)
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Here, V ′
z = ρz Vz is the effective lattice depth and ωxy = ωx = ωy the transverse

trap frequency of a spherically symmetric beam. We distinguish two contributions
to the frequency ωxy :

First, we use Eq. 2.62 to derive the transverse curvature of the lattice potential
as it is felt by the atoms. It is crucial to distinguish red (Vz < 0) and blue detuning
(Vz > 0) of the laser light, because in the first case the atoms are trapped in the
intensity maxima for which cos(2kz) = 1, while in the second case the atoms sit
in the intensity minima described by cos(2kz) = −1. From this, we obtain the first
contribution to the transverse potential

ω2
pot,xy = − Vz

m

(1 + ρ2
z ± 2ρz)

w2
z

, (2.64)

where the upper (lower) sign denotes red (blue) detuning. For a positive (negative)
overall sign the potential is (anti)confining (see Fig. 2.6).

The second contribution is more subtle. Viewing a single lattice well as an har-
monic oscillator potential in the axial direction, that is approximating cos(2kz) har-
monically, we obtain for the trap frequency in a lattice well at the center of the beam
(rxy = 0)

ω2
lat,z = 2k2

m
|V ′

z |. (2.65)

Due to the Gaussian beam shape the absolute modulation depth of the standing wave
radially goes down according to the factor exp(−2r2

xy/w
2
z ). Consequently, the trap

frequency on a lattice well decreases like

ωlat,z(rxy) = ωlat,z e
− r2

xy

w2
z ≈ ωlat,z

(
1 − r2

xy

w2
z

)
(2.66)

in the transverse direction and so does the ground state energy E0(rxy) = �ωlat,z
(rxy)/2 of the local harmonic oscillator. This gives rise to an additional radial anticon-
finement that is independent of the sign of the laser detuning. Hence, the frequency
originating from the shift in the harmonic ground state energy reads

ω2
ho,xy = − 2

mw2
z

√
|V ′

z |Erec. (2.67)

Combining the two contributions and introducing the dimensionless effective
lattice depth s′

z = V ′
z/Erec, the transverse trap frequency of the external potential

reads

ω2
xy = − Erec

mw2
z

[(
1

ρz
+ ρz ± 2

)
s′

z − 2
√

s′
z

]
, (2.68)
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Fig. 2.6 External trapping potential for red- and blue-detuned lattices. The intensity distribution of
a 3D lattice with reduced reflectivity (ρ = 0.25) of the retro beam is shown as a density plot. Cuts
show the influence of the perpendicular beams on the lattice potential along the x axis. In the case
of blue detuning the cut is taken for I (x, a/2, a/2) (black) and I (x, 7a/2, a/2) (dotted), while for
red detuning the cut corresponds to I (x, 0, 0) (gray). The underlying confinement of the red lattice
is much stronger than the corresponding anticonfinement of the blue lattice
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Fig. 2.7 Comparison of the lattice potentials created by a red- (a) and blue-detuned (b) laser. In a
red lattice the potential minima are located at the intensity maxima as V (r) ∝ −I (r), while in a
blue lattice the potential minima are located at the intensity minima as V (r) ∝ I (r)

where the upper (lower) sign holds for red (blue) detuning. In typical experimental
setups the effective reflection coefficient does not exceed the range 0.8<ρz < 1. For
those values the prefactor 1/ρz + ρz ± 2 is very close to 4 (zero) for the case of red
(blue) detuning. Therefore, a red-detuned lattice has an underlying external potential
that consists of a dominant confining term (scaling as s′

z) and an anticonfining term
(scaling as

√
s′

z). In a blue-detuned lattice, however, both terms are anticonfining and
the
√

s′
z scaling dominates. This important result is confirmed by direct measurements

of the transverse external potential in a blue-detuned optical lattice presented in
Sect. 5.4 (Fig. 2.7).

http://dx.doi.org/10.1007/978-3-642-33633-1_5


2.2 Optical Lattice Potentials 37

3D Optical Lattice Potential

A simple cubic optical lattice potential can be created by crossing three optical stand-
ing waves orthogonally to each other. In order to suppress interference between the
three standing waves it is crucial to choose mutually orthogonal linear polarizations.
However, in the experiment slight deviations of the polarizations and resulting small
interferences are hard to avoid. Such interferences can be rendered harmless by
choosing laser frequencies of the beams that differ by some tens of MHz. This leads
to rapid oscillations of spurious potential corrugations and the atoms effectively feel
a smooth lattice potential due to time averaging. Therefore, we can assume inde-
pendent 1D optical lattices in x , y and z direction, which create a 3D optical lattice
potential of simple cubic type with a lattice constant of λ/2 and a one atom basis.
Using Eq. 2.61 the 3D optical lattice potential can be written as

V3D (r) = Vx

4
e
−2

r2
yz

w2
x

(
1 + ρ2

x + 2ρx cos
(
2kx
))

+ Vy

4
e
−2

r2
xz
w2

y

(
1 + ρ2

y + 2ρy cos
(
2ky
))

(2.69)

+ Vz

4
e
−2

r2
xy

w2
z

(
1 + ρ2

z + 2ρz cos
(
2kz
))
.

Here, Vα denote the potential depth, wα the waist and ρα the effective reflectivity of
the superimposed 1D standing waves (α = x, y, z). As above, red (blue) detuning
corresponds to Vα < 0 (Vα > 0).

External Potential of 3D Optical Lattices

It is convenient to approximate the 3D optical lattice potential in the center, for
distances much smaller than the beam waists, as a sum of a homogeneous periodic
modulation and an external harmonic potential according to

V3D (r) � V ′
x cos2(kx)+ V ′

y cos2(ky)+ V ′
z cos2(kz)+ 1

2
m
(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
.

(2.70)

Here, the effective lattice depths are denoted by V ′
α = ραVα and ωα are the effective

trap frequencies of the external harmonic potential in the directions α = x, y, z.
Using the above results for the 1D case, the squared trap frequencies are readily
derived and read

ω2
x = − Erec

m

⎡

⎣
(
1/ρy + ρy ± 2

)
s′

y − 2
√

s′
y

w2
y

+ (1/ρz + ρz ± 2) s′
z − 2

√
s′

z

w2
z

⎤

⎦ .

(2.71)
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The corresponding expressions for ω2
y and ω2

z are obtained by cyclic permutation of
the indices. Assuming an isotropic potential, for which the dimensionless effective
lattice depths s′

α = s′, the effective reflectivities ρα = ρ, the waists wα = w are
equal in all directions α = x, y, z and r2 = x2 + y2 + z2, the entire external potential
can be expressed by

V ext
3D (r) = −Erec

[(
1

ρ
+ ρ ± 2

)
s′ − 2

√
s′
]

r2

w2 (2.72)

This expression contains both the effects of finite effective reflectivity as well as
the anticonfinement scaling as

√
s′ that originates from the transverse change of the

ground state energy for each lattice beam. In the case of a blue-detuned 3D optical
lattice (lower sign), which is used in the experiments of this thesis, the later term is
dominating the external potential of the lattice.

2.2.3 Band Structure and Bloch States

In this section we derive the eigenstates of a single particle that moves in a periodic
potential. The corresponding eigenenergies form energy bands with a characteristic
structure depending on the symmetries and the depth of the lattice. Irrespective
whether an electron in an ionic crystal or an atom in an optical lattice is the matter
of interest, the resulting physics is identical. However, we want to emphasize two
caveats on the theory derived in this section:

• First, it refers to a homogeneous lattice system that extends to infinity. This is
a reasonable assumption for large solid state crystals, but in the case of finite-
sized optical lattices it must be handled with care. Deviations that arise in an
optical lattice with an underlying confining potential are numerically addressed
in Sect. 3.3.3.

• Second, what is derived in this section is a single-particle theory. Therefore, the
theory itself and all implications that are drawn from it are strictly speaking only
valid for single particles or noninteracting many-particle systems. Noninteracting
systems can be realized with ultracold atoms using spin polarized fermions, which
do not collide in the low energy limit, or by tuning the scattering length to zero
using a Feshbach resonance (see Sect. 2.3). However, essentially all experiments
of this thesis feature interacting particles.

Nevertheless, the single-particle band structure of homogeneous lattices is the basis
to understanding the physics of more involved interacting systems. Band structure in
conjunction with quantum statistics often allows to understand basic physical effects
in lattices, such as the formation of metallic or band insulator states for fermions
[31] (see Chap. 6).

The optical lattice used in the experiments has a three-dimensional simple cubic
structure. Therefore, the movement of the atoms can be considered independently for

http://dx.doi.org/10.1007/978-3-642-33633-1_3
http://dx.doi.org/10.1007/978-3-642-33633-1_6


2.2 Optical Lattice Potentials 39

the three coordinate axes x , y and z. It is sufficient to solve the Schrödinger equation
of the one-dimensional problem:

Ĥφ(n)q (x) = E (n)q φ(n)q (x) with Ĥ = p̂2

2m
+ V (x), (2.73)

where p̂ = −i�∂/∂x is the momentum operator and V (x) is assumed to be a homo-
geneous lattice potential with periodicity a = λ/2 = π/k, where λ is the wavelength
of the laser creating the lattice. According to Bloch’s theorem [31] each eigenstate
φ
(n)
q (x) of this Hamiltonian can be written as a product of a plane wave with wavevec-

tor q and a function u(n)q (x) = u(n)q (x + a) with the same periodicity as the lattice
potential,

φ(n)q (x) = eiqx/� u(n)q (x). (2.74)

We use this wavefunction as an ansatz and insert it into Eq. 2.73 to obtain an eigen-
value problem for u(n)q (x):

Ĥq u(n)q (x) =
(

1

2m

(
p̂ + q

)2 + V (x)

)
u(n)q (x) = E (n)q u(n)q (x). (2.75)

At this point we can use the fact that both the potential V (x) and the functions u(n)q (x)
have the same periodicity. They can be expanded in discrete Fourier sums consisting
of plane waves with wavevector 2k and the corresponding higher harmonics:

V (x) =
∑

r

Vr ei2kr x and u(n)q (x) =
∑

s

c(n,q)s ei2ksx , (2.76)

where the indices r, s run over all integer numbers. Based on the expansion of u(n)q (x)

it becomes apparent, that the Bloch function φ(n)q (x) can be constructed by a super-
position of plane waves with wavevectors q/� + 2ks, where 2ks are the reciprocal
lattice vectors [31]. This implies, that the quasi-momenta q that give rise to distinct
Bloch functions are restricted to the interval [−�k, �k]. This interval is called the
first Brillouin zone. For each value of q we can expect an infinite number of discrete
energy levels E (n)q that are conveniently labeled by the positive integer index n. It
will become clear below, why n is called the band index.

Inserting the Fourier sums into Eq. 2.75, we obtain for the kinetic energy

1

2m

(
p̂ + q

)2
u(n)q (x) =

∑

s

(2�ks + q)2

2m
ei2ksx c(n,q)s (2.77)

and the potential energy
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V (x) u(n)q (x) =
∑

r

∑

s′
Vr ei2k(r+s′)kx cn,q

s′ =
∑

r

∑

s

Vr eiksx c(n,q)s−r . (2.78)

The functional form of an optical lattice potential is known to be sinusoidal, such
that the corresponding Fourier expansion is simply given by

V (x) = Vx cos2(kx) = Vx

4

(
ei2kx + e−i2kx + 2

)
(2.79)

with the only non-vanishing Fourier coefficients being V0 = Vx/2 and V±1 = Vx/4.
This allows to write the eigenvalue problem of Eq. 2.75 in matrix form

∑

s′
Hss′c(n,q)s′ = E (n)q c(n,q)s , (2.80)

where Hss′ is the matrix of the Hamiltonian Ĥq calculated with respect to the basis
of plane waves ei2ksx . The entries of the matrix are given by

Hss′ =

⎧
⎪⎨

⎪⎩

(
2s + q

�k

)2
Erec + Vx/2 if |s − s′| = 0,

Vx/4 if |s − s′| = 1,

0 else.

(2.81)

Here it becomes apparent, that the recoil energy Erec = �
2k2/(2m) is the natural

unit for the lattice depth Vx .
The Hamiltonian can be numerically diagonalized for a given quasi-momentum

q yielding the eigenenergies E (n)q and the eigenvectors c(n,q) = (c(n,q)s ) that define
the Bloch functions via Eqs. 2.76 and 2.74. The matrix entries for large indices
|s| correspond to high-energy contributions (see Eq. 2.78) and the coefficients c(n,q)s
become very small in the lowest bands. Therefore, it is sufficient to include the matrix
entries up to a cut-off index |s| ≤ smax. For typical lattice depths up to 50 Erec it is
sufficient to keep the entries with |s| ≤ 7. In principle, the numerical diagonalization
within the limited Hilbert space yields results for the first 2smax + 1 bands, but the
outcome is most accurate for the lowest energy bands.

The results of band structure calculations for a one-dimensional sinusoidal lattice
at several depths are displayed in Fig. 2.8. For very low lattice depth the band structure
does not show band gaps and corresponds to the kinetic energy of a free particle,
where the dispersion parabola is reduced to the first Brillouin zone. For increasing
lattice depths band gaps open up and the band width decreases exponentially in
particular for the lowest lying bands. We observe that the energies E (n)q for a fixed
index n are a continuous function of q being bounded from below and above, which
motivates the name band index for n. In very deep lattices, the individual lattice
wells become more and more independent and the low energy physics can be well
described in the harmonic approximation. In this case, the gap between the lowest
bands is given by the energy spacing of the on-site harmonic oscillator �ωlat,x .
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Fig. 2.8 Band structure of a one-dimensional optical lattice. The eigenenergies E (n)q of Bloch states

φ
(n)
q at quasi-momenta q are displayed for the lowest bands n at several lattice depths ranging from

0 to 40 Erec. The lattice depths Vx are shown as dashed lines. Dotted lines indicate the zero point
energy �ωlat,x/2, when single lattice wells are treated in harmonic approximation. For deep lattices
the lowest band becomes flat and the band gap is well approximated by the level spacing of the
harmonic oscillator �ωlat,x

However, we note that even in deep lattices the higher bands with energies larger
than the depth of the lattice (dashed lines in Fig. 2.8) remain wide and still closely
resemble the dispersion relation of a free particle. Here, the main effect of the lattice
can be captured by assigning a larger effective mass meff > m to the particle, which
leads to a slower movement through the lattice potential. Generally, the effective
mass at quasi-momentum q0 and band index n is given by

m(n)
eff (q0) = �

2

(
∂2 E (n)q

∂q2

∣∣∣∣
q0

)−1

. (2.82)
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Fig. 2.9 Exemplary Bloch wavefunctions φ(n)q of a one-dimensional 8 Erec lattice. The upper
(lower) panels show the probability amplitudes (probability densities) in the first and second band
for the quasi-momenta q = 0 (solid lines) and q = ±�k (dashed lines). The periodicity of the
lattice potential is indicated by the gray shading

Similarly, the group velocity of a wavepacket in the Bloch state φ(n)q0 is given by the
first derivative of the dispersion relation [23]

v(n)gr (q0) = 1

�

∂E (n)q

∂q

∣∣∣∣
q0

. (2.83)

Examples for the Bloch wavefunctions φ(n)q (x), which are obtained in a band
structure calculation, are shown in Fig. 2.9. Being composed of a discrete sum of
plane waves, the Bloch functions are delocalized and extend over the complete,
infinitely large lattice. In the lowest band (n = 1), the Bloch state in the center of the
Brillouin zone (q = 0) is symmetric, while at the Brillouin zone edges (q = ±�k) the
wavefunction is antisymmetric. The symmetries alternate for higher bands as do the
curvatures of the energy bands. The wavefunctions with the highest energy within a
certain band are antisymmetric. Furthermore, Fig. 2.9 shows that the wavefunctions
of the second band feature an enhanced probability of finding the particle within the
potential barrier separating the lattice sites.

The Bloch states of the three-dimensional simple cubic lattice can be constructed
as product wavefunctions of the one-dimensional Bloch states for each axis x , y
and z, because the Hamiltonian is fully separable. The energy of the product state
is given by the sum of the eigenenergies of the three individual Bloch states. In a
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Fig. 2.10 Bandwidths of the first and second Bloch band as a function of lattice depth in one (a)
and three (b) dimensions. While the bands are fully separated in the one-dimensional case, in the
three-dimensional case the band gap only starts to open at about 2.24 Erec. The lattice depth is
assumed to be identical for each lattice axis

one-dimensional lattice the first and second Bloch band are fully separated for any
nonvanishing lattice depth (see Fig. 2.10a). However, in three dimensions the first
excited band corresponds to product wavefunctions of two (n = 1) and one (n = 2)
Bloch states. For low lattice depths and certain quasi-momenta q = (qx , qy, qz),
those can have a lower total energy than wavefunctions of the lowest band consisting
of a product of three (n = 1) Bloch states. For a three-dimensional lattice a band
gap between the lowest lattice bands starts to open for depths larger than about 2.24
Erec (see Fig. 2.10b).

All experiments reported in this thesis start by adiabatically loading an ultracold
quantum gas or quantum gas mixture into a three-dimensional optical lattice. The
lattice depths of all axes are ramped up slowly in order to ensure, that the many-body
system remains in its ground state and, in particular, stays in the first lattice band. For
the case of a Bose-Einstein condensate this last requirement is not very critical as the
atoms dominantly accumulate in the q = 0 Bloch state of the first band, which is the
lowest energy state and well separated from the second band even for low lattices.
However, for fermionic atoms a Fermi sea develops, in which the Bloch states of the
first Brillouin zone are filled from bottom up (see Sect. 2.1). Depending on the filling
of the Brillouin zone, which is determined by the system size, higher lying Bloch
states may be populated, whose energy is degenerate with states of the second band.
This situation bears the risk of populating the second band during lattice loading. In
Chap. 6 an experimental solution to this problem is presented.

2.2.4 Wannier Basis

Instead of working within the basis of fully delocalized Bloch wavefunctions, it
is often more convenient to use a basis set of wavefunctions that are localized at
individual lattice sites. Particularly, in the limit of deep lattices the individual sites

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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together with the schematic lattice potential (gray shading). For deeper lattices, the Wannier func-
tions are strongly localized. Their overlap with neighboring lattice sites is reduced, which corre-
sponds to a suppression of tunnel coupling

are more and more decoupled from each other and the motion of atoms tends to be
restricted to single wells. If the lattice is occupied by many particles, interactions
may further enhance localization (see Chap. 3) (Fig. 2.11).

The Wannier functions form a basis set of maximally localized wavefunctions
composed by coherent superpositions of Bloch states. The Wannier function of a
localized particle at the j th lattice site in the nth Bloch band is defined by [31]

w(n)(x − x j ) = 1√N
∑

q

e−iqx jφ(n)q (x). (2.84)

Here, the phase factor exp(−iqx j ) compensates the factor exp(iqx), which appears
in the definition of the Bloch states 2.74, at the coordinate x j , inducing constructive

superposition of the states φ(n)q (x) at the corresponding lattice site. The sum runs
over the quasi-momenta q within the first Brillouin zone taking discrete values, if
the lattice has a finite size. Assuming normalized Bloch states in a system with M
lattice sites, there are M different quasi-momenta q and the normalization is given
by N = M .

Because both the Bloch and Wannier wavefunctions form a basis, also the reverse
transformation is possible

φ(n)q (x) = 1√N
∑

j

eiqx jw(n)(x − x j ), (2.85)

where the summation is performed over all M lattice sites. This expression shows
that the quasi-momentum q determines the phase relation between the localized
wavefunctions on the individual lattice sites.

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Owing to the decoupling of the spatial directions in a simple cubic lattice, the
three-dimensional Wannier function for a particle in the nth band at lattice site r j =
(x j , y j , z j ) is given by the product

w(n)(r − r j ) = w(n)(x − x j ) · w(n)(y − y j ) · w(n)(z − z j ) (2.86)

of the nth band Wannier functions w(n)(α − α j ) of the individual one-dimensional
lattices (α = x, y, z). When the first Bloch band is concerned, we usually drop the
band index of the Wannier function and simply write w(r − r j ).

2.3 Feshbach Resonances

Feshbach resonances allow to control the interactions between atoms by an external
magnetic field and have become one of the most important tools in ultracold atom
experiments [32]. In this section we will briefly summarize the basics on interatomic
interactions and Feshbach resonances as far as they are relevant to this thesis. The
discussion also includes the creation of loosely bound Feshbach molecules and the
effects of a tight external confinement on the collision physics of two interacting
particles.

2.3.1 Elastic Scattering and Low Energy Collisions

As in classical mechanics, scattering of two particles in quantum mechanics is
described in a coordinate system, in which the center of mass of the two particles is
at rest. By doing this the problem reduces to an effective single-particle Hamiltonian
in terms of the coordinate r = r2 − r1, which is the relative distance between the
two particles at positions r1 and r2, and the reduced mass μ = m1m2/(m1 + m2). In
the absence of scattering the solution would simply be a plane wave eikz , which can
be chosen to propagate along the z-direction without loss of generality. k denotes
the momentum of the effective particle with the reduced mass μ. When a potential
V (r), which we assume to be spherically symmetric for simplicity (r = |r|), is intro-
duced, there will be a finite probability for the particle to be scattered. The resulting
asymptotic wavefunction at large distances has the from

ψ(r) ∝ eikz + f (θ)
eikr

r
, (2.87)

consisting of the incoming wave eikz and an outgoing spherical wave f (θ)eikr/r ,
where the scattering amplitude f (θ) is a function of the scattering angle θ (and
generally also of the momentum k). Based on this wavefunction the incoming and
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the outgoing probability flux can be calculated, which yields for the differential cross
section

dσ

d�
= | f (θ)|2. (2.88)

Since we have assumed a spherically symmetric potential, the wavefunctionψ(r)
can be expanded in terms of spherical waves with angular momentum l and vanishing
projection on the z-axis (m = 0). In this basis the scattering amplitude takes the form
[9, 33]

f (θ) =
∞∑

l=0

(2l + 1)

(
e2iδl − 1

2ik

)
Pl(cos θ), (2.89)

where Pl(cos θ) are the Legendre polynomials. The strength of this formulation lies
in the fact, that the whole scattering process is captured by the parameters δl , which
simply denote the spatial phase shift that is added to each spherical wave with angular
momentum l due to the scattering process. Using the optical theorem we can directly
compute the total scattering cross section [33]

σtot = 4π

k
Im[ f (θ = 0)] = 4π

k2

∞∑

l=0

(2l + 1) sin2 δl . (2.90)

It can be shown, that the phase shifts scale as a function of the collisional momen-
tum k according to δl ∝ k2l+1. This means the phase shifts for partial waves l �= 0
essentially vanish for collisions with very low momentum—and so do their contri-
butions to the total scattering cross section. More pictorially, at low momenta, i.e.
low collision energy Ekin = �

2k2/2μ, the effective particle is not able to pene-
trate the centrifugal barrier [33]. This is the second term of the effective potential
Veff(r) = V (r) + �

2l(l + 1)/(2mr) that arises when the scattering problem is for-
mulated in spherical coordinates. Hence, the scattering amplitude reduces to

f (θ) ≈ fs = e2iδ0 − 1

2ik
= 1

k cot δ0 − ik
, (2.91)

which is even independent of the scattering angle θ as P0(cos θ) = 1. It is possible
to argue that k cot δ0 must be an even function of k [4, 33] and correspondingly one
can introduce the expansion

k cot δ0 ≈ − 1

as
+ 1

2
reffk

2 (2.92)

for low momenta, where as denotes the s-wave scattering length and reff the effective
range of the scattering potential. The effective range is typically of the order of the
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van der Waals length reff ≈ (μC6/�
2)1/4/2.8 For the case k|as | � 1 and kreff < 1

the scattering amplitude becomes independent of the momentum k reading fs = −as

and leads to a total cross section for s-wave collisions of

σtot,s ≈ 4πa2
s , (2.93)

which equals the scattering cross section of a hard sphere with a radius as [33].

Identical Particles

For now we have derived the theory of collisions based on the assumption of dis-
tinguishable particles. However, indistinguishability of quantum particles and their
quantum statistics have a profound impact on scattering. On the one hand, the scatter-
ing wavefunction ψ(r)must be spatially symmetric for two identical bosons. There-
fore, only partial waves with even l enter and they enter twice due to symmetrization.
The s-wave scattering cross section therefore amounts to σtot,s = 8πas . On the other
hand, the spatial wavefunction for two identical fermions must be antisymmetric as
the spin wavefunction is necessarily symmetric. In this case only partial waves with
odd l contribute and s-wave collisions of identical fermions are forbidden. There-
fore, spin polarized ultracold Fermi gases show essentially no interactions, because
scattering of higher partial waves is energetically suppressed.

Pseudo-Potentials

Assuming that the collisional momentum is so low, that the corresponding de Broglie
wavelength λdB = 2π/k is much larger than the range of the interatomic potential,
the details of the potential do not matter for the scattering process. In this case it is
convenient to replace the complicated full interatomic potential by a much simpler
pseudo-potential that nevertheless reproduces the s-wave scattering correctly. This
purpose is served by a the simple contact potential operator

V (r) = 2π�
2as

μ
δ(r). (2.94)

Using plane waves it is easily shown, that this expression reproduces the s-wave
scattering amplitude fs = −as in first Born approximation [33]. However, for prac-
tical use in three dimensions it often must be regularized to avoid 1/r divergences
of wavefunctions when r → 0. This is typically done by replacing the delta function
with δ(r) ∂

∂r r [1, 35].

8 References [32, 34] quote van der Waals lengths of 64.90 a0 for 40K and 82.58 a0 for 87Rb, where
a0 denotes the Bohr radius.
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Fig. 2.12 Scattering resonance. We assume two colliding particles with an attractive interparticle
box potential V (r) with a finite range R (gray solid lines). a Due to the attractive potential with a
depth V1 the radial wavefunction u(r) ∝ r − as has a stronger curvature inside the range R than
outside. The intercept as of the outside wavefunction with the abscissa corresponds to the scattering
length as < 0. When the potential is deep enough that a bound state almost enters, the scattering
length diverges as → −∞. b When the potential is deeper (V2 < V1) and a real, very loosely
bound state has just entered, the bend of the wavefunction becomes stronger and gives rise to a very
large positive scattering length as . Thus, by tuning the position of a bound state, it can be possible
to vary the scattering length over a huge range

2.3.2 Feshbach Resonances

The phenomenon of resonance scattering is treated in many textbooks [9, 33]. Assum-
ing low collision momenta and modeling the attractive scattering potential by a box,
it can be shown that the s-wave scattering length diverges and changes sign (from
negative to positive) when the potential is deepened and a new bound state enters (see
Fig. 2.12). Practically this means, that it would be possible to tune the interactions
between particles when there was a knob that allowed to tune a bound state into
resonance with the energy of the colliding particles.

For atoms it is not directly possible to tune the depth of the interatomic potential;
however, Feshbach resonances offer an ingenious way to bring a bound state into
resonance with colliding atoms simply by changing an external magnetic field (see
Fig. 2.13a). Let us assume that two (distinguishable) atoms in the hyperfine states
|F1,m F1〉 and |F2,m F2〉 collide with a very low relative kinetic energy in the entrance
channel (also called: open channel). The atoms can perform s-wave scattering into
scattering channels that conserve M = m F1 + m F2 [32]. However, those scattering
channels typically have a different magnetic moment than the open channel as they
correspond to a different spin configuration. By varying the external magnetic field,
it can thus be possible to tune a bound state of one of the scattering channels (also
called: closed channel) into resonance with the open channel. If there was no cou-
pling between the open and the closed channel, the atoms would just acquire a phase
shift corresponding to the open potential. They would scatter off each other with-
out resonance effects. However, the spin configurations of the open and the closed
channels are coupled, because the hyperfine interaction of the two atom system is
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neither diagonal in the total electronic spin Ŝ = Ŝ1 + Ŝ2 nor in the total nuclear spin
Î = Î1 + Î2 [4, 32].9

This coupling leads to a coherent superposition of the unbound open channel and
the bound closed channel wavefunction during the collision. When the admixture
of the bound state is relatively small such that the region of the avoided crossing is
large (see Fig. 2.13b), the Feshbach resonance is commonly classified as broad or
open-channel dominated. In turn, when the admixture of the bound state is large,
the extend of the avoided crossing is small and the resonance is called narrow or
closed-channel dominated.

Generally, the divergent behavior of the s-wave scattering length as at a Feshbach
resonance can be efficiently parametrized as a function of the magnetic field B by
the expression

as(B) = aBG

(
1 − �

B − B0

)
. (2.95)

Here B0 denotes the position of the resonance and � the width, that is the distance
between B0 and the magnetic field, at which the scattering length vanishes (see
Fig. 2.13b). The background scattering length aBG is the scattering length far away
from the resonance that is determined by the last bound state or first virtual bound
state of the open channel molecular potential.

2.3.3 Creation of Molecules

In the proximity of the Feshbach resonance, on the side of large and positive scattering
lengths, a dressed bound state develops with a strong admixture of the open channel
wavefunction. Two atoms occupying this bound dressed state can be viewed as a
molecule that, in the region of the avoided crossing close to the resonance, has the
binding energy

Eb ≈ �
2

2μa2
s
, (2.96)

which corresponds to a quadratic dependence on (B − B0). The molecules in this
region are often called Feshbach molecules and are extremely weakly bound. Their
molecular wavefunction extends to a very large size on the order of the scattering
length as . When the magnetic field is tuned further below the resonance the dressed
molecule asymptotically turns into the purely bound state of the bare closed channel
potential. In this regime the binding energy tunes linearly as a function of the magnetic
field following Eb = δμ · B, where δμ is the difference in the magnetic moment of
the open and the closed channel.

9 In ultracold atom experiments typically alkali atoms are used in their ground states with vanishing
orbital angular momentum L̂ .
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Fig. 2.13 Feshbach resonance. a Two atoms that perform a low energy s-wave collision in the
open channel (solid line) can couple to the bound state of a closed channel potential (dotted line).
The bound state can be tuned into resonance using an external magnetic field owing to the different
magnetic moments of the open and closed channel spin configurations (inset). b The Feshbach
resonance gives rise to a divergence of the scattering length as (dashed line). The width � of the
resonance is the distance between the resonance position and the zero crossing of as . The energy
of the bare molecular state in the close channel (dotted line) depends linearly on the magnetic field
and δμ is the difference of the magnetic moments in the open and closed channel. The binding
energy Eb of the dressed molecular state (solid line) flattens upon approaching the resonance due
to mixing of the open and the closed channel in the region of the avoided crossing. The position of
the resonance is shifted by δ with respect to the zero crossing of the bare molecular state energy

Feshbach resonances allow to create molecules from free atoms by adiabatically
sweeping the magnetic field across the resonance starting from the attractive side
[4, 18, 36]. If the Landau-Zener type sweep is performed slowly with respect to the
coupling between the open and closed channel and if the temperature of the atomic
cloud is low enough, the experimentally achieved conversion efficiencies can reach
more than 90 % [37, 38]. Alternatively, the molecular state can be populated using
radio-frequency (RF) techniques, which are less efficient, but allow to measure the
molecular binding energy [18, 39–41]. In the special case of 6Li a cloud of Feshbach
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molecules can simply be created by evaporatively cooling the sample on the as > 0
side of the resonance [38].

When a Feshbach resonance is used to create molecules of two distinct fermionic
species, such as two spin states in 6Li or 40K, it has been observed that the lifetime
of the molecules is particularly long close to the resonance position. In this regime,
the molecule is well approximated by two individual atoms, such that three-body
collisions are strongly suppressed by Pauli’s principle prohibiting s-wave collisions
of two identical fermions [42]. Further away from the resonance, the molecule is more
closely bound and it becomes less stable against three-body collisions, because here
the bosonic character, which favors collisions, tends to dominate over the fermionic
quantum statistics of the constituent atoms. Fermionic molecules can be created by
using a heteronuclear mixture of fermionic and bosonic species, for example 40K and
87Rb or 6Li and 23Na [43]. In contrast to bosonic molecules, those are particularly
long-lived far away from the resonance, where close binding lets the molecules
clearly show fermionic character and collisions among them are prohibited by Pauli’s
principle. In turn, close to the resonance the lifetime is expected to be very short.
The use of an optical lattice can help to increase the lifetime of Feshbach molecules
considerably. Isolating atom pairs on individual lattice sites and transferring them
into the molecular state, helps to strongly suppress three-body collisions [39].

Feshbach resonances have become a very important tool in experimental ultra-
cold atom physics. In the context of spin mixtures of interacting fermions, they have
enabled the fruitful investigation of the so-called BEC-BCS crossover. The ability to
tune the interactions between the spins has dramatic consequences: While for van-
ishing interactions the two spin states populate independent Fermi seas, they pair up
in momentum space for attractive interactions forming a superfluid of Cooper pairs
[19, 20]. These pairs in momentum space smoothly connect to the molecular state
on the repulsive side of the resonance, where a BEC of molecules forms [44–46].
The superfluidity in the crossover region has been demonstrated by the observation
of vortices [21]. Another productive branch of experimental efforts uses Feshbach
resonances to create ultracold ground state molecules. Here, the weakly bound Fes-
hbach molecules form the starting point, from which the rovibrational ground state
is typically addressed using a STIRAP pulse sequence [47–51].

In the experiments presented of this thesis, the formation of molecules by a
Feshbach sweep is used to detect double occupation of lattice sites in an interacting
fermionic spin mixture of 40K atoms (see Chap. 6). Furthermore, RF spectroscopy
on KRb molecules has been performed in our experimental setup. These efforts are
reported in the PhD thesis of Thorsten Best [52].

2.3.4 Two Interacting Atoms in a Harmonic Trap

For the creation of molecules in an optical lattice, it is important to understand the
physics of two interacting atoms on an individual lattice site. If the on-site potential
is approximated by a harmonic oscillator and the atoms are assumed to interact

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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through a regularized contact interaction, the problem can be solved analytically [35].
As shown in Fig. 2.14 the energy levels of the bare 3D harmonic oscillator, which
correspond to the noninteracting case (as = 0), get mixed when interactions set in.
The contact interaction between the atoms leads to the emergence of a bound state,
whose binding energy diverges towards negative infinity at as = 0 (see Fig. 2.14a).
The application of this level structure to the case of the B0 = 202.1 G Feshbach
resonance of 40K is shown in Fig. 2.14b. In contrast to the free space situation, the
bound molecular state is not entered exactly on resonance, but already at higher
magnetic fields starting at B0 + �, where the scattering length vanishes [36, 53].
The so-called confinement-induced molecules [39] that exist between B0 and B0 +�
dissociate smoothly when the lattice is adiabatically ramped down.

The energy levels of atom pairs on the sites of an optical lattice have been experi-
mentally investigated using RF spectroscopy [39, 40]. Additionally, Fig. 2.14b shows
that the first and the second band are smoothly connected, when the magnetic field
is ramped from below to above the resonance, which has also been observed exper-
imentally [54].

2.3.5 Feshbach Resonances for Rubidium and Potassium

The Fermi-Fermi Resonance

In Chap. 6 many-body quantum phases of fermionic spin mixtures in a three-
dimensional optical lattice are investigated using 40K in the hyperfine sublevels
|F,m F 〉 = |9/2,−9/2〉 and |9/2,−7/2〉. For this combination of spins a broad
(open-channel dominated) s-wave Feshbach resonance is available at B0 = 202.1 G
to tune interspecies interactions and perform molecule conversion [18, 55–58]. We
rely on the parametrization aBG = 174 a0 and � = 7.8 ± 0.06 G given in Ref. [19]
(see Fig. 2.15). A recent measurement of the zero crossing of the scattering length in
our group suggests an updated width of� = 7.0±0.2 G [59]. Below the s-wave res-
onance, a p-wave resonance among the |9/2,−7/2〉 spins is located at about 199 G
[55, 56]. Unfortunately, the presence of this resonance hinders a close approach of the
s-wave resonance on the repulsive side of interactions due to increased losses. The
working point at about 175 G corresponds to a scattering length of about aFF = 225
a0 and is the strongest repulsion that can safely be addressed for our experimental
parameters.

An exemplary molecule conversion and dissociation measurement performed in
a harmonically trapped sample is shown in Fig. 2.16. Such measurements allow for
a precise determination of the resonance position. Additionally, they can serve as a
thermometer as the molecule conversion efficiency has been shown to be a sensitive
function of the initial dimensionless temperature T/TF of the spin mixture. The
conservative value of 80 % conversion efficiency suggests T/TF < 0.15 according
to reference [37].

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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Fig. 2.14 Two interacting atoms in a harmonic oscillator potential. a The general structure of the
energy levels obtained in an analytical calculation according to reference [35] is shown as a function
of the scattering length as in units of the harmonic oscillator length �0 = √

�/μω. For vanishing
interactions (as = 0) the energy is given by E = �ω(2n+3/2), while for infinitely strong attraction
or repulsion (as → ±∞) the energies are shifted by �ω yielding E = �ω(2n +1/2). b Application
of the analytical result to a 40K |9/2,−9/2〉 + |9/2,−7/2〉 spin mixture in a 20 Erec lattice in the
vicinity of the Feshbach resonance at B0 = 202.1 G (see Sect. 2.3.5)

The Bose-Fermi Resonance

In Chaps. 8 and 9 experiments with interacting Bose-Fermi mixtures are reported.
In those investigations we tune the interspecies scattering length with the s-wave
Feshbach resonance at B0 = 546.75(6)G between 40K and 87Rb in the absolute

http://dx.doi.org/10.1007/978-3-642-33633-1_8
http://dx.doi.org/10.1007/978-3-642-33633-1_9
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Fig. 2.16 In a first step, molecules consisting of a |9/2,−9/2〉 and a |9/2,−7/2〉 atom are created
by slowly ramping the magnetic field to B = 201 G below the Feshbach resonance. During time-
of-flight expansion the magnetic field is again ramped up and the molecules dissociate when the
resonance is crossed (see inset). The number of atoms (normalized to the maximal number of
recovered atoms) is shown as a function of the final magnetic field. The solid line is a fit to the data
using an error function. The difference of the highest and lowest normalized atom number yields a
lower bound to the molecule conversion efficiency, here about 80 %

ground state hyperfine sublevels |9/2,−9/2〉 and |1,+1〉, respectively (see Fig. 2.17).
The resonance is the most useable of many, mostly extremely narrow ones between
40K and 87Rb. It has been characterized in several references [60–64], but the most
accurate parametrization has recently been reported by Simoni et al. [65] quoting
a background scattering length of aBG = −189 a0 and a width of � = −3.1 G.

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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Fig. 2.17 Interspecies Fesh-
bach resonance between the
absolute ground state hyper-
fine sublevels |9/2,−9/2〉
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Based on the experimental data in Chap. 9, we have been able to precisely extract
the magnetic field B0 +�, at which the interspecies interactions vanish, confirming
the parametrization on a 0.1 G level.
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Chapter 3
Hubbard Models for Bosons and Fermions

The concepts of the Hubbard model have largely shaped the way we think about
atoms in optical lattices. Originally, the Hubbard model has been developed in the-
oretical condensed matter physics [1]. It constitutes the simplest model system that
describes the competition between the kinetic energy and interactions of electrons in
the lattice potential of an ionic crystal [2]. This competition gives rise to a quantum
phase transition from a metallic state of delocalized atoms to an insulating state—the
famous Mott insulator transition. Nevertheless, many ground state properties of the
Hubbard model are yet unknown even after decades of theoretical research.

In 1998 Jaksch et al. [3] have proposed the implementation of the Bose-Hubbard
model [4] with ultracold bosonic atoms in an optical lattice. The proposal has been
realized in a seminal experiment by Greiner et al. [5] that lead to the observation
of the superfluid to Mott insulator transition. Since then ultracold atoms in optical
lattices are regarded as an near ideal experimental implementation of the Hubbard
model, much cleaner, much more controllable and much more tractable than any
real strongly correlated solid state system. The remarkable correspondence between
a theoretical model system and its experimental realization has fueled the idea to use
ultracold atoms in optical lattices as a quantum simulator [6], operating to find the
ground states of complex theoretical model systems.

In the first section I derive the Hubbard Hamiltonian departing from the full many-
body Hamiltonian of interacting particles in a periodic potential. The derivation is
presented in a general form that is valid both for bosonic and fermionic atoms.
Then, the implementation of the Bose-Hubbard model using interacting bosonic
atoms in a simple cubic optical lattice is presented, including a brief discussion of
the superfluid to Mott insulator transition [3, 5, 7]. The third section introduces
the Fermi-Hubbard model that has originally been developed in condensed matter
physics to describe electrons in real materials, which form a many-body system of
spin one-half fermions.1 It can be experimentally realized with two-component spin

1 Originally, this model is called the Hubbard model. In this thesis we will mostly refer to it as the
Fermi-Hubbard model for better distinction from the bosonic version, the Bose-Hubbard model.
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mixtures of fermionic atoms. The phases of the Fermi-Hubbard model at half-filling
are discussed with a special emphasis on the ground state phases at strong repulsion.
Here the Fermi-Hubbard model reduces to a quantum Heisenberg model, which
favors antiferromagnetic ordering of spins. The chapter concludes with a discussion
of the band structure and single-particle wavefunctions in a harmonically confined
lattice system, as it is typical in experimental realizations. Based on this geometry,
the formation of a band insulator of noninteracting fermions is explained.

3.1 Derivation of the Hubbard Model

In order to assess under which conditions ultracold atoms in optical lattices form
a good quantum simulator of the Hubbard model, it is crucial to understand the
approximations that are applied in its derivation. In fact, care must be taken to operate
experimental optical lattice setups within the bounds of the Hubbard model. We will
discuss in Chaps. 7–9 that effects beyond the Hubbard model can play an important
role in optical lattice experiments.

The derivation of the single-band Hubbard model [1] starts with the general many-
body Hamiltonian of a d-dimensional lattice system of bosonic or fermionic atoms.
The spin state of the atoms is indicated by the index σ , which, for example, represents
the spin up and spin down states in a fermionic spin mixture. The atoms are exposed
to a periodic lattice potential Vlat(r)with an additional underlying trapping potential
Vtrap(r). Within this section no specific assumptions about the dimensionality, the
exact lattice geometry or the underlying potential are made. The interactions between
atom pairs are parametrized by a contact interaction as shown in Eq. 2.94.

Using the field operator formalism introduced in Sect. 2.1.1, the full Hamiltonian
Ĥ = Ĥ0 + Ĥint reads

Ĥ0 =
∑

σ

∫
d3r ψ̂†

σ (r)
[
− �

2

2m
� + Vlat(r)+ Vtrap(r)

]
ψ̂σ (r), (3.1)

Ĥint = g

2

∑

σσ ′

∫
d3r ψ̂†

σ (r)ψ̂
†
σ ′(r)ψ̂σ ′(r)ψ̂σ (r), (3.2)

where the interaction strength is defined by g = 4π�
2as/m with the s-wave scat-

tering length as . The field operators ψ̂σ (r) and ψ̂†
σ (r) describe the annihilation and

creation of an atom with spin σ at position r, respectively. In quantum systems of
noninteracting particles there is an intrinsic tendency for delocalization to minimize
the kinetic energy. However, interactions favor the localization of particles to reduce
the interaction energy. This competition between kinetic and interaction energy is
the physical core of the Hubbard model. Therefore, it is natural to expand the field
operators in terms of the localized Wannier functions (see Sect. 2.2.4). The Wannier
function at a lattice site j in the nth Bloch band is given by

http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_9
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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w(n)(r − r j ) = 1√
M

∑

q

e−iqr jφ(n)q (r), (3.3)

where q denotes the d-dimensional quasi-momentum vector, running over the first
Brillouin zone, and M is the number lattice of sites in the system. The operator that
creates a Wannier state at site j is defined by

ĉ†
(n) jσ =

∫
d3r w(n)(r − r j )ψ̂

†
σ (r). (3.4)

For brevity, the fermionic operators ĉ jσ and ĉ†
jσ are used in this section, but can be

replaced by bosonic operators at any point of the derivation. The expansion of the
field operator reads

ψ̂†
σ (r) =

∞∑

n=1

M∑

j=1

w∗
(n)(r − r j ) ĉ†

(n) jσ
single-band−−−−−−→

M∑

j=1

w∗(r − r j ) ĉ†
jσ . (3.5)

In the second step, we have introduced the first major simplification of the Hubbard
model: The restriction to the first Bloch band.2 Since higher bands are excluded,
all interband couplings are suppressed that otherwise inherently arise as a conse-
quence of interactions. The experimental observation of interaction-induced coupling
between bands is a central topic of Chap. 7.

With the single-band field operators of Eq. 3.5 the Hamiltonian Ĥ takes the form

Ĥ = −
∑

σ

∑

i j

Ji j ĉ†
iσ ĉ jσ + 1

2

∑

σσ ′

∑

i jkl

Ui jkl ĉ†
iσ ĉ†

jσ ′ ĉkσ ′ ĉlσ +
∑

σ

∑

i

εi n̂iσ , (3.6)

where n̂iσ = ĉ†
iσ ĉiσ counts the number of particles in spin state σ at lattice site i .

The first term denotes the kinetic energy, which is expressed by the tunneling
matrix elements Ji j . They denote the gain in energy when a particle hops from site
i to site j and read

Ji j = −
∫

d3r w∗(r − ri )

[
− �

2

2m
� + Vlat(r)

]
w(r − r j )

= − 1

M

∑

q

e−i(r j − ri )q Eq, (3.7)

2 This approximation is justified when the Fermi energy of the system lies within the first band.
The interaction energy of a particle pair should be much smaller than the band gap between the first
and second band. Therefore, in experimental realizations care must be taken to chose atom number,
lattice depth and system size in a way that only the first band is populated. Furthermore, population
of the second band during lattice loading must be avoided.

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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Fig. 3.1 Illustration of
the matrix elements of the
Hubbard model (see text)

εi

U

J

where q runs over the first Brillouin zone. In the second step the definition of the
Wannier function is inserted and the property of the Bloch states to be the eigenfunc-
tions of the enclosed operator is used (see Sect. 2.2.3). The equation establishes an
important relation between the tunneling of particles and the dispersion relation Eq.
Using

∑
i e−i(q − q′)ri = Mδq,q′ for M � 1, it can be cast in the instructive form

Eq = −
∑

i

Ji j ei(r j − ri )q, (3.8)

where r j denotes a fixed, but arbitrary lattice site (Fig. 3.1).
The second term describes all possible forms of interactions between the different

lattice sites within the first Bloch band. The interaction matrix elements are given by

Ui jkl = g
∫

d3r w∗(r − ri )w
∗(r − r j )w(r − rk)w(r − rl) (3.9)

and yield notable contributions when the Wannier functions at lattice sites i , j , k
and l have a significant overlap.

The third term accounts for the external trapping potential

εi =
∫

d3r |w(r − ri )|2Vtrap(r) ≈ Vtrap(ri ). (3.10)

Here, we have used the orthonormality of the Wannier function and the fact, that the
trapping potential typically varies very slowly over the extent of the on-site Wannier
function.

Based on the general single-band Hamiltonian (see Eq. 3.6), the Hubbard model
is obtained by omitting almost all of the intersite couplings. Only the strongest terms
are kept:

• Tunneling between adjacent lattice sites i and j , for which the notation 〈i, j〉 is
used in the following. This approximation is often called the tight-binding limit
[1, 8, 9].

• On-site interactions. Uiiii is the dominating on-site interaction matrix element,
particularly, when a contact interaction between the particles is assumed. All
intersite couplings like Ui j ji or the exchange terms Ui ji j are ignored.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Using the notations J = Ji j for the nearest-neighbor tunneling matrix element
between sites i and j and U = Uiiii for the on-site interaction matrix element, the
Hubbard model takes the form

Ĥ = −J
∑

σ

∑

〈i, j〉
ĉ†

iσ ĉ jσ + U

2

∑

σσ ′

∑

i

ĉ†
iσ ĉ†

iσ ′ ĉiσ ′ ĉiσ +
∑

σ

∑

i

εi n̂iσ . (3.11)

Compared to the full Hamiltonian, the Hubbard model comprises extensive simpli-
fications. Nevertheless, it lucidly features the competition between tunneling and
interaction, which gives rise to highly correlated ground states.

3.1.1 Matrix Elements of the Hubbard Model

The experiments of this thesis use a three-dimensional (d = 3) optical lattice with
an underlying harmonic confinement. The lattice has simple cubic symmetry and the
depth is identical on all three axes (α = x, y, z). We summarize the most important
relations for the matrix elements in this experimental setting.

Tunneling Matrix Element

In a simple cubic lattice the movement of particles can be considered independently
for each lattice axis. With the lattice constant a = λ/2, which corresponds to the
distance between adjacent lattice sites, the tunneling matrix element reads

J = −
∫

dα w∗(α ± a)

(
− �

2

2m

∂2

∂α2 + Vlat(α)

)
w(α). (3.12)

This energy scale defines the tunneling time scale by τJ = �/(z J ), where z is the
coordination number. The coordination number is the number of nearest neighbors
of an individual lattice site, such that z = 6 for a three-dimensional simple cubic
lattice.

Applying the tight-binding approximation to Eq. 3.8 the one-dimensional disper-
sion relation takes a sinusoidal form and has a band width of 4J ,

Eqα = −2J cos(qαa). (3.13)

Therefore, the tunneling matrix element can be inferred from a band structure cal-
culation via [7, 10]

J = 1

4

(
E±�k − E0

)
, (3.14)
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provided the lattice is deep enough to fulfill the tight-binding approximation.3

Because the three-dimensional dispersion relation corresponds to Eq = −2J
∑
α cos

(qαa), the band width of the three-dimensional lattice is given by 12J .
In the limit of very deep lattices, an analytic expression for the dependence of

the tunneling matrix element on the lattice depth can be derived by solving a one-
dimensional Mathieu equation [10, 12] yielding

J ≈ 4Erec√
π

s3/4
α e−2

√
sα . (3.15)

This expression shows that the tunnel coupling between nearest neighbors decreases
exponentially for increasing lattice depth sα = Vα/Erec. However, for experimentally
relevant lattice depths (sα < 50 Erec), the accuracy of Eq. 3.15 is mostly not sufficient
and J must be calculated numerically based on a band structure calculation and
Eq. 3.12 (see Fig. 3.2a).

Interaction Matrix Element

Applying definition 3.9 to the case i = j = k = l, the on-site interaction matrix
element is given by

U = 4π�
2as

m

∫
d3r |w(r)|4 = 4π�

2as

m

(∫ ∞

−∞
dα |w(α)|4

)3

, (3.16)

where the integral corresponds to the density-density overlap integral of the on-site
wavefunction. The second step is possible, because the three-dimensional Wannier
function factorizes and the one-dimensional Wannier functions w(α) are identical
for each direction due to identical lattice depths. The matrix element U represents
the on-site interaction energy of an atom pair within the single-band approximation
of the Hubbard model. However, interactions between atoms promote population to
higher bands, which effectively modifies the on-site interaction matrix element. The
details of this process are discussed in Chap. 7.

For very deep lattices, when single lattice sites can be approximated by an har-
monic oscillator potential, the Wannier function may be replaced by the Gaussian
ground state wavefunction of the harmonic oscillator. In this limit the interaction
energy can be expressed as a function of the dimensionless lattice depth sα ,

U ≈
√

8

π
kass3/4

α Erec. (3.17)

3 This is typically the case for lattice depth larger than 5 Erec. Under these conditions the higher-
order tunneling processes are suppressed with respect to nearest-neighbor tunneling by at least an
order of magnitude [7, 11].

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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Fig. 3.2 Tunneling and interaction matrix elements. a The tunneling matrix element is calculated
numerically (solid) and using the approximate formulas 3.14 (dashed) and 3.15 (dotted). The results
are independent of the atomic species or lattice constant (a = λ/2), because Vα (α = x, y, z) and
J are given in units of Erec. b On-site interaction energy U for 87Rb in the |F,m F 〉 = |1,+1〉 state
(as = 102 a0) as a function of the depth of a three-dimensional 738 nm-lattice. The exact numerical
result and the harmonic approximation 3.17 are shown as solid and dashed lines, respectively.
c The relative strength of the interaction U/J can be tuned over several orders of magnitude.
The solid curve shows the exact numerical result, the dashed curve uses the approximations in
3.15 and 3.17
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For practically relevant lattice depths (sα < 50 Erec) and typical interactions (as ≈
100 a0) the relative error compared to a calculation with Wannier functions amounts
to at least 20 % as shown in Fig. 3.2b. Therefore, the harmonic approximation must
be applied carefully and should only be used as a rough estimate of the interaction
energy (see variational model in Sect. 9.2.3).

According to Eqs. 3.15 and 3.17 the tunnel coupling decreases exponentially and
the interaction matrix element features a power law increase when the lattice depth is
raised. Therefore the ratio U/J can be tuned over several orders of magnitude simply
by changing the lattice depth as shown in Fig. 3.2c for the case of 87Rb atoms. In
this way, optical lattices are used to enter the strongly interacting regime. With the
additional application of a Feshbach resonance to control the s-wave scattering length
as (see Sect. 2.3), the parameters J and U can even be tuned independently from
each other. This approach can be advantageous, because it allows to have strong
interactions and fast tunneling at the same time, ensuring a fast redistribution of
atoms. Due to the limited lifetime of ultracold atom samples, fast adiabatic parameter
changes are experimentally crucial as discussed in Chap. 6.

3.2 Bose-Hubbard Model

The Bose-Hubbard model [3, 4, 7, 13] describes a single bosonic species in a periodic
potential. It is obtained from the general Hubbard Hamiltonian 3.11 by omitting the
spin degree of freedom and inserting the bosonic operators âi and â†

i that obey the

commutation relations [âi , â†
j ] = δi j . The Bose-Hubbard Hamiltonian reads

ĤBH = −J
∑

〈i, j〉
â†

i â j + U

2

∑

i

n̂i (n̂i − 1)+
∑

i

(εi − μ)n̂i , (3.18)

where n̂i = â†
i âi counts the number of bosons at lattice site i .

The first term indicates that an energy corresponding to the tunneling matrix ele-
ment J is gained, when a boson is delocalized between neighboring lattice sites.
When the tunneling matrix element J is large in comparison to the interaction
energy U , many-body quantum states with strong number fluctuations are ener-
getically favored.

The second term captures the total interaction energy of ni atoms at lattice site i .
U corresponds to the interaction energy per atom pair. It can take negative and positive
values depending on whether the interaction is attractive or repulsive. Taking into
account the indistinguishability of quantum particles, there are ni (ni − 1)/2 atom
pairs that perform collisions. When the interaction energy U is large and positive,
the localization of atoms is favored. This is because delocalized many-body states
also feature high local occupations that are energetically costly due to a quadratic
dependence of the interaction energy on ni .

http://dx.doi.org/10.1007/978-3-642-33633-1_9
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_6
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The third term accounts for an external trapping potential by assigning an energy
offset εi = Vtrap(ri ) to each lattice site i . Typically, the external confinement is a
harmonic trap. For a homogeneous system εi is zero. When the system is treated in
terms of a grand canonical ensemble, the chemical potential μ fixes the mean total
atom number of the system.

3.2.1 Superfluid and Mott Insulating Ground State

Two Bosons in a Double Well System

The basic physics of the Bose-Hubbard model can be nicely illustrated by considering
a double well system with two interacting bosons, which can easily be solved. It
reveals how the ground state evolves from delocalized to localized atoms, when the
ratio of the interaction energy U to the tunneling matrix element J is increased. The
full Hamiltonian reads

Ĥ (2)
BH = −J

(
â†

1 â2 + â†
2 â1

)
+ U

2

[
n̂1(n̂1 − 1)+ n̂2(n̂2 − 1)

]
, (3.19)

where a possible energy offset� = ε2 − ε1 between the sites is neglected. Using the
basis set {|2, 0〉, |1, 1〉, |0, 2〉} we obtain the matrix form

Ĥ (2)
BH =

⎛

⎝
U −√

2J 0
−√

2J 0 −√
2J

0 −√
2J U

⎞

⎠ . (3.20)

The ground state of the model has the eigenenergy

Eg = U

2
−

√

4J 2 + U 2

4
(3.21)

and is generally formed by the superposition of all basis states

|ψg〉 ∝ |2, 0〉 + |0, 2〉 +
⎛

⎝ U

2
√

2J
+

√

2 +
(

U

2
√

2J

)2
⎞

⎠ |1, 1〉, (3.22)

where normalization is neglected for better readability. In the limit of strong attrac-
tive interactions (U/J → −∞), double occupation is energetically favored and
the state approaches |ψg〉 → |20〉 + |02〉. At vanishing interactions (U/J = 0)
the atoms are maximally delocalized expressed by the binomial state |ψg〉 →
|2, 0〉+|0, 2〉+√

2|1, 1〉. This state has the strongest possible number fluctuations and
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corresponds to the superfluid state of this miniature Bose-Hubbard system. Finally,
strongly repulsive interactions (U/J → ∞) suppress double occupation and number
fluctuations. The energetic cost of delocalization becomes too high as an energy U
must be expended for double occupancies. The particles are localized at the individual
lattice sites |ψg〉 → |1, 1〉, which is the miniature version of a Mott insulator.

Many Bosons in a Homogeneous Lattice

The limiting cases of the miniature Bose-Hubbard model can readily be extended
to N bosons in a system of M lattice sites [10]. When the tunneling matrix element
J is much larger than the interaction energy U , the tunneling term dominates and
favors the maximal delocalization of atoms. Maximal delocalization is achieved when
all atoms occupy the same single-particle Bloch state φq=0(r). The system is in a
superfluid state that in the Wannier basis takes the form

|
SF〉U/J≈0 ∝
(

1√
M

M∑

i=1

â†
i

)N

|0〉. (3.23)

In this notation the maximal number fluctuations are directly visible: There is a finite
probability to find any atom number between zero and N at a given lattice site i .

In the limit of dominating interactions (U/J → ∞), the atoms are localized to
individual lattice sites and number fluctuations are fully suppressed. The many-body
wavefunction of the Mott insulating state is given by a product of local Fock states
with commensurate integer filling,

|
MI〉U/J→∞ ∝
M∏

i=1

(â†
i )

n|0〉. (3.24)

The Mott insulator state with fixed local atom numbers minimizes the total interaction
energy.

3.2.2 Quantum Phase Transition

The Bose-Hubbard model contains a second-order quantum phase transition between
the superfluid and the Mott insulating state, which is controlled by the ratio U/J .
The phase boundaries at zero temperature can be calculated within a grand-canonical
ensemble using a mean-field treatment similar to a Bogoliubov approach [14]. In
second-order perturbation theory the phase boundary between the superfluid and
Mott insulating state is given by
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Fig. 3.3 Phase diagram of the Bose-Hubbard model at T = 0. a As the ratio J/U decreases
the system undergoes a phase transition from a superfluid (SF) to a Mott insulator (MI). The
phase boundaries (Eq. 3.25) are shown as red lines. The Mott lobes (shaded in blue) contain the
incompressible Mott phases at integer filling n. b In a trapped geometry, the phase diagram (a)
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layers, which become thinner for decreasing J/U

(
J

U

)

c
= 1

z

(n − μ/U ) (1 − n + μ/U )

1 + μ/U
, (3.25)

where z is the coordination number. The filling factors n of the Mott phases are
integer numbers that depend on the chemical potential via n − 1 ≤ μ/U ≤ n. The
resulting phase diagram is shown in Fig. 3.3a.

The optical lattice in experimental realizations of the Bose-Hubbard model is
inhomogeneous, featuring an underlying confining potential Vtrap(r). However, in
a local-density approximation the system can be locally viewed as being homoge-
neous.4 This allows to define a local chemical potential according to

μi = μ− εi = μ− Vtrap(ri ), (3.26)

where ri is the position of lattice site i . Therefore, at a fixed lattice depth, corre-
sponding to a fixed value of J/U , the phases in a trapped system correspond to a cut
through the phase diagram along the μ/U -axis. Starting with the maximal chemi-
cal potential μ in the center of the trap, the local chemical potential μi decreases
towards zero when moving away from the trap center. Accordingly, the system forms
Mott insulating shells with fixed filling factors n that are separated by intermediate
superfluid layers (see Fig. 3.3b).

When the lattice depth is raised the parameter J/U decreases and the system
enters the Mott insulating phases at the tip of each Mott lobe with filling n. Taking

4 Note that the tight-binding limit with its restriction to nearest-neighbor tunneling processes favors
the applicability of a local-density approximation.
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the derivative of Eq. 3.25 with respect to the chemical potential yields the critical
values for the phase transition of each Mott lobe,

(
J

U

)(n)

c,max
= 1

z

(
1 + 2n − 2

√
n2 + n

)
, (3.27)

which are marked by red dots in Fig. 3.3a. When the optical lattice is slowly raised
in the experiment, Mott domains emerge starting with a n = 1 Mott insulator at
the edge of the cloud. Mott domains with higher fillings are gradually reached for
deeper lattices in the center of the trap. The mean-field calculation presented here
predicts a critical value for the n = 1 Mott domain of (J/U )(1)c,max = 0.0286, while a
quantum Monte Carlo simulation of the Bose-Hubbard model has yielded the exact
value (J/U )(1)c,max = 0.0341 [15].

3.3 Fermi-Hubbard Model

The Fermi-Hubbard model describes an interacting spin mixture (spin up |↑〉 and
down |↓〉) of fermionic particles in a lattice potential. In solid state physics the
Hubbard model resembles electrons that interact via Coulomb interactions and move
in a crystal of positively charged ions. Equivalent physics is expected, when an
ultracold mixture of two hyperfine states of a fermionic species is loaded into an
optical lattice. Using the fermionic anticommutation relations [ĉiσ , ĉ†

jσ ′ ]+ = δi jδσσ ′
the Fermi-Hubbard model is readily derived from Eq. 3.11 reading

ĤFH = −J
∑

σ

∑

〈i, j〉
ĉ†

iσ ĉ jσ + U
∑

i

n̂i↑n̂i↓ +
∑

i

εi (n̂i↑ + n̂i↓), (3.28)

where σ runs over the spin states |↑〉, |↓〉. Analogous to the Bose-Hubbard model the
parameter J denotes the tunneling energy that is gained when a particle is delocalized
over neighboring lattice sites. The tunnel coupling is identical for both spins σ given
the lattice potential is spin-independent. The interaction matrix element U denotes
the energy cost when a spin up and a spin down atom occupy the same lattice site.
Pauli’s principle prohibits occupations of more than one atom per spin state and
lattice site.

The Fermi-Hubbard model gives rise to complex phase diagrams, which result
from an intricate interplay of interaction, delocalization, filling, spin ordering and
temperature. The ground states of the Hubbard model are the topic of vast the-
oretical investigations. Due to the lack of analytical solutions in the two- and
three-dimensional case, generally, approximate numerical methods are employed.
Exact quantum Monte Carlo methods are often troubled by the notorious sign prob-
lem that originates from the antisymmetry of fermionic many-body wavefunctions.
One of the most important questions under debate is, whether the two-dimensional
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Fermi-Hubbard model can explain the properties of cuprate high-temperature super-
conductors [16]. The complexity of the theoretical investigations makes a clean
experimental realization of the Fermi-Hubbard highly desirable with the prospect to
measure the phase diagrams in a perfectly controlled way.

In this section, we briefly discuss limiting cases of the Fermi-Hubbard model,
which are relevant to the experiments of this thesis (see Chap. 6), aiming at an intuitive
understanding. For thorough discussions of the phases of the Fermi-Hubbard model,
we refer the reader to many textbooks and reviews [1, 16–20].

3.3.1 Spins in a Double Well System

As the smallest nontrivial instance of the Fermi-Hubbard model, we consider a double
well system filled with a spin up and a spin down fermion. Already in this miniature
model basic properties are revealed, illustrating the notions of band width, double
occupancy and antiferromagnetism. The full two-site Hamiltonian reads

Ĥ (2)
FH = −J

(
ĉ†

1↑ĉ2↑ + ĉ†
1↓ĉ2↓ + ĉ†

2↑ĉ1↑ + ĉ†
2↓ĉ1↓

)
+ U

(
n̂1↓n̂1↑ + n̂2↓n̂2↑

)
.

(3.29)
Because the Hamiltonian conserves the atom number, we can restrict the discussion
to the Fock space with one spin up and one spin down atom {|↑ ↓, 0〉, |↑,↓〉, |↓,↑〉,
|0,↑ ↓〉}, where the first entry corresponds to site 1 and the second entry to site 2.
Using this basis the Hamiltonian can be cast in the matrix form

Ĥ (2)
FH =

⎛

⎜⎜⎝

U −J −J 0
−J 0 0 −J
−J 0 0 −J
0 −J −J U

⎞

⎟⎟⎠ . (3.30)

A straightforward analytical calculation yields the eigenenergies Ei and eigenvectors
|ψi 〉 (normalization constants are omitted for better readability):

• E1 = 0 for the singlet eigenstate |ψ1〉 ∝ |↑,↓〉 − |↓,↑〉,
• E2 = U for the eigenstate |ψ2〉 ∝ |↑↓, 0〉 − |0,↓↑〉 featuring a superposition of

doubly occupied sites,

• E3/4 = U
2 ±

√
4J 2 + U 2

4 for the eigenstates that are formed by a superposition

of all basis states |ψ3/4〉 ∝ |↑↓, 0〉 + |0,↓↑〉 +
(

U
4J ∓

√
1 + ( U

4J

)2
)
(| ↑,↓〉

+ | ↓,↑〉), where the upper sign applies to |ψ3〉 and the lower one to |ψ4〉.
The spectrum and the eigenstates (see Fig. 3.4) have important features that are

similarly observed in the many-body case. At vanishing interaction U/4J = 0
the energy difference between the ground and highest excited state, |ψ3〉 and |ψ4〉,

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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Fig. 3.4 Properties of the double-well Fermi-Hubbard model with a spin up and a spin down
particle. The eigenenergies (a) and the double occupancy (b) of the four eigenstates are shown as
a function of the normalized interaction U/(4J )

amounts to 4J . This corresponds to the band width of the first Bloch band in an
infinite homogeneous lattice within the tight-binding approximation (see Eq. 3.14).
Accordingly, the states |ψ3〉 and |ψ4〉 may be viewed as the Bloch states φq=�k
and φq=0 with maximal and minimal quasi-momentum, respectively. In those states
the fermions are delocalized over the system and there is a 50 % probability for
double occupation in both cases. For non-vanishing interactions the probability to
find doubly occupied lattice sites is given by

D3/4 = 1

1 +
[

U
4J ∓

√
1 + ( U

4J

)2
]2 , (3.31)

where the upper (lower) sign applies to state |ψ3〉 (|ψ4〉) (see Fig. 3.4). The eigenstates
|ψ1〉 and |ψ2〉 do not depend on the interaction parameter and the probability for
double occupation remains fixed at D1 = 0 and D2 = 1, respectively.

The eigenstate |ψ4〉 has the lowest eigenenergy and forms the ground state. In
the limit of strongly attractive interactions the atoms pair up in each well and the
double occupancy reaches a value of one. The eigenenergy can be approximated by
U − 4J 2/|U | and the correction term 4J 2/|U | corresponds to the energy that is
gained when the atom pair is delocalized over the double well [21]. In the opposite
limit of strong repulsion the ground state shows antiferromagnetic ordering of the
spins. The corresponding eigenenergy is given by the Heisenberg exchange energy
−4J 2/U that is gained when neighboring spins exchange places via intermediate
double occupation [22]. This is in close analogy to the Fermi-Hubbard model in an
infinite homogeneous lattice system, which maps to a quantum Heisenberg model
in the limit of strong repulsion and half-filling (see below). The zero temperature
phase of the Heisenberg model is antiferromagnetically ordered and the lowest lying
excitations have an energy of Jex = 4J 2/U (see Fig. 3.6) [1, 23, 24].
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Fig. 3.5 Sketch of the phase diagram for the Fermi-Hubbard model at half-filling in a three-
dimensional optical lattice (adapted from reference [20]). The following abbreviations have been
used: molecular Bose-Einstein condensate (BEC), Bardeen-Cooper-Shrieffer (BCS) and anti-
ferromagnetic phase (AFM)

3.3.2 Schematic Phase Diagram

A schematic phase diagram of the three-dimensional Hubbard model at half-filling
is shown in Fig. 3.5 summarizing results for repulsive [23–25] and attractive [17,
26–28] interactions. Half-filling corresponds to a mean local filling factor per spin
state of n̄↑ = n̄↓ = 0.5.

For the case of attractive interactions the on-site interaction energy between the
spin up and down fermions is negative. At sufficiently low temperatures this gives rise
to a superfluid regime with a BEC-BCS crossover. For weak interactions the particles
form BCS pairs and the critical temperature increases monotonically with |U |/J .
When the interactions get stronger, the atom pairs get more strongly bound until they
eventually form hardcore bosons that undergo Bose-Einstein condensation. In the
BEC regime the critical temperature decreases as J 2/U . This is also the energy scale
for nearest-neighbor tunneling and nearest-neighbor repulsion between the hardcore
bosons [28]. In the competition of energy scales, a charge density wave emerges, in
which the density is reduced at every other lattice site [1]. Even above the critical
temperature for superfluidity, a pseudo-gap regime of preformed, uncondensed pairs
is predicted. The experimental observation of those pairs and the thermodynamic
consequences of their presence are briefly discussed in Sect. 6.3 [29].

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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Fig. 3.6 Antiferromagnetic ordering and exchange interactions. (a) The Mott insulating ground
state of the Fermi-Hubbard model, which is characterized by localized spins, shows antiferromag-
netic ordering when the temperature of the system is low enough. (b) When opposite spins occupy
neighboring lattice sites (upper panel), they reduce their energy by −4J 2/U through a virtual
exchange process. This process has two possible exchange paths, during which either the left or the
right well are virtually doubly occupied. The intermediate state is detuned by the interaction energy
U . For identical spins (lower panel) the exchange process is not possible, because Pauli’s principle
forbids the intermediate doubly occupied state [1]

At half-filling the phases of the attractive Fermi-Hubbard model can be mapped
to the repulsive Fermi-Hubbard model using a particle-hole transformation [28]. In
the regime of higher temperatures the phase of disordered preformed pairs maps to a
paramagnetic Mott insulator without spin ordering. In the metallic Fermi liquid phase
at weak repulsion the particles are delocalized to minimize their kinetic energy. When
the repulsion is increased, the interactions of particles with opposite spin smoothly
lead to localization [23]. Deep in the Mott insulating regime double occupation of
lattice sites is suppressed due to the repulsion (and Pauli’s principle). Owing to its
paramagnetic character, the Mott insulating phase can accommodate a large amount
of spin entropy.

Upon lowering of the temperature less spin entropy needs to be stored and the sys-
tem can display magnetic ordering (see Fig. 3.6a). Antiferromagnetic spin order sets
in below the Néel temperature after crossing a second-order phase transition. When
the repulsive interactions are small, a weak spin-density wave modulation develops.
In this regime the Néel temperature is exponentially suppressed as a function of
U/J [24]. For increasing repulsion, the system undergoes a crossover towards an
antiferromagnetically ordered Mott insulator. At very strong repulsion the Hubbard
Hamiltonian at half-filling can be reduced to a quantum Heisenberg model

ĤHB = Jex

∑

〈i, j〉
Ŝi · Ŝ j , (3.32)

where Jex = 4J 2/U is the Heisenberg exchange energy. The spin operator at lattice
site i is given by
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Ŝi = 1

2

∑

σσ ′
ĉ†

iσσ ĉiσ ′ , (3.33)

where σ = (σx , σy, σz) is the vector of Pauli matrices [1]. The exchange energy
Jex = 4J 2/U expresses the energy that is gained in a virtual tunneling process
between lattice sites that are singly occupied by atoms of opposite spin (see Fig. 3.6b).
In this process an atom tunnels to the neighboring lattice site, where it interacts at
an energy U before it tunnels back. When the neighboring lattice sites are occupied
by identical spin, this superexchange interaction is forbidden by the Pauli principle.
Therefore, antiferromagnetic ordering is energetically favored (see Sect. 3.3.1). For
a three-dimensional simple cubic lattice, quantum Monte Carlo simulations have
shown that the Néel temperature is essentially given by the exchange energy, TN ≈
0.96Jex [23, 24].

The case of half-filling gives a flavor of the rich physics that is contained in
the Fermi-Hubbard model. In the experiments of this thesis the atoms are trapped
in an optical lattice with underlying harmonic confinement, which gives rise to a
strong variation of the local fillings. One expects that several phases coexist in the
trap, ranging from metallic over Mott insulating to band insulating phases. This
intriguing situation is elucidated in Chap. 6 both theoretically and experimentally. In
addition to the parameters considered so far, the impact of doping on the phases of
the Fermi-Hubbard model is an extremely active field of research [16]. It is believed
that superconducting ground states with d-wave symmetry can arise within the two-
dimensional repulsive Fermi-Hubbard model when the system is doped [30]. This
might be an explanation for the high-temperature superconductivity in cuprates, but
the exact mechanism is not well understood. Therefore, experimental realizations of
the two-dimensional Fermi-Hubbard model are highly sought after [25, 31–33].

3.3.3 Band Insulator of Noninteracting Fermions

In order to investigate the role of the underlying harmonic confinement in optical
lattices, it is instructive to consider a gas of noninteracting fermions. It can experi-
mentally be created using an ultracold cloud of spin polarized fermionic atoms. In
such a sample s-wave collisions do not occur owing to Pauli’s principle and colli-
sions at higher partial waves are suppressed by low temperature (see Sect. 2.1.3).
Alternatively, vanishing interactions can be achieved in a mixture of spin up and spin
down fermions by means of a Feshbach resonance. This approach is chosen in the
measurements of Chap. 6.

For the proper preparation and interpretation of quantum phases, it is crucial to
understand the influence of the underlying potential on the band structure of the

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_6


76 3 Hubbard Models for Bosons and Fermions

-20 -10 0 10 20

0

0.5

0.1

0.2

0.3

0.4

Position α (a = λ/2)

(E
i -

E
1)

/E
re

c

A

B

4.2

3.8

4.6

5.0

(E
i -

 E
1)

/ E
re

c

B

C

-50 -25 0 25 50

1st band

2nd band

1st band

(a)

(b)

Fig. 3.7 Numerically calculated single-particle wavefunctions φi (α) and eigenenergies Ei in an
one-dimensional optical lattice (λ = 738 nm) at 8 Erec with an underlying harmonic potential
(ωα = 2π × 200 Hz for 40K). Solid lines indicate the probability density |φi (x)|2 that is vertically
positioned at the respective eigenenergy Ei . Panel (a) shows the lowest energy states of the first
band, while panel (b) displays the onset of the second band. Mind the different scaling of the
position axis and the gap on the energy axis. Gray areas show the widths of the first and second
band derived from a band structure calculation (see Sect. 2.2.3). The band widths are locally offset
by the underlying harmonic potential

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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lattice.5 Owing to the harmonic confinement, translational symmetry is broken and
the Bloch states of the homogeneous lattice are no longer appropriate (see Sect. 2.2.3).
The new single-particle states are limited to a finite spatial extend. They can even be
localized to a single lattice site when the lattice is deep and external confinement is
tight, as we will see below.

The single-particle eigenstates are derived via numerical diagonalization of the
Schrödinger equation. Because the physics of a simple cubic lattice is separable
into its individual axes, it suffices to consider only one dimension. The Schrödinger
equation for one axis (α = x, y, z) reads [34, 35]

(
− �

2

2m

∂2

∂α2 + Vα cos2(kα)+ 1

2
mω2

αα
2
)
φi (α) = Eiφi (α), (3.34)

where ωα denotes the trapping frequency of the harmonic potential, k = 2π/λ the
wave vector and λ the wavelength of the lattice laser. The position coordinate α
is discretized into typically ten intervals per lattice period a = λ/2, such that the
Schrödinger equation can be cast in matrix form. Diagonalization of the matrix yields
the eigenvalues Ei along with the eigenstates φi (α).

In Fig. 3.7 the result of a calculation for typical experimental parameters is dis-
played. It shows that the areas of finite probability density |φi (α)|2 > 0 can also
approximately be deduced from the band structure of the homogeneous lattice: The
gray shaded areas display the sum of the energy bands in the homogeneous lattice
and the local energy offset from the harmonic confinement. For low energies this is
a good approximation, because the energy offset between adjacent sites is small and
the lattice appears almost homogeneous. However, for higher energies deviations
can become significant.

It is important to note that the usual meaning of bands is somewhat obscured by
the presence of the confining potential. The spectrum of a homogeneous lattice has
energetically forbidden regions, in which no eigenstates exist. Those regions separate
the bands containing the eigenstates (see Figs. 2.8 and 2.10 ). In the inhomogeneous
case, however, a true gap between the bands only exists locally. The eigenenergies
in lower bands can be larger than those of higher lying bands when one departs from
the center of the lattice. Generally, the spatial overlap between states of comparable
energy in different bands is low, which implies poor interband coupling. Therefore,
equilibration across different lattice bands is very slow compared to typical experi-
mental time scales.

Figure 3.8a shows the single-particle spectrum of the eigenstates in Fig. 3.7, dis-
tinguishing three regions A, B and C. For low energies, Ei increases linearly with
the state index, similar to the eigenenergies of a purely harmonic potential. Region B
starts when the eigenstates are localized either to the left or right side of the lattice,

5 It is worth noting that most optical lattice setups have an approximately harmonic confining
potential. This is a natural consequence of the use of Gaussian laser beams for optical lattices.
However, techniques are currently being investigated that aim at the projection of optical lattice
potentials. Thereby, it may become possible to create engineered potential landscapes, for example,
box potentials.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 3.8 (a) Single-particle spectrum as a function of the quantum number i for a one-dimensional
8 Erec lattice with a harmonic confinement of ωα = 2π × 200 Hz (same parameters as in Fig. 3.7).
(b) Formation of a band insulator. Noninteracting fermions at T = 0 fill the eigenstates from
bottom up. The local occupation n̄ j is shown for an increasing number of fermions N (solid lines
with increasing darkness). The band insulating state is reached at about N ≈ 110. When more
single-particle states are occupied, population enters the second band shown as gray dashed line

while the probability density vanishes in the center. Those states are pairwise degen-
erate and become more and more localized to single lattice sites for increasing i . For
quantum numbers i beyond a certain threshold (here about 110), delocalized states
in the center become available again, belonging to the second band. The probability
densities of the eigenstates in the second band (see Fig. 3.7b) approach zero in the
center of each lattice site. This is similar to the second band Bloch functions in the
homogeneous lattice as shown in Fig. 2.9 and indicates the dominant admixture of
plane waves with momenta in the second Brillouin zone [�k, 2�k] and [−�k,−2�k].

Based on the above results we can analyze the formation of a band insulator in an
optical lattice with underlying harmonic confinement. For a system of N noninter-
acting fermions at zero temperature, the N lowest single-particle eigenstates φi (α)

are filled from bottom up. The local filling n̄ j is calculated by integrating all density
distributions |φi (α)|2 for i ≤ N over the extend a of lattice site j and subsequent
summation. The result is shown for several fermion numbers N in Fig. 3.8b. Unity
filling is reached in the center of the trap as soon as all states of region A are filled at
N ≈ 15. Departing from there, the central density does not increase further, but the
distribution broadens and forms a wide flat-top profile until all states of region B are
added. At N ≈ 110 the band insulating state with maximal extent is reached. The
populated eigenstates correspond to Bloch states with quasi-momenta in the first
Brillouin zone. Experimental Brillouin zone mapping in time-of-flight expansion
would show a square-shaped atomic cloud (see Sect. 4.2.4).6

6 However, it should be noted that Brillouin zone mapping in time-of-flight yields an almost square-
shaped distribution with a flat top for any filling inside region B, only the atomic density differs
[36]. Thus, for the given parameters the qualitative differences in experimental images between
N = 15 and N = 110 would only be marginal, but they could, in principle, be distinguished by a
measurement of the absolute atom numbers.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_4
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The band insulator is an incompressible many-body state. In a homogeneous
lattice it corresponds to a completely filled first Bloch band. An increase of the
local filling is only possible when the compression is strong enough to overcome
the gap between the first and second band. In the harmonically confined lattice
such a gap does not exist in a strict sense. Nevertheless, the incompressibility can be
experimentally probed in a very direct manner: For a fixed number of fermions inside
the band insulating region B, an increase of the trap frequency ωα does initially not
change the size of the cloud. The system is incompressible. Upon further increasing
ωα , the highest populated single-particle state in the first band eventually reaches
the energy of the lowest eigenstate in the second band. It becomes energetically
favorable to populate states of the second band leading to double occupation of the
central lattice sites. At this point the system starts to shrink in size, which implies
finite compressibility.

In the typical experimental preparation scheme, an ultracold atomic cloud is ini-
tially held in a harmonic trap and the optical lattice is smoothly ramped up. Usually
the aim is to exclusively populate the first band. This imposes an upper bound on
the atom number depending on the system parameters, as can be conjectured from
Fig. 3.7. Is there a simple criterion to predict whether the atomic cloud will solely
populate the first band? By inspecting the single-particle spectrum as a function of
the lattice depth (at fixed harmonic confinement) one can show that states with an
energy Ei < Erec in the purely harmonic potential evolve into the first band (regions
A and B), while states with Ei > Erec either lie in the first, second or higher bands
(region C and upwards) [34]. Therefore, exclusive population of the first lattice band
is achieved when the Fermi energy of the harmonically trapped cloud is smaller than
the recoil energy εF < Erec. Using Eq. 2.24 this results in an upper bound for the
number of fermions

Nmax ≤ 1

6

(
Erec

�ω̄

)3

, (3.35)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trap frequencies in the

harmonic potential.

Many-Body Hamiltonian

It is instructive to consider the many-body system of noninteracting fermions in an
optical lattice, because it is an important reference point to the changes that arise
when interactions come into play. The single-particle Schrödinger Eq. 3.34 gives rise
to the corresponding many-body Hamiltonian

Ĥ = −J
∑

〈i, j〉
ĉ†

i ĉ j +
∑

j

ε j n̂ j , (3.36)

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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where the tight-binding approximation is introduced by restricting the tunneling to
nearest neighbors 〈i, j〉 and n̂ j = ĉ†

j ĉ j counts the number of fermions at site j .
Alternatively, the Hamiltonian is obtained from the Fermi-Hubbard model 3.28 by
setting U = 0 and omitting σ , because only a single spin state is considered.

For a three-dimensional optical lattice with a = λ/2 and spherically symmetric
harmonic confinement characterized by the trap frequency ω, the local energy offset
is given by

εj = mω2λ2

8
j2 = Vt j2. (3.37)

Here, j = ( jx , jy, jz) is the site index and Vt = mω2λ2/8 is the energy offset between
adjacent lattice sites at the trap center.

The exemplary calculation in Fig. 3.7 shows that higher lying single-particle states
of the first band are already localized to single lattice sites at moderate lattice depths.
Only the lowest states close to the trap center are delocalized over several lattice sites.
Neglecting the effect of those central states, we can use Eq. 3.37 to derive an analytical
expression for the density of states of the inhomogeneous three-dimensional lattice,
reading

ρ3D(ε) = 2πV −3/2
t ε1/2. (3.38)

With the relation N = ∫ εF
0 dε ρ3D(ε) we obtain the Fermi energy as a function of

the total atom number N

εF(N ) = Vt

(
3N

4π

)2/3

, (3.39)

which plays an important role for the definition of rescaled units in Chap. 6. The
density of states 3.38 allows to calculate the total entropy of the system at a given
temperature using the general prescription 2.19. To the lowest order in temperature,
the Sommerfeld approximation yields [37, 38]

S

kB
= π2

2
N

T

TF
+ O

[(
T

TF

)2
]
. (3.40)

It is interesting to compare this result to the entropy of a harmonically trapped Fermi
gas without a lattice, which has been derived in Eq. 2.25. The expressions differ
exactly by a factor of two for a fixed dimensionless temperature T/TF. This has an
important implication for the loading of ultracold fermions into an optical lattice:
when a harmonically trapped noninteracting Fermi gas is adiabatically (S = const.)
transferred into a deep lattice, the dimensionless temperature is doubled. If the loading
is nonadiabatic, the temperature increase will even be larger.

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Chapter 4
Detection and Observables

Powerful detection methods and reliable observables are the cornerstones in the
analysis of many-body quantum phases of ultracold atoms. By far the most detection
techniques aim at direct imaging of atomic densities either in-situ or after time-
of-flight expansion. On the basis of experimental images, observables are defined
that characterize the quantum many-body state. The quality of these observables
determines how much can be learned from a sample of ultracold atoms.

In the first part of this chapter, the theoretical foundations of absorption and phase-
contrast imaging are described [1]. In the second part we summarize the fundamental
experimental observables used in this work, including the in-situ density distribution,
the momentum and the quasi-momentum distribution as well as measures of first-
and second-order correlations.

4.1 Detecting Ultracold Atoms

All information that we gain about clouds of ultracold atoms is acquired either by
imaging the in-situ density distribution in the trap or the momentum distribution
obtained after time-of-flight expansion. The vast majority of the existing experimen-
tal setups relies on optical detection techniques.1 In the experiments of this thesis
we employ absorption and phase-contrast imaging.

4.1.1 Interaction Between Atoms and Light

When a light field passes through a medium generally both its amplitude and phase
are modified. The changes in the amplitude and the phase originate from a complex

1 Currently the only notable exception being the electron microscope realized in Herwig Ott’s
group, which is based on the ionization of ultracold atoms and subsequent detection with
a channeltron [2].

S. Will, From Atom Optics to Quantum Simulation, Springer Theses, 83
DOI: 10.1007/978-3-642-33633-1_4, © Springer-Verlag Berlin Heidelberg 2013
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susceptibility of the medium that gives rise to a complex index of refraction nref
[3, 4]. A cloud of ultracold atoms can be idealized as an ensemble of two-level systems
with a spatially dependent density n(r). During imaging the cloud is illuminated by a
monochromatic laser at wavelength λ. If the laser intensity I0 is low compared to the
saturation intensity Isat, the complex index of refraction is given within the rotation
wave approximation by [1, 4]

nref(r) = 1 + n(r)
λσ0

4π

(
i

1 + 4�2/�2 − 2�/�

1 + 4�2/�2

)
. (4.1)

Here, σ0 = 3λ2/2π denotes the resonant scattering cross section of an atomic two-
level system,� = ω−ω0 the detuning between the laser frequencyω and the atomic
resonance ω0, and � the natural line width of the transition.

We let the light propagate along the z-direction and apply the thin-lens approx-
imation, which means that the light is assumed to enter and exit the atom cloud at
the same x- and y-coordinates. The propagation through the cloud transforms a laser
field E0 ∝ eikz into

E = exp

(
ik

∫
dz [nref(r)− 1]

)
E0 = t (x, y) eiφ(x,y)E0, (4.2)

where the spatially dependent transmission coefficient and phase shift are given by

t (x, y) = e−D(x,y)/2 and φ(x, y) = �

�
D(x, y). (4.3)

The optical density D(x, y) of the medium is given by

D(x, y) = σ0

1 + 4�2/�2 ncol(x, y), (4.4)

where the column density ncol(x, y) = ∫
dz n(r) is defined as the spatial density

integrated along the z-axis. The integration indicates that no spatially resolved infor-
mation is obtained along the line-of-sight. The above equations form the basis for
the theoretical treatment of absorption imaging and phase-contrast imaging.

4.1.2 Absorption Imaging

Absorption imaging is our standard method to measure the density distributions
of ultracold potassium and rubidium atoms after time-of-flight expansion [1]. The
atom clouds are illuminated by a resonant laser beam and partly absorb the light.
This imprints a shadow cast on the intensity profile of the laser beam that is imaged
on a charge coupled device (CCD) camera. The absorption process is followed by
spontaneous emission that leads to the transfer of recoil momentum and strong
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heating of the cloud. Assuming that 150 photons are scattered during 50μs of illu-
mination, momentum diffusion blurs the image by about 2μm (4μm) for rubidium
(potassium) [1]. Therefore, the duration of illumination should not be too long. Obvi-
ously, absorption imaging is destructive.

In order to extract the atomic density distribution n(r), three individual images
are recorded: First, the shadow cast of the atom cloud Iw(x, y), second, the intensity
profile of the imaging beam without atoms Iwo(x, y), and, third, the stray light
distribution Is(x, y) without atoms and without imaging beam. The stray light is
subtracted both from the image with atoms I (x, y) ≡ Iw(x, y) − Is(x, y) and the
image without atoms I0(x, y) ≡ Iwo(x, y) − Is(x, y). Noting that I ∝ |E |2 and
using Eqs. 4.2 and 4.3, a relation between the two images is easy to derive:

I (x, y) = e−D(x,y) I0(x, y). (4.5)

According to the approximations introduced in Sect. 4.1.1, the relation is valid in
the limit of low laser intensity I0(x, y) � Isat. This is a favorable regime, because
the optical density is solely determined by the relative intensity ratio D(x, y) =
− ln(I/I0) and no absolute intensities are required.

The applicability of absorption imaging is technically limited by the dynamic
range of the CCD camera that typically corresponds to D(x, y) ≤ 4. The optical
density of a trapped degenerate atom cloud is generally much larger, up to D = 100
and even more. Therefore, the optical density must be reduced by about two orders
of magnitude. This can be achieved by releasing the atom cloud from the trap and
allowing for free expansion in time-of-flight. In principle, the optical density could
also be reduced by choosing a large detuning � of the imaging beam (see Eq. 4.4).
However, this increases the real part of the refractive index and gives rise to a finite
phase shift φ(x, y). The thin-lens approximation breaks down and the experimental
images show lensing and distortions. While large detuning is delicate in absorption
imaging, it is beneficially employed in the phase-contrast method (see next section).

An ideal implementation of absorption imaging is often difficult due to technical
constraints. In our setup, we are bound to use linearly polarized light. Therefore,
the atoms cannot be treated as two-level systems and several degenerate transitions
must be taken into account (at vanishing magnetic field). Averaging of the respective
squared Clebsch-Gordon coefficients yields a reduced scattering cross section σ0.
The theoretical correction factors for 87Rb and 40K are αRb = 7/15 and αK = 2/5,
respectively [5]. These values have been validated by independent atom number
calibrations based on the in-situ size of Bose-Einstein condensates and noninteracting
degenerate Fermi clouds (see Sect. 6.2.3).

4.1.3 Phase-Contrast Imaging

The implementation of phase-contrast imaging (PCI) has been a pivotal step towards a
dependable measurement of in-situ cloud sizes of interacting fermionic spin mixtures,

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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Fig. 4.1 Theory of phase-contrast imaging. a Elementary phase-contrast setup. Far-detuned imag-
ing light is coherently scattered by the atoms (gray shaded area). A phase plate in the Fourier plane
shifts the relative phase between scattered (Esc) and unscattered (Eusc) light. In the imaging plane,
the phase modulation φ(x, y), which the atoms imprint on the imaging beam, can be converted into
an intensity modulation I (x, y), if the phase shift α of the phase plate is chosen appropriately (see
main text). b Relative signal I/I0 as a function of the phase shift φ for advancing (α = +π/2,
dashed) and retarding (α = −π/2, solid) phase plates. For simplicity a transparent atom cloud is
assumed (t = 1) corresponding to the limit of far detuning. The shading indicates that the phase
shift φ is positive (negative) for red (blue) detuned imaging light (see Eq. 4.3). The method is usu-
ally used in the linear regime I/I0 ∝ φ. Only here the phase-contrast signal is proportional to the
column density of the atom cloud, because φ ∝ ncol(r)

which led to the observation of a fermionic Mott insulator (see Sect. 5.5 for technical
details and Chap. 6 for the experiments).

Phase-contrast imaging has two remarkable features: First, it is an almost nonde-
structive technique, because it relies on elastic scattering of far-detuned laser light.
Therefore, multiple images of the same atomic sample can be recorded. Second,
in-situ density distributions can be detected, which usually have an optical density
that is too high for absorption imaging (see previous section) [1, 6–9]. These prop-
erties have led to several intriguing applications of the phase-contrast method, for
example, in the detection of local magnetization and in-situ spin textures of spinor
condensates [10, 11] or in studies of in-trap distributions of imbalanced strongly
interacting Fermi gases [12, 13].

Phase-contrast imaging was invented by Frits Zernike in 1934 and earned him
the 1953 Nobel prize in physics. The invention was originally driven by the aim to
visualize transparent objects, such as biological cells [14]. The phase-contrast method
relies on converting the phase shift that is imprinted on a light beam passing through
a refractive object into intensity information that can be observed in a microscope
or recorded by a camera. This conversion is achieved by interfering light that is
coherently scattered by the object with unscattered light.

The interference effect of the phase-contrast method is achieved by an elegant
distinction between scattered and unscattered light: When light passes through a
refractive object it acquires an angular spread that is not present for light that does
not pass through the object. Therefore, scattered and unscattered light propagate
along different paths allowing for a spatial distinction as shown in Fig. 4.1a. In an

http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_6
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appropriately designed imaging system, the unscattered light has an intermediate
focus at a plane, where the spatial extent of the scattered light is much larger than
the focussed unscattered beam. This plane is called the Fourier plane [3]. Here,
a differential phase shift between scattered and unscattered light can be applied by
placing a special phase plate into the beam path. At the center of the phase plate, where
the focussed unscattered light propagates, the optical path length is different from
the outer regions. After passing the plate the scattered and phase-shifted unscattered
light propagate further and, finally, recombine in the imaging plane (see Fig. 4.1a).
At this point, they complete a homodyne detection scheme, in which the unscattered
light acts as a local oscillator and interferes destructively or constructively with the
coherently scattered light.

Theoretical Background

In order to properly account for interference and phase sensitivity, the phase-contrast
method is theoretically treated on the level of the electric field. The laser field (see
Eq. 4.2) is decomposed into a scattered and an unscattered part after passing through
the atom cloud

E = t eiφE0 = Esc + Eusc, (4.6)

where the definitions Esc = (t eiφ − 1)E0 and Eusc = E0 are introduced. The
transmission coefficient t = t (x, y) and the phase shift φ = φ(x, y) are understood
to be functions of the spatial coordinates x and y.

The phase plate in the Fourier plane (see Fig. 4.1) imprints a phase shift α on the
unscattered light with respect to the scattered light. Positive (negative) α is generated
by a phase plate that advances (retards) the unscattered light by propagation through
a bump (dimple). Using E = Esc + eiαEusc the intensity at the imaging plane
IPCI ∝ |E |2 is given by

IPCI = I0 |t eiφ − 1 + eiα|2

= I0

(
t2 + 2 − 2 cos(α)− 2t

√
2 − 2 cos(α) cos

(
φ + α

2

))
. (4.7)

Phase shifts of α = ±π/2 are most favorable, because in these cases the dependence
between IPCI/I0 and φ is almost linear. Furthermore, a large dynamic range of up to
IPCI/I0 � 6 is covered before the signal rolls over (see Fig. 4.1b).2 For these values
of α the phase contrast signal is given by

IPCI = I0

(
t2 + 2 − 2

√
2t cos

(
φ ± π

4

))
. (4.8)

2 Reference [9] points out that a phase shift of α = ±π/3 ensures even better linearity of IPCI/I0
in particular for small φ. However, the cost is a limitation of the dynamic range to IPCI/I0 � 4.
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This expression can be further simplified in the limit of small optical densities (cor-
responding to small phase shifts φ) and full transmission (t → 1) to

IPCI = I0

(
t2 − 2t + 2 ± 2tφ

)
→ I0 (1 ± 2φ) . (4.9)

Small optical density can experimentally be enforced by choosing a sufficiently large
detuning �. Far-detuned phase-contrast imaging is linear in φ and, consequently,
linear in the column density ncol(x, y) (see Eqs. 4.3 and 4.4). Furthermore, Eq. 4.9
indicates that experimental images have a background corresponding to I0, which
must be subtracted in the evaluation process.

Outside of the linear regime the phase-contrast signal I/I0 is a periodic function of
the optical density (see Eq. 4.8), whereas absorption imaging saturates for large opti-
cal densities (see Eq. 4.5). Nonlinear phase-contrast imaging has been successfully
applied for thermometry in Bose-Einstein condensates [9] .

Linear phase-contrast imaging with a retarding phase plate α = −π/2 is used in
Chap. 6 to detect the in-situ density distribution of potassium atoms. Blue-detuning of
the imaging laser is induced by shifting the respective atomic transition with a strong
magnetic field (see Appendix B). Details on the experimental setup are provided in
Sect. 5.5.

4.2 Observables

Based on the recorded images, experimental observables are defined that yield infor-
mation about the many-body quantum state. In this section, we focus on observables
that characterize many-body states of ultracold atoms in simple cubic optical lattice
potentials. We discuss the in-situ density distribution as well as the distributions of
the momenta and the quasi-momenta. On the basis of the momentum distribution, we
introduce and analyze measures of bosonic coherence—the visibility and the frac-
tion of coherent atoms—that are used in Chap. 7–9. While these quantify first-order
correlations, second-order correlations can also be extracted from the quantum noise
in images of the momentum distribution, which, for example, provides information
on the spatial ordering of atoms.

To simplify the discussion we consider a homogeneous simple cubic lattice, in
which all sites are equivalent. Furthermore, we make the idealizing assumption that
time-of-flight imaging transforms the in-situ real-space density distribution into the
momentum distribution. In the experimental realization, this would require a purely
ballistic expansion of the atom cloud after the release from the trap and a very long
time of flight. Both requirements are rather hard to fulfill [1, 15], but the visibility
and the fraction of coherent atoms are rather insensitive to the resulting deviations
[15]. More care must be taken for observables that are sensitive to the fine details of
the momentum distribution, for example, when the absolute degree of coherence in
a bosonic system is to be determined [16].

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_9
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4.2.1 In-Situ Density Distribution

We start by considering the general in-situ density distribution of a quantum gas
in an optical lattice. Due to the periodic potential the single-particle states can be
expressed in terms of the Wannier functions w(n)(r − r j ) (where r j = 2π/a n j

with lattice constant a and n j being a three-dimensional vector of integers labeling
lattice site j) (see Sect. 2.2.4). If all atomic population is contained in the first lattice
band, the index n can be dropped and the field operator can be expanded according
to ψ̂(r) = ∑

j w(r − r j )â j . The annihilation operator â j destroys a particle in

the Wannier state w(r − r j ), while the field operator ψ̂(r) as a whole annihilates a
particle at position r. Using the definition of the in-situ real space density distribution
we obtain

n(r) = 〈ψ̂†(r)ψ̂(r)〉 =
∑

ij

w∗(r − ri ) w(r − r j )〈â†
i â j 〉. (4.10)

Here, the expectation value 〈â†
i â j 〉 is understood to be taken within the many-body

quantum state |�〉 in second quantized form, which can generally also feature a time
dependence. When the off-diagonal (i �= j) correlations 〈â†

i â j 〉 vanish, correspond-
ing to the absence of long-range phase coherence, the density distribution turns into
a simple sum

∑
j n̄ j |w(r − r j )|2 of Wannier functions weighted by the local filling

n̄ j = 〈n̂ j 〉.
The locally resolved detection of the in-situ density is not possible with com-

mon imaging techniques due to the small spacing between lattice sites (a ≈ 400
μm). Only recently quantum gas microscopes have been demonstrated that employ
fluorescence imaging and permit single-site and and single-atom resolved detec-
tion [17–19]. However, even without ultra high resolution the detection of the
real space density can yield valuable information [6, 7, 20, 21]. For example,
the full three-dimensional density distributions n(r) of imbalanced Fermi mix-
tures have been reconstructed from the recorded column density ncol(x, y) by
exploiting the symmetries of the harmonic trap in an inverse Abel transforma-
tion [12]. Furthermore, the first direct images of the shell structure in a bosonic
Mott insulator have been obtained via in-situ absorption imaging [22, 23] (compare
Sect. 3.2.2).

In Chap. 6, in-situ phase-contrast images of fermionic spin mixtures in an
optical lattice are recorded (see Fig. 6.5b). We measure the radius of the col-
umn density as a function of the external trapping potential and use these data
to extract the global compressibility of the many-body quantum state. The com-
pressibility permits a direct distinction between metallic (compressible) and insu-
lating (incompressible) phases and reveals a fermionic Mott insulator for strong
interactions.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_3
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_6


90 4 Detection and Observables

4.2.2 Momentum Distribution

The measurement of momentum distributions has a very long tradition in the field
of ultracold atoms. The time-of-flight technique, in which all trapping potentials
are abruptly switched off before atoms undergo ballistic expansion, enabled the
first unambiguous detection of Bose-Einstein condensates [24, 25]. It was equally
important in the first detection of the superfluid to Mott insulator transition. Here,
the loss of contrast in a lattice Bose gas revealed the suppression of long-range
coherence as an indicator for the localization of atoms [26] (see Sect. 3.2). Within
this thesis the momentum distribution is mostly used for the analysis of bosonic
many-body quantum states. Therefore, we use bosonic operators â and â† in the
following derivation, although the relations also account for fermions.

In order to derive the atomic density in momentum space, we first Fourier trans-
form the field operator ψ̂(r) and obtain

ψ̂(k) =
∑

j

â j

∫
d3r e−ik·r w(r − r j ) =

⎛

⎝
∑

j

â j e
−ik·r j

⎞

⎠w(k) ≡ âkw(k),

(4.11)
wherew(k) is the Fourier transform of the Wannier function. Furthermore, the anni-
hilation operator for an atom at momentum k is given by âk = ∑

j â j e−ik·r j . With
the above relations the momentum distribution is given by its definition

n(k) ≡ 〈ψ̂(k)†ψ̂(k)〉 = |w(k)|2
∑

ij

e−ik·(ri −r j )〈â†
i â j 〉. (4.12)

To further elucidate Eq. 4.12, we divide it into diagonal (i = j) and off-diagonal
(i �= j) terms according to

n(k) = |w(k)|2
⎛

⎝
∑

j

〈n̂ j 〉 +
∑

i �= j

e−ik·(ri −r j )〈â†
i â j 〉

⎞

⎠

→ |w(k)|2
⎛

⎝
∑

j

〈n̂ j 〉 + |〈â〉|2
∑

i �= j

e−ik·(ri −r j )

⎞

⎠ .

(4.13)

The squared modulus ofw(k) gives rise to an envelope of the momentum distribution,
the so-called Wannier background. In the absence of phase coherence (〈â†

i â j 〉 = 0
for all i �= j) the momentum distribution is given by this background, whose width
is inversely proportional to the width of the on-site Wannier function w(r) owing to
the Fourier relation. If phase coherence is perfectly established, the single-particle
density matrix 〈â†

i â j 〉 will take finite values even for lattice sites i and j that are far
away from each other. In this case, the width of the individual interference peaks is
inversely proportional to the system size. For an infinitely large theoretical system
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Fig. 4.2 Momentum distribution of 87Rb atoms during collapse and revival dynamics in a 41 Erec
deep lattice. The data show three points of the evolution at hold times of a 40 μs (start), b 120
μs (collapse) and c 320 μs (partial revival). The data are taken from the set in Fig. 7.8. While the
overall atom number is almost constant, the off-diagonal correlations vary in time and result in the
emergence or suppression of interference

δ-peaks are obtained. For partial coherence the width of the interference peaks is
inversely proportional to the coherence length.

In order to make the replacement 〈â†
i â j 〉 → |〈â〉|2 in the second step of the

above equation, we follow a Gutzwiller ansatz, in which the many-body quantum
state |�〉 factorizes into equivalent on-site wavefunctions (compare Sect. 7.2.1). In
this case, all information on the phase coherence of the system is contained in the
squared modulus of the field amplitude |〈â〉|2, which determines how strongly the
interference term

∑
i �= j e−ik·(ri −r j ) contributes.

Measurements of the bosonic phase coherence play a central role in Chaps. 7–9.
Specifically, the collapse and revival dynamics of coherent bosonic states require a
robust observable for the dynamical evolution of the coherence (see Fig. 4.2). As a
consequence of Eq. 4.13, the contrast of the interference pattern forms a measure for
|〈â〉|2. We make use of two experimental observables, the visibility (Chap. 7) and the
fraction of coherent atoms (Chap. 9), that yield a maximal value when all atoms are
found in the interference peaks and vanish when all atoms are part of the featureless
background.

4.2.2.1 Visibility

In analogy to typical definitions of contrast, the visibility V of a bosonic interference
pattern is defined by [27]

V = Nmax − Nmin

Nmax + Nmin
. (4.14)

Nmax denotes the total number of atoms inside four boxes around the first order
interference peaks and Nmin the total number of atoms in a set of identical boxes that
are rotated by 45◦ around the central peak (see inset of Fig. 4.3a).

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_9


92 4 Detection and Observables

V
is

ib
ili

ty
, 

Coherence, â 2/n

1.0

0.8

0.6

0.4

0.2

0
0 1.00.80.60.40.2

of 2hk40%
of 2hk30%
of 2hk20%
of 2hk10%
of 2hk1% N

co
h 

/N
to

t

Coherence, ⎢〈⎢〈 â 〉⎢〉⎢ 2/n

0 1.00.80.60.40.2

0.8

0.6

0.4

0.2

0

(b)(a)

nmax

nmin2hk
nmax

nmin2hk

nnorm

of 2hk40%
of 2hk30%
of 2hk20%
of 2hk10%
of 2hk1%

Fig. 4.3 Comparison of visibility and fraction of coherent atoms as measures for bosonic coherence.
Based on simulated momentum distributions of a two-dimensional lattice system (11 × 11 sites)
with a known value of |〈â〉|2/n̄ (n̄ is the mean on-site filling) the experimental observables are
extracted: a The visibility is defined by V = (nmax − nmin)/(nmax + nmin) and b the fraction of
coherent atoms follows from (Nmax − nmin)/nnorm. Both quantities are evaluated for several sizes
of the nmax- and nmin-counting boxes given in units of the Brillouin zone width 2�k

4.2.2.2 Fraction of Coherent Atoms

The fraction of coherent atoms is obtained from an experimental image as follows:
First, the Wannier background is fitted by a Gaussian and subtracted from the image.
In the resulting image, the atom numbers in boxes that contain the central, first-
and second-order coherence peaks are counted and summed up to obtain Ncoh. The
total atom number Ntot is the sum of Ncoh and the atoms contained in the Gaussian
background. The ratio Ncoh/Ntot yields the fraction of coherent atoms [28].

Figure 4.3 shows a simulation that elucidates the exact relation of the visibility and
the fraction of coherent atoms to the theoretical coherence |〈â〉|2. For this purpose, the
momentum distribution of a small two-dimensional lattice is calculated as a function
of |〈â〉|2. From the resulting numerical momentum distributions the visibility V and
Ncoh/Ntot are derived, as if they were experimental images (see insets of Fig. 4.3).
Furthermore, the dependence of the observables on the size of the evaluation boxes
is investigated.

As expected, both observables have a strictly monotonic relation to the coher-
ence. The visibility shows a nonlinear behavior with a strong enhancement for weak
coherences (see Fig. 4.3a). This can be helpful, if a high sensitivity to small values
of |〈â〉|2 is required. In fact, the nonlinearity has helped us to identify the beat sig-
nal in the quantum phase revival dynamics in Chap. 7 (see Fig. 4.2 for exemplary
images). Nevertheless, it bears the risk of frequency mixing in the evaluation of the
experimental collapse and revival time traces. The nonlinearity is strongest for small
evaluation boxes and the relation becomes increasingly linear for larger ones.

The fraction of coherent atoms is an almost perfectly linear function of |〈â〉|2
(see Fig. 4.3b). While the absolute values of Ncoh/Ntot show a strong variation as a
function of the box sizes, the linearity is always preserved. The linear behavior makes
it harder to detect small values of the coherence, but it is conceptionally favorable

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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for the evaluation of quantum phase revival measurements: The experimental time
traces and the time-dependent oscillating coherence |〈â〉(t)|2 only differ by a fixed
factor. Therefore, the Fourier transform of the experimental trace precisely yields the
spectral content of the quantum phase revival dynamics contained in |〈â〉(t)|2. The
fraction of coherent atoms is extensively used in the analyses of Chap. 9.

When fermionic atoms are released from optical lattices, they also show an inter-
ference pattern (see Sect. 9.3). As in the case of bosonic atoms, the width of the
interference peaks contains information on the delocalization of atoms and, conse-
quently, their coherence length [29] (see Fig. 9.11a, b). Necessarily, the interference
peaks are broad, because fermions cannot macroscopically occupy delocalized Bloch
states due to Pauli’s principle. As shown in Fig. 3.7 only few of the lowest lying
single-particle states show a notable delocalization.

4.2.3 Noise Correlations

In strongly correlated quantum phases, such as a bosonic Mott insulator, the atoms are
localized at individual lattice sites: The off-diagonal elements of the single-particle
density matrix 〈â†

i â j 〉 vanish, which corresponds to the absence of long-range phase
coherence. When the potential is switched-off to obtain a time-of-flight image, all
atoms leave the lattice individually and no interference occurs. The resulting momen-
tum distribution merely shows the practically featureless Wannier background (see
above). Many of the intriguing strongly correlated phases that are predicted to emerge
within ultracold atom systems suffer from this problem, for example, antiferromag-
netically ordered states as well as spin- and charge density waves.

While the momentum distribution measures first-order correlations 〈ψ̂(k)†ψ̂(k)〉,
it is also possible to extract second-order density-density correlations from experi-
mental images [30]. The density-density correlations in momentum space are theo-
retically defined by

C(k,k′) ≡ 〈n̂(k)†n̂(k′)〉 = 〈ψ̂(k)†ψ̂(k)ψ̂(k′)†ψ̂(k′)〉, (4.15)

which is evaluated within the many-body state of interest |�〉 in second quan-
tized form. Altman and collaborators [30] have shown that such correlations can
be extracted from the atomic shot-noise in images of the momentum distribution
using the prescription [31]

C(d) =
∫

d2r 〈ncol(r − d/2)ncol(r + d/2)〉∫
d2r 〈ncol(r − d/2)〉〈ncol(r + d/2)〉 , (4.16)

where ncol(r) denotes the column density recorded in experimental images. The
coordinate r = (x, y) in the image corresponds to a momentum k = mr/(�t),
where t is the time-of-flight and m the atomic mass. In the prescription 4.16 the

http://dx.doi.org/10.1007/978-3-642-33633-1_9
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Fig. 4.4 Quantum noise correlations for bosonic and fermionic atoms. a When two identical atoms
are released from neighboring lattice sites, they can reach the independent detectors via two, fun-
damentally indistinguishable paths. The respective probability amplitudes interfere constructively
(destructively) for bosons (fermions) corresponding to the upper (lower) sign. The correlation
between the detectors is sinusoidally modulated as a function of the distance d. For more than two
atoms the correlations evolve from a sinusoidal modulation to narrow peaks, in analogy to optical
diffraction from a grating with an increasing number of slits. b Experimental noise correlations of
a 87Rb Mott insulator released from a three-dimensional optical lattice (Vlat = 32 Erec). About 30
images have been averaged. The position of the correlation peaks with a periodicity 
 = ht/(ma)
resembles the in-situ order with a lattice constant a

angled brackets 〈. . .〉 do not denote a quantum mechanical expectation value, but
averaging over an ensemble of independently acquired images.

The emergence of correlation peaks for certain distances d can reveal the hid-
den order in strongly correlated many-body quantum states as well as the quantum
statistics of the underlying particles. For example, a Mott insulator of bosons and a
band insulator of spin-polarized fermions have identical in-situ density and momen-
tum distributions. In both cases, correlations appear at locations d that correspond
to reciprocal lattice vectors with the periodicity


 = ht

ma
= t

m
2�k, (4.17)

where k = 2π/λ is the wave vector of the lattice light with wavelength λ. While
bosons show a positive signal indicating bunching [31, 32], the antibunching of
fermions is revealed by a negative signal (see Fig. 4.4) [5, 33].

Noise correlation analysis has been proposed as a helpful tool for the identification
of antiferromagnetically ordered phases, where doubling of the unit cell (see Fig. 3.6)
will lead to additional correlation peaks at positions with the periodicity 
/2 [34].
Similar signatures are expected for the detection of density waves [30] and supersolids
[35]. The proof of principle that noise correlations can identify modulated in-situ
densities has already been provided by the detection of patterned loading of an
optical superlattice [36].

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Fig. 4.5 Brillouin zone mapping reveals the quasi-momentum distribution for a noninteracting spin
mixture of 40K in a 8 Erec lattice. While the overall atom number is approximately constant, the
filling of the Brillouin zone varies as a function of the external harmonic confinement corresponding
to aω⊥ = 2π×46 Hz, b 2π×90 Hz and c and 2π×157 Hz. For the strongest harmonic confinement
the first Brillouin zone is homogeneously filled and population in higher Brillouin zones is negligible.
This observation is compatible with the formation of a band insulator in the center of the trap, which
is independently confirmed by a cloud size measurement. (Images are selected from the black data
in Fig. 6.6)

Based on second-order correlations, we devise a novel detection scheme for the
Schrödinger cat state that is expected to arise in bosonic collapse and revival dynamics
(see Sect. 7.4) [28, 37, 38]. At the time of the collapse (see for example Fig. 4.2b) the
formation of an on-site superposition of coherent states is expected, which we show
to lead to characteristic k/-k quantum correlations in the momentum distribution. The
analysis of k/-k correlations has also been proposed to reveal the Cooper-pairing in
momentum space of the fermionic BCS state [30]. Correlations between opposite
momenta, albeit of classical nature, have already been observed after the dissociation
of weakly bound Feshbach molecules [39].

4.2.4 Quasi-Momentum Distribution

While the lattice is abruptly switched off for the measurement of the momentum
distribution, the quasi-momentum distribution can be revealed when the lattice is
ramped down on a time scale that is adiabatic with respect to the band gap, but fast with
respect to tunneling. In this case the band gaps become continuously smaller until the
free particle dispersion is reached (see Sect. 2.2.3). The Bloch states are adiabatically
transformed into the corresponding free-space plane waves, whose momenta p are
mapped in time-of-flight expansion. Population of the first band is expected to lie
within the first Brillouin zone of the reciprocal lattice [40, 41] and population of
higher bands n analogously maps to higher Brillouin zones (n − 1)�k ≤ |p| ≤ n�k,
where k = 2π/a.

At first sight, Brillouin zone mapping seems to be an ideal tool to distinguish
metallic and band insulating phases of noninteracting fermions [29] (see Fig. 4.5). A
box-shaped Fermi surface is indeed expected when the first band is fully occupied
and forms a band insulator (see Sect. 3.3.3). However, in practice, the Fermi surface
is smeared out, because the spatial variation of the filling in the underlying harmonic

http://dx.doi.org/10.1007/978-3-642-33633-1_6
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trap corresponds to a local variation of the band filling. Additionally, Brillouin zone
mapping only reveals the relative population of Bloch states. Therefore, experimental
observation of a homogeneously filled Brillouin zone is compatible with a band
insulator. But it is not a sufficient condition, because a sample with an irregular
arrangement of localized atoms or a Mott insulator have the same quasi-momentum
distribution as a zero-temperature band insulator. Nevertheless, in combination with
further observables (for example the in-situ cloud size) Brillouin zone mapping can
yield useful information on the many-body quantum state.

In Chap. 6 we map the quasi-momentum distributions of a noninteracting spin
mixture of fermions. Therefore, we use the fermionic operators ĉ jσ and ĉ†

jσ with

σ ∈ {↑,↓} and the fermionic form of the field operator ψ̂(r) = ∑
jσ w(r − r j )ĉ jσ

in the following derivation. In analogy to Eq. 4.11, the field operator can be formally
expressed in quasi-momentum space as ψ̂(q) = ĉqσw(q), where the annihilation
operator for an atom in Bloch state q and spin state σ is given by

ĉqσ =
∑

jσ

ĉ jσ eiq·r j . (4.18)

By definition, the quasi-momentum distribution for a spin state σ is given by the
occupation of Bloch states

〈n̂qσ 〉 = 〈ĉ†
qσ ĉqσ 〉 =

∑

ij

e−iq(ri −r j )〈ĉ†
iσ ĉ jσ 〉. (4.19)

As our imaging techniques do not distinguish the spin states, the observed distribution
corresponds to 〈n̂q〉 = 〈n̂q↑〉 + 〈n̂q↓〉. Under restriction to the first Brillouin zone
(|q| ≤ �k) this yields a simple relation between the momentum distribution (Eq. 4.12)
and quasi-momentum distribution (Eq. 4.19)

n(q) = |w(q)|2 〈n̂q〉. (4.20)

The spatial position of the atomic density in the experimental image relates to the
quasi-momentum via r = q�t/m, where t is the time-of-flight and m the atomic
mass. Relation 4.20 is utilized in Sect. 9.3, where the momentum distribution of
spin-polarized fermions is used to extract information on the quasi-momentum
distribution.
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Chapter 5
Experimental Apparatus

This chapter summarizes the experimental sequence and the techniques used to
produce, manipulate and probe ultracold bosonic and fermionic quantum gases in our
setup. Many of the applied cooling and trapping techniques are fairly standard and
are only described in passing [1]. More emphasis is put on peculiarities of our setup,
such as the optically plugged magnetic quadrupole trap, the combined trapping in a
red-detuned dipole trap and a blue-detuned optical lattice as well as phase-contrast
imaging. Further details on the experimental setup can be found in the Ph.D. theses
of Tim Rom [2] and Thorsten Best [3].

5.1 Overview of the Setup and Experimental Sequence

In the following we briefly outline the experimental sequence, which is used to create
quantum degenerate clouds of bosonic 87Rb and fermionic 40K. The relevant energy
levels and transitions are summarized in Fig. 5.1 and a cross-sectional view of the
apparatus is displayed in Fig. 5.2.

• Two-species magneto-optical trap: About 3×109 87Rb atoms and 2×107 40K
are captured and laser cooled in a vapor cell magneto-optical trap (MOT) [4].
Commercial rubidium- and homemade potassium-dispensers are used as atom
sources. The latter ones contain enriched potassium with 7 % of 40K. The dis-
pensers operate in a pulsed mode: Atoms are only released during the MOT phase
of the experimental cycle, which efficiently minimizes the background pressure
in the MOT chamber. The duration of the MOT phase is dominated by a loading
time of up to 14 s for 40K, while 87Rb is rapidly captured within the last 4 s or less.
The largest atom numbers in the two-species MOT are obtained by displacing the
rubidium and potassium cloud with respect to each other using slightly imbal-
anced laser intensities. This reduces the overlap and suppresses heteronuclear
atom loss via light-induced collisions.

S. Will, From Atom Optics to Quantum Simulation, Springer Theses, 99
DOI: 10.1007/978-3-642-33633-1_5, © Springer-Verlag Berlin Heidelberg 2013
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• Molasses: The MOT is followed by a short molasses phase (10 ms), during which
the magnetic field is switched off and the laser detuning is shifted further to the
red. This mostly affects the rubidium cloud, reaching sub-Doppler temperatures
of about 50μK, while potassium essentially remains at the Doppler temperature
of about 150μK [2].

• Optical pumping: Using σ+-polarized light at a weak homogeneous magnetic
field, the atoms are actively transferred into weak-field seeking states that are
magnetically trappable. Within 400μs rubidium is pumped to the |F,m F 〉 =
|2,+2〉 state by applying light on the |F = 2〉 → |F ′ = 2〉 and |F = 1〉 →
|F ′ = 2〉 transitions, while potassium is transferred to the |F,m F 〉 = |9/2,+9/2〉
state by simultaneously driving the |F = 9/2〉 → |F ′ = 9/2〉 and |F = 7/2〉 →
|F ′ = 9/2〉 transitions. At this point rubidium and potassium are prepared in
stretched hyperfine states having the same magnetic moment μB. This ensures
good overlap in the magnetic trap that is crucial for proper thermalization during
sympathetic cooling. Furthermore, spin-changing collisions that can lead to atom
loss and heating are efficiently suppressed.

• Magnetic transport: After optical pumping the atom clouds are transferred into
a mode-matched magnetic quadrupole trap [2, 5] and adiabatically compressed
within 200 ms to a vertical trap gradient of 100 G/cm. Then, the rubidium and
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potassium clouds are transferred from the MOT chamber to an ultra-high vacuum
(UHV) glass cell over a distance of almost 40 cm (see Fig. 5.2). The transport is
performed within 2 s by using a chain of quadrupole coil pairs, whose currents
are cleverly ramped to smoothly move the clouds with a constant quadrupole
field through the vacuum chamber [2, 6]. The chamber design allows for a large
pressure gradient between the MOT and the UHV glass cell, where good optical
access from all six directions is achieved.

• Sympathetic cooling in a plugged quadrupole trap: At the end of the transport
the atoms are captured in a powerful quadrupole trap (see Fig. 5.2). In order
to perform efficient cooling without Majorana spin flips [7, 8], a focussed blue-
detuned laser along the z-axis prevents the atoms from reaching the magnetic field
zero in the center of the quadrupole field (see Sect. 5.2). Rubidium is evaporatively
cooled by applying a slow radio-frequency (RF) sweep, which continuously flips
the most energetic atoms into untrapped Zeeman levels. Potassium is almost not
affected by the RF sweep and sympathetically cooled by thermalization with the
rubidium atoms. At the end of typically 8 s of RF evaporation 10 × 106 87Rb and
up to 2×106 40K atoms are in thermal equilibrium at a temperature of about 2μK.

• Cooling in a crossed dipole trap: Within 200 ms the two pre-cooled clouds are
smoothly transferred into a pancake-shaped crossed dipole trap (see Sect. 5.3).
The quadrupole field is continuously transformed into a homogeneous offset
field at 13.6 G. Using Landau-Zener microwave and RF sweeps rubidium and
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potassium are transferred into the absolute ground states |F,m F 〉 = |1,+1〉 and
|F,m F 〉 = |9/2,−9/2〉, respectively. A short pulse of imaging light is used
to clean out the few remaining rubidium atoms in the F = 2 manifold. By
continuously reducing the dipole trap depth, quantum degeneracy is achieved
for both species within about 4 s. Typically, a quasi-pure Bose-Einstein conden-
sate (about 3 × 105 atoms) coexists with a spin-polarized Fermi cloud (about
3 × 105 atoms) at a temperature of slightly below T/TF = 0.2. The balance
between bosons and fermions can be controlled over a wide range by adjusting
the initial MOT parameters. This cooling sequence is used in the experiments
with Bose-Fermi mixtures (see Chaps. 8 and 9).

• Cooling towards a fermionic spin mixture: When quantum degenerate spin
mixtures of fermions are needed (see Chap. 6), early during evaporation in the
dipole trap 50 % of the potassium atoms in the |F,m F 〉 = |9/2,−9/2〉 state are
transferred into the |9/2,−7/2〉 state. This is done by means of a Landau-Zener
sweep at high magnetic fields, where the Zeeman levels are well separated, either
at 165 or 220 G, which is below or above the Feshbach resonance (see Sect. 2.3.5).
While the Landau-Zener sweep actually creates a coherent superposition of the
two spin states, collisions and inhomogeneities of the external fields lead to rapid
decoherence that generates a statistical mixture of the spin states [9, 10]. During
evaporation all rubidium atoms are used as a coolant until the trap bottom is
crossed (see Sect. 5.3). From this point on, the potassium mixture is cooled via
further evaporation and internal thermalization to temperatures down to about
T/TF = 0.1. This cooling sequence typically takes about 6 s.1

The details of the experimental sequence after preparation of the quantum degen-
erate gases depend on the intended experiments and are described in each of the
Chaps. 6–9 individually. Typically, the dipole trap is adjusted to provide the desired
harmonic confinement and a homogeneous magnetic field is used to tune interatomic
interactions via a Feshbach resonance.2 Then the optical lattice potential is ramped up
and further experimental manipulations on the atom clouds are carried out. Finally,
absorption or phase-contrast images of the atomic distribution are recorded either
after time-of-flight expansion or in-situ. In one experimental cycle images are usually
taken along the y- or the z-axis or both (for directions see Fig. 5.2).

The following sections focus on the nonstandard techniques and peculiarities of
the experimental setup:

1 It is very convenient that the mixture is almost perfectly balanced after evaporation, even if the
initially prepared spin mixture is not exactly 50–50 %. This is caused by the fact that both spin states
experience the same dipole trap depth and tend to form an identical Fermi sea. If one spin state has
the majority, the excess spins evaporate predominantly.
2 Details on the creation, stabilization and calibration of magnetic fields for Feshbach resonances
in our setup are provided in the Ph.D. thesis of Thorsten Best [3].

http://dx.doi.org/10.1007/978-3-642-33633-1_8
http://dx.doi.org/10.1007/978-3-642-33633-1_9
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_9


5.2 Optically-Plugged Magnetic Quadrupole Trap 103

magnetic
quadrupole

optically-plugged 
quadrupole trap

blue-detuned
laser

(a) (b)

I

I

Emag Vplug Emag +Vplug

Fig. 5.3 Optically-plugged magnetic quadrupole trap. a A coil pair with counterpropagating cur-
rents I creates a magnetic quadrupole field that vanishes at the trap center and increases linearly
in all directions. A blue-detuned laser is focussed along the symmetry axis. b Schematic of the
combined magnetic and optical potentials

5.2 Optically-Plugged Magnetic Quadrupole Trap

Neutral atoms in a weak-field seeking Zeeman sublevel can be trapped in inhomo-
geneous magnetic fields. For such states the spatially dependent Zeeman energy

Emag(r) = gF m FμB |B(r)| (5.1)

constitutes a conservative potential, where gF is the Landé g-factor for the hyperfine
state F , m F the projection of the angular momentum along the magnetic field axis
andμB the Bohr magneton. The resulting force is directed towards the magnetic field
minimum. Only if the atom moves slowly enough such that the magnetic moment
adiabatically follows the direction of the magnetic field, it stays in the weak-field
seeking sublevel and remains trapped [5].3

Considering a magnetic quadrupole potential (see Fig. 5.3), the adiabaticity con-
dition is impossible to meet at the center, where the magnetic field vanishes and
linearly increases in all directions. Here, atoms can undergo Majorana spin flips to
untrapped states and get lost from the trap. While this loss mechanism is negligible
for laser cooled atoms with a very low density, it becomes more and more severe,
when phase space-density increases during evaporation. In our setup, the Majorana
hole is plugged by focussing a blue-detuned laser beam along the symmetry axis of
the quadrupole field (see Fig. 5.3). The plug laser strongly prevents the atoms from
reaching the trap center. The resulting trapping potential has the shape of a cylindri-
cally symmetric torus in the horizontal plane with slight distortions in the vertical
direction due the influence of gravity.

For the magnetic part of this hybrid trapping geometry we use a coil pair, which
creates a field gradient B ′ of about 300 G/cm at a current of 35 A. This tightly confin-
ing potential offers excellent conditions for rapid thermalization and efficient sym-
pathetic cooling. The optical part is provided by a tapered amplifier seeded by a

3 Adiabaticity specifically means that the rate of change of the magnetic field direction θ must be
smaller than the Larmor frequency ωL: dθ/dt < Emag/� ≡ ωL.
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grating stabilized diode laser that operates at 760 nm. The focussed beam has a waist
of 20μm and a power of about 450 mW at the position of the atoms. The detunings
of 20 and 7 nm with respect to the D2-resonances of 87Rb and 40K, respectively, are
small enough to ensure a strongly repulsive force and large enough to suppress harm-
ful off-resonant excitation. The strong repulsion actually helps suppressing inelastic
photon scattering, because the atoms do not enter the high intensity part of the beam.
Nevertheless, care must be taken to prevent resonant photon scattering as diode lasers
typically have a broad background of amplified spontaneous emission spanning sev-
eral tens of nanometers across the whole gain profile [11]. Therefore, we filter out
any resonant light by placing two notch filters in the laser beam path.4

In view of our demands, the optically-plugged quadrupole trap has several advan-
tages compared to the Ioffe-Pritchard type QUIC trap that was originally installed in
the setup [2, 6]. First, the tight confinement allows for much faster RF evaporation
(8 s compared to 20 s) and at the same time higher atom numbers are reached at 2μK
(about a factor of 1.5 more for both species). Second, the atom clouds are positioned
exactly in the center of the glass cell on the symmetry axis of the quadrupole coil pair.
The higher symmetry ensures very good optical access to the atoms and minimizes
the risk of creating unwanted additional standing waves inside the glass cell with the
dipole trap or lattice beams. Third, the quadrupole coil pair allows to create large
homogeneous magnetic fields by switching to copropagating currents, which we use
to address Feshbach resonances. The coils are not arranged in perfect Helmholtz
configuration such that the resulting magnetic field has a non-vanishing curvature
at the center. However, the curvature does not drag the atoms, because they sit on
the symmetry axis. Additional technical details on the optically-plugged trap can be
found in reference [3].

5.3 Crossed Dipole Trap

The optical dipole trap is formed by two elliptical laser beams that cross each other in
the horizontal xy-plane at an angle of about 90◦ (see Fig. 5.4). The short axis of both
beams is aligned along the direction of gravity, which generates a pancake-shaped
trap. The trap laser5 operates at 1,030 nm being far red-detuned both for rubidium and
potassium. The polarizations of the beams are chosen orthogonally and a frequency
difference of 160 MHz is imprinted using acousto-optical modulators in order to
suppress and temporally average unwanted interference. The beam waists are about
whor,x = 140μm, wvert,x = 45μm and whor,y = 170μm, wvert,y = 70μm. The
different x- and y-beam parameters are compensated by appropriately adjusting the
power levels to yield a symmetric trapping potential in the horizontal plane (see
Fig. 5.4a). The power in the beams approximately follows the ratio Py/Px ≈ 2. The

4 StopLine single-notch filter, NF03-785E-25, by Semrock. The notch is tuned to the appropriate
wavelength range by changing the angle of incidence.
5 VersaDisk, by ELS Elektronik Laser System GmbH. Ytterbium:YAG disc-laser at 1,030 nm, 18 W,
single-mode operation with a linewidth of less than 5 MHz. Production and sales discontinued as
of 2010.
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elliptical beam shape results in a tight vertical confinement and ensures good overlap
of 87Rb and 40K in the presence of gravity (see Sect. 5.3.1).

In order to avoid the occurrence of standing waves, it is crucial to prohibit direct
backreflections of the beams from surfaces of the glass cell or any other optical
elements.6 In combination with geometrical constraints of the vacuum chamber, this
requirement is the reason for the surprisingly different waists of the x- and y-beam.
Furthermore, the beams are steered through the glass cell under angles of about 3◦
both in the vertical and horizontal direction. As an experimental check to make sure
that the potential is free of standing waves, we provoke Raman-Nath diffraction. To
this end, a Bose-Einstein condensate is released from the trap and a single dipole
beam is pulsed on with the maximal available power for a fewμs during time-of-flight
expansion. Our setup is optimized to show no perceptible diffraction peaks.

The optical dipole trap is slightly more red-detuned for 40K than for 87Rb. There-
fore, rubidium feels a slightly deeper potential. Neglecting the influence of grav-
ity, the ratio of the potential depths is calculated via Eq. 2.55 (see Appendix A for
atomic data) yielding VRb/VK ≈ 1.15. The corresponding ratio of trap frequencies
is given by

ωRb

ωK
=

√
VRb

VK

mK

mRb
≈ 0.727. (5.2)

6 When the fraction of backreflected intensity is ρ2, the modulation depth of the resulting standing
wave is 4ρ (see Sect. 2.2.2). Even a tiny fraction of ρ2 = 0.01 % backreflected intensity would lead
to a 4 % modulation!

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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5.3.1 Gravitational Sag

A good spatial overlap of rubidium and potassium is crucial for efficient thermal-
ization during sympathetic evaporative cooling, as well as for the preparation and
investigation of interacting Bose-Fermi mixtures in optical lattices (see Chaps. 8
and 9).

Gravity has a different influence on the potential landscape for 87Rb and 40K
owing to their different masses. Assuming a harmonic approximation in the vertical
direction of the trap (x = y = 0)

Vtot(0, 0, z) ≈ 1

2
mω2

z z2 + mgz, (5.3)

the minimum shifts with respect to the unperturbed potential by � = −g/ω2
z . The

mass dependence is contained in the trap frequencyωz (see Eq. 5.2). Both the absolute
gravitational sag � and the differential sag between the two species �Rb −�K can
be reduced by choosing a large vertical trap frequency ωz . This motivates the use
of strongly elliptical beams for the dipole trap as specified above. The shift of the
trap minimum in the experimental trap setup is illustrated in Fig. 5.5a based on an
accurate numerical ab-initio model of the potential.

Gravitational sag is essential to the sympathetic cooling scheme. On the one hand,
good spatial overlap is desired to ensure proper thermalization between rubidium
and potassium. On the other hand, the rubidium is supposed to be the coolant for
potassium: Rubidium should predominantly evaporate, while the potassium atoms
should ideally stay in the trap and become colder. At large beam powers, when gravity
does not play a role compared to the dipole potential, the trap is slightly deeper for

http://dx.doi.org/10.1007/978-3-642-33633-1_8
http://dx.doi.org/10.1007/978-3-642-33633-1_9
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87Rb (see above) in contrast to the desired evaporation scenario. However, when
the beam power is smaller than a certain critical value, gravity effectively reduces
the rubidium trap depth below the potassium trap depth (see Fig. 5.5b). At the same
time the differential sag remains small enough to ensure proper thermalization over
a wide range of powers. For the parameters in Fig. 5.5b, a Bose-Einstein condensate
and a degenerate Fermi gas with 3 × 105 atoms have a vertical extent of 9 and
25μm, respectively (compare Fig. 2.3). The corresponding differential sag of about
�Rb −�K ≈ 5μm is so small that the two clouds still have maximal overlap.

Figure 5.6 shows a measurement of the gravitational sag both for rubidium and
potassium together with the results from our numerical trap model. From extrap-
olation of the theoretical data we obtain a trap bottom of Ux = 0.116 V and
Ux = 0.061 V for rubidium and potassium, respectively, which is in excellent agree-
ment with independent measurements. The trap bottom of the crossed dipole trap
is a very sensitive measure for the overlap of the two dipole beams. Therefore, the
minimization of the trap bottom is a good strategy for the optimization of the beam
overlap during realignment (see Sect. 5.4.2).

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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5.3.2 Characterization

Typically, the extent of the quantum degenerate clouds is much smaller than the
waists of the dipole beams. Therefore, the crossed dipole trap can be approximated
by a harmonic oscillator in the vicinity of the central potential minimum. Compre-
hensive measurements of the corresponding harmonic trap frequencies are presented
in Fig. 5.7. The frequencies are obtained by inducing dipole oscillations of a spin-
polarized 40K cloud (see Fig. 5.7a). After displacement along the axis of gravity and
abrupt reduction of the beam power, oscillations of the cloud are initiated along the
z-axis. These also couple to the horizontal plane as a result of slight anharmonicities.
The atoms are observed after time-of-flight expansion, which reveals the oscillation
of the center-of-mass momentum. Time traces with several oscillation cycles are
recorded and fitted by a sinusoidal fit model (see Fig. 5.7a).

Figure 5.7b shows the trap frequencies as a function of the beam power. The
data is excellently reproduced by the numerical ab-initio model of the trap. For
higher beam powers the aspect ratio is approximately γ = ωz/ω⊥ ≈ 4, where
ω⊥ ≈ ωx , ωy . For lower beam powers the trap frequencies ωx and ωy extrapolate
to the origin following a square-root scaling as a function of the beam power, while
the vertical trap frequency ωz becomes quickly smaller when the trap bottom is
approached (see previous section). For the data at lowest power we find an aspect ratio
of γ ≈ 3.5.
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5.4 Three-Dimensional Blue-Detuned Optical Lattice

The blue-detuned optical lattice is one of the most important features of our experi-
mental setup. The section starts with a brief discussion of the pros and cons of differ-
ent lattice wavelengths for 87Rb and 40K. The reasons for us to choose blue-detuned
wavelengths (738 and 755 nm) are discussed. The main part deals with technical
requirements, newly developed alignment techniques and calibration methods for
the lattice depths and the underlying anticonfinement. The contents of this section
are essential to all experiments in this thesis.

5.4.1 What is the Best Lattice Wavelength?

At a given laser wavelength 87Rb and 40K generally feel a different dipole potential
owing to the differences in their electronic level structure. Calculated via Eq. 2.55
and shown in Fig. 5.8, this species-dependence offers a variety of interesting choices
for the lattice wavelength of the double-species system. Close to the atomic D1 and
D2 resonances the optical potentials diverge. In between the D-line doublets there
is a wavelength at which the lattice effectively vanishes, since the red detuning with
respect to D1 is compensated by the blue detuning with respect to D2. This destructive
interference is located at 768.97 and 790.03 nm for 40K and 87Rb, respectively. Those
wavelengths offer the intriguing possibility to create a lattice for one species that is
invisible to the other. Nevertheless, the relative proximity of these wavelengths to the
atomic resonances, particularly in the first case, bears the problem of strong inelastic
scattering of photons and potentially devastating heating [2]. As a rule of thumb, the
rate for inelastic scattering at a given lattice depth should not exceed about 10 mHz
in order to allow for realistic experimental hold times (about 100 ms).

Most experimental setups use a red-detuned optical lattice. Red detuning bears the
advantage that the lattice beams themselves provide confinement and hold the atom
clouds without the need of additional potentials (see Sect. 2.2.2). This convenience
comes at the cost that the underlying confinement changes as a function of the beam
intensity and cannot be independently varied.

In order to gain control of the underlying potential, we use an optical lattice that is
blue-detuned for both 87Rb and 40K. The copropagating red-detuned optical dipole
trap is used to compensate the anticonfinement of the lattice. This combination allows
to realize flexible confining potentials in a broad parameter range, including a homo-
geneous lattice. Our initial choice for the wavelength has been 755.50 nm, because
the lattice depths are equal for rubidium and potassium in units of the respective recoil
energy sB/sF = 1 (see Fig. 5.8b). These conditions are particularly convenient for
experiments with Bose-Fermi mixtures, because the Wannier functions of rubidium
and potassium have identical shape and the tunneling strengths differ by a constant
factor that is given by the mass ratio J B/J F = mF/mB. This wavelength is used in
Chap. 8.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_8
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lattice has opposite detunings for the two species (gray shading). Dashed lines indicate the position
of the respective D1 and D2 lines

In measurements with spin mixtures of fermionic 40K enhanced losses of doubly
occupied lattice sites and, even more severely, of weakly bound Feshbach molecules
have been observed at 755.50 nm. This problem precluded dependable measure-
ments with Fermi-Fermi mixtures and required a solution. The losses are induced
by radiative collisions [12], in which the absorption of a lattice photon excites the
molecule to an unbound state in the continuum. Phenomenologically, we found that
this process is efficiently suppressed for larger detunings� following a 1/�2 scaling
(see Sect. 6.2.1 and appendix of [13]). Additionally, our investigations showed that
the loss rate has local minima at certain intermediate wavelengths. Here, the Condon
point of the transition to the continuum state hits a node of the spatial wavefunction
of the Feshbach molecule [13]. Eventually, we have opted for a lattice wavelength at
about 738 nm being a compromise between the suppression of radiative collisions
and available laser power ensuring sufficient lattice depths both for 87Rb and 40K.7

This wavelength is used in Chaps. 6, 7 and 9.

5.4.2 Adjustment, Tweaking and Calibration

The joint alignment of the red-detuned dipole trap and the blue-detuned lattice is a
delicate task: It is crucial to precisely overlap the potential maxima of the anticon-
fining lattice beams with the potential minimum of the dipole trap. Already slight

7 MBR 110, single-frequency Ti:Sapphire laser, about 3 W output power at the lattice wavelength
(738 nm), pumped by Verdi V18, diode-pumped solid-state laser at 532 nm, 18 W output power, by
Coherent, Inc.

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_9
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deviations result in an anharmonic combined potential. Large deviations can lead to
potential landscapes with several local minima and maxima, for example a Mexican
hat potential, precluding a reliable comparison of experimental results to theoretical
models.

The technical demand yields a high gain: The combination of the two opti-
cal potentials allows to tune the harmonic confinement independent from the lat-
tice depths. This important feature opens the door to new classes of equilibrium
and nonequilibrium experiments with ultracold quantum gases, as demonstrated in
Chaps. 6, 7 and 9. The three orthogonal lattice axes are formed by round Gaussian
laser beams, which have a waist of 170(5) μm at the position of the atoms.

5.4.2.1 Technical Requirements

Several independent laser beams must maintain an accurate alignment with respect to
each other. Therefore, all parts of the beam paths should have a high passive stability.
A number of measures are taken to achieve this goal: Concerning the optomechanics,
all components are mounted on monolithic pedestals, which are adapted to a beam
height of 6.8 cm above the surface of the optical table. When beam paths leave the
standard height, very rigid second layers or lead-filled boxes are used as mounts for
the optics. These measures mainly help to suppress mechanical oscillations.

In order to achieve a good long-term stability of the alignment, the temperature
at the experiment table should be stable. Even without active temperature regula-
tion, this goal is approached by removing all heat sources from the vicinity of the
experimental setup, apart from those that can intrinsically not be removed (magnetic
coils, beam dumps, cameras, etc.). Additionally, the experiment table is surrounded
by a protective curtain that minimizes air circulation across the setup. The curtain
is rarely opened during operation of the experiments. Remote-controlled motorized
mirror mounts (see below) allow to keep it closed even during alignment procedures.

Because the optical lattice is created by a coherent single-mode laser, it is a per-
sistent challenge to avoid false reflections that can lead to the formation of unwanted
additional standing waves. For example, the direct backreflection of only 0.01 % of
the incoming intensity leads to a standing wave with 4 % modulation depth. However,
the glass cell (see Fig. 5.2) is not antireflection coated from the inside and reflections
of about 4 % must be expected. Therefore, the formation of unwanted standing waves
can only be safely avoided by making it geometrically impossible. Similar to the
dipole trap (see Sect. 5.3) the lattice beams are steered through the glass cell under
angles of at least 3◦. We have further identified several optical elements in the beam
paths, such as beam cubes, standard mirrors and dichroic optics, that produce false
reflections, for example from their backside. These problems are addressed either by
avoiding the use of the respective elements (for example, dichroic optics), minimiz-
ing their use whenever possible or blocking the reflections when other solutions are
impractical.

All beam paths that need precise alignment (lattice, dipole trap and blue-plug)
are equipped with a piezo-actuated mirror mount. These mounts are placed at

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_9
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strategically good positions to ensure a high degree of sensitivity. They are mechan-
ically sturdy and feature reliable actuation.8

5.4.2.2 Full Alignment Procedure

The accuracy of the beam alignment is of paramount importance to the experiments
of this thesis. In the following, we summarize the individual steps:

• Optically-plugged quadrupole trap: The first step is to move the plug beam
into the trapping region of laser-cooled rubidium atoms inside the quadrupole
trap. To this end, an absorption image of the atom cloud is recorded and its center
position is fitted. The plug beam is directly viewed on the CCD camera and stirred
to the fitted position. Owing to chromatic shifts this is only a rough alignment,
but usually the beam hits the cloud edge. Then, the repulsive force of the blue-
detuned light can be identified as a local minimum in the density of the atom cloud.
When the beam is stirred towards the cloud center, the suppression of Majorana
losses takes effect and leads to larger atom numbers and lower temperatures. The
beam position is now accurately scanned with the piezo mirror. Both a maximum
in atom number and minimum in temperature reveal the optimal plug position.
After optimization with rubidium atoms, the alignment automatically works for
the sympathetically cooled potassium.

• Optical dipole trap: The procedure starts by aligning one of the dipole trap
beams about 50μm below the center of the quadrupole trap. The beam position
is visualized by loading atoms into this single beam trap. This avoids the problem
of chromatic shifts that arise when the beam is directly viewed on the camera and
compared to the position of the atoms on an absorption image. Then, the second
horizontal beam is overlapped with the first one and the trap depth is maximized
by minimizing the trap bottom (see Sect. 5.3.1). As soon as the beams are roughly
aligned, it is possible to evaporatively cool rubidium atoms towards condensation.
The condensate is used to create an atom laser by ramping the dipole trap intensity
linearly down across the trap bottom. The higher the trap bottom, the earlier atoms
are released and the longer the atom laser. Therefore, the length of the atom laser
is a sensitive indicator for the trap bottom. Moving the vertical position of the
second beam with the piezo mirror, a minimum in the length of the atom laser is
clearly observed and indicates the optimal beam overlap.

• Optical lattice: The three axes of the optical lattice are aligned individually.
In principle, the procedure is identical for each of them. At first, the mirror for
retroreflection is blocked to avoid the formation of a standing wave. The incoming
light simply forms a blue-detuned Gaussian laser beam. In order to align the
potential maximum with the potential minimum of the dipole trap, a rubidium
Bose-Einstein condensate is held in a rather shallow dipole trap. At high power the

8 Picomotor™ Center Mounts (Model 8807) and Picomotor™ Pint-Sized Center Mounts (Model
8885), by New Focus.
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blue beam can push the BEC out of its equilibrium position. Using the motorized
mirror, the vertical positioning is optimized by maximizing the displacement of
the BEC with respect to the equilibrium position. At maximal displacement the
BEC is exposed to the highest light intensity corresponding to the vertical center
of the blue-detuned Gaussian beam. The horizontal positioning is optimized by
finding the position, where the atoms are not displaced from equilibrium to either
direction, because the incoming beam hits the cloud head-on. If the intensity of
the blue beam is further increased, the BEC splits into two parts. By symmetrizing
the atom number in the two halves, the alignment can be further improved. The
precise positioning of the incoming lattice beam is crucial, because it also forms
the reference for the alignment of the retroreflected beam.

After unblocking the retro-mirror, the BEC is released from a pure dipole trap
and in the initial time-of-flight phase exposed to the (possibly poorly modulated)
standing wave. Using a short pulse of few tens of μs Raman-Nath diffraction is
induced. The power of the lattice beam is adjusted to a level, at which the first-order
diffraction peaks are only faintly visible. In this regime, the number of diffracted
atoms is a monotonic function of the modulation depth of the standing wave. The
position of the retro-mirror is optimized by maximizing the number of diffracted
atoms. If second-order diffraction peaks start to appear in the course of optimization,
the laser power must be reduced until merely first-order peaks remain. The procedure
is iterated until the maximal modulation depth is reached corresponding to optimal
overlap of the incoming and the retroreflected beam. Obviously, care must be taken
to match the waists of the incoming and the retroreflected beam at the position of
the atoms. Furthermore, loss of laser light on the retroreflection beam path should
be minimized to ensure a maximally modulated lattice potential.

5.4.2.3 Lattice Calibration

The depth of each lattice axis is calibrated by means of frequency-modulation spec-
troscopy that probes the energy gap between the first and second lattice band. To this
end, a quantum degenerate spin-polarized 40K cloud is prepared in a very shallow
dipole trap. One lattice axis is adiabatically ramped up to a power level, at which an
energy gap between 70 and 100 kHz between the two lowest bands is expected corre-
sponding to a lattice depth between 20 and 30 EF

rec (compare Sect. 2.2.3 and Fig. 2.8).
The frequency of the lattice laser ω is sinusoidally modulated by an acousto-

optical modulator for about 100 ms with an amplitude�ω of typically several MHz.
This modulation results in a periodic displacement of the lattice, the spatial amplitude
of which is determined by the optical path length between the atom cloud and the
retro-mirror. The retro-mirror sets the boundary condition to the standing wave and
determines the location of the individual lattice wells depending on the frequency of
the lattice laser. For our conditions a spatial shaking amplitude�x0 of 0.1 to 1.0 % of
a lattice wavelength λ can be expected depending on the exact value of�ω (see inset
of Fig. 5.9). The oscillation of a lattice site around its equilibrium position can be
expressed by �x(t) = �x0 sin(2π fFMt), where fFM is the modulation frequency.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 5.9 Lattice calibration via frequency-modulation spectroscopy. The data shows a resonance
between the first and second band at 98.2 ± 1.0 kHz, which corresponds to a lattice depths of
34.9 ± 0.6 EF

rec. The light-gray shaded area indicates the experimental uncertainty of the resonance
position. The dark-gray shaded bar represents the width of the resonance as expected from a band
structure calculation. The inset illustrates frequency modulation spectroscopy (see main text)

The shaking couples the first and second lattice band. This can be seen in a
harmonic oscillator model: The physics at a single lattice site is captured by the
Hamiltonian Ĥ0 = p̂2/(2mF)+ mFω

2
lat x̂

2/2, where ωlat is the harmonic on-site trap
frequency and mF the mass of a potassium atom. Incorporating the time-dependence
of the equilibrium position, we obtain

p̂

2mF
+ mFω

2
lat

2
[x̂ +�x(t)]2 ≈ Ĥ0 + mFω

2
lat x̂�x(t). (5.4)

The term proportional to �x2 is neglected, because it is small for our conditions.
The perturbation Ĥ1 = mFω

2
lat x̂�x0 sin(2π fFMt) is linear in x̂ and therefore couples

states of different spatial symmetry. Population is transferred from the first to the
second lattice band when the frequency fFM is in resonance with the band gap.9

In order to obtain a strong signature in the atom number, the depth of the dipole trap
is chosen weak enough that second band population does not stay trapped (compare
Fig. 3.7). Resonant excitation is indicated by strong atom loss (see Fig. 5.9). The
upper edge of the triangle-shaped feature is given by

f max
FM =

(
E (2)q=0 − E (1)q=0

)
/h (5.5)

9 This description is analogous to the semi-classical theory of atom-light interactions [14–16].

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Fig. 5.10 Energy gap between the first and second lattice band E (2)q − E (1)q as a function of lattice
depth. The scale on the left side shows the resonance frequencies for 40K in a 738 nm lattice, while
the scale on the right side is valid in general. Boundaries of the resonance frequencies are set by
the band gaps for q = 0 and q = ±k (see Sect. 2.2.3 and Fig. 2.8)

representing the maximal energy gap between the first and second band (see
Sect. 2.2.3). As indicated by the data of Fig. 5.10, the width of the resonance is theo-
retically expected to be a lot narrower than the observed feature. Owing to the shallow
underlying trapping potential, the cloud of fermions has a large extent and samples
the inhomogeneous distribution of lattice depths that arises from the Gaussian shape
of the laser beams (illustrated in Fig. 2.7). Nevertheless, the sharp upper edge reveals
the maximal lattice depth, which is found in the center of the trap, with an accuracy
on the level of few per cent. This kind of local resolution distinguishes our method
from others that yield an averaged lattice depth sampled by the area of the whole
atom cloud, such as in Raman-Nath diffraction [2].

It is advantageous to use spin-polarized fermions for the lattice calibration,
because s-wave collisions are suppressed by Pauli’s principle and interaction-induced
shifts [17] of the calibration can be excluded. The modulation spectra can be safely
compared to a single-particle band structure calculation (see Sect. 2.2.3). Based on
the measured calibration for 40K we calculate the respective lattice depth for 87Rb
using Eq. 2.55 (for spectroscopic data see Appendix A). For a lattice wavelength of
738 nm the conversion of the dimensionless lattice depth is sB/sF = 1.500(15) (see
also Sect. 5.4.1).

5.4.2.4 Characterization of the Anticonfinement

Accurate knowledge of the anticonfining trap frequencies as a function of the lat-
tice depth is crucial for precise tailoring of the potential landscape. The theoretical
background on the anticonfinement in a blue-detuned optical lattice is discussed in
Sect. 2.2.2. Substantial effort is made to characterize the corresponding frequencies
experimentally.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 5.11 Anticonfinement of the blue-detuned optical lattice in practice. a Measured anticonfining
trap frequencies for the lattice axis along z-direction. A power law fit (ωAC = asb) yields the para-
meters a = −10.2(7) Hz and b = 0.27(3) (black line). The exponent b is in good agreement with
the dominant s1/4 scaling originating from the varying on-site ground state energy (see Eq. 2.67).
b Anticonfining frequencies extracted from our numerical ab-initio model. The only free parameter
is the reflection coefficient ρ of the retroreflection beam path (see Sect. 2.2.2). Here, ρ = 0.8 is
chosen to illustrate the effect, while the actual experimental value is rather ρ ≈ 0.9. The contribu-
tions from varying ground state energy (dashed line) and finite reflectivity (dotted line) are added
in quadrature to yield the total anticonfinement (black line)

The measurement procedure is similar to the characterization of the bare trapping
potential (see Sect. 5.3.2). A spin-polarized 40K cloud is prepared in the dipole trap at
a certain depth. One of the three lattice axes is adiabatically ramped up and the atom
cloud is displaced (opposite to the direction of gravity) by tightening the dipole trap.
When the cloud is released, it oscillates perpendicular to the propagation direction of
the lattice. The measured oscillation frequencyωosc contains both the confinement of
the dipole trap ωdip and the anticonfinement of the optical lattice ωAC. ωdip is known
from the calibration without the lattice (see Sect. 5.3.2). Therefore the anticonfining

trap frequency can be extracted via ωAC = −
√
ω2 − ω2

dip. Such measurements are

performed for all three lattice axes at several lattice depths yielding a comprehensive
characterization.

An exemplary measurement of the anticonfining trap frequency ωAC as a function
of the lattice depth is shown in Fig. 5.11a. The fit of a power law model confirms
that ωAC approximately scales as s1/4. This complies with our theoretical analy-
sis of Sect. 2.2.2, where the local variation of the ground state energy is identified
as the main contribution to the anticonfinement. The second contribution originat-
ing from the finite reflectivity in the retro-beam path plays a minor role. We have
also extracted the anticonfining frequencies from the numerical ab-initio model of
the trapping potentials and find a remarkable agreement with the measurements
(see Fig. 5.11b). This confirms the accuracy of the model, which is also used to
determine the anticonfining frequencies for 87Rb on a theoretical basis.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 5.12 Schematic of the main imaging system for absorption and phase-contrast imaging. The
numbers at the lenses denote the respective focal length f . The overall magnification is m = 3.3. In
phase-contrast imaging the unscattered light passes through the center of the phase plate imprinting
a phase shift relative to the coherently scattered light. For absorption imaging the phase plate is
laterally moved out of the beam path

5.5 Imaging System

The main imaging system of the experimental setup points along the direction of
gravity (z-axis) and allows us to observe atom clouds either in-situ or after time-
of-flight expansion. The lens system consists of two telescopes as shown Fig. 5.12:
The first one has a magnification of m1 = 3/2 and the second one m2 = 20/9,
which gives a total magnification of m = m1m2 = 3.3. Due to space limitations the
first lens ( f = 80 mm) has a diameter of d = 1 inch, which results in a diffraction-
limited resolution of about 6μm.10 This value has been experimentally confirmed in
absorption images of Bose-Einstein condensates with extremely low atom numbers,
where the smallest observable cloud diameters have indeed been 6μm, demonstrating
that the imaging system is diffraction limited. The axial position of the last lens
( f = 200 mm) is adjustable and allows to adapt the focus to different expansion
times. A front-illuminated CCD camera11 is used to take either absorption or phase-
contrast images.

5.5.1 Phase-Contrast Imaging

An introduction to the theory of phase contrast imaging is given in Sect. 4.1.3. The
key ingredient of this powerful technique is a phase plate that is placed in a Fourier
plane of the beam path to shift the phase of the unscattered light with respect to the
scattered light. We use a retarding phase plate (see Fig. 5.13a) that is inserted at the
focus of the second telescope. Here the unscattered light traverses the plate through a
thinner spot in the center corresponding to a shorter optical path length. To facilitate

10 The theoretical diffraction-limited resolution is defined as the diameter of the smallest object,
whose Airy disc fills the aperture of the first lens, that is 1.22 · 2λ f/d based on the Fraunhofer
approximation [18, 19].
11 iXon, DV885, by Andor, chip size of 1004 × 1002 pixels with a pixel size of 8μm × 8μm.

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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Fig. 5.13 Phase-contrast imaging with a retarding phase plate. a The retarding phase plate has a
central dimple with a diameter of 170μm and a depth of �s = 430 nm. It induces a phase shift
of approximately α ≈ −π/2 for both 40K and 87Rb. b Phase-contrast signal versus detuning for
40K atoms. The data shows the relative signal I/I0 at the center of the cloud. Dark points are fitted
by the model I/I0 = t (n,�)2 + 2 − 2 cos(α)− 2t (ncol,�)

√
2 − 2 cos(α) cos [φ(ncol,�)+ α/2]

(compare Eq. 4.7) using the column density ncol and the phase shift α as fit parameters. Gray points
are excluded due to proximity to the atomic resonance. The fit yields ncol = 1.125 × 1013 m−2

and α = −1.568(3) ≈ −π/2 (black solid line). A low atom number is chosen in order to stay in
the linear regime φ ∝ ncol. Otherwise phase wrapping can occur for small detunings (upper right
inset, 87Rb Bose-Einstein condensate imaged at � = +2π × 60 MHz)

the alignment and ensure reproducibility the phase plate is mounted on a precision
xyz-translation stage.

5.5.1.1 Phase Plate and Alignment

Figure 5.13a shows a schematic of the phase plate, for which a fused-silica wafer
with broadband antireflection coating forms the basis.12 The central dimple has been
created at the Leibniz-Institute of Surface Modification (Leipzig, Germany) using an
ion-etching technique that allows for a surface roughness of better than λ/10 in the
etched region, where λ is the wavelength of the imaging light. For a material with a
refractive index nref , a retardation by α = −π/2 is achieved when the dimple has a
depth of�s = λ/(4nref −4). The imaging wavelength is assumed to be λ = 774 nm,
right in between the resonances of 40K and 87Rb. Together with nref = 1.45 this
leads to a depth�s ≈ 430 nm that creates an approximate phase shift of α ≈ −π/2
for both species.

The choice of the dimple size is a subtle issue. On the one hand, the dimple
should not be too small to ensure that all unscattered light safely propagates through
the center. On the other hand, the larger the extent of the dimple, the larger the amount
of scattered light that is subjected to an unwanted phase shift. This point is a notorious

12 Fused-silica wafer (Coring HPFS), diameter 2 inch, thickness 1 mm, by Plan Optik AG.

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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problem of the phase-contrast method and the reason for imaging artifacts such as
halos or shade-off effects [20–22]. While an exact understanding of the specific
artifacts is involved and depends on the details of the imaging system [20], a smaller
diameter of the dimple generally helps to suppress them. For the measurements in
Chap. 6 we have used a diameter of 300μm. However, the experimental images show
signs of a halo effect, which is accounted for by adding a funnel to the fitting function
that is used to extract the cloud radius (see Eq. 6.3). This complication has been
reduced by choosing a smaller dimple diameter of 170μm in later measurements [23].

For alignment, first the axial position of the imaging beam focus is determined
using a beam profiling camera and the phase plate is accurately positioned at this
axial location. Second, the transverse position is tweaked to thread the imaging beam
through the dimple. To this end, we monitor the imaging beam with a beam profiling
camera at a distance that is equivalent to the position of the CCD camera. The phase
plate is now moved laterally using the xy-directions of the translation stage. When
the edge of the dimple crosses the imaging beam, a diffraction pattern appears on
the camera. Moving the phase plate further, the pattern will appear again, if the
dimple has moved across the focus. This two-fold occurrence of diffraction, while
moving the phase plate through the imaging beam, allows to uniquely determine the
position of the dimple relative to the beam focus. Once the correct position is found,
the phase plate can reproducibly be moved with the translation stage and a rapid
switching between absorption and phase-contrast imaging is possible.

5.5.1.2 Phase-Contrast Signal

A characterization of the relative signal of phase-contrast imaging is shown in
Fig. 5.13b. Images of spin-polarized 40K clouds are recorded for detunings rang-
ing from the far red to the blue. The insets show that a reduced intensity (black
clouds) is detected for red-detuning, while blue-detuning leads to an enhanced inten-
sity (white clouds) as expected for a retarding phase plate. A low number of atoms
(about 105) is chosen to avoid nonlinearities. The relative signal I/I0 (see Sect. 4.1.3)
at the cloud center is plotted as a function of the detuning and fitted by an ab-initio
model corresponding to Eq. 4.7. Data points in the range −2π × 150 MHz < � <

+2π × 150 MHz are excluded, because the clouds suffer from strong incoherent
scattering and atom loss. The extracted retardation of α = −1.568(3) is in excellent
agreement with the intended value of α = −π/2.

Instead of shifting the frequency of the imaging beam, the detuning can also
be achieved by shifting the atomic levels and leaving the imaging frequency
unchanged. This approach is employed in Chap. 6, where Zeeman shifts in high
magnetic fields effectively lead to blue detuning in the range � = 2π × 280 to
400 MHz (see Appendix B).

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_6
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Chapter 6
Interacting Fermions in Optical Lattice
Potentials

In this chapter I report on the experimental realization of the Fermi-Hubbard model.
To this end, a repulsively interacting balanced spin mixture of ultracold 40K atoms
is loaded into a three-dimensional optical lattice potential. The emerging quantum
phases are probed by measuring the global compressibility of the quantum gas.
The compressibility becomes experimentally accessible using in-situ phase-contrast
imaging and independent control of external confinement and lattice depth. Com-
paring the experimental data to calculations based on dynamical mean field theory
(DMFT), it is demonstrated that the system evolves from a compressible metal-
lic into an incompressible band insulating state when the external confinement is
increased. For strong repulsion evidence for an incompressible Mott insulating phase
is found, underlining the great potential of using ultracold fermionic atoms to sim-
ulate model systems of condensed-matter theory. Additionally, measurements on
attractively interacting spin mixtures are presented that demonstrate the fundamental
impact of finite entropy on many-body quantum phases. The chapter concludes with
a discussion of strategies to achieve lower entropy in lattice-based quantum gases.
Novel routes towards low entropy are intensely investigated, because they will open
the field to studies of quantum magnetism. The presentation given here focusses on
the experimental peculiarities of the project. A detailed discussion including further
theoretical aspects can also be found in the PhD thesis of Ulrich Schneider [1].

6.1 Fermi-Hubbard Model in a 3D Optical Lattice

The general single-band Hubbard model is derived in Chap. 3. Using Eq. 3.28 the
Hubbard Hamiltonian [2] for a fermionic spin mixture in a three-dimensional opti-
cal lattice with simple cubic symmetry and underlying harmonic potential can be
written as

S. Will, From Atom Optics to Quantum Simulation, Springer Theses, 121
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Ĥ = −J
∑

σ

∑

〈i,j〉
ĉ†

iσ ĉjσ + U
∑

i

n̂i↓n̂i↑ + Vt

∑

i

(
i2
x + i2

y + γ 2i2
z

) (
n̂i↓ + n̂i↑

)
.

(6.1)
Here, the indices i = (ix , iy, iz) label the lattice sites in three dimensions, 〈i, j〉
denotes nearest-neighbor lattice sites, σ ∈ {↓,↑} the two spin states, J the tunnel-
ing matrix element, and U the on-site interaction energy. The operators ĉiσ are the
annihilation operators of a fermion in spin state σ on the ith lattice site, ĉ†

iσ are the
corresponding creation operators, and n̂iσ measures the number of spin σ fermions
on site i.

The presence of the harmonic confining potential is represented by the third term.
The parameter Vt = mω2⊥a2/2 denotes the energy offset between two adjacent lattice
sites in the trap center, where m is the mass of a single atom, a = λ/2 the lattice
constant, λ is the wavelength of the lattice laser, and ω⊥ ≡ ωx = ωy the horizontal
trap frequency. The experimental trapping potential is pancake-shaped. Therefore
the vertical trap frequency is parametrized using the aspect ratio γ = ωz/ω⊥. Owing
to the single-band restriction and Pauli’s principle, each lattice site can be occupied
by one atom per spin state at most.

6.1.1 Metallic, Mott and Band Insulating Phases

Besides the fundamental influence of finite temperature [3], the phases of the Hubbard
model are determined by the interplay of the three energy scales in Hamiltonian 6.1:
The kinetic energy, whose scale is set by the bandwidth 12J of the lattice (See
Sect. 2.2.3), the interaction energy U and the strength of the harmonic confinement.
Instead of using Vt to quantify the harmonic confinement, it is convenient to define
the characteristic trap energy

Et = Vt

(
γ Nσ
4π/3

)2/3

, (6.2)

which explicitly depends on the atom number Nσ per spin state (N↓ = N↑). In
fact, Et is the Fermi energy of a noninteracting fermionic quantum gas in the zero-
tunneling limit that is been derived in Eq. 3.39 (see Fig. 6.1a for illustration). The
characteristic trap energy is proportional both to the atom number and the trap fre-
quency Et ∝ ω2⊥N 2/3

σ and describes the effective compression of the system. In the
experiments it is controlled by the trapping potential (see Sects. 5.3 and 5.4), while
the atom number is left as constant as possible.1

1 In typical ultracold atom experiments it is notoriously difficult to vary the atom number from
shot to shot in a controlled way. However, our setup offers exceptional control of the harmonic
confinement. Therefore we actively vary the harmonic trapping potential, while the atom number is
kept constant. The remaining shot-to-shot fluctuations of the atom number are largely suppressed
in the experimental data, because all quantities are expressed in rescaled, atom number independent
units, such as Et and Rsc (see below).

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Compression

Et

(a) (b)

100 µm

Fig. 6.1 Compression of a fermionic spin mixture. a The characteristic trap energy Et defines the
compression of the atom cloud. b In-situ phase-contrast images for strong repulsive interactions
U/12J = 1.5 (see Fig. 6.6, red data). The compression of the dipole trap is continuously increased
from left to right and top to bottom covering a range of horizontal trap frequencies from ω⊥ =
2π × 20 to 2π × 120 Hz. The rescaled cloud size Rsc = R/(γ Nσ )1/3 is derived by measuring the
cloud radius R in phase-contrast images (see main text). The atom number Nσ per spin state σ is
extracted from a subsequent time-of-flight image in the same experimental run (see Fig. 6.5)

Figure 6.2 shows the different zero-temperature phases expected in the center of
the trap, depending on which term in the Hamiltonian dominates:

• For weak interactions in a shallow trap, U 
 Et 
 12J , the Fermi energy
εF is smaller than the bandwidth of the three-dimensional lattice, εF < 12J
(corresponding to region A in Sect. 3.3.3). The atoms are delocalized, minimiz-
ing the kinetic energy of the many-body system, and the central filling obeys
n0σ < 1, where the local filling factor niσ = 〈n̂iσ 〉 denotes the average occu-
pation per spin state at lattice site i. The system is in a compressible metallic
state: When the chemical potential is increased, the local filling factor increases
continuously. There is no excitation gap.

• Dominating repulsive interactions, U > 12J and U � Et , suppress double
occupation of lattice sites. This can lead to Fermi liquid (n0σ < 1/2) or Mott
insulating (n0σ = 1/2) states at the trap center. A notable Mott insulating
core at experimentally relevant temperatures starts to emerge for interactions
U/12J > 1 and compressions Et/12J ≥ 0.3 (see Fig. 6.3). In the Mott insu-
lating state the addition of a fermion (of opposite spin) to a singly occupied
lattice site costs an energy amount U . In order to compress this state, the exter-
nal potential must overcome the interaction energy, otherwise the system stays
constant in size. Therefore, the Mott insulating phase can be viewed as an
interaction insulator.

• Stronger compression leads to higher filling. For Et � 12J and Et � U
this ultimately results in a band insulator with unity filling in the trap center
(n0σ = 1) at least for vanishing temperature. The band insulating state is

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Fig. 6.2 a–c Zero-temperature quantum phases of the Hubbard model for a balanced spin mixture
in a harmonic confining potential. The left column schematically illustrates the equilibrium atom
distribution, dashed lines indicate the extent of the first band (compare Fig. 3.7). The center column
displays the corresponding in-trap density profiles. The right column shows the distribution of singly
and doubly occupied lattice sites after projection into the zero-tunneling limit. Experimentally the
projection is achieved by a rapid increase of the lattice depth. n0σ denotes the central filling and
D the fraction of atoms on doubly occupied lattice sites. Strictly speaking, the Mott insulator (b)
shows antiferromagnetic ordering at zero temperature (see Sect. 3.3.2). Here, a paramagnetic Mott
insulator is displayed, because experimental temperatures are larger than the Néel temperature for
magnetic ordering

incompressible, because the external potential must overcome the band gap
between the first and second lattice band to achieve a reduction of the system
size (see Sect. 3.3.3). Otherwise filling factors larger than unity are prohibited
by Pauli’s principle. Accordingly, the band insulating state could also be called
a Pauli insulator.

It is important to note that finite temperature reduces the local fillings and enlarges
the cloud size, because the corresponding entropy must be accommodated in the
system. Nevertheless, the above characterization of quantum phases remains valid,
provided the temperatures are clearly in the quantum degenerate regime (T 
 TF).

http://dx.doi.org/10.1007/978-3-642-33633-1_3
http://dx.doi.org/10.1007/978-3-642-33633-1_3
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In the trapped system the filling varies smoothly from a maximum in the center
to zero at the edge of the cloud. This generally leads to a coexistence of several
phases. For example, at dominating characteristic trap energy, strongly repulsive
interactions and low temperature (Et > U > 12J ), a wedding cake-like structure
develops (see Fig. 6.3): A band insulating core (n0σ ≈ 1) is surrounded by a metallic
shell (1/2 < niσ < 1), a Mott insulating shell (niσ = 0) and another metallic shell
(niσ < 1/2) [5]. It is important to note, that in all cases, independent of interaction,
confinement or temperature, the outermost shell is always metallic.

6.2 Experimental Observation of Metallic and Insulating Phases

The measurement idea is to identify the phases of the Hubbard model (Eq. 6.1)
by studying the response of the system to changes in the external confinement.
To this end noninteracting and repulsively interacting spin mixtures of fermionic
40K are investigated in a three-dimensional optical lattice. Our experimental setup
allows to vary the interaction strength, the lattice depth and the external harmonic
confinement independent from each other, such that all three terms of the Hamiltonian
are individually controlled. The temperatures of the atomic samples are deep in the
degenerate regime (T 
 TF) and the corresponding entropies in the lattice are low
enough, that the phases of the experimental system are determined by the zero-
temperature phases of the Hubbard model outlined above.2

On the one hand, the system is probed on a global level by monitoring the in-situ
density distribution for increasing harmonic confinement. This allows to directly
extract the compressibility of the many-body quantum system and the response of
the cloud size uniquely distinguishes compressible metallic from incompressible
insulating states. On the other hand, the system is studied on a local level by measuring
the fraction of doubly occupied sites for different experimental parameters. Both the
local and global observables indicate the entrance into the strongly interacting regime,
as increasing repulsion leads to a suppression of double occupancy and larger cloud
sizes.

6.2.1 Experimental Techniques: Overcoming the Challenges

In order to realize the above measurement idea, several experimental challenges had
to be overcome. In the following the most important ones are summarized:

• Quantum degenerate fermion clouds: Initial DMFT calculations had sug-
gested that the fermionic spin mixture should have a temperature T/TF � 0.15

2 However, the entropies are not low enough to reach magnetic ordering of the spins, which is
discussed later in this chapter (see also Sect. 3.3.2).

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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prior to lattice loading in order to observe a Mott insulating core after an adia-
batic lattice ramp-up. While setups with fermionic 6Li routinely achieve temper-
atures in this range, it had been a notorious challenge with 40K. The difference is
mainly rooted in the low natural abundance of the potassium isotope (resulting
in comparably small atomic samples) and less favorable scattering properties.

The temperature goal has eventually been reached by carefully tweaking the
cooling sequence in many respects. Starting with the optimization of atom num-
bers in the double-species magneto-optical trap, over faster sympathetic cooling
in the optically-plugged magnetic trap to careful timing of the preparation and
subsequent cooling of the fermionic spin mixture in the dipole trap. The individ-
ual modifications have usually lead to an increase of the available atom number,
which then has been turned into colder temperatures via evaporation.

• Alignment and calibration of optical potentials: The combination of the red-
detuned dipole trap and the blue-detuned optical lattice required the develop-
ment of precise alignment techniques for the laser beams creating the potentials.
In a red-detuned lattice the atomic cloud is intrinsically dragged to the beam
center during loading and the underlying potential can safely be assumed to be
harmonic. In our combined setup, the harmonic approximation is only valid,
when the individual beams are perfectly centered on each other. This is crucial
for a sound comparison to theoretical data. Our techniques for beam align-
ment and calibration of lattice depth, trap frequencies and anticonfinement are
described in Chap. 5 in detail.

• Radiative collisions in blue-detuned optical lattices: Generally, atom pairs on
the sites of an optical lattice are prone to radiative collisions. In such collisions
one of the atoms is excited by a photon of the lattice laser and the atom pair
populates a state in the excited molecular potential [6]. Similarly, molecules on
the sites of an optical lattice can suffer from photodissociation.

In a red-detuned lattice, the absorption of a photon can lead to the population of
a bound state in the excited molecular potential, provided the photon is resonant
with the respective transition. This loss and heating process is unwanted, but it
can safely be avoided by shifting the lattice laser frequency by a few GHz to
detune the transition.

In the case of a blue-detuned lattice, radiative collisions are harder to suppress,
because absorption of a lattice photon leads to the population of unbound mole-
cular states in the continuum compared to discrete bound states for red-detuning
[6]. In detailed studies (see Appendix of Ref. [1]) we have found that the pho-
todissociation rate of molecules decreases for larger detunings, approximately
following a 1/�2 power law (� is the detuning between the D-transitions of
40K and the lattice laser). Furthermore, we have observed a strong reduction
of the Frank-Condon overlap between the ground and excited state molecular
wavefunctions whenever the Condon point is close to a node of the ground
state wavefunction [6]. The Frank-Condon overlap determines the strength of
the transitions and the Condon point is the relative distance of the atoms, at

http://dx.doi.org/10.1007/978-3-642-33633-1_5
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which resonant excitation is possible for a given laser frequency. By choosing a
lattice wavelength at about 738 nm, it has been possible to suppress the loss of
doubly occupied sites and molecules below a critical level. This was a corner-
stone to unleash the full potential of the combined use of a red-detuned dipole
trap and a blue-detuned lattice.

• Adiabatic lattice loading: Adiabatic loading generally requires a slow ramp-up
of the lattice depth to make sure that the sample stays in its many-body ground
state at any point of the ramp. However, the time frame for the experimental
sequence is limited, because heating rates continuously increase the entropy in
the system [7]. The heating has technical origins, ranging from spontaneous
light scattering over radiative collisions to collisions with the background gas
in the vacuum chamber.

The time scale for adiabaticity can be significantly shortened by choosing an
intelligent ramping sequence that aims at the least complicated thermodynamic
path through phase space. One step to reach this goal is mode-matched loading,
which minimizes the mass transport on the way from the initial state in the
harmonic trap to the final strongly interacting state in the lattice. Mass transport
in a lattice and the decay of doubly occupied sites have been shown to be
extremely slow, already at weak interactions (U/12J > 0.2) [1, 8, 9]. This
suggests to first increase the harmonic confinement and then raise the lattice
depth in a compression measurement.

However, there is another important aspect that must be taken into account in
the context of adiabatic preparation: In a three-dimensional optical lattice the
first and the second band have a partial overlap until a depth of 2.2 Erec is
reached. A gap only opens up for deeper lattices (see Sect. 2.2.3). When the
atom cloud is compressed prior to lattice loading, there is a risk that states
in the second band get populated, which only slowly relax back into the first
band (see Fig. 2.10). If that happened, the interpretation of experimental results
in terms of the single-band Hubbard model would be hindered. Therefore, a
preramp of the lattice to a depth of 1 Erec is performed, then the harmonic trap
is compressed and, finally, the lattice depth is risen to the desired value.3

• In-situ imaging: The measurement of the in-situ cloud sizes necessitates a
reliable imaging technique to detect optically dense atomic samples inside the
optical lattice. Initially, detuned absorption imaging as well as saturated imaging
with high light intensities have been tested. The former was prone to lensing,
as expected for imaging systems with limited numerical aperture [10], and the
latter showed strong nonlinearity between the atomic and the optical density
[11]. Finally, dependable measurements of in-situ cloud sizes have become

3 Actually, it seems desirable to perform a preramp to a lattice depth above 2.2 Erec in order to
ensure a real band gap. However, this would require a very slow compression beyond the time
scale that is affordable due to technical heating. In this respect the preramp to 1 Erec is a already
compromise.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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128 6 Interacting Fermions in Optical Lattice Potentials

0
1

2

0

20

40

0

1

n i
σ

Et / 12J r (a)

TF / T = 0.15

0
1

2

0

20

40

0

1

n i
σ

Et / 12J r (a)

TF / T = 0.07
(b)(a)

Fig. 6.3 Theoretical in-trap density distributions at strongly repulsive interactions (U/12J = 1.5).
The radial distance from the trap center is denoted by r given in units of the lattice constant a = λ/2.
While for lower temperature the different phases can be clearly distinguished in the radial profile (a),
higher temperature washes out the boundaries (b). The red solid lines enclose the region, where a
Mott insulating core has formed. In this regime the global compressibility is reduced as shown in
Fig. 6.7d. Please note that the dimensionless temperatures T/TF given here, refer to the Fermi gas
in the harmonic trap prior to lattice loading. The DMFT calculations have been performed by Theo
Costi, Achim Rosch and collaborators [4]

possible by an elegant implementation of high-field phase-contrast imaging
(see Sects. 4.1.3, 5.5 and Appendix B).

6.2.2 Experimental Parameters

The experiment is performed with a balanced, quantum degenerate mixture of fermi-
onic 40K atoms in the two hyperfine states |F,m F 〉 = |9/2,−9/2〉 ≡ |↓〉 and
|9/2,−7/2 ≡ |↑〉. The mixture is prepared in a pancake-shaped optical dipole trap
(λdip = 1030 nm) formed by two elliptical beams in the horizontal plane. Measure-
ments of the trap frequencies in the vertical direction and the horizontal plane yield
an aspect ratio of γ = ωz/ω⊥ ≈ 4, in compliance with a numerical trap model that
is based on the geometrical beam sizes and the power balance in the beams (see
Sect. 5.3).

After sympathetic cooling of 87Rb and 40K down to a temperature of about
T = 2 µK in the magnetic trap, both species are loaded into the dipole trap. Rubidium
is transferred to the absolute ground state |F,m F 〉 = |1,+1〉 and the potassium spin
mixture is created. By lowering the intensity of the trapping laser in an exponential
ramp, sympathetic cooling is continued. After the trap bottom for 87Rb is crossed,
the rubidium atoms are gone. Then the interacting 40K spin mixture further cools
evaporatively, thermalizing via s-wave collisions. With this procedure samples with
1.5×105 to 2.5×105 potassium atoms at T/TF = 0.15(3) are created. The tempera-

http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_5
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Fig. 6.4 Ultracold fermionic spin mixture. a Column density of a noninteracting 40K spin mixture
after 10 ms time-of-flight expansion. The vertical axis corresponds to the optical density (a.u.).
b The azimuthally averaged raw data (solid line, see inset) is fitted by a Gaussian (blue dashed line)
and a Fermi-Dirac model (red dashed line) omitting the noisy data of the central pixels. The Fermi
fit yields a temperature of T/TF ≈ 0.10, which is close to the reliability limit of this thermometry
method for the given cloud sizes [12]

tures are measured by fitting the momentum distribution recorded after time-of-flight
with a Fermi-Dirac model (see Fig. 6.4 and Appendix C for further details).

The Feshbach resonance located at a magnetic field B = 202.1 G (see Sect. 2.3)
is used to tune the scattering length aFF, providing direct control of the on-site
interaction energy U . The preparation of the spin mixture and final evaporation
either happen above the resonance (220 G) or below the resonance (165 G). While the
former gives access to noninteracting (209.9 G) and repulsively interacting samples
with aFF ≤ 150 a0, the latter allows to reach scattering lengths of up to aFF =
300 a0 (191.3 G) by approaching the resonance from below. A further approach of
the resonance is not possible owing to enhanced losses and heating that probably
originate from a p-wave resonance in striking distance (see Sect. 2.3). The desired
magnetic field is chosen directly after evaporation (see Fig. 6.5).

In a first step, the optical lattice (λlat = 738 nm) is raised to a depth of Vlat = 1
Erec. This preramp is performed to separate the first and second lattice band (see
above). Subsequently, the external harmonic confinement is tuned to the desired
value by changing the dipole trap depth within 100 ms. Horizontal trap frequencies
in the range from ω⊥ ≈ 2π × 20 Hz to 2π × 120 Hz are accessed. The preparation
is completed by increasing the lattice depth to Vlat = 8 Erec in a linear ramp within
50 ms.

After a hold time of 12 ms we record an in-situ image of the cloud along the
vertical axis of the trap using phase-contrast imaging. Phase-contrast imaging with
a retarding phase plate requires blue-detuned laser light in order to ensure linearity
between the imaging signal and the atomic density (see Sect. 4.1.3 and Fig. 4.1b).
This detuning is elegantly generated by taking the image at the same magnetic field
that is initially used to adjust the interaction. The imaging laser, which is resonant at
zero magnetic field, is effectively blue-detuned with respect to the Zeeman-shifted

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_4
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transition by � = 2π × 280 MHz to 2π × 400 MHz depending on the exact value
of the magnetic field (see Appendix B). The phase-contrast image is used to extract

the cloud size R =
√

〈r2⊥〉 = √〈x2 + y2〉 with a two-dimensional fitting function4

F(x, y) = A Li2

(
−100 e
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2
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x

− (y−y0)
2

2σ2
y
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+ B

√
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σ 2
x

+ (y − y0)2

σ 2
y

+ C,

(6.3)
with the free parameters x0, y0 (cloud center); σx , σy (widths); A, B and C . The
second term accounts for a funnel that has a technical reason rooted in phase-contrast
imaging. The Fermi-type distribution F(x, y) fits the in-situ clouds better than a
Gaussian distribution (see supplementary material of [4]). The resulting cloud radius

is given by R =
√

1.2642(σ 2
x + σ 2

y )− η2, where η ≈ 3 µm accounts for the finite

resolution of our imaging system (see Sect. 5.5).
Because very few photons are scattered in phase-contrast imaging, almost all

atoms remain in the sample and the momenta are only marginally modified. This
allows to measure the quasi-momentum distribution in the same experimental run
using a band-mapping technique [13–16]. To this end, the lattice is adiabatically
ramped down in 200μs and a standard resonant absorption image is taken after 10
ms time-of-flight.

6.2.3 Probing the Global Compressibility

In order to benchmark the experimental data, we compare it to accurate DMFT
calculations [5, 17–19] by Theo Costi at the Institute for Advanced Simulation in
Jülich and the group of Achim Rosch at the University of Cologne. As a first step
in the calculations, the homogeneous Hubbard model is solved for a wide range
of temperatures and chemical potentials using a numerical renormalization group
approach [20–22]. In a second step, the trapped system is locally approximated by
uniform miniature systems through a local density approximation (LDA). This pro-
cedure yields reliable results even close to the boundary between metal and insulator,
which has been validated in Refs. [5, 23]. Density profiles for various compressions
and temperatures are calculated (see Fig. 6.3) and, finally, theoretical line-of-sight
integrated density profiles are derived in analogy to the experimental data.

The comparison of theoretical and experimental results is facilitated by expressing
the cloud size R in rescaled units Rsc = R/(γ Nσ )1/3 and the harmonic confinement
in terms of the dimensionless compression Et/12J . In these units, the cloud size only
depends on the interaction strength U/12J and the average entropy per particle S/N ,
but not on the absolute atom number N . The theoretical calculations are based on
the entropy per particle that is experimentally determined by the temperature T/TF

4 For a Gaussian distribution this definition of the cloud radius yields the standard deviation.

http://dx.doi.org/10.1007/978-3-642-33633-1_5
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Fig. 6.5 Overview of the experimental sequence as described in the main text. Remarkable features
are the preramp of the optical lattice ©3 , the nondestructive in-situ phase-contrast image after ©6 and
the subsequent time-of-flight absorption image after ©7 mapping out the Brillouin zone

of a noninteracting Fermi gas in the harmonic trap (see Eq. 2.25) and the additional
assumption of adiabatic lattice loading.

The rescaled units necessitate the precise knowledge of several experimental para-
meters. The interaction energy U and the tunneling matrix element J are derived
from the lattice depth, the trap frequencies ωα (α = x, y, z) are precisely measured
using the methods presented in Sects. 5.3 and 5.4. These parameters and the temper-
ature T/TF are known with a relative uncertainty around or below 10 %. However,
it is notoriously difficult to determine the absolute atom number N = N↑ + N↓
with a similar precision. Several calibration methods are compared to each other:
First, a theoretical calibration of the potassium number is obtained by analyzing the
transition strength for the given polarization of the imaging light (see Sect. 4.1.2).
Second, we measure the in-situ cloud size of a noninteracting harmonically trapped
spin mixture. Based on the Thomas-Fermi radius (see Eq. 2.30) the atom number
can be extracted. However, owing to the weak dependence of the radius on the atom
number R ∝ N 1/6 the method suffers from a rather large uncertainty. Third, we
make use of the favorable size scaling R ∝ N 1/3 of a band insulator of noninteract-
ing fermions in the lattice. The band insulating regime is reached for compressions
around Et/12J = 2 and the expected cloud sizes can be calculated by relatively
simple means (see Sect. 3.3.3). Comparison of the three methods yields consistent
results, suggesting a high accuracy of the atom number calibration.

Figure 6.6 shows the quantitative comparison between the measured and the
numerically calculated cloud sizes Rsc as a function of the compression Et/12J .
In addition, the global compressibility of the system

κRsc = − 1

R3
sc

∂Rsc

∂(Et/12J )
(6.4)

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_5
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Fig. 6.6 Response of the interacting spin mixture to compression of the underlying harmonic
confinement. The rescaled cloud sizes Rsc in a Vlat = 8 Erec lattice are shown as a function of
the external trapping potential for interactions U/12J ranging between 0 and 1.5. Circles denote
individual experimental shots, while lines show the theoretical expectations obtained by DMFT
for an initial temperature T/TF = 0.15 prior to lattice loading. The insets a–e show the quasi-
momentum distributions for the noninteracting case obtained via Brillouin zone mapping (averaged
over several experimental shots)

is extracted from the experimental data by means of linear fitting of four consecutive
data points to determine the derivative.

6.2.3.1 Noninteracting System

For the noninteracting system we find that the cloud sizes decrease continuously
(see Fig. 6.6, black data points) until the characteristic trap energy roughly equals
the lattice bandwidth (Et/12J ≈ 1) (see Sect. 3.3.3). For stronger compression,
the cloud size essentially remains constant and the compressibility (see Fig. 6.7a)
approaches zero. At this point almost all atoms are in the band insulating regime,
while the surrounding metallic shell has a negligible effect on the cloud size.

This is supported by the measured distributions of the quasi-momenta, which are
shown as insets in Fig. 6.6. The distributions change gradually from a partially filled
first Brillouin zone, as expected for a metal, to an almost evenly filled first Brillouin
zone for increasing compression, as expected for a band insulator [16]. Neverthe-
less, experimental band (or Brillouin zone) mapping can only reveal the relative
occupations of the extended Bloch states. Information on the absolute occupation

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Fig. 6.7 a–c Global compressibility κRsc as a function of the compression for several interactions.
Each data point corresponds to the linear slope of four consecutive points in the cloud size data
(see Fig. 6.6). Error bars represent the uncertainty of the fit. Solid lines show the theoretically
expected results for an initial temperature T/TF = 0.15. Panel d illustrates the influence of the
initial temperature on the calculated compressibility at strong repulsion U/12J = 1.5

of the Bloch states cannot be extracted. For example, localized atoms or a heated
sample would both show a homogeneously filled Brillouin zone. In contrast, our
measurement of compressibility directly demonstrates the incompressibility of the
fermionic band insulator in excellent agreement with the theoretical expectation for
a noninteracting Fermi gas (see Figs. 6.6 and 6.7a, black data).

6.2.3.2 Repulsively Interacting System

For moderately repulsive interactions (U/12J = 0.5 and 1.0, green and blue data in
Fig. 6.6), the cloud size is clearly bigger than in the noninteracting case, but eventually
reaches the size of the band insulator. For stronger repulsion (U/12J = 1.5, red data
in Fig. 6.6) only a marginal decrease of the cloud size is observed in the compression
range 0.5 < Et/12J < 0.7, while for stronger confinements the compressibility
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increases again. This behavior is consistent with the formation of a Mott insulating
core that is surrounded by a metallic shell, as shown in the theoretical in-trap profiles
of Fig. 6.3. The increase of compressibility for strong confinements is due to the
emergence of an additional metallic core (1/2 < niσ < 1) in the center of the trap.

We point out that a local minimum in the global compressibility is a genuine
characteristic of a Mott insulating core. At large U and low temperature T , the the-
oretical analysis shows that the minimum of global compressibility decreases in the
Mott region as 1/U 2. The remaining compressibility originates from the surround-
ing metallic shell, which becomes smaller for larger interaction. The data shows an
indication of this decrease in the compressibility minimum (compare Fig. 6.7b, c).
For strong repulsion the location of the minimum (see Fig. 6.7c) at Et/12J ≈ 0.6
approximately coincides with theory, while the subsequent increase happens slightly
earlier. When the system is further compressed, all cloud sizes eventually approach
the band insulating state and the corresponding compressibilities tend to zero.

The general agreement between the measured cloud sizes and the theoretical
calculations is remarkably good for the range of interactions investigated here. Nev-
ertheless, we observe that the cloud sizes for repulsive interactions and intermediate
compression (around Et/12J ≈ 0.5) are larger than predicted by theory and the
discrepancies become more pronounced for stronger interactions. While the exact
origin of the deviation is not yet known, a likely reason is nonadiabatic lattice load-
ing. The data in Fig. 6.8 shows that the atomic cloud shrinks considerably during the
loading ramp. However, the transport of atoms is substantially slowed down already
at moderate interactions [9], which can lead to larger cloud sizes. Furthermore, at
low compressions the atomic cloud has a radial extent of up to 100 µm (on the order
of the radius of the lattice beams) and suffers from gravitational sag. The inhomo-
geneous lattice depths across the cloud as well as trap anharmonicities may further
account for the observed deviations. Finally, there may be effects that reach beyond
the single-band Hubbard model or the DMFT formalism.

6.2.3.3 Lattice Loading, Adiabaticity and Heating

In order to make sure that the lattice loading ramp is as adiabatic as possible, the
in-situ cloud sizes are measured as a function of lattice ramp time at a compres-
sion Et/12J ≈ 0.4 (see Fig. 6.8). This is the most interesting compression regime,
because here the Mott insulating core starts to form and the discrepancy between
experiment and theory is most pronounced. The measurement shows that for very
fast ramping the cloud does not shrink to its minimal size, indicating nonadiabatic
loading. For the noninteracting case, an increase of the cloud size is observed for
very slow ramping. Interestingly, this is not the case for repulsive interactions (see
Fig. 6.8, blue data) albeit heating should play a similar role. This might suggest that
a second, longer adiabaticity time scale is present for stronger interactions, obscur-
ing a clear minimum in the cloud size. Nevertheless, based on these data we have
decided to use a lattice ramp time (from 1 Erec to 8 Erec) of 50 ms in the experiment,
supposedly being as adiabatic as possible.
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Fig. 6.8 Experimental determination of the optimal ramp time for lattice loading. The in-situ cloud
size is measured at intermediate compression (Et/12J = 0.4) as a function of the ramp time, both
for a noninteracting (black) and an interacting (U/12J = 1.0, gray) spin mixture. The rapid initial
decrease of the cloud size can be attributed to improved spatial redistribution of atoms during the
ramp and corresponds to better adiabaticity. The slowly increasing radii for longer ramp times
mainly originate from heating effects in the optical lattice. The arrow indicates the ramp time of
50 ms used in the experiment, which is a compromise between adiabaticity and heating

We have further investigated the role of heating in the experimental sequence. To
this end, the temperature before lattice loading is compared to the temperature that is
measured after loading and unloading the lattice in a reversed sequence. The duration
of this round trip is exactly twice as long as the actual measurement sequence. We
observe a rise in temperature T between 0.010(5) TF for a noninteracting cloud and
0.05(2) TF for medium repulsion of U/12J = 1 at compressions around Et/12J ≈
0.5. Before lattice loading, typical temperatures lie in the range T/TF = 0.15(3).
Given that the theoretical calculations, which assume initial temperatures of T/TF =
0.15 and adiabatic preparation, agree well with the experimental data, the actual initial
temperatures are expected to lie at the low end of the measured temperature range.

The theoretical calculations in Fig. 6.7d show, that the minimum in the local
compressibility, which signals the Mott insulating state, starts to appear at initial
temperatures in the range of 0.15 < T/TF < 0.2. At these temperatures the entropy
per particle amounts to 1.5kB < S/N < 2kB , which is much higher than the entropy
per particle of a Mott insulator in a homogeneous system. In fact, it even exceeds the
highest possible value in the half-filled homogeneous Hubbard model (kB ln(4) ≈
1.4kB).5 How is it possible to observe interesting quantum phases at these entropies?

5 At half-filling, the maximal entropy is accommodated in the case of vanishing interactions. In a
system of N lattice sites and N/2 atoms per spin state, each configuration j has the same probability

p j =
[

N !
(N/2)!(N/2)!

]−2
. With S = −kB

∑
j p j ln(p j ) and Stirling’s formula ln(N !) ≈ N ln(N ) the

entropy per particle S/N = kB ln(4) is readily obtained. For strong repulsion each lattice site is occu-

pied by exactly one atom. Here, all configurations have equal probability p∞
j =

[
N !

(N/2)!(N/2)!
]−1

leading to S/N = kB ln(2). In the case of long-range antiferromagnetic order, there are only two
configurations for the global quantum state. In the limit of large N this results in vanishing entropy
per particle S/N � 0.
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The key to this question is the presence of the underlying trapping potential. It induces
a strong variation of the local filling, and the local filling crucially determines the
entropy capacity. The entropy capacity typically increases for lower filling factors.
Therefore, an enormous fraction of the entropy is accumulated in the metallic shell
at the edges of the cloud. Here, diluted atoms carry a large amount of configurational
entropy as shown in Fig. 6.12. This ensures that the entropy per particle can locally
approach the value kB ln(2) ≈ 0.69kB that is required to observe a Mott insulating
phase free of thermal excitations.

6.2.4 Measuring the Double Occupancy

In addition to the global compressibility, the fraction of atoms on doubly occupied
lattice sites D is measured [24]. To this end, atoms on doubly occupied lattice sites
are converted into molecules using an adiabatic magnetic field ramp (0.2 ms/G)
across the Feshbach resonance [25] (see Sect. 2.3.3). This technique can only be
applied for field values above the Feshbach resonance, in our case corresponding to
the interactions U/12J = 0, 0.5 and 1. The initial preparation is identical to the
compression measurements described above, followed by a jump of the lattice depth
to 20 Erec (within 200 µs) to prevent tunneling of atoms during the magnetic field
ramp. After the ramp (during 15 ms hold time) the lattice depth is reduced to zero
within 200 µs and an absorption image is recorded after time-of-flight. The image
shows the number of atoms on singly occupied sites, while the converted molecules
remain invisible, because their resonance is shifted with respect to the bare atomic
transition. The difference of the atom number in runs with and without the magnetic
field ramp, normalized to the total atom number, yields the double occupancy D.
Correction factors are applied to account for the losses of doubly occupied sites
during the hold time of 15 ms in the deep lattice (see Sect. 6.2.1).

The global double occupancy D provides insight into the local on-site properties
of the many-body state. It is mathematically defined by

D = 2

N

∑

i

〈n̂i↑ n̂i↓〉, (6.5)

where the sum runs over all lattice sites i and the expectation value 〈. . .〉 is calculated
within the many-body quantum state. In a homogeneous lattice all sites are equivalent
and the site index can be suppressed. The double occupancy takes the form Dhom =
2〈n̂↑ n̂↓〉/〈n̂↑ + n̂↓〉 = 〈n̂↑ n̂↓〉/n with the additional assumption of a balanced
mixture n = 〈n̂↑〉 = 〈n̂↓〉. For a homogeneous system, three limiting cases can be
distinguished:

• At strongly attractive interactions (|U | � 12J and |U | � kB T ) all atoms form
pairs to minimize the interaction energy. Therefore, D−∞

hom = 1.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 6.9 Double occupancy D as a function of compression for the interaction strengths U/12J =
0, 0.5 and 1. The shaded circles ©1 and ©2 indicate the fraction of atoms on doubly occupied
sites for a constant cloud size Rsc ≈ 0.5 (see Fig. 6.6), which illustrates the strong suppression of
double occupancy in the interacting case. Error bars denote the standard deviation of at least four
measurements

• At vanishing interactions the spin states do not mutually influence their local
occupation numbers. Therefore, 〈n̂↑ · n̂↓〉 = n2 and D0

hom = n.

• At strongly repulsive interactions (U � 12J and U � kB T ) two regimes
must be distinguished: For n ≤ 0.5, double occupancy is perfectly suppressed
D∞

hom = 0 in order to avoid the energy cost of U . For n > 0.5, each atom beyond
n = 0.5 creates a doubly occupied site on a perfectly half-filled background.
Therefore, D∞

hom = 2(n − 0.5)/n starting at a local filling of n = 0.5.

The third case constitutes the most extreme example for suppressed double occu-
pancy due to repulsive interactions. The experimental curves are expected to be
smoothened by the finite value of the repulsion and the inhomogeneous system. In
combination with the in-situ size, the double occupancy D can be compared for
different interaction strengths at constant cloud size Rsc. Then, the suppression of
double occupancy serves as an important indicator for strong correlations.

Figure 6.9 shows that D approaches zero in the limit of weak confinement, because
the cloud is large and diluted, regardless of the interactions. For intermediate com-
pression, the fraction of doubly occupied sites crucially depends on the interaction.
Choosing Rsc ≈ 0.5 as a constant cloud radius, a double occupancy of 40 % is
observed for the noninteracting system and of about 5 % for intermediate repulsive
interaction U/12J = 1.0 (shaded circles in Fig. 6.9). Here, repulsive interactions
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energetically favor the reduction of double occupancy despite the cost of additional
potential and kinetic energy.6 For very strong compression, the system develops a
band insulating core and double occupancy becomes comparable irrespective of the
interaction. We find that D is ultimately limited to slightly below 60 %. The finite
entropy per particle intrinsically reduces the filling in the band insulating core and,
additionally, gives rise to extended surrounding metallic shells (see Fig. 6.3).

Although the noninteracting and the repulsively interacting curve U/12J = 0.5
match the DMFT results for an initial temperature of T/TF = 0.15, notable devia-
tions are observed for stronger repulsion U/12J = 1.0. The measured pair fraction
is about 10 % higher than predicted by theory. Similar to the deviations in the cloud
size discussed above, nonadiabatic lattice loading likely explains this behavior. In
the early stage of the lattice ramp a small interaction parameter U/12J favors a
larger double occupancy D. When the lattice depth is further increased, transitional
double occupancy must decay into singly occupied sites, which is hindered by very
slow time scales [8, 9]. Nevertheless, additional experimental studies are needed to
investigate the mechanisms behind the deviations in further detail.

The measurement of double occupancies yields valuable, complementary infor-
mation to the cloud size measurements presented above. It is an important check
for consistency. However, the suppression of doubly occupied sites compared to the
noninteracting case is not a unique feature of the Mott insulating state. On the con-
trary, the suppression of double occupancy generally occurs when the interaction is
strongly repulsive and the thermal energy in the lattice kB Tlat is much smaller than U .
In particular, even for a purely metallic phase with niσ < 0.5 the double occupancy
vanishes in the limit of strong repulsive interactions as discussed above.

6.3 Attractively Interacting Spin Mixtures in an Optical Lattice

So far, we have focussed on the repulsive Hubbard model. Owing to the versatility
of Feshbach resonances, it is experimentally straightforward to access the domain
of attractive interactions by choosing magnetic field values, at which the scattering
length is negative. Applying the same preparation and detection techniques as in the
repulsive case, we have studied the first realization of the attractive Hubbard model
with ultracold atoms [26]. The most important results are briefly summarized in this
section.

The attractive Hubbard model plays an important role in solid state physics,
because lattice deformations (phonons), collective charge oscillations (plasmons)
or spin fluctuations (magnons) can effectively lead to attractive interactions between
electrons overcoming the intrinsic electrostatic repulsion [27]. In Sect. 3.3.2 the
resulting phases are reviewed for the case of half-filling. In the context of ultra-

6 Localized wavefunctions have a stronger curvature, which corresponds to higher momentum
contributions and, consequently, higher kinetic energy.

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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cold atoms, several theoretical works have addressed the regime of preformed pairs
[28–31].

Here, we are not concerned with the zero-temperature phases, but observe a coun-
terintuitive thermodynamic effect that arises from the interplay of strong correlations
and finite entropy: When loading an attractively interacting spin mixture at finite tem-
perature into a three-dimensional optical lattice, the in-situ cloud size increases as
a function of attraction instead of contracting. This phenomenon is similar to the
well-known Pomeranchuk effect [32], which occurs in the liquid-to-solid transition
of 3He: Solid helium has a larger entropy capacity than the liquid phase owing to ran-
domly oriented spins. Therefore, 3He freezes into a solid during adiabatic squeezing,
while absorbing heat and cooling the surrounding liquid.

6.3.1 Experimental Results

A fermionic mixture with 1.6(2) × 105 atoms per spin state and a temperature of
T/TF = 0.15(3) is prepared as described above. The scattering length is tuned in the
range between aFF = −400 a0 to +150 a0 and the external confinement is adjusted
with the dipole trap within 100 ms. Subsequently, the optical lattice is slowly ramped
to depths ranging from 0 to 9 Erec with a rate of 7 ms per Erec. The in-situ cloud size
is measured using phase-contrast imaging (along the vertical z-axis) and the double
occupancy is extracted via molecule conversion analogous to the measurements on
the repulsive side.

Figure 6.10a shows a contraction of the gas for weak attractive interactions, as
one might expect intuitively. However, when the attraction exceeds a critical value,
typically at a scattering length between |aFF| ≈ 20 a0 to 40 a0, the cloud shows an
anomalous expansion. The effect is the more pronounced, the deeper the lattice and
the stronger the localization of the atoms. In addition, the double occupancy D steeply
increases when the interactions become more attractive (see Fig. 6.10b). Despite the
expansion of the cloud and atomic densities much lower than two atoms per site,
D reaches up to 80 % for strong attraction and deep lattices, which indicates that
the system is in a preformed-pair regime [31] (see Sect. 3.3.2). Without the optical
lattice, the anomalous expansion disappears and the cloud size remains constant. The
double occupancy only shows a moderate increase to about 40 %, which is measured
by quickly projecting the harmonically trapped cloud into a deep lattice.

Apparently, localization of atoms and strong correlations are necessary to evoke
the counterintuitive expansion of the atomic cloud at increasing attraction. Without
the lattice, these correlations are not strong enough to lead to a significant change in
the density of states. However, what is the physical mechanism behind the anomalous
expansion?

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Fig. 6.10 Measured cloud size and double occupancy. a The cloud radius in the horizontal plane
R⊥ and b the fraction of atoms on doubly occupied lattice sites as a function of scattering length
are shown for several lattice depths. The data points in a correspond to a moving average over
three consecutive points to smoothen the noise. Each point in b shows the average of at least five
measurements at identical parameters; the error bars denote the standard deviation. The data is
recorded at a fixed horizontal (vertical) trap frequency ω⊥ = 2π × 25 Hz (ωz ≈ 2π × 100 Hz)

6.3.2 A Basic Explanation

We assume that the total entropy in the system is identical for all scattering lengths,
since the initial preparation is identical for all samples and all manipulations are
considered adiabatic. Hence, for all interactions a certain amount of entropy must be
accommodated in the lattice system (see Fig. 6.11).

Basic insight is obtained in the zero-tunneling limit, in which the atoms are fully
localized and each site can be considered individually. Within a grand-canonical
ensemble, the on-site physics is characterized by the probabilities for zero, single and
double occupancy. In principle, the zero-tunneling limit allows to exactly calculate
the thermodynamic properties for arbitrary interactions. Such calculations have been
carried out by Belen Paredes and Maria Moreno-Cardoner and are presented in
Ref. [26].

Here, only the entropy capacities per lattice site at zero and infinitely attractive
interactions are considered. Generally, the entropy is given by S = −kB

∑
j p j ln(p j ),

where p j denotes the probability of finding the system in the state j and the sum runs
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Fig. 6.11 Attractively interacting fermionic spin mixture and finite entropy. a The cloud size R is
determined by the interplay between entropy and several energy scales: The interaction energy U , the
tunneling matrix element J and the characteristic trap energy Et . Additionally, the tunnel coupling
J 2/U of bound atom pairs becomes relevant at strongly attractive interactions. b, c Configurations of
two fermions (spin up and down) in a zero-tunneling double well potential. For vanishing interactions
there are four possibilities to arrange the atoms. In the limit of infinitely attractive interactions the
atoms are tightly bound, merely allowing for two configurations. Therefore, the entropy per lattice
site is reduced by a factor of two. The atom cloud is forced to expand in order to accommodate the
total entropy present in the finite-temperature system

over all allowed states. For a spin mixture of noninteracting fermions the entropy at
site i is given by

s0
i = −2kB [ni ln(ni)+ (1 − ni) ln(1 − ni)] , (6.6)

because the local filling per spin state ni = 〈ni↑〉 = 〈ni↓〉 corresponds to the proba-
bility of finding a spin up or spin down atom at this site. The factor of two accounts
for the contribution of both spin states. In the limit of infinite attraction, on-site pairs
form in order to gain the large negative interaction energy. These pairs behave as
hard-core bosons and lead to a local entropy of

s−∞
i = −kB [ni ln(ni)+ (1 − ni) ln(1 − ni)] . (6.7)

Comparing the expressions of the two limiting cases, we observe that correlations
can significantly reduce the local entropy density. The system with strongly attractive
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interactions needs to occupy twice as many lattice sites to store the same amount of
entropy as the noninteracting system. This result is also illustrated in Fig. 6.11 using
a simple double well system.

Within the zero-tunneling model the minimal cloud size is expected to occur at
vanishing interactions aFF = 0. In the experimental data, however, the minimum
is shifted towards slightly attractive interactions (see Fig. 6.10a). This shift origi-
nates from a competition between energy minimization through delocalization and
reduced entropy capacity. Assuming zero temperature and vanishing interactions,
the cloud will be larger at finite tunneling than in the zero-tunneling limit, because
the delocalization of atoms minimizes the total energy. If in this T = 0 scenario
the attraction between the atoms is increased, the cloud size shrinks further until
all states in the trap center are occupied by a spin up and a spin down atom.7 If
finite temperature is introduced again, the shrinking of the cloud at attractive inter-
actions is counteracted by the need to accommodate the finite entropy. The entropy
effect will dominate only beyond a critical attraction and therefore the minimum in
the cloud size is slightly shifted. Based on these considerations one can expect a
larger shift of the size minimum towards attractive interactions, the more tunneling
and delocalization dominate over the harmonic confinement. This behavior has also
been experimentally confirmed [26].

This brief overview on our studies of the attractive Hubbard model underlines
the importance of the interplay between finite entropy, interaction and confinement
in real experimental systems. In any finite-sized quantum system at finite tempera-
ture unusual thermodynamics can emerge. In fact, related arguments have helped to
understand the loss of bosonic coherence in a weakly interacting Bose-Fermi mix-
ture discussed in Chap. 8. Generally, the finite entropy effects presented here could
help to detect transitions between quantum many-body phases with different entropy
capacity. This might be particularly promising for transitions between topological
phases [33], whose different topology can lead to very distinctive ways of storing
entropy [34].

6.4 Conclusion and Outlook

In this chapter various regimes of the Fermi-Hubbard model have been studied with
fermionic 40K spin mixtures in a fully tunable optical lattice potential. For the case of
repulsive interactions, we have extracted the global compressibility of the quantum
system by measuring the in-situ cloud sizes using phase-contrast imaging. This has
allowed us to observe the evolution from a compressible Fermi liquid over an incom-
pressible Mott to a band insulating phase, when the confinement and the interactions
are increased. By measuring the suppression of double occupancy, it has been possi-
ble to identify regimes of strong correlations. Our studies of attractively interacting

7 In the limit of strong compression, this corresponds to the maximally packed state of an ideal
band insulator.

http://dx.doi.org/10.1007/978-3-642-33633-1_8
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spin mixtures have revealed an anomalous expansion of the cloud size for increas-
ing attraction. Here, the formation of atom pairs reduces the local entropy capacity,
which entails the expansion of the system to accommodate the total entropy.

Together with the works in Tilman Esslinger’s group [8, 16, 24, 35, 36], our
studies constitute the first steps in the experimental investigation of Fermi-Hubbard
models with optical lattices [4, 9, 26]. The observation of the fermionic Mott insulator
has been an important achievement. The next milestone will be the creation of low
temperature phases of the Fermi-Hubbard model [37–39], namely the BCS-BEC
crossover for attractive and antiferromagnetic order for repulsive interactions (see
Sect. 3.3.2). The latter will open the path to investigations of quantum magnetism
with ultracold atoms [40]. This could ultimately lead to the observation of a d-wave
superconducting phase [41, 42] that is believed to emerge within the two-dimensional
Hubbard model.

The prospects of fermionic quantum gases in optical lattices are truly amazing,
but a number of challenges are awaiting solutions. In order to enter the antiferro-
magnetically ordered phase, it will be necessary to achieve entropies lower than
S/N � kB ln(2). Only below this level excitations on the energy scale J 2/U are
suppressed, which result from the superexchange coupling that mediates an effective
spin-spin interaction between neighboring lattice sites [19, 43–45]. Such entropies
are predicted to require initial temperatures of less than T/TF ≈ 0.06 [44] in a
homogeneous system. This is about a factor of two lower than the current state of
the art. In an optimistic scenario, the entropy redistribution in the inhomogeneous
lattice system might actually help to locally generate regions with sufficiently low
entropies, although the global entropy per particle may not fall below the required
level (see Fig. 6.12). In this case the temperature criterion would be relaxed by a
bit, but the antiferromagnetically ordered domains may be small and their detection
rather challenging.

Besides the demand for lower initial entropies, it will be important to minimize
unwanted excitations of the quantum state during the experimental sequence [7]. On
the one hand, technical heating could be minimized. On the other hand, lattice loading
should be performed as adiabatically as possible. This has turned out to be surpris-
ingly delicate due to slow time scales for mass redistribution already at moderate
interactions [8, 9]. Apart from slower ramping, which has the potentially devastat-
ing disadvantage of more technical heating, better adiabaticity may be achieved by
developing ramp sequences that minimize mass redistribution (in the presence of
interactions) during preparation.

6.4.1 Creation of Low Entropy States

The DMFT analysis in the context of our experimental work has quantitatively
revealed remarkable variations in the spatial entropy distribution of the strongly
interacting fermions. In large part the entropy is carried by the metallic phases at the
edge of the cloud, while the Mott and, even more pronounced, the band insulating

http://dx.doi.org/10.1007/978-3-642-33633-1_3


144 6 Interacting Fermions in Optical Lattice Potentials

2 ln(2)

ln(2)

1

0.5

0

Et/12J = 0.1 Et/12J = 0.5

2 ln(2)

ln(2)

1

0.5

0

Et/12J = 1.0 Et/12J = 1.8

0 20 40 0 20 40

T/TF = 0.07

T/TF = 0.15

Distance from trap center, r (a)

E
nt

ro
py

, S
 (

k B
)

(a) (b)

(c) (d)

Fig. 6.12 a–d Calculated spatial entropy distribution of a balanced spin mixture for various com-
pressions and fixed global atom number N (N↑ = N↓ = N/2). The interaction parameter is strongly
repulsive U/12J = 1.5. The solid (dashed) lines show the entropy per lattice site (per particle) for
initial temperatures of T/TF = 0.07 (black) and T/TF = 0.15 (gray). Identical entropy per particle
and lattice site of ln(2) indicates a Mott insulating phase with unity filling, but without magnetic
ordering. A Mott insulating core is clearly visible in b for both temperatures. The calculations have
been performed by Theo Costi, Achim Rosch and collaborators published in the supplementary
online material of [4]

regions store relatively little entropy (see Fig. 6.12). This entropic shell structure
induced by the underlying trapping potential suggests novel approaches to lower the
entropy in an optical lattice.8

One possibility might be the creation of a band insulator in the center of the trap
and subsequent active removal of the outer high entropy regions [46, 47]. Then, a
suitable potential must adiabatically be build around the remaining band insulating
core, because otherwise a highly excited many-body state would remain in the trap
center. Alternatively, a combined potential of a shallow harmonic trap and a tightly
confining dimple could help to create a central region with ultra-low entropy, while
the dilute gas in the shallow outer part will carry almost all the entropy [48]. It has

8 To my knowledge, the first qualitative arguments pointing to these possibilities have been made
by Nikolay Prokof’ev during a DARPA OLE team meeting in the summer of 2008 in Cambridge,
MA.
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been proposed to adiabatically remove the dilute outer shell via clever reshaping
of the potentials [49]. The dynamical scheme of quantum distillation [50] suggests
to utilize the small tunneling rate of doubly occupied sites: While the low-entropy
band insulating core will stay stable [8, 9], the outer metallic shell with high entropy
will quickly move away from the trap center upon relaxing the external confinement.
Apart from the above schemes for spatial filtering, it might also be promising to
perform local atom number filtering. Because much of the entropy is carried by
number fluctuations, the selective removal of doubly occupied sites in a region that
is expected to be half-filled at zero temperature can effectively cool the sample, as
experimentally shown in a recent experiment [51].

Filtering schemes of the above type predict a reduction of the entropy per particle
by about a factor of ten. Nevertheless, their implementation is challenging in typical
experimental setups that rely on the use of Gaussian beams for the creation of optical
potentials and employ imaging systems with medium resolution. One anticipates
that it will be much easier to create the required potential landscapes in novel setups
with single-site resolution [52, 53] by holographic projection of optical potentials
[54]. Such setups will also simplify the observation of low entropy regions, because
antiferromagnetic ordering can even be identified if the spatial extent of the ordered
region is limited [54, 55].

Further interesting proposals for the creation of low entropy states suggest to
bring the lattice quantum gas into thermal contact with a second atomic species
(ideally bosons) for which the lattice is transparent (see Sect. 5.4.1). The additional
species is supposed to serve as a coolant, which is evaporated from the system after
absorbing entropy from the fermionic spin mixture [56–58]. Being similar to the
principle of usual sympathetic cooling, the basic idea seems appealing. However,
the details of thermalization and the risk of enhanced inelastic three-body collisions
between the species are yet to be explored. An alternative route towards studying the
low temperature phases of the repulsive Hubbard model makes use of the fact that
the lowest temperatures in fermionic quantum gases have been reached for attractive
interactions. The study of the attractive side of the phase diagram (see Sect. 3.3.2)
might help to also understand the effects on the repulsive side using a mapping based
on particle-hole transformation [59].

6.4.2 Detection of Magnetic Ordering

When approaching the ultra-low entropy phases of the repulsive Hubbard model,
powerful methods for the detection of antiferromagnetic spin order are needed.
Because magnetic ordering happens in real space (see Fig. 3.6), usual time-of-flight
imaging, which reveals the momentum distribution, will not be useful. Additionally,
it has recently been pointed out that any spin imbalance will lead to the formation
of a canted antiferromagnet, in which the staggered order forms in the plane per-
pendicular to the quantization axis [60, 61]. Slight spin imbalances can hardly be
avoided in experiments. Therefore, it will be necessary to reorient the spins along the

http://dx.doi.org/10.1007/978-3-642-33633-1_5
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quantization axis using a π/2 pulse, which is likely to reduce the “visibility” of the
order [62]. In any case, powerful approaches to the detection of antiferromagnetic
phases are much in demand.

A meaningful extension to time-of-flight imaging is the analysis of density-density
correlations in the quantum noise of absorption images [63] (see Sect. 4.2.3). This
technique has been validated for a Mott insulator of bosons [64], a band insula-
tor of noninteracting fermions [65] and patterned loading of bosons in an optical
superlattice [66]. For the case of staggered order the emergence of correlation peaks
is expected at distances corresponding to integer multiples of k⊥ = (π/a, π/a)
[as opposed to (2π/a, 2π/a), see Sect. 4.2.3], where a is the lattice constant [67].
Remarkably, quantum Monte Carlo simulations have shown that shallow precursors
of these peaks already appear above the Néel temperature TN ≈ 4J 2/U heralding the
onset of singlet formation of neighboring spins [67]. Nevertheless, noise correlations
are a tough experimental observable, because many images recorded under identi-
cal conditions (on the order of a hundred) must be averaged to obtain unambiguous
signals.

Observables that yield information on the in-situ order in a single experimental
shot are highly desirable. One possibility to achieve this goal might be light scat-
tering from the lattice quantum gas, which acts as a refractive medium [55, 62].
This technique would be analogous to neutron or X-ray scattering in solid state
physics. Alternatively, external light fields could also be used to probe the excitation
spectrum of the quantum gas by means of Bragg [68] or Raman scattering [69].
A variation of this approach is the application of lattice modulation [24, 70, 71]
(compare Sect. 5.4.2) and subsequent measurement of the double occupancy [8, 36,
72]. This scheme relies on the assumption that the creation of doubly occupied sites
via lattice modulation is enhanced, when the many-body quantum state approaches
antiferromagnetic order. One of the advantages of the method is the sensitivity to
nearest-neighbor correlations that are expected to emerge already above TN (see
above). However, it is very indirect and requires an accurate quantitative evaluation
of double occupancy, which must be compared to a theoretical model.

A model-independent smoking gun for antiferromagnetic order could be obtained
via in-situ imaging with single-site and single-atom resolution. Important technical
challenges have been mastered in setups that use bosonic 87Rb [52, 53, 55]. There
are several more to be mastered in upcoming setups for fermionic species. A future
spin resolved in-situ detection will unambiguously identify staggered order simply
by looking at it [55, 73]. In particular, surrounding metallic shells in the trapped
geometry will not spoil the signal as the magnetic order can be identified entirely
on a local level. Above the Néel temperature the dilute metallic wings of the sample
may even be used to perform thermometry, for example, by measuring the equation
of state [74–77].

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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Chapter 7
Quantum Revival Spectroscopy
and Multi-Body Interactions

Interactions lie at the heart of correlated many-body quantum phases [1–3]. Typically,
the interactions between microscopic particles, such as electrons, atoms, or mole-
cules, are described as two-body interactions. Only in rare cases, such as strongly
interacting nuclear matter, higher-body interactions are considered by introducing
a new energy scale, whenever three or more particles collide. Recent theoretical
studies have shown that such multi-body interactions may give rise to novel, exotic
many-body quantum phases in systems of ultracold quantum gases [4–6]. So far,
higher-body interactions in ultracold atomic systems have only been observed as
inelastic loss resonances in three- and four-body recombinations of atom-atom and
atom-dimer collisions [7–11]. Elastic multi-body interactions, however, have been
elusive, because a method to detect them has not been available.

In this chapter, I report on a novel method to precisely measure the interactions
among ultracold atoms residing on the sites of an optical lattice: quantum revival
spectroscopy. The technique resolves the number of atoms involved into on-site
collisions and detects the corresponding interaction strengths on an absolute energy
scale. The energy difference between the interacting and the noninteracting system
is directly accessed as a result of an intrinsic interference effect.

Equipped with these capabilities, the presence of effective multi-body interac-
tions is revealed in systems of bosonic atoms that are tightly confined at single lattice
sites. Such multi-body interactions emerge from two-body collisions through virtual
transitions of atoms from the lowest to higher vibrational states [12]. This process
underlines the relevance of multi-band physics for interacting atoms in optical lat-
tices. Additionally, the precision measurement of interaction energies provides input
on the question, how accurately optical lattice systems are described by single-band
Hubbard models or, vice-versa, how well single-band Hubbard models are realized.
This assessment is crucial for the comparison of optical lattice quantum simulators
with many-body quantum theory [13].

In the first part of this chapter, the origin of quantum phase revival dynamics
is explained on general grounds using a simplified single-orbital single site model.
For the case of ideal coherent states it is shown, that collapse and revival dynamics
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arise, when the eigenenergies of the underlying Fock states depend nonlinearly on
the particle number [14–20]. In the second part, I discuss how these dynamics can be
practically realized and observed with ultracold bosonic atoms in an optical lattice
[21–23]. By establishing a direct connection between experimental and theoretical
observables, foundations are laid for quantum revival spectroscopy that allows to
accurately measure the interaction energies of individual Fock states. It is addition-
ally shown that the atom number statistics at a lattice site can be observed, similar to
foundational experiments in cavity quantum electrodynamics that yield the statistics
of a cavity photon field [24–26]. Subsequently, two theoretical models for the on-site
Fock state energies are discussed and it is demonstrated, how multi-orbital physics
gives rise to effective multi-body interactions. The third part reports on the observa-
tion of long-lived collapse and revival dynamics of bosonic 87Rb on the sites of an
optical lattice. Fourier transform of the resulting time traces yields the energies of
individual Fock states with high spectral resolution. Comparing the measured Fock
state energies to calculations that rely on the exact diagonalization of a multi-orbital
single site system, we find excellent agreement. Based on these data the strengths of
the multi-body interactions are accurately extracted. Quantum revival spectroscopy is
also used to track the change in the on-site atom number statistics from Poissonian to
number-squeezed when approaching the Mott insulator transition. The chapter con-
cludes with two excursions that propose the creation and detection of a Schrödinger
cat and exotic condensate states by means of collapse and revival dynamics.

7.1 Quantum Evolution of Coherent States

Coherent states represent the most stable field solution in physics [25, 27]: Formed
by a distinct superposition of number states (Fock states) they are insensitive to
the removal of particles. Coherent states are characterized by a single amplitude and
phase and are used extensively in the quantum description of classical coherent fields,
ranging from laser light to coherent matter waves in superconductors, superfluids and
atomic Bose-Einstein condensates (BECs). Their remarkable properties also play a
crucial role in the path integral formalism of many-body perturbation theory [1, 28].

When coherent states are used to describe matter wave fields, such as Bose-
Einstein condensates, the interactions between the underlying particles can give rise
to a nonequilibrium phase evolution of the Fock states constituting the coherent
state. When this phase evolution depends nonlinearly on the particle number, the
coherent state undergoes a sequence of collapses and revivals [21–23]. In such a
sequence, the quantum state first evolves into a highly correlated and entangled
state in which at the time of the collapse the field amplitude vanishes. However,
when the evolution progresses, the entanglement is unravelled again and the original
coherent field is ideally recreated. This section explains the inner workings of the
collapse and revival phenomenon focussing on the case of interacting atoms [14,
15, 20]. However, remarkable examples of such collapse and revival dynamics have
also been observed for a coherent light field interacting with a single atom in cavity
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quantum electrodynamics [24] or for a classical oscillation of a single ion stored in
a trap [29].

7.1.1 Coherent States

We consider a confining potential, such as a box or a harmonic oscillator, whose
ground state is occupied by n bosonic atoms (see Chap. 2). The higher lying excited
states of the potential are omitted, which means the system is treated in a single-mode
approximation. The occupation of the ground state mode is described by Fock states
|n〉, where n can be any positive integer number including zero, constituting the
basis of the Fock space. The operators â and â† denote the annihilation and creation
operators, respectively, which reduce and increase the occupation of the ground state
mode by one atom, They are defined by

â|n〉 = √
n|n − 1〉, (7.1)

â†|n〉 = √
n + 1|n + 1〉. (7.2)

Fock states are the eigenstates of the atom number operator n̂ = â†â and fulfill
n̂|n〉 = n|n〉 as follows directly from the above relations.

Coherent states, on the other hand, are defined by the property of being eigenstates
of the annihilation operator â,

â|α〉 = α|α〉. (7.3)

Thus the action of the annihilation operator, which corresponds to the removal of an
atom, leaves a coherent state unchanged besides multiplication with the eigenvalueα.
Generally, this eigenvalue is a complex number α = |α|eiϕ and the coherent state |α〉
is uniquely defined by the amplitude |α| and the phase ϕ. Using the defining Eq. 7.3,
the structure of coherent states in the Fock basis can be straightforwardly derived.
The general form of a coherent state is given by a coherent superposition of Fock
states,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉, (7.4)

where the statistical weight of the Fock states |n〉 follows a Poisson distribution
P(n) = e−|α|2 |α|2n/n! and the exact atom number remains uncertain. The mean
atom number is given by 〈n̂〉 = |α|2 ≡ n̄ and the variance 〈n̂2〉 − 〈n̂〉2 = 〈n̂〉 = n̄
characterizes the fluctuations. Accordingly, we may rewrite the eigenvalue as α =√

n̄ · eiϕ .
Coherent states have originally been introduced in the quantum description of

electro-magnetic waves. The operator of the electric field of a single light mode is
given by Ê(χ) ∝ âe−iχ+â†eiχ [30]. When the corresponding mode is occupied by a

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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coherent state, the expectation value of the electric field 〈α|Ê(χ)|α〉 is a cosine wave
|α| cos(χ − ϕ) with a well-defined macroscopic phase corresponding to a classical
coherent wave. The intensity of the light field is proportional to |α|2 = n̄, which is
the mean number of photons occupying the mode.

A Bose-Einstein condensate is the matter wave analogue of a classical coherent
wave. When a Bose-Einstein condensate of noninteracting atoms is abruptly split by
deforming the confining potential into a double well, the ground state orbital of each
well is occupied by a superposition of Fock states, which ideally corresponds to a
coherent state. Both parts may be viewed as classical waves and their coherence can
be probed in an interference experiment; when the phase of the interference pattern is
stationary in consecutive realizations of the experiment, the matter wave fields have a
fixed relative phase [31–33].1 When a Bose-Einstein condensate of interacting atoms
is split, the quantum states of the two parts do not necessarily correspond to ideal
coherent states, but are composed of a superposition of Fock states with a narrower
“squeezed” atom number distribution [33].

The general atom number superposition state

|ψ〉 =
∞∑

n=0

cn|n〉 (7.5)

can describe pure Fock states as well as coherent and number-squeezed states. The
coefficients cn denote the probability amplitude of the corresponding Fock state |n〉
and fulfill the normalization condition

∑∞
n=0 |cn|2 = 1.

7.1.2 Interactions and Time Evolution of Fock States

Interactions between ultracold atoms are typically described by binary s-wave col-
lisions that are parametrized by a single parameter, the s-wave scattering length as

(see Sect. 2.3). Higher partial waves can be neglected due to low collision energies
and inelastic three-body losses can be minimized by choosing low atom densities
and short interaction times. The 87Rb atoms in the |F,m F 〉 = |1,+1〉 hyperfine state
used in the experiments of this chapter interact repulsively with a positive s-wave
scattering length of about as ≈ 102 a0 [34, 35].

When two identical repulsively interacting atoms occupy the ground state of the
confining potential, the interatomic collisions raise the total energy of the system by
an amount U . This interaction energy per atom pair is generally given by

U = 4π�
2as

m

∫
|φ(r)|4 d3r, (7.6)

1 In case the phase relation between the two halves is not fixed, the phase will fluctuate between
consecutive realizations of the experiment [20].

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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where m is the mass of the colliding atoms and φ(r) the spatial orbital of the atoms.
The integral

∫ |φ(r)|4 d3r quantifies the overlap of the atomic densities, n(r) =
|φ(r)|2.

Assuming weak interactions, the spatial orbital φ(r) is often identified with the
single-particle ground state orbital φ0(r) of the confining potential. This is justified
when U is much smaller than the energy gap between the ground state and the higher
lying excited states, such that multi-orbital effects can be neglected; specifically for
a harmonic oscillator potential with frequency ω the condition U 	 �ω must be
fulfilled. In the case of a single site of an optical lattice, the ground state orbital φ0(r)
is often identified with the maximally localized wavefunction in the first lattice band,
the Wannier function w(r).

Based on this single-orbital approximation it is straightforward to derive the total
interaction energy when a Fock state |n〉 occupies the ground state. The interaction of
n(n −1)/2 atom pairs gives rise to the single-orbital Fock state energy (see Fig. 7.1a)

ESO
n = U

2
n(n − 1). (7.7)

This is the eigenenergy of the Hamiltonian

ĤSO = U

2
n̂(n̂ − 1), (7.8)

which is identical to the zero tunneling limit (J → 0) of the Bose-Hubbard
Hamiltonian at a single lattice site [2, 36, 37] (see Chap. 3). The condition for the
single-orbital approximation to hold for larger atom numbers n is even stricter, as
ESO

n must be much smaller than the energy gap between ground and excited states to
ensure that U is independent of the atom number. For a harmonic potential this means
ESO

n 	 �ω. We note that the total energy of a Fock state |n〉 comprises not only ESO
n

but also the zero point energy of the given confining potential must be added; e.g. for
the case of a three-dimensional isotropic harmonic potential the zero point energy
n · 3�ω/2 must be taken into account even when the atoms do not interact. However,
this offset can typically be neglected as it does not have an observable impact on the
dynamical evolution of the Fock states, which will become clear below.

Within the single-orbital approximation the time evolution of a Fock state |n〉 is
determined by the Hamiltonian ĤSO with ĤSO|n〉 = ESO

n |n〉 and we get

|n〉(t) = e−i ESO
n t/� |n〉 = e−iUn(n−1)t/2� |n〉. (7.9)

Hence, the collisional phase shift acquired over time is quadratic in the atom number.
For a single Fock state this merely leads to an unobservable global phase, but for
a superposition of Fock states the nonlinearity in the atom number gives rise to an
intriguing dynamical evolution.

http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Fig. 7.1 Interactions in a single-orbital system and quantum phase revival dynamics. a Interacting
atoms in the ground state of a confining potential undergo coherent collisions. If only the single
ground state orbital is taken into account, the interaction energy per atom pair U is independent of
the filling n as given by Eq. 7.7. b Under such conditions a coherent matter wave field undergoes
perfectly periodic collapses and revivals. The revival time trev = h/U is inversely proportional
to the interaction energy U , while the collapse time tcoll = �/(

√
n̄U ) is additionally inversely

proportional to
√

n̄, which is the standard deviation of the Poisson distribution

7.1.3 Time Evolution of Coherent States

Coherent states are formed by a superposition of Fock states and as such they are
no eigenstates of the Hamiltonian governing the system (Eq. 7.8). In fact, each Fock
state individually evolves according to Eq. 7.9 and the complete evolution is given
by

|ψα(t)〉 = e−|α|2/2
∞∑

n=0

αn

√
n! · e−iUn(n−1)t/2�|n〉. (7.10)

The quadratic dependence of the collisional phase on the atom number causes the
Fock states to dephase and |ψα(t)〉 evolves away from a coherent state loosing its
initially well-defined macroscopic phase. This would not be the case if the eigenener-
gies had a linear atom number dependence. Here the phase factor of each Fock state
could be included into the definition ofα, giving rise to a time dependent macroscopic
phase, while the state itself would remain coherent.

The dynamical evolution of |ψα(t)〉 cannot be observed directly; it is only accessi-
ble through the time dependence of a physical observable. In analogy to the quantum
description of the electric field (see above), the property that quantifies the pres-
ence of a macroscopic phase is given by the expectation value of the field operator,
〈â〉(t) = 〈ψα(t)|â|ψα(t)〉. This expectation value, which is called the field amplitude
in the following, generally has a complex value and reads [15, 19]:

〈â〉(t) = α · e−n̄
∞∑

n=0

n̄n

n! · e−inUt/�. (7.11)
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We show below, that the matter wave dynamics of a coherent state can be experi-
mentally detected as the squared modulus of 〈ψα(t)|â|ψα(t)〉, complying with the
requirement that physical observables assume real values. The dynamical evolution
is observed as

|〈â〉(t)|2 = n̄ · e−2n̄ · exp
(

n̄
(

e−iUt/� + eiUt/�
))

= n̄ · exp

(
2n̄

(
cos

(
Ut

�

)
− 1

))
. (7.12)

This result describes an oscillatory behavior (see Fig. 7.1b) that is governed by the
fundamental frequency U/h and its higher harmonics n · U/h.

Collapse

For short times (t 	 h/U ) Eq. 7.12 can be approximated by

|〈â〉(t)|2 � n̄ · exp
(
−2n̄U 2t2/�2

)
, (7.13)

expressing the collapse of the matter wave field. The width of this Gaussian decay
defines the characteristic collapse time tcoll = �/(

√
n̄U ), where

√
n̄ is the standard

deviation of the Poisson distribution. This result is intuitively clear as the mutual
dephasing of Fock states is expected to happen the faster the broader the atom number
distribution is, as illustrated in Fig. 7.1b.

Revival

Due to the discreteness of the atom number distribution, the coherent field is fully
restored at the revival time trev = h/U when each Fock state has acquired a phase
shift which is an integer multiple of 2π . According to Eq. 7.9 at trev the Fock
states with zero and one atom have not evolved at all, the state with two atoms
has gained a phase of 2π , the state with three atoms 3 · 2π and so on. The phases
of all Fock states are identical modulo 2π and the initial coherent state is recreated,
|ψα(trev)〉 = |ψα(0)〉 ≡ |α〉.2 The rephasing repeats itself after integer multiples of
trev and gives rise to strictly periodic collapse and revival dynamics of the matter
wave field amplitude.

2 This statement is actually not correct when the zero point energy of each Fock state is taken into,
e.g. n · 3�ω/2 for a three-dimensional harmonic confinement. However, the corresponding phase
shifts drop out when the time evolution |〈â〉(t)|2 is calculated due to the linearity in n.
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Fig. 7.2 Matter wave dynamics of a coherent state in a single-orbital system visualized by the
Q-function. The coherent states |β〉 are characterized by points in the complex plane. The contour
plots show their overlap with |ψα(t)〉 at discrete times t ranging from 0 (I) to trev/2 (XI) scanned
in steps of trev/20. |ψα(t)〉 evolves away from a coherent state until it forms a Schrödinger cat-type
superposition of two quasi-coherent states with a phase difference of π at the time of maximal
collapse (trev/2). Panel a shows the evolution for n̄ = 2.0 and b for n̄ = 7.0, where the latter
reveals even more complex superpositions of quasi-coherent states at intermediate times. Contour
lines are spaced by 0.02 and the maximal value of the Q-function is 1/π ≈ 0.32 by definition

7.1.4 Visualization of the Time Evolution

In quantum optics the Q-function is commonly used as a visual representation of
quantum fields [25, 38]. Here we employ

Q(β, t) = |〈β|ψα(t)〉|2
π

(7.14)

to visualize the collapse and revival dynamics of the matter wave field |ψα(t)〉. It
quantifies the overlap between the evolving quantum state |ψα(t)〉 and a coherent
state |β〉 with a mean atom number n̄β = |β|2 and phase ϕβ = arg(β). The Q-
function has the maximum value 1/π for perfect overlap.

Figure 7.2 shows the Q-function of the state |ψα(t)〉 at discrete times of the evolu-
tion. In the beginning, |ψα(0)〉 corresponds to a coherent state with α = √

n̄, where
we have chosen ϕ = 0 without loss of generality. The Q-function is maximal for
β = α, but also has finite values in a circular region around α. The finite overlap
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with neighboring coherent states signifies that coherent states are quasi-orthogonal
forming an overcomplete basis of the Fock space.

During the quantum evolution, |ψα(t)〉 moves away from a coherent state until the
macroscopic phase becomes maximally uncertain at t = trev/2. Here, the state forms
a coherent superposition of two quasi-coherent states |α1〉 and |α2〉 with complex
phases α1,2 = ±iα.3 Because the eigenvalues of the superimposed states have the
same absolute value, but an opposite sign, the expectation value 〈â〉 vanishes. The
superposition of two macroscopic quantum fields at this point of maximal collapse
can be viewed as a Schrödinger cat state that is discussed in more detail in Sect. 7.4.
In Fig. 7.2b even more complex superpositions of quasi-coherent states can be iden-
tified; those appear at higher mean fillings and can also be found for noninteger
values of n̄. For example, four quasi-coherent states with relative phases of π/2 are
superimposed at t = trev/4 [see Fig. 7.2b (VI)].

7.2 Quantum Revival Spectroscopy

When a superfluid of bosonic atoms is loaded into a shallow optical lattice, the
quantum state at a single lattice site is effectively indistinguishable from a coherent
state. The individual sites can be isolated from each other by abruptly increasing the
lattice depth and a huge array of coherent states is formed. The collapse and revival
dynamics are realized on many thousand lattice sites in parallel.

In this section, we discuss how the dynamics can be detected on a macroscopic
scale after time-of-flight expansion and identify, which conclusions about the on-
site dynamics can be drawn from this global view. These considerations form the
foundations for using quantum phase revivals as a spectroscopic technique. In addi-
tion, we highlight that the on-site physics in an optical lattice can generally not
be understood in the single-orbital framework of the previous section, because the
band structure gives rise to multi-orbital effects. Interactions can promote atoms to
higher-lying orbitals and effectively change the shape of the on-site wavefunction
as a function of the atom number. We present an instructive physical picture of the
process that is provided by effective field theory: Virtual transitions of atoms to
excited orbitals generate effective multi-body interactions as higher-order correc-
tions to the single-orbital two-body interaction per atom pair U . It is shown that
quantum phase revivals are an ideal experimental tool to detect such multi-body
interactions.

3 It is worth mentioning that the superimposed states are not perfectly coherent states, which is also
signaled by the fact that the Q-function does only reach half its maximal value. The exact nature
of the state is discussed in Sect. 7.4.
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7.2.1 Coherent and Number-Squeezed States in Optical Lattices

A coherent state of massive particles cannot be realized in an isolated potential,
because it is not compatible with particle number conservation. However, by splitting
a Bose-Einstein condensate into two or more parts it is possible to create an array
of states that are essentially indistinguishable from coherent states. The splitting
procedure should be nonadiabatic, such that each atom remains in a delocalized
state with a finite probability to be found in any part. The many-body state of the
global system is highly entangled and the coupling between the parts should be
fully suppressed to avoid relaxation. If one only takes a look at one of the parts, the
local quantum state appears to be constructed of a superposition of Fock states that
resembles a coherent state with a well-defined amplitude and phase.

In the experiment we split a Bose-Einstein condensate into many thousand parts
using a three-dimensional optical lattice. Initially the condensate is prepared in a
harmonic trap and all (or most) atoms occupy the macroscopic ground state wave-
function in the harmonic potential. The atoms are delocalized and can be found in a
huge spatial volume. When a shallow optical lattice is switched on the atoms remain
delocalized; for vanishing on-site interaction U/J ≈ 0 all atoms occupy the Bloch
state with the lowest energy φq=0(r), which extends macroscopically over the whole
lattice (see Sect. 2.2.3 and Fig. 3.7). Picking out a single lattice site, there is a finite
probability for each atom to be found there. In the Wannier basis the many-body
wavefunction for a system of N atoms on M lattice sites can expressed as [39, 40]

|
SF〉U/J ≈ 0 ∝
(

1√
M

M∑

i=1

â†
i

)N

|0〉

= 1√
M N

∑

n1,...,nM

√
N !

n1! · · · nM ! |n1, . . . , nM 〉, (7.15)

where the occupation numbers ni in the second line have to comply with the additional
constraint

∑M
i=1 ni = N . This multinomial state (Eq. 7.15) directly signifies the

entanglement and the atom number fluctuations between the lattice sites. There is
even a very small, albeit finite probability to find all N atoms at a single lattice site.

Relaxing the constraint of a fixed global atom number, that is assuming a grand
canonical ensemble, the many-body wavefunction 7.15 can be factorized into a prod-
uct of on-site wavefunctions |ψi 〉,

|
SF〉U/J ≈ 0 ≈
M∏

i=1

|ψi 〉. (7.16)

Here, the intricate entanglement between lattice sites is absent, which simplifies many
calculations without affecting the qualitative and quantitative results provided N and
M are large [40, 41]. For the case of a homogeneous lattice with a fixed local filling

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_3
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|α|2 = n̄ = N/M , the on-site wavefunctions |ψi 〉 are essentially indistinguishable
from a coherent state

|ψi 〉 = |α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉. (7.17)

When the Bose-Einstein condensate is split with finite interactions U/J > 0, the
on-site wavefunction will show sub Poissonian number statistics. The repulsion
between the atoms limits the delocalization, which effectively squeezes the statisti-
cal distribution of Fock states [42, 43]. For very large interactions U/J → ∞, the
system is in the Mott insulator phase, where each lattice site is occupied by a fixed
number of atoms, and the many-body wavefunction at commensurate integer filling
n̄ is given by a product of local Fock states

|
MI〉U/J→∞ ≈
M∏

i=1

|n̄〉. (7.18)

Generally, the global many-body state |
〉 in an optical lattice, which has been
adiabatically raised up to a certain ratio U/J , can be conveniently captured by a
product of on-site wavefunctions that are formed by a superposition of Fock states
[36, 39]

|
〉 ≈
M∏

i=1

∞∑

n=0

c(i)n |n〉i =
M∏

i=1

|ψi 〉. (7.19)

The coefficients c(i)n denote the probability amplitudes for a Fock state |n〉 at lattice
site i and fulfill the normalization

∑∞
n=0 |c(i)n | = 1. This wavefunction corresponds

to the Gutzwiller ansatz that, for example, can be used to calculate the coefficients
c(i)n for a given mean filling n̄ within the Bose-Hubbard model [44–46].

After creating an array of coherent or number-squeezed states of the general type
7.19, we rapidly increase the lattice depth in a nonadiabatic process to switch off
the tunnel coupling between the lattice sites (J → 0). Because the lattice sites
are isolated from each other, the local Fock states |n〉i are the new eigenstates of the
system and their eigenenergies E (i)n determine the dynamical evolution. Accordingly,
the time dependent many-body state can be written as

|
(t)〉 =
M∏

i=1

|ψi (t)〉 with |ψi (t)〉 =
∞∑

n=0

c(i)n ei E (i)n t/�|n〉i . (7.20)

In the following section, we discuss the impact of this evolution on the matter wave
interference pattern observed after time-of-flight expansion.
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7.2.2 Evolving Momentum Distribution in Homogeneous Lattices

Quantum phase revival dynamics do not change the atom distribution on the individ-
ual lattice sites as the evolving phases do not change the probabilities |c(i)n |. However,
they leave strong signatures in the momentum distribution, which can be observed
after sufficiently long time-of-flight expansion of the atomic sample in the far-field.4

The momentum distribution is generally given by

n(k) = |w(k)|2
∑

i, j

e−ik·(ri −r j )〈â†
i â j 〉,

= |w(k)|2
⎛

⎝
∑

i= j

〈n̂i 〉 +
∑

i �= j

e−ik·(ri −r j )〈â†
i â j 〉

⎞

⎠ (7.21)

where ri denotes the coordinate of lattice site i and âi (â†
i ) the corresponding anni-

hilation (creation) operator for an atom. The envelope |w(k)|2 is determined by the
Fourier transform of the on-site Wannier functionw(r), which together with the fac-
tor

∑
i= j 〈n̂i 〉 gives rise to the so-called Wannier background. The term e−ik·(ri −r j )

is responsible for the emergence of the interference pattern and the factor 〈â†
i â j 〉

measures the correlation between the lattice sites i and j . Quantifying the coherence
in the system, this factor determines how well the interference pattern is modulated.
The integral of |w(k)|2 ∑

i �= j e−ik·(ri −r j )〈â†
i â j 〉 over complete momentum space

vanishes identically.5 Nevertheless, this term encodes the dynamical evolution of the
individual lattice sites. Using the general many-body wavefunction (Eq. 7.19), the
time dependence of the correlations (i �= j) can be derived as

〈
(t)|â†
i â j |
(t)〉 = 〈ψi (t)|â†

i |ψi (t)〉 · 〈ψ j (t)|â j |ψ j (t)〉. (7.22)

This induces a temporal modulation of the interference pattern. In order to derive
an analytical expression for the time dependent momentum distribution n(k, t), we
make the following simplifying assumptions about the general on-site state |ψi (t)〉
shown in Eq. 7.19:

• The energies of individual Fock states have identical values at each lattice site
E (i)n ≡ En . This assumption is justified when the lattice is homogeneous over the
extent of the atom cloud. We note that the lattice is homogeneous in experimental

4 Typical experimental expansion times (10 to 20 ms) are not long enough to exactly transform the
in-situ density into the momentum distribution. This has been investigated in detail by Gerbier et
al. [47]. However, in the analysis of the experimental images we use observables (visibility and
fraction of coherent atoms) that are fairly insensitive to the details of the time-of-flight pattern (see
Sect. 4.2). Therefore it is justified to assume infinite time-of-flight for practical purposes.
5 Note that

∫
dk |w(k)|2e−ik·(ri −r j ) = δi j , because the Wannier function is symmetric and its

squared modulus assumed to be normalized to unity [48].

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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realizations, when two conditions are fulfilled: First, the lattice depth must be
uniform over the extent of the atom cloud and, second, the underlying potential
should be neither confining or anticonfining, but a flat. Both conditions are largely
met in the experiments of this chapter.

• The on-site atom number statistics are assumed to be identical at each lattice site
such that c(i)n ≡ cn , which also implies a uniform mean filling 〈n̂i 〉 = n̄ for all
indices i . We note that this requirement is hard to meet with present day technol-
ogy. During the initial loading of a shallow lattice, the cloud is typically confined
in a harmonic trap which gives rise to mean on-site fillings ranging between
zero and a maximal value 〈n̂i 〉 = n̄max in the center of the trap. To achieve uni-
form number statistics across the lattice, however, a box-like underlying potential
would be necessary.

Under these assumptions, the index of the on-site wavefunctions can be dropped and
we obtain

〈
(t)|â†
i â j |
(t)〉 |ψi (t)〉≡|ψ(t)〉−−−−−−−−→ |〈ψ(t)|â|ψ(t)〉|2 = |〈â〉(t)|2, (7.23)

where |ψ(t)〉 = ∑∞
n=0 cnei Ent/�|n〉. Therefore we can write down a simplified

expression for the time dependent momentum distribution in a lattice with M sites

n(k, t) = |w(k)|2
⎛

⎝Mn̄ + |〈â〉(t)|2
∑

i �= j

e−ik·(ri −r j )

⎞

⎠ . (7.24)

The amplitude of the interference term is given by the squared modulus of the field
amplitude, which refers to a single lattice site similar to the dynamics discussed
in Sect. 7.1. For the evaluation of the experimental images we use the visibility of
the interference pattern (see Sect. 4.2). The visibility has a monotonic relation to
|〈â〉(t)|2 and therefore constitutes an appropriate experimental observable for the
quantum dynamics.

The evolution of the matter wave field amplitude can be expressed in general
terms by

|〈â〉(t)| =
∞∑

n=0

√
n + 1 c∗

ncn+1 e−i(En+1−En)t/� (7.25)

such that the squared modulus reads

|〈â〉(t)|2 =
∞∑

m,n=0

√
m + 1

√
n + 1 cmc∗

m+1c∗
ncn+1 ei(Em+1−Em−En+1+En)t/�.

(7.26)
For the specific case of a coherent state with the probability amplitudes cn =
e−|α|2/2αn/

√
n! and the eigenenergies ESO

n = Un(n−1)/2 of a single-orbital model,

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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a straightforward calculation recovers the dynamics of Eq. 7.12. Therefore periodic
collapses and revivals of the visibility at the frequencies U/h and its higher harmon-
ics would be expected in the experiment (see Fig. 7.3c, grey solid line).

On the one hand, Eq. 7.26 can be used to calculate the quantum dynamics for
given Fock state energies En and coefficients cn . On the other hand, it can also be
used in the reverse way forming the basis of quantum revival spectroscopy. From
this equation we know that the dynamical evolution |〈â〉(t)|2 is generally composed
of oscillations at frequencies

fmn = (Em+1 − Em − En+1 + En)/h. (7.27)

Each frequency has a spectral weight of

Cmn = √
m + 1

√
n + 1 cmc∗

m+1c∗
ncn+1, (7.28)

where the indices m and n can take any integer value including zero. When the
quantum evolution |〈â〉(t)|2 is accurately measured in an experiment, the oscillation
frequencies fmn and their spectral weight Cmn can be extracted, for example, using
a Fourier transform. It is convenient to determine the energetic reference point by
setting the Fock state energies of the noninteracting system to zero, which corre-
sponds to omitting the on-site zero point energy. Using this convention, the Fock
state energies for zero atoms and one atom vanish, E0 = E1 = 0, and the general
frequencies of order U/h are given by

f10 = E2/h with C10 = √
2 c0 |c1|2 c∗

2

f21 = (E3 − 2E2)/h with C21 = √
6 c1 |c2|2 c∗

3 (7.29)

f32 = (E4 − 2E3 + E2)/h with C32 = √
12 c2 |c3|2 c∗

4

and so forth. Because the Fock state energy E2 is obtained directly, it is possible to
iteratively extract all energies En with n > 2 from the experimental data. Further-
more, the frequencies of order 2U/h and their spectral weights read

f20 = (E3 − E2)/h with C20 = √
3 c∗

0 c1 c2 c∗
3

f31 = (E4 − E3 − E2)/h with C31 = √
8 c∗

1 c2 c3 c∗
4 (7.30)

f42 = (E5 − E4 − E3 + E2)/h with C42 = √
15 c∗

2 c3 c4 c∗
5

and so forth. Analogously, higher frequency components of order �U/h are given
by fn+�,n and the corresponding weights by Cn+�,n , where � is a positive integer.

Based on the above derivation, we conclude that quantum revival spectroscopy
offers a unique tool to measure the energy of individual Fock states on an absolute
scale. The inference of different Fock states intrinsically ensures that the energy
difference between the interacting and the noninteracting state is measured. In addi-
tion, information on the probability amplitudes cn can be obtained via the spectral
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Fig. 7.3 Signature of multi-body interactions in quantum phase revivals. a For repulsive interac-
tions, virtual transitions to higher lattice orbitals broaden the ground-state wavefunction at a lattice
site depending on the atom number (orange solid lines). This gives rise to characteristic Fock state
energies, which can be described by effective multi-body interactions. b A BEC loaded into a weak
optical lattice forms a superfluid in which each atom is delocalized over several lattice sites. The
quantum states at each site can be expressed as a superposition of Fock states, |n〉, with amplitudes
cn . c Quantum phase revivals of a coherent state of interacting atoms in the multi-orbital system of
a deep lattice well (blue solid line). The beat signal indicates coherent multi-body interactions. The
dynamics are markedly different from the monochromatic evolution expected in a single-orbital
model with a single two-body interaction energy, U (gray solid line)

weights Cmn . Equations 7.29 and 7.30 explicitly show that the evolution of |〈â〉(t)|2
is only nontrivial when the many-body quantum state shows number fluctuations.
Only if the probability amplitudes cn of at least three Fock states do not vanish, an
oscillatory behavior can arise. On the other hand, the mixing of several Fock states
can “amplify” the signal of a Fock state with a small probability amplitude, because
the statistical weight may be increased by large coefficients cn of the other contribut-
ing Fock states. Amazingly, quantum revival spectroscopy is also sensitive to the
probability amplitude c0 of the Fock state with zero atoms, which is the occupation
of the vacuum state.

7.2.3 Quantum Phase Revivals with Fixed Global Atom Number

We have derived the quantum phase revival dynamics assuming a grand canonical
ensemble and a factorized global many-body state composed of independent on-
site states. While these assumptions considerably simplify calculations, they do not
resemble experimental reality. Here the total atom number is rather fixed and the
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many-body state is a highly entangled multinomial superposition of global many-
body Fock states (see Eq. 7.15). It is an important question whether the dynamics
change when these realistic conditions are taken into account.

The question has only recently been answered by Schachenmayer et al. [41], who
have analytically calculated the quantum dynamics in a lattice system with N atoms,
a mean on-site filling of n̄ and single-orbital eigenenergies ESO

n = Un(n − 1)/2.
They obtain

|〈â〉(t)|2 = n̄ ·
(

1 + 2n̄

N

(
cos

(
Ut

�

)
− 1

))(N−1)

, (7.31)

which differs from Eq. 7.12 for small atom numbers N . However, in the limit of
large atom numbers N � n̄, this expression reduces to Eq. 7.12 as limN→∞(1 +
x/N )N = ex . Already for a system with N = 5 and n̄ = 1, the result of the exact
treatment is almost indistinguishable from the approximate calculation employed
above. Experimental lattice systems consist of typically N = 105 atoms with a local
filling on the order of n̄ ≈ 1 and therefore the simplified coherent state treatment is
safely applicable.

7.2.4 Multi-Orbital Physics, Fock State Energies and Multi-Body
Interactions

Using quantum revival spectroscopy we will see in the experimental data (Sect. 7.3)
that the single-orbital approximation employed above breaks down at rather moderate
interactions and lattice depths. In a multi-orbital system, atom-atom interactions can
promote particles to higher-lying orbitals; the admixture of these orbitals modifies
the shape of the spatial on-site wavefunctions and gives rise to renormalized Fock
state energies [4, 49–57].

In this section, we present two approaches to treat the on-site multi-orbital system
theoretically. The first one is based on exact diagonalization of a finite multi-orbital
system in analogy to the so-called configuration interaction method used in quantum
chemistry [46, 58, 59]. The second one uses the techniques of effective field theory
to derive a perturbation expansion for the Fock state energies [12, 60, 61].

7.2.4.1 Calculation of Fock State Energies Using Exact Diagonalization

It is intuitively understandable that interactions between atoms can lead to a mod-
ification of the ground state wavefunction at a lattice site. For the case of repul-
sive interactions a broadening of the on-site ground state wavefunction is expected
(Fig. 7.3a). Because the interaction energy per atom pair is proportional to the overlap
of the atomic densities (Eq. 7.6), this will reduce the energy of the Fock state E2. The
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Fig. 7.4 a On-site potential at lattice depth Vlat = 32 Erec and Vlat = 36 Erec with hard boundary
conditions. The dashed lines show the lowest lying single-particle energies with three and four
classically bound states, respectively. b The effective one-dimensional ground state wavefunction
in a Vlat = 40 Erec lattice is modified as a function of the filling n = 1 to 4 for interacting 87Rb
atoms. The black solid line shows the single-particle on-site wavefunction φ1(z) calculated on an
individual lattice site with hard boundary conditions (see (a)). φ1(z) is essentially identical to the
Wannier function w(z) of the lowest lattice band (dashed line). The figure is displayed with kind
permission of Dirk-Sören Lühmann [46]

reduction can be expected to be more and more pronounced the higher the number
of atoms at the lattice site.

To calculate the Fock state energies En in deep three-dimensional lattices Vlat
using exact diagonalization, it is convenient to focus on a single lattice site with
hard boundary conditions (Fig. 7.4a). The considerations are further restricted to the
s = 3 or 4 lowest lying orbitals in each of the three dimensions, because those
orbitals—being classically bound—are least prone to tunneling.6 This gives rise to
a finite Hilbert space with m = 33 or 43 single-particle states. The corresponding
three-dimensional orbitals are constructed from the one-dimensional eigenfunctions
in x , y, and z direction via

φαβγ (r) = φα(x) φβ(y) φγ (z), (7.32)

with α, β, γ = 1, . . . , s. The occupation numbers nαβγ of the orbitals φαβγ (r)
define the on-site many-body states |N 〉 = |n111, n211, . . . , nsss〉, which we label by
a number N for simplicity. Assuming that n atoms occupy the lattice site, the number
of mutually orthogonal many-body states |N 〉 amounts to

Nmax = (n + m − 1)!
n!(m − 1)! (7.33)

6 We will discuss in Sect. 7.3 that the energy cutoff that is effectively introduced by the restriction
to those orbitals is justified by the experimental scenario.
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and defines the dimension of the Hilbert space, where m = s3 is the number of
single-particle orbitals. We note that the uncorrelated noninteracting ground state
with n bosonic atoms is given when all atoms occupy the lowest orbital φ111(r),
which is |1〉 = |n, 0, . . . , 0〉 in the notation employed here. This corresponds to the
Fock state |n〉 within the single-orbital Bose-Hubbard model.

Repulsive interactions between the n atoms induce the admixture of energetically
higher lying many-body states |N 〉. Those admixtures can be exactly calculated
through the diagonalization of the Schrödinger equation of the n atom system in its
matrix representation ∑

N ′
〈N |Ĥ |N ′〉 cN ′ = Ẽn cN . (7.34)

Defining the field operator φ̂(r) = ∑
αβγ φαβγ (r) âαβγ , the Hamiltonian takes the

form

Ĥ =
∫

d3r φ̂†(r)
(

p̂2

2m
+ V (r)+ g

2
φ̂†(r)φ̂(r)

)
φ̂(r), (7.35)

where V (r) is the on-site trapping potential and g = 4π�
2as/m the atom-atom

contact interaction characterized by the s-wave scattering length as .
The lowest eigenvalue Ẽmin

n of Ĥ corresponds to the ground state energy of
the interacting n-atom system, which we call the multi-orbital Fock state energy
Ẽmin

n = EMO
n . The energy offset is ideally chosen such that the ground state energy

of the noninteracting n atom system vanishes. It is important to remark that the
multi-orbital Fock state energy EMO

n is the total energy of the Fock state |n〉 in the
interacting system and corresponds to the energy that is measured in a quantum
revival experiment. It does not only include interaction energy, but also the kinetic
and potential energy carried by the admixed higher lying many-body states |N 〉 (see
Fig. 7.5). As shown in the following section, EMO

n is significantly lower than the
single-orbital Fock state energy ESO

n = gn(n−1)
2

∫
d3r |φ111(r)|4. However, EMO

n is

larger than the pure interaction energy EMO
int,n = g

2

∫
d3r 〈φ̂†(r)φ̂†(r)φ̂(r)φ̂(r)〉 that

accounts for the interaction energy, but neglects the additional potential and kinetic
energy of the excited many-body states [59, 62].

7.2.4.2 Emergence of Multi-Body Interactions Using Effective Field Theory

A treatment of the multi-orbital system of interacting atoms within the framework of
effective quantum field theory illustrates the physical processes pictorially: Atom-
atom interactions induce virtual transitions to higher-lying excited orbitals at a lattice
site. Those transitions appear as higher-order terms in the perturbation expansion and
generate effective multi-body interactions. The resulting multi-orbital Fock state
energies in an individual lattice well are given by the expansion
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Fig. 7.5 Occupation of many-body states on a lattice site. a Population that is not found in the
many-body ground state of the noninteracting n-atom system |1〉 = |n, 0, . . . , 0〉 as a function of
lattice depth and atom number assuming as = 102 a0 and 43 single-particle orbitals. b Occupation
of single-particle orbitals for Fock states with n = 2 and n = 5 atoms (33 orbitals, Vlat = 40
Erec, as = 102 a0). The notation [αβγ ] comprises all permutations of α, β, and γ . All orbitals
corresponding to a set [αβγ ] are energetically degenerate and their occupations have been added
up. The energy of the orbitals increases from left to right. Occupation of the second band, while
energetically favorable compared to the third band, is suppressed due to conservation of parity

EMO
n = Ũ2

2
n(n−1)+ Ũ3

6
n(n−1)(n−2)+ Ũ4

24
n(n−1)(n−2)(n−3)+ . . . (7.36)

which represents the eigenenergies of the corresponding effective Hamiltonian [12].
The characteristic strength of the effective m-body interaction is denoted by Ũm .

We briefly sketch the emergence of multi-body interactions following the deriva-
tion given in Johnson et al. [12]. The eigenenergy of a Fock state with n atoms is
given by a perturbation expansion in higher-order terms

EMO
n � E (0)n + E (1)n + E (2)n + . . . (7.37)

The zeroth-order term corresponds to the energy of the noninteracting system that
can be set to zero E (0)n = 0 without loss of generality. The first-order term represents
the pure two-body interaction E (1)n = Ũ2n(n − 1)/2 that happens within the lowest
single-particle orbital. The coupling to excited single-particle orbitals is introduced
by the second-order term

E (2)n = −Ũ 2
2

4

�∑

μ≥ν

sμνK 2
μν00|〈n;μν|â†

μâ†
ν â0â0|n; 00〉|2

Eμν
+ A

2
n(n − 1) (7.38)
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(a) (b) (c)

two-body terms three-body term

Fig. 7.6 Second-order diagrams relevant to the generation of effective two- and three-body inter-
actions. a, b Diagrams of this type give rise to two-body interactions within the second order shift.
Their contributions are canceled by introducing the counter term proportional to an adjustable
constant A (see Eq. 7.38) for proper renormalization. c This diagram exemplarily shows a process
generating three-body interactions. Two atoms in the lowest vibrational state μ = 0 collide pro-
moting one atom to a higher-lying state μ �= 0 that subsequently collides with a distinct third atom
in state μ = 0. An effective three-body interaction between the three distinct incoming atoms is
created, mediated by a virtual transition to the μ �= 0 intermediate state. The diagrams are adapted
from Johnson et al. [12]

where the indicesμ and ν are used as a short hand notation for the indices of the three-
dimensional single-particle orbitals introduced above. The occupation numbers of
states with n atoms are expressed by

|n; 00〉 = |n, 0, . . . , 0〉
|n;μμ〉 = |n − 2, 0, . . . , 2μ, . . . , 0〉 (7.39)

|n;μν〉 = |n − 2, 0, . . . , 1μ, . . . , 1ν, . . . , 0〉.

The sum over the indicesμ and ν terminates at a high-energy cutoff�which excludes
highly excited orbitals from the calculation. Kμν00 denotes the overlap integral of
the orbitals involved in the virtual processes and sμν takes the value 4 (1) for the
case μ = ν (μ �= ν), respectively. The parameter A is introduced to ensure proper
renormalization of the perturbation theory. It must be chosen such that E (2)n does not
generate two-body energies in addition to E (1)n . Therefore the condition E (2)2 = 0
must be fulfilled and the contributions of all two-body diagrams that are generated
by the first term of Eq. 7.38 (examples shown in Fig. 7.6a, b) are canceled in the
renormalization process. The remaining three-body processes (example shown in
Fig. 7.6c) give rise to effective three-body interactions

E (2)n = Ũ3

6
n(n − 1)(n − 2), (7.40)

where Ũ3 denotes the corresponding characteristic energy scale.
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7.3 Experimental Realization

The conditions at a single site of an optical lattice are ideally suited to observe
the quantum phase revival dynamics that is outlined above. First, the interaction
energy U/h is typically on the order of some kilohertz leading to a revival time
trev = h/U on the order of 1 ms. This time scale is long enough to be easily resolved
experimentally and still short enough to avoid disruption or dephasing due to loss
processes or technical fluctuations. Second, the collapse time tcoll = trev/

√
n̄ is

slightly shorter than the revival time because typical mean fillings are n̄ � 1. This
ensures that the collapse is neither too fast for experimental detection nor too slow. In
the latter case, the matter wave field might not have fully collapsed before the onset of
the revival. Third, the quantum phase revival dynamics is realized on several thousand
sites in parallel which generates strong experimental signatures as discussed in the
previous section.

However, the parallel implementation of the dynamics on many sites requires a
homogeneous lattice across the atomic cloud. On the one hand, it is crucial that the
depth of the optical lattice is identical at all occupied sites such that the level spacings
between the on-site orbitals do not differ from site to site. Otherwise, the revival times
would not be well-defined across the lattice and the dynamics would wash out. On
the other hand, mutual energy offsets between the lattice sites must be avoided as
these can lead to rapid relative dephasing. Previous experiments were restricted to the
observation of few revivals only, because the dynamics was realized in red-detuned
optical lattices. The underlying harmonic confinement in those configurations led
to rapid mutual dephasing between the sites which severely damped the observed
dynamics after few revivals.

In this section, I report on the observation of quantum revival dynamics over
more than 40 cycles. The remarkable increase of coherence time has been enabled by
using a blue-detuned optical lattice and simultaneous compensation of the underlying
anticonfinement by a copropagating red-detuned dipole trap (for details see Sect. 5.4).
This improvement is a qualitative change that allows for the observation of novel
physics. High spectral resolution, which is gained by the detection of long quantum
revival traces, enables precise measurements of individual Fock state energies EMO

n
on an absolute energy scale. Our data unambiguously reveals characteristic Fock
state energies that cannot be described within the single-orbital framework that is also
employed in the context of the Bose-Hubbard model. Using the measured Fock state
energies, we can precisely infer the strength of the effective multi-body interactions
(see Sect. 7.2.4).

7.3.1 Preparing an Array of Miniature BECs

The experiment begins with the preparation of a pure Bose-Einstein condensate of
87Rb atoms in the |F,m F 〉 = |1,+1〉 hyperfine state. Away from any Feshbach

http://dx.doi.org/10.1007/978-3-642-33633-1_5
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Fig. 7.7 Experimental sequence as described in the text

resonances atoms in this state interact repulsively; the background scattering length
is quoted in the literature as as ≈ 102 a0 with deviations on the per cent level
[34, 35]. The atom number is adjusted for different data sets between 1.2 × 105

and 3.5 × 105 with shot-to-shot variations of ±10 % or better. The atom cloud is
held in a pancake-shaped crossed optical dipole trap operating at a wavelength of
λdip = 1030 nm. The trap frequencies are ωz = 2π × 130 Hz in the direction
of gravity and ω⊥ = 2π × 32 Hz in the orthogonal plane. Subsequently, a three-
dimensional lattice of simple cubic type is superimposed and adiabatically ramped
up within 100 ms to a depth VL ranging between 3 Erec and 13 Erec, below the Mott
insulator transition that is expected slightly below 15 Erec for our parameters. The
lattice is created by a laser operating at a blue-detuned wavelength of λlat = 738 nm
as described in detail in Sect. 5.4. For the lattice depths VL the many-body ground
state of the system is a superfluid. Therefore, we expect the quantum states at the
individual lattice sites to range from coherent states for shallow lattice depths to
highly number-squeezed states for deeper lattices [21, 63–65].

After adiabatic loading, we suddenly increase the lattice depth from VL to VH,
ranging from 25 Erec to 41 Erec. This suppresses the tunnel coupling, freezes out
the atom number distribution at each lattice site and effectively creates an array of
miniature Bose-Einstein condensates (see Fig. 7.7). The jump is performed within
50µs, which is slow enough to avoid the population of higher lattice bands, but fast in
comparison with tunneling in the first band. The nonadiabatic change of parameters
abruptly exposes the system to a new Hamiltonian and the many-body state prepared
at VL is no longer the ground state or even an eigenstate. Therefore nonequilibrium
dynamics arise. The quantum phase evolution on the individual lattice sites starts,
governed by the Fock state energies of Eq. 7.36.

Quantum phase revivals have been studied in previous experiments [21–23]. How-
ever, these were limited to following the dynamics for short traces only, with typically
four to five revival cycles. In those cases, the measurements were performed in a red-
detuned optical lattice where a global harmonic confinement led to rapid relative
dephasing of lattice sites. In these experiments, the different detunings of the optical

http://dx.doi.org/10.1007/978-3-642-33633-1_5
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lattice (blue-detuned) and the dipole trap (red-detuned) with respect to the atomic
resonances (λD1 = 795 nm and λD2 = 780 nm) allow us to change the underlying
harmonic confinement during the experimental sequence. Simultaneously with the
jump to the lattice depth VH, we reduce the dipole trap to cancel the harmonic con-
finement, creating a homogeneous lattice system in the horizontal plane (see also
Sect. 5.4). After letting the system evolve for a hold time t , all trapping potentials are
switched off simultaneously and an absorption image of the matter wave interference
pattern is recorded after tTOF = 10 ms time-of-flight expansion. As a measure of the
ensemble averaged squared modulus of the matter wave amplitude |〈â〉(t)|2 (see
Sect. 4.2.2), we determine the visibility of the interference pattern for each image
[66] according to

V = Nmax − Nmin

Nmax + Nmin
. (7.41)

Here, Nmax denotes the total atom number in the four boxes around the first order
interference peaks and Nmin the total atom number in boxes that are rotated by 45◦
around the central peak. The width of the boxes is chosen as 15 % of 2�klattTOF/m,
which is the distance between the center and the first order diffraction peaks (klat =
2π/λlat).

7.3.2 Observation of Multi-Orbital Quantum Revivals

Figure 7.8 shows a typical time trace of the multi-orbital phase evolution. It displays
about 40 revivals, while the coherence time allows to record the dynamics for even
longer times. On top of a fast series of collapses and revivals, a slower modulation
of the envelope is observed that indicates a beat between different frequencies in the
system. Due to the large number of observed revivals, it is possible to analyze the
spectral content of the trace using a numerical Fourier transform. Technical details
on the Fourier analysis are provided in Appendix D.

In the resulting spectrum, five distinct frequency components of orders U/h and
2U/h can be clearly identified (Fig. 7.9). The smallest peaks at about 3.4 and 7.1 kHz
originate from sites occupied by up to four atoms, because they correspond to the
energy terms E4−2E3+E2 and E4−E3−E2 with spectral weights of

√
12 c2|c3|2c∗

4
and

√
8 c∗

1c2c3c∗
4, respectively. It is interesting to note that quantum revival spec-

troscopy can help to detect Fock states with very small probability amplitudes cn .
Their signal can be “amplified” through the interference with Fock states |n −1〉 and
|n − 2〉 with larger amplitudes cn−1 and cn−2. This can be deduced, for example,
from Eq. 7.26. The residual damping in the time trace most probably stems from
residual harmonic confinement along the vertical z-axis, residual tunneling [67] via
higher bands, and the finite extension of the atomic ensemble. The latter leads to the
sampling of a slightly inhomogeneous distribution of lattice depths as a result of the
Gaussian shape of the lattice laser beams.

http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_4
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Fig. 7.8 Multi-orbital quantum revivals of a number-squeezed state. Collapse and revival dynamics
of number-squeezed superposition states in a deep optical lattice. A Bose-Einstein condensate of
about 1.9(3)× 105 87Rb atoms was adiabatically loaded into a VL = 8 Erec lattice within 100 ms.
Quantum phase evolution was induced by a nonadiabatic jump to a VH = 41(1) Erec deep lattice,
while the superposition states with finite number fluctuations are preserved. The sample has an
ensemble-averaged mean atom number of 〈n̄〉 ≈ 1.0 and a central mean atom number of n̄c ≈ 2.5.
Simultaneously with the lattice jump, the underlying harmonic confinement is instantaneously
minimized to maximize the coherence time. The quantum phase dynamics show a beat signal
resulting from coherent multi-body interactions. Each data point corresponds to a single run of the
experiment. The solid line interpolates the data and serves as a guide to the eye
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Fig. 7.9 Spectral analysis of the time trace in Fig. 7.8 reveals the contributing frequencies. The
solid line shows Gaussian fits to the peaks. Grey dashed lines display the frequencies corresponding
to the single-orbital interaction energies U and 2U at a lattice depth of 41 Erec

As discussed in Sect. 4.2.2, the relation between V and |〈â〉(t)|2 is monotonic
but not exactly linear. Depending on the amount of nonlinearity, one might expect
mixing between the spectral contributions of |〈â〉(t)|2, when the data is evaluated
using the visibility. Indeed, we observe additional frequencies in the spectra (see
below) which we assign to nonlinear spectral mixing. However, those frequencies
are suppressed by a factor of fifty compared to the dominant spectral features.

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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Fig. 7.10 Minimization of underlying confinement for quantum phase revival dynamics. a Picking
a revival at a hold time t0 of about 2.5 ms, we vary the intensity of the dipole trap laser and b monitor
the change of the visibility at the revival, identifying a clear maximum. c Converting the dipole trap
intensity to trap frequency using the model outlined in Sect. 5.3, we find that maximal coherence
time is observed at the expected point of vanishing harmonic confinement ω⊥ = 0 (arrow)

7.3.3 Minimization of the Harmonic Confinement

In order to obtain time traces with the long coherence time demonstrated in Fig. 7.8,
it is critical to minimize the harmonic confinement in the system. Otherwise rapid
relative dephasing between lattice sites restricts the measurement to only few revival
cycles [21–23]. Based on the accurate model of our combined lattice plus dipole
trap potential (Sect. 5.4), we can directly “dial-in” the desired trapping potential
and cancel the harmonic confinement in the horizontal plane. To ensure that this
theoretical potential does indeed yield the largest coherence times, we perform an
independent cross check. We typically choose a phase revival at an intermediate hold
time of about t0 ≈ 2.5 ms. At this point we monitor the visibility of the interference
pattern as a function of the dipole trap intensity (see Fig. 7.10). From these data we
determine the maximal visibility and find that the corresponding dipole trap intensity
complies with the model of our trapping potential. In the experiments of this section
it is crucial to minimize the harmonic confinement, but it is demonstrated in Sect. 7.5
that exotic condensate states can be created via quantum phase evolution in the
presence of underlying trapping potentials.

7.3.4 Precision Measurement of Fock State Energies
and Multi-Body Interactions

In order to measure the dependence of the multi-orbital Fock state energies EMO
n

on lattice depth, we have recorded several long collapse and revival traces with
VH between 25 Erec and 41 Erec as shown in Fig. 7.11. Owing to long coherence
times and high spectral resolution, the Fourier transform of the traces reveals sets of
frequencies of orders U/h and 2U/h with a relative statistical uncertainty on the level
of few per cent. The frequencies increase monotonically with lattice depth. Already
for the energy of the Fock state with two atoms we observe the stunning relevance

http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_5


176 7 Quantum Revival Spectroscopy and Multi-Body Interactions

E2

E3 - 2E2

E4 - 2E3 + E2

E3 - E2

E4 - E3 - E2

E5 - E4 - E3 + E2

8

7

6

5

4

3

2
40353025

BHM

BHM

Lattice depth, VH (Erec)

E
ne

rg
y 

(h
 x

 k
H

z)

Fig. 7.11 Quantum phase revival energies in a multi-orbital system. Long collapse and revival
traces have been recorded under identical loading conditions (VL = 8 Erec), but variable lattice
depth VH during phase evolution. The contributing frequencies fmn of orders U/h and 2U/h have
been derived using numerical Fourier transform and are plotted as energies h × fmn . The typical
experimental uncertainty is ±50 h×Hz. The shading of the data points reflects the relative spectral
weight (the darker the higher). The solid lines with grey shading indicate the theoretically expected
energies. They have been calculated using exact diagonalization (see Sect. 7.2.4) with an on-site
basis set of 43 orbitals at an s-wave scattering length of as = 102(2) a0, where a0 is the Bohr radius.
A calculation using a smaller basis set with 33 orbitals yields slightly higher energies (dashed lines).
The dotted lines show the single-orbital interaction energies U and 2U that have been calculated
using Wannier orbitals, which are commonly used in the Bose-Hubbard model (BHM). At low
lattice depth we can only resolve the strongest peaks owing to smaller peak spacings

of multi-orbital effects in optical lattices: The measured energy E2 is 10(1)% lower
than predicted by a simple single-orbital Bose-Hubbard model.7

We compare the experimental data to the theoretical results of an exact diago-
nalization of the multi-orbital system at a single lattice site. The calculations have
been performed by D.S. Lühmann at the University of Hamburg. According to the
description in Sect. 7.2.4, we use hard boundary conditions and a contact interaction.
The first assumption is justified because the on-site wavefunctions essentially do not
extent to neighboring lattice sites at the high lattice depths used in the experiment.
The second assumption is a subtle issue in the context of renormalization, where care
must be taken in the use of the contact interaction [12, 68, 69]. Therefore and due
to the uncertainties in the published values for the scattering length as (see above)
[34, 35], we use as as an adjustable parameter to match our theory to the experi-
mentally measured value of E2. Based on the resulting best match, our theory has
predictive power for the Fock states with higher atom number. When the diagonaliza-
tion is performed on a Hilbert space with 43 single-particle orbitals, corresponding
to the four lowest lying lattice bands in three dimensions, we find the best match for

7 For this calculation we have taken Wannier orbitals as the on-site ground state wavefunction,
which is commonly done within the Bose-Hubbard model.
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E2 at as = 102(2) a0. This value also leads to remarkable agreement for all other
measured energies suggesting applicability and high accuracy of this multi-orbital
theory (Fig. 7.11, black solid lines).

It is a natural question whether the inclusion of higher-lying orbitals improves the
accuracy of the calculation. While from a purely theoretical viewpoint the answer
might seem to be affirmative, there are experimental reasons for this being not
the case. A cutoff at around s = 4 seems reasonable since only the lowest four
orbitals are classically bound, that is their energy is lower than the lattice depth.
While within Bloch theory there is no fundamental difference between classically
bound and unbound states, the band structure calculation in Fig. 2.8 shows that lat-
tice bands with energies larger than the lattice depth essentially have a parabolic
dispersion relation, similar to a free particle. Such states are prone to fast tunnel-
ing. Admixtures of these states would quickly be lost from our system for two
reasons: First, the lattice does not have underlying confinement in the horizontal
plane (see schematic potential landscape in Fig. 2.7) and, second, is also exposed
to a linear gravitational gradient in the vertical direction.8 Therefore, high-lying
orbitals are likely to form fast loss channels and do not contribute to wavefunction
renormalization.

Using the experimental and theoretical data on the multi-orbital Fock state ener-
gies EMO

n (Fig. 7.12a), we can iteratively derive the strength of effective multi-
body interactions using Eq. 7.36). The relevant relations read U2 = EMO

2 , U3 =
EMO

3 − 3U2, and U4 = EMO
4 − 6U2 − 4U3. Results are shown in Fig. 7.12b. We

observe that the effective three-body interaction is attractive and the measured val-
ues agree well with the results obtained from exact diagonalization. Given the fact
that exact diagonalization is solely based on a two-body contact interaction, this
agreement indicates that intrinsic, direct three-body interactions are negligible for
our experimental parameters. The energy scale of the measured effective four-body
interaction strengths is as low as h ×100 Hz and also in good agreement with theory,
if the experimental uncertainties are taken into account. Altogether, our data shows
that the expansion of Fock state energies in terms of multi-body interactions con-
verges quickly. This offers the possibility to efficiently incorporate interaction effects
of multi-orbital physics into refined effective single-band lattice Hamiltonians.

7.3.5 Observation of Atom Number Statistics

In addition to measuring coherent interatomic interaction strengths on an absolute
energy scale, quantum revival spectroscopy can be used to reveal the changes of
the on-site number statistics for different many-body quantum states [26]. The
spectral weights of the detected frequencies carry information on the probability

8 In a recent experiment by Bakr et al. [70], which uses a similar optical lattice setup, atoms
are selectively excited to higher-lying lattice bands. The fast loss in classically unbound bands is
confirmed by monitoring the population of individual lattice sites using single site resolved imaging.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 7.12 Fock state energies
and effective multi-body inter-
actions in experiment (points)
and theory (lines). a Multi-
orbital Fock state energies
as derived from both experi-
mental and theoretical data in
Fig. 7.11. The solid (dashed)
lines show the multi-orbital
Fock state energies EMO

n as
calculated by exact diagonal-
ization on a Hilbert space with
43 (33) single-particle orbitals.
The corresponding energies
of the Bose-Hubbard model
(BHM, dotted lines) lie con-
siderably higher. b Effective
two-body (top), three-body
(middle) and four-body (bot-
tom) interaction strengths as
derived from experiment and
theory, assuming as = 102(2)
a0 and 43 contributing single-
particle orbitals. The error
bars correspond to one stan-
dard deviation
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amplitudes of the Fock states cn (Eq. 7.26). To demonstrate this, we adiabatically
prepare three-dimensional arrays of coherent (VL = 3 Erec) to highly number-
squeezed states (VL = 13 Erec) close to the Mott insulator transition around 15
Erec. For the differently prepared states, we use an identical setting of VH = 40
Erec to record the quantum phase revivals (Fig. 7.13). Thus, quantum revivals are
employed as a detection sequence for the different many-body quantum states.

As VL is increased from 3 to 11 Erec, the time traces evolve from seemingly irreg-
ular oscillations into a clear beat signal because fewer frequencies contribute. This
can be observed in the corresponding spectra displayed in Fig. 7.13b and is more
quantitatively shown in Fig. 7.14. The narrowing of the spectra reflects a decrease in
the variance of the atom number distribution. This is dominantly caused by number
squeezing, which also leads to smaller peak amplitudes in the Fourier spectra. Addi-
tionally, stronger interactions in deeper lattices induce a reduction of the average
on-site density, which also entails a smaller variance. We attribute the surprisingly
pronounced dynamics at VL = 13 Erec, in proximity of the Mott insulator transition,
to the presence of up to three superfluid layers of the emergent Mott shells with
fillings n = 1, 2 and 3.
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Fig. 7.13 Influence of the global atom number statistics on quantum revival spectra when the Mott
insulator transition is approached. a Multi-orbital quantum revivals in a deep lattice (VH = 40
Erec) after adiabatic loading of 3.3(3) × 105 87Rb atoms into lattices with depths ranging from
VL = 3 Erec to 13 Erec. The mean atom number of the individual traces differed by as little as
±1 %. The coherence time for shallow lattices seems significantly reduced, however, the visibility
reliably shows dynamics down to the per cent level (inset). b The corresponding Fourier spectra
reveal frequency contributions from Fock states containing up to six atoms. The peak positions
agree with the theoretical predictions obtained from exact diagonalization (dashed vertical lines)
and are independent of VL. Number squeezing manifests itself both in reduced peak amplitudes and
in a narrowing of the spectra for increasing VL. The solid lines show Gaussian fits to the peaks

7.4 Excursion: Detecting a Schrödinger Cat
in the Quantum Noise

In Sect. 7.1, we have discussed the quantum collapse and revival dynamics of an
ideal coherent state of interacting atoms. The amplitude of the matter wave field is
maximally collapsed at half of the revival time trev/2 = h/(2U ). At this instant of
time the quantum state of the system corresponds to a superposition of two quasi-
coherent states which is strikingly illustrated by the Q-function (Sect. 7.1.4 and
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Fig. 7.14 Relative weight
of frequencies in the spectra
for different lattice depths
VL (see Fig. 7.13). For each
spectrum the area under
the individual peaks has
been determined (see inset)
and normalized to the area
under all peaks of order U/h.
The evaluation shows that
the spectrum narrows down
to the frequencies E2/h
and (E3 − 2E2)/h with the
theoretical weights c0c2

1c2 and
c1c2

2c3, respectively
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Fig. 7.2). Because two macroscopically occupied quantum states states are involved,
it is justified to call the quantum state at maximal collapse a Schrödinger cat state
[25, 71]. The experimental detection of the Schrödinger cat is challenging as it does
not show any specific signatures in the momentum distribution observed in time-of-
flight images. However, in this excursion we show that correlations in the quantum
noise of experimental images might allow its identification.9

7.4.1 The Quantum State at Maximal Collapse: A Schrödinger Cat

In this excursion we refer to the time dependent coherent state 7.10 to keep the
treatment specific. In principle, all calculations can also be carried out with the gen-
eral superposition state |ψ(t)〉 = ∑∞

n=0 cne−i Ent/�|n〉 that also comprises number-
squeezed states. At maximal collapse the coherent state takes the form

|ψα(trev/2)〉 = |ψcoll
α 〉 = e−|α|2/2

∞∑

n=0

αn

√
n!e−iπn(n−1)/2|n〉. (7.42)

The phase factor exp(−iφ) with φ = πn(n − 1)/2 assumes the value 1 for n = 4m
and n = 4m + 1 and the value −1 for n = 4m + 2 and n = 4m + 3, where m
is an integer number including zero. Therefore, we can decompose the sum into
components with a relative phase shift of π :

9 The ideas for this proposal have been sparked in discussions with Immanuel Bloch and Eugene
Demler.
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|ψcoll
α 〉 = e−|α|2/2

∞∑

m=0

α4m

√
(4m)! |4m〉 + α4m+1

√
(4m + 1)! |4m + 1〉

− e−|α|2/2
∞∑

m=0

α4m+2

√
(4m + 2)! |4m + 2〉 + α4m+3

√
(4m + 3)! |4m + 3〉 (7.43)

It is interesting to note that this state is not an eigenstate of the annihilation operator,
but of the annihilation operator applied twice,

ââ|ψcoll
α 〉 = −α2|ψcoll

α 〉, (7.44)

which has crucial importance for the discussion of noise correlations at maximum
collapse in the next section. From the analysis of the Q-function we know that |ψcoll

α 〉
corresponds to the superposition of two quasi-coherent states with a relative phase
shift of π . Therefore, we approximate |ψcoll

α 〉 by the superposition

|ψcoll
α 〉 ≈ 1√

2
(|iα〉 + | − iα〉) ≡ |cat〉, (7.45)

where the states |iα〉 and | − iα〉 are taken to be actual coherent states for simplicity.
Using this state the matter wave field amplitude vanishes exactly

〈cat|â|cat〉 = i

2
(α + α 〈−iα|iα〉 − α 〈iα| − iα〉 − α) = 0, (7.46)

while 〈ψcoll
α |â|ψcoll

α 〉 � 0 generally has a small, but non-vanishing value. However,
the Schrödinger cat state shares the important property

ââ|cat〉 = −α2|cat〉 (7.47)

with |ψcoll
α 〉. In the following analysis, we restrict ourselves to using |cat〉 as it sim-

plifies the calculations. At the end of the discussion, we will specify the changes that
may occur when the accurate state |ψcoll

α 〉 is used.

7.4.2 Detection via Noise Correlations

In an optical lattice, the cat state discussed above will ideally form at each lattice
site. Therefore, we assume the global many-body state to have the form

|
coll〉 =
∏

i

|cat〉i . (7.48)
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We assume the system to have M lattice sites that are filled with N atoms in total,
resulting in a mean on-site filling n̄ = N/M .

At the time of the collapse, the density in momentum space n(k) = 〈n̂(k)〉,
which is observed in time-of-flight imaging, does not show a direct signature of
the Schrödinger cat state. Based on Eq. 7.24 we expect a density n(k, trev/2) =
|w(k)|2 Mn̄. In order to identify a unique feature of the Schrödinger cat, we analyze
the correlated density in the following. It is theoretically described by

〈n̂(k)n̂(k′)〉 = 〈ψ̂†(k)ψ̂(k)ψ̂†(k′)ψ̂(k′)〉
= δ(k − k′)〈ψ̂†(k)ψ̂(k)〉 + 〈ψ̂†(k)ψ̂†(k′)ψ̂(k)ψ̂(k′)〉, (7.49)

where the commutation relation [ψ̂(k), ψ̂†(k′)] = δ(k − k′) is applied in the
last step to achieve normal order. The term 〈ψ̂†(k)ψ̂(k)〉 creates an autocor-
relation peak which does not contain any information on the structure of the
many-body quantum state. Therefore, it will be omitted. Using the transformation
ψ̂(k) = w(k)

∑
i âi e−ik·ri , the correlated density can be expressed in terms of on-

site operators âi :

〈ψ̂†(k)ψ̂†(k′)ψ̂(k)ψ̂(k′)〉 = |w(k)|2|w(k′)|2
∑

i jkl

e−ik·(r j −ri )e−ik′·(rl−rk )〈â†
i â†

k â j âl〉.
(7.50)

Taking the expectation value within the many-body Schrödinger cat state 7.48, a
straightforward calculation yields the result

〈â†
i â†

k â j âl〉 = (α∗
i α j )

2δikδ jl + n̄i n̄kδilδk j + n̄i n̄kδi jδkl (7.51)

and the correlated density of the many-body Schrödinger cat takes the form

〈ψ̂†(k)ψ̂†(k′)ψ̂(k)ψ̂(k′)〉 =

|w(k)|2|w(k′)|2
⎛

⎝
∑

i j

e−i(k+k′)·(r j −ri )(α∗
i α j )

2 +
∑

ik

e−i(k−k′)·(rk−ri )n̄i n̄k +
∑

ik

n̄i n̄k

⎞

⎠ .

(7.52)

To understand the meaning of this formula, it is crucial to note that the positions
of the lattice sites form a regular, simple cubic array according to ri = (λlat/2)ni ,
where ni ∈ Z

3 is a three-dimensional vector with integer valued entries.
The second sum of Eq. 7.52 gives rise to the typical correlation signals that have

been observed in experiments analyzing a Mott insulator of bosons [72, 73]. The
experimental observable for these correlations is commonly defined as

C(d) =
∫

dk〈n̂(k)n̂(k − d)〉∫
dk〈n̂(k)〉〈n̂(k − d)〉 − 1, (7.53)
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where d = k−k′ defines the difference of the momenta k and k′, which corresponds
to the distance of pixels in a time-of-flight image. Assuming identical and real valued
coherent state amplitudes αi = α = α∗ at each lattice site, we obtain

C(d) = 1

M2

∫
dk|w(k)|2|w(k − d)|2 ∑

i j e−i(2k−d)(r j −ri )

∫
dk|w(k)|2|w(k − d)|2 + 1

M2

∑

ik

e−id·(rk−ri )

≈ 1

M2

∑

ik

e−id·(rk−ri ). (7.54)

The second line holds, because the rapid oscillations in the numerator average out
the first term to zero. This means the Schrödinger cat state is expected to show the
same correlations that are also observed for a bosonic Mott insulator [73], which
therefore do not provide a distinctive feature.

However, the unique property of the cat state is captured by the first term of
Eq. 7.52. This term can be detected by defining an anticorrelation function, in which
the role of k′ is taken by −k′. As an appropriate experimental observable we propose

AC(d) =
∫

dk〈n̂(k)n̂(d − k)〉∫
dk〈n̂(k)〉〈n̂(d − k)〉 − 1, (7.55)

which should allow to detect the exotic k/−k correlations of the Schrödinger cat
state according to

AC(d) = 1

M2

∑

i j

e−id(r j −ri ) + 1

M2

∫
dk|w(k)|2|w(k − d)|2 ∑

ik e−i(2k−d)·(rk−ri )

∫
dk|w(k)|2|w(k − d)|2

≈ 1

M2

∑

i j

e−id·(r j −ri ). (7.56)

The anticorrelations defined here are expected to vanish for a bosonic Mott insulator.
We further note that a superfluid state is expected to neither show correlations C(d)
nor anticorrelations AC(d).

The application of the anticorrelation function 7.55 on an actual experimental
image necessitates a delicate procedure. To obtain AC(d), the image n(k) needs
to be correlated with its point reflected counterpart n(−k) displaced by a relative
distance d. The point reflection must be centered on k = 0. In principle, the center
of the image can be determined by fitting the maximum of the envelope originating
from the Wannier function |w(k)|2. Nevertheless, it constitutes a critical step of the
scheme because complications can arise from finite imaging resolution or pixel size.
It is important to note that each experimental image n(k)merely is a single realization
of the atomic density. Due to the atom shot noise present in the image, it does not cor-
respond to the expectation values used in the definitions 7.53 and 7.55. However, the
quantum mechanical expectation values can be derived by appropriately averaging
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over an ensemble of independently acquired experimental images as described and
argued in detail in [72–74].

Finally, we note that the anticorrelations, that have been derived for an idealized
cat state 7.45 to simplify the calculation, are expected to emerge in the same way
for the exact state at maximum quantum collapse |ψcoll

α 〉. In the above derivation,
the k/−k correlations arise because the cat state fulfills ââ|cat〉 = −α2|cat〉, while
â|cat〉 �= α|cat〉 at the same time. Similarly, the exact maximally collapsed state
has the properties ââ|ψcoll

α 〉 = −α2|ψcoll
α 〉 and â|ψcoll

α 〉 �= α|ψcoll
α 〉. Nevertheless, it

remains an interesting open question whether the Schrödinger cat can survive when
the full multinomial wavefunction is used as the many-body quantum state instead
of the Gutzwiller-type product ansatz. This topic is currently being theoretically
investigated [40], (P. Zoller, private communication, 2011).

7.5 Excursion: Atom Optical Transformation of BECs
in an Optical Lattice

In this brief section, we show that interesting physics can also arise when collapse
and revival dynamics happens in the presence of an underlying confinement. It turns
out that a global potential can be used as an atom optical element that imprints a
locally varying phase on the matter wave field, similar to the effect of a lens or a
tailored phase mask on a light wave. For example, this can enable the transformation
of an initial condensate state into an exotic condensate at q = 0 with a non-trivial
momentum distribution [75, 76].

In a theoretical treatment, an underlying potential can generally be incorporated
by assigning an energy offset εi to each lattice site i . Accordingly, the energy of a
Fock state |n〉i at this lattice site reads E (i)n + εi n, and the global many-body state
given in Eq. 7.19 for a lattice with M occupied sites takes the more general form

|
(t)〉 =
M∏

i=1

|ψi (t)〉 with |ψi (t)〉 =
∞∑

n=0

c(i)n ei(E (i)n +εi n)t/�|n〉i . (7.57)

Employing the approximations used in Sect. 7.2.2 (E (i)n = En and c(i)n = cn for
all occupied lattice sites i), a straightforward calculation yields the modified time
dependent momentum distribution as a generalization of Eq. 7.24

n(k, t) = |w(k)|2
⎛

⎝Mn̄ + |〈â〉(t)|2
∑

i �= j

e−ik·(r j −ri )e−i(ε j −εi )t/�

⎞

⎠ . (7.58)
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Revival pattern versus horizontal trap frequency

-17 Hz -15 Hz -13 Hz -11 Hz -9 Hz

-5 Hz 6 Hz 9 Hz 12 Hz 14 Hz
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32 Hz 34 Hz 36 Hz 39 Hz 42 Hz

Fig. 7.15 Time evolution originating from underlying harmonic confinement; the displayed images
are the raw data that entered the evaluation in Fig. 7.10. A fixed evolution time t0 of about 2.5 ms was
chosen coinciding with a strong quantum phase revival in a VH = 40 Erec deep lattice. The horizontal
trap frequency ω⊥/(2π) was increased starting from slightly negative values, corresponding to an
anticonfining potential. At vanishing confinement, the regular momentum pattern of a superfluid
state appears, while more complex structures of the momentum distribution arise for increasing
confinement, indicating fractional rephasing, that is higher-order Talbot fringes

The quantum phase revival dynamics contained in |〈â〉(t)|2 are given by Eq. 7.26,
while an additional phase term e−i(ε j −εi )t/� complements the interference term
e−ik·(r j −ri ).

For the case of isotropic harmonic confinement, the local energy offset is pro-
portional to the squared distance of the lattice site from the trap center according to
εi = mω2r2

i /2, where ω denotes the trap frequency of the global underlying con-
finement, ri = (λlat/2)ni is the position of lattice site i and ni is a three-dimensional
vector with integer entries. Additionally, the local phase is a linear function of the
evolution time t . Expressed in the language of optics, this setting is analogous to a
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grating that is illuminated by a coherent light wave and directly followed by a thin
lens. A thin lens also creates a phase shift that depends quadratically on the distance
from the lens center [77].

In the matter wave case, the "focal length" of this lens is inversely proportional to
the evolution time t . However, at times when (ε j −εi )t is an integer multiple of 2π the
lens does not have an observable effect because all phase terms have the same value.
For a typical harmonic potential withω ≈ 2π×100 Hz, such a complete rephasing in
the external potential occurs after about 100 ms, while at certain intermediate times
already fractional rephasing is expected [76].10 By choosing a larger trap frequencyω,
this time scale can be significantly shortened. Generally speaking, the time evolution
due to an underlying potential is a coherent process which induces dephasing and
subsequent rephasing, but not necessarily decoherence. Practically, however, the time
scale for rephasing may be so long that decoherence due to technical reasons or atom
loss precludes its observation.

We have observed the onset of the evolution that originates from the harmonic
confinement, as displayed in Fig. 7.15. In these data, a fixed observation time is cho-
sen and the energy offsets εi are varied via the external potential. Within the given
evolution time rephasing would be expected for large enough compression. However,
we merely observe indications for fractional rephasings, which occur at smaller com-
pressions. At larger compression the coherence of the evolution is limited, probably
due to anharmonicities of the trapping potential and a slight variation of the lattice
depth across the extent of the atomic cloud. Additionally, effects arising from finite
time-of-flight expansion may play an important role [47].

Going beyond the case of harmonic confinement, Eq. 7.58 suggests an interesting
possibility to manipulate the frozen-out condensate state in a deep optical lattice.
Recent experiments have shown that the engineering and projection of almost arbi-
trary potential landscapes with resolutions on the order of the lattice spacing are
within technical reach [81–83]. Using such experimental capabilities, it may be pos-
sible to transform the initial quantum state into exotic nonequilibrium condensate
states [76] by appropriately engineering the local energy offsets εi . We note that the
quantum phase revival term |〈â〉(t)|2 does not play an active role in this transforma-
tion. The transformation is solely based on the evolution in the external potential.
However, the additional collapse and revival dynamics cannot be avoided as the lat-
tice has to be deep during the evolution in the external potential in order to avoid a
spatial redistribution of atoms. The quantum phase revivals effectively discretize the
observation of the evolution into time steps of trev as only the fully revived state can
form a condensate.

10 Please note the similarity to the Talbot effect [78], that is the self-imaging of waves in the near-
field (Fresnel) diffraction pattern of a grating [77, 79]. The fractional rephasing is analogous to
higher-order Talbot fringes [80].
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7.6 Conclusion and Outlook

The conclusion of this chapter is two-fold: First, a new type of spectroscopy has been
developed that allows for the precise measurement of the energy of atom number
states on an absolute energy scale. Second, the application of this novel technique
has revealed that the energies of Fock states on the sites of an optical lattice can
generally not be understood within a single-orbital framework. Instead multi-orbital
effects give rise to effective multi-body interactions.

The novel method of quantum revival spectroscopy is deeply rooted in the laws of
quantum mechanics. By making use of the delocalization of atoms in an optical lattice
and nonequilibrium quantum dynamics induced by an interaction quench, the individ-
ual energies of atom number states are converted into frequencies. These are observed
in the resulting collapse and revival dynamics. In order to distinguish the individual
frequencies, a high spectral resolution is needed which requires a long coherence
time of the dynamics. The latter is experimentally achieved through the accurate
control and cancellation of the underlying confining potential using the combina-
tion of a blue-detuned optical lattice and a red-detuned dipole trap. Quantum revival
dynamics in a multi-orbital system not only distinguishes individual Fock states by
their energies [50], but additionally allows to obtain information on the atom num-
ber statistics based on the spectral weight of the measured frequencies. In recently
developed experimental setups with single-site and single-atom resolution [81, 82,
84, 85], the atom number statistics in an optical lattice can be accessed more directly.
However, quantum revival spectroscopy forms a unique probe of delocalization and
quantum superposition that can prove exceptionally helpful in the identification and
analysis of complex, delocalized quantum phases [86].

Our precision measurement has strikingly revealed the importance of multi-orbital
physics in optical lattices. While the single-orbital Bose-Hubbard model predicts
energies that are integer multiples of the interaction parameter U , we have observed
characteristic, renormalized energies for each Fock state as interactions promote
particles to excited orbitals. The comparison of our experimental data to an exact
diagonalization including excited orbitals has yielded excellent agreement. In a field
theoretical approach, the energies of Fock states can be expressed by an effective
single-band Hamiltonian that includes a series of multi-body interactions as higher-
order corrections to the usual two-body contact interaction. We have extracted the
strength of the effective three- and four-body interactions from our data, showing
that the higher-order contributions are significant in leading orders and converge
quickly at high orders. It is an intriguing prospect to use the multi-body interactions
demonstrated here for the simulation of effective field theories. In particular, by
making use of a Feshbach resonance, it might be possible to study the breakdown of
the low energy limit of a field theory when interactions get strong or to test the Gell-
Mann and Low theorem describing the evolution of eigenstates when adiabatically
switching from noninteracting to interacting eigenstates [87], (P. R. Johnson, E.
Tiesinga, private communication, 2010). Taking a glance beyond single lattice sites,
very recent studies have shown that multi-body interactions can have significant
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impact on the many-body physics of lattice quantum gases [56, 88]; multi-body
interactions might help in realizing novel strongly correlated quantum phases, for
example with topological order [5] or exotic ground-state properties [6]. Finally,
quantum phase revivals may not only be used for the detection of effective, but also
intrinsic multi-body interactions, which might be present or enhanced in the vicinity
of Feshbach or Efimov resonances [89].

The methods and measurements presented in this chapter make an important
contribution to a detailed understanding of the Hamiltonians that are actually realized
in optical lattice systems. The precise knowledge of interactions is a crucial input for
the comparison of lattice-based quantum simulators with many-body quantum theory.
It is important in quantum computation schemes that implement gate operations
via coherent interatomic collisions [90, 91], as well as in experiments that work
towards the interaction-induced dynamical creation of spin-squeezed or Schrödinger
cat states with ultracold atoms [64, 92]. The renormalization of lattice parameters due
to interatomic interactions has been found to have a crucial role in complex quantum
systems such as Bose-Fermi mixtures [93]. We will discuss this case in Chaps. 8
and 9. Besides understanding atom number dependent interaction parameters, it is
equally important to elucidate the renormalization of the tunnel parameters in future
investigations [56, 94, 95].
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Chapter 8
Interacting Mixtures of Bosons and Fermions
in Optical Lattice Potentials

In the context of real solid state materials, it is a crucial question to what extent impu-
rities influence quantum phases and phase transitions. This question is so important,
because impurities can hardly be avoided in real systems and have an impact on many-
body quantum phases that is complex and often not well understood. For example,
high-temperature superconductivity is observed in materials that are intentionally
doped with certain impurity atoms, but their exact role in the mechanism responsible
for superconductivity is still not settled [1]. Experimental input on the effect of impu-
rities is highly sought-after and ultracold atoms in optical lattice potentials seem to be
an ideal model system, offering the possibility to introduce impurities, for example
interacting fermions, into an otherwise almost defect free quantum system, for exam-
ple a bosonic Mott insulator. When Bose-Fermi mixtures in optical lattice potentials
became experimentally available, pioneering investigations addressed the coherence
properties of the bosons in the presence of interacting fermions [2, 3]. Those studies
raised the question, in which way the fermions influence the superfluid to Mott insula-
tor transition that had so far only been observed in purely bosonic systems [4]. It was
found that in the presence of fermions the Mott insulating phase was entered already
at lower lattice depth, in contrast to the common theoretical expectations [5, 6].
However, the interpretation of the data in the early experiments [2, 3] remained
vague, because the interaction between the bosonic and fermionic atoms was fixed
at the fairly large attractive background scattering length of aBF ≈ −189 a0 [7]. The
only tunable parameter was the fermionic filling.

In this chapter I report on a refined study on the role of interspecies interactions
in a quantum degenerate mixture of bosonic 87Rb and fermionic 40K in a 3D optical
lattice [8]. For attractive interspecies interactions a pronounced modification of
the bosonic coherence properties is identified, which appears as a marked shift of
the superfluid to Mott insulator transition towards lower lattice depths. However,
for repulsive interactions the coherence of the bosonic component is essentially
unaffected, being compatible with phase separation that already sets in at rather
weak repulsion. The theoretical analysis reveals that our data for attractive inter-
actions can be qualitatively understood in terms of Bose-Hubbard parameters that
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DOI: 10.1007/978-3-642-33633-1_8, © Springer-Verlag Berlin Heidelberg 2013



194 8 Interacting Mixtures of Bosons and Fermions in Optical Lattice Potentials

JB

JF

UBF U BB ε i

Fig. 8.1 Illustration of the matrix elements of the Bose-Fermi Hubbard model (see text)

are renormalized by interspecies interactions owing to the presence of higher lattice
bands. The indirect evidence for renormalized Hubbard parameters obtained here
has motivated the measurements reported in Chap. 9 that provide a quantitative con-
firmation. A thorough discussion of the experiments and results presented in this
chapter is also given in the PhD thesis of Thorsten Best [9]. Here the most important
aspects are summarized in view of Chap. 9.

8.1 Theoretical Framework: Bose-Fermi Hubbard Model

We consider a mixture of bosonic 87Rb and fermionic 40K atoms loaded in an optical
lattice with both species being prepared in a single spin state. Interactions among
the spin polarized fermions are suppressed, while interactions among the bosons and
between bosons and fermions must be considered.

It is convenient to think of this system within the framework of the single-band
Bose-Fermi Hubbard model [10–12]:

Ĥ = −J B
∑

〈i, j〉
â†

i â j − J F
∑

〈i, j〉
ĉ†

i ĉ j + U BB

2

∑

i

n̂i (n̂i − 1)+ U BF
∑

i

n̂i m̂i , (8.1)

where âi (ĉi ) denotes the bosonic (fermionic) annihilation operator and ni ≡ â†
i âi

(mi ≡ ĉ†
i ĉi ) the bosonic (fermionic) atom number operators, respectively. The

bosonic (fermionic) tunneling parameters J B (J F) and the Bose-Bose interaction
energy U BB are defined as discussed in Chap. 3 (see Fig. 8.1). The Bose-Fermi inter-
action energy is given by

U BF = 2π�
2aBF

μBF

∫
d3r |wB(r)|2 |wF(r)|2, (8.2)

where aBF is the interspecies s-wave scattering length, μBF = mBmF/(mB + mF)

the reduced mass of the colliding boson-fermion pair andwB(r) (wF(r)) the bosonic
(fermionic) Wannier function at a lattice site. Generally, also energy offsets εB

i and

http://dx.doi.org/10.1007/978-3-642-33633-1_9
http://dx.doi.org/10.1007/978-3-642-33633-1_9
http://dx.doi.org/10.1007/978-3-642-33633-1_3
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wait lattice ramp hold time

Fig. 8.2 Experimental sequence to adiabatically load a Bose-Fermi mixture into a 3D optical lattice.
Measurements are performed at various magnetic fields, corresponding to various interspecies
scattering length aBF, and lattice depths ranging from 2 to 17 Erec

εF
i of each lattice site i (for example, due to an external trapping potential) must be

taken into account, but are omitted here for simplicity.
Based on the single-band model (8.1) a variety of quantum phases have been

predicted, including charge density waves, spin-density waves [13], polaronic qua-
siparticles [14, 15] and perturbed Mott insulating states [16, 17]. In limited para-
meter regimes even more exotic phases are expected, such as superfluids formed
by the correlated or anticorrelated flow of composite quasiparticles (for example
a fermion plus a bosonic hole) [18] and supersolid phases [19, 20]. The prospect
of realizing a supersolid phase with ultracold atoms is particularly exciting, as
the possible observation of supersolidity in cold Helium systems is still heavily
debated [21, 22]. Extensions of the above Hamiltonian that consider a two-component
fermionic spin-mixture instead of spin-polarized fermions, have led to the predic-
tion of enhanced fermion-fermion interactions mediated by Bose-Fermi interactions,
which in turn may give rise to superfluidity at high transition temperatures [23]. The
direct experimental observation of mediated interactions is reported in Chap. 9 [24].

For single component lattice quantum gases, such as the ones discussed in Chaps. 6
and 7, the description in terms of a single-band Hubbard model can capture the
main physical effects in broad parameter ranges of experimental relevance [25]. In
contrast, the experimental studies on Bose-Fermi mixtures conducted so far [2, 3]
and in particular the data presented in this chapter [8] strongly suggest, that physics
beyond the single-band Bose-Fermi Hubbard model must be considered in a realistic
description. The interplay of two atomic species enhances the roles of multi-band
[26] and finite temperature effects [27] as well as physical loss channels. Numerous
theoretical investigations are directed towards a better understanding of these effects
[5, 28–32].

http://dx.doi.org/10.1007/978-3-642-33633-1_9
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_7


196 8 Interacting Mixtures of Bosons and Fermions in Optical Lattice Potentials

8.2 Experimental Realization

The experimental sequence aims at the adiabatic preparation of an interacting mixture
of bosonic 87Rb and fermionic 40K in a three-dimensional optical lattice (see Fig. 8.2).
Our starting point is a quantum degenerate mixture of NB = 4 × 105 rubidium
and up to NF = 3 × 105 potassium atoms in their respective hyperfine ground
states |F,m F 〉 = |1,+1〉 and |9/2,−9/2〉, which is created by the experimental
sequence outlined in Chap. 5. The mixture is stored in a crossed dipole trap (λdip =
1030 nm) formed by elliptical laser beams to provide tight vertical confinement for
good interspecies overlap in the presence of gravity (see Sect. 5.3).

After the preparation of the mixture, a homogeneous magnetic field is used to
address the interspecies Feshbach resonance at Bres = 546.75 G, which has a width
of 3.1 G [7, 33] (see Sect. 2.3.5). This allows us to tune the interspecies scattering
length aBF between −170 a0 and +800 a0 below the resonance and between −800 a0
and −200 a0 above the resonance. The accuracy of the interspecies scattering length
aBF is determined by the magnetic field stability and strongly varies depending on the
distance from the resonance position. In the parameter regimes of the measurements
presented here, we reach an accuracy of ±20 a0 close to and ±0.1 a0 far away from
the resonance.

After 50 ms of settling time for the magnetic field, a 3D optical lattice is slowly
ramped up within 100 ms to final depths ranging between Vlat = 2 to 17 Erec. Differ-
ent from all other experiments reported in this thesis, the lattice wavelength used here
is λlat = 755 nm. At this “magic” wavelength the lattice depth, measured in units
of the respective recoil energies EB,F

rec = h2/(2mB, Fλ
2
lat), is equal for both species

(see Sect. 5.4). Therefore the shape of the on-site Wannier functions is identical for
87Rb and 40K, which ensures maximum overlap of the wavefunctions, while the
tunneling rate of the bosons is slower compared to the fermions by a factor mF/mB,
which is the mass ratio. The harmonic anti-confinement of the blue-detuned optical
lattice is compensated using the dipole trap, which is kept at a constant intensity
irrespective of the lattice depth. Therefore the effective horizontal and vertical trap
frequencies slightly depend on Vlat: At 2 Erec they are 2π × (32, 113)Hz for 87Rb
and 2π × (44, 194) Hz for 40K; at 17 Erec they are 2π × (28, 112)Hz for 87Rb and
2π × (31, 191)Hz for 40K.

The mixture is held in the lattice for 100 ms, which is long compared to the tunnel-
ing time for all lattice depths used in the measurements and therefore should ensure
the formation of a fully equilibrated sample. Then all traps as well as the magnetic
field are instantaneously switched off and both the bosonic and the fermionic atom
clouds undergo 18 ms of time-of-flight (TOF) expansion. The interference pattern
of the 87Rb atoms is recorded using absorption imaging.1 From these images the
interference contrast is extracted in terms of the visibility [34],

1 Also the fermionic clouds are imaged to monitor the atom number. However, apart from counting
the fermion number those images are not further evaluated.

http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_5
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Fig. 8.3 a Time-of-flight images of the bosonic component of an interacting Bose-Fermi mixture
in a Vlat = 9 Erec deep lattice. The influence of interspecies interactions on the bosonic interference
pattern is shown in four exemplary images ranging from strong attraction to strong repulsion. The
visibility (see Eq. 8.3) is used to quantitatively measure the contrast of the patterns. b The visibility
of the bosonic component in mixtures with about NB = 4 × 105 87Rb and NF = 3 × 105 40K
atoms is shown as a function of the lattice depth Vlat and the interspecies scattering length aBF. The
lattice depth in units of the respective recoil energy is identical for the bosonic and the fermionic
component (λlat = 755 nm)

V = Nmax − Nmin

Nmax + Nmin
, (8.3)

where Nmax denotes the total atom number in the four boxes around the first-order
interference peaks and Nmin the total atom number in the boxes that are rotated by
45 ◦ (see Fig. 8.3a). The visibility is a robust experimental measure for macroscopic
phase coherence and is discussed in detail in Chap. 4. In addition, we determine the
condensate fraction [35]: After fitting and subtracting a broad Gaussian background,
which corresponds to the Fourier transform of the on-site wavefunctions, the eight
first-order diffraction peaks as well as the central peak are fitted by anisotropic two-
dimensional bimodal Gaussians. We define the condensate fraction as the number
of atoms in the narrow feature of the bimodal Gaussians divided by the total atom
number.

8.2.1 Analyzing the Visibility

We probe the coherence of the bosonic component at various lattice depths and
several interspecies interactions. Three fermion numbers are chosen ranging from
low (NF ≈ 0.25NB) over intermediate (NF ≈ 0.5NB) to high (NF ≈ 0.75NB) in
order to identify possible effects of the fermionic filling. The visibility analysis for
the complete data set at high NF is shown in Fig. 8.3b. Cuts of this plot at several
fixed lattice depths are displayed in Fig. 8.4 to illustrate the details.

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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Fig. 8.4 Visibility versus interspecies scattering length at four lattice depths ranging from 3 Erec
to 12 Erec for high fermion number (NF = 3 × 105). The cuts are taken from the full data set
shown in Fig. 8.3b. At lattice depths larger than 3 Erec the visibility shows a maximum at a position,
which is consistent with aBF ≈ 0 (indicated by the arrow) given the experimental uncertainties. The
diamonds (circles) indicate points measured above (below) resonance, as shown in the upper inset.
The gray shaded horizontal lines represent the visibility in a purely bosonic 87Rb cloud measured
for the same experimental parameters

For shallow lattices of less than 3 Erec we find a high visibility, which stays at an
almost constant level independent of the interspecies interaction strength. At aBF ≈ 0
we observe a monotonic decay of the visibility versus lattice depth compatible with
the superfluid to Mott insulator transition in a purely bosonic 87Rb sample [34]. This
is quantitatively supported in Fig. 8.4 by comparison to the gray shaded lines and
shows that the fermion cloud can experimentally be tuned to full transparency for
the bosons.

For small values of aBF between about ±30 a0 we observe a symmetrical decrease
of visibility that appears to be centered around aBF ≈ 0 within our measurement
accuracy (lower inset of Fig. 8.4). Initially, it has been suggested that this symme-
try could be explained by a particle-hole transformation of the fermionic operators
ĉi → (−1)i ĉ†

i , which changes the sign of the Bose-Fermi interaction U BF → −U BF

in the Bose-Fermi Hubbard model (8.1). However, strictly speaking particle-hole
symmetry only exists at half fermionic filling in a homogeneous system [13]. Given
the experimental robustness of the feature being rather insensitive to changes of
the fermion number, particle-hole symmetry can probably not explain our observa-
tion. Recent theoretical studies employing Hartree-Fock mean field theory [31] and
dynamical mean field theory (DMFT) [32] strongly suggest that an intricate interplay
between interspecies interactions, finite temperature and underlying harmonic con-
finement explains the observed behavior in the regime of small aBF. These studies
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show that Bose-Fermi interactions lead to a redistribution of atoms in the under-
lying harmonic trap similar to the situation without lattice discussed in Sect. 2.1.5.
The redistribution goes along with an effective reduction of the size of the avail-
able Hilbert space in close analogy to our observations in attractively interacting
Fermi-Fermi mixtures in a 3D optical lattice (see Sect. 6.3 and [36]). When bosons
and fermions interact attractively, they have a strong tendency to occupy the same
lattice sites, while avoiding each other for repulsive interactions. Assuming that the
total entropy of the Bose-Fermi system stays at a constant value during the lattice
loading, the reduced Hilbert space induces an increase of the absolute temperature,
that entails a significant reduction of the bosonic coherence.

Towards both sides of the symmetry peak we observe a further decay of visibility,
which is significantly stronger for intermediate attractive than for comparable repul-
sive scattering lengths. Therefore, we conjecture a fundamental difference in the
underlying mechanisms on either side. The behavior near the attractive background
scattering length aBG = −189 a0 is compatible with previous experimental obser-
vations [2, 3]. At even stronger attractions (aBF � −300 a0), we find a significant
loss of 87Rb atoms, which interestingly is accompanied by an increase of visibility.
This regime is discussed in the next section in more detail.

For strong repulsion, the visibility remains almost constant on a high level, slightly
below the maximal value for aBF ≈ 0. This indicates that bosons and fermions do
not occupy the same lattice sites in this regime. On the one hand, for moderately
repulsive interactions this behavior would be compatible with a local separation of
the species as it would occur in anti-correlated mixed phases [37] or in a supersolid
[19, 20]. On the other hand, it could simply hint at global phase separation [13, 32]. It
is hard to distinguish between the two scenarios experimentally, as only simultaneous
high resolution images of the local bosonic and fermionic occupation would provide
a definite answer. Nevertheless, under the current conditions global phase separation
seems to be the more likely scenario, being promoted by the slightly different trap
shapes for the two species in the presence of gravity (see Sect. 5.3.1). For aBF >

400 a0 we observe very strong atom losses that are essentially independent of the
hold time, suggesting that they occur early during lattice loading. In this regime
the mixture is held closely below the Feshbach resonance, where the highest lying
molecular level has a very low binding energy (see Sect. 2.3). Heteronuclear three-
body processes are likely to efficiently populate the molecular state forming a strong
loss channel.

It is an important question, whether the Bose-Fermi systems prepared here are
in thermal equilibrium. We have checked this by probing the reversibility of the
initial thermodynamical change of state. To this end we slowly tune the interspecies
scattering length to zero after the mixture has been prepared at a certain value of
aBF. Provided that enough time is given for re-equilibration, we detect at least partial
reversibility of the initial visibility decrease in the range −200 a0 < aBF < 400 a0,
which coincides with the regime of no or minor atom losses. This suggests that the
reduction of coherence in the given range of interactions is caused by an adiabatic
change of state, a reversible redistribution of atoms during lattice loading.

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 8.5 Critical interspecies scattering lengths for the loss dominated regime at attractive inter-
actions. The experimentally observed loss feature of 87Rb atoms (a) is accompanied by a simulta-
neous minimum in the visibility versus interspecies interaction (b), shown here for Vlat = 9 Erec
and NF = 2 × 105 fermions. (c) The critical interspecies interactions obtained from bilinear fits to
the visibility data are shown as a function of lattice depth. Darker colors indicate higher fermion
numbers NF. The gray shaded area shows a theoretical estimate of the scattering length, at which
bosonic three-body losses become relevant on the scale of the experimental hold time (see main
text). The inset shows a typical time-of-flight image in the loss-dominated regime with increased
visibility (Vlat = 11 Erec and aBF = −480 a0)

Based on the above observations, we qualitatively identify five distinct regimes:
First, lossless coexistence in shallow lattices for all scattering lengths. For deeper
lattices there are further regimes characterized by very strong interspecies attraction,
intermediate attraction, weak interaction of either sign and strong repulsion. This
classification also holds for the low and intermediate values of NF, although the
symmetric feature around aBF ≈ 0 is most pronounced for the highest 40K numbers.

8.2.2 Attractive Interactions and On-Site Collapse

As described above, we observe significant losses of 87Rb accompanied by an
increase of visibility for interspecies attraction beyond a critical value as shown
in Fig. 8.5a, b. However, we note that this increase of visibility does not go along
with sharp diffraction peaks in the time-of-flight images that would be expected for
an actual condensate (see inset of Fig. 8.5c). Nevertheless, we use the minimum in
the visibility to obtain the critical value for the onset of the loss regime. A bilinear
model is fitted to the relevant part of the visibility profiles to determine the minimum
quantitatively. In Fig. 8.5c the resulting critical scattering lengths are plotted versus
lattice depth, including data for all fermion numbers NF. The critical values appear to
be independent of NF, which suggests that the visibility increase at strong attractions
is dominantly governed by the on-site physics.
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The enhancement of losses is probably caused by the accumulation of bosonic
and fermionic density at the lattice sites. On the one hand, the attractive interspecies
interactions enforce an increased bosonic occupation on sites that are occupied by
a fermion. On the other hand, interaction-induced narrowing of the bosonic and
fermionic on-site wavefunctions due to the admixture of higher bands gives rise to an
increased peak density. This is in analogy to the modification of on-site wavefunctions
observed in Chap. 7 for purely bosonic samples. A theoretical treatment of the Bose-
Fermi case with attractive interactions is provided in [26]. These two effects are
likely to lead to a significant increase in the three-body loss rate.

8.2.2.1 Variational Model

We employ a variational harmonic oscillator model (see Chap. 9 for a detailed descrip-
tion) to estimate the losses that are caused by the enhanced peak density of the on-site
wavefunctions. Within this model we minimize the total on-site energy with respect
to the widths σB and σF of the bosonic and fermionic Gaussian density profiles
for given lattice depth Vlat, occupation numbers and interspecies interaction aBF.
We find that for all experimentally relevant boson numbers (0 ≤ n ≤ 5), the on-
site wavefunctions collapse when a sufficiently strong attraction aBF is chosen; the
“optimized” widths σB and σF approach zero. However, already the density increase
in the vicinity of this collapse gives rise to an enhancement of the bosonic three-
body loss rate Ṅ3 due to the Ṅ3 ∝ σ−6

B scaling. As a practical assumption, we can
consider a site lost when Ṅ3τ 
 1, where τ = 100 ms is the experimental hold
time in the lattice. In bulk measurements the three-body loss coefficient for 87Rb
has been measured to lie in the range 5.8(1.9) × 10−30 cm6/s [38]. Assuming that
this value is also applicable in the tightly confining potential of a single lattice well,
occupations with more than three bosons are expected to be lost on time scales faster
than our experimental hold time even in the absence of fermions. On the other hand,
we find a ratio of lost 87Rb to 40K atoms between three and four, which suggests that
three-body losses of two bosons together with one fermion do not play a major role
in our system in accordance with the observations in reference [2]. Consequently,
we focus our attention on sites occupied by three bosons and one fermion. For this
case we use our variational model to derive the critical scattering lengths for bosonic
three-body losses at which Ṅ3τ = 1. The results agree surprisingly well with the
experimentally observed onset of the loss dominated regime (see Fig. 8.5c).

We conclude that for strong attraction the dominant process is the loss of highly
occupied sites due to the interaction-induced enhancement of the bosonic on-site
density [26, 39]. The reason for the associated increase of visibility may be found in
the removal of strongly localized atoms on highly occupied sites from the system.
This might cause an enhanced bosonic mobility due to defects and local incommen-
surability. The incoherent background in the time-of-flight images is simply reduced,
giving rise to a better contrast of the interference pattern.

http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_9
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Fig. 8.6 Shift of the Mott insulator transition as a function of interspecies interaction. The diamonds
(circles) represent the experimental runs at NF = 2 × 105 = NB/2 (NF = 3 × 105 = 3NB/4).
The error bars include the fit uncertainty and the average over typically two experimental runs. The
lines show theoretical results for the transition point as obtained by the variational model for n = 1
(dotted line) as well as exact diagonalization for Mott shells with n = 1 (dashed line) and n = 2
(solid line) bosons. For aBF > 0 the solid lines correspond to a phase separation scenario, while
the dashed lines would correspond to a scenario, in which bosons and fermions occupy the same
sites. The inset shows the behavior of the condensate fraction at aBF = −295 a0 (black circles) and
aBF = +235 a0 (gray circles) at NF = 2 × 105. The black solid lines show bilinear fits to the data.
The kink determines the respective critical lattice depth V crit

lat corresponding to the transition point

8.2.3 Measuring the Shift of the Mott Transition

In order to investigate the stability of bosonic superfluidity in the mixture, we deter-
mine the condensate fraction of the recorded time-of-flight images as described
above. Compared to the visibility, the condensate fraction allows for a clearer quan-
titative determination of the transition point between the superfluid and the Mott
insulating phase showing an abrupt increase. For all scattering lengths aBF and all
fermion numbers, we find the condensate fraction to decay monotonically towards
zero when the lattice depth is increased. The critical lattice depth V crit

lat at which the
condensate fraction vanishes is regarded as the transition point. It is the kink position
of a bilinear fit model as illustrated in the inset of Fig. 8.6.

The critical lattice depth depends sensitively on the interspecies interaction
strength, while a difference between medium and high fermion numbers NF = NB/2
and NF = 3NB/4 cannot be discerned (see Fig. 8.6).2 The transition point shows a
significant shift by up to 10 Erec towards lower lattice depths for strong attrac-
tive interactions. In this regime, we expect the bosons to move on top of an essen-
tially homogeneous fermion background with filling one, corresponding to a band

2 For low NF = NB/4 the assumption of a homogeneous fermion filling is probably not valid. Here,
the decrease of the condensate fraction shows a more complex behavior that cannot be captured by
our bilinear fit model.
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Fig. 8.7 Self-consistent calculation of the deformation of on-site orbitals induced by attractive
interactions. Starting with a single fermion at a lattice site, an added boson feels an attractive mean-
field potential. This narrows the bosonic on-site wavefunction compared to the noninteracting
case. In turn, also the fermionic wavefunction becomes narrower. The wavefunction deformation
eventually gives rise to renormalized interaction strengths U BB

n,1 and tunneling parameters J B
n,1. The

procedure is repeated until convergence, see also Ref. [28]

insulator. This scenario is confirmed by recent theoretical investigations [32] and
supported by the experimental observation of enhanced fermionic filling at attractive
interspecies interactions [24] (see Chap. 9). The underlying carpet of fermions forms
an attractive potential for the bosons that adds to the depth of the lattice potential.
This effective deepening of the lattice sites modifies the bosonic tunneling J B and
the Bose-Bose interaction strength U BB promoting the superfluid to Mott insulator
transition towards lower lattice depths.

Figure 8.6 shows that the transition shift via renormalized Hubbard parameters
is quantitatively supported by numerical calculations that have been carried out by
Dirk-Sören Lühmann at the University of Hamburg [8, 40]. The exact diagonalization
of an on-site multi-orbital system filled with a fermion (m = 1) and n bosons yields
modified on-site wavefunctions that are used to calculate the renormalized interac-
tion energy (see Fig. 8.7). The corresponding renormalized tunneling parameter is
deduced from a band structure calculation at the interaction-induced effective lattice
depth experienced by the bosons. It is known from accurate Monte-Carlo simula-
tions that the Mott transition of the n = 1 (n = 2) shell in a homogeneous three-
dimensional lattice happens at a critical ratio U BB/J B = 29.36 (U BB/J B = 49.86)
[41]. Using this result, the theoretical critical lattice depth for a given interspecies
interaction is obtained when the renormalized Hubbard parameters reach the critical
ratio U BB/J B for the Mott transition. The such derived critical lattice depths are
shown in Fig. 8.6 both for the n = 1 (green line) and the n = 2 (red line) shell.

The general agreement between theoretical and experimental data is remarkably
good. At around aBF ≈ 0 the experimental data lies slightly below the theoreti-

http://dx.doi.org/10.1007/978-3-642-33633-1_9


204 8 Interacting Mixtures of Bosons and Fermions in Optical Lattice Potentials

Fig. 8.8 Double well model illustrating the accumulation of bosons on a homogeneous fermionic
background. Black (gray) balls indicate bosons (fermions)

cal prediction for n = 1, which indicates a systematic deviation between the kink
position of the bilinear fit and the theoretical transition point. Furthermore, finite
size effects and other experimental uncertainties (for example, the calibration of
the lattice depth) might play a role. For interspecies scattering lengths in the range
−250 a0 < aBF < 0 a0 the experimental data tends to agree better with the n = 1
theory (green solid line), while for stronger attraction exceptional agreement with
the theory for n = 2 is found (red solid line). This brings us to the conjecture that the
bosonic filling smoothly changes from one to two, when the interspecies attraction
is increased. A double well model system with renormalized interaction parameters
can be used to illustrate the interaction-induced redistribution of bosons on top of a
homogeneous fermionic background. The accumulation process depicted in Fig. 8.8
can occur, if

U BB
2,1 + 2U BF

2 − 2U BF
1 < 0, (8.4)

where U BB
n,m and U BF

n denote the renormalized Bose-Bose and Bose-Fermi interac-
tion strengths for n bosons and m fermions. We note that this process is forbidden
within the single-band Bose-Fermi Hubbard model, where the left hand side equals
to U BB, independent of the filling and larger than zero for repulsive Bose-Bose inter-
actions. In contrast, exact diagonalization of the multi-orbital system predicts that the
redistribution is energetically favored for aBF < −200 a0 almost independent of the
lattice depth [40]. This is consistent with the data of Fig. 8.6, where the experiment
follows the n = 2 theory below aBF ≈ −250 a0.

For repulsive interspecies interactions the model outlined here predicts a shift of
the superfluid to Mott insulator transition towards deeper lattices, given the bosons
move on a homogeneous background of fermions with filling one. However, analo-
gous to the constant visibility for positive scattering lengths aBF observed in Fig. 8.4,
a variation of the transition point as a function of the interspecies interactions is
not observed on the repulsive side. This again indicates that bosons and fermions
do not occupy the same lattice sites in this regime. Recent studies on Bose-Fermi
mixtures of ytterbium atoms provide similar evidence for a strong tendency to phase
separation for repulsive interspecies interactions [42].
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8.3 Conclusions and Outlook

In this chapter we have analyzed the coherence properties of the bosonic component
in a Bose-Fermi mixture of 87Rb and 40K in an optical lattice. For attractive inter-
species interactions we have found a significant shift of the bosonic superfluid to
Mott insulator transition towards lower lattice depth. The remarkable agreement of
the data with a numerical exact diagonalization of a multi-orbital system suggests
that this shift can be attributed to renormalized tunneling and interaction parameters
of an effective Hubbard model. On the side of repulsive interspecies interactions,
we interpret the absence of a shift of the transition point as a signature for local
or global phase separation between the bosonic and fermionic components. Addi-
tionally, we have observed that the fermions are fully transparent to the bosons at
aBF = 0, which is a promising starting point for tunable impurities [37, 43, 44]. In the
vicinity (about ±30 a0) of vanishing interspecies interactions, we find a symmetric
decay of visibility in the bosonic interference patterns. Recent theoretical investiga-
tions have explained this phenomenon in terms of an entropy redistribution arising
from the interplay of interspecies interactions, finite temperature and finite system
size [31, 32].

It is an important message of this chapter that the application of a single-band
Hamiltonian is not sufficient to deduce and understand the complex many-body sys-
tem of interacting bosons and fermions in an optical lattice. Interactions bring multi-
band effects into play, which can lead to a significant renormalization of interaction
and tunneling parameters [26, 30, 45]. Additionally, the finite entropy situation in
this closed quantum system can give rise to adiabatic heating or cooling effects [5,
27, 29] as well as an involved redistribution of atoms. The detailed investigation of
these effects will be a worthwhile challenge and help to identify regimes, in which
intriguing quantum phases, such as charge density waves [14, 20], composite par-
ticles [12] and supersolidity [19, 20, 46–48], can be realized and observed. In the
next chapter we make use of quantum revival spectroscopy (see Chap. 7) to explore
interaction effects of few-body Bose-Fermi systems on individual lattice sites.
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Chapter 9
Coherent Interaction of a Single Fermion
with a Small Bosonic Field

Multi-component systems play a central role in quantum many-body physics. From
interacting atoms and photons to electrons and phonons, the interplay of interactions
in binary mixtures gives rise to intriguing quantum phenomena such as superradiance,
BCS superfluidity or polaron physics [1–4]. Recently, the problem of impurities
embedded in an external quantum environment has also shifted into the focus of
ultracold atom experiments. For example, fermionic spin impurities in a Fermi sea
have lead to the observation of a Fermi polaron [5, 6] and the interactions between
a single ion and a Bose-Einstein condensate have been studied [7, 8]. When such
impurity systems are scaled down to the few-body regime, they can share important
properties with models for atomic nuclei [9].

In this Chapter, I present the experimental study of an elementary few-body system
consisting of a single fermionic atom and a coherent field of bosonic atoms. So far,
research on Bose-Fermi mixtures in optical lattices has mainly focussed on the coher-
ence properties of the global quantum many-body state [10–13] (see Chap. 8). In the
present chapter, the local properties of miniature Bose-Fermi systems on individual
lattice sites are investigated. Using quantum revival spectroscopy (see Chap. 7), the
absolute strengths of intra- and interspecies interactions are precisely measured as
a function of the interspecies scattering length, tuned by means of a Feshbach reso-
nance (see Sect. 2.3). Already moderate Bose-Fermi interactions give rise to notable
changes of the on-site wavefunctions, which are observed as modifications of the
Bose-Bose interaction energy [14–19]. This is a direct confirmation of the renormal-
ization of Hubbard parameters that is indirectly deduced in Chap. 8. Furthermore, in
the context of our investigations, a novel method is devised that allows to selectively
infer the mean fermionic filling within the volume, in which bosons and fermions
overlap.
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Fig. 9.1 Few-body on-site states of a delocalized Bose-Fermi mixture. a In a shallow optical lattice
both the bosonic and the fermionic species are delocalized and show atom number fluctuations.
The cartoon picture displays a possible result of a projection measurement assuming an average
fermionic filling of m̄ = 0.5. Blue (red) balls indicate bosons (fermions). b The local quantum
state at a lattice site corresponds to coherent superpositions of bosonic atom number states with and
without a fermion with eigenenergies En,m (see main text)

9.1 Theoretical Model

We start with a basic theoretical model for the quantum state relevant to this chapter
and its dynamics (see Appendix E for additional details). We consider a delocalized
Bose-Fermi mixture in a shallow optical lattice. Then, the lattice depth is rapidly
increased, suppressing both bosonic and fermionic tunneling (J B, J F → 0) and
freezing out the delocalized atom distributions of bosons and fermions. In this setting,
the eigenstates at a lattice site are given by product atom number states |n〉|m〉,
containing n bosons (where n is an integer number) and m fermions (where m is
either 0 or 1) (see Fig. 9.1). We denote the respective eigenenergies by En,m . For
a delocalized mixture, both the bosonic and fermionic component show number
fluctuations and the corresponding on-site quantum states can be described as a
coherent superposition of bosonic atom number states both in the absence (m = 0)
and the presence (m = 1) of a fermion. We model the time evolution at a lattice
site as a superposition of phase evolutions with and without a fermion, which are
governed by the eigenenergies En,0 and En,1,

|ψBF(t)〉 =
∞∑

n=0

cne−i En,0t/�|n〉|0〉 + dne−i En,1t/�|n〉|1〉. (9.1)

Here, cn and dn denote the probability amplitudes of finding n bosons without
(m = 0) and with (m = 1) a fermion, respectively.

Within the single-band Bose-Fermi Hubbard model [10] (compare Sect. 8.1) the
eigenenergies are given by

En,m = U BB

2
n(n − 1)+ U BF n m. (9.2)

http://dx.doi.org/10.1007/978-3-642-33633-1_8
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Here, the Bose-Bose interaction energy, U BB ∝ aBB
∫

d3r |φB(r)|4, and the Bose-
Fermi interaction energy, U BF ∝ aBF

∫
d3r |φB(r)|2|φF(r)|2, are independent of

the bosonic and fermionic atom numbers n and m since the model is restricted to
the lowest lattice band; aBB (aBF) denotes the intraspecies (interspecies) scattering
length and φB(r) (φF(r)) the bosonic (fermionic) ground state orbital at a lattice
site. While essential features of the resulting quantum dynamics are captured by this
single-orbital model, the experimentally observed dynamics contain signatures that
can only be explained within a multi-orbital approach. Here, the interaction-induced
deformation of on-site wavefunctions gives rise to interaction strengths U BB

n,m and
U BF

n that explicitly depend on the number of bosons and fermions [14–19].

9.1.1 Quantum Phase Revivals in a Bose-Fermi System

The interactions between the bosonic field and the fermion are encoded in the
dynamics of the on-site wavefunction |ψBF(t)〉. Quantum revival spectroscopy
(see Chap. 7) allows to probe the corresponding interaction energies by sampling
the time-dependent coherence of the bosonic component. In an idealized picture
(see Sect. 7.2.2), the bosonic coherence is proportional to |〈ψBF(t)|â|ψBF(t)〉|2 ≡
|〈â〉(t)|2, where â denotes the annihilation operator for a boson at a lattice site. The
time evolution of the coherence is governed by the interference of the two dynamical
evolutions with and without a fermion:

|〈â〉(t)|2 =
∣∣∣∣∣

∞∑

n=0

Cn(t)+ Dn(t)

∣∣∣∣∣

2

, (9.3)

where the purely bosonic contribution enters as

Cn(t) = √
n + 1 c∗

ncn+1 e−i(En+1,0−En,0)t/�

and the Bose-Fermi interactions are contained in the term

Dn(t) = √
n + 1 d∗

n dn+1 e−i(En+1,1−En,1)t/�.

Computing Eq. 9.3 further, three distinct sets of spectral contributions are identified:

∞∑

n,ñ=0

C∗
ñ (t)Cn(t) → EBB

n,ñ;0 = En+1,0 − En,0 − Eñ+1,0 + Eñ,0 (9.4)

∞∑

n,ñ=0

D∗
ñ(t)Dn(t) → EBB

n,ñ;1 = En+1,1 − En,1 − Eñ+1,1 + Eñ,1 (9.5)

http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_7
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∞∑

n,ñ=0

D∗
ñ(t)Cn(t) → EBF

n,ñ = En+1,0 − En,0 − Eñ+1,1 + Eñ,1 (9.6)

The first set of energies (9.4) corresponds to the purely bosonic contributions of orders
U BB, 2U BB, and so on, without the influence of a fermion. It exactly represents the
spectral features of the bosonic quantum phase revivals discussed in Chap. 7. The
second set (9.5) yields the bosonic contributions of orders U BB, 2U BB, and so on, with
the influence of a fermion. The third set (9.6) corresponds to mixed contributions of
orders |U BF|, |U BB +U BF|, |U BB −U BF|,|2U BB +U BF|, |2U BB −U BF|, and so on,
which appear as new strong features in the experimental data. It is important to note
that quantum revival spectroscopy reveals absolute interaction energies, but does not
distinguish the sign of the interactions. However, whether Bose-Fermi interactions
are attractive or repulsive, can indirectly be determined from the interaction-induced
deformation of the bosonic on-site wavefunction, which we discuss below in detail
(see Sect. 9.2.3).

9.1.2 Coherent State and Single-Orbital Approximation

In general, the collapse and revival dynamics of the coherence as captured by Eq. 9.3
can be very complex. However, we obtain a simplified analytic expression when the
influence of the Bose-Bose and the Bose-Fermi interaction on the bosonic atom num-
ber statistics is neglected, which is justified in the limit of rather small interactions.
Such conditions motivate the use of coherent states for the bosonic field (compare
Chap. 7), whose probability amplitudes are scaled by the mean fermionic atom num-
ber m̄ according to cn = √

1 − m̄ e−|α|2/2αn/
√

n! and dn = √
m̄ e−|α|2/2αn/

√
n!,

where α = √
n̄eiφ denotes the complex field amplitude with the mean bosonic

atom number n̄ and initial phase φ. With the additional assumption of single-orbital
eigenenergies following Eq. 9.2, we obtain the quantum phase evolution (for the
explicit derivation see E.1)

|〈â〉(t)|2/n̄ = e2n̄(cos(U BBt/�)−1) × {1 − 2m̄(1 − m̄)[1 − cos(U BFt/�)]}. (9.7)

Figure 9.2 illustrates these idealized dynamics for several mean fermionic fill-
ings m̄. The suppression of revivals is a striking signature for the interference
between the Bose-Bose and the Bose-Fermi phase evolution. Particularly, for the
case U BF/U BB = z + 0.5, where z is an integer number, the suppression factor s
has a simple relation to the mean fermionic filling,

s = (1 − 2m̄)2, (9.8)

shown in the right panel of Fig. 9.2.

http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_7
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Fig. 9.2 Quantum phase revivals in a few-body Bose-Fermi system. Suppression of odd quantum
phase revivals in a Bose-Fermi mixture at |U BF/U BB| = 0.5 for variable fermionic fillings: m̄ = 0,
0.2, 0.35 and 0.5 (solid lines, darker color for larger m̄). The right panel displays the suppression
factor s as a function of the filling m̄

9.2 Experimental Realization

The experiment is performed with a quantum degenerate mixture of 1.7(3) × 105

bosonic 87Rb and 2.1(4) × 105 fermionic 40K atoms in their respective hyperfine
ground states |F,m F 〉 = |1,+1〉 and |9/2,−9/2〉. The Bose-Einstein condensate
(BEC) and the Fermi cloud are held in a pancake-shaped dipole trap (λdip = 1030 nm)
with tight vertical confinement to ensure good overlap of the two species in the
presence of gravity. The BEC is quasi-pure and the Fermi cloud has a temperature
of typically T/TF = 0.2, where TF is the Fermi temperature.

The Feshbach resonance at Bres = 546.75(6)G (see Sect. 2.3.5) is used to tune the
interspecies scattering length aBF between −161.2(1) a0 and +134(19) a0, where
a0 is the Bohr radius. We rely on the parametrization of the resonance by Simoni
et al. [20] quoting a background scattering length of aBG = −189 a0 and a width of
� = −3.1 G. In addition, Ref. [20] provides both an experimental and a theoretical
value for the zero crossing of the scattering length at 543.3(5) G and 543.66(8) G,
respectively. Using our data (see below), we have independently determined the mag-
netic field at vanishing interspecies interactions. Our measurements yield 543.6(2) G
in excellent agreement with the theoretical value, which supports the accuracy of
this parametrization. The Bose-Bose intraspecies scattering length stays fixed at
aBB = +102(2)a0 [21–23].

After 25 ms of settling time for the magnetic field, a three-dimensional (3D)
optical lattice operating at λlat = 738 nm is adiabatically ramped up within 50 ms
to a depth of V B

L = 5.2 EB
rec, where EB

rec = h2/(2mBλ
2
lat) denotes the recoil energy

for 87Rb. The lattice depth for the fermions in units of the recoil energy for 40K,
EF

rec = h2/(2mFλ
2
lat), is lower by a factor of 1.50 ± 0.015 (see Sect. 5.4) such that

V F
L = 3.5 EF

rec. At this lattice depth and for all interspecies interactions used in
the experiment, the bosons are expected to form a superfluid and the fermions are
delocalized (see Chap. 8). The horizontal and vertical trapping frequencies of the
dipole trap in the presence of the shallow lattice are 2π × (25, 94)Hz for 87Rb and
2π × (36, 173)Hz for 40K. (Fig. 9.3)

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_5
http://dx.doi.org/10.1007/978-3-642-33633-1_8
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Fig. 9.3 Visualization of the experimental sequence. The steps of the sequence are timed to ensure
adiabatic preparation, on the one hand, and minimal total duration to avoid heating or atom loss, on
the other hand

Then, a 3D array of coherent bosonic fields with partial fermionic filling (compare
Fig. 9.1) is created by rapidly increasing the lattice depth from V B

L to V B
H = 28.2(3)

EB
rec (corresponding to V F

H = 18.8(2) EF
rec) within 50µs, being slow enough to

avoid populating higher lattice bands, but fast in comparison to tunneling within
the first band. The lattice jump suppresses the tunnel coupling, freezes out the atom
distributions and initiates quantum phase evolution at each lattice site. In order to
ensure a long coherence time, we reduce the dipole trap simultaneously with this
jump to cancel the harmonic confinement in the horizontal plane, avoiding relative
dephasing of lattice sites as detailed in Sect. 7.3.

We sample long time traces of the quantum phase evolution to achieve high
spectral resolution, which provides us with detailed information on the interactions
in the Bose-Fermi system. Rather low bosonic and fermionic filling are used in
the measurements to limit the number of spectral contributions. In order to suppress
three-body atom loss on sites with high occupation, we restrict ourselves to moderate
interspecies interactions and do not use higher lattice depths VH (compare Chap. 8).

After variable hold times t (up to 7 ms, in steps of 40µs) all trapping potentials
are switched off and the bosonic and fermionic clouds expand during 10 ms time-of-
flight. Absorption images of the bosonic interference pattern as well as the diffracted
fermion cloud are recorded. In this section we focus our data evaluation on the bosonic
images, from which we derive the coherence |〈â〉(t)|2 by evaluating the ratio of the
summed atom numbers in the central, first- and second-order coherence peaks to the
total atom number, Ncoh/Ntot [24] (see Sect. 4.2.2). A brief, preliminary discussion
of the fermion images is given at the end of this chapter (see Sect. 9.3).

http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_8
http://dx.doi.org/10.1007/978-3-642-33633-1_4
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Fig. 9.4 Interference of Bose-Bose and Bose-Fermi phase dynamics. a The measured initial
quantum phase revivals are modulated as a function of the interspecies scattering length aBF.
The intraspecies scattering length aBB is fixed at +102(2) a0. The first revival is suppressed at
aBF = −126(2), a0, −40(3)a0 and +41(3)a0, as marked by the arrows. Black lines indicate the
traces recorded in the experiment. b The general structure of the experimental data is well captured
by the simple model of Eq. 9.7. In the simulation the bosonic filling is kept fixed at n̄ = 0.85 and
the fermionic filling is varied according to the results extracted from a (see also inset of Fig. 9.9).
Additionally, a temporal exponential decay comparable to the experimental data (τ = 1.1 ms) is
applied

9.2.1 Measurement of the Mean Fermionic Filling

The experimental data reveals a modulation of the initial quantum phase revivals
depending on the interspecies interaction strength, as shown in Fig. 9.4a. For the
first revival, we detect three local minima with suppression factors s = 0.57(3),
0.43(3) and 0.16(2) as the attraction is increased. The mean fermionic filling can
be determined from the suppression factor by inverting Eq. 9.8: m̄ = (1 ∓ √

s)/2,
where the minus (plus) sign corresponds to m̄ < 0.5 (m̄ > 0.5). The resulting
fermionic fillings read m̄ = 0.12(1), 0.17(1) and 0.30(1), respectively. Note that
in all cases the minus sign has been chosen, because fermionic fillings m̄ > 0.5
are not expected for our experimental parameters. Qualitatively, the dynamics of the
first few revivals are remarkably well captured by the single-orbital coherent state
model Eq. 9.7 as illustrated by the comparison of experimental data and theoretical
simulation in Fig. 9.4. For short observation times multi-orbital effects, in particular
the atom number dependence of U BB and U BF, cannot be resolved.

9.2.2 Direct Observation of Bose-Fermi Interactions

Quantitative information about the interactions in the Bose-Fermi few-body system
is obtained by sampling long time traces of quantum phase revivals yielding high
spectral resolution, as displayed in Fig. 9.5. The trace at almost vanishing interspecies
attraction (aBF= −8(6)a0) and its Fourier spectrum (see Figs. 9.5a and 9.6a) show the
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Fig. 9.5 High-resolution quantum revival traces of the Bose-Fermi system are shown for vanishing,
a, and strong interspecies attraction, b. For the later case, one observes that every second revival is
suppressed by an envelope (gray dashed line) that corresponds to the spectral components of order
|U BB + U BF|. Each data point represents a single run of the experiment. Special care has been
taken to ensure identical conditions for each run, particularly stable atom numbers. The solid lines
interpolate the data and serve as a guide to the eye

signatures of effective multi-body interactions observed for a purely bosonic system
(see Chap. 7).1 However, at stronger interspecies attraction additional envelopes are
observed to modulate the quantum collapse and revival dynamics (see Fig. 9.5b). The
corresponding spectra (see Fig. 9.6) reveal new striking features: first, prominent
additional peaks that arise from direct Bose-Fermi interactions of orders |U BF|,
|U BB + U BF| and |2U BB + U BF| and, second, a small, but significant upshift of the
Bose-Bose interaction energies of orders U BB and 2U BB.

The emerging Bose-Fermi features of orders |U BF|, |U BB + U BF| and |2U BB +
U BF| exhibit an almost linear dependence on aBF (see Figs. 9.6 and 9.7). Inspecting
these features more closely one observes that each of them consists of a comb of
energies. This splitting arises from an explicit boson number dependence of the
Bose-Bose (U BB

n,m) and Bose-Fermi (U BF
n ) interaction strengths. How many of those

spectral comb teeth can be expected? We will answer this question exemplarily for
the energies of order |U BF|.

The spectral contributions that explicitly contain Bose-Fermi interaction terms
are generally given by the terms EBF

n,ñ as derived above (Eq. 9.6). The energies of

order |U BF| are obtained for n = ñ, that is

EBF
n,n = En+1,0 − En,0 − En+1,1 + En,1 (9.9)

1 For the technical details of the numerical Fourier analysis see Appendix D.

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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Fig. 9.6 Fourier spectra of time traces for vanishing, a, and linearly increasing Bose-Fermi attrac-
tion, b–e. The contributions involving direct Bose-Fermi interactions (|U BF|, |U BB + U BF| and
|2U BB + U BF|) are highlighted by shaded ovals (solid, dotted and dashed lines, respectively). The
|U BB + U BF| components are shown in the inset of panel e as a function of aBF. Dashed vertical
lines indicate the spectral contributions of orders U BB (©1 to©3 ) and 2U BB (©4 to ©6 ) for a purely
bosonic system or vanishing interspecies interactions [23]

with a spectral weight of (n+1)c∗
ncn+1dnc∗

n+1, where cn, dn are defined as in Eq. 9.1.
Using Eq. 9.2 and considering an explicit atom number dependence of U BB and U BF

we obtain for the first spectral contributions:

EBF
0,0 = U BF

1

EBF
1,1 = (U BB

2,1 − U BB
2,0 )+ 2U BF

2 − U BF
1 (9.10)

EBF
2,2 = 3(U BB

3,1 − U BB
3,0 )− (U BB

2,1 − U BB
2,0 )+ 3U BF

3 − 2U BF
2
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Fig. 9.7 Summary of the spectral features in a broad range of interspecies interactions. The peaks of
nine Fourier spectra (including those of Fig. 9.6) are fitted by Gaussians. The resulting positions are
shown as bubbles, whose size as well as gray shading indicate the peak height (the larger and darker,
the higher). Spectral components arising from direct Bose-Fermi interactions are highlighted by
shaded areas corresponding to energies of order |U BF| (red), |U BB − U BF| (green), |U BB + U BF|
(blue) and |2U BB + U BF| (orange). Additionally, black dashed lines serve as guides to the eye for
the energies of orders U BB and 2U BB. Note that the three data sets between aBF = −75 a0 and
−25 a0 are measured at a slightly lower lattice depth VH = 26.7(3) EB

rec. This explains the slight
shift with respect to the other data

and so forth. Assuming that a bosonic on-site occupation of up to n = 6 is statistically
significant (corresponding to the appearance of four peaks of order U BB, see Chap. 7)
we conclude from the above equation that up to six individual components of order
|U BF| are expected. A similar reasoning shows that under the same conditions five
components of order |U BB +U BF| and four of order |2U BB +U BF| can be observed.

The separation between the individual components varies as a function of aBF,
which is shown in the inset of Fig. 9.6e for the energies of order |U BB + U BF|. The
components narrow down for increasingly attractive interspecies interactions. In the
range −150a0 � aBF � −100a0 they cannot be resolved anymore and appear as a
single peak. This narrowing is caused by the interaction-induced changes of U BB

n,m and
U BF

n that can compensate each other due to opposite signs. An accurate quantitative

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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Fig. 9.8 The schematic shows that repulsive (attractive) interspecies interactions broaden (shrink)
the on-site orbitals φB(r) and φF(r) and thereby affect the Bose-Bose interaction strengths U BB

n,1 ∝
aBB

∫
d3r |φB(r)|4

prediction of this behavior would require modeling of interacting multi-body systems
in a multi-orbital potential, which is a difficult problem and rarely treated in literature
so far.

9.2.3 Revealing Fermion-Mediated Bose-Bose Interactions

The notable upshift of the interaction strengths of orders U BB and 2U BB observed
in Fig. 9.6 for increasing attraction is induced by the presence of an interacting
fermion. For the case of repulsive interspecies interactions a broadening of the on-
site wavefunctions φB(r) and φF(r) is expected. Correspondingly the Bose-Bose
interaction strength is effectively reduced, while the reverse happens for attractive
interspecies interactions as illustrated in Fig. 9.8. These modifications are shown in
detail in Fig. 9.9 for the highest spectral components of order U BB and 2U BB both
for negative and positive interspecies scattering length.

We note that the present effect shares similarities with the atom number depen-
dence of U BB discussed for the purely bosonic system in Chap. 7. However, here
the mechanism is more indirect. We observe a modification of the collision process
among bosons, although the fermion does not take part in the actual collision. In this
sense the change in the bosonic interaction strength is mediated by the presence of
a fermion.

In order to analyze the data quantitatively, we consider the individual energy terms
that give rise to the observed peaks. The highest energy of order U BB is given by the
superposition of the energy of two bosons without a fermion (see Eq. 9.4)

EBB
1,0;0 = E2,0 = U BB

2,0 , (9.11)

and the respective energy in the presence of a fermion (see Eq. 9.5).

EBB
1,0;1 = E2,1 − 2E1,1 = U BB

2,1 + 2
(

U BF
2 − U BF

1

)
. (9.12)

http://dx.doi.org/10.1007/978-3-642-33633-1_7
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Fig. 9.9 Modification of the Bose-Bose interaction strength induced by an interacting fermion.
The highest spectral contributions of order U BB (2U BB) are shown as a function of aBF in the lower
(upper) panel [Corresponding to the spectral features close to the dashed line ©1 (©4 ) in Fig. 9.6].
The underlying energies E2,0 and E2,1 − 2E1,1 (E3,0 − E2,0 and E3,1 − E2,1 − E1,1) cannot be
resolved individually appearing as a single superposition peak in the spectra. The dashed line shows
a linear fit with a slope of s2,1 = −0.46(4)Hz/a0 (s3,1 = −0.87(5)Hz/a0). Shaded areas show the
shift calculated within a variational model (see main text). It explicitly accounts for the measured
values for the fermionic filling fitted by an exponential function, m̄(aBF) (inset). The measurement
has been performed at a lattice depth VH = 28.2(3) EB

rec. The data at aBF = 0 a0 have been obtained
in a sample without fermions

For vanishing fermionic filling, the first energy (Eq. 9.11) is observed, while at
unity fermionic filling solely the second energy (Eq. 9.12) would be detected. In
our data, the fermionic filling lies in the range 0 < m̄ < 0.5 as measured above.
Therefore, the energies (Eqs. 9.11 and 9.12) are superimposed in the spectra and the
individual peaks cannot be resolved due to a very small spacing. Taking into account
the fermionic filling as a function of the interspecies scattering length, m̄(aBF), the
effective position of the composite peak can be modeled as

[1 − m̄(aBF)] EBB
1,0;0 + m̄(aBF)E

BB
1,0;1 (9.13)

= U BB
2,0 + m̄(aBF)

[
U BB

2,1 − U BB
2,0 + 2

(
U BF

2 − U BF
1

)]
.

Not only pure Bose-Bose interaction strengths contribute to the signal, but also the
difference in Bose-Fermi interaction energy comparing one to two bosons.

Similarly, the expressions for the highest energy of order 2U BB is derived. The
contribution without a fermion reads

EBB
2,0;0 = E3,0 − E2,0 = 3 U BB

3,0 − U BB
2,0 , (9.14)
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and the analogous component in the presence of a fermion is given by

EBB
2,0;1 = E3,1 − E2,1 − E1,1 = 3U BB

3,1 + 3U BF
3 − U BB

2,1 − 2U BF
2 − U BF

1 . (9.15)

The weighted superposition of the energies (Eqs. 9.14 and 9.15) reads

[1 − m̄(aBF)] EBB
2,0;0 + m̄(aBF)E

BB
2,0;1 (9.16)

= 3U BB
3,0 − U BB

2,0 + m̄(aBF)
[
3
(

U BB
3,1 − U BB

3,0

)
−

(
U BB

2,1 − U BB
2,0

)

+ 3U BF
3 − 2U BF

2 − U BF
1

]
.

Using this derivation and the slopes s2,1 = −0.46(4)Hz/a0 and s3,1 = −0.87(5)
Hz/a0 extracted for the lower and upper panel of Fig. 9.9, a conservative upper
bound for the shifts U BB

2,1 and U BB
3,1 is derived. Assuming a constant fermionic filling

m̄ = 0.3 and neglecting the shift arising from 2(U BF
2 −U BF

1 ) (see Eq. 9.13), we obtain
(∂U BB

2,1 /∂aBF)/h ≈ s2,1/m̄ = −1.5(2)Hz/a0. Similarly, neglecting the shifts arising

from 3U BF
3 − 2U BF

2 − U BF
1 (see Eq. 9.16), we can approximate (∂U BB

3,1 /∂aBF)/h ≈
(s2,1 + s3,1)/(3m̄) = −1.4(2)Hz/a0. The variational approach introduced in the
next section shows that the omission of the U BF terms is reasonable for moderately
attractive interactions in the range −125a0 � aBF � 0a0.

9.2.3.1 Variational Mean-Field Model

Precise modeling of the interaction energies in few-body systems is a demanding
theoretical problem. A multi-orbital system for the bosons and the fermion would
have to be solved, which goes beyond the scope of this work. Nevertheless, we aim
at an approximate theory to validate the observed trend in the Bose-Bose interaction
strengths (see Fig. 9.9). To this end, we employ a variational mean-field model, in
which the on-site Hamiltonian is harmonically approximated. Generally, the model
must be taken with care, because typical errors due to the harmonic approximation
amount to more than 10 % when the absolute interaction strengths U BB and U BF

are calculated (compare Fig. 3.2).2 However, it serves well to determine the correct
order of magnitude of the shifts of the Bose-Bose energies.

At first all energy contributions in the Eqs. 9.13 and 9.16 are calculated as a func-
tion of the interspecies scattering length aBF. To this end we approximate the lattice
site by an isotropic harmonic oscillator potential and assign a Gaussian wavefunction
to the bosons and the fermion,

2 For typical lattice depths used in experiments (below 50 Erec) the harmonic approximation of
a lattice site typically entails large errors, because the actual on-site wavefunction in a sinusoidal
lattice deviates significantly from the Gaussian ground state wavefunction of a harmonic oscillator
potential. Consequently, the interaction energy U and even more the tunneling coupling J deviate
from their actual values (see Chap. 3).

http://dx.doi.org/10.1007/978-3-642-33633-1_3
http://dx.doi.org/10.1007/978-3-642-33633-1_3
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φB
harm(r; σB) = 1

(
√
πσB)3/2

e
− r2

2σ2
B (9.17)

and

φF
harm(r; σF) = 1

(
√
πσF)3/2

e
− r2

2σ2
F , (9.18)

respectively. The full on-site Hamiltonian reads Ĥ = ĤB + ĤF + ĤBF with the
individual terms [25]

ĤB =
∫

d3r ψ̂†
B(r)

[
− �

2

2mB

 + VB(r)+ gBB

2
ψ̂

†
B(r)ψ̂B(r)

]
ψ̂B(r), (9.19)

ĤF =
∫

d3r ψ̂†
F(r)

[
− �

2

2mF

 + VF(r)

]
ψ̂F(r), (9.20)

ĤBF = gBF

∫
d3r ψ̂†

B(r)ψ̂
†
F(r)ψ̂F(r)ψ̂B(r). (9.21)

Here, gBB = 4π�
2aBB/mB and gBF = 2π�

2aBF/μ are the Bose-Bose and the
Bose-Fermi coupling strength, respectively, and μ = mBmF/(mB + mF) is the
reduced mass. The terms VB(r) = mBω

2
Br2/2 and VF(r) = mFω

2
Fr2/2 denote the

approximate harmonic on-site potential. The respective trap frequencies are given by
ωB = 2

√
sB EB

rec/� and ωF = 2
√

sF EF
rec/�, where sB and sF denote the lattice depth

for the bosons and fermions in units of the respective recoil energy (sB = 1.50sF for
our experimental parameters).

According to a mean-field ansatz, the field operators in the Hamiltonian Ĥ are
replaced by a single mode of the field, given by the variational Gaussian wavefunc-
tions

ψ̂B(r) → φB
harm(r; σB) â and ψ̂F(r) → φF

harm(r; σF) ĉ. (9.22)

Here, â and ĉ are the bosonic and fermionic annihilation operators, respectively
(compare Sect. 2.1). Taking the expectation value 〈Ĥ〉 with respect to the general
Bose-Fermi quantum state |n〉|m〉 with n bosons (n ∈ N) and m (m either 0 or 1)
fermions, the energy functional at a certain interspecies scattering length aBF reads

E(n,m, aBF; σB, σF)

= n · 3

4

�
2

mB

1

σ 2
B

+ m · 3

4

�
2

mF

1

σ 2
F

+ n · 3

4
mBω

2
Bσ

2
B + m · 3

4
mFω

2
Fσ

2
F

+ n(n − 1) · 1√
2π

�
2aBB

mB

1

σ 3
B

+ n m · 1√
2π

�
2aBF

μ

1

(σ 2
B + σ 2

F )
3/2
, (9.23)

where the Gaussian widths σB and σF are used as variational parameters. The on-site
trap frequencies are given by ωB = 2

√
sB EB

rec/� and ωF = 2
√

sF EF
rec/�; sB (sF)

http://dx.doi.org/10.1007/978-3-642-33633-1_2
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Fig. 9.10 Variational model for atom number dependent on-site interaction strengths U BB
n,m and U BF

n .
a The contributions to the shift with respect to U BB

2,0 [see Eq. (9.13)] are displayed as a function of

the interspecies scattering length aBF: U BB
2,1 − U BB

2,0 (dashed) and 2
(
U BF

2 − U BF
1

)
(dotted) and their

sum (solid line). b Weighing the shift with the interaction dependent fermionic filling m̄(aBF) (as
measured in the experiment) yields an almost linear trend (solid line) for aBF � −125 a0

denotes the lattice depth for the bosonic (fermionic) species in units of the respective
recoil energy and sB = 1.50 · sF for the parameters of the optical lattice used here
(see above).

We numerically minimize Eq. 9.23 to obtain the optimized widths σB(n,m, aBF)

and σF(n,m, aBF). The corresponding Bose-Bose and Bose-Fermi interaction ener-
gies per atom pair can be calculated according to

U BB
n,m(aBF) =

√
2

π

�
2aBB

mB

1

σB(n,m, aBF)3
(9.24)

and

U BF
n (aBF) = 1√

2π

�
2aBF

μ

1
[
σB(n,m, aBF)2 + σF(n,m, aBF)2

]3/2 . (9.25)

With these energies we can calculate the shifts of the Bose-Bose interaction energies,
given by the squared brackets in the second row of Eqs. 9.13 and 9.16 multiplied by
m̄(aBF). Figure 9.10 shows the results for the highest spectral contribution of order
U BB. The difference of the bosonic two-body interactions with and without a fermion,
U BB

2,1 −U BB
2,0 (dashed line), decreases monotonically, changing signs at aBF = 0. This

behavior is the expected, because the presence of an attractively interacting fermion
shrinks the bosonic wavefunction such that U BB

2,1 > U BB
2,0 , while the reverse happens

for repulsive Bose-Fermi interactions. The dependence of 2
(
U BF

2 − U BF
1

)
(dotted

line) on aBF is plausible as well: For repulsive interspecies interactions the broadening
of the wavefunctions is more pronounced for a fermion and two bosons (which also
interact repulsively), compared to the case of a fermion and a single boson, such
that U BF

2 < U BF
1 . In the regime of moderately attractive interspecies interactions,

−|aBB| � aBF < 0, the addition of a boson leads to a broadening of the bosonic and a
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shrinking of the fermionic wavefunction. However, the broader σB overcompensates
the shrunk σF, such that |U BF

1 | > |U BF
2 |. On the other hand, for stronger interspecies

attraction aBF � −|aBB|, the additional narrowing of the fermionic wavefunction
upon addition of a boson dominates, and hence |U BF

1 | < |U BF
2 |.

The sum of the two contributions (dashed and dotted lines) corresponds to the
shift with respect to U BB

2,0 , shown as a blue solid line in Fig. 9.10a. When addition-
ally the experimentally observed variation of the fermionic filling m̄(aBF) is taken
into account, the total shift appears approximately linear for aBF � −125a0 (see
Fig. 9.10b, blue solid line).

The results of the variational mean-field model are compared to the experimen-
tal data in Fig. 9.9. The vertical extent of the gray shaded areas, that denote the
calculated shifts, represents the uncertainties in the experimental determination of
m̄(aBF). The calculated shifts are added to the values of U BB

2,0 (lower panel) and

3U BB
3,0 − U BB

2,0 (upper panel), respectively, which have been measured in a purely
bosonic sample. We observe that the matching between experimental and theoretical
shifts is remarkably good. However, the agreement must be regarded fortuitous given
the simplicity of our theory. These findings quantitatively support the indirect evi-
dence for a renormalization of Hubbard parameters due to interspecies interactions
discussed in Chap. 8 [13, 15, 19].

9.3 Excursion: Quantum Revival Spectroscopy with Fermions

It is a natural question, whether the time evolution of the Bose-Fermi few-body system
also leaves signatures in the fermionic momentum distribution. Actually, one can
expect that the quantum evolution of the spin-polarized Fermi gas is solely determined
by the Bose-Fermi interaction energy, because the fermions do not interact directly.
The numerous bosonic contributions observed above will not play a role. Therefore,
the experimental investigation of the fermionic component has the potential to lead
to much cleaner spectra. However, what would be an appropriate observable?

9.3.1 Experimental Results

When the data for this chapter was recorded, there have been no intentions to analyze
the fermionic momentum distributions (see Sect. 9.2 for the experimental sequence).
Initially, the images of the fermionic cloud have only served to monitor the number of
fermions in each experimental run. However, after finding an appropriate observable
it has turned out that the recorded images indeed reveal faint signals of fermionic
quantum dynamics.

In principle, bosons and fermions can be expected to show similar behavior: At
the time of the collapse, bosons are maximally dephased and have a structureless

http://dx.doi.org/10.1007/978-3-642-33633-1_8
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momentum distribution that is determined by the Wannier background. Upon further
evolution towards the revival, the characteristic interference pattern appears again as
long-range phase coherence is reestablished. In analogy, a metallic state of fermions
that corresponds to a partially filled first band (mean local filling m̄ < 1, see Chap. 6
and Fig. 6.6) shows an interference pattern with broad peaks in the momentum distri-
bution (see Sect. 4.2.2) or a quasi-momentum distribution with a filling in the center
of the Brillouin zone (see Sect. 4.2.4). When the quantum evolution leads to dephas-
ing, the interference pattern should wash out corresponding to an homogeneously
filled first Brillouin zone.

In analogy to the observables introduced to analyze the bosonic momentum dis-
tribution, visibility and the fraction of coherent atoms (see Sect. 4.2.2), we define the
fermionic visibility as an observable that measures the homogeneity of the filling in
the first Brillouin zone:

Ṽ = 1 − 9

4

Nedges

NBZ
. (9.26)

Here, NBZ is the total atom number in the first Brillouin zone and Nedges counts the
atom number in the four edges as illustrated in Fig. 9.11b. For a homogeneously filled
Brillouin zone the ratio Nedges/NBZ equals 4/9 and the fermionic visibility vanishes
Ṽ = 0, while the maximal value Ṽ = 1 is reached when the edges are empty, as
expected for a metallic state with a very low filling. A related observable is used in the
PhD thesis of Tim Rom [27] to measure the ratio of atoms in a band insulating state
(compare Sect. 3.3.3). Additionally, theoretical studies on lattice Fermi gases have
used the population at the Brillouin zone edge to quantify nonequilibrium dynamics
after an interaction quench [28].

All fermionic time-of-flight images that have been recorded alongside with the
bosonic data of the previous section are analyzed in terms of Ṽ . As shown in Fig. 9.11c
an oscillatory behavior is clearly discernible. The amplitude of the oscillations is
relatively small, probably due to limited overlap between the bosons and the fermions.
Accordingly, the largest amplitudes are observed when strong interspecies attraction
improves the overlap between the components. At a hold time of about 2 ms the
fermionic visibility shows a pronounced kink that originates from Bloch oscillations
that are superimposed on the data due to the effect of gravity. They slowly shift the
position of the interference pattern, which is taken into account in the evaluation.
At the time when the diffraction pattern fully rolls over a compensation is no longer
possible and the kink appears.

The first 1.2 ms of the fermionic quantum evaluation are used for spectral analysis
that is carried out in a procedure analogous to Appendix D. The resulting spectra
are shown in Fig. 9.12a–e for attractive interspecies interactions, complementing
Fig. 9.6 of the bosonic analysis. Due to the shorter length of the traces the spectral
resolution is reduced compared to the bosonic data. The strongest peak can be clearly
identified to correspond to the direct Bose-Fermi interaction energy |U BF|. Plotting
this frequency as a function of interspecies scattering length aBF, we obtain an almost

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_4
http://dx.doi.org/10.1007/978-3-642-33633-1_3
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Fig. 9.11 Quantum phase revival dynamics of the fermionic component in a Bose-Fermi mixture.
Exemplary momentum distributions recorded after 10 ms time-of-flight expansion show a collapse
a and a revival b, which are hardly discernible with the bare eye. The interspecies attraction is
aBF = −161.2(1) a0 and the lattice depth V F

H = 18.8(2) EF
rec. c Evaluation of the fermionic

visibility Ṽ (see Eq. 9.26) clearly reveals collapse and revival dynamics arising from the interspecies
interactions U BF. The kink at about t = 2 ms arises due to dephasing induced by superimposed
Bloch oscillations [26] along the direction of gravity. Therefore, the analysis is restricted to the first
1.2 ms. The baseline Ṽ = 0 corresponds to a homogeneously filled first Brillouin zone

perfectly linear trend (see Fig. 9.12) similar to the results in the previous section (see
Figs. 9.6 and 9.7).

A remarkable advantage of evaluating the fermionic momentum distributions is
the absence of the numerous bosonic frequencies, which can overlap with the Bose-
Fermi peaks. This is strikingly visible when the panels Fig. 9.12d, e are compared
to the corresponding spectra in Fig. 9.6. For the |U BF| peaks, in principle, a comb-
like substructure is expected reflecting the dependence of the Bose-Fermi interaction
energy on the bosonic occupation (see Sect. 9.2.2). However, the individual comb-
teeth cannot be spectrally resolved within the Fourier limit and merge into a broad
single peak. In addition to the dominant Bose-Fermi peak, more spectral features are
observed (particularly in panels Fig. 9.12b, d). They do not show clear trends as a
function of the interspecies scattering length and their physical origin can so far not
be identified. Further investigations with higher spectral resolution will be needed
for a precise understanding of the spectra.
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Fig. 9.12 a–e Fourier spectra of fermionic quantum revival traces for linearly increasing inter-
species attraction. The spectral contribution corresponding to the Bose-Fermi interaction energy
|U BF| is highlighted by shaded ovals. Dashed lines (©1 to ©6 ) indicate the locations of the contri-
butions of orders U BB and 2U BB that are suppressed in the fermionic dynamics (compare Fig. 9.6).
f The experimentally measured Bose-Fermi interaction energy |U BF| shows a linear trend as a
function of aBF in analogy to our findings in Sect. 9.2

9.3.2 Theoretical Toy Model

A very basic understanding of fermionic quantum phase revivals is gained by a
theoretical toy model that is based on our considerations of the previous section.
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Similar to the bosons, the time-dependent momentum distribution of the fermions is
given by (see Sect. 4.2.2)

nF(k, t) = |wF(k)|2
∑

i j

e−ik(ri −r j )〈ĉ†
i ĉ j 〉(t), (9.27)

where ĉi and ĉ†
i are the fermionic annihilation and creation operators for lattice site

i , respectively. As in the bosonic case, nF(k, t) is crucially determined by the time-
dependent coherences between lattice sites 〈ĉ†

i ĉ j 〉(t). If all off-diagonal (i �= j)

elements of the single-particle density matrix 〈ĉ†
i ĉ j 〉 vanish, the momentum distrib-

ution is uniform corresponding to a homogeneously filled first Brillouin zone. The
images in Fig. 9.11 clearly reveal that this is not the case in the experiment, imply-
ing finite values for off-diagonal elements, at least on a short range. Because such
short-range coherences are hard to include in a simple theoretical description, we
resort to the Gutzwiller-type on-site wavefunction |ψBF(t)〉 introduced in Eq. 9.1. In
this model wavefunction the fermionic coherences are infinitely long-range, which
is obviously an exaggeration.

With the on-site wavefunction |ψBF(t)〉 (identical for each lattice site), eigenen-
ergies En,m as defined in Sect. 9.1 and coherent states for the bosonic component,
the dynamical evolution of the fermionic coherences reads

|〈ĉ〉(t)|2 = (1 − m̄)m̄ · e2n̄(cos(U BFt)−1), (9.28)

where m̄ and n̄ denote the mean fermionic and bosonic filling, respectively. Despite
the weaknesses of the model this result illustrates two important features: First, the
fermionic dynamics are solely determined by the Bose-Fermi interaction energy
|U BF| and its higher harmonics. Second, the strength of the dynamics depends on
the mean fermionic filling m̄. At vanishing and unity filling the dynamical evolution
is fully suppressed, while it is maximal at half-filling. Nevertheless, a more accu-
rate theory of the dynamics beyond the Gutzwiller approximation would be highly
desirable.

9.3.3 Summary

In this excursion, we have presented the first observation of collapse and revival
dynamics in a fermionic lattice quantum gas. The findings were enabled by the defi-
nition of a new experimental observable, the fermionic visibility Ṽ , that is sensitive
to the evolution of the fermions after an interaction quench. In fact, the findings of
this excursion come somewhat unexpected, because the experimental sequence was
initially not designed for optimal acquisition of the fermionic data. Therefore, several
aspects can be improved in future realizations: First, the quasi-momentum distrib-
ution after Brillouin-zone mapping is likely to provide stronger and cleaner signals

http://dx.doi.org/10.1007/978-3-642-33633-1_4
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than the momentum distribution recorded here. Second, the data should be taken in
the direction gravity such that the quench dynamics are not obscured by superim-
posed Bloch oscillations. Third, the dynamics should be recorded in a deeper lattice
to suppress relaxation via tunneling during the experimental observation time. These
improvements are likely to lead to a much better spectral resolution.

There are numerous applications for the methods presented in this brief excursion.
The evolution of fermionic lattice quantum gases in one- and higher dimensions has
been dealt with in many theoretical studies. It has been proposed to use nonequi-
librium quantum dynamics of fermions for the identification of quantum phases
in the Hubbard model [29–31], in chains of spin-polarized fermions with nearest-
and next-nearest neighbor interactions [28, 32–34], or in a Heisenberg chain [35,
36]. Furthermore, the quench dynamics studied here are strongly related to ques-
tions of thermalization and equilibration in closed quantum systems [30, 33–35, 37,
38], which have so far only been experimentally studied in a bosonic lattice system
[39]. Additionally, we envisage the potential to perform interaction spectroscopy in
multi-component fermionic mixtures [40], which might enable the detection of direct
higher-body interactions.

9.4 Conclusion and Outlook

In this chapter, we have discussed the quantum dynamics in elementary few-body
systems formed by a single fermion and a small bosonic field at the sites of an
optical lattice. Quantum revival spectroscopy has been demonstrated as a useful
technique to measure the interaction energies in this system. While in the case of
direct Bose-Fermi interactions an essentially linear dependence on the interspecies
scattering length is found, we additionally observe how the interaction among the
bosons is modified, mediated by the presence of an interacting fermion. The detection
of mediated interactions could further be improved by preparing the bosonic quantum
gas on top of a fermionic band insulator, where each lattice site is occupied by exactly
one fermion (in contrast to a mean fermionic filling m̄ < 0.5 in the measurements of
this chapter). Under these conditions Bose-Fermi features of order |U BF|, |U BB +
U BF|, etc. are fully suppressed and all Bose-Bose features display the full shift
induced by Bose-Fermi interactions.

Because of an interference between Bose-Bose and Bose-Fermi phase dynamics
we can infer the mean fermionic occupation of the mixture; intrinsically the fermi-
onic filling is only detected on those lattice sites that are also occupied by bosons.
This feature makes quantum revival spectroscopy a useful tool to reveal regimes of
phase separation, even if the separation happens on a microscale between neigh-
boring lattice sites, such as in a supersolid [41–43]. Such a scenario could not be
conclusively identified via standard in-situ imaging. Generally, a detailed experi-
mental analysis on the redistribution of atoms during lattice loading would be highly
desirable, particularly for heteronuclear mixtures (compare Chap. 8). If a shallow lat-
tice VL is loaded at variable interspecies interactions aBF, the subsequent application

http://dx.doi.org/10.1007/978-3-642-33633-1_8
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of quantum revival spectroscopy for fixed values of VH and aBF may allow to probe
the redistribution of atoms. On the technical side, this requires fast switching of the
Feshbach field prior to the onset of the quantum evolution. Furthermore, it might
be interesting to utilize the fermions as local probes at individual lattice sites: A
quantum system of bosons could be prepared in the presence of fermions, which are
tuned to transparency by a Feshbach resonance. The fermions would not influence
the formation of a bosonic equilibrium quantum phase, but for detection they could
be switched to finite interactions.

Miniature impurity systems, as the one presented in this chapter, are suited to
study polaron physics in ultracold quantum gases [1–4] and form an ideal test bed
for effective field theories [16] that are highly relevant to the description of atomic
nuclei [9]. Our measurement technique might further enable thermometry in Bose-
Fermi mixtures based on a temperature dependence of the fermionic filling and allow
for exact absolute measurements of two- and higher-body interaction energies [15–
19] in multi-component quantum systems. Furthermore, the demonstrated control of
interatomic collisions, shows that Bose-Fermi systems may qualify for applications
in quantum information processing [10].
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Chapter 10
Conclusions and Outlook

The common theme of the experiments described in this thesis is the realization,
characterization and analysis of many-body quantum states with bosons, fermions
and Bose-Fermi mixtures. In all these aspects novel approaches have been pursued
to access new physics:

The aspect of realization includes a number of technical innovations. The main
accomplishment is the implementation of an optical lattice setup that allows for
independent tuning of tunneling, interaction and underlying harmonic confinement.
This high degree of flexibility is achieved by the combination of a blue-detuned
optical lattice and a red-detuned dipole trap, for which a number of new alignment
techniques have been developed. Together with Feshbach resonances great freedom
is gained in the realization of Hamiltonians, which is utilized in all equilibrium and
nonequilibrium measurements presented in this work.

The aspect of characterization comprises two points: First, several new techniques
for the characterization of optical potentials are introduced, for example, for the
calibration of the lattice depth and the measurement of the anticonfinement in a
blue-detuned lattice. The resulting calibration data has been cross-checked with an
accurate numerical model of the combined lattice and dipole trap setup. Second, the
development of quantum revival spectroscopy has enabled the direct measurement
of a central ingredient of many-body Hamiltonians, namely the interaction energy of
Fock states at single lattice sites. This novel atom optical technique crucially relies
on the capability to instantaneously switch from a confined to a homogeneous lattice
potential.

The aspect of analysis includes novel methods for the observation of many-body
states in the lattice. In the case of bosons, established experimental observables
for the coherence of a quantum gas (visibility and fraction of coherent atoms) are
applied to detect nonequilibrium dynamics and an analogous observable for fermions
is introduced. For the identification of equilibrium phases in fermionic spin mixtures
an entirely new approach is developed: High-field phase contrast imaging is used
to record the in-situ density distribution as a function of the external confinement.
From a sequence of images, the compressibility of the lattice quantum gas can be
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extracted, which allows to distinguish compressible and incompressible many-body
states.

With the above innovations it was possible to gain new insight into lattice quantum
gases on several levels: The Fermi-Hubbard model has been implemented with repul-
sively interacting spin mixtures of 40K (Chap. 6). By monitoring the in-situ density
distribution via phase-contrast imaging, the compressibility of the global many-body
state has become an experimental observable and revealed the formation of metallic
and insulating phases. Most remarkably, the emergence of a Mott insulating state has
been detected, which has also been signaled by a suppression of doubly occupied
lattice sites in the relevant regime. In fact, the observation of the Mott insulator has
been somewhat fortuitous, because the average entropy per particle has been more
than a factor of 2 larger than the maximally allowed value in the Mott insulator phase
of a homogeneous system. DMFT calculations have shown that the underlying har-
monic confinement induces a highly inhomogeneous entropy distribution that favors
the formation of insulating phases, because entropy is largely carried by metallic
regions. Similar to previous occasions, nature seems to play into the hands of the
ultracold atom physicist. The fundamental impact of entropy in finite-sized strongly
interacting systems has also become evident in attractively interacting spin mixtures.
Here, the formation of spin up-spin down pairs has been shown to reduce the local
entropy capacity so drastically that the in-situ cloud size of the mixture is forced to
expand despite of strongly attractive interactions between the atoms.

The development of quantum revival spectroscopy and its application to inter-
acting bosonic 87Rb atoms (Chap. 7) has enabled the most precise measurements of
atomic interactions in optical lattices to date. With an accuracy on the per cent level,
the energies of atomic Fock states have been measured and the data reveals that
Hubbard’s interaction parameter U is affected by crucial modifications already at
moderate interaction strengths. Interactions induce virtual transitions to higher-lying
lattice bands, giving rise to characteristic Fock state energies that can be understood
in terms of effective multi-body interactions. This finding shows that multi-orbital
effects can have a notable influence on the physics in optical lattices and they provide
crucial input for the comparison of optical-lattice quantum simulators with many-
body quantum theory.

The measurements on equilibrium Bose-Fermi mixtures (Chap. 8) have system-
atically analyzed the role of interspecies interactions. It has been found that attrac-
tive interactions between bosons and fermions shift the bosonic superfluid to Mott
insulator transition towards lower lattice depths, contrary to earlier theoretical pre-
dictions. The effective deepening of lattice sites for bosons owing to the presence of
attractively interacting fermions has been identified as the dominant reason for this
behavior. For repulsive interspecies interactions, the position of the Mott insulator
transition remains essentially unchanged hinting at rapid phase separation.

By applying quantum revival spectroscopy to an array of few-body Bose-Fermi
mixtures on individual lattice sites (Chap. 9), it has been possible to monitor the
absolute value of the Bose-Fermi interaction energy as a function of the interspecies
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http://dx.doi.org/10.1007/978-3-642-33633-1_7
http://dx.doi.org/10.1007/978-3-642-33633-1_8
http://dx.doi.org/10.1007/978-3-642-33633-1_9


10 Conclusions and Outlook 235

scattering length. Additionally, precise measurements of Bose-Bose interactions have
shown that their strength indirectly depends on the Bose-Fermi interaction. The
modification of bosonic interactions is mediated by the presence of the fermion,
which points to effects beyond the single-band Bose-Fermi Hubbard model and
substantiates the indirect evidence for renormalized Hubbard parameters in Chap. 8.
In addition, a novel method to measure the fermionic filling has been devised that
utilizes an interesting interference effect in quantum revival spectroscopy. The results
confirm the hints for phase separation obtained in Chap. 8. Finally, a novel evaluation
technique has allowed to transfer the principles of quantum revival spectroscopy to the
analysis of fermionic momentum distributions. By this, coherent fermionic quantum
dynamics after an interaction quench have been observed for the first time.

Perspectives

Due to the diversity of the experiments in this thesis, specific outlooks are given at
the end of each chapter. These make direct connections to the contents and point
out specific improvements and extensions. Here, I want to take a somewhat broader
perspective on future possibilities that are related to the concepts and findings of this
thesis.

The future view on ultracold atoms in optical lattices is likely to be shaped by
experiments with single-site and single-atom resolution. So far, this level of control
has only been achieved in few setups with bosonic 87Rb [1, 2]. Despite a few extra
challenges, the realization of single-site resolution with fermionic species (6Li or
40K) will probably only be a matter of time, given the impetus of the research field
and the expected potential gain of insight. Nonetheless, several of the concepts that
underlie the experiments of this thesis are likely to remain important:

©1 Quantum simulation.

©2 Precision measurements of Hamiltonian parameters.

©3 Accurate control of lattice potentials.

©4 Nonequilibrium physics.

The concept of quantum simulation ©1 is currently one of the most important driving
forces for the research field. The prospect to solve long-standing open questions of
condensed-matter physics with the help of ultracold atoms is highly appealing [3]. For
example, the key to a detailed understanding of high-temperature superconductivity
might be found in the phase diagram of a doped two-dimensional Fermi-Hubbard
model [4]. In the case of success, the impact on research and technology would be
immense. Progress towards this goal can probably be made by taking the experimental
studies of the Fermi-Hubbard model discussed in Chap. 6 to the next levels. The
observation of antiferromagnetic ordering in a repulsively interacting fermionic spin
mixture would be the next step and open the door to the exploration of quantum

http://dx.doi.org/10.1007/978-3-642-33633-1_8
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magnetism with ultracold atoms. The equivalent achievement on the side of attractive
interactions would be the observation of the BCS-BEC crossover in an optical lattice.

On approach to these goals it will be crucial to reach lower entropies. This is
likely to require a whole set of measures: First, the minimization of heating rates
during the experimental sequence, for example, by reducing collisions with the back-
ground gas of the vacuum chamber and by suppression of three-body losses and
inelastic photon scattering. Second, novel cooling schemes to reach lower tempera-
tures inside the lattice, for example, via dimple-type trapping geometries or active
entropy removal schemes. Those techniques might profit from the inhomogeneous
distribution of entropy revealed in the context of this thesis. Third, the identification
of intelligent paths through phase space to minimize nonadiabaticities during ther-
modynamic changes of state, for example, during lattice loading or adjustment of
interactions via Feshbach resonances.

Lower entropies will also be crucial for quantum simulation with Bose-Fermi
mixtures. The experiments in this thesis have been among the first to study this
intriguing hybrid quantum system. In contrast to the Fermi-Hubbard model, the
Bose-Fermi Hubbard model is not directly resembled in real solid state systems.
Nevertheless, theoretical studies have predicted interesting zero-temperature phases
in one- and two-dimensional systems, such as the formation of charge-density waves
and the emergence of a supersolid. Furthermore, Bose-Fermi mixtures may allow to
investigate polaron physics [5–8] where the fermions take the role of electrons and
bosons resemble the phonons. Along these lines, it may further be possible to observe
mediated interactions by realizing an optical lattice potential that acts on the fermions,
but is invisible to the bosons. Then the bosons can serve as exchange particles and
generate an effective interaction between the fermions. Further possibilities include
the simulation of disordered Hubbard models [9] or Kondo lattice models [10].

The precise measurement of Hamiltonian parameters is a prerequisite for accurate
quantum simulation ©2 .When it comes to precision measurements of quantum phase
transitions, it will be crucial to quantitatively know the ingredients of the Hamiltonian
that is realized in the experimental setup. The development and application of quan-
tum revival spectroscopy has been the first precision study of interatomic interactions
in optical lattices revealing the importance of multi-orbital effects. Founded on our
results, recent investigations have addressed the shift of the superfluid to Mott insu-
lator transition due to effective multi-body interactions [11] as well as multi-orbital
corrections to tunneling [12]. Further experiments will be necessary to understand the
impact of higher bands on tunneling [13, 14] and interactions [15], particularly for
the case of interacting quantum many-body systems. Multi-orbital physics in optical
lattices has already become an active field of theoretical investigations [16–18].

On the frontier of multi-body interactions, it would be exciting to observe not
only effective, but also intrinsic three- and higher-body interactions. These might be
enhanced close to Feshbach or Efimov resonances. Effective and direct multi-body
interactions play an important role in several recent predictions of novel strongly
correlated quantum phases [19, 20] with topological order [21] or exotic properties
[22, 23].
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The tunability of our lattice potential has enabled new classes of experiments ©3 .

Enhanced control of optical lattice potentials is likely to stay on the technological
forefront. Being based on traditional experimental techniques, optical superlattices
form a meaningful extension to the usual simple cubic lattices. So far, they have
only been realized in setups with bosonic 87Rb [24–27], but the prospect to use
them in connection with fermions is realistic and thrilling. In addition to studies
in arrays of isolated double-well systems or plaquettes, the formation of extended
many-body states in this nontrivial lattice structure can be explored. For example, the
formation of interaction-induced excited band condensates [28], the artificial creation
of antiferromagnetic order [29] or the creation of d-wave resonating valence bond
states [30, 31] are some of many interesting possibilities.

Optical lattice setups that rely on the interference of Gaussian beams are typically
bound to a harmonic confinement and a fixed lattice constant (a = λ/2 with λ being
the wavelength of the lattice laser). More freedom will be gained by the projection of
optical dipole potentials [32], particularly when a high-resolution objective is avail-
able [1, 2]. Here the lattice structure is not determined by the laser wavelength, but by
the projection pattern. This brings potential landscapes with arbitrary geometry (for
example, hexagonal lattices [33]) or flexible underlying confinement (for example,
a box potential) into reach and it might even be possible to imitate condensed-matter
structures beyond the level of idealized models.

The real-time control over optical potentials allows to expose many-body states
nonadiabatically to new Hamiltonians ©4 . This can give rise to unusual quantum
states [34] and allow to investigate transport and relaxation phenomena that are
typically inaccessible in real quantum systems [35–37]. Experimental studies on
the relaxation of bosonic and fermionic many-body states may allow to address
fundamental questions of statistical physics, such as the elusive inner workings of
thermalization [38–40], and may develop into a fruitful branch of future research
[41–43].

In the past fifteen years the field of ultracold atoms has contributed to physics in
several different respects. Many experiments have been wonderfully clean and lucid
realizations of phenomena that have previously been theoretical textbook examples.
Such experimental results now enter the textbooks themselves and have an enormous
educational value. In recent years, the field has set out to experimentally observe
complex few- and many-body phenomena that are also at the forefront of theoreti-
cal research—the results of this thesis make a humble contribution at this stage of
the development. Analytical modeling of current observations is often impossible;
the numerical validation is computationally demanding and usually complies with
measured data. It is probably not too far-fetched to take this as a sign that synthetic
ultracold quantum matter is on the verge to finding answers to unsolved and—even
more exciting—to so far unasked questions of many-body quantum physics. The
“ultracold” future of quantum magnetism, quantum disorder, nonequilibrium physics
and much more is lying ahead of us... and it will be more than thrilling to see where
the field has moved in a couple of years from now.
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Appendix A
Atomic Data

A.1 Potassium Data

40K
Natural abundance 0.0117 %

Mass m 39.963 999 amu

Nuclear spin I 4

Electron gyromagnetic ratio (4 2 S1/2) gJ 2.002 294 21(24) [1]

Electron gyromagnetic ratio (4 2 P3/2) (theoretical) gJ 4/3

Nuclear gyromagnetic ratio gI +0.000 176 490(34) [1]

Magnetic dipole constant (4 2 S1/2) A −285.7308(24) MHz [1]

Magnetic dipole constant (4 2 P3/2) A −7.59(6) MHz [1]

Ground state hyperfine splitting νhfs 1285.790(7) MHz [1]

Vacuum wavelength D1-transition λD1 770.108 136 5(2) nm [2]

Vacuum wavelength D2-transition λD2 766.700 674 7(3) nm [2]

Line width D1-transition (39K) �D1 2π × 5.96(1) MHz [3]

Line width D2-transition (39K) �D2 2π × 6.04(1) MHz [3]

Life time |4 2 P1/2〉 (39K) 26.70 ns

Life time |4 2 P3/2〉 (39K) 26.35 ns

Absorption cross section on D2 transition (σ± pol.) σ0 2.8067 × 10−9 cm2

Saturation intensity on D2 transition (σ± pol.) Isat 1.752(3) mW/cm2

Triplet scattering length aT +104 a0 [4]

Singlet scattering length aS +174 a0 [4]

Melting point Tm 63 ◦C

Boiling point Tb 759 ◦C

Vapor pressure at 25 ◦C pv 2.4 × 10−7 mbar
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A.2 Rubidium Data

87Rb
Natural abundance 27.835 %

Mass m 86.909 180 amu

Nuclear spin I 3/2

Electron gyromagnetic ratio (5 2 S1/2) gJ 2.002 331 13(20) [1]

Nuclear gyromagnetic ratio gI −0.000 995 141 4(10) [1]

Magnetic dipole constant (5 2 S1/2) A +3417.341 306 42(15) MHz [1]

Ground state hyperfine splitting νhfs 6834.682 610 904 29(9) Hz [5]

Vacuum wavelength D1-transition λD1 794.978 851 156(23) nm [6]

Vacuum wavelength D2-transition λD2 780.241 209 686(13) nm [6]

Line width D1-transition �D1 2π × 5.746(8) MHz [6]

Line width D2-transition �D2 2π × 6.065(9) MHz [6]

Life time (5 2 P1/2) 27.70 ns

Life time (5 2 P3/2) 26.24 ns

Absorption cross section on D2 transition (σ±
pol.)

σ0 2.906 693 × 10−9 cm2 [6]

Saturation intensity on D2 transition
(σ± pol.)

Isat 1.669 33(35) mW/cm2 [6]

Triplet scattering length aT +98.98(4) a0 [7]

Singlet scattering length aS +90.4(2) a0 [7]

|F = 1,m F =+1〉 scattering length as +102(2) a0 [7, 8]

Three-body loss rate K3 5.8(1.9)× 10−29 cm6/s [9]

Melting point Tm 39 ◦C

Boiling point Tb 688 ◦C

Vapor pressure at 25 ◦C pv 5.22(27)× 10−7 mbar



Appendix B
87Rb and 40K in the Presence of Magnetic Fields

In this Appendix we discuss the Zeeman shifts of 87Rb and 40K in the presence
of external magnetic fields. On the one hand, Zeeman shifts are experimentally
important, because they are used to accurately calibrate magnetic fields. On the
other hand, in this thesis they have particular relevance for high-field phase contrast
imaging in the experiments of Chap. 6. Here not only the shifts in the ground state
(4 2S1/2), but also the excited state (4 2 P3/2) of 40K must be considered.

B.3 Formulas

Zeeman shifts can be calculated analytically for the case of electronic angular
momentum J = 1/2 (implying a total angular momentum F = I ± 1/2) [10].
The analytic solution is given by the Breit-Rabi formula [11]:

EBR(B) = − �Ehfs

2(2I + 1)
+ gI m FμB B

± �Ehfs

2

⎧
⎪⎨

⎪⎩

1 − x sgn(A) −m F sgn(A) = I + 1/2,

√
1 + 4m F x

2I+1 + x2 otherwise,
(B.1)

where the dimensionless variable x is related to the electronic and the nuclear Landé
g-factors, gJ and gI , according to

x = gJ − gI

�Ehfs
μB B. (B.2)

The hyperfine splitting �Ehfs = h A(I + 1/2) depends on the magnetic dipole
constant A that is typically given in units of a frequency. The atomic data needed to
perform the calculations for 87Rb and 40K are provided in Appendix A.
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Fig. B.1 Zeeman shifts for 87Rb in the 52 S1/2 manifold. In the experiments of this thesis, only
the magnetically trappable state |2,+2〉 and the absolute ground state |1,+1〉 are used (bold lines).
The Paschen-Back regime is only reached well above 1000 G, beyond the experimentally relevant
range

For high magnetic fields the coupling between the nuclear and the electronic
angular momentum becomes negligible. In this case, which is referred to as the
Paschen-Back regime, both I and J are quantized along the direction of the magnetic
field and m J and m I are good quantum numbers. The energies of the Zeeman states
are obtained by

EPB(B) = h Am I m J + (gJ m J − gI m I )μB B. (B.3)

B.4 Rubidium

Figure B.1 shows the Zeeman shifts in the 87Rb ground state manifold 52S1/2 cal-
culated with the Breit-Rabi formula. The Paschen-Back regime is not reached for
experimentally relevant magnetic fields below 1000 G. The Breit-Rabi formula offers
a convenient way to precisely calibrate magnetic fields: At a fixed current in the coils
the transition frequency between Zeeman sub-states in an ultracold sample is mea-
sured via radio frequency or microwave spectroscopy. Inversion of Eq. B.1 yields the
corresponding magnetic field.

B.5 Potassium

In the experiments of this thesis potassium is used both in fermionic spin mixtures
(|F,m F 〉 = |9/2,−9/2〉 and |9/2,−7/2〉) and Bose-Fermi mixtures (|9/2,−9/2〉
with rubidium in state |1,+1〉). The interactions are varied using Feshbach resonances
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Fig. B.2 Zeeman shifts for 40K in the 42 S1/2 manifold. Mainly the magnetically trappable
|9/2,+9/2〉 state and the two lowest lying states |9/2,−7/2〉 and |9/2,−9/2〉 are used in this
work (bold lines). The Paschen-Back approximation is not applicable for the experimentally rele-
vant magnetic fields below 600 G

Table B.1 Shifts of the 40K spin states |9/2,−9/2〉 (third column) and |9/2,−7/2〉 (fourth column)
at the relevant working points (compare Sect. 2.3.5)

B (G) �e1 −�g1 (MHz) �e2 −�g2 (MHz)

©1 209.9 −293 −328
©2 215.8 −301 −337
©3 258.7 −361 −403
©4 198.8 −277 −310

All transitions shift towards lower frequencies. Because the imaging laser is tuned to resonance at
zero field, it is blue-detuned with respect to the shifted transition

located at around 200 G in the first, and around 550 G in the second case (see
Sect. 2.3.5).

In the experiments of Chap. 6 high-field phase contrast imaging is used to image
the spin mixture. The laser beam is tuned to resonance at zero field, but the image is
taken at a large field in the vicinity of the Feshbach resonance. In order to derive the
effective imaging detuning, both the shift in the ground state manifold 42S1/2 and the
excited state manifold 42 P3/2 are to be taken considered. The ground state manifold
can be treated with the Breit-Rabi formula (see Fig. B.2). This is not possible for the
excited state because of J = 3/2, but numerical diagonalization of the Hamiltonian
shows that the Paschen-Back approximation is reasonably accurate already above
100 G [12].

The detunings for high-field phase contrast imaging at the relevant working points
are summarized in Table B.1 (see Fig. B.3 for the corresponding level scheme). In
the Paschen-Back regime a cycling transition between |F,m F 〉 = |9/2,−9/2〉 and
|11/2,−11/2〉 (corresponding to |m J ,m I 〉 = | − 1/2,−4〉 and | − 3/2,−4〉 in
high field) can be driven according to the selection rule �m I = 0, �m J = −1.
Accordingly, the |9/2,−7/2〉 state has a cycling transition with |11/2,−9/2〉 (cor-
responding to | − 1/2,−3〉 and | − 3/2,−3〉 in high field).

http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_6
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Fig. B.3 Shifts in the potassium 42 S1/2 and 42 P3/2 manifolds at high magnetic fields that are
relevant to high-field phase contrast imaging. The ground state �g1 and �g2 are obtained using
the Breit-Rabi formula, while the excited state allows to use the Paschen-Back formula (B.3) to
calculate �e1 and �e2



Appendix C
Thermometry of Harmonically Trapped Fermi
Gases

We determine the temperature of quantum degenerate Fermi gases by fitting a
Fermi-Dirac distribution to the recorded atom clouds. The fit model is based on the
three-dimensional (3D) Thomas-Fermi distributions that are derived in Sect. 2.1.3.
Imaging, however, integrates along the line-of-sight and the image shows a column
density. Therefore, the general Thomas-Fermi 3D distribution (Eq. 2.27) must be
integrated along one axis, for which the relation [13]

∫ ∞

−∞
dx Lin(ze−x2

) = √
π Lin+1/2(z) (C.1)

is helpful. Equations 2.28 and 2.29 show the Thomas-Fermi distribution in the two
limiting cases of infinite (T → ∞) and zero (T → 0) temperature. Ideally, a fit
model should capture both limits equally. We use an interpolation between the cloud

sizes σα =
√

2kB T
mω2

α
and RFα =

√
2εF

mω2
α

(α = x, y, z) as suggested in Ref. [13]:

R2
α = 2kB T

mω2
α

f (z) →
{
σα, T → ∞
RFα, T → 0

with f (z) = 1 + z

z
ln(1 + z) , (C.2)

where z = eμβ is the fugacity, which determines the shape of the cloud and, conse-
quently, the degree of degeneracy.

The above relations and Eq. 2.27 yield the fit model

n2D
F (x, y) = n2D

F,0

Li2

(
−z exp

[
−

(
x2

R2
x

+ y2

R2
y

)
f (z)

])

Li2(−z)
(C.3)

for the two-dimensional column density (see Fig. 6.4a) and
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n2D,az
F (x) = n2D,az

F,0

Li2
(
−z exp

[
− x2

R2
x

f (z)
])

Li2(−z)
(C.4)

for azimuthally averaged data (see Fig. 6.4b). These profiles refer to the in-situ density
distribution. However, for ballistic expansion of a noninteracting cloud the sizes
simply scale as [13, 14]

Rα → Rαbα(t) = Rα
√

1 + (ωαt)2, (C.5)

where t is the duration of time-of-flight expansion. When the conditions for ballistic
expansion are fulfilled, the above models can be applied to time-of-flight images
without any changes. The resulting fugacity z is converted to the dimensionless
temperature via

T

TF
= [−6 Li3(−z)]−1/3, (C.6)

which is readily derived by combining Eqs. 2.23 and 2.24.
To ensure a reliable fitting routine we have done the following: First, before

carrying out the Fermi-Dirac fit, the data is fitted by a Gaussian. This helps to find
good starting conditions (cloud position, cloud size, peak optical density). Second,
when azimuthally averaged data is fitted, the pixels in the cloud center, which are
noisy due to poor averaging, are excluded. Third, ln(z) is used as a fit parameter
instead of the fugacity z. This point is essential, particularly, when cold clouds are
concerned: The fugacity increases by more than three orders of magnitude, when the
temperature decreases from T/TF = 0.2 to 0.1, whereas ln(z) only rises from 4 to
10. The numerical fitting routine yields more reliable results when the prospective
dynamic range of the fit parameters is limited.

Given the typical cloud sizes and the imaging noise in our setup, the reliabil-
ity limit of thermometry via Fermi-Dirac fits is reached for temperatures around
T/TF ≈ 0.10. The differences in the wings of the cloud, which form the basis of
this thermometry method, become too marginal for lower temperatures. It is inter-
esting to note that typical imperfections of the imaging (out of focus imaging, finite
resolution etc.) wash out the characteristics of the Fermi-Dirac distribution and let it
appear more Gaussian. Therefore, temperatures T/TF that are measured on the basis
of the cloud shape usually constitute a conservative upper bound.

http://dx.doi.org/10.1007/978-3-642-33633-1_6
http://dx.doi.org/10.1007/978-3-642-33633-1_2
http://dx.doi.org/10.1007/978-3-642-33633-1_2


Appendix D
Fourier Analysis of Quantum Phase Revival
Traces

The long quantum phase revival traces discussed in Chaps. 7 and 9 are typically
recorded in steps of 40μs with 175 ± 25 points per trace (see Fig. D.1a). The origin
of the time axis (t = 0) corresponds to the beginning of the lattice ramp from VL
to VH. Given the total duration of the recorded dynamics of 7± 1 ms we obtain a
Fourier limit on the individual frequency components between 150±25 Hz. In order
to increase this resolution by a factor of two and to smoothen the Fourier spectrum,
we have devised the following processing scheme:

• The raw data points are interpolated using cubic splines. Typically, the first 30μs
of the interpolated trace are removed to account for the phase evolution that already
starts slowly during the 50μs ramp from VL to VH. Otherwise the stretched initial
collapse and revival cycle can lead to a distortion of the frequency analysis.

• The damping time scale of the trace is determined by fitting an exponential decay.
According to the time scale obtained in the fit, a long exponential decay is smoothly
appended to the data for times longer than the original observation time.

• The resulting curve is concatenated to its mirror image, which is obtained upon
exchanging times t by −t . This smooth trace with doubled length is again sampled
in steps of 40μs (see Fig. D.1b) and a numerical Fourier analysis is performed (see
Fig. D.1c).

The advantage of this scheme is two-fold: First, by exploiting the knowledge of
the initial phase of the quantum phase revivals [|〈â〉(t)|2 is known to start with a max-
imum at t = 0] the size of the data set is legitimately doubled and thereby the Fourier
limit is reduced to 75 ± 15 Hz. Second, the Fourier spectrum has a smooth envelope
and spectral artifacts due to sharp cut-offs are efficiently avoided.The improvements
resulting from the processing scheme can be directly seen by comparing Fig. D.1c
to the Fig. D.1d, the later being the direct Fourier transformation of the raw data
(Fig. D.1a).
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Fig. D.1 Processing of quantum phase revival traces and numerical Fourier analysis. a The mea-
sured data points, which are typically spaced by 40μs, are interpolated using cubic splines (solid
line). b Typically, the first 30μs of the interpolated curve are removed to compensate for the 50μs
ramp from VL to VH (crossed-out area). Furthermore, a simple exponential decay is appended to the
data for times longer than the original observation times (see text). The resulting long interpolation
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steps of 40μs (solid circles). The positions of the original data points are shown as dashed circles.
c Numerical Fourier transform is applied to these data, revealing frequencies of orders U/h and
2U/h. d Direct Fourier transform of the data in a without further processing



Appendix E
Theory on Bose-Fermi Quantum Phase Revivals

This Appendix provides additional theoretical background on quantum revival spec-
troscopy in Bose-Fermi mixtures (see Chap. 9). In order to observe quantum phase
revivals it is necessary that the bosonic component shows on-site number fluctua-
tions. Therefore, the (nonadiabatic) preparation sequence needs to ensure that the
bosons are delocalized in the deep lattice VH. However, for the fermionic component
one can think of two limiting scenarios that leave the same signature in the dynam-
ical evolution of the bosons, which we will derive below. In the first scenario (see
Fig. E.1a), the fermions are delocalized as well, which is assumed in Chap. 9. In the
second scenario (see Fig. E.1b), fermions are localized, but not every lattice site with
bosons is occupied by a fermion.

For both scenarios we derive the implications for the bosonic time evolution that
is contained in the momentum distribution (see Sect. 7.2.2)

n(k, t) = |w(k)|2
∑

i j

e−ik·(ri −r j )〈â†
i â j 〉(t), (E.1)

assuming a homogeneous lattice with M sites. The coordinate ri = ani denotes the
location of lattice site i , where a = λ/2 is the lattice constant and ni ∈ Z

3, and
the indices i and j run over all sites. The bosonic momentum distribution n(k, t) is
experimentally observed in time-of-flight imaging after variable hold times t . The
dynamics are determined by the expectation value 〈â†

i â j 〉(t) that is taken with respect
to the many-body quantum state |�(t)〉. Following the arguments of Sect. 7.2, we
assume that the global many-body state can be approximated by a Gutzwiller-type
product of decoupled on-site states

|�(t)〉 =
M∏

i=1

|ψi (t)〉. (E.2)
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(a) Scenario 1:
Fermions

Bosons

(b) Scenario 2:

Fig. E.1 Schematic illustrations of the scenarios for the distribution of the fermions discussed in
the main text. The shaded ovals indicate delocalization

E.1 Scenario 1

In the first scenario, the fermions are delocalized. This means there is a finite proba-
bility of finding zero or one fermion at each site. Higher occupations are not possible
due to Pauli’s exclusion principle. Therefore, we write the on-site state as a super-
position of bosonic Fock states without and with a fermion:

|ψi 〉 =
∞∑

n=0

ci
ne−i En,0t/�|n, 0〉 + di

ne−i En,1t/�|n, 1〉. (E.3)

The eigenenergies En,m (see Eq. 9.2) are assumed to be identical for each lattice site,
because the lattice depth is typically rather uniform across the extent of the atomic
clouds. Additionally, we assume identical atom number statistics on each lattice site
such that ci

n = cn and di
n = dn (compare Sect. 7.2).

We focus on the dynamics of n(k, t) at the position of constructive interference,
where the interference term e−ik·(ri −r j ) is unity [corresponding to k = (2π/a)n
with n ∈ Z

3 in a three-dimensional simple cubic optical lattice]. The dynamics
at the interference peak are determined by the time-evolution of the correlations
between sites i and j :

M∑

i j

〈â†
i â j 〉(t) =

M∑

i=1

〈ψi (t)|â†
i âi |ψi (t)〉 +

M∑

i �= j

〈ψi (t)|â†
i |ψi (t)〉 · 〈ψ j (t)|â j |ψ j (t)〉,

= M〈â†â〉 + (M − 1)2|〈â〉(t)|2, (E.4)

where the sum is split into diagonal and off-diagonal terms. Equating this expression
further using Eqs. E.2 and E.3 yields for the first summand

M〈â†â〉 = M
∞∑

n=1

n(|cn|2 + |dn|2) (E.5)
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and the factors of the second summand read

〈â〉(t) =
∑

n

√
n + 1

(
c∗

ncn+1 e−i(En+1,0−En,0)t/� + d∗
n dn+1 e−i(En+1,1−En,1)t/�

)
,

(E.6)
which motivates the abbreviations for the purely bosonic contribution

Cn(t) = √
n + 1 c∗

ncn+1 e−i(En+1,0−En,0)t/� (E.7)

and the Bose-Fermi contribution

Dn(t) = √
n + 1 d∗

n dn+1 e−i(En+1,1−En,1)t/� (E.8)

already introduced in Chap. 9 (see Eq. 9.3). Hence, Eq. E.4 can be cast in the form

M∑

i j

〈â†
i â j 〉(t) = M

∞∑

n=1

n
(
|cn|2 + |dn|2

)
+ (M − 1)2

∣∣∣∣∣

∞∑

n=0

Cn(t)+ Dn(t)

∣∣∣∣∣

2

≈ (M − 1)2
∣∣∣∣∣

∞∑

n=0

Cn(t)+ Dn(t)

∣∣∣∣∣

2

= (M − 1)2
∞∑

n,ñ

C∗
ñ (t)Cn(t)+ D∗

ñ(t)Dn(t)+ Cn(t)D
∗
ñ(t)

+ C∗
ñ (t)Dn(t), (E.9)

The summand representing the diagonal terms is neglected in the second step. It only
scales as ∝ M compared to ∝ M2 for the off-diagonal terms. It does not play a role
for large M .

In the following, we assume that the presence of a fermion does not notably modify
the bosonic atom number statistics, which is justified in the limit of small interspecies
interactions (see also Sect. 9.1). Accordingly, we introduce the replacement cn →√

1 − m̄ cn and dn → √
m̄ cn . Here m̄ = 〈m̂〉 is the mean fermionic filling that is

identical to the probability of finding a fermion at a lattice site (Note that m is either
0 or 1). With the additional assumption cn ∈ R, we obtain Cn → (1 − m̄)Cn and
Dn → m̄ Cn , where the abbreviations Cn ≡ Cn(0) and Dn ≡ Dn(0) are used.

Suppression of Revivals

In order to specify the derivation further, we insert the single-orbital eigenenergies
following to the Bose-Fermi Hubbard model (see Sect. 9.1)
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http://dx.doi.org/10.1007/978-3-642-33633-1_9
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En,m = U BB

2
n(n − 1)+ U BF n m. (E.10)

This yields for the approximate time-evolution of the correlations

M∑

i j

〈â†
i â j 〉(t) ≈ (M − 1)2

∞∑

n,ñ

CñCn

[
(1 − m̄)2 + m̄2

]
e−iU BB(n−ñ)t/�

+ CñCn(1 − m̄) m̄ e−i(U BB(n−ñ)−U BF)t/�

+ CñCn(1 − m̄) m̄ e+i(U BB(ñ−n)−U BF)t/�. (E.11)

Without making any further assumptions on the exact atom number statistics of the
bosonic component (i.e. the coefficients cn and Cn) the scaling of the first revival as
a function of the fermionic filling m̄ can be derived for U BF/U BB = z +0.5 (z ∈ Z).
Inserting this condition and the first revival time trev = �/U BB we get

M∑

i j

〈â†
i â j 〉(t) = (M − 1)2

∞∑

n,ñ

CñCn
[
(1 − m̄)2 + m̄2] − 2CñCn(1 − m̄)m̄

= (M − 1)2(1 − 2m̄)2
∞∑

n,ñ

CñCn, (E.12)

showing the s = (1 − 2m̄)2 scaling of the suppression factor discussed in Sect. 9.1.

Coherent States

In the limit of small interactions, the bosonic coefficients can be chosen to correspond
to coherent states cn = e−n̄/2αn/

√
n!, where n̄ is the mean bosonic filling. This gives

the dynamical evolution in the single-orbital coherent state model

M∑

ij

〈â†
i â j 〉(t) ≈ (N − 1)2n̄ e2n̄(cos(U BBt/�)−1) × {1 − 2m̄(1 − m̄)[1 − cos(U BFt/�)]}

(E.13)

already introduced in Sect. 9.1.
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E.2 Scenario 2

In the second scenario, we assume that some of the M lattice sites are occupied
by a fermionic atom (i ∈ NBF where, NBF = 1, . . . , NBF) and the others are not
( j ∈ NBB, where NBB = NBF + 1, . . . ,M). The Gutzwiller many-body quantum
state can be ordered:

|�(t)〉 =
∏

i∈NBF

|φi (t)〉
∏

j∈NBB

|φ j (t)〉, (E.14)

where the time-dependent wavefunctions for sites with a fermion are given by

|φi (t)〉 =
∑

n

dne−i En,1t/�|n, 1〉 (E.15)

and those without a fermion read

|φ j (t)〉 =
∑

n

cne−i En,0t/�|n, 0〉. (E.16)

As in scenario 1 we make the assumptions ci
n = cn → √

1 − m̄ cn and di
n = dn →√

m̄ cn .
The two kinds of occupation give rise to individual terms in the dynamical evolu-

tion. Focussing on the correlations between sites i and j (compare Eq. E.4) the sum
can be split into four terms

M∑

i j

〈â†
i â j 〉(t) =

M∑

i=1

〈â†
i âi 〉+

∑

i, j∈NBF
i �= j

〈â†
i â j 〉 +

∑

i, j∈NBB
i �= j

〈â†
i â j 〉 + 2Re

⎡

⎢⎢⎣
∑

i∈NBF
j∈NBB

〈â†
i â j 〉

⎤

⎥⎥⎦.

(E.17)

The first summand appears identically in scenario 1 and it scales ∝ M . The second
summand scales as ∝ N 2

BF, the third as ∝ (M − NBF)
2 ≡ N 2

B and the fourth as
∝ 2NBF NB. The time evolution is again determined by the eigenenergies of Eq. E.10
and 〈â†

i â j 〉(t) = 〈φi (t)|â†
i |φi (t)〉 · 〈φ j (t)|â j |φ j (t)〉 for i �= j .

Further evaluation yields that the first term is constant in time and merely counts
the total number of bosons. The evolution of the second and the third term is deter-
mined by the energies U BB(n−ñ). They can interfere with the dynamics of the fourth
term, which evolves according to the energies U BB(n − ñ)+U BF. At the time of the
first quantum phase revival t = h/U BB the fourth term destructively interferes with
the second and the third one when the additional condition U BF/U BB = z + 0.5
(z ∈ Z) is met. The modulation depth of the first revival scales as
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M + m̄2 M2
︸ ︷︷ ︸
2.term

+ M2 − 2m̄ N 2 + m̄2 M2
︸ ︷︷ ︸

3.term

− (2m̄ M2 − 2m̄2 M2)︸ ︷︷ ︸
4.term

≈ M2(4m̄2 − 4m̄ + 1)

= M2(1 − 2m̄)2.

(E.18)

where m̄ = NBF/M is the fermionic filling. An overall factor given by the bosonic
filling n̄ has been omitted for simplicity. The scaling for the suppression of the first
revival is identical to the first scenario! Full suppression is achieved when half of the
lattice sites are occupied with a fermion, m̄ = 0.5.
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