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Preface

Scientific discovery consists in the interpretation for our own convenience of a system of
existence which has been made with no eye to our convenience at all.

– Norbert Wiener, The Human Use of Human Beings

Science is triumphant with far-ranging success, but its triumph is somehow clouded by
growing difficulties in providing for the simple necessities of human life on earth.

– Barry Commoner, Science and Survival

This book introduces some applications of Computational Intelligence (CI) to
problems of Earth System Science (ESS). In my opinion, the meeting of CI and
ESSs is not a coincidence. There is an affinity between these two fields of science
at a very deep level. Both of them use a systems approach; they see their object
as a complex system of partly autonomous, evolving, and adaptive subsystems
intensively interacting with each other and with their environment, which also
changes due to the interaction between subsystems and due to changes of the
subsystems. This deep affinity between the two fields makes the approaches and
tools developed in CI well suited for solving many problems in ESSs; therefore, CI
can provide adequate models for modeling subsystems of the Earth System.

Such a system vision of objects of the study stimulates an understanding of
similarity of many ESS problems from the mathematical point of view. In this
book, I show that many subsystems of Earth System (ES) can be considered as
complex multidimensional nonlinear mappings. CI provides a number of tools to
approximate, emulate, or model such mappings; the particular tool considered in
this book is the neural network (NN) technique. This book demonstrates many
successful applications of NNs in ESSs. However, in addition to the use of the
NN technique, I also attempt to demonstrate the advantages of using in ESS the CI
vision of a subsystem (mapping) not as a static mapping but as an adaptive, evolving
mapping interacting with the environment and adapting to it. The tremendous
flexibility of the NN technique provides means for modeling such evolving adaptive
mappings that function in a changing environment.
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viii Preface

My goal in this book is to be tutorial in nature rather than to give a complete
description of ESS NN applications. Thus, I selected some particular interesting
applications and concentrated on a clear presentation of the methodological basis
of these applications. Because both the ESS and CI fields are relatively new, in
addition to presenting the NN background in Chap. 2, the book presents basic
ESS background for each application that is introduced. For example, in Chap. 3,
I include a detailed introduction into forward and inverse problems in remote
sensing before discussing NN applications to satellite remote sensing; Chap. 4,
which is devoted to NN applications in numerical climate and weather prediction,
includes a brief introduction into numerical climate and weather modeling. This
feature makes the book self-descriptive. The book presents a review of the field
with the purpose of bringing the reader up-to-date on the state of the art. It can also
serve as a convenient source book for researchers, teachers, and students who work
in related fields.

College Park, MD, USA Vladimir M. Krasnopolsky
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Chapter 1
Introduction

Life was simple before World War II. After that, we had systems.
– Grace Murray Hopper

There are no separate systems. The world is continuum. Where
to draw a boundary around a system depends on the purpose of
the discussion.

– Donella H. Meadows, Thinking in Systems: A Primer

Abstract In this chapter, a notion of Earth System (ES) as a complex dynamical
system of interacting components (subsystems) is presented and discussed. Weather
and climate systems are introduced as subsystems of the ES. It is shown that
any subsystem of ES can be considered as a multidimensional relationship or
mapping, which is usually complex and nonlinear. Evolution of approaches to
ES and its subsystems is discussed, and the neural network (NN) technique as a
powerful nonlinear tool for emulating subsystems of ES is introduced. Multiple NN
applications, which have been developed in ES sciences, are categorized and briefly
reviewed. The chapter contains an extensive list of references giving extended
background and further detail to the interested reader on each examined topic.

We consider our planet as a complex, dynamical system of interacting components
(subsystems), which is often simply referred to as the ES. ES contains the main
components of planet Earth – the atmosphere, oceans, freshwater, soils, lithosphere,
biosphere, and cryosphere (Lawton 2001) as its subsystems. To understand the
major ES patterns and processes in their dynamics, we need to study not only the
processes that go on within each component or subsystem of ES (traditionally the
realms of atmospheric physics, oceanography, hydrology, geology, and ecology,
to name some) but also the interactions, relationships, and feedbacks between
them. The Earth, in fact, is only habitable because of these complex linkages and
feedbacks between the atmosphere, oceans, land, biosphere, and cryosphere.

V.M. Krasnopolsky, The Application of Neural Networks in the Earth System Sciences,
Atmospheric and Oceanographic Sciences Library 46, DOI 10.1007/978-94-007-6073-8 1,
© Springer ScienceCBusiness Media Dordrecht (outside the USA) 2013
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2 1 Introduction

The interactions between subsystems condition, change, and manage many pro-
cesses inside subsystems. It is the need to study the evolution of ES and understand
these inter-component interactions, relationships, and the changes they cause in
subsystem processes that defines ESS as a discipline in its own right. We still do not
understand all of these feedbacks and cannot, as yet, build a model that reproduces
all of the changes in ES, but these problems now hold center stage in ESS.

A large variety of highly nonlinear processes with tremendously wide spectrum
of spatial and temporal scales contributes to ES, which adds to its extreme complex-
ity. The temporal scales range from hundreds of millions of years (paleoclimatic
phenomena) to several minutes (microscale weather events), and the spatial scales
range from thousands of kilometers (global phenomena) to several millimeters (size
of water droplets in the clouds).

Considering subsystems of ES formally, we can say that each subsystem in ES
receives information (input) from other subsystems. This information comes as a
set or a vector of input signals or parameters, which inform the subsystem about
the status of the system as a whole and about the states of the related subsystems.
Air and ocean water temperature and pressure, concentration of CO2, radiation, and
heat fluxes are just several examples of such parameters. The subsystem, in turn,
communicates with the system and other subsystems, transmitting information to
them concerning its state as a part of ES. This output information is transmitted
as a set or vector of output parameters or signals. Thus, formally speaking, any
subsystem of ES can be considered as a relationship, usually complex and nonlinear,
between two vectors: a vector of input and a vector of output parameters. Such a
relationship is called mapping.

Various mathematical methods are applied to describe, model, and emulate
mappings that represent the subsystems of ES. Deterministic and statistical ap-
proaches are both employed. The deterministic approach is based on a more or less
complete understanding of first principles or basic processes in the subsystem. This
understanding is usually codified into a set of partial differential equations (PDE).
Statistical approaches are based on working with data and extracting information
directly from the data. They are also called statistical learning (a.k.a. machine
learning, learning from data, predictive learning, data-driven) techniques because,
in a sense, they learn relationships or mappings directly from the data. Such
approaches are used when the understanding of processes in the subsystems is poor
or incomplete or when deterministic approaches become too resource intensive (e.g.,
numerical solutions of PDE).

This book introduces a particular nonlinear CI or statistical learning technique
(SLT), namely, the NN approach, and demonstrates how to apply it for modeling
or emulation of important subsystems of ES. In this chapter in Sect. 1.1, a notion
of ES as a complex dynamical system of interacting components (subsystems) is
presented; the role of organization and structure of a system is discussed. Weather
and climate systems are introduced as subsystems of the ES. It is shown that any
subsystem of ES can be considered as a multidimensional relationship or mapping,
which is usually complex and nonlinear. In Sect. 1.2, evolution of approaches to ES
and its subsystems is discussed, and in Sect. 1.3 the neural network (NN) technique
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as a powerful nonlinear tool for emulating subsystems of ES is introduced. Multiple
NN applications, which have been developed in ES sciences, are categorized and
briefly reviewed, and the structure of the book is outlined.

1.1 Systems, Subsystems, Organization, and Structure

Formally, a system can be defined as a set of elements or parts that is coherently
organized and interconnected in a pattern or structure that produces a characteristic
set of behaviors, often classified as its function or “purpose” (Meadows 2008). Thus,
any system is composed of components or parts. In aggregations parts are added; in
systems components or parts are arranged or organized; hence, each system has a
well-defined structure. Systems are significant because of organization-positional
values, because of their structure. If a system is properly structured or organized,
then it is more than the total sum of its parts and the whole system may demonstrate
behavior (quality) that cannot be predicted by the behavior of its parts. In such cases
we are talking about a synergy of the parts in the system.

In ES and in many other systems, the constituent parts of the system are systems
by themselves. For example, a complex climate and weather system (see Fig. 1.1) is
a constituent of ES. The atmospheric constituent of the climate system is a complex
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CHEMISTRY
Space Weather
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Fig. 1.1 Interdisciplinary complex climate and weather systems. Only several major interactions
(feedbacks) between major subsystems are shown with arrows
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system of interacting dynamical, physical (radiation, convection, etc.), and chemical
processes (see Fig. 1.1). Such constituent parts of the whole system that themselves
have structure (organization) are called subsystems. Systems arranged in such a way
(nested systems in the system) are called hierarchical systems (Wilber 1995; Ahl
and Allen 1996). A hierarchical system is an arrangement of subsystems, in which
the subsystems are represented as being “above,” “below,” or “at the same level
as” with respect to one another. In such a hierarchy, subsystems can interact either
directly or indirectly and either vertically (between different levels of hierarchy) or
horizontally (at the same level). The number of the vertical levels determines the
depth or the vertical (hierarchical) complexity of hierarchical system (Salthe 1985).

Interactions and relationships at a higher level of hierarchical complexity
organize and transform the lower-order interactions, produce organizations of lower-
order relationships that are new and not arbitrary, and cannot be accomplished
by those lower-order interactions alone. The higher-order relationship governs or
coordinates the relationships of the next lower order; it embraces and transcends the
lower orders (Wilber 1995). It is noteworthy that interactions in complex systems
are better described by feedback loops than by one directional cause and effect type
actions, which makes analysis of such systems even more difficult.

1.2 Evolution of Approaches to Earth System

Systematic study of various components of ES (climate, atmosphere, ocean, ice,
etc.) started in the second half of the nineteenth century as separate fields:
meteorology, oceanography, glaciology, etc. In many of these fields, the growing
understanding of physical processes was codified into PDEs. Systematic data
collection and archiving were established. In the first part of the twentieth century,
the process of knowledge and data accumulating and developing mathematical tools
was continued rather independently in these single disciplinary fields. In the 1920s,
a pioneer of modern meteorology, Richardson (1922), attempted to integrate the full
primitive equations of fluid dynamics, performing calculations by hand, which made
a huge impact on and paved the way for the emerging science of numerical weather
and climate prediction. The classical linear statistical framework was formulated
by Fisher (1922), which allowed scientists to extract useful information directly
from observed data and to make practical predictions even in the cases when
the underlying processes were not sufficiently understood. At the same time, the
weather observation network (primarily ground observation) continued to expand.

The middle of the twentieth century was marked by the growing understanding
of the interrelatedness of the processes in the atmosphere, land, and oceans, through
increased awareness of the multiple feedbacks between the abiotic nature and
biosphere. The notion of Earth as a complex system was emerging. This new
vision stimulated the development of and was supported by the emerging theory
of complex systems (e.g., von Bertalanffy 1950).
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With the advent of electronic computers in the 1950s, the work of Richardson,
Fisher, and other pioneers came to fruition. The field of numerical weather predic-
tion (NWP) was born. With the dawn of satellite era in the late 1960s, the quantity
of observations started to increase rapidly. Regions that could not be observed
systematically in details (e.g., the oceans and the polar regions) became accessible
for satellite observations. The need to derive geophysical parameters from satellite
data gave birth to the science of satellite remote sensing (RS). The wealth of global
observations stimulated further development of NWP models and data assimilation
systems (DAS) that allowed to properly merge or fuse the large amounts of data from
different sources (e.g., ground observations and satellite retrievals) and provided
more balanced and realistic initial conditions for NWP models. What is even more
important, the global perspective provided by satellites facilitated the vision of Earth
as a complex whole, as complex ES where classical linear one-way causality gives
way to complex nonlinear feedback relationship.

ESS, which emerged in the last quarter of the twentieth century, was marked
by transition from a single disciplinary, linear, and low-dimensional paradigm to
a multidisciplinary, high-dimensional, and nonlinear paradigm. The corresponding
evolution of deterministic methodology included the transition from a collection
of separate atmospheric, oceanic, land, and more generally various geophysical
numerical prediction models to very complex numerical prediction systems, which
have been constructed by coupling atmospheric, oceanic, land, ice, etc., models and
allowing them to interact through multiple feedback mechanisms in the process of
their integration. Parallel evolution of statistical methodology includes the transition
from classical linear, low-dimensional, and parametric approaches to nonlinear,
high-dimensional, and nonparametric statistical framework. This new statistical
framework can provide adequate statistical models for subsystems of ES that
are acceptable for many applications. This new statistical paradigm is still under
development and has many different appearances. The NN approach is one of the
mostly popular and matured tools that emerged inside this paradigm and found a
broad application in different fields of ESS.

1.3 Neural Networks in Earth System Sciences

The NN approach is a relatively new, diverse, and powerful CI approach or
SLT that started developing rapidly in the mid-1980s after several major basic
types of NNs were introduced in the works of Kohonen (1982), Hopfield (1982),
Rumelhart et al. (1986), and Lippmann (1989). In the 1990s this technique evolved
and matured rapidly; several well-written and fundamental textbooks have been
published by Beale and Jackson (1990), Haykin (1994), Bishop (1995), Vapnik
(1995), Ripley (1996), and Cherkassky and Mulier (1998) that introduced NNs as a
new powerful statistical learning approach capable of providing a diverse family of
flexible, multidimensional, nonlinear, data-driven models for various applications.



6 1 Introduction

This approach became appealing to a broad community of professionals including
scientists working in different fields of ESS such as satellite RS, meteorology,
oceanography, hydrology, and climate and weather numerical modeling.

Since then a significant number of NN applications have been developed in
these fields; the most important of them are summarized in Table 1.1. References
presented there do not provide a complete list of the corresponding publications,
or even the most important ones. Rather, this table gives representative examples
of publications devoted to the topic. A number of these applications or groups
of applications have already been reviewed in several review papers. Selected
atmospheric, oceanic, and climate applications have been reviewed for the atmo-
spheric and oceanic community by Gardner and Dorling (1998), Hsieh and Tang
(1998), Krasnopolsky (2007), in the book edited by Haupt et al. (2009), and
in the book by Hsieh (2009). For the NN professionals such applications have
been reviewed by Krasnopolsky and Chevallier (2003) and Krasnopolsky and Fox-
Rabinovitz (2006a). Selected RS applications have been reviewed for RS experts by
Atkinson and Tatnall (1997) and for NN community by Krasnopolsky and Schiller
(2003). Applications of the NN technique for developing nonlinear generalizations
of multivariate statistical analysis have been recently reviewed by Hsieh (2004)
(see also Hsieh (2009)). Finally, Solomatine and Ostfeld (2008) have reviewed
hydrological NN applications.

As can be seen from Table 1.1, a wide variety of NN applications has been
developed in different ESS fields. These applications utilize different types of NNs.
The task of selecting a group of such applications for describing in a book may be
approached from different directions. Our goal in this book is to be tutorial in nature
rather than to give a complete description of ESS NN applications. We will select
some particular interesting applications and concentrate on a clear presentation of
the methodological basis of these applications.

In this venue, we have selected a group of ESS applications for review in
this book, which, from the mathematical point of view, could be formulated as
complex, multidimensional, nonlinear mappings and which, from the point of view
of the NN technique, utilized a particular type of NN – the multilayer perceptron
(MLP) (Rumelhart et al. 1986). This framework is broad and generic. It covers
the majority of applications developed in ESS, namely, NN applications to a large
variety of subsystems of ES that can be considered as complex, multidimensional,
nonlinear mappings (see Table 1.1). To focus this book even more, we selected
as particular examples mainly those applications which were developed with the
author’s participation. They are shown in italics in Table 1.1.

In the methodological Chap. 2, we introduce the concept and major properties of
complex nonlinear mappings. We also introduce the MLP NN as a generic technique
for the approximation of nonlinear continuous and almost continuous mappings.
Our theoretical understanding of complex multidimensional nonlinear mappings
and highly nonlinear approximation methods (like the MLP NN) is still quite
fragmentary (DeVore 1998). This is why the material we put together in Chap. 2
is a collection of theoretical results and practical inferences based on numerical

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Table 1.1 Some NN applications in climate, weather, and related fields

NN application Publications

I. Satellite meteorology and oceanography
I.1 Classification Gallinari et al. (1991) and Bhattacharya and

Solomatine (2006)
I.2 Pattern recognition, feature extraction Bankert (1994) and Nabney (2002)
I.3 Change detection and feature tracking Valdés and Bonham-Carter (2006)
I.4 Fast forward models for variational

retrievals
Krasnopolsky (1996, 1997)

I.5 Accurate transfer functions (retrieval algorithms)
I.5.1 Surface parameters Stogryn et al. (1994), Badran et al. (1995),

and Krasnopolsky and Schiller (2003)
I.5.2 Atmospheric profiles Aires et al. (2002) and Mueller et al. (2003)

II. Predictions
I.1 Geophysical time series Elsner and Tsonis (1992) and Bollivier et al.

(2000)
I.2 Regional and global climate Pasini et al. (2006)
I.3 Time-dependent physical processes Wu et al. (2006)

III. Hybrid climate and weather numerical models and data assimilation systems
III.1 Hybridparameterizations of physics Chevallier et al. (1998)
III.2 Hybridclimate models Krasnopolsky and Fox-Rabinovitz (2006b)
III.3 Fast emulations of model physics Krasnopolsky et al. (2002, 2010)
III.4 NN-based parameterizations of model

physics
Krasnopolsky et al. (2011)

III.5 Fast forward models for direct
assimilation

Krasnopolsky (1996, 1997)

III.6 Observation operator for propagating a
signal to different vertical levels and
variables in data assimilation

Krasnopolsky et al. (2006)

III.7 Hybrid coupled models Tang and Hsieh (2003)

IV. Improving model forecast
IV.I Model output statistics Marzban (2003)
IV.2 NNmulti-model ensembles Krasnopolsky and Lin (2012)

V. Geophysical data fusion Loyola and Ruppert (1998)

VI. Geophysical data mining Brown and Mielke (2000)

VII. Interpolation and downscaling Dibike and Coulibaly (2006) and Benestad
et al. (2008)

VIII. Nonlinear multivariate statistical analysis Hsieh (2004, 2009)

IX. Hydrology Bhattacharya et al. (2005) and Solomatine
and Ostfeld (2008)

X. Magnetosphere and ionosphere physics Vörös and Jankovičová (2002) and Tulunay
et al. (2004)

The list of applications included in the table is not intended to be exhaustive and is limited by the
knowledge of the author. The sequence of applications does not reflect their importance and is more
or less arbitrary. The references included in the column “Publications” are representative papers
which deal with this particular application. When we had sufficient information, we included the
first (to the best of our knowledge) publication of this application. Applications that are discussed
in more details in this book are shown in italic in the table
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experiments and experience obtained from the applications of the MLP technique
to various problems. This tutorial material is valuable for understanding the entire
topic and the following parts of this book. Chapter 2 contains some important details
that formally and structurally belong there; however, during the first reading they
may look like some interesting but abstract and secondary material. The importance
and relevance of this material will certainly be appreciated during and after reading
the rest of this book. Thus, we would recommend to readers interested in a deeper
understanding of the technique to return to Chap. 2 during and after reading the rest
of this book. Also, to emphasize the validity of the material presented in Chap. 2, we
cross-reference between Chap. 2 and subsequent chapters to help readers to return
to Chap. 2 to refresh their background information when reading the following
chapters.

In Chap. 3, we discuss using NNs for RS applications: emulating solutions of
forward and inverse problems in satellite RS. In Chap. 4, we describe the use of NNs
for creating accurate and fast NN emulations of model physics parameterizations in
atmospheric, oceanic, and ocean wave models and for developing hybrid models
by combining these NN components with deterministic (based on first principles)
model components. We also discuss the possibility of developing new NN-based
parameterizations of model physics.

In Chap. 5, we introduce an NN application that allows the creation of NN
emulations for the functions and mappings (between model state variables) often ob-
scured in the numerical outputs of modern high resolution atmospheric and oceanic
numerical models. These NN emulations should be helpful in modern DASs. At this
point we also review NN ensemble approaches that allow enhancement of model
predictions, improvement in the accuracy of NN emulations, and reduction of the
uncertainties of NN Jacobians.

Chapter 6 contains conclusions. To the best of our knowledge, at this time, the
NN is the only practical SLT tool for solving the majority of problems discussed in
this book and more generally for emulating complex multidimensional mappings.
However, for completeness, in Sect. 6.2 we briefly review some alternative CI
techniques that have potentials to compete with NNs in the future and present some
preliminary results with alternative approaches (Belochitski et al. 2011).
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Chapter 2
Introduction to Mapping and Neural Networks

Science cannot exist without some small portion of metaphysics.
– Max Karl Ernst Planck, The Universe in the Light of

Modern Physics

The aim of science is always to reduce complexity to simplicity.
– William James, The Principles of Psychology

Abstract In this chapter, the major properties of mappings and multilayer
perceptron (MLP) neural networks (NNs) are formulated and discussed. Several
examples of real-life problems (prediction of time series, interpolation of lookup
tables, satellite retrievals, and fast emulations of model physics) that can be
considered as complex, nonlinear, and multidimensional mappings are introduced.
The power and flexibility of the NN emulation technique as well as its limitations
are discussed; also, it is shown how various methods can be designed to bypass or
reduce some of these limitations. The chapter contains an extensive list of references
giving extended background and further detail to the interested reader on each
examined topic. It can be used as a textbook and an introductory reading for students
and beginning and advanced investigators interested in learning how to apply the NN
technique to emulate various complex, nonlinear, and multidimensional mappings
in different fields of science.

A mapping, M, between two vectors X (input vector) and Y (output vector) can be
symbolically written as

Y D M.X/I X 2 <n; Y 2 <m (2.1)

where n and m are the dimensionalities of the input and output spaces correspond-
ingly. A large number of important practical ESS applications may be considered
mathematically as a mapping (2.1). Keeping in mind that an NN technique will be

V.M. Krasnopolsky, The Application of Neural Networks in the Earth System Sciences,
Atmospheric and Oceanographic Sciences Library 46, DOI 10.1007/978-94-007-6073-8 2,
© Springer ScienceCBusiness Media Dordrecht (outside the USA) 2013
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used to approximate (or emulate) this mapping, we will call this mapping a target
mapping, using a term taken from nonlinear approximation theory (DeVore 1998).

The target mapping may be defined explicitly or implicitly. It can be defined
explicitly as a set of equations based on first principles and/or empirical dependen-
cies (e.g., radiative transfer or heat transfer equations) or as a computer code. A
collection of data records (e.g., observations, measurements, computer simulations)
represents the target mapping implicitly. The target mapping is assumed to represent
these data and to generate them as well.

In this chapter, the major properties of mappings and multilayer perceptron
(MLP) neural networks (NNs) are formulated and discussed. In Sect. 2.1, several
examples of real-life problems (prediction of time series, interpolation of lookup
tables, satellite retrievals, and fast emulations of model physics) that can be
considered as complex, nonlinear, and multidimensional mappings are introduced.
The most important generic properties of mappings are discussed in Sect. 2.2. The
MLP NN technique, which is used in this book as a generic tool for emulating
nonlinear mappings, is introduced in Sect. 2.3. In Sect. 2.4, the power and flexibility
of the NN technique as well as its limitations are discussed; also, it is shown how
various methods can be designed to bypass or reduce some of these limitations.
Section 2.5 discusses special features of NN emulations, and in Sect. 2.6 some final
remarks are presented.

2.1 Mapping Examples

2.1.1 Prediction of Time Series

Prediction of time series may be considered as a mapping between the past and
future (Elsner and Tsonis 1992; Bollivier et al. 2000; Maas et al. 2000). In this case,
the vector X D fxt � k, xt � k C 1, : : : , xtg is a lag vector created from k past values
of the time series for the variable x, and the vector Y D fxt C 1, xt C 2, : : : , xt C pg
contains p future or predicted values for the same variable x. The components of
vectors X and Y in this case may be significantly correlated as sequential terms
of the same time series that represents the sequential measurements of the same
underlying process. Depending on the nature of the process represented by the time
series, the target mapping M may be linear or nonlinear (e.g., in the case of a chaotic
process) (Elsner and Tsonis 1992). Prediction of a time series as a mapping using
NNs is discussed in detail in Weigend and Gershenfeld (1994).

2.1.2 Lookup Tables

Lookup tables are often used in various fields of science to accelerate calculations of
complex mappings (2.1). Lookup tables allow one to replace a runtime computation
with simpler operations with array indexing, i.e., with reading from memory.
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The savings in terms of processing time can be significant, since retrieving a value
from memory is often faster than undergoing a more time-consuming computation.
To create a lookup table, the mapping (2.1) is pre-calculated on an n-dimensional
grid obtained by a discretization of the input vector X.

For example, in some numerical climate and weather prediction models, the
aerosol properties of the atmosphere are represented as time-dependent 3-D lookup
tables, as expressed in the following equation:

y
jklp
i D Mi

�
�j ; �k; hl ; tp

� D Mi .j; k; l; p/

whereM is the lookup table and i D 1, 2, 3 correspond to the aerosol optical depth,
the single scattering albedo, and asymmetry parameters. � and � are the longitude
and the latitude, h is the height, and t is time – all placed on a 4-D grid, where j D 1,
: : : , J, k D 1, : : : , K, l D 1, : : : , L, and p D 1, : : : , P are the indices of the grid.
The time index, p, for this example, changes from 1 to P D 12, because the aerosol
parameters depend only on the month of the year in this model.

To calculate the value of y for a particular set of arguments X D .�; �; h; t /, a set�
�j ; �k; hl ; tp

�
closest to .�; �; h; t/ has to be found, and a set of indexes (j, k, l,

p) has to be determined, and thenMi.j; k; l; p/ can be retrieved from the memory. If
the grid is coarse (i.e., J, K, L, and P are small), the table is small and the calculation
is fast; however, the accuracy of the calculated value for y may be low. If the grid
is fine, the accuracy is improved; however, the time required for the retrieving and
searching a large table, Mi , may become comparable with (or even greater than)
the time required for the direct computation of Mi . Sometimes an intermediate
solution that uses a coarse table in combination with an appropriate interpolation
procedure is applied. Using interpolation can produce greater accuracy for values
that fall between two precomputed values; however, the process of interpolation
takes additional time. Thus, a compromise between the speed and the accuracy of
the lookup table is always an issue when a lookup table approach is used.

There are two fundamental limitations on when it is possible to construct a
lookup table for a required operation. The first is the amount of memory that is
available: clearly, one cannot construct a lookup table that is larger than the space
available for the table, although it is possible to construct disk-based lookup tables
at the expense of increased search or lookup time. The other is the time required
to search the table, which quickly increases with an increase in the number of
dimensions involved in the mapping (2.1).

NNs can be considered and used as fast analytical lookup tables that does not
require searching and provides a fast and accurate interpolation. For example, NNs
have been used to retrieve atmospheric properties from satellite RS measurements
(Vann and Hu 2002) as an alternative to the use of lookup table-based inversion
algorithm. In this case NN is used to emulate and inverse the lookup table.
NNs provide an impressive speedup that increases rapidly with an increase of
dimensionality n of the input vector. For example, as it is shown by Vann and Hu
(2002), for n D 2, the NN is �100 times faster, and for n D 6, the NN is already 104



16 2 Introduction to Mapping and Neural Networks

times faster than the lookup table. It is noteworthy that such an impressive speedup
at low dimensionalities n of the input vector has been demonstrated because NNs,
in this work, not only emulate but also inverse the lookup table.

2.1.3 Satellite Remote Sensing

The third example of a generic application that can be formally considered as the
mapping (2.1) is a retrieval algorithm (or a transfer function) in satellite RS that
converts the input vector X of satellite measurements (calibrated or raw radiances,
brightness temperature, backscatter coefficients, etc., at different frequencies) into
the vector Y of geophysical parameters like wind speeds, atmospheric moisture
parameters, and ocean and land surface characteristics. Here the components of
vector X may (as in previous examples) be correlated because the frequency bands
may not be completely independent and may overlap. The components of the output
vector Y may be correlated because the corresponding geophysical parameters
are physically related (Krasnopolsky et al. 1999, 2000). The target mapping in
this example may also be a complicated nonlinear mapping. This application is
discussed in Chap. 3.

2.1.4 Emulation of Subsystems of the Climate System

In Chap. 1 we mentioned that, formally speaking, any subsystem of ES can be
considered as a relationship, usually complex and nonlinear, between two vectors:
a vector of input and a vector of output parameters or as a mapping (2.1). The
input and the output vectors allow the subsystem to exchange information with other
subsystems of ES. The same is true with respect to numerical models that describe
ES and its subsystems.

Figure 2.1 shows the hierarchical chart for a generic general circulation (or
climate) model (GCM) which is used to produce climate projections and simula-
tions. GCMs have a significant hierarchical complexity (see Sect. 1.1). The first five
hierarchical levels are presented in the figure. The first level represents the numerical
models for the major constituents (subsystems) of the GCM: ocean, atmospheric,
land, and ice models. Only the structure of the atmospheric branch is presented
for clarity in the figure, and, likewise, only atmospheric subsystems are shown.
The subsystems that are shown in Fig. 2.1 (shown as boxes in the figure) at any
hierarchical level are mappings that can be modeled or emulated by an appropriate
NN. Boxes with red titles show subsystems that have been already modeled or
emulated using an NN.

Tang and Hsieh (2003) studied the El Niño-Southern Oscillation (ENSO), a
well-known climatic phenomenon characterized by quasiperiodic oscillations of
sea surface temperature (SST) in the tropical Pacific Ocean. They used a climate

http://dx.doi.org/10.1007/978-94-007-6073-8_3
http://dx.doi.org/10.1007/978-94-007-6073-8_1
http://dx.doi.org/10.1007/978-94-007-6073-8_1
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Fig. 2.1 The hierarchical chart of a generic GCM which provides climate projections and
simulations. 2-D setup of this chart does not allow us to show all interactions between subsystems
at the same hierarchical level and between levels; many of them are omitted for clarity

model, which includes two major subsystems of the climate system: atmospheric
and oceanic subsystems. Running a coupled atmospheric oceanic model is com-
putationally expensive, especially when an ensemble approach, requiring multiple
model runs, is employed. To make the study computationally affordable, the authors
considered the atmospheric subsystem of climate system as a mapping and used
an NN to develop a fast nonlinear model of the atmospheric subsystem of climate
system.

Other NN applications to subsystems of the atmospheric component of GCMs
are shown in Fig. 2.1 at the third, fourth, and fifth hierarchical levels of GCM. They
are discussed in detail in Chap. 4 together with several oceanic NN applications.
For example, at the fourth level, the parameterizations of atmospheric physics
are located in climate or weather prediction numerical models (see Fig. 2.1). The
atmospheric long-wave radiation parameterization (see Chap. 4 for details and other
examples) can be considered as a mapping. In this case, the input vector X is
composed of several atmospheric state variables like temperature, humidity, and
ozone concentration that are functions of height, and some surface characteristics.
The output vector Y is composed of a function of height – long-wave heating rates,
and heat fluxes. It becomes clear from this brief description that, in this case, we
do not have a vector-to-vector mapping (2.1) but a functional mapping because

http://dx.doi.org/10.1007/978-94-007-6073-8_4
http://dx.doi.org/10.1007/978-94-007-6073-8_4
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some of the components of the vectors X and Y are functions of a continuous
variable – height. Nevertheless, by discretization of these functions on a vertical
grid that transforms continuous functions into profiles (finite vectors), the problem
can be converted to a vector-to-vector mapping (2.1). As in previous cases, here the
components of the vectors X and Y may be significantly correlated because (1) they
are physically related, and (2) they are related as the discretized values (elements
of a profile) of the same continuous function where the elements are closely spaced
in height. The target mapping is complicated and nonlinear in this case because the
atmospheric radiation processes are complicated and nonlinear. The target mapping
may be continuous or almost continuous, and, thus, it may contain a finite number of
finite discontinuities (such as step functions) due to the impact of highly nonlinear
atmospheric moisture processes.

2.2 Some Generic Properties of Mappings

Multidimensional, nonlinear mappings (2.1) are complicated mathematical objects
that are not very well studied. These mappings have many different interesting
properties. After the four previous examples, we now focus on certain generic
properties of the mapping (2.1) that are typical and important for the applications
presented in this book, keeping in mind that our goal is to develop an NN
representation for the target mapping (2.1).

2.2.1 Mapping Dimensionalities, Domain, and Range

The first essential property of the target mapping is its mapping dimensionalities. A
mapping is characterized by two dimensionalities: (1) the dimensionality n of the
input space, <n, and (2) the dimensionality m of the output space, <m. In this book
we will consider only mappings between vectors X and Y, which both consist of
real numbers as their components, like mappings in the aforementioned examples.
In this case, both input and output spaces are real vector spaces.

The second important property of the mapping (2.1) is the mapping domain. Only
a part of the input space <n is spanned by the input vectors X. This part is called the
mapping domain, D, and is determined by the particular application. Understanding
the configuration of the mapping domain and its properties is essential for any
application of the mapping (2.1) and for proper NN training and use (Bishop 1995).
If all components of the input vector X are scaled to the range [�1.,1.], the volume
of the input space <n is equal to 2n and, therefore, grows exponentially with n. In
computer, once the space is discretized on a grid by K values per dimension, then the
problem grows even faster, as Kn. It means that in the input space we have Kn grid
cells, and to represent our mapping, we need an exponentially large training set in
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Y = M(X)Fig. 2.2 The mapping (2.1),
M, its input vector, X, output
vector, Y, domain, D, and
range, R

order to ensure that each grid cell contains at least one data point. This exponential
growth in the amount of data with the increase of the input space dimensionality is
often called the curse of dimensionality (Bishop 1995; Vapnik and Kotz 2006).

Fortunately, the components of the input vector, X, are usually interrelated or
multi-collinear (Aires et al. 2004b) due to physical or statistical constraints that
lead to both positive and negative consequences (see Sects. 2.3.4 and 2.4.2). On
the positive side, these correlations effectively reduce the size, and sometimes
dimensionality, of the part of the input space <n spanned by the input vectors X (the
mapping domain, D). As a result, for a particular application, the mapping domain,
D, may be significantly smaller than an n-dimensional cube in the input space
<n. On the negative side, it is often very difficult, if possible at all, to determine
the actual shape and effective dimensionality of D, which makes it difficult to
adequately sample the mapping domain D and to select the optimal architecture
of the NN that emulates the target mapping.

The components of the output vector, Y, are also usually interrelated. As a result,
the output vectors also span only a fraction of the output space <m. This part of
the output space is called the range, R. Understanding the properties of the range is
very important for the proper testing and application of the NN approximations of
a target mapping (2.1). Figure 2.2 illustrates the mapping (2.1), its domain, D, and
range, R.

2.2.2 Mapping Complexity

Another property of mapping (2.1) that is important in the context of the applications
reviewed in this book is mapping complexity. Mapping complexity is an intuitively
clear notion. The mapping M performs a transformation of the input vector X to
produce the output vector Y, and this transformation may be more or less complex.
However, if we want to define complexity more precisely, we may encounter
problems and ambiguities that are both qualitative and quantitative in nature (for
a good introductory review of the topic and the related problems, see Reitsma
(2001) and the references therein). Many different qualitative definitions (at least
30 according to Reitsma (2001)) of complexity have been introduced. For some of
these definitions, corresponding quantitative definitions of complexity have likewise
been proposed (Cilliers 2000; Gell-Mann and Lloyd 1996).
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Keeping in mind the four examples of the mapping (2.1) we introduced earlier,
we can suggest at least four different qualitative definitions of mapping complexity.
In these examples, the target mapping, M, is a symbolic representation for a
mathematical formalism based on first principles and describing a physical process
or chain of interacting physical processes (e.g., atmospheric radiation). Therefore,
we can talk about the physical complexity of the mapping (2.1) that corresponds to
the complexity of the hierarchy of physical processes described by the mapping.
We can also introduce quantitative or semiquantitative characteristics of physical
complexity: the number of physical processes involved and the number of levels
in the hierarchy of these processes involved (the hierarchical complexity; see
Sect. 1.1).

The physical processes are represented mathematically by this mapping. Cor-
respondingly, we can consider mathematical complexity of the mapping (2.1) and
introduce quantitative or semiquantitative characteristics of mathematical com-
plexity: the number of equations describing the physics, the type of equations
(e.g., linear vs. nonlinear, ODE vs. PDE vs. integrodifferential equations), and
the dimensionality of the equations. It is noteworthy that an ambiguity may exist
for such measures of mathematical complexity because, for a particular physical
process, alternative mathematical formalisms, based on first principles, often exist
that lead to different types and numbers of equations for the description of the
same physical system. As a result, several different estimates of physical and/or
mathematical complexity may be obtained for the same target mapping (2.1). Euler
vs. Lagrange formulations of the equations of geophysical fluid dynamics and the
Schrödinger vs. Heisenberg formulations of quantum mechanics are examples.

The third type of complexity that can be introduced is mapping numeri-
cal/computational complexity. For this type of complexity, a quantitative measure,
like the number of elementary numerical operations required for calculating Y given
X, can be introduced. This measure is very important for it is closely related to the
computation time. However, this measure is also ambiguous because, as we well
know, different numerical schemes applied to the same set of equations (e.g., finite
differences vs. variational methods for solving PDEs) may lead to dramatically
differing counts of elementary numerical operations. Here again, several different
estimates of numerical complexity may be obtained for the same mapping (2.1).

The fourth type of mapping complexity is called functional complexity. It
describes the complexity of the functional dependency of the outputs, Y, versus the
inputs, X, or the “smoothness” of this dependency. If the three previous definitions in
some respects depend on, or are conditioned by, our knowledge of the internal struc-
ture of the target mapping (2.1), this fourth definition characterizes the complexity
of the mapping as a whole, as a single, elementary object that transforms the input
vector into the output vector. It is intuitively clear that the functional complexity
of the mapping (2.1) can, in principle, be measured unambiguously. Unfortunately,
it does not mean that there actually exist techniques that allow the introduction of
a satisfactory measure of functional complexity for a multidimensional mapping
(2.1). For example, for a function of one variable, an approximation procedure

http://dx.doi.org/10.1007/978-94-007-6073-8_1
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can be used for measuring functional complexity. If n is the minimal order of a
polynomial that approximates the function with the desired accuracy, the function
may be considered to have polynomial complexity of order n. However, the direct
generalization of this approach for the case of multidimensional mapping (2.1) is
difficult, at best. A similar concept, however, can be applied using universal mapping
approximators like MLP NNs. Thus, the complexity of the emulating NN can be
used to measure the complexity of the target mapping (2.1) to be emulated by this
NN. Appealing as this approach may appear, it still requires a clear definition of
the accuracy of the NN emulation, which is discussed in Sect. 2.5. It also provides
us with a measure of the mapping functional complexity post factum, after the NN
approximation is performed; however, as we will show in the following chapters, we
often need an estimate of the functional mapping complexity beforehand to develop
an accurate NN approximation. It is noteworthy that the mapping dimensionalities
n and m contribute to all of the types of mapping complexities considered above,
although they cannot be used as unambiguous measures of these complexities.

2.2.3 Mappings Corresponding to Ill-Posed Problems

Among the applications considered in this book, we will find some problems that
can be considered as continuous mappings (2.1); however, for these mappings small
perturbations in X may cause large changes in Y; thus, the mapping is unstable.
These problems belong to a wide class of ill-posed problems. In the case of the well-
posed problem a solution usually exists, it is unique and stabile. Ill-posed problems
do not satisfy one or several of these conditions (Vapnik 1995). Ill-posed problems
usually arise when one attempts to estimate an unknown cause from observed effects
(most of the geophysical inverse problems in ESS belong to this class, e.g., the
satellite retrieval problem considered in Chap. 3), to obtain the values of certain
model parameters from the observed data, or to restore a whole object from its
low dimensional projection (e.g., estimating the NN Jacobian considered in Sect.
5.2). If X contains even a low level of noise, the uncertainties in Y may be very
large. To solve ill-posed problems, additional a priori information about the solution
(regularization) should be introduced into the approach to obtain solution (Vapnik
and Kotz 2006).

2.2.4 Stochastic Mappings

In many practical applications, the mapping (2.1) contains an internal source
of stochasticity. It may be due to several reasons: a stochastic process that the
mapping describes, a stochastic method (e.g., Monte Carlo methods) implemented
in mathematical formulation of the mapping, or uncertainties in the data that are

http://dx.doi.org/10.1007/978-94-007-6073-8_3
http://dx.doi.org/10.1007/978-94-007-6073-8_5
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used to define the mapping. In this case we can modify the symbolic representation
(2.1) introduced for the mapping above as

Y D M.X; "/ (2.1a)

where " is a vector stochastic variable reflecting explicitly a stochastic nature of the
mapping – the mapping uncertainty. Assuming that stochastic part of the mapping
is additive, representation (2.1a) can be simplified:

Y D M.X/C ": (2.1b)

It is noteworthy that the uncertainty " is an inherent informative part of the
stochastic mapping, which contains important statistical information about the
mapping. Actually, the stochastic mapping is a family of mappings distributed
with a distribution function. The range and shape of the distribution function
are determined by the uncertainty vector ". Examples of stochastic mappings are
discussed in Sects. 4.3.6 and 5.2.

2.3 MLP NN: A Generic Tool for Modeling
Nonlinear Mappings

2.3.1 NNs in Terms of Approximation Theory

The simplest MLP NN is a generic analytical nonlinear approximation or model
for the target mapping (2.1). The MLP NN uses for the approximation a family of
functions like

yq D NN.X; a; b/ D aq0 C
kX

jD1
aqj � tj I q D 1; 2; : : : ; m (2.2)

where

tj D �

 

bj0 C
nX

iD1
bj i � xi

!

(2.3)

and xi and yq are components of the input and output vectors, respectively; a and
b are fitting parameters or NN weights; � is a so-called activation or “squashing”
function (a nonlinear function, often specified as the hyperbolic tangent); n and
m are the numbers of inputs and outputs, respectively; and k is the number of
the nonlinear basis function, tj (2.3), in the expansion (2.2). The expansion (2.2)
is a linear expansion (a linear combination of the basis function tj (2.3)) and the

http://dx.doi.org/10.1007/978-94-007-6073-8_4
http://dx.doi.org/10.1007/978-94-007-6073-8_5
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coefficients aqj (q D 1, : : : ,m and j D 1, : : : ,k) are the linear coefficients of this
expansion. It is essential (see Sect. 2.4.1) that the basis functions tj (2.3) are
nonlinear with respect to inputs xi (i D 1, : : : ,n) and to the fitting parameters or
coefficients bji (j D 1, : : : ,k). As a result of the nonlinear dependence of the basis
functions on multiple fitting parameters bji, the basis ftjgj D 1, : : : ,k becomes a very
flexible set of nonorthogonal basis functions that have great potential to adjust to the
functional complexity of the mapping (2.1) to be approximated. It has been shown
by many authors in different contexts that the family of functions (2.2, and 2.3) can
approximate any continuous or almost continuous (with a finite number of finite
discontinuities, like step functions) mapping (2.1) (Cybenko 1989; Funahashi 1989;
Hornik 1991; Chen and Chen 1995a, b). The accuracy of the NN approximation or
the ability of the NN to resolve details of the target mapping (2.1) is proportional to
the number of basis functions, k (Attali and Pagès 1997).

The MLP NN (2.2, and 2.3) itself is a particular type of mapping (2.1). In the case
of the MLP NN, the computational and functional complexity of the NN mapping is
closely related (they are especially close for NN emulations; see Sect. 2.5) and can
be characterized by the number of fitting parameters a and b in (2.2, and 2.3). This
number, the complexity of the MLP NN, is given by

Nc D k � .nCmC 1/Cm: (2.4)

For a set of NNs approximating a particular target mapping (2.1) with a given
number of inputs n and outputs m, a good measure of the NN complexity is the
number of basis functions, k, that are used. The NN complexity grows linearly with
the growth of the dimensionalities of the input space (the number of inputs), n, and
the output space (the number of outputs), m.

The number of NN weights per NN output

nc D Nc=m (2.4a)

reflects the computational and functional complexity of the dependency of each NN
output vs. NN inputs. This measure of the NN complexity is useful when NNs with
different numbers of outputs are compared (see Sect. 4.3.3, subsection “Estimation
of speedup”).

It is noteworthy that, if for each mapping output yq we construct a polynomial
approximation, such a multidimensional polynomial of order P would have nP

unknown fitting parameters (Bishop 2006). Therefore, in the case of polynomial
approximation, the computational complexity of the approximation for the entire
mapping (2.1) is m � nP, which is a power law growth. The power law growth is
slower than an exponential growth, but it is very fast and leads to the curse of
dimensionality. Thus, the polynomial approximation is of limited practical utility for
multidimensional function and mapping approximations. NNs manage to address
the curse of dimensionality and, due to the aforementioned linear dependence on
the dimensionality of the input space, remain a practical approximation (or model)
even for high-dimensional mappings.
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Fig. 2.3 The simplest MLP NN with one hidden layer and linear neurons in the output layer

2.3.2 NNs in Their Traditional Terms

A pictographic language reminiscent of a data flow chart is used traditionally in the
NN field starting with the founding work by McCulloch and Pitts (1943). In this
work devoted to the mathematical modeling of a neuron, a single cell in a neural
network, a basis function tj (2.3), or neuron was represented as shown in Fig. 2.4
(left). A step function was used in this work as the activation function, �.

Then after Rumelhart et al. (1986) introduced the MLP NN, a pictographic
representation of the entire NN was introduced (see Fig. 2.3). The neurons are
situated into layers inside the MLP NN. The input layer is in a sense a symbolic
layer. Input neurons do not perform any numerical function; they simply distribute
inputs to neurons in the following hidden layer. The hidden layer (there can be
several) is usually composed of nonlinear neurons (Eq. (2.3) and Fig. 2.4 left). The
neurons in the output layer are usually linear (Eq. (2.2) and Fig. 2.4 to the right).
The connections (arrows) in Fig. 2.3 correspond to the NN weights, the name used
for the fitting parameters a and b in NN jargon.

Here we consider the simplest type of MLP NN that has one hidden layer
and the output layer with linear neurons. Such architecture is sufficient for the
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Fig. 2.4 The right figure shows linear (Eq. (2.2)) and the left – nonlinear (Eq. (2.3)) neurons

approximation of any continuous (or almost continuous) mapping (Cybenko 1989).
More than one hidden layer and nonlinear neurons in the output layer may
be introduced to solve specific problems (e.g., Hsieh 2004) or for practical
convenience. For the simplest MLP NN considered here, there is a one-to-one
correspondence between Eqs. (2.2, and 2.3) and Figs. 2.3 and 2.4. However,
in general, the pictographic language (Figs. 2.3 and 2.4) is not redundant. This
language can suggest NN topologies or architectures that probably cannot be
represented analytically in terms of equations or that cannot evolve from Eqs.
(2.2, and 2.3). The pictograms that represent the design of such NNs cannot be
described by a closed set of equations; however, these pictograms can be translated
into computer codes.

2.3.3 Training Set

In a practical application, a target mapping (2.1) is usually represented and presented
to the NN by a data or training set that consists of N pairs of input and output vectors
X and Y:

CT D ˚
Xp; Yp

�
pD1;:::;N (2.5)

where Yp D M(Xp) C �p, Xp 2 D and Yp 2 R, and �p represents any errors
associated with the observations or calculation with a probability density function
�(�). The set CT can also be considered as a combination of two rectangular
matrixes,

CT D fCX;CY g; (2.5a)
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where CX is a matrix of dimensionality n � N composed of all input vectors X and
CY is a matrix of dimensionality m � N composed of all output vectors Y. The
training set is all that the NN “knows” about the target mapping that it is expected
to approximate. This is the reason why NN belongs to a class of data-driven or
learning from data methods (Cherkassky and Mulier 2007).

The training set represents the mapping (2.1) for the NN, and, therefore, it
has to be representative. It means that the training set has to have a sufficient
complexity to represent the complexity of the target mapping, allowing the NN
to achieve the desired accuracy of the approximation of the target mapping. The
set should have a sufficient ample size, N, of properly distributed data points that
adequately resolve the functional complexity of the target mapping (2.1). The
training set should have finer resolution where the target mapping is not smooth and
coarser resolution where it is smoother, namely, the domain D should be properly
sampled. Certainly, it may be oversampled but not under-sampled. The fundamental
question remains, however, as to just how we should measure this target mapping
smoothness (or complexity) in order to obtain the desired results (DeVore 1998).
The interrelations and correlations between inputs, as discussed earlier, simplify
the sampling task for cases of high input dimensionality, reducing the size and the
effective dimensionality of the domain.

The representativeness of the training set is a necessary condition for a good NN
generalization (interpolation), for obtaining acceptable performance from an NN.
Kon and Plaskota (2001) introduced a qualitative measure for the representativeness
or necessary complexity of the training set. They introduced what they called
informational complexity, which specifies the number of observations necessary
and sufficient to construct an NN approximation under accepted assumptions. In an
ideal situation, there should be a correspondence between the functional complexity
of the target mapping (2.1), the complexity (2.4) of the approximating NN, and the
informational complexity (number and distribution of data points) of the training
set (2.5). Unfortunately, there are no general recipes for most practical applications.
The only useful relationship that can be found in the literature is N >Nc. Actually,
this relationship has a simple statistical interpretation; the number of unknown
parameters in the model (the number of weights in NN or the complexity of the
NN (2.4)) should not exceed the number of data points, N, in the training set (2.5).
It is noteworthy that NNs with Nc � N can be considered if regularization procedures
(see Sect. 2.3.7, subsection “Overfitting and regularization”) are applied during the
training.

As mentioned above and is discussed below, the training set should be somewhat
redundant; however, an excessive redundancy with almost identical records in the
training set does not improve the NN training and does obviously increase the NN
training time. Various methods have been proposed to deal with such a redundancy
of the training set. For example, Chevallier et al. (2000) introduce a sampling
method that uses Euclidian or non-Euclidian distances in the input space <n to
eliminate almost identical record from the training set. A dissimilarity index is
introduced in this case,

Dn

�
Xi;Xj

� D ��Xi � Xj
��
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where jj : : : jj denotes a norm in the input space <n. Only records with the
dissimilarity indexes Dn> d (a predefined distance in <n) have been included in
the training set.

Two distinct types of data (observed and simulated) are usually employed in the
ES applications considered here. The first type of data is based on observations.
These data usually contain a significant level of observational noise �. It is
noteworthy that for an ill-posed problem (see Sect. 2.2.3 and Chap. 3), even a small
level of noise in the data may lead to significant errors in the NN emulations. In the
case of observed data, the sampling of the target mapping domain is controlled by
the observation setup, technique, and conditions. Actually, in this case, because the
target mapping is represented implicitly by the available observed data, the accuracy
of the NN approximation and the ability of the NN approximation to resolve the
target mapping are limited and determined by the observation setup, technique,
and conditions. Two important problems when working with observed data are the
data quality control and missing data handling (see Sect. 2.3.7, subsection “Missed
Inputs and Outputs” for a brief discussion of the missing data problem). There is
usually little we can do to improve or expand the data set in the case of observed data
except to fuse it with simulated (model produced) data if such data can be produced.

If an explicit theoretical (based on first principles) or empirical model for the
target mapping (2.1) is available, it can be used to simulate the data set (2.5).
With simulated data, we have significantly more control over the sampling of the
target mapping domain (the number and distribution of the data points) and as a
result, on the NN accuracy and the ability of the emulating NN to resolve the target
mapping. The level of noise in the simulated data is usually lower than that in the
observed data. The simulated data do not have missing data per se; however, in some
application a problem may arise, which is similar to the missing data problem (see
Sect. 2.3.7, subsection “Missed Inputs and Outputs”). The simulated and observed
data can, in principle, be merged or fused together to form an integrated data set
using an appropriate technique that is able to account for the different error statistics
and statistical properties of these two data types. One example of properly fused data
is the analyzed data produced by a DAS (see Sect. 3.1.2).

2.3.4 Selection of the NN Architecture

To approximate a particular target mapping (2.1) with the MLP NN (2.2, and 2.3),
we should first select the NN architecture or topology, the number of the inputs n,
the outputs m, and the number of neurons k in the hidden layer. For each particular
problem, n and m are determined by the input and output dimensionalities of the
target mapping (the dimensions of the input and output vectors X and Y). Here we
treat an entire mapping (2.1) as an elementary/single object and approximate its
functionality (an input–output relationship) in its entirety. Practical implementation
of this approach allows for multiple solutions in terms of the number of NN designs
that can be used for an approximation. As a result, the MLP NN expressed in

http://dx.doi.org/10.1007/978-94-007-6073-8_3
http://dx.doi.org/10.1007/978-94-007-6073-8_3


28 2 Introduction to Mapping and Neural Networks

Eqs. (2.2, and 2.3) can be implemented as a single NN with m outputs, m single-
output NNs, or several multiple-output NNs with the total number of outputs equal
to m.

Approximating the target mapping with a single NN is a convenient solution
because of the simplicity of its design. It also has a great advantage in terms
of speeding up the calculations when the outputs of the mapping and, therefore,
the outputs of the approximating NN are significantly correlated. In the case
of a single NN (2.2, and 2.3) with many outputs, all the outputs are different
linear combinations of the same basis functions tj or hidden neurons. Fewer
neurons are required to approximate a particular number of correlated outputs
than to approximate the same number of uncorrelated outputs. Thus, in the case
of correlated outputs, one NN per approximation solution has a lower complexity
Nc (2.4) and provides significantly higher performance at the same approximation
accuracy than a battery (an array) of m single-output NNs (Krasnopolsky and Fox-
Rabinovitz 2006). Also, a single emulating NN solution is less complicated in terms
of NN training requirements. It leads to a lower dimensionality of the training space
(see Sect. 4.3.4, subsection “Normalization of NN outputs, and an array of NNs
Versus a single NN” for an example and discussion).

The number of hidden neurons k that determine the complexity (2.4) of the
approximating NN in each particular case should be determined when taking
into account the complexity of the target mapping to be approximated. The more
complicated the mapping, the more hidden neurons k are required (Attali and
Pagès 1997) (or the higher the required complexity Nc of the NN) to approximate
this mapping with the desired accuracy or resolution. There is always a trade-off
between the desired resolution of the target mapping and the complexity of the NN
emulation. However, from our experience, the complexity k of the approximating
NN should be carefully controlled and kept to the minimum level sufficient for the
desired accuracy of the approximation to avoid overfitting and to allow for a smooth
and accurate interpolation (see the discussion in Sect. 2.4). Unfortunately, in this
regard, there are no universal rules or recommendations that can be given. Usually
k is determined based on experience and experimentations.

The possibility of choosing among many topological solutions, from a single
NN with m outputs to m single-output NNs, demonstrate the internal flexibility
of the NN technique. This additional flexibility can be effectively used in many
applications.

2.3.5 Normalization of the NN Inputs and Outputs

Another degree of flexibility is provided by the availability of different normaliza-
tions for NN inputs and outputs. NN inputs are usually normalized to an interval
[�a,a], using a simple equation,

Qxi D ai �
�
2 � xi � xmax

i � xmin
i

�

�
xmax
i � xmin

i

� (2.6)
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where xi is the ith NN input before and Qxi after the normalization. If all ai are equal
to 1, then all inputs are normalized to the interval [�1.,1.]. By selecting different
ai for different inputs, we can change the sensitivity of NN to the variability of a
particular input.

For NN with a single linear output, normalization of the output is relatively
straightforward. Any traditional normalization, like normalizing over the interval
[�a,a] via (2.6) or using the following normalization,

y0 D y � Ny
�

(2.7)

where Ny is the mean value of y and � is its standard deviation (SD), can be used and
leads to similar approximation errors.

For a single NN with multiple outputs, the normalization of the outputs affects
the approximation accuracy and NN performance more significantly than in the case
of a single-output NN. Normalization similar to (2.7) for the case of multiple outputs
can be written as

y0q D ˛ � yq � Nyq
�q

(2.8)

where Nyq and �q are the mean and SD of the qth output, yq, and ˛� 1 is introduced
to accelerate the training of the linear weights in the output layer of the NN. This
normalization improves approximation accuracies for small outputs; however, if
these outputs are noisy, it propagates the noise to other outputs. Normalization (2.8)
also reduces correlations that may exist between outputs.

An alternate normalization,

y0q D ˛ � yq � Nyq
�

(2.9)

where � is the SD for all outputs, can also be employed in the case of NNs
with several outputs. This normalization preserves correlations between outputs.
Via taking into account these correlations, the normalization allows to reduce
complexity and to improve performance of the emulating NN.

In the case of multiple outputs, the four different normalizations (2.6, 2.7,
2.8, and 2.9) lead to very different approximation errors and to different types
of error distributions between outputs (see Sect. 4.3.4, subsection “Normalization
of NN outputs, and an array of NNs Versus a single NN” for examples). For
different NN applications, certain types of error distributions may be desirable;
for example, smaller absolute or relative errors may be preferable. Different output
normalizations in the case of a single emulating NN with multiple outputs may
provide an additional tool for obtaining the desired result. This topic is also
discussed by Krasnopolsky and Fox-Rabinovitz (2006).
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2.3.6 Constant Inputs and Outputs

In practical applications some components of input and/or output vectors X and Y of
the mapping (2.1) may have constant or almost constant values (their SDs are very
small). In such cases, when the mapping is emulated with NN, constants should
not be included in inputs or outputs because (1) they carry no information about
input/output functional dependence and (2) if not removed they introduce additional
noise in training and result in additional approximation errors. As for values that are
almost constant, these small signals may be in some cases not a noise but very
important signals; however, in such cases they should be specially treated to be used
as NN inputs or outputs. For example, such inputs or outputs should be converted to
their anomalies (i.e., their means should be subtracted); then the anomalies should
be used as inputs or outputs for the emulating NN. However, depending on the level
of uncertainty in the problem, information that these small signals may provide may
be well below the level of uncertainty, and may be in many cases practically useless.

2.3.7 NN Training

After the NN architecture (topological parameters n, k, and m) is defined, the
weights (a and b) can be found using the training set CT (2.5) and the maximum
likelihood method (Vapnik 1995) by maximizing the likelihood functional

L.a; b/ D
NX

iD1
ln � .�i / (2.10)

with respect to the free parameters (i.e., the NN weights) a and b. Here, �(�) is the
probability density function for the approximation errors �i D Yi � NN.Xi ; a; b/

(see Sect. 2.3.3) and the summation is performed over the N records in the training
set. If the errors � i are normally distributed, Eq. (2.10) leads to the minimization of
the mean-square error function (also called the loss, or risk, or cost function) with
respect to the NN weights given by W (a and b),

E.W / D 1

N

NX

iD1
�i .W / D 1

N

NX

iD1
.Yi �Zi/

2 (2.11)

where Zi D NN.Xi ;W /, E is the total error calculated over the entire training
set (all N records of the training set are included), and �i D .Yi �Zi /2 is an error
corresponding to the ith record in the training set. This procedure of minimization
of the error function (2.11) is usually called NN training. Minimizing the error
function is performed in the W-space (the space of NN weights or the training
space), which has a dimensionality equal to the number of NN weights, NC (2.4).
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It is noteworthy that for a probability density function �(�) other than Gaussian, the
error function should be derived from the maximum likelihood functional (2.10).
The error function may be significantly different than the mean-square error or
loss function (2.11) (Liano 1996). However, in the majority of applications, the
mean-square error function (2.11) is applied because it is simple and analytically
differentiable.

Optimal values for the weights are obtained by minimizing the error function
(2.11); this task is a nonlinear minimization problem. A number of methods have
been developed for solving this problem (Bishop 1995; Haykin 2008). Here we
briefly outline one of them, a simplified version of the steepest (or gradient) descent
method known as the back-propagation training algorithm. It was introduced for
practical applications by Werbos (1974) and as an NN training algorithm by Werbos
(1982) and Rumelhart et al. (1986).

The back-propagation training algorithm is based on the simple idea that
searching for a minimum of the error function (2.11) can be performed step by
step iteratively, and that at each step we should increment or decrement the weights
in such a way as to decrease the error function. This can be done, for example, using
the following simple steepest descent rule,

W .nC1/ D W .n/ � �
@E

�
W .n/

�

@W
(2.12)

where W is either one of two weights (a or b), W(n C 1) is an adjusted or updated
weight, �> 0 is a so-called learning constant, and W(n) is the weight at the previous
nth iteration. The total error function E or a one record error function � i can be used
in (2.12) which leads to different training procedures, batch training, or sequential
(or online) training (see next subsection).

Using (2.11), (2.2, and 2.3), and the chain rule of differentiation, the derivative
in (2.12) can be expressed analytically through the derivative of the activation
function �, and through the weight values at the previous iteration step (Haykin
2008; Bishop 1995, 2006). At the first step when we do not have weights from a
previous training iteration, a weight initialization problem arises that is familiar to
those who use various kinds of iterative schemes. Many studies have been devoted to
weight initialization (e.g., Nguyen and Widrow 1990; Wessels and Bernard 1992).
Most of these procedures initialize the NN weights with small random numbers.
Wessels and Bernard (1992), for example, generate random weights in the range��3ıp

n I 3ıp
n
�
, where n is the number of NN inputs.

The nonlinear error function (2.11) has multiple local minima. Moreover, due to
the symmetry of MLP NN in the weight space, for each of these local minimum
there exist k!�2k (k! is k-factorial) clone local minima with exactly the same error
(Chen et al. 1993). The back-propagation algorithm converges to a local minimum,
as does almost any algorithm available for solving the nonlinear optimization
problem (NN training). Usually, multiple initializations (even multiple initialization
procedures) are applied to avoid shallow local minima and to choose a local
minimum with a sufficiently small error.



32 2 Introduction to Mapping and Neural Networks

Batch Training and Sequential Training

If in Eq. (2.12) the total error function E is used to calculate the new adjusted
weights; therefore, the entire training set has to be processed at each training
iteration. Thus, at each training step, the weights are shifted in the direction of the
greatest decrease in the total error function. This type of training that uses the entire
data set to calculate each weight adjustment is called batch training.

Alternatively, we can use error function � i in Eq. (2.12), which is one record
(i.e., one pattern) error, for the weight adjustment; that is, the weights are updated
after each data record from the training set is presented to the NN. This training
approach is called sequential or online training. Sequential training works with the
training set record by record until all patterns have been presented once to NN,
which is called an epoch; then the process may be repeated many times (many
epochs) cycling through the records of the training set in sequence or selecting
patterns randomly. Thus, in the batch training, weights are updated once per epoch,
while in the sequential training, weights are updated after each data pattern (record)
or N times per epoch.

The batch approach is meaningful from the statistical perspective. It is often
effective, and certain second-order optimization algorithms work better with batch
training (Hsieh 2009); however, certain problems related to this algorithm can arise;
they are discussed by Bishop (2006) and Hsieh (2009). The sequential approach has
the obvious advantage in the case of long training sets: it works with one record at
a time, which makes it independent of the number of N patterns in the training set.
Thus, the sequential approach can be successfully used when dealing with data that
arrive in real time. Each new data record can be used independently to update the
NN weights online. Also, sequential training allows avoiding local minima of the
total error function.

Missed Inputs and Outputs

In practical applications, some elements of the data matrixes CX and/or CY ,
constituting the training set CT (2.5a), may be missing or corrupted. Obviously,
this problem often occurs when working with observed data. However, the problem
of missing data or a similar problem also arises when using simulated data. In
one of the applications discussed in Chap. 4, the mapping (2.1) describes the
entire atmospheric physics; the output vector in this case includes, among others,
two physical parameters: the land temperature at a given point and the ocean
temperature at the same point. Obviously, at a particular location, only one of these
two parameters is valid, and another one is missed. Thus, in this case, each record in
the training set simulated by a numerical model contains at least one missing value.

Missing data is an important technical problem because the majority of multivari-
ate data modeling and analysis techniques (including NNs) require complete data
sets (all variables have to be represented for each data record). Rates of missing data
less than 1 % are usually considered trivial, 1–5 % manageable, a rate of 5–15 %
requires sophisticated methods to handle it, and more than 15 % may have a severe
impact on the quality of the model (Luengo et al. 2010).

http://dx.doi.org/10.1007/978-94-007-6073-8_4
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Several approaches have been proposed to treat missing data. The most eco-
nomical way of dealing with the problem and to obtain complete data set is by
deleting the records with missing data, i.e., working with a subset of the training
set. This method, however, may become unacceptable in the case of small data
sets, especially in the case of high-dimensional input and output vectors X and Y.
Indeed, if only one element (one variable) of either vector is missing, the entire
record (Xp,Yp), which contains n C m � 1 acceptable variables, has to be removed. In
the previous example that involves atmospheric physics, application of this method
will lead to deleting the entire data set. Fortunately, a number of less economical
but more sophisticated methods have been developed to deal with missing data
(Richman et al. 2009). For example, a more sophisticated approach would be to
use the maximum likelihood procedure, where the parameters of a model for the
complete data are estimated. This model can be used to impute missing data.
Finally, in the majority of cases, data set components are not independent from
each other. Thus, through the identification of relationships between components,
missing values can be determined and imputed.

The detailed discussion of the problem of missing data goes beyond the scope
of this book. However, it is discussed by Richman et al. (2009) and Luengo et al.
(2010); various methods of data imputation or replacement of missing data are
considered in these works and in papers cited there. In this text, we mention one
simple method of dealing with missing output data that is used in applications
(Krasnopolsky et al. 2009) discussed in subsequent chapters. This method is equally
effective if one or more components of the output vector Yi are missing. In the
application of this method, the error function (2.11) is modified by introducing in
the error function a binary matrix ˛iq,

NE.W / D 1

N

NX

iD1

mX

qD1
˛iq �

�
yiq � ziq .Xi ;W /

	2
(2.11a)

where matrix, ˛, is defined in accordance with the following rule: for the training
record number i,

˛iq D


1; if the output number q is defined
0; if the output number q is missing

:

Thus, the method avoids deleting the entire record number i from the training set.
All components of the vector that are not missing can be used for training. Missing
components are simply not included in the error function (they are included with
zero weight).

Overfitting and Regularization

In this section we discuss the problem of overfitting for two different cases. First,
when the level of noise in the training data is low and an NN or any other nonlinear
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statistical model approximates the data well, it may occur that between the data
points and/or at the ridges of the domain, the NN exhibits an unpredictable behavior
(e.g., wild oscillations). Second, when dealing with noisy data containing outliers,
the model, if the training is excessive, may fit the noise and outliers as well as the
desired data. There are a number of reasons for overfitting. For example, the NN
complexity, NC, can be unreasonably high and approach or exceed the number of
data points, N, in the training set. Also, the training set can be long (large N) but
redundant; a simple target mapping can then be oversampled. In this case, NNs of
high complexity can be selected based on the large value of N; however, because of
the redundancy in the data, overfitting will occur.

One of the classic manifestations of overfitting is the convergence of the training
process to a local minimum with large weights of alternating signs. To avoid
converging to such local minima, regularization is often applied (Haykin 2008;
Bishop 1995, 2006), which involves adding a penalty term to the error function
(2.11). A modified (or regularized) error function can be written as

QE.W / D E.W /C � �
X

j

W 2
j : (2.11b)

The first term in Eq. (2.11b) is the standard error function (2.11), the second term
is the regularization term, and � is a coefficient that reflects the relative importance
(or strength) of the regularization term. It is obvious that the regularization term in
Eq. (2.11b) penalizes large weights providing guidance for the training procedure,
based on the regularized error function (2.11b), to a solution that corresponds to a
local minimum with smaller weights and thus preventing overfitting due to large
weights.

It is noteworthy that in the case of complex NNs with a large number of weights,
the dimensionality of the training space, NC, is very high (hundreds of thousands
in some applications discussed in the following chapters). As a result, the number
of local minima in the error function can be very large. In such situations, NN
training usually leads to one of the closest (to the initialization point) local minima.
If initialization procedure is used that initializes NN weights with small random
numbers (e.g., Nguyen and Widrow 1990), the training process will be attracted
to a local minimum, which is close enough to the initialization point and where the
weights will still be relatively small. Thus, application of an initialization procedure,
like one just described, may make the use of regularization (2.11b) unnecessary for
complex NNs.

Noisy Training Data and Stochastic Mappings

If NN is trained using the data that contain a significant level of noise or uncertainty,
these data actually represent a stochastic mapping with an uncertainty " (see
Sect. 2.2.4). In this case, the NN emulation of the stochastic mapping (2.1b) can
be written as
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Y D MNN.X/C "C "app

where MNN is an NN emulation of the mapping M (2.1b) and "app is an NN
approximation error. Thus, in the case of the stochastic mapping (2.1b), the NN
emulation task is different from that of emulating an exact mapping (2.1) which
does not contain uncertainty ".

This important difference should be taken into account when the NN approxima-
tion is trained, the approximation error statistics are analyzed and interpreted, and
the NN architecture is selected. In the case of training, the usually used criterion of
minimum of the error function (2.11) should be substituted by the requirement that
the error should not exceed the uncertainty " or

E.W / D 1

N

NX

iD1
ŒYi �MNN .Xi /	

2 � "2: (2.11c)

All NNs that satisfy the condition (2.11c) are valid emulations of the stochastic
mapping (2.1b). It is clear that any estimate of the magnitude of the uncertainty "
is of paramount importance for the proper training of NN emulation of a stochastic
mapping.

2.4 Advantages and Limitations of the NN Technique

Here we summarize the advantages and limitations of the MLP NN approach
as applied to the emulation of complex multidimensional mappings (2.1). It is
noteworthy that the majority of limitations we discuss here are not limitations of the
MLP NN technique per se. These limitations are inherent with regard to nonlinear
models, nonlinear approximation techniques, and nonlinear statistical approaches in
general (Cheng and Titterington 1994). Also, the same feature of the NN technique
that gives this technique a significant advantage under the normal circumstances
is sometimes responsible for some of the limitations on the NN technique under
special conditions. We will proceed with the discussion while keeping these two
points in mind.

2.4.1 Flexibility of the MLP NN

The MLP NN is a universal and very flexible approximator. The great flexibility
of the MLP NN is due to the fact that the basis functions (hidden layer neurons) tj
(2.3) are adjustable. They contain many internal nonlinear parameters b that can be
adjusted during training process. Thus, the basis functions are not specified a priori;
they are determined during the training process and “optimized” for a particular
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mapping to be approximated. Barron (1993) showed that, for certain classes of
mappings, a linear combination of such adjustable basis functions can provide
an accurate approximation with far fewer functions than a linear combination of
any fixed or rigid basis functions that contain no adjustable nonlinear parameters.
Similar results were obtained by Krasnopolsky and Kukulin (1977). This is one way
for the MLP NN to escape the curse of dimensionality.

Another way to look at the importance of the adjustable basis tj is to demonstrate
the independence of the approximation error with respect to the dimensionality n of
the input space. When flexible basis functions (2.3) are used, the approximation
error is E � ˛

kp
, where ˛ > 0, p> 0, and p is independent of n. In contrast,

for approximations using fixed basis functions, the approximation error is E �
˛=k

1
n for the same class of mapping (Barron 1993; Cheng and Titterington 1994).

Therefore, for a fixed basis expansion, when the number of inputs increases, one
needs more and more basis functions (the number of basis functions, k, has to
increase) to achieve the same accuracy of approximation. Thus, for the MLP NN, it
is the number of hidden neurons k, not the dimensionality of the input space, that
determines the accuracy of the approximation.

The flexibility of the MLP NN may also lead to undesired consequences. The
basis functions tj are very flexible, nonorthogonal, and overlapping. These factors
may lead to non-optimality or redundancy in the NN architecture. As a result, some
of the hidden neurons may contribute very little to the approximation and could be
removed by “pruning” without a significant impact on the approximation accuracy.
Pruning and similar techniques (Bishop 1995; Haykin 2008) have been developed
to optimize the NN architecture and complexity.

Thus, the flexibility of the MLP NN technique, if not properly implemented and
controlled, may lead to unwanted consequences like overfitting (fitting the noise in
the data), unstable interpolation, and uncertain derivatives. These limitations and the
ways to control them will be discussed again below.

2.4.2 NN Training, Nonlinear Optimization,
and Multi-collinearity of Inputs and Outputs

NN training, as described in Sect. 2.3.7, is an iterative procedure that does not
involve any matrix inversion. It is robust, insensitive to multi-collinearities in
input and output data, and always leads to a solution for the NN weights. On the
other hand, as a nonlinear optimization, NN training always has multiple solutions
that correspond to multiple local minima in the error or loss function (2.11).
Multi-collinearities in the input and output data lead to an equalization of local
minima, especially in the case of a higher input dimensionality. Therefore, multi-
collinearities in input and output data partly alleviate the problem of seeking the
local minimum with the smallest error among multiple local minima. From the
point of view of the approximation problem, all of these local minima give similarly
good solutions because the approximation errors for these minima are small and
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approximately the same. On the other hand, these local minima, which are almost
equivalent in terms of the approximation error, give different solutions in terms of
the NN weights. These different NNs lead to different interpolations and different
derivatives. Thus, because of the equalization of errors corresponding to different
local minima, the approximation error may not be a sufficient criterion; hence,
using additional criteria may be necessary for selecting solutions with acceptable
interpolation properties and derivatives.

2.4.3 NN Generalization: Interpolation and Extrapolation

One of the vaguest terms in NN parlance is “generalization” or “generalization
ability.” This term came from the field of cognitive science and implies an
acceptable performance of the trained NN for new inputs that were not included
in the training set. However, it is clear that there are at least two different cases
of generalization. In the first case, new inputs are located inside the domain, D,
“between” the training data points. In the second case, new inputs are located
beyond the area covered by the training set, namely, close to or outside of the
boundary of the domain D. The first case corresponds to interpolation and the second
to extrapolation.

It is well known that nonlinear extrapolation is an ill-posed problem, and its
solution may require regularization (introducing additional information) (Vapnik
1995). We will not discuss nonlinear extrapolation here. However, even smooth
interpolation is not guaranteed if the only criterion used for NN training is small
approximation error (2.11). Moreover, multiple local minima with similarly small
approximation errors may still lead to different interpolations. If the NN complexity
is not controlled, overfitting may occur that may lead to poor interpolations, e.g.,
significant oscillations between training data points. As mentioned in Sect. 2.3.3,
the representativeness of the training set is a necessary condition for acceptable
interpolations. Additional measures for improving the interpolation ability of the
NN approximation are discussed in Sect. 2.5.

2.4.4 NN Jacobian

The NN Jacobian, J, is an m � n matrix of the first derivatives of the NN outputs
over the inputs,

J D
�
@yq

@xi

�qD1;:::m

iD1;:::;n
(2.13)

and may be useful in many cases. For example, in data assimilation applications
(see Sect. 3.1.2), the Jacobian is used to create an adjoint (a tangent-linear

http://dx.doi.org/10.1007/978-94-007-6073-8_3
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approximation) of the target mapping. The Jacobian is also instrumental in statistical
sensitivity, robustness, and error propagation analyses of the target mapping and
its NN emulation. An inexpensive, simple computation of the NN Jacobian by
analytical differentiation of (2.2, and 2.3) is one of the advantages of the NN
approach. However, Jacobian is not trained; it is simply calculated through a direct
differentiation of a trained NN. In this case the statistical inference of a Jacobian
represents an ill-posed problem, and it is not guaranteed that the derivatives will
be sufficiently accurate. Moreover, the existence of multiple minima of the error
function with similar approximation errors and different NN weights implies that
there exist multiple solutions for emulating NNs that have similar approximation
and interpolation errors but different Jacobians.

As mentioned in Sect. 2.4.3, if additional care is taken during the train-
ing process, NN emulations can demonstrate acceptable interpolation properties
(Krasnopolsky and Fox-Rabinovitz 2006). Thus, on average, the derivatives of these
emulations are sufficiently accurate to provide satisfactory interpolations. However,
for certain applications, such accuracy of an NN Jacobian may not be sufficient. For
those applications that require an explicit calculation of the NN Jacobian, several
solutions have been offered and investigated:

1. The Jacobian (or the entire adjoint) can be trained as a separate NN (Krasnopol-
sky et al. 2002). Generation of a data set for training a Jacobian or adjoint
is usually not a significant problem in those cases where simulated data are
available.

2. An ensemble approach can be applied that uses an ensemble of NN emulations
with the same architecture corresponding to different local minima of the error
function or uses an ensemble of NN emulations with different numbers of hidden
neurons (different complexities) to stabilize the NN Jacobian or to reduce the
uncertainties of the NN Jacobian (Krasnopolsky 2007) (see also Sect. 5.2.2).

3. The mean Jacobian can be calculated over the entire data set (Chevallier and
Mahfouf 2001) and used for further calculations, if necessary.

4. Regularization techniques like “weight smoothing” (Aires et al. 1999) or princi-
pal component decomposition (Aires et al. 2004b) can also be used to stabilize
the Jacobians.

5. The Jacobian can be included in the NN architecture as additional outputs that
can be trained.

6. The error or cost function E(W) (2.11), which is minimized in the process of
NN training, can be modified to accommodate the Jacobian; in other words, the
Euclidian norm, which is usually used for calculating the error function, should
be changed to the first-order Sobolev’s norm error function, according to

EJ .W / D E.W /C � �
NX

iD1
kJ .Xi /� JNN .Xi ;W /k2
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where J is the Jacobian matrix of mapping (2.1) (observed or simulated), JNN is
the Jacobian matrix of emulating NN, jj : : : jj denotes the matrix norm, and � is a
constant reflecting relative importance of the two terms constituting the modified
error function EJ(W). With this change from Euclidian to Sobolev’s norm, the
NN is trained to approximate not only the target mapping (as with the Euclidian
norm) but also the mapping’s first derivatives. This solution does not change the
number of the NN outputs; however, it may require using more hidden neurons
and may significantly complicate the minimization during the training since the
complexity of the error function increases. Hornik et al. (1990) have shown that
the function of Sobolev’s space with all their derivatives can be approximated by
an NN. This and other similar theoretical results are very important because they
prove the existence of the approximation; however, they do not suggest explicit
approaches. Some explicit approaches have been presented elsewhere (Cardaliaguet
and Euvrard 1992; Lee and Oh 1997).

Solutions 5 and 6 require an extended training set that includes first derivatives.
This requirement cannot usually be met when working with high-dimensional
mappings represented by observed data. When working with data simulated by
a physically based model, it is usually not difficult to additionally simulate the
derivatives. Finally, it should be mentioned that Jacobian modeling for large NNs
still remains an open issue.

2.4.5 Multiple NN Emulations for the Same Target Mapping
and NN Ensemble Approaches

Nonlinear models and approximations have many nonlinear parameters that could
change during the process of generating solutions (fitting the data), which makes the
models very flexible and easily adjustable to a selected target mapping. Different
combinations of these parameters may lead to multiple solutions with the same or
almost the same values of approximation errors. The existence of multiple solutions
is a generic property of nonlinear models. The multiple solutions may be almost
identical or similar in terms of a particular criterion (e.g., error function) that is used
to obtain the solutions. At the same time these models (e.g., NNs) may be different
in terms of other criteria that provide complementary information about the target
mapping. The availability of multiple solutions may at times be inconvenient and
lead to uncertainties, e.g., the necessity of introducing an additional step to use
additional criteria to select a single “optimal” model (solution). On the other hand,
the availability of multiple models (e.g., NN emulations), providing complementary
information about the target mapping, opens up opportunities to use an ensemble
approach that allows integration of the complementary information contained in
the ensemble members into an ensemble that collectively “knows” more about the
target mapping than does any of the individual ensemble members (individual NN
emulations).
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The idea that an ensemble of learning models consisting of many members is
capable of providing a better description of the system than any individual member
model can be traced back to the late 1950s and mid-1960s (Selfridge 1958; Nilsson
1965). Since the early 1990s, many different algorithms based on similar ideas
have been developed for NN ensembles (Hansen and Salamon 1990; Sharkey 1996;
Naftaly et al. 1997; Opitz and Maclin 1999; Hsieh 2001).

An ensemble of NNs consists of a set of members, i.e., individually trained
NNs. They are combined when applied to new data to improve the generalization
(interpolation) ability because the previous research has shown that an ensemble is
often more accurate than any single ensemble member. Various ways of combining
NN ensemble members into the ensemble have been developed (Naftaly et al.
1997) (see also Sect. 5.3). Previous research also suggests that any mechanism that
causes some randomness in the formation of the NN members can be used to form
a more accurate NN ensemble (Opitz and Maclin 1999). For example, ensemble
members can be created by training different members on different subsets from
the training set (Opitz and Maclin 1999), by training different members on different
subdomains of the training domain, by training different members using NNs with
different architectures (different numbers of hidden neurons) (Hashem 1997), or by
training different members using NNs with the same architecture but different initial
conditions for the NN weights (Maclin and Shavlik 1995; Hsieh 2001).

Most previous work with NN ensembles has been done in the context of
solving the classification problem (Hansen and Salamon 1990; Sharkey 1996;
Opitz and Maclin 1999) or in time series prediction (Naftaly et al. 1997; Hsieh
2001). In the present context, in the approximation of a complex mapping (2.1),
the members of the ensemble are separately trained approximating NNs, which
provide different accuracies of approximation for the target mapping and different
interpolations. Thus, we can expect that the ensemble average will provide higher-
quality approximations and interpolations than the individual members (see Sect.
5.2.1). Krasnopolsky (2007) also applied the NN ensemble technique to reduce the
uncertainty of the NN Jacobian (see Sect. 5.1.2).

2.4.6 NN Ensemble as Emulation of Stochastic Mappings

In subsection “Noisy training data and stochastic mappings” (Sect. 2.3.7) it was
shown that when emulating stochastic mappings, multiple NNs that satisfy the
criterion (2.11c) are valid emulations of the stochastic mapping (2.1b). Actually,
we can assume that each of these NNs emulates a member of the family of
mappings that together represent the stochastic mapping (2.1b). Therefore, all
the NNs satisfying (2.11c) together – the entire ensemble of NNs – emulate the
stochastic mapping (2.1b).
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http://dx.doi.org/10.1007/978-94-007-6073-8_5
http://dx.doi.org/10.1007/978-94-007-6073-8_5


2.4 Advantages and Limitations of the NN Technique 41

2.4.7 Estimates of NN Parameters’ Uncertainty

The NN technique is a nonlinear statistical approach. As with any statistical
approach, the NN technique is expected to provide not only an estimate of model
parameters and outputs (through the minimization of an error or loss function) but
also an estimate of the uncertainties in the NN weights and outputs. Because of the
nonlinear nature of NNs, estimation of the NN uncertainties is a more complicated
problem than that in the linear case. However, during the last decade progress has
been made in this field for the cases of both the MLP NN with a single output
(MacKay 1992; Bishop 1995; Neal 1996; Nabney 2002) and for multiple outputs
(Aires et al. 2004a). Various Bayesian methods have been used in these studies for
estimating the uncertainties of NN parameters (weights).

2.4.8 NNs Versus Physically Based Models:
NN as a “Black Box”

Outputs of a physically based (PB) model may be related or correlated due to the
physical laws (e.g., various conservation laws) and/or equations implemented in the
model. NN emulations do not reproduce these relationships exactly. An accurate
NN emulation approximates aforementioned relationships and/or correlations with
an accuracy limited by the approximation error. If a higher accuracy is desired, a
procedure similar to the regularization procedure (2.11b) can be used to include
the error in the desired condition as a penalty function in the training process and
to minimize this error. Also, the desired relationship may be superimposed on NN
outputs exactly as a post-processing step (see Sect. 4.3.3, subsection “Balancing
LWR and SWR heating rates”).

One of the often-mentioned shortcomings of NNs is that they do not offer a
straightforward physical interpretation (e.g., Zorita and von Storch 1999), as do PB
models or simple linear statistical models, i.e., that NNs are not transparent “black
boxes.” In general this is true; it is difficult, if not impossible, to give a physical
interpretation to the NN weights, but consider the following. NNs are admittedly
more complex and less transparent than simple linear models and regressions. How-
ever, NNs are never used (or should never be used) for problems that can be solved
using linear models. NNs are usually applied to model or emulate multidimensional,
complex, nonlinear systems that, in principle, cannot be modeled or emulated by
simple linear models. Thus, NNs should not be compared with linear approaches,
which are not adequate in these cases. NNs should be compared with other
nonparametric multidimensional statistical approaches or complex deterministic
numerical models that are used for modeling multidimensional, complex, nonlinear
systems. However, other nonparametric multidimensional statistical models are also
not transparent.

http://dx.doi.org/10.1007/978-94-007-6073-8_4
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As for the PB deterministic numerical models that are often applied to describe
multidimensional, complex, nonlinear systems, comparison with NNs is also not
so obvious under closer consideration. In our opinion, modern PB deterministic
numerical models have also lost a significant part of their transparency. Here again,
when talking about transparency and physical clarity of PB models, one usually
keeps in mind first very simplified models developed at the dawn of numerical
modeling (see Sect. 1.2). Those models evolved to become more adequate to the
complexity of systems, which they model. They evolved into modern PB numerical
models (see Sect. 2.1.4 and Chap. 4 for examples). Modern models are very complex
because they model very complex systems like ES or its subsystems. They are
built of multiple blocks developed by different people and different institutions. The
physics implemented in these blocks is parameterized. The parameterized physics
is not transparent; it lost direct connections with elementary physical processes
and contains many approximations, simplifications, assumptions, and empirical
parameters (see Chap. 4). To make these parameterizations working together
coherently in the model, significant amount of tuning parameters are introduced.
They do not have any physical meaning and are introduced to force different parts
of the model working coherently.

Based on the above, direct comparison of NNs with PB models is clearly a
difficult problem. Thus, in our view, it is not productive to oppose NNs or other
machine learning statistical approaches and first principle models; they should be
considered as complementary. In Chap. 4 we show that they can be synergistically
combined within a hybrid modeling framework, which, if properly implemented,
should combine the advantages of both approaches.

2.5 NN Emulations

In this book, we use the terms emulating NN, NN emulation, or NN emulator for an
NN that provides the functional emulation of the target mapping (2.1), including
a small approximation error (2.11) for the training set (2.5) and a smooth and
accurate interpolation and a limited extrapolation of the training set data inside the
domain D. These terms are introduced to distinguish between emulating NNs and
approximating NNs. Approximating NNs are usually concerned with an analytic
approximation of a data set with a small approximation error (2.11).

When an emulating NN is constructed, in addition to the criterion of a small
approximation error (2.11), at least three other criteria mentioned in Sect. 2.4.3 are
used:

1. The NN complexity (2.4) (the number k of hidden neurons) is controlled and
restricted to a minimum number that yields a level of accuracy sufficient for a
good approximation.

2. Independent validation and test data sets are used in the process of training to
control overfitting (validation set) and after training to evaluate the interpolation
accuracy (test set).

http://dx.doi.org/10.1007/978-94-007-6073-8_1
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3. A limited and controlled (see Sect. 2.3.3) redundancy is introduced in the training
set (additional data points added “in-between” training data points) for improving
the NN’s interpolation performance.

The correspondence between the emulating NN complexity (2.4) and target
mapping complexity is usually better than that of an approximating NN with the
same approximation error. The complexity, NC , of an emulating NN is usually close
to the minimum value possible; thus, the emulating NN is usually faster. Finally,
it usually provides a better and smoother interpolation or generalization, better
resolution of the target mapping for the same approximation accuracy, and smaller
uncertainties in the NN Jacobian.

2.6 Final Remarks

In this chapter, we discussed the general properties of multidimensional complex
mappings (2.1) and MLP NN (2.2, and 2.3) and also demonstrated relationships
between their properties. Both fields are relatively new and so are growing rapidly
in terms of the relevant theory and practical applications. In this discussion, we
emphasized that a transition from linear statistical tools or models to nonlinear
models (like NNs) requires some adjustment in our methodological framework,
which may not, at times, be flexible enough to accommodate sophisticated nonlinear
approaches.

Many of the advantages of nonlinear statistical techniques may become limi-
tations under certain conditions and in the case of unskillful use. Some of the
limitations of nonlinear models may become advantageous when more flexible
approaches are employed, by combining different statistical approaches (e.g., NNs
and the ensemble approach), and by using additional information. As mentioned
earlier, at this time, the NN is probably the only practical SLT tool for solving
the problems discussed in this book and more generally for emulating complex
multidimensional mappings. For completeness, in Sect. 6.2 we briefly review some
alternative techniques that have potentials to compete with NNs in the future and
present some preliminary results with alternative approaches (Belochitski et al.
2011).
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Chapter 3
Atmospheric and Oceanic Remote Sensing
Applications

I can’t help thinking that science would be more appealing if it
had no practical use.

– Claude Levi-Strauss, The Raw and the Cooked

Abstract This chapter is devoted to atmospheric and oceanic satellite remote
sensing (RS) NN applications. Two major RS problems, forward problem and
inverse problem (or satellite retrievals), are introduced and discussed. Applications
of forward models (FM) for solving the forward problem in the process of direct
assimilation of satellite measurements and for variational retrievals, as well as ap-
plications of retrieval algorithms, solutions of the inverse problem, for assimilation
of geophysical parameters in data assimilation systems, are discussed. Correspond-
ingly, two neural network (NN) applications, NN FMs and NN retrieval algorithms,
are introduced. An intelligent NN retrieval system, which incorporates an automatic
quality control of satellite retrievals, is introduced. Previously developed RS NN
applications are reviewed. Theoretical considerations are illustrated with real-life
applications of the NN approach to the Special Sensor Microwave Imager (SSM/I).
SSM/I NN FM and SSM/I NN retrieval algorithms are introduced, discussed, and
compared with FMs and retrieval algorithms developed using other techniques
elsewhere. Advantages and limitations of NN FMs and retrieval algorithms are
discussed. An example of QuikSCAT wind vector retrievals is used to demonstrate
great potential of using the NN technique to go beyond the standard point-wise
retrieval paradigm. This chapter contains an extensive list of references giving
extended background and further detail to the interested reader on each examined
topic. It can serve as a textbook and an introductory reading for students and
beginning and advanced investigators interested in learning how to apply the NN
emulation technique in different RS applications.
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Estimating high-quality geophysical parameters, carrying information about the
physical, chemical, and biological properties of the oceans, atmosphere, and land
surface, from remote measurements is an important problem in ESS, in fields
such as meteorology, oceanography, climatology, climate modeling, and weather
prediction. Direct measurements of many parameters, such as land vegetation
moisture, phytoplankton concentrations in the ocean, and aerosol concentrations in
the atmosphere, are generally not available for the entire globe or at the required
spatial and temporal resolution. Even when in situ measurements are available, they
are usually sparse (especially over the oceans) and located mainly at ground level
or at the ocean surface. Fortunately, such measurements can often be estimated
indirectly because the geophysical parameters of interest influence the electromag-
netic radiation measured by an RS instrument. Because remote measurements carry
signatures of these geophysical parameters, they allow us to obtain spatially dense
measurements globally at and above the ground and ocean surface. Remote sensors
are deployed on several different platforms including satellites and aircraft.

Remote measurements of electromagnetic radiation at different wavelengths are
highly accurate. However, the quality of the geophysical parameters derived from
these measurements varies significantly and depends on the strength and uniqueness
of the signal that represents or signifies a specific geophysical parameter and on
the mathematical methods applied to extract the parameter, which may require the
solution of forward and/or inverse RS problems. The NN technique is a useful
mathematical tool for solving the forward and inverse problems in RS. The number
of NN RS applications has been increasing steadily over the last two decades.

A broad class of NN applications has been developed for solving the forward
and inverse problems in RS in order to infer geophysical parameters from satellite
data, i.e., to produce so-called satellite retrievals. Examples of such applications are
numerous (see also Table 1.1). The NN technique has been applied for the inversion
of a multiple scattering model to estimate snow parameters from passive microwave
measurements (Tsang et al. 1992). Smith (1993) used NNs for the inversion of a
simple two-stream radiative transfer model to derive a leaf area index from the
Moderate Resolution Imaging Spectrometer data. In other studies, NNs have been
applied to simulate scatterometer measurements and to retrieve wind speed and
direction from these measurements (Thiria et al. 1993; Cornford et al. 2001); to
retrieve oceanic and atmospheric constituents from satellite measurements of ocean
color (Brajard et al. 2006); to retrieve the sea surface salinity from the observed
Soil Moisture and Ocean Salinity brightness temperatures (Ammar et al. 2008);
to develop an inversion algorithm for radar scattering from vegetation canopies
(Pierce et al. 1994); and to estimate atmospheric humidity (Cabrera-Mercader and
Staelin 1995), temperature, moisture, and ozone profiles (Aires et al. 2002; Mueller
et al. 2003). Stogryn et al. (1994) and Krasnopolsky et al. (1995) applied NNs
to invert Special Sensor Microwave Imager (SSM/I) data and retrieve wind speed
over the ocean surface. Davis et al. (1995) applied NNs to invert a forward model
(FM) to estimate soil moisture, surface air temperature, and vegetation moisture
from Scanning Multichannel Microwave Radiometer data. Using an NN technique,
a fast SSM/I FM (Krasnopolsky 1996, 1997) and SSM/I multiparameter retrieval

http://dx.doi.org/10.1007/978-94-007-6073-8_1
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algorithms (Krasnopolsky et al. 1999, 2000; Meng et al. 2007; Roberts et al. 2010)
have been developed. Young (2009) used NNs to emulate an FM and retrieval
algorithm and to derive wind speeds from the Synthetic Aperture Radar. Abdelgadir
et al. (1998) applied NNs to the forward and inverse modeling of canopy directional
reflectance. Schiller and Doerffer (1999) used an NN technique for inverting a
radiative transfer FM to estimate the concentration of phytoplankton pigment from
Medium Resolution Imaging Spectrometer data.

This chapter is devoted to atmospheric and oceanic satellite RS NN applications.
In Sect. 3.1, two major RS problems, forward problem and inverse problem (or
satellite retrievals), are introduced. Applications of FMs for solving the forward
problem in the process of direct assimilation of satellite measurements and for
variational retrievals, as well as applications of retrieval algorithms, solutions of
the inverse problem, for assimilation of geophysical parameters in data assimilation
systems, are discussed. Correspondingly, in Sects. 3.2 and 3.3, two NN applications,
NN FMs and NN retrieval algorithms, are introduced. In Sect. 3.4, an intelligent
NN retrieval system, which incorporates an automatic quality control of satellite
retrievals, is introduced. In Sect. 3.5, theoretical considerations introduced in
previous sections are illustrated with real-life applications of the NN approach to
the Special Sensor Microwave Imager (SSM/I). SSM/I NN FM and SSM/I NN
retrieval algorithms are introduced, discussed, and compared with FMs and retrieval
algorithm developed using other techniques elsewhere. In Sect. 3.6, an example of
QuikSCAT wind vector retrievals is used to demonstrate great potential of using the
NN technique to go beyond the standard point-wise retrieval paradigm. Advantages
and limitations of NN RS applications are discussed in Sect. 3.7.

3.1 Deriving Geophysical Parameters from Satellite
Measurements: Conventional Retrievals
and Variational Retrievals

Satellite RS data are used in a wide variety of applications and by a wide
variety of users. Satellite sensors generate measurements like radiances, backscatter
coefficients, and brightness temperatures (BTs). The applications usually deal with
geophysical parameters such as pressure, temperature, wind speed and direction,
and water vapor concentration derived from satellite data. Satellite FMs, which
simulate satellite measurements from given geophysical parameters, and retrieval
algorithms, which transform satellite measurements into geophysical parameters,
play the role of “mediators” between the satellite sensors and the applications.
There exists an entire spectrum of different approaches to extract geophysical
information from the satellite measurements. At one end of this spectrum, there are
“satellite only” approaches; we refer to them as conventional or traditional retrievals.
They employ measurements acquired from one particular sensor, sometimes from
different channels (frequencies, polarizations, viewing angle, etc.) of the same
sensor, to estimate the geophysical parameters.
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Fig. 3.1 The P2P retrieval
paradigm. The P2P retrieval
algorithm uses a vector of
satellite measurements, S,
collected from the footprint
(represented by the
parallelepiped below) and
produces a vector of
geophysical parameters, G,
averaged over the same area
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Satellite Sensor

FM
S' = F(G')

Data Assimilation System

S S' G'

G

Other Satellite and
Non-satellite

Data

NWP Model
First Guess

Fig. 3.2 Schematic
representation of variational
retrievals. An analysis state
vector G0 and a vector of
simulated sensor
measurements S0 are related
through the forward model F.
G is the analyzed field – the
final product of DAS

Variational retrieval techniques or direct assimilation techniques (see Sect. 3.1.2)
lie at the other end of the spectrum. They use a DAS, together with an NWP model
and analysis (Prigent et al. 1997), which in turn includes variety of meteorological
measurements (from buoys, radiosondes, ships, aircrafts, etc.) as well as data from
numerous satellite instruments. Figures 3.1 and 3.2 give schematic representations
of these two approaches in performing satellite retrievals. Many approaches have
been developed which belong in the intermediate portion of this spectrum. These
approaches use measurements from several satellite sensors, combine satellite
measurements with other kinds of measurements, and/or use background fields or
profiles from NWP models for regularization of the inverse problem (retrievals) or
for ambiguity removal (see Sect. 3.6). Thus, these approaches use some type of data
fusion to regularize the solution of the inverse problem.
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It is noteworthy that over the last few years, direct assimilation of some
satellite measurements into modern DASs has been successfully developed and
implemented. It has improved the quality of assimilated products and numerical
forecasts that use some of these products in specifying initial conditions. Since
direct assimilation uses the instrument measurements themselves (e.g., radiances),
it replaces or eliminates the need for using retrievals of corresponding geophysical
parameters in DASs. However, there are still many other geophysical parameters
that have not yet been included, or it is not clear from theoretical and/or practical
considerations how they could be included into DASs through direct assimilation.
Since there are also other applications for the retrieved geophysical parameters,
there remains an important need for conventional retrievals to represent these
geophysical parameters and to develop the corresponding retrieval algorithms to
which NNs could be efficiently applied.

3.1.1 Conventional P2P Retrievals

Conventional methods of using satellite data (conventional retrievals) involve
solving an inverse or retrieval problem and deriving a transfer function (TF), f,
which relates a geophysical parameter of interest G (e.g., surface wind speed over
the ocean, atmospheric moisture concentration, SST) to a satellite measurement S
(e.g., BTs, radiances, reflection coefficients),

G D f .S/ (3.1)

where both G and S are usually vectors and f is a mapping in this case. The TF,
f (also called a retrieval algorithm), usually cannot be derived directly from first
principles because the relationship (3.1) does not correspond directly to a cause and
effect relationship and multiple values of G can sometimes correspond to a single S.
For the case of FMs,

S D F.G/ (3.2)

where F is an FM, which relates a vector S to a vector G, FM can usually be derived
from first principles and physical considerations (e.g., based on radiative transfer
theory) in accordance with cause and effect principles because the geophysical
parameters affect the satellite measurements (but not vice versa). Thus, the forward
problem (3.2) is well posed in contrast to the inverse problem (3.1) which is often
ill posed (Parker 1994), although, from a mathematical point of view, both FM
(3.2) and TF (3.1) are continuous (or almost continuous) mappings between the
two vectors S and G. Even in the cases where the mapping (3.1) is not unique, this
multivalued mapping may be considered as a collection of single-valued continuous
mappings.
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FM and TF discussed above correspond to the point-wise retrieval paradigm.
In this framework, TF (3.1) maps a vector of satellite measurements, S, for a
particular location, to a vector of geophysical parameters, G (or vice versa in
the case of FM (3.2)), at the same location. This location corresponds to the
sensor footprint at the Earth’s surface. The size of the footprint determines the
sensor resolution. Roughly speaking, the sensor does not resolve any features
smaller than the size of the footprint; thus, the footprint corresponds to one
point or one pixel in the space of satellite measurements. The retrieved vector
of geophysical parameters G corresponds to a point in the space of geophysical
parameters, respectively, and it represents the average values of these parameters
over the sensor footprint. Thus, the point-wise retrieval approach uses only locally
averaged information for one particular footprint and retrieves only locally averaged
information about the geophysical parameters at the same location. Figure 3.1 shows
a schematic representation for such a retrieval algorithm. We will call this retrieval
approach point-to-point (P2P) retrievals because it produces one vector G using
measurements S from one footprint (or vice versa for FM).

In order to derive the TF (3.1), the FM (3.2) has to be inverted (an inverse problem
has to be solved). The inversion technique usually applied searches for a vector G0

which minimizes the following functional (Stoffelen and Anderson 1997),

k
Sk D �
�S0 � F.G/

�
� (3.3)

where S0 is a vector of satellite measurements. Since the FM, F, is usually
a complicated nonlinear function, this approach leads to a full-scale nonlinear
optimization problem, involving issues such as slow convergence and multiple
solutions. This approach does not determine the TF explicitly; it assumes this
function implicitly, and for each new measurement S0, the entire process has to
be repeated.

A simplified linearization method to minimize the functional (3.3) can be applied
if a good approximation for the solution of the inverse problem is available, that is,
an approximate vector of the geophysical parameters G0. Then the difference vector
�S is small, and there is a vector G in close proximity to G0 (j
G j D jG – G0j is
small) where 
S(G) D 0. By expanding F(G) in a Taylor series and keeping only
those terms that are linear with respect to 
G, we can obtain a system of linear
equations to calculate the components of the vector
G (e.g., Wentz 1997),

nX

iD1

@F.G/

@Gi
jGDG0
Gi D S0 � F �G0

�
(3.4)

where n is the dimension of vector G. The matrix of derivatives in (3.4) is the
Jacobian, J, of FM, F, where

J D
�
@Sj

@Gi

�jD1;:::;m

iD1;:::;n
D
�
@Fj .G/

@Gi

�jD1;:::;m

iD1;:::;n
(3.5)
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After 
G is calculated, the next iteration of (3.4) with G0 D G0 C
G is
performed. The process generally converges quickly to the vector of retrievals G.
Also in this case, the TF (3.1), f, is not determined explicitly but is only determined
implicitly for the vector S0 by the solution of (3.4). This type of retrieval can be
called a “local” or “localized” linear inversion. These techniques (3.3, and 3.4)
are usually referred to as PB retrievals. It is important to emphasize that the PB
algorithms (3.3, and 3.4) are, by definition, multiparameter algorithms since they
retrieve several geophysical parameters simultaneously (resulting in a complete
vector G).

Empirical algorithms are based on an approach which, from the beginning,
assumes the existence of an explicit analytical representation for a TF, f. A
mathematical (statistical) model, fmod, is chosen (usually a type of a regression),
which relates a geophysical parameter gk (e.g., wind speed) to a vector of satellite
measurements S and contains a vector of empirical (or model, or free) parameters
a D fa1, a2, : : : g,

gk D f mod .S; a/ (3.6)

where gk is a retrieved estimate of Gk (the same parameter retrieved by the
multiparameter algorithm (3.3)), and the free parameters a are determined from an
empirical (or simulated) matchup data set fGk, Sg collocated in space and time.
Statistical techniques such as the method of least squares can be used to calculate
the parameters a. This type of retrieval is often called a “global” inversion since the
obtained TF is not restricted to a given vector of satellite measurements at any given
location. The subscript k in (3.6) emphasizes the fact that the majority of empirical
retrieval algorithms are single-parameter algorithms. As we will show, gk, in the
case of single-parameter algorithms, is close but not equal to Gk. A set of single-
parameter algorithms, for example, exists for SSM/I. They retrieve only a single
parameter: the wind speed (Goodberlet et al. 1989), the water vapor (Alishouse
et al. 1990; Petty 1993), or the cloud liquid water (Weng and Grody 1994).

Krasnopolsky et al. (1999, 2000) showed that single-parameter algorithms have
additional (compared to multiparameter retrievals) systematic (bias) and random
(unaccounted variance) errors in the single retrieved parameter gk. Multiparameter
algorithms retrieve several geophysical parameters simultaneously (the entire vec-
tor G), which, to a significant extent, determines the state of the atmosphere and/or
the ocean surface in a given area at a given time. The single-parameter retrieval
algorithm (3.6) falls short in this regard. The retrievals it produces, gk, correspond
to unknown “mean” atmospheric and surface states (other components of the vector
G, Gi where i ¤ k are undetermined), which cannot be specified without additional
information. For example, for the SSM/I instrument described in Sect. 3.5, single-
parameter wind speed retrievals do not correspond to specific amounts of columnar
water vapor, liquid water, or specific values of SST. Thus, single-parameter retrieval
algorithms effectively average over an ensemble of atmospheric and surface states
for all of the related geophysical parameters except for gk which is retrieved. This
averaging process gives rise to additional errors in the single retrieved parameter.
Obviously these errors do not arise in the multiparameter approach.
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If gk is a geophysical parameter retrieved by the single-parameter algorithm
(3.6) and Gk is the same geophysical parameter retrieved by the corresponding
multiparameter algorithm (e.g., (3.4)), then the additional systematic error (bias)
can be estimated as

.Gk � gk/ D
X

i¤k
˛i � bi C

X

i¤k
ˇi � �2i C

X

i;j

�ij � cij C � � � : (3.7a)

The horizontal bar above the symbols on the left-hand side implies averaging
over all Gi with i ¤ k, which are not known for single-parameter algorithms; bi

and � i
2 are the biases and variances of these geophysical parameters; cij are the

correlation coefficients between them; and ˛i, ˇi, and � ij are coefficients that are
given in Krasnopolsky et al. (1999, 2000). Similar estimates can also be obtained
for the additional variances or random error components:

.Gk � gk/
2 D

X

i;j

ıij � �i � �j C � � � : (3.7b)

It is clear from (3.7) that the multiparameter wind speed retrievals, Gk, compared
with single-parameter retrievals, gk, do not contain additional systematic (bias) or
random errors due to unaccounted variability for all of the Gi with i ¤ k. The absence
of these additional errors provides a significant advantage for the multiparameter
approach.

Thus, the obvious way to improve single-parameter retrievals (3.6) is to include
other parameters in the retrieval process using an empirical multiparameter ap-
proach, which, as in the PB multiparameter approach (3.3, and 3.4), inverts the
data in the complete space of the geophysical parameters (Krasnopolsky et al.
1999, 2000). Thereby, the complete vector of the related geophysical parameters
is retrieved simultaneously from a given vector of satellite measurements S,

G D f mod .S/ (3.8)

where G D fGigi D 1, : : : ,n is now a vector containing the primary, physically related
geophysical parameters, which contribute to the observed satellite measurements
S. Because Eqs. (3.1), (3.2), (3.6), and (3.8) represent continuous mappings, the
NN technique is well suited for emulating the FM, TF and empirical TF, fmod. In
fact, the NN technique is very well suited (much better than are classical statistical
techniques) for developing empirical multiparameter retrieval algorithms (3.8).

The retrievals (3.6) and (3.8) are global in scope because the same explicit TF,
if properly constructed, can be applied over the entire globe. The term “global”
should not be confused here with the field-wise retrievals discussed in Sect. 3.6.
TF (3.1), (3.6), and (3.8) still follow the aforementioned P2P point-wise retrieval
paradigm (Fig. 3.1). The conventional retrievals derived using TF (3.1) have the
same spatial resolution as the sensor measurements and produce instantaneous
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values of geophysical parameters over the areas where the measurements are
available. Geophysical parameters derived using conventional retrievals can be used
for many applications, in particular, in the NWP DASs (see the next section).

3.1.2 Variational Retrievals Through the Direct Assimilation
of Satellite Measurements

Because conventional retrievals are based on the solution of an inverse problem
which is usually mathematically ill posed (Parker 1994), this approach has some
rather subtle properties and error characteristics (Eyre and Lorenc 1989), which
cause additional errors and problems in obtained retrievals (e.g., an amplification
of the errors and ambiguities). As a result, high-quality sensor measurements can
be converted into lower-quality geophysical parameters. This type of error can be
avoided or reduced by using a variational retrieval technique or inversion through
direct assimilation of the satellite measurements per se (Lorenc 1986; Parrish and
Derber 1992; Phalippou 1996; Prigent et al. 1997; Derber and Wu 1998; McNally
et al. 2000). The variational retrieval technique performs satellite retrievals inside
DAS.

DAS prepares initial conditions for the NWP and climate systems. It fuses
different types of observations in a product called analysis (Daley 1991). Data
assimilation proceeds by analysis cycles. In each analysis cycle, observations of
the current (and possibly past) state of a system are combined with the results from
a numerical weather prediction model (the forecast or the first guess) to produce
an analysis, which is considered as “the best” estimate of the current state of the
system. This is called the analysis step. Essentially, the analysis step tries to balance
the uncertainty in the data and in the forecast. The model is then advanced in time
and its result becomes the first guess in the next analysis cycle.

The process of creating the analysis in a variational DAS involves minimization
of a “cost function.” A typical cost function, , would be the sum of the squared
deviations of the analysis values from the observations weighted by the accuracy of
the observations, plus the sum of the squared deviations of the first-guess fields and
the analyzed fields weighted by the accuracy of the first guess as

 D .� � �b/T B�1 .� � �b/C .� � �O/
TQ�1 .� � �O/ : (3.9)

A background term containing an NWP model first guess must be added as in
(3.9) to regularize an otherwise ill-posed data assimilation problem (Parrish and
Derber 1992); � is a field of the geophysical parameter being analyzed, �b is the
first-guess background field, and �O represents observations. The accuracy of the
observations is represented in (3.9) by the observational error covariance matrix, Q,
and the accuracy of the first guess is represented by the background error covariance
matrix, B (Daley 1991).
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Simply speaking, minimizing (3.9) makes sure that the analysis does not drift too
far away from observations and forecasts that are known to usually be reliable.

In the case of conventional P2P retrievals considered in the previous section, the
contribution G to the second term of the variational analysis cost function  (3.9)
from a particular retrieval, G0, can be expressed as

G D 1

2
.G �GO/

T .O C E/�1 .G �GO/ (3.10a)

where GO D f (SO) is a vector of the retrieved geophysical parameter, SO is a vector
of the sensor measurements, G is the vector of the geophysical parameters being
analyzed, and the observational error covariance matrix Q is the sum of the expected
error covariance of the observations, O, and the expected error covariance of the
retrieval algorithm E.

Variational retrievals or direct assimilation of satellite data offer an alternative to
the conventional P2P approach in deriving geophysical parameters from the satellite
measurements and are shown in Fig. 3.2. They use the entire DAS as a retrieval
algorithm for the inversion of FM.

In this case, a contribution S to the second term of the analysis cost function
(3.9) from a particular sensor measurement, SO, is

S D �
S 0 � SO

�T
.O C E/�1

�
S 0 � SO

�
(3.10b)

where S0 D F (G0) and F is the FM (3.2), which relates an analysis state vector G0
(a vector of geophysical parameters in the analysis) to a vector of simulated sensor
measurements S0, O is the expected error covariance of the observations, and E is
the expected error covariance of the FM. The forward problem (3.2) is well posed
in contrast with the inverse problem (3.1). However, the entire data assimilation
problem is ill posed and a background term containing an NWP model first guess
has to be added to both (3.10a) and (3.10b) to regularize the problem (Parrish and
Derber 1992).

The variational retrievals are inherently field-wise; that is, they produce an entire
field (global, in the case of global DAS) for the geophysical parameter G. This
field-wise retrieval approach takes a field of satellite measurements and produces
a field of geophysical parameters; thus, it belongs to the field-wise field-to-field
(F2F) retrieval paradigm (see Sect. 3.6). The field G has the same resolution as the
numerical forecast model used in the DAS. This resolution may be lower or higher
than the resolution of conventional retrievals.

The variational retrievals are also not instantaneous but usually averaged in time
over the analysis cycle; however, the field is continuous and coherent (e.g., it should
not have problems such as directional ambiguity that occurs in the scatterometer-
derived winds described in Sect. 3.6). Variational retrievals are the result of fusing
many different types of data (including satellite data, ground observations, and nu-
merical model first-guess fields) within the DAS. Sparse conventional retrievals can
be also converted into continuous fields using the data assimilation procedure (3.9).
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It is important to emphasize a very significant difference between the use
of the explicit TF for conventional retrievals and the use of FM for variational
retrievals. In conventional retrievals, the explicit TF (3.1) is usually simple (e.g.,
a regression or an NN) and is applied once per sensor observation to produce a
geophysical parameter. In variational retrievals, the FM, which is usually much
more complicated than a simple explicit TF, and its Jacobian composed of partial
derivatives (the number of derivatives is equal to m � n, where m and n are the
dimensions of the vectors G and S, respectively) have to be estimated for each
of the k iterations performed in DAS during the process of minimizing the cost
function (3.10b). Because DAS is very time consuming, the calculation time is a
very important issue here. Thus, the requirements for simplicity of the FM used in
the variational retrievals are restrictive, and variational retrievals often require some
special, simplified, and fast versions of FMs.

3.2 NNs for Emulating Forward Models

FMs are usually complex due to the complexity of the physical processes which they
describe and the complexity of the first principle formalism on which they are based
(e.g., radiative transfer theory). The dependence of satellite measurements on the
geophysical parameters, which FMs describe, is complicated and nonlinear. These
dependencies may exhibit different types of nonlinear behavior. As we discussed
earlier, FMs are usually employed in PB retrieval algorithms, where they are
numerically inverted to retrieve geophysical parameters, and in DASs where they
are used for the direct assimilation of satellite measurements (variational retrievals).
Both numerical inversions and direct assimilation are iterative processes where FMs
and their Jacobians (3.5) are calculated many times for each satellite measurement.
Thus, the retrieval process becomes very time consuming and can be prohibitively
expensive for operational (real-time) applications.

For such applications, it is essential to have fast and accurate versions of FMs.
Because the functional complexity of FM mappings (see Sect. 2.2.2) is usually
not as great as their physical and mathematical complexities, NNs can provide
fast and accurate emulations of FMs. Moreover, an NN can also provide an entire
Jacobian matrix with only a small additional computational effort. This is one of
NN applications where not only the NN emulation itself but also the NN Jacobian
should be carefully tested and controlled (see Sect. 2.4.4). An example of using an
NN FM (aka an observation operator) in DAS is introduced in Sect. 5.1. In this
section, an application of the NN ensemble technique to improve the accuracy of
the NN Jacobian is also demonstrated.

To develop an NN emulation for an FM, a training set which consists of
matched pairs of vectors of geophysical parameters and satellite measurements,
fG, Sgi D 1, : : : ,N , has to be created. If a PB FM exists, it can be used to simulate
the training set. Otherwise, empirical data can be used to create a training set.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_5
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3.3 NNs for Solving Inverse Problems: NNs Emulating
Retrieval Algorithms

NNs can be used in at least two different ways to serve as retrieval algorithms.
First, as shown in the previous section, in PB retrieval algorithms, a fast NN,
emulating the complex and slow PB FM and its Jacobian, can be used to speed
up the local inversion process (3.4). Second, in many cases NNs can be used for a
global inversion to explicitly invert an FM. In such cases, after an inversion the NN
provides an explicit retrieval algorithm (or TF), which is a solution for the inverse
problem and can be used for retrievals. To train an NN which emulates an explicit
retrieval algorithm, a training set, fG, Sgi D 1, : : : ,N , is required. As in the case of FMs,
simulated or empirical data can be used to create the training set.

In addition to the complications related to FMs (complexity, nonlinearity, etc.),
retrieval algorithms exhibit certain problems because they are solutions to the
inverse problem, which is usually ill posed. This is why mathematical tools, which
are used to develop retrieval algorithms, have to be accurate and robust in order to
deal with these additional problems. NNs are fast, accurate, flexible, and generic
tools for emulating nonlinear (continuous) mappings and can be effectively used
for modeling multiparameter retrieval algorithms. An additional problem related
to retrieval algorithms is regularizing the solution of the inverse problem. To
regularize an ill-posed inverse problem, additional (regularization) information
should be introduced (Vapnik and Kotz 2006). The NN technique is flexible enough
to accommodate regularization information as additional inputs and/or outputs and
as additional regularization terms in the error or loss function (2.11). For example,
in their pioneering work in using NNs for the simultaneous retrieval of temperature,
water vapor, and ozone atmospheric profiles from satellite measurements (Aires
et al. 2002; Mueller et al. 2003), the authors made good use of this NN flexibility
by introducing the first-guess solution for these profiles from an atmospheric model
or DAS as additional regularizing inputs in their NN-based retrieval algorithms.
Roberts et al. (2010) used a first guess of SST as an additional input to improve the
accuracy of their NN multiparameter retrieval algorithm.

3.4 Controlling the NN Generalization and Quality
Control of Retrievals

NNs are well suited to modeling complicated nonlinear relationships between
multiple variables, as is the case in multispectral RS. Well-constructed NNs (NN
emulations) have very good interpolation properties; however, they may produce
unrealistic outputs when forced to extrapolate (see Sect. 2.4.3). The NN training data
(simulated using an FM or constructed from empirical data) span a certain manifold
DT (a subdomain of D, DT 2 D) in the full domain D. During the retrieval process,

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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satellite measurements (i.e., actual data) that serve as inputs to the NN, fNN, which
emulates a TF (3.1), may not always lie in DT . There are many sources that can
cause such deviations of the data from a low-dimensional manifold DT of training
data, e.g., simplifications built into an FM design, neglecting the natural variability
of parameters occurring in the model, and measurement errors in the satellite data
not taken into account during the generation of the training data. For instance, when
empirical data are used, extreme events (highest and lowest values for geophysical
parameters) are usually not sufficiently represented in the training set because they
occur so rarely. Thus, during the retrieval stage, real data, in some cases, may force
the NN emulation fNN to extrapolate. The error resulting from forced extrapolation
will increase with the distance of the input point from DT and will also depend on
the orientation of the input point relative to DT .

In order to recognize NN input patterns not foreseen in the NN training
phase and, thus, beyond the scope of the inversion algorithm, a validity check
(Krasnopolsky and Schiller 2003) can be used. This check works in the following
manner. Let us assume that the FM S D F(G) has an inverse G D f (S); then, by
definition S D F(f (S)). Further, let us assume that fNN is the NN emulating the
inverse model in the domain DT . As was mentioned above, the result of G0 D fNN(S0)
for S0 62 DT may be arbitrary, and, in general, F(fNN(S0)) will not be equal to S0. The
validity condition

S D F .fNN.S// (3.11)

is a necessary condition for S 2 DT. Now, if in the application of the NN fNN, S is not
in the domain DT , the NN fNN is forced to extrapolate. In such a situation, the validity
condition may not be fulfilled, and the resulting G is, in general, meaningless.

There is another common situation when the validity condition (3.11) for
retrievals may become instrumental. In some cases, the satellite measurements do
not carry signatures of any geophysical parameters, or these signals are very weak
and noisy. For example, in satellite retrievals of various surface parameters, such
a situation may occur when the radiation from the surface is completely shielded
by heavy cloudiness. In such cases, the retrieval G0 D fNN(S0) is meaningless and
the validity check will not be satisfied. Usually retrieval flags are introduced to
solve the problem (e.g., Stogryn et al. 1994). Retrieval flags identify (empirically
or theoretically) manifolds inside the domain D where the aforementioned situation
occurs. However, in the case of multidimensional domains with complicated
geometry, it may be difficult, or impossible, to introduce retrieval flags in advance.
However, by using the validity condition, we may be able to identify questionable
events during the retrieval process.

For operational applications, it is necessary to report such events to a higher
evaluation level. The validity check may serve as the basis for developing quality
control (QC) procedures. QC procedures are usually applied to the satellite retrievals
online and in the DAS. In order to perform the validity test, the FM must be applied
after each inversion. This requires speed and accuracy in FM. Such an FM can be
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developed by training an NN that accurately emulates the original FM, S D FNN(G).
Thus, a fast validity check algorithm consists of a combination of inverse and
forward NNs. In addition to the inversion, it computes a quality measure for the
inversion:

ı D kS � FNN .fNN.S//k (3.12)

Finally, the solution to the problem of a scope check is obtained by estimating
the quality measure ı (3.12) where S results from the satellite measurements. This
procedure (1) allows for the detection of situations where the FM and/or TF is
inappropriate, (2) does an “in scope” check for the retrieved parameters even if
the domain has a complicated geometry, (3) can be used for QC of the retrievals,
for flagging questionable retrievals, and (4) can be used for expanding the training
set for values of S (that are within the domain D) that are underrepresented in the
training set. An application of this technique to the SSM/I wind speed retrievals is
described in Sect. 3.5.3.

There also exists a more straightforward approach to the QC of satellite retrievals.
An additional “error” NN can be trained to predict the errors of retrievals produced
by the NN retrieval algorithm. The error NN can be trained using the same training
set that was used for training the NN retrieval algorithm. The error NN has the same
inputs as the NN retrieval algorithm and one output, which is an estimate of the
retrieval error. The error NN works in parallel with the NN retrieval algorithm. The
latter produces the retrieval and the former the error estimate for the retrieval. If the
error estimate is larger than a predetermined threshold, the retrieval is flagged as
unreliable. The error estimate is usually different from, but highly correlated with,
the retrieval error itself. Thus, it cannot be used for the error correction but only for
QC purposes. A QC procedure based on the error NN is described in Sect. 4.6.5 in
the context of the compound parameterization.

3.5 Neural Network Emulations for SSM/I Data

In previous chapters, we discussed the theoretical possibilities and premises for
using NNs for modeling TFs and FMs. In this chapter, we illustrate these theoretical
considerations with real-life applications of the NN approach to the SSM/I forward
and retrieval problems. SSM/I is a well-established instrument, flown since 1987.
Several SSM/I instruments (F8, F10, F11, F13, etc.) have been functioning for
significant period of time. The satellites that carry the SSM/I are polar orbiting with
an orbital period of 102 min. Each satellite provides coverage over a particular ocean
basin twice a day, once during the descending orbit and once during the ascending
orbit. The SSM/I generates BTs in seven channels at four frequencies (19, 22, 37,
and 85 GHz), each with vertical and horizontal polarization (the 22 GHz channel

http://dx.doi.org/10.1007/978-94-007-6073-8_4
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senses only vertical polarization). The spatial resolution is about 50 km at 19 and
22 GHz, about 30 km at 37 GHz, and 15 km at 85 GHz. It has a swath width of
approximately 1,400 km.

The SSM/I infers BTs passively, receiving microwave radiation emitted by the
ocean surface and transmitted through the atmosphere. The emission is affected
by the surface wind speed (which changes the roughness of the ocean surface), by
the air temperature and humidity above the ocean surface, and by the SST. The
propagation of microwave radiation through the atmosphere is influenced by the
cumulative amounts of water vapor and liquid water in the atmospheric column
(Wentz 1997). As a result, the BTs contain signatures from all of these geophysical
parameters, and these parameters (surface wind speed, air temperature, air humidity,
columnar water vapor, columnar liquid water, and SST) can be extracted from the
BTs using retrieval algorithms.

Many different retrieval algorithms and several FMs have been developed for the
SSM/I, and several different databases are available for algorithm development and
validation. Various techniques have been applied in algorithm development. Thus,
detailed comparison of different methods and approaches for this instrument can
be made.

3.5.1 NN Emulations for the Empirical FM for the SSM/I

The empirical FM developed for the SSM/I represents the relationship between
the vector of geophysical parameters G and the vector of satellite brightness BTs,
S, where S D fT19V, T19H, T22V, T37V, T37Hg. Here in the BT notation TXXY,
XX represents the frequency in GHz and Y the polarization. Four geophysical
parameters are included in G (surface wind speed W, columnar water vapor V,
columnar liquid water L, and SST), or more compactly, G D fW, V, L, Ts (or SST)g.
These are the major parameters that influence BTs measured by satellite sensors,
which were used as inputs in the PB FMs of Petty and Katsaros (1992, 1994)
(referenced below as PK) and Wentz (1997) (see Table 3.1). The NN emulation
(FM1 in Table 3.1) (Krasnopolsky 1996), which implements this SSM/I FM has
4 inputs fW, V, L, SSTg, one hidden layer with 12 neurons, and 5 nonlinear BT
outputs fT19V, T19H, T22V, T37V, T37Hg. The derivatives of the outputs over the
inputs, which can be easily calculated, constitute the Jacobian matrix (3.5). The
Jacobian is required in the process of direct assimilation of the SSM/I BTs when
the gradient of the SSM/I contribution to the cost function (3.10b) s is calculated
(Parrish and Derber 1992; Phalippou 1996). Estimating an NN emulation of the
FM and its derivatives is a much simpler and faster task than calculating radiative
transfer FMs.

A raw buoy-SSM/I matchup database created by the Navy Fleet Numerical Me-
teorology and Oceanography Center was used for the NN algorithm development,
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Table 3.1 Comparison of PB radiative transfer and empirical NN FMs under clear and
clear C cloudy (in parentheses) weather conditions

BT RMS error (ıK)

Author Type Inputs Vertical Horizontal

Petty and Katsaros (1992) PB W, V, L, SST, Theta, P0,
HWV, ZCLD, Ta, G

1.9 (2.3) 3.3 (4.3)

Wentz (1997) PB W, V, L, SST, Theta 2.3 (2.8) 3.4 (5.1)
Krasnopolsky (1996) NN, FM1 W, V, L, SST 1.5 (1.7) 3.0 (3.4)

Theta is the incidence angle, P0 – surface pressure, HWV – vapor scale height, ZCLD – cloud
height, Ta – effective surface temperature, and G – the lapse rate. PB is for physically based

validation, and comparison. This database is quite representative, with the exception
of high latitude and high wind speed events. In order to improve the representative-
ness of the database, the data sets were enriched by adding to the database matchup
databases collected by the high latitude European ocean weather ships Mike and
Lima. Various filters have been applied to remove errors and noisy data (for a
detailed discussion, see Krasnopolsky (1996) and Krasnopolsky et al. (1996, 1999)).

The matchup databases for the F11 SSM/I have been used for training (�3,500
matchups) and validation (�3,500 matchups) for the FM. The NN emulation of
FM (FM1) was trained using all matchups that corresponded to clear and cloudy
weather conditions in accordance with the retrieval flags introduced by Stogryn
et al. (1994). Only those cases where the microwave radiation could not penetrate
the clouds were removed. Then, �6,000 matchups for the F10 instrument were
used for testing and comparison of FM1 with the PB FM by Petty and Katsaros
(1994) and Wentz (1997) FM. The root mean square errors (RMSEs) for FM1 were
systematically better than those for the PK and Wentz FMs for all weather conditions
and all of the channels considered. With the NN FM, the horizontally polarized
channels 19H and 37H had the highest RMSE, �2.5ıK under clear and �3ıK under
clear and cloudy conditions. For the vertically polarized channels, the RMSEs were
lower, 1.5ıK under clear and 1.7ıK under partly clear and partly cloudy conditions.
The same trend was observed for the PK and Wentz FMs. Table 3.1 presents bulk
statistics (RMSEs) for the three FMs discussed here. In the table, the RMSEs
are slightly different from those presented above because they are averaged over
different frequencies separately for the vertical and horizontal polarizations.

Thus, the NN FM gives results that are comparable or better in terms of RMSEs
than the results obtained with more sophisticated physically based models (shown
in Table 3.1), and is much simpler than the PB FMs. The NN FM is not as general
as a radiative transfer model; it was developed to be applied in a DAS for variational
retrievals and direct assimilation of SSM/I BTs at particular frequencies and from a
particular instrument. However, for this particular application (direct assimilation)
and instrument, it is significantly simpler and faster, which is especially important
in real-time (operational) applications. This is also one of the applications where
the accuracy of the NN Jacobian is essential. The NN FM simultaneously calculates
the BTs and Jacobian matrix. Krasnopolsky (1996) showed that for this particular
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Table 3.2 Error budget (in m/s) for different SSM/I wind speed algorithms under clear and
clear C cloudy (in parentheses) conditions

Algorithm Method Bias Total RMSE W > 15 m/s RMSE

GSW Multiple linear regression �0.2 (�0.5) 1.8 (2.1) (2.7)
GSWP Generalized linear regression �0.1 (�0.3) 1.7 (1.9) (2.6)
GS Nonlinear regression 0.5 (0.7) 1.8 (2.5) (2.7)
Wentz Physically based 0.1 (�0.1) 1.7 (2.1) (2.6)
NN0 Neural network 0.0 (0.0) 1.4 (1.6) (3.5)
NN1 Neural network �0.1 (�0.2) 1.5 (1.7) (2.3)
NN2 Neural network (�0.3) (1.5) –
NN3 Neural network (�0.2) (1.6) –

GSW (Goodberlet et al. 1989), GSWP (Petty 1993), GS (Goodberlet and Swift 1992), Wentz
(1997), NN0 (Krasnopolsky et al. 1995), NN1 (Krasnopolsky et al. 1996, 1999), NN2 (Meng et al.
2007), NN3 (Roberts et al. 2010)

application, the NN Jacobian is sufficiently smooth. In Sect. 5.1, a generic NN
ensemble technique (Krasnopolsky 2007) is discussed that improves the stability
and reduces uncertainties of the NN Jacobian.

3.5.2 NN Empirical SSM/I Retrieval Algorithms

The SSM/I wind speed retrieval problem is a perfect example that illustrates the
general discussion presented in Sects. 3.1 and 3.3. The problems encountered in
the case of the SSM/I wind speed retrievals are representative, and the methods
used to solve them can easily be generalized for other geophysical parameters and
sensors. About ten different SSM/I wind speed retrieval algorithms, both empirical
and physically based, have been developed using a large variety of approaches and
methods. Here these algorithms are compared in order to illustrate some of the
properties of the different approaches mentioned earlier and some of the advantages
and limitations of the NN approach.

Goodberlet et al. (1989) developed the first global empirical SSM/I wind speed
retrieval algorithm. Statistics for this algorithm are shown in Table 3.2 under the
abbreviation GSW. This algorithm is a single-parameter algorithm (it retrieves only
wind speed) and is linear with respect to BTs, i.e., a linear multiple regression is
used for fmod in (3.6) to approximate the SSM/I TF, and is given by

WGSW D 147:9C 1:0969T19V � 0:4555T 22V � 1:76T 37V C 0:786T 37H

This algorithm presents a linear approximation to a nonlinear (especially under
cloudy sky conditions) SSM/I TF f (3.6). Under clear sky conditions (Table 3.2),
it retrieves the wind speed with acceptable accuracy. However, under cloudy
conditions where the amount of the water vapor and/or cloud liquid water in the
atmosphere increases, errors in the retrieved wind speed increase significantly.

http://dx.doi.org/10.1007/978-94-007-6073-8_5
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Goodberlet and Swift (1992) tried to improve the GSW algorithm perfor-
mance under cloudy conditions, using nonlinear regression with a rational type of
nonlinearity:

WGS D .WGSW � 18:56 � ˛/
.1 � ˛/ ; where ˛ D


30:7


37

�4
and


37 D T 37V � T 37H:

Since the nature of the nonlinearity of the SSM/I TF under cloudy conditions is
not known precisely, the application of such a nonlinear regression with an assumed
form of nonlinearity was not sufficient to improve the algorithm performance (we
refer to this algorithm as GS). In many cases, the GS algorithm generates false high
wind speeds when the observed wind speeds are less than 15 m/s (Krasnopolsky
et al. 1996).

A nonlinear (with respect to BTs) algorithm introduced by Petty (1993) and
called the GSWP algorithm here is based on a generalized linear regression. It
presents a case where nonlinearities introduced in the algorithm represent the
nonlinear behavior of the TF more accurately. This algorithm introduces a nonlinear
correction for the linear GSW algorithm when the amount of water vapor, V, in the
atmosphere is greater than zero, as

WGSWP D WGSP � 2:13C 0:2198 � V � 0:4008 � 10�2 � V 2; where

V D 174:1C 4:638 � ln.300� T19V / � 61:76 � ln.300� T 22V /
C 19:58 � ln.300� T 37V /

Table 3.2 shows that the GSWP algorithm improves the accuracy of retrievals
compared to the linear GSW algorithm under both clear and cloudy conditions.
However, it does not improve the GSW algorithm performance at high wind speeds
because most of the high wind speed events occur at mid- and high latitudes where
the amount of water vapor in the atmosphere is not significant. Here, the cloud liquid
water is the main source of the nonlinear behavior in the TF. However, it has not
been taken into account in the GSWP algorithm.

NN algorithms have been introduced as an alternative to nonlinear and general-
ized linear regressions because NNs can adjust their nonlinear behavior to that of
TF better than regression-based approaches. Stogryn et al. (1994) developed the first
NN SSM/I wind speed retrieval algorithm, which consisted of two NNs, each with
surface wind speed as the single output. Thus, this algorithm is a single-parameter
algorithm (3.6). One NN performs retrievals under clear conditions and the other
under cloudy conditions. Krasnopolsky et al. (1995) showed that a single NN (NN0
in Table 3.2) with the same architecture (a single output) can generate retrievals for
surface winds under both clear and cloudy conditions with the same accuracy as
the two NNs developed by Stogryn et al. (1994). This application of a single NN
emulation led to a significant improvement in wind speed retrieval accuracy under
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Fig. 3.3 Wind speed fields retrieved from the SSM/I measurements (satellite F13) for a mid-
latitude storm located to the northeast of Australia. Two passes (one ascending and one descending)
are shown in each panel. Each panel shows the wind speeds retrieved by the (left to right) GSW,
NN0, and NN1 algorithms. The GSW algorithm does not produce reliable retrievals in the areas
with high level of moisture (white areas). NN0 fills these gaps; however, it underestimates high
wind speeds. NN1 produces accurate high winds under high levels of moisture. 1 knot � 0.514 m/s

clear conditions compared to the GSW algorithm. Under higher moisture/cloudy
conditions, the improvement was even greater (25–30 %) compared to the GSW
algorithm. The increase in areal coverage due to the improvements in accuracy was
about 15 % on average and higher in areas where there were significant weather
events (and higher levels of atmospheric moisture) as can be seen in Fig. 3.3.

Both NN algorithms give very similar results because they had been developed
using the same matchup database. This database, however, does not contain any
matchups for wind speeds higher than about 20 m/s and contains very few matchups
for wind speeds higher than 15 m/s. These algorithms are also single-parameter
algorithms, i.e., they retrieve only one parameter – wind speed; therefore, they
cannot account for the variability in all related atmospheric (e.g., water vapor and
liquid water) and surface (e.g., SST) parameters, which takes on greater importance
at higher wind speeds. This is why these NN algorithms pose the same problem;
they cannot generate wind speeds at ranges higher than 18–19 m/s with acceptable
accuracy (see Table 3.2 and Fig. 3.3).

The next-generation NN algorithm – a multiparameter NN algorithm (3.8)
developed (NN1 in Table 3.2) by Krasnopolsky et al. (1996, 1999) – solved the
high wind speed problem (see Table 3.2 and Fig. 3.3) through three main advances.
First, a new buoy/SSM/I matchup database was used in the development of this
algorithm. It contained an extensive matchup data set for the F8, F10, and F11
sensors, provided by Navy Research Laboratory, and augmented with additional
data from the European Ocean Weather Ships Mike and Lima for high latitude, high
wind speed events (up to 26 m/s). Second, the NN training method was improved by
enhancing the learning process for the high wind speed range. Third, the variability
of related atmospheric and surface parameters was taken into account; surface wind
speed (W), columnar water vapor (V), columnar liquid water (L), and SST are all
retrieved simultaneously. In this case, the output vector of geophysical parameters
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is presented by G D fW, V, L, SSTg. The NN1 algorithm uses five SSM/I channels,
including 19 GHz and 37 GHz for horizontal and vertical polarization and 22 GHz
for vertical polarization.

Figure 3.3 shows a comparison of the GSW, NN0, and NN1 algorithms for the
case of a mid-latitude storm located northeast of Australia. The GSW algorithm
does not produce reliable retrievals in the areas with high levels of moisture close to
the center of the storm. White gaps (missed retrievals) can be seen there in the most
active and energetic areas of the storm. Wind speeds from these areas, if they were
available, would provide a major impact in DAS. NN0 fills these gaps; however, it
does underestimate the high wind speeds. NN1 produces reliable and accurate high
winds even for high levels of moisture.

Meng et al. (2007) used the NN multiparameter retrieval approach developed
by Krasnopolsky et al. (1996, 1999) to design another NN multiparameter retrieval
algorithm (NN2 in Table 3.2) for the SSM/I. They used all 7 SSM/I BTs as inputs.
Their output vector also had four components G D fW, Ta, H, SSTg where surface
wind speed (W), surface air temperature (Ta), humidity (H), and SST were retrieved
simultaneously. In this case, the training database was limited to maximum wind
speeds of about 20 m/s. Moreover, there were only a few higher speed events with
W > 15–17 m/s in their database.

Roberts et al. (2010) developed an NN multiparameter retrieval algorithm (NN3
in Table 3.2) for the SSM/I, which significantly improves the error characteristics of
the air temperature, specific humidity, and SST as compared to previous methods.
Improvements are due to correct accounting for the effects of high cloud liquid water
and due to the use of a first-guess SST as an additional NN input.

Table 3.2 shows a comparison of the performance of all of the aforementioned
empirical algorithms in terms of the accuracy of the retrieved surface wind speeds.
It also shows statistics for a PB algorithm developed by Wentz (1997), which
is based on a linearized numerical inversion (3.4) of a PB FM. The statistics
presented in Table 3.2 were calculated using independent data sets. Table 3.2 shows
that the NN algorithms outperform all other algorithms. All algorithms except
for the NN algorithms show a tendency to overestimate high wind speeds. This
happens because high wind speed events are usually accompanied by a significant
amount of cloud liquid water in the atmosphere. Under these conditions the TF f
becomes a complicated nonlinear function, and simple one-parametric regression
algorithms cannot provide an adequate representation of this function and confuse
high concentrations of cloud liquid water with very high wind speeds. NN1 shows
the best overall performance, in terms of bias, RMSE, and high wind speed
performance.

As mentioned above, one of the significant advantages of the NN1 algorithm
is its ability to retrieve simultaneously not only wind speed but also the three
other atmospheric and ocean surface parameters columnar water vapor V, columnar
liquid water L, and SST. Krasnopolsky et al. (1999) showed that the accuracy
of the retrievals for other geophysical parameters is also high and close to those
obtained by the algorithms of the Alishouse et al. (1990) (for V) and Weng and
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Grody (1994) (for L). In addition, Krasnopolsky et al. (1999, 2000) have shown
that the errors of the multiparameter NN algorithms have a weaker dependence
on the related atmospheric and surface parameters than the errors of the single-
parameter algorithms. The retrieved SST in this case is not accurate (the RMSEs
about 4 ıC, see Krasnopolsky et al. (1996)); however, including SST in the vector
of retrieved parameters reduces errors in other retrievals that are correlated with the
SST. Figure 3.4 illustrates the coherence of the retrieved fields for three parameters
(W, L, and V) and shows good agreements of the wind speed retrieved from the
SSM/I, with those retrieved from the European Remote Sensing scatterometer ERS-
2, and also measured by buoys.

For the multiparameter NN algorithm NN2 (Meng et al. 2007), the choice of
the additional outputs, surface air temperature (Ta) and humidity (H), that are
physically related to, and correlated with, SST, makes the accuracy of retrieved
SSTs higher (the bias is �0.1 ıC and RMSE, 1.54 ıC). In accordance with the
classical, “linear” RS paradigm, the SSM/I instrument does not employ frequency
that is sensitive to SST. However, due to the nonlinear nature of the NN emulation
and the proper choice of output parameters, the multiparameter NN algorithm can
use weak nonlinear dependencies between NN inputs and outputs, and between NN
outputs, to retrieve SST with higher accuracy. For the multiparameter NN algorithm
NN3 (Roberts et al. 2010), the use of an SST first guess as an additional input,
which is possible due to flexibility of the NN technique, improves the accuracy
of the retrieved SST to an even greater extent (almost zero bias and an RMSE of
0.6 ıC).

3.5.3 Controlling the NN Generalization for the SSM/I

The NN1 retrieval algorithm has been used as the operational algorithm in the
global DAS at National Centers for Environmental Prediction (NCEP) of National
Oceanic and Atmospheric Administration (NOAA) since 1998. Given five BTs, it
retrieves the four geophysical parameters ocean surface wind speed, water vapor and
liquid water concentrations, and SST. At high levels of liquid water concentration,
microwave radiation cannot penetrate clouds and surface wind speed retrievals
become impossible. BTs on these occasions fall far outside the training domain DT .
The retrieval algorithm in these cases, if not flagged properly, produces wind speed
retrievals which are physically meaningless (i.e., not related to actual surface wind
speed). Usually a statistical retrieval flag, based on global statistics, is used to detect
such occurrences. Under complicated local conditions, however, it can produce a
significant number of false alarms or does not produce alarms when required.

The validity check shown in Fig. 3.5, if added to a standard retrieval flag, helps
to detect such occurrences. The NN SSM/I FM, FM1 (see Sect. 3.5.1) is used in
combination with the NN1 retrieval algorithm. For each satellite measurement S,
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Fig. 3.4 Comparison of the wind speeds (upper left), columnar liquid water (upper right), and
columnar water vapor (middle right) retrieved using the NN1 algorithm with the scatterometer
(ERS-2) wind speeds (middle left), buoy wind speeds (lower left), and model pressure field (lower
right) for the same time period
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Fig. 3.5 An intelligent retrieval system consists of the SSM/I retrieval algorithm NN1, the FM,
FM1, and a QC block implementing a validity check. NN1 emulating the inverse model retrieves
vector G of four geophysical parameters: ocean surface wind speed (W), water vapor (V) and
liquid water (L) concentrations, and sea surface temperature (SST) if given a vector of five BTs, S.
This vector G is fed to FM1 emulating the FM to generate BTs S0. The difference ıD jS – S0 j is
monitored and raises a warning flag if it exceeds a suitably chosen threshold

the geophysical parameters retrieved from BTs, S, are fed into the NN SSM/I FM
which produces another set of BTs, S0. For S within the training domain (S 2 DT ),
the difference, ıD jS – S0 j, is sufficiently small. For S outside the training domain,
larger differences raise a warning flag, if it is above a suitably chosen threshold.
It was shown by Krasnopolsky and Schiller (2003) that applying the control of
generalization reduces the RMSE significantly, and the maximum error is reduced
even more. Thus, this approach is very efficient at removing outliers.

3.6 Using NNs to Go Beyond the Standard Retrieval
Paradigm

3.6.1 Point-Wise Retrievals

All retrieval algorithms discussed and presented up to this point correspond to the
point-wise retrieval paradigm (see Sect. 3.1.1 and Fig. 3.1). In the framework of this
paradigm, the retrieval algorithm (3.4), (3.6), and/or (3.8) maps a vector of satellite
measurements, S, acquired at a particular location, to a vector of geophysical
parameters, G, at the same location. As we can see, in the case of the SSM/I
P2P approach, it provides satisfactory results. BTs utilized by these algorithms
provide sufficient information to retrieve the wind speed and other geophysical
parameters with acceptable accuracy. However, the P2P paradigm is not always
successful. Sometimes, as in the case of wind vector retrievals from the QuikSCAT,
this paradigm is not sufficient and should be augmented by methods capable of
introducing additional information in the retrieval process.
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Fig. 3.6 The QuikSCAT
retrieval algorithm consists of
the P2P TF generated by
numerical inversion of the
geophysical model function
(GMF) and augmented by a
field-wise ambiguity removal
procedure, which uses a
first-guess field from an NWP
model

3.6.2 Problems with Point-Wise Retrievals

QuikSCAT sensor is a spaceborn scatterometer that has been designed to provide
ocean surface wind vector retrievals at high resolution (the size of a single resolved
cell is about 25 km) over a swath width of 1,800 km (72 cells across the swath). The
instrument has two beams with horizontal and vertical polarization and incident
angles of 54 and 46 degrees, respectively, which provide four different backscatter
measurements (2 fore and 2 aft) per target cell. For most of the cells along the swath,
QuikSCAT provides four backscatter measurements and an azimuth look angle. This
information, theoretically speaking, should be sufficient for accurate ocean surface
wind vector retrievals.

The current retrieval procedure (Dunbar et al. 2006) is depicted in Fig. 3.6. It
consists of two major steps:

1. Numerical inversion of the QuikSCAT empirical FM, or so-called geophysical
model function, based on the maximum likelihood principle (2.10); this inversion
produces from one to four wind vector solutions or ambiguities (this step actually
determines implicitly a P2P TF).

2. An additional field-wise procedure – an ambiguity removal step, which uses a
median filter and NCEP’s global model first-guess wind field to select from four
algorithm solutions one, so-called nudged, solution, which is closest to the first-
guess wind pattern.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Thus, in this case, the P2P TF per se is not sufficient. The retrieved wind vectors
do not have satisfactory accuracy (for wind direction, see below); also, the vectors
retrieved from the neighboring cells often do not agree with each other. Thus, they
do not create a smooth and continuous wind field. Consequently, the local, point-
wise P2P retrieval procedure is not sufficient to retrieve wind vectors to produce
wind patterns that are consistent and of reasonable accuracy.

The retrieval procedure requires additional nonlocal, field-wise information to
produce smooth wind vector fields with consistent wind patterns. The ambiguity
removal procedure provides such information that is taken from an NWP model 6-
h-forecast first-guess wind field. The resulting nudged wind field is smooth and has
good statistical properties (see the bias and RMSE in Table 3.4) when compared to
the model or analysis wind vector field. This field is suitable for many applications
(e.g., for marine meteorologists). However, if we want satellite retrievals to provide
independent information about wind vectors (e.g., required for DAS), then problems
arise (Krasnopolsky and Gemmill 2001).

From informational point of view, the nudged wind vector field, obtained after the
application of the ambiguity removal procedure based on using a first-guess field,
combines information from two different sources. It contains (1) local, point-wise
satellite information about the wind vectors, which is presented by the maximum
likelihood solutions, and (2) nonlocal, field-wise information about the same wind
vector field, which was produced by the DAS and numerical forecast model
and which is stored in the first-guess wind vector field. The ambiguity removal
procedure actually performs a smooth fusion or integration of these two types of
information: the satellite-derived information and the first-guess information.

The contribution of satellite information in the nudged solution varies from area
to area; as a result, some parts of the wind vector field (such as areas between
swathes and areas of heavy rain) that demonstrate a realistic continuous wind pattern
may contain very little independent satellite information. To illustrate this possibility
and to show that conventional error statistics are not reliable indicators of the quality
of wind field in these cases, we consider an extreme case where there is no satellite
information concerning wind direction in the maximum likelihood solutions, which
are employed by the ambiguity removal procedure to select the nudged solution and
using the first-guess wind vector field.

Now, let us assume that, for each QuikSCAT wind vector cell, we have, on
average, M ambiguities (1 � M � 4 for QuikSCAT), and that we have one ambiguity
vector per angle equal to ˇD 360ı/M degrees (Krasnopolsky and Gemmill 2001).
Let us also assume that all satellite-derived wind directions for these ambiguities are
replaced by random numbers (i.e., corresponding to no satellite information about
wind direction at all!) that are uniformly distributed over the interval [0, ˇ]. In this
case, the probability density function for wind direction is P(x) D 1/ˇ. Let us apply
the ambiguity removal procedure to these wind vectors and estimate the RMSE
of the nudged solution, RMSEN , obtained after the application of the ambiguity
removal procedure. The RMSEN is calculated vs. the first-guess wind vector field
directions (these directions are also assumed to be uniformly distributed random
numbers). The RMSEN calculated for this hypothetical case provides us with the
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Table 3.3 Zero skill RMSE for dif-
ferent number of ambiguities M> 1

M 2 3 4 6
RMSEN 73ı 49ı 37ı 25ı

measure of zero skill or zero satellite information RMSE for the nudged solution
for wind directions (in the case of M ambiguities). The RMSEN can be calculated as

RMSEN D

vu
u
u
t

ˇZ

0

ˇZ

0

.x1 � x2/2 � P .x1; x2/ � dx1dx2 D ˇp
6

D 360ı
p
6 �M

Table 3.3 summarizes the particular values of RMSEN for different number of
ambiguities, M. These values indicate essentially zero retrieval skill for particular
numbers of ambiguities M. For example, if, in the case of four ambiguities (M D 4),
comparison of the nudged solution wind vector field area with the analysis gives
RMSE � RMSEN D 37ı, then it indicates that, in this area, the nudged wind vector
field is dominated by the first guess and contains very little independent information
derived from the QuikSCAT sensor. Table 3.3 also shows that, in a hypothetical
case where the retrieval algorithm produced six ambiguities (e.g., a scatterometer
with three beams), the ambiguity removal procedure using the first-guess field could
produce the nudged field with an acceptable RMSEN of about 25ı; however, this
field would contain no independent satellite information concerning wind direction.
All of the information concerning wind direction would come from the first-guess
field in this case.

Taking into account the above considerations, it is reasonable to introduce a
complementary characteristic for the QuikSCAT nudged solution – an amount (per-
centage) of independent satellite information, ˛, which estimates the contribution
of the QuikSCAT data to the nudged wind vector solution. This parameter will vary
spatially; it will be different for different locations, and, considering informational
content, the best way to calculate the parameter ˛ is to use a Bayesian approach
(Bishop 2006); however, in the interest of simplicity, we introduce the following
linear approximation for ˛:

˛ D

1 � RMSE

RMSEN

�
� 100 %

Table 3.4 shows selected wind speed and direction statistics (biases and RMSEs)
for the nudged solution and for the maximum likelihood (ML) first ambiguity, which
corresponds closely to the P2P retrieval paradigm. It also shows the contribution
from independent satellite information via ˛. The results of an NN P2P algorithm
are also included.

As can be seen from Table 3.4, the P2P NN algorithm provides a high-quality
wind speed estimate, with essentially zero bias and an RMSE of the order of
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Table 3.4 Selected wind speed and direction statistics for different
QuikSCAT wind retrieval algorithms

Wind speed (m � s�1) Wind direction (deg)

Algorithm/solution Bias RMSE Bias RMSE ˛ (%)

Nudged solution �0.5 1.6 2ı 18ı �65
P2P ML – 1st ambiguity �0.5 1.7 2ı 59ı 100
P2P NN 0.1 1.7 3ı 51ı 100

The P2P ML is for the P2P maximum likelihood case

F2F NN TFF2P NN TF
�

m

n

�
S �

S

�
G

�
G

Fig. 3.7 Schematic representation of two NN-based field-wise approaches: F2P (left figure) and
F2F (right figure). TF represents the transfer function. m � n is the base size, i.e., the number of
cells that serve as NN inputs and/or outputs. The case for n D m D 3 is shown

1.7 m � s�1. For wind direction, the P2P NN algorithm produces a small but
significant improvement over the first ambiguity obtained from the P2P algorithm
(51ı vs. �59ı); however, even for the NN algorithm, which is based on the point-
wise P2P paradigm, the accuracy in wind direction is not sufficient for most practical
applications.

3.6.3 Field-Wise Retrieval Paradigms

The flexibility of the NN technique can be used to formulate an NN-based field-wise
retrieval paradigm, which allows us to introduce nonlocal, field-wise information
in the retrieval process on the level of satellite measurements without using
additional non-satellite information for regularization. Figure 3.7 portrays two such
alternative field-wise retrieval frameworks. In these approaches nonlocal, field-
wise information is introduced in the retrieval process using satellite measurements
themselves.
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Fig. 3.8 Training and retrieving paths for F2P and F2F algorithms. Colored frames show the
sequential positions of the base. Colored arrows show the wind vectors in the central cell of the
base at each base position. Black arrows show the path of the center of the base across and along
the swath

Instead of using the measurement vector S from one wind vector cell, alternative
approaches use a set of the measurement vectors S from a section of the QuikSCAT
swath (a base, or stencil, or template) with a size of n � m wind vector cells. The
field-to-point (F2P) approach (see Fig. 3.7 (left), where the case n � m D 3 � 3 is
shown) retrieves only one wind vector, which corresponds to the central wind vector
cell of the section. However, in the process of training and then in the process
of retrieval, the transition to each new (training or retrieval) step involves shifting
template (see Fig. 3.8) one cell across the swath or one cell along the swath (e.g.,
at the edges). As the result, the sequential wind vector retrievals will be produced
with a use of swath sections which significantly overlap; therefore, they will be
significantly correlated and coherent.

The second, F2F, alternative approach (see Fig. 3.7 (right), where the case
n � m D 3 � 3 is shown) brings into the retrieval process even more nonlocal
information. In addition to field-wise information about satellite measurements
over neighboring swath cells, it also involves, during the NN training, field-wise
information about neighboring wind vectors, i.e., about acceptable wind vector
patterns. However, in contrast to standard ambiguity removal procedures, the
information about neighboring wind vectors is required only during the training
of the algorithm. After training, in the retrieval mode, the F2F algorithm retrieves
the entire n � m segment of the wind vector field in contrast to the P2P and F2P
algorithms, which produce only one wind vector. Because the algorithm is assumed
to be trained using physically coherent wind fields, we expect the retrieved wind
vector field to be coherent and physically meaningful without additional smoothing.
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Fig. 3.9 RMSE of the wind directions retrieved by a F2F NN algorithm vs. n (n � n is the base
size, i.e., the number of cells in the segments which have been used as inputs and outputs by the
algorithm)

Development of the F2P and F2F retrieval algorithms for QuikSCAT requires a
new type of collocation matchup data sets to be created. For example, traditional
satellite/buoy collocations are suitable only for the P2P paradigm. Both the F2P and
F2F frameworks require field-wise ground truth data – a continuous wind vector
field. Analyzed wind vector fields produced by DAS can be used to create training
sets for the F2P and F2F NN retrieval algorithms. Creating training sets for the F2P
and F2F algorithms is a more difficult process than in the case of the P2P algorithm.
The training set is larger and its structure is more complex.

A limited training set was created for QuikSCAT to perform experiments with
NN field-wise retrieval algorithms. NCEP analysis wind fields have been collocated
with QuikSCAT data. Our experiments showed that implementation of the F2P
configuration for the NN algorithm leads to a significant improvement over the P2P
configuration; however, the F2F configuration results in an additional improvement
over the F2P configuration. The results of our experiments with the field-wise NN
configurations are presented in Fig. 3.9. This figure shows that the accuracy of the
wind direction retrieved by a F2F NN algorithm improves with increasing n, where
n � n is the base size (the number of cells in the segments, which are used as inputs
and outputs) of the algorithm. A smooth extrapolation, shown in the figure by the
dashed line, suggests that, at n D 7 or 8, the accuracy of the NN F2F algorithm
becomes comparable with the accuracy of algorithms using background fields for
the ambiguity removal.

Figure 3.10 shows the wind direction binned scatter plot for the case of an NN
with 50 hidden neurons and a 4 � 4 base size. It is noteworthy that F2F NN with
the 8 � 8 base has about two hundred inputs and outputs. To train such an NN,
a nonlinear optimization problem with a dimensionality of about 20,000 must be
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Fig. 3.10 Wind direction binned scatter plot. The horizontal axis shows the analyzed wind
directions in degrees, and the vertical represents the F2F NN (with 50 hidden neurons and 4 � 4
base size) wind directions in degrees. Asterisks show binned values, and the bars are proportional
to the scatter inside the bin

solved. In Chap. 4, we demonstrate that NN techniques have been developed to
deal with increasingly large NNs, and the training of such and even larger NNs is
possible using modern computers.

In the point-wise P2P framework, NNs are one of many tools (together with
regression-based approaches) for constructing empirical TFs. For alternative field-
wise (F2P and F2F) retrieval paradigms, the NN technique becomes a unique
tool for implementing them. NNs are uniquely suited for developing F2P and F2F
retrieval algorithms.

3.7 Discussion

In this chapter we discussed a broad class of NN applications dealing with the
solution of the RS forward and inverse problems. These applications are closely
related to the conventional and variational retrievals, which estimate geophysical

http://dx.doi.org/10.1007/978-94-007-6073-8_4
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parameters from remote satellite measurements. Both conventional and variational
techniques require a mechanism to convert satellite measurements into geophysical
parameters or vice versa. Conventional retrievals use a TF (a solution to the inverse
problem) and variational retrievals use an FM (a solution to the forward problem)
for this purpose. From a mathematical point of view, the TF and the FM can be
considered as continuous nonlinear mappings. For the NN technique is a generic
technique for continuous nonlinear mapping, it can be used for modeling both TFs
and FMs.

Theoretical considerations presented in this chapter were illustrated using several
real-life applications that exemplify the NN-based intelligent approach (e.g., the
approach and design presented in Fig. 3.5) where the entire retrieval system,
including the QC block, is designed by combining several specialized NNs. This
approach offers significant advantages for a number of practical applications. The
intelligent retrieval system produces not only accurate retrievals but also performs
an analysis and QC of the retrievals and environmental conditions, rejecting poor
retrievals in the process.

The applications discussed in this chapter illustrate possibilities for success-
fully applying NNs in the framework of a conventional P2P point-wise retrieval
paradigm. In this case, NNs can effectively compete with other statistical and PB
methods and provide faster and more accurate retrievals. However, as we showed
in Sect. 3.6, NNs also allow us to formulate new field-wise F2P and F2F retrieval
paradigms, which can be successfully implemented only using NNs.

The NN applications presented in this chapter illustrate strengths and weaknesses
of the NN technique for inferring geophysical parameters from RS measurements.
NNs successfully compete with other statistical methods and usually perform
better because they are able to emulate complex nonlinear functional relationships
between the inputs and the outputs in an optimal way. NNs can also successfully
compete with PB approaches because, in many cases, explicit knowledge of
complicated physical processes in ES is limited, and an NN-based empirical
approach is well suited to address such problems. It can encompass more physics
implicitly (by learning from the data) than PB approaches can include explicitly.
NN-based field-wise algorithms can even explicitly take into account nonlocal field-
wise information that is difficult, or impossible, with other approaches.

However, the success of the NN approach strongly depends on the repre-
sentativeness of the data sets that are used for training (see Sect. 2.3.3). Data
availability, accuracy, quality, quantity, and representativeness are essential for
successful development of NN applications.
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Chapter 4
Applications of NNs to Developing Hybrid
Earth System Numerical Models for Climate
and Weather

• Everything we think we know about the world is a model
• Our models do have a strong congruence with the world
• Our models fall far short of representing the real world fully

– Donella H. Meadows, Thinking in Systems: A Primer

Abstract In this chapter, numerical modeling background is introduced and a
number of neural network (NN) applications developed for numerical weather
prediction (NWP) models and climate simulation systems are presented. The
hierarchy of numerical models describing weather and climate processes of different
scales is introduced and discussed. The notion of hybrid models that combine
deterministic physically based parts with statistical blocks is introduced. Several
atmospheric and oceanic applications of the NN technique to produce statistical
blocks for hybrid numerical models are introduced and discussed in detail. These
applications include fast and accurate NN emulations of atmospheric radiation
parameterizations and new NN-based convection parameterization for atmospheric
models, and fast and accurate NN emulations of nonlinear wave-wave interaction
parameterization for ocean wind wave models. The chapter contains an extensive list
of references giving extended background and further detail to the interested reader
on each examined topic. It can serve as a textbook and an introductory reading for
students and beginner and advanced investigators interested in learning how to apply
the NN emulation technique to different numerical modeling problems.

Increasing demand for accurate weather prediction and climate projections leads to
tremendous complexity of modern NWP models and climate simulation systems.
The required growth of model complexity leaves behind not only our understanding
of first principles but also the computational capabilities of modern supercom-
puters. Future trends in climate and weather modeling will continue to increase
computational and storage requirements. Scientific advances will require increases
in the physical resolution of the models; an increase in the number of ensemble

V.M. Krasnopolsky, The Application of Neural Networks in the Earth System Sciences,
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runs; enhanced “quality” in terms of clouds, aerosols, biogeochemical cycles, and
other processes; and a broadening of the overall scope that will include the upper-
atmosphere regions.

The climate system is a subsystem of the ES (Schellnhuber 1999). According
to the modern concept, the climate system consists of the abiotic world, the
geosphere, which is sometimes called the physical climate system, and the living
world, called the biosphere (see Fig. 1.1). The geosphere is further divided into
subsystems, namely, the atmosphere, the hydrosphere (mainly the oceans but also
lakes and rivers), the cryosphere (inland ice, sea ice, permafrost, and snow cover),
the pedosphere (the soils), and the lithosphere (the Earth’s crust and the more
flexible upper Earth’s mantle) (Peixioto and Oort 1992).

All components or subsystems of the climate systems are also complex systems.
For example, the atmosphere is a nonlinear system encompassing a large variety
of physical and chemical processes of very different spatial and temporal scales
and actively interacting with other subsystems of the climate system (ocean, land,
ice, etc.). The ocean is also a nonlinear system of interacting physical, chemical,
and biological processes of very different scales; it interacts in many different ways
(with multiple feedbacks) with the atmosphere, ice, and land.

The past several decades have revealed a well-pronounced trend in ESS. This
trend marks a transition from investigating simpler linear or weakly nonlinear
single-disciplinary systems like simplified atmospheric or oceanic systems that
include a limited description of the physical processes, to studying complex non-
linear multidisciplinary systems like coupled atmospheric-oceanic climate systems
that take into account atmospheric physics, chemistry, land-surface interactions,
etc. The most important property of a complex interdisciplinary system is that it
consists of subsystems that, by themselves, are complex systems. Accordingly, the
scientific and practical significance of interdisciplinary complex ES/environmental
numerical models and prediction systems consisting of multiple coupled models has
increased tremendously during the last few decades, due to improvements in their
quality via better understanding of the basic ES processes and their relationships,
developments in numerical modeling, and growing computing capabilities. Thus,
global ES modeling activities are going to consume a tremendous amount of
computing resources.

NNs are increasingly being applied to reduce demands for computing resources.
They are used to accelerate calculations in NWP and climate simulation systems.
When our understanding of first principles is not complete, NNs can be used to
introduce in these systems new physics learned from observed or simulated data.
NNs are also applied for data mining to automatically extract useful information (re-
lationships, correlations, etc.) from massive and fast growing amounts of observed
and simulated data.

In the following sections of this chapter, a numerical modeling background
is introduced and a number of NN applications developed for NWP models and
climate simulation systems are presented. In Sect. 4.1, the hierarchy of numerical
models describing weather and climate processes of different scales is introduced
and discussed. Parameterizations of model physics as a method of representing

http://dx.doi.org/10.1007/978-94-007-6073-8_1
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physical processes in numerical models are discussed. The notion of hybrid
models that combine deterministic physically based parts with statistical blocks
is introduced in Sect. 4.2. Several atmospheric applications of the NN technique
dedicated to produce statistical blocks for hybrid numerical models are introduced
and discussed in details in Sect. 4.3. These applications include fast and accurate
NN emulations of atmospheric radiation parameterizations and new NN-based
convection parameterization for atmospheric models. Section 4.4 describes an
oceanic application of the NN technique, an accurate NN emulations of nonlinear
wave-wave interaction parameterization for ocean wind wave models. In Sect. 4.5,
advantages and limitations of NN techniques presented in the chapter are discussed.

4.1 Numerical Modeling Background

As mentioned in Chap. 1, our understanding of “first principles” governing climate
and weather systems and their subsystems is codified into systems of PDEs. These
PDEs, approximated with a spectral or grid-point numerical scheme, constitute
numerical climate model which can be integrated using modern computers. A large
variety of highly nonlinear processes with broad spectra of spatial and temporal
scales contribute to ES. The temporal scales range from several minutes (some
weather events) to hundreds of millions of years (paleoclimate phenomena), and
the spatial scales range from tens of thousands of kilometers (global phenomena)
to millimeters (size of water droplets in the cloud). In such situations, a single
numerical model cannot encompass the entire complexity of ES or even of a single
but also tremendously complex, subsystem of ES, such as the climate system. This is
why a wide range of numerical models with different resolutions that cover different
spatial domains and incorporate processes of different spatial and temporal scales
have been developed (Claussen 2001). Within this range, there is a large variety of
models from GCMs, describing global, large-scale climate and weather patterns (see
Sect. 2.1.4 and Fig. 2.1), to large eddy simulation models that describe the dynamics
and evolution of single atmospheric and/or oceanic vortices.

Each of these numerical models has two basic characteristics: (1) spatial
resolution, � (actually two different resolutions, a horizontal and a vertical), and
(2) an integration time step, � . By definition, the numerical model cannot directly
take into account processes or resolve features of size r �� and of duration t � � .
Symbolically, a numerical model over a domain D can be written as

@§

@t
C�.§; x/ D P.§; x/C F.x; t/I x 2 D

§tD0 D §0I §xDB D §B (4.1)

where § represents the 3-D prognostic or dependent variables (e.g., temperature,
wind, moisture); §0, the initial conditions usually produced by a DAS (see Sect.
3.1.2), and §B are the boundary conditions for §; x is a vector of independent
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variables (e.g., latitude, longitude, and pressure, height, or depth); ˝ represents
the model dynamics (the set of 3-D PDEs of motion, thermodynamics, etc.,
approximated with a spectral, grid-point, or finite-element numerical scheme); F
is the external forcing; and P is the term (called model physics) that effectively
takes into account subgrid scale processes. Usually model physics is implemented
as a superposition of several parameterizations, pk .§; x/, each of which effectively
describes a physical process, i.e., P .§; x/ D P

k

pk .§; x/. Subgrid scale processes

are those with spatial scales r �� and/or duration t � � . The model does not resolve
such processes explicitly, but they are effectively taken into account through the
appropriate parameterizations. Numerical models (4.1) based on “first principle”
equations are also called deterministic models.

4.1.1 Climate- and Weather-Related Numerical Models
and Prediction Systems

Global Models

Marked progress has been achieved during the past decades in modeling the separate
elements of the climate system (e.g., Grassl 2000). This stimulated effort to put all
of the separate pieces together, first in the form of comprehensive coupled models of
atmospheric and oceanic circulation or coupled general circulation models (CGCMs
or simply GCMs) and eventually in the form of climate system models which
also include biological and geochemical processes (e.g., Foley et al. 1998; Cox
et al. 2000). Comprehensive models of global atmospheric and oceanic circulation
describe many details of the flow, such as individual weather systems and regional
currents in the ocean.

Modern GCMs are either fully coupled atmosphere-ocean-land/biosphere-
chemistry models or partially coupled models (e.g., with the chemistry component
calculated off-line, driven by the flow simulated by an atmosphere-ocean-land
model). CGCMs for climate simulation and weather prediction are based on
solving time-dependent 3-D geophysical fluid dynamics equations (4.1) on a
sphere because the domain, D, includes the entire globe in this case. P in
(4.1) includes the parameterized model physics and chemistry (e.g., the long-
and short-wave atmospheric radiation, turbulence, convection and large-scale
precipitation processes, clouds, and interactions with land and ocean processes
and the constituency transport and chemical reactions, respectively). GCMs treat
physics in a simplified way using parameterizations to effectively represent the
processes involved (see Sect. 4.2.2).

While scientific problems that use these models are among the most computation-
ally intensive applications in the history of scientific exploration, the models employ
drastic simplifications in their treatment of many processes important in climate
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and weather. For example, parameterizations must effectively represent the effect
of clouds over time and space scales that are well below the resolution of the scales
explicitly treated in GCMs, which resolve atmospheric features with space scales of
order 100 km and time scales of order 10 min (Randall et al. 2003). NWP models
typically operate at smaller spatial and temporal scales, but most cloud processes
are still acting well below these scales.

Another example of a complex global model is an ocean wind wave model
developed for ocean wave simulation and forecasting (Tolman 2002). It is based
on a form of the spectral energy or action balance equation

DF

Dt
D Sin C Snl C Sds C Ssw (4.2)

where F is the 2-D wave spectrum, Sin is the input source term, Snl is the nonlinear
wave-wave interaction source term, Sds is the dissipation or “whitecapping” source
term, and Ssw represents additional shallow water source terms. In Sect. 4.4, an NN
emulation of the Snl source term is introduced and discussed.

The major limitations of GCMs are limited resolution and simplified model
physics. Even within these limitations, the application of GCMs and CGCMs
to long-term climate studies leads to high computational cost. High resolution
is required to resolve meso- and fine-scale weather and climate features related
to convection processes and different types of clouds and precipitations in the
atmosphere and to different types of circulation processes in the ocean. State-
of-the-art CGCMs have resolutions of several tens of kilometers. Even using the
most powerful computers, only a very limited number of multi-decadal experiments
can be performed with such high-resolution models. GCMs today satisfactorily
reproduce large-scale weather and climate features. However, because of simplified
parameterized physics that GCMs use, they cannot simulate accurately many
important fine-scale processes like cloudiness and convective precipitations (e.g.,
Rasch et al. 2000).

Regional Models

Regional models operate over a limited domain (typically continental scale or
smaller). As a result, they can be run at finer spatial and temporal resolutions
than a global model (although they still require many simplifications) at the same
computational cost. Symbolically they can be represented by Eq. (4.1) and usually
use the same parameterized physics as GCMs. They receive initial and boundary
conditions and large-scale forcing from GCMs. Because of their higher resolution,
regional models resolve mesoscale features significantly better than GCMs. The
quality of forecasts from regional models, however, can be limited by the boundary
conditions that the models receive, particularly for cases where the regional model
is not nested within a larger model.
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Cloud-Resolving Models

Cloud-system-resolving models (CSRMs) or simply cloud-resolving models
(CRMs), first developed in the 1970s and 1980s (e.g., Krueger 1988), operate
over a limited area (typically several hundred by several hundred kilometers) at
finer spatial and temporal scales than global and regional models (although they
still require many simplifications). They resolve many of the phenomena that global
and regional models must ignore (e.g., higher-resolution fluid dynamical motions
that can resolve some updrafts and downdrafts, convective organization, mesoscale
circulations, and stratiform and convective components that interact with each
other). These are models with sufficient spatial and temporal resolution to represent
individual cloud elements and cover a wide enough range of time and space scales
to permit statistical analysis of simulated cloud systems.

Despite their high computational cost, CSRMs do not simulate cloud systems
from first principles. Although the cloud-scale and mesoscale dynamical processes,
which must be parameterized in atmospheric GCMs, are explicitly simulated in
CSRMs on scales down to a kilometer or so in the horizontal and 100 m or so
in the vertical, the important microphysical, turbulent, and radiative processes must
still be parameterized. These processes are still treated albeit crudely, but CRMs
do resolve many more phenomena than today’s global and regional model physics
parameterizations.

Recently, attempts have been made to develop global models that resolve certain
cloud-scale motions (down to horizontal resolutions of about 3 km) (global cloud-
resolving models (GCRMs), e.g., Miura et al. 2005; Satoh et al. 2005). They are
extremely expensive to run (by a factor of 105–106) when compared with the cost
of a typical GCM and have generally been used in idealized settings for exploratory
experiments (e.g., in a water-covered planet scenario).

Multiscale Modeling Framework or Superparameterization

The term “superparameterization,” also known as a multiscale modeling framework
(MMF), was originally suggested by Grabowski (2001) and subsequently developed
by a group at Colorado State University (e.g., Khairoutdinov and Randall 2001;
Randall et al. 2003). This concept refers to the embedding of a simplified two-
dimensional CRM into each column of a global model (see Fig. 4.1).

For example, the MMF community atmosphere model (CAM) described by
Randall et al. (2003) and Khairoutdinov et al. (2005) consists of a global climate
model with a simplified 2-D CRM nested into each GCM (CAM) grid square.
Because of the simplifications, such a model is substantially less expensive (by
a factor of 103�104) than a GCRM but still far more costly (102�103) than
a GCM using a conventional convective parameterization (Randall et al. 2003).
The simplifications of CRM result in a substantial reduction in cost, with a
consequent compromise in the accuracy of the physical representation. These issues
are discussed more thoroughly in the references.
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GCM

2-D CRM

Interfaces

Fig. 4.1 Schematic representation of MMF

4.1.2 Representation of Physics in Global and Regional
Models: Parameterizations of Physics

The subsystems of a complex climate (or weather or ocean wave) system, such
as physical, chemical, and other processes, are so complicated that it is currently
possible to include these processes in GCMs only in simplified parameterized form
(a.k.a. parameterizations). These parameterizations constitute forcing, P, on the
right-hand side for the dynamical equations (4.1) or S for (4.2). Parameterizations
of model physics are approximate schemes, adjusted to model resolution and
computer resources, and based on simplified equations for physical process and
empirical data and dependencies. They are based on solving deterministic equations
(like the radiative transfer equations); however, they also may include secondary
empirical components based on traditional statistical techniques like regression.
Accordingly, for widely used state-of-the-art GCMs, all major model components
(i.e., subsystems) are predominantly deterministic. Not only the model dynamics but
the model physics and chemistry are based on solving deterministic first principle
physical or chemical equations.

In parameterizations, 3-D physics is reduced to 1-D parameterized model
physics; however, even after such tremendous simplifications, the parameterizations
so obtained are very complex and computationally time consuming. The percentage
of total calculation time required for calculating model physics is model dependent.
In all cases, however, the complete calculation of model radiation physics is the most
time-consuming task for all GCMs (e.g., Morcrette et al. 2007, 2008; Manners et al.
2009). In both climate modeling and NWP, the calculation of radiative transfer is
necessarily a trade-off between accuracy and computational efficiency. There exist
very accurate methods such as line-by-line procedures that could be employed to
very accurately calculate the radiative fluxes for every grid point at each time step.
However, if the radiative transfer were to be computed for every grid point and at
each time steps, it would generally require more CPU time than the rest of the model
components combined, i.e., model dynamics and other physical parameterizations
(Morcrette et al. 2008). Therefore, a number of additional simplifications are
usually made to reduce the computational burden to manageable levels (Lacis
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and Oinas 1991). However, even after aforementioned simplifications, radiation
parameterizations cannot be made sufficiently computationally efficient to permit
calculations for every grid point at each time step.

4.1.3 An Example: Parameterization of Long-Wave
Radiation Physics

As a typical example, the method for calculating long-wave radiation (LWR)
employed in National Center for Atmospheric Research (NCAR) CAM is presented
here. The LWR radiation parameterization, a portion of the NCAR CAM radiation
package CAMRT, is based on the long-wave (LW) radiative transfer equations in an
absorptivity/emissivity formulation (see Collins (2001) and references there),

F #.p/ D B .pt / � " .pt ; p/C
pZ

pt

˛
�
p; p0� � dB

�
p0�

F ".p/ D B .ps/�
psZ

p

˛
�
p; p0� � dB

�
p0� (4.3)

where F ".p/ and F #.p/ are the upward and downward heat fluxes, B.p/ D
� � T 4.p/ is the Stefan-Boltzmann relation, pressures ps and pt refer to the top
and surface atmospheric pressures, and ˛ and " are the atmospheric absorptivity
and emissivity, respectively. To solve the integral equations (4.3), the absorptivity
and emissivity have to be calculated by solving the following integrodifferential
equations,

˛
�
p; p0� D

1R

0

fdB� .p0/ =dT .p0/g � Œ1 � �� .p; p
0/	 � d�

dB.p/=dT .p/

" .pt ; p/ D

1R

0

B� .pt/ � Œ1 � �� .pt ; p/	 � d�

B .pt /
(4.4)

where the integration is over wave number � and B(pt) is the Planck function.
To solve Eq. (4.4) for the absorptivity and emissivity, additional calculations have to
be performed, and the atmospheric transmission �� also has to be calculated. This
calculation involves time-consuming integration over the entire spectral range of
gas absorption. The solution of this “simplified” 1-D problem (4.3, and 4.4) is so
time consuming that it takes about 50 % of the total time required for the model
integration even when the radiation is calculated with the reduced frequency (once
per several integration time steps).
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4.1.4 Methods Currently Used to Reduce
Computational Burden

In the case of a complex GCM, calculation of the atmospheric radiation at spatial
resolutions of a few degrees, as in the NCAR CAM, takes about 70 % of the total
model computation time. Similar numbers could be presented for other GCMs.
To reduce the cost of these calculations, they are usually made at lower temporal
and/or spatial resolutions. Rather drastic reductions in temporal resolution are often
made (e.g., radiation calculations are made every 1 or 3 h for the climate and
global forecast models at NCEP and UKMO (Manners et al. 2009)). Between
radiative transfer calculations, major changes may occur in the radiative profiles
(caused primarily by two factors: changes in clouds and changes in the angle of
incident solar radiation) that are not represented. A reduced horizontal resolution
approach (the radiative calculations are performed on a coarser grid with a following
interpolation of the results to an original finer grid) is used to speed up the
radiation calculations at the European Centre for Medium-Range Weather Forecasts
(ECMWF) (Morcrette et al. 2007, 2008). A reduced vertical resolution approach
(the full radiation is calculated at every other vertical level and interpolated on
the intermediate levels) is used in the Canadian operational Global Environmental
Multiscale Model (e.g., Côté et al. 1998a, b).

Such approaches reduce horizontal, or vertical, or the temporal variability of the
radiation fields. Thus, these approaches may reduce the accuracy of a model’s radi-
ation calculation and its spatial or/and temporal consistency with other parts of the
model physics and with model dynamics, which may, in turn, degrade the accuracy
of climate simulations and weather predictions. More frequent calculations of the
model physics, which is desirable for temporal consistency with model dynamics,
and the future introduction of more sophisticated model physics parameterizations
will result in a further increase in the computational time spent calculating model
physics.

In the wind wave model (4.2) discussed earlier, the calculation of the source
term Snl requires roughly 103–104 times more computational effort than all other
aspects of the wave model calculations. Present operational constraints require that
the computational effort to estimate Snl should be of the same order of magnitude as
for the rest of the wave model.

4.2 Hybrid Model Component and a Hybrid Model

As discussed above, one of the main problems in the development and imple-
mentation of modern high-quality high-resolution environmental models is the
complexity of the physical, chemical, and other processes involved. Here we will
discuss NN emulations as a tool for speeding up calculations of model physics
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and for developing new model physics parameterizations, keeping in mind that
the approach is applicable to other model components (chemical, hydrological, and
other processes) as well.

The situation presented in previous sections provides the motivation to look
for alternative, faster, and accurate ways of calculating model physics, chemistry,
hydrology, and other processes. During the last decade, a new statistical learning
approach based on NN approximations or emulations was applied for the accurate
and fast calculation of atmospheric radiative processes (Krasnopolsky 1996, 1997;
Chevallier et al. 1998) and for emulations of model physics parameterizations in
ocean and atmospheric numerical models (Krasnopolsky et al. 2002, 2005a, 2008b,
2010). In these works, calculation of the model physics components has been
accelerated by factors of 10–105 compared to the time needed for calculating the
corresponding original parameterizations of the model physics.

Approaches formulated by Chevallier et al. (1998, 2000), Krasnopolsky (1996),
and Krasnopolsky et al. (2002, 2005a, 2010) represent two different ways of a
hybridization of first principle and NN components in the physics parameterizations
as well as in complex climate and NWP models. These approaches introduce
hybridization at two different system levels, at the level of the subsystem (a single
parameterization) and at the level of the entire system, a numerical model. These two
approaches lead to the concepts of a hybrid parameterization (HP) (Chevallier et al.
1998, 2000) and a hybrid model or hybrid GCM (HGCM) (Krasnopolsky et al. 2002,
2005a; Krasnopolsky and Fox-Rabinovitz 2006a, b). These two concepts have been
debated by Chevallier (2005) and Krasnopolsky et al. (2005b) and are discussed in
the following sections. Another type of hybrid model – the hybrid coupled model,
where a simplified atmosphere is described by a neural network model and the
ocean – by a dynamical model, was introduced and described by Tang and Hsieh
(2003) and Li et al. (2005).

4.2.1 Hybrid Parameterizations of Physics

Chevallier et al. (1998, 2000) considered the LWR parameterization – a component
of the complex GCM (the ECMWF global atmospheric model). Putting it in terms
of the system levels, this single parameterization is considered to be the system and
its constituents, the blocks calculating fluxes, the blocks calculating cloudiness, etc.,
as subsystems. The hybridization of first principle components with NN emulations
is introduced on the level of these constituents and inside the system, which, in
this case, is the LWR parameterization. A generic LWR parameterization can be
represented as a mapping (2.1),

Y D M.X/ (4.5)

in this particular case, the input vector X D fS,T,V,Cg, where the vector S represents
surface variables, T is a vector (profile) of atmospheric temperatures, C is a profile

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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of cloud variables, and the vector V includes all other variables (humidity profile,
different gas mixing ratio profiles, etc.). The output of the LWR parameterization,
vector Y, is composed of two vectors Q and f, where Y D fQ,f g. Here Q is a profile
of cooling rates Q D ˚

C1
r ; C

2
r ; : : : ; C

L
r

�
, where Cj

r is the cooling (or heating) rate
of the jth vertical model level .j D 1; : : : ; L/, and f is a vector of auxiliary fluxes
computed by the LWR parameterization. Because of the presence of the input cloud
variable C, the mapping (4.5) may have some finite discontinuities, that is, it is
almost continuous.

The ECMWF LWR parameterization considered by Chevallier et al. (1998, 2000)
is based on the Washington and Williamson (1977) approach, which allows separat-
ing the cloud variables, C. In this parameterization, level fluxes are calculated as

F .S; T; V; C / D
X

i

˛i .C /Fi .S; T; V / (4.6)

where i is an index for the vertical level. Each partial or individual flux Fi(S,T,V) is
a continuous mapping, and all discontinuities related to the cloudiness are included
in ˛i(C). In their HP, which they refer to as the “NeuroFlux,” Chevallier et al. (1998,
2000) combined calculations of cloudiness functions ˛i(C) based on first principle
equations with NN approximations for a partial or individual flux Fi(S,T,V). Thus,
the flux, F (4.6), at each level is a linear combination of approximating NNs for
fluxes Fi and cloud physics coefficients ˛i(C). As a result, the “NeuroFlux” hybrid
LWR parameterization developed by Chevallier et al. (1998, 2000) is an array or
battery of about 40 NNs. To calculate “NeuroFlux” outputs, namely, the cooling
rates, Crs, linear combinations of the individual approximating NNs for Fi (Eq. 4.6)
are differentiated at each vertical level, as

Cr.P / D @F.P /

@P
; (4.7)

where P is atmospheric pressure.
At moderate vertical resolutions of less than 50–60 vertical layers, the “Neu-

roFlux” has high accuracy; its bias is about 0.05 K/day, and the RMSE is about
0.1 K/day compared to the LWR parameterization by Washington and Williamson
(1977). It is also eight times faster than the parameterization by Washington and
Williamson (1977). However, because of NeuroFlux’s suboptimal numerical design
(see detailed discussion in Krasnopolsky et al. 2005b), at a vertical resolution of
60 layers or more, both accuracy and speed of NeuroFlux cannot be achieved
simultaneously (Morcrette et al. 2008). Consequently, the NeuroFlux was used only
in DAS for the 4D-Var linearized physics for which the accuracy requirements are
less stringent.

As for limitations of the HP approach, the main one stems from a basic feature of
the HP approach; it is based on the analysis of the internal structure of a particular
parameterization. The final design of HP is based on and follows this internal
structure. Because all parameterizations have different internal structures, the
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approach and design of a HP developed for one parameterization usually cannot be
used, without significant modifications, for another parameterization. For example,
the approach used by Chevallier et al. (1998, 2000) and the design of the HP
“NeuroFlux” is completely based on separating the dependence on the cloudiness
(see Eq. 4.6). Many other LWR parameterizations, like the NCAR CAM radiation
parameterizations (Collins 2001; Collins et al. 2002) or the parameterizations
developed by Chou et al. (2001), do not allow for such separation of variables. Thus,
for these radiation parameterizations as well as for the moisture model physics block
parameterizations, the HP approach developed by Chevallier et al. (1998, 2000)
cannot be applied directly; it must be significantly modified or redesigned for each
particular new parameterization.

4.2.2 Hybrid Numerical Models

A new concept of a complex hybrid numerical model has been formulated and
developed by Krasnopolsky et al. (2002, 2005a) (see also Krasnopolsky and Fox-
Rabinovitz 2006a, b). The hybrid modeling approach considers the entire GCM as a
system. Dynamics and parameterizations of physics, chemistry, etc., are considered
to be the subsystems or components of the system. Hybridization in this case is
introduced at the level of components inside the system. For example, the entire
LWR, or short-wave radiation (SWR), or convection parameterization is represented
by a single emulating NN as a single/elementary object or block. This NN approach
is based on the general fact that any parameterization of model physics can be
considered as a continuous or almost continuous mapping (2.1 or 4.5).

Accurate and Fast NN Emulations for Parameterizations of Model Physics

Krasnopolsky and Fox-Rabinovitz (2006a, b) formulated a developmental frame-
work and test criteria that can be recommended for developing and testing the
statistical components of the HGCM, e.g., NN emulations of model physics
components. The developmental process consists of three major steps:

1. Problem analysis or analysis of the model component (the original parameteri-
zation or the target mapping (4.5 or 2.1)) to be approximated to determine the
optimal structure and configuration of the NN emulations. That is to estimate the
number of inputs and outputs and the first guess of the functional complexity of
the original parameterization that determines an initial number of hidden neurons
in one hidden layer of (2.2 and 2.3) (see Sects. 2.2.2, 2.3.1, and 2.3.4).

2. Generation of representative data sets for training, validation, and testing.
This is achieved by running an original GCM, i.e., a GCM with the original
parameterization, and by saving the simulated data to be used later for the NN
training. When creating a representative data set, the original GCM must be run
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long enough to produce all possible atmospheric states, phenomena, etc. Here,
due to the use of simulated data, it is not a problem to generate sufficiently
representative (and even redundant) data sets required to create high-quality NN
emulations (see Sect. 2.5). Using model-simulated data for NN training allows
a high accuracy of emulation to be achieved because simulated data are almost
free of the problems typical in empirical data (like a high level of observational
noise, sparse spatial and temporal coverage, and poor representation of extreme
events).

3. Training the NN. Several different versions of NNs with different architectures
(various numbers of hidden neurons), initialization, and training algorithms
should be trained and validated. As for the NN architecture, the number of hidden
neurons k should be kept to the minimum number that provides the required
accuracy of the NN emulation (see Eqs. 4.8, 4.9, 4.10, 4.11, and 4.12).

Testing the trained NN emulation and the HGCM that uses this NN consists of
two major steps:

1. The accuracy of the NN approximation is tested against the original parameteri-
zation using an independent test data set. In the context of the hybrid approach,
the accuracy and improved computational performance of NN emulations, and
eventually the HGCM, is always measured against the corresponding controls,
namely, the original parameterization and its original GCM. Both the original
parameterization and its NN emulation are complex multidimensional mappings.
Many different statistical metrics of the emulation accuracy should be calculated
to assure that a sufficiently complete evaluation of the emulation accuracy is
obtained. For example, total, level, and profile statistics have to be evaluated (see
Eqs. (4.8, 4.9, 4.10, 4.11, and 4.12)).

2. A comprehensive comparison and analysis of parallel HGCM and GCM runs is
performed. For the parallel model simulations, all relevant model prognostic and
diagnostic fields and their statistics should be analyzed and carefully compared
to assure that the integrity of the original GCM and its parameterization, with
all its details and characteristic features, is precisely preserved when using an
HGCM with NN emulation (see Sects. 4.3 and 4.4). This test step involving
model simulations is vital. GCMs are essentially nonlinear complex systems;
in such systems, small systematic, and even random, approximation errors can
accumulate over time and produce a significant impact on the quality of the
model results. Therefore, the development and application framework of the new
hybrid approach should be focused on obtaining a high accuracy in both NN
emulations and HGCM simulations.

As was mentioned above, both the original parameterization and its NN em-
ulation are complex multidimensional mappings. Because of their complexity,
many different statistics and statistical cross sections should be calculated to
obtain a satisfactory comparison between these two objects and to evaluate the
accuracies of the NN emulations. The mean difference B (bias or systematic error

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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of approximation) and the root mean square difference RMSE (a root mean square
error of approximation) between the original parameterization and its NN emulation
are calculated as follows:
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where Y(i, j) and YNN(i, j) are outputs from the original parameterization and its NN
emulation, respectively; the index i D (latitude, longitude), i D 1, : : : , N determines
the horizontal location (grid point) of a vertical profile; N is the number of the model
horizontal grid points; and j D 1, : : : , L is the vertical index where L is the number
of the model vertical levels.

The two bulk error characteristics presented in Eq. (4.8) describe the accuracy
of the NN emulation integrated over the entire 4D (latitude, longitude, height, and
time) data set. Using a minor modification of Eq. (4.8), the bias and RMSE for the
mth vertical level of the model can be calculated as
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The root mean square error can also be calculated for each ith profile (ith
horizontal grid point):
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This error is a function of the horizontal location of the profile. It can be used to
calculate a mean profile root mean square error PRMSE and its SD, �PRMSE, which
characterize the entire data set and are location independent:

PRMSE D 1
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NX
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Œprmse.i/� PRMSE	2: (4.11)
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The statistics (4.11) and (4.8) both describe the accuracy of the NN emulation
integrated over the entire 4-D data set. However, because of a different order of
integration, it reveals different and complementary information about the accuracy
of the NN emulations. The root mean square error profile can be also calculated:

rmsep.j/ D
vu
u
t 1

N

NX

iD1
ŒY .i; j /� YNN .i; j /	

2; j D 1; : : : ; L: (4.12)

The principal, direct benefit of the NN emulation is a significantly enhanced
computational performance (speed up) as compared with the current original
parameterization. This speedup can be used in several different ways: (1) to speed
up the model runs, (2) to calculate parameterizations of model physics more
often (e.g., at each integration time step), and (3) to improve model physics by
introducing in the model more sophisticated and realistic parameterizations of
physics that currently cannot be used because of their computational cost; however,
after emulating with NNs, they become computationally affordable.

Compound and Adjustable Parameterizations, Quality Control
of NN Emulations

The accuracy of NN emulations of model physics depends significantly on our
ability to generate a representative training set and to avoid using NNs for
extrapolation beyond the domain covered by the training set. Because of high
dimensionality of the input domain (i.e., dimensionality of the NN input vector X),
which is of the order of several hundred or more, it is difficult if not impossible to
cover the entire domain, which may have a very complex shape, even when we use
model-simulated data for the NN training. Also, the domain may change with the
evolution of the system during a simulation period. In such situations, the emulating
NN may be forced to extrapolate beyond its generalization ability, which may lead to
larger errors in NN outputs and correspondingly in the numerical model simulations
in which NN emulations are used.

For example, the developed NN emulations of model radiation are very accurate.
Larger errors and outliers (a few extreme errors) in NN emulation outputs occur
only when NN emulations are exposed to inputs not represented sufficiently in
the training set. These errors have a very low probability (see Fig. 4.15) and are
distributed randomly in space and time. However, when long multi-decadal climate
simulations are performed, and NN emulations are used in a very complex and
essentially nonlinear climate model over long integration times, the probability of
larger errors and their undesirable impact on the model simulations increase. As
we learned from our experiments with GCMs (e.g., Fig. 4.16 in Sect. 4.3.5), the
model was robust enough to overcome such randomly distributed errors without
their accumulation over time. However, for these few cases of larger errors, it is still
essential to develop an internal QC procedure capable of controlling these infrequent
larger errors (Krasnopolsky et al. 2008a).
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In another application of an NN approximation for nonlinear interactions in
a wave model, the model did not prove sufficiently robust to retain stability for
time integrations of even a few hours (e.g., Fig. 4.23 in Sect. 4.4.2). Thus, in
this case, introducing an internal QC method for identifying and controlling larger
NN emulation errors is particularly important for the successful application of NN
emulation of the model physics (Tolman and Krasnopolsky 2004).

Therefore, for many applications, it is essential to introduce a QC procedure,
which can predict and eliminate larger errors from NN emulations during the
integration of highly nonlinear numerical models, and not just relying on the ro-
bustness of the model that can vary significantly for different models. In Sects. 4.3.5
and 4.4.2, the concept of a compound parameterization (CP) that incorporates an
emulating NN, an original parameterization, and a QC procedure is introduced. CP
makes the NN emulation approach even more reliable, robust, and generic. It also
provides a tool for developing NN emulations adjustable to changes in the model
environment and in the climate system.

Using NNs for Developing New NN-Based Parameterizations

The NN technique can be used either to emulate or to improve model physics. It
was mentioned that because of the simplified parameterized physics that GCMs use,
they cannot simulate accurately many important fine-scale processes like cloudiness
and convective precipitations (e.g., Rasch et al. 2000). In section “Cloud-resolving
models,” it was mentioned that CRMs resolve many of the phenomena that lower-
resolution global and regional models do not resolve (e.g., higher-resolution fluid
dynamic motions supporting updrafts and downdrafts, convective organization,
mesoscale circulations, and stratiform and convective components that interact with
each other). NN techniques can be used to build a bridge or interface between
CRMs and GCMs, for example, to develop an NN convection parameterization,
which can be used as a parameterization in GCMs and can effectively account for
major subgrid scale effects taken into account by other approaches (like MMF;
see subsection “Multiscale modeling framework or superparameterization” of
Sect. 4.1.1). The idea is to develop NNs which emulate the behavior of a CRM and
can be run at larger scales (closer to GCM scales) in a variety of regimes and initial
conditions. The resulting emulation can be used as a novel and computationally
viable parameterization in a GCM. It may produce a parameterization of similar
or better quality compared to the superparameterization or the MMF, effectively
taking into account subgrid scale (in terms of a GCM) effects at a fraction of the
computational cost (Krasnopolsky et al. 2011).

Figure 4.2 summarizes the process of development of such an NN param-
eterization. The CRM uses data, Tropical Ocean Global Atmosphere Coupled
Ocean-atmosphere Response Experiment (TOGA-COARE), Atmospheric Radia-
tion Measurement, or other observations, for initialization and forcing and has the
horizontal resolution of about 1 km, 64 or 96 vertical layers, and a time step of 5 s.
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Fig. 4.2 The process of development of an NN convection parameterization

The CRM is usually integrated over a domain of 256 � 256 km. The development of
an NN parameterization is a multistep process. These steps are (Krasnopolsky et al.
2013) the following:

1. Simulating CRM data. The model is run for some time, which is limited by the
data available for initialization and forcing, and the high-resolution output of the
model is archived.

2. Reducing the resolution of simulated data. The high-resolution CRM-simulated
data are averaged in space and time. The data are averaged to a reduced horizontal
resolution of �< r � R, where � and R are the CRM and GCM resolutions
correspondingly, and are interpolated/averaged to the number of vertical layers
l D L, where L is the number of vertical layers in the GCM.

3. Projecting a CRM vector of atmospheric states onto a GCM vector of atmo-
spheric states. From the reduced resolution CRM-simulated data created at the
previous steps, the subset of variables is selected and this subset constitutes the
NN development set. Only variables that can be identified with corresponding
GCM variables or can be calculated from or converted to prognostic or diagnostic
variables available in the GCM are included in the development set (called
“pseudo-observations” in Fig. 4.2). Only these variables are used as inputs and
outputs in the NN parameterization. The choice of proper “inputs” and “outputs”
for an NN convection parameterization is very important. For example, a simple
convective parameterization might define “temperature,” “water vapor,” and the
convergence of temperature and water vapor to be “inputs” and produce Q1C
and Q2, the apparent heat and moisture tendencies as the “outputs.” The outputs
Q1C and Q2 clearly depend upon other variables (e.g., the condensed water in
each CRM column) that are not necessarily considered to be part of either the
inputs or outputs of the NN. These variables cannot be included as NN inputs
and/or outputs simply because they are not available in the GCM. From the
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point of view of GCM “model reality,” these variables are “hidden” variables
responsible for subgrid scale variability. The acknowledgement of this challenge
requires the introduction of the concept of uncertainty and “stochasticity.”
The development set of pseudo-observations implicitly represents a stochastic
convection parameterization (i.e., a stochastic mapping) with an uncertainty,
which is an inherent feature of such a parameterization (see Sect. 4.3.6).

4. Adjusting the differences. The pseudo-observations that are used for the devel-
opment of the NN parameterization are not real observations. They represent
the virtual reality of the averaged CRM-simulated data. We use them for the
development of the parameterization that is further introduced in CAM. CAM
has its own virtual reality, which may not be in complete agreement with the
averaged CRM-simulated data, and therefore, with the NN parameterization
trained on pseudo-observations derived from the averaged CRM-simulated data.
Thus, special effort may be required to synchronize or make consistent the
virtual realities of CAM and the averaged CRM-simulated data. CRM vs. GCM
mean differences for all variables selected as the NN parameterization inputs and
outputs have to be determined and compensated for (Krasnopolsky et al. 2011).
These differences are a result of CAM and CRM being two different models with
different temporal and spatial scales and resolutions, with different dynamics and
physics; they also have different boundary and initial conditions and different
forcing.

5. Creating data sets. The development set of pseudo-observations is separated into
the independent training and test/validation sets. Then the NN parameterization
is trained using the training set. Due to the inherent uncertainty of pseudo-
observations, the NN parameterization derived from these data is a stochastic
parameterization and is implemented as an ensemble of NNs (see Sect. 4.3.6).

The validation procedure for the NN parameterization consists of two steps. First,
the trained NN ensemble stochastic parameterization is applied to the test set and
error statistics are calculated. Second, the tested NN parameterization is introduced
into the GCM or in a single-column GCM to validate its behavior in the model
simulations. This last step is the most important step of the validation process.

NN Emulation for Superparameterizations

The concept of superparameterization and its particular implementation was intro-
duced in subsection “Multiscale modeling framework or superparameterization”
of Sect. 4.1.1. As can be seen from this description, the superparameterization is
similar conceptually to a regular parameterization of model physics. At each time
step, the superparameterization (the embedded CRM) receives a vector of input
parameters X, which describes a state of the atmosphere in this column in terms
of the GCM variables. After integration of the CRM in the column of the GCM, it
returns back to the GCM a vector of output parameters Y, which describes the phys-
ical forcing for this column in terms/variables of the GCM. As a result, the entire



4.3 Atmospheric NN Applications 99

superparameterization, from a mathematical point of view, can be considered as a
mapping. Taking into account the physical and mathematical properties of the CRM,
this mapping is continuous or almost continuous (may contain finite discontinuities
like step functions) and can be emulated by an NN with a specified accuracy.

However, as in the previous section, which considered developing a new NN
parameterization based on CRM-simulated data, in the case of emulating superpa-
rameterization, a stochasticity (random behavior) emerges in the problem because
of unaccounted variability related to the initial conditions, �, that are remembered by
the embedded CRM between the CAM time steps. The initial conditions are hidden
from the CAM environment. Thus, the SP should be considered as a stochastic
mapping (2.1a), Y D F(X, �). As a result, uncertainty will emerge in the simulated
data, which cannot be accounted for by a single emulating NN. Thus, an ensemble
of NNs is better suited for emulating the superparameterization than a single
emulating NN.

The principal direct benefit of the NN superparameterization would be signifi-
cantly enhanced computational performance over the current MMF. We can imagine
using a faster model in many ways: (1) Increase the resolution of the CRM at 2-D
or perhaps go to a 3-D CRM in the MMF. This is computationally intensive but is
doable if we only need to create a training set. (2) Increase the vertical resolution
of the MMF (both outer grid and CRM), which would have a significant positive
impact on model performance. (3) Investigate the performance of the MMF as a
global climate model. This includes an entire range of potential experiments, such
as adding an ocean model and/or running the model over a range of increased
greenhouse gas concentrations.

4.3 Atmospheric NN Applications

In this section, several complex weather- and climate-related NN applications are
introduced to illustrate the approaches presented in the previous sections of Chap. 4.
Four different GCMs are used in these applications:

• The NCAR CAM (see J. Climate 1998, for a detailed description of this model)
is a spectral model that has 42 spectral components (or approximately 3ı–3.5ı
horizontal resolution) and 26 vertical levels (T42L26). The results presented
below were obtained using earlier versions of NCAR CAM, CAM-2, and
CAM-3. The atmospheric component of the model has been run using the
climatological SST.

• The NASA NSIPP (Natural Seasonal-to-Interannual Predictability Program)
model is a grid-point GCM that has 2ı � 2.5ı latitude � longitude horizontal
resolution and 40 vertical levels.

• The NCEP Climate Forecast System (CFS) (Saha et al. 2010), a state-of-the-art
GCMs, is used for climate predictions. The atmospheric component of the CFS
version used here has 126 spectral components (�1ı horizontal resolution) and

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_4
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64 vertical levels (T126L64). In CFS, the atmospheric model is coupled with the
40-level interactive MOM4 ocean model, the interactive Noah land model with
four soil levels with improved treatment of snow and frozen soil, an interactive
sea ice model with fractional ice cover and depth permitting a subgrid scale
mountain blocking, a new seasonal climatological aerosol treatment, a historical
CO2 database from global observations collected by the World Meteorological
Organization, a variable solar constant database, and historical stratospheric
volcanic aerosol distributions are also included.

• The NCEP Global Forecast System (GFS) is identical to the atmospheric
component of the CFS. However, the GFS has significantly higher spectral
resolution with 574 spectral components (�0.2ı horizontal resolution) and 64
vertical levels (T574L64) and is used for the NWP.

After applying the hybridization approach to the first-principle-based compo-
nents of these models by developing NN emulations for existing parameterizations
of model physics or new NN-based parameterizations, these models become
HGCMs.

4.3.1 NN Emulation of Model Physics Components

Here we discuss the development of NN emulations for the atmospheric model
physics components, using model radiation, both LWR and SWR parameterizations,
as examples. A similar approach can be applied to other parts of the atmospheric
physics.

LWR and SWR together comprise the total atmospheric radiation. The function
of the LWR and SWR parameterizations in atmospheric GCMs is to calculate the
heat fluxes and heating rates produced by LWR and SWR processes. As mentioned,
the entire LWR or SWR parameterizations can be represented as almost continuous
mappings (Eq. 4.5). In this section, we describe applications of the NN emulation
approach to three LWR and two SWR parameterizations in four different models
(NCAR CAM, NASA NSIPP, and NCEP CFS and GFS) – all models that have been
described in the previous sections.

An outline of the internal structure of the CAMRT LWR parameterization,
which was used in NCAR CAM (see Eqs. 4.3 and 4.4), is given in Sect. 4.1.3.
A detailed description of CAMRT LWR and SWR parameterizations can be found
in (Collins 2001; Collins et al. 2002). The input vectors for the NCAR CAM LWR
parameterization include ten vertical profiles of atmospheric temperature, humidity,
concentrations of ozone, CO2, N2O, CH4, two CFC mixing ratios, the annual
mean atmospheric mole fractions for halocarbons, pressure, and cloudiness, and
the upward LWR flux at the surface, for a total of 220 inputs. Thirty-three outputs
include a profile of the heating rates (26 outputs) and seven heat fluxes.

The input vectors for the NCAR CAM CAMRT SWR parameterization include
21 vertical profiles (specific humidity, ozone concentration, pressure, cloudiness,
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aerosol mass mixing ratios, etc.) and several surface variables, for a total of 173 and
451 inputs for CAM-2 and CAM-3, respectively. The SWR parameterization has
33 outputs. The major difference between the CAM-2 and CAM-3 SWR versions
is that CAM-3 uses significantly more information about aerosols. This extended
aerosol information is responsible for a substantial increase in the number of inputs
into the CAM-3 SWR parameterization compared with CAM-2.

The NASA NSIPP model uses the LWR parameterizations developed by Chou
et al. (2001). The input vector for the NSIPP LWR contains surface temperature
and five vertical profiles that include cloud fraction, pressure, temperature, specific
humidity, and ozone mixing rate, for a total of 202 inputs and 41 outputs.

The NCEP CFS and GFS contain a GCM version (v2.3) of the rapid radiative
transfer model (RRTM) for LWR (hereafter referred to as RRTMG-LW) (e.g.,
Mlawer et al. 1997; Iacono et al. 2000). For the CFS and GFS RRTM LWR, the
input parameters include nine profiles: atmospheric pressure, temperature, specific
humidity, ozone mixing ratio, total cloud fraction, cloud liquid water path, mean
effective radius for liquid cloud, cloud ice water path, and mean effective radius
for ice cloud, for a total of 598 inputs. RRTMG-LW has 69 outputs. CO2 is time
dependent, and so its global mean is specified as a function of time.

The SWR parameterization used in the CFS and GFS is a modified version
of RRTMG-SW (v2.3) (Clough et al. 2005). RRTMG-SW uses a fast two-stream
radiative transfer scheme and supports detailed specification of absorption and
scattering processes by clouds, aerosols, and absorbing gases (H2O, O3, CO2, CH4,
N2O, O2). Thus, in the current version of the SWR parameterization, the level
of atmospheric CO2 concentration and its time dependence is presented by the
entire 3-D CO2 field that changes with time in accordance with the change of
the mean CO2 level that increased from 350 to 380 ppmv during the period of
model integration presented here (1990–2006). The NN emulations of the SWR
parameterization have for a total of 562 inputs and 73 outputs.

It is noteworthy that in the case of the NN emulation, the number of NN inputs is
less than the number of inputs of the original parameterization, which is the number
of input profiles multiplied by the number of vertical layers plus the number of
relevant single-level variables. Many input variables (e.g., almost all gases) have
zero or constant values for the upper vertical layers, and for some gases, the entire
volume mixing ratio profile is a constant (obtained from climatological data). To
improve the accuracy of the approximation, these constant inputs were not used for
NN training. Constant inputs (zero or nonzero) do not contribute to the functional
input/output relationship and should not be used for developing NN emulations (see
Sect. 2.3.6). Moreover, if they were used, they would introduce an additional source
of noise (an approximation error).

In addition, for SWR, 2,688 inputs describing the optical depth, the single
scattering albedo, and the asymmetry parameters for 14 aerosol species were
substituted by five inputs: cos.�/, sin.�/, cos.lon/, sin.lon/, and lat, where lon
is the longitude, lat is the latitude, and � D 2 � �=T � �, where � is the month
of the year and T D 12. Such a substitution is possible because in NCEP CFS and
GFS aerosols are calculated using the specific humidity profiles and 3-D lookup

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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tables composed of global climatological monthly data, which are different for
different months of the year. Thus, the aerosol inputs to the SWR parameterization
are actually highly correlated, and, in terms of functional input/output dependences,
the aerosol characteristics are functions of lat, lon, � , and the profile of specific
humidity, q, only. Since the profile of the specific humidity is already included
in NN SWR inputs, only the five aforementioned additional variables have to be
included to allow the NN to completely emulate the contribution of aerosols into
SWR. Actually, our SWR NN emulates both the aerosol model and the SWR
parameterization in this case, as shown in Fig. 4.3.

Although both RRTMG-LW and RRTMG-SW are built with fast computation
schemes designed for GCM applications, they still represent the most time-
consuming physics in the NCEP CFS and GFS models. The percentage of the total
model computation time used by model physics and radiation (LWR and SWR)
varies depending largely on the horizontal and vertical resolutions, the time step,
the frequency of radiative calculations, and the computing environment (e.g., the
number of processors and threads). For example, in a CFS configuration at the
T126L64 resolution, with the RRTMG-LW and RRTMG-SW both called every
hour, the portion of the radiation computation time is about 57 % of the total
atmospheric GCM model computation time.

For all of these radiation schemes, the LWR and SWR output vectors consist
of the vertical profiles of heating rates (HRs) and radiation fluxes, including the
outgoing LWR (or OLR) flux from the top layer of the model atmosphere.

4.3.2 Generating the Training Set

The entire coupled model (for NCEP CFS) or the atmospheric component of the
model (for NCAR CAM and NCEP GFS) was run for several years. The NCEP
CFS model was run continuously for 10 years and the NCAR CAM for two years.
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All inputs and outputs of the original LWR and SWR parameterization have been
saved over the globe for 2 days per month, i.e., for 1 day at the beginning and 1 day
in the middle of the month, every 3 h (eight times per day) to cover the annual and
diurnal cycles, which constituted 1,920 global data sets for NCEP CFS and 384
global data sets for NCAR CAM. For the NCEP GFS NWP model, during 1 year,
a 10-day forecast was run each first and fifteenth day of the month. All inputs and
outputs of the original LWR and SWR parameterizations have been saved over the
globe eight times per day during each day of the 10-day forecast. Thus, 1,920 global
data sets have been generated for NCEP GFS. About 300 data records for NCEP
CFS and GFS and 1,500 data records for NCAR CAM have been randomly selected
from each global data set. Each record consists of a combination of the radiation
inputs and outputs at a particular horizontal location for all vertical levels. A total
collection of about 600,000 radiation inputs and outputs was divided into three
independent parts, each containing about 200,000 input/output vector combinations
(records). The first part was used for training, the second for validation (control
of overfitting and control of NN architecture), and the third part for testing the
approximation quality. All approximation statistics presented in this chapter were
calculated using the independent test data set. The accuracy of the NN emulation,
i.e., mean errors (or biases) and rmse, is calculated against the control (the original
parameterization).

4.3.3 NN Emulations for the Model Radiation

In Sect. 4.3.1, the selection of inputs and outputs of NN emulations for model LWR
and SWR parameterizations was discussed. Here the selection of the number of
hidden neurons for the emulating NNs is discussed. Also the bulk approximation
statistics for different models are compared, and the NN emulation performances
vs. the original parameterization are evaluated.

Selecting the Number of Hidden Neurons

The NN emulation of the NCAR CAM LWR parameterization has the same number
of inputs (220 total) and outputs (33 total) as the original NCAR CAM LWR
parameterization. Several emulating NNs have been developed that all have one
hidden layer with 20–300 neurons. Varying the number of hidden neurons, k, allows
us to demonstrate the dependence of the accuracy of the NN emulation on this
parameter, which is actually a measure of the complexity of the NN emulation (2.4),
as well as to select an “optimal” NN emulation with the minimal complexity (see
Sect. 2.5). This is an emulation that has the accuracy sufficient for successful multi-
decadal climate model integration.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 4.4 The convergence of root mean square errors (4.8, 4.9, and 4.11) for NNs with different
number of hidden neurons, k, emulating the NCAR CAM LWR parameterization. Solid line,
RMSEm (4.9) for m D 26; dashed line, RMSE (4.8); and dotted line, PRMSE (4.11)

All NN emulations developed for the NCAR CAM LWR have negligible
systematic errors (biases). Figure 4.4 illustrates convergences of root mean square
errors (4.8, 4.9, and 4.11) calculated using an independent test data set. These
errors are random errors in the case of negligible biases. The figure shows that an
error convergence has been reached when the number of hidden neurons k � 100.
However, the convergence becomes slow and non-monotonic at k � 50.

The final decision about the optimal NN emulation (in terms of sufficient accu-
racy and minimal complexity) to be implemented into the model is based on decadal
(50 year) integrations using the NN emulations within HGCM (see Sect. 4.3.4)
(Krasnopolsky et al. 2005a; Krasnopolsky and Fox-Rabinovitz 2006a, b). The NN
emulation with k D 50 is the simplest NN emulation that could be integrated into
the model for decadal (50 years or longer) climate simulations without any visible
(significant) accumulations of errors in the climate simulations, compared to the
control run using the original LWR parameterization. This is the primary indicator
that the accuracy of the NN emulation is sufficient for this application.

Figure 4.5 shows the vertical error profile (4.12) prmse(j) (right panel, solid line)
for the “optimal” NN emulation of NCAR CAM LWR with 50 hidden neurons
(k D 50). It shows that the errors are very small; at the top 10 levels, the error does
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Fig. 4.5 Vertical distributions of NN emulation errors rmsep (4.12) for two models: the right
panel, NCAR CAM (26 vertical layers), and the left panel, NCEP CFS (64 vertical layers). Solid
line corresponds to LWR and dashed line to SWR. The obvious difference between NCAR CAM
and NCEP CFS errors at the lower levels is due to the fact that the majority of additional (as
compared to NCAR CAM) vertical levels in NCEP CFS are introduced in and near the surface
boundary layer; thus, the errors in the lower part of the left panel are significantly magnified
in the right panel. Actually, in terms of the height, the errors and their vertical distributions are
similar for both models (Krasnopolsky et al. 2010 (©) American Meteorological Society. Used
with permission)

not exceed 0.2 K/day; at the top 20 levels, it does not exceed 0.3 K/day and reaches
0.6–0.8 K/day at the lowest level, which does not lead to significant errors in the
50-year climate simulations with HGCM. In addition to having sufficient accuracy,
the NN emulation performs about 150 times faster than the original NCAR CAM
LWR parameterization in a code-by-code comparison.

The same approach has been used to select the optimal number of hidden
neurons, k, for all other emulations presented here. Thus, k D 55 was selected
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Table 4.1 Statistics for estimating the accuracy of the HR calculations (in K/day) and the
computational performance of the NN LWR emulation vs. the original parameterization for NCAR
CAM (T42L26), NSIPP model (40 vertical levels), and NCEP CFS (T126L64) LWR

NCEP CFS (L D 64)

Statistics
NCAR CAM
(L D 26)

NASA NSIPP
(L D 40) RRTMG

Change due
to balancing RRTMF

Total error
statistics

Bias 3. � 10�4 3. � 10�4 2. � 10�3 6. � 10�4 7. � 10�4

RMSE 0.34 0.22 0.49 1. � 10�4 0.42
PRMSE 0.28 0.14 0.39 3. � 10�4 0.30
�PRMSE 0.2 0.16 0.31 1. � 10�4 0.30

Bottom layer
error
statistics

Bias �2. � 10�3 3. � 10�3 �1. � 10�2 �6. � 10�4 6. � 10�3

RMSE 0.86 0.41 0.64 1. � 10�5 0.67

Top layer
error
statistics

Bias �1. � 10�3 �5. � 10�3 �9. � 10�3 6. � 10�4 2. � 10�3

RMSE 0.06 0.1 0.1782 4. � 10�3 0.09

NN complexity nC 490 397 520 – 1,468
Speedup, � Times 150 – 16 (20) – 21

Total statistics show the bias, RMSE (4.8), PRMSE, and �PRMSE (4.10) for the entire 3-D HR
fields. Layer (for the top and bottom layers) statistics show the bias and RMSE (4.9) for one
horizontal layer (the top or bottom layer). Also, the changes in statistics due to the balancing
procedure (see section “Balancing LWR and SWR heating rate”) are shown for RRTWG (RRTMG
and RRTMF are different versions of the radiation code developed by AER Inc. (see Sect. 4.3.1
and references there)) LWR and SWR NN emulations. The NN complexity nC (2.4a) and average
speedup � are also shown. (Here � shows an averaged (over a global data set) speedup or how many
times NN emulation is faster than the original parameterization in a single processor code-by-code
comparison; the number in parentheses shows the speedup in multiprocessor environment.)

for the NN emulation of NCAR CAM SWR parameterization and k D 75 for
both NCEP LWR and SWR parameterizations to obtain comparable accuracies of
approximation.

Bulk Approximation Statistics

The NN emulations have been validated against the original LWR and SWR
parameterizations. To calculate the error statistics presented in Tables 4.1 and 4.2
and in Fig. 4.5, the original parameterizations and their NN emulations have been
applied to the validation data set. Two sets of corresponding HR profiles have been
generated for both LWR and SWR. Total and level mean differences (biases or mean
errors), RMSEs (4.8 and 4.9), profile RMSE or PRMSE (4.11), and rmsep (4.12) have
been calculated.

As can be concluded from Tables 4.1 and 4.2 and from Fig. 4.5, NN emulations
for both LWR and SWR successfully handle the nonlinearity at the top of the
atmosphere where mean differences and RMSEs are very small with RMSEs
being even smaller than the total RMSE. In the bottom layer, the nonlinearity

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Table 4.2 Statistics for estimating the accuracy of the HR calculations (in K/day) and the
computational performance of the NN SWR emulation vs. the original parameterization for NCAR
CAM (T42L26) and NCEP CFS (T126L64)

NCEP CFS (L D 64)

Statistics
NCAR CAM
(L D 26) RRTMG

Change due
to balancing

Total error statistics Bias �4. � 10�3 5. � 10�3 �3 � 10�3

RMSE 0.19 0.20 �5. � 10�3

PRMSE 0.15 0.16 �5. � 10�3

�PRMSE 0.12 0.12 1. � 10�3

Bottom layer error statistics Bias �5. � 10�3 9. � 10�3 �8. � 10�3

RMSE 0.43 0.22 �0.01
Top layer error statistics Bias 2. � 10�3 1.3 � 10�2 4. � 10�3

RMSE 0.17 0.21 1. � 10�3

NN complexity nC 439 706 –
Speedup, � Times 20 60 (88) –

Total statistics show the bias, RMSE (4.8), PRMSE, and �PRMSE (4.10) for the entire 3-D HR fields.
Layer (for the top and bottom layers) statistics show the bias and RMSE (4.9) for one horizontal
layer (the top or bottom layer). Also, the changes in statistics due to the balancing procedure (see
section “Balancing LWR and SWR heating rate”) are shown for RRTWG SWR NN emulations.
The NN complexity nC (2.4a) and average speedup � are also shown

does not cause significant increases in mean differences; the RMSEs increase by
approximately a factor of two but they remain sufficiently small.

It is noteworthy that the approximation errors are identified as being “sufficiently
small” if they are of such a small magnitude that they have almost negligible impacts
on model behavior as demonstrated below and by Krasnopolsky et al. (2008a, 2010)
for NCAR CAM and NCEP CFS and GFS. Only validations of NN emulations in
parallel model runs allow us to finally conclude that the approximation errors are
sufficiently small.

In terms of the accuracy statistics presented, there are practically no differences
between NCAR CAM with 26 vertical layers, NASA NSIPP with 40 vertical layers,
and NCEP CFS with 64 vertical layers. This fact illustrates the robustness of the
NN emulation approach with respect to the changes in the model vertical resolution.
As shown in Fig. 4.5, the entire vertical distributions of errors (for both LWR and
SWR) are similar for NCEP CFS and NCAR CAM. Thus, the accuracy of our
NN emulation approach does not depend significantly on vertical resolution of the
model. However, it does depend on the vertical location of the atmospheric layer.
Finally, we note that the layer RMSE increases near the surface for all models.

Estimation of Speedup

The NN complexity nC (2.4a) and average speedup � (how many times NN
emulations are faster than the original parameterization) are also shown in Tables 4.1

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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and 4.2. The NN complexity per output, nC, is used because NNs with different
number of outputs are compared here. In this case, nC provides a more adequate
metric for comparisons. For the LWR parameterization, we see a significant
decrease in the speedup for NCEP CFS with 64 vertical layers vs. NCAR CAM
with 26 vertical layers, although the LWR NN emulation for NCEP CFS is still 16
times faster than the original parameterization. For the SWR parameterization, the
opposite tendency is observed; that is, the NCEP CFS SWR NN is more than three
times faster than the NCAR CAM SWR NN.

These seemingly contradictory speedups for LWR and SWR emulations can be
explained (for detailed discussion of this topic, see Krasnopolsky et al. 2010) by
the interplay of the two main contributing factors: the physical and mathematical
complexities (see Sect. 2.2.2) of the radiation calculation itself (the number of
treated species, spectral bands, parameterization schemes, etc.) and the dependence
of the particular numerical scheme implemented in the radiative transfer on the
number of vertical layers in the model. The results presented in Tables 4.1 and
4.2 illustrate the fact that the numerical scheme implemented in the NCEP CFS
RRTMG-LW parameterization is significantly more efficient (linear with respect
to the number of vertical levels L) than that of the original NCAR CAM LWR
parameterization (quadratic with respect to L). Thus, a smaller speedup factor is
produced by the NN emulation for NCEP CFS LWR than that of NCAR CAM
LWR.

The NCEP CFS’s RRTMG-SW includes more spectral bands and uses more
complex treatment for a larger variety of absorbing/scattering species; thus, NN
emulation shows a larger speedup value � than that of NCAR CAM SWR. In
any case, the NN emulation approach is significantly less dependent (in terms of
both the accuracy and speedup) on the increase of vertical resolution than the NN-
based hybrid LWR parameterization NeuroFlux (Sect. 4.2.1), where with a vertical
resolution of 60 layers and more, both accuracy and speedup could not be achieved
simultaneously (Morcrette et al. 2008). For the NN emulation approach, for the
model with 64 vertical layers, the desired accuracy of the NN emulation could be
achieved simultaneously with a significant speedup of �16 times for the LWR and
of �60 times for the SWR parameterizations.

The radiative transfer calculations take different times under different cloud
conditions because of the varying complexity of cloud-radiation interaction. More
detailed estimations of speedup have been separately performed for three different
types of cloudiness: clear sky, three cloud layers, and a more complex cloud
condition where deep convection occurs. Three thousand profiles have been used for
each test. The results for the calculation time and speedup are presented in Table 4.3.
For a more complex cloud-radiation interaction (deep convection), the calculation
of the original LWR and SWR parameterizations takes �22 and �57 % more time,
respectively, than for clear sky conditions. Obviously, the time required for the NN
radiation calculations does not depend on the cloud conditions. Thus, the speedup
is significantly higher for more complex cloud-radiation interactions.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Table 4.3 Comparison of calculation time and speedups � for LWR and SWR RRTMG original
parameterizations and NN emulations (time is shown per 3,000 profiles) under different cloud
conditions

Parameterization LWR RRTMG SWR RRTMG

Type of cloudiness Clear Sky
3-layer
clouds

Deep
convection Clear sky

3-layer
clouds

Deep
convection

Original
parameterization
(time in sec)

9.6 10.1 11.7 33.8 42.8 52.9

NN (time in sec) 0.6 0.6 0.6 0.6 0.6 0.6
� (times) 16 16.8 19.5 56 71 88

The calculations were performed using a single processor of an IBM Power 6 supercomputer

As Table 4.3 shows, the average speedup presented in Tables 4.1 and 4.2 is
closer to the minimal speedup obtained under clear sky conditions. The results
presented in Tables 4.1, 4.2, and 4.3 were obtained in a code-by-code comparison
and represent adequately the situation when the model is run on a single processor.
However, if we compare the control model run using the original parameterizations
with the NN run when both runs use multiple processors and threads, the actual
speedup will be significantly higher and closer to the maximum value shown in
Table 4.3 because it will be determined by the slowest calculation, which is the deep
convection condition. Radiation in the control run for all other cloud conditions is
calculated faster, but the next integration time step will not start before the radiation
calculations for the deep convection condition are completed; at the same time, the
time for the radiation calculations in the NN run does not depend on the cloud
conditions. Thus, in the case of parallel calculations utilizing multiple processors
and threads, in addition to a significant speedup, the use of the NN emulations in the
model provides an additional advantage, namely, it helps to achieve a significantly
better load balance.

Using NN emulations simultaneously for LWR and SWR or for the full model
radiation, results in an overall speedup of about 20–25 % for the NCEP CFS climate
simulations and seasonal predictions when both LWR and SWR are calculated every
hour. The speedup � provided by NN emulations (see Tables 4.1 and 4.2) can be also
used for more frequent calculations of model radiation.

Balancing LWR and SWR Heating Rates

For both LWR and SWR parameterizations, the parameterization output vectors
consist of the vertical profile of cooling or heating rates (HRs) and several
radiation fluxes at the top and the bottom of the atmosphere. There exists an
integral relationship between pressure, heating rates, and fluxes. For example, this
relationship for the imbalance, ", can be written as
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Ftup � Fsup C Fsdn for LWR
Ftup � Ftdn � Fsup C Fsdn for SWR

(4.13)

where ˛k D .pk � pk�1/ =G; pk and hk are pressure and heating rate at a vertical
level k, G is a constant, Ftup is the total sky outgoing LWR or SWR flux at the
top of the atmosphere, Ftdn is the total sky downward SWR flux at the top of the
atmosphere, Fsup is the total sky upward LWR or SWR flux at the surface, and Fsdn

is the total sky downward LWR or SWR flux at the surface.
The outputs of the original radiation parameterizations satisfy the relationship

(4.13) with high accuracy because these relationships are explicitly (or implicitly)
included into the parameterizations. Obviously, the outputs of the NN emulations
will satisfy (4.13) only approximately, i.e., in this case, the imbalance "¤ 0;
however, " is small. For example, for the RRTMG LWR NN emulation presented in
Table 4.1, the mean value for " is 6.5 � 10�4 K/day. A correction can be introduced
for the heating rates, given by Qhk D hk C ": The correction makes the balanced
heating rates Qhk satisfy the relationship (4.13). This correction is very small and,
as the results presented in Tables 4.1 and 4.2 show, this balancing procedure does
not significantly affect the overall accuracy of LWR NN and marginally improves
the overall accuracy of SWR NN. However, it is noteworthy that the heating rates
produced by the NN emulation can be easily balanced by using (4.13).

4.3.4 Validation of NN Emulations in Parallel Decadal Climate
Simulations and Weather Forecasts

In this section, the ultimate validation of NN emulations – comparisons between
two parallel runs of the model – is presented. One run, which is called “control
run,” uses the original LWR and SWR parameterizations and the other, the NN run,
uses their NN emulations. Both spatial and temporal characteristics of prognostic
and diagnostic fields are compared for the parallel runs. Such validations have been
performed using decadal climate simulation runs for NCAR CAM and NCEP CFS
and 8-day forecasts runs for NCEP GFS weather forecast. Only the validation of
NN emulations in the model can ultimately determine if the approximation accuracy
evaluated in the previous sections is sufficient for NN emulations to be used in the
model in place of the original parameterizations.
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Measures of Impact of Using NN Emulations for the Full Model Radiation

To evaluate the NN-induced changes, the differences between the runs have been
compared with such commonly used measures as observation errors or uncertainties
of the reanalysis. We show that the differences are smaller than these conventional
measures.

Intuition suggests that the differences might be made even smaller if the accuracy
of the NN emulations were better (the approximation errors presented above were
smaller) and, in the limit, the differences would run to zero with increasing NN
emulation accuracy. However, in this case, as in many cases when we deal with
complex nonlinear systems, our intuition does not provide us with reliable guidance.
Because a GCM (NCAR CAM or NCEP CFS or GFS) is an essentially nonlinear
system, it may produce something akin to the “butterfly effect,” that is a significant
reaction/response even to small perturbations in the model or in the model computa-
tional environment (e.g., routine changes in computer hardware, operational system,
compilers, libraries). Any, even infinitesimal change in model formulation, initial
conditions or computational environment may make two model integrations diverge,
with the effect that after the deterministic predictability is lost (which takes just
weeks for the atmosphere, although longer for the ocean), the timing and location of
weather patterns becomes essentially independent for the two integrations. Hence,
the two control model runs produced with the aforementioned small changes
provide, in essence, two independent samples of the model’s climatology, and their
difference represents the model’s internal variability. Thus, the internal variability of
the model provides an estimate of the uncertainty of climate simulations and plays
for climate simulations the same role that observational noise does for observations.
Therefore, from a practical point of view, if changes introduced in the model lead to
the changes in climate simulations of the order of the model internal variability, the
impact of the changes can be considered negligible.

In order to emphasize how small the changes introduced by the use of NN
emulations are, for the NCEP CFS, the model’s internal variability was estimated
and used for comparison. If the differences/changes introduced in the model
results by using the NN emulation are of the same order of magnitude as the
aforementioned model’s internal variability, it demonstrates that, from the practical
point of view, the approximation error of the NN emulation is negligible and,
therefore, the NN’s accuracy is sufficient for the use in the model. A very important
conclusion for the NN emulation training is that, for NN emulations to be used in
a complex nonlinear environment, the accuracy of the NN emulation should not
exceed the natural internal variability of the environment; otherwise, problems as
overfitting (fitting the noise as well as the signal) may occur.

To estimate the model’s internal variability, we produced two control runs with
the original NCEP CFS model configuration, i.e., without NNs. The first run was
performed before and the second run after the routine changes (introduced quasi-
regularly by system administrators) of the version of the FORTRAN compiler and
FORTRAN libraries. Small differences between these two runs (which are similar
to those due to changes in a computer operation system and/or in hardware) are
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shown below for NCEP CFS together with the differences between the parallel NN
and control runs for comparison, as an additional measure of the NN emulation
accuracy.

Comparison of Parallel Runs

Two forty-year (1961–2001) parallel climate simulation runs (control and NN runs)
have been performed for NCAR CAM. For NCEP CFS, three 17-year (1990–2006)
parallel climate simulations have been performed: one NN run and two control runs
(see previous section). A series of 8 day weather forecasts have been performed
(both control and NN runs) for NCEP GFS. For the climate runs, the differences
between the parallel runs have been analyzed in terms of spatial (global) means as
well as temporal characteristics. For weather forecasts, statistical metrics routinely
used in NWP (like anomaly correlation) have been employed. Here only selected
results are presented to illustrate the NN emulation performance; for detailed
analysis and discussion, see Krasnopolsky et al. (2008b, 2010, 2012).

First, the differences between the parallel simulations in terms of spatial and
temporal radiation characteristics are presented. Figure 4.6 shows zonal and time-
mean SWR heating rates (in K/day) for the NN run (the upper left panel), the control
run (the upper right panel), and their difference (the bottom panel) for NCAR
CAM 40-year runs. The zonal mean is a 2-D field obtained from the 3-D field of
HRs, depending on lat, lon, and a vertical coordinate, i.e., pressure or height, by
integrating over the longitude. The HR patterns (the upper panels) are very similar
and the differences (the bottom panels) are small; they do not exceed 0.1 K/day. It is
noteworthy that the HR differences in SWR are a bit larger near the surface because
the HRs are larger there (Fig. 4.6).

The differences between the NN and control parallel runs and the differences
between two control parallel runs for zonal and time-mean LWR and SWR fluxes are
presented in Fig. 4.7 for NCEP CFS 17-year runs. The upper row of Fig. 4.7 shows
the differences for zonal and time-mean top of atmosphere upward long (left panel)-
and short (right panel)-wave fluxes (in W/m2) for winter. The lower row of Fig. 4.7
shows the differences for zonal and time-mean downward (left panel) and upward
(right panel) surface LW fluxes (in W/m2). For the fluxes presented in Fig. 4.7,
both the differences between the NN radiation and control runs (solid lines) and the
differences between two control (dashed lines) runs (the model internal variability)
are small and similar in magnitude. They do not exceed 2–3 W/m2, i.e., they are
within observational errors and uncertainties of the reanalysis (e.g., Kalnay et al.
1996; Kistler et al. 2001). The similarity of the differences in magnitude indicates
that the differences between the NN radiation and control runs are comparable with
the model’s internal variability; thus, from the practical point of view, they are
negligible.

Next, Fig. 4.8 shows the NCAR CAM global temperature field, a prognostic
variable, at height of 850 mb. The horizontal fields presented in the upper and
middle panels are very similar. From the difference field (the bottom panel),
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Fig. 4.6 The NCAR CAM zonal and time (1961–2001) mean SWR heating rates, in K/day, for
the NN run (the upper left panel), the control run (the upper right panel), and their difference (the
bottom panel). Zonal mean is a 2-D field obtained from the 3-D field of HRs, depending on lat,
lon, and a vertical coordinate, by integrating over longitude. Thus, the horizontal axis represents
latitude

the bias is very small (�0.06 K), RMSE is small (0.34 K), and minimum and
maximum values (��1.6 K and �0.9 K) are well within observational or reanalysis
errors/uncertainties.

Figures 4.9 and 4.10 show total precipitation and total cloud fields for NCEP
CFS. These fields are very sensitive to any changes in the model and, therefore,
provide a sensitive indicator of the accuracy of NN emulations. Highly similar
results have been obtained for these parallel runs in terms of the time-mean spatial
fields presented in Figs. 4.9 and 4.10. The figures contain two rows: The upper row
shows fields produced by the control (left) and full NN radiation (right) runs, and the
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Fig. 4.7 The upper row: the differences for NCEP CFS zonal and time (1990–2006) mean of the
top of atmosphere upward long (left panel)- and short (right panel)-wave fluxes (in W/m2) for the
winter. The solid line is the difference of the full radiation NN run and the control (CTL), and the
dashed line is the difference between two control runs (the model internal variability) presented
for comparison. The lower row: the differences for zonal and time annual mean downward (left
panel) and upward (right panel) surface long-wave flux (in W/m2). The zonal mean shows a curve
obtained from the 2-D field of radiation flux, depending on lat and lon, by integrating over the
longitude. The flux differences are multiplied by cos(lat) to equalize the areas (Krasnopolsky et al.
2010) (©) American Meteorological Society. Used with permission

lower row shows the difference fields, i.e., the differences between the full radiation
NN run and the control run (left) and the differences between two control runs (i.e.,
model’s internal variability) presented for comparison (right).

Figure 4.9 shows the 17-year (1990–2006) time-mean distributions and differ-
ences for total precipitation rate for summer, and Fig. 4.10 presents the 17-year
(1990–2006) time-mean distributions and differences of total clouds for winter for
the parallel full radiation NN and control runs. The precipitations and cloud patterns
for parallel total radiation NN and control runs are very close. The precipitation rates
and cloud mean differences are quite limited and occur mostly in the tropics; they
are also very close in magnitude (as well as RMSEs) and pattern to the model’s
internal variability. The results for other seasons are similar.
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Fig. 4.8 The NCAR CAM time-mean (1961–2001) temperature at 850 hPa, in K, for the full
radiation NN run (the upper panel), the control run (the middle panel), and their difference (the
bottom panel)

After validating the NN radiation at the climate time scales and spatial resolutions
in decadal climate simulations, the NN radiation was introduced in a NWP model,
the NCEP GFS, and tested at weather time scales and spatial resolutions in a series
of 8-day forecasts. The LWR and SWR emulations with 100 hidden neurons have



116 4 Applications of NNs to Developing Hybrid Earth System Numerical Models. . .

Fig. 4.9 The NCEP CFS time-mean (1990–2006) total precipitation rates for summer (JJA) for
the parallel full radiation NN and control runs. The upper row panels: left, the control (CTL), and
right, full radiation NN run. The bottom row panels: left, the difference (full radiation NN run –
CTL), and right, the model internal variability for comparison. The contour intervals for the fields
are 1 mm/day for the 0–6 mm/day range and 2 mm/day for the 6 mm/day and higher. The contour
intervals for the differences (the bottom panels) are 1 mm/day

been selected for an initial validation because they appear to be acceptable in terms
of both accuracy and minimal complexity. A series of 8-day forecasts has been run
using the GSF model. The comparisons of anomaly correlations (AC), biases, and
RMSEs have been performed for instantaneous model prognostic and diagnostic
fields produced at each day of the 8-day forecasts. The NN radiation and control
runs are very close in terms of statistics that were calculated. For example, Fig. 4.11
shows the AC, which is a statistical measure of correctness of the forecast. AC can
be calculated using the following equation (Krishnamurti et al. 2003):

AC D
Pnh

.Tf � Tc/ � �
Tf � Tc

�i �
h
.T� � Tc/ � .T� � Tc/

io

r
Ph

.Tf � Tc/ � �
Tf � Tc

�i2 �P
h
.T� � Tc/� .T� � Tc/

i2
(4.14)

where the suffix f denotes the forecast, suffix c denotes climatology, and suffix
v stands for verifying analysis. The overbar is the global (area) mean and T is
the global temperature. The summation is performed over all grid points of the
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Fig. 4.10 The NCEP CFS time-mean (1990–2006) total clouds for winter (DJF) for the parallel
full radiation NN and control runs. The upper row panels: left, the control (CTL), and right, full
radiation NN run. The bottom row panels: left, the difference (full radiation NN run – CTL), and
right, the model internal variability for comparison. The contour intervals for the cloud fields are
10 % and for the differences are 5 %
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Fig. 4.11 Anomaly correlation at 500 mb for the global temperature field. Black line, control GFS
run with the original LWR and SWR parameterizations; green line, GFS run with NN SWR and
the original LWR parameterization; and the red line, GFS run with NN SWR and NN LWR
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horizontal global grid. In general, the closer AC is to 1, the better the forecast;
AC usually decreases with the increasing the forecast time.

Figure 4.11 shows AC for the temperature at a height of 500 hPa. It demonstrates
that NN LWR, which is about 20 times faster, and NN SWR, which is about 60 times
faster than the original RRTM LW and SW radiation codes, respectively, are very
accurate and do not degrade the accuracy of the GFS 8-day 500 hPa temperature
forecast for this case. Similar results have been shown for the entire series of 8-day
forecasts (Krasnopolsky et al. 2012).

Normalization of NN Outputs, and an Array of NNs Versus a Single NN

In Sects. 2.3.4 and 2.3.5, a choice of the NN emulation architecture (an array or
a battery of NNs vs. a single NN) and different normalizations of NN outputs
have been discussed. Here these topics are illustrated using an example of NN
emulations of the NCAR CAM LWR parameterization (see also Krasnopolsky and
Fox-Rabinovitz 2006b).

For a single NN with multiple outputs, the normalization of outputs affects
the approximation accuracy more significantly than for an NN with a single
output. Figure 4.12 illustrates the dependence of approximation errors, at the
different vertical model levels, on the type of output normalization. The right
panel shows the absolute approximation rmsep (Eq. 4.12) for LWR heating rates in
K/day; the left panel shows the relative approximation rmsep normalized at each
vertical level using the standard deviation (�q) of the heating rate at this level,
q. The dotted curve corresponds to the [�1.,1.] output normalization (Eq. 2.6).
It is clear that this normalization deemphasizes in the error function the vertical
levels with small �q (levels 13–18) and large �q (levels 0–3), leading to larger
and vertically nonuniform errors, both absolute and relative. The normalization
(Eq. 2.8) for the case of multiple outputs is introduced to accelerate the training
of linear weights in the output layer of the NN. In the case of multiple outputs,
this normalization leads to very different approximation errors (dashed curves) as
compared with the normalization (Eq. 2.6). This normalization leads to a more
uniform vertical distribution of relative errors (left panel) and significantly reduces
relative and absolute errors at vertical levels with small �q (levels 13–18); however,
it significantly increases the errors at vertical levels with large �q (levels 0–3).

A distribution (not shown in Fig. 4.12), very similar to the dashed distribution
of errors, is produced by the array of 33 single-output NNs, each of which uses
normalization (Eq. 2.6). In both cases, information about correlations between
outputs is lost and not used during the NN training (see Sect. 2.3.5).

A compromise between the normalization (Eq. 2.6) and normalization (2.8) can
be reached using the normalization (Eq. 2.9). The errors for this normalization
are also shown in Fig. 4.12 (solid curves). For different applications of the NN
emulations, different types of error distribution may be desirable; smaller absolute
or relative errors may be preferable. Different output normalizations in the case of
a single emulating NN with multiple outputs may provide a tool for managing this
type of problems.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 4.12 LWR NN emulation errors for NCAR CAM. Vertical profiles of rmsep (Eq. 4.12) of
LWR HRs at each of 26 model vertical levels for different architectures of the LWR NN emulation
and for different types of output normalizations. The left panel shows relative rmsep in units of
the standard deviations of LWR HRs calculated at the same vertical level. The right panel shows
the absolute rmsep in K/day. Solid, dashed, and dotted lines show rmsep for three single NNs with
33 outputs and 150 hidden neurons each. Dotted lines correspond to the output normalization
(Eq. 2.6), and dashed and solid curves correspond to the normalizations Eqs. (2.8) and (2.9),
respectively

If single-output NNs are used, a battery of 33 NNs should be trained to emulate
the LWR parameterization. An array of NNs with approximation accuracy close to
that of a single NN with 150 neurons (e.g., Fig. 4.12, solid line) has a total of about
450 hidden neurons; therefore, taking into account the correlation of outputs by
using a single emulating NN with multiple outputs allows us to obtain a performance
gain (a calculation speedup) of about three times (for the same approximation
accuracy) when using a single NN with multiple outputs.

4.3.5 Compound Parameterization for NCAR CAM
Short-Wave Radiation

In subsection “Compound and adjustable parameterizations, quality control of NN
emulations” of Sect. 4.2.2, the basic concepts associated with QC are discussed.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 4.13 Compound parameterization design for the NCAR CAM SWR. For a SWR NN
emulation, additional NN (Error NN) is trained specifically for predicting the errors, Y", in the NN
emulation output YNN for a particular input, X. If these errors do not exceed a predefined threshold
(in this case, the mean value plus two standard deviations), the SWR NN emulation is used;
otherwise, the original SWR parameterization is used instead of the NN emulation. The auxiliary
training set (ATS) is updated each time when QC requires using the original parameterization
instead of the NN emulation. ATS is used for the following adjustments of the NN emulation

Here an example of a practical solution to this problem for NN emulations of the
NCAR CAM SWR parameterization (see also Krasnopolsky and Fox-Rabinovitz
2006b; Krasnopolsky et al. 2008a) is presented.

An effective QC design is based on training an additional NN to specifically
predict the errors of the NN emulation outputs for a particular input. The “error”
NN has the same inputs as the NN emulation and one or several outputs, which
predict errors of outputs generated by the NN emulation for these inputs. In the
example presented here, an error metric that produces one integrated error for all
outputs, prmse (Eq. 4.10), is used; thus, the error NN has one output.

The original parameterization, its NN emulation, the error NN, and the QC block
constitute the CP, whose design is shown in Fig. 4.13. During the model integration,
CP works in the following way: If the error predicted by the error NN does not
exceed a predefined threshold, the NN emulation is used; otherwise, the original
parameterization is used.

For the SWR NN emulation described in the Sect. 4.3.3 (using an NN with
one hidden layer that contains 55 neurons and a linear output layer), an error NN
was trained which predicted the SWR NN output error prmse(i) (Eq. 4.10) for
each particular input vector Xi. The mean value of prmse, PRMSE, and its SD, �
(Eq. 4.11), are used in the QC block for calculating the threshold value.

Errors predicted by the error NN are close to the actual errors of the NN
emulation calculated for the same input vector. Figure 4.14 shows the results of
the calculations performed with the test data set containing more than 100,000 input
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Fig. 4.14 The correlation
(a binned scatter plot)
between the actual error
(prmse of the SWR NN
emulation) and the error
predicted by the error NN.
Both errors are calculated vs.
the original parameterization
on an independent test data
set. The correlation
coefficient between the two
errors is 0.87

records. For each of the inputs, the error predicted by the error NN and the actual
error of the NN emulation have been calculated. The actual errors of the SWR NN
emulation were binned, and for each bin, a corresponding mean error predicted by
the error NN was calculated and plotted as a curve vs. the actual errors of the SWR
NN emulation.

Figure 4.14 shows a very strong correlation between the error predicted by the
error NN and the actual error of the SWR NN emulation calculated vs. the SWR
original parameterization on an independent test data set. The dependence, linear
for small errors, becomes nonlinear for larger errors. A high correlation coefficient
(0.87) is obtained between these two errors calculated on the entire test data set.

Figure 4.15 shows the comparison of two error probability density functions.
One curve (solid line) corresponds to the SWR NN emulation errors; another
(dashed line) corresponds to the CP errors (both errors are calculated vs. the original
parameterization on the independent test set; the vertical axis is logarithmic).
Figure 4.15 demonstrates the effectiveness of CP; the error reduction is shown by
the differences between the solid and dashed lines. The application of CP reduces
medium and large errors by about an order of magnitude and completely eliminates
errors exceeding 10 K/day (see also Table 4.4).

Figure 4.15 demonstrates the effectiveness of CP in removing outliers, and
Table 4.4 supports this conclusion and shows improvements in other statistical
measures as well. The use of CP (a) does not increase the systematic error (bias)
which is almost zero and (b) significantly reduces the random errors. Especially
significant is the reduction of extreme errors or outliers. It is noteworthy that for
this CP and for this validation data set, less than 1 % of the SWR NN emulation
outputs are rejected by QC and, therefore, are calculated using the original SWR
parameterization. Further refinement of the criteria used in the QC may result in a
further significant reduction in the already small percentage of outliers.
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Fig. 4.15 Probability density
distributions of emulation
errors for the SWR NN
emulation (solid line) and for
the compound SWR
parameterization shown in
Fig. 4.13 (dashed line). The
vertical axis is logarithmic
and shows the error
probability; the horizontal
axis shows the NN emulation
errors in K/day. In both cases,
errors are calculated vs. the
original SWR
parameterization. The CP
reduces the probability of
medium and large errors by
an order of magnitude and
completely eliminates errors
exceeding 10 K/day

Table 4.4 Error statistics for the SWR NN emulation and the SWR
compound parameterization: bias and total RMSE, RMSE26 at the
lower model level, and extreme outliers (min and max errors)

Bias RMSE RMSE26 Min error Max error

SWR 4. 10�3 0.19 0.43 �46.1 13.6
SWR CP 4. 10�3 0.17 0.30 �9.2 9.5

These statistics have been calculated on an independent one-year-long
test set. All errors are in K/day

The CP design outlined above has been implemented in NCAR CAM using the
SWR NN emulation. A number of 40-year model simulations have been performed
with this QC procedure using different thresholds. An appropriate threshold of
0.5 K/day has been determined experimentally. In this context, choosing an
appropriate threshold means that the selected threshold (which is approximately
equal to �C 2�) does not allow for even limited accumulation of errors (see the
red line in Fig. 4.16) during the CAM simulation and, at the same time, does not
reduce the computational speedup gained by using the fast NN emulation. Thus, at
each integration time step and at each grid point in the model with CP, the error NN
that predicts the error of the NN emulation was estimated, and if the predicted error
did not exceed 0.5 K/day, the NN emulation outputs were calculated and used in the
model; otherwise, the original parameterization was calculated and its outputs were
used in the model.

The example shown in Fig. 4.16 illustrates the effectiveness of CP in eliminating
any accumulation of errors in the course of the model integration. When the model
is integrated without QC, the SWR NN emulation produces moderately increased
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Fig. 4.16 Errors (vs. the original SWR parameterization) produced by the SWR NN emulation
during the model run (blue line), errors predicted by the error NN (black line), and errors produced
after introducing CP instead of the SWR NN emulation (red line) (Reprinted from Krasnopolsky
et al. (2008a) with permission from Elsevier)

errors (errors increase from �0.07 K/day to �0.14 K/day) during the period between
24 and 25 years of the integration (the blue curve in Fig. 4.16). The error NN predicts
this increase of the errors very well (the black curve in Fig. 4.16). After the QC
was applied, that is, the model was integrated with CP, the level of errors dropped
significantly, in general, and, even more important, the spikes and the bump between
24 and 25 years disappeared completely (the red curve in Fig. 4.16).

Using CP provides a stable and reduced error environment for model simulations
compared to the model simulations performed without QC. It is noteworthy that the
NN emulation outputs were rejected by the QC and the original parameterization
was used on average for only 0.05–0.1 % (with the maximum below 0.4–0.6 %) of
model grid points, throughout the entire 50-year model simulation. Therefore, the
computational performance of the model with NN emulation was not reduced signif-
icantly, and CP is still about 20 times faster than the original SWR parameterization.

4.3.6 NN-Based Convection Parameterization for NCAR CAM
Derived from CRM-Simulated Data

Subsection “Using NNs for developing new NN-based parameterizations” of Sect.
4.2.2 and Fig. 4.2 introduce the methodology for developing the NN-based convec-
tion parameterization. Here we introduce and discuss certain practical details and
the results for this development (for more details, see Krasnopolsky et al. 2011,
2013).
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Parameterization and Its Uncertainties

In this section, the sources of uncertainties, which emerge in the process of data
preparation for the development of an NN convection parameterization for a GCM
based on the data simulated by a CRM, are outlined (for a detailed discussion, see
Krasnopolsky et al. (2011)). The major properties of the uncertainties are discussed.
It is shown that the uncertainty is an inherent part of the data and, therefore, of the
parameterization derived from these data and that this parameterization is essentially
stochastic parameterization in nature.

The first three steps of the development process formulated in subsection “Using
NNs for developing new NN-based parameterizations” of Sect. 4.2.2 introduce
uncertainties in the training data set or “pseudo-observations.” Uncertainties are
introduced at each of these steps and their sources can be traced step by step.
First, the CRM may be formally considered as a mapping, �, which defines the
relationship between two vectors: the input vector (x) and the output vector (y) that
are composed of CRM variables. At each time step, given a vector x, the mapping
� produces vector y or

y D �.x/: (4.15)

Here (x, y) are high-resolution CRM variables (produced with spatial resolution
of 1 km and temporal resolution of 5 s) or CRM-simulated data; they are related
by the CRM and this fact is expressed in Eq. (4.15). The mapping � is an exact
(or deterministic, or PB) mapping, which means that it is explicitly represented by
a complete set of CRM equations and that one particular y corresponds to each
particular x. The first step in the developmental process consists of simulating the
CRM or applying (4.15) at each time step and continuing with the simulation for a
period of time T. The CRM simulation is forced at each time step by large-scale
observational data. However, because the CRM physics (e.g., the microphysics)
is partially parameterized and contains a number of simplifications, the CRM is
not perfect and the CRM-simulated data will deviate from the observational data.
This difference between the observed reality and the “CRM reality” is the first
contribution to the uncertainty of the pseudo-observations and the parameterization
derived from these data.

The second step in the development consists of averaging high-resolution
simulated data (x, y) over a certain area r (�< r<R) and over a time interval t
(� < t<T), where �D 1 km and � D 5 s are the CRM resolution and integration
time step, respectively, and R and T are the GCM resolution and integration time
step, respectively. As a result, the averaged vectors of simulated data x and y are
produced. Here the bar below the symbol means averaging over r and t.

By changing r and t, we can regulate the amount of subgrid information (high-
frequency variability) in pseudo-observations that we want our parameterization
(derived from the pseudo-observations) to introduce in CAM. Thus, moving from
r D 1 km and t D 5 s (high-resolution CRM data) to lower resolution, �, and larger
t, we can gradually reduce the subgrid signal introduced in CAM. Determining the
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optimal values for r and t is one of important topics to be investigated through the
validation of the performance of the developed NN convection parameterizations in
CAM.

It is important to emphasize that the new variables x and y are stochastic
variables that are distributed around their mean values with a certain probability
density functions.

The next step in the development process is projecting the CRM space of
atmospheric states onto the GCM space of atmospheric states. It starts from a
transition from averaged CRM variables x and y to a subset of these variables,
X and Y. Let us write x and y as x D fX; x0g and y D fY; y0g. Here we split each
vector x and y into two parts. The new variables X and Y include only variables
that can be identified with corresponding GCM variables or can be calculated
from or converted to prognostic or diagnostic variables available in the GCM; all
other variables x’ and y’ are projected out (removed or averaged out). It can be
shown (Krasnopolsky et al. 2011) that the new variables X and Y contain additional
uncertainty due to the unaccounted variability of the omitted parameters x’ and y’.

Finally, we assume that there exists a mapping between the new vectors of
projected variables X and Y, which can be written as

Y D M.X/C ": (4.16)

The mapping M is a complex stochastic mapping between two stochastic
vector variables X and Y (see Sect. 2.2.4). The stochastic mapping (4.16) is not
exact. For each particular value of X, it may generate many different values of Y
with different probabilities determined by their joint probability density function
�(X,Y) conditioned by the uncertainty ". Also one value of Y can be generated
by a stochastic mapping from different values of X with different probabilities
determined by their joint probability density function.

The projected vectors X and Y do not correspond to any particular values of
omitted parameters x’ and y’; these values are uncertain. The uncertainty vector "
may contain not only random contribution but also a systematic component as well
(Krasnopolsky et al. 2011).

The mapping (4.16) determines a stochastic parameterization, which inherently
contains the uncertainty ". The parameterization is implicitly defined by the training
set (X, Y). The uncertainty " in this case is not a noise; it is an inherent informative
part of the stochastic parameterization, which contains important statistical infor-
mation about subgrid scale effects (in terms of the GCM).

NN Emulation of the Parameterization and Estimation of Its Uncertainties

A data set was simulated for the development of the NN convection parameteri-
zation. The set is limited due to the lack of longer observational data needed to
provide the forcing for the CRM simulations. The CRM using TOGA-COARE
forcing was run for the 256 � 256 km domain with 1 km resolution and 96 vertical

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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layers (0–28 km) for 120 days. Then the results were averaged every hour of the
model integration to produce a simulation data set with an effective resolution of
256 km. Finally, only variables that are available in the GCM (NCAR CAM) or can
be calculated from the GCM variables have been selected. The final data set consists
of 2,800 records (one record per hour). The simulated data set was partitioned into
two parts: a training set, with 2,240 records or 80 % of the data, and a test set, with
560 records or 20 % of the data. Namely, the first 2,240 records are included in the
training set and the last 560 records in the test set.

These two data sets have been used for the NN training and test/validation.
As indicated in the previous section, these data implicitly represent a stochastic
parameterization that inherently contains an uncertainty, ". In subsection “Noisy
training data and stochastic mappings” of Sect. 2.3.7, the training criterion (2.11c)
has been formulated for the case when the data contain a significant level of
noise or uncertainty. Thus, in the case of the stochastic parameterization, the NN
approximation task is different from that of emulating the original deterministic
parameterization in the GCM that was described in the previous sections. The
simulated data that represent a deterministic parameterization do not contain noise
of magnitude significantly higher than round-off errors.

This important difference should be taken into account when the NN emulation
is trained, the approximation error statistics are analyzed and interpreted, and the
NN architecture is selected. In this case, all NNs that satisfy the condition (2.11c)
are valid emulations of the stochastic parameterization (4.16). Actually, each of
these NNs emulates a member of the family of mappings that together represent
the stochastic parameterization (4.16). Therefore, all NNs that satisfy (2.11c), or
the entire ensemble of NNs, represent the stochastic parameterization (4.16). Thus,
estimates of the magnitude of the uncertainty, ", are, indeed, important for this
approach. Such an estimate is derived in the following sections.

NN Architectures and NN Training

Selecting an emulating NN architecture has two aspects: (i) selecting inputs and
outputs and their numbers (n and m in (2.2)), which, as we have already indicated,
are determined by the availability of the variables in the GCM, and (ii) selecting the
number of hidden neurons (k in (2.2)) in the emulating NN, which is determined
by many factors (the length of the training set, the level of noise in the data, the
characteristics of conversions of the training and test errors, etc.).

Different NN architectures (combinations of inputs and outputs) have been
investigated by Krasnopolsky et al. (2011). The architecture that has finally been
selected is shown in Table 4.5. The values in Table 4.5 show how many vertical
levels in the corresponding profile have been included as inputs in the NN. Many
profiles have elements that are zeros, or constants, or values that are almost constant
(their SDs are very small) for the entire data set. Such profile elements should not
be included as NN inputs or outputs. If such variables are important from a physical
point of view, they should be normalized or weighted (see Sect. 2.3.6) appropriately.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Table 4.5 NN architecture used for the development of convection
parameterization

NN inputs NN outputs

NN architecture in:out T QV Q1C Q2 PREC CLD

36:55 18 18 18 18 1 18

T is the atmospheric temperature, QV is the atmospheric moisture,
vapor mixing ratio, Q1C the “apparent heat source”, Q2 the “apparent
moisture sink”, PREC the precipitation rate; and CLD the cloudiness.
Numbers in the table show the dimensionality of the corresponding
input and output parameters. In:out stands for NN inputs and outputs
and shows their corresponding numbers

Fig. 4.17 NN approximation
error for the training (blue)
and test (red) sets for Q1C

A set of different NNs with different number of hidden neurons (HID) from 1
to 20 has been selected, and the corresponding NNs have been trained and tested.
Figure 4.17 shows the results of these experiments, which include the approximation
errors for an output parameter, Q1C. The figure shows NN errors for the training and
test sets for HID increasing from 1 to 20 for the NN architecture shown in Table 4.5.

It is important to understand that NN training (based on least square minimiza-
tion) attempts to minimize the total

�
"C "app

�
, that is, the sum of the approximation

error and the uncertainty or noise (see subsection “Noisy training data and stochastic
mappings” of Sect. 2.3.7). Because of the very different statistical properties of these
components, they can be approximately separated and approximately estimated
using detailed information about the training and test statistics.

Figure 4.17 demonstrates a classic situation that is usually observed when an NN
is trained using data with a significant level of noise. The training error, after a sharp
initial drop, decreases very slowly. The test error, after an initial drop, stabilizes
and then increases. The interpretation of this behavior is well known. After the
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Table 4.6 The number NC of fitting parameters (NN weights) for
different values of HID D k (see Eq. (2.2))

HID 1 2 5 10 15 20

NC 166 273 594 1,129 1,667 2,199

initial improvement in approximating the data due to the increasing flexibility of the
approximating NN, a short interval of stability is reached (at HID � 3–7) where the
NN fits the signal but filters out the noise. Here the training error keeps decreasing
but the test error is almost constant. Then with the increase in the flexibility of the
approximating NN, it starts to fit the noise as well (overfitting occurs). The training
error keeps slowly decreasing; however, the test error increases.

Table 4.6 shows the number of parameters to be fitted (NN weights) in the NNs
with different HID, which were used for plotting Fig. 4.17. Taking into account
that the training set contains 2,240 records, it is not surprising that pronounced
overfitting occurs for HID> 10.

Thus, we conclude that for a particular simulation (data set) used, HID D 5
would be a good approximation for the number of hidden neurons in the emulating
NN. This value falls within the interval of stability for the test error when the NN
emulation fits the mapping (4.16) but does not fit the noise in the data.

The training errors for all output parameters are also not significantly sensitive to
the selection of the NN architecture, i.e., to the selection of HID inside the interval
of stability (see Fig. 4.17) than the test errors (Ts). Thus, the training errors can
be considered as a rough estimate of the noise in the data that reflects the inherent
uncertainty of the stochastic parameterization (4.16).

Following this conclusion, the errors on the test set are then a combination
of the uncertainty (an estimate for it is provided by the training error) and an
approximation error. For example, for Q1C, the training error is 2.8 K/day and the
test error is 3.5 K/day. Thus, assuming that the uncertainty and the approximation
error are independent, i.e.,

D
."C "app/
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D
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for the test error of 3.5 K/day, only 2.1 K/day can be attributed to the NN
approximation error, and 2.8 K/day should be attributed to the uncertainty, ", of the
stochastic mapping (4.16). Thus, after the separation of the uncertainty (the training
error), the NN approximation errors on the test set, in most of the cases, do not
exceed the uncertainty.

An ensemble of ten NNs with the same architecture with different initializations
for the NN weights has been trained. The coefficients (weights) for these NNs
have been initialized, using the initialization of Nguyen and Widrow (1990) (see
also Sect. 2.3.7) with different sets of small random numbers before the training.
As a result, all of these NNs have different weights because the training process
converged to different local minima. For these NNs, the errors on training and test

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 4.18 Hovmöller diagrams for CLD profile time series: “pseudo-observations,” in the upper
panel, and the NN ensemble, in the lower panel

sets are similar. Hence, all trained NNs can be considered as valid emulations of the
parameterization (4.16). Thus, these NNs, taken together, can be considered as an
NN ensemble emulation of the stochastic parameterization (4.16).

Figure 4.18 illustrates performance of the trained NN ensemble on the indepen-
dent test set. Figure 4.18 shows Hovmöller diagrams for the time series of cloudiness
(CLD) profiles generated by the NN ensemble. The upper panels show “pseudo-
observation” profiles and the lower panels show the time series of profiles generated
by the NN ensemble. The patterns generated by the NNs are a bit smoothed or
diffused; they are less sharp than the “observed” ones but still easily recognizable.
The NN ensemble represents the sequence of patterns well and without significant
shifts.

Validation of the NN Convection Parameterization in NCAR CAM

In this section, the NN stochastic parameterization is introduced into NCAR CAM.
An ensemble of the ten NNs described above, which represents the stochastic
parameterization (4.16), was used for testing in CAM. All input and output variables
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for this NN architecture (Table 4.5) are directly available in CAM for use and
comparison. Here the goal is to verify whether the NN ensemble, emulating the
stochastic convection parameterization (4.16), provides meaningful and realistic
outputs when using CAM inputs. The validation of our NN parameterization was
performed in the following two experiments:

1. Over the TOGA-COARE location, the grid point (�2ı S, 155ı E) for the time
period for which the TOGA-COARE experiment was conducted, where data are
available for the TOGA-COARE winter, November 1992–February 1993. The
data at this grid point and during this time interval have been used to develop the
NN convection. The TOGA-COARE location, which is actually a small area in
the Equatorial Pacific, is marked by a star in the middle panels of Fig. 4.20.

2. Over the large Tropical Pacific region (with an area size of 120ı � 30ı and the
following coordinates: 150ı E< lon< 90ı W, 15ı S< lat< 15ı N) during the
decade (1990–2001, with the TOGA-COARE winter of 1992–1993 excluded).
This is a challenging test for the NN’s ability to generalize.

The parallel runs have been performed with the standard CAM and with the NN
ensemble convection parameterization (CAM-NN run) for the decadal (1990–2001)
winter climate simulations. Below we present some comparisons of the parallel
decadal CAM-NN and CAM simulations and validate them against the NCEP
reanalysis. For more systematic comparisons, see Krasnopolsky et al. (2011).

First, we will analyze the decadal simulations over the TOGA-COARE location
only. The decadal mean CLD profiles for the TOGA-COARE location for CAM-NN
and CAM shown in Fig. 4.19 are similar. The decadal mean profiles are consistent
with those for the TOGA-COARE period (Krasnopolsky et al. 2011).

The time series of the decadal mean total CLD shown in Fig. 4.20 for the CAM
run demonstrate measurably higher magnitudes, with a mean of 0.78, compared to
that of the time series for the CAM-NN run, with a mean of 0.61. The time series of
the recent NCEP reanalysis (Saha et al. 2010) shows lower magnitudes, with a mean
of 0.54, which are significantly closer to those of the time series for CAM-NN.

The horizontal distributions of total precipitation for the large region of the
Tropical Pacific Ocean (15 S to 15 N, 155 E to 90 W) for the CAM-NN run vs. the
CAM control and the recent NCEP reanalysis have been produced and analyzed.
The major result is that the regional precipitation distributions for the decadal
parallel runs presented in Fig. 4.21 show a consistency and similarity, in terms of
both pattern and magnitude, between the CAM-NN and CAM runs with the NCEP
reanalysis used for validation.

Precipitation magnitudes for the CAM-NN run, in the area just around the
Equator and extending to the southeastern part of the region, are overestimated
compared to those from the CAM run and the NCEP reanalysis (Fig. 4.21).
However, outside this area, i.e., the northern and southwestern parts of the region,
precipitation magnitudes for the CAM run are underestimated compared to those of
the CAM-NN run and the NCEP reanalysis (Fig. 4.21).
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Fig. 4.19 Vertical profiles of
decadal winter mean CLD for
the TOGA-COARE location,
in fractions, for CAM-NN
(black) and CAM (green)

NCEP reanalysis (Kalnay et al. 1996), in the aforementioned area near the Equa-
tor and extending to the southeastern part of the region, precipitation magnitudes
are higher than in the recent NCEP CFSRR reanalysis (Saha et al. 2010) and
closer to those of the CAM-NN run. At this initial stage of the development of the
stochastic NN convection parameterizations, it is reasonable to compare the CAM
and CAM-NN runs in terms of their general consistency between themselves and
with the NCEP reanalysis. Detailed climatological analysis of regional and global
simulations for all seasons will be done at the next stage of the development. It will
be based on using CRM simulations driven by CAM forcing. Thus, a representative
global data set will be simulated for NN training, and global stochastic NN
convection parameterizations will be developed for CAM.

Summarizing the results presented in this section, they illustrate the uncertainty
of cloud and precipitation simulations for both the parallel CAM and CAM-NN
runs. They also highlight the complexity of the analysis and validation of climate
model simulations and the limitations of the data/information used in the tropics for
validation.
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Fig. 4.20 Time series of decadal winter mean total cloudiness (in fractions) for the TOGA-
COARE location for the CAM run (black) and CAM-NN (green) runs and for the NCEP reanalysis
(yellow)

The results obtained for the decadal CAM-NN simulation are encouraging. They
support the validity/soundness of the NN approach for developing NN convection
parameterizations for climate models. However, it is clear that future work is needed
for the practical implementation of NN convection parameterizations in climate
models.

4.4 An Ocean Application of the Hybrid Model Approach:
Neural Network Emulation of Nonlinear Interactions
in Wind Wave Models

A state-of-the-art NCEP wind wave model called WAVEWATCH III (Tolman 2002)
is an example of a complex environmental numerical model (ENM) (see also
Sect. 4.1.1). After applying the NN emulation approach to a first-principle-based
component of this model, the nonlinear wave-wave interaction source term, Snl

(Eq. 4.2), this model becomes a hybrid environmental model (HEM).
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Fig. 4.21 Decadal winter mean precipitation distribution for the CAM (upper panel) and CAM-
NN (second panel) runs over Tropical Pacific region (with the area size of 120ı � 30ı and the
following coordinates: 150ı E< lon< 90ı W; 15ı S< lat< 15ı N). The third from the top panel
shows the corresponding NCEP reanalysis decadal mean distribution. The TOGA-COARE location
is shown by a star in the second panel. The lowest panel shows the previous NCEP reanalysis
(Kalnay et al. 1996). The contour interval is 2 mm/day

The model is based on a form of the spectral energy or action balance equation
(4.2) for the two-dimensional spectrum, F, and has the nonlinear wave-wave
interaction source term Snl as a part of the model physics. In its full form (e.g.,
Hasselmann and Hasselmann 1985; Hasselmann et al. 1985), the calculation of the
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Snl interactions requires the integration of a six-dimensional Boltzmann integral,
which can be treated as a mapping:

Snl

� Ek4
	

D T ˝ F
� Ek
	

D !4

Z
G
� Ek1; Ek2; Ek3; Ek4

	
�ı
� Ek1 C Ek2 � Ek3 � Ek4

	
�ı .!1 C !2 � !3 � !4/

� Œn1 � n3 � .n4 � n2/C n2 � n4 � .n3 � n1/	 d Ek1 d Ek2 d Ek3

n.Ek/ D F.Ek/
!

I !2 D g � k � tanh.kh/ (4.17)

where the mapping is symbolically represented by T and the complicated coupling
coefficient G contains moving singularities (for a detailed explanation, see Tolman
et al. 2005). This integration requires roughly 103–104 times more computational
effort than all other aspects of the wave model combined. Present operational
constraints require that the computational effort for the estimation of Snl should
be of the same order of magnitude as the remainder of the wave model. This
requirement was met with the development of the discrete interaction approximation
(DIA, Hasselmann et al. 1985) for Snl. Two decades of experience with the DIA in
wave models has identified DIA’s significant shortcomings (Tolman et al. 2005).
Thus, it is crucially important for the development of new generation wave models
to develop an economical yet accurate approximation for Snl. A neural network
interaction approximation (NNIA) was explored to achieve this goal (Krasnopolsky
et al. 2002; Tolman et al. 2005).

4.4.1 NN Emulation for Snl

A NN can be applied to emulate Snl because the nonlinear interaction term (4.17) is
essentially a nonlinear mapping, symbolically represented by T, which relates two
vectors F and S (2-D fields in this case). Discretization of S and F (as is necessary
in any numerical approach) reduces (4.17) to a continuous mapping of two vectors
of finite dimensions. Modern high-resolution wind wave models use discretization
on a two-dimensional grid which leads to S and F vector dimensions on the order
of N � 1,000. It seems unreasonable to develop an NN emulation with such a high
dimensionality (�1,000 inputs and outputs).

In order to reduce the dimensionality of the NN and convert the mapping (4.17)
to a continuous mapping of two finite vectors, two systems of two-dimensional
functions (ˆi and ‰q) are used. Each set of functions creates a complete and
orthogonal two-dimensional basis. The spectrum F and source function Snl are
expanded using these basis functions:

F �
nX

tD1
xiˆi ; Snl �

mX

qD1
yq‰q; (4.18)



4.4 An Ocean Application of the Hybrid Model Approach: Neural Network Emulation. . . 135

Decomposition

Composition

NN

F( f,  )θ

Snl ( f ,  )θ

( f ,  )θSnl ( f ,  ) =θ

X

Y

0

π

π
( f,  )Φi ( f,  )θθθ

∞

−
= ∫ ∫

tanh(bj0

k

j=1

yq = aq0 ∑

M

q=1
∑ Ψqqy

i=1

n

∑ )+aqj ⋅ ⋅+ bji xi

xi d df F

Fig. 4.22 Graphical representation of the NNIA and NNIAE algorithms (Reprinted from
Krasnopolsky et al. (2002) with permission from Elsevier)

where for the coefficients of decomposition/composition xi and yq are

xi D
“

Fˆi ; yq D
“

Snl‰q; (4.19)

where the double integral identifies integration over the spectral space. Now, the
developed NN emulation relates vectors of coefficients X and Y: Y D TNN(X).
Typically, n D 20–50 and m D 100–150 in Eq. (4.18). Thus, the reduction in
dimensionality of the NN emulation is very significant.

To train the NN emulation TNN, a training set has to be created that consists of
pairs of the vectors X and Y. To produce this training set, a representative set of
spectra F has to be generated, and corresponding set of exact interactions Snl has
to be calculated using Eq. (4.17). For each pair (F, Snl)p (p D 1, : : : ,P where P is
the number of spectra), the corresponding vectors (X,Y)p are determined using Eq.
(4.19). These pairs of vectors are then used to train the NN TNN. After TNN has been
trained, the resulting NNIA algorithm requires three steps: (1) Decompose the input
spectrum F by applying Eq. (4.19) to calculate X, (2) estimate Y from X using TNN,
and (3) compose the output source function Snl from Y using Eq. (4.18). A graphical
representation of the NNIA algorithm is shown in Fig. 4.22.

Two approaches have been used for the basis functions. The first (NNIA) uses a
mathematical basis (Krasnopolsky et al. 2002). As is usually done in the parametric
spectral description of wind waves, separable basis functions have been chosen
where the frequency and angular dependencies are separated. The advantage of this
choice of basis functions is the simplicity of the basis generation. The disadvantage
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Table 4.7 Approximation
RMSEs (in nondimensional
units) and performance (see
units in text) for DIA, NNIA,
NNIAE, and exact Snl

calculation

Algorithm RMSE Performance

DIA 0.312 1
NNIA 0.088 4
NNIAE 0.035 7
Original parameterization 0. �8. � 105

is the slow convergence of the decompositions. As an alternative, a second approach
to the basis functions choice has been investigated. In this approach, empirical
orthogonal functions (EOFs) or principal components (Lorenz 1956; Jolliffe 2002)
are used (Tolman et al. 2005).

EOFs constitute a statistically optimal basis. In the case considered, the basis
functions ˆi and ‰q are functions of two variables f and � . The set of spectra
F and source terms Snl, which are used for the training of the NN, are also used
to generate the EOFs for decomposing F and Snl. When using EOFs, the basis
generation procedure is computationally time consuming, with the effort increasing
as the resolution of the model increases. However, the basis generation needs to be
performed only once for the NN training. Stored results can be used without the
need for recalculations in the final NNIA algorithm. The main advantage of EOFs
is the fast convergence of the decomposition.

To distinguish between NN algorithms using different basis functions for the
decomposition, we use the abbreviation NNIAE for the NN algorithm that used
the EOF basis. Table 4.7 shows comparisons of the accuracy and performance of
DIA with the two NN emulations NNIA and NNIAE, versus the exact calculation
of Snl based on the original parameterization. Approximation errors (RMSEs) are
calculated in nondimensional units, and performance is measured in DIA calculation
times (taken as a unit). The NNIAE is nearly ten times more accurate than DIA. It
is also about 105 times faster than the original parameterization. As in the case of
atmospheric radiation, a careful investigation of parallel runs with the original ENM
(the wave model with the exact wave-wave interaction) and the HEM run with the
NN emulation has been performed for the final test of the NN emulation (Tolman
et al. 2005).

4.4.2 Validation of NNIAE in the Model and Compound
Parameterization for Snl

The most critical test for any approximation to the nonlinear interactions is the
capability of a model using the approximation to produce wave growth under
strongly forced conditions (high winds). Under such conditions, large-scale features
(in spectral space and in time) of the nonlinear interactions are essential to allow
waves to grow higher and longer simultaneously, whereas small-scale features are
essential to (locally) stabilize the shape of the spectrum. The NNIAE is therefore
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Fig. 4.23 Wave energy spectrum after 24 h of wave growth in WAVEWATCH III. (a) The NNIAE
approximation to nonlinear interactions and (b–e) results obtained with increasingly strict QC
in the CP approach. (f) Results with a full original nonlinear interaction parameterization WRT.
Corresponding wave heights in meters are shown in the upper right corner of each panel and the
error allowed in the QC in the upper left corner of each panel. The frequency increases along the
radial direction (Reprinted from Krasnopolsky et al. (2008a) with permission from Elsevier)

trained with and applied to a simple case of wind wave growth, assuming spatially
homogeneous conditions. For the training, a limited training set consisting of about
5,000 pairs of input spectra and output exact nonlinear interactions has been used.
This training set samples a limited subdomain over the entire input space (space of
all possible spectra).

NN interaction approximation (NNIAE) was developed by Tolman et al. (2005)
using the limited data set described above. If, however, this approximation is applied
in a full wave model, errors in the NNIAE accumulate, and the wave spectrum
becomes unrepresentative for the training data set used for the development of the
NNIAE. Thus, a balance between the source terms becomes unrealistic. The waves
do not grow, and the spectral shape does not resemble the proper solution. The
results for this case are presented in Fig. 4.23a.

Figure 4.23 (b–e) shows results of integration of CP in the WAVEWATCH III
ocean wind wave model. Panel (f) shows the results of the model with the full
exact (original) parameterization for the nonlinear interactions, consisting of a six-
dimensional Boltzmann integral (4.17). Contours represent energy levels in polar
coordinates in spectral space, with a logarithmic spacing of the contours at intervals
that increase by a factor of 2. The consistent and axisymmetric shape of the spectrum
is typical for gravity waves actively forced by winds (the so-called wind seas).
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Fig. 4.24 Compound parameterization design for the NNIAE algorithms described in the text.
Due to the use of the EOF decomposition and composition procedures, the inverse NN (iNN) and
QC block are implemented for composition coefficients X and X0. The auxiliary training set is
updated each time when QC requires employing the original parameterization and is used for the
follow-up dynamical adjustment of the NN emulation (Reprinted from Krasnopolsky et al. (2008a)
with permission from Elsevier)

An experimental CP for the nonlinear wave-wave interaction in the WAVE-
WATCH III ocean wind wave model was developed. It is illustrated in Fig. 4.24.
This CP uses the domain check approach (see Sect. 3.4) with an inverse NN (iNN in
the figure). Subsequently, when the CP presented in Fig. 4.24 was developed using
the same data set and implemented, integration is sufficiently stabilized to allow for
realistic wave growth (Fig. 4.23b, compare wave heights in upper right corners of
each panel; see also Tolman and Krasnopolsky (2004)). Following the reduction of
the errors allowed in the QC part of the CP (a more restrictive QC), the accuracy of
the model clearly increases (Fig. 4.23c, d, and e).

An approach to describe the nonlinear wave-wave interactions most effectively
in terms of computational efficiency and accuracy may well require a more complex
CP than the CP approaches that have been discussed so far. The initial data
decompositions using EOFs introduce a truncation error in the corresponding
description of the wave spectrum. By definition, such truncations tend to filter out
small-scale fluctuations, which in many processes can be considered as noise. For
the wave growth process, however, these scales are essential to stabilize the spectral
shape during model integration. It remains to be seen if this part of the solution
can ever be described effectively using the NN approach. Figure 4.23 shows that a
simple CP can circumvent this issue. Also, the small-scale processes in the nonlinear
interactions could be modeled explicitly as a local diffusion process; however,
the computational effort is orders of magnitude less than direct computation of
nonlinear interactions at all spectral scales, because the latter involves a six-
dimensional integration over the entire spectral space. Tentatively, a more complex
CP approach for nonlinear wave-wave interactions could therefore be based on an
NN approach for larger spectral scales and local diffusion to describe the smaller
scales (to be trained simultaneously), combined with explicit QC to add robustness.

http://dx.doi.org/10.1007/978-94-007-6073-8_3
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4.5 Discussion

4.5.1 Summary and Advantages of the Hybrid Modeling
Approach

In this chapter, we introduced a new hybrid paradigm in environmental numerical
modeling. Within the framework of this paradigm, a new type of ENM – an HEM –
based on a synergetic combination of deterministic modeling and statistical learning
within an HEM (using the NN technique) is introduced. This approach uses NNs to
develop new fast model components and highly accurate and fast emulations of
existing model physics. The results show that:

1. There exists the conceptual and practical possibility of developing HEMs with
accurate and fast NN model components, which preserve the integrity and all the
detailed features in the original ENM.

2. NN emulations of existing model physics parameterizations (Krasnopolsky et al.
2002, 2005a, 2008b, 2010, 2012) are functionally identical to the original
physical parameterizations, due to the capability of NN techniques to accu-
rately emulate complex systems (mappings) like parameterizations of the model
physics. This capability allows the integrity and level of functional complexity
of the parameterizations of the model physics to be preserved. As a result, an
HGCM, using these NN emulations, produces climate simulations and weather
forecasts that are practically identical to those of the original GCM. It is
noteworthy that the NN emulations that were developed have the same inputs
and outputs as the original parameterizations and are used precisely as their
functional substitutes within the model.

3. Accurate NN emulations are robust and very fast (10–105 times faster than the
original parameterization), so the significant speedup of HEM calculations can
be achieved without compromising accuracy.

4. New computationally efficient NN model components (parameterizations) can
be developed based on learning from observed data or data simulated by higher-
resolution models (Krasnopolsky et al. 2011).

5. Statistical (NN) components can be successfully combined with deterministic
model components within the HEM, so their synergy can be efficiently used for
environmental and climate modeling without any negative impacts on simulation
quality.

6. This productive synergy or new combination of state-of-the-art deterministic
and NN emulation approaches leads to new opportunities in using HEMs for
environmental and climate simulations and prediction. For example, new more
sophisticated parameterizations, or even “superparameterizations” such as a
CRM, that are extremely time consuming or even computationally prohibitive
if used in their original form will become computationally “affordable” in
ENMs when using their accurate and computationally much more efficient NN
emulations in HEMs.
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7. The stochastic nature of some of the components in the model physics can
be adequately represented using ensemble of NNs to represent or emulate the
stochastic component of the model physics.

4.5.2 Limitations of the Current Hybrid Modeling Framework
and Possible Solutions

The development of NN emulations and parameterizations, the core of the hybrid
modeling approach, depends significantly on our ability to generate a representative
training set to avoid using NNs for extrapolation far beyond the domain covered
by the training set (see Sect. 2.3.3). Because of the high dimensionality of the
input domain that is often several hundred or more, it is rather difficult to cover
the entire domain, especially the “far corners” associated with rare events, even
when we use simulated data for NN training. Another related problem emerges if
NN emulations should be developed for a nonstationary environmental or climate
system that changes with time. This means that the domain configuration for a
climate simulation may evolve when using a future climate change scenario. In both
situations, the emulating NN may be forced to extrapolate beyond its generalization
ability leading to errors in NN outputs and result in simulation errors in the
corresponding HEM.

Two new techniques are being developed to accommodate the limitations
outlined above and to supplement the NN emulation approach for long-term climate
change simulations and other applications: (1) a compound parameterization and (2)
an NN dynamical adjustment (DA) (Krasnopolsky and Fox-Rabinovitz 2006a, b).
CP has been described in detail in Sects. 4.2.2, subsection “Compound and
adjustable parameterizations, quality control of NN emulations”, 4.3.5, and 4.4.2.
In the following, the DA approach is briefly outlined.

During a routine HEM simulation with CP, the QC block determines (at each
time step of integration and at each grid point based on some criteria) whether the
NN emulation or the original parameterization has to be used to generate physical
parameters (parameterization outputs). When the original parameterization is used
instead of the NN emulation, its inputs and outputs are saved to further adjust the NN
emulation. After accumulating a sufficient number of these records, a DA of the NN
emulation is performed by a short NN retraining using the accumulated input/output
records. Thus, the upgraded NN emulation becomes dynamically adjusted to the
changes and/or new events/states produced by the complex environmental or climate
system. Obviously, DA can also solve the problem of extreme or rare events.

Actually, DA can be performed after each new training record is generated in real
time (or online) during the model run. This online DA can be implemented using
sequential or the online NN training method described in Sect. 2.3.7, subsection
“Batch training and sequential training.”

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Chapter 5
NN Ensembles and Their Applications

Science has, as its whole purpose, the rendering of the physical
world understandable and beautiful. Without this you have only
tables and statistics.

– Julius Robert Oppenheimer

It is better to be roughly right than precisely wrong.
– John Maynard Keynes

Abstract In this chapter, various neural network (NN) ensemble applications
including applications in data assimilation systems, nonlinear multi-model en-
sembles, ensembles with perturbed model physics, and others are introduced and
discussed. It is shown that in many cases, NN ensemble approaches provide a better
and more adequate emulation of the complex nonlinear mappings than a single
NN. In this chapter, an NN ensemble approach is applied to introduce analytic
approximations for highly complex functional dependencies and mappings between
the model variables in an oceanic data assimilation system which enables 3-D
assimilation of surface 2-D variables like the surface elevation. An NN ensemble
approach is applied to derive a nonlinear multi-model ensemble for improving 24-h
precipitation forecasts over the continental US (ConUS). Different possibilities for
using the NN emulation technique in combination with the NN ensemble approach
for generating stochastic or perturbed model physics and ensembles with perturbed
model physics are considered. The chapter contains an extensive list of references
giving extended background and further detail to the interested reader on each
examined topic. It can serve as a textbook and an introductory reading for students
and beginning and advanced investigators interested in learning how to apply the
NN ensemble technique to various problems.

In Sect. 2.4.5 a specific capability of nonlinear statistical models (e.g., NNs)
to provide multiple solutions for a particular problem was discussed. Also, an
NN ensemble approach was introduced. This approach allows us to turn what is
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sometimes considered a disadvantage of nonlinear models (existence of multiple
solutions) into an advantage. The NN ensemble approach in many cases provides
a better and more adequate emulation of the mapping (2.1) than a single NN. For
example, in Sect. 2.4.6, it was shown that the NN ensemble approach provides an
adequate emulation tool in the case when the mapping (2.1) is a stochastic mapping
(see Sect. 2.2.4).

In Sect. 4.3.6 an NN ensemble approach was used to develop a stochastic
convection parameterization for GCMs. In this chapter several other applications
of the NN ensemble approach in atmospheric and oceanic models are introduced
and discussed. In Sect. 5.1, an NN approach is applied to introduce analytic
approximations for highly complex functional dependencies and mappings between
the model variables. This generic NN application is introduced in the context
of a particular application, NN emulations for the SSH observation operator
(Krasnopolsky et al. 2006; Krasnopolsky 2007a). This NN application, designed
to work in DAS (see Sect. 3.1.2) and in sensitivity and error analysis, uses the
NN emulation and its Jacobian. Thus, it requires the NN emulation Jacobian of
satisfactory quality. The NN ensemble approach is introduced here to improve the
quality of the NN emulation and NN Jacobian.

In Sect. 5.2, an NN ensemble approach is applied to derive a nonlinear multi-
model ensemble (MME) for improving 24-h precipitation forecasts over the conti-
nental US. The nonlinear ensemble approach presented there allowed us to account
for nonlinear correlations between ensemble members and produce an “optimal”
forecast represented by a nonlinear NN ensemble mean.

In Sect. 5.3, different possibilities for using the NN emulation technique in
combination with the NN ensemble approach for generating stochastic model
physics or perturbed model physics are discussed. Several applications of NN-based
perturbed model physics in ensemble prediction systems (EPS) are also discussed.

5.1 Using NN Emulations of Dependencies Between Model
Variables in DAS

The output of any complex ES numerical model, such as models for climate
simulations or NWP, contains a great deal of data in the form of 2- and 3-
D high-resolution numerical fields of prognostic and diagnostic atmospheric and
ocean state variables. This output contains, in an implicit form, highly complex
physical relationships and statistical correlations between the state variables of the
model, which mathematically can be represented as functional dependencies and
mappings (2.1). These relationships are governed by the physics and dynamics of
the numerical model that are used for the simulations. A clear understanding of
these underlying nonlinear dependencies is a matter of a great scientific interest and
practical importance. For example, these dependencies are essential for assimilating
variables in DASs (see Sect. 3.1.2). These functions and mappings, if they were de-
rived in analytical form, could also be used for efficient model output compression,
archiving, and dissemination and for sensitivity studies and error analysis.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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When 2-D observations like surface wind, surface currents, or sea surface
elevation are assimilated into an atmospheric or oceanic DAS, the impact of these
data in the DAS is localized at the vertical level where they are assimilated because
there is usually no explicit mechanism in the DAS to propagate the impact of
these data to other vertical levels and to other variables. Usually, this propagation
occurs later, with a delay, during the integration of the model, in accordance with
dependencies determined by the model physics and dynamics. Recently, several
attempts have been made to extract these dependencies from model simulations
(Mellor and Ezer 1991) or observed data (Guinehut et al. 2004) in a simplified
linear form for use in an ocean DAS to allow for 3-D assimilation of the 2-D surface
data. However, these simplified and generalized linear dependencies that are often
derived from local data sets do not properly represent the complicated nonlinear
relationships (mappings) between the model variables. If we were able to extract
or emulate these mappings in a simple, but not overly simplified and yet in an
adequately nonlinear analytical form, they could be used in the DAS to facilitate
a more effective 3-D assimilation of the 2-D surface data.

The existence of a generic technique that allows the extraction of these nonlinear
functions and mappings in a compact analytical form would also greatly facilitate
the use of model output in qualitative and quantitative studies. It is only recently that
initial steps have been taken to use the NN technique to accomplish this objective
(Tang and Hsieh 2003; Krasnopolsky et al. 2006).

5.1.1 SSH Mapping and Its NN Emulation

Sea surface height (SSH), �, is one of the prognostic variables in ocean circulation
models. The particular ocean model used in this example is the Hybrid Coordinate
Ocean Model (HYCOM). This model is a primitive equation model that uses gen-
eralized hybrid coordinates (isopycnal/terrain following (�)/z-level) in the vertical
(see Bleck 2002 for details). The hybrid coordinate extends the applicability of the
traditional isopycnal (levels of constant water density) coordinate circulation models
to shallow coastal seas and to unstratified areas of the ocean. The vertical coordinate
utilized in HYCOM is discussed in Chassignet et al. (2003). The particular version
of HYCOM used here has a domain that covers the entire Atlantic Ocean with an
average resolution of 1 =3 ı � 1 =3ı in the horizontal and 25 levels in the vertical.

Since the reduced model physics has a 1-D vertical structure, it was assumed
that SSH, �, at a particular model grid point (i.e., at a particular horizontal location)
depends only on the vector of state variables, X, at the same horizontal location
and the same time. Therefore, this dependence (a target mapping, or so-called
observation operator) can be written as

� D �.X/; (5.1)

where � is a nonlinear continuous function and X is a vector that represents a
complete set of state variables, which determine �. In this particular case the vector
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Table 5.1 Periods covered by training, validation, and test data sets and their
sizes

Set
Beginning date
(Julian day, year)

End date
(Julian day, year)

Size,
N(number of profiles)

Training 303, 2002 52, 2004 563,259
Validation 303, 2002 52, 2004 563,259
Test 53, 2004 291, 2004 563,259

X was selected as X D fI; �; zmixg, where I is the vector (a vertical profile) of the
interfaces (the vertical coordinates used in HYCOM), � is the profile of potential
temperature, and zmix is the depth of the ocean mixed layer, for a total of 50 variables.
This set of variables represents or is used as a proxy for the physics of the deep
ocean. Therefore, the mapping (5.1) with this particular selection of components for
the vector X will not be applicable in coastal areas (where the depth is less than
250–500 m). In the coastal areas a different set of state variables should be selected.
All the statistics presented later in this chapter were calculated using a test set where
coastal areas were excluded.

The NN technique has been applied to derive an analytical NN emulation for
the relationship between model state variables, X, and �, or the NN observation
operator,

�NN D �NN.X/: (5.2)

NN weights have been trained using the simulated model fields, which are treated
as error-free data. A simulation that covers almost 2 years, from Julian dates 303,
2002 to 291, 2004, was used to create training, validation, and test data sets. The
periods covered by these data sets and their sizes are shown in Table 5.1. Each data
set consists of records f�i, Xigi D 1, : : : ,N collocated in space and time and uniformly
distributed over the model domain.

As mentioned earlier, the accuracy of the NN emulation is evaluated over the
model domain (excluding coastal areas) using the test set described in Table 5.1. All
trained NNs have 50 inputs and 1 output in accordance with the dimensionalities
of the target mapping (5.1). The number of hidden neurons k was varied from 3 to
30. There is no significant and consistent improvement in the approximation RMSE
after k reaches values of 5–10; any further improvement does not exceed 0.25 cm.
Therefore, to limit NN complexity and improve its interpolation abilities (see Sects.
2.4.3 and 2.5), only NNs with k � 10 were used in the following investigation.

In the next test applied to the NN emulation, the last day of the entire simulation
(291, 2004) was selected. This day is separated in time by about 8 months from
the last day of the simulation used for training and validation (52, 2004). The NN
emulation (5.2) was applied over the entire domain to generate the 2-D field of �NN.
This field was compared with the corresponding field of � generated by the model.
The difference between two fields is shown in Fig. 5.1.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 5.1 The difference (in cm) between SSH field, �NN, emulated by NN (5.2) with five hidden
neurons, and exact SSH field, �. The entire domain of the Atlantic model is shown. The figure is
plotted in the model internal x-y coordinates

With the exception of several spots (most of them still close to coastal areas), the
differences do not exceed ˙10 cm. The accuracy of the NN emulation over the entire
domain shown in Fig. 5.1 is satisfactory based on the intended application; the bias
is about 1 cm and the RMSE is about 4.7 cm. The accuracy of the NN observation
operator (5.2) is considered to be satisfactory because the NN emulation will be
used in the DAS together with satellite measurements of SSH that have accuracy on
the order of 5 cm or less.

The accuracy of the NN observation operator may be improved using an NN
ensemble approach (see Sect. 5.1.2). The use of the NN emulation in DAS is
conditioned by the quality of the NN Jacobian. The accuracy of the NN Jacobian and
the possibility of improving this accuracy by using NN ensembles are also discussed
in the next section.

5.1.2 NN Ensembles for Improving NN Observation Operator
Accuracies and Reducing NN Jacobian Uncertainties

As mentioned in Sects. 2.4.3 and 2.5, it is desirable to keep the NN emulation
complexity (the number of hidden neurons) at a minimum in order to improve

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 5.2 The random part
of the emulation error (the
standard deviation, SD, of the
error) normalized to the
maximum member error (the
vertical axis) and the
systematic error (bias) also
normalized to the maximum
member error (the horizontal
axis). Each ensemble member
is represented by a star, the
conservative ensemble
average by the cross, and the
nonlinear ensemble using the
averaging NN by diamond at
the figure

NN generalization (interpolation) ability and the stability of the NN Jacobian
(see also Sect. 2.4.4); however, minimization of the NN complexity reduces the
approximation accuracy of NN emulations. Using an NN ensemble approach (see
Sect. 2.4.5) is a way to obtain a reasonable balance.

In the context of the problem described in the previous section, the NN ensemble
approach leads to the following solution. The complexity of the NN emulation (5.2)
was limited; only three hidden neurons were allowed. Then ten NN observation
operators (5.2) with the same number of hidden neurons were trained using different
initializations for the NN weights. As a result, an NN ensemble that consists of ten
members, 10 NN observation operators of identical architecture (50 inputs, 1 output,
and 3 neurons in 1 hidden layer) but with different weights, different approximation
accuracies, and different Jacobians were created. When four or five neurons in one
hidden layer were selected for the NN architecture, the obtained results were similar
to those presented below.

NN Ensembles for Improving the Accuracy of an NN Emulation: Linear
Versus Nonlinear Ensembles

After the NN ensemble was created, each NN member (a particular realization of
the NN observation operator (5.2)) was applied to the test set, and the error statistics
for each NN member were calculated and are plotted in Fig. 5.2. The vertical axis
of the figure shows the random part of the approximation error (the SD of the error),
and the horizontal axis is the value of the systematic error (bias). Both errors are
normalized to the corresponding maximum member error (member bias or error
SD). Each ensemble member is represented in this figure by a star. The spread of

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 5.3 Schematic
representation of a nonlinear
ensemble that uses an
averaging NN. A tilde over
the averaging NN output QY
emphasizes that a nonlinear
ensemble average is
produced. X is an input vector
of the emulation (5.2)

the ensemble members is significant in this figure. The systematic error changes
about 25 % and the random error about 10 % for different members.

The next step was to produce the ensemble average, which can be produced in
different ways (Barai and Reich 1999). The first averaging approach used here is
the simplest linear method of ensemble averaging – a conservative ensemble (Barai
and Reich 1999). Each of the ten NN ensemble members was applied to the test
set record by record. Thus, for each record (set of inputs), ten NN outputs were
produced. Then the mean value (in a statistical sense) of these ten values was
calculated and compared to the exact output to calculate the ensemble statistics
represented by the cross in Fig. 5.2. For the conservative ensemble, the ensemble
bias is equal to the mean bias of the members as expected when using this simple
linear method of calculating the ensemble average. Figure 5.2 also illustrates the
fact that ensemble approaches are effective in reducing random errors; it shows
that in this case the ensemble random error is less than the random error of any of
the ensemble members. The reduction in systematic (�15 %) and random (�9 %)
errors with respect to the maximum single member errors is moderate but still
significant.

The conservative ensemble is simple; however, it is linear and therefore com-
pletely neglects nonlinear correlations and dependencies between ensemble mem-
bers. µÑ estimate the contribution of aforementioned nonlinear correlations and to
use them for improving ensemble averaging, we developed a nonlinear ensemble
that uses an additional averaging NN to calculate the ensemble average. This
approach is illustrated schematically in Fig. 5.3.

The inputs to the averaging NN are composed of the same outputs from the same
ensemble member NNs that are used by the conservative ensemble. The number of
inputs to the averaging NN is equal to the number of ensemble members (10 in this
case) multiplied by the number of outputs in a single ensemble member NN (one,
in our case). It has the same single output as a single ensemble member NN in this
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Fig. 5.4 Extreme outliers’
statistics. The vertical axis
shows the largest positive (or
maximum) and the horizontal
axis the largest negative (or
minimum) emulation error
over the entire test set. Each
ensemble member is
represented by a star, the
conservative ensemble by the
cross, and the nonlinear NN
ensemble by the diamond at
the figure

particular case. The averaging NN was trained using training and validation sets
prepared on the same basis as the training and validation sets used for training the
ensemble member NNs. The test statistics presented here were calculated using the
test set.

The result for the nonlinear ensemble using the averaging NN is shown in Fig. 5.2
by a diamond. It shows that the magnitude of the nonlinear correlations between
ensemble members is significant and can be successfully used to improve ensemble
accuracy. A comparison of the positions of the cross and the diamond in Fig. 5.2
shows that, compared to the conservative ensemble, the nonlinear ensemble gives
an additional improvement in bias on the order of 10 %. The nonlinear ensemble
bias is close to the minimum ensemble member bias. An additional improvement in
the random error is a bit smaller (about 5 %) but still significant.

Figure 5.4 shows the statistics for extreme outliers. When each ensemble member
NN is applied to the test set, the NN produces an output with an error for each record.
Among all these errors, there exist one largest negative (or minimum) error and one
largest positive (or maximum) error, or two extreme outliers that demonstrate the
worst-case scenarios that can be expected from this particular NN emulation. These
two extreme outliers for each NN member are represented in Fig. 5.4 by a star.
Each ensemble also generates these two extreme outliers, shown by the cross for the
conservative ensemble and the diamond for the nonlinear NN ensemble in Fig. 5.4.

Figure 5.4 shows that the NN ensemble approach is an effective tool in
reducing extreme outliers (by �25 %). The significant improvement introduced
by the nonlinear ensemble (diamond) supports this conclusion. This technique
was also applied with similar results to ensemble of NN emulations developed
for the radiation parameterizations (Krasnopolsky 2007b) and the NN multi-model
ensemble (see Sect. 5.2).
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NN Ensembles for Reducing the Uncertainty of the NN Jacobian

The NN emulation (5.2) can be used in the ocean DAS to enhance assimilating SSH
and to improve the propagation of the surface SSH signal to other vertical levels and
other variables. In the ocean DAS, the increment of SSH, 
�, is calculated using

the NN Jacobian
n
@�NN
@Xi

o

iD1;:::;n,


�NN D
nX

iD1

@�NN

@Xi

ˇ̌
ˇ
ˇ
XDX0

�
Xi; (5.3)

where 
Xi are increments of the state variables, X0 is a vector of initial values of
state variables, and n is the dimensionality of the vector X, i.e., the number of inputs
in the NN emulation (5.2). Then the calculated
�NN is compared with the observed

�obs and the difference is used to calculate 
X and to adjust X. Conceptually this
technique is very close to the inversion of an FM considered in Sect. 3.1.1 (see Eq.
(3.4)) and to the variational retrievals considered in Sect. 3.1.2.

As discussed in Sect. 2.4.4, the quality of the single NN Jacobian may not be
sufficient to allow its use in DAS applications; however, an ensemble approach
can be used to improve the NN Jacobian calculations. The NN ensemble described
in the previous section of this chapter was used to create an ensemble of ten NN

Jacobians,



@�

j
NN

@Xi

� jD1;:::;p

iD1;:::;n
, where p D 10 is the number of ensemble members. Then

the ensemble mean Jacobian was calculated:

@�NN

@Xi
D 1

p

pX

jD1

@�
j
NN

@Xi
; i D 1; : : : ; n: (5.4)

Next, Eq. (5.3) was used to calculate 
�NN using each ensemble member’s
Jacobian and the ensemble average Jacobian (5.4). These values of 
�NN were
compared with the exact
� known from the model simulation.

This comparison technique was applied to the last day of the entire model
simulation. This date is separated by about 8 months from the last day of the
simulation used for the NN training and validation. The fields generated by the
model were used to create inputs X for the Jacobians of the NN observation
operator (5.2). Then the NN Jacobian ensemble members were applied over the
entire domain (excluding coastal areas) to generate an ensemble of 2-D fields of

�

j
NN using Eq. (5.3). Also, 
�NN was calculated using the ensemble average

Jacobian (5.4) in (5.3). A nondimensional distance in the model state space between
the vectors X0 and X D X0 C
X was also introduced:

S D
vu
u
t1

n

nX

iD1



Xi

X0
i

�2
: (5.5)
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Fig. 5.5 The location of the cross-section (white horizontal line) inside the model domain; white
dot shows the position of X0

Fig. 5.6 
� calculated using
(5.3) with the NN ensemble
member Jacobians (an
envelope of thin solid lines
that illustrates the Jacobian
uncertainties), the exact 
�
calculated from the model
(thick solid line), and 
�
calculated using the NN
ensemble average Jacobian
(5.4) (thick dashed line). 
�
is shown vs. the distance S
(5.5) in the model state space
(Krasnopolsky 2007a)

Fields calculated in this way were compared with the corresponding field SSH,
�, generated by the model. Multiple case studies were also performed at particular
locations inside the model domain. The results of one case study are presented in
Figs. 5.5, 5.6, 5.7, and 5.8.

Figure 5.5 shows the location of the cross-section (a white horizontal line) inside
the model domain; the white dot shows the position of X0. Starting from this
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Fig. 5.7 The left panel shows the systematic error (bias) and the random error (error standard
deviation) for 
� calculated along the path shown in Fig. 5.5 using Eq. (5.3). The right panel
shows the minimum and maximum errors along the path. The asterisks correspond to errors when
the ensemble member Jacobians were used in (5.3), the cross corresponds to the case when the
ensemble average Jacobian (5.4) was used in (5.3) (Krasnopolsky 2007a)

Fig. 5.8 Errors (RMSEs)
of 
� in cm as functions of
nondimensional distance S
(binned and averaged in each
bin) over the entire model
domain. Thin lines
correspond to the ensemble
members and the thick line
shows the ensemble result
(Krasnopolsky 2007a)

position, we moved up and down grid point by grid point, using X values at these
grid points to calculate 
X and the nondimensional distance in the model state
space, S (5.5). These values of 
X were used in (5.3) to calculate 
�.

Figure 5.6 shows 
� calculated using (5.3) with the NN ensemble member
Jacobians (an envelope of thin solid lines; their spread illustrates the Jacobian
uncertainties), the exact 
� calculated from the model (thick solid line), and 
�
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calculated using the NN ensemble average Jacobian (5.4) (thick dashed line).
� is
shown vs. the distance in the model state space, S (5.5). This figure demonstrates
that the NN Jacobian can be improved significantly by using the ensemble average.
The larger the distance S, the more significant the reduction in the Jacobian
uncertainties is.

Figure 5.7 (left) shows the bias and random error for
� calculated along the path
shown in Fig. 5.5 using (5.3). The asterisks correspond to the errors when ensemble
member Jacobians were used in (5.3) and the cross to the ensemble average Jacobian
(5.4). The ensemble bias is equal to the mean bias of the members as expected when
using the simple conservative method to calculate the ensemble average. This figure
also shows that in the case of the Jacobian, the ensemble approach very effectively
reduces random errors or error SD; the ensemble random error (�1.1 cm) is less
than the random error of any ensemble member. The reduction in bias (�90 %) and
random error (�65 %) with respect to the maximum single member errors is very
significant.

Figure 5.7 (right) shows minimum and maximum errors along the path or the
statistics for extreme outliers. The same procedure, which was used to calculate
errors presented in Fig. 5.4, was applied here. This figure shows that the NN
ensemble approach is also an effective tool for reducing larger errors (by �4 times)
in NN Jacobians.

Then the same procedure was applied at all grid points in the model domain. The
errors have been calculated along numerous paths (both horizontal and vertical)
over the entire model domain. Figure 5.8 shows the RMSE of 
� as a function of
the nondimensional distance S (averaged in each bin) over the entire domain. Thin
lines correspond to the ensemble members while the envelope of thin solid lines
illustrates the Jacobian uncertainties, and the thick line shows the NN ensemble
result. The ensemble significantly improves the statistics for all values of S. Over
the entire domain, the ensemble is always better than the best ensemble member.

5.1.3 Discussion

To better understand the magnitudes of errors presented in this section of Chap. 5,
these magnitudes should be compared with the errors in the observed satellite data

�obs assimilated in the oceanic DAS. The accuracy of the observed data is about
5 cm. Thus, the NN emulation (5.2) and the ensemble techniques allow a reduction
in the Jacobian uncertainties and produce an ensemble Jacobian (5.4) that is
sufficiently accurate to be used in the ocean DASs. These results are also important
for conceptually similar problems described in Sect. 3.1: for retrieval algorithms
based on the numerical inversion of FMs and for the variational retrievals.

The NN observation operator has been implemented in this example in the
simplest manner; NNs were supplied with the information at a particular grid
point and at a particular time, i.e., a point-wise approach was used. The flexibility
of the NN approach allows us to introduce more sophisticated NN approaches.

http://dx.doi.org/10.1007/978-94-007-6073-8_5
http://dx.doi.org/10.1007/978-94-007-6073-8_3
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For example, a field-wise approach, taking inputs from several neighborhood grid
points, similar to the F2P or F2F approaches described in Sect. 3.6.3 of Chap. 3 can
be applied and/or inputs from the previous time steps can be presented to NNs.

5.2 NN Nonlinear Multi-model Ensembles

In this section an approach based on the NN technique is introduced and applied to
calculate a nonlinear average of an MME for improving 24-h precipitation forecasts
over the ConUS. This approach allows us to account for nonlinear correlations
between ensemble members and to produce an “optimal” forecast represented
by a nonlinear NN ensemble mean. The NN approach is compared with the
conservative MME, with multiple linear regression ensemble approaches, and with
results obtained by a human forecaster.

For NWP models, rainfall is one of the most difficult fields to predict accurately.
Detailed knowledge of the atmospheric moisture and vertical motion fields is critical
for predicting the location and amount of rainfall, but these are difficult quantities
to predict and observe accurately. NWP models must resort to parameterizations
that treat convective clouds in a very simplified way to effectively take into account
subgrid processes (cloud related processes), which determine very important pa-
rameters such as the amount of precipitation (see also discussions in Sect. 4.1.2 and
Sect. 4.3.6, subsection “Parameterization and its uncertainties”). Thus, the errors in
quantitative precipitation forecasts (QPFs) can arise as a result of limitations of the
forecast model and errors in the observations.

To compensate for shortcomings in observing systems and model physics, there
has been a trend in recent years toward ensemble forecasting, the realization of a
number of model integrations using perturbed initial conditions. EPSs have been
extensively tested and used in operations at the ECMWF and the US NCEP (Buizza
et al. 2005; Palmer et al. 2007). The ensemble average has repeatedly been shown to
give a more accurate forecast than a single realization of the forecast model (Zhang
and Krishnamurti 1997; Du et al. 1997; Buizza and Palmer 1998). Drawbacks
of the single-model EPSs are the following: (1) the technique is computationally
expensive and lower-resolution versions of the models are generally employed that
reduce the quality of the forecasts, and (2) assuming that errors result primarily from
uncertainties in the initial conditions, any biases present in the model itself will also
be present in the ensemble and may require calibration. The recent introduction
of “stochastic” or “perturbed” physics attempts to account for uncertainties in the
model subgrid scale processes (Buizza et al. 1999, 2005; Krasnopolsky et al. 2008)
(see also Sect. 5.3), using ensembles with perturbed physics.

MME (aka poor man’s ensemble) is another approach that has been taken to
address the aforementioned issues. It combines forecasts from more than one NWP
model. Ebert (2001) exhaustively investigated the advantages and disadvantages of
the MME approach using an MME composed of seven operational NWP global
and regional models. In the case of MME, the ensemble is composed of output from

http://dx.doi.org/10.1007/978-94-007-6073-8_3
http://dx.doi.org/10.1007/978-94-007-6073-8_3
http://dx.doi.org/10.1007/978-94-007-6073-8_4
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different models and/or initial times, rather than a single model with perturbed initial
conditions. Unlike EPSs that use singular vectors or breeding modes to generate
optimal perturbations to the initial conditions, MME samples the uncertainty in
the initial conditions via the different observational data, DASs, and initialization
methods used by operational centers. MME also samples the uncertainty in model
formulation due to the differences in model dynamics, the variety of model physics
parameterizations, numerics, and resolutions. As a result, MME can be considered
an approach, in which all components of the NWP system are perturbed, not only
the initial conditions or model physics. Many authors (e.g., Speer and Leslie 1997;
Du et al. 1997; Ebert 2001) have demonstrated the superior performance of MME.

5.2.1 Calculation of the Ensemble Average

In MME, as well as in EPS based on a single model, the final product is a
combination of the ensemble members. At a particular time and location for an
ensemble with N ensemble members, N predictors, Pi, i D 1, : : : , N are available
for a particular variable P. To produce an ensemble prediction, ensemble members
are combined in a predictand. The simplest and most common combination of the
ensemble members is an ensemble mean (EM), which is calculated as a simple
average of ensemble members and is what we have called a conservative ensemble,

EM D 1

N

NX

iD1
Pi ; (5.6)

where N is the total number of ensemble members and Pi is the ith ensemble
member generated by the model number i. This approach to combining ensemble
members has two major advantages: it (1) does not require any additional informa-
tion; therefore, (2) the unique result (5.6), EM, can always be calculated. The major
disadvantage of the conservative ensemble (5.6) is that it does not make the best use
of the information contained in the set of predictors.

More sophisticated approaches use weighted ensemble means (WEM),

WEM D

NP

iD1
Wi � Pi
NP

iD1
Wi

; (5.7)

where ensemble members are subscribed with weights, Wi, that are usually based
on ad hoc considerations. For example, if, from past experience, it is known that
some models give better predictions than others, they can be assigned higher weights
in (5.7).
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A multiple linear regression technique was used by Krishnamurti et al. (1999,
2000) to determine the optimal weights, Wi, for combining the ensemble members.
This approach can be used only if a training dataset is available to learn regression
coefficients from data; a significant improvement was demonstrated over the
conservative ensemble when using the weighted ensemble mean. If training data
are available, Eq. (5.7) can be generalized and other predictors, xi, i D 1, : : : , m,
can be included in the linear regression:

WEM D
mX

iD0
ai � xi C

NCmX

iDmC1
ai � Pi�m: (5.8)

The aforementioned approaches (both simple and weighted means) implicitly
assume a linear dependence between ensemble members and the best predicted
value (the amount of precipitation in our case). However, in many cases, predictors
are significantly correlated. In the case considered here, it happens because QPFs
produced by different NWP models for the same time and location are similar and
correlated. Linear regression becomes numerically ill conditioned when dealing
with correlated predictors. Also, in some cases the assumption of linear dependence
may be incorrect per se. For example, for longer forecast horizons when bifurcation
of the ensemble forecasts may occur, this assumption can lead to misleading results.
Also, for fields with high gradients and sharp, localized features (e.g., precipitation),
the assumption of linearity may lead to significant problems in MME predictions
(see a more detailed discussion in the following sections). In such cases the
dependence between the ensemble members and the best predicted value may be
complex and nonlinear.

Here, we relaxed the linearity assumption and allowed for an arbitrary nonlinear
dependence between the MME members and the best predicted value, MME, as

MME D f .X/; (5.9)

where the vector X D fx, Pg, P D fPigi D 1, : : : ,N , is a vector of the ensemble members
and x D fxigi D 1, : : : ,m, is a vector of additional predictors, which may accommodate
time and location dependencies as well.

An NN technique is used to approximate this arbitrary nonlinear dependence
(5.9) using a training set composed of past data to learn NN weights from the data.
The nonlinear NN ensemble mean (NNEM), which we introduce here, is defined
following (2.2 and 2.3) as an analytical MLP that can be written as

NNEM D a0 C
kX

jD1
aj � �

 

bj0 C
nX

iD1
bj i �Xi

!

; (5.10)

where the Xi are components of the input vector X (the same as in (5.9)) composed of
the same N inputs (ensemble members) as those used in the EM and WEM equations
(5.6) and (5.7) plus optional additional input parameters (see (5.9)), n is the number
of inputs (n � N), and k is the number of neurons in (5.10).

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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It is worth repeating that expression (5.10) is capable of approximating any
nonlinear relationship between non-stochastic variables. However, the training set
that is used for training (5.10) is composed of inputs and outputs that contain
uncertainties. The inputs, X, contain vectors of QPFs predicted by NWP models, and
the outputs contain the observed QPFs. Both inputs and outputs contain significant
uncertainties (see Sect. 5.2.1) and are stochastic variables. Thus, the nonlinear
function f is also a stochastic function (or a degenerated stochastic mapping (2.1a,
2.1b)) because it describes a relationship between two stochastic variables.

Actually, the stochastic function is a family of functions, each of which describes
a relationship between two variables inside a corridor determined by the uncer-
tainties of these variables with a probability determined by their joint probability
density function. As a result, a single NN (5.10) cannot provide an adequate
approximation for such a stochastic function (5.9). However, the NN technique is
rich and flexible enough to solve this problem. It was suggested (see Sect. 2.4.6,
and Krasnopolsky et al. 2011) that an ensemble of NNs can be used to approximate
these stochastic functions (and mappings). Thus, multiple NNs (an NN ensemble)
have been produced to approximate the stochastic function (5.9), f, where each
NN ensemble member is represented by (5.10). Finally, the QPF is calculated as
a conservative ensemble of the NN ensemble members NNEMi,

MNNEM D 1

q

qX

iD1
NNEMi ; (5.11)

where q is the number of NNs (5.10) in the NN ensemble and each NNEMi is one
of q NNEMs (5.10). There are many different methods of creating NN ensembles.
Here, we used an ensemble of NNs (5.10) that have different weights a and b
corresponding to different local minima of the error function minimized during the
NN training.

Using an ensemble of NN MME means (NNEMs) has an additional advantage. It
allows us to calculate the uncertainty of the MME forecast as the SD of the NNEMs:

� D
vu
u
t 1

q � 1

qX

iD1
.NNEMi � MNNEM/2:

Forecast and Verification Data

Several aforementioned MME techniques were applied for calculating 24-h precipi-
tation forecasts over the ConUS (Lin and Krasnopolsky 2011). Twenty-four-hour
precipitation forecasts over ConUS are available from eight operational models,
including NCEP’s mesoscale and global models (NAM and GFS), the regional and
global models from the Canadian Meteorological Center (CMC and CMCGLB),
global models from the Deutscher Wetterdienst (DWD), the ECMWF, the Japan

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 5.9 The model results (24 h forecast) for three models (NAM, GFS, and ECMWF) together
with the CPC verification analysis for October 24, 2010. Red and blue ellipses show high and
low precipitation areas, respectively. The figure illustrates the uncertainties in model forecasts,
especially for high and low precipitation (Krasnopolsky and Lin 2012)

Meteorological Agency (JMA), and the UK Met Office (UKMO). Also the NCEP
Climate Prediction Center (CPC) precipitation analysis is available. The CPC’s 1/8
degree daily gauge analysis is used in the training of NNs and for the verification of
model predictions. All gridded data fields where interpolated to the same grid, the
40-km Lambert-conformal Advanced Weather Interactive Processing System Grid
212 that encompasses ConUS.

Data indicate that all models demonstrate similar deviations from the analysis: at
lower levels of precipitation they are slightly wetter than the CPC analysis and at the
higher levels (>50–60 mm/day) they are dryer than the CPC analysis (for detailed
discussion, see Lin and Krasnopolsky 2011). In addition, locations of the highs and
lows and details of the precipitation features are different in the precipitation fields
produced by different models. The model results (24 h forecast) for three models
(NAM, GFS, and ECMWF) together with the CPC verification analysis are shown
in Fig. 5.9. The figure illustrates the uncertainties in model forecasts, especially for
high and low precipitation.

Figure 5.10 shows a scatter plot, which presents all eight model predictions over
the first 6 months of 2010 plotted vs. the CPC analysis. It demonstrates a tremendous
spread in the model results, i.e., in MME members.
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Fig. 5.10 Scatter plot
showing 24 h precipitation
forecasts obtained by eight
models over the first
6 months of 2010 vs.
corresponding CPC analysis
(Krasnopolsky and Lin 2012)

Fig. 5.11 Binned scatter plot
for eight models (ensemble
members) and EM (5.6)
(Krasnopolsky and Lin 2012)

The uncertainty of the forecast is especially large at higher levels of precipitation.
The binned scatter plots (the variable is divided in small bins, bin means are calcu-
lated, plotted, and connected with a line) for all eight model 24 h predictions vs.
the CPC verification analysis are shown in Fig. 5.11 together with the conservative
ensemble EM (5.6). The models create an envelope with the spread increasing with



5.2 NN Nonlinear Multi-model Ensembles 163

an increase in the precipitation rate. All models have increasingly low bias at high
levels of precipitations. Figures 5.10 and 5.11 demonstrate the stochastic nature of
the system under consideration.

Ensemble Approaches to Improve Prediction of Precipitations

Here we compare approaches that apply the MME technique for 24 h precipitation
forecasts using multiple linear regression and nonlinear (e.g., NN) techniques
to improve upon the conservative linear ensemble (5.6). Because of the model
problems described above, the research community has been exploring various ways
of making better precipitation forecasts. Among the approaches investigated in this
section, we consider an eight-member MME, which is averaged in three different
ways calculating: (1) the conservative EM (5.6), (2) WEM (5.8) based on multiple
linear regression, and (3) a nonlinear NN ensemble mean, NNEM (5.10).

As can be seen in Fig. 5.11, the conservative EM (5.6) runs through the middle of
the envelope created by the models. EM provides a better placement of precipitation
areas; however, in other respects it does not improve the situation significantly.
Moreover, as illustrated in Figs. 5.13 and 5.14, EM (5.6) smoothes, diffuses features,
reducing the spatial gradients; it has a high bias for low levels of precipitation
(and produces large areas of false low precipitation) and low bias at high levels
of precipitation (highs are smoothed out and reduced). These problems motivated
the search for improved techniques, including nonlinear NN ensembles.

First, an improved linear technique was introduced and investigated. To make
comparisons with the NN ensemble, we introduce the WEM (5.8) as a multiple lin-
ear regression using the same inputs as the NN ensemble (5.10). The multiple linear
regression ensemble mean (WEM) was created in the following way (Krasnopolsky
and Lin 2012):

WEM D a1 � cjd C a2 � sjd C a3 � lat C a4 � lonC
8X

iD1
aiC4 � Pi ; (5.12)

where faigi D 1, : : : ,12 are regression parameters, cjd D cos
�
�
183

� jday
�
, sjd D

sin
�
�
183

� jday
�
, jday is the Julian day, lat is the latitude, lon is the longitude, and

Pi are the ensemble members at a particular grid point in the ConUS grid. The first
two parameters account for the annual cycle. Thus, the multiple linear regression
(5.12) has a total of 12 input parameters.

The NN ensemble mean (NNEM) is defined as in (5.10) where the input vector
X is composed of the same n D 12 inputs as those used for WEM (5.12). k D 7 was
selected after multiple trials to avoid over-fitting (Krasnopolsky and Lin 2012). Both
WEM and NNEM have one output – a 24 h precipitation forecast. The CPC analysis
corresponding to the time of the forecast was used to train the outputs in both cases.
We note that the regression parameters for WEM and the NN weights for NNEM
do not change from grid point to grid point and do not depend on time. After WEM
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Fig. 5.12 Binned scatter plots for EM (5.6) (black solid), WEM (5.12) (black dashed), ten
NNEMs (5.10) (NNEMi, i D 1, : : : , q and q D 10, all blue), and MNNEM (red) that is defined
by Eq. (5.11). The right panel shows the lower precipitation area magnified (Krasnopolsky and
Lin 2012)

and NNEM are trained, they are used with the same set of regression coefficients
(or weights for the NN) for any grid point in the ConUS grid at any time. Thus, the
results depend on time and location only through their input parameters.

5.2.2 Results

The WEM and NNEM have been developed using 2009 data, more than 310,000
input/output records. They have been validated on independent data for the first half
of 2010, e.g., the results shown in Figs. 5.10, 5.11, and 5.12 have been calculated
using these validation data. Figure 5.11 shows the binned scatter plot for the amount
of precipitation over the ConUS territory during the first 6 months of 2010. It
shows the results from eight models together with the EM (5.6) results vs. the CPC
analysis. Our validation showed that, for precipitation fields, WEM (5.12) does not
significantly improve upon the conservative MME EM (5.6).

In Fig. 5.12 these two ensemble means, EM and WEM, are shown by thick
solid and dashed black lines correspondingly. As can be seen from Figs. 5.11
and 5.12, all models, EM, and WEM are slightly wetter than the CPC analysis
at lower precipitation amounts and significantly dryer than the CPC analysis at
higher precipitation amounts. The linear ensembles, EM and WEM, do not change
the situation significantly (see both panels of Fig. 5.12). Also the multiple linear
regression ensemble, WEM, does not significant improve EM.

As we mentioned earlier, there is a significant difference between the linear
ensemble averaging techniques (5.6 and 5.7) and the nonlinear (5.10). EM (5.6)
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is always unique. WEM (5.7) always provides a unique solution for a given training
set. Nonlinear ensemble averaging, and the NN ensemble mean NNEM (5.10),
in particular, provide multiple solutions for a given training set. For accurate
training data (described by the non-stochastic function (5.9) with no uncertainty),
different solutions have different approximation errors, and the best solution with
the smallest approximation error can be selected. For training data with a high level
of uncertainty (noise), similar to the data shown in Figs. 5.10 and 5.11, the function
(5.9) is a stochastic function, and multiple solutions may have almost the same
approximation accuracy as the uncertainty in the data. Thus, all of these solutions
provide valid representations of the stochastic function (5.9) and valid nonlinear
averaging of the MME.

In terms of the NN approach, we trained an ensemble of ten NNs (5.10) with
the same architecture (n D 12 inputs, one output, and k D 7 hidden neurons) but
different initialization values for weights a and b (see Eq. (5.10)). The training of
these NNs, which is a nonlinear minimization of an error function, leads to ten
different local minima of the error function with approximately the same value of
the approximation error. However, because these ten NNs have different weights a
and b (see Eq. (5.10)), they produce very different results in the areas where the
uncertainty of the data is higher (higher levels of precipitation).

The results of the application of different MME averaging NNs (NN ensemble
members) to the validation data set are shown in Fig. 5.12. The figure shows binned
scatter plots for EM (5.6), WEM (5.12), and ten NNEMs (5.10) (NNEMi, i D 1, : : : ,
q and q D 10). The left panel displays the entire range of precipitation values from
0 to 145 mm/day, and the right panel magnifies the lower precipitation area from 0
to 50 mm/day.

All ten NNEMs are in a good agreement at the lower levels of precipitation,
but they diverge significantly at the higher levels. The large spread at higher
levels of precipitation reflects the uncertainty in the data and the differences in
predicting higher levels of precipitation by the different members of the MME
(see Fig. 5.10), i.e., the uncertainty of MME. Also, it is noteworthy that in the
training and validation, data sets less than 0.5 % of the data records correspond
to precipitation values greater than 50 mm/day and only a few records with values
greater than 100 mm/day.

To improve the statistical significance of the nonlinear NN MME averaging
(especially at higher precipitation values), we consider the ten aforementioned
NNs as an ensemble of averaging NNs and calculate the NN ensemble mean
MNNEM using Eq. (5.11). This is shown in Fig. 5.12 by a red solid line. MNNEM
produces a significant improvement over the EM and WEM results at higher levels
of precipitations (Fig. 5.12, left panel); it significantly reduces the low bias at
higher precipitation levels (35 mm/day and higher). It also improves results at low
precipitation levels, significantly reducing the high bias at lower precipitation levels
(from 0 to 10 mm/day). However, at medium precipitation levels from �12 to
30 mm/day, MNNEM and the majority of the NN ensemble members have a lower
bias than EM and WEM, as shown in Fig. 5.12 (right panel). Thus, the nonlinear
NN ensemble averaging approach is flexible enough to balance wetness at lower
amounts of precipitations with dryness at the higher amounts.
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Fig. 5.13 Comparison of three 24 h forecasts: EM (upper right), MNNEM (lower left), and HPC
(lower right) vs. CPC analysis for October 24, 2010. The red ellipses show high precipitation
areas and the blue ellipses show low. HPC is for the Hydrometeorological Prediction Center
(Krasnopolsky and Lin 2012)

Figures 5.13 and 5.14 demonstrate two case studies that show advantages of
the nonlinear NN ensemble forecast, MNNEM, as compared with the conservative
ensemble forecast, EM. Here we do not show the WEM (5.12) results because it
is difficult to distinguish them from the EM results. The CPC analysis for the time
corresponding to the forecast is used for verification. Also, a manual 24 h forecast
produced at the Hydrometeorological Prediction Center (HPC) is also presented for
comparison. To produce the HPC forecast, a forecaster uses the model forecasts
as well as all available observations and satellite data (including satellite imagery)
(Novak et al. 2011).

As Figs. 5.13 and 5.14 demonstrate, the nonlinear NN averaging of MME
improves the positioning of the precipitation features inside the precipitation
fields. It removes significant areas of false low-level precipitation produced by the
conservative EM (5.6) technique. It sharpens the features and enhances precipitation
fronts and the maxima in precipitation. The MNNEM technique provides a forecast
that is comparable with the human HPC forecast while using fewer resources and
less time.

The statistical results that characterize the accuracy of positioning the precipita-
tion features are shown in Fig. 5.15. The statistics covers a period of 8 months, from
November 15, 2010 to July 15, 2011 (the NNs have been trained on 2009 data).
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Fig. 5.14 The same as in Fig. 5.13 but for January 4, 2011 (Krasnopolsky and Lin 2012)

The Equitable Threat Score (ETS) (Wilks 2011) measures that fraction of observed
events that are correctly predicted, adjusted for correct predictions that are due to
random chance. Possible ETS ranges from �1/3 to 1 (a perfect forecast would have
a score of 1 for every precipitation threshold). A bias score is defined simply as the
ratio of the areal coverage of a forecast vs. the observed precipitation exceeding a
given threshold. An ideal forecast would have a bias score of 1 at every threshold.

Summarizing, the MNNEM forecast is comparable with the HPC forecast and
significantly better than EM at the threshold values of less than 0.1 in./day and of
more than 1.0 in./day, which is in good agreement with the statistics presented in
Fig. 5.12.

5.2.3 Discussion

A nonlinear NN ensemble approach to improve 24-h MME precipitation forecast
was introduced in this section. It was shown that the NN MME improves upon the
conservative linear ensemble; it:

1. Significantly reduces high bias at low precipitation levels
2. Significantly reduces low bias at high precipitation levels
3. Sharpens features making them closer to the observations
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Fig. 5.15 ETS (upper panel) and bias score (lower panel) for a period of 8 months from November
15, 2010 to July 15, 2011. Five different 24 h MME forecasts are presented: EM (5.6) – solid red,
WEM (5.9) – dashed pink, HPC forecast – dashed blue, MNNEM (5.10) – dashed light blue, and
one of NNEM (one member of the NN ensemble (5.10)) forecasts – dashed brown (Krasnopolsky
and Lin 2012)

It is noteworthy that the NN MME forecast works at least as well as that produced
by a human analyst HPC forecast without the benefit of additional information that
is available to the analyst, and it is less time and resource intensive.

It is also noteworthy that the NN technique is flexible enough to accommodate
the time and space dependence of the environment in which NN works through
additional time- and location-dependent inputs. The NN technique also allowed us
to take into account the stochastic nature of the problem. We successfully used
NN ensemble technique to approximate a stochastic function (mapping), which
performs an averaging of MME taking into account significant uncertainty in the
data used for NN training.
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Any ensemble averaging technique (linear or nonlinear) based on using past
data, including the NN approach introduced in this paper, requires additional
maintenance efforts as compared with the simplest conservative ensemble (5.6). The
MME ensemble members, the NWP models, are evolving complex systems. Their
prediction quality changes with time. Accordingly, the function f (5.9) changes
with time. Therefore, the quality of its approximation (5.8), or (5.10), or any other,
should be permanently monitored, and, if necessary, the approximations should be
periodically adjusted (retrained). For the approach introduced in this chapter, the
NN ensemble trained on 2009 data still worked well in 2011. Hence, if the NN
ensemble requires a retraining, it should be performed once per M (M> 2) years.

Here, the NN approach has been implemented in a simple way; NNs were
provided with the same information that the linear MME used. The flexibility of
the NN approach allows us to introduce more sophisticated NN approaches. For
example, to introduce information available to a human analyst (and HPC analyses
per se) as additional inputs to our NN or to implement a field-wise approach taking
inputs from several neighborhood grid points similar to the F2P or F2F approaches
described in Sect. 3.6.3 of Chap. 3. The nonlinear NN averaging approach presented
here is generic. Although it was applied to precipitation fields here, it is clear that
it can also be applied to other fields. Also, it can be applied to calculate nonlinear
ensemble means in a single-model EPS as well.

5.3 Perturbed Physics and Ensembles
with Perturbed Physics

In this section several applications of the NN emulation technique for perturbing
model physics and calculating ensembles with perturbed model physics are intro-
duced. Two types of perturbed physics ensembles are discussed: a regular perturbed
physics ensemble (PPE), which follows the scenario of a perturbed initial condition
ensemble (PICE) (see Fig. 5.16), a type of ensembles traditionally used in EPS, and
a short-term perturbed physics ensemble (STPPE). The NN emulation technique
can be efficiently used to create both the PPE and the STPPE. However, all three
aforementioned types of ensembles (PICE, PPE, and STPPE) can significantly
benefit, in terms of their numerical performance, by using NN emulations of model
physics.

During the last decade, ensemble techniques have demonstrated significant
successes in NWP (Palmer et al. 2007; Buizza et al. 2005) and in numerical climate
simulations (Broccoli et al. 2003; Murphy et al. 2004; Stainforth et al. 2005;
Yoshimori et al. 2005). The traditional ensemble approach, PICE is widely used
in NWP EPSs and consists of introducing perturbations into the initial conditions
because NWP problems (specifically, for short- to medium-range weather predic-
tions) correspond to the initial condition problems for Eq. (4.1).

http://dx.doi.org/10.1007/978-94-007-6073-8_3
http://dx.doi.org/10.1007/978-94-007-6073-8_3
http://dx.doi.org/10.1007/978-94-007-6073-8_4
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Fig. 5.16 The PICE and PPE scenario showing individual member trajectories

It was also found that for both NWP and climate applications, the spread of the
PICE forecasts is insufficient to systematically capture reality, and perturbing the
model physics has been introduced in some ensemble forecast systems (Buizza et al.
1999; 2005). Climate simulation problems are rather boundary condition and right-
hand side (rhs) forcing problems in Eq. (4.1) than initial condition problems as it is
for the NWP. For this kind of problem, an ensemble approach based on perturbation
of the model physics (or perturbation of the forcing) seems to be appropriate.
Thus, the perturbed physics ensembles are expected to be more effective for climate
simulations and projections (Stainforth et al. 2005).

5.3.1 Ensemble Approaches in NWP and Climate Simulations

GCMs used for climate simulations and numerical NWP are complex nonlinear
systems composed of many elements (see Eq. (4.1)): the initial conditions, §0;
boundary conditions,§B; model dynamics,˝(‰, t); and model physics, P .‰; t/ DP

k

pk .‰; t/ (pk are parameterizations that represent various physical processes).

Here, ‰ is the atmospheric state vector, incorporating both  and x, and t is time.
Each of these elements, as well as the initial conditions, can be considered as a
specific component that has its own internal (natural) uncertainty. The major sources
of uncertainty in the initial conditions are observation errors and subgrid variability
in the data. For the model physics, the major source of uncertainty are subgrid
scale physical processes (see also Sect. 4.3.6, subsection “Parameterization and
its uncertainties” for more information). Thus, the initial conditions as well as the
model physics may be perturbed within its natural range of uncertainty to produce
an ensemble of model realizations. Each of these ensemble realizations produces a
prediction which constitutes an ensemble member.

Formally, an EPS system may be represented as a set of numerical integrations,

‰j .T / D ‰j .0/C
Z T

0

�
Pj
�
‰j ; t

�C�
�
‰j ; t

��
dt; (5.13)

http://dx.doi.org/10.1007/978-94-007-6073-8_4
http://dx.doi.org/10.1007/978-94-007-6073-8_4
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where j D 1, : : : , N is the number of the ensemble member. All ensemble members
are similar but yet slightly different. The ensemble approach allows for integrating
the specific information contained in the individual ensemble members into an
ensemble that “knows” more, or has more information about, or represents the
predicted climate or weather better, than any of the individual ensemble members.

Ensembles with Perturbed Initial Conditions

The traditional ensemble approach, PICE, widely used in NWP consists of introduc-
ing perturbations into the initial conditions (Buizza 1997); the model physics is not
perturbed and the Pj are the same in Eq. (5.13) for all ensemble members. Based on
this approach, each ensemble member run starts from a uniquely perturbed initial
condition‰j(0). After running independently for some prescribed time T, the results
of the ensemble member runs are compared with each other and with observations
and then averaged (see Fig. 5.16).

Usually, the ensemble average describes an actual weather or climate better at the
moment t D T than a single ensemble member. Using PICEs allows us to observe
how small uncertainties in the initial conditions develop over the model integration
time into significant/measurable differences in predicted atmospheric states. For
PICEs, the initial time step is the only time step for which an uncertainty is taken
into account, i.e., the only time when perturbations are introduced in a deterministic
NWP model. PICE has proved to be an effective tool for NWP; however, the spread
of the PICE forecasts is often insufficient for providing systematic improvements in
NWP (Buizza et al. 2005).

Ensembles with Perturbed Physics

The perturbed physics ensembles (PPEs) are shown to be very effective for climate
simulations and projections (Kharin and Zwiers 2000; Stensrud et al. 2000; Broccoli
et al. 2003; Murphy et al. 2004; Stainforth et al. 2005; Yoshimori et al. 2005).
Within this approach, each ensemble member uses a uniquely perturbed version
of the model physics Pj. PPE can also be used in combination with PICE (Stainforth
et al. 2005) as shown in Eq. (5.13).

Several different approaches have been used for perturbing model physics:

• Model random errors associated with physical parametrizations are simulated by
multiplying the total parametrized physics P by a random number rj sampled
from a uniform distribution between 0.5 and 1.5 (Pj D rj � P ) (Buizza et al.
1999, 2005).

• One or several of the model physics parameters that control key physical
characteristics of the subgrid scale atmospheric and surface processes can be
perturbed (one or several at a time) within the scope of their natural range of
uncertainty (Murphy et al. 2004; Stainforth et al. 2005).
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• Different model physical process parameterization schemes can be used to create
various versions of perturbed model physics; the different versions are used in
different ensemble members (Stensrud et al. 2000).

• NN emulations of model physics can also be used as a tool to create different
realizations of the model physics for generating ensembles of the perturbed
physics (Krasnopolsky et al. 2008).

Usually the same scenario, as that depicted in Fig. 5.16 for the PICE with
perturbed initial conditions, is followed for creating PPE. A particular GCM
ensemble member uses a particular version of the perturbed physics, Pj, throughout
the entire GCM run over time T. Thus, in PPE, different versions of the perturbed
physics (different realizations of the subgrid scale physics) are used for different
ensemble members, and each ensemble member exists and evolves over the entire
GCM integration, a period that is much longer than the characteristic time scale of
the subgrid physical processes involved.

Short-Term Ensembles with Perturbed Physics

Using the perturbed physics approach for generating ensembles offers an op-
portunity to introduce an alternative ensemble approach, namely, a new type of
ensemble – an STPPE (Krasnopolsky et al. 2008) that is not possible in the
framework of the traditional PICE approach. In the STPPE mode, the ensemble
of different realizations (perturbed versions) of the model physics is introduced for
a time interval comparable with the time scales of the subgrid processes involved,
namely, during one time step (or for some parameterizations, for several time steps)
of the model integration. Symbolically the STPPE can be written as

‰.T / D ‰.0/C
Z T

0

2

4 1

N

NX

jD1
Pj .‰; t/C�.‰; t/

3

5 dt: (5.14)

At each time step, an ensemble of different realizations of the model physics is
generated and averaged. The ensemble average is used to integrate the model for
producing the next time step. The STPPE averaging scenario is shown in Fig. 5.17.

The major differences between the PICE or PPE approaches (Fig. 5.16) and
STPPE (Fig. 5.17) are:

• PICE and PPE consist of N independent model runs; STPPE consists of a single
model run.

• In the PICE and PPE approaches, the ensemble averages for climate or weather
characteristics are calculated at the end of all N model integrations combining
climate or weather characteristics for all single ensemble member runs; within
STPPE, the ensemble average is calculated at each integration time step, ti, for
the outputs of the ensemble members composed of perturbed components of the
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Fig. 5.17 The STPPE averaging scenario

model physics. The weather or climate characteristics obtained at the end are the
results of this single STPPE run. There is no additional averaging of the weather
or climate characteristics using this approach.

• SLPPE may be significantly faster than PICE or PPE.

In terms of computation time, the calculations of a perturbed version (or
component) of the model physics take about 1=mT , where 1/m< 1 is a frac-
tion of T required for calculation of the model physics (or a particular compo-
nent/parameterization of the model physics that is perturbed) and T is the total
time required for the integration of one PICE member; then the time required for
an STPPE run is

TSTPPE D
�
1 � 1

m

�
C N

m

�
� T; (5.15)

whereas PICE or PPE runs take a longer time

TPIEC D N � T D N �
�
1 � 1

m

�
C 1

m

�
� T: (5.16)

A major limitation of all three ensemble approaches (PICE, PPE, and STPPE)
is the time required for their execution. Both PICE and PPE require N (N – is
the number of ensemble members) times more than a single model run; that is,
N � T, where T is the time required for one GCM run. STPPE requires significantly
less time because only the model physics is calculated N times. For example, if
the calculation of the model physics takes 50 % of the total model execution time
(i.e., m D 2), the STPPE will be about two times faster than PICE or PPE runs,
assuming that the number of ensemble members, N, is the same. If the model
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physics calculation time is reduced, the STPPE becomes even more computationally
efficient. In the next section, we show that STPPE becomes very efficient (orders of
magnitude faster than PICE and PPE) when the NN technique is used to produce
the ensemble of perturbed realizations of the model physics.

5.3.2 Neural Network Ensembles with Perturbed Physics

NN emulations can serve not only as a tool for introducing fast versions of model
physics (see Chap. 4) but also as a promising approach for perturbing model physics.
The NN emulation technique allows us to conveniently and naturally introduce
perturbations in the model physics (or a component of the model physics) and to
develop fast versions of perturbed model physics (or fast perturbed components of
model physics). Also, using NN-based perturbed physics can make the computation
time for the entire ensemble (if STPPE is used) comparable with the computation
time for a single model run.

The NN emulation technique can be used to introduce an ensemble of perturbed
model physics in the following way. The jth perturbed version of the unperturbed
model physics, P, can be written as

Pj D P NN
j D P C "j ; (5.17)

where P NN
j is an NN emulation number j of the original model physics, P, and "j is

the emulation error for the NN emulation number j. As has been shown in Chaps.
2 and 4, "j can be controlled and changed significantly by varying k (the number of
hidden neurons) in Eq. (2.2). Not only the value but also the statistical properties
of "j can be controlled. For example, the systematic components of the emulation
errors (biases) can be made negligible (therefore, "j are purely random in this case).
Thus, "j can be made of the order of the magnitude of the natural uncertainty of the
model physics (or of a particular parameterization). This uncertainty emerges due to
unaccounted variability in the subgrid processes (see also discussion in Sect. 4.3.6).

Using NN emulations will speed up the calculations of all three types of
ensembles (PICE, PPE, and STPPE). One PICE or PPE run with N ensemble
members using N different NN emulations, each of which is n times faster than
the original model physics, as perturbed versions of model physics will take time,

T NN
PPE D N �

�
1 � 1

m

�
C 1

m � n
�

� T; (5.18)

where 1/m< 1 is the fraction of T required for calculation of the model physics.
Thus, in the case of NCAR CAM, where m � 3/2 to 2 and n � 10–100, using NNs
for PICE or PPE will speed up the calculations about a factor of two to three.

Acceleration of the calculations of PICE and PPE due to the use of NN
emulations of the model physics is significant. However, the speedup will be much

http://dx.doi.org/10.1007/978-94-007-6073-8_4
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_4
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_4
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more significant in the case of STPPE. When we use N NN emulations, each of
which is n times faster than the original model physics, the STPPE run takes time

T NN
STPPE D

�
1 � 1

m

�
C N

m � n
�

� T: (5.19)

Thus, STPPE with N D n ensemble members (N different NN emulations of the
model physics taken as ensemble members) can be run as fast as a single ensemble
member of PICE or PPE (see Eq. (5.16)).

5.3.3 Comparisons of Different Ensembles with Perturbed
NCAR CAM LWR

In this section, the efficiency of STPPE is investigated. We seek to determine if
this approach improves the accuracy of a climate simulation to a degree at least
comparable with improvements provided by the PICE and PPE approaches. For the
following experiments, the NCAR CAM was run using the original model physics
and the original NCAR CAM initial conditions as the control against which all
ensemble members for all three types of the ensembles and ensemble results are
evaluated. Namely, the climate simulations obtained from the 15-year run of NCAR
CAM with the original model physics (including original LWR parameterization)
and the original initial conditions are used below as the control climate (the
synthetic “observations”) to establish a basis for comparison. All ensemble members
and ensemble averages for the different ensembles (PICE, PPE, and STPPE) are
compared with these synthetic “observations.”

Next, to create an ensemble of perturbed physics, we emulated the original LWR
parameterization (Collins et al. 2002) with six different NNs which approximate the
original LWR parameterization with different approximation errors (Krasnopolsky
et al. 2005; Krasnopolsky and Fox-Rabinovitz 2006).

The perturbed LWR parameterizations can be written as

LWRNN
j D LWR C "j ; (5.20)

where LWR is the original NCAR CAM LWR, LWRj NN is NN emulation number
j of the original NCAR CAM LWR, and "j is the emulation error for NN emulation
number j. Thus, the model physics that includes the LWR NN emulation, LWRj NN,
can be considered as jth perturbed versions of the model physics, Pj.

A sufficiently diverse group of six NN emulations have been selected by mixing
two different approaches to create an NN emulation ensemble. Five of these six
ensemble members (NN emulations of LWR) have the same architecture, that is,
the same number of neurons (k D 150 in Eq. (2.2)); however, these NNs are different
because different initializations for the NN weights have been used. The sixth NN

http://dx.doi.org/10.1007/978-94-007-6073-8_2
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Fig. 5.18 Probability density function for "j. The mean "j D 3. 10�4 K/day and the standard
deviation is 0.35 K/day. The dashed line shows a normal distribution with the same mean and
standard deviation for comparison

emulation ensemble member has a different architecture (k D 90 neurons). In terms
of the accuracy of the approximation, there is a significant spread between the
ensemble members. The approximation RMSE varies from 0.28 to 0.40 K/day for
the ensemble member NNs. Thus, by using NN emulations instead of the original
LWR parameterization, on average, such a perturbation level is introduced into the
LWR model physics.

The distribution of approximation errors (perturbations) is shown in Fig. 5.18. It
is obviously not normal. For the normal distribution with the same mean value and
SD, the perturbation values would be very limited; however, because the distribution
of "j is not normal, there is a small but finite probability of obtaining larger
perturbations. If compared with the mean value, �, and SD, � , of the LWR itself
(�D �1.4 K/day and � D 1.9 K/day), the majority of perturbations belong to the
interval �˙ � ; however, a very small number of perturbations reach the magnitude
of about �˙ 3� . Such a distribution is in a good agreement with the fact that
the parameterizations of the model physics, on average, describe the parameterized
processes well and the level of errors introduced due to subgrid effects is moderate;
however, in some cases (e.g., rare or extreme events), the errors may be very
significant.

In the case of CAM LWR, the NN emulations are about n D 100 times faster than
the original LWR parameterization. Since calculation of the original CAM LWR
takes about 30 % of the model integration time T (m D 3 in Eqs. (5.15, 5.16, 5.18,
and (5.19)), using LWR NN emulations in PICE and PPE speeds up the calculations
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Fig. 5.19 Bias and RMSE (left panel) and min and max errors (right panel) for the winter DJF
(December through February) surface net LWR flux (FLNS). Diamonds show the PICE members,
thick large diamond – the PICE average; crosses show the PPE members, thick large cross – the
PPE average; the thick large star shows the STPPE value

by about 30 %. For SHPPE, the use of NN emulations provides a much more
significant speedup in the calculations. For this case, an STPPE run with N D 6
ensemble members and m D 3 takes about 70 % (Eq. 5.18) of the time required for
a single ensemble member of PICE (Eq. 5.16).

To run a PICE that is used for comparison purposes, six perturbed initial condi-
tions members were created by randomly perturbing the original initial conditions
for the temperature field used in the control run. Then a PICE run (see Fig. 5.16)
was performed, consisting of six climate simulations that have been run with NCAR
CAM for 15 years, each with one of these six perturbed initial conditions. Next, we
performed a PPE run (see Fig. 5.16); six climate simulations have been run with
NCAR CAM for 15 years, each with one of the aforementioned six NN emulations.
The same NNs were used as the NN ensemble members for STPPE. The results that
include climate fields and diagnostics of each simulation (ensemble member) were
compared with the control climate run of NCAR CAM performed with the original
LWR and original initial conditions. The climate simulation errors – systematic
(bias), RMSE, maximum (an extreme positive outlier), and minimum (an extreme
negative outlier) – have been calculated for prognostic and diagnostic fields for
each ensemble member vs. the control climate. For some of the fields, the errors
are shown by diamonds (for PICE members) and crosses (for PPE members) in
Figs. 5.19 and 5.20. Then the PICE and PPE averages were calculated (shown by
large thick diamonds and crosses, respectively, in Figs. 5.19 and 5.20).

Next, an STPPE climate run has been performed. For this run, the six aforemen-
tioned NN emulations were applied and the LWR outputs calculated as the mean of
the six NN emulation outputs at each time step and at each grid point throughout
the entire model integration. The results of this simulation are compared with those
of the control run and shown by large thick star in Figs. 5.19 and 5.20.



178 5 NN Ensembles and Their Applications

Fig. 5.20 Bias and RMSE (left panel) and min and max errors (right panel) for DJF pressure at
the surface level (PSL). See the Fig. 5.19 caption for notations

Figure 5.19 shows the winter DJF (December through February) surface net
LWR flux (FLNS) errors in W/m2, as deviations from the control climate. It is
noteworthy that the min and max errors shown in the right panel for this and the
following figures are the extreme outliers obtained for the entire 15 years of model
integration.

Figure 5.20 shows the errors for the DJF pressure at the surface level (PSL) as
deviations from the control (in hPa). The results presented in Figs. 5.19 and 5.20
clearly demonstrate that all three ensemble approaches give similar results in terms
of improvements in the accuracy of the climate simulations. Also they show that the
PPE generates a significantly larger spread of the ensemble members than does the
PICE with a random perturbation of the initial conditions, which is a plus. Similar
results have been obtained for the other variables.

5.3.4 Discussion

In this section, an NN emulation technique was introduced as a tool for creating
perturbed model physics for use in ensembles with perturbed physics. Also an
STPPE approach was introduced. It is shown that the neural network emulation
technique allows us to (1) introduce fast versions of model physics (or components
of model physics) that can speed up the calculations for any type of ensemble up
to 2–3 times, (2) conveniently and naturally introduce perturbations in the model
physics (or a component of model physics) and to develop fast versions of perturbed
model physics (or fast perturbed components of the model physics), and (3) make
the computation time for the entire ensemble (in the case of the STPPE introduced
here) comparable with the computation time for one single model run.
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All three ensemble approaches – PICE, PPE, and STPPE – demonstrate similar
improvements in the climate simulation accuracy. The use of any of these ensembles
in the climate simulation significantly reduces the systematic error (bias); it also
reduces the random error by making it close to that of the best individual ensemble
member. The same is true for the extreme (min and max) errors. Using NN emula-
tions of the model physics significantly improves the computational performance of
any of the ensemble techniques that were investigated. However, it is important to
emphasize that the STPPE is significantly faster than PICE or PPE.
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Chapter 6
Conclusions

Science is facts. Just as houses are made of stones, so science is
made of facts. But a pile of stones is not a house and a
collection of facts is not necessarily a science.

– Jules Henri Poincare, Science and Hypothesis

Abstract In this chapter, a summary of the material introduced in the book is
presented. Advantages and limitations of neural network (NN) techniques are
discussed. Some other statistical learning techniques, such as the nearest neighbor
approximation, the regression tree, and the Random Forest approximation, are
briefly discussed. Their performances are compared with the performance of the
NN emulation for the case when these techniques are applied to emulate a long
wave radiation parameterization in an atmospheric model. The chapter contains a
list of references giving background and further detail to the interested reader on
each examined topic.

During the last several decades, an objective generic trend emerged in ESS, a
transition from studying simple, low-dimensional, single-disciplinary linear, or
weakly nonlinear geophysical processes and systems to those that are complex,
multidimensional, interdisciplinary, and nonlinear. This trend is closely matched by
a trend in ESS modeling (including statistical modeling), a transition from simple,
low-dimensional, linear, or weakly nonlinear models to complex, multidimensional,
coupled, nonlinear models, and from simple, linear statistical tools like linear
models and linear regressions to sophisticated, nonlinear statistical tools like
nonlinear regressions, NNs, and support vector machines.

Transitioning to nonlinear models and statistical tools has shown their generally
greater adequacy in addressing the problems that are an integral part of modern
ESSs. This transition and the following intensive use of nonlinear statistical tools
and models have also revealed that their complexity and flexibility, if not properly
managed, may lead in some cases to undesirable results and erroneous predictions.
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What should the strategy be in this situation? To return to simple linear tools and
models? Unfortunately, we cannot do that because the objects of our study are
essentially complex and nonlinear. In my opinion, the only productive approach in
this situation is to apply to the objects of our study extensively nonlinear statistical
tools and models that are up to the task and to learn, through experience, how to min-
imize or eliminate possible undesirable side effects while maximizing the advan-
tages that the complexity and flexibility of these nonlinear models and tools offer.

In the discussions included in each chapter of this book, I have tried to emphasize
that the transition from linear statistical tools to nonlinear ones (such as NNs)
requires, to some extent, an adjustment in our thinking and our philosophy. For
example, when we deal with relatively simple linear systems and use linear
statistical tools (such as simple linear regression) to model these systems, we
can assume, in some cases, that the parameters of our statistical model have
physical meaning, that they are directly related to the characteristics of the physical
processes involved and/or tell us something about the physical structure of the
system under consideration. When we deal with complex nonlinear systems and
apply nonlinear statistical tools, we probably should focus primarily on obtaining
the best predictions possible of the behavior of the system under consideration, but
not on attempting to extract physical meaning from the multiple parameters of our
nonlinear model (Vapnik and Kotz 2006).

6.1 Comments About NN Technique

In this book, I presented and discussed one particular type of NN technique – the
MLP NN – and one generic application of this NN, NN emulations for complex
multidimensional mappings. It was shown that even this one generic NN application
covers a wide variety of important problems in atmospheric and oceanic sciences
and can provide us with flexible, accurate, and fast nonlinear solutions for these
problems. There are other generic applications, for example, classification problems
(Hansen and Salamon 1990; Sharkey 1996; Opitz and Maclin 1999), that can be
successfully solved using MLP NNs (Lippmann 1989; Marzban and Stumpf 1996;
Hennon et al. 2005). There are also other types of NNs that provide solutions for
other generic applications, like pattern recognition problems (Ripley 1996; Nabney
2002) or time series prediction (Weigend and Gershenfeld 1994), but this book does
not deal directly with these types of NNs and their applications. However, many
generic issues are discussed here, like NN building blocks, the complexity and
dimensionality of the problem and corresponding complexity and dimensionality
of nonlinear models (e.g., NNs) that provide solutions of the problem, and NN
generalization capabilities. These basic issues are important and are applicable to
other types of NNs and other NN applications.
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While artificial neural networks can be considered a generic, state-of-the-art
methodology for a wide range of high-dimensional approximation problems, they
may not necessarily be the best solution for these applications. Although it is known
that neural networks are universal approximators, i.e., they can approximate any
continuous function to any predetermined accuracy (DeVore et al. 1997), this is
achieved only by allowing the number of neurons to increase arbitrarily. Also,
the learning of the network parameters (weights) requires the solution of a large,
nonlinear optimization problem, which can deliver suboptimal solutions.

While the application of neural networks to the problem of emulating complex
multidimensional mappings considered in this book has produced excellent results,
it is not without its limitations. Foremost among these is that the neurons that
are represented by sigmoid or hyperbolic tangent functions are not localized and
their superposition is a complex nonorthogonal expansion. Thus, local features are
reflected in many or all terms of the function expansions. This is analogous to
Fourier methods. One of the great advances of the last few decades in image pro-
cessing has been to replace Fourier methods by the more local wavelet methods. The
aforementioned nonlocality makes the capturing of local or multiscale phenomena
difficult. In our use of NN emulations, we also notice that NNs can sometimes
exhibit relatively large errors (however, with small probability). Thus, although
both the systematic and the random errors are very small, there exists a very small
probability of larger errors, which needs to be avoided (an approach for solving this
problem using NNs is described in Sect. 4.3.5).

Additionally, the approximation of the target mapping is trained using a data
set that consists of observed or simulated evaluations of the original mapping
gained during observations or numerical simulations. The inputs of this training
data set, therefore, cover, in terms of the physics represented by the mapping,
the physical states observed during a certain time period. However, the domain in
which the mapping is to be evaluated may change with time as in the case of a
changing climate. In such situations the approximation may be forced to extrapolate
beyond its generalization ability, which may lead to larger errors. In this case it
could become necessary to retrain the emulation in order to adapt it to the new
environment.

This brings into question whether NNs are the ultimate SLT solution for the task
of numerically emulating the mappings considered in this book. Indeed, since our
goal is often to capture subtle multiscale phenomena, a more application-oriented,
responsive, and adaptive learning method could be useful. However, talking about
adaptive techniques, we should keep in mind that the success of such approaches
depends very much on what is known a priori about the particular problem under
consideration. In this respect, adaptive techniques are similar to inverse problems,
which require additional information for their regularization. In both cases, solution
of the problem is very sensitive to even small changes of regularization (a priori)
information and/or additional assumptions that are introduced to make the problem
resolvable (Novak 1996). Some of alternative CI approaches are reviewed in the
next section.

http://dx.doi.org/10.1007/978-94-007-6073-8_4
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6.2 Comments About Other Statistical Learning Techniques

The major SLTs are kernel methods (Vapnik and Kotz 2006; Hsieh 2009), NNs, and
nearest neighbor algorithms (see Shakhnarovich et al. 2006 for general references).
Each approach has tradeoffs. The advantage of NNs and kernel methods is that they
can be implemented in high dimensions without meshing or splitting the domain
of the approximated mapping into subdomains. Their disadvantage, as mentioned
above, is twofold. Firstly, they are not local, by which we mean the building blocks
are not locally supported functions and may require a long series of these building
blocks to approximate a simple but localized function. However, it does not apply to
radial basis function NNs that use Gaussian basis function. A second disadvantage
is that they are not explicitly adaptive to changes in the underlying function or
mapping.

Nearest neighbor methods have a local flavor but they are also typically not
implemented adaptively. In other words, the rules for identifying nearest neighbors
do not take into account the variability in the underlying function (which will be
reflected in the data). Nevertheless this approach is closer to the methods we would
like to employ. The severe obstructions encountered by this method when dealing
with problems in higher spatial dimensions is the curse of dimensionality (see Sects.
2.2.1, 2.3.1, and 2.4.1).

To the best of our knowledge, the first attempt to apply methods other than NNs
to emulate some of the complex mappings discussed in this book was performed
by Belochitski et al. (2011). In this work, we used several methods within the
class of nonparametric approximation methods as alternatives to neural networks.
Nonparametric learning methods typically attempt to partition the input space and
then use simple local models like piecewise constants to approximate the data.
Two common statistical learning paradigms – (1) (approximate) nearest neighbors
and (2) regression trees – were considered. Three methods belonging to these
paradigms – (1) the approximate nearest neighbor approximation, (2) the regression
tree, and (3) the Random Forest approximation – were considered (Belochitski et al.
2011). They have been applied to emulate the NCAR CAM LWR parameterization
and have been compared with the NN emulation developed for this parameterization
in Sect. 4.3.3.

The major results obtained in this study are (for a more detailed discussion, see
Belochitski et al. 2011):

1. Both nearest neighbor type methods and regression trees are, in principle, able
to achieve statistical approximation quality comparable with NNs; the Random
Forest approximation has even better RMSE scores than NN emulations.

2. The NCAR CAM with a tree-based LWR emulation gave results in close
agreement with calculations using the original parameterization; however, even
with the best Random Forest approximation, the results are not as good as with a
NN emulation. This seeming contradiction with the issues 1 points to the major
advantage of the NN emulation technique as compared with tree-based methods.

http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_2
http://dx.doi.org/10.1007/978-94-007-6073-8_4
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For the case of multiple correlated outputs (LWR heating rate profile) considered
here, NN is the only method capable of utilizing the correlation information.
Namely, the NN emulation works with the LWR heating rate profile as with a
single entity, preserving strong correlations between neighboring vertical levels
of the profile. The tree-based methods considered here perform approximation
level by level, independently for each element of the profile, completely missing
the correlation information. As a result, despite comparable approximation
accuracy, in the model, where vertical correlations in the heating rate profile are
important, tree-based methods do not perform as well as NN LWR.

3. From a practical point of view, these methods cannot compete with NN emula-
tions in terms of speeding up the calculations; also, nonparametric approximation
methods are memory based, i.e., they need to store all the training data
permanently. This makes their use in a parallel environment much more difficult
than is the case with the relatively compact NN emulations.

Therefore, the ideas and results presented in Belochitski et al. (2011) can only
be considered as preliminary steps toward a new emulation SLT, which can be
an alternative to NN for emulating complex mappings. Thus, the results of this
study demonstrate that, at this time, the NN is probably the only practical SLT tool
for solving the problems discussed in this book and more generally for emulating
complex multidimensional mappings.
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