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Preface

This book presents the solution of the problem of origin and evolution of the solar
system based on Jacobi dynamics. The work’s continuous study on the dynamics
was published earlier (Ferronsky et al. 1978, 1979a, b, c, 1981a, b, 1982, 1984,
1987, 1996, 2011, Ferronsky 1983, 1984, 2005; Ferronsky and Ferronsky 2010).

By analysis of orbital motion of the Earth, the Moon, other planets, and their
satellites, we discovered a common dynamical effect valid for all the solar system
bodies. The effect demonstrates that all the planets and satellites have been orbited
by the first cosmic velocity of their protoparents. Namely, the planets move in orbits
with the first cosmic velocity of the protosun, the radius of which was equal to the
semimajor axis of modern orbit of each planet. The satellites of each planet have
mean orbital velocity equal to the first cosmic velocity of the corresponding planet
having radius equal to the semimajor axis of modern orbit of each satellite. This
effect holds for all the small planets of the asteroid belt and for all the comets.

We can state now that the discovered common dynamical effect of the ce-
lestial bodies’ orbital motion with the first cosmic velocity of their protoparents
demonstrates the nature of the forces, which initiate and govern this motion. The
protoparental body originates these forces in the form of an integral effect of its
constituting interacted elementary particles, which is the body’s inner energy. In
fact, this is Newton’s gravitational force, which he searched for the solution of
Kepler’s problem. The Kepler’s laws, in particular its third law, follow from the
found dynamical effect of celestial bodies’ orbital motion.

The found dynamical effect was used as a basis for more-detailed analytical
consideration of the solar system’s cosmogony. We demonstrate that all the solar
system bodies have been formed, separated, and orbited from the upper weightless-
ness shells of their protoparents during the evolutionary process.

The details of the creation process like differentiation of the initial cloud into the
shells, physics of the secondary body formation and first cosmic velocity orbiting,
separation of the protosolar cloud itself from the protogalaxy, and other effects of
the system origin and evolution are considered in the form of separate tasks solution.

The following basic physical principles were accepted for the problem so-
lution. The Sun and other stars, their planets, and satellites are considered as
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self-gravitating celestial bodies, which themselves generate the energy for the
motion by means of their constituent elementary particle interaction. The particle
interaction is considered as a process of their collision and scattering. Because
of absence of hydrostatic equilibrium of celestial bodies, found by the artificial
satellite studies, the condition of dynamical equilibrium was introduced. This
condition is based on the analysis of the artificial satellite orbital motion and
also on the observable fact of disagreement with the virial theorem regarding the
relationship between the potential and kinetic energy. The condition was accepted
not as assumption but proved by derivation of the generalized virial theorem for
n-interacted particles as volumetric matter values. This fundamental principle also
follows from the Jacobi dynamics. In this case the energy is accepted as the measure
of the particle interaction. The energy action is developed in the form of its inner
pressure and accomplishes by oscillations of the moment of inertia. The resulting
dynamical effect of a self-gravitating body at its dynamical equilibrium results in the
periodically repeated oscillations of all the fundamental parameters like the moment
of inertia, potential and kinetic energy, and their frequency and period of oscillation.
In the other words, the inner energy initiates all the body’s dynamical effects. In this
connection, for instance, the widespread opinion that the hydrostatic equilibrium of
stars (equation of state) results in the form of equality between the gaseous and
gravity pressure appears to be a meaningless idea. In the case of a self-gravitating
body, its gaseous pressure is the dynamical effect of interaction of the constituting
particles, that is, its gravitational pressure. The measure of the body’s interaction of
mass particles is the energy but not the force being its first derivative. For a celestial
body, the gravitational effect of its interacted masses is determined by integration of
the interacted particle effects over the whole volume, that is, obtaining its energy.

In contrast to the hydrostatic equilibrium where the outer forces are used for
solving the problems of motion under force action, dynamical equilibrium is based
on the inner energy or on the inner integral force field. Dynamical equilibrium of
celestial bodies opens new possibilities for studying the nature of their motion. Their
own inner and outer force field determines dynamics of a celestial body. Earlier, the
inner force field was accepted to be the central symmetric field of vector forces, the
sum of which is equal to zero. For dynamical equilibrium, the interacted particles
form the volumetric field of pressure which cannot be equal to zero by definition.
Such a field of pressure can be reduced to a resultant shell of pressure. For a sphere
it will be a spherical shell and for an ellipsoid this is an ellipsoidal shell.

We demonstrate that the basic mode of a body motion is its oscillation.
Interaction of the uniform in density body mass realizes all its kinetic energy
in the form of oscillations. For a nonuniform body, the tangential component of
the potential energy appeared. This component is responsible for the body’s axial
rotation (tangential oscillation). It is assumed up to now that in mechanics of
the macroscopic bodies the wave properties of such nature for massive particles
are unessential. It is shown in this work that virial oscillations of a body masses
represent the main part of kinetic energy. In the theories based on the hydrostatic
equilibrium, this energy is ignored. But in this case, the potential energy of celestial
bodies by two or more orders exceeds the kinetic one presented by axial inertial
rotation of the masses. This effect has a simple physical explanation. In the
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beginning of the last century, the famous French physicist Louis de Broglie extended
on the matter of the wave–particle duality theory of light. Later on, his theory
was fully confirmed and becomes the basis for developing the present-day wave
mechanics for matter on an atomic scale. The particles of greater mass, which are the
subject of classical mechanics, have mainly corpuscular properties. The relationship
between oscillation of the gravity field and the Earth moment of inertia, which was
proved by artificial satellite data, shows that the interaction of its masses results
on the level of elementary particles. The only form of motion of the interacted
mass particles is their oscillation. The continuous “tremor” of the Earth’s gravity
field fixed by changes of the gravity moments is one more conformation of the
de Broglie’s idea for the mass interaction of celestial bodies.

Finally, the important effect of a body mass interaction is its outer force field. Its
potential energy is changing according with the inverse square law (proportionally
to the body’s surface shell area), and the fundamental parameter of the field is its
frequency of oscillation. The outer force field fills in all the space of the universe
including galaxies, stars, and other bodies. And the oscillation frequency in a given
point of the space indicates the energy emitted by the corresponding celestial body
during its stay there and velocity of its elementary particle interaction. The outer
force field is an indicator of legitimacy of the energy conservation law for the
universe as a whole.

Such are the main physical principles used for the solution of the solar system
origin and evolution problem, which follows from our previous studies.

The last chapter of the work considers some aspects of application of the obtained
results to the universe problems. In particular, the results are used for interpretation
of the “dark matter,” “dark energy,” and “Big Bang.” The conclusion is made that
our universe in framework of the accepted geometry is a closed pulsating system.
During its expansion (present stage of evolution), the system’s decay results up to
the matter, becoming like “dark matter” with “dark energy” (weightlessness discrete
particle matter). During the contraction stage, the mass particles (electrons, protons,
nucleus, atoms, and molecules) and bodies are created in the form of a common
galaxy being in the force field (“dark energy”) of the universe. During the stage
of expansion, the energy is emitted by the decaying bodies. During the stage of
contraction, the “dark energy” is bounded into, what we say, “matter,” which, in
fact, is a form of the compressed mass defect.

V. Ferronsky
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Chapter 1
Introduction: New Data Related to the Nature
of Creation and Orbiting of the Planets
and Satellites

Abstract The authors’ discovery of a dynamical phenomenon that throws light
on the nature of creation and orbiting of the planets, their satellites, and the Sun
itself is presented in this chapter. In addition, a short review of the more important
cosmogony hypothesis and celestial body motion laws, based on hydrostatics, is
presented.

All the authors assume that celestial bodies were created from a gaseous or gas-
dusty cloud (nebula). But in order to obtain the observed parameters of motion and
matter content of the Sun, the planets, and the satellites, some of the authors consider
a common cloud, and the others accept separate clouds for the Sun and the planets
with the satellite creation. Philosophic ideas of Rene Descartes and Immanuel Kant
about the creation of the universe and the hypotheses of Kant–Laplace, Buffon,
Jeans, and others are described briefly.

The heliocentric world system of Copernicus, Kepler’s laws of the solar system
and planets’ motion, Huygens’ semicubic parabola law in pendulum motion, and
Newton’s solution of Kepler’s problem, based on hydrostatic equilibrium state, are
analyzed.

The main points of the common dynamical effects found for all the solar system
bodies are as follows: applying Jacobi dynamics, it was found that the mean orbital
velocity and the period of revolution of every planet are equal to the first cosmic
velocity and corresponding period of virial oscillation of the protosun, with its
radius equal to the semimajor axes of the planet’s orbit. The same effect holds for
all satellites of the planets and other small bodies.

The first cosmic velocity v1 of the protosun and protoplanetary bodies and the
period of oscillation of the corresponding outer shell 1 of the created bodies were
calculated by the formulas from which the third Kepler’s law follows: �1 D !R D
R
p
Gm=R3 D p

Gm=R, T1 D 2�=! D 2�R=v1, and .2�/2=T12 D Gm=R3.
Here, m is the body’s mass; G is the gravity constant; R is the semimajor axis; and

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 1,
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2 1 Introduction: New Data Related to the Nature of Creation and Orbiting . . .

!D v1/R is the frequency of virial oscillation of the outer shell, which appears to be
equal to the angular velocity of orbital motion of the created body.

This fact opens the way for solving the cosmogony problem as a problem of
dynamics.

The problem of the origin of the Earth and the solar system evidently appeared
together with the appearance of man himself. The interest was initiated and
developed by the natural normal and catastrophic events, which were necessary
to be predicted. Step-by-step after accumulation of the observational results, the
ancient stargazers started to think about the problem of the creation of the universe.
The first thoughts about this have been expressed in ancient myths, legends, and
religious writings.

It is obvious that the theory of origin of the celestial bodies should be based first
of all on the laws of their motion and on the specific features of the nature of their
substantial content and formation of properties. As early as in the fourth century
BP, Aristoteles formulated fundamentals of the geocentric system of the world. And
two centuries later on, Ptolemaeus in his 13-volume description entitled The Great
Mathematical Construction with the Arabian name Almagest developed further the
above work for practical applications. But only in the sixteenth century, after the
Copernican heliocentric world system appeared and Kepler’s laws of the planets’
orbital motion were discovered, the problem of the creation of the solar system
and the universe as a whole became one of the main problems in natural sciences
and in philosophy. At present, more than 50 million references of cosmologic and
cosmogony publications are collected in internet sites, which demonstrate the scale
of interest in the problem. But its resolution has not progressed beyond speculative
description of possible origin events presented in the style of scientific fantasy.
Any solutions, based on the natural laws and facts proving the nature of the body
formation, have not yet been obtained.

Let us make a short review of the more important cosmogony hypothesis and
consider once more the laws of celestial body motion and also the dynamical
phenomenon discovered by the authors, which throws light on the nature of creation
and orbiting of the planets, their satellites, and the Sun itself.

1.1 Hypotheses of Celestial Body Creation

There is one common idea regarding the existing numerous hypotheses of the solar
system origin. Practically all the authors assume that celestial bodies were created
from a gaseous or gas-dusty cloud (nebula). But in order to obtain the observed
parameters of motion and matter content of the Sun, the planets, and the satellites,
some of the authors consider a common cloud, and the others accept separate clouds
for the Sun and the planets with the satellites. And also in some hypotheses, the pro-
toplanet’s cloud was captured by the protosun during its motion, and in the others the
protoplanet’s cloud was taken away from the protosun by another star passing along.
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Rene Descartes (1596–1650), the French philosopher, physicist, and mathe-
matician, descendant from the eminent Cartesian family, was the first to draw the
general picture of celestial body creation from matter, which fills the universe and is
composed of moving elementary particles. Descartes did not recognize indivisible
atoms and a void space. In addition to the visible matter, he recognized a form
of invisible fine matter. The latter one he used for explaining the effects of heat,
gravity, electricity, and magnetism. He assumed that there is no place in physics
for the forces, which act through the void space distant. This conception was called
Cartesian and remains until now.

To contrast to the finite world, Descartes assumed that the world matter is
infinite and uniform. Matter has no voids, and the particles are infinitely divisible.
Descartes’ principle of velocity conservation, which he understood as the law of
the momentum conservation, is interesting because of its cyclic vortex motion of
the universe matter. Because of absent voids, he considered any matter motion as
cyclic: if one part of matter is moving, then it is replaced by some other and the
latter by the next one and so on. As a result, the total universe is penetrated by
vortex motion. The motion in the universe and the matter itself are perpetual. All
the natural events result in motion of the particles of matter.

The main form of motion he accounted to be inertial motion. The matter is
represented by the elementary particles, the local interaction (collision) of which
initiates all the natural events. Through Descartes, creation of matter and its first
momentum was done by God.

Descartes states the further development of the cosmogony on the basis of his
three laws of motion:

1. Any simple and indivisible object remains invariable until some other subject
changes it by means of interaction.

2. The initial form of a body motion is the rectilinear motion.
3. At collision of one body with the other that is stronger, the first one loses nothing.

At collision with a weaker one, the first body loses as much as it transmits to the
other one.

Initially random motion of the uniform infinitesimals and their collision leads
to the creation of the multiplicity vortexes. Gradually and sporadically by the above
three laws, the chaotic world has been converted into the observed universe. The fine
particles which form matter of first generation form the stars and the Sun. Spherical
particles of the second generation create the interstellar space (the sky). More coarse
and cohesive particles of the third transform their vortex into the Earth and the
planets which are revolving about the Sun.

The laws of mechanics and the idea of the vortex motion allowed Descartes
to explain the daily rotation and yearly revolution of the Earth about the Sun. He
wanted to construct the nature where all the events result by the effect of motion
and interaction (collision) of the fine and coarse particles formed from the initial
elementary particles.

That is the general picture of the creation of the world by Descartes. His
hypothesis of the vortex universe and the creation of celestial bodies on this
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basis was supported by Fontenelle, Leibniz, Huygens, Bernoulli, and other known
philosophers and scientists of that time. But some of them criticized separate
positions and even rejected all the philosophy. For example, the well-known French
philosopher, mathematician, and astronomer Pierre Gassendi said, “One must be
surprised that such a great geometer instead of proving he has proposed sleep
dreams.” In this connection it is worth noting that the later cosmogony hypotheses
up to the present day cannot demonstrate the proof, including the most popular
Kant–Laplace’s hypothesis.

Immanuel Kant (1724–1804), the parent of classical German philosophy, pub-
lished his fundamental work Universal Natural History and Theory of Heavens
(1755) when Laplace was only 6 years old. Laplace published his hypothesis in 1796
in the work The System of the World, where he has not even mentioned Kant’s name.
Nevertheless, their names were joined because both authors used in their works the
nebular hypothesis in explaining the origin of the solar system. They used different
arguments and approaches to the problem. They applied different assumptions and
obtained diverse conclusions and predictions. But both hypotheses have a common
basis, namely, Newton’s law of attraction.

Kant considered the matter as a substance dispersed all over the universe and
being in the state of a general chaos. He assumed that matter is formed on the basis
of known laws of attraction and changes its motion due to collision and repulsion.
The matter of all substances, he said, is subjected to specific laws and being free in
action must find fine combination. It cannot deviate from the tendency to harmony.
Assuming the world to be in the state of chaos by the attraction and repulsion forces,
which are equally reliable, he has explained the great order in nature: “Give me the
matter and I will construct the World,” said Kant.

Kant’s universe has had the beginning and the end, which becomes its beginning.
He expressed and justified the hypothesis of a pulsating universe, in fact, going up
to the Big Bang idea.

Pierre-Simon Laplace (1749–1827), the great French astronomer, physicist, and
mathematician, is the author of many classical works on celestial mechanics, analyt-
ical theory of probability, differential equations, and other sections of sciences. He
was the member of many royal societies in Torino and Copenhagen and academies
of sciences in Göttingen, Berlin, and Petersburg.

Laplace tends to explain all the visible motion of the celestial bodies by Newton’s
law of universal gravitation. He said that the mean acceleration of the Moon’s
motion is the only celestial event which up to now has not obeyed the law of gravity.
But Laplace also found an explanation for this. For him, this is because the long
periodic change of the Earth orbital eccentricity discovered by astronomers leads to
changes in the Moon’s velocity.

In 1796, Laplace published the book The System of the World in which he
expounded in popular form his fundamental five-volume work Tractate on Celestial
Mechanics. In the appendix, Laplace presented there his cosmogony hypothesis on
the origin of the solar system. He assumed that the solar system has been created
from the rotating hot gaseous nebula, the diameter of which extended beyond the
last planet. While cooling, the nebula has been divided by the centrifugal forces that
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appeared into gaseous rings from the outer border. The planets and the satellites
have formed from the rings. Laplace proved the stability of the motion of the solar
system. For this, he used the facts such as the orbital body motion to the same size,
small orbital eccentricities, and small inclination of the orbits, which determine the
invariability of the distances from the Sun and the narrow limit of changes in the
orbital elements.

This hypothesis has captured common imagination. And only a century after
the discovery of new regularities, some discrepancies have appeared, which caused
doubt in its admissibility. The main doubt was the difference in distribution of the
mass and moment of momentum between the Sun and the planets. It will be shown
in this work that this obstacle is a scientific misunderstanding.

Georges-Louis Buffon (1707–1788), French naturalist, mathematician, and en-
cyclopedic author, member of honor of the Petersburg Academy of Sciences, in
voluminous Histoire Naturelle, alongside with a general description of historical
development of nature, gives his view on the origin of the Earth and other planets.
He assumes that the planets are the fragments of the Sun divided during the falling of
the comets. In the Earth’s history (�85,000 years), he derived seven periods during
which the cooling, rock formation, mainland development from the oceans, plant,
and animal growing, and finally human appearance have taken place.

Frederick Wilhelm Herschel (1738–1822), German astronomer and mathemati-
cian, has made a huge amount of astronomical observations and discoveries. In
1781, he discovered the planet Uranium and its two satellites. He also discovered
two satellites of Saturn and a number of other solar system bodies, about 400 double
stars and a multitude of nebulae. Herschel’s catalog includes 2,500 nebulae, some
of which are surrounded by gaseous clouds and others without those. Extensive
information was obtained about the structure of our galaxy. His sister Caroline and
son John were also astronomers. Many authors and researchers of the cosmogony
problem used Herschel’s observational data for proving own or refuting others’
hypotheses.

James Jeans (1877–1946), English theoretician, physicist, mathematician, and
astronomer, established the law of energy distribution in the long-wave part of the
star radiation spectrum (the Rayleigh–Jeans’ law) in 1905, which establishes the
relationship between the density of radiation energy of the absolute black body and
the source temperature.

Jeans stated that his analysis of the rotating bodies disproves Laplace’s hypoth-
esis of the formation of the solar system from a common gaseous cloud. In 1922,
he proposed his own tidal theory of planet formation from the matter removed from
the Sun by a star passing along. In spite of the absence of astronomical observation
(including Herschel’s) of wandering stars, the idea of tidal appearance of clouds is
still in the arsenal of cosmogony until now.

The idea of the tidal origin of the protoplanetary cloud was put forth in 1905
by the US astronomers T. Chamberlin and F. Moulton. Russian academician O. Yu.
Schmidt in 1943 developed the idea of tidal capture by the Sun of a gas-dust cloud,
from which the planets were formed (Schmidt 1957). Astronomer G. Russell in
1935 assumed that the Sun was a binary star, the second component of which
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was destroyed into protoplanetary cloud by tidal effect of a passing third star.
Astronomer R. Lyttleton in 1936 proposed that the Sun was an unstable triple
star. After two stars separated, they left a part of gaseous matter, from which the
planets were formed. H. Alfven in 1942 assumed that the Sun, on its way, met a
gaseous cloud, atoms of which were ionized and while moving created the planets.
C. F. von Weizsäcker in 1944 proposed that after contraction of the protosolar
cloud in its outer shells, the vortexes were formed, from which the planets were
created. In the same year, F. Hoyle wrote that the Sun was a binary star, where
the second component was a supernova. After it flared, the protoplanetary cloud
remained, and the star left the system. Russian academician V. G. Fesenkov in 1953
developed the idea of the origin of the Sun and planets from a common gas and
dust cloud within the general dynamical evolutionary process. He assumed that the
stars were also created from the interstellar gas and dust matter. A. Cameron in 1962
proposed that during near explosion of a supernova, compaction in a massive cloud
of gas has occurred. The cloud compression resulted in its separation on smaller
condensations; one of them was the protosolar nebula of the outer planet size. The
nebula rotated and has had notable momentum. The centrifugal forces developed a
gaseous disk around the cloud, which has separated into rings. Finally, the planets
and satellites have formed from the rings (Cameron 1973; Cameron and Pine 1973).

Researches of the hypotheses of the origin of the solar system underline a number
of important parameters in the structure and motion of the bodies, which do not find
observational conformation or theoretic justification. Some of them are as follows
(Kuiper 1951; Spenser 1956):

1. The main dynamical contradiction in distribution of the moment of momentum
between the Sun and the planets (the Sun has 0.5% of the total moment of
momentum and 99.8% of the total mass) remains unsolved.

2. The Earth-group planets have high density and relatively small mass; at the same
time, the Jupiter’s are of low density and one- to two-order mass higher.

3. The Jupiter’s planet group has many satellites, but the Earth’s planets have
practically none.

4. There was no explanation of the Titius–Bode law of the planetary distances.
5. The observational data related to roaming stars in the stellar space are absent.
6. There was no physical explanation for the axial inertial rotation of celestial

bodies.
7. There is no explanation for the nature of the initial gaseous cloud appearance

from which the Sun, other stars, and planets were formed.

Research has given rise to many queries, like the ones just listed, related to indi-
vidual hypotheses of the solar system’s origin. Here, we stress that all hypotheses
considered the laws of celestial body motion based on the hydrostatic equilibrium
state. In other words, the studied cosmogony task, which is the fundamental problem
of dynamics, was considered on the hydrostatic basis. But it was the objective reality
of the development of science in the past epochs.
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1.2 The Laws of Celestial Body Motion Based
on Hydrostatics

In the Aristotelian and Ptolemaic geocentric world system, the Earth was accepted
as the center of the universe. The Earth was assumed to be surrounded by the
nine “heavens.” They were Moon, Sun, Mercury, Venus, Mars, Jupiter, and Saturn.
The stars represented the eighth heaven and, on the ninth one located is “the
spirit,” which governed all the heavens’ motion. That is why the term “heavens”
has appeared in our vocabulary. In his Almagest, Ptolemaios placed the motion of
the Sun, the Moon, and the planets and the position of the 1,022 stars from the
Hipparchos catalog in the form of tables in an elliptic system of coordinates.

A decisive step toward the modern conception of the world system was made
by Polish astronomer Nicolaus Copernicus (1473–1543). He found from planet
observations that when a planet happens to be in the opposite point in the sky from
the Sun, its orbit does not remain fixed. The upside line between the perihelion
and aphelion points changes its position in comparison with that when it was
in the Ptolemaios’ Almagest. The Ptolemaios’ theory has not explained many
observed astronomical events, for example, the loop-like motion of planets along
the firmament. Long before Copernicus, the ancient Greece astronomer Aristarchus
of Samos stated that the Earth revolve around the Sun, but he could not confirm it.
After many years of hard work and complicated calculations, Copernicus concluded
that Ptolemaios’ theory was not correct. He found in his tables a number of
contradictories and came to the conclusion that the planets’ motion appears to be
more ordinary if their center is the Sun. That was his way of understanding that the
planets revolve around the Sun. His year-long observations and calculations were
expounded in 1543 in the work About Revolution of the Sky Spheres. This work
was the start of a new modern conception about the hierarchic relation in the galaxy
system–Sun–planets–satellites.

Copernicus’ heliocentric world system became the basis for Kepler’s important
discovery of the three laws of the solar system planets’ motion. Johannes Kepler
(1571–1630), German astronomer and mathematician, discovered these laws on the
basis of Tycho Brahe’s many years of observation of the motion of planet Mars.
In 1609, Kepler published his New Astronomy, where he exposed the results of
evaluation of Brahe’s observation and presented the first and second laws. The first
law states that the orbit of the unperturbed planet’s motion is a curve of the second
order, in one of the focuses of which the Sun is situated. It follows from the second
law that the radius vector joining the unperturbed planet’s motion around the Sun
sweeps out equal areas in equal times. In 1619, Kepler published a new work entitled
Harmony of the World, where he described his third law. In accordance with that law,
in unperturbed elliptic motion of the planets, the ratio of the square of their periods
of revolution to the cube of the semimajor axes is the same.

After the discovery of the Copernican heliocentric system, it was assumed that
the planets move around the Sun along circular orbits. Kepler, being a convinced
follower of Copernicus, shared the same idea. But after analysis of Brahe’s data, he
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found that the observational points of the planet’s annual motion did not describe
circles. The points inscribe the circle but do not form it. However, the results from
processing the data of the planet’s annual trajectories indicated that they do describe
some form of spatial curves. In order to reduce the space coordinates of the planet’s
motion to mean values and to obtain the plane elliptic figure, Kepler developed a
specific method of averaging the observational points based on inscribing polygons
into a circle and calculation with infinitesimals. Finally, Kepler succeeded in finding
a methodology of reducing the data, which allows one to obtain an elliptic trajectory
and to formulate the first two laws of the planets’ motion. In New Astronomy,
Kepler presented this method in the form of the following geometric solution of
the problem, which allows one to find elements of a planet’s orbit, satisfying his
first two laws of the planets’ motion. Across point D on diameter AB of semicircle
AOBM (Fig. 1.1), the straight line DM should be drawn in such a way that it divides
the area in the given ratio. The problem was written in the following transcendental
equation:

y � c sin y D x; (1.1)

which is solved by the given values and , when (jcj< 1). Here, is the figure’s
eccentricity, which at a value less than unit gives an ellipse and at zero gives a circle.
The value characterizes the scale of averaging taken as a ratio of the semicircle
areas formed by the line DM.

Equation (1.1) represents projections of the reduced space coordinates of a
body’s motion along its orbit on the plane. With the help of this equation,
astronomers could determine the body’s position on a point of the orbit at a given
moment of time and solve the reverse problem of determination of the time moment
of a body passing through a given point of the orbit. To come back from the
projections of the trajectory on the plane to space coordinates in the sky, three angles
called the true, mean, and eccentric anomalies are used (Fig. 1.2).

Figure 1.2 demonstrates the true anomaly expressed by angle V between the
pericenter of the orbit and radius vector S of the body in the direction of the
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body’s motion. In accordance with the second Kepler’s law, the angle V changes
in time faster when the body moves in orbit to the pericenter , and its motion is
slower in a direction away from the pericenter .

The mean anomaly is determined by angle , which lies between the direction to
the pericenter and radius vector of a fictitious point, but it is assumed to be moving
with constant velocity during which that point passes pericenter B and apocenter
simultaneously with the real body. Thus, while moving from point to point , the
real body precedes the fictitious point, whereas moving from A to B, the real body
lags behind it.

The eccentric anomaly is expressed by angle with the point in the center of
the orbit and situated between the direction to the pericenter and point P. That point
lies on the circle drawn from the geometric center of the orbit and the perpendicular

Q, carried out on the diameter, and passes through the point S. The point plays
an auxiliary role to determine the mean and true V anomalies by formulas

E � e sin E D M; (1.2)

M D M0 C v.t � t0/; (1.3)

tg
V

2
D
r
1C e

1 � e
tg
E

2
; (1.4)

where is the eccentricity of the orbit; 0 is the mean anomaly at some initial
moment of time t0, which is accepted as an element; and v is the mean value of the
body’s orbit velocity of motion.

It is clear that the meaning of Kepler’s problem, presented by Eq. (1.2), is to
inscribe into a circle an ellipse, which is the real averaged trajectory of the body
motion on the orbit, by applying the mean velocity value of the motion v and the
mean anomaly 0. Herewith, the inscribed ellipse must touch the circle only in two
points of the body’s orbit, namely, in the perihelion and aphelion .

Kepler’s two first laws and the equation represent the averaged space picture of a
planet’s motion over the period of revolution around the Sun. They do not describe
small variations of the motion parameters within each period of revolution or from
one period to another. Those variations of the parameters’ motion are smoothed
by the mean anomaly , and Kepler’s laws and the equation express conditions
of the hydrostatic equilibrium of the system. Kepler’s equation was solved by
Newton in his two-body problem in order to find the force which sets the body
in motion. Newton’s solution was done in the framework of Kepler’s formulation
of the problem, that is, for the condition of hydrostatic equilibrium of a planet’s
motion. This remark is important for understanding the logic of his judgment and
geometric construction which Newton used for solution of the two-body problem
and the problem of the Earth’s oblateness. As to the method of averaging of Kepler’s
space coordinates by means of the infinitesimals, it served to be the ideological
base for development of the differential and integral calculus originally initiated
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by Newton and Leibniz simultaneously, but obviously not without the influence of
Kepler’s and Huygens works.

Christian Huygens (1629–1695), the Netherlands physicist, mathematician, me-
chanic, and astronomer, was the founder of the wave theory of light and the theory
of probability, the author of the first pendulum clock, and the investigator of the
pendulum laws of motion which synchronously follow the Earth’s motion. At
22 years of age, he published his first work about determination of the arc length
of circle, ellipse, and hyperbola. And after 3 years, he writes about the ratio of the
circle’s length to its diameter, which was called � . Then, there was the work About
Calculation of the Bones Game, where studies of cycloid, logarithmic, and chain
lines were undertaken and which became a part of the foundation of the theory of
probability. Together with Hooke, he established the points of freezing and boiling
of water. At the same time, Huygens actively worked over increasing of luminosity
in astronomical telescopes. In 1655, with his own instruments, he discovered the
satellite Titan of Saturn, its rings, the nebulae of the constellation Orion, and the
poles of Jupiter and Mars.

Astronomical observations always needed precise and easily calculated mea-
surements of time. In 1657, Huygens designed the first pendulum clock to be
driven by a trigger mechanism of motion. In the next year, he published a treatise
The Pendulum Cloak, where his description of the discovery and the study of the
pendulum clock motion were presented. It was known that the period of oscillation
of a pendulum depends on the amplitude of oscillation. In order to determine the
precise motion of the clock, Huygens developed a construction, astonishing even
for modern standards, schematically presented in Fig. 1.3.

Figure 1.3 shows, by dashed lines, barriers having a cycloid configuration,
which bounds the swings of elastic filament of the suspended pendulum. The
filament from a suspension point O up to some point sags to both sides of the
cycloid. Below point , the filament is held tight by the weight of the pendulum due
to its motion to that point along the cycloid. During that motion the pendulum itself
traces the cycloid (shown by dashes). In such a device, the period of the pendulum
oscillation does not depend on the amplitude of the oscillation.
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The described Huygens’ project was not realized because at that time a more
suitable design to solve the problem of synchronizing the oscillations was found.
The interest in Huygens’ technical idea has been lost, and his name is mentioned
only in differential geometry in connection with his introduction of the curves
known as evolvent and evolute (Fig. 1.3b). In our time, the idea of Huygens
is used for the design of geophysical devices like gravitational variometers and
gravimeters for measurement of the Earth’s gravitational field. Technical solutions
for such devices were proposed at the end of the nineteenth century by Hungarian
physicist Eötvös. However, Huygens’ study on pendulum motion contains much
more fruitful, although unrealized, ideas.

Recall that the evolute is a curve which is formed from the locus of the centers
of curvature of another plane curve (evolvent). The equation of this curve is a
semicubic parabola. The evolvent is an unwound form of a curve perpendicular to
a family of tangents to the evolute. The meaning of Huygens’ idea is the following:
first, the relation between an evolute and evolvent represents a relation between a
function and its derivative or between a function and its integral. But these relations
exist in the integrated form and are geometrically observable but not in a local form
such as in mathematical analysis. Secondly, as it is seen from the drawn family
of such unwound curves with different fixed lengths of the pendulum filaments
(Fig. 1.3b) in each point of the initial curve, the corresponding evolvent has a
peculiarity. And third, an important point for us, the marked peculiarity is always of
the same type. It is a semicubic parabola like x2 D y3 or D 3/2. This is a universal
law, being a consequence of the simple fact that in each task related to motion, we
always have some initial conditions inherited by the moving object. For example, in
the case of Huygens’ swinging pendulum, its suspension filament winds away from
the curve at some fixed point.

If one recalls Kepler’s laws, then it is possible to notice their important property.
The first two laws determine the trajectory of the same body. The third law relates to
the family of trajectories traced by different planets of the same solar system family.
According to this law, squares of periods of the revolving planets are proportional
to cubes of their semimajor axes. It means that on the plane of time coordinates, this
law is expressed by a semicubic parabola. And in turn, this law is an evidence of
the fact that if the motion is considered in the space of time, but not in the space of
configurations, then Kepler’s laws express a universal law of the nature in integral
form. Here, constancy of the light velocity plays the role of isochronism of the
oscillations.

Huygens applied the design and study of the pendulum motion to description
of the elastic wave propagation, including in anisotropic media (double refraction
of light beams in crystals) which he considered in The Treatise on the Light. He
discovered here one more effect. Namely, the line of peculiar points, which was
discussed earlier, determines the edge of the region (this is a space edge according
to Huygens). The sphere has no such edge. It appears when the waves propagate
inside the closing curve. Huygens considered a case with ellipse (Fig. 1.4).

Here, waves propagate with constant velocity to the inner hollow of an ellipse. At
the beginning, the curve is transferred equidistantly to the ellipse. After that, a time
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comes when the peculiar points , , , and D appear. That is not a continuum
but a limited number of points. If the considered region is not spatial as Huygens
discussed but is a space–time region, then the phase transition phenomenon appears,
which is described by the van der Waals cubic equation.

Finally, there is one more important element of analysis proposed by Huygens.
In fact, he introduced into physics an integral approach to studying the behavior of
a system. An example to explain his approach is a straight-rolling wheel. A point
on its rim or on the spoke traces the curve, which gives the solution of Kepler’s
equation (Fig. 1.5).

Some of Huygens’ profound ideas are far from being realized. The laws of
the pendulum motion of his clock, which in detail and synchronously follows
the Earth’s motion, could be physically demonstrated by the appropriate technical
implementation not only for gravimetry but also for study of the planet’s dynamics.
As to the theoretical conclusions, we used them in our previous works, and reference
will be made later in the book.

Isaac Newton (1643–1727), the genius and the intellectual English mathemati-
cian and physicist, is the founder of classical mechanics and astronomy and the
originator of the law of gravitation. His merits and contribution to the development
of the natural sciences are difficult to be overestimated. The main task of Newton’s
scientific work became the generalization of the scientific results of Copernicus,
Kepler, Galileo, Huygens, Borelli, Hooke, Galley, and other predecessors and
contemporaries, all of whose work was presented in his Philosophiae Naturalis
Principia Mathematica and published in 1686. In that book, a mathematical
(geometric) approach was used for solution of the problems of celestial mechanics
and dynamics of the Earth. Later on, an analytical basis for such a purpose was
developed by Lagrange, Euler, d’Alembert, Hamilton, Jacobi, Cauchy, Bernoulli,
and other mathematicians in the seventeenth to nineteenth centuries.

Newton adopted the condition of the Earth’s hydrostatic equilibrium state
together with the Keplerian laws of motion and his problem. That model of
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equilibrium comprises the basis for solution of the two-body problem and the
problem of the Earth’s oblateness.

Newton opens his work with definitions of matter; momentum; innate, applied,
centripetal force and with formulation of his three laws of motion. In Book I The
Motion of Bodies, the solution of the two-body problem is presented. In Book II The
Motion of Bodies (In Resisting Medium), the hydrostatics theorems are discussed.
And in Book III The System of the World, the solution of the Earth’s oblateness
problem is considered. Let us recall the original Newton’s formulations of the
more important principles which we cite and discuss later on in this book. For that
purpose, we quote from the English translation of Newton’s Principia, made by
Andrew Mott in 1729 (Newton 1934):

Definition I. The quantity of matter is the measure of the same, arising from its
density and bulk conjointly.

Definition II. The quantity of motion is the measure of the same, arising from the
velocity and quantity of matter conjointly.

Definition III. The vis insita, or innate force of matter, is a power of resisting, by
which every body, as much as in it lies, continues in its present state, whether it be
rest, or moving uniformly forwards in a right line.

Definition IV. An impressed force is an action exerted upon a body, in order to
change its state, either of rest, or of uniform motion in a right line.

Definition V. A centripetal force is that by which bodies are drawn or impelled, or
any way tend, towards a point as to a centre.

Of this sort is gravity, by which bodies tend to the center of the earth; magnetism,
by which iron tends to the load stone; and that force, whatever it is, by which the
planets are continually drown aside from the rectilinear motion, which otherwise
they would pursue, and made to revolve in curvilinear orbits.

The quantity of any centripetal force may be considered as of three kinds:
absolute, accelerative, and motive.

Definition VI. The absolute quantity of a centripetal force is the measure of the
same, proportional to the efficacy of the cause that propagates from the centre,
through the spaces round about.

Definition VII. The accelerating quantity of a centripetal force is the measure of
the same, proportional to the velocity which it generates in a given time.

Definition VIII. The motive quantity of a centripetal force is the measure of the
same, proportional to the motion which it generates in a given time.

These quantities of forces, we may, for the sake of brevity, call by the names of
motive, accelerative, and absolute forces; and for the sake of distinction, consider
them with respect to the bodies that tend to the centre of forces towards which they
tend; that is to say, I refer the motive force to the body as an endeavor and propensity
of the whole towards a centre, arising from the propensities of the several parts
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taking together; the accelerative force to the place of the body, as a certain power
diffused from the centre to all places around to move the bodies that are in them;
and the absolute force to the centre, as endued with some cause, without which those
motive forces would not be propagated through the space round about; whether that
cause be some central body (such as is the magnet in the centre of the magnetic
force, or the earth in the centre of the gravity force), or anything else that does not
yet appear. For I here design only to give a mathematical notion of those forces,
without considering their physical cause and seats : : :

I likewise call attractions and impulses, in the same sense, accelerative and
motive; and use the words attraction, impulse, or propensity of any sort towards
a centre, promiscuously, and indifferently, one for another; considering those forces
not physically, but mathematically: wherefore the rider is not to imagine that by
those words I anywhere take upon me to define the kind, or the manner of any
action, the causes or the physical reason thereof, or that I attribute forces, in a true
and physical sense, to certain centers (which are only mathematical points); when
at any time I happen to speak as attracting, or as endued with attractive powers.

Law I. Every body continues in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed upon it.

Law II. The change of motion is proportional to the motive force impressed; and
is made in the direction of the right line in which that force is impressed.

Law III. To every action there is always opposite and equal reaction: or, the mutual
actions of two bodies upon each other are always equal, and directed to contrary
parts.

The theorem about mutual attraction of two bodies Newton formulates and solves
as follows:

Theorem XI. If two bodies attract each other with forces of any kind, and revolve
about the common centre of gravity: I say, that, by the same forces, there may be
described round either body unmoved a figure similar and equal to the figures which
the bodies so moving describe round each other.

Let the bodies S and P (Fig. 1.6a) revolve about their common centre of gravity
proceeding from S to , and from to Q.
From the given point s (Fig. 1.6b) let there be continually drown sp and sq equal

and parallel to SP and TQ; and the curve pqv, which the point p described by point
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at its revolution will be equal and similar to the curves which are described in
its revolution round the fixed point S, will be similar and equal to the curve which
the bodies S and P describes about each other; and therefore, by Theor. XX, similar
to the curves in curves S and QV which the same bodies describe about their
common centre of gravity ; and that because the proportions of the lines S , ,
S or sp, to each other given.

At the end of Book III, after discussion of the Moon motion, the tidal effects, and
the comets’ motion, Newton concludes as follows:

Hitherto we have explained the phenomena of the heavens and our sea by the power of
gravity, but have not yet assigned the cause of this power. This is certain, that it must proceed
from a cause that penetrates to very centers of the sun, and planets, without suffering the
least diminution of its force, that operates not according to the quantity of the surfaces of the
particles upon which it acts (as mechanical causes used to do), but according to the quantity
of the solid matter which they contain, and propagates its virtue on all sides to immense
distances, decreasing always as the inverse square of the distances. Gravitation towards the
sun is made up out of the gravitations towards the several particles of which the body of the
sun is composed; and in receding from the sun decreases accurately as the inverse square
of the distance as far as the orbit of Saturn, as evidently appears from the quiescence of the
aphelion of the planets; nay even to the remotest aphelion of the comets, if those 4 aphelions
are also quiescent.

But hitherto I have not been able to discover the cause of those properties of gravity from
phenomena, and I frame no hypotheses; for whatever is not deduced from the phenomena
is to be called an hypothesis; and hypotheses, whether metaphysical or physical, whether of
occult qualities or mechanical, have no place in experimental philosophy. In this philosophy
particular propositions are inferred from the phenomena, and afterwards rendered general
by induction Thus it was that the impenetrability, the mobility, and the impulsive force of
bodies, and the laws of motion and of gravitation, were discovered. And to us it is enough
that gravity does really exist, and act according to the laws which we have explained, and
abundantly serves to account for all the motions of the celestial bodies, and of our sea.

And now we might add something concerning a certain most subtle spirit which pervades
and lies in all gross bodies; by the force and action of which spirit the particles of bodies
attract one another at near distances, and cohere, if contiguous; and electric bodies operate
to greater distances, as well repelling as attracting the neighboring corpuscles; and light is
emitted, reflected, refracted, inflected, and heats bodies; and all sensation is excited, and the
members of animal bodies move at the command of the solid filaments of the nerves, from
the outward organs of sense to the brain, and from brain into the muscles. But these are
things that cannot be explained in few wards, nor are we furnished with that sufficiency of
experiments which is required to an accurate determination and demonstration of the laws
by which this electric and elastic spirit operates.

Lagrange referred to Newton’s work as “the greatest creature of a human
intellect.” It was published in England in Latin in 1686, 1713, and 1725 in his
lifetime and many times later on. We reiterate that the passages about are from the
translation by Andrew Mott in 1729 that was printed in 1934.

As it follows from Newton’s definition of the centripetal innate forces, his
understanding of their meaning and action in the nature is very wide. The innate
force of matter is the power of resistance. It can develop as the force of body’s
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resistance due to which it remains at rest or moves with constant velocity. It can
develop as a body’s resistance (reactive) force to an outer effect and as a pressure
when the body faces an obstacle. In modern mechanics, this force is understood
synonymously as the force of inertia. The resistance force or force of reaction
has found its place in the theory of elasticity, and the pressure force is used in
hydrodynamics and aerodynamics.

The main meaning of the centripetal force which was introduced by Newton
is that each body is attracted to a certain center. He demonstrates this ability of
bodies and objects on the Earth to attract to its geometric center by action of the
gravity force. Newton distinguishes three kinds of manifestation of the centripetal
force, namely, absolute, accelerating, and moving. The absolute value of this force
is a measure of the source power of its action from the center to outer space. The
body’s attraction to the center and emission of the attraction from the center are
demonstrated by Newton in Book III The System of the World, where in Theorem
II, he notes that gravity forces from the planets are directed to the Sun. In Theorem
I , he says that attraction of the planets themselves goes from their surfaces to the
centers. According to Newton’s idea, the planet’s surface is an area of formation of
absolute value of the centripetal force from where it emits that force upward and
down from.

The accelerating value of the centripetal force by Newton’s definition is a
measure proportional to velocity which it develops over a long time. The moving
value of the centripetal force is a measure which is proportional to the momentum,
that is, to the mass and velocity.

After such a wide spectrum of functions which Newton attributes to the
centripetal force, it becomes clear why after such wide spectrum of functions
which Newton endows to the centripetal force, he was unable to understand
its physical meaning and acknowledged: “But hitherto I have not been able to
discover the cause of those properties of gravity from phenomena, and I frame
no hypotheses; for whatever is not deduced from the phenomena is to be called
an hypotheses; and hypotheses, whether metaphysical or physical, have no place
in experimental philosophy. In this philosophy particular propositions are inferred
from the phenomena, and afterwards rendered general by induction. Thus it was that
the impenetrability, the mobility, and the impulsive force of bodies, and the laws of
motion and gravitation, were discovered. And to us it is enough that gravity does
really exist, and act according to the laws which we have explained, and abundantly
serves to account for all the motions of the celestial bodies, and of our sea.”

It is worth noting that mathematicians, to whom Newton expounded the theory,
because of complication in analytical operation with the forces, introduced to
celestial mechanics and analytical dynamics the force function, that is, energy with
its ability to develop pressure. In doing so, they practically generalized the physical
meaning of the force effects. As to the centripetal forces then, later on, we shall
show that volumetric forces of mass particle interaction in reality generate Newton’s
physical pressure, which in formulation of practical problems is expressed by the
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energy. Once more, note that Newton, as he said himself, instead of using the
correct physical meaning of the concept “pressure,” gave preference to the concept
“attraction” to be more understandable to mathematicians.

Newton’s problem about the mutual attraction of two bodies, which depict
similar trajectories around their common center of gravity and around each other,
is based on the geometric solution of Kepler’s problem formulated in his first two
laws. Newton’s solution is founded on his conception of the centripetal and innate
forces under which the bodies depict similar trajectories around their common
center of gravity and around each other. In celestial mechanics, developed on
the basis of Newton’s law of attraction, the two-body problem is reduced to the
analytical problem of one body, the motion of which takes place in the central field
of the common mass. Both Newton’s geometric theorem and analytical solution
of celestial mechanics are based on the hydrostatic equilibrium state of a body
motion due to Kepler’s laws. Newton understood this well and expressed it in his
hydrostatics laws. But in both cases, the two-body problem was solved correctly in
the framework of its formulation. The only difference is that according to Kepler, the
planet motion occurs under the action of the Sun’s forces, whereas Newton shows
that this motion results from the mutual attraction of both the Sun and the planet.

In Section V of Book II Density and Compression of Fluids: Hydrostatics,
Newton formulates the hydrostatics laws, and on their basis in Book III The System
of the World, he considers the problem of the Earth’s oblateness by applying real
values of the measured distances between a number of points in Europe. Applying
the found measurements and the hydrostatic approach, he calculated the Earth’s
oblateness as being 1/230, where in his consideration, the centrifugal force plays
the main contraction effect expanding the body along the equator. In fact, the task
is related to the creation of an ellipsoid of rotation from a sphere by action of the
centrifugal force. Here, Newton applied his idea that the attraction of the planet itself
goes from the surface to its center. In this case, the total sum of the centripetal forces
and the moments are equal to zero, and rotation of the Earth should be inertial. It
means that the planet’s angular velocity has a constant value.

Inertial rotation of the Earth is accepted a priori. There is no evidence or other
form of justification for this phenomenon. There are also no ideas relative to the
mode of planet’s rotation, namely, whether it rotates as a rigid body or there is
differential rotation of separate shells. In modern courses of mechanics, there is
only analytical proof that in the case when the body exists in the outer field of
central forces, then the sum of its inner forces and torques is equal to zero. Thus, it
follows from here that the Earth rotation should have a mode of rigid body and the
velocity of rotation in time should be constant.

That is the arsenal of the motion laws, which was applied and has been applied
up to now by researchers for problem solutions in dynamics of celestial bodies
including the problem of the origin of the solar system. The basis of these laws is
the hydrostatic equilibrium. But the observational data introduce serious corrections
into the concepts.
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1.3 Inner Energy of Body’s Interacted Masses as a Bullet
Point of the Solar System’s Cosmogony

Applying the Jacobi dynamics, we analyzed orbital motion of the Earth, the Moon,
and the other planets and satellites and discovered a dynamical effect common for
all the solar system bodies. It appears that the mean orbital velocity and period of
revolution of every planet are equal to the first cosmic velocity and corresponding
period of virial oscillation of the protosun, with its radius equal to the semimajor
axes of the planet’s orbit. And also, the mean orbital velocity and periods of
revolution of every satellite are equal to the first cosmic velocity and corresponding
period of oscillation of the protoplanet, with its radius equal to the semimajor axes
of the satellite’s orbit. The same effect is valid for the asteroids, comets, and other
small bodies. The subsequent body evolution has not broken the above regularity.

The conceptions of “cosmic velocity” became especially popular at the time
of development of the artificial satellite techniques. The following three cosmic
velocities are defined. The first one has the minimal velocity (�7.9 km/s), with
which a satellite can overcome the planet’s gravity attraction at its surface. The
second, or parabolic, velocity (�11.2 km/s) enables a satellite to escape from the
planet’s gravity field. And the third one (�16.6 km/s) enables a satellite to escape
from the Sun’s gravity field at the Earth level.

These velocity figures were obtained on the basis of the energy conservation
law and the third Kepler’s law in the framework of hydrostatics. Applying Jacobi
dynamics on the basis of the same laws in the framework of dynamical equilibrium
state, the first cosmic velocity has the same (�7.9 km/s) value. But two other
so-called escape velocities, in connection with the considered cosmogony problem,
need to be corrected.

The first cosmic velocity v1 of the protosun and protoplanetary bodies and the
period of oscillation of the corresponding outer shell 1 of the created bodies were
calculated by the formulas (see Chaps. 6 and 7), from which, in fact, the third
Kepler’s law follows:

�1 D !R D R

r
Gm

R3
D
r
Gm

R
; (1.5)

T1 D 2�

!
D 2�R

�1
; (1.6)

.2�/2

T 21
D Gm

R3
; (1.7)

where m is the body’s mass; G is the gravity constant; R is the semimajor axis; and
!D v1/R is the frequency of virial oscillation of the outer shell, which appears to
be equal to the angular velocity of orbital motion of the created body. Note that the
frequency of virial oscillation of the outer weighty shell does not equal its angular
velocity because the frequency is the parameter of the force field.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_7
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For example, when the protosun’s radius R is extended up to the present-day
Earth’s orbit (m D 1.99�1030 kg, R D 1.496�1011 m), then its first cosmic velocity is
equal to

�1 D !R D
r
Gms

R
D
r
6:67 � 1011 � 1:99 � 1030

1:496 � 1011
D 29786:786m=s D 29:786786 km=s:

This value corresponds to the observed mean orbital velocity of the Earth.
The period of oscillation of the interacted mass particles of the protosun’s outer

shell (R D 1.496�1011 m, v1 D 29786.786 m/s) was equal to

T1 D 2�R

�1
D 6:28 � 1:496 � 1011

29786:786
D 3:1540428 � 107 s D 1 year;

which is equal to the observed period of the planet’s orbital revolution.
When the Protoearth’s radius R is extended up to the present-day Moon’s orbit

(me D 5.976�1024 kg, R D 3.844�108 m), then its first cosmic velocity is equal to

�1 D
r
Gme

R
D
r
6:67 � 1011 � 5:976 � 1024

3:844 � 108 D 1018:3018m D 1:0183918 km=s;

which is the present-day Moon’s mean orbital velocity.
The period of oscillation of the interacted mass particles of the Protoearth’s outer

shell (R D 3.844�108 m, v1 D 1018.3018 m/s) is equal to

T1 D 2�R

�1
D 2 � 3:14 � 3:844 � 108

1018:3018
D 23:706449 � 105 s D 27:438019 days;

which corresponds to the present-day Moon’s period of orbital revolution.
Tables 1.1 and 1.2 demonstrate the observed and calculated values of the orbital

periods of revolution of the planets, asteroids (small planets), and satellites obtained
by applying first cosmic velocities of the protosun and the protoplanets, which prove
these calculations.

The obtained results mean that all the planets and satellites were launched by
first cosmic velocity of the self-gravitating protosun and protoplanets after their
outer shells acquired weightlessness. As it will be shown below, the process of
evolutionary loss of energy by emission led to redistribution and differentiation
of the body’s mass density: it increases in the inner shells and decreases in the
outer one by the light components dilution. In general, due to this process of
accumulation of the less dense matter in the outer shell, its density decreases up
to the state of weightlessness and creation of the secondary self-gravitating body by
the eddy currents results. The process of the outer shell separation appears to be the
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Table 1.1 Observed orbital periods of revolution of the planets around the Sun and
calculated periods of oscillation of its corresponding outer shell

Planets
Orbital radius,
R � 1011 (m)

Observable period of
revolution (year)

Calculating period of
oscillation 1 (year)

Mercury 0:579 0:24 0:2408

Venus 1:082 0:62 0:6153

Earth 1:496 1:0 1:00

Mars 2:28 1:88 1:8823

Vesta 3:53 3:63 3:7594

Juno 3:997 4:37 4:3733

Ceres 4:13 4:6 4:598

Themis 4:68 5:539 5:5397

Jupiter 7:784 11:86 11:8781

Saturn 14; 271 29:48 29:4802

Uranus 28:708 84:01 84:1951

Neptune 44:969 164:8 164:9185

Pluto 59:466 248:09 250:8882

mechanism of contraction (volume decrease and increase in the density) of a body
during evolution (Fig. 1.7).

The discovered regularity of creation of the solar system’s planets and satellites
seems to be valid for the process of separation of the protosun itself and other
protostars from the protogalaxy Milky Way. If we accept the known galaxy’s
astrometrical data (mass mg D 2.5�1041 kg, and distance of the Sun from the galaxy
center Rs D 2.5�1020 m), then it is not difficult to calculate that the first cosmic
velocity of the protogalaxy, the size of which was limited by the Sun’s semimajor
orbital axes, is equal to 230 km/s, and the orbital period of revolution is 220�106 year.
The values are close to those found by observation, namely, mean orbital velocity of
the Sun is called as (230–250) km/s and the orbital period of revolution s D (220–
250)�106 year.

The observed picture of the Milky Way today, consisting of a bar-shaped core
surrounded by a disc of gaseous matter and stars, which creates two major and
four smaller logarithmic spiral arms with a spherical halo of old stars and globular
clusters, proves the common mechanism of creation of the galactic system. From
the viewpoint of Jacobi’s dynamics, the observed picture evidences the generally
common vortex mechanism of creation of a hierarchic system from the initial
heterogeneous baryonic and nonbaryonic (dark) matter of the compressed universe.
During its present-day expansion stage, due to redistribution of mass density and
after reaching the state of weightlessness, the protostars creation and separation
process will be continued in the spiral arms.

The analogous unified process was repeated for all the planets and their satellites.
The creation of the other small bodies like comets, meteors, and meteorites also

found its explanation within the considered mechanism and physics. In fact, the only
condition for separation of outer body’s shell is its weightlessness (its corresponding
mean density relative to the body’s mean density) but not a limit of some amount



1.3 Inner Energy of Body’s Interacted Masses as a Bullet Point. . . 21

Table 1.2 Observed orbital periods of revolution of the satellites around the planets and
calculated periods of oscillation of their corresponding outer shells

Planets Satellites
Orbital radius,
R � 103

Observable period
of revolution
(day)

Calculated period of
revolution 1 (day)

Earth Moon 384:4 27:32 27:4380

Mars Phobos 9:4 0:319 0:3208

Deimos 23:5 1:262 1:2604

Jupiter V 181 0:498 0:4973

Io 422 1:769 1:7706

Europa 671 3:551 3:5508

Ganymede 1; 070 7:155 7:154

Callisto 1; 880 16:69 16:6709

XIII 11; 100 240:92 239:0960

VII 11; 750 259:14 259:5899

XII 21; 000 620:77 660:7744

1X 23; 700 758:90 745:1833

Saturn Janus 151:5 0:7 0:6956

Mimas 185:6 0:94 0:9431

Enceladus 238:1 1:37 1:3704

Tethys 294:7 1:89 1:8869

Dione 377:4 2:74 2:7366

Titan 1212:9 15:95 15:7548

Iapetus 3560:8 79:33 79:2494

Phoebe 12; 944 548:2 549:2722

Uranus Cordelia 49:751 0:3350 0:3348

Cupid 74:8 0:618 0:6172

Miranda 129:39 1:4135 1:4043

Ariel 191:02 2:5204 2:5189

Umbriel 266:3 4:1442 4:1463

Titania 435:91 8:7058 8:6840

Oberon 583:52 13:4632 13:4503

Neptune Triton 354:8 5:877 5:8523

Nereid 5513:4 360:14 359:8227

Pluto Charon 19:571 6:387 9:5065

Nix 48:675 24:856 37:2873

Hydra 64:780 38:206 54:2482

of mass. In this connection, any volume and amount of mass could probably be
separated at any time. For example, we found by calculation that the short-periodic
Encke’s Comet (1970 I, T D 3.302 year) has a semimajor orbital axis R � 1.5�1011 m
and has separated from the protosun after small planet Vesta and before Mars. The
short-periodic Halley’s Comet (1910 II, T D 76.1 year) has a semimajor orbital axis
R D 2.7�1012 m and has separated from the protosun after Saturn and before Jupiter.
The long-periodic Ikeya–Seki’s Comet (1965 III, T D 874 year) has a semimajor
orbital axis R D 1.35�1014 m and has separated from the protosun before Pluto.
Like the asteroid belt between Jupiter and Mars, the comet belts should definitely
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First cosmic velocityFig. 1.7 Scheme of
successive creation,
separation, and orbiting of
planets from the upper
weightlessness shells of the
protosun with its first cosmic
velocity

exist between the orbits of all the Jupiter group planets. As to the meteors and
meteorites, they all should be separated from the planets by the same way. From the
point of view of dynamical equilibrium of their orbital motion, the orbits of all the
small bodies (comets, meteors, and meteorites) should have large eccentricities and
steep angles of inclination to the equator of their central bodies. This is because of
probable oblateness of the protosun body, where its polar regions should have higher
values of the first cosmic velocity. Those small bodies and meteorites, which have
not reached or have later on lost dynamical equilibrium, fell down on the planet’s or
satellite’s surface.

As shown in Table 1.2, the small planets of the asteroid belt separated from the
protosun by the same mechanism. From the point of view of the orbital motion and
first cosmic velocities, there are no any features of their separation from a broken
planet.

Thus, the bullet point of creation and orbiting of the solar system bodies is the
inner energy generation by the elementary particle interaction of the protoparents.
The conditions of creation and orbiting of the planets and their satellites look
like the conditions of launching of the artificial satellite, which are orbiting upon
reaching weightlessness. The indicator of the body’s weightlessness is its first
cosmic velocity in orbital motion, which represents the energy of the outer force
field of the parental body at a given height. So, all the planets appear to be weightless
relative to the Sun and move on their orbits by the solar outer gravitational field. All
the satellites are also weightless relative to their planets’ gravitational fields and
move along the orbits by first cosmic velocities of the inner energy of the planets’
interacted masses. Dynamical equilibrium of their orbits’ motion is guaranteed by
their own outer force fields, which are generated by interaction of their own masses.

It is worth noting that in scientific literature, the physical meaning of the term
“weightlessness” is defined as a complicated state. In the encyclopedias, one can
find that weightlessness is the state of a material body moving in the gravity
field by the gravity forces which do not initiate mutual pressure of each other’s
body’s particles. The weightlessness effect in cosmic space is compared with
man’s feelings in the free fall of the elevator. Unfortunately, such a definition of
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weightlessness does not contain both the nature of the unique phenomenon and real
physical understanding. In Chaps. 3 and 4, we show that the complexities related
to understanding the nature of many dynamical events are placed in hydrostatics,
which is the basis for solving problems of celestial body dynamics. Here, we just
note that the gravitational forces in hydrostatics act as outer forces. To the contrary,
at dynamical equilibrium, these forces, including the gravitation, are inner. By
Tables 1.1 and 1.2, we can say that the orbital moment of momentum of each planet
is not its parameter but the parameter of kinetic energy of the protosun. So, the
existing discussion related to the mass and orbital momentum of the planets and the
Sun is meaningless.

We have to study and explain the nature, mechanism, and conditions which lead
to the creation and decay of the solar system’s bodies in the galaxy. These proofs can
be found by experimental data of artificial satellites and with the help of dynamical
equilibrium introduction.

It was shown earlier (Ferronsky and Ferronsky 2010) by the satellite orbit study,
that the Earth and the Moon do not stay in hydrostatic equilibrium. Therefore, the
existing results and conclusions based on hydrostatics need to be corrected.

Moreover, we discovered the main discrepancy related to the hydrostatic equilib-
rium of the planets, the satellites, and the Sun. Namely, the potential energy of the
Earth, Mars, Jupiter, Saturn, Uranus, and Neptune exceeds their kinetic energy by
about 300 times. And, for Mercury, Venus, Moon, and the Sun, this ratio equals to
about 104. In fact, all the celestial bodies with their inertial rotation are without the
kinetic energy. This is dynamics based on hydrostatics.

This consideration takes off an old misunderstanding about the difference in
the orbital planet’s and the Sun’s moment of momentum. The planet conserves
creation energy of the Sun in accordance with the third Kepler’s law, and its orbital
moment of momentum is the parameter of the Sun’s outer force field as well as
the first cosmic velocity. As to the direction of a body’s axial rotation and orbital
revolution, then these parameters enter by the inner and outer force fields, like
in electrodynamics, in accordance with Lenz’s law. As to the specific (for unit
of the mass) orbital moment of momentum of the planets and satellites, which
increases with distance from the central body, the explanation of this gives the
increasing radius from the central body. Later on, we will come back for the problem
discussion.

First cosmic velocity was practically applied by man only in the twentieth
century. Nature seems to use it perpetually as the main instrument of the evolution of
the universe. Our universe seems to be a pulsating system, and its basic infinitesimal
particle, which is 10�36 g or less in weight (see calculation in Sect. 7.5), is
responsible for the system’s equilibrium. Because of the matter evolution and energy
conservation law, this process is continuing infinitely for a long time.

So, the inner energy of interacted masses with its weightlessness and weightness
(self-gravitation) is the bullet point of the solar system cosmogony and cosmology as

http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_4
http://dx.doi.org/10.1007/978-94-007-5908-4_7
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a whole. We will try to prove the main aspects of this problem on the basis of Jacobi
dynamics with its dynamical (oscillating) equilibrium of natural system state. We
will start with the fundamentals.
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Chapter 2
Physical Meaning of Hydrostatic Equilibrium
of Celestial Bodies

Abstract It was shown earlier that the fundamentals of classical dynamics, based
on hydrostatics, do not satisfy the solution of dynamical problems of celestial bodies
(Ferronsky and Ferronsky 2010; Ferronsky et al. 2011). The discovered common
dynamical effect of orbiting the creating planets and satellites with the first cosmic
velocity proves correct for this purpose Jacobi’s dynamical (oscillating) approach.
In this connection, in Chaps. 2 and 3, the physical meaning of the hydrostatic and
dynamic equilibrium of celestial bodies is discussed in detail.

Newton’s model of the hydrostatic equilibrium of a uniform body, Clairaut’s
model of the hydrostatic equilibrium of a nonuniform body, Euler’s model of the
hydrostatic equilibrium of a rotating rigid body, Clausius’ virial theorem, and the
model of hydrostatic equilibrium of elastic and viscous-elastic body are analyzed in
this chapter. The main features of the hydrostatic equilibrium are the outer acting
forces and the force field and the loss of kinetic energy. As a result, the sum of
the inner forces and moments is equal to zero, and the body’s equilibrium is not
controlled.

Demonstrated evidences obtained by the artificial satellite and other geode-
tic observation prove that the Earth and the Moon do not stay in hydrostatic
equilibrium.

The roots of hydrostatic fundamentals for solution of the problems in dynamics
of celestial bodies date back to the distant past and are related to the founders
of modern science. But even at that time, these pioneers understood well that
the applicability of the hydrostatic equilibrium to a body’s dynamic problems is
restricted by certain boundary conditions. Thus, Newton in his Principia (Sect.
1.5 of Book III), while considering the conditions of attraction in the planets,
writes: “The attraction being spread from the surface downwards is approximately
proportional to distance of the center. Be the planet’s matter uniform in density, then
this proportion would have exact value. It follows from here that the error is caused
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by non-uniformity in density.” At that time, the thoughts of scientists were engaged
with how to solve the principle problem of a body’s orbital motion. Now, we search
its correct solution.

Recall briefly the conditions of a body in hydrostatic equilibrium. By definition,
hydrostatics is a branch of hydromechanics which studies the equilibrium of a liquid
and gas and the effects of a stationary liquid on immersed bodies relative to the
chosen reference system. For a liquid equilibrated relative to a rigid body, when its
velocity of motion is equal to zero and the field of densities is steady, the equation
of state follows from the Eulerian and Navier–Stokes equations in the form (Landau
and Lifshitz 1954; Sedov 1970)

gradp D �F; (2.1)

where is the pressure, � is the density, and F is the mass force.
In the Cartesian system of reference, Eq. (2.1) is written as

@p

@x
D �Fx;

@p

@y
D �Fy;

@p

@z
D �Fz: (2.2)

If the outer mass forces are absent, that is, Fx D Fy D Fz D 0, then

gradp D 0:

In this case, in accordance with Pascal’s law, the pressure in all liquid points will
be the same.

For the uniform incompressible liquid, when �D const, its equilibrium can
be only in the potential field of the outer forces. For the general case of an
incompressible liquid and the potential field of the outer forces from (2.1), one has

dp D � dU; (2.3)

where U is the forces’ potential.
It follows from Eq. (2.3) that for the equilibrated liquid in the potential force

field, its density and pressure appear to be a function only of the potential U.
For a gravity force field, when in the steady-state liquid only these forces act, one

has

Fx D Fy D 0; Fz D �g; U D �gz C const and p D p.z/; � D �.z/:
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Here, the surfaces of the constant pressure and density appear as the horizontal
planes. Then Eq. (2.3) is written in the form

dp

dz
D ��g < 0: (2.4)

It means that with elevation, the pressure falls, and with depth, grows. From here
it follows that

p � p0 D �
zZ

z0

�g dz D ��g .z � z0/; (2.5)

where g is the acceleration of the gravity force.
If a spherical vessel is filled by an incompressible liquid and rotates around

its vertical axis with constant angular velocity !, then for determination of the
equilibrated free surface of the liquid in Eq. (2.2), the centrifugal inertial forces
should be introduced in the form

@p

@x
D �!2x;

@p

@x
D �!2y;

@p

@x
D ��g: (2.6)

From here, for the rotating body with radius r2 D x2 C y2, one finds

p D ��gz C �!2r2

2
C C: (2.7)

For the points on the free surface r D 0, z D z0, one has D 0. Then,

C D p0 C �gz0; (2.8)

p D p0 C �g .z0 � z/C �!r2

2
: (2.9)

The equation of the liquid free surface, where D 0, has a paraboloidal shape

z � z0 D !2r2

2g
: (2.10)

These facts determine the principal physical conditions and equations of the
hydrostatic equilibrium of a liquid. They remain a basis of the modern dynamics
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and theory of the planet’s figure. Attempts to harmonize these conditions with the
planet’s motion conditions have failed, as proven by observation. The main obstacle
for such harmonization is the condition (2.1), which ignores the planet’s inner
force field and without which the hydrostatics is unable to provide the equilibrium
between the body interacted forces as Newton’s third law requires. The Earth and
other planets are self-gravitating bodies. Their matter moves in their own force field
which is generated by the mass particle interaction. The mass density distribution,
rotation, and oscillation of the body shells result from the inner force field. And the
orbital motion of the planets is controlled by interaction of the outer force fields of
the planets and the Sun in accordance with Newton’s theory.

Because any celestial body is de facto self-gravitating systems, we will study
equilibrium in its own force field of the interacted masses. It is shown that by
action of this field, separation of the masses in density, oscillation, and axial rotation
results. In this case, the planet’s orbital motion will originate by the Sun’s first
cosmic velocity of the outer protosun’s surface force field. But first, the proposed
models of the hydrostatic equilibrium are discussed.

2.1 Newton’s Model of Hydrostatic Equilibrium
of a Uniform Body

In Section V of Book II Density and Compression of Fluids: Hydrostatics, Newton
formulates the hydrostatic laws, and on their basis in Book III The System of the
World, he considers the problem of the Earth’s oblateness by applying real values
of the measured distances between Landon and York, Amiens and Malvoisine,
Collioure and the observatory of Paris, and the Observatory and the Citadelo of
Dunkirk.

Taking advantage of measurements, Newton calculated the ratio of the total
gravitation force over the Paris latitude to the centrifugal force over the equator
and found that the ratio is equal to 289:1. After that, he imagines the Earth in the
form of an ellipse of rotation (Fig. 2.1) with axis PQ and channel ACQqca.

If the channel is filled in with water, then its weight in the branch will be
related to the water weight in the branch Q q as 289:288 because of the centrifugal

A

C

a

c q
P                         Q

B
Fig. 2.1 Newton’s problem
of the Earth’s oblateness
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force which decreases the water weight in the last branch by the unit. He found by
calculation that if the Earth has a uniform mass of matter and has no any motion
and the ratio of its axis PQ to the diameter is 100:101, then the gravity force of
the Earth at the point Q relates to the gravity force at the same point of the sphere
with radius Q or as 126:125. By the same argument, the gravity in point of a
spheroid drawn by revolution around axis relates to the gravity in the same point
of the sphere drown from center with radius as 125:126. However, since there
is one more perpendicular diameter, then this relation should be 126:1251/2. Having
multiplied these ratios, Newton found that the gravity force at point Q relates to
the gravity force at point as 501:500. Because of daily rotation, the liquid in the
branches should be in equilibrium at a ratio of 505:501. So, the centrifugal force
should be equal to 4/505 of the weight. In reality, the centrifugal force composes
1/289. Thus, the excess in water height under the action of the centrifugal force in
the branch is equal to 1/289 of the height in branch Q q.

After calculation by hydrostatic equilibrium in the channels, Newton obtained
that the ratio of the Earth’s equatorial diameter to the polar diameter is 230:229,
that is, its oblateness is equal to (230�229)/230D 1/230. This result demonstrating
that the Earth’s equatorial area is higher than the polar region was used by Newton
for explanation of the observed slower swinging of pendulum clocks on the equator
than on the higher latitudes.

Thus, applying the found measurements and the hydrostatic approach, he
calculated the Earth’s oblateness equal to 1/230, where in his consideration the
centrifugal force plays the main contraction effect expanding the body along the
equator. In fact, the task is related to the creation of an ellipsoid of rotation from
a sphere by action of the centrifugal force. Here, Newton applied his idea that the
attraction of the planet itself goes from the surface to its center. In this case, the total
sum of the centripetal forces and the moments is equal to zero, and rotation of the
Earth should be inertial. It means that the planet’s angular velocity has a constant
value.

Inertial rotation of the Earth is accepted a priori. There is no evidence or other
form of justification for this phenomenon. There are also no ideas relative to the
mode of the planet’s rotation, namely, whether it rotates as a rigid body or there
is differential rotation of separate shells. In modern courses of mechanics, there is
only analytical proof that in case the body occurs in the outer field of central forces,
then the sum of its inner forces and torques is equal to zero. Thus, it follows that
the Earth’s rotation should have a mode of rigid body, and the velocity of rotation
in time should be constant.

The proof of the conclusion that if a body occurs in the field of the central forces,
then the sum of the inner forces and torques is equal to zero, and the moment of
momentum has a constant value, is directly related to the Earth’s dynamics. Let us
see it in modern presentation (Kittel et al. 1965).

Write the expression of the moment of momentum L for a mass point m, the
location of which is determined by radius vector r relative to an arbitrarily selected
fixed point in an inertial system of coordinates
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L � r � p � r �mv; (2.11)

where is the moment and v is the velocity.
The torque N relative to this point is equal to

N � r � F;

where F is the force acting on a particle.
After differentiation of (2.11) with respect to time, one obtains

dL
dt

D d

dt
.r � p/ D dr

dt
� p C r � dp

dt
: (2.12)

Since vectorial product

dr

dt
r � p D v �mv D 0; (2.13)

then taking into account the second Newton’s law for the inertial reference system,
we have

r � dp
dt

D r � F D N;

from where

N D dL
dt
: (2.14)

For the central force F D Orf .r/, which acts on the mass point located in the
central force field, the torque is equal to

N D r � F D r � Orf .r/ D 0: (2.15)

Consequently, for the central forces, the torque is equal to zero, and the moment
of momentum L appears to be constant.

In the case where the mass point presents a body composed of n material
particles, then the moment of momentum L of that system will depend on location
of the origin of the reference system. If the reduced vector of the mass center of the
system relative to the origin is Rc, then the equation for the moment of momentum
L is written as

L D
NX

nD1
mn.rn � Rc/ � vn C

NX

nD1
mnRc � v D Lc C Rc � P; (2.16)
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where Lc is the moment of momentum relative to the system’s center of the masses;
P D P

mn � vn is the total moment of the system. Here, the term Rc � P expresses
the moment of momentum of the mass center and depends on the origin, and the
term Lc, on the contrary, does not depend on the reference system.

N D
NX

nD1
rn � Fn;

and the sum of the inner forces is

Fi D
NX

nD1
Fij I (2.17)

here and further, the summing is done at condition i ¤ j.
The torque of the inner forces is

Nin D
X

i

ri � Fi D
X

i

X

j

ri � Fij : (2.18)

Since

X

i

X

j

ri � Fij D
X

i

X

j

rj � Fj i ; (2.19)

then the torque of inner forces can be presented in the form

Nin D 1

2

X

i

X

j

�
ri � Fij C rj � Fj i

�
: (2.20)

Because Newton’s forces Fji D �Fij, then

Nin D 1

2

X

i

X

j

�
ri � rj

� � Fij : (2.21)

Taking into account that central forces Fij are parallel to ri � rj,

�
ri � rj

� � Fij D 0;

from where the torque of the inner forces is equal to zero.

Nin D 0: (2.22)
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Assuming that the inner forces Fin D 0, then from (2.15), (2.16), and (2.22) one
finds that

d

dt
LP D Nex (2.23)

LP D Lc C Rc � P: (2.24)

Here, Lc is also the moment of momentum relative to the mass center, and R � P
is the moment of momentum of the mass center relative to an arbitrarily taken origin.

For practice, it is often convenient to select the geometric center of the mass as
an origin. In this case, the derivative from the moment of momentum relative to the
mass center is the torque of the outer forces, that is,

d

dt
Lc D Nex: (2.25)

It is seen from the previous classical consideration that in the model of two
interacted mass points reduced to the common mass center, which Newton used
for solution of Kepler’s problem, resulting in the planets’ motion around the Sun,
the inner forces and torques in the central force field are really equal to zero. The
torque, which is a derivative with respect to time from the moment of momentum of
material particles of the body’s material particles, is determined here by the resultant
of the outer forces and the planet’s orbits in the central force field that exists in the
same plane. This conclusion follows from Kepler’s laws of the planets’ motion.

Passing to the problem of the Earth’s dynamics, Newton had no choice for the
formulation of new conditions. The main conditions were determined already in the
two-body problem where the planet appeared in the central force field of the reduced
masses. The only difference here is that the mass point has a finite dimension. The
condition of zero equality of the inner forces and torques of the rotating planet
should mean that the motion could result from the forces among which the known
were only the Galilean inertial forces. Such a choice followed from the inertial
motion condition of two-body motion which he had applied. The second part of
the problem related to reduction of the two bodies to their common center of masses
and to the central force that appeared accordingly as predetermining the choice of
the equation of state. Being in the outer uniform central force field, it became the
hydrostatic equilibrium of the body state. The physical conception and mathematical
expression of hydrostatic equilibrium of an object based on Archimedes’ laws (third
century BP) and Pascal’s law (1663) were well known in that time. This is the story
of the sphere model with the equatorial and polar channels filled in by a uniform
liquid mass in the state of hydrostatic equilibrium at inertial rotation.

In Newton’s time, the dynamics of the Earth in its direct sense had not been
found as it is absent up to now. The planet, rotating as an inertial body and deprived
of its own inner forces and torques, appeared to be a dead–alive creature. But up
to now, the hydrostatic equilibrium condition, proposed by Newton, is the only
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theoretical concept of the planet’s dynamics because it is based on the two-body
problem solution which satisfies Kepler’s laws and in practice plays the role of
Hooke’s law of elasticity.

In spite of the discrepancies noted here, the problem of determining the Earth’s
oblateness was the first step towards the formulation and solution of the very
complicated task of determining the planet’s shape, an effort on which theoretical
and experimental study continues up to the present time. As to the value of the polar
oblateness of the Earth, it appears to be much higher than believed before. More
recent observations and measurements show that relative flattening has a smaller
value, and Newton’s solution needs to have further development. And its nature
disappeared in the heterogeneous mass density of the body.

2.2 Clairaut’s Model of Hydrostatic Equilibrium
of a Nonuniform Body

Aleksi Klod Clairaut (1713–1765), a French mathematician and astronomer, con-
tinued working on Newton’s solution of the problem of the Earth’s shape based
on hydrostatics (Clairaut 1947). The degree measurements in the equatorial and
northern regions made in the eighteenth century by French astronomers proved
Newton’s conclusion about the Earth’s oblateness, which at that time was regarded
with scepticism. But the measured value of the relative flattening appeared to be
different. In the equatorial zone, it was equal to 1/314, and in the northern region,
to 1/214 (Grushinsky 1976). Clairaut himself took part in the expeditions and found
that Newton’s results are not correct. It was also known to him that the Earth is not a
uniform body. Because of that, he focused on taking into account the consideration
of this effect. Clairaut’s model was represented by an inertia-rotating body filled
with liquid of a changing density. In its structure, such a model was closer to the real
Earth having a shell structure. But the hydrostatic equilibrium condition and inertial
rotation remained to be as previously the physical basis for the problem solution.
Clairaut introduced a number of assumptions in the formulation of the problem.
In particular, since the velocity of inertial rotation and the value of the oblateness
are small, the boundary areas of the shells and their equilibrium were taken as
ellipsoidal figures with a common axis of rotation. Clairaut’s solution comprised
obtaining a differential equation for the shell-structured ellipsoid of rotation relative
to geometric flattening of its main section. Such an equation was found in the form
(Melchior 1972)

d2e

da2
C d� a2
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0

�a2 da
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B
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2�a
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0
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1

C
C
C
A
e D 0; (2.26)
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where e D (b�a)/a is the geometric flattening, a and b are the main axes, and � is
the density.

The difficulty in solving the previous equation was in the absence of the
density radial distribution law of the Earth. Later on, by application of seismic
data, researchers succeeded in obtaining a picture of the planet’s shell structure.
But quantitative interpretation of the seismic observations relative to the density
appeared to be possible again, based on the same idea of hydrostatic equilibrium
of the body masses. In spite of that, as a result of analysis of the Clairaut’s
equation, a number of dynamic criteria for a rotating Earth were obtained. In
particular, the relationship between the centrifugal and the gravity force on the
equator was found, the ratio between the moments of inertia of the polar and
equatorial axes (dynamical oblateness) was obtained, and also the dependence of the
gravity force on the latitude of the surface area was derived. That relationship is as
follows:

g D ga
�
1 � ˇ sin2'

�
; (2.27)

where ® is the latitude of the observation point; ge is the acceleration of the gravity
force:ˇD 5/2q�e; q D!2a/ge is the ratio of the centrifugal force to the gravity force
on the equator; ! is the angular velocity of the Earth’s rotation; e is the geometric
oblateness of the planet; and is the semimajor axis.

The solutions obtained by Clairaut and further developed by other authors
became a theoretical foundation for practical application in the search for the
planet’s shape, for interpretation of seismic observation relative to the structure
and density distribution of the Earth, and also for analysis of the observed natural
dynamic processes.

Later on, the quantitative values of the geometric and dynamic oblateness of the
Earth and the Moon, different in values, were obtained by Clairaut’s equation and
with the use of satellite data. This fact underlies the conclusion that the Earth and
the Moon do not stay in hydrostatic equilibrium.

2.3 Euler’s Model of Hydrostatic Equilibrium of a Rotating
Rigid Body

Leonard Euler (1707–1783), a prominent Swiss mathematician, mechanic, and
physicist, possessed a great capacity for work, fruitful creativity, and extreme
accuracy and strictness in problem solution. There are about 850 titles in the list
of his publications, and their collection comprises 72 volumes. Half of them were
prepared in Russia. He was twice invited to work in the St. Petersburg Academy of
Sciences, where he spent more than 30 years. The spectrum of Euler’s scientific
interests was very wide. In addition to mathematics and physics, they included
the theory of elasticity, theory of machines, ballistics, optics, shipbuilding, theory
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of music, and even insurance business. But 3/5 of the work were devoted to
mathematics problems.

In mechanics, Euler developed a complete theory of motion of the rigid
(nondeformable) body. His dynamic and kinematics equations became the main
mathematical instrument in the solution of the rigid body problems. These equa-
tions, with the use of the known law of a body rotation, enable the determination of
the acting forces and torques. And vice versa, by the applied outer forces, one may
find the law of motion (rotation, precession, nutation) of a body.

On the basis of Newton’s equations of motion for rotational motion of a rigid
body whose axes of coordinates x, y, and z in the rotating reference system are
matched with the main axes connected with the body, Euler’s dynamical equations
have the form:

Ix P!x C �
Iz � Iy

�
!y!z D Nx;

Iy P!y C .Ix � Iz/ !x!z D Ny;

Iz P!z C �
Iy � Ix

�
!x!y D Nz; (2.28)

where Ix, Iy, and Iz are the moments of inertia of the body relative to the main axes;
!x, !y, !z, are the components of the instantaneous angular velocities on the axes;
Nx, Ny, and Nz are the main torques of the acting forces relative to the same axes; and
P!x; P!y; and P!z are the derivatives with respect to time from the angular velocities.

Euler’s kinematic equations are written as follows:

!x D P sin � sin ' C P� cos';

!y D P sin � cos' � P� sin ';

!z D P' C P cos �: (2.29)

The Eulerian angles ®,  , and � determine the position of a rigid body that
has a fixed point relative to the fixed rectangular axes of coordinates. At hard
linkage of the axes with the body and specification of the line of crossed planes
of corresponding angles, they fix the rotation angle, the angle of precession, and the
angle of nutation of the rotation axis.

For a uniform sphere, such as the Earth is according to Newton, Ix D Iy D Iz..
Then the Eulerian equations of motion (2.28) acquire the form

I P!x D Nx;

I P!y D Ny;

I P!z D N z: (2.30)

At free (inertial by Newton) rotation of the uniform Earth, which is not affected
by the torque, Nx D Ny D Nz D 0. In that case, it follows from (2.30) that the
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components of the instantaneous velocities of their axes become constant and
the angular velocity !D const. Thus, angular velocity of a body at nonperturbed
rotation is equal to a constant value.

Newton found that the Earth is flattened relative to the polar axis by centrifugal
inertial force, and Clairaut has agreed with that. Then from the symmetry of the
body having the form of an ellipsoid of rotation, it is found that Nx D Ny ¤ Nz and
only !z D const. From this in the case of absence of the outer torque, Eq. (2.28) is
reduced to

P!x C�!y D 0; (2.31)

P!y ��!x D 0; (2.32)

where� is the angular velocity of free rotation, which at Ix D Iy is equal to

� D Iz � I x

Ix
!z (2.33)

After transformation of Eqs. (2.31) to (2.32), one obtains their solution in the
form of ordinary equations of the harmonic oscillation

!x D A cos �t; (2.34)

!z D A sin �t; (2.35)

where is the constant value representing the amplitude of oscillation.
Thus, the component !z of the angular velocity along the body’s axis of rotation

is a constant value, and the component perpendicular to the axis is rotating with
angular velocity �. So the whole body, while rotating by inertia relative to the
geometric axis with angular velocity !z, in accordance with (2.33) is wobbling with
the frequency�. The oscillations described by Eqs. (2.34) and (2.35) are observed
in reality and are called nutation of the rotating axis or a variation of latitude. The
numerical value of the ratio of inertia moments (2.34) for the Earth is known and
equal to

Iz � Ix=Iz D 0:0032732;

and the value of the angular velocity (free precession) is

� D !z=305:5:

For the known value !z D 7.29 � 10�5 s�1, the period of Euler’s free precession is
equal to 305 days or about 10 months. But analysis of the results of the long series
of observations done by the American researcher Chandler has shown that, together
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with the annual component of the forced nutation, there is one more component
having a period of about 420 days, which was called as free wobbling of the rotation
axis. This component differs substantially from Euler’s free precession. The nature
of the latter has not been understood up to now.

Euler also developed a complete theory of motion of the perfect liquid in
hydromechanics, where differential equations in his variables become the basis
for solution of hydrodynamic problems. Euler’s hydrodynamic equations for the
perfect liquid in the rectangular Cartesian reference system x, y, z based on Newton’s
equations of motion have the form

@u

@t
C u

@u

@x
C v

@u

@y
C !

@u

@z
D X � 1

�

@p

@x
;

@v

@t
C u

@v

@x
C v

@v

@y
C !

@v

@z
D Y � 1

�

@p

@y
;

@!

@t
C u

@!

@x
C v

@!

@y
C !

@!

@z
D Z � 1

�

@p

@z
; (2.36)

where u, v, and ! are the components of the velocity of liquid particles; p is
the liquid pressure; � is the density; and X, Y, and Z are the components of the
volumetric forces.

Solution of the hydrodynamic problems is reduced to determination of the
components of velocities u, v, !, the pressure and the density as a function of the
coordinates with known values of X, Y, Z, and the given boundary conditions. For
that purpose, in addition to Eq. (2.36), the equation of continuity is written in the
form

@�

@t
C @ .�u/

@x
C @ .�v/

@y
C @ .�!/

@z
D 0: (2.37)

If the density of liquid depends only on pressure, then the extra equation of state
will be presented by the relation �D f (p), and for the incompressible liquid, it is
�D const.

Because the Earth is a system with continuous distribution of its masses, we will
use the Eulerian hydrodynamic equations repeatedly.

2.4 Clausius’ Virial Theorem

Rudolf Clausius (1822–1888), a German physicist, is one of the founders of
thermodynamics and the molecular kinetic theory of heat. Simultaneously with W.
Thomson (Lord Kelvin), he has formulated the second law of thermodynamics
in the following form: “Heat cannot be transferred by any continuous, self-
sustaining process from a cold to a hotter body” without some changes, which
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should compensate that transfer. Clausius introduced the conception of entropy to
thermodynamics.

In 1870, based on the study of the process and mechanism of Carnot’s thermal
machine work, Clausius proved the virial theorem, according to which for a closed
system the mean kinetic energy of the perfect gas particles’ motion is equal to half
of their potential energy. The virial relation between the potential and kinetic energy
was found to be a universal condition of the hydrostatic equilibrium for describing
dynamics of the natural systems in all branches of physics and mechanics.

That equation was used first of all in the kinetic theory of gases for derivation
of an equation of state for the perfect gases in the outer force field of the Earth; we
assume that a specific perfect gas is found in a vessel of volume V and consists from
N uniform particles (atoms or molecules). The mean kinetic energy of a particle of
that gas at temperature T0 is equal to 3k 0/2, where k is the Boltzmann’s constant.
Then the virial theorem is written in the form

�1
2

X

i

Fi � ri D 3

2
NkT0: (2.38)

In this case, the effect of interaction of the gas atoms and molecules between
themselves is negligibly small, and all the gas energy is realized by its interaction
with the vessel’s wall. The gas pressure p inside the vessel appears only because
of the walls, the elastic reaction of which plays the role of the inertial forces. The
pressure is expressed through the energy of the molecules and atoms’ motion in the
vessel, and expression (2.38) is written as the Clapeyron–Mendeleev equation of
state for a perfect gas in the form

3

2
pV D 3

2
NkT0;

or

pV D NkT0: (2.39)

Equation (2.39) is the generalized expression of the laws of Boyle and Mariotte,
Gay-Lussac, and Avogadro and represents the averaged virial theorem. Its left-hand
side represents the potential energy of interaction of the gas particles, and the right-
hand side is the kinetic energy of the gas pressure on the walls. In astrophysics, this
equation is used as the equation of hydrostatic equilibrium state of a star, which is
accepted as a gas and plasma system, where the gas pressure is equilibrated by the
gravity forces of the attracted masses. In this case, the gravity forces play the role
of the vessel’s walls or the outer force field, where the kinetic energy of motion of
the interacted particles is not taken into account. Later on, it will be shown that for
the natural gaseous and plasma self-gravitating systems, the only generalized virial
equation can be used as the equation of state.
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For celestial bodies including the Earth, other planets, and satellites, whose
mass particles interact by the reverse square law and the forces of interaction are
characterized by the potential U(r) as the uniform function of coordinates, the
averaged virial theorem is reduced to the relation between the potential and kinetic
energy in the form (Goldstein 1980)

T D 1

2

X

i

rU � ri : (2.40)

For a particle moving in the central force field expression (2.40) is

T D 1

2

@U

dr
r: (2.41)

If U is the force function of rn, then

T D nC 1

2
U :

Or, taking into account Euler’s theorem about the uniform functions and Newton’s
law of interaction, when n D �2, one has

T D �1
2
U : (2.42)

Relationship (2.42) is valid only for a system that is found in the outer uniform
force field. It expresses only mean values of the potential and kinetic energy per the
period � without effect of the inner kinetic energy of the interacting particles.

For a uniform sphere in outer uniform force field �F at inner isotropic pressure �,
relation (2.42) represents the condition of hydrostatic equilibrium written by means
of Euler’s equation in the form

@p

@r
D �Fr :

Here, the left-hand side of the equation is the potential energy, and the right-hand
side represents the kinetic energy of the sphere in the framework of the averaged
virial theorem.

It is clear that the averaged virial theorem in evolutionary dynamics is restricted
by closed systems of a perfect gas, which corresponds to their hydrostatic equilib-
rium state.

The general model of hydrostatic equilibrium based on a body’s outer central
force field is shown in Fig. 2.2.

The problems of dynamics in the framework of hydrostatics cover also the tasks
that consider a body under action of outer forces in elastic and viscous media of
Hooke and Newton–Maxwell.
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Fig. 2.2 Conditions of hydrostatic equilibrium of a body based on the outer central gravity force
field

2.5 The Model of Hydrostatic Equilibrium of Elastic
and Viscous-Elastic Body

The model of the Earth proposed by Newton and developed by Clairaut was in the
form of a spheroid, rotating on inertia and filled in with uniform and nonuniform
liquid, the mass of which resides in hydrostatic equilibrium in the outer force field.
This model became generally accepted, commonly used, and in principal has not
changed up to now. Its purpose was to solve the problem of the planet’s shape,
that is, the form of the planet’s surface, and this goal was reached in the first
approximation. Moreover, the equation obtained by Clairaut on surface changes in
the acceleration of the gravity force as function of the Earth’s latitude opened the
way for the experimental study of the oblateness of spheroid of rotation by means
of measuring the outer gravity force field. Later on, in 1840, Stokes solved the
direct and reverse task of determining the surface gravity force for a rotating body
and above its level, applying the known parameters, namely, the mass, radius, and
angular velocity. These parameters uniquely determined the gravity force at surface
level, which is taken as the quiet ocean’s surface, and in all outer space. By that task,
the relation between the Earth’s shape and the gravity force was determined. In the
middle of the last century, Molodensky (1961) proposed the idea of considering
the real surface of the Earth as a reduced surface and solved the corresponding
boundary problem. The doctrine of the spheroidal figure of the Earth has found
common understanding, and researchers, armed with theoretical knowledge, started
to refine the dimensions and other details of the ellipsoid of rotation and to derive
corresponding corrections.

Many publications were devoted to analysis of the observed inaccuracies in
the Earth’s rotation together with explanation of their possible causes, based on
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experimental data and theoretical solutions. The most popular review work in the
twentieth century was the book authored by the well-known English geophysicist
Harold Jeffreys The Earth: Its Origin, History and Physical Constitution. The first
publication of the book happened in 1922, and later four more editions appeared,
including the last one in 1970. Jeffreys was a great expert and a direct participant of
the development of the most important geophysical activities. The originality of his
methodological approach in describing the material lies in that, after the formulation
and theoretical consideration of the problem, he writes a chapter devoted to the
experimental data and facts on the theme, the comparison with analytical solutions,
and discussion.

Maintaining his position on Newton’s and Clairaut’s models, Jeffreys considers
the planet as an elastic body and describes the equation of the force equilibrium
from the hydrostatic pressure, which appears from the outer uniform central force
field and exhibits strengths at a given point in the form

�fi D �Xi C
X

kD1;2;3

@pik

@xk
; (2.43)

where � is the density, fi is the acceleration component, pik D pki is the stress
component from the hydrostatic pressure, and i is the gravity force on the unit
mass from the outer force field.

Additionally, the equation of continuity (like the continuity equation in hydro-
dynamics) is written as the condition of equality of velocity of the mass inflow and
outflow from elementary volume in the form

@�

@t
D �

X

i

@

@xi
.�vi / ; (2.44)

where vi is the velocity component in the direction of xi.
Further, applying the laws of elasticity theory, he expresses elastic properties of

matter by the Lame coefficients and writes the basic equations of the strength state
of the body, which links the strengths and the deformations in the point as

�
@2ui
@t2

D .�C 	/
@


@xi
C r2ui ; (2.45)

where ui is the displacement component, � and 	 are the Lame coefficients, 
 is
the component of the relative displacement, and r is the Laplacian operator.

The author introduces a number of supplementary physical ideas related to the
properties of the Earth’s matter, assuming that it is not perfectly elastic. With the
development of stresses, matter reaches its limit of resistance and passes to the
stage of plastic flow with a final effect of break in the matter’s continuity. This
break leads to a sharp local change in the strength state, which, in turn, leads to the
appearance of elastic waves in the planet’s body, causing earthquakes. For this case,
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Equation (2.45) after the same corresponding transformations is converted into the
form of plane longitudinal and transversal waves, which propagate in all directions
from the break place. Such is the physical basis of earthquakes, which was a starting
point of development of seismology as a branch of geophysics studying the propa-
gation of elastic longitudinal and transversal waves in the Earth’s body. By means
of seismic study, mainly by strong earthquakes and based on difference in velocity
of propagation of the longitudinal and transversal waves through the shells having
different elastic properties, the shell-structured body of the planet was identified.

Jeffreys has analyzed the status of study in the theory of the shapes of the
Earth and the Moon following Newton’s basic concepts. Namely, the planet has
an inner and outer gravitational force field. The gravitational pressure is formed
on the planet’s surface and affects the outer space and the planet’s center. The
Earth’s shape is presented as an ellipsoid of rotation, which is perturbed from the
side of inaccuracies in the density distribution, as well as from the side of the
Moon’s perturbations. The problem is to find the axes of the ellipsoid under action
of both perturbations which occur because of a difference in the gravity field for
the real Earth and the spherical body. It is accepted that the oceans’ level is close
to the spherical surface with deviation by a value of the first order of magnitude,
and the geometric oblateness of the ellipsoid is close to the value of e � 1/297.
But the value squares of deviation cannot always be ignored because the value e2

differs substantially from the value e. The observed data cannot be compared with
theoretical solutions because the formulas depending on the latitudes give precise
expressions neither for the radius vector from the Earth center to the sea level nor for
the value of the gravity force. The problem of the planet’s mass density distribution
finds its resolution from the condition of the hydrostatic pressure at a known velocity
of rotation. The value of oblateness of the outer spheroid can be found from the
observed value of the precession constant with a higher accuracy than one can
find from the theory of the outer force field. A weak side of such approach is the
condition of the hydrostatic stresses, which however are very small in comparison
with the pressure at the center of the Earth. The author also notes that deviation
of the outer planet’s gravitational field from spherical symmetry does not satisfy
the condition of the inner hydrostatic stresses. Analysis of that discrepancy makes it
possible to assess errors in the inner strengths related to the hydrostatics. Because of
the Earth’s ellipticity, the attraction of the Sun and the Moon creates a force couple
applied to the center, which forces the instantaneous axis of rotation to depict a cone
around the pole of the ecliptic and to cause the precession phenomenon. The same
effect initiates an analogous action on the Moon’s orbit

These are the main physical fundamentals that Jeffreys used for the analysis and
theoretical consideration of the planet’s shape problem and for determination of
its oblateness and of semimajor axis size. The author has found that the precession
constant D 0.00327293˙ 0.00000075 and the oblateness 1/e D 297.299 ˙ 0.071.
He assumes that these figures could be accepted as a result that gives the hydrostatic
theory. But in conclusion, he says that the theory is not correct. If it is correct,
then the solid Earth would be a benchmark of the planet’s surface covered by
oceans. There are some other data confirming that conclusion. But this is the only



2.6 Evidences that the Earth and the Moon Move Being Not in Hydrostatic... 43

and the most precise method for determining the spheroid flattening, which needs
nonhydrostatic corrections to be found. Analogous conclusion was made by the
author relative to the Moon’s oblateness, where the observed and calculated values
are much more contrast.

The other review works on the irregularity of rotation and the pole motion of
the Earth are the monographs of W. Munk and H. MacDonald (1960), P. Melchior,
(1972–1973), and P. Sabadini and B. Vermeertsen (2004). The authors analyze there
the state of the art and geophysical causes leading to the observed incorrectness
in the planet’s rotation and wobbling of the poles. They draw the attention of the
readers to the practical significance of the two main effects and designate about ten
causes for their initiation. Among them are seasonal variations of the air masses,
moving of the continents, melting and growing of the glaciers, elastic properties
of the planet, and convective motion in the liquid core. The authors stressed that
solution of any part of this geophysical task should satisfy the dynamical equations
of motion of the rotating body and the equations, which determine a relationship
between the stresses and deformations inside the body. The theoretical formulation
and solution of a task should be considered on the hydrostatic basis, where the
forces, inducing stresses, and deformations are formed by the outer uniform force
field and the deformations occur in accordance with the theory of elasticity for
the elastic body model, and in the framework of rheology laws for the elastic and
viscous body model. The perturbation effects used are the wind force, the ocean
currents, and the convective flows in the core and in the shells.

The causes of the axis rotation wobbling and the pole motion are considered
in detail. The authors find that the problem of precession and nutation of the axis
of rotation has been discussed for many years and does not generate any extra
questions. The cause of the phenomena is explained by the Moon and the Sun
perturbation of the Earth, which has an equatorial swelling and obliquity of the
axis to the ecliptic. Euler equations for the rigid body form a theoretical basis for
the problem’s solution. In this case, the free nutation of the rigid Earth according to
Euler is equal to 10 months.

2.6 Evidences that the Earth and the Moon Move Being Not
in Hydrostatic Equilibrium State

The effects of the Earth’s oblateness and the related problems of irregularity in the
rotation and the planet’s pole motion and also the continuous changes in the gravity
and electromagnetic field have a direct relation to the solution of a wide range
of scientific and practical problems in the Earth dynamics, geophysics, geology,
geodesy, oceanography, physics of the atmosphere, hydrology, and climatology.
In order to understand the physical meaning and regularities of these phenomena,
regular observations are carried out. Newton’s first attempts to find the quantitative
value of the Earth’s oblateness were based on degree measurements done by
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Table 2.1 Parameters of the Earth’s oblateness by degree measurement
data

Author Year a, m e ee �

D’Alambert 1800 6; 375; 553 1=334:00

Valbe 1819 376; 895 1=302:78

Everest 1830 377; 276 1=300:81

Eri 1830 376; 542 1=299:33

Bessel 1841 377; 397 1=299:15

Tenner 1844 377; 096 1=302:5

Shubert 1861 378; 547 1=283:0

Clark 1866 378; 206 1=294:98

Clark 1880 378; 249 1=293:47

Zhdanov 1893 377; 717 1=299:7

Helmert 1906 378; 200 1=298:3

Heiford 1909 378; 388 1=297:0

Heiford 1909 378; 246 1=298:8 1/38,000 38ı

Krasovsky 1936 378; 210 1=298:6 1/30,000 10ı

Krasovsky 1940 378; 245 1=298:3

International 1967 378; 160 1=298:247

Here, is the oblateness of the polar axis, is the semimajor axis, e is
the equatorial oblateness, and
� is the longitude of the maximal equatorial radius

Norwood, Pikar, and Kassini. As mentioned previously, by his calculation of the
Paris latitude, the oblateness value appears to be 1/230. Very soon, some analogous
measurements were taken in the equatorial zone in Peru and in the northern zone
in Lapland Clairaut, Mopertui, and Buge, and other known astronomers also took
part in these works. They confirmed the fact of the Earth’s oblateness as calculated
by Newton. The degree of the arc in the northern latitudes appeared to be maximal,
and the oblateness was equal to 1/214. In the equatorial zone, the arc length was
minimal, and the oblateness was equal to 1/314. So the Earth pole axis from these
measurements was found to be shorter of the equatorial approximately by 20 km.

As of the end of the first part of the twentieth century, more than 20 large degree
measurements were done from which the values of the oblateness and dimension
of the semimajor axes were found. The data of the measurements are presented
in Table 2.1, and in Table 2.2, the parameters of the triaxial ellipsoid are shown
(Grushinsky 1976).

It is worth noting that in geodesy, a practical application of the triaxial ellipsoid
has not been found, because it needs more complicated theoretical calculations and
more reliable experimental data. In the theory, this important fact is ignored, because
it is not inscribed into the hydrostatic theory of the body.

In addition to the local degree measurements, which allow determination of
the Earth’s geometric oblateness, more precise integral data can be obtained by
observation of the precession and nutation of the planet’s axis of rotation. It is
assumed that the oblateness depends on deflection of the body’s mass density
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Table 2.2 Parameters or the
Earth’s equatorial ellipsoid

uthor Year 1� 2, m �

Helmert 1915 230 ˙ 51 17ıW
Berrot 1916 150 ˙ 58 10ıW
Heyskanen 1924 345 ˙ 38 18ı

Heyskanen 1929 165 ˙ 57 38ı

Hirvonen 1933 139 ˙ 16 19ıW
Krasovsky 1936 213 10ı

Isotov 1948 213 15ı

Here, 1 and 2 are the semimajor and
semiminor axes of the equatorial ellipsoid

distribution from spherical symmetry and is initiated by a force couple that appeared
to be an interaction of the Earth with the Moon and the Sun. The precession of the
Earth’s axis is proportional to the ratio of the spheroid’s moments of inertia relative
to the body’s axis of rotation in the form of the dynamical oblateness ":

" D C � A

C

At the same time, the retrograde motion of the Moon’s nodes (points of the
ecliptic intersection by the Moon orbit) is proportional to the second spherical
harmonics coefficient J2 of the Earth’s outer gravitational potential in the form

J2 D C � A

Ma2
:

It is difficult to obtain a rigorous value of geometric oblateness from its dynamic
expression because we do not know the radial density distribution. Moreover, the
Moon’s mass is known up to a fraction of a percent, but it is inconvenient to
calculate analytically the joint action of the Moon and the Sun on the precession.
In spite of that, some researchers succeeded in making such calculations, assuming
that the Earth’s density is increasing proportionally to the depth. Their data are the
following:

By Newcomb "D 1/305.32 D 0.0032753; e D 1/297.6;
By de Sitter "D 1/304.94 D 0.0032794; e D 1/297.6;
By Bullard "D 1/305.59 D 0.00327236; e D 1/297.34;
By Jeffreys "D 1/305.54 D 0.00327293; e D 1/297.3.

After appearance of the Earth’s artificial satellites and some special geodetic
satellites, the situation with observation procedures has in principle changed. The
satellites made it possible to determine directly, by measuring of the even zonal
moments, the coefficient Jn in expansion of the Earth gravitational potential by
spherical functions. In this case at hydrostatic equilibrium, the odd and all the
tesseral moments should be equal to zero. It was assumed before the satellite era
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that the correction coefficients of a higher degree of J2 will decrease and the main
expectations to improve the calculation results were focused on the coefficient J4.
But it has appeared that all the gravitational moments of higher degrees are the
values proportional to square of oblateness, that is, �(1/300)2 (Zharkov 1978).

On the basis of the calculated harmonic, the coefficients of the expanded gravita-
tional potential of the Earth published by Smithsonian Astrophysical observatory
and the Goddard cosmic center of the USA, the fundamental parameters of the
gravitational field, and the shape of the so-called standard Earth were deter-
mined. Among them are coefficient of the second zonal harmonic J2 D 0.0010827,
equatorial radius of the Earth ellipsoid D 6378160 m, angular velocity of the
Earth’s rotation !3 D 7.292�10�5 rad/s, equatorial acceleration of the gravity force
� D 978031.8 mgl, and oblateness 1/ D 1/298.25 (Grushinsky 1976; Melchior
1972). At the same time, if the Earth stays in hydrostatic equilibrium, then, applying
the solutions of Clairaut and his followers, the planet’s geometric oblateness should
be equal to e0 D 1/299.25. On the basis of that contradiction, lchior (1972)
concluded that the Earth does not stay in hydrostatic equilibrium. It represents either
a simple equilibrium of the rigid body, or there is equilibrium of a liquid and not
static but dynamic with an extra hydrostatic pressure. Coming to interpretation of the
density distribution inside the Earth by means of the Williamson–Adams equation,

lchior (1972) adds that in order to eliminate there the hydrostatic equilibrium,
one needs a supplementary equation. Since such an equation is absent, we are
obliged to accept the previous conditions of hydrostatics.

The situation with the absence of hydrostatic equilibrium of the Moon is much
more striking. The polar oblateness of the body is (Grushinsky 1976)

ep D b � c

r0
D 0:94 � 10�5;

and the equatorial oblateness is equal

ee D a � c

r0
D 0:375 � 10�4;

where , b, and are the equatorial and polar semiaxes and r0 is the body mean
radius.

It was found by observation of the Moon libration that

ep D 4 � 10�4 and ee D 6:3 � 10�4:

The calculation of the ratio of theoretical values of the dynamic oblate-
ness ed D ep/ee D 0.25 substantially differs from the observation, which is
0.5 � ed � 0.75. At the same time, the difference of the semiaxes is a1 � a3 D
1:03 km and a2 � a3 D 0:83 km, where a1 and a2 are the Moon’s equatorial
semiaxes.
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After the works of Clairaut, Stokes, and Molodensky, on the basis of which the
relationship between the gravity force change at the sea level and on the real Earth
surface with the angular velocity of rotation was established, one more problem has
risen. During measurements of the gravity force at any point of the Earth’s surface,
two effects are revealed. The first is an anomaly of the gravity force, and the second
is a declination of the plumb line from the normal in a given point.

Analysis of the gravity force anomalies and the geoid heights (a conventional
surface of a quiet ocean) based on the existent schematic maps, compiled from the
calculated coefficients of expansion of the Earth’s gravity potential and ground level
gravimetric measurements, allows derivation of some specific features related to the
parameter forming the planet. As Grushinsky (1976) notes, elevation of the geoid
over the ellipsoid of rotation with the observed oblateness reaches 50–70 m only
in particular points of the planet, namely, in the Bay of Biscay, North Atlantic, and
near the Indonesian Archipelago. In the case of triaxial ellipsoid, the equatorial axis
is passed near those regions with some asymmetry. The maximum of the geoid
heights in the western part is shifted towards the northern latitudes and maximum in
the eastern part remains in the equatorial zone. The western end of the major radius
reaches the latitudes of 0–10ı to the west of Greenwich, and the western end falls on
the latitudes of about 30–40ı to the west of a meridian of 180ı. This also indicates
asymmetry in distribution of the gravity forces and the forming masses. And the
main feature is that the tendency to asymmetry of the northern and the southern
hemispheres as a whole is observed. The region of the geoid’s northern pole rises
above the ellipsoid up to 20 m, and the Antarctic region is situated lower by the same
value. The asymmetry in planetary scale is traced from the northwest of Greenland
to the southeast through Africa to the Antarctic with positive anomalies and from
Scandinavia to Australia through the Indian Ocean with negative anomalies up to
50 mgl. Positive anomalies up to 30 mgl are fixed within the belt from Panama to
Fiery Land and to the peninsula Grechem in the Antarctic. The negative anomalies
are located on both sides, which extend from the Aleut bank to the southeast of the
Pacific Ocean and from Labrador to the south of the Atlantics. The structure of the
positive and negative anomalies is such that their nature can be interpreted as an
effect of spiral curling of the northern hemisphere relative to the southern one.

As to the plumb line declination, this effect is considered only in geodesy from
the point of view of practical application in the corresponding geodetic problems.
Physical aspects of the problem are not touched. Later on, we will discuss this
problem.

The problem of the Earth’s rotation has been discussed at the NATO workshop
( azenave 1986). It was stated that both aspects of the problem still remain
unsolved. The problems are variations in the day’s duration and the observed
Chandler’s wobbling of the pole with the period of 14 months in comparison with
10 months, given by the Euler rigid body model. Chandler’s results are based on
the analysis of 200-year observational data of motion of the Earth’s axis of rotation,
done in the USA in the 1930s. He found that there is an effect of free wobbling of
the planet’s axis with the period of about 420 days. Since that time, the discovered
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effect remains the main obstacle in the explanation of the nature and theoretical
justification of the pole’s motion.

Summing up this short excursion to the problem’s history, we found the situation
as follows. The majority of researchers dealing with the dynamics of the Earth and
its shape come to the unanimous conclusion that the theories based on hydrostatics
do not give satisfactory results in comparison with the observations. For instance,
Jeffreys straightforwardly says that the theories are incorrect. Munk and MacDonald
more delicately note that dozens of the observed effects can be called that do not
satisfy the hydrostatic model. It means that the dynamics of the Earth as a theory
is absent. This state of art and the conclusion motivated the authors to search
for a novel physical basis for the dynamics and creation of the Earth, planets,
and satellites. The first step in that direction was presented in their publication
(Ferronsky and Ferronsky 2010).
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Chapter 3
Physical Meaning of Dynamical Equilibrium
of a Celestial Body

Abstract Interpretation of the artificial satellite data proving the absence of the
hydrostatic equilibrium state of the Earth and the Moon are discussed in detail. It
is shown that the Earth and the Moon are triaxial bodies, and their axial rotation is
not an inertial effect. Observational data from earthquakes demonstrate the planet’s
oscillating dynamics with periods from 8.4 to 57 min. Two general modes of the
Earth’s oscillation were found, namely, spectral with a vector of radial direction and
torsion with a vector perpendicular to the radius.

The main problem of a celestial body’s equilibrium state, which is a ratio of
the kinetic and potential energies, is discussed thoroughly. It is shown that the ratio
of Earth’s kinetic and potential energy is equal to �1/300. The other planets, the
Sun, and the Moon, the hydrostatic equilibrium for which is also accepted as a
fundamental condition, stay in analogous situation. This is because the hydrostatic
approach does not take into account the kinetic energy of the interacted elementary
mass particles, which is, in fact, Newton’s energy of gravity (and force). As a result,
celestial body dynamics have been left without kinetic energy.

In order to correct this situation, the generalized virial theorem was derived by
introduction of the volumetric forces and moments into the classic one. As a result,
the oscillating mode of the body motion has appeared in the form of Jacobi’s virial
equation in the form R̂ D 2E � U (where ˆ is the Jacobi’s function; E and U are
the total and potential energy, respectively). In addition, the inner and outer force
fields and the energy as the measure of interacted mass particles of a celestial body
were revealed. The reduced inner gravitational (weighting) field was obtained.

Let us come back to the fact of absence of the Earth’s hydrostatic equilibrium found
by satellite data. The initial factual material for the problem study is presented by the
observed orbit elements of the geodetic satellites, which move on perturbed Kepler’s
orbits. The satellite motion is fixed by means of observational stations located within
zones of a visual height range of 1,000–2,500 km, which is optimal for the planet’s

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 3,
© Springer ScienceCBusiness Media Dordrecht 2013
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gravity field study. It was found that the satellite’s perturbed motion at such a close
distance from the Earth surface is connected with the nonuniform distribution of
mass density, the consequences of which are the nonspherical shape of the figure
and the corresponding nonuniform distribution of the outer gravity field around
the planet. These nonuniformities cause corresponding changes in trajectories of the
satellite’s motion, which are fixed by the tracking stations. Thus, distribution of the
Earth’s mass density determines the adequate equipotential trajectory in the planet’s
gravity field, which follows the satellite. The main goal of the geodetic satellites,
launched under different angles relative to the equatorial plane, is the measurement
of all deviations in the trajectory from the unperturbed Kepler’s orbit.

3.1 Relationship of Gravitational Field and Moment
of Inertia by Satellite Data

The satellite orbits data for solving the problem of the nature of the Earth’s
oblateness are interpreted on the basis of the known (in celestial mechanics) theory
of expansion of the gravity potential of a body, the structure and the shape of which
do not much differ from the uniform sphere. The expression of the expansion, by
spherical functions, recommended by the International Union of Astronomy, is the
following equation (Grushinsky 1976):
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where r, ', and � are the heliocentric polar coordinates of an observation point;
G is the gravity constant; M and Re are the mass and the mean equatorial
radius of the Earth; Pn is the Legendre polynomial of n order; Pnm(sin®) is the
associated spherical functions; and Jn, Cnm, and Snm are the dimensionless constants
characterizing the Earth’s shape and gravity field.

The first terms of Eq. (3.1) determine the zero approximation of Newton’s poten-
tial for a uniform sphere. The constants Jn, Cnm, and Snm represent the dimensionless
gravitational moments, which are determined by analyzing the satellite orbits. The
values Jn express the zonal moments, and Cnm and Snm are the tesseral moments.
In the case of hydrostatic equilibrium of the Earth as a body of rotation, in the
expression of the gravitational potential (3.1), only the even n-zonal moments Jn are
rapidly decreased with growth, and the odd zonal and all tesseral moments turn into
zero, that is,
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where � is the angle of the polar distance from the Earth’s pole.
Here, the constant J2 represents the zonal gravitational moment, which charac-

terizes the axial planet’s oblateness and makes the main contribution to correction
of the unperturbed potential. That constant determines the dimensionless coefficient
of the moment of inertia relative to the polar axis and equal to

J2 D C �A
MR2e

; (3.3)

where and are the Earth moments of inertia with respect to the polar and
equatorial axes, accordingly, and Re is the equatorial radius.

For expansion of the Earth’s gravity forces potential by spherical functions, the
rotation of which is taken to be by action of the outer inertial forces, but not by the
own force field, the centrifugal force potential is introduced into Eq. (3.2). Then, for
the hydrostatic condition with the even zonal moments Jn, one has
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where W is the potential of the body rotation and !2r is the centrifugal force.
The first two terms and the term of the centrifugal force in Eq. (3.4) express the

normal potential of the gravity force:
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The potential (3.5) corresponds to the spheroid’s surface, which coincides with
the ellipsoid of rotation with accuracy up to its oblateness. Rewriting term 2(cos �)
in this equation through the sinus of the heliocentric latitude and the angular
velocity – through the geodynamic parameter q – one can find the relationship of
the Earth’s oblateness "with the dynamic constant J2. Then equation of the dynamic
oblateness " is obtained in the form (Grushinsky 1976; Melchior 1972)

" D 3

2
J2 C q

2
; (3.6)

where the geodynamic parameter q is the ratio of the centrifugal force to the gravity
force at the equator
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q D !2R

GM=R2
: (3.7)

Geodynamic parameter J2 found by satellite observation in addition to the oblate-
ness calculation is used for determination of a mean value of the Earth’s moment
of inertia. For this purpose, the constant of the planet’s free precession is also used,
which represents one more observed parameter expressing the ratio of the moments
of inertia in the form

H D C � A

C
: (3.8)

This is the theoretical base for interpretation of the satellite observations. But its
practical application gave very contradictory results (Grushinsky 1976; Melchior
1972; Zharkov 1978). In particular, the zonal gravitation moment calculated by
means of observation was found to be J2 D 0.0010827, from where the polar
oblateness "D 1/298.25 appeared to be shorter of the expected value and equal
to 1/297.3. All zonal moments Jn, starting from J3, which relate to the secular
perturbation of the orbit, were close to constant value and equal, by the order of
magnitude, to the square of the oblateness, that is, �(1/300)2, and slowly decreasing
with an increase in n. The tesseral moments Cnm and Snm appeared to be not equal
to zero, expressing the short-term nutational perturbations of the orbit. In the case
of hydrostatic equilibrium of the Earth at the found value of J2, the polar oblateness
" should be equal to 1/299.25. On this basis, the conclusion was made that the Earth
does not stay in hydrostatic equilibrium. The planet’s deviation from the hydrostatic
equilibrium evidenced that there is a bulge in the planet’s equatorial region with an
amplitude of about 70 m. It means that the Earth body is forced by normal and
tangential forces that develop corresponding stresses and deformations. Finally, by
the measured tesseral and sectorial harmonics, it was directly confirmed that the
Earth has an asymmetric shape with reference to the axis of rotation and to the
equatorial plane.

Because the Earth does not stay in hydrostatic equilibrium, the above described
initial physical fundamentals for interpretation of the satellite observations should
be recognized as incorrect, and the related physical concepts cannot explain the real
picture of the planet’s dynamics.

The question is raised how to interpret the obtained actual data and where
the truth should be sought. First of all, we should verify the correctness of the
oblateness interpretation and the conclusion about the Earth’s equatorial bulge. It is
known from observation that the Earth is a triaxial body (see Table 2.2). Theoretical
application of the triaxial Earth model was not considered because it contradicts
to hydrostatic equilibrium hypothesis. But after it was found that the hydrostatic
equilibrium is absent, the triaxial Earth alternative should be considered first.

Let us analyze Eq. (3.7). It is known from the observation data that the constant
of the centrifugal oblateness q is equal to

http://dx.doi.org/10.1007/978-94-007-5908-4_2
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Determine a difference between the centrifugal oblateness constant q and the
polar oblateness "0 found by the satellite orbits, assuming that the desired value has
a relationship with the perturbation caused by the equatorial ellipsoid
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where a, b, and c are the semiaxes of the triaxial Earth.
The differences between the major and minor equatorial semiaxes can be found

from Eq. (3.10). If the major semiaxis is taken in accordance with recommendation
of the International Union of Geodesy and Geophysics as D 6,378,160 m, then the
minor equatorial semiaxis b can be equal to

a � b D 6,378,160=9,720 D 656 mI b D 6,377,504 m:

One can see that the second semiaxes are shorter of the first one by 656 m.
There is a reason now to assume that the value of equatorial oblateness "0 D 1/9,720
is a component in all the zonal gravitation moments Jn, related to the secular
perturbations of the satellite orbits including J2. They are perturbed both by the polar
and the equatorial oblateness of the Earth. This effect ought to be expected because
it was known long ago from observation that the Earth is a triaxial body. If our
conclusion is true, then there is no ground for discussion about the equatorial bulge.
And also the problem of the hydrostatic equilibrium is closed automatically because
in this case the Earth is not a figure of rotation, and the nature of the observing
fact of rotation of the Earth should be looked for rather in the action of the own
inner force field but not in the effects of the inertial forces. As to the nature of
the Earth’s oblateness, then for its explanation later on, the effects of perturbation
arising during separation of the Earth’s shells by mass density differentiation and
separation of the Earth itself from the protosun will be considered. In particular, the
effect of heredity in the creation of the body’s oblateness is evidenced by the ratio
of kinetic energy of the Sun and the Moon expressed through the ratio of square
frequencies of oscillation "00 of their polar moments of inertia, which is close to the
planet’s equatorial oblateness:
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where !c D 10�4 s�1 and !� D 0.96576�10�2 s�1 are the frequencies of oscillation
of the Sun’s and the Moon’s polar moment of inertia correspondingly.
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The most prominent effect, which was discovered by investigation of the geodetic
satellite orbits, is the fact of a physical relationship between the Earth’s mean
(polar) moment of inertia and the outer gravity field. That fact without exaggeration
can be called as a fundamental contribution to understanding the nature of the
planet’s self-gravity. The planet’s moment of inertia is an integral characteristic
of the mass density distribution. Calculation of the gravitational moments based on
the measurement of elements of the satellite orbits is the main content of satellite
geodesy and geophysics. Short-periodic perturbations of the gravity field fixed at
revolution of a satellite around the Earth, the period of which is small compared to
the planet’s period, provide evidence about oscillation of the moment of inertia or,
to be more correct, about oscillating motion of the interacted mass particles. It will
be shown that oscillating motion of the interacting particles forms the main part of
a body’s kinetic energy and the moment of inertia itself is the periodically changing
value.

Oscillation of the Earth’s moment of inertia and also the gravitational field is
fixed not only during the study by artificial satellites but both parameters have also
been registered by surface seismic investigations. Consider briefly the main points
of those observations.

3.2 Earthquakes’ Observational Data

The study of the Earth’s eigenoscillation started with Poisson’s work on oscillation
of an elastic sphere, which was considered in the framework of the theory of elas-
ticity. At the beginning of the twentieth century, Poisson’s solution was generalized
by Love in the framework of the problem solution of a gravitating uniform sphere
of the Earth’s mass and size. The calculated values of periods of oscillation were
found to be within the limit of some minutes to one hour.

In the middle of the twentieth century during the powerful earthquakes in 1952
and 1960 in Chile and Kamchatka, an American team of geophysicists headed
by Beneoff, using advanced seismographs and gravimeters, reliably succeeded in
recording an entire series of oscillations with periods from 8.4 up to 57 min. Those
oscillations in the form of seismograms have represented the dynamical effects of
the interior of the planet as an elastic body, and the gravimetric records have shown
the “tremor” of the inner gravitational field (Zharkov 1978). In fact, the effect of the
simultaneous action of the potential and kinetic energy in the Earth’s interior was
fixed by these experiments.

About 1,000 harmonics of different frequencies were derived by expansion of
the line spectrum of the Earth’s oscillation. These harmonics appear to be integral
characteristics of the density, elastic properties, and effects of the gravity field, that
is, of the potential and kinetic energy of separate volumetric parts of the nonuniform
planet. As a result, two general modes of the Earth’s oscillations were found by this
spectral analysis, namely, spherical with a vector of radial direction and torsion with
a vector perpendicular to the radius.
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From the point of view of the existing conception about the planet’s hydrostatic
equilibrium, the nature of the observed oscillations was considered to be a property
of the gravitating nonuniform (regarding density) body in which the pulsed load
of the earthquake excites elementary integral effects in the form of elastic gravity
quanta (Zharkov 1978). Considering the observed dynamical effects of earthquakes,
geophysicists came close to a conclusion about the nature of the oscillating
processes in the Earth’s interior. But the conclusion itself still has not been expressed
because it continues to relate to the position of the planet’s hydrostatic equilibrium.

Now we move to one of the main problems related to the Earth’s equilibrium or,
more correctly, to the absence of the Earth’s equilibrium if it is considered on the
basis of hydrostatics.

3.3 Oscillating Kinetic Energy of a Celestial Body’s
Interacted Masses

We discovered the most likely serious cause, for which even formulation of the
problem of the body’s dynamics based on the hydrostatic equilibrium is incorrect.
The point is that the ratio of the kinetic energy to the potential one of a celestial
body is too small. For example, this ratio for the Earth is equal to �1/300, that is,
the same as its oblateness. Such a ratio does not satisfy the fundamental condition
of the virial theorem, the equation of which expressed the hydrostatic equilibrium
state. According to that condition, the ratio of the considered energies should be
equal to 1/2. Taking into account that the kinetic energy of the Earth is presented
by the planet’s inertial rotation and assuming it to be a rigid body rotating with
the observed angular velocity !r D 7.29�10�5 s�1, the mass D 6�1024 kg, and the
radius R D 6.37�106 m, the energy is equal to

Te D 0:6MR2 !r
2 D 0:6 � 6 � 1024 � �6:37 � 106�2 � �7:29 � 10�5�2

D 7:76 � 1029 J D 7:76 � 1036 erg:

The potential energy of the Earth at the same parameters is

Ue D 0:6 �GM2=R D 0:6 � 6:67 � 10�11 � �6 � 1024�2=6:37 � 106

D 2:26 � 1032 J D 2:26 � 1039 erg:

The ratio of the kinetic and potential energy comprises

J2 D Te
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2:26 � 1032 D 1
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One can see that the ratio is close to the planet’s oblateness. It does not satisfy
the virial theorem and does not correspond to any condition of equilibrium of a
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really existing natural system because in accordance with the third Newton’s law,
the equality between the acting and the reacting forces should be satisfied. The
other planets, such as Mars, Jupiter, Saturn, Uranus, and Neptune, exhibit the same
behavior, but for Mercury, Venus, the Moon, and the Sun, the equilibrium states of
which are also accepted as hydrostatic, their potential energy exceeds their kinetic
energy by 104 times. Since the bodies in reality exist in equilibrium and their orbital
motion strictly satisfies the ratio of the energies, the question arises where the kinetic
energy of the body’s own motion has disappeared. Otherwise, the virial theorem for
the celestial bodies is not valid. Moreover, if one takes into account that the energy
of inertial rotation does not belong to the body, then the celestial body equilibrium
problem appears to be out of discussion. And the celestial body dynamics is left
without kinetic energy.

Thus, we came to the problem of a body equilibrium from two positions. From
one side, it does not stay in hydrostatic equilibrium, and from the other side, it does
not stay in general mechanical equilibrium because there is no reaction forces to
counteract to the acting potential forces. The answer to both questions is given in
the following section while deriving an equation of the dynamical equilibrium of a
body by means of a generalization of the classical virial theorem.

3.4 Generalized Classical Virial Theorem as Equation
of Dynamical Equilibrium of a Body

The main methodological question arises: in which state of equilibrium does the
Earth exist? The answer to the question results from the generalized virial theorem
for a self-gravitating body, that is, the body that generates the energy for motion
by interaction of the constituent particles having the innate moments. The guiding
effect that we use here is the motion observed by an artificial satellite, which is
the functional relationship between changes in the gravity field of the Earth and its
mean (polar) moment of inertia. The deep physical meaning of this relationship is
as follows: the planet’s mean (polar) moment of inertia is an integral (volumetric)
parameter, which does not represent the location of the interacting mass particles
but expresses changes in their motion under the constrained energy. The virial
theorem of Clausius for a perfect gaseous cloud or a uniform body is presented
in its averaged form. In order to generalize the theorem for a nonuniform body, we
introduce there the volumetric moments of interacted particles, taking into account
their volumetric nature. Moreover, the interacted mass particles of a continuous
medium generate volumetric forces (pressure or capacity of energy) and volumetric
momentums, which, in fact, generate the motion in the form of oscillation and
rotation of masses. The oscillating form of motion of the Earth and other celestial
bodies is the dominating part of their kinetic energy, which up to now has not been
taken into account. We wish to fill in this gap in dynamics of celestial bodies by
applying the volumetric forces of their gravitational interaction.
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The virial theorem is an analytical expression of the hydrostatic equilibrium
condition and follows from Newton’s and Euler’s equations of motion. Let us recall
its derivation in accordance with the classical mechanics (Goldstein 1980).

Consider a system of mass points, the location of which is determined by the
radius vector ri and the force Fi including the constraints. Then, equations of motion
of the mass points through their moments pi can be written in the form

Ppi D Fi : (3.11)

The value of the moment of momentum is

Q D
X

i

pi � ri ;

where the summation is done over all masses of the system. The derivative with
respect to time from that value is
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The first term on the right-hand side of (3.12) is reduced to the form
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where T is the kinetic energy of particle motion under action of forces Fi.
The second term in Eq. (3.12) is
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Now Eq. (3.12) can be written as
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The mean values in (3.13) within the time interval � are found by their integration
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For the system in which the coordinates of mass point motion are repeated through
the period � , the right-hand side of Eq. (3.14) after its averaging is equal to zero.
If the period is too large, then the right-hand side becomes a very small quantity.
Then, the expression (3.14) in the averaged form gives the following relation:

�
X

i

Fi � ri D 2T; (3.15)

or in mechanics, it is written in the form

�U D 2T:

Equation (3.15) is known as the virial theorem, and its left-hand side is called the
virial of Clausius (German virial is from the Latin vires which means forces). The
virial theorem is a fundamental relation between the potential and kinetic energy
and is valid for a wide range of natural systems, the motion of which is provided by
the action of different physical interactions of their constituent particles. Clausius
proved the theorem in 1870 when he solved the problem of work of the Carnot
thermal machine, where the final effect of the water vapor pressure (the potential
energy) was connected with the kinetic energy of the piston motion. The water vapor
was considered as a perfect gas. And the mechanism of the potential energy (the
pressure) generation at the coal burning in the firebox was not considered and was
not taken into account.

The starting point in the previously presented derivation of virial theorem in
mechanics is the moment of the mass point system, the nature of which is not
considered either in mechanics or by Clausius. By Newton’s definition, the moment
“is the measure of that determined proportionally to the velocity and the mass.” The
nature of the moment by his definition is “the innate force of the matter.” By his
understanding, that force is an inertial force, that is, the motion of a mass continues
with a constant velocity.

The observed (by satellites) relationship between the potential and the kinetic
energy of the gravitation field and the Earth’s moment of inertia provides evidence
that the kinetic energy of the interacted mass particle motion, which is expressed as
a volumetric effect of the planet’s moment of inertia, is not taken into account. The
evidence of this was given in the previous section in the quantitative calculation of
a ratio between the kinetic and potential energies, equal to �1/300.

In order to remove that contradiction, the kinetic energy of motion of the
interacting particles should be taken into account in the derived virial theorem.
Because any mass has volume, the moment should be written in volumetric form:

pi D
X

i

mi Pri : (3.16)

Now the volumetric moment of momentum acquires the wave nature and is
presented as
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where Ip is the polar moment of inertia of the system (for the sphere it is equal to
3/2 of the axial moment).

The derivative from that value with respect to time is
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The first term in the right-hand part of (3.18) remains without change:

X

i

Pri � pi D
X

i

mi � Pri � Pri D
X

i

miv
2
i D 2T: (3.19)

The second term represents the potential energy of the system:

X

i

Ppi � ri D
X

i

Fi � ri D U: (3.20)

Equation (3.18) is written now in the form

1

2
RIp D 2T C U: (3.21)

Expression (3.21) represents a generalized equation of the virial theorem for a
mass point system interacting by Newton’s law. Here on the left-hand side of (3.21),
the previously ignored inner kinetic energy of interaction of the mass particles
appears. Solution of Eq. (3.21) gives a variation in the polar moment of inertia within
the period � . For a conservative system averaged expression (3.18) by integration
from 0 to t within time interval, � gives

1

�

tZ

0

dQ

dt
dt D dQ

dt
D 2T C U D RIp D 0: (3.22)

Equation (3.22) at RIp D 0 gives RIp D E D const:, where E is the total system’s
energy. It means that the interacting mass particles of the system move with constant
velocity. In the case of dissipative system, Eq. (3.22) is not equal to zero, and
the interacted mass particles move with acceleration. Now the ratio between the
potential and kinetic energy has a value in strict accordance with Eq. (3.21). The
kinetic energy of the interacted mass particles in the form of oscillation of the polar
moment of inertia in that equation is taken into account. And now in the frame of the
law of energy conservation, the ratio of the potential to kinetic energy of a celestial
body has a correct value.
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Expression (3.21) appears to be an equation of dynamical equilibrium of the self-
gravitating planets with the force field of the Sun and the self-gravitating moons with
the force fields of their planets. Here, static equilibrium is absent because interacting
particles continuously move and generate energy due to their inner potential. The
integral effect of the moving particles is fixed by the satellite orbits in the form of
changing zonal, sectorial, and tesseral gravitational moments. We used the resulting
energy of the initial moment (3.16) for derivation of the generalized virial theorem.
The initial moments form the inner, or “innate” by Newton’s definition, energy of
the body, which has an inherited origin. The nature of Newton’s centripetal forces
and the mechanism of their energy generation will be discussed in some detail in
Chap. 8.

Thus, we obtained a differential equation of the second order (3.21), which
describes a celestial body dynamics and its dynamical equilibrium.

The virial equation (3.21) was already obtained by Jacobi one and a half centuries
ago from Newton’s equations of motion in the form (Jacobi 1884)

R̂ D U C 2T; (3.23)

whereˆ is Jacobi’s function (the polar moment of inertia).
At that time, Jacobi was not able to consider the physical meaning of the

equation. For that reason, he assumed that as there are two independent variablesˆ
and U in the equation, it cannot be resolved. We succeeded in finding an empirical
relationship between the two variables and at first obtained an approximate and later
on a rigorous solution of the equation (Ferronsky et al. 1978, 1987, 2010; Ferronsky
2005). The relationship is proved now by means of the satellite observation.

We can now explain the cause of discrepancy between the geometric (static) and
dynamic oblateness of the Earth. The reason is as follows: the planet’s moments of
inertia with respect to the main axes and their integral form of the polar moment
of inertia do not stay in time as constant values. The polar moment of inertia of
a self-gravitating body has a functional relationship with the potential energy, the
generation of which results by interaction of the mass particles in the regime of
periodic oscillations. The hydrostatic equilibrium of a body does not express the
picture of the dynamic processes from which, as it follows from the averaged virial
theorem, the energy of the oscillating effects was lost from consideration. Because
of that, it was not possible to understand the nature of the energy. The main part of
the body’s kinetic energy of the body’s oscillation was also lost. As to the rotational
motion of the body shells, it appears only in the case of the nonuniform radial
distribution of the mass density. The contribution of rotation to the total body’s
kinetic energy comprises a very small part.

The cause of the accepted incorrect ratio between the Earth’s potential and
kinetic energy is the following: Clairaut’s equation (2.26) derived for the planet’s
hydrostatic equilibrium state and applied to determine the geometric oblateness,
because of the previously stated reason, has no functional relationship between
the force function and the moment of inertia. Therefore, for the Earth dynamical
problem, the equation gives only the first approximation. In the formulation of the

http://dx.doi.org/10.1007/978-94-007-5908-4_8
http://dx.doi.org/10.1007/978-94-007-5908-4_2
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Earth’s oblateness problem, Clairaut accepted Newton’s model of action of the
centripetal forces from the surface of the planet to its geometric center. In such a
physical conception, the total effect of the inner force field becomes equal to zero.
In Sect. 3.6, it will be shown that the force field of the continuous body’s interacting
masses represents volumetric pressure but not a vector force field. That is why the
accepted postulate relating to the planet’s inertial rotation appears to be physically
incorrect.

The question was raised about how it happened that geodynamic problems and
first of all the problem of stability of the Earth’s motion up to now were solved
without knowing the planet’s kinetic energy. The probable explanation for that
seems to lie in the history of development of science. In Kepler’s problem and in
Newton’s two-body problem solution, the transition from the averaged parameters
of motion to the real conditions is implemented through the mean and the eccentric
anomalies, which by geometric procedures indirectly take into account the energy
of motion. In the Earth’s shape problem, this procedure of Kepler is not applied.
Therefore, the so-called inaccuracies in the Earth’s motion appear to be the regular
dynamic effects of a self-gravitating body, and the hydrostatic model in the problem
is irrelevant. The hydrostatic model was accepted by Newton for the other problem,
where just this model allowed discovery and formulation of the general laws of
the planets’ motion around the Sun. Newton’s centripetal forces in principle satisfy
Kepler’s condition when the distance between bodies is much more than their size
accepted as mass points. Such a model gives a first approximation in the problem
solution.

Kepler’s laws express the real picture of the planets’ and satellites’ motion
around their parent bodies in averaged parameters. All the deviations of those
averaged values related to the outer perturbations are not considered as it was done
in Clausius’ virial theorem for the perfect gas.

Newton solved the two-body problem, which has already been formulated by
Kepler. The solution was based on the heliocentric world system of Copernicus, on
the Galilean laws of inertia and free fall in the outer force field and on Kepler’s laws
of the planet’s motion in the central force field considered as a geometric plane task.
The goal of Newton’s problem was to find the force in which the planet’s motion
resulted. His centripetal attraction and the inertial forces in the two-body problem
satisfy Kepler’s laws.

As was mentioned, Newton understood the physical meaning of his centripetal
or attractive forces as a pressure, which is accepted now like a force field. But by
his opinion, for mathematical solutions, the force is a more convenient instrument.
And in the two-body problem, the force pressure is acting from the center (of point)
to the outer space.

It is worth discussing briefly Newton’s preference for the force but not for the
pressure. In mechanics, the term mass point is understood as a geometric point of
space that has no dimension but possesses a finite mass. In physics, a small amount
of mass is called by the term particle, which has a finite value of size and mass. But
very often, physicists use models of particles that have neither size nor mass. A body
model like mass point is known since ancient times. It is simple and convenient
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for mathematical operations. The point is an irreplaceable geometric symbol of a
reference point. The physical point, which defines inert mass of a volumetric body,
is also suitable for operations. But the interacting and physically active mass point
creates a problem. For instance, in field theory, the point value is taken to denote
the charge, the meaning of which is no better understood than is the gravity force.
But it is considered often there that the point model for mathematical presentation
of charges is not suitable because operations with it lead to zero and infinite values.
Then for resolution of the situation, the concept of charge density is introduced. The
charge is presented as an integral of density for the designated volume, and in this
way, the solution of the problem is resolved.

The point model in the two-body problem allowed reduction of it to the one-
body problem and for a spherical body of uniform density to write the main seven
integrals of motion. In the case when a body has a finite size, then not the forces
but the pressure becomes an effect of the body particle interaction. The interacting
body’s mass particles form a volumetric gravitational field of pressure, the strength
of which is proportional to the density of each elementary volume of the mass. In
the case of a uniform body, the gravitational pressure should also be uniform within
the whole volume. The outer gravitational pressure of the uniform body should also
be uniform at the given radius. The nonuniform body has a nonuniform gravitational
pressure of both inner and outer field, which has been observed in studying the real
body field. Interaction of mass particles results appears in their collision, which
leads to oscillation of the whole body system. In general if the mass density is
higher, then the frequency of body oscillation is also higher.

It was known from the theory of elasticity that in order to calculate the
stress and the deformation of a beam from a continuous load, the latter can be
replaced by the equivalent lumped force. In that case, the found solution will
be approximate because the beam’s stress and deformation will be different. The
question is what degree of approximation of the solution and what kind of the error
is expected. Volumetric forces are not summed up by means of the parallelogram
rule. Volumetric forces by their nature are not to be reduced for application either to
a point or to a resultant vector value. Their action is directed to the 4  space, and
they form inner and outer force fields. The force field by its action is proportional to
the action of the energy. This is because the force is the derivative of the energy.

The centrifugal and Coriolis forces are also proved to be inertial forces as a
consequence of the inertial rotation of the body. And the Archimedes force has not
found its physical explanation, but it became an observational fact of hydrostatic
equilibrium of a body mass immersed in a liquid.

Such is the short story of the appearance and development of the hydrostatic
equilibrium of the celestial bodies in the outer uniform gravity field. The force of
gravity of a body mass is an integral value. In this connection, Newton’s postulate
about the gravity center as a geometric point should be considered as a model for
presentation of two interacting bodies, when their mutual distance is much more
than the body size. It is shown in the next section that the reduced physical, but not
geometrical, gravity center of a volumetric body is represented by an envelope of the
figure, which draws an averaged value of the radial density distribution of the body.
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Therefore, the theorem of the classical mechanics, cited in Sect. 2.1 and stated
that if a body is found in the central force field, then the sum of their inner forces and
torques is equal to zero, from the mathematical point of view is correct in the frame
of the given initial conditions. As in case of the derived virial theorem, the moment
of momentum L in expression (2.11) can be presented by the first derivative from
the polar moment of inertia. And then the torque equal to zero in the central field
will be presented by oscillation of the polar moment of inertia not equal to zero.

The problem of dynamics of a self-gravitating body, including its shape problem,
in its formulation and solution needs a higher degree of approximation. The
generalized virial theorem (3.21) satisfies the condition of a body’s dynamical
equilibrium state and creates a physical and theoretical basis for further development
of theory. It follows from the theorem that in hydrostatic equilibrium state there
is the particular case of the dynamics. The solution of the problem of the body’s
dynamics based on the equation of dynamical equilibrium appears to be the next
natural and logistic step from the hydrostatic equilibrium model to a more perfect
method without loss of the previous preference.

In the next section, we consider the problem of “decentralization” of the own
force field for a self-gravitating body.

3.5 Jacobi’s n-Body Problem

In 1842–1843, when Jacobi was a professor at Königsberg University, he delivered a
special series of lectures on dynamics. The lectures were devoted to the dynamics of
a system of n mass points, the motion of which depends only on the mutual distance
between them and is independent of velocities. In this connection, by deriving the
law of conservation of energy, where the force function is a homogeneous function
of space coordinates, Jacobi gave an unusual form and a new content to this law. In
transforming the equations of motion, he introduced an expression for the system’s
center of mass. Then, following Lagrange, he separated the motion of the center
of mass from the relative motion of the mass points. Making the center of mass
coincident with the origin of the coordinate system, he obtained the following
equation (Jacobi 1884):

d2

dt2

�X
mir2i

�
D � .2k C 4/U C 4E;

where mi is the mass point i, ri D
q
x2i C y2i C z2i is the distance between the points

and the center of mass, k is the degree of homogeneity of the force function, U is
the system’s potential energy, and E is its total energy.

When k D �1, which corresponds to the interaction of mass points according to
Newton’s law, and denoting

1

2

X
mir2i D ˆ;
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Jacobi obtained

R̂ D U C 2T D 2E � U;

whereˆ is the Jacobi function (the polar moment of inertia).
This is Jacobi’s generalized (nonaveraged) virial equation. In the Russian

scientific literature, it is known as the Lagrange–Jacobi equation since Jacobi
derived it by applying Lagrange’s method of separation of the motion of the mass
center from the relative motion of mass points.

On the right-hand side of the virial equation, there is a classical expression of
the virial theorem, that is, relation between the potential and kinetic energy. In
the case of constancy of its left-hand side, when motion of the system happens
with a constant velocity, the equation acquires conditions of hydrostatic equilibrium
of a system in the outer force field. The left-hand side of the equation, that is,
the second derivative with respect to the Jacobi function, expresses oscillation of
the polar moment of inertia of the system, which, in fact, is kinetic energy of the
inner volumetric torques of the interacted mass points moving in accordance with
Kepler’s laws.

Jacobi has not paid attention to the physics of his equation, which expresses
kinetic energy of the interacted volumetric particles in the form of their oscillation.
He used the equation for a quantitative analysis of stability of the solar system and
noted that the system’s potential and kinetic energies should always oscillate within
certain limits. In the contemporary literature of celestial mechanics and analytical
dynamics, Jacobi’s virial equation is used for the same purposes (Whittaker 1937;
Duboshin 1975). Since this equation contains two independent variables, it found
no other practical applications. The functional relationship between the potential
(kinetic) energy and the polar moment of inertia was disclosed in our works. On
that basis, the rigorous solution of the equation will be found and applied to study
the dynamics of a self-gravitating body (Ferronsky and Ferronsky 2010; Ferronsky
et al. 2011).

3.6 Reduction of Inner Gravitational Field to Resultant
Envelope of Pressure

Consider a planet as a self-gravitating sphere with uniform and one-dimensional
interacting media. The motion of the body proceeds both in its own and in the
Sun’s force fields. It is known from theoretical mechanics that any motion of a body
can be represented by a translation motion of its mass center, rotation around that
center, and motion of the body mass related to its changes in the shape and structure
(Duboshin 1975). In the two-body problem, the last two effects are neglected due to
their smallness.
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Fig. 3.1 Body motion in its
own force field

In order to study the planet’s motion in its own force field, the translational
(orbital) motion relative to the fixed point (the Sun) should be separated from the
two other components of motion. After that, one can consider the rotation around the
geometric center of the planet’s masses under the action of the own force field and
changes in the shape and structure (oscillation). Such separation is required only
for the moment of inertia, which depends on what frame of reference is selected.
The force function depends on a distance between the interacting masses and does
not depend on selection of a frame of reference (Duboshin 1975). The moment of
inertia of the planet relative to the solar reference frame should be split into two
parts. The first is the moment of the body mass center relative to the same frame of
reference, and the second is the moment of inertia of the planet’s mass relative to
the own mass center.

So, set up the absolute Cartesian coordinates Oc��� with the origin in the center
of the Sun, and transfer it to the system Oxyz with the origin in the geometrical
center of the planet’s mass (Fig. 3.1).

Then, the moment of inertia of the Earth in the solar frame of reference is

Ic D
X

miR
2
i ; (3.24)

where mi is the planet mass of particle and Ri is its distance from the origin in the
same frame.

The Lagrange method is applied to separate the moment of inertia (3.24). The
method is based on his algebraic identity
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(3.25)

where ai and bi are whichever values and n is any positive number.
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Jacobi in his Vorlesungen über Dynamik was the first who performed the
mathematical transformation for separation of the moment of inertia of n-interacting
mass points into two algebraic sums (Jacobi 1884; Duboshin 1975; Ferronsky et al.
1987, 2011). It was shown that if we denote (Fig. 3.1)

�i D xi C AI �i D y C BI �i D z C C I
X

mi D M I
X

mi�i D MAI
X

mi�i D MBI
X

mi�i D MCI (3.26)

where A, B, and C are the coordinates of the mass center in the solar frame of
reference.

Then, using identity (3.25), one has
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then

P
mixi D 0, and also

P
miyi D 0,

P
mizi D 0.

Now, the moment of inertia (3.24) acquires the form

X
miR

2
i D M

�
A2 C B2 C C2

�C
X

mi

�
x2i C y2i C z2i

�
; (3.27)

where

M
�
A2 C B2 C C2

� D MR2m; (3.28)

X
mi

�
x2i C y2i C z2i

� D Mr2m; (3.29)

M is the planet’s mass, and Rm and rm are the radii of inertia of the planet in the
Sun’s and the planet’s frame of reference.

Thus, we separated the moment of inertia of the planet, rotating around the Sun
in the inertial frame of reference, into two algebraic terms. The first one (3.28)
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is the planet’s moment of inertia in the solar reference system O ���. The second
term (3.29) presents the moment of inertia of the planet in its own frame of reference
Oxyz. The planet mass here is distributed over the spherical surface with the reduced
radius of inertia rm. In the literature, the geometrical center of mass O in the planet
reference system is erroneously identified with the center of inertia and center of
gravity of the planet.

For further consideration of the problem of the Earth’s dynamics, we accept the
polar frame of reference with its origin at center O. Then, expression (3.29) for the
planet’s polar moment of inertia Ip acquires the form

Ip D
X

mi

�
x2i C y2i C z2i

� D
X

miri
2 D Mr2m: (3.30)

Now the reduced radius of inertia rm, which draws a spherical surface, is

r2m D
P
mir

2
i

M
: (3.31)

Here, M DP
mi is the planet’s mass relative to own frame of reference.

Taking into account the spherical symmetry of the uniform and one-dimensional
planet, we consider the sphere as a concentric spherical shell with the mass
dm(r) D 4�r2�(r)dr. Then, the expression (3.31) in the polar reference system can
be rewritten in the form

r2m D 1

M

RZ

0

r24�r2�.r/dr D 4�R2

MR2

RZ

0

r4.r/dr; (3.32)

or

r2m
R2

D
4�

RR

0

r4�.r/dr

MR2
D ˇ2MR3

MR2
D ˇ2 (3.33)

from where

rm D ˇ R;

where �(r) is the law of radial density distribution, R is the radius of the sphere,
and ˇ is the dimensionless coefficient of the reduced spheroid (ellipsoid) of inertia
ˇ2MR2.

The value of ˇ depends on the density distribution �(r) and is changed within
the limits of 1 	ˇ >0. Earlier (Ferronsky et al. 1987, 2011), it was defined as a
structural form factor of the polar moment of inertia.

Analogously, the reduced radius of gravity rg is expressed as a ratio of the
potential energy of interaction of the spherical shells with density �(r) to the
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potential energy of interaction of the body mass distributed over the shell with radius
R. The potential energy of the sphere is written as

U D 4G�

RZ

0

r�.r/m.r/ dr D ˛
GM2

R
;

from where

˛ D
4G�

RR

0

r�.r/m.r/ dr

GM2

R

D rg

R
: (3.34)

The form factor ˛ of the inner force field, which controls its reduced radius, can be
written as

˛ D rg

R
D
4G�

RR

0

r�.r/m.r/ dr

GM2

R

; (3.35)

where in expressions (3.34) and (3.35) m(r) D 4�
rR

0

r2�.r/ dr , and rg D˛R.

The value of ˇ depends on the density distribution �(r) and is changed within
the limits of 1 	 ˛ >0. Earlier (Ferronsky et al. 1987, 2011), it was defined as a
structural form factor of the force function.

Numerical values of the dimensionless form factors ˛ and ˇ for a number of
density distribution laws �(r), obtained by integration of the numerators in Eqs.
(3.33) and (3.34) for the polar moment of inertia and the force function, are
presented in Table 3.1 (Ferronsky et al. 1987, 2011). Note that the value of the
polar Ip and axial Ia moments of inertia of the one-dimensional sphere is related as
Ip D 3/2Ia.

It follows from Table 3.1 that for a uniform sphere with �(r) D const., its reduced
radius of inertia coincides with the radius of gravity. Here, both dimensionless
structural coefficients ˛ and ˇ2 are equal to 3/5, and the moments of gravitational
and inertial forces are equilibrated, and because of that, the rotation of the mass is
absent (Fig. 3.2 ). Thus,

r2m
R2

D rg

R
D 3

5
: (3.36)

from where

rm D rg D
p
3 =5R2 D 0; 7745966R: (3.37)
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Table 3.1 Numerical values
of form factors ˛ and ˇ2 for
radial distribution of mass
density and for politropic
models

Distribution law Index of politrope ˛ ˇ2
?

ˇ2

Radial distribution of mass density
�(r) D �0 0.6 0.4 0.6
�(r) D �0(1�r/R) 0.7428 0.27 0.4
�(r) D �0(1�r2/R2) 0.7142 0.29 0.42
�(r) D �0 exp(1�kr/R) 0.16k 8/k2 12/k2

�(r) D �0exp(1�kr2/R2)
p
k=2  1/k 1.5/k

�(r) D �0 ı(1�r/R) 0.5 0.67 1.0
Politrope model
0 0.6 0.4 0.6
1 0.75 0.26 0.38
1.5 0.87 0.20 0.30
2 1.0 0.15 0.23
3 1.5 0.08 0.12
3.5 2.0 0.045 0.07

a b c

R (r) R (r) R (r)

• rg rg
rg

• •
rm rmrm

Fig. 3.2 Radius of inertia rm and radius of gravity rg as a function of radial density distribution
�D f (r)

For a nonuniform sphere at �(r) ¤ const. from Eqs. (3.33), (3.34), and (3.35), one
has

0 <
r2m
R2

<
3

5
<
rg

R
< 1: (3.38)

It follows from the inequality (3.38) and Table 3.1 that in comparison with the
uniform sphere, the reduced radius of inertia of the nonuniform body decreases
and the reduced gravity radius increases (Fig. 3.2b). Because of rm ¤ rg and
rm< 0.77R< rg, the torque appears as a result of an imbalance between gravitational
and inertial volumetric forces of the shells. Then from Eq. (3.38), it follows that

rm D rm 0 � ırmt and rg D rg 0 C drgt; (3.39)

where subscripts 0 and t relate to the uniform and nonuniform sphere.
In accordance with (3.38) and (3.39), the rotation of shells of a one-dimensional

body should be hinged-like and asynchronous. In the case of increasing mass density
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Fig. 3.3 Scheme of dynamic (oscillating) equilibrium of a body based on its inner energy of the
mass particles interaction

towards the body surface, then the signs in (3.38) and (3.39) are reversed (Fig. 3.2c).
This remark is important because the direction of rotation of a self-gravitating body
is a function of its mass density distribution.

The main conclusion from this consideration is that the inner force field of a
self-gravitating body is reduced to a closed envelope (spheroid, ellipsoid, or more
complicated shape) of gravitational pressure, but not to a resulting force passing
through the geometric center of the masses. In the case of a uniform body, the
envelopes have a spherical shape and both gravitational and inertial radii coincide.
For a nonuniform body, the radius of inertia does not coincide with the radius of
gravity; the reduced envelope is closed but has nonspherical (ellipsoidal or any
other) shape. Analytical solutions done in the following paragraphs justify this.

So, we accept the force pressure as an effect of mass particle interaction, which is
the property producing work in the form of motion. In the other words, the pressure
of interacted masses appears to be the force function or a flux of the potential energy.

The scheme of forces defining conditions of dynamical equilibrium of a body
based on inner energy of the mass particles interaction is shown in Fig. 3.3.

Now we pass to derivation of the equation of dynamical equilibrium (Jacobi virial
equation) for the well-known physical interaction models of natural systems. The
only restriction here is the requirement of uniformity of the potential energy function
of the system relative to the frame of reference. But that requirement appears to be
not always obligatory. A specific physical model which is used for description of
the system’s dynamics in classical mechanics, hydrodynamics, statistic mechanics,
quantum mechanics, and theory of relativity in that case will be not an important
factor.
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Chapter 4
Derivation of Jacobi’s Virial Equation for
Description of Dynamics of a Self-Gravitating
Body

Abstract In order to demonstrate the universality of Jacobi’s virial equation for the
description of the dynamics of natural systems, including their origin and evolution,
it was derived from the main existing equations, describing a wide range of physical
models of the systems. In particular, Jacobi’s virial equation was derived from the
equations of motion of Newton, Euler, Hamilton, Einstein, and quantum mechanics.

The derived equation represents not only formal mathematical transformation
of the initial equations of motion. Physical quintessence of the mathematical
transformation of the equations of motion involves changes in the vector forces and
moment of momentums by the volumetric forces or pressure and the oscillation
of the interacted mass particles (inner energy) expressed through the energy of
oscillation of the polar moment of inertia of a body. Here the potential (kinetic)
energy and the polar moment of inertia of a body have a functional relationship and
within the period of oscillation are inversely changed by the same law. Moreover,
the virial oscillations of a body represent the main part of the body’s kinetic energy,
which is lost in the hydrostatic equilibrium model.

The change in the vector forces and moment of momentums by the force
pressure and the oscillation of the interacting mass particles disclose the physical
meaning of the gravitation and mechanism of generation of the gravitational and
electromagnetic energy and their common nature. The most important advantage
given by Jacobi’s virial equation is its independence from the choice of the coor-
dinate system, the transformation of which, as a rule, creates many mathematical
difficulties.

It was shown in Sect. 1.3 that the bullet point of the solar system cosmogony and
cosmology as a whole is the inner energy of interaction of the elementary particles,
which leads to weightlessness and self-gravitation of the system’s upper shell of
matter. It means that the body’s matter and its force field (inner and outer) are the
principal participants in the origin and evolution processes. Jacobi’s virial equation,
in fact, appears to be the generalized virial theorem, and its solution compiles
fundamentals of the theory of dynamics of a self-gravitating body.

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 4,
© Springer ScienceCBusiness Media Dordrecht 2013
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Let us begin by deriving Jacobi’s virial equation from the equations of Newton,
Euler, Hamilton, Einstein, and also from the equations of quantum mechanics. By
doing so we can show that Jacobi’s virial equation appears to be a unified instrument
for the description of the dynamics of natural systems in the framework of the
various physical models of the matter interaction employed. Jacobi’s virial equation
for a system moving in its own force field and establishing a relationship between
the potential and kinetic energy of the oscillating polar moment of inertia is defined
as the generalized (nonaveraged) virial theorem or the equation of the dynamical
equilibrium of a body.

The theory presented in this book can be applied to study the body that, by its
structure, presents a system that includes gaseous, liquid, and solid shells. For this
purpose, derivation of Jacobi’s virial equation from the equations of Newton, Euler,
Hamilton, Einstein, and also from the equations of quantum mechanics is presented.
In this part of the work, we justify physical applicability of this fundamental
equation for the study of the dynamics and structure of stars, planets, satellites,
and their shells. For this purpose the volumetric forces and moments are introduced
into the transformed equations, as was done by Eqs. (3.17) and (3.18). In this case
the energy becomes the measure of the matter interaction as it is observed in nature.

4.1 Derivation of Jacobi’s Virial Equation from Newtonian
Equations of Motion

Throughout this section, the term “system” is defined as an ensemble of material
mass points mi (i D 1, 2, 3, : : : , n) that interact by Newton’s law of universal
attraction. This physical model of a natural system forms the basis for a number
of branches of physics, such as classical mechanics, celestial mechanics, and stellar
dynamics.

We shall not present the traditional introduction in which the main postulates are
formulated; we shall simply state the problem (see, e.g., Landau and Lifshitz 1973).
We start by writing the equations of motion of the system in some absolute Cartesian
coordinates �, �, �. In accordance with the conditions imposed, the mass point mi

is not affected by any force from the other n � 1 points except that of gravitational
attraction. The projections of this force on the axes of the selected coordinates �, �,
� can be written (Fig. 4.1) as

„i D �Gmi

X

1�i<j�n

mj

�
�j � �i

�


3
ij

;

Hi D �Gmi

X

1�i<j�n

mj

�
�j � �i

�


3
ij

;

Zi D �Gmi

X

1�i<j�n

mj

�
�j � �i

�


3
ij

; (4.1)
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Fig. 4.1 Absolute Cartesian
coordinate system O� � �

where G is the gravitational constant and


ji D
q�
�j � �i

�2�
�j � �i

�2�
�j � �j

�2

is the reciprocal distance between points i and j of the system.
It is easy to check that the forces affect the ith material point of the system and are

determined by the scalar function U, which is called the potential energy function
of the system and is given by

U D �G
X

1�i<j�n

mimj


ij

: (4.2)

Now Eqs. (4.1) can be rewritten in the form

„i D �@U
@�i

;

Hi D �@U
@�i

;

Zi D �@U
@�i

:

Then Newton’s equations of motion for the ith point of the system take the form

mi
R�i D „i;

mi R�i D Hi;

mi
R�i D Zi; (4.3)
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or

mi
R�i D �@U

@� i

;

mi R�i D �@U
@�i
;

mi
R�i D �@U

@�i
; (4.4)

where dots over coordinate symbols mean derivatives with respect to time.
The motion of a system is described by Eqs. (4.4) and (4.5) and is completely

determined by the initial data. In classical mechanics, the values of projections � i0,
�i0, � i0 and velocities P�i0, P�i0, P�i0 at the initial moment of time t D t0 may be known
from the initial data.

The study of motion of a system of n material points affected by self-forces of
attraction forms the essence of the classical many-body problem. In the general case,
ten classical integrals of motion are known for such a system, and they are obtained
directly from the equations of motion.

Summing all the Eqs. (4.4) for each coordinate separately, it is easy to be
convinced of the correctness of the expressions:

X

1�i�n
„i D 0;

X

1�i�n
Hi D 0;

X

1�i�n
Zi D 0:

From those equations, it follows that

X

1�i�n
mi

R�i D 0;

X

1�i�n
mi R�i D 0;

X

1�i�n
mi

R�i D 0: (4.5)

Equations (4.5), appearing as a sequence of equations of motion, can be
successively integrated twice. As a result, the first six integrals of motion are
obtained:
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X

1�i�n
mi

P�i D a1;

X

1�i�n
mi P�i D a2;

X

1�i�n
mi

P�i D a3:

X

1�i�n
mi.�i � P�i t/ D b1;

X

1�i�n
mi .�i � P�i t/ D b2;

X

1�i�n
mi .�i � P�i t/ D b3; (4.6)

where 1, 2, 3, b1, b2, b3 are integration constants.
These integrals are called integrals of motion of the center of mass. The

integration constants 1, 2, 3, b1, b2, b3 can be determined from the initial data
by substituting their values at the initial moment of time for the values of all the
coordinates and velocities.

Let us obtain one more group of first integrals. To do this, the second of Eqs. (4.3)
can be multiplied by � —i, and the third by �i. Then all expressions obtained should
be added and summed over the index i. In the same way, the first of Eqs. (4.3) should
be multiplied by � i, and the third by � � i added and summed over index i. Finally,
the second of Eqs. (4.3) should be multiplied by � i, and the first by � �i added and
summed over index i. It is easy to show directly that the right-hand sides of the
expressions obtained are equal to zero:

X

1�i�n
.Z�i �H�i/ D 0;

X

1�i�n
.„�i �Z�i / D 0;

X

1�i�n
.H�i �„�i/ D 0:

Consequently, their left-hand sides are also equal to zero:
X

1�i�n
mi. R�i�i � R�i �i / D 0;

X

1�i�n
mi . R�i �i � R�i �i / D 0;

X

1�i�n
mi. R�i �i � R�i�i / D 0: (4.7)
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Integrating Eqs. (4.7) over time, three more first integrals can be obtained:

X

1�i�n
mi

� P�i�i � P�i �i
�

D c1;

X

1�i�n
mi

� P�i�i � P�i �i
�

D c2;

X

1�i�n
mi

�
P�i �i � P�i�i

�
D c3: (4.8)

The integrals (4.8) are called area integrals or integrals of moments of momen-
tum. Three integration constants 1, 2, 3 are also determined from the initial data
by changing over from the values of all the coordinates and velocities to their values
at the initial moment of time.

The last of the classical integrals can be obtained by multiplying the three Eqs.
(4.4) by P�i , P�i , and P�i , respectively, and adding and summing all the expressions
obtained. As a result, the following equation is obtained:

X

1�i�n
mi

� R�i P�i C R�i P�i C R�i P�i
�

D �
X

1�i�n

�
@U

@�i
P�i C @U

@�i
P�i C @U

@�i
P�i
�
: (4.9)

It is not difficult to see that the right-hand side of Eq. (4.9) is the complete
differential over time of the potential energy function U of the system as a whole.
The left-hand side of the same equation is also the complete differential of some
function called the kinetic energy function of the system and equal to

T D 1

2

X

1�i�n
mi

� P�2i C P�2i C P�2i
�
: (4.10)

Equation (4.9) can then be written finally in the form

d

dt
.T / D � d

dt
.U /;

from which, after integration, one finds that

E D T C U; (4.11)

where is the integration constant, determined from the initial conditions.
Equation (4.11) is called the integral of motion or the integral of living (kinetic)

forces.
To derive the equation of dynamic equilibrium, or Jacobi’s virial equation, each

of the Eqs. (4.4) should be multiplied by � i, �i, and � i, respectively; then, after
summing all the expressions, one can obtain
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X

1�i�n
mi .�i R�i C �i R�i C �i R�i / D �

X

1�i�n

�
�i
@U

@�i
C �i

@U

@�i
C �i

@U

@�i

�
: (4.12)

We can take farther advantage of the obvious identities:

mi�i R�i D 1

2

d2

dt2
�
mi�

2
i

� �mi
P�2i ;

mi�i R�i D 1

2

d2

dt2
�
mi�

2
i

� �mi P�2i ;

mi�i R�i D 1

2

d2

dt2
�
mi�

2
i

� �mi
P�2i

from the Eulerian theorem concerning the homogenous functions. For the inter-
action of the system points, according to Newton’s law of universal attraction, the
degree of homogeneity of the potential energy function of the system is equal to � 1,
and hence

�
X

1�i�n

�
�i
@U

@�i
C �i

@U

@�i
C �i

@U

@�i

�
D U:

Substituting these expressions into the right- and left-hand side of Eq. (4.12), one
obtains

d2

dt2

"
1

2

X

1�i�n
mi

�
�2i C �2i C �2i

�
#

� 2
X

1�i�n

1

2
mi

� P�2i C P�2i C P�2i
�

D U:

For a system of material points, we now introduce the Jacobi function expressed
through the moment of inertia of the system and presented in the form

ˆ D 1

2

X

1�i�n
mi

�
�2i C �2i C �2i

�
:

Then taking into account (4.11), the previous equation can be rewritten in a very
simple form as follows:

R̂ D 2E � U: (4.13)

This is the equation of dynamic equilibrium or Jacobi’s virial equation describing
both the dynamics of a system and its dynamic equilibrium using integral (volumet-
ric) characteristicsˆ and U or T.
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Let us now derive another form of Jacobi’s virial equation where the translational
moment of the center of mass of the system is separated and all the characteristics
depend only on the relative distance between the mass points of the system. For this
purpose, the Lagrangian identity can be used:

 
X

1�i�n
a2i

! 
X

1�i�n
b2i

!

D
 
X

1�i�n
ai bi

!2
C 1

2

X

1�i�n

X

1�j�n

�
ai bj � biaj

�2
;

(4.14)

where ai and bi may acquire any values and n is any positive number.
Let us now put ai D p

mi , and bi equal to
p
mi�i ,

p
mi�i , and

p
mi�i ,

respectively. Then three identities can be obtained from (4.14):

 
X

1�i�n
mi

! 
X

1�i�n
mi�

2
i

!

D
 
X

1�i�n
mi�i

!2
C 1

2

X

1�i�n

X

1�j�n
mimj

�
�j � �i

�2
;

 
X

1�i�n
mi

! 
X

1�i�n
mi�

2
i

!

D
 
X

1�i�n
mi�i

!2
C 1

2

X

1�i�n

X

1�j�n
mimj

�
�j � �i

�2
;

 
X

1�i�n
mi

! 
X

1�i�n
mi�

2
i

!

D
 
X

1�i�n
mi�i

!2
C 1

2

X

1�i�n

X

1�j�n
mimj

�
�j � �i

�2
:

In summing up one finds

2mˆ D
 
X

1�i�n
mi�i

!2
C
 
X

1�i�n
mi�i

!2
C
 
X

1�i�n
mi�i

!2
C1

2

X

1�i�n

X

1�j�n
mimj


2
ij :

Using now Eqs. (4.6), the last equality can be rewritten in the form

2mˆ D 1

2

X

1�i�n

X

1�j�n
mimj


2
ij C .a1t C b1/

2 C .a2t C b2/
2 C .a3t C b3/

2;

(4.15)

where

m D
X

1�i�n
mi

is the total mass of the system.
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Let us put

ˆ0 D 1

4m

X

1�i�n

X

1�j�n
mimj


2
ij :

The value ˆ0 does not depend on the choice of the coordinate system and
coincides with the value of the Jacobi function in the barycentric coordinate system.
Moreover, from Eq. (4.15) it follows that

R̂ D R̂
0 C a21 C a22 C a23

m
:

Excluding the value ˆ from Jacobi’s equation (4.13) with the help of the last
equality, the same equation can be obtained in the barycentric coordinate system:

R̂
0 D 2E0 � U; (4.16)

where 0 D 0 C U0 is the total energy of the system in the barycentric coordinate
system equal to

E0 D E � a21 C a22 C a23
2m

:

We can now show that the value of 0 does not depend on the choice of the
coordinate system. For this purpose, we can again use the Lagrangian identity
(4.14). In this case, ai D p

mi and bi D p
mi

P�i , p
mi P�i , and

p
mi

P�i . Then the
following three identities can be justified:

 
X

1�i�n
mi

! 
X

1�i�n
mi

P�2i
!

D
 
X

1�i�n
mi

P�i
!2

C 1

2

X

1�i�n

X

1�j�n
mimj

� P�j � P�i
�2
;

 
X

1�i�n
mi

! 
X

1�i�n
mi P�2i

!

D
 
X

1�i�n
mi P�i

!2
C 1

2

X

1�i�n

X

1�j�n
mimj

� P�j � P�i
�2
;

 
X

1�i�n
mi

! 
X

1�i�n
mi

P�2i
!

D
 
X

1�i�n
mi

P�i
!2

C 1

2

X

1�i�n

X

1�j�n
mimj

� P�j � P�i
�2
:

After summing and using (4.6), one obtains

2mT D �
a21 C a22 C a23

�

C 1

2

X

1�i�n

X

1�j�n
mimj

�� P�i � P�j
�2 C � P�i � P�j

�2 C
� P�i � P�j

�2	
;
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or

T D
�
a21 C a22 C a23

�

2m

C 1

2m

8
<

:
1

2

X

1�i�n

X

1�j�n
mimj

�� P�i � P�j
�2 C � P�i � P�j

�2 C
� P�i � P�j

�2	
9
=

;
:

(4.17)

Here the second term on the right-hand side of Eq. (4.17) coincides with the
expression for the kinetic energy T0 of a system.

Substituting (4.17) into an expression for 0, one obtains

E0 D T0 C U D 1

2m

X

1�i�j�n
mimj

�� P�i � P�j
�2 C � P�i � P�j

�2 C
� P�i � P�j

�2	

�G
X

1�i�j�n

mimj


ij

: (4.18)

Thus, the total energy of the system 0 depends only on the distance between
the points of the system and on the velocity changes of these distances. But Jacobi’s
equation (4.16) appears to be invariant with respect to the choice of the coordinate
system.

We can now show that the requirement of homogeneity of the potential energy
function for deriving Jacobi’s virial equation is not always obligatory. For this
purpose we consider two examples.

4.2 Derivation of Jacobi’s Virial Equation for Dissipative
Systems

Let us derive Jacobi’s virial equation for a nonconservative system. We consider
a system of n material points, the motion of which is determined by the force of
their mutual gravitation interaction and the friction force. It is well known that the
friction force always appears in the course of evolution of any natural system. It is
also known that there is no universal law describing the friction force (Bogolubov
and Mitropolsky 1974). The only general statement is that the friction force acts in
the direction opposite to the vector of velocity of a considered mass point.

Consider as an example the simplest law of Newtonian friction when its force is
proportional to the velocity of motion of the mass:

„f D �kmi
P�i ;

H D �km1 P�i ;
Z D �kmi

P�i ; (4.19)
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where P�i ; P�i ; and P�i are the components of the radius vector of the velocity of the
ith mass point in the barycentric coordinate system, k is a constant independent of i,
and k> 0.

Sometimes the friction force is independent of the velocity of the mass point.
There are also some other laws describing the friction force.

We derive the equation of dynamical equilibrium for a system of n material
points using the equations of motion (4.4) and taking into account the friction force
expressed by Eqs. (4.19):

mi
R�i D �@U

@� i

� kmi
P�i ;

mi R�i D �@U
@�i

� kmi P�i ;

mi
R�i D �@U

@�i
� kmi

P�i ; (4.20)

where the value of the system’s potential energy is determined by Eq. (4.2).
Multiplying each of Eqs. (4.20) by � i, �i, and � i, respectively, and summing

through all i, one obtains

X

1�i�n
mi

�
�i R�i C �i R�i C �i R�i

�
D �

X

1�i�n

�
@U

@�i
�i C @U

@�i
�i C @U

@�i
�i

�

� k
X

1�i�n
mi

�
�i P�i C �i P�i C �i P�i

�
: (4.21)

Transforming the right- and left-hand sides of Eq. (4.21) in the same way as in
deriving Eq. (4.13), one obtains

R̂ D 2E � U � k P̂ : (4.22)

Let us show that the total energy of the system is a monotonically decreasing
function of time. For this purpose we multiply each of the Eqs. (4.20) by the vectors
P�i P�i and P�i , respectively, and sum over all from 1 to n, which results in

X

1�i�n
mi

�
�i R�i C �i R�i C �i R�i

�
D �

X

1�i�n

�
@U

@�i
�i C @U

@�i
�i C @U

@�i
�i

�

� k
X

1�i�n
mi

� P�2i C P�2i C P�2i
�
:
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The last expression can be rewritten in the form

d

dt
.T / D � d

dt
.U /� 2kT

or

dE D �2kT dt: (4.23)

Since the kinetic energy T of the system is always greater than zero, dE � 0, that
is, the total energy of a gravitating system is a monotonically decreasing function of
time. Thus, the expression for the total energy (t) of the system can be written as

E.t/ D E0 � 2k
tZ

t0

T .t/dt D E0 Œ1C q.t/� ;

where q(t) is a monotonically increasing function of time.
Finally, the equation of dynamical equilibrium for a nonconservative system

takes the form

R̂ D 2E0 Œ1C q.t/� � U � k P̂ : (4.24)

The second example where the requirement of homogeneity of the potential en-
ergy function for deriving Jacobi’s virial equation is not obligatory is as follows. We
derive Jacobi’s virial equation for a system whose mass points interact mutually in
accordance with Newton’s law and move without friction in a spherical homogenous
cloud whose density �0 is constant in time. Let, also, the geometric center of the
cloud coincide with the center of mass of the considered system. The equations of
motion for such a system can be written in the form

mi

d2�i
dt2

D �4
3
�G�0mi�i � @U

@�i
;

mi

d2�i
dt2

D �4
3
�G�0mi�i � @U

@�i
;

mi

d2�i
dt2

D �4
3
�G�0mi�i � @U

@�i
;

(4.25)

where i D1, 2, : : : , n.
It is obvious that this system of equations possesses the ten first integrals of

motion and that Jacobi’s virial equation written in the form

d2ˆ

dt2
D 2E � U � 8

3
�G�0ˆ: (4.26)

is valid for it.
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The equation in the form (4.26) was first obtained by Duboshin et al. (1971).
Equations (4.24) and (4.26) can be written in a more general form:

R̂ D 2E � U CX
�
t; ˆ; P̂ � ; (4.27)

where X
�
t; ˆ; P̂ � is a given function of time t, the Jacobi function ˆ, and first

derivative P̂ : Moreover, we can call Eq. (4.27) a generalized equation of dynamical
equilibrium.

The above examples prove justify the statement that for conditions of homogene-
ity of the potential energy function, required for the derivation of Jacobi’s virial
equation, is not always necessary. This condition is required for description of the
dynamics of conservative systems but not for dissipative systems or for systems in
which motion is restricted by some other conditions.

4.3 Derivation of Jacobi’s Virial Equation from Eulerian
Equations

We now derive Jacobi’s virial equation by transforming of the hydrodynamic or
continuum model of a physical system. As is well known, the hydrodynamic
approach to solving problems of dynamics is based on the system of differential
equations of motion supplement, in the simplest case; by the equations of state and
continuity; and by the appropriate assumptions concerning boundary conditions and
perturbations affecting the system.

In this section, we understand by the term “system” some given mass of ideal
gas localized in space by a finite volume V and restricted by a closed surface S. Let
the gas in the system move by the forces of mutual gravitational interaction and of
baric gradient. In addition, we accept the pressure within the volume to be isotropic
and equal to zero on the surface S bordering the volume V. Then for a system in
some Cartesian inertial coordinate system �, �, �, the Eulerian equations can be
written in the form

�
@u

@t
C �u

@

@�
u C ��

@

@�
u C �w

@

@�
u D �@p

@�
C �

@UG

@�
;

�
@�

@t
C �u

@

@�
� C ��

@

@�
� C �w

@

@�
� D �@p

@�
C �

@UG

@�
;

�
@w

@t
C �u

@

@�
w C ��

@

@�
w C �w

@

@�
w D �@p

@�
C �

@UG

@�
;

(4.28)

where �(�, �, �, t) is the gas density; u, �, w are components of the velocity vector
N� (�, �, �, t) in a given point of space; p(�, �, �, t) is the gas pressure; and UG is
Newton’s potential in a given point of space.
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The value UG is given by

UG D G

Z

.V /

� .x; y; z; t /



dx dy dz; (4.29)

where G is the gravity constant and 
 D
q
.x � �/2 C .y � �/2 C .z � �/2 is the

distance between system points.
The potential energy of the gravitational interaction of material points of the

system is linked to the Newtonian potential (4.29) by the relation

U D �1
2

Z

.V /

UG� .�; �; �; t / d� d� d�:

To supplement the system of equations of motion, we write the equation of
continuity

@p

@t
C @

@�
.�u/C @

@�
.��/C @

@�
.�w/ D 0; (4.30)

and the equation of state

p D f .�/; (4.31)

assuming at the same time that the processes occurring in the system are barotropic.
Let us obtain the ten classical integrals for the system whose motion is described

by Eqs. (4.28).
We derive the integrals of the motion of the center of mass by integrating each

of the Eqs. (4.28) with respect to all the volume filled by the system. Integrating the
first equation, we obtain

Z

.V /

�
du
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d� d� d� C

Z

.V /
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�
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C �
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�
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D�
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d� d� d� CG

Z
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� .�; �; �; t /

2

6
4
Z

.V /

� .x; y; z; t /
x � �


3
dxdydz

3

7
5d� d� d�:

(4.32)

The second term on the right-hand side of Eq. (4.32) disappears because of the
symmetry of the integral expression with respect to and �. In accordance with
the Gauss–Ostrogradsky theorem, the first term on the right-hand side of Eq. (4.32)
turns to zero. In fact,
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Z

.V /

dp

d�
d� d� d� D

Z

.S/

p d� d� D 0 (4.33)

as pressure p on the border of the considered system is equal to zero owing to the
absence of outer effects.

Bearing in mind the possibility of passing to a Lagrangian coordinate system and
taking into account the law of the conservation of mass dm D � dV D �0dV0 D dm0,
we get
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.V /
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du
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d� d� d� C

Z

.V /
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�
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C w
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dV D
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.V0/

�0
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dt
dV0 D d
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Z

.V0/

u�0dV0 D d

dt

Z

.V /

�u dV;

where V0 and �0 are the volume and the density in the initial moment of time t0.
Finally, Eq. (4.32) can be rewritten as

d

dt

Z

.V /

�u dV D 0: (4.34)

Integrating (4.34) with respect to time and writing analogous expressions for two
other equations of the system (4.28), we obtain the first three integrals of motion:

Z

.V /

�u dV D a1;

Z

.V /

�� dV D a2;

Z

.V /

�w dV D a3: (4.35)

Equations (4.35) represent the law of conservation of the system moments.
Integration constants 1, 2, 3 can be obtained from the initial conditions.

We consider the first equation of the system (4.35) using again the law of
conservation of mass. Then it is obvious that
Z

.V /

�u dV D
Z

.V /

d�

dt
� dV D

Z

.V /

d�

dt
�0 dV0 D d

dt

Z

.V /

��0 dV0 D d

dt

Z

.V /

�� dV D a1:

(4.36)
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Analogous expressions can be written for the two other equations (4.35).
Integrating them with respect to time, we obtain integrals of motion of the center
of mass of the system in the form

Z

.V /

�� dV D a1t C b1;

Z

.V /

�� dV D a2t C b2;

Z

.V /

�� dV D a3t C b3: (4.37)

We now derive three integrals of the moment of momentum of motion. For this
purpose, we multiply the second of Eqs. (4.28) by � �, the third by �, and then sum
and integrate the resulting expressions with respect to volume V occupied by the
system. We obtain
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(4.38)

Analogously, multiplying the first of Eqs. (4.28) by �, the third by � �, then
summing and integrating with respect to volume V, we obtain
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(4.39)

Multiplying the second of Eqs. (4.28) by �, the first by ��, and summing and
integrating as above, the third equality can be written as
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(4.40)

We write the second integral on the right-hand side of Eq. (4.38) in the form
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The integral is equal to zero owing to the asymmetry expressed by the integral
expressions with respect to z, � and y, �. Because the pressure at the border of the
domain S is equal to zero, the first term on the right-hand side of Eq. (4.38) is also
equal to zero. Actually,

Z

.V /

�
�
@p

@�
� �

@p

@�

�
dV D

Z

.V /

�
d

d�
.�p/� d

d�
.�p/

	
dV

D
Z

.V /

Œ�p d� d� � �p d� d�� D 0

Taking into account the law of mass conservation, the left-hand side of Eq. (4.38)
in the Lagrange coordinate system can be rewritten as
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(4.41)

Integrating this equation with respect to time, the first of the three integrals is
obtained:
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.V /

p .�w � ��/ dV DC1:

The other two integrals can be obtained analogously. Thus, the system of
integrals of the moment of momentum has the form
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p .�u � �w/ dV D C2;

Z

.V /

p .�� � �u/ dV D C3: (4.42)
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To derive the tenth integral of motion representing the law of energy conserva-
tion, we multiply each of the system of equations (4.28) by u, �, and w accordingly
and then sum and integrate the equality obtained with respect to the system volume:

Z

.V /

�

�
du

dt
u C d�

dt
� C dw

dt
w

�
dV D �

Z

.V /

�
@p

@�
u C @p

@�
� C dp

d�
w

�
dV

C
Z

.V /

� .�; �; �; t /

�
@UG

@�
u C �@UG

@�
� C @UG

@�
w

�
dV: (4.43)

Applying the law of mass conservation for an elementary volume, it can easily
be seen that the left-hand side of Eq. (4.43) expresses the change in the velocity of
kinetic energy of the system:

Z

.V /

�

�
du

dt
u C d�

dt
� C dw

dt
w

�
dV D d

dt

2

6
4
1

2

Z

.V /

�
u2 C � C w2

�
dV

3

7
5 D d

dt
.T /:

The first integral on the right-hand side of Eq. (4.43) can be transferred into
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u C @p
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�
dV D 3

d
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Z
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p dV

and gives the change of velocity of the internal energy of the system.
The second integral on the right-hand side of the same equation expresses the

velocity of the potential energy change:
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Finally, the law of energy conservation can be written in the form

T C U D W D E D const; (4.44)

where W is the internal energy of the system.
We now derive Jacobi’s virial equation for a system described by Eqs. (4.28),

(4.29), (4.30), and (4.31). For this purpose we multiply each of Eqs. (4.28) by �, �,
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and �, respectively, summing and integrating the resulting expressions with respect
to the volume of the system:
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(4.45)

Using the obtained identities considered in the previous section, we have
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Taking into account the law of conservation of mass for elementary volume, we
transform the left-hand side of Eq. (4.45) as follows:
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where

R̂ D 1
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is the Jacobi function and

T D 1

2
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�
�
u2 C �2 C w2

�
dV

is the kinetic energy of the system.
We now transform the first integral on the right-hand side of Eq. (4.45). Using

the Gauss–Ostrogradsky theorem and the equality with zero pressure at the border
of the system, we can write
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The obtained equation expresses the doubled internal energy of the system.
The second integral on the right-hand side of Eq. (4.45) is equal to the potential

energy of the gravitational interaction of mass particles within the system:
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Substituting Eqs. (4.46), (4.47), and (4.48) into (4.45), Jacobi’s virial equation is
obtained in the form

R̂ � 2T D 3

Z

.V /

p dV C U: (4.49)

Taking into account the law of conservation of energy (4.44), we rewrite Eq.
(4.49) in a form which will be used farther:

R̂ D 2E � U; (4.50)

where D C U C W is the total energy of the system.

4.4 Derivation of Jacobi’s Virial Equation from Hamiltonian
Equations

Let the system of material points be described by Hamiltonian equations of motion.
Let also the considered systems consist of n material points with masses mi.
Its generalized coordinates and moments are qi and pi D mi(dqi/dt). Hamiltonian
equations for such a system can be written as

Ppi D �@H
dqi

;

Pqi D @H

dpi
; (4.51)

where H (p, q) is the Hamiltonian and i D 1, 2, : : : , n.
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Using values qi and pi, we can construct the moment of momentum:

nX

iD1
piqi D

nX

iD1
miqi Pqi D d

dt
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iD1

miq
2
i

2

!

:

Now the Jacobi function may be introduced:

nX

iD1
piqi D P̂ : (4.52)

Differentiating Eq. (4.52) with respect to time, Jacobi’s virial equation is obtained
in the form

R̂ D
nX

iD1
Ppiqi C

nX

iD1
pi Pqi : (4.53)

Substituting expressions for Ppi and Pqi taken from the Hamiltonian equations (4.51)
into the right-hand side of (4.52), we obtain Jacobi’s virial equation written in
Hamiltonian form

R̂ D
nX

iD1

�
�@H
@qi

qi C @H

@pi
pi

�
: (4.54)

The Hamiltonian of the system of material points interacting according to the law
of the inverse squares of distance is a homogeneous function in terms of moments pi

with a degree of homogeneity of the function equal to 2 and in terms of coordinates
qi with a degree of homogeneity equal to �1. It follows from this

H.p; q/ D T .p/C U.q/

and hence

nX

iD1
pi
@H

@pi
D 2T;

nX

iD1
qi
@H

@qi
D �U:

Taking these relationships into account, Eq. (4.54) acquires the usual form of
Jacobi’s virial equation (4.50) for the system of mass points interacting according
to the law of inverse squares of distance.

Equation (4.54) is more general than Eq. (4.50). The use of generalized coor-
dinates and moments as independent variables permits us to obtain the solution
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of Jacobi’s virial equation, taking into account gravitational and electromagnetic
perturbations as well as quantum effects, both in the framework of classical physics
and in terms of the Hamiltonian written in an operator form. In the general case, Eq.
(4.54) can be reduced to (4.50) as the potential energy of interaction of the system’s
points is a homogenous function of its coordinates.

4.5 Derivation of Jacobi’s Virial Equation in Quantum
Mechanics

It is known that in quantum mechanics some physical value L by definition takes the
linear Hermitian operator OL: Any physical state of the system takes the normalized
wave function  . The physical value of L can take the only eigenvalues of the
operator OL: The mathematical expectation OL of the value L at state  is determined
by the diagonal matrix element

NL D
D
 j OLj 

E
: (4.55)

The matrix element of the operators of the Cartesian coordinates Oxi and the
Cartesian components of the conjugated moments Opk calculated within wave
functions f and g of the system satisfy Hamilton’s equations of classical mechanics:

d
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ˇ
ˇ̌
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ˇ
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; (4.56)
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ˇ
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@ Opi

ˇ
ˇ
ˇ
ˇ̌ g

+

; (4.57)

where OH is the operator which corresponds to the classical Hamiltonian.
Operators Opi and Oxk satisfy the commutation relations

Œ Opi ; Oxk� D i„ıik;
Œ Opi ; Opk� D 0;

Œ Oxi ; Oxk� D 0; (4.58)

where „ is Planck’s constant, ıik is the Kronecker’s symbol, ıik D 1 at i D k, and
ıik D 0 at i ¤ k.

Operator components of momentum Opi for the functions whose arguments are
Cartesian coordinates Oxi have the form

Opi D i„ @

@xi
(4.59)
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and reverse vector

Op D �i„r:

The derivative taken from the operator with respect to time does not depend
explicitly on time; it is defined by the relation

OL D � i„
h OL; OH

i
; (4.60)

where OH is the Hamiltonian operator that can be obtained from the Hamiltonian of
classical mechanics in accordance with the correspondence principle.

We have already noted that in the classical many-body problem, the translational
motion of the center of mass can be separated from the relative motion of the mass
points if only the inertial forces affect the system. We can show that in quantum
mechanics the same separation is possible.

The Hamiltonian operator of a system of n particles which is not affected by
external forces in coordinates is

OH D �„2
2

nX

iD1

r2
i

mi

C 1

2

nX

iD1

nX

iD1
Uik .xi � xk; yi � yk; zi � zk/ : (4.61)

Let us replace in (4.61) the three n coordinates xi, yi, zi by coordinates X, Y, Z of
the center of mass and by coordinates ��; ��; ��; which determine the position of a
particle � (�D 1, 2, : : : , n�1) relative to particle n. We obtain

X D 1

M

nX

iD1
mixi ;

M D
nX

iD1
mi ;

�� D x� � xn; (4.62)

where �D 1, 2, : : : , n�1.
Analogously the corresponding relations for Y, Z, ��; �� are obtained.
It is easy to obtain from (3.62) the following operator relations:

d
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;

http://dx.doi.org/10.1007/978-94-007-5908-4_3
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where summing on the Greek index is provided from 1 to n�1. It is seen that all the
combined derivatives @2=@ � @�� were mutually reduced and do not enter into the
final expression. This allows the Hamiltonian to be separated into two parts:

H D H0 CHr;

where, on the right-hand side, the first term

H0 D „2
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C @2
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C @2

@Z2

�

describes the motion of the center of mass, and the second term
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AC U (4.63)

describes the relative motion of the particles.
The potential energy in (4.63), which is

U D 1

2

n�1X

	D1

n�1X

�D1
U�	

�
�� � �	; �� � �	; �� � �	

�C
n�1X

��1
U�	 .��; ��; ��/; (4.64)

also certainly does not depend on the coordinates of the center of mass.
Now the Schrödinger’s equation

.H0 CHr/  D E (4.65)

permits the separation of variables.
Assuming  D ' .X; Y;Z/ and .��; ��; ��;/ we obtain

� „2
2V

r2' D E0'; (4.66)
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Hru D Eru; (4.67)

E0 C Er D E: (4.68)

The solution of Eq. (4.66) has the form of a plane wave:

' D eikR;

E0 D „2k2
2m

;
(4.69)

where R is a vector with coordinates X, Y, Z.
The result obtained is in full accordance with the classical law of the conservation

of motion of the center of mass. This means that the center of mass of the system
moves like a material point with mass m and momentum „k. The mode of relative
motion of the particles is determined by Eq. (4.67), which does not depend on the
motion of the center of mass.

The existence on the right-hand side of Eq. (4.63) of the third term restricts
further factorization of the function u .��; ��; ��/ : Only in the two-body problem,
where n D 2 and at �D	D 1, a part of the Hamiltonian connected with the relative
motion is simplified and takes the form

Hr D �„2
2

�
1

m1

r2
1 C 1

m2

r2
2

�
C U12 .�1; �1; �1/ : (4.70)

It seems that choosing the corresponding system of coordinates can lead us to an
approach for separating the motion of the center of mass to the many-body problem.

Introducing into Eq. (4.70) the reduced mass m*, which is determined as in
classical mechanics by the relation

1

m1

C 1

m2

D 1

m� ; (4.71)

and omitting indices in the notation for relative coordinates and potential energy
U12, we come to

� „2
2m� r2u C U .�; �; �/ u D Eru: (4.72)

This is Schrödinger’s equation for the equivalent one-particle problem.
Considering the hydrogen atom in the framework of the one-particle problem,

it is assumed that the nucleus is in ground state. In accordance with Eq. (4.72),
the normalized mass of the nucleus and electron m* should be introduced. No
changes which account for the effect of the nucleus on the relative motion should be
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introduced. Because of the nucleus, mass m is much heavier than electron mass me;
instead of Eq. (4.71), we can use its approximation

m� D m

�
1 � m

me

�
:

Comparing, for example, the frequency of the red line H˛ (n D 3–n D 2) in the
spectrum of a hydrogen atom

! .H˛/ D 5

36

m�
He

4

2„2h
with the frequency of the corresponding line in the spectrum of a deuterium atom

! .D˛/ D 5

36

m�
De

4

2„2h ;

and taking into account that mD � 2mH, for the difference of frequencies, we obtain

! .D˛/ � ! .H˛/ D m�
D �m�

H

m�
H

! .H˛/ � m

2MH
! .H˛/ :

This difference is not difficult to observe experimentally. At wavelength 6,563 �A, it
is equal to 4.12 m�1. Heavy hydrogen was discovered by Urey et al. (1932), who
observed a weak satellite D˛ in the line H˛ of the spectrum of natural hydrogen.
This proves the practical significance of even the first integrals of motion.

We now show that the virial theorem is valid for any quantum mechanical system
of particles retained by Coulomb (outer) forces:

2T C U D 0:

We prove this by means of scale transformation of the coordinates keeping
unchanged normalization of wave functions of a system.

The wave function of a many-particle system with masses mi and electron charge
ei satisfies the Schrödinger’s equation

�„2
2

n�1X

iD1

1

mi

r2
i  C 1

2

n�1X

iD1

n�1X

kD1

eiek
rik

 D E (4.73)

and the normalization condition
Z
d�1 : : :

Z
 � d�n D 1: (4.74)
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The mean values of the kinetic and potential energies of a system at stage  are
determined by the expressions

T D �„2
2

n�1X

iD1

1

mi

Z
d�1::::

Z
 �r2

i  d�n (4.75)

U D 1

2

n�1X

iD1

n�1X

iD1
eiek

Z
d�1 : : :

Z
d�n

 � 
rik

d�n: (4.76)

The scale transformation

Nr 0
i D �Nri ; (4.77)

keeps in force the condition (4.74) and means that the wave function

 .Nri ; : : : ; Nrn/ (4.78)

is replaced by the function

 � D �3n=2 .�Nri ; : : : ; Nrn/ : (4.79)

Substituting (4.79) into Eqs. (4.76) and (4.75), passing to new variables of
integration (4.77), and taking into account that

r2
i D �2r 02

i ;

1

rik
D �

1

r
0

ik

;

instead of the true value of the energy,E D T C U , we obtain

E .�/ D �2T C �U : (4.80)

Equation (4.80) should have a minimum value in the case when the function
which is the solution of the Schrödinger’s equation is taken from the family of
functions (4.79), that is, when �D 1. So, at �D 1 the expression

@E .�/

@�
D 2�2T C U

should turn into zero, and thus

2T C U D 0;

which is what we want to prove.
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We now derive Jacobi’s virial equation for a particle in the inner force field with
the potential U(q) and fulfilling the condition

�qrU.q/ D U (4.81)

using the quantum mechanical principle of correspondence. We shall also show that
in quantum mechanics, Jacobi’s virial equation has the same form and contents as
in classical mechanics, the only difference being that its terms are corresponding
operators.

In the simplest case, the Hamiltonian of a particle is written as

OH D � „2
2m

r2 C OU ; (4.82)

and its Jacobi function is

Ô D 1

2
m Oq2: (4.83)

It is clear that the following relations are valid:

r Ô D m Oq;
r2 Ô D m:

Following the definition of the derivative with respect to time from the operator of
the Jacobi function of a particle (4.60), we can write

R̂ D �1
h

h Ô ; OH
i
;

where, after corresponding simplification, quantum mechanical Poisson brackets
can be reduced to the form

h Ô ; OH
i

D h2

2m

n
r2 Ô C 2

�
r Ô �r

o
D h2

2m
.mC 2mqr/ : (4.84)

The second derivative with respect to time from the operator of the Jacobi
function is

R̂ D � 1

h2

nh Ô ; OH
i
; OH

o
: (4.85)

Substituting the corresponding value of
h Ô ; OH

i
and OH from (4.84) and (4.82)

into the right-hand side of (4.85), we obtain
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R̂ D � h2

2m

1

h2

�
.mC 2m Oqr/ ;

�
� h2

2m
r2 C OU

�	
: (4.86)

After simple transformation, the right-hand side of (4.86) will be

R̂ � 1

2m

n
2h2r2 C 2m Oq

�
r OU

�o
D � 2h2

2mr2
C OU ; (4.87)

where, in writing this expression on the right-hand side, we used condition (4.81).
Add and subtract the operator OU from the right-hand side of Eq. (4.87), and

following the definition of the Hamiltonian of the system (4.82), we obtain the
quantum mechanical Jacobi virial equation (equation of dynamical equilibrium of
the system), which has the form

R̂ D 2 OH � OU : (4.88)

From Eq. (4.88), by averaging with respect to time, we obtain the quantum
mechanical analogue of the classical virial theorem (equation of hydrostatic equilib-
rium of the system). In accordance with this theorem, the following relation is kept
for a particle performing finite motion in space:

2 OH D OU : (4.89)

Analogously, one can derive Jacobi’s virial equation and the classical virial
theorem for a many-particle system, the interaction potential for which depends
on the distance between any particle pair and is a homogeneous function of the
coordinates. In particular, Jacobi’s virial equation for Coulomb interactions will
have the form of Eq. (4.88).

4.6 General Covariant Form of Jacobi’s Virial Equation

Jacobi’s initial equation

R̂ D 2E � U;

which was derived in the framework of Newtonian mechanics and is correct for
the system of material points interacting according to Newton and Coulomb laws,
includes two scalar functionsˆ and U relates to each other by a differential relation.
We draw attention to the fact that neither function, in its structure, depends explicitly
on the motion of the particles constituting the body. The Jacobi functionˆ is defined
by integrating the integrand �(r)r2 over the volume (where �(r) is the mass density
and r is the radius vector of the material point) and is independent in explicit form
of the particle velocities. The potential energy U also represents the integral of
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m(r)dm(r)/r over the volume (where m(r) is the mass of the sphere’s shell of radius
r and dm(r) is the shell’s mass) independent of the motion of the particles for the
same reason.

Let us derive Jacobi’s equation from Einstein’s equation written in the form

rG D 2�T; (4.90)

where
G and T are the Einstein tensor and energy–momentum tensor accordingly.
In fact, since the covariant divergence of Einstein’s tensor is equal to zero,

we consider the covariant divergence of the energy–momentum tensor T only of
substance and fields (not gravitational). Moreover, the ordinary divergence of the
sum of the tensor T and pseudotensor t of the energy momentum of the gravitational
field can be substituted for the covariant divergence of the tensor T. This ordinary
divergence leads to the existence of the considered quantities.

Let us define the sum of the tensor T and pseudotensor t through Tij and derive
Jacobi’s equation in this notation.

The equation for ordinary divergence of the sum Tij D ( C t)ij can be written as

T0k;k � T00;0 D 0; (4.91)

Tjk;k � Tj0;0 D 0: (4.92)

We multiply Eq. (4.92) by xj and integrate over the whole space (assuming the
existence of a synchronous coordinate system). Integrating by parts, neglecting the
surface integrals (they vanish at infinity), and transforming to symmetrical form
with respect to indices, we obtain

Z
Tij dV D 1

2

�Z �
T i0x

j C T j0x
i
�
dV

	
D 0; (4.93)

where i, j are spatial indices.
Similarly, multiplying (3.91) by xixj and integrating over the whole space, it

follows that
�Z

T00x
ixj dV

	

;0

D �
Z �

Ti0x
j C Tj0x

i
�
dV: (4.94)

From (3.93) and (3.94), we finally get

Z
Tij dV D 1

2

�Z
T 00x

ixj
	

;0;0

: (4.95)

It is worth recalling that 00 also includes the gravitational defect of the mass
due to the pseudotensor t by definition.

http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_3
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The integral
R
T00x

ixj dV represents the generalization of the Jacobi function
ˆ D 1

2

R
�r2dV introduced earlier, if we take the spur (also commonly known as

the trace) of Eq. (4.95). Let us clarify this operation.
In Eq. (4.95), the spur is taken by the spatial coordinates. It is therefore necessary

either to represent the total zero spur by four indices, as happens in the case of
a transverse electromagnetic field, or to represent the relationship between the
reduced spur with three indices and the total spur, as happens in the case of the
energy–momentum tensor of matter.

Special care should be taken while representing the spur of the pseudotensor
of the energy momentum t. Consider the post-Newtonian approximation. In this
approximation, assuming the value of 2u to be � g � 1, the components of the
pseudotensor t are written in the form

t00 D � 7

8�
u;j;i ;

t ij D � 1

4�

�
u;j;i � 1

2
ıij u;ku;k

�
;

so that

Spt D t00 C Sp
�
t ij
� D � 1

�
u;iu;j D 1

7
t00;

Sp
�
t ij
� D 6

7
t00:

The spur on the left-hand side of Eq. (4.95) can therefore be reduced to the energy
of the Coulomb field, the total energy of the transverse electromagnetic field, and the
gravitational energy (when it can be separated, i.e., post-Newtonian approximation).

Finally, it follows in this case that the scalar form of Jacobi’s equation holds:

ˆ;0;0 D mc2; (4.96)

where m is the mass, accounting for the baryon defect of the mass and the total
energy of the electromagnetic radiation. We do not take into account the radiation
of the gravitational waves.

The result obtained by Tolman for the spherical mass distribution (Tolman 1969)
is of interest:

m D 4�

Z
O"r2dr; (4.97)

where r is the radius and O" is the energy density.
The integral (4.97) acquires a form which is also valid in the case of flat space–

time. This result can be explained as follows. The curvature of space–time is exactly



104 4 Derivation of Jacobi’s Virial Equation for Description of Dynamics

compensated by the mass defect. This probably explains the fact that Jacobi’s virial
equation, derived from Newton’s equations of motion which are valid in the case of
nonrelativistic approximation for a weak gravitational field, becomes more universal
than the equations from which it was derived.

We shall not study the general tensor of Jacobi’s virial equation, since in the
framework of the assumed symmetry for the considered problems, we are interested
only in the scalar form of the equation as applied to electromagnetic interactions.
As follows from these remarks, in this case, Jacobi’s equation remains unchanged,
and the energy of the free electromagnetic field is accounted for in the term defining
the total energy of the system. Total energy enters into Jacobi’s equation without the
electromagnetic energy irradiated up to the considered moment of time. Moreover,
for the initial moment of time, we take the moment of system formation. This
irradiated energy appears also to be responsible for the growth of the gravitational
mass defect in the system, as was mentioned previously.

4.7 Relativistic Analogue of Jacobi’s Virial Equation

Let us derive Jacobi’s virial equation for asymptotically flat space–time. We write
the expression of a 4-moment of momentum of a particle:

pixi ; (4.98)

where pi D mcui is the 4-momentum of the particle, is the velocity of light,
ui D dxi/ds is the 4-velocity, xi is the 4-coordinate of the particle, s is the interval of
events, and i is the running index with values 0, 1, 2, 3.

In asymptotically flat space–time, we write

d

ds

�
pixi

� D mc
d

ds

�
ui xi

� D mc
d2

ds2

�
xixi

2

�
(4.99)

since

xixi D c2t2 � r2 and
d

ds
D �

c

d

dt
;

where � D 1=
p
1 � .�2=c2/ and r is the radius of mass particle.

Then we continue the transformation of Eq. (4.99):

mc
d2

ds2

�
xixi

2

�
D mc

�2

c2
d2

dt2

�
c2t2 � r2

2

�
D mc�2 � �2

c2
d2

dt2

�
mr2

2

�
;
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and finally

d

ds

�
pixi

� D mc�2 � �2

c
R̂ ; (4.100)

where

R̂ D d2

dt2

�
mr2

2

�

is the Jacobi function.
On the other hand, we have

d

ds

�
pixi

� D mc
d

ds

�
uixi

� D mcuiui Cmc
dui

ds
xi : (4.101)

Using the identity uiui � 1 and the geodetic equation

dui

ds
D ��ik`uku`;

where

�ik` D 1

2
gim

�
@gkm

@x`
C @g`m

@xk
C @gk`

@xm

�

are the Christoffel’s symbols, the Eq. (4.101) will be rewritten as

d

ds

�
pixi

� D mc �mcxi�ik`uku`: (4.102)

The metric tensor gik for a weak stationary gravitational field is

gik D �ik C �ik; (4.103)

where in our notation �ik is the Lorentz tensor with signature (C, �, �, �).
For the Schwarzschild metric tensor � ik, we write

�00 D �rg

r
I �11 D � 1

1 � rg=r
C 1 � �rg

r
I

�ik D 0 if i ¤ k and I ¤ 0:1: (4.104)

Here, rg D 2GV/c2 is the Schwarzschild gravitational radius of the mass m0.
Now we can rewrite the second term on the right-hand side of Eq. (4.102) using

(4.103) and (4.104)
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mcxi�
i
k`u

ku` D mcxmuku`
�
@�km

@xm
� 1

2

@�k`

@xm

�

D mc

�
x0u0u1

@�00

@x1
C x1u1u1

@�11

@x1
� 1

2
x1u0u0

@�00

@x1
� x1u1u1

@�11

@x1

�
: (4.105)

But u1<< u0 D � and x1 D r.
We therefore obtain for Eq. (4.105)

mcxi�
i
k`u

ku` D �mc
2
x1u0u0

@�00

@x1

D �mc
2
r�2

rg

r2
D mc

2
�2
2Gm0

c2r
D ��

2

c

Gm0m
r

: (4.106)

Finally, we see that

d

ds

�
pixi

� D mc � �2

c
U; (4.107)

where U is the potential energy of the mass in the gravitational field of the mass m0.
Identification of the expression (d/ds)(pixi) obtained from Eqs. (4.100) and

(4.107) gives

mc�2 � �2

c
R̂ D mc � �2

c
U: (4.108)

It is easy to see that

mc
�
�2 � 1

� D mc

�
1

1 � v2=c2
� 1

�
D mc

v2

c2
1

1 � v2=c2
D �2

c
mv2 D �2

c
2T:

We then obtain

�2

c
R̂ D �2

c
U C �2

c
2T;

which gives

R̂ D U C 2T

or

R̂ D 2E C U; (4.109)

where is the kinetic energy of the particle m and D U C T is its total energy.
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Equations (4.109) are known as classical Jacobi’s virial equations, and the
expression (4.102) represents its relativistic analogue for asymptotically flat space–
time.

4.8 Derivation of Jacobi’s Virial Equation in Statistical
Mechanics

Statistical mechanics accepts the considered system in equilibrium state a priori at
the stage of the problem formulation. Let us derive the virial theorem also for this
branch of mechanics.

Denote by ri generalized moment pi, : : : , pf or generalized coordinate qi, : : : , qf

of the system points. Assume also that the value ri of a physical system is changing
from a to b and there is equality H(a) D 1, or a D 0, or there are both effects, or
also H(b) D 1, or b D 0, or both effects. Let symbol< : : : > denote the mean value
of the classical canonic distribution. Then it is possible to show the correctness of
the following statement:



ri
@H

@ri

�
D kT; (4.110)

where k is the Boltzmann’s constant, T is the temperature, and H is the system’s
Hamiltonian.

In fact, the normalization integral for the canonical distribution is

1 D A

Z
: : :

Z
e� H

kT dq1 : : : dpf : (4.111)

Integrating expression (4.111) by parts on q1, one has

1 D A

Z
: : :

Z
.q1e

� H
kT /

ˇ̌
b
a :dq2 : : : dpf C A

kT

Z
: : :

Z
q1 : : : dpf : (4.112)

According to this limitation, the first integral contributes nothing and, from this
expression, follows the correctness of equation (4.110), which is called the theorem
of the uniform distribution.

We can derive now the virial theorem in classical statistical mechanics. For this
we assume that a particle i occurs in the point ri D (qix, qiy, qiz), and it is acted by
the force NFi D d Np

dt , where Npi D .pix; piy; piz/: By definition the system’s virial
of n particles is the expression C D � 1

2

Pn
iD1 NFi � Nri which is averaged in time.

Assuming that the motion of particles is described by the Hamiltonian equations of
motion (dqij =dt D dH

ı
dpij ;dpij =dt D �dH

ı
dqij Ii D 1, 2, : : : , n; j D x, y, z )

and for the system the ergodic hypothesis system is correct, according to which the
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averaging over the ensemble and on time leads to the same results, we can show that
the system virial C is equal to

C D 3

2
nkT: (4.113)

According to expression (4.110),



ri
@H

@ri

�
D ˝�qij Fij

˛ D kT: (4.114)

Now, the correctness of expression (4.113) follows from Eq. (4.114) and from
the definition of the virial system.

Farther, it is easy to show that in the case when the force is defined by the
potential W, that is,

Fij D � @W
@qij

;

and the moment enters only to the kinetic energy k D Pn
iD1

p2i
2m

, then the following
equality is correct:

Nk D 1

2

nX

iD1
Nr NW Nri D 3

2
knT D C: (4.115)

If the forces interacting between the gas particles are f
�ˇ̌Nrj � Nrk

ˇ̌� D f
�
rjk
�

and depend only from distance between the particles, then these forces contribute to
virial as

�1
2

X

1�j<k�n
rjkfjk

�
kjk

�
; (4.116)

where the summation is done over all particle pairs. In fact, taking the force f (rjk),
like in the case of repulsion, as positive value, the force affecting on j-particle in the
form

NFj D Nrj � Nrk
rjk

f
�
rjk
�

and the force affecting on k-particle in the form

NFk D Nrk � Nrj
rjk

f
�
rjk
�
;
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then the contribution to virial from the pair (j, k) is equal to

�1
2

� Nrj NFj C Nrk NFk
� D �1

2

�Nrj � Nrk
� Nrj � Nrk

Nrjk D �1
2

Nrjkf
� Nrjk

�
;

from where the correctness of (4.116) follows.
If the gas occurs in a vessel of v volume, then the force affecting from the side on

the gas of p pressure contributes to virial by 3/2pv. In fact, the force is acting from
the vessel side on an element da of the surface to �p Nnda, where n is the unit vector
of the outer normal. The contribution to virial here is

1

2
p

Z

.S/

Nn� Nrda D 1

2
div Nr dv D 3

2
pv; (4.117)

where the Gauss theorem and equality div Nr D 3 were used.
Let us show now that for classical nonideal gas of n particle volume at

temperature T, the following expression is correct:

pv D nkT C 1

3

X

1�j<k�n
rjkf

�
rjk
�
: (4.118)

In fact, applying expressions (4.115) and (4.117), we can write

C D Nk D 3

2
nkT D 3

2
pv � 1

2

X

1�j<k�n
rjkf

�
rjk
�
;

from where the required result follows.
For the gas, where the energy and its potential result by interaction of gas

particles, the virial theorem follows in the form

.u C 2/ Nk D u NE C 3pv: (4.119)

Really, in this case

X

1�j<k�n
rjkf

�
rjk
� D �rjk

�
@W

@rjk

�
D �uU;

from where one has that

Nk D 3

2
pv C 1

2
u NU :

Multiplying both parts of this expression by 2 and adding nk to both sides,
expression (4.119) appears, where E is the total energy of the system equal to

E D T C U:
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The generalized virial theorem derived in Sect. 3.4 or the Jacobi’s virial
equation, is valid for the considered physical system in the framework of statistical
mechanics.

4.9 Universality of Jacobi’s Virial Equation for Description
of Dynamics of Natural Systems

It follows from the derivation of Jacobi’s virial equation, where the linear forces
and momentums were substituted by their volumetric values, that it appears to be
a universal mathematical expression for the description of the dynamics of natural
bodies in framework of the existing physical models their total, potential, and kinetic
energy and the polar moment of inertia. As is seen, the body’s energy and moment
of inertia are in functional relationship and are changing by oscillating motion.
Moreover, the second derivative of the moment of inertia R̂ expresses the potential
and kinetic energy of the body’s interacted particles, which in fact is sought by
Newton force function. This is a unique property of the virial equation (4.1).

At averaging of virial equation R̂ D 2E C U; when the first derivative from the
system’s moment of inertia ˆ has a constant value ( P̂ D 2E C U D const:), it can
represent the classical virial theorem like 2 D U or �U D 2 , which determines
the condition of the hydrostatic equilibrium state.

The starting point for derivation of the virial theorem is the particle momentum.
By Newton’s definition, this value “is a certain measure determined proportionally
to the velocity and the mass.” This value is defined or it is found experimentally. All
the other force parameters are obtained by transformation of the initial momentum,
and those actions are explained by physical interaction of the mass particles, which
are the carriers of the momentum. In fact, we recognize the momentum to be
“innate” value, according to Newton’s terminology, that is, the hereditary value.
Under the “innate” value, Newton understood “both the resistance and the pressure
of the mass” and finally the effect acquires its status of the inertial force. But the
essence does not change, because the momentum appears together with the mass.
Thus, the circle of the philosophical speculations is locked by the momentum, that
is, by the mass and its oscillation. All other attributes of the motion are formed by
mathematical transformations.
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Chapter 5
Solution of Jacobi’s Virial Equation
for Conservative and Dissipative Systems

Abstract It is shown in this chapter that Jacobi’s virial equation provides, first
of all, a solution for the models of natural systems that have explicit solutions
in the framework of the classical many-body problem. A particular example of
this is the unperturbed problem of Keplerian motion, when the system consists of
only two material points interacting by Newtonian law. The parallel solutions for
both the classical and dynamical approaches are given, and in doing so, we show
that, with the dynamical approach, the solution acquires a new physical meaning,
namely, oscillating motion. That solution appeared to be possible because of existing
relationship of jU j p

ˆ D B D const: It was also done for the solution of Jacobi’s
virial equation in hydrodynamics, in quantum mechanics for dissipative systems,
for systems with friction, and in the framework of the theory of relativity.

The above solutions acquire a new physical meaning because the dynamics of
a system is considered with respect to new parameters, that is, its Jacobi function
(polar moment of inertia) and potential (kinetic) energy. The solution, with respect
to the Jacobi function and the potential energy, identifies the evolutionary processes
of the structure or redistribution of the mass density of the system. Moreover, the
main difference of the two approaches is that the classical problem considers motion
of a body in the outer central force field. The virial approach considers motion of a
body both in the outer and in the own force field applying, instead of linear forces
and moments, the volumetric forces (pressure) and moments (oscillations).

Finally, analytical solution of the generalized equation of perturbed virial
oscillations in the form R̂ D �AC B=

p
ˆCX

�
t; ˆ; P̂ � was done.

Derivation of the equation of dynamical equilibrium and its solution for con-
servative and dissipative systems shows that dynamics of celestial bodies in their
own force field puts forward wide class of geophysical, astrophysical, and geodetic
problems that can be solved by the methods of celestial mechanics and with new
physical concepts we considered.

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 5,
© Springer ScienceCBusiness Media Dordrecht 2013
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In the previous chapter, we derived Jacobi’s virial equation of dynamics and
dynamical equilibrium in the framework of various physical models that are used
for describing the motion of natural systems. We showed that, instead of the
traditional description of such systems, like the Sun, planets, and satellites, based
on hydrostatics, the problem of dynamics can be studied from more correct physical
position, which appears to be dynamical equilibrium.

By transforming the linear forces and momentums into their volumetric values,
we obtain the equation of dynamics of a celestial body applying the fundamental
integral characteristics, namely, the energy and moment of inertia. Moreover, such
a form of equation description does not depend on the choice of the reference
system and becomes universal for solving dynamical problems in the framework
of any physical models. In addition, the nature of the force field source becomes
understood, which is the effect of interaction of the body’s elementary particles
expressed through the moment of inertia. In this case, we succeeded in restoring the
kinetic energy lost at the hydrostatic approach.

The problem is now to find the general solution of Jacobi’s virial equation relative
to oscillation and rotation of a body and to apply the solution to study its dynamics,
origin, and evolution. This application is valid for studying the Sun, the Earth, the
Moon, and other celestial bodies.

In this chapter, we show that Jacobi’s virial equation provides, first of all,
a solution for the models of natural systems that have explicit solutions in the
framework of the classical many-body problem. We shall give parallel solutions
for both the classical and dynamical approaches, and in doing so, we shall show
that, with the dynamical approach, the solution acquires a new physical meaning.
We shall also consider a general case of the solution of Jacobi’s virial equation for
conservative and dissipative systems.

5.1 Solution of Kepler’s Problem in Classical and Virial
Approach

The many-body problem is known to be the key problem in classical mechanics and
especially in celestial mechanics. A particular example of this is the unperturbed
problem of Keplerian motion, when the system consists of only two material
points interacting by Newtonian law. The explicit solution of the problem of
unperturbed Keplerian motion permits the many-body problem to be solved with
some approximation by varying arbitrary constants. In this case, the problem of
dynamics, for example, that of the solar system, is transferred into the solution of
the problem of dynamics of nine pairs of bodies in each of which one body is always
the Sun and the second is each of the nine planets forming the system. Considering
each planet–Sun subsystem, the influence of the other eight planets of the system is
taken into account by introducing the perturbation function. By the virial approach,
we can obtain for the Sun one characteristic period of circulation with respect to the
center of mass of the system, which will not coincide with any period of the planets.
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The dynamical approach evidences that the planet’s orbital motion is performed
by the central body, that is, by the Sun, by the energy of its outer force field, or
by the field of the energy pressure. Each planet interacts with the solar force field
by the energy of its own outer force field. The planet’s orbit is the certain curve of
its equilibrium motion that results from the two interacting fields of pressure. The
planet’s own oscillation and rotation perform by action of its inner fields of pressure.

Following these brief physical comments on the dynamical equilibrium motion
of a planet, we now present two approaches of solving the Keplerian problem: the
classical and the integral.

5.1.1 The Classical Approach

The traditional way of solving the unperturbed Keplerian problem is excellently de-
scribed in the university courses for celestial mechanics found in Duboshin (1978).
Here we present only the principal ideas. The method consists in transforming the
two-body problem described by the system of Eq. (4.3) into the one-body problem
using six integrals of motion of the center of mass (4.6). The system of equations
obtained is of sixth order and expresses the change of barycentric coordinates of one
point with respect to the center of mass of the system as a whole. Let us write it in
the form

Rx D � 	x

r3
;

Ry D � 	y

r3
;

Rz D � 	z

r3
; (5.1)

where 	 is the constant depending on the number of the point and for which the
second point is equal to

	 D Gm3
1

.m1 Cm2/
2
:

We then pass on from that Cartesian system of coordinates OXYZ to orbital ���,
using first integrals of the system of Eq. (5.1). Those are three integrals of the area,

yPz � z Py Dc1;
z Px � xPz Dc2;
x Py � y Px Dc3; (5.2)

the energy integral,

Px2 C Py2 C Pz2 D 2	

r
C h; (5.3)

http://dx.doi.org/10.1007/978-94-007-5908-4_4
http://dx.doi.org/10.1007/978-94-007-5908-4_4
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Fig. 5.1 Transition from
Cartesian coordinate system
OXYZ to orbital ���

and the Laplacian integrals,

�	x
r

C c3 Py � c2Pz Df1;

�	y
r

C c1Pz � c3 Px Df2;

�	z

r
C c2 Px � c1 Py Df3: (5.4)

As these seven integrals are not independent, we conclude that they cannot form
a general solution of the system (5.1). In fact, there are two relations for these
integrals:

c1f1 C c2f2 C c3f3 D 0;

f 2
1 C f 2

2 C f 2
3 D 	2 C h

�
c21 C c22 C c23

�
;

showing that only five of them are independent. But the last integral needed can be
found by simple quadrature. Using these integrals, we can pass on to the system of
orbital coordinates ��� using the transformation relations (see Fig. 5.1):

� Df1

f
x C f2

f
y C f3

f
z;

� DC2f3 � C3f2
Cf

x C C3f1 � C1f2
Cf

y C C1f2 � C3f1
Cf

z;

� DC1

C
x C C2

C
y C C3

C
z: (5.5)

The equation of the curve along which the point moves in accordance with (5.1)
has the simplest form in the system of initial coordinates. The equation is
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� D 0;

	r D C2 � f �: (5.6)

Finally, introducing the polar orbital coordinates r and v, which are related to the
rectangular orbital coordinates � and � by the expressions (see Fig. 5.2)

� D r cos �

and

� D r sin �

and using the integral of areas

r2v D C;

we come to the equation

C.t � r/ D
�

C2

	

�2 �Z

0

d�
�
1C f

	
cos �

�2 : (5.7)

The solution of Eq. (5.7) gives the change of function v with respect to time.
Repetition of the transformation in the reverse order leads to solution of the problem.
In doing this, we obtain the expression for the change of coordinates of the material
point with respect to the initial data �10;�10;�10;�20;�20;�20; P�10; P�10; P�10; P�20; P�20; and
P�20: It is remarkable that if the total energy (5.3) has a negative value, then the
solution of Eq. (5.7) leads to the Keplerian equation

E � e sinE D n.t � �/; (5.8)
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where the function v is related to the variable 0 by the expression

tg
�

2
D
r
1C e

1� e
tg
E

2
;

e D f

	
; n D

p
	

a3=2
; p D C2

	
D a

�
1 � e2� :

Because energy by definition is the property to do work (motion) and can be
only a positive value, then the physical meaning of negative total energy, which
defines the elliptic orbit of a body moving in the central field of the two-body
problem, should be revealed. In the presented solution of the two-body problem,
the left-hand side of the energy integral (5.3) expresses the kinetic energy, and the
right-hand side means the potential energy of the mass interaction. The integral
of energy (5.3) as a whole, in the coordinates and in the velocities, represents the
averaged virial theorem, where the potential energy has formally a negative value.
Here the physical meaning of the total energy determination consists in comparison
of magnitude of the potential and kinetic energies. A negative value of the total
energy means that the potential energy exceeds the kinetic one by that value. As it
follows from the analysis of the inner force field of a self-gravitating body presented
in Chaps. 2 and 3, the potential energy exceeds the kinetic energy only in the case of
nonuniform distribution of the mass density and cannot be less than that. In the case
of equality of both energies, the total potential energy is realized into oscillating
motion. The excess of the potential energy is used for rotation of the masses and in
the dissipation. The last case is discussed later.

5.1.2 The Dynamic Approach

Let us consider the solution of the problem of unperturbed motion of two material
points on the basis of Jacobi’s virial equation, which in accordance with Eq. (4.16)
is written in the form

R̂
0 D 2E0 � U;

where 0 D 0 C U D const. is the total energy of the system in a barycentric
coordinate system.

The Jacobi function ˆ0 is expressed by (4.15)

R̂
0 D m1m2

2 .m1 Cm2/

h
.�1 � �2/2 C .�1 � �2/

2 C .�1 � �2/2
i
;

and the potential energy U in accordance with (4.2) is

http://dx.doi.org/10.1007/978-94-007-5908-4_2
http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_4
http://dx.doi.org/10.1007/978-94-007-5908-4_4
http://dx.doi.org/10.1007/978-94-007-5908-4_4
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U D Gm1m2q
.�1 � �2/

2 C .�1 � �2/2 C .�1 � �2/
2

:

It is easy to see that between the Jacobi function ˆ0 and the potential energy U,
the relationship exists in the form

jU j
p
ˆ D G.m1m2/

3=2

p
2 .m1m2/

D Gp
2
m	3=2 D B D const:; (5.9)

where 	 is the generalized mass of the two bodies, m is the total mass of the system,
and is a constant value.

The relationship (5.9) is remarkable because it is independent of the initial data,
that is, of its coordinates and velocities. Being an integral characteristic of the
system and dependent only on the total mass and the generalized mass of the two
points, the relationship permits Jacobi’s virial equation to be transformed to an
equation with one variable as follows:

R̂
0 D 2E0 C Bp

ˆ0
: (5.10)

We consider the solution of Eq. (5.10) for the case when total energy 0 has a
negative value. Introducing D –2 0> 0, Eq. (5.10) can be rewritten as

R̂
0 D �AC Bp

ˆ0
: (5.11)

We apply the method of change of variable for the solution of Eq. (5.11) and
show that the partial solution of two linear equations (Ferronsky et al. 1984),

�p
ˆ0

�00 C
p
ˆ0 D B

A
; (5.12)

t 00 C t D 4B�
�p

2A
� ; (5.13)

which include only two integration constants, is also the solution of Eq. (5.11).
We now introduce the independent variable � into Eqs. (5.12) and (5.13),

where primes denote differentiation with respect to �. Note that time here is not
an independent variable. This allows us to search for the solution of two linear
equations instead of solving one nonlinear equation. The solution of Eqs. (5.12)
and (5.13) can be written in the form

p
ˆ0 D B

A
Œ1 � " cos .� �  /� ; (5.14)
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t D 4B

.2A/3=2
Œ1 � " sin .� �  /� : (5.15)

Let us prove that the partial solutions (5.14) and (5.15) of differential equations
(5.12) and (5.13) are the solution of Eq. (5.10), which is sought. For this purpose,
we express the first and second derivatives of the function

p
ˆ0 with respect to

� through corresponding derivatives with respect to time using Eq. (5.15). From
(4.15), it follows that

dt

d�
D 4B

.2A/3=2
Œ1 � " sin .� �  /� : (5.16)

We can replace the right-hand side of the obtained relationship by
p
ˆ0 from

(5.14)

dt

d�
D
p
ˆ0

r
2

A
: (5.17)

Transforming the derivative from
p
ˆ0 with respect to � into the form

d
p
ˆ0

d�
D d

p
ˆ0

dt

dt

d�
D

P̂
0

2
p
ˆ0

dt

d�

and taking into account (5.17), we can write

�p
ˆ0

�0 D
P̂
0p
2A
:

The second derivative can be written analogously:

�p
ˆ0

�00 D dt

d�

d

dt

 R̂
0p
2A

!

D
R̂
0p
2A

p
ˆ0

r
2

A
D

R̂
0

p
ˆ0

A
: (5.18)

Putting Eq. (5.18) into (5.12), we obtain

R̂
0

p
ˆ0

A
C
p
ˆ0 D B

A
:

Dividing the above expression by
p
ˆ0 =A , we can finally write

R̂
0 D �AC Bp

ˆ0
:

This shows that the partial solution of the two linear differential equations (5.12)
and (5.13) appears to be the solution of the nonlinear equation (5.11).

http://dx.doi.org/10.1007/978-94-007-5908-4_4
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5.2 Solution of n-Body Problem in the Framework
of Conservative System

After solving Jacobi’s virial equation for the unperturbed two-body problem, we
come to the dynamics of a system of n material particles where n ! 1.

Let us assume that an external observer studying the dynamics of a system of n
particles in the framework of classical mechanics has the following information. He
has the mass of the system and its total and potential energies, and can determine the
Jacobi function and its first derivative with respect to time in any arbitrary moment.
Then he can use Jacobi’s virial equation (4.9) and, making only the assumption
needed for its solution that jU j p

ˆ D B D const:, may predict the dynamics of the
system, that is, the dynamics of its integral characteristics at any moment of time.
The assumption jU jpˆ0 D const: will be considered separately in Chap. 9.

If the total energy 0 of the system has a negative value, the external observer
can immediately write the solution of the problem of the Jacobi function change
with respect to time in the form of (5.14) and (5.15)

p
ˆ0 D B

A
Œ1 � " cos .� �  /� ;

t D 4B

.2A/3=2
Œ1 � " sin .� �  /� ;

where D –2 0 and " and  are constants depending on the initial values of the
Jacobi functionˆ0 and its first derivative P̂

0 at the moment of time t0.
Let us obtain the values of constants " and  in explicit form expressed through

the valuesˆ0 and P̂
0 at the initial moment of time t0. For convenience, we introduce

a new independent variable ' connected to � by the relationship �� D '. Then,
Eqs. (5.14) and (5.15) can be rewritten as

p
ˆ0 D B

A
Œ1 � " cos� ; (5.19)

t � 4B

.2A/3=2
 D 4B

.2A/3=2
Œ' � " sin'� : (5.20)

Using Eq. (5.19), we write the expression for ':

' D arccos
1� A

B

p
ˆ0

"
; (5.21)

and taking into account the equality

d
p
ˆ0

d�
D d

p
ˆ0

d'
;

http://dx.doi.org/10.1007/978-94-007-5908-4_4
http://dx.doi.org/10.1007/978-94-007-5908-4_9
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substitute Eq. (5.21) into the expression

P̂
0p
2A

D B

A
" sin ':

The last equation can be finally rewritten in the form

P̂
0p
2A

D B

A
"

vu
u
t1 �

 
1 � A

B

p
ˆ0

"

!2
: (5.22)

Equation (5.22) allows us to determine the first constant of integration " as a
function of the initial data ˆ0 and P̂

0 at t D t0. Solving Eq. (5.22) with respect to "
after simple algebraic transformation, we obtain

" D
r

1 � A

2B2

�
� P̂

0 C 4B
p
ˆ0 � 2Aˆ0

�
jtDt0 D const: (5.23)

The second constant of integration  can be expressed through the initial data
after solving Eq. (5.20) with respect to  and change of value ' by its expression
from Eq. (5.21). Defining

t � 4B

.2A/ 3=2
 D �;

we obtain

��

8
<̂

:̂

4B

.2A/2=3

2

6
4arccos

1 � A
B

p
ˆ0

"
� ""

vu
ut1 �

 
1 � A

B

p
ˆ0

"

!2
3

7
5 � t

9
>=

>;
jtDt0 D const:

(5.24)

The physical meaning of the integration constants ", � , and the parameter Tv D
8�B

.
.2A/3=2 can be understood after the definitions

Tv D 8�B

.2A/ 3=2
;

n D 2�

Tv
D .2A/3=2

4B
;

a D B

A
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and rewriting Eqs. (5.19) and (5.20) in the form

p
ˆ0 D a Œ' � " sin'� ; (5.25)

M D ' � " sin'; (5.26)

where M D n(t��).
The value

p
ˆ0 draws an ellipse during the period of time v D 8�B/(2A)3/2 (see

Fig. 5.3). The ellipse is characterized by a semimajor axis equal to / and by the
eccentricity ", which is defined by expression (5.23). In the case considered where
E0< 0, the value " is changed in time from 0 to 1. The value � characterizes the
moment of time when the ellipse passes the pericenter.

Let us obtain explicit expressions with respect to time for the functions
p
ˆ0,

ˆ0, and P̂
0. For this purpose, we write Eq. (5.24) in the form of a Lagrangian:

F .'/ D ' � " sin ' �M D 0: (5.27)

It is known (Duboshin 1978) that by application of Lagrangian formulas, we can
write, in the form of a series, the expressions for the root of the Lagrange equation
(5.27) and for the arbitrary function f, which is dependent on ':

' D
1X

kD0

"k�1

kŠ

dk�1

dMk�1
�
sinkM

 D M C " sinM C "2

1 � 2
d

dM

�
sin2 M

C � � � ;

(5.28)

f .'/ D
1X

kD0

"k�1

kŠ

dk�1

dMk�1
�
f 0.M/sinkM

 D f .M/C "f 0.M/ sinM

C "2

1 � 2
d

dM

�
f .M/sin2M

C � � � (5.29)
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Using Eq. (5.29), we write expressions for cos', cos2 ', and sin ' in the form of
a Lagrangian series of parameter " power:

cos' D
1X

kD0

"k�1

kŠ

dk�1

dMk�1
�
.�1/ sinM sinkM

 D cosM C " .�1/ sinM sin.M/

C "2

1 � 2
d

dM

�
.�1/ sin.M/sin2M

C � � � D cosM � "

2
C "

2
cos 2M

� 3

4
"3 cosM C 3

8
"2 cos 3M C � � � (5.30)

cos2' D
1X

kD0

"k�1

kŠ

dk�1

dMk�1
�
.�2/ sinM cosM sinkM

 D cos2M

C" .�2/ sinM cosM sinMC "2

1 � 2
d

dM

�
.�2/ sinM cosM sin2M

C� � �

D cos2M � 2"sin2M cosM C "2

2
.�2/ �3 sin2 M cos2M � sin4M

�C � � �
(5.31)

sin ' D
1X

kD0

"k�1

kŠ

dk�1

dMk�1 ŒcosM sinM� D sinM C " cosM sinM

C "2

1 � 2
d

dM

�
cosM sin2M

C � � � D sinM C " cosM sinM

C "2

1 � 2
�
2 sinM cos2M � sin3M

C � � � (5.32)

We write the expressions for
p
ˆ0, ˆ0, and P̂

0 using Eqs. (5.25) and (5.26) in
the form

p
ˆ0 D a .1 � " cos'/ ; (5.33)

ˆ0 D a2
�
1 � 2" cos' C "2cos2'

�
; (5.34)

P̂
0 D

r
2

A
"B sin': (5.35)

Substituting into (5.33), (5.34), and (5.35) the expressions for cos', cos2 ', and
sin ' in the form of the Lagrangian series (5.30), (5.31), and (5.32), we obtain
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p
ˆ0 D B

A

�
1C "2

2
C
�

�"C 3

8
"3
�

cosM � "2

2
cos 2M � 3

8
"3 cos 3M C � � �

	
;

(5.36)

ˆ0 D B2

A2

�
1C 3

2
"2 C

�
�2"C "3

4

�
cosM � "2

2
cos 2M � "3

4
cos 3M C � � �

	
;

(5.37)

P̂
0 D

r
2

A
"B

�
sinM C 1

2
" sin 2M C "2

2
sinM

�
2 cos2 M � sin2M

�C � � �
	
:

(5.38)

The series of Eqs. (5.36), (5.37), and (5.38) obtained are put in the order of
increased power of parameter " and are absolutely convergent at any value of in
the case when the parameter " satisfies the condition

" < " D 0:6627 : : : ; (5.39)

where " is the Laplace limit.
In some cases, it is convenient to expand the values

p
ˆ0, ˆ0, and P̂

0 in the
form of a Fourier series, using conventional methods (see, e.g., Duboshin 1978).
Figure 5.4 demonstrates the changes of

p
ˆ0 in time at "D 1.

It is also possible to consider the case solution of Jacobi’s virial equation for
0 D 0 and 0> 0. Readers can find here without difficulty a full analogy of these

results as well as the solution of the two-body problem.

5.3 Solution of Jacobi’s Virial Equation in Hydrodynamics

Let us consider the solution of the problem of dynamics of a homogeneous isotropic
gravitating sphere in the framework of traditional hydrodynamics and the virial
approach we have developed.
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5.3.1 The Hydrodynamic Approach

The sphere is assumed to have radius R0 and be filled by an ideal gas with a
density �0. We assume that at the initial time the field of velocities that has the
only component is described by equation

u D H0r; (5.40)

where u is the radial component of the velocity of the sphere’s matter at a distance
r from the center of mass and H is independent of the quantity r and equal to H0 at
time t0.

We also assume that the motion of the matter of the sphere goes on only under the
action of the forces of mutual gravitational interaction between the sphere particles.
In this case, the influence of the pressure gradient is not taken into account, assuming
that the matter of the sphere is sufficiently diffused. Then, the symmetric spherical
shells will move only under forces of gravitational attraction and will not coincide.
In this case, the mass of the matter of any sphere shell will keep its constant value,
and the condition (5.40) will be satisfied at any moment of time, and constant
should be dependent on time.

Under those conditions, the Eulerian system of Eq. (4.28) can be written in the
form

�
@u

@t
C � .ur/ u D �

@U G

@r
; (5.41)

where �(t) is the density of the matter of the sphere at the moment of time t, u is
the radial component of the velocity of matter at distance r from the sphere’s center,
and UG is the Newtonian potential for the considered point of the sphere.

The expression for the Newtonian potential UG (4.29) can be written as follows:

UG D G
4

3
��r2; (5.42)

and the continuity equation will be

@�

@t
C �

@U

@r
D 0: (5.43)

Within the framework of the traditional approach, the problem is to define the
sphere radius R and the value of the constant at any moment of time, if the radius
R0, the density �0, and the value of the constant 0 at the initial moment of time
t0 are given. If we know the values (t) and R(t), we can then obtain the field of
velocities of the matter within the sphere that is defined by Eq. (5.40) and also the
density � of matter at any moment of time using the relationship

4

3
�R30�0 D 4

3
�R3� D m:

http://dx.doi.org/10.1007/978-94-007-5908-4_4
http://dx.doi.org/10.1007/978-94-007-5908-4_4
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Hence, the formulated problem is reduced to identification of the law of motion
of a particle that is on the surface of the sphere and within the field of attraction of
the entire sphere mass m D 4/3� �0 R0

3.
The equation of motion for a particle on the surface of the sphere, which follows

from Eq. (5.41) after transforming the Eulerian coordinates into a Lagrangian, has
the form

d2R

dt2
D �G m

R2
: (5.44)

It is necessary to determine the law of change of R(t), resolving Eq. (5.44) at the
initial data:

R .t0/ DR0;
dR

dt

ˇ
ˇ
ˇ
ˇ
tDt0

DH0R0:
(5.45)

We reduce the order of Eq. (5.44). To do so, we multiply it by dR/dt

dR

dt

d2R

dt2
D �dR

dt

Gm

R2

and integrate with respect to time:

tZ

t0

1

2

d

dt

� PR�2 D
tZ

t0

d

dt

�
Gm

R

�
dt:

After integration, we obtain

1

2
PR2 � 1

2
PR20 D Gm

R
� Gm

R0

or

1

2
PR2 D Gm

R
C k; (5.46)

where the constant k is determined as

k D1

2
PR20 � Gm

R0
D 1

2
H2
0 R

2
0 �G

4�

3
�0
R30
R0

D1

2
H2
0 R

2
0

�
1 � 8�

3

G�0

H2
0

	
D 1

2
H2
0 R

2
0 Œ1 ��� D const: (5.47)

Here the quantity�D �o/�cr, where �cr D 3H0
2/8�G.
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Note that Eq. (5.46) obtained after reduction of the order of the initial equation
(5.44) is in its substance the energy conservation law. Equation (5.46) permits the
variables to be divided and can be rewritten in the form

RZ

R0

dR
q

2Gm
R

C 2k

D
tZ

t0

dt: (5.48)

The plus sign before the root is chosen assuming that the sphere at the initial time
is expanding, that is, 0 > 0.

The differential equation (5.46) has three different solutions at k D 0, k> 0, and
k< 0 depending on the sign of the constant k, which is in its turn defined by the
value of the parameter � at the initial moment of time. First, we consider the case
when k D 0, which relates, by analogy with the Keplerian problem, to the parabolic
model at k D 0. Equation (5.46) is easily integrated, and for the expression case, that
is, PR > 0, we obtain

PR2 D 2Gm

R
;

PR D .2Gm/1=2

R1=2
;

from which it follows that

R1=2dR D .2Gm/1=2dt

or

2

3
R3=2 D .2Gm/1=2t C const: (5.49)

We choose as initial counting time t D 0, the moment when R D 0. In this case,
the integration constant disappears:

R D
�
9

2
Gm

�1=3
t2=3: (5.50)

The density of the matter changes in accordance with the law

�.t/ D m
4
3
�R3

D 1

6�Gt2
; (5.51)

and the quantity (t), as a consequence of (5.50), has the form
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H.t/ D
PR
R

D 2

3

1

t
: (5.52)

For the case when k> 0, which corresponds to so-called hyperbolic motion, the
solution of Eq. (5.46) can be written in parametric form (Zeldovich and Novikov
1967):

R DGm

2k
.ch� � 1/ ;

t D Gm

.2k/ 3=2
.sh� � �/ ; (5.53)

where the constants of integration in (5.53) have been chosen so that t D 0, �D 0 at
R D 0.

Finally, we consider the case when k< 0, which corresponds to elliptic motion.
At k< 0, the expansion of the sphere cannot continue for unlimited time and the
expansion phase should be changed by attraction of the sphere.

The explicit solution of Eq. (5.46) at k< 0 can be written in parametric form
(Zeldovich and Novikov 1967):

R DGm

2jkj .1 � ch�/ ;

t D Gm

.2jkj/ 3=2 .� � sh�/ : (5.54)

The maximum radius of the sphere is determined from Eq. (5.46) on the condition
dR/dt D 0 and equals

Rmax D Gm

jEj : (5.55)

The time needed for expansion of the sphere from R0 D 0 at t0 D 0 to Rmax is

tmax D �Gm

.2jkj/3=2 : (5.56)

So the sphere should make periodic pulsations with period equal to

Tp D 2�Gm

.2jkj/3=2 : (5.57)

The considered solution has important cosmologic applications.
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5.3.2 The Virial Approach

We shall limit ourselves by formal consideration of the same problem in the
framework of the condition of the dynamical equilibrium of a self-gravitating body
based on the solution of Jacobi’s virial equation, which we discussed earlier.

As shown in Chap. 4, Jacobi’s virial equation (4.50), derived from Eulerian
equations (4.28), is valid for the considered gravitating sphere. It was written in
the form

R̂ D 2E � U; (5.58)

where ˆ is the Jacobi function for a homogeneous isotropic sphere and is defined
by

ˆ D 1

2

RZ

0

4�r2�r2 dr D 2��R5

5
D 3

10
mR2: (5.59)

The potential gravitational energy of the matter of the sphere is expressed as

U D �4�G
RZ

0

r�.r/m.r/ dr D �16�
2

15
G�2R2 D �3

5
G
m2

R
: (5.60)

The total energy of the sphere will be equal to the sum of the potential U and
kinetic energies.

The kinetic energy is expressed as

T D 1

2

RZ

0

4�u2 �r2 dr D 1

2

RZ

0

4�H2r2�r2 dr D 4��H2R5

10
D 3

10
mH2R2:

(5.61)

For a homogeneous isotropic gravitating sphere, the constancy of the relationship
between the Jacobi function (5.59) and the potential energy (5.60) can be written as

jU j p
ˆ D B D 3

5
G
m2

R

r
3

10
mR2 D 1p

2

�
3

5

�3=2
Gm3=2; (5.62)

where has constant value because of the conservation law of mass m of the
considered sphere.

http://dx.doi.org/10.1007/978-94-007-5908-4_4
http://dx.doi.org/10.1007/978-94-007-5908-4_5
http://dx.doi.org/10.1007/978-94-007-5908-4_4
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The total energy of the sphere also has a constant value:

E D T C U D A

2
: (5.63)

Then, if the total energy of the sphere has a negative value, Jacobi’s virial
equation can be written in the form

R̂ D �AC Bp
ˆ
: (5.64)

Let us consider the conditions under which the total energy of the system will
have a negative value. For this purpose, we write it explicitly:

E D T C U D �16
15
�2G�2R5 C 2��H2R5

5
D 2

5
��H2R5

�
1 � 8�G�

3H2

	
:

(5.65)

It is clear from Eq. (5.65) that the total energy has a negative value, when
�> �c, where �c D 3 2/8�G.

The general solution of Eq. (5.64) has the form of Eqs. (5.14) and (5.15):

p
ˆ0 D B

A
Œ1 � " cos .� �  /� ; (5.66)

t D 4B

.2A/ 3=2
Œ� � " sin .� �  /� ; (5.67)

where " and  are constants dependent on the initial values of the Jacobi function
ˆ0 and its first derivative ˆ0 at the moment of time t0. The constants " and  are
determined by Eqs. (5.23) and (5.24) accordingly.

If we express all the constants in Eq. (5.23)

" D
r

1 � A

2B2

�
� P̂

0 C 4B
p
ˆ0 � 2Aˆ0

�
jtDt0 (5.68)

through mass m of the system, it is not difficult to see that

� P̂ 2
0 C 4B

p
ˆ0 � 2Aˆ0 D 0:

Then the constant " will be equal to zero. Hence, the solutions (5.28) and (5.29)
coincide with the solution (5.54), which was obtained in the framework of the
traditional hydrodynamic approach. In this case, the period of eigenpulsations of
the Jacobi function (the polar moment of inertia) of the sphere D 8�R/(2A)3/2

will be equal to the period of change of its radius D 2�Gm/(2jkj)3/2 obtained
from Eq. (5.54).



130 5 Solution of Jacobi’s Virial Equation for Conservative and Dissipative Systems

5.4 The Hydrogen Atom as a Quantum Mechanical
Analogue of the Two-Body Problem

Let us consider the problem concerning the energy spectrum of the hydrogen atom,
which is a unique example of the complete conformity of the analytical solution
with experimental results. The problem consists of a study of all forms of motion
using the postulates of quantum mechanics and based on the solution of Jacobi’s
virial equation.

The classical Hamiltonian in the two-body problem is written as

H D p21
2m1

C Np22
2m2

C U .j Nr1 � Nr2j/ ; (5.69)

where

Np1 D @H

@Pr1 D m1
PNr1;

Np2 D @H

@Pr2 D m2
PNr2;

which, after separation of the center of mass, can be transformed into the form

H D
NP2

2M
C Np2
2m

C U.r/; (5.70)

where r D jNr1 � Nr2j is the distance between two particles and

NP D M PNR; Np D m PNr; M D m1 Cm2;

NR D m1 Nr1 Cm2 Nr2
m1 Cm2

; m D m1m2

m1 Cm2

:

We obtain the Hamiltonian operator for the quantum mechanical two-body
problem through changing the pulses and radii by the corresponding operators with
the communication relations

Œ Opi; Opk� D �i„ıik;

Œ Opi; Ork� D �i„ıik:

Then,

OH D � „2
2M


R � „2
2m


r C OU.r/:
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The wave function u.Nr1; Nr2/ D '. NR/ .Nr/, which satisfies the Schrödinger
equation,

OHu D "u;

describes the motion of the inertia center (free motion of the particle of mass mc is
described by the function '(R), and the motion of the particle of mass m in the U(r)
is described by the wave function ‰.Nr/). Subsequently, we consider only the wave
function of the motion of particle m.

The Schrödinger equation,


‰C 2m

„2 ŒE � U.r/�‰ D 0

written here for the stationary state in a central symmetrical field in spherical
coordinates, has the form

1

r2
@

@r

�
r2
@‰

@r

�
C 1

r2

�
1

sin‚

@

@‚

�
sin‚

@‰

@‚

�
C 1

sin2 ‚

@2‰

@'2

	
C 2m

„2 ŒE � U.r/�  D 0:

(5.71)

Using the Laplacian operator Ò2,

Ò2 D
�

1

sin‚

@

@‚

�
sin‚

@

@‚

�
C 1

sin2 ‚

@2

@'2

	
;

we obtain

„2
2m

"

� 1

r2
@

@r

�
r2
@‰

@r

�
C

Ò2
r2
‰

#

C U.r/‰ D E‰:

The operators Ò2 and Ò
z ( Ò

z D �i@ =@' ) commutate with the Hamiltonian OH.r/,
and therefore, there are common eigenfunctions of the operators OH; Ò2, and Ò

z. We
consider only such solutions of Schrödinger equations. This condition determines
the dependence of the function‰ on the angles

‰ .r;‚; '/ D R.r/Y`k .‚; '/ ;

where the quantity Y`k .‚; '/ is determined by the expression

Y`k .‚; '/ D 1p
2�
eik'.�1/ki`

s
.2`C 1/ .` � k/Š

2 .`C k/Š
P k
` .cos‚/ ;
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and Pk
` .cos‚/ is the associated Legendre polynomial, which is

Pk
` .cos‚/ D 1

2``Š
sink‚

drC`

d cos‚rC`
�
cos2 ‚ � 1�`:

Since

Ò2Y`k D ` .`C 1/ Y`k;

we obtain for the radial part of the wave function R(r)

1

r2
@

@r

�
r2

dR

dr

�
� ` .`C 1/

r2
RC 2m

„2 ŒE � U.r/�R D 0: (5.72)

Equation (5.72) does not contain the value `z D m; that is, at the given `, the
energy level corresponds to 2`C 1 states differing by the value `z.

The operator

1

r2
@

@r

�
r2

d‰

dr

�

is equivalent to the expression

1

r

d2

dr2
.rR/ ;

and, thus, it is convenient to make the change of variables, assuming that

X.r/ D rR.r/:

So that Eq. (5.71) can be rewritten in the form

d2X

dr2
� ` .`C 1/

r2
X C 2m

„2 ŒE � U.r/�X D 0: (5.73)

We now consider the demand following from the boundary conditions and related
to the behavior of the wave function X(r). At r ! 0 and the potentials satisfying the
condition

limU.r/r2

r!0

D 0; (5.74)

only the first two terms play an important role in Eq. (5.73). X(r) � rv and we obtain

v .v � 1/ D ` .`C 1/ :

This equation has roots v1 D `C 1 and v2 D �`
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The requirement of normalization of the wave function is incompatible with the
values v D �` at ` ¤ 0 because the normalization integral

1Z

0

jX2
r .r/dr j

will be divergent for the discrete spectrum, and the condition

Z
‰ .�; �/ ‰ .�;X/ d� D ı .X � �/

does not hold for the continuous spectrum.
At ` D 0, the boundary conditions are determined by the demand for the

finiteness of the mean value of the kinetic energy, which is satisfied only at v D 1. So
when the condition (5.74) is satisfied, the wave function of a particle is everywhere
finite and at any `

X.0/ D 0:

Let us consider the energy spectrum and the wave function of the bounded states
of a system of two charges. The bounded states exist only in the case of the attracted
particles. Such a system defines the properties of the hydrogen atom and hydrogen-
like ions.

The equation for the radial wave function is

d2R

dt2
C 2

r

dR

dr
� ` .`C 1/

r2
R C 2m

„2
�
E C ˛

r

�
R D 0; (5.75)

where ˛D Ze2 is a constant, characterizing the potential, is the electron charge,
and Z is the whole number equal to the nucleus charge in the charge units.

The constants e2, m, and -h allow us to construct the value with the dimension of
length

a0 D „2
me2

D 0:529 � 10�8 cm;

known as the Bohr radius and the time

t0 D „3
me4

D 0:242 � 10�11 c:

These quantities define the typical space and time scale for describing a system,
and it is therefore convenient to use these units as the basic system of atomic units.
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Equation (5.75) in atomic units (at Z D 1) takes the form

d2R

dt2
C 2

r

dR

dr
� ` .`C 1/

r2
RC 2

�
E C 1

r

�
R D 0: (5.76)

At < 0, the motion is finite and the energy spectrum is discrete. We need the
solutions (5.76) quadratically integrable with r2. Let us introduce the specification

n D 1p�2E ; � D 2r

n
:

Equation (5.76) can be written as

d2R

dt2
C 2

�

dR

d�
C
�
n

�
� 1

4
� ` .`C 1/

�2

	
R D 0: (5.77)

We find the asymptotic forms of the radial function R(r). At �! 1 and omitting
the terms ���1 and ���2 in (5.77), we obtain

d2R

d�2
D R

4
:

Therefore, at high values of �, R / e˙�=2: The normalization demand is
satisfied only by R.�/ / e��=2: The asymptotic forms at r ! 0 have already been
determined.

Substituting

R .�/ D �`e��=2! .�/ ;

Equation (5.77) is reduced to the form

�
d2!

d�2
C .2`C 2 � �/

d!

d�
C .n� ` � 1/ ! D 0: (5.78)

To solve this equation in the limit of �D 0, we substitute !(�) in the form of a
power series

! .�/ D 1C .0 � v/

.0C �/
� C .0 � v/ .1 � v/

.0C �/ .1C �/

�2

2Š
C .0 � v/ .1 � v/ .2 � v/

.0C �/ .1C �/ .2C �/

�3

3Š
C � � �
(5.79)

where � D 2`C 2 and �v D �nC `C 1:

At �! 1, the function !(�) should increase, but not faster than the limiting
power �. Then, !(�) has to be a polynomial of v power. So �nC `C 1 D �k and
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n D `C 1 C k (k D 0, 1, 2, : : : ) at a given value of `. Hence, using the definition
for n, we can find the expression for the energy spectrum

En D � 1

2n2
: (5.80)

The number n is called the principal quantum number. In general units, it has the
form

E D �Z2 me
4

2„2n2 : (5.81)

This formula was obtained by Bohr in 1913 on the basis of the old quantum
theory, by Pauli in 1926 from matrix mechanics, and by Schrödinger in 1926 by
solving the differential equations.

Let us solve the problem of the spectrum of the hydrogen atom using the equation
of dynamical equilibrium of the system. In Chap. 3, we obtained Jacobi’s virial
equation for a quantum mechanical system of particles whose interaction is defined
by the potential being a homogeneous function of the coordinates. This equation in
the operator form is

RÔ D 2 OH � OU : (5.82)

where Ô is the operator of the Jacobi function, which, for the hydrogen atom, is
written as

Ô D 1

2
m Or2: (5.83)

The Hamiltonian operator is

OH D � „2
2m


r C OU ; (5.84)

and the operator of the function of the potential energy for the hydrogen atom is

OU D �e
2

r
: (5.85)

We solve the problem with respect to the eigenvalues of Eq. (5.82), using the
main idea of quantum mechanics. For this, we use the Schrödinger equation

OH‰ D E‰

and rewrite Eq. (5.82) in the form

RÔ D 2E � OU : (5.86)

http://dx.doi.org/10.1007/978-94-007-5908-4_3
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This equation includes two (unknown in the general case) operator functions Ô
and Û. In the case of the interaction, the potential is determined by the relation
(5.85), and we can use a combination of the operators Ô and Û in the form

j OU j
p

Ô D e2m1=2

p
2

D B: (5.87)

We now transform (5.86) into the form that was considered in classical
mechanics:

RÔ D 2E C B
p Ô : (5.88)

Equation (5.88) is a consequence of Eq. (5.86) when the Schrödinger equation
and the relationship (5.87) are satisfied. Its solution for the bounded state, that is,
when total energy is determined in parametric form, can be written as

p
ˆ D B

2jEj .1 � " cos'/ ; (5.89)

' � " sin' D M; (5.90)

where the parameter is defined by the relation

M D .4jEj/3=2
4B

.t � �/ ; (5.91)

where " and � are integration constants and where

" D
r

1 � AC

2B2
;

C D � PÔ 2
0 C 4B

q
Ô
0 � 2A Ô

0:

Moreover, the solution can be written in the form of Fourier and Lagrange
series. Thus, the expression (5.37) describes the expansion of the operator Ô into
a Lagrange series including the accuracy of "3 and has the form

Ô
0 D B2

A2

�
1C 3

2
"2 C

�
�2"C "3

4

�
cosM � "2

2
cos 2M � "3

4
cos 3M C � � �

	
:

(5.92)

Using the general expression for the mean values of the observed quantities in
quantum mechanics
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D
‰j Ô j‰

E
D N̂

and taking into account that the mean value of the Jacobi function of the hydrogen
atom should be different from zero, we find that our system has multiple eigenfre-
quencies vn D nv0 with respect to the basic v0, which corresponds to the period

T0 D 8�B

.4jEj/3=2 : (5.93)

In accordance with the expression

En D „!n D „2�n
T0

; (5.94)

each of these frequencies corresponds to the energy level n of the hydrogen atom.
We substitute expression (5.93) for Tv into Eq. (5.94) and resolve it in relation to

n:

jEnj D „2�n.4 jEnj/3=2
8�B

D „n.4 jEnj/3=2
4e2m1=2p

2

D „n2p2 jEnj
e2m1=2

: (5.95)

The expression obtained by Bohr follows from (5.95)

En D e4m

2„2n2 : (5.96)

This equation solves the problem.

5.5 Solution of a Virial Equation in the Theory of Relativity
(Static Approach)

We consider now the solution of Jacobi’s virial equation in the framework of the
theory of relativity, showing its equivalence to Schwarzschild’s solution.

Let us write down the known expression for the radius of curvature of space–time
as a function of mass density:

1

R2
D 8�

3

G�

c2
; (5.97)

where R is the curvature radius, � is the mass density, G is the gravitational constant,
and c is the velocity of light.

Equation (5.97) can also be rewritten in the form

�R2 D 3

8�

c2

G
: (5.98)
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If the product �R2 in Eq. (5.98) is the Jacobi function (ˆD �R2 is the density of
the Jacobi function), then from (5.98)

ˆ D 3

8�

c2

G
; (5.99)

and it follows that the Jacobi function is a fundamental constant for the universe. (In
general relativity, the spatial distance does not remain invariant. Therefore, instead
of this, the Gaussian curvature is used, which has the dimension of the universe
distance and is the invariant or, more precisely, the covariant.)

The constancy of the Jacobi function in this case reflects the smoothness of the
description of motion in general relativity. The oscillations relative to this smooth
motion described by Jacobi’s equation are the gravitational waves and horizons, in
particular the collapse and all types of singularity up to the process of condensation
of matter in galaxies, stars, and so on.

Now we can show that Schwarzschild’s solution in general relativity is equivalent
to the solution of Jacobi’s equation when R̂ D 0. Let us write the expression for the
energy–momentum tensor

T ki D .�C p/ uiu
k C pıki : (5.100)

In the corresponding coordinate system, we obtain

ui D
�
0; 0; 0;

1p�g00
�
; (5.101)

where �D �(r) and p D p(r).
The independent field equations are written as

G1
1 D T 11 ; G0

0 D T 00 ;

R�2 D 1

3
G�c2: (5.102)

The expression for the metric is written in the form

ds2 D dr2

1 � r2

R2

C r2.d�/2 �
(

A � B
r

1 � r2

R2

) 2
c2r2; (5.103)

where

dr2

1 � r2

R2

C r2.d�/2

is the spatial element.
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In this case, the expression for the volume occupied by the system is written as

V D
rZ

0

�Z

0

2�Z

0

r2 sin‚
q
1 � r2

R2

dr d‚ d‰ D 4�R3

3

"

arcsin
r

R
� r

R

r

1 � r2

R2

#

: (5.104)

It can be easily verified that the right-hand side of Eq. (5.104) coincides with
solutions (5.14) and (5.15) of the equation of virial oscillations (5.11) at R̂ D 0,
that is,

arcsin x � x
p
1 � x2 D arccos

0

B
@

A
B

p
ˆ � 1

q
1 � AC

2B2

1

C
A �

r

1 � AC

2B2

vu
uu
u
t1 �

0

B
@

A
B

p
ˆ� 1

q
1� AC

2B2

1

C
A:

(5.105)

In fact, Eq. (5.105) is satisfied for

x D
A
B

p
ˆ � 1

q
1 � AC

2B2

and x D
r

1 � AC

2B2
; p

that is,

A

B

p
ˆ � 1 D �1 AC

2B2
; or

AC

2B2
C A

p
ˆ

B
D 2:

At R̂ D 0, the parameter of virial oscillations

e D
r

1 � AC

2B2
and

p
ˆ D B

A
:

so the last condition is satisfied.
Schwarzschild’s solution is rigorous and unique for Einstein’s equation for a

static model of a system with spherical symmetry.
Since this solution coincides with the solution of virial oscillations at the same

conditions, the solutions (5.14) and (5.15) of Eq. (5.11), obtained in this chapter,
should be considered rigorous. Thus, we can conclude that the constancy of the
product U

p
ˆ in the framework of the static system model is proven. In Chap. 9,

we will come back to this condition and will obtain another proof of the same very
important relationship.

http://dx.doi.org/10.1007/978-94-007-5908-4_9
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5.6 General Approach to Solution of Virial Equation
for a Dissipative System

In the previous chapter, we have considered a number of cases of explicitly solved
problems in mechanics and physics for the dynamics of n-body system and have
shown that all those classical problems have also explicit solutions in the framework
of the virial approach. But in the latter case, the solutions acquire a new physical
meaning because the dynamics of a system is considered with respect to new
parameters, that is, its Jacobi function (polar moment of inertia) and potential
(kinetic) energy. In fact, the solution of the problem in terms of coordinates and
velocities specifies the changes in location of a system or its constituents in space.
The solution, with respect to the Jacobi function and the potential energy, identifies
the evolutionary processes of the structure or redistribution of the mass density of
the system. Moreover, the main difference of the two approaches is that the classical
problem considers motion of a body in the outer central force field. The virial
approach considers motion of a body both in the outer and in the own force field
applying, instead of linear forces and moments, the volumetric forces (pressure)
and moments (oscillations).

It appears from the cases considered that the existence of the relationship
between the potential energy of a system and its Jacobi function written in the form

U
p
ˆ D B D const: (5.106)

is the necessary condition for the resolution of Jacobi’s equation.
This is the only case when the scalar equation

R̂ D 2E � U

is transferred into a nonlinear differential equation with one variable in the form

R̂ D 2E C Bp
ˆ
: (5.107)

It was shown earlier that if the total energy of a system 0 D – /2< 0, then the
general solution for Eq. (5.107) can be written as

p
ˆ0 DB

A
Œ1 � " cos .� �  /�

t D 4B

.2A/ 3=2
Œ� � " sin .� �  /� ;

(5.108)

where " and  are integration constants, the values of which are determined from
initial data using Eqs. (5.23) and (5.24).
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Equation (5.107) is called the equation of virial oscillation because its solution
discovers a new physical effect—periodical nonlinear change of the Jacobi function
and hence the potential energy of a system around their mean values determined
by the virial theorem. Thus, in addition to the static effects determined by the hy-
drostatic equilibrium, in the study of dynamics of a system, the effects, determined
by the condition of dynamical equilibrium expressed by the Jacobi function, are
introduced.

The equation of virial oscillations (5.107) reflects physics of motion of the
interacted mass particles of a body or masses of bodies themselves by the inverse
square law. Its application opens the way to study the nature and the mechanism
of generation of the body’s energy, which performs its motion, and search the law
of change in the system’s configuration, that is, mutual change location of particles
or the law of redistribution of the mass density for the system matter during its
oscillations. This problem was considered earlier in our work (Ferronsky et al. 1987,
2011). We continue its study in Chap. 8.

As described above, cases of solution of Eq. (5.107) relate to unperturbed
conservative systems. But in reality, in nature, all systems are affected by internal
and external perturbations, which, from a physical point of view, are developed in
the form of dissipation or absorption of energy. In this connection, as shown in
the right-hand side of the equation of virial oscillations (5.107), an additional term
appears, which is proportional to the Jacobi function ˆ (indicating the presence of
gravitational background or the existence of interaction between the system particles
in accordance with Hook’s law) and its first derivative P̂ depending on time t
(indicating the existence of energy dissipation). All these and other possible cases
can be formally described by a generalized equation of virial oscillations (4.27):

R̂ D 2E C Bp
ˆ

CX.t;ˆ, P̂ /; (5.109)

where X
�
t; ˆ; P̂ � is the perturbation function, the value of which is small in

comparison with the term B
.p

ˆ ¤ const:

In this chapter, we consider general as well as some specific approaches to the
solution of Eq. (5.109) in the framework of different physical models of a system.

5.7 Analytical Solution of Generalized Equation
of Virial Oscillations

The equation of perturbed virial oscillations is generalized in the form

R̂ D �AC Bp
ˆ

CX
�
t; ˆ; P̂ � ; (5.110)

http://dx.doi.org/10.1007/978-94-007-5908-4_8
http://dx.doi.org/10.1007/978-94-007-5908-4_4
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where D –2 , is constant, and X
�
t; ˆ; P̂ � is the perturbation function that we

assume is given and dependent in general cases on time t, the Jacobi function ˆ,
and its first derivative P̂ .

We consider two ways for the analytical construction of the solution of
Eq. (5.110). In addition, let the function X

�
t; ˆ; P̂ � in Eq. (5.110) depend on

some small parameter in relation to which the function can be expanded into
absolute convergent power series of the form

X
�
t; ˆ, P̂ � D

1X

rD1
ekXk

�
t; ˆ, P̂ � : (5.111)

Let the series be convergent in some time interval t absolute for all values of ,
which are satisfied to condition jej< Ne. Then, Eq. (5.110) can be rewritten in the
form

X
�
t; ˆ, P̂ � D �AC Bp

ˆ

1X

rD1
ekXk

�
t; ˆ, P̂ � : (5.112)

We look for the solution of Eq. (5.112) also in the form of the power series of
parameter . For this purpose, we write the function ˆ(t) in the form of a power
series, the coefficients of which are unknown:

ˆ.t/ D
1X

kD1
ekˆk.t/: (5.113)

Putting (5.113) into (5.112), the task can be reduced to the determination of such
function ˆ(k)(t), which identically satisfies Eq. (5.112). In this case, the coefficient
ˆ( )(t) becomes the solution of the unperturbed oscillation equation (5.107), which
can be obtained from (5.112) by putting D 0.

One can consider the series (5.113) as a Taylor series expansion in order to
determine all the other coefficientsˆ(k)(t), that is,

ˆ.k/ D 1

kŠ

�
dkˆ

dek

�
jeD0 ;

P̂ .k/ D 1

kŠ

 
dk P̂
dek

!

jeD0 : (5.114)

Accepting the series (5.113) for the introduction into Eq. (5.112), it becomes
identical with respect to the parameter . Thus, we have justified the differentiation
of the identity with respect to the parameter several times assuming that the
identity remains after repeated differentiation.
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We next obtain

d2

dt2

�
dˆ

de

�
D 1

2

B

ˆ3=2

�
dˆ

de

�
C

1X

kD1
kek�1X.k/ C

1X

kD1
ek
�

dX.k/

de

�
; (5.115)

where dX(k)/de is the total derivative of the function X(k) with respect to parameter
, expressed by

dX.k/

de
D @X.k/

@ˆ

�
dˆ

de

�
C @X.k/

@ P̂

 
d P̂
de

!

:

Now let D 0 in (5.115). Then, by taking into account (5.113) and (5.114), we
obtain

d2ˆ.1/

dt2
C p1ˆ

.1/ D X1; (5.116)

where

p1 D 1

2

B

ˆ3=2
jeD0 D 1

2

B

ˆ.0/3=2
; X1 D X1

�
t; ˆ.0/, P̂ .0/�

are known functions of time, since the solution of the equation in the zero
approximation (unperturbed oscillation equation (5.108)) is known.

Carrying out differentiation of Eq. (5.112) with respect to parameter for the
second, third, and so on (k � 1) times and assuming after each differentiation that

D 0, we will step-by-step obtain equations determining second, third, and so on
approximations. It is possible to show that in each succeeding approximation, the
equation will have the same form and the same coefficient p1 as in Eq. (5.116). If
so, the equation determining the functionsˆ(k) and P̂ .k/ has the form

d2ˆ.k/

dt2
C p1ˆ

.k/ D Xk
�
t; ˆ.0/; P̂ .0/; : : : ; ˆ.k�1/; P̂ .k�1/� ; (5.117)

where the function k depends on ˆ(0), P̂ .0/, : : : , ˆ(k�1), P̂ .k�1/, which were
determined earlier and are the functions of t and unknown functionsˆ(0) and P̂ .0/.

It is known that there is no general way of obtaining a solution for any
linear differential equation with variable coefficients, but in our case, we can
use the following theorem of Poincare (Duboshin 1975). Let the general solution
of the unperturbed virial oscillation equation be determined by the function
ˆ(0) D f (t, C1, C2), where C1 and C2 are, for instance, arbitrary constants " and
‰ in the solution (5.108) of Eq. (5.107). Then, Poincare’s theorem confirms that the
function determined by the equalities
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ˆ1 D @f

@C1
;

ˆ2 D @f

@C2
;

satisfies the linear homogeneous differential equation reduced by omission of the
right-hand side of Eq. (5.117).

Thus, the general solution of the linear homogeneous equation

d2ˆ.k/

dt2
C p1ˆ

.k/ D 0

has the form

ˆ1C
.k/
1 Cˆ2C

.k/
2 D ˆ.k/; (5.118)

and the general solution of Eq. (5.117) can be obtained by the method of variation
of arbitrary constants, that is, assuming that C .k/

2 are functions of time. Then, using
the key idea of the method of variation of arbitrary constants, we obtain a system of
two equations:

PC .k/
1 ˆ1 C PC .k/

2 ˆ2 D 0k;

PC .k/
1

P̂
1 C PC .k/

2
P̂
2 D Xk: (5.119)

Solving this system with respect to PC .k/
1 and PC .k/

2 and integrating the expression
obtained, we write the general solution of Eq. (5.117) as follows:

ˆ.k/.t/ D ˆ2

tZ

t0

ˆ1Xkdt

ˆ1 P̂
2 �ˆ2 P̂

1

�ˆ1
tZ

t0

ˆ2Xkdt

ˆ1 P̂
2 �ˆ2 P̂

1

;

where

ˆ1 D @f .t; C1; C2/

@C1

and

ˆ2 D @f .t; C1; C2/

@C2
:

Thus, we can determine any coefficient of the series (5.113), reducing Eq. (5.112)
into an identity, and therefore write the general solution of Eq. (5.110) in the form
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ˆ D
1X

kD0
ekˆ.k/ D

1X

kD0
ek

2

4ˆ2

tZ

t0

ˆ1Xkdt

ˆ1 P̂
2 �ˆ2 P̂

1

�ˆ1

tZ

t0

ˆ2Xkdt

ˆ1 P̂
2 �ˆ2 P̂

1

3

5 :

(5.120)

Let us consider the second way of approximate integration of the perturbed virial
equation (5.110), based on Picard’s method (Duboshin 1975). It is convenient to
apply this method of integrating the equations that were obtained using the Lagrange
method of variation of arbitrary constants.

Assuming that the first integrals (5.23) and (5.24)

" D
r

1 � A

2B2

�
� P̂

0 C 4B
p
ˆ0 � 2Aˆ0

�
; (5.121)

�� D
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.2A/3=2
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4arccos
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"
� "
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ut1 �
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B
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!2
3

7
5 � t

9
>=

>;
(5.122)

of the unperturbed virial oscillation equation (5.107) are also the first integrals of
the perturbed oscillation equation (5.110). But constants " and � are now unknown
functions of time. Let us derive differential equations that are satisfied by these
functions using the first integrals (5.121) and (5.122). For convenience, we replace
the integration constant " by , using the expression

" D
r

1 � AC

2B2
:

Now we rewrite Eq. (5.121) in the form

C D � P̂ 2
0 C 4B

p
ˆ0 � 2Aˆ0: (5.123)

Then using the main idea of the Lagrange method, after variation of the first
integrals (5.122) and (5.123) and replacement of R̂ by

�
�AC Bp

ˆ
CX

�
t; ˆ; P̂ �

�
;

we write

PC D �2 P̂X �t; ˆ; P̂ � ; (5.124)

P� D ‰ .ˆ;C / PC D �2 P̂X �t; ˆ; P̂ �‰ .ˆ;C/ ; (5.125)
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where

‰ .ˆ;C / D � 4B

.2A/3=2
d

dC

2
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4arccos
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We now expressˆ and P̂ in explicit form through , � , and t, using, for example,
the Lagrangian series:

ˆ.t/ D B2

A2

�
1C 3

2
"2 C

�
�2"C "3

4

�
cosM � "2

2
cos 2M � "3

4
cos 3M C � � �

	
;

(5.126)

P̂ .t/ D
r
2

A
"B

�
sinM C 1

2
" sin 2M C "2

2
sinM

�
2 cos2 M � sin2M

�C � � �
	
:

(5.127)

Thus, taking into account Eqs. (5.126) and (5.127) for the functions ˆ and P̂ ,
Eqs. (5.124) and (5.25) can be rewritten as

dC

dt
DF1 .t; C; �/ ;

d�

dt
DF2 .t; C; �/ : (5.128)

To solve the system of differential equations (5.128), we use Picard’s successive
approximation method, obtained in the kth approximation expressions for C(k) and
� (k) in the form

C .k/ D C .0/ C
tZ

t0

F1

�
t; C .k�1/; � .k�1/

�
dt; (5.129)

�.k/ D �.0/ C
tZ

t0

F2

�
t; C .k�1/; � .k�1/� dt; (5.130)

where C(0) and � (0) are the values of arbitrary constants C and � at initial time t0,
and k D 1, 2, : : : .

Then, in the limit of k ! 1, we obtain the solution of the system (5.128):

C D limC .k/

k!1 ;

� D lim �.k/
k!1 : (5.131)
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Consider now two possible cases of the perturbation function behavior. First,
assume that the perturbation function does not depend explicitly on time. Then,
since it is possible to expand functions ˆ and P̂ into a Fourier series in terms of
sine and cosine of argument , the right-hand sides of the system (5.128) can also
be expanded into a Fourier series in terms of sine and cosine of M.

Finally, we obtain

dC

dt
D
"

A0 C
1X

kD1
.Ak coskM C Bk sin kM/

#

; (5.132)

d�

dt
D
"

a0 C
1X

kD1
.ak coskM C bk sin kM/

#

; (5.133)

where A0, Ak, Bk, a0, ak, and bk are the corresponding coefficients of the Fourier
series that are

A0 D 2

�

2�Z

0

F1 .M;C/ dM;

Ak D 2

�

2�Z

0

F1 .M;C/ cos kM dM;

Bk D 2

�

2�Z

0

F1 .M;C / sin kM dM;

a0 D 2

�

2�Z

0

F2 .M;C / dM;

ak D 2

�

2�Z

0

F2 .M;C / cos kM dM;

bk D 2

�

2�Z

0

F2 .M;C / sin kM dM;

ak D 2

�

2�Z

0

F2 .M;C / cos kM dM;

bk D 2

�

2�Z

0

F2 .M;C/ sin kM dM:
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Following Picard’s method, in order to solve Eqs. (5.132) and (5.133) in the first
approximation, we introduce the values of arbitrary constants C and � corresponding
to the initial time t0 into the right-hand side of the equations.

Then, we obtain

C .1/.t/ D C.0/ CA
.0/
0 .t � t0/

C
1X

kD1

1

kn

n
A
.0/

k Œsin kM � sin kM0�C B
.0/

k ŒcoskM � coskM0�
o

(5.134)

�.1/.t/ D �.0/ C a
.0/
0 .t � t0/

C
1X

kD1

1

kn

n
a
.0/

k Œsin kM � sin kM0�C b
.0/

k Œcos kM � cos kM0�
o
:

(5.135)

Thus, when the function does not depend explicitly on time t, solutions
(5.134) and (5.135) of Eq. (5.110) have three analytically different parts. The first
is a constant term, depending on the initial values of the arbitrary constants. It
is usually called the constant term of perturbation of the first order. The second
part is a function monotonically increasing in time. It is called the secular term
of the perturbation of the first order. The third part consists of an infinite set of
trigonometric terms. All of them are periodic functions of and consequently of
time t. This is called periodic perturbation.

Similarly, we can obtain solutions in the second, third, and so on, orders. Here we
limit our consideration only within the first order of perturbation theory. In practice,
few terms of the periodic perturbation can be taken into account, and the solution
obtained becomes effective only for a short period of time.

When the perturbation function is a periodic function of some argument 0,

M 0 D n0 �t � � 0� ;

the right-hand side of the system of Eqs. (5.128) are periodic functions of the two
independent arguments and 0. Therefore, they can be expanded into a double
Fourier series in terms of sine and cosine of the linear combination of arguments

and 0. Then, in the first approximation of perturbation theory, we obtain the
following system of equations:

dC .1/

dt
D A

.0/
00 C

1X

k0;kD�1

h
A
.0/

k;k0 cos
�
kM C k0M 0�C B

.0/

k;k0 sin
�
kM C k0M 0�i;

(5.136)
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d�.1/

dt
D a

.0/
00 C

1X

k0;kD�1

h
a
.0/

k;k0 cos
�
kM C k0M 0�C b

.0/

k;k0 sin
�
kM C k0M 0�

i
:

(5.137)

Integrating equations (5.136) and (5.137) with respect to time, we obtain a
solution of the system:

C .1/.t/ DC .0/ C A
.0/
00 .t � t0/C

1X

k0;kD�1

1

knC k0n0
n
A
.0/

k;k0

�
cos

�
kM C k0M 0�

� cos
�
kM0 C k0M 0

0

�

CB
.0/

k;k0

�
sin
�
kM C k0M 0� � sin

�
kM0 C k0M 0

0

��

(5.138)

�.1/.t/ D�.0/ C a
.0/
00 .t � t0/C

1X

k0;kD�1

1

knC k0n0
n
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.0/

k;k0

�
cos

�
kM C k0M 0�

� cos
�
kM0 C k0M 0

0

�

C b
.0/

k;k0

�
sin
�
kM C k0M 0� � sin

�
kM0 C k0M 0

0

��
:

(5.139)

Equations (5.138) and (5.139) have the same analytical structure as (5.134) and
(5.135). At the same time, in this case, the periodic part of the perturbation can
be divided into two groups, depending on the value of the divisor kn C k0n0. If
the values of k and k0 are such that the divisor is sufficiently large, then period
Tk,k’ D 2�/(kn C k0n0) of the corresponding inequality will be rather small. Such
inequalities are called short periodic. Their amplitudes are also rather small, and
they can play a role only within short period of time.

If the values of k and k0 are such that the divisor kn C k0n0 is sufficiently small
but unequal to zero, then the period of the corresponding inequality will become
large. The amplitude of such terms could also be large and play a role within large
periods of time. Such terms form series of long-periodic inequalities. In the case of
such k and k0, when kn C k0n0 D 0, the corresponding terms are independent of t and
change the value of the secular term in the solutions (5.138) and (5.139).

5.8 Solution of the Virial Equation for a Dissipative System

In Chap. 4, we derived Jacobi’s virial equation for a nonconservative system in the
form

R̂ D 2E0 Œ1C q.t/� � U � k P̂ : (5.140)

http://dx.doi.org/10.1007/978-94-007-5908-4_4
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At k 
 1, t � t0, jUj p
ˆD D const., 2E0 D –A0, and when the magnitude of

the term k P̂ is sufficiently small, Eq. (5.140) can be rewritten in a parametric form

R̂ D �A0 Œ1C q.t/�C Bp
ˆ
; (5.141)

where q(t) is a monotonically increasing function of time due to dissipation of
energy during “smooth” evolution of a system within a time interval t 2 Œ0; ��.

Using the theorem of continuous solution depending on the parameter, we write
the solution of Eq. (5.141) as follows:

� arccosW C arccosW0 �
r

1 � A0 Œ1C q.t/� C

2B2

p
1 �W 2

C
r

1 � A0C

2B2

q
1 �W 2

0 D
s
.2–A0 Œ1C q.t/�/3=2

4B
.t � t0/ ; (5.142)

arccosW � arccosW0 C
r

1 � A0 Œ1C q.t/� C

2B2

p
1 �W 2

�
r

1 � A0C

2B2

q
1 �W 2

0 D
s
.2–A0 Œ1C q.t/�/3=2

4B
.t � t0/ ; (5.143)

where

W D
A0Œ1Cq.t/�

B

p
ˆ � 1

q
1 � A0Œ1Cq.t/�C

2B2

; W0 D
A0
B

p
ˆ� 1

q
1 � A0C

2B2

;

A0 Œ1C q.t/� > 0; C <
2B2

A0 Œ1C q.t/�
;

ˇ
ˇ
ˇ�A0 Œ1C q.t/�

p
ˆC B

ˇ
ˇ
ˇ < B

r

1� A0 Œ1C q.t/� C

2B2
;

C D �2A0ˆ0 C 4B
p
ˆ0 � P̂ 2

0:

Equations of discriminant curves that bound oscillations of the Jacobi function
ˆ by analogy with the case of the conservative system can be written as

p
ˆ1 D B

A0 Œ1C q.t/�

"

1C
r

1 � A0 Œ1C q.t/� C

2B2

#

t 2 Œ0; �� ; (5.144)

p
ˆ2 D B

A0 Œ1C q.t/�
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; t 2 Œ0; �� : (5.145)
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Fig. 5.5 Virial oscillations of Jacobi function in time for nonconservative system ( ) and for
general (Wintner’s) case (b)

It is obvious that the solution of Jacobi’s virial equation for a nonconservative
system is quasiperiodic with period

Tv.q/ D 8�B

.2A0 Œ1C q.t/�/3=2
(5.146)

and an amplitude of Jacobi function oscillations



p
ˆ D B

A0 Œ1C q.t/�

�
1 � A0 Œ1C q.t/� C

2B2

�1=2
: (5.147)

As q(t) is monotonically and continuously increasing the parameter confined in
time, the period and the amplitude of the oscillations will gradually decrease and
tend to zero in the time limit.

In Fig. 5.5 , the integral curves (5.142) and (5.143) and the discriminant curves
(5.144) and (5.145) are shown in a general case when 0<C< 2B2/A0. At the point
Ob, the integral and discriminant curves tend to coincide, and the value of the
amplitude of the Jacobi function (polar moment of inertia) oscillations of the system
goes to zero.

When D 0 (Fig. 5.5), the discriminant line (5.144) coincides with the axis of
abscissa, ˆ2 D 0. In the accepted case of constancy of the system mass, the point
Ob, where the integral and discriminant curves coincide, will be reached in the time
limit t ! 1 .

When 2 2/A0 ! C and < 0, the solutions (5.142), (5.143), (5.144), and (5.145)
could be complex so the processes considered are not physical.
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We note that by analogy with the case for conservative system, considered in
Chap. 4, we can show here that the asymptotic relations (5.136) and (5.137) for the
solutions (5.142) and (5.143) of Jacobi’s equation (5.141) in the points of contact of
the discriminant line ˆ2 D 0 are justified. In the points of contact for the integral
curves (5.142) and (5.143) and the discriminant curves (5.144) and (5.145) for
which ˆ1 and ˆ2 are not equal to zero, the following asymptotic relations are also
justified:

�p
ˆ1 � p

ˆ
�

/ �
t 0 � t

�2
; (5.148)

�p
ˆ �

p
ˆ2

�
/ �

t � t 0�2; (5.149)

where t0 is time of a tangency point for the corresponding integral curve of the
discriminant lines ˆ1,2 when ˆ1,2 ¤ 0.

5.9 Solution of the Virial Equation for a System with Friction

Let us consider the solution of Jacobi’s virial equation for conservative systems,
but let the relationship between its potential energy and the Jacobi function be as
follows:

U
p
ˆ D B C k P̂ : (5.150)

In this case, the equation of virial oscillations (5.107) can be written as

R̂ D �AC Bp
ˆ

� k
P̂
ˆ
: (5.151)

The term �k P̂ .p
ˆ in (5.151) plays the role of perturbation function, reflecting

the effect of internal friction of the matter while the system is oscillating.
In principle, Eq. (5.151) can be solved using the above perturbation theory

methods. However, we can show that a particular solution exists for the system
of two differential equations of the second order, which satisfies Eq. (5.151). These
differential equations are as follows:

�p
ˆ
�00 C

r
2

A
k
�p

ˆ
�0 C p

ˆ D B

A
; (5.152)

t 00 C
r
2

A
kt 0 C t D 4B

.2A/3=2
�: (5.153)
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In Eqs. (5.152) and (5.153), we introduced a new variable �, so the primes at
ˆ and t mean differentiation with respect to �. Note also that time t here is not an
independent variable. This allowed us to transfer the nonlinear equation into two
linear equations. The partial solution of Eqs. (5.152) and (5.153) containing two
integration constants is

p
ˆ D B

A

"

1 � "e��=2p2=A� cos

 r
4A� 2k2

4A
�C  C �

!#

; (5.154)
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� 4B
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�

r
2

A
k;

(5.155)

where " and  are arbitrary constants

� D arctg

r
2

A
k

�
4A� 2k2

4A

��1=2
:

To show that Eqs. (5.154) and (5.155) of the two linear differential equations
(5.152) and (5.153) are also general solutions of (5.46), let us do as follows.

Differentiating (5.151) with respect to �, we obtain

t 0 D
r
2

A

p
ˆ: (5.156)

We write the derivative from function
p
ˆ with respect to � using Eq. (5.156) in

the form

�p
ˆ
�0 D

P̂
p
2A
: (5.157)

We write the derivative from function
p
ˆ with respect to � using Eq. (5.156) in

the form

�p
ˆ
�00 D

R̂
p
2A
t 0 D

R̂ p
ˆ

A
: (5.158)

Substituting Eqs. (5.157) and (5.158) for
�p

ˆ
�0

and
�p

ˆ
�00

into Eq. (5.152),

we obtain

R̂ p
ˆ

A
C
r
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A
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p
ˆ

C p
ˆ D B

A
: (5.159)
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Dividing Eq. (5.159) by
p
ˆ=A , we have

R̂ C k
P̂

p
ˆ

C A D Bp
ˆ
;

which is in fact our Eq. (5.151). This means that Eqs. (5.154) and (5.155) are the
general solutions of Eq. (5.151).

Note that Eq. (5.155) differs in general from Kepler’s equation, both by the
exponential factor before the sine function and by the constant term in the right-
hand side of Eq. (5.155). In addition, it follows from Eq. (5.154) that the period
of virial oscillations of the Jacobi function depends on the parameter k. Therefore,

when � changes its value by 2�
.jp

.4A� 2k2/ =4A
k

, the value of
p
ˆ remains

unchanged (we neglect the changes of the amplitude of virial oscillations due to
existence of the exponential factor) assuming that

k

2

r
2

A

2�
q

4A�2k2
4A

� 1:

It follows from Eq. (5.155) that time t changes by the relationship of T D
8�B

ı
.2A/3=2

p
.4A� 2k2/ =4A defining the period of the damping virial oscil-

lations. Therefore, from solutions (5.154) and (5.155) of Eq. (5.151), it follows that
if during the evolution of the system the value U

p
ˆ varies only slightly around the

constant, this leads to damping of the virial oscillations of the integral characteristics
of the system around their averaged virial theorem value.

In conclusion, we have to note that derivation of the equation of dynamical
equilibrium and its solution for conservative and dissipative systems shows that
dynamics of celestial bodies in their own force field puts forward wide class of
geophysical, astrophysical, and geodetic problems that can be solved by the methods
of celestial mechanics and with new physical concepts we considered.
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Chapter 6
The Nature of the Solar System Bodies Creation

Abstract The irresistible difficulty in cosmogony is the observed fact that planets
of the solar system having only �0.015% of the system mass possess 98% of the
orbital angular momentum. At the same time, �99.85% of the Sun’s mass produce
no more than 2% of the angular momentum, which is accepted to be the conservative
parameter. This fact was found in the framework of the hydrostatic equilibrium of
the bodies. It is shown in this chapter that in the framework of the Jacobi dynamics,
creation of a new body occurs within the parental cloud as a result of its separation in
the density on shells, where the outer shell reaches the state of weightlessness. Here
the orbital moment of the momentum of a created secondary body represents the
total kinetic moment of the parental body’s cloud owing to the energy conservation
law. It means that the orbital moment of momentum of each planet represents the
kinetic momentum of the protosun at the time of planet separation and orbiting. The
planet’s orbital moment of momentum is formed by the total potential energy of
the protosun. But the planet’s angular moment of the axial rotation is formed by
the tangential component of the own planet’s potential energy. So the above fact
appears to be a misunderstanding.

Appearance of weightlessness of the upper shell during the body’s matter
differentiation, conditions of a body separation and orbiting, the structure of the
potential and kinetic energies of a nonuniform body, conditions of dynamical
equilibrium of oscillation and rotation of a body, equations of oscillation and
rotation of a body and their solution, the nature and mechanism of body shell
differentiation, and physical meaning of the Archimedes and Coriolis forces are
considered as particular tasks, for which mathematical solutions are found here.
The problem of initial values of mean density and radius of a created body has also
its solution.

The discussed physics and kinematics of creation and separation of the solar
system bodies prove the Huygens law of motion on semicubical parabola of his
watch pendulum, which synchronously follows the Earth’s motion. The relationship
between the evolute and evolvent represents the relationship between function and
its derivative or between function and its integral. In the case of the Huygens

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 6,
© Springer ScienceCBusiness Media Dordrecht 2013
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156 6 The Nature of the Solar System Bodies Creation

oscillating pendulum, the suspension filament starts unrolling in a fixed point. In the
case of a celestial body, creation of a satellite starts in a fixed point of its parental
body where the initial conditions are transferred by Kepler’s third law, which is the
consequence of a body creation.

It is known that all the solar system bodies (the planets, their satellites, comets,
and meteoric bodies) are identical in their substantial and chemical content, and in
this respect, they are of common origin. But the search of a unified mechanism of
the body creation has encountered an irresistible difficulty in their dynamics. The
point is that planets having only �0.015% of the system mass possess 98% of the
orbital angular momentum. At the same time, �99.85% of the Sun’s mass produce
no more than 2% of the angular momentum, which is accepted to be a conservative
parameter. Also, the specific (for unit of the mass) angular momentum of planets is
increased with the distance from the Sun. As discussed in the previous chapters, the
above results follow calculation model based on hydrostatic equilibrium state of the
system, where the body motion results from the outer forces. It was shown that the
hydrostatic equilibrium of celestial body dynamics appeared to be not the correct
physical conception.

We analyze the evolutionary problem of the solar system based on fundamentals
of the Jacobi dynamics, where the body motion initiates by the inner forces’ action.
Here, the energy loss in the form of radiation is accepted as the physical basis of
the body evolution, and the effect of elementary particles’ collision and scattering
appears to be the mechanism of the energy generation. It is clear from observation
that all celestial bodies are self-gravitating systems.

It is shown next that the creation of a new body occurs within the parental cloud
because of its separation in density on shells by the Archimedes law, when the outer
shell reaches the state of weightlessness. Here, the orbital moment of momentum of
a created secondary body represents the total kinetic moment of the parental body’s
cloud owing to the energy conservation law, as was shown in (3.17) and (3.18):

Q D
X

i

pi ri D
X

i

mi�i ri D
X

i

mi Pri ri D d

dt
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mi r
2
i

2

!

D 1

2
PIp;

dQ

dt
D 1

2
RIp D

X

i

Pri � pi C
X

i

Ppi � ri ; (6.1)

where Q is the moment of momentum of the parental cloud, p is moment of a
particle, r is the radius, and Ip is the polar moment of inertia of the cloud.

It means that the orbital moment of momentum of each planet represents the
kinetic momentum of the protosun at the time of planet separation and orbiting.
The kinetic moment of a body is equal to the sum of the rotational and oscillating
moments, and the kinetic energy is equal to the sum of the rotational and oscillating
energies, which follows from the energy conservation law. At the same time, the
planet’s orbital moment of momentum is formed by the total potential energy of the

http://dx.doi.org/10.1007/978-94-007-5908-4_3
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protosun. But the planet’s angular moment of the axial rotation is formed by the
tangential component of the own planet’s potential energy (see Eqs. 6.8 and 6.9).
Here, the energy of axial rotation compiles small portion of the oscillating energy.
As noted in Sect. 3.3, the kinetic energy of Earth, Mars, Jupiter, Saturn, Uranus, and
Neptune compiles 10�3–10�2, and that of Mercury, Venus, the Moon, and the Sun
is about 10�4 from the total kinetic energy. For bodies with a uniform mass density
distribution, the kinetic energy of rotation is equal to zero.

The interaction (collision and scattering) of mass particles is accompanied by
continuous redistribution of the body’s mass density. According to the Roche’s
tidal dynamics, redistribution of the mass density leads to the shell separation. It
will be shown later that when the density of the upper shell reaches less than two
third with respect to the underlying shells, then the upper shell becomes weightless
(i.e., it loses weight). From the physical point of view, it means that the own force
field of the upper shell is in dynamical equilibrium with the parental force field.
In this case, if the density of the upper shell has nonuniform density distribution,
then by the difference in the potentials of the force field, the shell is converted
into the secondary body. If the upper shell has uniform mass density distribution,
then the shell forms a ring around equatorial plane of the parental body. In general
case, the upper weightless shell is decayed into fragments with different amounts of
mass. The comets were formed from the solar shell; the satellites and meteorites
were created from the planet’s shells. During the evolution of a nonuniform gaseous
body, it undergoes the axial and equatorial oblateness by an outer force field of
the central parental body. This can be observed by inclination of the planet’s and
satellite’s orbital plane slope relative to the parental equatorial plane. The polar
outer force field pressure appears to be higher than equatorial. As a result, the outer
polar force field values appeared to be higher than equatorial. Because of this, the
polar matter of the upper shell is continuously removed from the equatorial plane.
This is why the created bodies are formed mainly in the equatorial plane and form
equatorial disk.

So the orbital motion of separated secondary body is defined by the outer force
field at the surface of the parental body. The value of this field at the body’s surface
is a fundamental parameter, which is determined by the body’s law of the energy
conservation. That is why the orbital velocity of a newly created body is equal
to its parental body’s first cosmic velocity. The direction of the orbital motion is
determined by the Lenz law (see Fig. 3.2). In this connection, it is worth to note
that from the point of view of the solar system creation problem, the attempts to
find explanation of the observed distribution of the moment of momentum between
the axial rotation of the Sun and the planets’ orbital motion are not rightful. This is
because the planets’ orbital velocity demonstrates parental relationship between the
planets and the Sun by proving its identity with the first cosmic velocity and the law
of the energy conservation.

Thus, it follows from the above scenario that the induced by the matter interaction
outer force field of the Sun is responsible for the orbital motion of the planets.

http://dx.doi.org/10.1007/978-94-007-5908-4_3
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Analogously planets’ force field is orbiting their satellites. Doing so, each body
with high accuracy records the value of the parent’s potential energy at the moment
of orbiting. As to the shell’s axial rotation, its potential energy is determined by
the value of its tangential component. The normal and tangential components of the
body’s potential energy comprise the total potential energy, which is a conservative
parameter.

Justifications of the above dynamical effects, which take part in the creation of
the solar system bodies in the framework of Jacobi’s dynamics, are presented below.
The main dynamical effect, related to the nature of the solar system body creation,
is proved by observational data seen in Tables 1.1 and 1.2.

6.1 The Conditions of a Body Separation and Orbiting

It was shown earlier in Sect. 5.1 that in the framework of the Jacobi dynamics, the
solution of Kepler’s problem is given by the following equations:

p
ˆ D B

A
Œ1 � " cos .� �  /� ; (6.2)

t D 4B

.2A/3=2
Œ� � " sin .� �  /� (6.3)

! D 2�
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D .2A/3=2

4B
D
r
GM

R3
D
r
4

3
�G�0; (6.4)

where " and  are the integration constants depending on the initial values of
Jacobi’s functionˆ and its first derivative P̂ at the time moment t0 (the time here is
an independent variable); is the period of virial oscillations; ! is the oscillation;
� is the auxiliary independent variable; D A0 D 1/2E> 0, B D B0 D U

p
ˆ0 for

radial oscillations; and D Ar D 1/2E> 0, B D Br D U
p
ˆr for rotation of the body.

The product of the oscillation frequency ! of the outer force field and R of
the body gives the value of the first cosmic velocity of an artificial satellite, that
is, the velocity with which the satellite undertakes gravity attraction (the pressure
induced by the outer force field). In order to undertake the attraction, satellite uses
its own inner energy of the reactive engine. In this way, the satellite reaches the
first cosmic velocity and becomes weightless, that is, its own outer force field
reaches equilibrium with the planet’s outer force field. After that, the engine is
switched off and its motion continues by the energy of the outer force field. In
order to be separated from the parental body, its outer shell must reach the state of
weightlessness, that is, its own force field has to be in dynamical equilibrium with
the parental force field. The secondary body, created from the outer shell, being
completely in non-weighty state and in dynamical equilibrium with the parental
outer force field, moves farther by that force field with the first cosmic velocity.

http://dx.doi.org/10.1007/978-94-007-5908-4_1
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The data of Tables 1.1 and 1.2 show that the existing discrepancies in the moment
of momentum distribution between the Sun and the planets and also the problems
of capture or separation of the planets’ cloud are taking off. The secondary body at
its creation conserves the parental potential energy through the first cosmic velocity.
As to the direction of orbital motion, the Lenz law works here, which evidences
about the common nature of the gravity and electromagnetic fields. The specific
value (per mass unit) of the planets’ and satellites’ orbital moment of momentum,
which increases with the distance from a central body, has found explanation by the
same reasons.

Now we come to the problem of weightlessness for the body’s outer shell at
the evolution by radiation of energy. First, the structure of the potential and kinetic
energies of a celestial body is discussed.

6.2 The Structure of Potential and Kinetic Energies
of a Nonuniform Body

In fact, all the celestial bodies of the solar system, including the Sun, are nonuniform
creatures. They have a shell structure and the shells themselves are also nonuniform
components of the body. It was shown in Sect. 2.2 that according to the artificial
satellite data, all the measured gravitational moments of the Earth, including tesseral
ones, have significant values. In geophysics, this fact is interpreted as a deviation of
the Earth from the hydrostatic equilibrium and attendance of the tangential forces
that are continuously developed inside the body. From the viewpoint of the planet’s
dynamical equilibrium, the fact of the measured zonal and tesseral gravitational
moments is a direct evidence of the permanent development of the normal and
tangential volumetric forces that are the components of the inner gravitational force
field. In order to identify the above effects, the inner force field of the body should
be accordingly separated.

The expressions (3.36), (3.37), (3.38), and (3.39) in Chap. 3 indicate that the
force function and the polar moment of a nonuniform self-gravitating sphere can
be expanded with respect to their components related to the uniform mean density
mass and its nonuniformities. In accordance with the superposition principle, these
components are responsible for the normal and tangential dynamical effects of a
nonuniform body. Such a separation of the potential energy and polar moment of
inertia through their dimensionless form factors ˛ and ˇ was done by Garcia et al.
(1985) with our interpretation (Ferronsky et al. 1996). Taking into account that the
observed satellite irregularities are caused by the nonuniform distribution of the
mass density, an auxiliary function relative to the radial density distribution was
introduced for separation:

‰.s/ D
sZ

0

.�r � �0/
�0

x2 dx; (6.5)
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where s D r/R is the ratio of the running radius to the radius of the sphere R, �0 is
the mean density of the sphere of radius r, �r is the radial density, x is the running

coordinate, and the value (�r–�0) satisfies
RR

0

.�r � �0/r2 dr D 0 and the function

‰(1) D 0.
The function ‰(s) expresses a radial change in the mass density of the nonuni-

form sphere relative to its mean value at the distance r/R. Now we can write
expressions for the force function and the moment of inertia by using the structural
form factors ˛ and ˇ that were introduced in Sect. 3.6:

U D ˛
GM2
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D 4�G
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0

r�.r/m.r/ dr; (6.6)
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0

r4�.r/ dr: (6.7)

By (6.5), we can do the corresponding changes of variables. As a result, the
expressions for the potential energy U and polar moment of inertia I are found in the
form of their components composed of their uniform and nonuniform constituents
(Garcia et al. 1985; Ferronsky et al. 1996):
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It is known that the moment of inertia multiplied by the square of the frequency !
of the oscillatory–rotational motion of the mass is the kinetic energy of the body.
Then, Eq. (6.9) can be rewritten as

K D I!2 D ˇ2MR2!2 D
2

43
5

� 6

1Z

0

 x dx

3

5MR2!2: (6.10)

Let us clarify the physical meaning of the terms in expressions (6.8) and (6.10) of
the potential and kinetic energies.
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As it follows from (3.36) and Table 3.1, the first terms in (6.8) and (6.10),
numerically equal to 3/5, represent ˛0 and ˇ20 , which are the structural coefficients
of the uniform sphere with radius r, the density of which is equal to its mean value.
The ratio of the potential and kinetic energies of such a sphere corresponds to the
condition of the body’s dynamical equilibrium when its kinetic energy is realized in
the form of oscillations.

The second terms of the expressions can be rewritten in the form

3

1Z

0

 xdx � 3

1Z

0

�
 

x

�
x2 dx; (6.11)

�6
1Z

0

 xdx � �6
1Z

0

�
 

x

�
x2 dx: (6.12)

One can see here that the additive parts of the potential and kinetic energies of
the interacting masses of the nonuniformities of each sphere shell with the uniform
sphere having a radius r of the sphere shell are written. Note that the structural
coefficient ˇ of the kinetic energy is twice as high as the potential energy and has
the minus sign. It is known from physics that interaction of mass particles, uniform
and nonuniform with respect to density, is accompanied by their elastic and inelastic
scattering of energy and appearance of a tangential component in their trajectories
of motion. In this particular case, the second terms in Eqs. (6.8) and (6.10) express
the tangential (torque) component of the potential and kinetic energies of the body.
Moreover, the rotational component of the kinetic energy is twice as much as the
potential one.

The third term of Eq. (6.8) can be rewritten as
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0
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x2

�2
x2 dx: (6.13)

Here, there is another additive part of the potential energy of the interacting
nonuniformities. It is the nonequilibrated part of the potential energy that does not
have an appropriate part of the reactive kinetic energy and represents a dissipative
component. Dissipative energy represents the electromagnetic energy that is emitted
by the body, and it determines the body’s evolutionary effects. This energy forms
the electromagnetic field of the body (see Chap. 8).

Nonuniformity of the density in this case and later is determined as difference
between the density of the given spherical layer and mean value of the density of
the sphere with radius of the spherical layer.

Thus, by expansion of the expression of the potential energy and the polar
moment of inertia, we obtained the components of both forms of energy that are
responsible for oscillation and rotation of the nonuniform body. Applying the above
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results, we can write separate conditions of the dynamical equilibrium for each form
of the motion and separate virial equations of the dynamical equilibrium of their
motion.

6.3 Conditions of Dynamical Equilibrium of Oscillation
and Rotation of a Body

Equations (6.8) and (6.10) can be written in the form

U D .˛0 C ˛t C ˛�/
GM2

R
; (6.14)

K D �
ˇ20 � 2ˇ2t

�
MR2!2; (6.15)

where ˛0 Dˇ20 and ˛t D �2 ˇ2t and the subscripts 0, t, and � define the radial,
tangential, and dissipative components of the considered values.

Because the potential and kinetic energies of the uniform body are equal (˛0 D
ˇ20 D 3=5), from (6.8) and (6.10), one has

U0 D K0; (6.16)

E0 D U0 CK0 D 2U0: (6.17)

In order to express dynamical equilibrium between the potential and kinetic energies
of the nonuniform interacting masses, we can write, from (6.8) and (6.10),

Ut D 2Kt; (6.18)

Et D Ut CKt D 3Ut; (6.19)

where Et,U0, K0, Ut, and Kt are the total, potential, and kinetic energies of oscillation
and rotation, respectively. Note that the energy is always a positive value.

Equations (6.16), (6.17), (6.18), and (6.19) present expressions for uniform and
nonuniform components of an oscillating system that serves as the conditions
of their dynamical equilibrium. Evidently, the potential energy U� of interaction
between the nonuniformities, being irradiated from the body’s outer shell, is
irretrievably lost and provides a mechanism of body’s evolution.

In accordance with the classical mechanics, for the above-considered nonuniform
gravitating body, being a dissipative system, the torque N is not equal to zero, the
angular momentum L of the sphere is not a conservative parameter, and its energy
is continuously spent during the motion, that is,
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N D dL

dt
¤ 0; L ¤ const:; E ¤ const: > 0:

A system physically cannot be conservative if friction or other dissipation forces
are present, because F�ds due to friction is always positive and an integral cannot
vanish (Goldstein 1980),

I
F � ds > 0:

6.4 Equations of Oscillation and Rotation of a Body
and Their Solution

After we have found that the resultant of the body’s gravitational field is not equal to
zero and the system’s dynamical equilibrium is maintained by the virial relationship
between the potential and kinetic energies, the equations of a self-gravitating body
motion can be written.

Earlier, we (Ferronsky et al. 1987) obtained virial equation for describing and
studying the motion of both uniform and nonuniform self-gravitating spheres.
Jacobi (1884) derived it from Newton’s equations of motion of n mass points and
reduced the n-body problem to the particular case of the one-body task with two
independent variables, namely, the force function U and the polar moment of inertia
P̂ , in the form

R̂ D 2E � U: (6.20)

Equation (6.20) represents the energy conservation law and describes the system
in scalar U andˆ volumetric characteristics. In Chap. 4, it was shown that Eq. (6.20)
is also derived from Euler’s equations for a continuous medium and from the
equations of Hamilton, Einstein, and quantum mechanics. Its time-averaged form
gives the Clausius virial theorem for a system with outer source of forces. It was
earlier mentioned that Clausius was deducing the theorem for the application in
thermodynamics and, in particular, applied to the assessment and designing of
Carnot’s machines. As the machines operate in the Earth’s outer force field, Clausius
introduced the coefficient 1/2 to the term of “living force” or kinetic energy, that is,

K D 1

2

X

i

miv
2
i :

As Jacobi has noted, the meaning of the introduced coefficient was to take into
account only the kinetic energy generated by the machine, but not by the Earth’s
gravitational force. That was demonstrated, for instance, by the work of a steam
hammer for driving piles. The machine raises the hammer, but it falls down under
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the action of the force of the Earth’s gravity. That is why the coefficient 1/2 of the
kinetic energy of a uniform self-gravitating body in Eqs. (6.8), (6.9) and (6.10) has
disappeared. In its own force field, the body moves due to the release of its own
energy.

Earlier, by means of the relation U
p
ˆ � const., an approximate solution of

Eq. (6.20) for a nonuniform body was obtained (Ferronsky et al. 1987, 2011). Now,
after expansion of the force function and polar moment of inertia, at U� D 0 and
taking into account the conditions of the dynamical equilibrium (6.17) and (6.19),
Eq. (6.20) can be written separately for the radial and tangential components in the
form

R̂
0 D 1

2
E0 � U0; (6.21)

R̂ t D 1

3
Et � Ut: (6.22)

Taking into account the functional relationship between the potential energy and the
polar moment of inertia

jU j p
ˆ D B D const:

and also taking into account that the structural coefficients ˛0 D ˇ20 and 2˛0 D ˇ2t ,
both Eqs. (6.21) and (6.22) are reduced to an equation with one variable and have a
rigorous solution:

ˆn D �AC Bnp
ˆn
; (6.23)

where An and Bn are the constant values and subscript “n” defines the nonuniform
body.

The general solution of Eq. (6.23) is (5.14) and (5.15):

p
ˆn D Bn

An
Œ1� " cos .� � '/�; (6.24)

! D 2�

Tv
D .2An/

3=2

4Bn
; (6.25)

where " and ® are, as previously, the integration constants depending on the
initial values of Jacobi’s function ˆn and its first derivative P̂ n at the time
moment t0 (the time here is an independent variable); Tv is the period of
virial oscillations; ! is the oscillation frequency; � is the auxiliary indepen-
dent variable; An D A0 � 1/2E0> 0; Bn D B0 D U0

p
ˆ0 for radial oscillations;

An D At D �1/3Et,> 0; and Bn D Bt D Ut
p
ˆt for rotation of the body.
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The expressions for the Jacobi function and its first derivative in an explicit form
can be obtained after transforming them into the Lagrange series:

p
ˆn D B

A

�
1C "2

2
C
�
�"C 3

8
"3
�

cos Mc � "2

2
cos 2Mc � 3

8
"3 cos 3Mc C � � �

	
;

ˆn D B2

A2

�
1C 3

2
"2 C

�
�2"C "3

4

�
cos Mc � "2

2
cos 2Mc � "3

4
cos 3Mc C � � �

	
;

P̂ n D
r
2

A
"B

�
sin Mc C 1

2
" sin 2Mc C "2

2
sin Mc

�
2cos2Mc � sin2Mc

�C � � �
	
:

(6.26)

Radial frequency of oscillation !0r and angular velocity of rotation !tr of the shells
of radius r can be rewritten from (6.25) as

!0r D .2A0/
3=2

4B0
D
s
U0r

J0r
D
s
˛20rGmr

ˇ20rr
3

D
r
4

3
�G�0r; (6.27)

!tr D .2At/
3=2

4Bt
D
s
2Utr

Jtr
D
s
2˛2trGmr

ˇ2trr
3

D
r
4

3
�G�0rker; (6.28)

where U0r and Utr are the radial and tangential components of the force function
(potential energy), J0r and Jtr D 2/3J0r are the polar and axial moments of inertia,
�0r D 1

Vr

R

Vr

�.r/dVr, �(r) is the law of radial density distribution, �0r is the mean

density value of the sphere with a radius r, Vr is the sphere volume with a radius r,
2˛tr Dˇ2tr, and ker is the dimensionless coefficient of the energy dissipation or tidal
friction of the shells equal to the shell’s oblateness.

The relations (6.24) and (6.25) represent Kepler’s laws of body rotation in
dynamical equilibrium. In the case of uniform mass density distribution, the
frequency of oscillation of the sphere’s shells with radius r is !0r D!0 D const.
It means that here all the shells are oscillating with the same frequency. Thus, it
appears that only nonuniform bodies are rotating systems.

Rotation of each body’s shell depends on the effect of the potential energy
scattering at the interaction of masses of different density. As a result, a tangential
component of energy appears, which is defined by the coefficient ker. In geodynam-
ics, the coefficient is known as the geodynamical parameter. Its value is equal to the
ratio of the radial oscillation frequency and the angular velocity of a shell and can
be obtained from Eqs. (6.27) to (6.28), that is,

ke D !2t

!20
D !t

2

4

3
�G�0

: (6.29)
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It was found that in the general case of a three-axial (a, b, c) ellipsoid with the
ellipsoidal law of density distribution, the dimensionless coefficient ke2 [0,1] is
equal to (Ferronsky et al. 1987, 2011)

kr D F.'; f /

sin '

�
a2 C b2 C c2

3a2
;

where ®D arcsin
q

.a2�c2/
a2

, f D
q

.a2�b2/

.a2�c2/ , and F(®, f ) is an incomplete elliptic
integral of the first degree in the normal Legendre form.

Thus, in addition to the solution of radial oscillations obtained earlier (Ferronsky
et al. 1987, 2011), now we have a solution of its rotation. It is seen from expression
(6.27) that the shell oscillation does not depend on the phase state of the body’s
mass and is determined by its density.

It follows from Eqs. (6.27) to (6.28) that in order to obtain the frequency of
oscillation and angular velocity of rotation of a nonuniform body, the law of radial
density distribution should be revealed. This problem will be considered later on.
But before that, the problem of the nature of a body shell separation with respect to
its density needs to be solved.

6.5 The Nature and Mechanism of Body Shell Differentiation

It is well known that celestial bodies have a quasi-spherical shell structure. This
phenomenon has been confirmed by recording and interpretation of seismic longi-
tudinal and transversal wave propagation during earthquakes. In order to understand
the physics and mechanism of a body mass differentiation with respect to its density,
we apply Roche’s tidal dynamics.

Newton’s theorem of gravitational interaction between a material point and a
spherical layer states that the layer does not affect a point located inside the layer.
On the contrary, the outside-located material point is affected by the spherical layer.
Roche’s tidal dynamics is based on the above theorem. His approach is as follows
(Ferronsky et al. 1996).

There are two bodies of masses M and m interacting in accordance with
Newton’s law (Fig. 6.1a).

RB B
R  r • r

M A A m B RA 

a b

Fig. 6.1 The tidal gravitational stability of a sphere (a) and the sphere layer (b)
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Let M � m and R � r, where r is the radius of the body m and R is the distance
between the bodies M and m. Assuming that the mass of the body M is uniformly
distributed within a sphere of radius R, we can write the accelerations of the points
A and B of the body m as

qA D GM

.R � r/2 � Gm

r2
; qB D GM

.RC r/ 2
C Gm

r2
:

The relative tidal acceleration of the points A and B is

qAB D G

�
M

.R � r/2
� M

.RC r/2
� 2m

r2

	

D 4�

3
G

"

�MR
3 Rr

.R2 � r2/
2

� 2�mr

#

� 8�

3
Gr .2�M � �m/ : (6.30)

Here �M D M=4
3
�R3 and �m D m=4

3
�r3 are the mean density distributions for

the spheres of radius R and r. Roche’s criterion states that the body with mass
m is stable against the tidal force disruption of the body M if the mean density
of the body m is at least twice as high as that of the body M in the sphere with
radius R. Roche considered the problem of the interaction between two spherical
bodies without any interest in their creation history and in how the forces appeared.
From the point of view of the origin of celestial bodies and of the interpretation of
dynamical effects, we are interested in the tidal stability of separate envelopes of
the same body. For this purpose, we can apply Roche’s tidal dynamics to study the
stability of a nonuniform spherical envelope.

Let us assess the tidal stability of a spherical layer of radius R and thickness
r D RB � RA (Fig. 6.1b). The layer of mass m and mean density �m D m/4� RA

2r
is affected at point A by the tidal force of the sphere of radius RA. The mass of
the sphere is M and mean density �M D M/. 4

3
/�R3:A . The tidal force in point B is

generated by the sphere of radius R C r and mass M C m. Then, the accelerations of
the points A and B are

qA D GM

R2A
; qB D G .M Cm/

.RA C r/2
:

The relative tidal acceleration of the points and is

qAB DGM
�
1

R2A
� 1

.RA C r/2

	
� Gm

.RA C r/2

D
�
8

3
�G�M � 4�G�m

�
r D 4�Gr

�
2

3
�M � �m

�
; .R � r/ : (6.31)

Equations (6.30) and (6.31) give the possibility to understand the nature of a body
shell separation including some other dynamical effects.
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6.6 Self-Similarity Principle and Radial Component
of Nonuniform Sphere

It follows from Eq. (6.31) that in the case of the uniform density distribution
(�m D � ), all spherical layers of the gravitating sphere move to the center with
accelerations and velocities that are proportional to the distance from the center.
It means that such a sphere contracts without loss of its uniformity. This property
of self-similarity of a dynamical system without any discrete scale is unique for a
uniform body (Ferronsky et al. 1996).

A continuous system with a uniform density distribution is also ideal from the
point of view of Roche’s criterion of stability with respect to the tidal effect. That is
why there is a deep physical meaning in the separation of the first term of potential
energy in expression (6.8). A uniform sphere is always similar in its structure in
spite of the fact that it is a continuously contracting system. Here, we do not consider
the Coulomb force effect. In this case, we have considered the specific proton and
electron branches of the evolution of the body (see Chap. 8).

Note that in Newton’s interpretation, the potential energy has a nonadditive
category. It cannot be localized even in the simplest case of the interaction
between two mass points. In our case of a gravitating sphere as a continuous
body, for the interpretation of the additive component of the potential energy, we
can apply Hooke’s concept. According to Hooke, there is a linear relationship
between the force and the caused displacement. Therefore, the displacement is in
square dependence on the potential energy. Hooke’s energy belongs to the additive
parameters. In the considered case of a gravitating sphere, the Newton force acting
on each spherical layer is proportional to its distance from the center. Thus, from a
physical point of view, the interpretations of Newton and Hooke are identical.

At the same time, in the two approaches, there is a principal difference even in the
case of uniform distribution of the body density. According to Hooke, the cause of
displacement, relative to the system, is the action of the outer force. And if the total
energy is equal to the potential energy, then equilibrium of the body is achieved. The
potential energy plays here the role of elastic energy. The same uniform sphere with
Newton’s forces will be contracted. The body’s all the elementary shells will move
without a change in uniformity in the density distribution. But the first terms of
Eqs. (6.8), (6.9), and (6.10) show that the tidal effects of a uniform body restrict the
motion of the interacting shells toward the center. In accordance with Newton’s third
law and the d’Alembert principle, the attraction forces, under the action of which
the shells move, should have equal and opposite direct forces of Hooke’s elastic
counteraction. In the framework of the elastic gravitational interaction of shells, the
dynamical equilibrium of a uniform sphere is achieved in the form of its elastic
oscillations with equality between the potential and kinetic energies. The uniform
sphere is dynamically stable relative to the tidal forces in all of its shells during
the time of the system contraction. Because the potential and kinetic energies of a
sphere are equal, its total energy in the framework of the averaged virial theorem
within one period of oscillation is accepted formally as equal to zero. Equality of
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6.7 Charge-Like Motion of Nonuniformities and Tangential Component. . . 169

the potential and kinetic energies of each shell means the equality of the centripetal
(gravitational) and centrifugal (elastic constraint) accelerations. This guarantees
the system remaining in dynamical equilibrium. On the contrary, all the spherical
shells will be contracted toward the gravity center, which, in the case of the sphere,
coincides with the inertia center but does not coincide with the geometric center
of the masses. Because the gravitational forces are acting continuously, the elastic
constraint forces of the body’s shells are also reacting continuously. The physical
meaning of the self-gravitation of a continuous body consists in the permanent work
that applies the energy of the interacting shell masses on one side and the energy of
the elastic reaction of the same masses in the form of oscillating motion on the
other side. At dynamical equilibrium, the body’s equality of potential and kinetic
energies means that the shell motion should be restricted by the elastic oscillation
amplitude of the system. Such an oscillation is similar to the standing wave that
appears without the transfer of energy into outer space. In this case, the radial forces
of the shell’s elastic interactions along the outer boundary sphere should have a
dynamical equilibrium with the forces of the outer gravitational field. This is the
condition of the system to be held in the outer force field of the mother’s body.
Because of this, while studying the dynamics of a conservative system, its rejected
outer force field should be replaced with the corresponding equilibrated forces as
they do, for instance, in Hooke’s theory of elasticity.

Thus, from the point of view of dynamical equilibrium, the first terms in Eqs.
(6.8) and (6.10) represent the energy that provides the field of the radial forces in a
nonuniform sphere. Here, the potential energy of the uniform component plays the
role of the active force function, and the kinetic energy is the function of the elastic
constraint forces.

6.7 Charge-Like Motion of Nonuniformities and Tangential
Component of the Force Function

Let us now discuss the tidal motion of nonuniformities due to their interactions
with the uniform body. The potential and kinetic energies of these interactions are
given by the second terms in Eqs. (6.8) and (6.10). In accordance with (6.31),
the nonuniformity motion looks like the motion of electrical charges interacting
on the background of a uniform sphere contraction. Spherical layers with densities
exceeding those of the uniform body (positive anomalies) come together and move
to the center in elliptic trajectories. The layers with a deficit of the density (negative
anomalies) come together but move from the center on the parabolic path. Similar
anomalies come together, but those with the opposite sign are dispersed with forces
proportional to the layer radius. In general, the system tends to reach a uniform and
equilibrium state by means of redistribution of its density up to the uniform limit.
Both motions happen not relative to the empty space, but relative to the oscillating
motion of the uniform sphere with a mean density. Separate consideration of motion
of the uniform and nonuniform components of a heterogeneous sphere is justified
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by the superposition principle of the action of forces that we keep here in mind. The
considered motion of the nonuniformities looks like the motion of the positive and
negative charges interacting on the background of the field of the uniformly dense
sphere (Ferronsky et al. 1996). One can see here that in the case of gravitational
interaction of mass particles of a continuous body, their motion is the consequence
not only of mutual attraction but also of mutual repulsion by the same law 1/r2.
In fact, in the case of a real natural nonuniform body, it appears that the Newton
and Coulomb laws are identical in details. Later on, while considering a body’s
by-density differentiated masses, the same picture of motion of the positive and
negative anomalies will be seen.

If the sphere shells, in turn, include density nonuniformities, then by means
of Roche’s dynamics, it is possible to show that the picture of the nonuniformity
motion does not differ from that considered above.

In physics, the process of interaction of particles with different masses without
redistribution of their moments is called elastic scattering. The interaction process
resulting in the redistribution of their moments and change in the inner state or
structure is called inelastic scattering. In classical mechanics, while solving the
problems of motion of the uniform conservative systems (like motion of the material
point in the central field or motion of the rigid body), the effects of the energy
scattering do not appear. In the problem of dynamics of the self-gravitating body,
where interaction of the shells with different masses and densities is considered,
the elastic and inelastic scattering of the energy becomes an evident fact followed
from the consideration of the physical meaning of the expansion of the energy
expressions in the form of (6.8) and (6.10). In particular, their second terms
represent the potential and kinetic energies of gravitational interaction of masses
having a nonuniform density with the uniform mass and express the effect of
elastic scattering of density-different shells. Both terms differ only in the numeric
coefficient and sign. The difference in the numerical coefficient evidences that the
potential energy here is equal to half of the kinetic one (Ut D 1/2Kt). This part of the
active and reactive force function characterizes the degree of the noncoincidence
of the volumetric center of inertia and that of the gravity center of the system
expressed by Eqs. (3.38) and (3.39). This effect is realized in the form of the angular
momentum relative to the inertia center.

Thus, we find that inelastic interaction of the nonuniformities with the uniform
component of the system generates the tangential force field that is responsible for
the system rotation. In other words, in the scalar force field of the by-density uniform
body, the vector component appears. In such a case, we can say that, by analogy with
an electromagnetic field, in the gravitational scalar potential field of the nonuniform
sphere U(R, t), the vector potential A(R, t) appears for which U D rot A, and the
field U(R, t) will be solenoidal. In this field, the conditions for vortex motion of the
masses are born, where div A D 0. This vector field, which in electrodynamics is
called solenoidal, can be represented by the sum of the potential and vector fields.
The fields, in addition to the energy, acquire moments and have a discrete-wave
structure. In our case, the source of the wave effects appears to be the interaction
between the elementary shells of the masses by means of which we can construct
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a continuous body with a high symmetry of forms and properties. The source of
the discrete effects can be represented by the interacting structural components of
the shells, namely, atoms, molecules, and their aggregates. We shall continue the
discussion about the nature of the gravitational and electromagnetic energies in
Chap. 8.

6.8 Physical Meaning of the Archimedes and Coriolis Forces

The Archimedes principle states that The apparent loss in weight of a body totally
or partially immersed in a liquid is equal to the weight of the liquid displaced. We
saw in Sect. 6.5 that the principle is described by Eq. (6.31) and the forces that sink
down or push out the body or the shell are of a gravitational nature. In fact, in the
case of �m D �M , the body immersed in a liquid (or in any other medium) is kept
in place due to equilibrium between the forces of the body’s weight and the forces
of the liquid reaction. In the case of �m>�M or �m<�M , the body is sinking or
floating up depending on the resultant of the above forces. Thus, the Archimedes
forces seem to have a gravity nature and are the radial component of the body’s
inner force field.

It is assumed that the Coriolis forces appeared as an effect of the body motion
in the rotational system of coordinates relative to the inertial reference system. In
this case, rotation of the body is accepted as the inertial motion, and the Coriolis
forces appear to be the inertial ones. It follows from the solution of Eq. (6.22) that
the Coriolis forces appear to be the tangential component of body’s inner force field,
and the body rotation is caused by the moment of those forces that are relative to
the three-dimensional center of inertia, which also does not coincide with the three-
dimensional gravity center.

In accordance with Eq. (6.31) of the tidal acceleration of an outer nonuniform
spherical layer at � ¤ �m, the mechanism of the gravitational density differenti-
ation of masses is revealed. If � <�m, then the shell immerses (is attracted) up
to the level where � D �m. At � >�m, the shell floats up to the level where
� D �m, and at � > 2/3�m, the shell becomes a self-gravitating one. Thus, in the
case when the density increases toward the sphere’s center, which is the Earth’s
case, each overlying stratum appears to be in a suspended state due to repulsion by
the Archimedes forces, which, in fact, are a radial component of the gravitational
interaction forces.

The effect of the gravitational differentiation of masses explains the nature
of creation of shell-structured celestial bodies and corresponding processes (for
instance, the Earth’s crust and its oceans, geotectonic, orogenic, and seismic
processes, including earthquakes). All these phenomena appear to be a consequence
of the continuous gravitational differentiation in the density of the planet’s masses.
We assume that creation of the Earth and the solar system as a whole was resulted
by this effect. For instance, the mean value of the Moon’s density is less than
two third of the Earth’s, that is, � < 2/3�m. If one assumes that this relation
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was maintained during the Moon’s formation, then, in accordance with Eq. (6.31),
this body was separated at the earliest stage of the Earth’s mass differentiation.
Creation of the body from the separated shell should occur by means of the cyclonic
eddy mechanism, which was proposed in due time by Descartes and which was
unjustly rejected. If we take into account the existence of the tangential forces in the
nonuniform mass, then the above mechanism seems to be realistic.

Thus, we learned the nature and mechanism of initially heavy outer shell of a self-
gravitating body into a weightless state. Such a weightless shell by its own tangential
component of the potential energy is transferred into vortex cloud and, after reaching
the dynamical equilibrium (self-gravitating state), becomes a planet, satellite, or any
other body. In the case of uniform density of the weightless shell, it transfers into a
nebula, equatorial ring, or diffuse matter. The orbital motion of a newly created
planet, satellite of other body, is determined by the first cosmic velocity of the
parental body. And the axial rotation depends on the value of nonuniformity in
density.

6.9 Initial Values of Mean Density and Radius of a Body

Thus, it follows from Eq. (6.31) that the outer shell of a gaseous body after
reaching its density equal to two third from the mean value of the total body
becomes weightless. If the own shell’s density is nonuniform, then by its tangential
component of the energy, the shell is transferred into a secondary body in the form
of vortex creature. As it is seen from observation, new bodies are formed in different
regions of a protoparent body’s surface. The large-in-mass bodies like stars, planets,
and satellites are firmed mainly in the equatorial zone due to difference in value
for the polar and equatorial outer force field. Because of this, a new body inherits
the polar and equatorial obliquity, the value of which reflects the degree of the
nonuniformity of its density. The comets, asteroids, and smaller bodies are formed
in the other regions of the parental bodies. The high eccentric orbits of such bodies
prove this fact. The inclination of the new body’s orbital plane relative to the
parental equatorial plane can be up to close to 180ı.

The following initial values of density �i and radius Ri of the protosun and
protoplanets can be obtained on the basis of their dynamic equilibrium state.

The protosolar gaseous cloud has separated from the protogalaxy body when
its outer shell in the equatorial domain has reached the state of weightlessness.
In fact, the gaseous cloud should represent chemically nonhomogeneous rotating
body. As it follows from Roche’s dynamics (Eq. 6.31), the mean density of the
gaseous protogalaxy outer shell should be �s D 2/3�g. The condition �s D 2/3�g

is the starting point of separation and creation of the protosun from the outer
protogalaxy shell. Accepting the above-described mechanism of formation of the
secondary body, we can find the mean density of the protogalaxy at the moment of
the protosun separation as
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�g D m�

4

3
�R3

D 2:5 � 1041
4

3
� 3:14 � .2:5 � 1020/3

D 1:67 � 10�21 kg=m3 D 1:67 � 10�24 g=cm3:

Here, the protogalaxy radius is equal to the semimajor orbital axis of the protosun,
that is, Ru D 2.5 � 1020 m.

The mean density of the separated protogalaxy shell is

�c D 2=3�g D 2=3 � 1:67 � 10�24 D 1:11 � 10�24 g=cm3:

In accordance with Eq. (6.30), the mean density and radius of the initially created
protosun body should be

�s D 2�g D 2 � 1:67 � 10�24 D 3:34 � 10�24 g=cm3I

Rc D 3

vu
u
u
t

2 � 1033
4

3
3:34 � 10�24

D 7:5 � 1018 cm D 7:5 � 1016 m:

The mean density and the radius of the initially created proto-Jupiter, proto-
Earth, and proto-Moon are as follows:

The Proto-Jupiter W �j D 2 � 10�9 g=cm3; Rj D 6:2 � 1013 cm D 6:2 � 1011 mI

The proto-Earth W �e D 2:85 � 10�7 g=cm3; Re D 1:9 � 1011 cm D 1:9 � 109 mI

The Proto-Moon W �m D 5 � 10�4 g=cm3; Rm D 1:1 � 109 cm D 1:1 � 107 mI

Analogous unified process was repeated for all the planets and their satellites.
From the analysis of the above observational and calculated data, the following

conclusions are made:

1. The planets of the solar system were created from a common nonuniform in
density self-gravitating protosolar cloud, which has separated during evolution
on shells with different densities. In accordance with the Roche’s tidal dynamics,
after the outer shell reaching density equal to two third from the cloud’s mean
value (the condition of the weightlessness relative to the total body), by the inner
force field and the tangential component of the potential energy, the protoplanets
after becoming self-gravitating bodies were formed and separated. Analogous
processes have taken place at creation of the satellites from the planets. In
addition, accumulation of the “light” matter in the outer shells took place
gradually and accompanied by separation of small portions in the form of comets
and other bodies and dust matter being weightless relative to the surrounding
weighted bodies.
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2. The orbital velocities of the planets and satellites, which correspond to the first
cosmic velocity of the parental bodies, appear to be an effect of the outer force
field, which is realized at the moment when the shell reaches its weightlessness
state. The orbital motion of the planets, satellites, and other bodies in the outer
force field results from the laws of electrodynamics.

3. The small planets of the asteroid belt have created from the protosolar cloud by
the common law. Appraising by the orbital velocities, there are no features of
their creation because of a body destruction.

4. The axial rotation of the Sun, planets, and satellites has taken and takes place
by tangential component of the inner force field. The axial rotation has never
been inertial like rigid body. The body’s angular moment depends on the friction
(weight) of the rotating masses, and to the contrary of the orbital moment of
momentum, it has not remained at a conservative value. The orbital angular
momentum is the fundamental and conservative parameter because it expresses
the law of the body’s energy conservation law. The angular momentum of
the Sun itself expresses only the tangential component of its potential energy,
which is a small part of the total potential energy of the body (see minus sign
in Eq. 6.10). The direction of revolution and rotation of all the planets and
satellites is governed by the force field of the parental body and determined,
as in electrodynamics, by the Lenz law.

The discussed physics and kinematics of creation and separation of the solar
system bodies prove the Huygens law of motion on semicubical parabola of his
watch pendulum, which synchronously follows the Earth’s motion. Relationship
between the evolute and the evolvent represents the relationship between function
and its derivative or between function and its integral. For the Huygens oscillating
pendulum, the suspension filament starts unrolling in a fixed point. In the case of a
celestial body, creation of a satellite starts in a fixed point of its parental body where
the initial conditions are transferred by Kepler’s third law, which is the consequence
of a body creation.
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Chapter 7
The Body’s Evolutionary Processes as Effects
of Energy Emission

Abstract Several problems of the gravitational evolution of a gaseous sphere,
based on Jacobi’s virial equation and the relationship between the potential energy
and the moment of inertia of the sphere in the form �Up

ˆ D ˛ˇGm5=2; are
considered. The solving problems are as follows:

– Equilibrium boundary conditions for a self-gravitating gaseous sphere
– Velocity of gravitational differentiation of a gaseous sphere
– The luminosity–mass relationship
– Bifurcation of a dissipative system
– Cosmochemical effects
– Radial distribution of mass density and the body’s inner force field
– Oscillation frequency and angular velocity of shell rotation
– The nature of precession, nutation, and body’s equatorial plane obliquity
– The nature of Chandler’s effect of the Earth pole wobbling

All the above tasks have physical formulation and mathematical solution.

We consider here several problems of the gravitational evolution of a gaseous sphere
based on Jacobi’s virial equation and the relationship between the potential energy
and the moment of inertia of the sphere in the form

�Up
ˆ D ˛

Gm2

R

q
m.ˇR/2 D ˛ˇGm5=2; (7.1)

where U is the potential energy of the sphere, I is the polar moment of inertia,
G is the gravitational constant, m is the body mass, R is the sphere radius, and ˛
and ˇ are dimensionless structural parameters depending on the radial mass density
distribution of the spherical body.

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 7,
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From (7.1), and taking into account Eqs. (3.33), (3.35), (6.14), and (6.15), we
have the following relations between the structural form factors:

˛ D rg

R
and ˇ D rm

R
; (7.2)

˛ˇ D const:; (7.3)

where ˛ D .˛0C˛t C˛�/I ˇ D .ˇ0�ˇt/I ˛0 D ˇ20 D 0:6I ˛t D 2ˇ2t I ˛0ˇ0 D a0 D
constI rg and rm are the reduced gravity radius and radius of inertia; and ˛0, ˇ0, ˛t,
˛� , and ˇt are form factors of the normal, tangential, and dissipative components of
the energy for nonuniform mass density distribution of a system.

In Chap. 6, we found that the constancy of the form factor product (7.3) is
independent of the body mass, radius, and radial mass density distribution for
spherical and elliptic bodies. Equation (7.1) is therefore a key expression in our
further consideration.

7.1 Equilibrium Boundary Conditions for a Self-Gravitating
Gaseous Sphere

It is well known that polytropic models require the boundary mass density of a
gravitating body to be rigorously equal to zero. Hence, this condition gives us no
opportunity to consider any physical processes during evolution.

If Eq. (7.1) for the spherical and elliptical gravitating system is valid, it allows
us to consider convenient boundary conditions that can be used in the study of
evolutionary problem.

In deriving the physical boundary conditions for a self-gravitating and rotating
gaseous sphere, we consider its rotation as an effect of the tangential component of
energy generated by the interacted nonuniform particles. As shown in Chap. 6, the
ellipticity of the body is formed not as a result of its rotation but because of its self-
gravitation. The key relationship (7.1) used here as the basis of our consideration
prevents any possible errors. When we have to introduce the moment of inertia, the
rotating sphere boundary at the equator will be defined by Kepler’s law.

The fact that gaseous sphere boundary equilibrium conditions differ from those
of the interior explains the difference between a free molecular boundary particle
movement and an internal chaotic one. It is a consequence of the discrete matter
structure dominant at the boundary (Jeans 1919).

Let us now consider the thermodynamic boundary conditions. Surely, we can
define the boundary temperature only in the case of its real existence, which, in
turn, depends on the existence of the thermodynamic equilibrium between matter
and radiation. Otherwise, it cannot be considered as black body radiation, and the
Stefan–Boltzmann equation is inapplicable.

http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
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Thermodynamic equilibrium at the boundary can be reached only when the
energy and the momentum carried away by the radiation flow is greater than that
carried away by the flow of particles from the sphere surface per unit time. Such a
surface cannot increase further without disturbing the thermodynamic equilibrium.

We shall consider the evolutionary process of the gaseous sphere to be a
successive series of hydrodynamic states in equilibrium. We shall also assume that
the radiation energy loss causes the sphere to contract during the time periods
between the equilibrium states.

Taking these ideas into account, we can express the hydrodynamic equilibrium
at the boundary either by an expression representing particle flow “locking” by the
gravitational force or, equivalently, by an equation showing the absence of particle
dissipation from the boundary surface, which can be written in the form

Gm	

R2
D 	 N�2

R
; (7.4)

where 	 is the mass of the particle and N� is the velocity of the particle heat
movement at the sphere boundary of the pole (more precisely, it is the velocity of a
particle running from the gravitational field).

For gravitational contraction between any two equilibrium states, Eq. (7.4) must
be written as

Gm	

R2
>
	 N�2
R
: (7.5)

Let us prove that expression (7.4) for the gaseous spherical body boundary satisfies
the virial relations.

First, we consider one particle at the sphere boundary surface with mass 	 and
moving in the volumetric central field of the body with mass m and radius R. Then,
it is easy to see that

 
	 RR2
2

!

D 	

�
RNR NRC

� PNR
�2	

; (7.6)

where the kinetic energy Kp of the particle is

	
� PNR
�2 D 2	�2

2
D 2Kp (7.7)

From Newton’s law, we have

RNR D �Gm
R3

R: (7.8)



178 7 The Body’s Evolutionary Processes as Effects of Energy Emission

The potential energy Up of the particle in the gravitational field of the body is

	 RNR NR D �Gm	
R3

� NR NR� D �Gm	
R

D Up: (7.9)

Therefore,

d2

dt2

�
	R2

2

�
D Up C 2Kp: (7.10)

Summing over all particles at the boundary layer and neglecting their interaction
energy, we obtain

d2

dt2

�
msR

2

2

�
D Us C 2Ks; (7.11)

where ms is the mass of the boundary spherical layer.
Or finally,

3

4
RIs D Us C 2Ks;

R̂ s D Us C 2Ks; (7.12)

which represents Jacobi’s virial equation for a spherical gaseous layer.
The exchange of particles between the gaseous body and its boundary layer takes

place at the same radius R and lasts for a short time, while the total mass of the layer
remains constant. So Eq. (7.12) is rigorous.

The solution of Eq. (7.12) will be exactly the same as that obtained in Chap. 5 for
a gravitating sphere, except that the corresponding parameters of the sphere must be
replaced by those of the boundary layer.

If one time averages over time intervals that are longer than the period of
boundary-layer oscillations, then the left-hand side of Eq. (7.12) tends to zero
(i.e., the layer enters into the outer force field) and a quasi-equilibrium boundary
state is obtained, determined by the generalized classical virial relation between the
potential and kinetic energies:

P̂ D Us C 2Ks: (7.13)

Thus, we have proved that Eq. (7.4) written for the gaseous sphere boundary is
a virial relation. We shall use this expression further in solving the problem of
contraction velocity for gravitating gaseous sphere.

http://dx.doi.org/10.1007/978-94-007-5908-4_5
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7.2 Velocity of Gravitational Differentiation
of a Gaseous Sphere

In considering the evolution of a gaseous sphere, one does not usually take into
account its rotation because the total kinetic energy exceeds the rotational energy.
Other authors who accepted the rotation of the gaseous sphere could not manage
with the angular momentum accepted as conservative value during contraction
(Zeldovich and Novikov 1967; Spitzer 1968; Alfven and Arrhenius 1970).

It was shown in Chaps. 3 and 6 that the main part of kinetic energy of a celestial
body is represented by the oscillatory energy of the interacting elementary particles.
The rotational part is much smaller than oscillatory energy and appears to be an
indication of degree of the body matter non-homogeneity. Slow rotating bodies like
the Sun, Mercury, Venus, and Moon have more homogeneous density distribution.
Their part of rotational energy from the total kinetic one is �1/104. For the other
planets of the solar system, this figure is �1/300. It follows from (6.10) of Chap. 6
that the value of oscillatory energy for a body as a whole is a conservative parameter.
The value of rotary energy is a changeable parameter.

The solution of the virial equation obtained earlier enables us to propose the
following mechanism for gravitational contraction of a gaseous sphere. During
each period of the sphere’s oscillation, a certain amount of energy is lost through
radiation. Hence, the contraction amplitude is larger than the expansion amplitude.
The difference between the two amplitudes is the value of the gaseous sphere con-
traction averaged over one period of oscillation. Taking into account the adiabatic
invariant relation (Landau and Lifshitz 1973), we shall consider the problem of the
gravitational contraction of a gaseous sphere using the virial relations and the key
relationships (7.1) and (7.3). Note that we consider here the process of evolution
without loss of body equilibrium.

Since we consider the evolution process of a gaseous sphere as a successive
moment from one equilibrium state to another, it is natural that the minimum time
interval for averaging varying parameters should be a little larger than that required
for establishing the hydrodynamic equilibrium. So it is not difficult to control the
variations of parameters during evolution that are not in contradiction with the
equilibrium. (Later, we shall consider these restrictions to be nonexistent.)

It is convenient for our purpose to write the generalized virial theorem in the form

�U D �2.E � E�/ � 2.E� �E/; (7.14)

where E D U C K is the total energy of the gaseous sphere, which is a constant over
time, E� is the electromagnetic energy radiated up to the considered moment of
time, K is kinetic energy, which includes the energy of rotation and oscillation of
the interacted mass particles, and E and U are negative parameters.

http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
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The time derivative of E� is the gaseous sphere luminosity L, which is a function
of the sphere radius R and the boundary surface temperature T0:

d

dt

�
E�
� D L D 4��R2T 40 ; (7.15)

where � is the Stefan–Boltzmann constant.
From Eq. (7.14), it follows that

d

dt

�
E�
� � d

dt

�
E� � E

�C 1

2

d

dt
.�U / :

The potential energy is in turn a function of the radius R:

�U D ˛
Gm2

R
:

The time derivative of (�U) is

d

dt
.�U / D vc

d

dR
.�U/ ;

where vc D dR/dt is the gaseous sphere contraction velocity. To find this velocity,
we write

1

2
vc

d

dR

�
˛
Gm2

R

�
D dE�

dt
D L

and finally, with the help of Eq. (7.3), we obtain

vc D 8��

Gm2

R2T 40
.d=dR/.˛=R/

(7.16)

From Eq. (7.16), it is easy to see that vc contains two unknown functions: ˛D˛(R)
and T0 D T0(R).

As was found in Chap. 3, the structural form factor ˛, as well as ˇ, is the function
of radial mass density distribution of the sphere. In Chap. 6, we considered this
function presented by (7.2) and (7.3). It was found that the contraction velocity of
the gaseous sphere depends on the mass density redistribution, which determines
the kinetic energy of the body and its shells. So the function ˇDˇ(R) can be found
from the condition of kinetic energy conservation of the body’s upper shell after its
separation.

It follows from (7.3) that during the gravitational contraction of the gaseous
sphere, its radius R ! R1 and ˇ! 1 (where R1 is the orbital radius of separation).
If R ! R1, then velocity of rotation v ! v1 (v1 is the first cosmic velocity).

http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_6
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The kinetic energy of the body’s upper shell before Kb and after Ka shell is
written as

Kb D I!2 D ˇ2m!2R2; (7.17)

Ka D m�21 D ms !
2R21; (7.18)

where I is the polar moment of inertia of the body, ! is the frequency of the radial
oscillations, m and ms are the body and its upper shell mass, and R�R1 is the
thickness of the upper shell or the contraction value.

From Eqs. (7.17) and (7.18), we can write

ˇ2 D ms !
2R21

m!2R2
D �

R21
R2
;

ˇ D p
�
R1

R
;

˛ D a

ˇ
D ap

�

R

R1
; (7.19)

where is the ratio of the protosun’s mass to the mass of a separated body.
Thus, we obtained an expression for ˛ as a function of R, which is valid when

the kinetic energy of the upper body’s shell conserves in the orbital motion of the
separated creature.

Let us now try to obtain the relationship between the gaseous sphere boundary
temperature T0 and the radius R. We introduced the virial equilibrium boundary
conditions by Eq. (7.4). This equilibrium was defined as particle flow “locking”
by the gravitational force or, equivalently, by an equation showing the absence of
particle dissipation from the boundary surface. Let us now rewrite it thus:

Gm	

R2
D 	 N�2

R
: (7.20)

The heat velocity N�2 depends on the boundary temperature T0 as

	Nv2 D 3kT0; (7.21)

where k is the Boltzmann constant.
Therefore, we can rewrite the condition for particle flow “locking” (7.20) with

the help of Eq. (7.21) as

Gm	

3k
D T0R: (7.22)
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From the law of equal energy distribution over the degrees of freedom for the case
of a gas particle mixture in equilibrium, it follows that

	1 Nv21 D 	2 Nv22: (7.23)

It is easy to see from (7.22) that the equilibrium radius of a gaseous sphere depends
on the chemical composition of the gas. This conclusion follows from Eqs. (7.22)
and (6.71) of Chap. 6, where the mechanical equilibrium condition of a body’s upper
shell is considered. Those results explain the effect of the particle flow “locking”
on the pole by the gravitational force, which is based on the concept of mass
and radiation equilibrium. Care must therefore be taken when the gas mixture is
analyzed; that is, if there are a small number of particles with light masses, the
mixture will dissipate easily and the particle flow “locking” will take place in
the case of the heavier particles of the gas mixture. The results explain also the
observing orbital motion of planets and satellites mainly in the equatorial plane of
the parental body. The conditions here for body separation from the viewpoint of
dynamical equilibrium appear to be preferential.

When the quantities of the various mass particles are approximately equal, the
particle flow “locking” condition can be found only by a numerical solution. The
gaseous sphere radius can be determined only after the equilibrium equation is
solved, and to solve it, we must consider all the given types and concentrations
of particles in the flow. Formally, we can apply the effective particle mass 	, which
depends on a value averaged over all the particle masses. The problem can also
be solved by numerical methods for a gas mixture consisting of many particles
and especially when the processes of ionization and recombination and chemical
reactions occur.

Another interesting phenomenon, which we shall discuss, arises from the fact
that electromagnetic forces are much stronger than gravitational forces. When some
electrons escape the gravitating body, it becomes positive by charges that create
huge forces, which tend to stop the process of electron dissipation. That is why it
is necessary to use the proton mass 	p when the gaseous cloud consists of neutral
hydrogen partly ionized at the gaseous sphere boundary surface (the position of the
boundary shell is specified by the radius R). The flow of electrons will be “locked”
by the extra forces appearing as a result of their primary dissipation. In addition,
this uncompensated positive charge should have a drift at the boundary surface, and
small flow of cold plasma should be observed.

In the course of contraction of the gaseous sphere and the increase in its average
temperature, the process of gas ionization should also increase. When the flow of
electrons is large enough, and the limiting equilibrium between the gravitational
forces and the charged protons is achieved, the protons should also start to run off
the body’s gravitational field. In this case, the increasing electron flux has to be
“locked” by electrostatic forces. The boundary equilibrium change from the proton
“locking” to electron “locking” should start at this moment.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
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ln T0 D

C B

A 

Re Rp ln R

Fig. 7.1 Proton AB and
electron CD equilibrium
phases of the boundary shell
of contracting gaseous sphere

Thus, we come to the conclusion that at least two phases of gaseous sphere
evolutions should exist: that of the proton and that of the electron, with a transitional
domain between them that can be calculated by numerical methods in each
specific case.

Figure 7.1 illustrates all that we have said. The process of gravitational con-
traction of the gaseous sphere is represented by the curve ABCD. Within the AB
range, the body equilibrium is kept by the gravitational field “locking” of the proton
flow (the proton phase). Within the same range of sphere contraction, the radius
R decreases, while the temperature T0 increases. Point B is the critical one; here,
the transformation of equilibrium boundary conditions from proton “locking” to
electron “locking” begins. The process spreads up to point C. While the sphere
radius decreases in the range BC, the boundary temperature remains constant.

In the electron equilibrium phase in the range CD, we can see that during the
contraction process, the boundary temperature increases again.

Let us check the derived expression (7.22) and the conclusion concerning the
existence of two boundary equilibrium phases on the observed Sun data.

First, we calculate the numerical value of T0R in the CGS system with the help
of Eq. (7.22). Assuming numerical values for proton and electron masses, we obtain

TpRp D Ap D Gm	p

3k
D 6:67�10�8�2�1033�1:67�10�24

3�1:38�10�16 D 5�1017 cm�K;

TeRe D Ae D Gm	e

3k
D 6:67�10�8�2�1033�9:1�10�28

3�1:38�10�16 D 2:73�1014 cm�K:

For the contemporary Sun, we know that R D 7�1010 cm and T0 D 5,000 K so that
T0R D 3.5�1014 cm K.

As at T0 D 5,000 K, where gas ionization must be fairly complete, we have a very
good coincidence of the calculated and the observed data for the products T0R and
TeRe. For this temperature, the proton radius of the Sun Rp is equal to 1014T0R cm,
which corresponds to the orbit radius of Jupiter.

Thus, we have found ˛, ˇ, and T0 as functions of the radius R. We can now obtain
the gaseous sphere contraction velocity. We rewrite Eq. (7.16):

�c D 8��

Gm2

.RT0/
4

R2 .d=dR/ .˛=R/
: (7.24)
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and, using (7.19), we can evaluate the denominator as

R2
ˇ
ˇ
ˇ̌ d

dR

� ˛
R

�ˇˇ
ˇ̌ D R2

ˇ
ˇ
ˇ̌ d

dR

�
ap
�

1

R

R

R1

	ˇˇ
ˇ̌ D a

2
p
�

R

R1

Finally, we write contraction velocity vc as

�c D 16��

Gm2

A4

a

p
�
R1

R
; (7.25)

where A D Ae D ReTe and A D Ap D RpTp are for the electron and the proton phases
of the gaseous sphere evolution, respectively.

Let us use Eq. (7.25) to obtain the contraction velocity and the time of contraction
of the protosun during the proton and the electron phases of the gaseous sphere
evolution using its corresponding parameters.

If we take for the proton phase of the protosun, after its separation from the
protogalaxy, Ap D 5�1017 cm�K, initial radius R D 7.5�1018 cm, final radius of the
proton phase evolution (at the asteroid belt, after separation of the proto-Jupiter),
R1 D 4.2�1013 cm, a D 0.46, and � D 5.76�10�5 erg�cm�2 s�(K)4 as initial, we obtain

N�orb D 16�3:14�5:76�10�5�5�1017�4
6:67�10�8.2�1033/2�0:46 �

r
2�1033
2:65�1030 �4:2�10

13

7:5�1018 D 2:23�105cm�s�1;

tbI3 D 7:5�1018
2:23�105 D 3:36�1013 s D 1:06�106 years

We can now find the contraction velocity and the time of contraction of the protosun
during the electron phase of the gaseous sphere evolution. We take now for the
electron phase Ae D 2.73�1014 cm�K, initial radius of the protosun, after separation
of the proto-Jupiter, R D 4.2�1013 m, final radius of the electron phase let the present-
day value be R1 D 7�1010 m, a D 0.46, and � D 5.76�10�5 erg�cm�2�s�K4. Then, we
obtain

�cse D 16�3:14�5:76�10�5�2:73�1014�4
6:67�10�8.2�1033/2�0:46 �

r
2�1033
1:18�1028 � 7�10

10

4:2�1013 D 8:96�10�5 cm�s�1;

tse D 4:2�1013
8:96�10�5 D 4:7�1017s D 14:9�109 years:

The found values show that the contemporary solar system has formed during the
proton phase (Jupiter’s group of planets) within 1 million years and during the
electron phase (the Earth’s group of planets) within the next 15 billion years. Here,
we have not taken into account the effects of chemistry of the gaseous sphere on
the equilibrium boundary conditions of the evolutionary process. But the obtained
figures of evolution time show that our calculations give good approximation to the
reality.
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7.3 The Luminosity–Mass Relationship

To obtain the luminosity–mass relationship, we again consider the gaseous sphere
evolution plot given in Fig. 7.1. It follows from (7.15) that in proton (AB) and
electron (CD) evolutionary phases, the gaseous sphere luminosity is proportional
to 1/R2. The boundary surface temperature T0 remains practically constant during
the transition period (BC), when the equilibrium transformation from the proton
to the electron phase takes place. But the gaseous sphere luminosity will decrease
sharply. One can see that the luminosity decrease here is proportional to

L / 	2p

	2e
; (7.26)

that is, it is proportional to the ratio of the proton and electron mass squared as
the gaseous sphere surface decreases proportionally to R2. Thus, while going from
point B to point C of the plot, the luminosity of the contracting body decreases by
six orders of magnitude. We can suppose that the observed variations of variable
star brightness are related to their virial energy pulsations, when stars at the stage of
evolution are being considered.

As shown in the previous section, the most continuous period of proton or
electron phase evolution is on the right end of the plot intercept (AB) and (CD).
For these principal evolution time intervals, we can write

L D 4��R2T 40 D .RT0/
4

R2
/ m4: (7.27)

This expression, derived from our theoretical considerations, is in good
agreement with the well-known luminosity–mass relation, which follows from
observations. That is why Eq. (7.22) can be considered as an additional relation
between the luminosity, the radius, and the boundary surface temperature.

Let us take one more example. In Campbell’s work (1962), 13 elliptical galaxies
from the Virgo Cluster are considered, and an analysis of the mass–radius relation
for the observed data is given. To interpret these data, Jeans’s relation (Jeans 1919)
is used:

Gm	 D 3

2
kT0R or

m

R
D 3kT0

2G	
; (7.28)

where 	 is the proton mass.
On the plot presented in this work reflecting the mass–radius dependence,

all the points are found to lie on a straight line with slope corresponding to
T0 � 1.5�107 K. Campbell concludes from this that the Jeans condition of self-
gravitational instability is valid.
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We note that Jeans’s formula was derived on the assumption of low gas
temperature and that all the kinetic energy of the gas is used for particle heat
movement. The radiation energy was not taken into account.

Because of the absence of direct temperature measurements, the theoretically
found high-temperature values at very steep line slopes need other explanations.
We must stress that in the observational data presented, the distance to the objects
(in relative units) has been found with high degree of precision so that the
experimentally derived constancy of the line slope should be trusted.

We interpret Campbell’s data on the basis of our expression (7.22), where we
consider the mass–radius relation to be dependent on electron temperature. That is
why, contrary to Jeans, we write

m

Re
D 3kTe

G	e
:

Now, the value of the boundary surface temperature of Campbell’s galaxies is
T0 � 4,000 K. This value corresponds to the usual boundary temperatures of
celestial bodies whose evolution goes according to the electron phase of the
equilibrium.

Hence, the experimental data presented by Campbell in his paper confirm
once more the validity of Eq. (7.22) and the assumption of the existence of two
evolutionary phases for celestial bodies.

In connection with the interpretation of Campbell’s data, it is possible to use
Eq. (7.22) to obtain the limiting temperature that should be reached by a gaseous
sphere in its evolution. We write (7.22) as

Gm

c2
1

R
D 3kTe

	c2
or

Rg

R
D 3kT0

	c2
: (7.29)

Hence, during the evolution of a gaseous sphere through the electron phase of
equilibrium, when R ! Rg< T0 !	ec2/3k or, equally,

3kT0 ! 	ec
2 � 0:5MeV;

T � 5�109 K:

This means that the temperature of the bodies approaches the electron temperature.

7.4 Bifurcation of a Dissipative System

In Chap. 5, we considered the dynamics of a dissipative system, assuming that its
evolution is a consequence of the loss of energy due to its radiation. Let us consider
the problem in some details.

http://dx.doi.org/10.1007/978-94-007-5908-4_5
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Jacobi’s virial equation for a system was written as

R̂ D �A0 Œ1C q.t/�C Bp
ˆ
; (7.30)

where the function A0[1 C q(t)] D E � E� increases monotonically, reflecting the
change of the total energy of a system as a function of time, and E� is the energy
radiated up to time t[E� > 0].

The solution of Eq. (7.30) was found to be

� arccos W C arccos W0 �
r

1 � A0 Œ1C q.t/� C

2B2
D

p
1 �W 2

C
r

1 � A0C

2B2

q
1 �W 2

0 D ˙ Œ2A9 .1C q.t//�3=2

4B
.t � t0/ : (7.31)

Equations of the discriminant curves that bound oscillations of the moment of inertia
(Jacobi function) (see Fig. 5.5) are

q
I1,2 D 2B

A0 Œ1C q.t/�

(

1˙
r

1 � A0 Œ1C q.t/� C

2B2

)

: (7.32)

From the analysis of the solution of Eq. (7.30), it follows that the dissipative
system during its evolution must inevitably reach the state when its stability breaks;
that moment (see Fig. 5.5) can be defined by the point Ob, which is the physical
bifurcation point. The position of the point can be defined by Eq. (7.32) as

2B2

A0 Œ1C q .tb/�
D C (7.33)

where q .tb/ is the parameter of the bifurcation point that can be found from
condition (7.33):

q .tb/ D 2B2

A0C
� 1 (7.34)

The moment of inertia (Jacobi function) of the system corresponding to the
bifurcation point, where the discriminant lines coincide, is

Ib D B

A0

�
1C 2B2

A0C
� 1

� D C2

4B2
(7.35)

To find the moment of time of tb where the system reaches its bifurcation point, one
must know the law of energy radiation of the body q(t) or E� (t), entering Eq. (7.30).

We give below our model solution for E� (t).

http://dx.doi.org/10.1007/978-94-007-5908-4_5
http://dx.doi.org/10.1007/978-94-007-5908-4_5
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The solution for the energy E� (t) radiation up to t is based on the assumed
existence of the proton and the electron phases of evolution for celestial bodies
proposed in this chapter. On this basis, we have found a relationship between the
body luminosity L and its radius R. During “smooth” intervals of the body evolution,
when E� (t) is a continuous and monotonic function of time, the following relation
holds:

Gm	p

3k
D RT0 (7.36)

where 	p is the mass of the particle (proton or electron) that provides the boundary
heat equilibrium of the body, k is the Boltzmann constant, and T0 is the gaseous
sphere boundary temperature.

Let us write down the expression for the body luminosity L in relation to the time
derivative of E� :

dE�
dt

D L D 4��R2T 40 (7.37)

where � is the Stefan–Boltzmann constant.
Now, we shall find an explicit expression for E� (t) with the initial condition

E� .t0/ jt0D0 D 0

Equation (7.37) between the limits 0 and t can be integrated with the help of
(7.36):

E�.t/D
tZ

0

4��R2T 40 dtD
tZ

0

4��R4T 40
R2

dtD
tZ

0

4��
�
Gm	p

�4

.3k/4
1

R2
dtD

tZ

0

K

R2
dt

(7.38)

whereK D 4��
�
Gm	p

�4
.3k/4:

Now, let us make use of expression (7.25) for the velocity of the gravitational
contraction of the gaseous sphere vc, which we had found earlier in this chapter:

�c D dR

dt
D 32

3

��

Gm2

�
Gm	p

3k

�4p
�

a

4

r
R1

R
(7.39)

Integrating this equation,

RZ

0

R1=4dR D �32
3

��

Gm2

�
Gm	p

3k

�4
1

a

4
p
�2R1

tZ

0

dt

we obtain

4

5
R5=4 � 4

5
R
5=4
0 D �32

3

��

Gm2

�
Gm	p

3k

�4
1

a

�
4
p
�2R1

�
t (7.40)
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Then

R D
�
�Dt CR

5=4
0

�4=5

where

D D 40��

3Gm2

�
Gm	p

3k

�4
1

a

4
p
�2R1

Finally, substituting the found expression for (7.40) into (7.38), we have

E�.t/ D
tZ

0

K dt
�
�Dt CR

5=4
0

�8=5 D 5K

3D

��
R
5=4
0 �Dt

��3=5 �R3=40
	

D 5

3

K

D

2

4 1
�
R
5=4
0 �Dt

� � 1

R
3=4
0

3

5 (7.41)

Thus, we have obtained an expression in explicit form that can be used to calculate
the energy loss by radiation during the time intervals of “smooth” evolution of
celestial bodies and, hence, to find the parameters of the bifurcation point of a
dissipative system.

7.5 Cosmochemical Effects

From the analysis of the solution of Eq. (7.30) for a dissipative system, we
found that, because of energy loss, a celestial body reaches a bifurcation point,
characterized by separation of its outer shell in which angular frequency coincides
with the frequency of virial oscillations. According to our theory of bifurcational
creation of secondary bodies (in Alfven’s definition), some portion of the mass of
the rotating primordial cloud reaches equilibrium relative to the inner force field of
the whole cloud at the bifurcation point and moves further in a Kepler’s orbit. As
a result, during the subsequent dissipation of energy, the primary body continues
its contraction by means of redistribution of the mass density without a separated
secondary body. This secondary body conserves the corresponding angular moment
M1 D mv1R1 D m�21=!, which in fact is the kinetic energy divided by frequency of
the interacted mass particles. In accordance with (7.3), the value of this tangential
component of the kinetic energy is equal to half of the potential energy (2ˇt D˛t)
at the moment of a secondary body separation.

It is commonly known that when both the gravitational and electromagnetic
interactions are taken into account, the condition to attain an equilibrium state by
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some portion of the mass (secondary body) can be written in the form suggested by
Chandrasekhar and Fermi (1953):

Z

.V /

"

� N�2 C 3p C H2 C E2

8�
� .rU /2

8�G

#

dV D 0; (7.42)

where � is the density of the substance of the secondary body, v the mean velocity,
p the internal pressure, H and E the components of the electromagnetic field, G
the gravitational constant, V the volume of the system, and rU the gradient of the
gravitational field.

Since the bifurcational point of a system is characterized by the zero amplitude of
the virial oscillations, the kinetic terms in Eq. (7.42) are small compared to the mass
terms. In this case, Eq. (7.42) can be rewritten as (Ferronsky et al. 1981a, b, 1996)

Z

.V /

"

3p � .rU /2
8�G

#

dV � 0

or

Z

.V /

3p dV � 0:1
Gm2

R
; (7.43)

where the coefficient 0.1 represents the electromagnetic component in expansion
of the potential energy (7.43) found by astronomical observation of the equilibrium
nebulae (Ferronsky et al. 1996).

The left-hand side of (7.43) is proportional to the energy of the Coulomb interac-
tions of the charged particles (electrons, protons, ionized atoms, and molecules). The
right-hand side of this expression is proportional to the energy of the gravitational
interaction of the particles.

Thus, assuming the separated secondary body to have mass m and radius R
and the average mass of its constituent particles to be 	, expression (7.43) can be
rewritten in the form of an equality of the energies of the gravitational and Coulomb
interactions or Madelung’s energy (Kittel 1968):

0:1
Gm2

R
/ m

	

e2

R 3
p
	=m

; (7.44)

where e D 4.8�10�10 e.s.u. is the electron charge.
Expression (7.44) is the equivalent of

m	2 / e3

G3=2
: (7.45)
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Table 7.1 Critical and
averaged masses of the
constituent particles for the
planets

Planets mc(g) 	a(g) 	a(aum)

Mercury 0.33�1027 0.78�10�21 469

Earth 5.97�1027 0.18�10�21 114

Jupiter 2�1030 0.00�10�23 6:02

Saturn 0.57�1030 1.87�10�23 11:3

Uranus 0.087�1030 4.79�10�23 28:8

The last expression relates the critical mass mc of the separated secondary body
to the averaged mass 	a of its constituent particles (electron, proton, molecules),
responsible for the hydrodynamic equilibrium of the body, as

mc	
2
a /

�
e2

G

�3=2
D const: D 2�10�16 g3: (7.46)

To illustrate this relationship, we determined the average values for the masses of
the individual particles constituting the planets, stars, and galaxies.

7.5.1 Planets

Table 7.1 shows critical masses of the constituent particles for the planets of the
solar system.

Thus, assuming that the bifurcation theory describes the formation of the solar
system correctly, the particles determining the hydrodynamic gas pressure in the
case of the considered planet at the moment of their separation from the protosolar
cloud could have been composed of such elements as H, He, O, Si, Mn, and Fe
in atomic or molecular form. The average masses of the particles obtained can be
used as a criterion in the development of cosmochemical models of planets with
a complicated chemical composition at the moment of their separation from the
protosolar cloud and also for the construction of their chemical evolution models.

7.5.2 Stars

From (7.46), the boundary values for all stellar critical masses can be found,
corresponding to the masses of the proton and the electron—particles that can be
responsible for the hydrodynamic pressure inside the stellar cloud at the moment of
separation at the bifurcation point of the protogalactic cloud.

For the mass of the proton 	p D 1.6�10�24 g, mc D 1032 g
For the mass of the electron 	e D 0.9�10�27 g, mc D 2�1038 g
In the case of 	a D p

	p	a D 0.4�10�25 g, mc D 1035 g
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Therefore, considering a typical stellar mass to be �1033 g, we obtain that the
hydrodynamic equilibrium of the gas at the moment of separation of the protostellar
cloud is supported both by electron and by proton in the framework of the
bifurcation theory of formation of celestial bodies.

7.5.3 Galaxies

The presence of the factor (e2/G)3/2 in the right-hand side of (7.46) allows us to carry
out the following transformations:

mc	
2
a D

�
e2

„c
�3=2 �„c

G

�
D
�
1

137

�3=2
m3

p; (7.47)

where „ is Planck’s constant, c the velocity of light, and mp Planck’s mass.
Thus, in the right-hand side of (7.47), there are two fundamental constants:

Planck’s mass mp (2.2�10�5 g) and the fine-structure constant ˛D 1/137. The
presence of the constant ˛ in the right-hand side of (7.47), being the universal
constant of the weak and electromagnetic interactions, shows that this relation is
applicable not only to electromagnetic but also to weak interactions. Then, putting
the experimentally found values for the neutrino mass 	� D 10�30 g (Shirkov 1980)
into (7.44), we obtain

mc D 2�10�16

.10�30/2
D 2�1044g: (7.48)

This mass, following from (7.48), is a typical mass of galaxies. Therefore, in
the framework of the bifurcation theory of formation of celestial bodies, the
hydrodynamic equilibrium (7.41) of the substances of galaxies at the moment of
their formation can be provided by the pressure of neutrinos.

7.5.4 Universe

In the framework of the virial oscillation theory, the evolution of the universe can
be described by a pulsating model (for c D constant) of the system of material
elementary particles. Such a system exists for indefinitely long time. The mass
of the particle responsible for hydrodynamic equilibrium of the universe at the
moment of its maximal compression (singularity stage) can be obtained from the
same expression (7.46). Assuming mc � 1056 g, we obtain

	a � 10�36g: (7.49)
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In the bifurcation theory, the maximal average mass of particles in cosmic space can
be determined from the condition 	a D mc. Then,

	max D 6�10�6g:

This value is close to Planck’s mass.

7.6 Radial Distribution of Mass Density and the Body’s
Inner Force Field

At present, only the Earth has experimental data that allow to interpret them with
respect to radial distribution of the body’s mass density. Taking into account our
consideration of dynamics of celestial bodies as self-gravitating systems, we assume
that formation of the Earth’s mass density distribution is typical at least for all the
planets and satellites.

The existent idea about the radial mass density distribution of the Earth is
based on interpretation of transmission velocity of the longitudinal and transverse
seismic waves. Figure 7.2 presents the classic curve of transmission velocities of the
longitudinal and transverse seismic waves in the Earth plotted after generalization
of numerous experimental data (Jeffreys 1970; Melchior 1972; Zharkov 1978).
The curves of the radial density and hydrostatic pressure distribution based on
interpretation of the velocities of the longitudinal and transverse seismic waves are
also shown.

The picture of the transmission velocities of the seismic waves was obtained by
observations and therefore is realistic and correct. But interpretation of the obtained
data was based on the idea of hydrostatic equilibrium of the Earth. It leads to
incredibly high pressures in the core and high values of the mass density.

In accordance with Bullen’s approach for interpretation of the seismic data,
the density distribution is characterized by the following values (Bullen 1974;
Melchior 1972; Zharkov 1978). The density of the crust rocks is 2.7–2.8 g/cm3 and
increases toward the center by a certain curve up to �13.0 g/ m3 with jumps at the
Mohorovičić–Gutenberg discontinuity, between the upper and lower mantles, and
on the border of the outer core. Within the core, the values of the transverse seismic
waves are equal to zero. Despite the jump of the longitudinal seismic wave velocity
at the outer core border dropping down, Bullen accepted that the density increases
toward the center. It was done after his unsuccessful attempt to approximate the
seismic data of the parabolic curve that gives a decrease of density in the core. Such
a tendency is not consistent with the idea of iron core content. Bullen certainly had
no idea that the radius of inertia and radius of gravity of the body do not coincide
with its geometric center of mass, and, therefore, the maximum value of density is
not located there. In accordance with our concept of the equilibrium condition of the
planet and its dynamical parameters, the approach to interpretation of the seismic
data related to the radial density and radial pressure distribution should be done on
a new basis.
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Fig. 7.2 Present-day interpretation of the curves of transmission velocities of longitudinal (1) and
transverse (2) seismic waves, density (3), and hydrostatic pressure (4) in the Earth

Now, when we accept the concept of dynamical equilibrium of the Earth and
refuse its hydrostatic version, the basic idea to search for a solution of the problem
seems to be the found relationship between the polar moment of inertia and the
potential (kinetic) energy. The value of the structural form factor of the Earth’s
mean axial moment of inertia ˇ2? D J?/ R2 D 0.3315 found by artificial satellites
(Zharkov 1978) should be taken as a starting point. The mean polar moment of iner-
tia of the assumed spherical nonuniform planet is equal to ˇ2 D (3/2)ˇ2? D 0.49725.
We accept this value for the development of the methodology.

Let us take the found mechanism of the shell separation as a basis with respect to
the mass density that was presented in Sects. 6.5, 6.6, 6.7, and 6.8. The conditions
and mechanism of the shell separation into radial and tangential components of
the inner force field (by the Archimedes and Coriolis forces) represent continually
acting effects and create physics for the Earth’s structure formation. These effects
explain the jumps between the shells observed by seismic data density. We take also
into account the effect, according to which the velocity of the sound recorded by the

http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6


7.6 Radial Distribution of Mass Density and the Body’s Inner Force Field 195

transmission velocity of the longitudinal and transverse seismic waves quantitatively
characterizes the energy of the elastic deformation of the media and velocity of its
transmission there (Ferronsky and Ferronsky 2010).

Applying the conception of Sect. 6.7, we accept that the nonuniformities of the
spherical shells come together and, after their density becomes lower than that of
the mean density of the inner sphere, move from the center by the parabolic law
because they interact according to the law 1/r2. So we can find a probable law of the
radial density distribution in the form

�.r/ D �0.ax
2 C bx C c/; (7.50)

where D r/R is the ratio of the running and the final radius of the planet; �0 is the
body’s mean density; and a, b, and are the numerical coefficients.

The numerical coefficients were selected for different densities for the upper shell
in such a way that the planet’s total mass M would be constant, that is,

M D 4�

RZ

0

r2�.r/ dr D 4�

RZ

0

r2�0

�
�a r

2

R2
C b

r

R
C c

�
dr

D 4

3
�R3�0

�
�3
5
a C 3

4
b C c

�
:

Here, the term (3/5)a C (3/4)b C c D 1 in the right-hand side of the expression al-
lows us to calculate and plot the distribution density curves in a dimensionless form.

We accepted three most typical parabolas (7.51), which satisfy the condition
of equality of their moment of inertia, found by artificial satellite data, namely,
the axial moment of inertia J? Dˇ2?mR2 D 0.3315 mR2 or the polar moment of
inertia J Dˇ2mR2 D 0.4973 mR2. In addition, the first relation in (7.51) represents
the straight line for which the surface mass density and that in the center correspond
to the present-day version and to the form factor ˇ2?. The fifth straight line rep-
resents the uniform spherical planet. The curve equations with selected numerical
coefficients a, b, and are as follows:

1: �.r/ D �0

�
�2 r
R

C 2:495
�
; a D 0; �s D 2:73 g=cm3I

2: �.r/ D �0

�
�1:51 r

2

R2
C 0:016

r

R
C 1:894

�
; �s D 2:08 g=cm3I

3: �.r/ D �0

�
�3:26 r

2

R2
C 2:146

r

R
C 1:3465

�
; �s D 1:28 g=cm3I

4: �.r/ D �0

�
�5:24 r

2

R2
C 5:132

r

R
C 0:295

�
; �s D 1:03224 g=cm3:

5: �.r/ D �0 D const: (7.51)

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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Fig. 7.3 Parabolic curves
of radial density distribution
calculated by Eq. (7.51)

Figure 7.3 shows all the curves of (7.51). They intersect the straight line 5 of the
mean density in the common point that corresponds to the value r/R D 0.61475.

Using Eq. (7.51) and the found (by observations) form factor ˇ2? D 0.3315, the
main dynamical parameters were calculated for all four curves. The calculations
were done by the known formulae of the theory of interaction (Duboshin 1975)
and taking into account the relations of (6.8) and (6.9) obtained in Sect. 6.2. These
calculations are presented below for equation (4), as an example.

The potential energy of the nonuniform sphere with the density distribution law
�(r) is found from the equation

U D 4�G

RZ
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r�.r/m.r/ dr; (7.52)

where
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Then
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(7.53)
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The form factor of the potential energy is ˛D rg/R D 0.660143, and the reduced
radius of gravity is rg D p

0:660143R2 D 0:8124918R:

In accordance with (6.8), the potential energy of the nonuniform sphere is
expanded into the components

U D U 0 C Ut C U�: (7.54)

The potential energy of the uniform sphere is equal to

U0 D 3

5

GM2

R
; (7.55)

where form factors of potential and kinetic energies are equal to ˛0 D 0.6 and
ˇ20D 0.6.

In accordance with the second term of the right-hand side of Eq. (6.8), the
tangential component of the nonuniform sphere is written as

Ut D �1
2
4�G

RZ

0

r�t.r/m0.r/ dr; (7.56)

where
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The coefficient ½ in (7.56) is taken as the ratio of the second term of the right-
hand side of Eqs. (6.8) and (6.9) as, in this particular case, the tangential component
of the potential energy is determined through the tangential component of the kinetic
energy and is equal to half its value. Then
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The form factors of the tangential components of the potential and kinetic
energies are equal to ˛t D 0.051357 and ˇ2t D 2�0.051357D 0.102714.
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In accordance with the third term in the right-hand side of Eq. (6.8), the
dissipative component of the potential energy of the nonuniform sphere is

U� D 4�G
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r�t.r/mt.r/ dr; (7.57)
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So the value of the form factor of the dissipative component is ˛� D 0.008786.
The radial distribution of the potential energy for interaction of a test mass point

with the nonuniform sphere is
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(7.59)

At r/R D 0, ˛v(r) D 1.6445, and at r/R D 1, ˛v(r) D 1.
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Table 7.2 Physical and dynamical parameters of the Earth for the
density distribution presented by Eq. (7.51)

Equation N 1 2 3 4

�s, g/ m3 2.76 2.08 1.65 1.03224
� , g/ m3 13.8 10.455 6.315 1.6284
�max, g/ m3/km 13.8/0 10.455/0 8.26/2096 8.57/3122
ˇ2

?
0.3315 0.3315 0.3315 0.3315238

ˇ2 0.49725 0.49725 0.49725 0.49725858
ˇ2t 0.10275 0.10275 0.102752 0.102714
˛ 0.660737 0.660737 0.660737 0.660143
˛t 0.051371 0.051371 0.0513714 0.0513571
˛� 0.009366 0.009366 0.009366 0.0087859
rg, m 5178.6 5178.7 5178.6 5176.4
rm, m 4492.6 4492.6 4492.6 4492.7

Here, �s, � , and �max are the density on the sphere’s surface, in the
center, and maximal accordingly; ˇ2

?
, “2, and ˇ2t are the form factors

of the axial, polar, and tangential components of the radius of inertia
accordingly; ˛, ˛t, and ˛� are the form factors of the radial, tangential,
and dissipative components of the force function accordingly; rg and rm

are the radiuses of the gravity and inertia

The radial distribution of the interaction force of the test mass point with the
nonuniform sphere is
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: (7.60)

At r/R D 0, ˛� (r) D 0, and at r/R D 1, ˛� (r) D 1.
Table 7.2 demonstrates the results of the calculated dynamical parameters for all

the density curves (7.51), and Fig. 7.4 shows the curves of radial distribution of the
potential energy and gravity force for the test mass point.

We wish to evaluate all four curves of mass density distribution in order to
recognize which one is closer to the real Earth. In this case, we keep in mind that
the observed density jumps can be obtained for any curve by approximation of its
continuous section with the mean value for each shell.

Figure 7.4 shows that the radial density values are substantially different for each
curve. It refers, first of all, to the surface and center of the body. At the same time,
Table 7.2 demonstrates the complete identity of the dynamical parameters of all
the nonuniform spheres. It means that a fixed value of the polar moment of inertia
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Fig. 7.4 The curves of the radial distribution of the potential energy (a) and gravity force (b) for
the mass point test done by Eqs. (7.53) and (7.60)

permits us to have a multiplicity of curves of the radial density distribution with
identical dynamical parameters of the body. The found property of the nonuniform
self-gravitating sphere proves the rigor of the discovered functional relationship
between the potential (kinetic) energy and the polar moment of inertia of the sphere.
This property, in turn, is explained by the energy conservation law of a body during
its motion and evolution in the form of the dynamical equilibrium equation or
generalized virial theorem.

If we accept the conditions of the mass density separation presented in Sect. 6.5,
6.6, 6.7, and 6.8, then the range of curves of the density distribution gives a principal
picture of its evolutionary redistribution and can be applied for reconstruction of the
Earth’s history. It follows from Eq. (6.31) that the density value of each overlying
shell of the created Earth should be higher than the mean density of the inner mass.
Otherwise, such a shell cannot be retained and should be dispersed by the tidal
forces. It follows from this that the planet’s formation process should be strictly
operated by the dynamical laws of motion in the form of the virial oscillations and
accompanied by differentiation of the nonuniform shells. The model of a cyclonic
vortex that was proposed by Descartes is the most acceptable from the point of
view of the considered ideas of planets’ and satellites’ creation from a common
nebula. This problem needs a separate consideration. We only note here that from
the presented curves of radial density distribution, the parabola (4) more closely
reflects the present-day planet’s evolution as fixed by observations. In this case,
location of the Earth’s reduced inertia radius falls on the lower mantle and the
reduced gravity radius on the upper mantle. The density maximum falls also on the
lower mantle. Its value is found by ordinary means, namely, by taking the derivative
from the density distribution law as equated to zero. From here, �max D 8.57 g/ m3

is found to be at a distance of r D 3,122 km. It means that the density maximum
comes close to the border of the outer core where, as seismic observations show,
the main density jump occurs. Curve (4) corrects the values of the radial density
distribution in the mantle and changes its earlier interpretation in the outer and inner
core. Because of zero values of the transverse velocities, the matter of the inner core

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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distribution of the Earth by
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has a uniform density structure and, from the point of view of the equilibrium state,
seems to be in a gaseous state at a pressure of 1–2 atm. Taking into account the
location of the maximum density value, there is a reason to assume that the outer
core matter stays in the liquid or supercritical gaseous stage. In any case, the
density and pressure of the inner and outer cores are much lower and should have
values corresponding to the seismic wave velocities. On the basis of the equation
of mass density differentiation (6.31), we interpret the density jumps observed (by
seismic data) nearby the Mohorovičić–Gutenberg and at the outer core borders as
the borders of the shell’s dynamical equilibrium. A shell that is found over that
border appears in a suspended state due to the action of the radial component of the
gravitational pressure developed by the denser underlying shell. While the thickness
of the suspended shell is growing, it acquires its own equilibrium pressure (iceberg
effect). The extremely high pressures in the Earth’s interior, which follow from the
hydrostatic equilibrium conditions, are impossible in its own force field.

The concept discussed above in relation to the Earth’s density distribution is
illustrated in Fig. 7.5.

The polar moment of inertia here is rm D3/2r?
m D p

1:5�0:3315R2 D
0.70516 R D 4493�103 m and the radius of gravity is rg D 0.8164 R D 5,201�103 m.

7.7 Oscillation Frequency and Angular Velocity
of Shell Rotation

Let us continue the discussion about the nature of the Earth’s dynamical parameters
as an example. In order to determine numerical values of frequency of the virial
oscillations and the angular velocities, which are the main dynamical parameters of
the Earth’s shells, we accept equation (4) of the density distribution (7.51) as the
first approximation. All further relevant calculations can be made by applying this
equation.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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We know the mean values of the planet’s density �0 D 5.519 g/ m3 and angular
velocity of the upper shell !t D 7.29�10�5 s�1. Applying these values, the frequency
and the period of the virial oscillations, and the coefficient ke of the tangential
component of the inner forces, can be found. In accordance with Eq. (6.27), the
frequency of the upper shell is equal to

!0.r/ D
r
4

3
�G�0.r/ D

r
4

3
3:14�6:67�10�8�5:519 D 1:24�10�3 s�1:

The period of oscillation is found from the expression

T! D 2�

!0.r/
D 6:28

1:24�10�3 D 5060:4 c D 1:405 h

The product of the found frequency and the Earth’s radius gives the value of the
planet’s first cosmic velocity, the mean value of which is

� D !.r/rc D �
1:24�10�3� �6370 D 7:9 km=s:

Unlike the usual expression for the first cosmic velocity in the form of �1 Dp
GM=r; we used here the physical condition of the dynamical equilibrium at the

Earth’s surface between the inner gravitational pressure of interacting masses and
the outer background pressure including atmospheric pressure.

Given below, our own observation data on the near-surface atmospheric pressure
and temperature oscillations at the near-surface layer and the results of the spectral
analysis prove the above theoretical calculations of the planet’s frequency of virial
oscillations (Ferronsky and Ferronsky 2010).

Now, applying the known mean value of the Earth’s angular velocity
!t D 7.29�10�5 s�1 and the known value of the frequency of virial oscillations for
the upper shell !0 D 1.24�10�3 s�1 by Eq. (6.29), the coefficient ke can be found:

ke D !2t

!20
D
�
7:29�10�5�2

.1:24�10�3/2
D 1

289:33
D 0:003456:

The coefficient ke is known in geodynamics as a parameter that shows the ratio
between the centrifugal force at the Earth’s equator and the acceleration of the
gravity force there, which is equal to ke D 1/289.37 (Melchior 1972). The parameter
is used to study the Earth’s figure based on the Clairaut hydrostatic theory.

7.7.1 Thickness of the Upper Earth’s Rotating Shell

It is known that the value of the mean linear velocity of the upper planet’s shell is
v D 0.465 km/c. We can find the thickness h at which the velocity v corresponds
to the found frequency of radial oscillations of the shell !0 D 1.24�10�3 s�1:

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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he D v

!0.r/
D 0:465

1:24�10�3 D 375 km: (7.61)

Such is the thickness of the upper shell of the Earth, which is rotating by forces in
its own force field. It is assumed that the shell is found in the solid state. In reality,
it is known that the rigid shell has a thickness less than 50 km. The remaining more-
than-300-km-thick part of the shell has a viscous–plastic consistency, the density of
which increases with depth. The border of the shell has a decreased density because
of the melted substance due to high friction and saturation by a gaseous component.
The border plays a role of some sort of spherical hinge. Because the density of the
Earth’s crust is lower than that of the underlying matter, it occurs in the suspended
state. During the oscillating motion, the crust shells are affected by the alternating-
sign acceleration and the inertial hydrostatic equilibrium.

7.7.2 Oscillation of the Earth’s Shells

Let us obtain the expression of virial oscillations for the Earth’s other shells by
applying expression (4) of (7.51) for the radial density distribution. Write Eq. (6.27)
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: (7.62)

At r/R D 0, !0(r) D 0.6743�10�3 s�1; at r/R D 1, !0(r) D 1.24�10�3 s�1; and at
�max D 8.57 g/ m3, !0(r) D 1.486�10�3 s�1, where r/R D 0.49.

Figure 7.6 shows changes in the virial oscillation frequencies of the Earth’s
shells.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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Fig. 7.6 Radial change in virial oscillation frequencies (a) and angular velocity of rotation (b)
according to Eqs. (7.62) and (7.63)

7.7.3 Angular Velocity of Shell Rotation

Angular velocity of the Earth’s shell rotations is determined from Eq. (6.28):

!t.r/ D
r
4

3
�G�t.r/ D

s
4

3
�G�0.r/

�
3

5
a
r2

R2
C 3

4
b
r

R
C c

�
ke.r/

D !0.r/

s�
3

5
a
r2

R2
C 3

4
b
r

R
C c

�
ke.r/

D !0.r/

s�
�3:144 r

2

R2
C 3:8475

r

R
C 0:295

�
ke.r/; (7.63)

where !t(r) is the angular velocity of the shell rotation and !0(r) is the shell
oscillation frequency that is determined by Eq. (7.62).

The geodynamic parameter ke(r), which expresses the ratio of the tangential
component of the force field and the gravity force acceleration for the upper shell,
is approximated as

ke.r/ D !2t .r/

!20 .r/
:

At r/R D 1, ke(r) D 0.003456; at r/R D 0, ke(r) D 1, and !t(0) D!0(0); that is, the
virial oscillation frequency corresponds to the gravity pressure of the uniform
density masses. In this particular case, we are interested in changes of the angular
velocity of rotation of the upper (1,000 km) and lower (up to the core border) mantle

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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(2,900 km) shells. Figure 7.6b shows the radial change of the angular velocity of
rotation calculated by Eq. (7.63). It is seen that the angular velocity at the lower
mantle–outer core is close to zero but changes its direction.

We emphasize once more that Eqs. (7.62) and (7.63) express the third Kepler’s
law, which determines radial distribution of both the virial oscillation frequencies
and the angular velocities of rotation. Numerical values of these parameters are
determined by the radial density distribution law. It also determines the density
jumps that mark the effect of the shell’s hydrostatic equilibrium.

7.8 The Nature of Precession, Nutation, and Body’s
Equatorial Plane Obliquity

The most noteworthy effects of dynamics of the Earth and other bodies are the
interrelated phenomena of the precession and nutation of the axis of rotation, the
tidal effects of the oceans and atmosphere, the axial obliquity and declination of
the plumb line, and the gravity change at each point of the planet’s outer force
field. The present-day ideas about the nature of these phenomena were formed
on the basis of the Earth’s hydrostatic equilibrium and, since old times, were
considered as effects of perturbation from the Sun, the Moon, and other planets.
All the above phenomena represent periodic processes, and many observational and
analytical works were done for their understanding and description. The present-day
studies of these processes are still continuing to be specified and corrected. This is
because such topical problems as correct time, ocean dynamics, short- and long-
term weather and climate changes, and other environmental changes are important
for everyday human life.

Now, after it was found that the conditions of the hydrostatic equilibrium are
not acceptable for the study of the Earth’s dynamics, we reconsider the nature of
the phenomena by applying the concept of the planet’s dynamical equilibrium and
developing a novel approach to solving the problem.

7.8.1 Phenomenon of Precession

The first discovered phenomenon was the precession of equinoxes. It was observed
already in the second century BP by the Greek astronomer and mathematician
Hipparchus. His discovery was based on the comparison of longitudes of the far
stars with the longitudes of the same stars determined 150 years ago by the other
astronomers.

Inertial rotation of a symmetrical rigid body with a fixed point gives the classical
explanation of precession. Such a motion of the body, presented in Fig. 7.7, includes
its rotation with angular velocity � relative to the axis z, fixed in the body, and
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Fig. 7.7 Classical
explanation of precession
motion

from rotation with angular velocity ! around the axis z1. Here, the axes 1, y1, and
z1 are accepted to be immobile because motion of the body is considered just relative
to them. The straight line ON perpendicular to the plane z1O z is called the line
of nodes, and angle  D x1ON is the precession angle. Together with precession,
the body performs the nutation motions (axis wobbling) that cause changes in the
nutation angle‚D z1Oz.

Perturbation of the Earth’s inertial rotation is considered as a result of the applied
solar–moon force couple, the axis of which is at right angles to the rotation axis; the
body turns around the third mutually perpendicular axis. The Earth is accepted as a
rigid body oblate along the rotary axis. Newton’s idea was that the spherical body
has an equatorial bulge that appeared as the result of the planet’s oblateness. In this
case, the Sun attracts stronger, the body’s equatorial bulge, and it tends to decrease
the inclination of the Earth’s equatorial plane to the ecliptic. The Moon affects
analogously but two times as powerfully due to close distance. The common effect
of the Sun and Moon on the equatorial excess of the rotating Earth mass leads to
the rotary axis precession. Because the induced precession forces are continuously
varying due to changes in the Sun and Moon position relative to the Earth, then
additional nutations (wobble) of the axis are observed during translational motion of
the planet. In addition to the moon–solar precession, the effect of the other planets of
about few tenth of an arc second is observed. The combined Earth precession rate is
estimated to be equal to �50.300 per year or one complete rotation in �26,000 years.

The theory of the precession and nutation of the Earth’s axis of rotation based
on the hydrostatics was developing in the works of D’Alembert, Laplace, and Euler.
The precession values were calculated by Bessel and Struve and under verifying till
up to now. Physical basis of the modern studies remains unchanged. The main accent
in the studies is made on consideration of the elastic and rheological properties
of the planet and the effects of dynamics of the atmosphere and the oceans and
dynamics of the liquid core, the probability of which is assumed (Jeffreys 1970;
Munk and MacDonald 1960; Melchior 1972–1973; Sabadini and Vermeersen 2004;
Molodensky and Kramer 1961; Magnitsky 1965).
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1975)

7.8.2 Tidal Effects

The theory of the ocean tides was also presented first by Newton in his Principia,
Proposition XXIV, Theorem XIX. He stated that the tides are caused by action of
the Moon and the Sun. It follows from the Corollaries I and (Proposition
LXVI, Book I) that the sea should rise and subside twice per every lunar and twice
per every solar day, and the highest tide in the free and deep seas should appear
less than 6 h after the tide body has passed the place meridian. And it happens like
that along all the east Atlantic and Pacific shores. The effects of both tide bodies
are summed up. At joining and opposing positions of the bodies, their effects are
summed up and provide the highest or lowest tide. Observation shows that the tide
effect of the Moon is stronger than the Sun.

Modern studies in the theory of precession and nutation remain on the physical
basis described by Newton. Besides, all the above phenomena are considered in
close relationship, and their amplitudes and periods are described by common
equations that follow from the attraction theory (Melchior (1972–1973)).

The modern physical picture for explanation of the tidal interaction is presented
as follows (Pariysky 1975). The tidal force is equal to a difference between
any Moon-attracted placed on the Earth (including the atmosphere, the oceans,
and the solid body) and the same particle replaced by the center of the planet
(Fig. 7.8).

The normal tidal forces are proportional to the mass of the Moon m and the
distance to the center of the Earth r, and to inverse cubic distance between the
Moon and the Earth R, and zenith distance of the Moon z. The vertical component
of the tidal force per the mass unit Fv is changing the gravity force into the
value

F� D 3G
mr

R3

�
cos2z � 1

3

�
; (7.64)

where G is the gravity constant.
The gravity force decreases by 0.1 mgal or by 10�7 of its value on the Earth’s

surface when the Moon stays in zenith or nadir, and twice increases when the Moon
rises or sets.
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The horizontal component of the tidal force is equal to zero when the Moon
stays zenith, nadir, and on the horizon. Its maximum value reaches 0.08 mgal at
zenith distance of the Moon equal to 45ı:

Fh D 3G
mr

R3
sin2 z: (7.65)

The tidal force of the Sun is formed analogously. But because of distance, its
value is by 2.16 times less than of the lunar one. Due to rotational and orbital motion
of the Earth, the Moon, and the Sun, the tidal force of each point in the atmosphere,
the oceans, and the planet’s surface continuously changes in time. The tables of
integral values of the tidal forces in the form of the sums of periodic components
(�500 terms or more) calculated by the theory of motion of the Moon round the
Earth and the Earth round the Sun were compiled.

By estimation of many authors, the total tidal-slowing down Earth rotation
amounts to 3.5 ms in 100 years. By astronomic observation, the Earth’s rotation
is accelerated by 1.5 ms per 100 years.

Note that in the framework of the hydrostatic approach, the problems of the
nature of the obliquity of axis of the Earth’s rotation to the ecliptic and the nature of
the obliquity of axes of the Moon and the Sun to their orbit planes and their obliquity
to the ecliptic are not discussed. These problems have no even formulation.

7.8.3 The Nature of Perturbations Based on Dynamic
Equilibrium

In the beginning, let us consider physical meaning of the gravitational perturbation
for interacted volumetric (but not point) body masses. To the contrary of the
hydrostatics, where the measure of perturbation in the precession–nutation and
the tidal phenomena is the perturbing force, in the dynamic approach, that measure
of perturbation is power’s pressure. In Chap. 2, we came to a conclusion that
the mass points and the vector forces as a physical and mathematical instrument
in the problem solution of dynamics of the Earth in their own force field are
inapplicable. This is because the outer vector central force field of the interacted
volumetric masses expresses incorrectly dynamical effects of their interaction. As
a result, the kinetic effect of interaction of the mass particles, namely, the kinetic
energy of their oscillation, is lost. And also, the geometric center of a body is
accepted as the gravity center and center of the inertia (reaction). In dynamics, it
leads to wrong results and conclusions. In this connection, we found that in the
dynamics of a self-gravitating body, the effect of gravitational interaction of mass
particles should be considered as the power’s pressure. In addition, in this case, we
are free in the choice of a reference system. Our conclusion does not contradict to
Newton’s physical ideas that are presented in Book I of his Principia where he says:

http://dx.doi.org/10.1007/978-94-007-5908-4_2
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I approach to state a theory about the motion of bodies tending to each other with centripetal
forces, although to express that physically it should be called more correct as pressure. But
we are dealing now with mathematics and in order to be understandable for mathematicians
let us leave aside physical discussion and apply the force as its usual name.

Accepting the power pressure as an effect of gravitational interaction, we come
to an understanding that in the considered problem of the mutual perturbations
among the Earth, the Moon, and the Sun, the interaction results not between the
body centers or shells along straight lines but between the outer force fields of the
bodies and between their inner force fields of the shells. Satellite observations show
that the outer force field, induced by the Earth’s mass, has 4�-outward direction of
propagation and acquires the wave nature. We consider this outer wave force field
as a physical media by which the bodies transmit their energy. Thus, the Earth and
other planets are held and move on the orbits by the power of the outer force field of
the Sun. This statement is proved by the discovered solar system bodies’ origin. This
energy represents the integral effect of the Sun’s mass interaction, and this energy
conserves by orbiting motion of separating body (see Tables 1.1 and 1.2 of Chap. 1).
The frequency of the gravity interaction determines the border equality of energies
for interacting bodies. In this case, equality of the frequencies is the condition of
their dynamical equilibrium.

Now, we can write the condition of the interacted force fields and find the
physical border of such equilibrium between the Sun and the Earth in the form

!s.Rs/ D !e.Re/; (7.66)

where Rs and Re are the radius of the Sun’s and radius of the Earth’s outer force
field where the energies caring by the frequencies are equal to one another.

Analogously, equilibrium of the field energy for the Earth and the Moon is
written as

.!e/Re D !m.Rm/; (7.67)

where R are Rm are the radius of the Earth’s and radius of the Moon’s outer force
field.

The mean value of the radius in (7.66) can be found from the equality of the
frequencies of two bodies:

s
GMs

R3s
D
s
GMe

R3e
; (7.68)

and

Rs CRe D Rse: (7.69)

http://dx.doi.org/10.1007/978-94-007-5908-4_1
http://dx.doi.org/10.1007/978-94-007-5908-4_1
http://dx.doi.org/10.1007/978-94-007-5908-4_1
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After transforming the equations and substituting numerical values of the solar mass
Ms D 1.99�1030 kg, mass of the Earth M D 5.976�1024 kg, and the mean distance
between the two bodies Rs D 1.496�1011 m, we obtain the cubic equation

R3e � 1:35�108R2e C 2:02�1021Re � 1034 D 0: (7.70)

Compiling and solving analogous equations for the Earth’s position in perihelion
(Rpe D 1.471�1011 m) and in aphelion (Rae D 1.521�1011 m), we can find the cor-
responding mean radius in the knots, perihelion, and aphelion of the Earth’s field
equilibrium state:

Rek � 2:131�109 mI Rep � 2:1277�109 mI Rea � 2:1335�109 m: (7.71)

The corresponding energy caring by the frequency of dynamical equilibrium of
the Earth’s field in the found points, using Eq. (6.43), is the following:

!ek � 4:1183�10�7s�1I !ep � 4:1374�10�7s�1I !ea � 4:1038�10�7s�1:
(7.72)

It follows from the equilibrium condition (7.66) that the found frequency values
(7.72) for the Earth should coincide with the frequencies of the Sun’s oscillations of
the force field in the corresponding points of Earth’s orbit.

By the same method, the corresponding values of radiuses of the outer force
field and the frequencies of the Moon locating in the Earth’s force field can be
found. According to (7.68) and (7.69) for the Moon at its mass Mm D 7.35�1022 kg
and at the mean value of distance between two bodies Rkm D 3.844�108 m, in the
perigee R m D 3.644�108 m and apogee R m D 4.068�108 m, for the radius, Eq. (7.70)
is written in the form

R3m � 0:14�108R2m C 0:54�1016Rm � 0:69�1024 D 0: (7.73)

The values of radiuses in the knots, perigee, and apogee will be written as

Rmk � 0:72�108mI Rmp � 0:724�108mI Rma � 0:716�108 m: (7.74)

The corresponding energy caring by frequencies in the above points of dynamical
equilibrium of the Earth’s field in the found points, using Eq. (6.43), is the
following:

!mk D 3:6242�10�6s�1I !mp D 3:5942�10�6s�1I !ma D 3:6546�10�6s�1:
(7.75)

The found frequency values (7.75) for the Earth should coincide with the
frequencies of the Moon’s oscillations of the force field in the each point of the
Moon’s orbit.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
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The above results mean that the Earth’s dynamical equilibrium at its orbital
motion around the Sun and the Moon’s dynamic equilibrium at its motion around
the Earth are determined by the frequency equality of the outer force fields of the
two bodies in every point of their orbits. Because the frequency of oscillation in a
given point of the force field is a function of the body’s mass density distribution,
the inclination of the Earth’s and the Moon’s orbital plane to the equatorial plane
of the Sun and the Earth is determined by asymmetry in mass density distribution
of the two bodies. The observed inclination of the orbital planes is determined by
asymmetry in mass density distribution of the Sun and the Earth. The observed
parameters of the orbits and their inclination relative to the plane diameters of the
Sun, the Earth, and the Moon give a general view of the asymmetric distribution
of the body’s masses. In particular, the northern hemisphere of the Earth is more
massive than the southern one. In the perihelion, the northern hemisphere is turned
to the less massive hemisphere of the Sun so that the polar oblateness of each body
controls the location of its pericenter and apocenter, and the equatorial oblateness of
each body responds to the location of its nodes. Thus, the body motion in the outer
force field of its parent occurs under strict conditions of dynamic equilibrium, which
is also the main condition of its separation. It follows from the condition of dynamic
equilibrium that the orbital motion of the Earth and the Moon reflects asymmetry in
mass density distribution of the Sun, the Earth, and the Moon and asymmetry in the
potential of the outer wave field distribution. Only the structure of the Sun’s outer
wave field controls the Earth’s trajectory at the orbital motion, and the Earth’s force
field manages the orbital motion of the Moon, but not vice versa or somehow else.

7.8.4 Rotation of the Outer Force Field and the Nature
of Precession and Nutation

At the right time of motion of the bodies with the outer wave fields, their mutual
perturbations are transferred not directly from each body to the other one or from
their shells but through the outer fields by means of the corresponding active and
reactive wave pressures of the interacting fields. There is an important dynamic
effect of all the perturbations. This is the continuous change in the outer wave
field of each body that proceeds from its nonuniform radial distribution of the mass
density. As it was earlier shown, the nonuniform radial distribution of mass density
initiates the differential rotation of the body shells. And, in accordance with Eqs.
(6.27) and (6.28) expressing Kepler’s third law, the reduced body shells’ perturbing
effects are transferred to the other body by means of the outer wave field. The
Sun, for instance, transfers all the perturbations resulting during rotation of the
interacting masses of the shells to the Earth continuously through its outer wave
field. The Earth, in the framework of the energy conservation law, demonstrates all
the perturbations by changes in its orbit turns around the Sun (see Fig. 7.9).

http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
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Fig. 7.9 Real picture of
motion of body A in the force
field of body B. Digits
identify succession of turns of
body A moving around body
B along the open orbit C

Earlier, it was shown that in the case of nonuniform distribution of mass density,
the body’s potential and kinetic energies have radial and tangential components that
induce oscillation and rotation of the shells. It was defined by Eq. (7.61) that the
observed daily rotation of the Earth concerns only the upper shell with a thickness of
�375 km and reaches the nearby Mohorovičić discontinuity. By the same reasoning,
it is not difficult to find the thickness of the upper shells for the Sun and the Moon
correspondingly equal to

hs D vs

!0s .Rs/
� 2

6:28�10�4 � 3; 180 km; (7.76)

hm D �m

!0m .Rm/
� 4:56�10�3

9:66�10�4 � 4:72 km: (7.77)

We do not know real values and angular velocities for the inner shells of the three
bodies. These velocities have a direct interrelation with the observed changes in
parameters of the orbital motion of the Earth and the Moon including the retrograde
motion of the orbital nodes and the apsidal line. In this connection, let us try to
understand first of all the nature of precession and nutation of the bodies from the
viewpoint of the dynamic approach.

It was noted above that, in accordance with the hydrostatic approach, precession
of the equinoxes of the Earth is an effect of the net torque of the Moon and the Sun
on the equatorial “bulge” aroused from gravitational attraction. The torque aspires to
diminish inclination of the equatorial belt with surplus mass relative to the ecliptic
and induce the retrograde motion of the nodal line. In addition, because the ratio
of distance between the interacted bodies is changed, the relationship between the
forces is also changed. In this connection, the precession is accompanied by nutation
(wobbling) motion of the axes of rotation.

Analysis of orbits of the artificial satellite motion around the Earth shows that, in
spite of absence of the equatorial “bulge” of mass, the apparatus demonstrates the
precession effect. Its orbital plane has a clockwise rotation with retrograde motion
of the nodal line. But a new explanation of the phenomenon is given. It appears that
the retrograde motion of the nodal line associates with the Earth’s equatorial and
polar oblateness. The amplitude of the nodal line shift depends on the satellite orbit
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inclination to the Earth’s equatorial plane. In the case of the poles’ orbital plane, the
nodal line shift is completely absent. This is because the pole motion excludes both
the polar and the equatorial oblatenesses of the Earth. The direction of motion of
the apsidal line depends on the satellite’s orbit inclination and is determined by the
Lenz law.

It is also known that for the other free-of-satellite planets, the retrograde motion
of the nodal line is also a characteristic phenomenon called the “secular perihelion
shift.” It was found from the observation of Mercury, Venus, Earth, and Mars
that their secular perihelion shifts are decreased from �4000 through �8.500, �500
to �1.500 accordingly (Chebotarev 1974).

All these facts imply that the explanation given for the satellites’ precession
depending on their orbital inclination to the ecliptic is correct. But the nature of
this unique phenomenon, characteristic for all celestial bodies, is inconsistent with
the hydrostatic approach and should be reconsidered, taking also into account the
satellite observations.

The precession of the Earth, the Moon, and the artificial satellites in the form
of motion of an orbital plane toward the backward direction of the body’s motion
should be considered as a virtual explanation of the phenomenon. In fact, the orbit’s
plane is a geometric shape traced by the body. And there is no reason to consider
its movement without the body itself. There is no difficulty to present the real
body motion in space in two opposite directions synchronously. In particular, the
actual picture of the Earth, the Moon, and the satellite motion in counterclockwise
direction and retrograde movement of the nodal line is shown in Fig. 7.9.

Here, the satellite is moving in the counterclockwise direction along unlocked
elliptic orbit 1 in the continuously changing (perturbed by oblatenesses) force field
of the planet. Because of the counterclockwise rotation of the Earth’s mass, the
satellite in perigee started to move on orbit 2 and makes a shift in retrograde
direction in the ascending and descending nodes. At the same time, the eccentricity
of orbit 2 changes by a proper value. Analogously, the body passes on orbits 3, 4, 5,
and so on. The theory of dynamic equilibrium of the Earth explains the physics of
the observed phenomenon as follows.

The dynamic equilibrium theory assumes that the Earth is a self-gravitating body,
the interacting mass particles of which induce the inner and outer force fields.
Separation of the planet’s asymmetric shells results by the inner force field and
depends on the law of the radial mass density distribution. The normal component
of the body’s power pressure provides oscillation, and the tangential component
induces rotation of the shells having a different angular velocity. At the same time,
the mantle shells A and the outer shell of the core B may have the same (Fig. 7.10a)
or opposite direction (Fig. 7.10b) of rotation, depending on the radial mass density
distribution.

The seismic data show that the inner core C has a uniform density distribution.
Because of this, it does not rotate and its potential energy is realized in the form
of oscillation of the interacting particles. The potential of the outer force field is
controlled by integral effect of the interacted masses of all the shells and presented
by the reduced shell D having continuously changing power.
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a b

Fig. 7.10 Sketch of rotation of the Earth’s shells by action of the inner force field: is the mantle
shells; B is the outer core; C is the inner core; E is the outer force field; and D is the reduced shell
of the inner force field of the planet for direct (a) and for opposite direction (b) of the shell rotation

The energy of the Earth’s outer force field is changed from the body surface
in accordance with the 1/r law and, at every r, is continuously varied because
of differences in the angular velocity of rotation of the shell’s masses. This
force field controls the direction and the angular velocity of orbital motion of
a satellite. Taking into account the nonuniform and asymmetric distribution of
the masses of rotating shells, the change in the trajectory of the body motion is
accompanied by a corresponding change in eccentricity of the orbit both at each
and subsequent turns. Its maximum value is reached when the nonuniformities
of the rotating masses coincide and the minimal value appears at the opposite
position.

It is worth noting that the effect of retrograde motion of the nodal line of the
Earth, the Moon, and artificial satellites appears to be a common phenomenon
because the induced by the outer force fields of the Sun and the Earth are changing
with a finite velocity. The conclusion follows from here that the Sun has the same
effects in its shell structure and motion. It is obvious that the other planets with their
satellites have the same character of structure and motion.

If one takes into account the effect of a planet’s orbital plane inclination to the
equatorial plane of the Sun, then the above changes are found to follow the law
of 1/r. This observable fact proves our conclusion that the changes in the outer
force field of a body are controlled by rotation of its reduced inner force shell (see
the force shell D in Fig. 7.10). It explains why Mercury has maximal value of the
“secular perihelion shift” between the other planets.

Thus, the Earth’s orbital motion and retrograde movement of its nodal line
are controlled by the Sun’s dynamics of the masses through the outer force field.
The Earth plays the same role for the Moon and the artificial satellites. As to the
nutation motion, its nature is related to the same peculiarities in the structure and
motion of the bodies, but the effects of their perturbations are fixed by the axis
wobbling.
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Outer core

Outer shell

rg
rm

Fig. 7.11 Dependence of the
parabolic law of radial
density distribution on the
shell rotation for the Earth.
Here rm and rg are the
reduced radiuses of inertia
and gravitation

7.8.5 The Nature of Possible Clockwise Rotation of the Outer
Core of the Earth

The question arises why the outer planet’s core may have a clockwise rotation. It
was shown in Sect. 3.6 that the law of radial density distribution determines the
direction of a body’s shell rotation.

It was found that in the case of uniform mass density distribution, all energy of
the mass interaction is realized in the form of oscillation of the interacting particles
(Fig. 3.2a). If the density increases from the body’s surface to the center, then
there are oscillations and counterclockwise rotation of shells (Fig. 3.2b). Increase
of mass density from center to surface leads to oscillation and clockwise rotation
with different angular velocities of the body shells (Fig. 3.2c). Finally, the parabolic
law of radial density distribution (Fig. 7.11), where the density increases from the
surface and then it decreases, leads to oscillation and reverse directions of rotation.
Namely, the upper shells have a counterclockwise and the central shells have a
clockwise rotation. The case demonstrated on Fig. 7.11, obviously, is characteristic
for a self-gravitating body.

Note that direction of the body rotation depends on radial density distribution
and corresponds with the Lenz right-hand or right-screw rule, well known in
electrodynamics. Taking into account the observed effect of the retrograde motion of
the satellite nodal line, the gravitational induction of the inner and outer force fields
of the Earth has a common nature with electromagnetic induction noted earlier.
Just Fig. 7.11 may explain the nature of the retrograde motion of the nodal line of
a satellite orbit related to the finite velocity in the potential changes of the outer
Earth’s force field induced by the interacted mass particles. The continuous and
opposite-directed movement of the asymmetric mass density distribution of the
mantle and the outer core (Fig. 7.11) seems to be the physical cause of precession,
nutation, and variation of the inner and outer force fields observed by satellites.
This idea is proved by the satellite data about the retrograde motion of the nodal
line depending on the inclination of its orbital plane with respect to the planet’s
equatorial plane.

http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_3
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It is worth recalling, from the literature, that the idea of dynamical effects of the
probably liquid core of the Earth has been discussed among geophysicists for a long
time (Melchior 1972).

7.8.6 The Nature of the Earth’s Orbit Plane Obliquity
to the Sun’s Equatorial Plane

Celestial mechanics does not discuss the problem of obliquity of the planet’s and
satellite’s orbit planes and accepts it as an observable fact. From the viewpoint of
dynamical equilibrium, creating and orbiting of the planets and satellites originated
from the parental upper weightlessness shell with the first cosmic velocity. The
separation could have happened at any point of the body’s surface, depending on
the stage of evolution and the radial mass density distribution. It is known from
the observation that in most cases, it occurred in the parental equatorial zone. But
there are observational data, from which some planets and satellites separated under
higher angle of inclination. It is known from the experience of the artificial satellite
launching that the angle of inclination to the Earth’s equatorial plane is determined
by the parameters of satellite motion and dynamical effects of the Earth’s force field.

Unfortunately, up to now, we fix inclination of orbital planes of all planets and
even the Sun relative to the Earth’s orbital plane accepted as ecliptic. This is a
residual of the Ptolemaeus heliocentric system of the world, which was preserved in
order to use the observational data. This is the cause of changes in virtual direction
of the apsidal line at orbital inclination about 63ı and the orbital plane rotation of
the planets and satellites.

Despite this, we conclude that the Sun has a shell structure and its outer
force field is rotating with angular velocity equal to the velocity of the Earth
retrograde motion of the knots. Thus, we find that the Earth’s and planet’s
precession of the axes of rotation is the effect of difference in the Sun’s velocity
of the shells and correspondingly outer force field rotation. Taking into account
observational data, the Earth’s annual value in our time is equal to �5000. But in
longer time scale, this value is changing. This is because of changes in the period of
rotation of the reduced shell of the inner force field of the Sun (see reduced shell D in
Fig. 7.10). By the Earth’s climatic changes, the period of rotation of the Sun’s inner
force field reduced shell changes, which is between �50,000 and �120,000 years
(see Fig. 7.12).

The problem of a body motion on non-closed rotating trajectory, shown in
Fig. 7.9, in classical mechanics, is known as a problem of the finite motion in the
central force field in the domain restricted by the radiuses rmax and rmin from the
aphelion to the perihelion (Landau and Lifshitz 1969). The trajectory can be closed
after n turns at the condition of radius vector r turn on the angle
', which is equal
to the rational part from 2� , that is, at
'D 2�n1/n2, but n1 and n2 should be equal
to an integer.
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Fig. 7.12 Isotopic composition of oxygen in shells of mollusk Globigerinoides sacculifer within
a time period of 0–730,000 years (Emiliani 1978)

In our case, by observation, the annual precession of the Earth’s axes of rotation
is equal to 
'� 5000. In addition, the upper more-light-in-density shell of the
Sun with a thickness of 3,200 km, which has the observed daily angular velocity
of 14.4ı, and also the Earth’s rotating force field generate extra perturbation. So
strictly speaking, the Earth’s trajectory remains non-closed. Thus, the above figures
in first approximation can be used in practical geophysics for characterization of the
integral rotation of masses of the Sun’s shells.

The rotating Sun’s upper shell appears to be an additional source of the
Earth’s perturbations, which developed in nutations of its upper shell. Speculative
perception of the nutations is understood as a wobbling of the planet’s axes of
rotation in different time scales from daily to annual.

Analogous phenomenon is observed for the Moon’s motion around the Earth.
Looking at the period of the main nutation, the integral period of rotation of all the
shells of the planet should be equal to 18.6 years. The angular velocity of rotation
of reduced shell of the Earth’s inner force field should be equal to 19.35ı per year,
1.61ı per month, and 3.180 per day. The period of the Moon’s revolution around
the Earth is 27.3 days. The Moon’s daily angular orbital velocity is equal to 13.19ı
and is the same as the value around its own axes of rotation. During one period of
its turn, the Moon delaying in the motion in arc distance 
'D 42.540, which we
accept as a retrograde motion of the knots. The main period of the Earth’s nutation
seems to be the period of the Moon’s precession of the axes. Because the daily and
monthly time scales of motion of the Earth and the Moon do not coincide, the arc
values of their retrograde knots motion are continuously changing with a period of
18.6 years. The values of the daily, monthly, and yearly nutations of the Earth’s
upper shell are correspondingly changing because of the Moon’s perturbations.

7.8.7 The Nature of Chandler’s Effect of the Earth Pole
Wobbling

As it was noticed, changes in the planet’s inner force field are observed in the
form of nutation or wobbling of the axis of rotation. The axis itself reflects the
dynamics of the upper planet’s shell, the thickness of which, by our estimate, is
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about 375 km. The Moon is rotating around the Sun in the force field of the Earth,
which is perturbed by its natural satellite. Its maximum yearly perturbation should
be the Chandler effect. The Moon’s yearly cycle seems to be the ratio of the Earth’s
to the Moon’s month (in days). Then, this cycle is 365 (30.5/27)� 410 days (see
Fig. 7.13).

7.8.8 The Nature of Obliquity of the Earth’s Equatorial Plane
to the Ecliptic

It is obvious that the obliquity of the planet’s equatorial plane is related to the
polar and equatorial oblateness of the Earth’s masses. It follows from Eq. (6.28)
that the obliquity, in turn, is determined by the tangential component of the inner
force pressure generated by the nonuniform radial mass density distribution. This
tangential component of the inner force field induces the inner field of the rotary
moments, the energy of which was discussed in Sect. 7.8.6 and presented in
Table 7.2. The obliquity value can be obtained from the ratio of the potential
energy of the uniform U0 and nonuniform Ut body of the same mass. Accepting
this physical idea and the data of Table 7.2, we can write and obtain

cos � D U0

U 1

D ˛0

˛1
D 0:6

0:66
D 0:909; ‚ D 24:5ı; (7.78)

where ˛20 and ˛2t are the structural form factors taken from Table 7.2.
The error obtained in the calculation of obliquity by formula (7.78) equal to about

1ı or 
˛2t D 0:006: can be explained by the accepted law of the continuous radial
distribution of the planet’s mass density.

Equation (7.78) expresses the integral effect of the obliquity of the planet’s
equatorial plane, which is observed on the surface of the upper rotating shell.
It was shown earlier that the observed obliquity is really an integral dynamical
effect of the Earth’s mass including the upper part of the Gutenberg shell. But
being in a suspended state, relative to the other parts of the body, the upper shell
is able to wobble as if on a hinge joint by perturbation from the Sun and the
Moon. This effect of the upper shell wobbling gives an impression of the axial
wobbling.

By the same cause, the obliquity of the ecliptic with respect to the solar equator
is determined by the Sun’s polar and equatorial oblateness. The trajectory of the
Earth’s orbital motion at each point is controlled by the outer asymmetric solar
force field in accordance with the dynamic equilibrium conditions. And only in
the nodes, which are common points for equatorial oblateness of the Sun and
the Earth, is Huygens’ effect of the innate initial conditions fixed by the third
Kepler’s law.

http://dx.doi.org/10.1007/978-94-007-5908-4_6


7.8 The Nature of Precession, Nutation, and Body’s Equatorial Plane Obliquity 219
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Fig. 7.13 Effects of inner
and outer force fields of the
three bodies (the Sun, the
Earth, and the Moon) on the
Earth’s axes nutation: (a)
diurnal and semidiurnal
caused by the Earth’s upper
shell rotation, (b) monthly
and semimonthly initiated by
the Moon at its elliptic orbit
revolution, (c) annual and
semiannual caused by the
nonuniform outer solar force
field, (d) 18.6-year periodic
nutation caused by the
Moon’s precession (the outer
force field rotation), (e)
Chandler’s effect caused by
the Moon’s yearly cycle
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7.8.9 Tidal Interaction of Two Bodies

Let us consider the mechanism and effects of interaction of the outer force pressure
of two bodies being in dynamic equilibrium. Come back to the mechanism and
conditions of separation of a body mass with respect to its density when a shell with
light density is extruded to the surface. Rewrite Eq. (6.31) for acceleration of the
gravity force in points and of the two body shells (Fig. 6.1b) and their densities
� and �m.

qAB D 4�Gr

�
2

3
�M � �m

�
; (7.79)

After the shell with density �m appears on the outer surface of the body, the condition
of its separation by Eq. (7.79) will be

�M > 2=3�m: (7.80)

The gravitational pressure will replace the shell up to the radius C ı , where
the condition of its equilibrium reaches � D �m. This condition is kept on the new
borderline between the body and its upper shell. Taking into account that the shell
in any case has a thickness, then, by the Archimedes law, the body will be subject to
its hydrostatic pressure. If the separated shell is nonuniform with respect to density,
then a component of the tangential force pressure appears in it, and the secondary
self-gravitating body (satellite) is formed. The new body will be kept on the orbit
by the normal and equal tangential components of the outer force pressure. In this
case, the reaction of the normal gravitational pressure will be local and nonuniform.
If the upper shell is uniform with respect to density, then the reaction of the normal
gravitational pressure along the whole surface of the body and the shell remains
uniform. In this case, the separated shell remains in the form of a uniform ring.

The above schematic description of the physical picture of the separation and
creation of a secondary body can be used for the construction of a mechanism of
the tidal phenomena in the oceans, the atmosphere, and the upper solid shell at
interaction between the Earth and the Moon. The outer gravitational pressure of
the Moon, due to which it maintains itself in equilibrium on the orbit, at the same
time renders hydrostatic pressure on the Earth’s atmosphere, oceans, and upper solid
shell through its outer force field. This effect determines the tidal wave in the oceans
and takes active part in the formation and motion of cyclonic and anticyclonic
vortexes. In accordance with the Pascal law, the reaction of the Moon’s hydrostatic
pressure is propagated within the total mass of the ocean water and forms two tidal
bulges. Because the upper shell of the Earth is moving faster relative to the motion of
the Moon, the front tidal bulge appears ahead of the moving planet. Our perception
of the ocean tides as an effect of attraction of the Moon appears to be speculative.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
http://dx.doi.org/10.1007/978-94-007-5908-4_6
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7.8.10 Change in Climate as an Effect of Changes
of the Earth’s Orbit

The above analysis of dynamical effects of the Earth’s shells is based first of all
on the data of satellite’s orbit changes and measurements of the planet’s force field.
Unfortunately, a specific feature of an artificial satellite orbital motion is its artificial
velocity, which is �16 times higher than the angular velocity of the upper Earth’s
shell. In this connection, all its parameters of satellite motion are unnatural. So we
cannot directly divide the natural component of its nodal retrograde shift in order to
get the total picture of perturbations that propagate the Earth’s inner shells. This is
an experimental problem.

But there are also long-term astronomical observations of the Earth’s dynamics
relative to the far stars, the results of which correspond to the presented ones. In
addition, periodicity in rotation of asymmetric inner shells of the Sun can be fixed by
climatic changes on the Earth over a long period of time. Such changes were being
studied, for instance, by data of the oxygen isotopic composition in mollusk shells
over a number of years. Figure 7.12 demonstrates the results of Emiliani (1978),
who studied the core obtained during deep sea drilling in the Caribbean basin.

The author obtained the picture of climate change in the Pleistocene era over
700,000 years. It is seen that the periods of climate change vary from 50,000 to
120,000 years. It means that the pure period of rotation of the asymmetric mass
shells of the Sun is absent, and the orbital trajectory has not been locked into place
during the studied time.
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Chapter 8
The Nature of Electromagnetic Field
of a Celestial Body and Mechanism
of Its Energy Generation

Abstract In order to find a solution of the problem, a novel idea based on the
innate capacity of body’s energy for performing motion is discussed. The energy
is the measure of the motion and interaction of particles of any kind of body’s
matter. The various forms of energy are interconvertible, and its sum for a system
remains constant. The above unique properties of the energy, with its oscillating
mode of the motion in our dynamics, make it possible to consider the nature of
the electromagnetic and gravitational effects of celestial bodies as interconnected
events.

Applying the dynamical approach and the results obtained, it is shown that the
nature of creation of the electromagnetic field and the mechanism of its energy
generation appear to be the effect of the volumetric gravitational oscillation of the
body’s mass. This effect is also characteristic for any celestial body. A number of
tasks were considered in this chapter, namely, electromagnetic component of the
interacted masses, potential energy of the Coulomb interaction of mass particles,
emission of electromagnetic energy by a celestial body as an electric dipole,
quantum effects of generated electromagnetic energy, and the nature of the star-
emitted radiation spectrum.

The relationship between the gravitational field (potential energy) and the polar
moment of inertia of the Earth, discovered by the artificial satellites, leads to
understand the nature and the mechanism of a celestial body’s energy generation as
the force function of all the dynamical processes releases in the form of oscillation
and rotation of the matter. Through the energy nature, we understand the unity of
forms of the gravitational and electromagnetic interactions, which, in fact, are the
two sides of the same natural effect.

The hydromagnetic dynamo, the action of which is provided by the planet’s liquid
metal core or the solar gas plasma, is the most popular idea for the explanation of a
body electromagnetic field generation. Its essence is in the motion of the conducting
liquid core where self-excitation of the electric and magnetic poloidal (meridional)

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 8,
© Springer ScienceCBusiness Media Dordrecht 2013
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and toroidal (parallel) fields happened. During the rotation of the inner planet’s
shells with different angular velocities, in the case of asymmetric thermal convection
of the shell mass, the intensity of the fields is increased. This condition, for example,
for the Earth is achieved because the rotation and magnetic axes are not coincided
and the thermal convection supposedly takes place. But physically justified theory of
the observed planets and solar phenomenon of electromagnetic field is absent. There
is no explanation for the mechanism of generation of the energy of this field, except
for general physical principle of the mass and charge interaction. Also the ideas or
hypotheses about the source of refilling of the planets’ energy that is spent for the
gravitational and thermal irradiation are absent. The only source of the solar- and
star-irradiated energy is accepted to be the interior nuclear fusion. In this chapter,
we discuss this problem from the position of the Jacobi dynamics effects.

In order to find a solution to this problem, in this chapter, we discuss a novel idea
based on the innate capacity of body’s energy for performing motion. As shown in
Chaps. 3 and 4, the energy is the measure of the motion and interaction of particles
of any kind of body’s matter. The various forms of energy are interconvertible, and
its sum for a system remains constant. The above unique properties of the energy,
with its oscillating mode of the motion in our dynamics, make it possible to consider
the nature of the electromagnetic and gravitational effects of celestial bodies as
interconnected events.

It was shown in Chap. 7 that the body’s gravitational (potential) energy results
in the body’s matter volumetric pulsations, having oscillating regime, frequencies
of which depend on the mass density. In our consideration, the planets and stars are
accepted as self-gravitating bodies. Their dynamics is based on their own internal
force field, and the potential and kinetic energies are controlled by the energy of
oscillation of the polar moment of inertia, that is, by interaction of the body’s
elementary particles.

Applying the dynamical approach and the results obtained, we show below that
the nature of creation of the electromagnetic field and the mechanism of its energy
generation appear to be the effect of the volumetric gravitational oscillation of the
body’s masses. This effect is also characteristic for any celestial body.

8.1 Electromagnetic Component of the Interacted Masses

It was shown in Sect. 6.2 that the electromagnetic energy is a component of the
expanded analytical expression of the potential energy. The expansion was done by
means of the auxiliary function of the density variation relative to its mean value.
The expression of the body’s potential gravitational energy in the expanded form
(6.8) was found as

U D ˛
GM2

R
D
2

43
5

C 3

1Z

0

 x dx C 9

2

1Z

0

�
 

x

�2
dx

3

5 GM
2

R
; (8.1)
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where U is the potential energy of the gravitational interaction, ˛ is the form factor
of the force function, G is the gravity constant, M is the body mass, R is its radius,
and (s) is the auxiliary function of radial density distribution �r relative to its mean
value �0:

 .s/ D
sZ

0

.�r � �0/
�0

x2 dx: (8.2)

We have considered and applied the first two right-hand side terms of Eq. (8.1).
The third term in dimensionless form represents an additive part of the potential
energy of the interaction of the nonuniformities between themselves, which was
written as

9

2
� D 9

2

1Z

0

�
 

x
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dx � 9
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1Z

0

�
 

x2

�2

x2 dx: (8.3)

where

� D
1Z

0

�
 

x

�2

dx 	 0:

The nonuniformities are determined as the difference between the given density
of a spherical layer and the mean density of the body within the radius of the
considered layer. For interpretation of the third term, we apply the analogy of
electrodynamics (Ferronsky et al. 1996). For each particle, there generates an
external field, which determines its energy. The energies of some other interacted
particles and their own charges are determined by this field. As far as the potential
of the field is expressed by means of the Poisson’s equation through the density of
charge in the same point, the total energy can be presented in additive form through
the application of the squared field potential. If the body mass is considered as a
moving system, then Maxwell’s radiation field applies.

In our solution, the dimensionless third term of the field energy is written as

9

2
� D 9

2

1Z

0

�
 

x

�2

dx � 9

2

1Z

0

�
 

x2

�2
x2 dx � 9

2

1Z
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E2 dV; (8.4)

where D /x2 is the dimensionless form of the electromagnetic field potential that
is a part of the gravitational potential,  plays the role of the charge, and dV D x2 dx
is the volume element in dimensionless form.
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Table 8.1 Observational parameters of equilibrium nebulae

Visible dark nebulae

Parameters Small globula Large globula Intermediate cloud Large cloud

m/mSun >0.1 3 8�102 1.8�104

R(pc) 0.03 0.25 100 20
( / m3) >4�104 1.6�103 100 20

m/�R2 (g/ m2) >10�2 3�10�3 3�10�3 3�10�3

In order to determine the numerical value of �, the calculations for a sphere with
different laws of radial density distribution including the polytropic model were
done (Ferronsky et al. 1996). These models were used in our earlier numerical
calculations of the form factors ˛ and ˇ. The results show that for the density
distributions that have physical meaning (Dirac’s envelopes, and Gaussian and
exponential distributions) and also for the polytropes with index 1.5, the parameter
� has the same constant value. We interpret this fact for a steady-state dynamical
system as an evidence of the existence of equilibrium radiation between a celestial
body and the external flow. The numerical value of the parameter � is equal to
0.022. There is also an observational confirmation of this conclusion. Spitzer (1968)
demonstrates observational results of nebulae of different mass and size in Table 8.1.

Thus, in this case, the energy of the equilibrium electromagnetic field of radiation
is equal to

U� D
0

@9
2

1Z

0

E2 dV

1

A GM
2

R
D 0:1

GM2

R
: (8.5)

Thus, the virial approach to the problem solution of the Earth’s global dynamics
gives a novel idea about the nature of the planet’s electromagnetic field. The energy
of this field appears to be the component of the potential energy of the interacted
masses. The question arises about the mechanism of the body’s energy generation,
which provides radiation in a wide range of the wave spectrum from radio through
thermal and optical to x and � rays.

8.2 Potential Energy of the Coulomb Interaction of Mass
Particles

With the help of model solution, we can show that for the Coulomb interactions
of the charged particles, constituting a celestial body, the relationship between the
potential energy of a self-gravitating system and its Jacobi function

U
p
ˆ D const: (8.6)

remains (Ferronsky et al. 1981).
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Derivation of the expression for the potential energy of the Coulomb interactions
of a celestial body is based on the concept of an atom following, for example, from
the Thomas–Fermi model (Flügge 1971). In our problem, this approach does not
result in limited conclusions since the expression for the potential energy, which we
write, will be correct within a constant factor.

Let us consider a one-component, ionized, quasi-neutral, and gravitating gaseous
cloud with a spherical symmetrical mass distribution and radius of the sphere R.
We shall not consider here the problem of its stability, assuming that the potential
energy of interaction of charged particles is represented by the Coulomb energy.
Therefore, in order to prove relationship (8.6), it is necessary to obtain the energy
of the Coulomb interactions of positively charged ions with their electron clouds.

Assume that each ion of the gaseous cloud has the mass number i and the order
number Z, and the function �(r) expresses the law of mass distribution inside the
gaseous cloud. The mass of the ion will be imp (where mp D 4.8�10 �24 g is mass
of the proton), and its total charge will be CZe (where e D 4.8�10�10 GCSE is an
elementary charge). Then, let the total charge of the electron cloud, which is equal to
�Ze, be distributed around the ion in the spherically symmetrical volume of radius
ri with charge density qe(re), re2 [0, ri]. Radius ri of the effective volume of the ion
may be expressed through the mass density distribution �(r) by the relation

4

3
�r3i D Aimp

�.r/
: (8.7)

Then,

ri D 3

s
3Aimp

4��.r/
: (8.8)

Let us calculate the Coulomb energy U 0
c per ion, using relation (8.8). Assuming

that the charge distribution law in the effective volume of radius ri is given, we may
write U 0

c in the form

U 0
c D U .C/

c C U .�/
c ; (8.9)

where U .�/
c is the potential energy of the Coulomb repulsion of electrons inside

the effective volume radius ri and U .C/
c is the potential energy of attraction of the

electron cloud to the positive ion.
Let the charge distribution law qe(re) D q0(re) inside the electron cloud be given.

Then, normalization of the electron charge of the cloud, surrounding the ion, may
be written in the form

�Ze D
r1Z

0

4�qe .re/ r
2
e dre: (8.10)
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From expression (8.10), we may obtain the normalization constant q0, which will
depend on the given law of charge distribution, as

q0 D � Ze

4�
r1R

0

r2e f .re/ dre

: (8.11)

Now it is easy to obtain expressions for U .�/
c and U .C/

c in the form

U .�/
c D .4�/2q20
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0

ref .re/ dre

r1Z

0
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e
�2
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�
r 0

e
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e; (8.12)

U .C/
c D 4�Zeq0

r1Z

0

ref .re/ dre: (8.13)

Finally, expression (8.8) for the potential energy U 0
c corresponding to one ion

may be rewritten using (8.11), (8.12), and (8.13) in the form

U 0
c D �e2Z2
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: (8.14)

It is easy to see that the right-hand side of Eq. (8.14), the expression enclosed
in brackets, determines the inverse value of some effective diameter of the electron
cloud, which may be expressed through the form factor ˛2i of the ion radius ri, that
is,

r1R

0

ref .re/ dre

r1R

0

r2e f .re/ dre

�

reR

0

ref .re/ dre

reR

0

.r 0
e/ f .r

0
e/ dr 0

e

�
r1R

0

r2e f .re/ dre

�2 D �˛i

r2i
: (8.15)

Thus, expression (8.14), using (8.15), yields

�U 0
c D ˛

e2Z2

r2i
: (8.16)

The numerical values of the form factor ˛i depending on the charge distribution
qe(re) inside the electron cloud are given in Table 8.2, and their calculations were
given in our work (Ferronsky et al. 1981).
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Table 8.2 Numerical values
of the form factors ’i for
different radial charge
distribution of the electron
cloud around the ion

The law of charge distributiona ˛2i

qe .re/ D q0 D const 0.9
qe .re/ D q0 .1� re=ri/ 1.257

qe .re/ D q0.1� re=ri/
n .nC3/.11n2C41nC36/

8.2nC3/.2nC5/

qe .re/ D q0.re=ri/
n .nC3/2

.nC2/.2nC5/

The same for ! 1 ˛2i ! 1/2
aHere q0 is the charge value in the center of the sphere;
re is the parameter of radius, re2[0, ri]; n D 0, 1, 2, : : :
is an arbitrary number

Using expression (8.16), the total energy of the Coulomb interaction of particles
may be written as

�Uc D 4�

RZ

0

�.r/

Aimp
U 0

cr
2 dr D 3˛ie

2Z2

R

RZ

0

Rr2
�
4��.r/

3Aimp

�4=3
dr: (8.17)

Introducing the form factor of the Coulomb energy ˛i in expression (8.17),
depending on the mass distribution in the gaseous cloud and on the charge
distribution inside the effective volume of the ion, we obtain

�Uc D ˛c
e2Z2

r2i

�
m

Aimp

�4=3
; (8.18)

where

˛c D
3˛i

RR

0

Œ.4�=3/�.r/�4=3Rr2 dr

m4=3
;

m D
NX

iD1
mi D 4�

RZ

0

r2�.r/ dr:

Since the total number of ions N in the gaseous cloud is equal to

N D m

Aimp
;

and the relation between the radius of the cloud and the radius of the ion may be
obtained from the relationship of the corresponding volumes

4

3
�R3 D N

4

3
�r3i ;
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then the expression (8.18) may be rewritten in the following form:

�Uc D ˛c
N4=3e2Z2

R2
D ˛2cN

e2Z2

r2i
: (8.19)

Hence, the form factor entering the expression for the potential energy of
the Coulomb interaction acquires the same physical meaning, what it has in the
expression for the potential energy of the gravitational interaction of the masses
considered in Sect. 2.6. It represents the effective shell to which the charges in the
sphere are reduced, that is,

˛c D ri

rei
: (8.20)

Taking into account that the moment of inertia of the body is I Dˇ2mR2, then the
relation (8.6) can be written in the form

�Uc

p
I D ˛cN

4=3 eZ
2

R

p
ˇ2mR2 D ˛cˇ

2N 4=3m1=2e2Z2 D const: (8.21)

Since we have assumed that the mass of the system and its ion composition are
constants, examination of Eq. (8.6) will be equivalent to the analysis of the product
of the form factors ˛c and ˇ. Equation (8.6) holds if

˛ˇ D ri

rei
� const:

The results of the numerical calculations of the form factors ˛c and ˇ for different
mass distribution in the cloud are shown in Table 8.3, and calculations were carried
out in our work (Ferronsky et al. 1981). The values of the form factor ˛i of the ion,
the numerical value of which depends on the choice of charge distribution qe(re),
are shown in Table 8.2.

In Table 8.3, the numerical values of the form factor ˛c and the product of the
form factors ˛cˇ are given for the case of homogeneous distribution of the electron
charge around ion, that is, when qe(re) D constant. From Table 8.3, it follows that
for different laws of mass distribution, when the mass increases to the center, the
product of form factors ˛c and ˇ remains constant, and therefore Eq. (8.6) holds,
with the same comments as were made previously.

From Eq. (8.20), it follows, however, that the form factor of the Coulomb
energy ˛c becomes infinite, when the volume occupied by the ions tends to zero.
Correspondingly, the Coulomb energy in this case will also tend to infinity. In
Table 8.3, there are two laws of mass distribution for which the last condition
holds. They are �(r) D �0(1 � (r/R)n for n ! 1. When the particles of the system
are gathering at the shell of the finite radius, the energy of the Coulomb interaction
tends to infinity, whereas the energy of gravitational interaction has a finite value.

http://dx.doi.org/10.1007/978-94-007-5908-4_2
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When the mass distribution is �(r) D �0(1 � (r/R)n, the form factors of gravitational
and Coulomb energies are both finite. But the form factors of the Jacobi function of
the system in this case tend to zero, a circumstance that provides the constancy of
the product of the form factors ˛c and ˇ. This difference might play a decisive role
in the evolution of the system.

In conclusion, we note that the results of the study on the relationship between
the Jacobi function and the potential energy allow us to consider that the transfer
from Jacobi’s equation into the equations of virial oscillations is from the point of
view of physics justified. This justification has been achieved in the framework of
Newton and Coulomb interactions of the particles of the system.

8.3 Emission of Electromagnetic Energy by a Celestial Body
as an Electric Dipole

In Chap. 5, we considered the solution of the virial equation of dynamical
equilibrium for dissipative systems written in the form

R̂ D �A0 Œ1 � q.t/�C Bp
ˆ
: (8.22)

Here, the function of the energy emission [1 � q(t)] was accepted on the basis of the
Stefan–Boltzmann law without an explanation of the nature of the radiation process.
Now, after the analysis of the relationship between the potential energy and the polar
moment of inertia, considered in the previous section, and taking into account the
observed relationship by artificial satellites, we try to obtain the same relation for
the celestial body as an oscillating electric dipole (Ferronsky et al. 1987).

Equation (8.22) for a celestial body as a dissipative system can be rewritten as

X .t � t0/ D E� .t � t0/ :

The electromagnetic field formed by the body is described by Maxwell’s equations,
which can be derived from Einstein’s equations written for the energy–momentum
tensor of electromagnetic energy. In this case, only the general property of the
curvature tensor in the form of Bianchi’s contracted identity is used. We recall
briefly this derivation sketch (Misner et al. 1975).

Let us write Einstein’s equation in geometric form

G D 8�T; (8.23)

where G is an Einstein tensor and is an energy–momentum tensor.
In the absence of mass, the energy–momentum tensor of the electromagnetic field

can be written in arbitrary coordinates in the

http://dx.doi.org/10.1007/978-94-007-5908-4_5
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4�T 	v D F	˛F vˇg˛ˇ � 1

4
g	vF��F

�� ; (8.24)

where g˛ˇ is the metric tensor in coordinates and F	� is the tensor of the
electromagnetic field.

From Bianchi’s identity,

rG � 0; (8.25)

where r is a covariant 4-delta and follows the equation expressing the energy–
momentum conservation law:

rT � 0: (8.26)

In the component form, the equation is

F
	˛
I� g˛�F �� C F

	˛
I� g˛�F �˛ D g	v .Fv� I� C F�vI� / F �� : (8.27)

After a series of simple transformations, we finally have

F
ˇv
Iv D 0: (8.28)

Here and above, the symbol “;” defines covariant differentiation.
To obtain the total power of the electromagnetic energy emitted by the body,

Maxwell’s equations should be solved, taking into account the motion of the charges
constituting the body. In the general case, the expressions for the scalar and vector
potentials are

4�' D
Z

.V /

Œ�� dV

R
; (8.29)

4� NA D
Z

.V /

Œj � dV

R
; (8.30)

where � and j are densities of charge and current, [j] denotes the retarding effect
(i.e., the value of function j at the time moment t � R/c), R is the distance between
the point of integration and that of observation, and the velocity of light.

In this case, however, it seems more convenient to use the Hertz vector Z of the
retarded dipole (t � R/c) (Tamm 1976). The Hertz vector is defined as

4�Z D 1

R
�

�
t � R

c

�
: (8.31)
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Electromagnetic field potentials of the Hertz dipole can be determined from the
expressions

' D �divZ; (8.32)

NA D 1

c

dZ

dt
: (8.33)

Moreover, the Hertz vector satisfies the equation

�Z �
�

r2 � 1

c2
@2

@t2

�
Z D 0; (8.34)

where � is the d’Alembertian operator.
The intensities of the electric and magnetic fields and are expressed in terms

NZ by means of the equations

NH D rot PNZ; (8.35)

NE D grad div NZ � 1

c
RNZ: (8.36)

The radiation of the system can be described with the help of the Hertz vector of the
dipole Np D q Nr , where q is the charge and r is the distance of the vector from the
charge (Cq) to (�q).

From the sense of the retardation of the dipole (t � R/c), we can write the
following relations:

d Np
@R

D �1
c

PNp; d2 Np
dR2

D 1

c
RNp:

Then, the components of the fields NE and NH of the dipole are as follows:

H' D sin �

c2R
RNp
�
t � R

c

�
; (8.37)

E� D sin �

c2R
RNp
�
t � R

c

�
; (8.38)

where � is the angle between and NR; H®?E� and ?R; the other components of E
and H in the wave zone are tending to zero quicker than 1/R in the limit R ! 1.

The flux of energy (per unit area) is equal to

S D c

4�
E�H' D 1

4�c2
sin �

R2

� RNp�2: (8.39)
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The total energy radiated per unit time is given by

ZZ
�S d� D 2

3c3

� RNp�2: (8.40)

Thus, transforming the dissipative system to an electric dipole by means of the
Hertz vector, we have reduced the task of a celestial body model construction to the
determination of the dipole charges CQ and �Q through the effective parameters of
the body.

This problem can be solved by equating expression (8.40) for the total radiation
of a celestial body as an oscillating electric dipole. In addition, the relation for the
black body radiation expressing through effective parameters was presented below
in Sect. 8.5.

The expression (8.40) for the total rate of the electromagnetic radiation J of the
electric dipole can be written in the form (Landau and Lifshitz 1973)

J D 2

3

Q2

c3

� RNr� ; (8.41)

where Q is the absolute value of each of the dipole charges and r is the vector
distance between the polar charges of the dipole. Its length in our case is equal to
the effective radius of the body.

In our elliptic motion model of the two equal masses, the vector Nr satisfies the
equation

RNr D �Gm Nr
r3
: (8.42)

Thus, the total rate of the electromagnetic radiation of the dipole is

J D 2

3

Q2

c3
.Gm/2

r4
: (8.43)

In order to obtain the average flux of electromagnetic energy radiation, the value
of the factor 1/r4 should be calculated and averaged during the time period of one
oscillation. Using the angular momentum conservation law, we can replace the time
averaging by angular averaging, taking into consideration that

dt D mr2

2M
d'; (8.44)

where is angular momentum and ® is the polar angle.
The equation of the elliptical motion is

1

r
D 1

a .1 � "2/
.1C " cos'/ ; (8.45)

where is the semimajor axis and " is the eccentricity of the elliptical orbit.
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The value of 1/r4 can be found by integration. In our case of small eccentricities,
we neglect the value of "2 and write

�
1

r4

�
D 1

a4
: (8.46)

Finally, we obtain

NJ D 2

3

Q2

c3
Gm2

a4
: (8.47)

Earlier, it was shown (Ferronsky et al. 1987) that

NJ D 4��
1

a2
A4c ; (8.48)

where � is the Stefan–Boltzmann constant, D Gm	 /3k is the electron branch
constant, 	 is the electron mass, and k is the Boltzmann constant.

Equating relations (8.47) and (8.48), we find the expression for the effective
charge Q as follows:

Q D p
6��

A2e
crg

; (8.49)

where rg D Gm/c2 is the gravitation radius of the body.
We have thus demonstrated that it is possible to construct a simple model of the

radiation emitted by a celestial body, using only the effective radius and the charge
of the body. Moreover, a practical method of determining the effective charge using
the body temperature from observed data is shown.

The logical question raised is thus: what is the mechanism of the energy
generation of the bodies that they emitted in the wide range of oscillating frequency
spectrum? Let us consider this important question at least in first approximation.

8.4 Quantum Effects of Generated Electromagnetic Energy

The problem of the energy generation technology for human practical use has been
solved far before. In the beginning, it was understood how to transfer the wind and
fire energy into the energy of translational and rotary motion. Later on, people have
learned about production of the electric and atomic energies. Technology of the
thermonuclear fusion energy generation is the next step. It is assumed that the Sun
replenishes its emitted energy by the thermonuclear fusion of hydrogen, helium, and
carbon. The Earth’s thermal energy loss is considered to be filled up by convection
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ε4

ε3

ε2

ε1

a b

Fig. 8.1 Quantum transition of energy levels at contraction phase of the body mass (a) and
inversion at the phase of its expansion (b); "1, "2, "3, and "4 are levels of energy

of the masses and thermal conductivity. But the source of energy for convection of
the masses is not known.

The obtained solution of the problem of volumetric pulsations for a self-
gravitating body based on their dynamical equilibrium creates real physical basis
to formulate and solve the problem. In fact, if a body performs gravitational
pulsations (mechanical motions of masses) with strict parameters of contraction and
expansion of any as much as desired small volume of the mass, then such a body,
like a quantum generator, should generate electromagnetic energy by means of its
transformation from mechanical form through the forced energy level transitions
and their inversion on both the atomic and nuclear levels. In short, the considered
process represents transfer of mechanical energy of the mass pulsation to the energy
of electromagnetic field (Fig. 8.1).

An interpretation of the process can be presented as follows. While pulsating
and acting in the regime of the quantum generator, the body should generate and
emit coherent electromagnetic radiation. Its intensity and wave spectrum should
depend on the body mass and its radial density distribution and chemical (atomic)
content. As shown in Sect. 6.4, the body with uniform density and atomic content
provides pulsations of uniform frequency within the entire volume. In this case, the
energy generated during the contraction phase will be completely absorbed at the
expansion phase. The radiation that appeared at the body’s boundary surface must
be in equilibrium with the outer flux of radiation. The phenomenon like this seems
to be characteristic for the equilibrated galaxy nebulae and for the Earth’s water
vapor in anticyclonic atmosphere.

The pulsation frequencies of the shell-structured bodies are different but steady
for each shell density. In the case of density increase toward the body center,
the radiation generating at the contraction phase will be partially absorbed by an
overlying stratum at the expansion phase. The other part of radiation will be summed
up and transferred to the body surface. That radiation forms an outer electromagnetic
field and is equilibrated by interaction with the outer radiation flux. The rest of the
nonequilibrated and more energetic radiation in the spectrum moves to the space.
The coherent radiation that reaches the boundary surface has a pertinent potential
and wave spectrum depending on the mass and atomic content of the interacted
shells in accordance with Moseley law. The Earth emits infrared thermal radiation in
an optical shortwave range of spectrum. The Sun and other stars cover the spectrum
of electromagnetic radiation from radio through optical, x, and gamma rays of wave

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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ranges. The observed spectra of star radiation show that total mass of a body takes
part in the generation and formation of surface radiation. According to the accepted
parabolic law of density distribution of the Earth, it has maximum density value
near the lower mantle boundary. The value of the outer core density has jump-
like fall, and the inner core density seems to be uniform up to the body center.
The discussed mechanism of the energy generation is justified by the observed
seismic data of density distribution. It is assumed that the excess of generated
electromagnetic energy from the outer core comes to the inner core and keeps the
pressure of dynamical equilibrium at the body pulsation there during the entire time
of the evolution. The parabolic distribution of density seems to be characteristic for
most of the celestial bodies.

In connection with the discussed problem, it is worth to consider the equilibrium
conditions between radiation and matter on the body boundary surface.

8.5 The Nature of the Star-Emitted Radiation Spectrum

We assume that the novas and supernovas after explosion and collapse pass into
neutron stars, white dwarfs, quasars, black holes, and other exotic creatures that
emit electromagnetic radiation in different ranges of the wave spectrum. The effects
discussed in this book based on dynamical equilibrium evolution of self-gravitating
celestial bodies allow the exotic stars to be interpreted from a new position. We
consider the observed explosions of stars as a natural logical step of evolution related
to their mass differentiation with respect to the density. The process is completed by
separation of the upper “light” shell. At the same time, the wave parameters of the
generated energy of the star after shell separation are changed because of changes
in density and atomic contents. As a result, the frequency intensity and spectrum
of the coherent electromagnetic radiation on the boundary surface are changing.
For example, instead of radiation in optical range, the coherent emission in x or
gamma ray range takes place. But the body’s dynamical equilibrium should remain
during all the time of evolution. The loss of the upper body shell leads to decrease
in the angular velocity and increase in the oscillation frequency. The idea of the star
gravitational collapse seems to be an effect of the hydrostatic equilibrium theory
(Ferronsky 2005).

As to the high temperature on the body surface, the order of which from
Rayleigh–Jeans’ equation is 107 K and more, in our interpretation as applying
Eq. (7.22) for evolution of a star of solar mass at the electron phase (Fig. 8.1),
the limiting temperate 0!	 2/3k or (Ferronsky et al. 1996)

3kT0 ! 	ec
2 � 0:5MeV;

T � 5 � 109 K:

http://dx.doi.org/10.1007/978-94-007-5908-4_7
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This means that on the body surface, the gas approaches to the electron temperature
because the velocity of its oscillating motion runs to c.

The energy is a quantitative measure of interaction and motion of all the forms of
the matter. In accordance with the law of conservation, the energy does not disappear
and does not appear itself. It only passes from one form to another. For a self-
gravitating body, the energy of mechanical oscillations, induced by the gravitational
interactions, passes to the electromagnetic energy of the radiation emission and vice
versa. The process results by the induced quantum transition of the energy levels
and their inversion. Here, transition of the gravitational energy into electromagnetic
and vice versa results in the self-oscillating regime. In the outer space of the
body’s border, the emitted radiation energy forms the equilibrium electromagnetic
field. The nonequilibrium part of the energy in the corresponding wave range of
the spectrum is irradiated to the outer space. The irreversible loss of the emitted
energy is compensated by means of the binding energy (mass defect) at the fission
and fusion of molecules, atoms, and nuclei. The body works in the regime of a
quantum generator. Those are conclusions followed from the theory based on the
body dynamical equilibrium.

In conclusion, we wish to stress that the relationship between the gravitational
field (potential energy) and the polar moment of inertia of the Earth, discovered
by the artificial satellites, leads to understand the nature and the mechanism of
the planet’s energy generation as the force function of all the dynamical processes
release in the form of oscillation and rotation of the matter. Through the energy
nature, we understand the unity of forms of the gravitational and electromagnetic
interactions, which, in fact, are the two sides of the same natural effect.
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Chapter 9
Creation and Decay of a Hierarchic Body System
at Expansion and Attraction of the Force Field

Abstract All small and large celestial bodies appear to present some clots of energy
in the form of condensed discrete infinitesimal particles. In this case, at some stage
of the universe evolution, there was a common or a number of smaller clots of
the matter energy. Once created, they started to decay. After decay, they were
created again. This phenomenon looks like the water cycle in the nature, during
which the initial “dark” energy is converted into condensate. The main part of
that “dark” energy remains in the form of the background or of the force field.
During the universe expansion, which we observe, the initially condensed energy
is also expanding by the inner pressure and emits energy in the form of discrete
infinitesimal weightless particles.

On the basis of the above-considered analysis of dynamical effects related to the
origin of the solar system bodies, one may note that the basic point of the process of
the initial condensate decay is the interaction of elementary particles and the energy
loss in the form of radiation emission. The interaction of particles results by their
collision and crushing, which looks like acceleration and collision of the protons
in a collider. The radiation is a flux of weightlessness with respect to given body
particles. These particles have mass, but it is a defect, that is, weightlessness with
respect to the body matter. The radiated energy is the basis and content of a celestial
body evolution. The loss of energy finally leads to differentiation of matter in density
and to the shell separation. The outer shell appears to be most light in density, and
at some stages of evolution, its inner force field overtakes the weightless threshold
with respect to the parental body. This is the way of the outer shell separation and
creation of secondary body. Creation of the hierarchic subsystem of bodies like
galaxy, star, planet, and satellite in the scale of the whole universe, in fact, is the
process of body’s weighted matter decay. The universe expansion is the observable
fact and the evidence of creation and decay of the weightless and weightlessness
matter of the same energy by means of oscillating motion.

In the last years, the scenario of Big Bang in connection with the universe origin
was widely discussed. From the viewpoint of the Jacobi dynamics, the idea of Big
Bang corresponds to the stage of expansion in the framework of Jacobi’s pulsating

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 9,
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model of the universe. The experimental research is developed by the collider in
CERN in search of the Higgs boson, which is an elementary particle in the quantum
field, named after the English physicist Peter Higgs. There is information about the
evidence of existence of such a scalar particle with a mass equivalent to �125 GeV
of energy. It is assumed that this is a fundamental particle of the universe creation
according to Big Bang theory.

If one accepts the idea of the existence of the universe origin, then in the
framework of the Jacobi dynamics, its expansion should have physical limit in time.
This limit should be reached when all the hierarchic subsystems of bodies decay
up to the level of elementary scalar particles. After that, the stage of attraction
(fall down) of the particles will start. The attraction of mass particles (electrons
and nuclei of known and unknown elements) should continue up to their turn
to expansion. The attraction process will be finished when the pressure in the
universe’s inner and outer fields come to the equilibrium. After that, because of
mass particle energy radiation, the process of mass particle decay and the expansion
and creation of the hierarchic subsystem bodies will start again.

Note that in the stage of universe attraction, the interacted elementary particles
at their synthesis into mass particles (electrons, nuclei, molecules) absorb energy in
the form of mass defect, which is used for the binding of the nuclei components.

The process of the decay up to the level of elementary particles and attraction up
to the stage of galaxies composed of atoms and molecules can continue for infinitely
long time.

In light of the possible scenario of decay and creation of the universe, the
phenomenon of creation of weighted mass particles (electrons and nuclei of atoms)
by the synthesis of elementary particles is of interest. In the framework of the Jacobi
dynamics, this problem based on the effect of simultaneous collision of n particles
has mathematical solution and is presented in this chapter.

Thus, we discovered an interesting natural phenomenon. All small and large
celestial bodies appear to be some clots of energy in the form of condensed discrete
infinitesimal particles. It is possible to assume that at some initial stage, there was
a common or a number of smaller clots of the matter energy. Once created, they
decayed. After decay, they were created again. This phenomenon looks like the
water cycle in the nature, during which, as the water moisture, not all the initial
“dark” energy is converted into condensate. The main part of that “dark” energy
remains in the form of the background or of the force field. During the universe
expansion, which we observe, the initially condensed energy is also expanding by
the inner pressure and emits energy in the form of discrete infinitesimal particles.

On the basis of the above-considered analysis of dynamical effects related to the
origin of the solar system bodies, one may note that the basic point of the process of
the initial condensate decay is the interaction of elementary particles and the energy
loss in the form of radiation emission. The interaction of particles results by their
collision and crushing, which looks like acceleration and collision of the protons
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in the collider. The radiation is a flux of weightlessness with respect to given body
particles. These particles have mass, but it is a defect, that is, weightlessness with
respect to the body matter. The radiated energy is the basis and content of a celestial
body evolution. The loss of energy finally leads to differentiation of matter in density
and to the shell separation. The outer shell appears to be most light in density, and
at some stages of evolution, its inner force field overtakes the weightless threshold
with respect to the parental body. This is the way of the outer shell separation and
creation of secondary body. Creation of the hierarchic subsystem of bodies like
galaxy, star, planet, and satellite in the scale of the whole universe, in fact, is the
process of body’s weighted matter decay. The universe expansion is the observable
fact and the evidence of creation and decay of the weightless and weightlessness
matter of the same energy by means of oscillating motion.

The question is rising: how long the universe expansion will continue? There are
two options in the answer. The process will either continue for infinitely long time
or there is a time and physical limit for it. Infinite expansion needs infinite energy.
There should be infinite number of universes in the case of limiting expansion of
ours. Or there is some new model of the space geometry. We do not have any data
for discussing a problem like this.

In the last years, the scenario of Big Bang in connection with the universe
origin is widely discussed. From the viewpoint of the Jacobi dynamics, the idea
of Big Bang corresponds to the stage of expansion in Jacobi’s pulsating model of
the universe. The fundamental experimental research is developed by the collider
in CERN in search of the Higgs boson, which is an elementary particle in the
quantum field, named after the English physicist Peter Higgs. There is preliminary
information about the evidence of existence of such a scalar particle with a mass
equivalent to �125 GeV of energy. It is assumed that this is a fundamental particle
of the universe creation according to Big Bang theory.

If one accepts the idea of the existence of an oscillating universe, then in
framework of the Jacobi dynamics, its expansion should have physical limit in time.
This limit should be reached when all the hierarchic subsystems of bodies decay
up to the level of elementary scalar particles. After that, the stage of attraction (fall
down) of the particles will start. The attraction of mass particles, electrons and nuclei
of known and unknown elements, should continue up to their turn to expansion. The
attraction process will be finished when the pressure in the universe’s inner and outer
fields come to the equilibrium. After that, because of mass particle energy radiation,
the process of mass particle decay and the expansion and creation of the hierarchic
subsystem bodies will start again.

Note that in the stage of universe attraction, the interacted elementary particles
at their synthesis into mass particles (electrons, nuclei, molecules) absorb energy in
the form of mass defect for the binding of the nuclei components.

In light of the possible scenario of decay and creation of the universe, the
phenomenon of creation of weighted mass particles (electrons and nuclei of atoms)
by the synthesis of elementary particles is of interest. The known regularities in the
periodical table, the achievements of experimental physics in synthesis of the super-
heavy elements and also in the study of fusion production, attest about the reality of
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such a scenario. In the framework of the Jacobi dynamics, this problem, based on
the effect of simultaneous collision of n particles for obtaining stable mass particles
by that mechanism, has mathematical solution and is presented below.

9.1 Relationship of the Jacobi Function and Potential Energy
at Simultaneous Collision of n Particles

In the previous chapters, we have considered the general approaches to the
formulation and solution of the Jacobi dynamics problems connected with the
evolutionary processes of celestial bodies. For this purpose, we have transformed
Jacobi’s virial equations for conservative and nonconservative systems

R̂ D 2E � U; (9.1)

R̂ D 2E � U CX.t;ˆ; P̂ / (9.2)

into equations of virial oscillations in the following form:

R̂ D �AC Bp
ˆ
; (9.3)

R̂ D �AC Bp
ˆ

CX.t;ˆ; P̂ /: (9.4)

The transfer from Eqs. (9.1) and (9.2) to Eqs. (9.3) and (9.4) has been made by
using the following relationship between the Jacobi function and potential energy:

U
p
ˆ D B D const: (9.5)

As shown in Chap. 5, the validity of the relationship (9.5) for explicitly solved
cases of the many-body problem in mechanics and physics is an obvious fact.
Consequently, for example, in the case of two-body problem, which represents
the conservative system, the solutions of Eq. (9.3) will be analogous to Keplerian
equations of conic sections according to which the Jacobi function (or potential
energy) changes with time. In the same manner, the solution of the generalized
equation of virial oscillations (9.4) in celestial mechanics will correspond to the
solution for the periodic motion in the two-body problem obtained by perturbation
theory methods.

The validity of Eq. (9.5) for a many-body system, including the problem of the
synthesis of the mass points at simultaneous collision of n elementary particles,
in a general case is not obvious despite the fact that both volumetric integral
characteristics considered are functions of the distribution of mass density of a
system.

http://dx.doi.org/10.1007/978-94-007-5908-4_5
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In this chapter, we consider in detail the main physical aspect of the relationship
between the Jacobi function and the potential energy of a system.

9.2 Asymptotic Limit of Simultaneous Collision of Mass
Points for Conservative System

We take the advantage of the results presented by Wintner (1941) in order to study
the many-body problem. From such a study, it follows that for a conservative system
of n mass points of arbitrary configuration interacting according to Newton’s law,
the following statement is valid.

If the motion of the material points of a system of arbitrary configuration has the
consequence that all of them tend to simultaneously collide, then the relationship
U

p
ˆ approaches a constant value. This result obtained by Wintner supplements the

general properties of conservative systems of material points interacting according
to Newton’s law when their number remains constant all the time. The condition
of constancy of the number of mass points of a system is equivalent to that of the
distance 
ij D jri � rj j between any pair of points at any moment of time and
should be 
ij > 0, where ri and rj denote the three vectors of the coordinates of
mass points in the barycentric coordinate system.

For such a system, from the analysis of Jacobi’s virial equation (9.1) and the
expression for the Jacobi functionˆ,

ˆ D 1

2m

X

1�i<j�n
mi mj


2
ij ; (9.6)

for kinetic energy T

T D 1

2m

X

1�i<j�n
mi mj .Pri � Prj /2; (9.7)

and for potential energy U

U D �G
X

1�i<j�n

mi mj


ij

; (9.8)

Three inequalities were obtained that produce restrictions on the Jacobi function
(or potential energy) and its derivatives. These inequalities can be written in the
following form:

ˇ
ˇ«̂ˇˇ � �

�ˇˇ R̂ ˇˇC 2 jEj�5=2; (9.9)
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� R̂ � 2E
�
ˆ1=2 	 	 > 0; (9.10)

R̂ � E � 1

4

P̂ 2
ˆ

	 M2

4ˆ
; (9.11)

where constants

� D
p
2m

G

X

1�i<j�n
.mi mj /

�3=2 > 0;

	 D Gp
2m

X

1�i<j�n
.mi mj /

3=2 > 0;

M2 D C2
1 C C2

2 C C2
3 ;

m D
X

iD1
mi ;

mi is the mass of the ith point, E D T C U is the total energy, and C1, C2, and C3 are
projections of the angular momentum M on the axes.

The third inequality (9.11) is more complicated than the others as it contains the
value M of the constant angular momentum besides the constant E, which is the
total energy of the system.

It has been shown by Wintner (1941) that if the motion of material points of
an arbitrary configuration system provides their simultaneous collision, then the
system possesses zero angular momentum and a simultaneous collision will occur
in the finite interval of time. In addition, the behavior of the Jacobi function in the
vicinity of the time moment t0 of simultaneous collision is defined by the following
asymptotics:

ˆ / .t � t0/4=3; (9.12)

ˆ / .t � t0/1=3; (9.13)

ˆ / .t � t0/
�2=3: (9.14)

Following Wintner (1941), we introduce the definition of a central configuration,
which is needed for further consideration of the problem. If the positions of the
material points in the system are such that the following relation is satisfied:

Un D �miri ; (9.15)

then the configuration of the system is called central.
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Here, in Eq. (9.15),

� D � U

2ˆ
:

The definition (9.15) of the central configuration can be rewritten in the following
equivalent form:

.U 2ˆ/n D 0: (9.16)

As proved by Wintner (1941), the important relation follows from asymptotics
(9.12), (9.13), and (9.14) at t ! t0:

�
U 2ˆ

�
n

! 0 (9.17)

which, together with the definition of the central configuration, leads to the
following theorem:

Any arbitrary configuration of material points in the asymptotic time limit of
simultaneous collisions of all the mass points tends to the central configuration.

It follows from this that

lim
t!t0

jU jpˆ D const: (9.18)

This theorem (9.18) justifies the transformation of Jacobi’s virial equations (9.1)
and (9.2) into equations of virial oscillations (9.3) and (9.4) within the framework
of Newton’s law of interaction of material points of a conservative system.

9.3 Asymptotic Limit of Simultaneous Collision of Mass
Points for Nonconservative System

The model of a conservative system permits a limited number of problems to be
solved. In reality, all natural systems are nonconservative. Study of the dynamics of
such systems is the main object of the problem of evolution.

It is well known from the observations described in the general course of physics
by Kittel et al. (1965) that the gravitating systems in nature are contracting while
losing part of their total energy through friction and electromagnetic radiation.
From the kinematic point of view, this gravitational contraction is equivalent to the
simultaneous collision of all n mass points of the system. We consider below the
validity of the theorem expressed by Eq. (9.18) for nonconservative systems.

Let the motion of a system of n mass points occur by means of the gravitational
interaction and Newtonian friction of the mass points. Then, Jacobi’s virial equation
can be written as
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R̂ D 2E.t/ � U.t/ � k P̂ ; (9.19)

where E(t) is the value of the total energy of the system at the moment of time t.
From the analysis of the equations of motion resulting in (4.23), it follows that

E.t/ D E0 � 2k
tZ

t0

T .t/ dt D E0 Œ1C q.t/� ;

where E0 is the value of the total energy of the system at the initial moment of time
t0 and q(t) is a monotonically increasing function of time.

We also accept the condition of the constancy of the number of mass particles
in the system, from which it follows that the distance between any pairs of points

ij > 0 and the following relation is correct:

ˇ
ˇ
ˇ
ˇ

d

dt

ij

ˇ
ˇ
ˇ
ˇ � ˇ

ˇPri � Prj
ˇ
ˇ :

In the framework of this essentially important condition that forbids paired,
threefold, and higher-fold collisions, we obtain three inequalities analogous to (9.9),
(9.10), and (9.11). The inequalities are valid at any stage of the system’s evolution
and place restrictions on the Jacobi function and its derivatives.

From expression (9.8) for the potential energy of the system, the following
inequalities can be written:

ˇ
ˇ PU ˇˇ D

ˇ
ˇ
ˇ
ˇ
ˇ̌G

X

1�i<j�n

mimj


2
ij

P
ij

ˇ
ˇ
ˇ
ˇ
ˇ̌ � G

X

1�i<j�n

mimj


2
ij

ˇ
ˇPri � Prj

ˇ
ˇ (9.20)

and

Gmimj


ij

< �U;

where ri and rj are three vectors of coordinates of mass points in the barycentric
coordinate system.

Substituting the last inequality into (9.20), we obtain

ˇ
ˇ PU ˇˇ � U 2

G

X

1�i<j�n

ˇ
ˇ Pri � Prj

ˇ
ˇ

mimj

:

Since

mimj .Pri � rj / � 2mT;

http://dx.doi.org/10.1007/978-94-007-5908-4_4
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and assuming

� D 1

G

X

1�i<j�n

m1=2

.mimj /
3=2
;

we obtain

ˇ
ˇ PU ˇˇ � U 2�.2T /1=2: (9.21)

Then, using Eq. (9.19) in the form

U D 2E0 Œ1C q.t/� � R̂ � k P̂ (9.22)

and the law of conservation of energy for a dissipative system

U C T D E0 Œ1C q.t/� ; (9.23)

we rewrite the inequality (9.21) in the form

ˇ
ˇ PU ˇˇ �˚2 jE0j Œ1Cq.t/�Cˇˇ R̂ gCk ˇˇ P̂ ˇˇ�2�p2˚2 jE0j Œ1Cq.t/�Cˇˇ R̂ g C k

ˇ
ˇ P̂ ˇˇ�1=2

Dp
2�
˚
2 jE0j Œ1C q.t/�C ˇ

ˇ R̂ g C k
ˇ
ˇ P̂ �5=2: (9.24)

Differentiating (9.22) with respect to time and substituting this into (9.24), we
finally obtain the first inequality:

ˇ
ˇ«̂ C k R̂ � 2E0 Pq.t/ˇˇ � p

2�
˚
2 jE0j Œ1C q.t/�C ˇ

ˇ R̂ ˇˇC k
ˇ
ˇ P̂ ˇˇ�5=2: (9.25)

In the same way, it follows from (9.6) that

ˆ1=2 	 1

.2m/1=2
.mi mj /

1=2
ij :

Then,

ˆ1=2mimj


ij

	 .2m/1=2.mi mj /
1=2:

By virtue of (9.4) and (9.8),

R̂ C k P̂ � 2E Œ1 � q.t/� D G
X

1�i<j�n

mi mj


ij

:
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The second inequality has the form

R̂ C k P̂ � 2E Œ1C q.t/� ˆ1=2 	 	 > 0; (9.26)

where

	 D G

.2m/1=2

X

1�i<j�n
.mi mj /

3=2:

Now let us derive the third inequality followed from the Cauchy–Bunyakovsky
inequality, which is

 
nX

iD1
aibi

!2
�
 

nX

iD1
a2i

! 
nX

iD1
b2i

!

:

Since

r2i D jri j2 and j.ri � Pri /j D .jri j � j Pri j/;

and from the definition of the Jacobi function, one obtains

ˆ D
nX

iD1
mi .jri j � j Prj/ :

Applying the Cauchy–Bunyakovsky inequality to this expression at

ai D m
1=2
i jr j and bi D m

1=2
i jr j;

we can write

P̂ 2 � 2ˆ

nX

iD1
mi j Pri j2 D2ˆ

nX

iD1

mi.ri � Pri /2
r2i

:

Assuming

ai D m
1=2
i jri j ; Ai D m

1=2
i ŒriXPri �

jri j ;

the vector of the angular momentum M is

M D
nX

iD1
aiAi :
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Then, in a similar way, we write

M2 �
 

nX

iD1
a2i

! 
nX

iD1
A2i

!

� 2ˆ

nX

iD1

mi ŒriXPri �
r2i

:

The addition of the last two inequalities yields

P̂ 2 CM2 � 2ˆ

nX

iD1

mi

n
.ri � Pri /2 C ŒriXPri �2

o

r2i
:

But since
n
.ri � Pri /2 C ŒriXPri �2

o
D r2i � Pr2i ;

we have

P̂ 2 CM2 � 2ˆ

nX

iD1
mi Pri :

As Jacobi’s equation can be written in the form

R̂ C k P̂ � E0 Œ1C q.t/� D 1

2

nX

iD1
mi Pr2i ;

after substitution of this into the right-hand side of the last inequality, we obtain

P̂ 2 CM2 � 4ˆ
n R̂ C k P̂ �E0 Œ1C q.t/�

o
:

Hence, the third inequality can be written as

R̂ C k P̂ �E0 Œ1C q.t/� �
P̂ 2
4ˆ

	 M2

4ˆ
: (9.27)

Let us now analyze the behavior of the Jacobi functionˆ and its derivatives. For
this purpose, we introduce the auxiliary function Q D Q(t) equal to

Q D k P̂ˆ1=2 �E0 Œ1C q.t/�ˆ1=2 C 1=4 P̂ 2 C 1=4M

ˆ1=2
; (9.28)

whereˆ1/2 > 0.
Then differentiating (9.28) and using

d

dt

�
ˆ1=2

� D
P̂

2ˆ1=2
;
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we obtain

PQ D 1

2

P̂
ˆ1=2

(
R̂ C k P̂ �E0 Œ1C q.t/� � 1

4

M2

ˆ
� 1

4

P̂ 2
4ˆ

)

Cˆ1=2
�
k R̂ � E0 Pq.t/ ;

whereˆ1/2 > 0, Pq.t/ > 0, and in agreement with (9.27),

(
R̂ C k P̂ � E0 Œ1C q.t/� � 1

4

M2

ˆ
� 1

4

P̂ 2
ˆ

)

	 0:

Let t0 be the time of simultaneous collision of all the particles of the system. Then
for t ! t0 (t ! t0) ˆ! 0. Let us show that the necessary condition for the existence
of such t0 for which ˆ! 0 (if t ! t0) is that the constant angular momentum M
must be zero.

Note that if, for t ! t0, ˆ! 0, then all mutual 4ij D jri � rjj also tend to zero,
and the potential energy U ! �1.

Since

R̂ D 2E0 Œ1C q.t/� � U � k P̂ ;

where E0 D const., j P̂ j ! 1, jq(t)j, j Pq.t/j < 1, then, for t ! t0, R̂ ! 1. Thus, for
t sufficiently close to t0, we have R̂ > 0 and therefore the derivative P̂ increases and
does not change its sign. Since ˆ> 0 and ˆ! 0, ˆ is a monotonically decreasing
function. It therefore follows from the expression for PQ that the function Q in (9.28)
for t sufficiently close to t0 must decrease and its time limit for t ! t0 might be �1,
but cannot be C1. Moreover, it follows from the above statement that for t ! t0,
the limit of function (9.28) is

lim
t!t0

Q D lim
t!t0

1

4

P̂ 2 CM2

ˆ1=2
; (9.29)

but since ˆ1/2> 0, the time limit (6.29) must be finite and nonnegative. Hence,
for t ! t0 and ˆ! 0, the value M2/ˆ1/2 must remain limited. Therefore, since
M2 D const., then M � 0 and proof is completed.

The above analysis shows that at t ! t0, R̂ ! 1, and it therefore follows from
(9.25) that

ˇ
ˇ«̂ D 2E0 Pq.t/C k R̂ ˇˇ � const:

�ˇ
ˇ R̂ ˇˇC k

ˇ
ˇ P̂ ˇˇ�5=2: (9.30)

Using the second inequality (9.26), it can be shown that if t0 is the time moment
of simultaneous collision of all the particles of the system, then asˆ1/2> 0 at t ! t0,

the ratio P̂ =ˆ1=2 tends to a finite and positive limit.
In fact, as has been shown above, the limit (9.29) of the function (9.28) for t ! t0

has a finite value. Since M D 0,

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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lim
t�t0

P̂ 2
ˆ1=2

will also be finite and nonnegative. Let us show that this limit cannot be equal to
zero.

Since for t ! t0,M D 0, ˆ1/2 ! 0, the function (9.28) and its limit (9.29) may be
written in the form

Q D k P̂ˆ1=2 �E0 Œ1 � q.t/� ˆ1=2 C 1

4

P̂ 2
ˆ1=2

; (9.31)

	0 D 1

4
lim
t�t0

P̂ 2
ˆ1=2

; (9.32)

where

	0 D lim
t�t0

Q:

From (9.31), we find that

2Qˆ1=2 D k P̂ˆ � 2E0 Œ1 � q.t/� ˆC 1

2
P̂ 2:

Hence

d

dt

�
2Qˆ1=2

� D R̂ P̂ C k R̂ˆC 2k P̂ 2 � 2E0 Œ1 � q.t/� P̂ � 2E0ˆ Pq:

Let us carry out the integration between the limit t0 and Nt of the last relation
where t0 has a fixed value and Nt ! t0. We take into account that

lim
t�t0

ˆ1=2 D 0;

	0 D 1

4
lim
t�t0

P̂ 2
ˆ1=2

< 1:

Then, we write

2Qˆ1=2 D
NtZ

t0

n� R̂ � 2E0 .1 � q.t//C 2k P̂  P̂ C �
2k R̂ � 2E0 Pqˆ

o
dt :

As shown above, the derivative ˆ retains its sign in the sufficiently small
neighborhood of point t0. Since ˆ	 0 and q> 0, the positive constant 	 in the
inequality (9.26) will be such that in the sufficiently small neighborhood of t0, we
have
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2jQjˆ1=2 	
NtZ

t0

n 	

ˆ1=2
P̂ C �

2k R̂ � 2E0 Pqˆ
o

dt:

The first integral to the right of this inequality being equal to 2	ˆ1/2, and
ˆ1/2 ! 0 with t ! t0, then, in the sufficient small neighborhood of t0, we have

2 jQjˆ1=2 	 2	ˆ1=2 or jQj 	 	:

Since 	> 0 and taking into account the existence of the time limit (9.32), we
have finished the proof of correctness of the inequality

lim
t!t0

 P̂
ˆ1=2

!

> 0:

The above analysis allows us to obtain the following asymptotic relations for the
Jacobi function when t ! t0.

Since the limit

	0 D 1

4
lim
t!t0

P̂ 2
ˆ1=2

has a nonzero value, the function ˆDˆ(t)> 0 tends to zero as t ! t0 in such a
way that, in neighborhood of t0, it is proportional to (t � t0)4/3 with a coefficient of
proportionality of ((9/4) 	0)2/3, and one can differentiate this asymptotic relation
with respect to t. Hence, the following asymptotic relations are satisfied:

ˆ /
�
3=2	

1=2
0

�4=3
.t � t0/4=3; (9.33)

ˆ / �
12	20

�1=3
.t � t0/

1=3: (9.34)

In fact, (9.34) follows from (9.33) not only from groundless differentiation but
actually from (9.33), if (9.32) is taken into account. The asymptotic relation (9.33)
itself follows from (9.32), if we write the last relation in the form

˙ dt

dˆ
/ 1

2
	

�1=2
0 ˆ�1=4

and then integrate it between the limits ˆD 0 and ˆ> 0 but sufficiently close to
ˆD 0. Integration (but not differentiation) of such an asymptotic relation is always
an allowed procedure, and hence, the asymptotic relations (9.33) and (9.34) are
satisfied.
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Let us show that besides (9.32), (9.33), and (9.34), the following asymptotic
relations are also available:

	0 D ˙ lim
t!t0

ˆ1=2 R̂ ; (9.35)

ˆ /
�
2=3	

1=2
0

�2=3
.t � t0/�2=3: (9.36)

To prove relation (9.35), we multiply (9.27) by ˆ1/2. Assuming for t ! t0 and
ˆ1/2 ! 0, jE0j(1 C q(t))<1, M � 0, and using (9.32), we find that the lower limit
limˆ1=2 R̂ 	 	0. Since (9.35) is equivalent to (9.36), this asymptotic relation will
be proved, if the upper limit li Nmˆ1=2 R̂ � 	0.

For the proof, we assume that F D � P̂ �3, so that

RF D 6 P̂ R̂ 2 C 3 P̂ 2 «̂ :

Then, with the aid of (9.30)

ˇ
ˇ«̂ � 2E0 Pq C k R̂ ˇˇ � const:

�j R̂ j C kj P̂ j�5=2;

and expressing P̂ and R̂ through the function PF D ˆ3 and PF D 3 P̂ 2 R̂ , we find

ˇ
ˇ RF C 6 Pq.t/F 2=3

ˇ
ˇ < const:

PF 2 C �j PF j� 5=2
jF j :

On the right-hand side of this inequality, we find from (9.34) where P̂ D F1/3 that
for t ! t0

ˇ
ˇ RF C 6 Pq.t/F 2=3

ˇ
ˇ < const:

PF 2 C �j PF j� 5=2
t � t0

: (9.37)

Finally, if v0 is a positive constant equal to m (12 	0)2, then for t ! t0

F / v0.t ! t0/; (9.38)

lim PF 	 v0: (9.39)

In fact, if F D P̂ 3, then (9.38) is equivalent to (9.34). At the same time, by virtue
of the relation v0 D (12 	0)2, F D P̂ 3, PF D 3 P̂ 2 R̂ , and (9.32), the inequality (9.39)
is another form of the inequality limˆ1=2 R̂ 	 	0, which we have already proved.
Therefore, we are bound to prove the inequality that can be written in the form
li Nm P̂ � 	0 by analogy with (9.39). Hence, we must prove that the asymptotic
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relations (9.38) and (9.39) with the aid of the “Tauberian condition” (9.37) yield the
inequality lim PF � v0, which denotes that F ! v0. From this inequality and from
(9.39), the existence of the succession of time intervals follows:

t I1 < t < t
II
1 ; : : : ; t

I
k < t <

II
k

which tends to t0 as k ! 1 in such a way that whenever t Ik < t <
II
k ,

0 < �0 < p D PF �t Ik
�
< PF .t/ < PF �t IIk

�
< q (9.40)

where p and q are some fixed numbers that are chosen between the limits lim PF and
li Nm PF (�1) of the conditions function lim PF .t/. It is obvious that we can assume
that t0 D 0. If we accept const. D const. (p2 C p5/2), then for any t in any of the time
intervals t Ik < t <II

k , by virtue of (9.37) and (9.40), we find that the following
inequality holds:

ˇ̌ RF .t/C 6 Pq.t/F 2=3.t/
ˇ̌
<

const:

jt j :

Since t tends to t0 D 0, increasing or decreasing, all t Ik and t IIk lie on the same side
of t0 D 0. Integration of the inequality (6.40) between the limits t Ik and t IIk yields

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

PF �t IIk
� � PF �t Ik

�C
t IIkZ

t Ik

6 Pq.t/F 2=3.t/ dt

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
< const: log

ˇ
ˇ
ˇ̌ t

II
k

t Ik

ˇ
ˇ
ˇ̌ :

By virtue of (9.40), the difference PF �t IIk
�� PF �t Ik

�
is equal to a positive constant p –

q and

t IIkZ

t Ik

6 Pq.t/F 2=3.t/ dt > 0:

Hence, the limit log jt IIk =t Ikj, as k ! 1, is greater than a certain positive number.
For this reason, when k ! 1, there exists a certain positive number � that satisfies
the relation

t IIk
t Ik
> � > 0: (9.41)

Then with the aid of (9.38), it follows that

ˇ
ˇF
�
t Ik
�ˇˇ

ˇ
ˇt Ik
ˇ
ˇ ! �0 and

ˇ
ˇF
�
t IIk
�ˇˇ

ˇ
ˇt IIk
ˇ
ˇ ! �0;

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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since

t Ik ! t0; t IIk ! t0; t0 D 0; � D 0:

On the other hand, if k is sufficiently large, the following inequality is valid:

ˇ
ˇF
�
t IIk
�ˇˇ

ˇ
ˇt IIk
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇt IIk
ˇ
ˇ

t Ik

ˇ
ˇ
ˇ
ˇ̌�

ˇ
ˇF
�
t Ik
�ˇˇ

ˇ
ˇt IIk
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇt IIk
ˇ
ˇ

F
ˇ
ˇt IIk
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌ > p

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇt IIk
ˇ
ˇ

ˇ
ˇt Ik
ˇ
ˇ � 1

ˇ
ˇ
ˇ
ˇ̌ : (9.42)

In fact, all t Ik and t IIk lie on the same side of t0 and then

ˇ
ˇ
ˇ
ˇt IIk
ˇ
ˇ� ˇ

ˇt Ik
ˇ
ˇ
ˇ
ˇ D t IIk � t Ik :

Since t Ik ! t0 and t IIk ! t0, then for sufficiently large k, all F
�
t Ik
�

and F
�
t IIk
�

have
the same sign. Hence, (9.42) can be written in the form

ˇ
ˇ
ˇ
ˇF
�
t IIk
�ˇˇ� ˇ

ˇF
�
t Ik
�ˇˇ
ˇ
ˇ > p

ˇ
ˇ
ˇ
ˇt IIk
ˇ
ˇ� ˇ

ˇt Ik
ˇ
ˇ
ˇ
ˇ

and is equivalent to the inequality

ˇ̌
F
�
t IIk
� � F

�
t Ik
�ˇ̌
> p

ˇ̌
t IIk � t Ik

ˇ̌
:

The validity of the last inequality is obvious, since by virtue of (9.40) for t Ik <
t <II

k , we have PF .t/ > p > o. Therefore, inequality (9.42) also holds.
From (9.42) in the limit k ! 1 and with the aid of (9.41) where �0> 0, we obtain

the following inequality:

�0
ˇ
ˇ� � �0��1

0

ˇ
ˇ D p j� � 1j :

Finally, by virtue of (9.41),

ˇ
ˇ� � �0��1

0

ˇ
ˇ D j� � 1j > 0;

and hence �0 	 p.
On the other hand, by virtue of (9.40), p 	 �0. The observed contradiction is that

the supposition we made at the beginning .li Nm PF � �0/ is false. Thus, we have
proved the validity of the increase inequality li Nm PF � �0, and this completes the
proof of the relations (9.35) and (9.36).

Let us now show that if the motion of n points with masses mi in the time
limit t ! t0 produces their simultaneous collision, then the configuration of these
n particles tends to central configuration (9.15) as t ! t0. In the proof, we shall use
the asymptotic relations (9.33), (9.34), and (9.36), and the Tauberian lemma, which
states that if the function g(u) has continuous derivatives Pg.u/ and Rg.u/ for u ! 1
and tends, as u ! 1, to a finite limit and Rg.u/ < const:, then Pg.u/ ! 0:
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There is no loss of generality in assuming that t ! t0 ! 0, so that t ! t0> 0.
Then, the asymptotic relations (9.33), (9.34), and (9.36) are simply equivalent to:

t�4=3ˆ ! 	1 > 0; (9.43)

t
�
t�4P=3ˆ

�
! 0; (9.44)

t
�
t�4R=3ˆ

�
! 0 (9.45)

where

	1 D
�
3

2
	
1=2
0

�4=3
and t ! 0

Since

ˆ D 1

2

nX

iD1
mir

2
i ;

it follows from (9.43) that when the time limit t ! 0, all n mass particles collide
at the origin of the barycentric coordinate system OXYZ in such a way that, for
sufficiently small t, the linear dimensions of the configuration will be proportional
to t2/3. For this reason, we eliminate this factor t2/3 simply by multiplying the unit of
length by the factor t–2/3. Then, we consider instead of the values

ri ; 
ij D ˇ
ˇri � rj

ˇ
ˇ ;

ˆ D 1

2

nX

iD1
mir

2
i ; (9.46)

U D �G
X

1�i<j�n

mimj


ij

; (9.47)

the corresponding values

Nr D t�2=3ri ; N
ij D ˇ
ˇNri � Nrj

ˇ
ˇ D t�2=3
ij ;

N̂ D t�4=3ˆ D 1

2

nX

iD1
mi Nr2i ;

U D t2=3U D �G
X

1�i<j�n

mi mj


ij

:
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The procedure is permissible since the definition of the central configuration is
an invariant relative scale transformation of all the coordinates ri ! ıri, where ı is
an arbitrary nonzero factor. Then, the relation (9.15) is invalid for the fixed t ¤ 0,
but

� N̂ NU 2
�

Nri D 0 (9.48)

where I D 1, 2, : : : , n in the same limit t ! 0.
The proof of this theorem, the mathematically precise formulation of which is

expressed by (9.48), has several stages.
First, we show that in the time limit t ! 0,

4

9
N̂ C U ! 0; (9.49)

and

N
ij > const: > 0: (9.50)

Let us introduce a time transformation, changing t to Nt D � ln t in such a way to
have Nt ! 1 for t ! 0. Let this transformation be

t D e�Nt : (9.51)

Then, if the arbitrary function f depends on time t, we have

t
df

dt
D �df

dt
; (9.52)

t2
d2f

dt2
D d2f

dt2
C df

dt
: (9.53)

With the aid of (9.51), (9.52), and (9.53), we rewrite the equation of motion

mi Rri D �U�
in the form

mi

�
RNri � 1

3
PNri � 2

9
Nri
�

D � NUNri � kPNr i ; (9.54)

where derivatives are written with respect to Nt and NUNri D t4=3UNri :
Similarly, let us rewrite the energy conservation law and Jacobi’s virial equation

in the form
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1

2

nX

iD1
mi

�
PNr i � 2

3
Nri
�2

C NU D E0 Œ1C q.t/� e�2=3Nt ; (9.55)

RN̂ � 5

3
PN̂ � 4

9
N̂ D �U C 2E0 Œ1C q.t/� e�2=3Nt : (9.56)

Assuming f Dˆ in (9.52) and (9.53), we obtain relations that are valid in the
time limit Nt ! 1 and similar to (9.43), (9.44), and (9.45) as t ! 0:

N̂ ! 	1 > 0; (9.57)

PN̂ ! 0; (9.58)

RN̂ ! 0: (9.59)

In the limit Nt ! 1 from (9.56), where E0(1 C q(t)) is finite, with the aid of
(9.57), (9.58), and (9.59), it follows that (9.49) is valid. Moreover, it is obvious
from (9.49) and (9.57) that the potential energy U tends to a finite value and hence
(9.50) follows from (9.47).

Second, let us show that the time limit Nt ! C1 (t ! 0):

PNr ! 0; (9.60)

RNr < const:; (9.61)

«Nr < const:; (9.62)

Note that (9.46) yields

PN̂ D
nX

iD1
mi

PNri Nri : (9.63)

Then, in the time limit Nt ! 1 and with the aid of (9.49) and (9.63), we obtain

nX

iD1
mi

PNr2i ! 0;

which gives (9.60). Furthermore,

Nr < const:; (9.64)

ˇ̌ NUri
ˇ̌
< const: (9.65)
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In fact, Eq. (9.64) follows from (9.57) by virtue of Eq. (9.46). At the same time,
Eq. (9.65) follows from (9.47) and (9.50). Equation (9.56) follows from (9.54),
(9.60), (9.64), and (9.65). Finally, by differentiating (9.56) with respect to Nt and then
using (9.60) and (9.61), it is easy to see that for the proof of (9.62), it is sufficient to
show the boundedness of the second derivatives of the functions NU . Nr1; r2; : : : ; rn/
in the time limit t ! 1. But the boundedness of these derivatives follows obviously
from (9.47), (9.50), and (9.64).

Finally, in accordance with (9.60) and (9.62), the Tauberian lemma is valid if we
consider the function g.u/ D PNri , where u D Nt : Hence, not only PNri ! 0 but RNri ! 0.

It follows therefore from (9.54) that

2

9
mi Nri � UNri ! 0:

Then, by virtue of (9.46),

2

9
N̂ N� � UNri ! 0:

From the last expression, with the aid of (9.49) and (9.57), it follows that

� N̂ NU 2
�

Nri D N̂ Nri NU 2Nri C 2 N̂ NU NUNri ! 0

and therefore

�
ˆU2

�
�

! 0

at t ! 0.
The last expression completes the proof of the theorem that an arbitrary

nonconservative system tends to have the central configuration in the asymptotic
limit of simultaneous collision of all its particles.

This theorem is the physical and mathematical bases for the explanation of
mechanism of the electrons and atomic nuclei creation, including the transuranium
elements, during attraction of the universe and their decay at expansion.

9.4 Asymptotic Limit of Simultaneous Collision of Charged
Particles of a System

The following analysis is given for a system consisting of a large number of charged
material particles. The particles considered are positively charged nuclei of atoms
and electrons.

The objective is to prove the statement that the arbitrary configuration of a system
of charged particles interacting according to an inverse law (i.e., gravitational or
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Coulomb) in the asymptotic time limit of simultaneous collision of all the particles
(for t ! t0) tends to a central configuration.

Using the definition of central configuration (9.15) (Wintner 1941) and assuming
its uniqueness, the statement to be proved can be written in the form

lim
t!t0

�
jU†j

p
ˆ
�

D const: (9.66)

where U† D U C Uc is the potential energy of the system, which is equal to the sum
of the gravitational potential energy of Coulomb interactions.

Using Wintner’s method (Wintner 1941), we have previously studied the asymp-
totic time limit of (9.66) for conservative and nonconservative systems whose
particles are interacting according to the law of gravitation. Since the relationship
(9.66) is linear as a function of potential energy, we have to prove it only for
Coulomb interactions of system particles. The proof given below for a nonconser-
vative system is also based on Wintner’s method, modified for the case of charged
particles.

So for a nonconservative system of n particles interacting according to the
Coulomb law, let us write down in an inertial barycentric coordinate system the
Jacobi function, functions of the potential and kinetic energies, as well as the energy
conservation law and Jacobi’s virial equation as follows:

ˆ D 1

2m

X

1�i<j�n
mi mj


2
ij ; (9.67)

T D 1

2m

X

1�i<j�n
mi mj

�Pri � Prj
�2
; (9.68)

U D �G
X

1�i<j�n

qi qj


ij

; (9.69)

E D E.t/ D E0 �E� D T C Uc; (9.70)

R̂ D 2E.t/� Ec; (9.71)

where qi D eZi is the charge of ith particle with mass mi; Zi D �1, 1, C2, : : : , N � n;
m is the total mass of the system; E� <1; and PE� < 1; that is, the total energy
and the luminosity of the system at any time t are functions monotonically bounded
from above.

The proof of the relationship (9.66) can easily be obtained from the asymptotic
expressions for the Jacobi function and its first and second derivatives as

ˆ / .t � t0/4=3; (9.72)
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P̂ / .t � t0/1=3; (9.73)

R̂ / .t � t0/
�2=3; (9.74)

where t ! t0 and t0 is the moment of simultaneous collision of the charged particles
of the system.

From the expressions (9.72), (9.73), and (9.74), the limit (9.66), which we are
proving, follows from exact repetition of Wintner’s arguments (1941). However,
Eq. (9.72), (9.73), and (9.74) follows from the existence of the limits

lim
t�t0

P̂ 2
ˆ1=2

D 	0 D const: > 0; (9.75)

lim
t!t0

R̂ˆ1=2 D �0 D const: > 0: (9.76)

The limits (9.75) and (9.76) may be obtained in the future from analysis of the
Jacobi function in the neighborhood of t0, using the auxiliary function

Q D � .E �E�/ˆ1=2 C 1

4

P̂ 2 CM2

ˆ1=2

and the three inequalities, correct in the most general case, that is, not especially
in the close neighborhood of the point of simultaneous collision of particles. These
inequalities are

ˇ
ˇ«̂ C 2E�

ˇ
ˇ � �ˇˇ R̂ ˇˇC 2

ˇ
ˇE �E�

ˇ
ˇ�5=2�0; (9.77)

� R̂ � 2
�
E �E�

�
ˆ1=2

 	 �0 > 0; (9.78)

R̂ � E C E� �
P̂ 2
4ˆ

	 M2

4ˆ
; (9.79)

where M is the angular moment of the system.
Let us prove inequalities (9.77), (9.78), and (9.79) for a system of particles

interacting according to Coulomb law.
To prove the inequality (9.77), it is essential that the absolute value of the total

potential energy of the system of particles is less than the absolute value of the
energy of mutual interactions of any pair of charged particles, that is,

qi qj


ij

� jUcj : (9.80)
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Since

ˇ
ˇ PUc

ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ̌
ˇ

X

1�i<j�n

qi qj


2
ij

d

dt

ij

ˇ
ˇ
ˇ
ˇ̌
ˇ

�
X

1�i<j�n

ˇ̌
qi qj

ˇ̌


2
ij

j Pri � Prj j

and

1


ij

� jUcj
ˇ
ˇqi qj

ˇ
ˇ2
;

ˇ
ˇ PUc

ˇ
ˇ � jUcj2

X

1�i<j�n

j Pri � Prj j
ˇ
ˇqi qj

ˇ
ˇ :

Analogously, since

mi mj

ˇ
ˇPri � Prj

ˇ
ˇ2 � 2mT

and

mi 	 jqi j
e
	e;

2mT 	
ˇ
ˇqiqj

ˇ
ˇ

e2
	2e
ˇ
ˇ Pr i � Prj

ˇ
ˇ2;

and, therefore,

ˇ̌ PUc

ˇ̌ � ˇ̌ PUc

ˇ̌2
T 1=2

.2m/1=2

	e

X

1�i<j�n

1
ˇ
ˇqi qj

ˇ
ˇ3=2

;

where 	e is the electron mass.
From Jacobi’s equation and the law of conservation of energy, it follows that

ˇ
ˇ PUc

ˇ
ˇ D ˇ

ˇ«̂ C 2 PE�
ˇ
ˇ ;

jUcj �
�ˇ
ˇ R̂ ˇˇC 2

ˇ
ˇE � E�

ˇ
ˇ
�
;

jT j �
�ˇ
ˇ R̂ ˇˇC 2

ˇ
ˇE � E�

ˇ
ˇ
�
;

and, finally, we obtain the first inequality:

ˇ
ˇ«̂ C 2 PE�

ˇ
ˇ �

�ˇ
ˇ R̂ ˇˇC 2

ˇ
ˇE �E�

ˇ
ˇ
�5=2

�0;
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�0 D .2m/1=2

	c
e

X

1�i<j�n

1
�
qi qj

�3=2 > 0:

The second inequality (9.78) may be derived from Jacobi’s equation:

R̂ � 2 .E � E�/ D �Uc D �
X

1�i<j�n

qi qj


ij

D jUcj 	
ˇ
ˇqi qj

ˇ
ˇ


ij

and the inequality followed from the definition of the Jacobi function:

2mˆ 	 mi mj
ij ;

1


ij

	
�
mi mj

�1=2

.2m/1=2ˆ1=2
:

Thus, finally, we have

� R̂ � 2 �E � E�
�
ˆ1=2 	

ˇ
ˇqi qj

ˇ
ˇ �mi mj

�1=2

.2m/1=2
D 	0 > 0:

The derivation of the third inequality (9.79) is based on the Cauchy–
Bunyakovsky inequality:

 
nX

1�i�n
ai bi

!2
�
 

nX

1�i�n
a2i

! 
nX

1�i�n
b2i

!

:

Substituting into it

ai D m
1=2
i jri j ; bi D m

1=2
i

d

dt
jri j ;

we have

P̂ D
X

1�i�n
mi jri j d

dt
jri j ;

� P̂ �2 � 2ˆ
X

1�i�n
mi

�
ri

d
dt ri

�2

jri j2
:

Substituting as before

ai D m
1=2
i jri j ; bi D m

1=2
i

Œri Pri �
jri j ;
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we obtain

M2 � 2ˆ
X

1�i�n

mi jri Pri j2
jri j2

;

where M is the angular momentum of the system equal to

M D
X

1�i�n
mi Œri Pri � :

Summing up the two inequalities just obtained, we have

� P̂ �2 CM2 � 2ˆ
X

1�i�n

mi

jri j2
n
.ri Pri /2 C Œri Pri �2

o

D 2ˆ
X

1�i�n
mi . Pri /

2 D 4Tˆ D 4ˆ
� R̂ � �

E � E�
�
:

We finally obtain an expression for the third inequality (9.79):

R̂ �E C E� �
P̂ 2
4ˆ

	 M2

4ˆ
:

This ends the proof of the expression (9.66) for the Coulomb interactions of charged
particles of the system in the asymptotic time limit of their simultaneous collision.

9.5 Relationship Between the Jacobi Function and Potential
Energy for a System with High Symmetry

It was shown in Chaps. 3 and 7 that the relationship of Jacobi’s function and the
potential energy

jU j
p
ˆ D B (9.81)

does not change for different mass density distribution laws and configurations of
the system. In this case, Jacobi’s virial equation

R̂ D 2E � U; (9.82)

by means of (9.81), we transfer into the equation of virial oscillations:

R̂ D �AC Bp
ˆ
: (9.83)

http://dx.doi.org/10.1007/978-94-007-5908-4_3
http://dx.doi.org/10.1007/978-94-007-5908-4_7
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However, even for a system with spherical symmetry and fixed mass, the value of
(9.81) changes for different laws of distribution of the mass density �(r) (where r is
the radius of the shell with density �(r)); r2 [0,R]. In this connection, transformation
of Eq. (9.82) into (9.83) is possible only after special study, which is described
below.

We pay special attention to the systems with high symmetry, namely, spherical
and elliptical. This is because most of the natural systems from galaxies, stars,
planets, and their satellites and also liquids and DT targets for carrying out the
nuclear synthesis works to atoms possess such a symmetry. The systems with
charged particles are also included here. We consider below the conditions that
allow us to transform Eq. (9.82) into (9.83) for systems with spherical and elliptical
symmetry.

9.5.1 Systems with Spherical Symmetry

Let us begin by considering the value of Eq. (9.81) for a spherical system. It
is convenient to start such a study after rewriting the expressions for the Jacobi
function and the potential energy in the form

ˆ D 1

2
ˇ2mR2; (9.84)

U D �˛Gm
2

R
; (9.85)

where ˛2 and ˇ2 are dimensionless form factors independent of radius R and mass
m of the spherical system (see Sect. 3.6).

We now rewrite (9.81), using (9.84) and (9.85), as

B D ˛ˇGm5=2: (9.86)

Use of form factors ˛ and ˇ allows us to show that the parameter B in (9.81) does
not depend on radius of the spherical system. The product of ˛ and ˇ depends on
mass density distribution law �(r) and does not depend on the total mass of the
system. Hence, the problem of the study of the changes of parameter B in (9.81) for
an arbitrary spherical system is reduced to consideration of the dependence of the
product of the ˛ˇ form factors on the mass density distribution law for the sphere
with radius unity and mass unity. Let us consider such a sphere and calculate the
value

a D ˛ˇ: (9.87)

http://dx.doi.org/10.1007/978-94-007-5908-4_3
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For the arbitrarily given law of density distribution �(k), k2 [0, 1], satisfying the
condition

Z

.V /

�.k/ dV.k/ D 1;

the volume of the sphere with radius unity is

V D
•

.V /

dx; dy; dz D
1Z

0

k2 dk

�Z

0

sin � d�

2�Z

0

d' D 4

3
�:

The volume of the sphere with radius k is

V.k/ D
kZ

0

k02 dk0
�Z

0

sin � d�

2�Z

0

d' D 4

3
�k3: (9.88)

The volume of the spherical shell with radius k and thickness dk is

dV.k/ D k2 dk

�Z

0

sin � d�

2�Z

0

d' D 4�k2 dk: (9.89)

The mass of the spherical shell with radius k and thickness dk is

dm.k/ D 4��.k/k2 dk:

The mass of the sphere with radius k is

m.k/ D 4�

kZ

0

�
�
k0� �k0�2dk0: (9.90)

The mass of the sphere as a whole is

m D 4�

1Z

0

�.k/k2 dk D 1: (9.91)

The polar moment of inertia of the shell with radius k and thickness dk is

dI.k/ D k2 dm.k/ D 4��.k/k4 dk;
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and the Jacobi function of the sphere is

ˆ D 4�

2

1Z

0

�.k/k4 dk: (9.92)

We can write the expression for the form factor ˇ from (9.84) using (9.91) and
(9.92):

ˇ D
s
ˆ
1
2
m

D

s
1R

0

�.k/k4 dk

1R

0

�.k/k2 dk

: (9.93)

The potential energy of the shell with radius k and thickness dk in the gravitational
field of the sphere of radius k is

dU.k/ D �Gm.k/ dm.k/

k
D �G

16�2�.k/k2 dk
kR

0

� .k0/ .k0/2dk0

k
:

The potential energy of the sphere as a whole is

U D �16�2G
1Z

0

�.k/k dk

kZ

0

�
�
k0� �k0�2dk0: (9.94)

We can write the expression for the form factor ˛ using (9.85), (9.91), and (9.94) as

˛ D � U

Gm2

1R

0

�.k/k dk
kR

0

� .k0/ .k0/2dk0

 
1R

0

�.k/k2 dk

!2 : (9.95)

Finally, the product of form factors ˛ and ˇ represents the functional of the function
of mass density distribution �(k):

a D ˛ˇ D

1R

0

k�.k/ dk
kR

0

� .k0/ .k0/2dk0
s

1R

0

�.k/k4 dk

 
1R

0

�.k/k2 dk

!5=2 : (9.96)
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Table 9.1 Numerical values of form factors ˛ and ˇ and their product ˛ˇ for various formal laws
of radial mass density distribution of the spherical system

Law of mass density
distribution �(k), k2 [0, 1] ˛ ˇ2

?
ˇ2 ˛ˇ

�(r) D �0 0.6 0.4 0.6 0.46
�(r) D �0(1 � k) 0.728 0.27 0.4 0.47
�(r) D �0(1 � k2), 0.7142 0.29 0.42 0.46

�(r) D �0(1 � k)n .5mC8/.mC3/2

8.2nC3/.2nC5/
8

.nC4/.nC5/
12

.nC4/.nC5/
, at n ! 1 0.54

�(r) D �0kn nC3
2nC5

2nC9
6nC15

nC3
2nC5

, at n ! 1 0.5

�(r) D �0ı(1 � k) 0.5 0.67 1.0 0.5

The values of the form factors ˛ and ˇ and of their product ˛ˇ for different formal
laws of mass density distribution are given in Table 9.1. The numerical calculations
of this table can be found in our paper (Ferronsky et al. 1978).

It can be seen from Table 9.1 that the form factor ˇ changes from 0 to 1: ˇ2
[0, 1]. It reaches the value of unity in the case when the entire mass of the sphere is
distributed within its outer shell (at k D 1). The minimal value of the form factor ˇ
must be when the entire mass concentrates in the center of the sphere (at k D 0). But
if we do not place any strong restrictions on the function �(k), that is, in the general
case, nothing can be said about the changing interval of the value a D˛ˇ (9.85). It
is only possible to note that a D˛ˇ always has a positive value. From Table 9.1,
it can also be assumed that the value of a is more than (3/5)3/2 � 0.46, which
corresponds to the homogeneous distribution of the mass density within the sphere.
It is known also from Chap. 6 that the homogeneous sphere, while contracting under
gravitational forces, conserves its homogeneity up to the moment of simultaneous
collision of all its particles. Thus, according to Wintner’s terminology, a uniform
body appears to be the central configuration.

The sphere expands and then (the time is reversible in classical physics) becomes
homogeneous again. So in accordance with the definitions given in the previous
section, the homogeneous sphere appears to be the central configuration. Applying
the main idea of the central configuration theorem discussed above in the general
case, we assume the following qualitative picture of the evolution of a heterogeneous
spherical system. During the contraction of the system, the ˛ˇ decreases and tends
to the quantity (3/5)3/2, reaching this value at the moment of simultaneous collision
of all the particles. If the expansion starts before the moment of simultaneous
collision of the matter (at the neighborhood of singularity), then the value of ˛ˇ
again increases. Thus, there is a case of perturbed virial oscillations of the system.
This case is known in the literature as “stormy relaxation” of a gaseous sphere and
is described quantitatively by the following equation of change of value of jU j p

ˆ

(Ferronsky et al. 1984):

U
p
ˆ D B � kˆ

where B is a constant and k is also a constant.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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This law of change of value of jU j p
ˆ will be considered in detail in Chap. 8,

which is devoted to astrophysics applications. Here we note that the only mechanism
that drives the matter of a system toward simultaneous collision is the loss of energy
through radiation. So, for conservative systems, the equation of virial oscillations
has the form

R̂ D �AC Bp
ˆ

� k P̂
p
ˆ
:

The term k P̂ =pˆ is part of the perturbation function. It does not lead to the loss
of total energy of the system, and we can call it internal friction.

9.5.2 Polytropic Gas Sphere Model

The laws of mass density distribution in the previous section were considered
formally, neglecting the requirement of hydrodynamic stability of the system.
However, it is well known that for the many really existing celestial gas bodies,
a polytropic model in the central domain is a good one.

Let us study the value of the form factors ˛ and ˇ and their product ˛ˇ for the
polytropic gas sphere model at various quantities of polytropic index. The equation
of state for a gas sphere is

dp.k/

dk
D �Gm.k/�.k/

k2
; (9.97)

where p(k) is the gas pressure, �(k) is the mass density of the gas, and G is the
gravitational constant.

Using Eq. (9.97), we can rewrite it for the sphere with radius k and mass m in the
form

1

k

d

dk

ˇ̌
ˇ
ˇ
k2

�.k/

dp.k/

dk

ˇ̌
ˇ
ˇ D �4�G�.k/: (9.98)

This is one of the basic equations in the theory of the internal structure of the stars
used up to now.

It is assumed that for polytropic models, the two independent characteristics
in Eq. (9.98), namely, pressure p(k) and mass density �(k), are linked by the
relationship:

p.k/ D C�b.k/; (9.99)

where C and b are constants.

http://dx.doi.org/10.1007/978-94-007-5908-4_8
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From (9.99), it follows that

1

�.k/

dp.k/

dk
D C

b

b � 1
d�b�1.k/

dk
: (9.100)

Substituting (9.100) into (9.98) and introducing specification

�b�1.k/ D u.k/ n D 1

b � 1
; (9.101)

we obtain

C .1C n/
1

k2
d

dk

ˇ
ˇ
ˇ
ˇk
2 du.k/

dk

ˇ
ˇ
ˇ
ˇ D 4�Gun.k/: (9.102)

Equation (9.102) can be simplified if dimensionless variables‚(x) D u(x)/u0 and
x D�k are introduced. Here u0 is the value u(k) in the center of the sphere, that is, at
k D 0. The coefficient � is selected with the condition that, after substitution of the
function‚(x) into (9.102), all the constants should be canceled. Then, the following
relationship for � can be obtained:

C.1C n/�2 D 4�Gun�1
0 ; (9.103)

and Eq. (9.102), known as the Emden equation, takes the form

1

x2
d

dx

ˇ
ˇ
ˇ
ˇx
2 d‚.x/

dx

ˇ
ˇ
ˇ
ˇ D �‚n.x/: (9.104)

It is obvious that for x D 0, the function ‚(x), known as the Emden function,
should satisfy two conditions:

‚.x/ jxD0 D 1;
d‚.x/

dx
jxD0 D 0: (9.105)

We now obtain the expression for the form factor ˛ for a sphere with polytropic
index n. For this purpose, we write the expression of potential energy in the form

U D �G
Z
m.k/ dm.k/

k
:

Using Eq. (9.97) for the gas sphere and the expression for dm(k), we rewrite (9.105)
as follows:

U D
Z

k

�.k/

dp.k/

dk
dm.k/ D 4�

Z
k3 dp.k/: (9.106)
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After integration by parts of the right-hand side of (9.105), we obtain

U D �12�
1Z

0

k2p.k/ dk: (9.107)

On the other hand, (9.105) can be rewritten in the form

U D �G
2

Z
dm2.k/

k
:

Integrating the right-hand side of the last relationship by parts, we obtain

U D �G
2

m2.k/

k

ˇ̌
ˇkD1
kD0 � G

2

Z
m2.k/ dk

k2
: (9.108)

The integral in the right-hand side of (9.108) is transformed with the help of
(9.97) as follows:

�G
2

Z
m2.k/ dk

k2
D 1

2

Z
m.k/

�.k/

dp .k/

dk
dk:

Thus, using (9.100), we obtain

�G
2

Z
m2.k/ dk

k2
D 1

2

Z
m.k/C

b

b � 1 d�b�1.k/;

and integrating by parts, we have

�G
2

Z
m2.k/ dk

k2
D1

2
C

b

b � 1�
b�1.k/m.k/

ˇ
ˇ
ˇkD1
kD0 � 1

2

Z
C

b

b � 1
�b�1.k/4�k2�.k/ dk

D � 1

2

Z
.nC 1/4�k2p.k/ dk: (9.109)

Substituting (9.109) into (9.108), we obtain the second expression for the
potential energy:

U D �G
2

� 4� .nC 1/

2

1Z

0

k2�.k/ dk; (9.110)

where the condition m(1) D 1 has been taken into account.
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Solving the system of equation (9.110) and (9.107) with respect to U, we find
that

U D �G 3

5 � n ;

and hence

˛ D 3

5 � n
: (9.111)

Now we derive the expression for the form factor ˇ. For this purpose, we write
the Jacobi function expression for a polytropic sphere:

ˆ D 4�

2

1Z

0

k4�.k/ dk D 4�

2

x1Z

0

‚n.x/x4 dx

�5
; (9.112)

where x1 is the first root of the equation‚(x) D 0.
Let us specify

� D
x1Z

0

‚n.x/x4 dx:

And taking into account (9.103), we write

C.1C n/�2 D 4�Gun�1
0 :

Then

ˆ D 4��

2

un0
�5

D 4��

2

ŒC.1C n/� n=n� 1

.4�G/n=n � 1 �.5�3n/=n�1: (9.113)

Now we obtain the second expression for the Jacobi function using the condition
of equation (9.99) at the border surface of the sphere, that is, at k D 1. Then,

1

�.k/

dp.k/

dk
jkD1 D �Gm.k/

k2
jkD1 (9.114)

and

m.k/k2
ˇ
ˇ
ˇ̌
kD1 D �k

4

G

1

�.k/

dp .k/

dk
jkD1 :
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Table 9.2 Numerical values
of form factors ˛ and ˇ and
their product ˛ˇ for different
values of polytropic index n

Index n ˛2 x1 �x2 B‚.x/
dx

� ˇ ˛ˇ

0 0.6 2.45 4.9 17.63 0.77 0.46
1 0.75 3.14 3.14 12.15 0.62 0.465
1.5 0.87 3.63 2.71 11.12 0.55 0.475
2 1.0 4.35 2.41 10.61 0.48 0.482
3 1.5 6.89 2.01 10.85 0.34 0.502
3.5 2.0 9.53 1.89 11.74 0.26 0.52

The left-hand side of Eq. (9.114), taking into account (9.100) and (9.101), is

1

�.k/

dp.k/

dk
jkD1 D C

b

b � 1

d�b�1.k/
dk

D C.n � 1/
du .k/

dk
: (9.115)

Finally, we obtain

ˆ D 1

2
ˇ2m.k/k2 jkD1 D �1

2
ˇ2
C.nC 1/

G
k4

du .k/

dk
jkD1

D �1
2
ˇ2
C.nC 1/

G
u0
x4

�3
d‚.x/

dk
jxDx1 :

Or when using (9.103),

ˆ D 1

2
�ˇ2

C .1C n/n=n�1

.4�G/n=n�1 �.5�3n/=n�1
ˇ̌
ˇ
ˇx
4 d‚.x/

dk

ˇ̌
ˇ
ˇ jxDx1 : (9.116)

Dividing (9.116) by (9.113), we obtain

ˇ D
vu
u
u
t

�
�
�x4 d‚.x/

dx

	
jxDx1

: (9.117)

We calculated the values of ˛ and ˇ and their product ˛ˇ using the data for �,
x1, and

�x2d‚.x/
dx

jxDx1

at different polytropic index values, taken from Chandrasekhar (1939, 1942). The
calculated data are shown in Table 9.2. It is interesting to note that in the framework
of the really existing physical laws of mass density distribution �(k), the quantity
˛ˇ changes within the narrow limits despite the fact that each of the form factors ˛
and ˇ varies almost three times the variation of the polytropic index from 0 to 3.5.
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9.5.3 System with Elliptical Symmetry

We have shown in the previous section that the property of the central configurations
consisting in the constancy of the product ˛ˇ holds for system with spherical
symmetry.

Now we prove that this property holds for elliptical symmetry with an ellipsoidal
mass distribution. Moreover, we show that among all the configurations, only
ellipsoidal mass distribution possesses this property of central configurations.

Let us write the equation of the general ellipsoid with semi-axes a, b, c:

x2

a2
C y2

b2
C z2

c2
D 1; (9.118)

where x, y, and z are the Cartesian coordinates of the surface of this ellipsoid.
The equation of a set of similar ellipsoidal shells of this ellipsoid with the

ellipsoidal mass distribution �(x) is

x2

a2
C y2

b2
C z2

c2
D k2; (9.119)

where k2 [0, 1] is a parameter of the homogeneous ellipsoidal shell.
The gravitational potential inside this ellipsoidal shell is equal to a constant at an

arbitrary point (x, y, z)

F.x; y; z/ D �Gms

2

1Z

0

du
p
.a2 C u/ .b2 C u/ .c2 C u/

; (9.120)

where ms is the mass of the shell and u is a parameter of integration.
We write down the form factor ˛e of the potential energy U of this ellipsoid as

˛c D � aU

Gm2
; (9.121)

where a is semimajor axis in the equatorial plane and m is the total mass.
The volume of an ellipsoid bounded by the surface (9.119) with the parameter

k is

V.k/ D 4

3
�abck3: (9.122)

The volume of the thin shell bounded by ellipsoidal surfaces with the parameters
k and k C dk is

dV.k/ D 4�abck2 dk: (9.123)
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The mass of this shell is expressed as

dms .k/ D 4�abck2�.k/ dk: (9.124)

Then, the total mass of the ellipsoid is

m D 4�abc

1Z

0

k2�.k/dk: (9.125)

The mass of an ellipsoid bounded by the surface with the parameter k is

m.k/ D 4�abc

kZ

0

�
k0�2�

�
k0� dk0: (9.126)

Using the reciprocation theorem (Duboshin 1975), we write the potential energy
of the ellipsoid in the form

U D �
1Z

0

m.k/ dF .k/: (9.127)

The gravitational potential inside the thin shell bounded by elliptical surface with
parameters k and k C dk (9.120) is

dF.k/ D 2�Gabck �.k/ dk

1Z

0

du
p
.a2 C u/ .b2 C u/ .c2 C u/

: (9.128)

Now we write the expression for the form factor ˛e using the corresponding
values of U and m as

˛e D � aU

Gm2
D a

2

1R

0

k �.k/ dk
kR

0

.k0/2� .k0/ dk0

"
1R

0

k2�.k/ dk

#2

1Z

0

du
p
.a2 C u/ .b2 C u/ .c2 C u/

D ˛
a

2

1Z

0

du
p
.a2 C u/ .b2 C u/ .c2 C u/

;
(9.129)
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where ˛ is the potential energy form factor corresponding to the radial mass
distribution law �(k).

It is easy to see from Eq. (9.129) that when a D b, we obtain the value of the form
factor ˛e for the ellipsoid of rotation

˛e D ˛
arcsin e

e
: (9.130)

Since

e D
r
a2 � c2

a2
2 j0; 1j ;

˛e 2
h
;
�

2
˛
i
:

When a> b> c, Eq. (9.129) be (Janke et al. 1960)

˛e D ˛

1Z

0

du
p
.a2 C u/ .b2 C u/ .c2 C u/

D ˛
ap

a2 � c2 F
 

arcsin

r
a2 � c2

a2
;

r
a2 � b2

a2 � c2

!

:

Denoting

arcsin

r
a2 � c2
a2

D arcsin e1 D ® and

r
a2 � b2
a2 � c2 D e2

e1
D sin ˛ D f;

we obtain

˛e D ˛
F .'; f /

sin '
; (9.131)

where F(®, f ) is an incomplete elliptical integral of the first degree in the normal
Legendre form. If e1< 0.999 and 0< e2< e1, the function F(®, f ) sin�1® 2 [1.000;
3.999] (Janke et al. 1960). When the arguments ® and f increase, the function
F(®, f ) sin�1 ® also increases continuously.

Let us now consider the form factor ˇ, which may be written as

ˇ D
�
ˆ

ma2

	1=2
: (9.132)

Obviously, ˇ can be obtained by corresponding integration over the parameter
k 2 [0, 1], if one writes the Jacobi function for the homogeneous thin shell bounded



9.5 Relationship Between the Jacobi Function and Potential Energy. . . 279

by the surfaces within the parameters k and k C dk and with mass distribution �(k)
in the integrand.

Since the Jacobi function for a homogeneous ellipsoid with mass density �0 is

ˆ D 2

15
�abc�0

�
a2 C b2 C c2

�
; (9.133)

the Jacobi function for a thin ellipsoid shell may be written as

dˆ.k/ D 2

3
�abc �.k/ k4 dk

�
a2 C b2 C c2

�
: (9.134)

Consequently, the Jacobi functionˆ of the ellipsoid is equal to

ˆ D 2

3
�abc

�
a2 C b2 C c2

�
1Z

0

�.k/k4 dk: (9.135)

Finally, using (9.135) and (9.125), Eq. (9.132) for the form factor ˇ will be

ˇe D

2

6
6
6
4
a2 C b2 C c2

3a2

1R

0

�.k/k4 dk

1R

0

�.k/k2 dk

3

7
7
7
5

1=2

D ˇ

�
a2 C b2 C c2

3a2

	1=2
; (9.136)

where ˇ is a form factor of the Jacobi function of the system with radial mass
distribution �(k) and the expression

�
a2 C b2 C c2

3a2

	1=2
2
�
1p
3
; 1

	
:

So the value ae is equal to

ae D ˛eˇe D a
F .'; f /

sin '

�
a2 C b2 C c2

3a2

	1=2
: (9.137)

Now it can be shown that the property (9.137) of the product ˛ˇ constancy is
possessed only by systems with elliptical symmetry and ellipsoidal mass density
distribution. This means that for such systems, the form factors ˛ and ˇ may
be expressed as a product of corresponding form factors of the sphere and terms
depending on the form of the boundary surface.

For this proof, we consider an arbitrary system with a similar law of mass
distribution �(k), k 2 j0, 1j, and the boundary surface S. Then, since we consider
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only one-dimensional�(k), mass density will be constant on any surface with a fixed
parameter k and similar to S. The area of this surface is

S 0.k/ D Sk2: (9.138)

If the volume of the body is equal to V, then the volume of the part of the body
bounded by the surface S 0.k/ is

V 0.k/ D V k3; (9.139)

and its mass is

m.k/ D V

1Z

0

k2�.k/ dk: (9.140)

Let us introduce the Cartesian coordinate system OXYZ with an origin coin-
ciding with the center of similarity. Let us denote by h in the equatorial plane
OXY the longest distance from the center of similarity to the boundary and assume
thatf the form factor ˛2

e of the body can be expressed as a product of the form
factors of the potential energy ˛ for the radial mass density distribution law and
some term 4(S) depending on the form of the boundary surface:

˛e D � Uh

Gm2
D ˛
.S/ D

1R

0

k�.k/ dk
kR

0

.k0/2� .k0/ dk0

 
1R

0

k2�.k/ dk

!2 
.S/: (9.141)

From Eq. (9.141) we can obtain the potential energy in the form

U D �Gm
2

h
˛
.S/ D �GV

h

1Z

0

k�.k/ dk 
.S/: (9.142)

Since the terms G, V, H, and 4(S) do not depend on the parameter k, let us put
them into the integrand and denote

GV

h
k�.k/
.S/ dk D F.k/:

Then, Eq. (9.142) may be written as

U D �
1Z

0

m.k/ dF.k/: (9.143)
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Comparing Eqs. (9.143) and (9.127), one can see that Eq. (9.143) is an equation
for the reciprocation theorem, whose validity is based on the constancy of the
gravitational potential dF(k) inside the thin shell bounded by the similar and
similarly situated surfaces with parameters k and k C dk. But as shown in the work
of Dive (1931), where one can find rigorous proof of the reverse Newton theorem,
only ellipsoidal shells possess such a property. Therefore, the body with the one-
dimensional mass distribution law �(k) for which the form factor ˛e is equal to the
product of the form factor of the sphere and some term depending on the form of
the boundary surface 4(S) must satisfy the equation of the ellipsoid (9.118).

9.5.4 System with Charged Particles

In Sect. 8.2, it was shown by modeling solution that for the Coulomb interactions of
charged particles, constituting a system, Eq. (9.5) holds under the same conditions
as the previous models discussed above.

Considering a one-component ionized quasi-neutral and self-gravitating gaseous
cloud with spherically symmetric mass density distribution, we found that the form
factors in the expression for the potential energy of the Coulomb interaction have
the same physical meaning, which has the gravity mass interaction. It represents the
shell to which the sphere of charges is reduced.

The task about the Coulomb potential energy of the interacting charged particles
proves legality of solution of the Jacobi virial equation for the study of the celestial
body’s electromagnetic effects.

But it follows from Eq. (8.3) that the form factor ˛c of the Coulomb energy
becomes an infinite value when ion’s volume tends to zero; in this case, the Coulomb
energy tends also to infinity. In Table 8.3, there are two laws of the mass density
distribution for which the last condition holds. These laws are �(r) D �0 (r/R)n and
�(r) D �0(1 � r/R)n at n ! 1. When particles come together in the shell of infinite
radius, the Coulomb interaction energy becomes infinitely large. When the mass
density distribution law is �(r) D �0(1�r/R)n, then the form factors of the gravity
and Coulomb energy have a finite value. In this case, the form factors of Jacobi’s
function of a system make the constant a D ˛ .ˇ equal to zero. This effect can play
a decisive role in the evolution of the system.

We note in conclusion that the analysis of relationship between the Jacobi
function and potential energy from physical viewpoint justifies transfer from
Jacobi’s equations (9.1) and (9.2) to equations of virial oscillation (9.3) and (9.4).
At the same time, it is possible to meet deviation of in Eq. (9.5) from the constant
value because of small effects of perturbations, which can take part at the evolution
of heterogenic systems.

http://dx.doi.org/10.1007/978-94-007-5908-4_2
http://dx.doi.org/10.1007/978-94-007-5908-4_8
http://dx.doi.org/10.1007/978-94-007-5908-4_8
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9.6 Direct Derivation of the Equation of Virial Oscillation
from Einstein’s Equations

Weinberg (1972) reduced Einstein’s equation for homogeneous isotropic space,
with the help of the Robertson–Walker metric, to the following scalar form:

3 RR D �4G.�C 3p/R; (9.144)

RRRC 2. PR/2 C 2k D 4�G.� � p/R2; (9.145)

where R is the radius of the universe, p radiation pressure (mass defect), and � the
density of matter without mass defect.

Multiplying Eq. (9.144) by R/3 and summing it with (9.145), we obtain

� RR2�C 2k D 8�GR2
�
1

3
� � p

�
: (9.146)

When �
 p and �R3 is a constant (dust cloud), and taking into account that for
curved space (Landau and Lifshitz 1973)

�R3 D m

2�2
; (9.147)

where m is the total mass of the particles constituting the cloud, expression (9.147)
is transformed into

� RR2�C 2k D 8�

3
G
m

2�2
1

R
: (9.148)

Since from the Jacobi function we have ˆD mR2/2, Eq. (9.148) can be rewritten as

R̂ C km D 2

3�
Gm2

r
m

2

1p
ˆ

(9.149)

or

R̂ C km D
p
2

3�

p
G2m5

1p
ˆ
: (9.150)

Finally, the equation of virial oscillations can be easily obtained in the known form

R̂ D �AC Bp
ˆ
; (9.151)
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where A D km D E is the total energy and B is a constant equal to Gm5/2 multiplied
by a factor that depends on the realization of the mass defect and on the period of
the ˛ˇ form factors (equal to 1=

p
2).

When p D �/3, the equation of virial oscillations for radiation can be obtained
from Eq. (9.146):

R̂ D �A:

Equations (9.144) and (9.145) are valid for all natural systems that exhibit a central
symmetry of mass distribution. For celestial bodies, Eq. (9.146) is written as

�R3 D 3m

4�
:

Then, from (9.146), it follows that

� RR�2 C 2k D 8�

3
GR2

�
1 � 3p

�

�
D 2Gm

R

�
1 � 3p

�

�
:

Now, Eq. (9.151) becomes

R̂ D �AC Bp
ˆ

�
1 � 3p

�

�
: (9.152)

As Weinberg (1972) pointed out, the inequality 0< 3p � � holds for celestial bodies,
and in the most general case, we can write

p D .� � 1/.� � n	/;

where n is the density of particles and 	 is the mass of a particle.
Therefore, (�� n	) is the mass defect and � is the polytropic index, which

for stable system ranges from 0 to 5/3 for nonrelativistic objects and � 	 4/3 for
ultra-relativistic objects. For � > 5/3, the body expands indefinitely, and at � � 4/3,
collapse of the body occurs.

For actually existing celestial bodies, where the absence of heat equilibrium is
taken into account (in the case of a discrete system), pressure is defined as (Weinberg
1972)

p D 1

3
Œ�C f .�; n/�;

where f (�, n) DT 0˛ is a function of the energy density � and the density n (number
of particles per unit volume). This function is equal to zero in the ultra-relativistic
limit, and in the nonrelativistic limit, it is equal to

Œ�n	C .� � n	/� D �2n	C �:
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In both limiting cases, pressure p is

p D 1

3
� and p D 2

3
.� � n	/:

Hence, in Eq. (9.152), the undetermined factor in B is equal to zero and
[(2	n/�) � 1) or (1 � (2
/�)], where 
D	n � � is the mass defect.

Finally, taking into account the mass defect in Eq. (9.152) shows that the constant
B D B0D, where B0 is of Newtonian nature (aGm5/2) and D, a relativistic correction,
is smaller than 1.

Now let us estimate this correction D in the case of the white dwarf and the
neutron star models according to Weinberg.

The equation determining the density of particles when Fermi–Dirac statistics
hold can be written as

n D k3F
3�„2 ;

where n is the number of particles in the volume, kF the radius of the Fermi sphere,
and „ is Planck’s constant.

The density of matter of a star is written as

� D n	pnp;

where 	p is the mass of a proton and np the average number of protons in a nuclei.
The critical density of matter in a star is

�cr D 	pnp	
3
e

3�„3 ;

where 	e is the electron mass.
Introducing the new variables Z1 D �/�cr and Z2 D �/�cr, the equation of state for

white dwarfs can be rewritten as follows:

Z1 D 3	e

	p
F1 .Z1/ ;

Z2 D 3	e

	p
F2 .Z2/ ;

where F1 and F2 are some transcendental functions.
For neutron stars, the critical density is

�cr D 	4p

3�„3 ;
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and the equations of state are written as

Z1 D 3F1 .Z1/ ;

Z2 D 3F2 .Z2/ :

Solving the equations of state for the two limiting cases when �
 �cr (i.e., when
the polytropic indexes are 5/3 and 4/3, respectively), we obtain for white dwarfs,
respectively

�e D 3

2
p and �e D 3p:

For neutron stars, in the limiting cases (�
�cr) and (�� �cr), we have the same
form of relations:

� D 3

2
p and � D 3p;

where � is the total density of matter.
In the ultra-relativistic limit, the relativistic correction will have very large values

(D D 0), which means that the total collapse of the star (Oppenheimer–Volkoff limit)
is leading to the formation of a black hole.

Thus, we have obtained the equation of virial oscillations (9.152) directly in the
most general case and without having to assume the constancy of the form factor
product ˛ˇ. Since the same equation follows from Jacobi’s equation with the use of
the hypothesis, we conclude that the relation ˛ˇD constant was proven.

We should also note that modern astrophysical studies of the oscillation of
celestial bodies in the nonrelativistic approximation are based on the supposition
that these movements have a homologous structure (Misner et al. 1973; Weinberg
1972; Frank-Kamenetsky 1959; Zeldovich and Novikov 1967). It can easily be
verified that the supposition of homology is a sufficient condition to prove the
constancy of the form factor product ˛ˇ, which is the main point in the derivation
of the equation of virial oscillations from Jacobi’s equation.

The mathematical formulation of the homologous motion of matter in the course
of oscillation of a celestial body is written as follows:

r.t/ D t.0/ � f .t/;

where r(t) is the radius of a given layer shell of the body and f (t) is an arbitrary
function of time.

Let us introduce the Lagrange coordinates, where m is the mass inside the sphere
of radius r and dm is the mass of shell of radius r and thickness dr. According to the
property of Lagrange coordinates, they are independent of time.
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Then, the Jacobi function and the potential energy are written as

ˆ D 1

2

mZ

0

r2 dm;

jU j D G

mZ

0

m dm

r
:

Using the assumption that the motion is homologous, these expressions can be
rewritten as

ˆ D 1

2
f 2.t/

mZ

0

r2.0/ dm;

U D G

f.t/
G

mZ

0

m dm

r.0/
:

Integrals on the right-hand side of these expressions do not depend on time and are
therefore constants. Thus, the product U2ˆ does not depend on time and is also a
constant.

Note that in the works of the authors mentioned above, the formula for the
pulsation frequency of celestial bodies has been obtained assuming small amplitudes
and the validity of the harmonic law of pulsations. Our approach allows the same
frequency of pulsations to be obtained without the above restricting assumptions.
Moreover, by comparing the two expressions that give equivalent results, it is
possible to obtain the polytropic index that enters into the astrophysical formula
for the frequency of pulsations.
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Chapter 10
Conclusions

Let us summarize the obtained results of the work.
The discovered nature of the planets’ and satellites’ orbital motion by the first

cosmic velocity of their protoparents proves the correctness of initial fundamentals
for the dynamics of the natural systems based on dynamical equilibrium. The
conditions of hydrostatic equilibrium used earlier for such a problem appear to
be incorrect. This might be the reason why the nature of Newton’s gravity force
has not yet been disclosed. The solution of this problem is ordinary. The force of
gravitation is the first derivative in time from the inner energy of the interacted
elementary matter particles of the system. The energy itself, being the measure of
this interaction, in general case, is the second derivative in time from the moment of
inertia of the system. In the case of uniform system, the energy is equal to the first
derivative in time from the moment of inertia.

The only change of the force as the measure of interaction by the energy brings
together the nature of the gravity and electromagnetic interactions. If one takes into
account the inner and outer force fields, then both interactions become equivalent in
their capacity.

It was found that the process of the planets’ and satellites’ creation by separation
from the parental bodies is coupled with conditions of the universe expansion. The
hierarchic subsystems appear only in these conditions. The inner energy of the
parental bodies is only released in the expansion conditions. In reality, the process
of a subsystem creation is only a part of a more general process of decay of a system
by elementary particles accompanied by the release of the bonded energy. The
main points of dynamical effects of this process are self-gravitation (weightness)
and weightlessness. The process of the universe attraction appears to be the next
stage of its evolution. If the law of energy conservation is held, then this stage must
come. The process starts with the creation of mass particles including electrons,
nuclei of atoms, and their isotopes by synthesis of the elementary weightlessness
scalar particles. The main point of the dynamic effect of this process should be the
simultaneous collision of n elementary particles with creation of a mass particle. The
synthesis of the scalar elementary particles will be accompanied by the absorption

V.I. Ferronsky and S.V. Ferronsky, Formation of the Solar System: A New Theory
of the Creation and Decay of the Celestial Bodies, DOI 10.1007/978-94-007-5908-4 10,
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of energy from the force field for binding the particles. The hydrostatic pressure also
takes part in the process of attraction of the oscillating system in the framework of
the Archimedes law.

It can be noted that the problem of creation of the solar system bodies considered
here, despite its apparent complexity, is a very simple and natural process. The
difficulty lies in the perception of the new physical conception, based on the effect
of the inner energy irradiation, which is in fact the observable phenomenon.

It might be surprising that the integral approach to the description of dynamics
of natural systems, which has a number of obvious advantages, has been under-
developed compared with the differential hydrostatic approach. However, if we
consider the development of the apparatus of mathematical physics from this
viewpoint, the picture changes completely.

In fact, as soon as the concept of the field was formulated—even though initially
this concept was a purely mathematical one (e.g., of the electrostatic and magnetic
fields)—Gauss’s theorem relating to the flux of a field vector through a closed
surface was put forward. This integral characteristic of a field enclosed within a
surface is an invariant of the field. In the case of electrostatics, it is the charge that
gives rise to the field.

The concept of vector flux through a closed surface has been generalized and
developed. For example, such a generalization is Stokes’s theorem relating to the
circulation of a vector around a closed circuit, which can be used to identify
vortex sources in vector fields. These theorems, which by their very nature are
distinctly integral ones, have served as the basis for the whole mathematical theory
of continuum mechanics, the electromagnetic theory of Maxwell, and Poisson’s
theory of Newtonian gravitation.

Thus, the development of the mathematical apparatus of physics has taken
the course of the integral approach to the description of natural phenomena. The
concepts of divergence and the rotor introduced in this connection have served as
instruments for finding the sources and sinks of a field and its vortices.

However, the idea of the continuity of a field, which gave rise to these concepts,
itself placed a limit on them because the size of the region in which the charge was
enclosed by a surface had to tend to zero. The Gaussian surface integral was thus
replaced by divergence as a differential operation.

Circulation was similarly replaced by the rotor as a differential operation. It is
these operations that are used in the Maxwellian field theory. This is because of
the erroneous idea that the electric charges giving rise to the field are themselves
continuous quantities distributed over the volume and also over the surface of
dielectrics and conductors. The theorems of Gauss and Stokes are therefore limited
to volumes shrinking to nil, and the theory became a purely differential one. This
situation was later improved by Lorentz, who introduced into the field discrete
charge points of finite magnitude scattered in empty space. According to his theory,
Maxwell’s equations remain applicable in the empty space between the small
regions enclosing point singularities. On the closed surfaces surrounding these
regions containing field singularities, the solutions to the field equations satisfy the
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integral conditions. The flax of the field vector through these surfaces is equal to the
sum of discrete charges enclosed by the total surface.

With the solution averaged over space, Lorentz’s theory led to Maxwell’s theory,
which was in fact his objective. This is how the integral approach to the description
of natural phenomena came into being.

The same approach was used by Einstein in the interpretation of his general
theory of relativity and for deriving the equations of motion of matter in accordance
with Newton’s theory from his own equations.

It is, of course, well known that Einstein constructed his general theory of
relativity as a relativistic theory of gravitation. For this, he first wrote Newton’s
equations in the form of field equations using Poisson’s equation and then gave the
latter a relativistic, generalized character.

Einstein went further and abandoned inertial counting system, which had been
accorded a position of privilege. Thus, the invariance was no longer assumed to
be Lorentzian but universal in relation to any improper continuous transformation.
Here, use was also made of Lorentz’s idea, which we have mentioned earlier, of
the discrete nature of the distribution of matter. Matter is concentrated in point
singularities of a field, and between them, there is empty space for which Einstein’s
field equations hold true. The equations are not satisfied at singular points, which
must be surrounded by closed surfaces. For the latter, the integral relations of Gauss
in turn hold true; that is, the flux of the field through these surfaces is equal to the
charges found inside them. It should be emphasized once again that the actual fields
inside these regions need not satisfy the conditions of Einstein’s equations.

Einstein’s theory is, therefore, by its very nature and because of the basis on
which it is constructed, an integral one. This fact is not usually realized, which
is why we draw attention to it. It is by this condition, which in mathematical terms
amounts to the requirement that the divergence of the original tensor should become
exactly nil, that the nature of Einstein’s tensor is uniquely defined. Such a tensor
is one, the divergence of which is twice the contracted Bianchi identity for the
Riemann curvature tensor.

If all the singularities of a field are surrounded by small spheres, in the space
between them, the field will everywhere be regular and its equations can be
expanded in descending series in terms of the reciprocals of the velocities of light.
Upon equating the coefficients in terms of the same powers, we obtain a series of
equations. Every such system contains new quantities not found in the previous
systems and is easily solved.

The motion of singularities (i.e., of particles) is determined by virtue of the
fact that the left-hand sides of the systems of equations being solved satisfy four
identities. The right-hand side of these equations must therefore also satisfy these
identities or, with the singularities taken into account, the integral conditions. In the
absence of singularities, these conditions are automatically satisfied and provide
nothing new. But if they are present, they determine the equations of motion.
Einstein followed all calculations through and obtained Newton’s equations. This
method can also be used when gravitational and magnetic fields exist simultane-
ously, and the result of the calculation is positive. In this way, Einstein showed that
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even the classical interaction of mass points is caused by the nonlinearity of the field
equations. This fact is usually emphasized, but the role of integral conditions tends
not to be mentioned.

Einstein’s equations therefore contain Newton’s equations and thus also their
solutions and combinations.

Jacobi’s virial equation is derived from Newton’s equations and, consequently,
must itself be contained in Einstein’s equations. However, it is not immediately
apparent whether Newton’s or Jacobi’s equation is the more fundamental. New-
ton’s equations were obtained by Einstein from his second-order equations by
approximation. Jacobi’s equation was obtained from Einstein’s by the method of
oscillation moments, also in second-order but by an exact method. This makes
Jacobi’s equation the more fundamental one; moreover, unlike Newton’s equation,
it remains integral and dynamical in nature.

As we have mentioned, the way in which the whole problem is formulated gives
Jacobi’s moment equation an exact, closed form which in fact solves the problem
itself. In the case of the universe, the problem is also one of its non-steady-state
natures. A clever solution to this problem was found earlier by Friedmann. His
solution is a solution to Jacobi’s equation or to the smoothed Einstein’s equation.
This is an analogue of Maxwell’s equation in the form of a smoothed Lorentzian
equation for charge points.

For the empty space between point singularities, an anisotropic solution to
Einstein’s equation has been found (also by indirect means). This solution is
Kasner’s metric. Analysis of this metric shows the empty space being considered
pulsates. It is compressed on two axes, expands on one, and vice versa. Since this
solution has been obtained for the case of space without matter, that is, without
its interaction, so that the law of interaction is without significance, the oscillatory
nature of processes in nature is universal. The solution, however, is a formal one and
its physical significance needs to be elucidated.

In fact, in Newton’s well-known law of gravitation for two masses, it is assumed
that these are mass points. Otherwise, the inverse square law ceases to apply to
their interaction. This in turn contravenes the law of remote screening mentioned
in Chap. 1, which makes it impossible for approximately isolated (conservative)
systems to exist.

The law of gravitation thus permits the existence of infinitely small radii of
curvature and thereby of an infinitely large curvature of space–time, that is, of
singularities. There are other examples of motion toward or away from a singularity,
such as the formation of stars and planets and the expansion of the universe.
Newton’s law of gravitation therefore non-explicitly reflects the conditions for
the existence of singularities, and the generalization of his theory by Einstein
retains and, on the basis of the principle of equivalence, clearly demonstrates these
singularities.

Singularities are therefore an empirical fact. So what are they?
In accordance with Einstein’s theory, curvature is produced by mass. Conse-

quently, empty space–time is not abstract emptiness but a physical vacuum with
its own structure and also an analogue of mass, which in fact reflects Kasner’s

http://dx.doi.org/10.1007/978-94-007-5908-4_1
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solution to Einstein’s equation. This view is now widely held. In most models, a
vacuum is considered to be a quantum mechanical system of virtual particles and
to behave in a way similar to an elastic medium. Belinsky et al. (1970) studied
the behavior of Einstein’s equation for nonempty space–time but near a singularity.
They showed that with increasing proximity to (distance from) the singularity, a
moment is approached at which the vacuum curvature exceeds the curvature from
matter, and the solution to Einstein’s equation again becomes Kasner’s solution.

Its solution, however, is a case of uniform—although anisotropic—space–time.
Belinsky, Lifshitz, and Khalatnikov also examined the case of inhomogeneous
space–time and came to a conclusion that the nature of the solution was the same
but that the Kasner parameters were dependent on the coordinates and time.

In the case of further evolution of Kasner’s solution with the expansion of space
away from the singularity, the original anisotropic space gradually converted into
isotropic space, that is, into the Friedmann model, which is a solution to the second-
order virial equation.

The oscillatory law of the dynamics of natural processes is thus a universal law
of nature. It should, however, be noted that into all the approaches mentioned above,
the concept of finite time and of a beginning of time counting has been introduced.
In some models, there is also the concept of the end of the world. Only in one
of them (in which the average density of matter for the space being considered
is strictly determined) do the periodically alternating processes of expansion and
contraction infinitely. It is this mode that is determined by the solution to Jacobi’s
virial equation.

A special feature of Kasner’s solution for the general anisotropic case of space–
time is the appearance of dependence of metric coefficients of time in it in
accordance with the jtj2/3 law, where t is a time interval. This law was found for
the most general case in which there is no external symmetry, that is, no symmetry
that is not only associated with the internal arrangement of singularities.

The sources of the important relation jtj2/3 go back to Kepler, who found the law
experimentally in accordance with which the squares of the periods of rotation of
bodies of the solar system are the cubes of the semi-axes of the ellipses in which
they undergo motion.

It was pointed out in Chap. 6 that in Newton’s theory about the attraction of mass
points, such a law is also found to be asymptotic for the case in which n-bodies
collide simultaneously. It was also shown there that within this asymptotic limit,
the simultaneous collision of n-bodies leads to a homologous configuration. And, in
turn, the condition of the applicability of Jacobi’s general virial equation with two
functions holds true. Thus, using a solution of the Kasner type, the applicability
of Jacobi’s virial equation within the asymptotic limit of simultaneous collision
between n-bodies that was found earlier for Newton’s theory is extended to the case
of the solution of Einstein’s general equation. This indicates the universal nature of
Jacobi’s virial equation in dynamics.

Let us note a further important aspect of the solutions under consideration, which
relates to the change of the Kasner epochs. Their number is infinitely independent
of whether the world has a beginning or an end. This occurs as a result of a decrease
in the duration of an individual epoch as a singularity is approached.

http://dx.doi.org/10.1007/978-94-007-5908-4_6
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Let us now consider yet another aspect of the fundamental nature of Jacobi’s
virial equation. As we have already pointed out, Newton’s law of gravitation permits
the existence of a curvature in space–time, which is derived from Einstein’s theory.
However, there is one fundamental difference between the two theories. According
to Newton, the gravitational interaction is a long-range one, corresponding to an
infinite velocity of propagation of the interaction. Einstein assumes a short-range
interaction. It is propagated at finite velocity (at the velocity of light). Consequently,
Newton’s theory is formulated in terms of Euclidian geometry. Nevertheless, with
both theories, space–time is distorted.

Newton’s theory is constructed on the basis of a simple empirical law of Kepler
and does not make use of another empirical law, namely, the principle of equivalence
derived from the experiments of Eötvös.

So what common ground is there between the theories?
The fact is that Newton’s theory is constructed as Newtonian mechanics plus his

own law of gravitation. In Newtonian mechanics, there are three axioms, but the
type of interaction is not determined; this is done experimentally. In generalized
Newton’s theory, it is the mechanics that should have been generalized and not the
type of interaction.

With Einstein, the type of interaction is replaced by the principle of equivalence.
The mechanics, on the other hand, is generalized in accordance with the principle
of the invariance of equations. Long-range interaction is thus not involved here, and
the type of interaction makes no difference.

Jacobi’s virial equation, which was obtained from Newton’s equations, also does
not so much generalize the type of interaction law, in the way that this was done in
his (Jacobi’s) conclusions, as taken into account the mass defect (potential energy).
It is therefore linked with the principle of equivalence. The mass defect, in turn, is
determined by a system that has already been formed and, consequently, does not
depend on the type of interaction during the process of formation (long range or
short range).

As was thought by Wintner, Jacobi’s virial equation therefore reflects the type
of interaction law only integrally over the whole period of time in which the mass
defect is formed. Also, if there is no delay, as in the case of Newton’s long-range
law of gravitation, it will be simultaneously a specific and instantaneous type of
interaction, as pointed out by Wintner.

If a delay does take place, for example, in accordance with Einstein’s short-
range interaction law, instead of a specific, instantaneous type of interaction, the
equation will include an expression that has been strongly averaged over time, and
the dependence on the type of interaction will cease to be of significance. It will
be replaced by an assertion about the dependence on instantaneous mass or on the
mass defect that has built up over a long time.

This is the answer to the question posed. At the same time, the strength of
Jacobi’s equation is evident. Since in the general theory of relativity the usual
problems in the framework of a short time interval—and even the classical two-body
problem—are not solved, the enormous practical significance of solving Jacobi’s
virial equation becomes obvious. The fact that there are oscillations even in empty
space–time indicates the exclusively fundamental nature of this equation.
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Moreover, it has now become obvious that Jacobi’s virial equation, which was
obtained from Newton’s equations, is a particular case of more general virial
equation derived from Einstein’s equations. This equation will thus be studied from
the most general global points of view, namely, that of empty space–time, which
will not be called a vacuum, and that of models of an evolving universe. It should be
noted here that the models that have so far been developed from Jacobi’s equation
of an open, a closed, and a pulsating universe have been obtained automatically as
its natural solutions as a function of the source data—the quantities of total moment
and mass defect. In this case, all possible types of solution are encompassed, and the
question of the completeness of the set of possible models of the universe is thereby
solved.

Let us now consider an example that demonstrates the use of the integral
approach for constructing a complete closed theory based on Hooke’s law. The
concerned theory is the theory of elasticity.

In this theory, for any volume of a continuum, only quantities and parameters that
are integral from the point of view of an external observer are considered, namely,
deformation, stress, and modulus of elasticity. The elements of the volume interact
through their surface. A quantitative measure of their interaction is provided by
strains and a quantitative measure of the results of interaction by relative changes
in the external dimensions of elements, in other words, their deformation. The
internal structure of the material is demonstrated quantitatively by means of integral
parameters, namely, the mass density, the modulus of elasticity, and Poisson’s
coefficient.

The interaction between the element of interest of a body and the external world
takes place through external surface and volume forces. The external surface forces
act only on the surfaces of the whole body and not on that of any of its elements.
External volume forces amount to the application of surface forces to the surfaces
of any element and, thereby, to tensions. Here, external surface forces do not come
into the equilibrium equations but into the boundary conditions of the problem and
are thus excluded as forces.

It is important to stress this point. It was mentioned earlier by Hertz, who set
himself the problem of constructing a system of mechanics without forces. The fact
that he was relatively unsuccessful is because in his days, Minkowski’s idea about
the unity of space–time was as yet unknown. The link between static and dynamics
was not as clear as it would be after Minkowski.

Hooke’s theory is a strictly linear one. The two states of object it considers are
the initial and the final states before and after the application of the forces. One
of them is generally the equilibrium state. If these two states of one and the same
system occur at different times, displacement deformations are replaced by velocity
deformations. In this case, the approach followed takes the form of the theory of
viscous or liquid media of gases.

For a fluid, Hooke’s law is written in the form of Pascal’s law. In this way
of writing, it expresses the condition of equilibrium of the medium, where the
stresses on the main axes are equal to the pressure of the fluid. Another condition of
equilibrium for a fluid is the law of the conservation of matter.
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If, in the context of Hooke’s law, we move to the point of view of Minkowskian
unified space–time and effect a Lorentzian transformation from a stationary system
of coordinates to a moving one, the equilibrium conditions in accordance with
Pascal’s law or in the form of any other Hookean tension law can be expressed
as Euler’s equations and as an equation of the continuity of the medium. Here,
it is important to note that, when deriving Euler’s equations of motion, it is not
obligatory to use Newton’s second law of mechanics and that a Hookean system
equilibrium equation can be used.

Nor are any dynamic laws used to justify the Minkowski approach, which is
based directly on experimental values and is considered to be valid.

It should be noted that, in the context of Hooke’s law, a rigorous solution can
be found to Jacobi’s virial equation for conservative system. In this case, Hooke’s
law determines the constancy of the product of potential energy and of the Jacobi
function; this constancy is written in the form jU j p

ˆ D aGm5=2.
In this relation, the coefficient a D˛ˇ (which stands for the product of form

factors included in the expressions for the potential energy and the Jacobi function)
acts as a modulus of the dynamic elasticity of the system. It remains a constant and
reflects the constancy of the law of mass density distribution of the system within
the limits of its elastic deformations with virial oscillations. The deformation of
the system is characterized by its integral parameter, the Jacobi function, and the
stresses are determined by the term Gm5/2/U. As a result, the virial pulses of the
system will be strictly periodic, and the deformations will be found to be elastic and
therefore reversible.

On this basis, it was shown in Chap. 7 that the parameters of the virial oscillations
of the Earth, which are detected, can be used as if the Earth were an elastic body for
determining its potential energy. This option remains open for when natural systems
are being examined in the framework of other models of continuous and discrete
media.

We have mentioned a number of aspects of the universality of Jacobi dynamics in
the examination of natural systems. We shall now consider the prospects for solving
a number of practical problems in the context of the dynamic approach.

One of these problems is that of the dynamics of the solar system, of its evolution,
and of its origin. In Chaps. 1, 6, and 7, we made a first step and obtained the basic
common solution on the creation of celestial bodies and their systems. It appears
that any rank of new celestial body (from galaxy to meteorite and even to molecule
and atom) is born by self-gravitating parent in consequence of loss of its energy by
radiation. It means that the stage of self-gravitation and separation must be changed
by the stage of gravitation and joining of the matter. Thus, the present-day stage
of the expansion of the universe after total separation of the matter should come to
the stage of its contraction and gathering. Generally saying, our universe is a closed
pulsating and perpetual system. New more detailed solutions in this direction are
desirable.

The problem of the dynamics of bodies in the solar system is a traditional
practical problem of classical celestial mechanics. The key to it is solution of the
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two-body problem, one of the bodies being the Sun, while the other is one of the
planets of the system. The influence of other planets is taken into account by using
the methods of perturbation theory.

In the context of the dynamic approach, a new problem of the dynamics of
the self-gravitating Earth and its interaction with the Sun and the Moon were
considered in Chap. 7. The found normal and tangential components of the potential
and kinetic energies of a self-gravitating body made it possible to understand the
mechanism of separation of the body’s shells, their oscillation, and rotation by the
inner force field. It was understood that the induced outer force field, which has
all the properties of the electromagnetic field, acquires the property to conserve
the irradiated energy and potential in the orbital motion of its secondary body. But
because of the limited velocity of propagation of the changing potential, the orbital
trajectory is found to be open. This fact is proved both by the artificial satellites and
by the observed precession of all the planets and the moons. The found important
effect makes it possible to interpret inner structure of the Sun, the Earth, the Moon,
and other celestial bodies. And also, it raises the problem of improving Kepler’s
approximation of the Earth’s and other body’s orbits, which are found to be too
rough (Severny 1988).

In our opinion, the dynamics of the microcosm is a very interesting field for the
application of Jacobi dynamics. This book takes only the first step in this direction.
It is shown that Jacobi dynamics is also applicable for the solution of this type of
problem. An attractive idea is to use the dynamic approach for studying the physics
of molecules, atoms, and nuclei as dissipative systems, which might lead to the
discovery of many interesting effects.
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